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Abstract

We survey three methods for proving that the characteristic polynomial of a finite
ranked lattice factors over the nonnegative integers and indicate how they have
evolved recently. The first technique uses geometric ideas and is based on Za-
slavsky’s theory of signed graphs. The second approach is algebraic and employs
results of Saito and Terao about free hyperplane arrangements. Finally we con-
sider a purely combinatorial theorem of Stanley about supersolvable lattices and
its generalizations.



1 Introduction

The fundamental problem in enumerative combinatorics can be stated: given a set
S, find a formula for its cardinality |S|. More generally, given a sequence of sets
S0, S1, S2, . . . we would like to investigate properties of the sequence

a0, a1, a2, . . . (1)

where ai = |Si|, i ≥ 0. From their definition we obviously have ai ∈ Z≥0, the
non-negative integers.

We can also turn this problem around. Suppose we are given a sequence (1)
where the ai are defined in a way that would permit them to be complex numbers,
C. If, in fact, the terms are in Z≥0, can we find a combinatorial explanation for
this? One possibility, of course, would be to find a sequence of sets such that
ai = |Si|. Such questions are of great interest currently in algebraic combinatorics.

We are going to investigate a particular problem of this type: trying to explain
why the roots of a certain polynomial associated with a partially ordered set, called
the characteristic polynomial, often has all of its roots in Z≥0. We will provide
three explanations with tools drawn from three different areas of mathematics:
graph theory/geometry, algebra, and pure combinatorics. The first of these uses
Zaslavsky’s lovely theory of signed graph coloring [57, 58, 59] which can be gener-
alized to counting points of Zn or of Fnp inside a certain polytope [2, 15, 20, 26, 53].
(Here Fp is the Galois field with p elements.) The next technique is based on the-
orems of Saito [41] and Terao [51] about free hyperplane arrangements. Work has
also been done on related concepts such as inductive freeness [50] and recursive
freeness [60]. The third method employs a theorem of Stanley [44] on semimodular
supersolvable lattices which has recently been generalized by Blass and myself [14]
by relaxing both restrictions on the lattice. Along the way we will meet many
important combinatorial concepts.

The rest of this paper is organized as follows. The next section will introduce
the Möbius function, µ, of a partially ordered set (poset) which is a far-reaching
generalization of the one in number theory. In section 3 we will talk about gener-
ating functions, an important way to manipulate sequences such as (1), and define
the characteristic polynomial, χ, as the generating function for µ. The last three
sections will be devoted to the three methods for proving that for various posets
χ factors over Z≥0.
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2 Möbius functions and posets

In number theory, one usually sees the Möbius function µ : Z>0 → Z defined as

µ(n) =

{
0 if n is not square free,
(−1)k if n is the product of k distinct primes,

(2)

a definition which seems very strange at first blush. The importance of µ lies in
the number-theoretic Möbius Inversion Theorem.

Theorem 2.1 Let f, g : Z>0 → Z satisfy

f(n) =
∑
d|n

g(d)

for all n ∈ Z>0. Then

g(n) =
∑
d|n

µ(n/d)f(d).

Moving into the area of enumerative combinatorics, one of the very useful tools
is the Principle of Inclusion-Exclusion or PIE.

Theorem 2.2 Let S be a finite set and S1, . . . , Sn ⊆ S then

|S −
n⋃
i=1

Si| = |S| −
∑

1≤i≤n

|Si|+
∑

1≤i<j≤n

|Si ∩ Sj| − · · ·+ (−1)n|
n⋂
i=1

Si|.

In the theory of difference equations if one takes a function f : Z≥0 → C then
there is an analog of the derivative, namely the difference operator

∆f(n) = f(n)− f(n − 1)

(where f(−1) = 0 by definition), and an analog of the integral, namely the sum-
mation operator

Sf(n) =

n∑
i=0

f(i).

The Fundamental Theorem of the Difference Calculus then states

Theorem 2.3 If f : Z≥0 → C then

∆Sf(n) = f(n).

2



u0

u1

u2

u3

The chain C3

u

∅

The Boolean algebra B3

u{1} u{2} u{3}

u{1, 2} u{1, 3} u{2, 3}

u

{1, 2, 3}

Q
Q

Q
Q

Q
Q

�
�
�
�
�
�

�
�
�
�
�
�

Q
Q

Q
Q

Q
Q

�
�
�
�
�
�

Q
Q

Q
Q

Q
Q

�
�
�
�
�
�

Q
Q

Q
Q

Q
Q

u1

u2 u3

u6 u9

u18

@
@

@
@

�
�
�
�

�
�
�
�

@
@

@
@

�
�
�
�

�
�
�
�

@
@

@
@

The divisor poset D18

Figure 1: Some example posets

One of the advantages of the combinatorial Möbius function is that its inversion
theorem unifies and generalizes the previous three results. In addition, it makes
the definition (2) transparent, encodes topological information about posets [6, 40],
and has even been used to bound the running time of certain algorithms [9]. We
will now define this powerful invariant.

Let finite P be a poset with partial order ≤. If P has a unique minimal element
then it will be denoted 0̂ = 0̂P , and if it has a unique maximal element then we will
use the notation 1̂ = 1̂P . If x ≤ y in P then the corresponding (closed) interval is

[x, y] = {z : x ≤ z ≤ y}

and we let Int(P ) denote the set of all intervals of P , Note that [x, y] is a poset in
its own right with 0̂[x,y] = x, 1̂[x,y] = y. The Möbius function of P , µ : Int(P )→ Z,
is defined recursively by

µ(x, y) =

{
1 if x = y,
−
∑

x≤z<y µ(x, z) if x < y.
(3)

Equivalently ∑
x≤z≤y

µ(x, z) = δx,y (4)

where δx,y is the Kronecker delta. If P has a zero then we define µ(x) = µ(0̂, x).
Let us compute µ(x) in some simple posets. The chain, Cn, consists of the

integers {0, 1, . . . , n} ordered in the usual manner; see Figure 1 for a picture of C3.
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It is immediate directly from the definition (3) that in Cn we have

µ(x) =

 1 if x = 0
−1 if x = 1
0 if x ≥ 2

(5)

The Boolean algebra, Bn, has as elements all subsets of [n] := {1, 2, . . . , n} and
⊆ as order relation, the case n = 3 being displayed in Figure 1. After computing
the Möbius function of B3, the reader will immediately guess that if x ∈ Bn then
µ(x) = (−1)|x|. This follows easily from the following observations. The Cartesian
product of two posets P,Q is obtained by ordering the (x, y) ∈ P ×Q component-
wise. It is easy to prove directly from (3) that if 0̂P and 0̂Q exist then

µP×Q(x, y) = µP (x)µQ(y)

Since Bn is isomorphic as a poset to the n-fold product (C1)n, it is a simple matter
to verify that its Möbius function has the desired form using equation (5).

The divisor poset, Dn, consists of all d|n ordered by c ≤ d if c|d. Figure 1 shows
D18. Clearly if n has prime factorization n =

∏
i p
ni
i then we have an isomorphism

Dn
∼= ×iCni . So as with the Boolean algebra, we get the value of µ(d) to be as in

definition (2), this time in a much more natural way.
In case the reader is not convinced that the definition (4) is natural, consider

the incidence algebra of P , I(P ), which consists of all functions f : Int(P ) → C.
The multiplication in this algebra is convolution defined by

f ∗ g(x, y) =
∑
x≤z≤y

f(x, z)g(z, y).

Note that with this multiplication I(P ) has an identity element δ : Int(P ) → C,
namely δ(x, y) = δx,y. One of the simplest but most important functions in I(P )
is the zeta function (so called because in I(Dn) it is related to the Riemann zeta
function) given by ζ(x, y) = 1 for all intervals [x, y]. It is easy to see that ζ is
invertible in I(P ) and in fact that ζ−1 = µ where µ is defined by (4).

The fundamental result about µ is the combinatorial Möbius Inversion Theo-
rem [40].

Theorem 2.4 Let P be a finite poset and f, g : P → C.

1. If for all x ∈ P we have f(x) =
∑

y≤x g(y) then

g(x) =
∑
y≤x

µ(y, x)f(y).
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2. If for all x ∈ P we have f(x) =
∑

y≥x g(y) then

g(x) =
∑
y≥x

µ(x, y)f(y).

It is now easy to obtain the Theorems 2.1, 2.2, and 2.3 as corollaries by using
Möbius inversion over Dn, Bn, and Cn, respectively. For example, to get the
Principle of Inclusion-Exclusion, use f, g : Bn → Z≥0 defined by

f(X) = |SX|,

g(X) = |SX −
⋃
i6∈X

Si|,

where SX = ∩i∈XSi.

3 Generating functions and characteristic poly-

nomials

The (ordinary) generating function for the sequence (1) is the formal power series

f(x) = a0 + a1x+ a2x
2 + · · · .

Generating functions are a powerful tool for studying sequences and Wilf has
written a wonderful text devoted entirely to their study [55]. There are several
reasons why one might wish to convert a sequence into its generating function. It
may be possible to find a closed form for f(x) when one does not exist for (an)n≥0,
or the expression for the generating function may be used to derive one for the
sequence. Also, sometimes it is easier to obtain various properties of the an, such
as a recursion or congruence relation, from f(x) rather than directly.

By way of illustration, consider the sequence whose terms are

p(n) = number of integer partitions of the number n ∈ Z≥0

where an integer partition is a way of writing n as an unordered sum of positive
integers. For example, p(4) = 5 because of the partitions

4, 3 + 1, 2 + 2, 2 + 1 + 1, 1 + 1 + 1 + 1 + 1.

There is no known closed form for p(n), but the generating function was found by
Euler

∞∑
n=0

p(n)xn =

∞∏
k=1

1

1− xk
(6)
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Figure 2: The partition poset Π3

since 1/(1 − xk) = 1 + xk + x2k + · · · and so a term in the product obtained
by choosing xik from this expansion corresponds to choosing a partition with the
integer k repeated i times. From (6) one can obtain all sorts of information about
p(n), such as its asymptotic behavior. See Andrews’ book [1] for more details.

Our main object of study will be the generating function for the Möbius func-
tion of a poset P , the so-called characteristic polynomial. Let P have a zero and
be ranked so that for any x ∈ P all maximal chains from 0̂ to x have the same
length denoted ρ(x) and called the rank of x. (A chain is a totally ordered subset
of P and maximal refers to inclusion.) The characteristic polynomial of P is then

χ(P, t) =
∑
x∈P

µ(x)tρ(1̂)−ρ(x). (7)

Note that we use the corank rather than the rank in the exponent on t so that χ
will be monic.

Let us look at some examples of posets and their characteristic polynomials,
starting with those from the previous section. For the chain we clearly have

χ(Cn, t) = tn − tn−1 = tn−1(t− 1).

Now for the Boolean algebra we have

χ(Bn, t) =
∑
x⊆[n]

(−1)|x|tn−|x| = (t− 1)n.
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Note that by the same argument, if k is the number of distinct primes dividing n
then

χ(Dn, t) = tρ(n)−k(t− 1)k

since the terms divisible by squares contribute nothing to the sum. As a fourth
example, consider the partition poset Πn which consists of all set partitions of [n]
(families of disjoint nonempty subsets whose union is [n]) ordered by refinement.
Direct computation with Π3 as shown in Figure 2 shows that χ(Π3, t) = t2−3t+2 =
(t− 1)(t− 2). In general

χ(Πn, t) = (t− 1)(t− 2) · · · (t− n+ 1).

Note that in all cases χ has only nonnegative integral roots.
Many of our example posets will arise as intersection lattices of subspace ar-

rangements. A lattice, L, is poset such that every pair x, y ∈ L has a meet or
greatest lower bound, x∧y, and a join or least upper bound, x∨y. All our lattices
will be finite and so will automatically have a zero 0̂ =

∧
L and a one 1̂ =

∨
L. A

subspace arrangement is a finite set

A = {K1, K2, . . . , Kl} (8)

of subspaces of real Euclidean space Rn. If dimKi = n − 1 for 1 ≤ i ≤ l then
we say that A is a hyperplane arrangement and use H’s in place of K’s. The
intersection lattice of A, L(A), has as elements all subspaces X ⊆ Rn that can be
written as an intersection of some of the elements of A. The partial order is reverse
inclusion, so that X ≤ Y if and only if X ⊇ Y . So L(A) has minimal element Rn,
maximal elementK1∩· · ·∩Kl, and join operation X ∨Y = X∩Y . The reader can
consult [7, 36] for more details about the general theory of arrangements which is
currently a very active field.

The characteristic polynomial of A is defined by

χ(A, t) =
∑

X∈L(A)

µ(X)tdimX. (9)

This is not necessarily the same as χ(L(A), t) as defined in (7). If A is a hyperplane
arrangement then the two will be equal up to a factor of a power of t, so from the
point of view of having integral roots there is no difference. In the general subspace
case (7) and (9) may be quite dissimilar and often the latter turns out to factor
at least partially over Z≥0 while the former does not. In the arrangement case
the roots of (9) are called the exponents of A and denoted expA. In fact when A
is the set of reflecting hyperplanes for a Weyl group W then these roots are just
the usual exponents of W [51] which are always nonnegative integers. The reason
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A χ(A, t) expA
An t(t− 1)(t− 2) · · · (t− n+ 1) 0, 1, 2, . . . , n− 1
Bn (t− 1)(t− 3) · · · (t− 2n+ 1) 1, 3, 5, . . . , 2n − 1
Dn (t− 1)(t− 3) · · · (t− 2n+ 3)(t− n+ 1) 1, 3, 5, . . . , 2n − 3, n − 1

Table 1: Characteristic polynomials and exponents of some Weyl arrangements

that Weyl groups, as opposed to more general Coxeter groups, have well-behaved
characteristic polynomials is that such groups stabilize an appropriate discrete
subgroup of Zn.

All of our previous example lattices can be realized as intersection lattices of
subspace arrangements. The n-chain is L(A) with A = {K0, . . . , Kn} where Ki

is the set of all points having the first i coordinates zero. The Boolean algebra is
the intersection lattice of the arrangement of coordinate hyperplanes Hi : xi = 0,
1 ≤ i ≤ n. By combining these two constructions, one can also obtain a realization
of the divisor poset as a subspace arrangement. To get the partition lattice we use
the Weyl arrangement of type A

An = {xi − xj = 0 : 1 ≤ i < j ≤ n}.

To see why Πn and L(An) are the same, associate the hyperplane xi = xj with
the partition where i, j are in one subset and all other subsets are singletons. This
will then make the join operations in the two lattices correspond. Note that the
characteristic polynomials defined by (7) and (9) are the same in the first two
examples while χ(An, t) = tχ(Πn, t).

We will also be concerned with the hyperplane arrangements associated with
other Weyl groups. The reader interested in more information about these groups
should consult the excellent text of Humphreys [30]. In particular, the other two
infinite families

Bn = {xi ± xj = 0 : 1 ≤ i < j ≤ n} ∪ {xi = 0 : 1 ≤ i ≤ n},

Dn = {xi ± xj = 0 : 1 ≤ i < j ≤ n}

will play a role. The corresponding characteristic polynomials are listed in Table 1
along with χ(An, t) for completeness. (We do not consider the arrangement for
the root system Cn because its roots are scalar multiples of the ones for Bn, thus
yielding the same arrangement.) We will show how to derive the formulas for the
characteristic polynomials of An,Bn and Dn using elementary graph theory in the
next section.
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4 Signed graphs

Zaslavsky developed his theory of signed graphs [57, 58, 59] to study hyperplane
arrangements contained in the Weyl arrangement Bn. (Note that this includes An
and Dn.) In particular his coloring arguments provide one of the simplest ways to
compute the corresponding characteristic polynomials.

A signed graph, G = (V,E), consists of a set V of vertices which we will always
take to be {1, 2, . . . , n}, and a set of edges E which can be of three possible types:

1. a positive edge between i, j ∈ V , denoted ij+,

2. a negative edge between i, j ∈ V , denoted ij−,

3. and a half-edge which has only one endpoint i ∈ V , denoted ih.

One can have both the positive and negative edges between a given pair of vertices
in which case it is called a doubled edge and denoted ij±. The three types of edges
correspond to the three types of hyperplanes in Bn, namely xi = xj, xi = −xj,
and xi = 0 for the positive, negative, and half-edges, respectively. So to every
hyperplane arrangement A ⊆ Bn we have an associated signed graph GA with a
hyperplane in A if and only if the corresponding edge is in GA. Actually, the
possible edges in GA really correspond to the vectors in the root system of type
Bn perpendicular to the hyperplanes which are ei − ej, ei + ej, and ei. (In the
full theory one also considers the root system Cn with roots 2ei which are modeled
by loops ii in G. This is why the somewhat strange definition of a half-edge is
necessary. Loops and half-edges behave differently because, e.g., the former can
be in a circuit of the graph while the later can not.) In picturing a signed graph I
will draw an ordinary edge for ij+, an edge with a slash through it for ij−, an edge
with two slashes through it for ij±, and an edge starting at a vertex and wandering
off into space for ih. The graphs GA3 , GB3 , and GD3 are shown in Figure 3.

Since we are using signed edges, we are also going to use signed colors for the
vertices. For s ∈ Z≥0 let [−s, s] = {−s,−s + 1, . . . , s − 1, s}. A coloring of the
signed graph G is a function c : V → [−s, s]. The fact that the number of colors
t = |[−s, s]| = 2s+ 1 is always odd will be of significance later. A proper coloring
c of G requires that for every edge e ∈ E we have

1. if e = ij+ then c(i) 6= c(j),

2. if e = ij− then c(i) 6= −c(j),

3. if e = ih then c(i) 6= 0.

9
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Figure 3: Graphs for Weyl arrangements

Note that the first of these three restrictions is the one associated with ordinary
graphs and the four-color theorem [19]. The chromatic polynomial of G is

P (G, t) = the number of proper colorings of G with t colors.

It is not obvious from the definition that P (G, t) is actually a polynomial in t. In
fact even more is true as we see in the following theorem of Zaslavsky.

Theorem 4.1 ([58]) Suppose A ⊆ Bn has signed graph GA. Then

χ(A, t) = P (GA, t).

Theorem 4.1 trivializes the calculation of the characteristic polynomials for the
three infinite families of Weyl arrangements and in so doing explains why they
factor over Z≥0. For An the graph GAn consists of every possible positive edge. So
to properly color GAn we have t choices for vertex 1, then t− 1 for vertex 2 since
c(2) 6= c(1), and so forth yielding

χ(An, t) = P (GAn) = t(t− 1) · · · (t− n + 1)

in agreement with Table 1. It will be convenient in a bit to have a shorthand for
this falling factorial, so let 〈t〉n = t(t − 1) · · · (t − n + 1). In GBn we also have
every negative edge and half-edge. This gives t− 1 choices for vertex 1 since color
0 is not allowed, t− 3 choices for vertex 2 since c(2) 6= ±c(1), 0, and so on. These
are exactly the factors in the Bn entry of Table 1. Finally consider GDn which is
just GBn with the half-edges removed. There are two cases depending on whether
the color 0 appears once or not at all. (It can’t appear two or more times because
GAn ⊆ GDn .) If the color 0 is never used then we have the same number of colorings

10



as with Bn. If 0 is used once then there are n vertices that could receive it and the
rest are colored as in Bn−1. So

χ(Dn, t) =
n∏
i=1

(t− 2i+ 1) + n

n−1∏
i=1

(t− 2i+ 1) = (t− n + 1)
n−1∏
i=1

(t− 2i+ 1)

which again agrees with the table.
Blass and I have generalized Zaslavsky’s theorem from hyperplane arrange-

ments to subspace arrangements. If A and B are subspace arrangements then we
say that A is embedded in B if all subspaces of A are intersections of subspaces
of B, i.e., A ⊆ L(B). Now consider [−s, s]n as a cube of integer lattice points
in Rn (not to be confused with our use of lattice as a type of partially ordered
set). Let [−s, s]n \

⋃
A denote the set of points of the cube which lie on none of

the subspaces in A. We will include a proof of the next result because it amply
illustrates the importance of the Möbius Inversion Theorem.

Theorem 4.2 ([15]) Let t = 2s + 1 where s ∈ Z≥0 and let A be any subspace
arrangement embedded in Bn. Then

χ(A, t) = |[−s, s]n \
⋃
A|.

Proof. We construct two functions f, g : L(A) −→ Z by defining for each X ∈
L(A)

f(X) = |X ∩ [−s, s]n|,

g(X) = |(X \
⋃
Y >X

Y ) ∩ [−s, s]n|.

Recall that L(A) is ordered by reverse inclusion so that
⋃
Y >X Y ⊂ X. In particular

g(Rn) = |[−s, s]n\
⋃
A|. Note also that X ∩ [−s, s]n is combinatorially just a cube

of dimension dimX and side t so that f(X) = tdimX. Finally, directly from our
definitions, f(X) =

∑
Y ≥X g(Y ) so by the Theorem 2.4

|[−s, s]n \
⋃
A| = g(0̂)

=
∑
X≥0̂)

µ(X)f(X)

=
∑

X∈L(A)

µ(X)tdimX

= χ(A, t)

11



which is the desired result.

To see why our theorem implies Zaslavsky’s in the hyperplane case, note that
a point c ∈ [−s, s]n is just a coloring c : V → [−s, s] where the ith coordinate of
the point is the color of the vertex i. With this viewpoint, a coloring is proper if
and only if the corresponding point is not on any hyperplane of A. For example,
if ij+ ∈ E then the coloring must have c(i) 6= c(j) and so the point does not lie on
the hyperplane xi = xj.

As an application of Theorem 4.2, we consider a set of subspace arrangements
that has been arousing a lot of interest lately. The k-equal arrangement of type A
is

An,k = {xi1 = xi2 = . . . = xik : 1 ≤ i1 < i2 < . . . < ik ≤ n}.

The An,k arrangements were introduced in the work of Björner, Lovász and Yao [9]
motivated, surprisingly enough, by its relevance to a certain problem in computa-
tional complexity. Its study has been continued by many people including Linus-
son, Sundaram, Wachs and Welker [8, 13, 11, 12, 34, 35, 48, 49]. Analogs of this
subspace arrangement for types B and D have also been studied by Björner and
myself [10].

Now in general χ(An,k) does not factor completely over Z≥0, but it does factor
partially. In fact it is divisible by the characteristic polynomial χ(Am, t) = 〈t〉m
for a certain m. What’s more if one expands χ(An,k) in the basis 〈t〉n, n ≥
0, for the polynomial ring then the coefficients are nonnegative integers with a
simple combinatorial interpretation. In particular, let Sk(n, j) denote the number
of partitions of an n-element set into j subsets each of which is of size at most k.
Thus these are generalizations of the Stirling numbers of the second kind. We now
have the expansion, first derived by Sundaram [47]

χ(An,k, t) =
∑
j

Sk−1(n, j)〈t〉j . (10)

To see why this is true, consider an arbitrary point c ∈ [−s, s]n \
⋃
An,k. So c can

have at most k−1 of its coordinates equal. Consider the c’s with exactly j different
coordinates. Then there are Sk−1(n, j) ways to distribute the j values among the
n coordinates with at most k − 1 equal. Next we can choose which values to use
in 〈t〉j ways. Summing over all j gives the desired equation. From (10) we can
immediately derive a divisibility relation. To state it, let d·e be the ceiling or round
up function. Then

〈t〉dn/(k−1)e | χ(An,k, t)

since Sk−1(n, j) = 0 if j < dn/(k−1)e. (Obviously j sets of at most k−1 elements
can partition a set of size of at most n = j(k − 1).)

12



Thinking about things in terms of lattice points also permits a generalization of
Zaslavsky’s theorem in another direction, namely to all Weyl hyperplane arrange-
ments (even the exceptional ones). Let Φ ⊂ Rn be a root system for a finite Weyl
group W and letW be the set of hyperplanes perpendicular to the roots. Let (·, ·)
denote the standard inner product on Rn. The role of the cube in Theorem 4.2
will be played by

Pt(Φ) = {x ∈ Rn : (x, α) ∈ Z<t for all α ∈ Φ}

which is a set of points in the coweight lattice of Φ closely associated with the
Weyl chambers of the corresponding affine Weyl group.

Consider a fixed simple system

∆ = {σ1, . . . , σn}

in Φ. Since ∆ is a basis for Rn any root α ∈ Φ can be written as a linear
combination,

α =
n∑
i=1

si(α)σi.

In fact the coefficients si(α) are always integers. Among all the roots, there is
a highest one, α̃, characterized by the fact that for all roots α and all i ∈ [n],
si(α̃) ≥ si(α). We will also need a weighting factor called the index of connection,
f , which is the index of the lattice generated by the roots in the coweight lattice.
The second generalization can now be stated.

Theorem 4.3 ([2, 15, 26]) Let Φ be a root system for a finite Weyl group with
associated arrangement W. Let t be a positive integer relatively prime to si(α̃) for
all i. Then

χ(W, t) =
1

f

∣∣∣Pt(Φ) \
⋃
W
∣∣∣ . (11)

Note how the condition in Theorem 4.2 that t be odd has been replaced by a
relative primeness restriction. This is typical when dealing with Ehrhart quasi-
polynomials [45, page 235ff.] which enumerate the number of points of a given
lattice inside a polytope and its blowups. We have not been able to use (11) to
explain the factorization of χ(W, t) over Z≥0 as was done with Theorem 4.1 for
the three infinite families. It would be interesting if this hole could be filled.

Athanasiadis [2] has given a very pretty proof of the previous theorem. His
main tool is a reworking of a result of Crapo and Rota [20] which is similar in
statement and proof to Theorem 4.2 but replaces [−s, s]n by Fnp where Fp is the
finite field with p elements, p prime. Terao [53] also independently discovered this
theorem.
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Theorem 4.4 ([2, 20, 53]) Let A be any subspace arrangement in Rn defined
over the integers and hence over Fp. Then for large enough primes p we have

χ(A, p) = |Fnp \
⋃
A|.

Athanasiadis has also used the previous result to give very elegant derivations
of characteristic polynomials for many arrangements which cannot be handled by
Theorem 4.2. For the rest of this section only, we will enlarge the definition of a
hyperplane arrangement to be any finite set of affine hyperplanes (not necessarily
passing through the origin). An arrangement B is a deformation of arrangement
A if every hyperplane of B is parallel to some hyperplane of A. As an example
consider the Shi arrangement of type A, Sn, with hyperplanes

xi − xj = 0, xi − xj = 1, where 1 ≤ i < j ≤ n

which is a deformation of the corresponding Weyl arrangement. Such arrangements
were introduced by Shi [42, 43] for studying affine Weyl groups. Headly [27, 28]
first computed their characteristic polynomials in a way that was universal for all
types but relied on a formula of Shi’s that had a complicated proof. To illustrate
the power of Theorem 4.4, we will reproduce the proof in [2] that

χ(Sn, t) = t(t− n)n−1. (12)

Consider any (x1, . . . , xn) ∈ Fnp as a placement of balls labeled 1, . . . , n into a
circular array of boxes labeled clockwise as 0, . . . , p − 1, where placement of ball
i in box j means xi = j. Then (x1, . . . , xn) ∈ Fnp \

⋃
Sn means that no two balls

are in the same box and that if two balls are in adjacent boxes then they must be
in increasing order clockwise. All such placements can be derived as follows. Take
p− n unlabeled boxes and place them in a circle. Now put the balls 1, . . . , n into
the spaces between the boxes so that adjacent ones increase clockwise. Note that
since the boxes are unlabeled, there is only one way to place ball 1, but once that
is done balls 2, . . . , n can be placed in (p− n)n−1 ways. Finally, put an unlabeled
box around each ball, label all the boxes clockwise as 0, . . . , p − 1 which can be
done in p ways, and we are done.

The connected components of Rn \A are called regions and a region is bounded
if it is contained in some sphere about the origin. If we let r(A) and b(A) denote
the number of regions and bounded regions, respectively, of A then we can state
the following striking result of Zaslavsky.

Theorem 4.5 ([56]) For any affine hyperplane arrangement

r(A) = |χ(A,−1)| =
∑

X∈L(A)

|µ(X)|
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and

b(A) = |χ(A, 1)| =

∣∣∣∣∣∣
∑

X∈L(A)

µ(X)

∣∣∣∣∣∣ .
Using the characteristic polynomials in Table 1 we see that

b(An) = |(−1)(−1− 1)(−1− 2) · · · (−1− n+ 1)| = n!
b(Bn) = |(−1− 1)(−1− 3) · · · (−1− 2n+ 1)| = 2nn!
b(Cn) = |(−1− 1)(−1− 3) · · · (−1− 2n+ 3)(−1 + n+ 1)| = 2n−1n!

which agrees with the well-known fact that the number of chambers of a Weyl
arrangement is the same as the number of elements in the corresponding group. It
was Shi’s formula for the number of regions in his arrangements that Headly needed
to derive the full characteristic polynomial. In particular, it follows from (12) that
r(Sn) = (n + 1)n−1 which is known to be the number of labeled trees on n + 1
vertices, or the number of parking functions of length n. Many people [3, 28, 37, 38,
46] have have used these combinatorial interpretations to come up with bijective
proofs of this formula and related ones.

5 Free arrangements

In this section we consider a large class of hyperplane arrangements called free
arrangements which were introduced by Terao [51]. The characteristic polynomial
of such an arrangement factors over Z≥0 because its roots are related to the degrees
of basis elements for a certain associated free module.

Our modules will be over the polynomial algebra A = R[x1, . . . , xn] = R[x]
graded by total degree so A = ⊕i≥0Ai. The module of derivations, D, consists of
all R-linear maps θ : A→ A satisfying

θ(fg) = fθ(g) + gθ(f)

for any f, g ∈ A. This module can be graded by saying that θ has degree d,
deg θ = d, if θ(Ai) ⊆ Ai+d for all i ≥ 0. Also, D is free with basis ∂/∂x1, . . . , ∂/∂xn.
It is simplest to display a derivation as a column vector with entries being its
components with respect to this basis. So if θ = p1(x)∂/∂x1 + · · · + pn(x)∂/∂xn
then we write

θ =

 p1(x)
...

pn(x)

 =

 θ(x1)
...

θ(xn)

 .
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Two operators that we will find useful are

Xd = xd1∂/∂x1 + · · ·+ xdn∂/∂xn =

 xd1
...
xdn


and

X̂ = x̂1∂/∂x1 + · · ·+ x̂n∂/∂xn =

 x̂1
...
x̂n


where x̂i = x1x2 · · · xn/xi. Note that deg Xd = d− 1 and deg X̂ = n− 2.

To see the connection with hyperplane arrangements, notice that any hyper-
plane H is defined by a linear equation αH(x1, . . . , xn) = 0. It is then useful to
study the associated module of A-derivations which is defined by

D(A) = {θ ∈ D : αH|θ(αH) for all H ∈ A}

where p|q is division of polynomials in A. By way of illustration, Xd ∈ D(An)
for all d ≥ 0 since Xd(xi − xj) = xdi − x

d
j which is divisible by xi − xj. Similarly

X2d+1 ∈ D(Dn) because of what we just showed for An and the fact that xi +
xj|x

2d+1
i +x2d+1

j . The X2d+1 are also in D(Bn) since xi|x
2d+1
i . By the same methods

we get X̂ ∈ D(Dn).
We say that the arrangement A is free if D(A) is free as a module over A.

Freeness is intimately connected with the factorization of χ as the next theorem
shows.

Theorem 5.1 ([51]) If A is free then D(A) has a homogeneous basis θ1, . . . , θn
and the degree set {d1, . . . , dn} = {deg θ1, . . . , deg θn} depends only on A. Further-
more

χ(A, t) = (t− d1 − 1) · · · (t− dn − 1).

We have a simple way to check whether a derivation is in D(A) for a given
arrangement A. It would be nice to have an easy way to test whether A is free
and if so find a basis. This is the Saito Criterion. Given derivations θ1, . . . , θn,
consider the matrix whose columns are the corresponding column vectors

Θ = [θ1, . . . , θn] = [θj(xi)].

Also consider the homogeneous polynomial

Q = Q(A) =
∏
H∈A

αH(x)
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which has the arrangement A as zero set. For example

Q(An) =
∏

1≤i<j≤n

(xi − xj)

Q(Bn) = x1x2 · · · xn
∏

1≤i<j≤n

(x2
i − x

2
j)

Q(Dn) =
∏

1≤i<j≤n

(x2
i − x

2
j).

Theorem 5.2 ([41, 52]) Suppose θ1, . . . , θn ∈ D(A) and that Q is the defining
form of A. Then A is free with basis θ1, . . . , θn if and only if

det Θ = cQ

for some c ∈ R \ 0.

How could this be applied to the Weyl arrangements? Given what we know
about elements in their derivation modules and the factorization of their charac-
teristic polynomials, it is natural to guess that we might be able to prove freeness
with the following matrices

Θ(An) =
[
X0,X1,X2, . . . ,Xn−1

]
,

Θ(Bn) =
[
X1,X3,X5, . . . ,X2n−1

]
,

Θ(Dn) =
[
X1,X3,X5, . . . ,X2n−3, X̂

]
.

Of course det Θ(An) =
∏

1≤i<j≤n(xi − xj) = ±Q(An) is just Vandermonde’s de-

terminant. Similarly we get det Θ(Bn) = ±x1x2 · · ·xn
∏

1≤i<j≤n(x2
i − x

2
j) by first

factoring out xi from the ith row which results in a Vandermonde in squared vari-
ables. For Dn just factor out x1x2 · · · xn from the last column and then put these
factors back in by multiplying row i by xi. The result is again a Vandermonde
in squares. Now the roots of the corresponding characteristic polynomials can be
read off these matrices in agreement with Table 1.

The reader may have noticed that the bases we have for D(Bn) and D(Dn) are
the same except for the last derivation. This is reflected in the fact that expBn
and expDn are the same except for the last root. Note that the difference between
these roots is n which is exactly the number of hyperplanes in Bn but not in
Dn. Wouldn’t it be lovely if adding these hyperplanes one at a time to Dn would
produce a sequence of arrangements all of whose exponents agreed with exp(Dn)
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except the last one which would increase by one each time a hyperplane is added
until we reach exp(Bn)? This is in fact what happens. Define

DBn,k = Dn ∪ {x1, x2, . . . , xk}

so that DBn,0 = Dn and DBn,n = Bn. Now the derivation θk = x1x2 · · ·xkX̂ (scalar

multiplication) is in D(DBn,k) since X̂ ∈ D(Dn) and xi | θk(xi) for 1 ≤ i ≤ k.
Furthermore, if we let

Θ(DBn,k) =
[
X1,X3,X5, . . . ,X2n−3, θk

]
then det Θ(DBn,k) = x1x2 · · · xk det Θ(Dn) = Q(DBn,k) so we do indeed have a
basis. Thus exp(DBn,k) = {1, 3, 5, . . . , 2n−3, n−1+k} as desired. The DBn,k were
first considered by Zaslavsky [57]. Bases for the module of derivations associated
to other hyperplane arrangements interpolating between the three infinite Weyl
families have been computed by Józefiak and myself [32]. Edelman and Reiner [21]
have determined all free arrangements lying between An and Bn. It is still an open
problem to find all the free subarrangements of Bn which do not contain An.

Related to these interpolations are the notions of inductive and recursive free-
ness. If A is any hyperplane arrangement and H ∈ A then we have the corre-
sponding deleted arrangement

A′ = A \H

and the restricted arrangement

A′′ = {H ′ ∩H : H ′ ∈ A′}.

In this case (A,A′,A′′) is called a triple of arrangements. Of course A′ and A′′

depend on H even though the notation does not reflect this fact. Also if A ⊆ Bn
then one can mirror these two operations by defining deletion or contraction of
corresponding edges in GA. The following Deletion-Restriction Theorem shows
how the characteristic polynomials for these three arrangements are related.

Theorem 5.3 ([18, 56]) If (A,A′,A′′) is a triple of arrangements then

χ(A, t) = χ(A′, t)− χ(A′′, t).

For freeness, we have Terao’s Addition-Deletion Theorem. Note that its statement
about the exponents follows immediately from the previous result.

Theorem 5.4 ( [50]) If (A,A′,A′′) is a triple of arrangements then any two of
the following statements implies the third:

A is free with expA = {e1, . . . , en−1, en},

A′ is free with expA′ = {e1, . . . , en−1, en − 1},

A′′ is free with expA′′ = {e1, . . . , en−1}.

18



Continuing to follow [50], define the class IF of inductively free arrangements
to be those generated by the rules

(1) the empty arrangement in Rn is in IF for all n ≥ 0,

(2) if there exists H ∈ A such that A′,A′′ ∈ IF and expA′′ ⊂ expA′ then
A ∈ IF.

So to show that A is inductively free, we must start with an arrangement which is
known to be inductively free and add hyperplanes one at a time so that (2) is always
satisfied. If F denotes the class of free arrangements then Theorem 5.4 shows that
IF ⊆ F and one can come up with examples to show that the inclusion is in fact
strict. On the other hand, it is not hard to show using interpolating arrangements
that An,Bn and Dn are all inductively free. Ziegler [60] has introduced an even
larger class of arrangements. The class of recursively free arrangements, RF , is
gotten by using the same two conditions as for IF plus

(3) if there exists H ∈ A such that A,A′′ ∈ RF and expA′′ ⊂ expA then
A′ ∈ IF .

It can be shown that IF ⊂ RF strictly but it is not known whether every free
arrangement is recursively free.

6 Supersolvability

In this section we will look at a combinatorial method of Stanley [44] which applies
to lattices in general, not just those which arise from arrangements. First, how-
ever, we must review an important result of Rota [40] which gives a combinatorial
interpretation to the Möbius function of a semimodular lattice.

A lattice L is modular if for all x, y, z ∈ L with y ≤ z we have an associative
law

y ∨ (x ∧ z) = (y ∨ x) ∧ z. (13)

A number of natural examples, e.g., the partition lattice, are not modular but
satisfy the weaker condition

if x and y both cover x ∧ y then x ∨ y covers both x and y

for all x, y ∈ L. (If x, y ∈ L then x covers y if x > y and there is no z with
x > z > y.) Such lattices are called semimodular. Lattice L is modular if and only
if both L and its dual L∗ (where the order relation is reversed) are semimodular.
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Figure 4: A lattice L

A set of important elements of L are its atoms which are all elements a covering
0̂. We let A(L) denote the atom set of L. If L is semimodular then one can show
that it is ranked. Furthermore, if B ⊆ A(L) then one can prove that

ρ(
∨

B) ≤ |B|. (14)

We will call B independent and a base for x =
∨
B if (14) holds with equality.

This terminology comes from the theory of vector spaces. Indeed if one takes L
to be the lattice of all subspaces of Fnq (Fq a finite field) ordered by inclusion then
atoms have dimension 1 and lattice independence corresponds to independence of
lines. A circuit is a dependent set which is minimal with respect to inclusion. If
arrangement A ⊆ An has graph G = GA then the atoms of L(A) are edges of G
and a circuit of L(A) forms a circuit in G in the usual graph-theoretic sense.

Now impose an arbitrary total order on A(L) which will be denoted � so as
to distinguish it from the partial order ≤ on L. A circuit C ⊆ A(L) gives rise to
a broken circuit , C, obtained by removing the minimal element of C in �. A set
B ⊆ A(L) is NBC (No Broken Circuit) if B does not contain any of the C. Note
that in this case B must be independent and so a base for

∨
B. To illustrate,

consider the semimodular lattice L in Figure 4. If we order the atoms a� b� c� d
then L has unique circuit C = {a, b, c} with associated broken circuit C = {b, c}.
Comparing the number of NBC bases of each element with its Möbius function in
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the following table

element x 0̂ a b c d s t u v 1̂
NBC bases of x ∅ a b c d a, b a, d b, d c, d a, b, d

a, c a, c, d
µ(x) +1 −1 −1 −1 −1 +2 +1 +1 +1 −2

should lead the reader to a conjecture! This is in fact the famous result of Rota
referred to earlier and usually called the NBC Theorem.

Theorem 6.1 ([40]) Let L be a semimodular lattice. Then for any total ordering
� of A(L) we have

µ(x) = (−1)ρ(x)(number of NBC bases of x).

In order to apply the NBC theorem to our factorization problem, we will need
to make an additional restriction on L. Write xMz and call x, z a modular pair if
equation (13) is satisfied for all y ≤ z. Furthermore x ∈ L is a modular element
if xMz and zMx for every z ∈ L. For example, if L = L(An) or L(Bn) then an
element corresponding to a graph KW which has a complete component on the
vertex set W ⊆ {1, 2, . . . , n} (all possible edges from the parent graph between
elements of W ) and all other components trivial (isolated vertices) is modular. A
semimodular lattice is supersolvable if it has a maximal chain of modular elements.
The lattice of subgroups of a finite supersolvable group (one possessing a normal
series where quotients of consecutive terms are cyclic) is supersolvable. From the
previous example we see that L(An) and L(Bn) are supersolvable. However it is
not true that L(Dn) is supersolvable as we will see later.

Now any chain 0̂ = x0 < x1 < . . . < xn = 1̂ in L defines a partition of the
atoms A(L) into subsets

Ai = {a ∈ A(L) : a ≤ xi and a 6≤ xi−1} (15)

called levels. A total order � on A(L) is said to be induced if it satisfies

if a ∈ Ai and b ∈ Aj with i < j then a� b. (16)

With these definitions we can state one of Stanley’s main results [44] about semi-
modular supersolvable lattices. It states that their characteristic polynomials fac-
tor over Z≥0 because the roots are the cardinalities of the the Ai.

Theorem 6.2 ([44]) Let L be a semimodular supersolvable lattice and suppose
0̂ = x0 < x1 < . . . < xn = 1̂ is a maximal chain of modular elements of L. Then
for any induced total order � on A(L)
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(1) the NBC bases of L are exactly the sets of atoms gotten by picking at most
one atom from each Ai,

(2) χ(L, t) = (t− |A1|)(t− |A2|) · · · (t− |An|).

Proof. The proof that (1) implies (2) is so simple and beautiful that I cannot
resist giving it. The coefficient of tn−k on the right side of (2) is (−1)k times the
number of ways to pick atoms from exactly k of the Ai. But by (1) this is up to
sign the number of NBC bases of elements at rank k. Putting back in the sign and
using the NBC theorem, we see that this coefficient is the sum of all the Möbius
values for elements of rank k, which agrees with the corresponding coefficient on
the left side.

As an example, consider the chain of graphs with a single nontrivial complete
component

0̂ = K{1} < K{1,2} < . . . < K{1,2,...,n} = 1̂

in Πn = L(An). Then Ak is the set of all positive edges from k + 1 to i, i < k + 1,
and so |Ak| = k. Thus χ(Πn, t) =

∏n−1
i=1 (t− i) as before. Using the analogous chain

in L(Bn) (which starts at K∅) gives Ak as containing all edges ik±, i < k, and all
half-edges jh, j ≤ k. So |Ak| = 2k− 1 giving the usual roots. Now we can also see
why L(Dn) is not supersolvable for n ≥ 4. When n ≥ 4 the second smallest root
of χ(Dn, t) is 3. So if the lattice were supersolvable then Theorem 6.2 would imply
that some element x ∈ L(Dn) of rank two would have to cover at least 3+ |A1| = 4
atoms. It is easy to verify that there is no such element.

It is frustrating that L(Dn) is not supersolvable. To get around this prob-
lem, Bennett and I have introduced a more general concept [5]. Looking at the
previous proof, the reader will note that it would still go through if every NBC
base could be obtained in the following manner. First pick an atom from a set
A1 = {a1, a

′
1, a
′′
1, . . .}. Then pick the second atom from one of a family of sets

A2, A
′
2, A

′′
2, . . . according to whether the first atom picked was a1, a

′
1, a
′′
1, . . . respec-

tively, where |A2| = |A′2| = |A′′2| = . . ., and continue similarly. This process can
be modeled by an object which we call an atom decision tree or ADT and any
lattice admitting an ADT has a characteristic polynomial with roots ri equal to
the common cardinality of all the sets of index i. It turns out that the lattices for
all of the interpolating arrangements DBn,k admit ADTs and this combinatorially
explains their factorization. Hélène Barcelo and Alain Goupil [4] have indepen-
dently come up with a factorization of the NBC complex of L(Dn) (the simplicial
complex of all NBC bases of a lattice) which is similar to the ADT one. Their
paper also contains a nice result (joint with Garsia) relating the NBC sets with
reduced decompositions into reflections of Weyl group elements.
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Another way to generalize the previous theorem is to replace the semimodu-
larity and supersolvability restrictions by weaker conditions. The new concepts
are based on a generalization of the NBC Theorem that completely eliminates
semimodularity from its hypothesis. Let � be any partial order on A(L). It can
be anything from a total order to the total incomparability order induced by the
ordering on L. A set D ⊆ A(L) is bounded below if for any d ∈ D there is a ∈ A(L)
such that

(a) a� d and

(b) a <
∨
D.

In other words a bounds d below in (A(L),�) and also bounds
∨
D below in

(L,≤). We say B ⊆ A(L) is NBB if it contains no bounded below set and say
that B is an NBB base for x =

∨
B. Blass and I have proved the following NBB

Theorem which holds for any lattice.

Theorem 6.3 ([14]) Let L be any lattice and let � be any partial order on A(L).
Then for any x ∈ L we have

µ(x) =
∑
B

(−1)|B|

where the sum is over all NBB bases of x.

Note that when L is semimodular and � is total then the NBB and NBC bases
coincide. Also in this case all NBC bases of x have the same cardinality, namely
ρ(x), and so our theorem reduces to Rota’s. However this result has much wider
applicability, giving combinatorial explanations for the Möbius functions of the
non-crossing partition lattices and their type B and D analogs [33, 39], integer
partitions under dominance order [16, 17, 24], and the shuffle posets of Greene [25].

Call x ∈ L left modular if xMz for all z ∈ L. So this is only half of the
condition for modularity of x. Call L itself left modular if

L has a maximal chain 0̂ = x0 < x1 < . . . < xn = 1̂ of left modular elements.

This is strictly weaker than supersolvability as can be seen by considering the
5-element nonmodular lattice [44, Proposition 2.2 and ff.].

In Stanley’s theorem we cannot completely do away with semimodularity as
we did in Rota’s (the reason why will come shortly), but we can replace it with
a weaker hypothesis which we call the level condition. In it we assume that the
partial order � has been induced by some maximal chain, i.e., satisfies (16) with
“if” replaced by “if and only if.”
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If � is induced and b0 � b1 � b2 � . . .� bk then b0 6≤
∨k
i=1 bi.

It can be shown that semimodularity implies the level condition for any induced
order but not conversely. An LL lattice is one having a maximal left modular chain
such that the induced partial order satisfies the level condition. So Theorem 6.2
generalizes to the following. Note that we must extend the definition of the char-
acteristic polynomial since an LL lattice may not have a rank function and the
first of the two parts makes χ well-defined.

Theorem 6.4 ([14]) Let L be an an LL lattice with � the partial order on A(L)
induced by a left modular chain.

(1) The NBB bases of L are exactly the sets of atoms obtained by picking at most
one atom from each Ai and all NBB bases of a given x ∈ L have the same
cardinality denoted ρ(x).

(2) If we define χ(L, t) =
∑

x∈L µ(x)tρ(1̂)−ρ(x) with ρ as in (1), then

χ(L, t) = (t− |A1|)(t− |A2|) · · · (t− |An|).

This theorem can be used on lattices where Stanley’s theorem does not apply,
e.g., the Tamari lattices [22, 23, 29] and certain shuffle posets [24]. Note also that
we cannot drop the level condition which replaced semimodularity completely:
If one considers the non-crossing partition lattice then it has the same modular
chain as Πn. However, it does not satisfy the level condition and its characteristic
polynomial does not factor over Z≥0.

I hope that you have enjoyed this tour through the world of the characteristic
polynomial and its factorizations. Maybe you will feel inspired to try one of the
open problems mentioned along the way.

Acknowledgment. I would like to thank the referee for very helpful suggestions.
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