

K11404_FM.indd 1 7/16/10 12:15:45 PM

K11404_FM.indd 2 7/16/10 12:15:48 PM

K11404_FM.indd 3 7/16/10 12:15:48 PM

MATLAB® and Simulink® are trademarks of The MathWorks, Inc. and are used with permission. The Math-
Works does not warrant the accuracy of the text or exercises in this book. This book’s use or discussion
of MATLAB® and Simulink® software or related products does not constitute endorsement or sponsorship
by The MathWorks of a particular pedagogical approach or particular use of the MATLAB® and Simulink®
software.

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2011 by Taylor and Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed in the United States of America on acid-free paper
10 9 8 7 6 5 4 3 2 1

International Standard Book Number: 978-1-4398-2862-5 (Paperback)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts
have been made to publish reliable data and information, but the author and publisher cannot assume
responsibility for the validity of all materials or the consequences of their use. The authors and publishers
have attempted to trace the copyright holders of all material reproduced in this publication and apologize
to copyright holders if permission to publish in this form has not been obtained. If any copyright material
has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, trans-
mitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter
invented, including photocopying, microfilming, and recording, or in any information storage or retrieval
system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.
com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood
Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and
registration for a variety of users. For organizations that have been granted a photocopy license by the
CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are
used only for identification and explanation without intent to infringe.

Library of Congress Cataloging‑in‑Publication Data

Davis, Timothy A.
MATLAB primer / Timothy A. Davis. -- 8th ed.

p. cm.
Includes index.
ISBN 978-1-4398-2862-5 (pbk. : alk. paper)
1. MATLAB. 2. Numerical analysis--Data processing. I. Title.

QA297.D38 2011
518.0285--dc22 2010023858

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

K11404_FM.indd 4 7/16/10 12:15:48 PM

i

i

“8primer” — 2010/6/7 — 16:45 — page v — #5
i

i

i

i

i

i

Contents

Preface xiii

Introduction xv

1 Getting Started 1

2 The MATLAB Desktop 1

2.1 Command Window 3

2.2 Command History window 7

2.3 Current Folder window 7

2.4 Workspace window 9

2.5 Help window 10

2.6 File Exchange window 12

2.7 Variable Editor window 12

3 Matrices and Matrix Operations 13

3.1 Referencing individual entries 13

3.2 Matrix operators 14

3.3 Matrix division (slash and backslash) 15

3.4 Entry-wise operators 16

3.5 Relational operators 16

3.6 Complex numbers 17

3.7 Strings . 18

4 Submatrices and Colon Notation 19

4.1 Generating vectors 19

4.2 Accessing submatrices 20

5 MATLAB Functions 22

5.1 Constructing matrices 22

5.2 Scalar functions 24

5.3 Vector functions and data analysis 25

5.4 Matrix functions 26

5.5 The linsolve function 27

5.6 The find function 28

v

i

i

“8primer” — 2010/6/7 — 16:45 — page vi — #6
i

i

i

i

i

i

5.7 1-D indexing and the reshape function 29

5.8 Logical indexing 30

5.9 The bsxfun and repmat functions 31

6 M-Files 34

6.1 M-File Editor window 34

6.2 Script files 36

6.3 Function files 39

6.4 Multiple inputs and outputs 40

6.5 Variable arguments 41

6.6 Unused arguments 42

6.7 Comments and documentation 42

6.8 The MATLAB path 43

7 Control Flow Statements 44

7.1 The for loop 44

7.2 The while loop 46

7.3 The if statement 47

7.4 The switch statement 48

7.5 The try/catch statement 49

7.6 Matrix expressions (if and while) 50

7.7 Infinite loops 52

8 Advanced Data Structures 52

8.1 Cell arrays 53

8.2 Structs . 53

8.3 Sets . 55

8.4 Other data types 56

9 Object-Oriented Programming 57

9.1 Object methods 59

9.2 Object inheritance and abstract classes . . . 61

9.3 Object attributes 64

9.4 A more extensive example 66

9.5 Object handle classes 66

10 Advanced M-file Features 67

vi

i

i

“8primer” — 2010/6/7 — 16:45 — page vii — #7
i

i

i

i

i

i

10.1 Function handles and anonymous functions . 67

10.2 Name resolution 71

10.3 Error and warning messages 71

10.4 User input 72

10.5 Performance measures 73

10.6 Efficient code 75

11 Code Development Tools 77

11.1 Code Analyzer (M-Lint) report 77

11.2 Advanced Editor features 79

11.3 TODO/FIXME report 80

11.4 Help report 81

11.5 Contents report 83

11.6 Dependency report 84

11.7 Profiler tool and Coverage report 85

11.8 File and Folder Comparison tool 85

12 Calling C from MATLAB 86

12.1 A simple example 87

12.2 C versus MATLAB arrays 88

12.3 A matrix computation in C 89

12.4 MATLAB mx and mex routines 93

12.5 Online help for MEX routines 95

12.6 Larger examples on the web 95

13 Calling Fortran from MATLAB 95

13.1 Solving a transposed system 96

13.2 A Fortran mexFunction with %val 97

13.3 If you cannot use %val 99

14 Calling Java from MATLAB 100

14.1 A simple example 100

14.2 Encryption/decryption 100

14.3 Java class path 102

14.4 Calling your own Java methods 103

14.5 Loading a URL as a matrix 104

vii

i

i

“8primer” — 2010/6/7 — 16:45 — page viii — #8
i

i

i

i

i

i

15 Two-Dimensional Graphics 106

15.1 Planar plots 106

15.2 Multiple figures 107

15.3 Graph of a function 108

15.4 Parametrically defined curves 108

15.5 Titles, labels, text in a graph 109

15.6 Control of axes and scaling 110

15.7 Multiple plots 110

15.8 Line types, marker types, colors 111

15.9 Subplots and specialized plots 112

15.10 Graphics hard copy 112

16 Three-Dimensional Graphics 113

16.1 Curve plots 113

16.2 Mesh and surface plots 114

16.3 Parametrically defined surfaces 115

16.4 Volume and vector visualization 116

16.5 Color shading and color profile 116

16.6 Perspective of view 117

17 Advanced Graphics 118

17.1 Handle Graphics 118

17.2 Graphical user interface 118

17.3 Images . 119

18 Sparse Matrix Computations 120

18.1 Storage modes 120

18.2 Generating sparse matrices 121

18.3 Computation with sparse matrices 123

18.4 Permutation vectors and matrices 124

18.5 Visualizing matrices 125

19 The Symbolic Math Toolbox 125

19.1 Symbolic variables 126

19.2 Calculus 127

19.3 Variable precision arithmetic 132

19.4 Numeric and symbolic substitution 133

viii

i

i

“8primer” — 2010/6/7 — 16:45 — page ix — #9
i

i

i

i

i

i

19.5 Algebraic simplification 135

19.6 Two-dimensional graphs 136

19.7 Three-dimensional surface graphs 138

19.8 Three-dimensional curves 140

19.9 Symbolic matrix operations 141

19.10 Symbolic linear algebraic functions 143

19.11 Solving algebraic equations 145

19.12 Solving differential equations 148

19.13 Further MuPAD access 149

20 Polynomials, Interpolation, and Integration 150

20.1 Representing polynomials 150

20.2 Evaluating polynomials 151

20.3 Polynomial interpolation 151

20.4 Numeric integration (quadrature) 153

21 Solving Equations 154

21.1 Symbolic equations 154

21.2 Linear systems of equations 154

21.3 Polynomial roots 155

21.4 Nonlinear equations 155

21.5 Ordinary differential equations 157

21.6 Other differential equations 159

22 Displaying Results 159

23 Cell Publishing 163

A Appendix: The MATLAB Top 500 165

B Desktop Tools and Development Environment 165

B.1 Command Window and History 165

B.2 Help for Using MATLAB 166

B.3 Workspace 166

B.4 Managing Files 166

B.5 Programming Tools 167

C Data Import and Export 168

ix

i

i

“8primer” — 2010/6/7 — 16:45 — page x — #10
i

i

i

i

i

i

C.1 File Name Construction 168

C.2 File Opening, Loading, and Saving 168

C.3 Low-Level File I/O 168

C.4 Text Files 169

C.5 Audio and Video 169

C.6 Images . 169

D Mathematics 170

D.1 Arrays and Matrices 170

D.2 Linear Algebra 174

D.3 Elementary Math 176

D.4 Polynomials 178

D.5 Interpolation and Computational Geometry . 179

D.6 Nonlinear Numerical Methods 179

D.7 Specialized Math 180

D.8 Sparse Matrices 180

D.9 Math Constants 181

E Data Analysis 182

E.1 Basic Operations 182

E.2 Descriptive Statistics 182

E.3 Filtering and Convolution 183

E.4 Interpolation and Regression 183

E.5 Fourier Transforms 183

E.6 Derivatives and Integrals 183

F Programming and Data Types 184

F.1 Data Types 184

F.2 Data Type Conversion 188

F.3 Operators and Special Characters 190

F.4 Strings . 192

F.5 Bit-Wise Operations 194

F.6 Logical Operations 194

F.7 Relational Operations 195

F.8 Set Operations 195

F.9 Date and Time Operations 196

x

i

i

“8primer” — 2010/6/7 — 16:45 — page xi — #11
i

i

i

i

i

i

F.10 Programming in MATLAB 196

G Object-Oriented Programming 201

G.1 Classes and Objects 201

G.2 Handle Classes 201

H Graphics 202

H.1 Basic Plots and Graphs 202

H.2 Plotting Tools 202

H.3 Annotating Plots 203

H.4 Specialized Plotting 203

H.5 Bit-Mapped Images 204

H.6 Printing . 204

H.7 Handle Graphics 204

I 3-D Visualization 207

I.1 Surface and Mesh Plots 207

I.2 View Control 207

I.3 Lighting 208

I.4 Volume Visualization 208

J GUI Development 209

J.1 Predefined Dialog Boxes 209

J.2 User Interface Deployment 209

J.3 User Interface Development 209

J.4 User Interface Objects 210

J.5 Objects from Callbacks 210

J.6 Program Execution 210

K External Interfaces 211

K.1 Shared Libraries 211

K.2 Java . 211

K.3 Component Object Model and ActiveX . . . 211

L Symbolic Math Toolbox 212

L.1 Calculus 212

L.2 Linear Algebra 212

L.3 Simplification 213

xi

i

i

“8primer” — 2010/6/7 — 16:45 — page xii — #12
i

i

i

i

i

i

L.4 Special Functions 213

L.5 Conversions 213

L.6 Basic Operations 213

Index 215

xii

i

i

“8primer” — 2010/6/7 — 16:45 — page xiii — #13
i

i

i

i

i

i

Preface

This eighth edition of the MATLAB R©Primer highlights the

new features of MATLAB 7.10 (R2010a), and expands on

many existing features. New and expanded topics include:

• A new chapter on object-oriented programming.

• The MATLAB File Exchange window, which

provides direct access to over 10,000 submissions by

MATLAB users (as of March 2010).

• Major changes to the MATLAB Editor, such as code

folding and the integration of the Code Analyzer

(M-Lint) into the Editor.

• More powerful Help tools, such as quick help popups

for functions via the Function Browser.

• The new bsxfun function.

• The Help chapter in the seventh edition gave a

one-line description of every function, keyword, and

operator. The number of functions and keywords has

grown, and it has become impractical to keep up.

This edition presents the MATLAB Top 500, and gives

a longer synopsis of each of them. The list was

determined via a MATLAB script that counted the

occurrences of all functions and keywords in the

entire File Exchange, with a few editorial

modifications.

• Motivated by the MATLAB Top 500, several useful

features not covered in the seventh edition have been

added (such as sets, logical indexing, isequal,

repmat, reshape, varargin, and varargout).

Tim Davis

Professor, Department of Computer and Information

Science and Engineering, University of Florida,

www.cise.ufl.edu/∼davis

xiii

i

i

“8primer” — 2010/6/7 — 16:45 — page xiv — #14
i

i

i

i

i

i

i

i

“8primer” — 2010/6/7 — 16:45 — page xv — #15
i

i

i

i

i

i

Introduction

How to use this book: The purpose of this

MATLAB R©Primer is to help you begin to use MATLAB.

Additional help is available inside MATLAB itself, and

online at www.mathworks.com. The primer is best used

hands on. You are encouraged to work at the computer as

you read the primer and freely experiment with the

examples. This primer, along with the MATLAB help

facility, usually suffices for students in a class requiring the

use of MATLAB.

Start with the examples at the beginning of each chapter. In

this way, you will create all of the matrices and M-files used

in the examples. Some examples depend on code you write

in previous chapters and sections.

Larger examples (M-files and MEX-files) are posted on the

web page for this book, at www.crcpress.com and

www.cise.ufl.edu/∼davis/MATLABPrimer8E.

Pull-down menu selections are described using the

following style. Selecting the Desktop menu, and then the

Desktop Layout submenu, and then the Default menu item

is written as Desktop ◮Desktop Layout ◮Default.

MATLAB code and expressions are written in a fixed width

font, like+this.

You should liberally use the online help facility for more

detailed information. Selecting Help ◮Product Help brings

up the Help window. You can also type help or doc in the

Command Window. See Section 2.5 for more information

on how to use the online help.

In the Help window, navigate to MATLAB ◮Functions. This

gives you a categorical list of all functions, keywords,

operators, and special characters in MATLAB. The outline

of this list is repeated in Chapters A through K of the

xv

i

i

“8primer” — 2010/6/7 — 16:45 — page xvi — #16
i

i

i

i

i

i

Appendix of this book. Chapter L of the Appendix is an

outline of the Symbolic Math Toolbox ◮Functions

categorical list. The Appendix describes the Top 500

functions in MATLAB and The Symbolic Toolbox, which is

a list of the most frequently used functions. Sometimes less

is more, since you do not have to ponder over whether or

not you need an obscure function when what you are

looking for is a well-known and well-used function instead.

In the interest of completeness, a few functions are

described in the text of the book (Chapters 1-23), but which

do not make it into the Top 500 list (linsolve is one

example, in Section 5.5).

How to obtain MATLAB: Version 7.10 (Release R2010a)

of MATLAB is available for Microsoft Windows R©(XP,

Server 2003 or 2008, Vista, and 7), Mac R©(OS X 10.5.5

Leopard R© and above 10.6.x Snow Leopard R©), and most

versions of Linux R©. The Student Version of MATLAB

includes MATLAB, Simulink R©, the Symbolic Math

Toolbox
TM

, and six other Toolboxes. Everything discussed

in this book can be done in the Student Version of

MATLAB.

MATLAB R©, Simulink R©, and Handle Graphics R©, are

registered trademarks of The MathWorks, Inc. Symbolic

Math Toolbox
TM

is a trademark of The MathWorks, Inc.

Mac R©, MacBook R©, Leopard R©, and Snow Leopard R© are

registered trademarks of Apple, Inc. Linux R© is a registered

trademark of Linus Torvalds. UNIX R© is a registered

trademark of The Open Group. Ubuntu R© is a registered

trademark of Canonical, Inc.

For product information, please contact: The MathWorks,

Inc., 3 Apple Hill Drive, Natick, MA, 01760-2098 USA.

Tel: 508-647-7000. Fax: 508-647-7001. E-mail:

info@mathworks.com. Web: www.mathworks.com.

xvi

i

i

“8primer” — 2010/6/7 — 16:45 — page 1 — #17
i

i

i

i

i

i

1 Getting Started

MATLAB offers engineers, scientists, and mathematicians

an intuitive language for expressing problems and their

solutions mathematically and graphically. It integrates

computation, visualization, and programming in a flexible,

open environment. Complex numeric and symbolic

problems can be solved in a fraction of the time required

with other languages such as C, Fortran, or Java.

The MATLAB Primer is a hands-on introduction to this

powerful tool developed by The MathWorks, Inc.

Double-click the MATLAB icon to get started.

You can also launch MATLAB with the system command

matlab. If you are running MATLAB across a network, it

can be faster to run MATLAB without its desktop

user-interface, using the matlab -nodesktop command.

Not all MATLAB features are available if you use this

option.

When you are finished, the quit or exit commands

terminate MATLAB. You might be prompted to save any

files you are editing. Before exiting, use the save command

to save any variables in your workspace that you want to

keep.

2 The MATLAB Desktop

MATLAB has an extensive graphical user interface. When

MATLAB starts, the main MATLAB window appears,

1

i

i

“8primer” — 2010/6/7 — 16:45 — page 2 — #18
i

i

i

i

i

i

containing several windows and menu bars. Not all

windows appear in the default configuration. The Desktop

menu controls the layout and appearance of the windows

and gives you a list of the windows you can use. This list is

shown below, alongside the sections and page numbers in

this book where they are discussed. The first four appear by

default, the first time you use MATLAB. If you reconfigure

your Desktop windows, MATLAB remembers what you

have modified and displays the same configuration the next

time you start MATLAB.

Command Window Section 2.1 p. 3

Command History Section 2.2 p. 7

Current Folder Section 2.3 p. 7

Workspace Section 2.4 p. 9

Help Section 2.5 p. 10

Profiler Section 11.7 p. 85

File Exchange Section 2.6 p. 12

Editor Section 6.1, pp. 34,

Section 6.2, 36,

Section 11.2, 79,

Chapter 23 163

Figures Section 15.2 p. 107

Web Browser Section 23 p. 163

Variable Editor Section 2.7 p. 12

File and Folder Comparisons Section 11.8 p. 85

The Start button in the bottom left corner of the MATLAB

Desktop brings up demos, tools, and other windows. Try

Start ◮MATLAB ◮Demos and run one of the demos from

the MATLAB Demo window.

All MATLAB windows are docked in the default desktop,

which means that they are tiled on the main MATLAB

window. You can undock a window by selecting the menu

item Desktop ◮ Undock or by clicking its undock button:

2

i

i

“8primer” — 2010/6/7 — 16:45 — page 3 — #19
i

i

i

i

i

i

Dock it with Desktop ◮ Dock... or the dock button:

Close a window by clicking its close button:

Reshape the window tiling by clicking on and dragging the

window edges.

The menu bar at the top of the MATLAB window contains a

set of buttons and pull-down menus for working with

M-files, windows, preferences and other settings, web

resources for MATLAB, and online MATLAB help. If a

window is docked and selected, its menu bar appears at the

top of the main MATLAB window.

2.1 Command Window

MATLAB expressions and statements are evaluated as you

type them in the Command Window, and results of the

computation are displayed there too. Expressions and

statements are also used in M-files (more on this in

Chapter 6). They are usually of the form:

variable = expression

or simply:

expression

Expressions are usually composed from operators,

functions, and variable names. Evaluation of the expression

produces a matrix (or other data type), which is then

displayed on the screen or assigned to a variable for future

use. If the variable name and = sign are omitted, a variable

3

i

i

“8primer” — 2010/6/7 — 16:45 — page 4 — #20
i

i

i

i

i

i

ans (for answer) is automatically created to which the

result is assigned.

A statement is normally terminated at the end of the line.

However, a statement can be continued to the next line with

three periods (...) at the end of the line. Several

statements can be placed on a single line separated by

commas or semicolons. If the last character of a statement

is a semicolon, display of the result is suppressed, but the

assignment is still carried out. This is essential in

suppressing unwanted display of intermediate results.

In the default configuration, the Workspace window in the

top right of the MATLAB Desktop gives you a list of the

variables you create. Type this command in the Command

Window:

A = [1 2 3 ; 4 5 6 ; -1 7 9]

or this one:

A = [

1 2 3

4 5 6

-1 7 9]

Either one creates a 3-by-3 matrix and assigns it to a

variable A. Try it. You will see the array A in your

Workspace window (Section 2.4 gives more details on this

window). MATLAB is case-sensitive in the names of

commands, functions, and variables, so A and a are two

different variables. A comma or blank separates the

elements within a row of a matrix (sometimes a comma is

necessary to split the expressions, because a blank can be

ambiguous). A semicolon ends a row. When listing a

number in exponential form (e.g., 2.34e-9), blank spaces

must be avoided in the middle (before the e, for example).

Matrices can also be constructed from other matrices. If A is

the 3-by-3 matrix shown above, then:

4

i

i

“8primer” — 2010/6/7 — 16:45 — page 5 — #21
i

i

i

i

i

i

C = [A, A’ ; [12 13 14], zeros(1,3)]

creates a 4-by-6 matrix. Try it to see what C is. The quote

mark in A’ means the transpose of A. Be sure to use the

correct single quote mark (just to the left of the enter or

return key on most keyboards). Since a blank separates

elements in a row, parentheses are sometimes needed

around expressions if they would otherwise be ambiguous.

Parentheses are also used for passing parameters to

functions, such as the zeros function in this example. See

Section 5.1 for more on the zeros function.

When you typed the last two commands, the matrices A and

C were created and displayed in the Workspace window.

You can save the Command Window dialog with the diary

command:

diary filename

This causes what appears subsequently in the Command

Window to be written to the named file (if the filename is

omitted, it is written to a default file named diary) until

you type the command diary off; the command diary

on causes writing to the file to resume. When finished, you

can edit the file as desired and print it out. For hard copy of

graphics, see Section 15.10.

The command line in MATLAB can be easily edited in the

Command Window. The cursor can be positioned with the

left and right arrows and the Backspace (or Delete) key used

to delete the character to the left of the cursor.

A convenient feature is use of the up and down arrows to

scroll through the stack of previous commands. You can

recall a previous command line, edit it, and execute the

revised line. Try this by first modifying the matrix A by

adding one to each of its elements:

A = A + 1

5

i

i

“8primer” — 2010/6/7 — 16:45 — page 6 — #22
i

i

i

i

i

i

You can change C to reflect this change in A by retyping the

lengthy command C = ... above, but it is easier to hit the

up arrow key until you see the command you want, and then

hit enter.

Tab completion is another helpful shortcut. It works in both

the Command Window and the Editor (see Section 6.1).

Start typing a command name, a variable name, or a file

name. Before you type it all in, hit the tab key. Try typing z

then a tab. A list of all the functions and variables that start

with z will pop up. Select one from the list, or keep typing

to narrow down the selection. Type e and then tab to narrow

down the selection to zeros.

Tab completion can be disabled in the Keyboard section of

the File ◮Preferences menu. You can also use that menu to

change your keyboard shortcuts.

You can clear the Command Window with the clc

command or with Edit ◮Clear Command Window.

Beginning MATLAB users often wonder why MATLAB

seems to compute its results in only 5 digits. Try this.

pi

No, MATLAB does not know a mere 5 digits of π. It keeps

track of more digits than this, but only displays 5 digits by

default. MATLAB typically does its computations in IEEE

double precision floating point arithmetic, which is about 16

decimal digits. To see more digits, or to display numbers in

different formats, try these commands:

format short fixed point, 5 digits

format long fixed point, 15 digits

format short g fixed or scientific notation, 5 digits

format long g fixed or scientific notation, 15 digits

format rat approximate integer ratio

format short is the default. Once invoked, the chosen

format remains in effect until changed. These commands

6

i

i

“8primer” — 2010/6/7 — 16:45 — page 7 — #23
i

i

i

i

i

i

only modify the display, not the precision of the number or

its computation. To compute results in more digits you need

to use variable precision arithmetic (Section 19.3).

The command format compact suppresses most blank

lines, allowing more information to be placed on the screen.

The command format loose returns to the non-compact

format. These two commands are independent of the other

format commands.

You can pause the output in the Command Window with the

more on command. Type more off to turn this feature off.

2.2 Command History window

This window lists the commands typed in so far. You can

re-execute one more commands from this window by

double-clicking or dragging the command(s) into the

Command Window. Try double-clicking on the command:

A = A + 1

shown in your Command History window. For more

options, select and right-click on a line of the Command

Window.

2.3 Current Folder window

The Current Folder window displays a list of the files in

your current folder. The name of this folder also appears at

the top of the main MATLAB window, in the MATLAB

Toolbar. Your current folder is the first place MATLAB

looks for your M-files, and for workspace (.mat) files

containing data that you load and save. MATLAB also

looks in all the folders in your MATLAB path (see

Section 6.8). Folders that are not on your MATLAB path

are shown in gray.

7

i

i

“8primer” — 2010/6/7 — 16:45 — page 8 — #24
i

i

i

i

i

i

You can also load and save matrices as ASCII files and edit

them with your favorite text editor. The file should consist

of a rectangular array of just the numeric matrix entries.

Use a text editor to create a file in your current folder called

mymatrix.txt (or type edit mymatrix.txt) that

contains these 2 lines:

22 67

12 33

Type the command load mymatrix.txt, and the file will

be loaded from the current folder to the variable mymatrix.

The file extension (.txt in this example) can be anything

except .mat.

You can use the menus and buttons in the Current Folder

window to peruse your files, or you can use commands

typed in the Command Window. The command pwd returns

the name of the current folder, and cd changes the current

folder. Use cd .. to go to the parent folder. The command

dir lists the contents of the current folder, whereas the

command what lists only the MATLAB-specific files in the

folder, grouped by file type. The MATLAB commands

delete and type can be used to delete a file and display a

file in the Command Window, respectively.

The Current Folder window can create and manage zip files.

Right-click the mymatrix.txt file, and select Create Zip

File. You can also create a zip file with multiple input files

by selecting a set of files first. Double-clicking on the new

mymatrix.zip file extracts its contents into a folder called

mymatrix, containing the single file mymatrix.txt.

Delete your original mymatrix.txt file. Clicking on the ⊞

symbol beside the mymatrix folder (or the ◮ symbol on

the Mac) expands the contents of that folder. The name of

the mymatrix.txt file it contains is grayed out, which tells

you that MATLAB will not find that file if you type

8

i

i

“8primer” — 2010/6/7 — 16:45 — page 9 — #25
i

i

i

i

i

i

load mymatrix.txt (try it). Right-click the mymatrix

folder and select Add to Path ◮Selected Folders and try it

again.

The Current Folder window includes a suite of useful code

development tools for writing your own M-files. At this

point in the book, you have yet to write your own M-files,

so these tools are fully described later on (Chapter 11).

2.4 Workspace window

The Workspace window lists variables that you have either

entered or computed in your MATLAB session.

There are many fundamental data types (or classes) in

MATLAB, each one a multidimensional array. The classes

you will use most are rectangular numerical arrays with

possibly complex entries, and possibly sparse. An array of

this type is called a matrix. A matrix with only one row or

one column is called a vector (row vectors and column

vectors behave differently; they are more than mere

one-dimensional arrays). A 1-by-1 matrix is called a scalar.

Arrays can be introduced into MATLAB in several different

ways. They can be entered as an explicit list of elements (as

you did for matrix A), generated by statements and

functions (as you did for matrix C), created in a file with

your favorite text editor, or loaded from external data files

or applications. You can also write your own functions

(M-files and mexFunctions in C, Fortran, or Java) that

create and operate on matrices. All the matrices and other

variables that you create, except those internal to M-files,

are shown in your Workspace window. Double-clicking on

a variable in the Workspace window pulls up the Variable

Editor (Section 2.7).

The command whos lists the variables currently in the

workspace. Try typing whos; you should see a list of

9

i

i

“8primer” — 2010/6/7 — 16:45 — page 10 — #26
i

i

i

i

i

i

variables including A and C, with their type and size. A

variable or function can be cleared from the workspace with

the command clear variablename or by right-clicking

the variable in the Workspace window and selecting Delete.

The command clear alone clears all variables from the

workspace.

When you log out or exit MATLAB, all variables are lost.

However, invoking the command save before exiting writes

all variables to a binary file named matlab.mat in the

current folder. When you later reenter MATLAB, the

command load restores the workspace to its former state.

Commands save and load take file names and variable

names as optional arguments. Type doc save and doc

load, to bring up the documentation on these functions in

the Help window described in the next section. Try typing

the commands save, clear, and then load, and watch

what happens in the Workspace window after each

command.

2.5 Help window

This window is the most useful window for beginning

MATLAB users, and you will continue to use it as you

become an expert. Select Help ◮Product Help or type doc

in the Command Window. The Help window has most of

the features you would see in any web browser (clickable

links, a back button, and a search tool, for example). The

left panel shows where you are in the MATLAB online

documentation. This book refers to Help sections in this

window as Help:MATLAB ◮Getting Started ◮Introduction

(for example), which means to select the MATLAB heading,

then the Getting Started heading, and then the Introduction

item under that heading. Clicking on the ⊞ symbol beside

MATLAB in the left panel (or the ◮ symbol on the Mac)

expands the MATLAB Contents.

10

i

i

“8primer” — 2010/6/7 — 16:45 — page 11 — #27
i

i

i

i

i

i

Printable versions of the documentation are available from

the Help:MATLAB page, under the heading Printable (PDF)

Documentation on the Web. These are handy to download,

read, and search when you are not running MATLAB, but

you might hesitate to actually print them all out (they total

nearly 12,000 pages in length). The Getting Started Guide

is a gentle introduction to MATLAB and a mere 272 pages

in length.

You can also use the help command, typed in the

Command Window. For example, the command help eig

tells about the eigenvalue function eig. See the list of

functions in the Appendix for a brief summary of help for a

function. doc eig shows you the full documentation of the

eig function in the Help window.

The F1 key is a quick shortcut to getting help on a function.

Inside the Command Window or Editor, after typing in a

command, hit the F1 key. The Help window for that

function will pop up.

For a quick index of all MATLAB functions, try the

Function Browser. Select Help ◮Function Browser (or type

Shift-F1), and then drill down into one of the categories.

For example, the eig function is found under MATLAB

◮Mathematics ◮Linear Algebra ◮Eigenvalues and Singular

Values ◮eig. Selecting a function brings up a short

description of the eig function, with a link for more help.

When you type a function name in the Command Window

or in the Editor, followed by the left parenthesis, a small

popup appears. Try typing eig(, but do not hit the

Enter/Return key. The popup shows you the possible inputs

to the function, and a link for more help.

You can also preview some of the features of MATLAB by

first entering the command demo or by selecting Help

◮Demos, and then selecting from the options offered. Most

11

i

i

“8primer” — 2010/6/7 — 16:45 — page 12 — #28
i

i

i

i

i

i

of the major features of MATLAB have their own demo.

Some are videos, and some are interactive. Most demos are

M-files that run step-by-step in the Command Window. The

list of demos includes videos on the major new features for

each release of MATLAB. These are very useful for

keeping up-to-date on what MATLAB can do.

2.6 File Exchange window

The MathWorks, Inc., maintains a web site called MATLAB

Central (www.mathworks.com/matlabcentral). It includes a

Newsgroup, blogs, the Link Exchange, Webinars,

programming contests, and the File Exchange.

The File Exchange is a place where any MATLAB user can

post their MATLAB files for others to use. Quite often, if

you want to solve a problem, someone else may have

already solved it (avoid using this for homework solutions

without your instructor’s permission, of course). Users can

rate the files, which helps you weed out the mediocre ones

(a bad solution to a problem is worse than no solution at all).

With the File Exchange window, you can search for files

from the File Exchange, download them, install them, and

try them out. Select the Desktop ◮File Exchange menu

option on the Desktop. If you do not have a MathWorks

Account, you will be asked to create one. Try downloading

the code that created the cover of this book by searching for

“seashell” in the search box. Click on the green arrow to the

right, download it, then type seashell in the Command

Window. You can download all the codes in this book by

searching for “MATLAB Primer.”

2.7 Variable Editor window

Once an array or variable exists, it can be modified with the

Variable Editor, which acts like a spreadsheet for matrices.

12

i

i

“8primer” — 2010/6/7 — 16:45 — page 13 — #29
i

i

i

i

i

i

Go to the Workspace window and double-click on the

matrix C. Click on an entry in C and change it, and try

changing the size of C. Go back to the Command Window

and type:

C

and you will see your new array C. You can also edit the

matrix C by typing the command openvar(’C’).

3 Matrices and Matrix Operations

You have now seen most of the windows in MATLAB and

what they can do. Now take a look at how you can use

MATLAB to work on matrices and other data types.

3.1 Referencing individual entries

Individual matrix and vector entries can be referenced with

indices inside parentheses. For example, A(2,3) denotes

the entry in the second row, third column of matrix A. Try:

A = [1 2 3 ; 4 5 6 ; -1 7 9]

A(2,3)

Next, create a column vector, x, with:

x = [3 2 1]’

or equivalently:

x = [3 ; 2 ; 1]

With this vector, x(3) denotes the third coordinate of vector

x, with a value of 1. Higher dimensional arrays are similarly

indexed. An array accepts positive integers as indices. You

can also use logical indices, discussed in Section 5.8.

An array with two or more dimensions can be indexed as if

it were a one-dimensional vector. If A is m-by-n, then

A(i,j) is the same as A(i+(j-1)*m). This feature is

most often used with the find function (see Sections 5.6

and 5.7).

13

i

i

“8primer” — 2010/6/7 — 16:45 — page 14 — #30
i

i

i

i

i

i

3.2 Matrix operators

The following matrix operators are available in MATLAB:

+ addition or unary plus

- subtraction or negation

* multiplication

^ power

’ matrix transpose

.’ array transpose

\ left division (backslash or mldivide)

/ right division (slash or mrdivide)

These matrix operators apply, of course, to scalars (1-by-1

matrices) as well. If the sizes of the matrices are

incompatible for the matrix operation, an error message will

result, except in the case of scalar-matrix operations. With

addition, subtraction, division, and multiplication of a

matrix and a scalar, each entry of the matrix is operated on

by the scalar, as in A=A+1. The scalar 1 is expanded in size

to match the size of the matrix A. You can also expand

non-scalars with the bsxfun function (see Section 5.9).

Not all scalar-matrix operations are valid. For example,

magic(3)/pi is valid but pi/magic(3) is not. Also try

the commands:

A^2

A*x

If x and y are both column vectors, then x’*y is their inner

(or dot) product, and x*y’ is their outer product. Try these

commands:

y = [1 2 3]’

x’*y

x*y’

14

i

i

“8primer” — 2010/6/7 — 16:45 — page 15 — #31
i

i

i

i

i

i

3.3 Matrix division (slash and backslash)

The matrix “division” operations deserve special comment.

If A is an invertible square matrix and b is a compatible

column vector or, respectively, a compatible row vector,

then x=A\b is the solution of A*x=b, and x=b/A is the

solution of x*A=b. These are informally called the

backslash (\) and slash operators (/); they are also referred

to as the mldivide and mrdivide functions. If A is square

and non-singular, then A\b and b/A are mathematically the

same as respectively, where inv(A) computes the inverse

of A. The left and right division operators do not compute

the inverse and are more accurate and efficient than

inv(A)*b. In left division, if A is square, then it is

factorized (if necessary), and these factors are used to solve

A*x=b. If A is not square, the under- or over-determined

system is solved in the least squares sense. Right division is

defined in terms of left division by b/A=(A’\b’)’. Try

this:

A = [1 2 ; 3 4]

b = [4 10]’

x = A\b

The solution to A*x=b is the column vector x=[2;1].

Backslash is a very powerful general-purpose method for

solving linear systems. Depending on the matrix, it selects

forward or back substitution for triangular matrices (or

permuted triangular matrices), Cholesky factorization for

symmetric matrices, LU factorization for square matrices,

or QR factorization for rectangular matrices. It has a special

solver for Hessenberg matrices. It can also exploit sparsity,

with either sparse versions of the above list, or special-case

solvers when the sparse matrix is diagonal, tridiagonal, or

banded. It selects the best method automatically (sometimes

trying one method and then another if the first method fails).

15

i

i

“8primer” — 2010/6/7 — 16:45 — page 16 — #32
i

i

i

i

i

i

This can be overkill if you already know what kind of

matrix you have. It can be much faster to use the linsolve

function described in Section 5.5.

3.4 Entry-wise operators

Matrix addition and subtraction already operate entry-wise,

but the other matrix operations do not. These other

operators (*, ^, \, and /) can be made to operate entry-wise

by preceding them by a period. For example, either:

[1 2 3 4] .* [1 2 3 4]

[1 2 3 4] .^ 2

yields [1 4 9 16]. Try it. This is particularly useful when

using MATLAB graphics. Also compare A^2 with A.^2.

3.5 Relational operators

The relational operators in MATLAB are:

< less than

> greater than

<= less than or equal

>= greater than or equal

== equal

~= not equal

They all operate entry-wise. Note that = is used in an

assignment statement whereas == is a relational operator.

Relational operators may be connected by logical operators:

& and

| or

~ not

&& short-circuit and

|| short-circuit or

16

i

i

“8primer” — 2010/6/7 — 16:45 — page 17 — #33
i

i

i

i

i

i

The result of a relational operator is of type logical, and

is either true (one) or false (zero). Thus, ~0 is 1, ~3 is 0,

and 4&5 is 1, for example. When applied to scalars, the

result is a scalar. Try entering 3<5, 3>5, 3==5, and 3==3.

When applied to matrices of the same size, the result is a

logical matrix of ones and zeros giving the value of the

expression between corresponding entries. You can also

compare elements of a matrix with a scalar. Try:

A = [1 2 ; 3 4]

A >= 2

B = [1 3 ; 4 2]

A < B

The short-circuit operator && acts just like its non-short-

circuited counterpart (&), except that it evaluates its left

expression first, and does not evaluate the right expression if

the first expression is false. This is useful for

partially-defined functions. Suppose f(x) returns a logical

value but generates an error if x is zero. The expression

(x~=0) && f(x) returns false if x is zero, without calling

f(x) at all. The short-circuit or (||) acts similarly. It does

not evaluate the right expression if the left is true. Both &&

and || require their operands to be scalar and convertible to

logical, while & and | can operate on arrays.

3.6 Complex numbers

MATLAB allows complex numbers in most of its

operations and functions. Three convenient ways to enter

complex matrices are:

clear i

B = [1 2 ; 3 4] + i*[5 6 ; 7 8]

B = [1+5i, 2+6i ; 3+7i, 4+8i]

B = complex([1 2 ; 3 4], [5 6 ; 7 8])

17

i

i

“8primer” — 2010/6/7 — 16:45 — page 18 — #34
i

i

i

i

i

i

Either i or j may be used as the imaginary unit. You can

use i and j as variables and overwrite their values, since

they are also commonly used as loop indices (this is why

the example above starts with clear i). You may generate

a new imaginary unit with, say, ii=sqrt(-1). The

simplest thing to do is to always use the constants 1i or 1j,

which cannot be reassigned and are always equal to the

imaginary unit. Thus,

B = [1 2 ; 3 4] + 1i*[5 6 ; 7 8]

generates the same matrix B, even if i has been reassigned.

See Section 10.2 for how to find out if i has been

reassigned.

3.7 Strings

Enclosing text in single quotes forms strings with the char

data type:

S = ’I love MATLAB’

To include a single quote inside a string, use two of them

together, as in:

S = ’Green’’s function’

A 2-D array of strings can represent multiple lines of text.

For example,

S = [’I love MATLAB’

’It’’s powerful’]

Then S(1,:) is the first line of text and S(2,:) is the

second (colon notation is discussed in the next chapter).

Strings, numeric matrices, and all other data types can be

displayed with the function disp. Try disp(S) and

disp(B).

18

i

i

“8primer” — 2010/6/7 — 16:45 — page 19 — #35
i

i

i

i

i

i

Since all rows in an array must have the same number of

entries, the strings must all be the same length, so you must

pad shorter strings with spaces. Cell arrays avoid this

problem (see Section 8.1).

Use strcmp and strcmpi to compare strings for equality.

strcmp(’A’,’a’) is false, while strcmpi(’A’,’a’) is

true because the latter ignores case.

To convert a number displayed a string into a number, use

str2double, str2num, or sscanf.

str2double(’3.14’) is the number 3.14. The str2num

function can extract multiple numbers from a single string,

but it it evaluates the string as if it were a MATLAB

expression. The string might include calls to a function,

which may cause unintended side effects. The sscanf

function provides more more control over how numbers are

parsed from strings. See also fscanf for reading numbers

from text files.

4 Submatrices and Colon Notation

Vectors and submatrices are often used in MATLAB to

express simple yet powerful matrix computations and data

manipulations. Colon notation (which is used to both

generate vectors and reference submatrices) and

subscripting by integral vectors are keys to efficient

manipulation of these objects. Creative use of these features

minimizes the use of loops (which can slow down

MATLAB) and makes code simple and readable. Make a

special effort to become familiar with them.

4.1 Generating vectors

The expression 1:5 is the row vector [1 2 3 4 5]. The

numbers need not be integers, and the increment need not

19

i

i

“8primer” — 2010/6/7 — 16:45 — page 20 — #36
i

i

i

i

i

i

be 1. For example, 0:0.2:1 gives [0 0.2 0.4 0.6

0.8 1] with an increment of 0.2 and 5:-1:1 gives

[5 4 3 2 1] with an increment of -1. These vectors are

commonly used in for loops, described in Section 7.1. Be

careful how you mix the colon operator with other

operators. Compare 1:5-3 with (1:5)-3.

In general, the expression lo:hi is the sequence

[lo, lo+1, lo+2, ..., hi] except that the last term

in the sequence is always less than or equal to hi if either

one are not integers. Thus, 1:4.9 is [1 2 3 4] and

1:5.1 is [1 2 3 4 5]. The sequence is empty if lo>hi.

If an increment is provided, as in lo:inc:hi, the sequence

is [lo, lo+inc, lo+2*inc, ..., lo+m*inc] where

m=fix((hi-lo)/inc) and fix is a function that rounds a

real number towards zero. The length of the sequence is

m+1, and the sequence is empty if m<0. Thus, the sequence

5:-1:1 has m=4 and is of length 5, but 5:1:1 has m=-4

and is thus empty. The default increment is 1.

If you want specific control over how many terms are in the

sequence, use linspace instead of the colon operator. The

expression linspace(lo,hi) is identical to lo:inc:hi,

except that inc is chosen so that the vector always has

exactly 100 entries (even if lo and hi are equal). The last

entry in the sequence is always hi. To generate a sequence

with n terms instead of the default of 100, use

linspace(lo,hi,n). Compare linspace(1,5.1,5)

with 1:5.1.

4.2 Accessing submatrices

Colon notation can be used to access submatrices of a

matrix. To try this out, first type the two commands:

A = rand(6,6)

B = rand(6,4)

20

i

i

“8primer” — 2010/6/7 — 16:45 — page 21 — #37
i

i

i

i

i

i

which generate a random 6-by-6 matrix A and a random

6-by-4 matrix B.

A(1:4,3) is the column vector consisting of the first four

entries of the third column of A.

A colon by itself denotes an entire row or column: A(:,3)

is the third column of A, and A(1:4,:) is the first four rows

of A.

Arbitrary integral vectors can be used as subscripts.

A(:,[2 4]) is a matrix with two columns: columns 2 and

4 of A. This subscripting can be used on both sides of an

assignment statement:

A(:,[2 4 5]) = B(:,1:3)

replaces columns 2,4,5 of A with the first three columns of

B. Try it. The entire altered matrix A is displayed because

the statement is not terminated with a semicolon. Columns

2 and 4 of A can be multiplied on the right by the matrix

[1 2 ; 3 4]:

A(:,[2 4]) = A(:,[2 4]) * [1 2 ; 3 4]

Once again, the entire altered matrix is displayed.

Submatrix operations are a convenient way to perform

many useful computations. For example, a Givens rotation

of rows 3 and 5 of the matrix A to zero out the A(3,1) entry

can be written as:

a = A(5,1)

b = A(3,1)

G = [a b ; -b a] / norm([a b])

A([5 3], :) = G * A([5 3], :)

(assuming norm([a b]) is not zero). You can also assign

a scalar to all entries of a submatrix. Try:

A(:, [2 4]) = 99

21

i

i

“8primer” — 2010/6/7 — 16:45 — page 22 — #38
i

i

i

i

i

i

You can delete rows or columns of a matrix by assigning the

empty matrix ([]) to them. Try:

A(:, [2 4]) = []

In an array index expression, end denotes the index of the

last element. Try:

x = rand(1,5)

x = x(end:-1:1)

MATLAB is a powerful and expressive language. To

appreciate the usefulness of these features, compare these

MATLAB statements with the equivalent code in C,

Fortran, or Java.

5 MATLAB Functions

MATLAB has a wide assortment of built-in functions. You

have already seen some of them, such as zeros, rand, and

sqrt. This chapter describes the more common matrix

manipulation functions. For a more complete list, see the

Appendix (p. 165), or Help:MATLAB ◮Functions.

5.1 Constructing matrices

Convenient matrix building functions include:

eye identity matrix

zeros matrix of zeros

ones matrix of ones

diag create or extract diagonals

triu upper triangular part of a matrix

tril lower triangular part of a matrix

rand randomly generated matrix

hilb Hilbert matrix

magic magic square

toeplitz Toeplitz matrix

gallery a wide range of interesting matrices

22

i

i

“8primer” — 2010/6/7 — 16:45 — page 23 — #39
i

i

i

i

i

i

The command rand(n) creates an n-by-n matrix with

randomly generated entries distributed uniformly between 0

and 1 while rand(m,n) creates an m-by-n matrix (m and n

are non-negative integers). Try:

A = rand(3)

Use reset(RandStream.getDefaultStream) to reset

the random number generator, which is useful for

reproducing the results from rand. Use randn for random

numbers with normal distribution, and randi for random

integers. All three functions (rand, randn, and randi) use

the same underlying generator. randi([0 9],3) creates a

random 3-by-3 matrix with integer entries in the range 0 to

9.

zeros(m,n) produces an m-by-n matrix of zeros, and

zeros(n) produces an n-by-n one. If A is a matrix, then

zeros(size(A)) produces a matrix of zeros having the

same size as A. The ones function is the same as zeros,

except that it returns a matrix of all ones.

For a regular scalar, vector, or matrix, size(A) returns a

vector of length 2 with the number of rows and columns of

A For a scalar x, size(x) is [1 1]. With two outputs (or

more) the dimensions of A are returned in the two (or more)

scalars. A matrix A is empty if min(size(A) is zero;

isempty(A) is true for an empty matrix A.

If x is a vector, diag(x) is the diagonal matrix with x

down the diagonal; if A is a matrix, then diag(A) is a

vector consisting of the diagonal of A. Try:

x = 1:3

diag(x)

diag(A)

diag(diag(A))

Matrices can be built from blocks. Try creating this 5-by-5

matrix.

23

i

i

“8primer” — 2010/6/7 — 16:45 — page 24 — #40
i

i

i

i

i

i

B = [A zeros(3,2) ; pi*ones(2,3), eye(2)]

eye(2) is the 2-by-2 identity matrix. magic(n) creates an

n-by-n matrix that is a magic square (rows, columns, and

diagonals have common sum). Matrices can also be

generated with a for loop (see Section 7.1). triu and

tril extract upper and lower triangular parts of a matrix.

Try:

triu(A)

triu(A) == A

The gallery function can generate a matrix from any one

of over 60 different matrix classes. Many have interesting

eigenvalue or singular value properties, provide interesting

counter-examples, or are difficult matrices for various linear

algebraic methods. The Parter matrix has many singular

values close to π:

A = gallery(’parter’, 6)

svd(A)

Additional test matrices are available in other functions. For

example, the Rosser matrix challenges many eigenvalue

solvers:

A = rosser ;

eig(A)

eigs(A)

The eig, eigs, and svd functions are discussed in

Section 5.4.

5.2 Scalar functions

Certain MATLAB functions operate essentially on scalars

but operate entry-wise when applied to a vector or matrix.

The most common ones are:

24

i

i

“8primer” — 2010/6/7 — 16:45 — page 25 — #41
i

i

i

i

i

i

abs atan2 exp log10 rem sqrt

acos ceil floor log2 round tan

asin conj imag mod sign

atan cos log real sin

The following statements generate a sine table:

x = (0:0.1:2)’

y = sin(x)

[x y]

Note that because sin operates entry-wise, it produces a

vector y from the vector x.

5.3 Vector functions and data analysis

Other MATLAB functions operate essentially on a vector

(row or column) but act on an m-by-n matrix (m > 2) in a

column-by-column fashion to produce a row vector

containing the results of their application to each column.

Row-by-row action can be obtained by using the transpose

(mean(A’)’, for example) or by specifying the dimension

along which to operate (mean(A,2), for example). Most of

these functions perform basic statistical computations (std

computes the standard deviation and prod computes the

product of the elements in the vector, for example). The

primary functions are:

max sum median any sort var

min prod mean all std mode

The maximum entry in a matrix A is given by

max(max(A)) rather than max(A). Try it. The any and

all functions are discussed in Section 7.6.

25

i

i

“8primer” — 2010/6/7 — 16:45 — page 26 — #42
i

i

i

i

i

i

5.4 Matrix functions

Much of the power of MATLAB comes from its matrix

functions. Here is a partial list of the most important ones:

eig eigenvalues and eigenvectors

eigs like eig, for large sparse matrices

chol Cholesky factorization

svd singular value decomposition

svds like svd, for large sparse matrices

lu LU factorization

qr QR factorization

poly characteristic polynomial

det determinant

size size of an array

length length of a vector

norm 1-norm, 2-norm, Frobenius-norm, ∞-norm

cond condition number in the 2-norm

condest condition number estimate

rank rank

kron Kronecker tensor product

find find indices of nonzero entries

linsolve solve a special linear system

MATLAB functions may have single or multiple output

arguments. Square brackets are used to the left of the equal

sign to list the outputs. For example,

lambda = eig(A)

finds a column vector with the eigenvalues of A, whereas:

[V, Lambda] = eig(A)

produces a matrix V whose columns are the eigenvectors of

A and a diagonal matrix D with the eigenvalues of A on its

diagonal, so that A*V is equal to V*Lambda. Try it.

26

i

i

“8primer” — 2010/6/7 — 16:45 — page 27 — #43
i

i

i

i

i

i

5.5 The linsolve function

The matrix divide operators (\ or /) are usually enough for

solving linear systems. They look at the matrix and try to

pick the best method. The linsolve function acts like \,

except that you can tell it about your matrix. Try:

A = [1 2 ; 3 4]

b = [4 10]’

A\b

linsolve(A,b)

In both cases, you get solution x=[2;1] to the linear

system A*x=b.

If A is symmetric and positive definite, one explicit solution

method is to perform a Cholesky factorization, followed by

two solves with triangular matrices. Try:

C = [2 1 ; 1 2]

x = C\b

Here is an equivalent method:

R = chol(C)

y = R’\b

x = R\y

The matrix R is upper triangular, but MATLAB must

explicitly determine this by itself. You can save MATLAB

some work by using linsolve with an optional third

argument, opts. Try this:

opts.UT = true

opts.TRANSA = true

y = linsolve(R,b,opts)

which gives the same answer as y=R’\b. The fields for the

opts struct are UT (upper triangular), LT (lower triangular),

UHESS (upper Hessenberg), SYM (symmetric), POSDEF

27

i

i

“8primer” — 2010/6/7 — 16:45 — page 28 — #44
i

i

i

i

i

i

(positive definite), RECT (rectangular), and TRANSA

(whether to solve A*x=b or A’*x=b). All opts fields are

either true or false. Not all combinations are supported

(type doc linsolve for a list). linsolve does not work

on sparse matrices.

This example uses a struct called opts. Structs are covered

in detail in Section 8.2.

5.6 The find function

The find function is unlike the other matrix and vector

functions. find(x), where x is a vector, returns an array of

indices of nonzero entries in x. This is often used in

conjunction with relational operators. Suppose you want a

vector y that consists of all the values in x greater than 1.

Try:

x = 2*rand(1,5)

y = x(find(x > 1))

With three output arguments, you get more information:

A = rand(3)

[i,j,x] = find(A)

returns three vectors, with one entry in i, j, and x for each

nonzero in A (row index, column index, and numerical

value, respectively). With this matrix A, try:

[i,j,x] = find(A > .5)

[i j x]

and you will see a list of pairs of row and column indices

where A is greater than .5. However, x is a vector of values

from the matrix expression A > .5, not from the matrix A.

Getting the values of A that are larger than .5 without a

loop requires one-dimensional array indexing.

28

i

i

“8primer” — 2010/6/7 — 16:45 — page 29 — #45
i

i

i

i

i

i

5.7 1-D indexing and the reshape

function

One-dimensional or linear indexing accesses a

multi-dimensional array with a single index.

A = rand(5)

k = find(A > .5)

A(k)

A(k) = A(k) + 99

Section 7.1 shows the loop-based version of this code.

If A is m-by-n, then A(i,j) is the same as the

one-dimensional index A(i+(j-1)*m). Think of

one-dimensional indexing starting at A(1,1), which is the

same as A(1), and then counting down the first column. So

A(m,1) is the same as A(m). Next, count down the second

column, so that A(1,2) is the same as A(m+1). Try this

example, where m=3.

A = rand(3)

A(1,2)

A(4)

A single colon converts a matrix into a vector, one column

following another. Try this:

A(:)

One-dimensional indexing works differently depending on

which side of the assignment (=) it is on. On the right of the

equal sign, A(k) returns the values given by the indices in

k. The result is the same size and shape as k. Try these

examples:

A = magic(5)

A([1 2 ; 5 6])

A(1:7)

A([1:7]’)

29

i

i

“8primer” — 2010/6/7 — 16:45 — page 30 — #46
i

i

i

i

i

i

On the left side of the equal sign, A is modified but it retains

its shape and size. The result of A(k)=... does not depend

on the shape of k, just the number of entries it contains. If k

is a matrix or row vector, it is converted into the single

column k(:). Try this:

A([1 2 ; 5 6]) = 101:104

A(1:7) = 0

A([1:7]’) = -1

The example above where k is 2-by-2 may seem out of

order until you see it expanded like this:

A = magic(5)

k = [1 2 ; 5 6]

k = k(:)

A(k) = 101:104

The expression A(:) unravels A into a single column vector,

starting with entries in the first column, then the second, and

so on. The resulting column vector can then be reshaped

into a matrix with different dimensions using reshape.

C=reshape(A,m,n) unravels A(:) and then reshapes the

result into an m-by-n matrix C. Try this example.

A = reshape(1:16, 4, 4)

C = reshape(A, 2, 8)

5.8 Logical indexing

Logical indexing is an alternative to one-dimensional

indexing and the find function. You can index into an

array using a list of indices (such as those from find), or

you can index into it with a logical array directly. If S is a

logical array, A(S) is the set of entries in A where S is true.

Here is the same example as the first one in Section 5.7, but

using logical indexing instead of find.

30

i

i

“8primer” — 2010/6/7 — 16:45 — page 31 — #47
i

i

i

i

i

i

A = rand(5)

S = A > .5

A(S)

A(S) = A(S) + 99

The logical array S contains values that are true (1) or false

(0). The expression x=A(S) returns a list x of values

A(i,j) where S(i,j) is 1. S can be the same size as A, or

smaller. Unlike one-dimensional indexing, the result x is

always a vector and never a matrix. If S is a matrix or

column vector, then x=A(S) is a column vector. If S is a

row vector, then so is x=A(S). If S is smaller than A, S(:)

gets padded with zeros to give it the same number of entries

as A. S cannot be larger than A.

Merely creating a matrix with 1’s and 0’s does not make it a

logical array. Try this example. S is an array of type

double, not logical, so A(S) fails. You must convert it

into a logical array with S~=0, or logical(S).

S = randi([0 1], 5)

A(S) % fails

A(S==1) % OK

5.9 The bsxfun and repmat functions

Scalars, vectors, and matrices work together in specific

ways according to the well-defined rules of linear algebra.

Entry-wise operations (such as adding two matrices A+B)

can only be done if A and B have the same size. MATLAB

can implicitly expand a scalar so that it takes on the same

size as a matrix, as in A+1. This example subtracts a scalar

(the mean of all entries in A) from the whole matrix:

A = rand(5)

C = A - mean(A(:))

31

i

i

“8primer” — 2010/6/7 — 16:45 — page 32 — #48
i

i

i

i

i

i

Sometimes these rules are too restrictive. For example,

subtracting the mean of each column from a matrix is a

common operation in statistics. MATLAB cannot do that

directly (A-mean(A) fails, even though the meaning of that

expression is clear).

The repmat function is one approach for solving this

problem. repmat(A,m,n) replicates and tiles the matrix A,

m times along the rows and n times along the columns.

repmat(A,1,2) is [A A] and repmat(A,2,1) is [A;A].

repmat(A,2,3) results in [A A A;A A A], To subtract

the mean of each column from A, you can use repmat to

replicate the row vector mean(A).

n = size(A,1)

C = A - repmat(mean(A), n, 1)

repmat is useful in its own right, but a better solution to

this problem is bsxfun (short for Binary Singleton

eXpansion Function).

C=bsxfun(f,A,B) applies the function f entry-wise to

each pair of entries in A and B. See Sections 3.4 and 3.5 for

most of the entry-wise functions in MATLAB. The

dimensions of A and B must either match, or either can be

equal to one (a singleton dimension). A singleton dimension

in one matrix is expanded (implicitly replicating the matrix)

to match a non-singleton dimension in the other matrix.

This example subtracts the mean of A from each column.

All the columns of the new matrix C have a mean of zero (or

nearly so, ignoring floating-point roundoff).

C = bsxfun(@minus, A, mean(A))

mean(C)

Here is how the above example works. x=mean(A) returns

a row vector with x(k) equal to the mean of A(:,k). If A

is m-by-n, then x is 1-by-n, so bsxfun expands the first

32

i

i

“8primer” — 2010/6/7 — 16:45 — page 33 — #49
i

i

i

i

i

i

dimension by implicitly replicating the row vector x into a

matrix of m rows. Subtracting this from A subtracts the

mean of column k from A(:,k), for each column k.

To subtract the mean of row k from the kth row A(k,:), for

each row k, try this:

C = bsxfun(@minus, A, mean(A,2))

mean(C,2)

The @ symbol creates a function handle, which is described

in more detail in Section 10.1. Each MATLAB operator has

a function name associated with it. You must add @ to the

name to create a function handle, which can then be passed

to bsxfun. Here is a list of the most common entry-wise

functions to use with bsxfun (see doc bsxfun for a

complete list):

@plus + @minus -

@times .* @power .^

@rdivide ./ @ldivide .\

@lt < @gt >

@le <= @ge >=

@eq == @ne ~=

@max maximum @min minimum

For example, to subtract the smallest entry of each column

k from A(:,k), try this:

C = bsxfun(@minus, A, min(A))

min(C)

Another application of bsxfun is row equilibration, which

scales each row of a matrix by dividing it by the largest

entry in that row. It can be written as C = D−1A where D is

a diagonal matrix with dii = max j|ai j|. This gives each row

of C the same ∞-norm, which can improve the solution of a

linear system. After row equilibration, the largest entry in

33

i

i

“8primer” — 2010/6/7 — 16:45 — page 34 — #50
i

i

i

i

i

i

each row of C has a magnitude of 1. Here are three ways of

doing it. The first uses bsxfun, and the other two use

backslash with a full and sparse scaling matrix D,

respectively.

d = max(abs(A), [], 2)

C = bsxfun(@ldivide, d, A)

C = diag(d) \ A

n = size(A,1)

C = spdiags(d,0,n,n) \ A

For large matrices, the second method is much slower than

the other two. The advantage of bsxfun is that it can

handle many kinds of matrix operations that backslash

cannot handle. Sparse matrices are discussed in Chapter 18.

6 M-Files

Most of the examples you have typed in so far are short. For

solving more complex problems, you need to create a

sequence of statements stored in a file so that you can easily

edit and re-use them. These are called M-files because they

must have the file type .m as the last part of their filename.

6.1 M-File Editor window

Much of your work with MATLAB will be in creating and

refining M-files. M-files are usually created using with the

M-file Editor or your favorite text editor. See also

Help:MATLAB ◮User Guide ◮Desktop Tools and

Development Environment ◮Editing and Debugging M-Files.

There are two types of M-files: script files and function

files. In this exercise, you will incrementally develop and

debug a script and then a function for making a matrix

diagonally dominant. A matrix is diagonally dominant if the

absolute value of each diagonal is larger than the sum of the

34

i

i

“8primer” — 2010/6/7 — 16:45 — page 35 — #51
i

i

i

i

i

i

absolute values of the off-diagonal entries in its row. That

is, |aii| > ∑ j 6=i |ai j| for all i.

Create a new M-file, either with the edit command, by

selecting the File ◮New ◮Script menu item, or by clicking

the new-file button:

Type in these lines in the Editor.

f = sum(A, 2) ;

A = A + diag(f) ;

The semicolons are there because you normally do not want

to see the results of every line of a script or function. Save

the file as ddom.m by clicking:

You have just created your first MATLAB script file.

See the web page for this book for the M-files and

MEX-files used in this book.

You might find it convenient to dock the Editor window

(click) because in the exercise below you will be going

back and forth between the Editor window and the

Command Window.

The Editor has many features that are introduced slowly in

this book as you build up experience in MATLAB. More

discussion on some of the advanced features of the Editor is

found in Section 11.2 (Advanced Editor features) and

Chapter 23 (Cell Publishing). The next section describes

how to debug your code via breakpoints in the Editor.

35

i

i

“8primer” — 2010/6/7 — 16:45 — page 36 — #52
i

i

i

i

i

i

6.2 Script files

A script file consists of a sequence of MATLAB statements

that you could also type directly into the Command

Window. Typing ddom in the Command Window causes the

statements in the script file ddom.m to be executed.

Variables in a script file refer to variables in the main

workspace, so changing them changes your workspace

variables. Type:

A = rand(3)

ddom

A

in the Command Window. It seems to work; the matrix A is

now diagonally dominant. If you type this in the Command

Window, though,

A = [1 -2 ; -1 1]

ddom

A

then the diagonal of A just got worse. What happened?

Look at f in the Workspace window (or double-click on it

to open f for editing); it is a column vector with the values

[-1 ; 0]. Oops. f is supposed to be a sum of absolute

values, so it cannot be negative. Change the first line of

ddom.m to:

f = sum(abs(A), 2) ;

save the file, and run it again on the original matrix

A=[1 -2;-1 1] (hit the up arrow key, or double-click the

command in your Command History window). This time,

instead of typing in the command, try running the script by

clicking:

36

i

i

“8primer” — 2010/6/7 — 16:45 — page 37 — #53
i

i

i

i

i

i

in the Editor window. This is a shortcut to typing ddom in

the Command Window. The matrix A is now diagonally

dominant. Run the script again, though, and you will see

that A is modified even if it is already diagonally dominant.

Fix this by modifying only those rows that violate diagonal

dominance.

Set A to [1 -2;-1 1] again and modify ddom.m so that it

looks like this:

d = diag(A) ;

a = abs(d) ;

f = sum(abs(A), 2) - a ;

i = find(f >= a) ;

A(i,i) = A(i,i) + diag(f(i)) ;

Save and run the script by clicking:

Run it again. This time the matrix does not change.

However, if you try it on the matrix A=[-1 2;1 -1], the

result is wrong. To fix it, try another debugging method:

setting breakpoints. A breakpoint causes the script to pause,

and allows you to enter commands in the Command

Window, while the script is paused (it acts just like the

keyboard command). Click on line 5 and select Debug

◮Set/Clear Breakpoint in the Editor or click:

A red dot appears in a column to the left of line 5. You can

also set and clear breakpoints by clicking on the red dots or

dashes in this column. To see the line numbers in the Editor,

select File ◮Preferences, select Editor/Debugger ◮Display

in that window, and check the Show line numbers option.

In the Command Window, type:

37

i

i

“8primer” — 2010/6/7 — 16:45 — page 38 — #54
i

i

i

i

i

i

clear

A = [-1 2 ; 1 -1]

ddom

A green arrow appears at line 5, and the prompt K>>

appears in the Command Window. Execution of the script

has paused, just before line 5 is executed. Look at the

variables A and f. Since the diagonal is negative, and f is an

absolute value, we should subtract f from A to preserve the

sign. Type the command:

A = A - diag(f)

The matrix is now correct, although this works only if all of

the rows need to be fixed and all diagonal entries are

negative. Stop the script by selecting Debug ◮Exit Debug

Mode or by clicking:

Alternatively, you can continue where you left off with the

command return or by clicking the Continue icon:

Clear the breakpoint. Replace line 5 with:

s = sign(d(i)) ;

A(i,i) = A(i,i) + diag(s .* f(i)) ;

Type A=[-1 2;1 -1] and run the script. The script seems

to work, but it modifies A more than is needed. It also fails

on the matrix A=zeros(4) because sign(0) is zero. Fix

the script so that it looks like this:

d = diag(A) ;

a = abs(d) ;

f = sum(abs(A), 2) - a ;

38

i

i

“8primer” — 2010/6/7 — 16:45 — page 39 — #55
i

i

i

i

i

i

i = find(f >= a) ;

[m n] = size(A) ;

k = i + (i-1)*m ;

tol = 100 * eps ;

s = 2 * (d(i) >= 0) - 1 ;

A(k) = (1+tol) * s .* max(f(i), tol) ;

The variable eps (epsilon) gives the smallest value such that

1+eps > 1, about 10−16 on most computers. It is useful in

specifying tolerances for convergence of iterative processes

and in problems like this one. The odd-looking statement

that computes s is nearly the same as s=sign(d(i)),

except that here we want s to be one when d(i) is zero.

6.3 Function files

Function files provide extensibility to MATLAB. You can

create new functions specific to your problem, which then

have the same status as other MATLAB functions. Variables

in a function file are local by default. A variable can,

however, be declared global (see doc global). Use global

variables with caution; they can be a symptom of bad

program design and can lead to hard-to-debug code.

Convert your ddom.m script into a function by adding these

lines at the beginning of ddom.m:

function B = ddom(A)

% B = ddom(A) returns a diagonally

% dominant matrix B by modifying the

% diagonal of A.

and add this line at the end of your new function:

B = A ;

You now have a MATLAB function, with one input

argument and one output argument. To see the difference

between global and local variables as you do this exercise,

type clear. Functions do not modify their inputs, so:

39

i

i

“8primer” — 2010/6/7 — 16:45 — page 40 — #56
i

i

i

i

i

i

C = [1 -2 ; -1 1]

D = ddom(C)

returns a matrix D that is diagonally dominant. The matrix C

in the workspace does not change, although a copy of it,

local to the ddom function, called A, is modified as the

function executes. Note that the other variables, a, d, f, i, k

and s no longer appear in your main workspace. Neither do

A and B. These are local to the ddom function.

The first line of the function declares the function name,

input arguments, and output arguments; without this line the

file would be a script file. The MATLAB statement

D=ddom(C) causes the matrix C to be passed as the variable

A in the function and causes the output result to be passed

out to the variable D. Since variables in a function file are

local, their names are independent of those in the current

MATLAB workspace. Your workspace has only the

matrices C and D. If you want to modify C itself, then use

C=ddom(C).

Lines that start with % are comments; more on this in

Section 6.7. An optional return statement causes the

function to finish and return its outputs (this happens

implicitly if execution reaches the end of the M-file). An

M-file can reference other M-files, including itself

recursively.

6.4 Multiple inputs and outputs

A function may also have multiple input and output

arguments. For example, it would be useful to provide the

caller of the ddom function some control over how strong

the diagonal should be and to provide more results, such as

the list of rows (the variable i) that violated diagonal

dominance. Try changing the first line to:

function [B,i] = ddom(A, tol)

40

i

i

“8primer” — 2010/6/7 — 16:45 — page 41 — #57
i

i

i

i

i

i

and add a % at the beginning of the line that computes tol.

Single assignments can also be made with a function having

multiple output arguments. For example, with this version

of ddom, the statement D=ddom(C,0.1) assigns the

modified matrix to the variable D without returning the

vector i. Try it on C=[1 -2 ; -1 1].

6.5 Variable arguments

Not all inputs and outputs of a function need be present

when the function is called. The variables nargin and

nargout can be queried to determine the number of inputs

and outputs present. For example, we could use a default

tolerance if tol is not present. Add these statements in

place of the line that computed tol:

if (nargin == 1)

tol = 100 * eps ;

end

Section 10.1 gives an example of nargin and nargout.

Section 7.3 describes the if statement.

Use varargin to create a function that can accept an

arbitrary number of inputs. Include a parameter with the

exact name varargin as the last input parameter. Any

extra arguments are collected in a cell array with the name

varargin (see Section 8.1 for a discussion of cell arrays).

Try creating this simple function.

function x = f(a, b, varargin)

x = a+b ;

if (nargin > 2)

disp (varargin) ;

c = varargin{1}

end

end

41

i

i

“8primer” — 2010/6/7 — 16:45 — page 42 — #58
i

i

i

i

i

i

Now try f(2,3) and f(2,3,pi,’whatever’). In the

latter case, c is set to pi, the first element in varargin and

the third input to f.

Similarly, varargout creates a function with a variable

number of outputs. Add varargout as the last output

parameter to your function.

function [x,varargout] = f(a,b,varargin)

x = a+b ;

if (nargin > 2)

varargout{1} = cos(c) ;

end

end

Now try [x,y]=f(2,3,pi), which computes x=2+3 and

y=cos(pi). For a simple yet powerful example of

varargin and varargout, see the built-in deal function

(enter type deal in the Command Window).

6.6 Unused arguments

Not all output arguments of a function are needed every

time the function is used. To ignore arguments that appear

at the end of the list of outputs, simply remove them from

the list. For example, with your new 2-output ddom

function, D=ddom(C) returns only the first argument. The

second output i is ignored.

To ignore an argument, use a tilde (~) in its place. For

example, to obtain just the indices of the diagonal entries

that ddom would modify, use [~,i]=ddom(C). Try it.

6.7 Comments and documentation

The % symbol indicates that the rest of the line is a

comment; MATLAB ignores the rest of the line. The first

contiguous comment lines are used to document the M-file.

42

i

i

“8primer” — 2010/6/7 — 16:45 — page 43 — #59
i

i

i

i

i

i

They are available to the online help facility and are

displayed if help ddom or doc ddom are entered. Always

include this in your functions. Since you have modified the

function to add new inputs and outputs, edit your function

to describe the variables i and tol, and state the default

value of tol. Next, type help ddom or doc ddom.

Block comments are useful for lengthy comments or for

disabling code that you might want to use later. A block

comment starts with a line containing only %{ and ends

with a line containing only %}. Block comments in an

M-file are not printed by the help or doc commands.

A line starting with two percent signs (%%) denotes the

beginning of a MATLAB code cell. This type of cell has

nothing to do with cell arrays (discussed in Chapter 8), but

defines a section of code in an M-file. Cells can be executed

by themselves, and cell publishing (see Chapter 23) creates

reports whose sections are defined by the cells of an M-file.

6.8 The MATLAB path

M-files must be in a folder accessible to MATLAB. M-files

in the Current Folder, displayed at the top of the main

MATLAB window, are always accessible. The current list

of directories in the MATLAB search path is obtained by

the command path. This command can also be used to add

or delete directories from the search path. See doc path.

The command which locates functions and files on the

path. For example, type which hilb. You can modify your

MATLAB path with the command path, or pathtool,

which brings up another window.

You can also select File ◮Set Path. To add a specific folder

to your path, right-click a grayed-out folder in the Current

Folder window and select Add to Path ◮Selected Folders.

43

i

i

“8primer” — 2010/6/7 — 16:45 — page 44 — #60
i

i

i

i

i

i

7 Control Flow Statements

In their basic forms, these MATLAB flow control

statements operate like those in most computer languages.

Indenting the statements of a loop or conditional statement

is optional, but it helps readability to follow a standard

convention.

You can type a control flow statement in the Command

Window, but this can be difficult to manage. Using an

M-file is the easiest way to try these examples.

7.1 The for loop

This loop:

n = 10 ; x = []

for i = 1:n

x = [x, i^2]

end

produces a vector of length 10, and

n = 10 ; x = []

for i = n:-1:1

x = [i^2, x]

end

produces the same vector. Try them. The vector x grows in

size at each iteration. Note that a matrix may be empty

(such as x=[]). The statements:

m = 6 ; n = 4

for i = 1:m

for j = 1:n

H(i,j) = 1/(i+j-1) ;

end

end

H

44

i

i

“8primer” — 2010/6/7 — 16:45 — page 45 — #61
i

i

i

i

i

i

produce and display in the Command Window the 6-by-4

Hilbert matrix. The last H displays the final result. The

semicolon on the inner statement is essential to suppress the

display of unwanted intermediate results. If you leave off

the semicolon, you will see that H grows in size as the

computation proceeds. This can be slow if m and n are large.

It is more efficient to preallocate the matrix H with the

statement H=zeros(m,n) before computing it. Type the

command doc hilb and type hilb to see a more efficient

way to produce a square Hilbert matrix.

Here is the counterpart of the one-dimensional indexing

exercise from pages 29 and 31. It adds 99 to each entry of

the matrix that is larger than .5. It is slower than using

find or logical indexing.

A = rand(5)

[m n] = size(A) ;

for j = 1:n

for i = 1:m

if (A(i,j) > .5)

A(i,j) = A(i,j) + 99 ;

end

end

end

A

The for statement permits any matrix expression to be used

instead of 1:n. The index variable consecutively assumes

the value of each column of the expression. For example,

s = 0 ;

for c = H

s = s + sum(c) ;

end

45

i

i

“8primer” — 2010/6/7 — 16:45 — page 46 — #62
i

i

i

i

i

i

computes the sum of all entries of the matrix H by adding its

column sums (of course, sum(sum(H)) does it more

efficiently; see Section 5.3). Each iteration of the for loop

assigns a successive column of H to the variable c. In fact,

since 1:n = [1 2 3 ... n], this column-by-column

assignment is what occurs with for i = 1:n.

In most statements, the colon operator creates a list of

numbers in a MATLAB array. It works differently in a for

loop. The assignment i = 1:inf fails because the list is

too big to be created. The statement for i=1:inf does

not create the list, and becomes just another way of

specifying an infinite loop.

7.2 The while loop

The general form of a while loop is:

while expression

statements

end

The statements are repeatedly executed as long as the

expression remains true. For example, for a given

number a, the following computes and displays the smallest

nonnegative integer n such that 2n > a:

a = 1e9

n = 0

while 2^n <= a

n = n + 1 ;

end

n

Note that you can compute the same value n more

efficiently by using the log2 function:

[f,n] = log2(a)

46

i

i

“8primer” — 2010/6/7 — 16:45 — page 47 — #63
i

i

i

i

i

i

You can terminate a for or while loop with the break

statement and skip to the next iteration with the continue

statement. Here is an example for both. It prints the odd

integers from 1 to 7 by skipping over the even iterations and

then terminates the loop when i is 7.

for i = 1:10

if (mod(i,2) == 0)

continue

end

i

if (i == 7)

break

end

end

7.3 The if statement

The general form of a simple if statement is:

if expression

statements

end

The statements are executed only if the expression is true.

Multiple conditions also possible:

for n = -2:5

if n < 0

parity = 0 ;

elseif rem(n,2) == 0

parity = 2 ;

else

parity = 1 ;

end

disp([n parity])

end

47

i

i

“8primer” — 2010/6/7 — 16:45 — page 48 — #64
i

i

i

i

i

i

The else and elseif are optional. If the else part is

used, it must come last. The elseif part is tested only

when the if test is false. The else part is executed only

when the if test and any elseif tests are all false.

7.4 The switch statement

The switch statement is much like the if statement. If you

have one expression that you want to compare against

several others, then a switch statement can be more

concise than the corresponding if statement. Here is the

general format:

switch expression

case expression2

statements

otherwise

statements

end

The case statement can be repeated as many times as you

want. The otherwise clause is optional. The

expression in the switch statement must be a scalar or a

string. It is compared with each case expression

(expression2, above), and the statements of the first case

that matches are selected and executed. If nothing matches,

the otherwise statements are executed. Scalars and strings

can be mixed together.

The case expression can be a cell array (discussed in

Section 8.1), which is a list of expressions enclosed in curly

brackets and separated by commas. The switch expression

is compared with each of the expressions in the list, and if

any one of them matches, the corresponding statements are

executed. Try the example on the next page.

The gallery and why functions have more examples of

switch statements. Type edit gallery or edit why to

48

i

i

“8primer” — 2010/6/7 — 16:45 — page 49 — #65
i

i

i

i

i

i

take a look. See help switch or doc switch for more

examples.

switch x

case 0

disp (’x is zero’) ;

case {2, 4, 6, 8}

disp (’x is 2,4,6, or 8’) ;

x = x / 2 ;

otherwise

disp (’x is something else’) ;

x = 0 ;

end

7.5 The try/catch statement

Computations can fail for many reasons. MATLAB

variables can morph between matrices, strings, cells, and

other types, and not all MATLAB functions work on all

kinds of types. MATLAB can run out of memory. Files that

you try to read might not exist. These are just a few

examples. It can be very difficult to catch all these cases

before trying an operation that might fail.

If a statement in your MATLAB function fails, you might

want that error to terminate the function. This is what

happens with no try/catch block. Alternatively, you

might want to try a computation optimistically, and then

take corrective action if something goes wrong. This is

where the try/catch statement is useful. The general

form is:

try

statements

catch ME

error handling statements

rethrow (ME)

end

49

i

i

“8primer” — 2010/6/7 — 16:45 — page 50 — #66
i

i

i

i

i

i

The first block of statements is executed. If an error occurs,

those statements are terminated, and the second block of

statements is executed.

Here is a simple example. These MATLAB statements

attempt to load a matrix from a .mat file. If the MAT-file is

not found, a default matrix is used instead.

try

A = load (’mymatrix.txt’) ;

catch

disp (’could not find mymatrix’) ;

A = magic (5) ;

end

The ME variable in the catch statement is not required, but

it is recommended. This variable keeps a record of what the

error is. The name ME is not special, just frequently used

(short for MATLAB Exception). If the error-handling code

cannot recover, you can use rethrow(ME) to reissue the

error, which acts as if the error was not caught in the first

place.

See doc try for more information. More examples of

try/catch are covered in Sections 9.2 and 14.5.

7.6 Matrix expressions (if and while)

A matrix expression is interpreted by if and while to be

true if every entry of the matrix expression is nonzero.

Enter these two matrices:

A = [1 2 ; 3 4]

B = [2 3 ; 3 5]

If you wish to execute a statement when matrices A and B

are equal, you could type:

50

i

i

“8primer” — 2010/6/7 — 16:45 — page 51 — #67
i

i

i

i

i

i

if A == B

disp(’A and B are equal’)

end

If you wish to execute a statement when A and B are not

equal, you would type:

if any(any(A ~= B))

disp(’A and B are not equal’)

end

or, more simply,

if A == B else

disp(’A and B are not equal’)

end

Note that the seemingly obvious:

if A ~= B

disp(’not what you think’)

end

does not give what is intended because the statement would

execute only if each of the corresponding entries of A and B

differ. The functions any and all can be used creatively to

reduce matrix expressions to vectors or scalars. Two any’s

are required above because any is a vector operator (see

Section 5.3). In logical terms, any and all correspond to

the existential (∃) and universal (∀) quantifiers, respectively,

applied to each column of a matrix or each entry of a row or

column vector. Like most vector functions, any and all

can be applied to dimensions of a matrix other than the

columns. An if statement with a two-dimensional matrix

expression is equivalent to:

if all(all(expression))

statement

end

51

i

i

“8primer” — 2010/6/7 — 16:45 — page 52 — #68
i

i

i

i

i

i

Two matrices A and B can be checked for equality with

all(all(A==B)), but isequal(A,B) is simpler. The

isequal function works on any kind of variables, such as

strings of different lengths, structs, or cell arrays. Structs

and cell arrays are discussed in the next chapter. Try this

example.

isequal(’a’, ’bb’)

all(’a’ == ’bb’)

The comparison ’a’==’bb’ results in an error, since the

two strings must have the same length.

7.7 Infinite loops

With loops, it is possible to execute a command that never

stops. Typing Ctrl-C stops a runaway display or

computation. Try:

i = 1

while i > 0

i = i + 1

end

then type Ctrl-C to terminate this loop.

8 Advanced Data Structures

Standard arrays are useful data structures for storing lots of

things of the same type, such as an array of numbers or

characters. They cannot be used if you want to store a

number in one position and a string in another. This is

where cell arrays, structs, and objects are useful.

Object-oriented programming is a lengthy topic discussed

in its own chapter (Chapter 9).

52

i

i

“8primer” — 2010/6/7 — 16:45 — page 53 — #69
i

i

i

i

i

i

8.1 Cell arrays

Cell arrays are collections of other arrays or variables of

varying types and are formed using curly braces. For

example,

c = {[3 2 1] ,’I love MATLAB’}

creates a cell array. The expression c{1} is a row vector of

length 3, while c{2} is a string. cell(2,3) creates a

2-by-3 array of empty cells (not unlike zeros(2,3)).

A cell array of strings can contain strings of different

lengths, or any variable at all – including another cell array.

Try this:

d = {’Why do’ ,’I love MATLAB?’, c}

8.2 Structs

The downside of standard arrays and cell arrays is that each

item is known only by its row and/or column index

(A(1,1), A(2,3), and so on). Use a struct to create a data

structure where each part has its own unique name. Try:

clear z

z.particle = ’electron’

z.position = [2 0 3]

z.spin = ’up’

The variable z describes a variable with several

characteristics, each with its own type. A cell array can also

include three parts, just like this struct, but they would be

called just z{1}, z{2}, and z{3}.

The clear z statement in the example above makes sure z

does not already exist. If z already exists and is a struct,

then the old struct z is augmented with the new fields,

which might not be what you want.

53

i

i

“8primer” — 2010/6/7 — 16:45 — page 54 — #70
i

i

i

i

i

i

Cell arrays, structs, and standard arrays can be combined

and nested within a struct. You can create an array of structs

or a struct containing an array. The next example causes z

to become a 2-by-3 array of structs, where z(1,1) is the

electron above. z(2,3) is a proton with ’unknown’

position and no specified spin. The other entries are empty.

Try it.

z(2,3).particle = ’proton’

z(2,3).position = ’unknown’

Try typing z(1,1), z(2,2), and z(2,3). Every entry in

the struct z has the same three fields, but some are empty

since they have not been assigned to anything. Note that

z(1,1).position and z(2,3).position are not the

same data type. Structs are very flexible data structures for

representing all kinds of data.

The struct command builds a struct array all at once,

using one cell array for each field in the struct. This next

one-line statement creates the same struct z. Since it is

rather long, try it in your own M-file script, rather than

trying to type it in the Command Window.

z = struct (...

’particle’, {’electron’,[],[] ;

[],[],’proton’ }, ...

’position’, {[2 0 3], [],[] ;

[],[],’unknown’}, ...

’spin’, {’up’, [],[] ;

[],[],[]}) ;

Since structs can contain variables of any type, they can

contain structs, giving a nested struct. If you type

z(1,1).a.b = 42

then every entry in the struct array is given a field with the

name a, with z(1,1).a containing a scalar b equal to 42.

54

i

i

“8primer” — 2010/6/7 — 16:45 — page 55 — #71
i

i

i

i

i

i

The a fields of other entries of z are all equal to the empty

matrix, []. To access a field defined by a string, use

s=’a’; z.(s), for example.

Structs are a nice way to keep together all the variables and

arrays that define a single problem. For example, in a linear

programming problem the goal is to find the vector x that

minimizes cT x where Ax = b and l ≤ x ≤ h, and where A is

an m-by-n matrix with m < n. These components of the

problem are of different sizes, but all can be held in a single

struct as (for example) Problem.A, Problem.c, and so on.

8.3 Sets

Sets are represented as vectors, character arrays, or cell

arrays of strings. Set operations include:

ismember test membership, x ∈ A

intersect set intersection, A∩B

union set union, A∪B

setdiff set difference, A\B

unique removes duplicates from a set

setxor (A∪B)\ (A∩B)
issorted checks if a set is sorted

Try these examples. Their results are shown to the right.

A = [1 2 5 6 8 8 9]

B = [1 2 3 5 7]

ismember(3,A) % 0

ismember(3,B) % 1

intersect(A,B) % [1 2 5]

setdiff(A,B) % [6 8 9]

union(A,B) % [1 2 3 5 6 7 8 9]

setxor(A,B) % [3 6 7 8 9]

unique(A) % [1 2 5 6 8 9]

55

i

i

“8primer” — 2010/6/7 — 16:45 — page 56 — #72
i

i

i

i

i

i

The inputs to a set operation do not need to be sorted, and

they may include duplicate entries. Set operations always

return their results with sorted entries and with no

duplicates. Note that A includes a duplicate entry, but

union(A,B) removes it.

A matrix represents a set with each row being a single

element. Character arrays represent sets of strings, all of the

same length. For sets of strings with different lengths, use a

cell array of strings. A third argument (’rows’) must be

added if a set (numeric or character) is represented with a

matrix instead of a vector.

8.4 Other data types

MATLAB supports many other data types, including logical

variables (used for logical indexing in Section 5.8), integers

of various sizes, single-precision floating-point variables,

sparse matrices, multidimensional arrays, and objects.

The default data type is double, a 64-bit IEEE

floating-point number. The single type is a 32-bit IEEE

floating-point number which should be used only if you are

desperate for memory. A double can represent integers in

the range −253 to 253 without any roundoff error, and a

double holding an integer value is typically used for loop

and array indices. An integer value stored as a double is

nicknamed a flint. Integer types are typically needed for

special cases such as signal processing, image processing,

encryption, and bit string manipulation. Integers come in

signed and unsigned flavors, and in sizes of 8, 16, 32, and

64 bits. Integer arithmetic is not modular, but saturates on

overflow. See doc int8, doc uint8, and doc single for

more information.

A sparse matrix is not actually its own data type, but an

attribute of the double and logical matrix types. Sparse

56

i

i

“8primer” — 2010/6/7 — 16:45 — page 57 — #73
i

i

i

i

i

i

matrices are stored in a special way that does not require

space for zero entries. MATLAB has efficient methods of

operating on sparse matrices. Type doc sparse, and doc

full, look in Help:MATLAB ◮User Guide ◮Mathematics

◮Sparse Matrices, or see Chapter 18. Sparse matrices are

allowed as arguments for most, but not all, MATLAB

operators and functions where a normal matrix is allowed.

D=zeros(3,5,4,2) creates a 4-dimensional array of size

3-by-5-by-4-by-2. Multidimensional arrays may also be

built up using cat (short for concatenation). The first input

of cat specifies the dimension along which the matrices are

to be concatenated, and the next inputs are the matrices to

concatenate. Try this example, which creates a 3-by-4-by-2

matrix C.

A = ones(3,4)

B = rand(3,4)

C = cat(3, A, B)

9 Object-Oriented Programming

Structs are very flexible data structures, but sometimes too

flexible. Suppose you want to set z(1,2).particle to

neutron, but you make a mistake and type this instead:

z(1,2).Particle = ’neutron’

Oops. You created an entirely new field in the struct, rather

than modifying the existing one. Worse yet, every time you

pass z to a function, a robust function would need to make

sure all the required fields are present. What should it do

with fields such as z.Particle that it does not recognize?

And there is no way to get a list of all functions that can

take this struct z as input, or produce one on output.

Enter the MATLAB object. Think of it as a specialized

struct with fields that cannot change unless you change a

57

i

i

“8primer” — 2010/6/7 — 16:45 — page 58 — #74
i

i

i

i

i

i

file that defines the object (the classdef, or class

definition file). The classdef file specifies everything you

can do with or to the object (these are called methods).

Fields in an object act like the fields of a struct, but you

cannot add or remove them arbitrarily.

For this exercise, we will create an object class that

represents a matrix factorization. This first version has no

methods, just the L and U factors themselves (LU = A,

where L is lower triangular and U is upper triangular). Open

the M-File Editor with a blank classdef file (File ◮New

◮Class) and create an M-file called factor0.m. The

filename and the classdef name must match:

classdef factor0
%FACTOR0 my first object
properties

L, U ;
end

end

Now in the Command Window, create an object F of class

factor0, and populate its L and U fields:

A = rand(4)

F = factor0

[F.L F.U] = lu(A)

whos

Try to create a new field by typing F.x=0 (for example) in

the Command Window. MATLAB refuses to do it, and

gives you a warning. Click on the underlined Methods in

the display of F. This gives a list of the methods that can be

used on F. The only method is factor0, which creates an

empty object with the fields L and U. Clicking on the

factor0 link displayed in the Command Window displays

the help for the class.

To add new properties, you must edit the factor0.m file.

A word of caution: if you edit factor0.m when you still

58

i

i

“8primer” — 2010/6/7 — 16:45 — page 59 — #75
i

i

i

i

i

i

have factor0 objects in your workspace, you may get a

warning message saying that those objects must be cleared

first before the changes can be applied. Use clear

classes to clear all your variables and classes. This can

make it difficult to edit and test your code, since you must

clear all your test data. Create another M-file that starts with

clear classes, creates some test data, and then tests your

new object class.

The simple factor0 class acts just like a struct except that

it is not as flexible (which is sometimes a good thing). If G

is not already defined, [G.L G.U]=lu(A) acts just like F

in this example, except that G is a struct, not an object of the

factor0 class. So G.x=0 works, but F.x=0 does not.

9.1 Object methods

An object with properties but no methods is useful, but it

usually makes more sense to create a class that contains

methods which operate on objects of that class. Create a

file factor1.m that contains the following:

classdef factor1
%FACTOR1 my first useful object
properties

L, U ;
end
methods

function F = factor1 (A)
[F.L F.U] = lu (A) ;

end
function x = mldivide (F,b)

x = F.U \ (F.L \ b) ;
end

end
end

The first method has the same name as the class, and is

called the constructor. It creates a factor1 object, and

59

i

i

“8primer” — 2010/6/7 — 16:45 — page 60 — #76
i

i

i

i

i

i

must return an object of the class. The constructor for

factor0 was implicit; it just did F.L=[] ; F.U=[].

The second method illustrates an important concept in

object-oriented programming: overloading. This

overloaded mldivide method defines what happens when

you do x=F\b when F is a factor1 object. mldivide is

the name of the function that does the backslash (\)

operator. Creating an mldivide method overloads the \

operator to mean something new for objects of the factor1

class.

A = rand(4)

b = rand(4,1)

F = factor1(A)

F\b

A\b

Both F\b and A\b solve Ax = b, but the first one reuses a

previously computed factorization. This is handy, because

you can solve A\c for a new right-hand-side c without

recomputing the LU factorization of A. The mldivide (\)

operator cannot do that. Try the example above with a

larger matrix, and use tic and toc (see Section 10.5) to

compare the performance of x=F\b; and x=A\b;. The

latter takes much more time.

You can of course create new methods which do not

overload existing functions. For example, to create a

method that returns the largest and smallest entries the

diagonal of U, add this function to the methods block of

factor1:

function d = maxdiag (F)

d = sort (abs (diag (F.U))) ;

d = d ([1 end]) ;

end

60

i

i

“8primer” — 2010/6/7 — 16:45 — page 61 — #77
i

i

i

i

i

i

The ratio d(1)/d(2) is a (very) rough estimate of the

condition number of the matrix A whose factorization is

held in the object F (see also cond, rcond, and condest).

As an alternative to placing all methods in a single file (as in

the factor1.m example), you can create a folder name that

begins with @, such as @factor1. The parent folder of

@factor1 must be on your MATLAB path. Put your

factor1.m file inside @factor1. Remove the mldivide

and maxdiag functions and place them in files called

mldivide.m and maxdiag.m in the @factor1 folder. The

two techniques specify the same class, just with a different

file and folder structure. Using an @folder is helpful if

your methods involve a lot of code.

9.2 Object inheritance and abstract classes

Objects can build on one another to create new objects from

old. More precisely, an object class can inherit methods and

properties from another class. The new class is called a

subclass, or synonymously a derived class, and the class it

inherits from is called the superclass.

This allows you to write code once (for the superclass) to be

used by all the different classes that inherit from the

superclass.

This is best illustrated with an example. LU factorization is

just one kind of factorization. What we would really like is

a generic factorization class that can represent any kind of

factorization, and select the right one depending on the

matrix.

For now, however, let us consider a simpler example which

uses just lu and chol for square dense matrices, and which

only provides the A\b function.

The abstract class factor2_generic specifies a generic

object. You cannot create an object of this class. It just

61

i

i

“8primer” — 2010/6/7 — 16:45 — page 62 — #78
i

i

i

i

i

i

provides a framework to write methods and properties used

by its subclasses. It defines an Abstract method called

mldivide that must be implemented in any class that

inherits from this class. That is done by the two subclasses,

factor2_lu and factor2_chol.

classdef factor2_generic
properties

L, U ;
end
methods (Abstract)

x = mldivide (F,b) ;
end

end

classdef factor2_lu < factor2_generic
%FACTOR2_LU for LU factorization
methods

function F = factor2_lu (A)
[F.L F.U] = lu (A) ;

end
function x = mldivide (F,b)

x = F.U \ (F.L \ b) ;
end

end
end

classdef factor2_chol < factor2_generic
%FACTOR2_CHOL for Cholesky
methods

function F = factor2_chol (A)
F.U = chol (A) ;

end
function x = mldivide (F,b)

x = F.U \ (F.U’ \ b) ;
end

end
end

These two methods inherit all of their properties from

factor2_generic, using the < syntax in the classdef

statement. Each of them could also declare additional

62

i

i

“8primer” — 2010/6/7 — 16:45 — page 63 — #79
i

i

i

i

i

i

properties of their own, but they do not need to for this

example. They both use the properties from their common

superclass, factor2_generic, except that

factor2_chol does not need L, so F.L is [].

Using these methods to factorize a matrix requires that you

select between the two methods, depending on the matrix.

Try this:

A = rand(4) ;

C = A’*A ; % symmetric pos. definite

b = rand(4,1) ;

F = factor2_lu(A) ;

F\b

A\b

G = factor2_chol(C) ;

G\b

C\b

Type F and G. Click on the underlined link Superclasses

in the display of these two objects in the Command

Window, and you will see that both F and G inherit from the

factor2_generic superclass.

Rather than requiring you to select the right method (lu or

chol), a better approach is to select it automatically with an

old-fashioned M-file function (it is not an object-oriented

method, but one that returns a factor2_lu or

factor2_chol object). See factor2.m on the next page.

Just like the built-in mldivide, the factor2 function tries

chol if the matrix is symmetric with a real positive

diagonal. If that condition does not hold, or if the matrix is

not symmetric positive definite, lu is used instead. In either

case, F\b with the resulting F (using lu or chol) solves

Ax = b with the factorization of A. Now you can create F

and G without having to choose the method yourself:

F = factor2(A)

G = factor2(C)

63

i

i

“8primer” — 2010/6/7 — 16:45 — page 64 — #80
i

i

i

i

i

i

function F = factor2 (A)
%FACTOR2 LU or CHOL factorization
chol_ok = false ;
d = diag (A) ;
if (all(d>0) && nnz(imag(d))==0 ...

&& nnz(A-A’)== 0)
try

F = factor2_chol (A) ;
chol_ok = true ;

catch
end

end
if (~chol_ok)

F = factor2_lu (A) ;
end

9.3 Object attributes

By default, the properties of a class can be read and

modified from methods outside the class, and they are all

displayed by disp(F) if F is an object. That is,

properties act just like the fields of a struct.

This might not be what you want. Try typing F.L=’gunk’

with the factor2 object F from the last example. If the

user of the factor2 object has no valid reason to modify a

property, then you should not allow that to happen. This

restriction helps prevent bugs from appearing in your code

that might otherwise go undetected.

There are many property attributes you can modify. The

three most common ones are

• GetAccess, which controls how the property can be

read,

• SetAccess, which controls how the property can be

modified, and

• Hidden, which controls whether or not the property

is displayed by disp or when you leave off the

semicolon at the end of an assignment statement.

64

i

i

“8primer” — 2010/6/7 — 16:45 — page 65 — #81
i

i

i

i

i

i

GetAccess and SetAccess can be public (the default),

protected (access from the class itself or from derived

classes), or private (access from just the class itself).

Hidden is either true or false.

For the factor2_generic class, a good choice would be

SetAccess = protected. This allows subclasses to

modify L and U, but it does not allow you to type

F.L=’gunk’ at the Command Window, since commands

typed there do not appear in the class definition itself. Leave

GetAccess alone, so that L and U can be extracted. Perhaps

you might want to solve x=F.L\b, or extract the diagonal

of U with diag(F.U). Those operations make sense, but

F.L=’gunk’ does not. If you change GetAccess =

protected, then x=F.L\b would not be allowed. Which

attributes to use depends on how you want the object to be

used.

To make this change, modify the properties line in

factor2_generic to look like this:

properties (SetAccess = protected)

If you want to set more than one attribute, separate them

with commas:

properties (SetAccess = protected, ...

GetAccess = public)

If you have multiple properties with different attributes,

simply include multiple properties blocks in the class

definition.

With these changes, try F.L=’gunk’ again. It fails

gracefully, with a warning that changing the L property is

not allowed.

65

i

i

“8primer” — 2010/6/7 — 16:45 — page 66 — #82
i

i

i

i

i

i

9.4 A more extensive example

A more powerful object for factorizing matrices and solving

linear systems can be found in the File Exchange

(Section 2.6) by searching for the keyword factorize, for

the submission entitled

Don’t let that INV go past your eyes;

To solve that system FACTORIZE.

The factorize object is over 1000 lines long and uses 8

different kinds of factorization methods. It provides

methods for A\b, b/A, disp, plus and minus for a

low-rank update/downdate, an inverse that does not

actually compute the inverse, subsref for getting entries

from A or its inverse, double for returning A or inv(A) as

a matrix, and mtimes for computing inv(A)*b or

b*inv(A) without computing inv(A).

It is a useful exercise to go through that lengthy example,

since it is a powerful and real-world example of what a

MATLAB object can do. It is also posted on the web page

for this book.

9.5 Object handle classes

By default, variables in MATLAB have a pass-by-value

behavior, including objects. If you pass a variable as an

input to a method or to a function, you can change that

variable inside the method or function, but the changes do

not appear in the caller. Objects that behave like this are

from value classes.

Handle objects derive from the built-in handle class, and

behave differently from objects from value classes. Copying

an object in the handle class does not create an entirely new

instance of the object, but just another reference to the same

66

i

i

“8primer” — 2010/6/7 — 16:45 — page 67 — #83
i

i

i

i

i

i

contents of the object. The new object is just an alias, or

another name for the same underlying data. This behavior is

useful when the object encapsulates something that cannot

be copied, or something you do not want to copy.

For example, suppose an object refers to a person’s contact

information in a database. If the person’s phone number

changes, you would like that change to be reflected in all

objects that refer to that person. An object that encapsulates

the contact information should be a handle class.

Handle classes are also used for MATLAB graphics

(Handle Graphics R©, discussed in Section 17.1). Copying a

figure object does not display a new figure on your screen,

but rather gives you another object that refers to the same

displayed figure.

For examples of handle classes, see Help:MATLAB ◮User

Guide ◮Object-Oriented Programming ◮Value or Handle

Class – Which to Use.

10 Advanced M-file Features

This chapter describes advanced M-file techniques, such as

how to pass a function as an argument to another function

and how to write high-performance code in MATLAB.

10.1 Function handles and anonymous

functions

A function handle (@) is a reference to a function that can be

treated as a variable. It can be copied, placed in cell array,

and evaluated just like a regular function. For example,

f = @sqrt

f(2)

sqrt(2)

67

i

i

“8primer” — 2010/6/7 — 16:45 — page 68 — #84
i

i

i

i

i

i

The str2func function converts a string to a function

handle. For example,

f = str2func(’sqrt’)

f(2)

Function handles can refer to built-in MATLAB functions,

to your own function in an M-file, or to anonymous

functions. An anonymous function is defined with a

one-line expression, rather than by an M-file. Try:

g = @(x) x^2-5*x+6-sin(9*x)

g(1)

Some MATLAB functions that operate on function handles

need to evaluate the function on a vector, so it is often better

to define an anonymous function (or M-file) so that it can

operate entry-wise on scalars, vectors, or matrices. Try this

instead:

g = @(x) x.^2-5*x+6-sin(9*x)

g([0 1])

The general syntax for an anonymous function is

handle = @(arg1, arg2, ...) expression

Here is an example with two input arguments, which

computes the 2-norm of a vector of length 2.

norm2 = @(x,y) sqrt(x^2 + y^2)

norm2(4, 5)

norm([4 5])

One advantage of anonymous functions is that they can

implicitly refer to variables in the workspace or the calling

function without having to use the global statement. Try

this example:

68

i

i

“8primer” — 2010/6/7 — 16:45 — page 69 — #85
i

i

i

i

i

i

A = [3 2 ; 1 3]

b = [3 ; 4]

y = A\b

resid = @(x) A*x-b

resid(y)

A*y-b

In this case, x is an argument, but A and b are defined in the

calling workspace. To find out what a function handle refers

to, use func2str or functions. Try these examples:

func2str(f)

func2str(g)

func2str(norm2)

func2str(resid)

functions(f)

Cell arrays can contain function handles. They can be

indexed and the function evaluated in a single expression.

Try this:

h{1} = f

h{2} = g

h{1}(2)

f(2)

h{2}(1)

g(1)

Here is a more useful example. The bisect function, on

the next page, solves the nonlinear equation f(x)=0. It

takes a function handle or a string as one of its inputs. If the

function is a string, it is converted to a function handle with

str2func. bisect also gives you an example of nargin

and nargout (see also Section 6.5). Compare bisect with

the built-in fzero discussed in Section 21.4.

Type in bisect.m, or download it from the web page for

this book.

69

i

i

“8primer” — 2010/6/7 — 16:45 — page 70 — #86
i

i

i

i

i

i

function [b, steps] = bisect(f,x,tol)
% BISECT: zero of a function of one variable via
% the bisection method. bisect(f,x) returns a
% zero of the function f. f is a function handle
% or a string with the name of a function. x is
% an array of length 2; f(x(1)) and f(x(2)) must
% differ in sign. An optional third input argument
% sets a tolerance for the relative accuracy of the
% result. The default is eps. An optional second
% output argument gives a matrix containing a trace
% of the steps; the rows are of the form [c f(c)].

if (nargin < 3)
% default tolerance
tol = eps ;

end
trace = (nargout == 2) ;
if (ischar(f))

f = str2func(f) ;
end
a = x(1) ;
b = x(2) ;
fa = f(a) ;
fb = f(b) ;
if (trace)

steps = [a fa ; b fb] ;
end

while (abs(b-a) > 2*tol*max(abs(b),1))
c = a + (b-a)/2 ;
fc = f(c) ;
if (trace)

steps = [steps ; [c fc]] ;
end
if (fb > 0) == (fc > 0)

b = c ;
fb = fc ;

else
a = c ;
fa = fc ;

end
end

70

i

i

“8primer” — 2010/6/7 — 16:45 — page 71 — #87
i

i

i

i

i

i

Try:

bisect(@sin, [3 4])

bisect(’sin’, [3 4])

bisect(g, [0 3])

g(ans)

Some MATLAB functions are built in; others are distributed

as M-files. The actual listing of any M-file, those in

MATLAB or your own, can be viewed with the MATLAB

command type. Try entering type eig, type vander,

and type rank.

10.2 Name resolution

When MATLAB comes upon a new name, it resolves it into

a specific variable or function by checking to see if it is a

variable, a built-in function, a file in the current folder, or a

file in the MATLAB path (in order of the folders listed in

the path). MATLAB uses the first variable, function, or file

it encounters with the specified name. You can use the

command which to find out what a name is. Try this:

clear

which i

i = 3

which i

which i -all

10.3 Error and warning messages

Error messages are best displayed with the function error.

For example:

A = rand(4,3)

[m n] = size(A) ;

if m ~= n

error(’A must be square’) ;

end

71

i

i

“8primer” — 2010/6/7 — 16:45 — page 72 — #88
i

i

i

i

i

i

This aborts execution of an M-file if the matrix A is not

square, and is a useful thing to add to the ddom function that

you developed in Chapter 6, since diagonal dominance is

only defined for square matrices. Try adding it to ddom

(excluding the rand statement, of course), and see what

happens if you call ddom with a rectangular matrix.

If you want to print a warning, but continue execution, use

the warning statement instead, as in:

warning(’A singular; computing anyway’)

See Section 7.5 (try/catch) for one way to recovering

from errors. An error statement inside a try block of a

try/catch statement causes the catch part to be

executed.

10.4 User input

In an M-file the user can be prompted to interactively enter

input data, expressions, or commands. When, for example,

the statement:

iter = input(’iteration count: ’) ;

is encountered, the prompt message is displayed and

execution pauses while the user keys in the input data (or, in

general, any MATLAB expression). Upon pressing the

return or entry key, the data is assigned to the variable iter

and execution resumes. You can also input a string; see

help input.

An M-file can be paused until a key is typed with the pause

command. It is a good idea to display a message, as in:

disp(’Hit enter to continue: ’) ;

pause

A Ctrl-C terminates the script or function that is paused. A

more general command, keyboard, allows you to type any

number of MATLAB commands. See doc keyboard.

72

i

i

“8primer” — 2010/6/7 — 16:45 — page 73 — #89
i

i

i

i

i

i

10.5 Performance measures

Time and space are the two basic measures of an

algorithm’s efficiency. In MATLAB, this translates into the

number of floating-point operations (flops) performed, the

elapsed time, the CPU time, and the memory space used.

MATLAB no longer provides a flop count because it uses

high-performance block matrix algorithms that make it

difficult to count the actual flops performed. On current

computers with deep memory hierarchies, flop count is less

useful as a performance predictor than it once was.

The elapsed time (in seconds) can be obtained with tic and

toc; tic starts the timer and toc returns the elapsed time

since the last tic. Hence:

tic ; statement ; t = toc

returns the elapsed time t for execution of the statement.

Type it as one line in the Command Window. Otherwise, the

timer records the time you took to type the statement. The

elapsed time for solving a linear system above can be

obtained, for example, with:

n = 1000 ;

A = rand(n) ;

b = rand(n,1) ;

tic ; x = A\b ; t = toc

r = norm(A*x-b)

(2/3)*n^3 / t

The norm of the residual is also computed, and the last line

reports the approximate flop rate. You may wish to compare

x=A\b with x=inv(A)*b for solving the linear system. Try

it. You will find A\b to be faster and more accurate.

If there are other programs running at the same time on your

computer, elapsed time might not be an accurate measure of

performance. Try cputime instead.

73

i

i

“8primer” — 2010/6/7 — 16:45 — page 74 — #90
i

i

i

i

i

i

MATLAB runs faster if you can restructure your

computations to use less time and memory. Here is one

practical example. Below are five different ways of applying

a Householder transformation to a matrix A, in increasing

order of cost. Given a vector x as its second argument, the

gallery function for ’house’ returns a scalar beta and a

column vector v to construct the orthogonal Householder

matrix H=eye(m)-beta*v*v’, so that H*x is all zero

except for the first entry (which is equal to s). Try it.

m = 4000 ; n = 1000 ;

A = rand (m,n) ;

[v,beta,s] = gallery(’house’,A(:,1)) ;

tic ; C = A - v*(beta*(v’*A)) ; toc

tic ; C = A - beta*(v*(v’*A)) ; toc

tic ; C = A - beta*v*v’*A ; toc

tic ; C = A - beta*(v*v’)*A ; toc

tic ; H = eye(m)-beta*v*v’ ; C=H*A ; toc

In practice, H is not formed explicitly. The first two methods

do not compute H and require very little time and memory.

The third method leaves the order of evaluation for

MATLAB to decide, but as of MATLAB 7.10 (R2010a), it

computes an m-by-m temporary matrix. The fourth method

also computes a matrix of that size (v*v’). The last method

explicitly computes the m-by-m matrix H.

Try setting m large enough so that the first two methods

succeed but the last three fail by running out of memory or

by taking an excessive amount of time. See doc gallery

for more information on the ’house’ function.

MATLAB does not provide a measure of its peak memory

usage, which typically occurs in the middle of a statement,

function, or operator. There is no way to determine the

memory usage of temporary variables created inside a

MATLAB function or operator.

74

i

i

“8primer” — 2010/6/7 — 16:45 — page 75 — #91
i

i

i

i

i

i

Between MATLAB statements, you can find out the total

size of your workspace, in bytes, with the command whos.

s = whos

space = sum([s.bytes])

The memory function (available only on Microsoft

Windows) is another option. However, like whos, it only

provides memory usage information in between MATLAB

statements.

10.6 Efficient code

The ddom function that you wrote in Chapter 6 illustrates

some of the MATLAB features that can be used to produce

efficient code. All operations are vectorized, so that loops

are avoided. You could have written the ddom function

using nested for loops, much like you would write the

function in C, Fortran, or Java. Type in the ddomloops

function on the next page, or download it from the web site

for this book.

The non-vectorized ddomloops function is only slightly

slower than the vectorized ddom (at least for full matrices).

In earlier versions of MATLAB, the non-vectorized version

would be very slow. MATLAB 6.5 and subsequent versions

include a built-in accelerator that greatly improves the

performance of non-vectorized code.

Try:

A = rand(1000) ;

tic ; B = ddom(A) ; toc

tic ; B = ddomloops(A) ; toc

Only simple for loops can be accelerated. Loops that

operate on sparse matrices are not accelerated, for example

(sparse matrices are discussed in Chapter 18).

75

i

i

“8primer” — 2010/6/7 — 16:45 — page 76 — #92
i

i

i

i

i

i

function B = ddomloops(A,tol)
% B = ddomloops(A) returns a diagonally
% dominant matrix B by modifying the
% diagonal of A.
[m, n] = size(A) ;
if (nargin == 1)

tol = 100 * eps ;
end
for i = 1:n

d = A(i,i) ;
a = abs(d) ;
f = 0 ;
for j = 1:n

if (i ~= j)
f = f + abs(A(i,j)) ;

end
end
if (f >= a)

aii = (1 + tol) * max(f, tol) ;
if (d < 0)

aii = -aii ;
end
A(i,i) = aii ;

end
end
B = A ;

Try:

A = sparse(A) ;

tic ; B = ddom(A) ; toc

tic ; B = ddomloops(A) ; toc

Since not every loop can be accelerated, writing code that

has no for or while loops is still important. As you

become practiced in writing without loops and reading

loop-free MATLAB code, you will also find that the

loop-free version is often easier to read and understand.

If you cannot vectorize a loop, you can speed it up by

preallocating any vectors or matrices in which output is

stored. For example, by including the second statement

76

i

i

“8primer” — 2010/6/7 — 16:45 — page 77 — #93
i

i

i

i

i

i

below, which uses the function zeros, space for storing E

in memory is preallocated. Without this, MATLAB must

resize E one column larger in each iteration, slowing

execution.

M = magic(6) ;

E = zeros(6,50) ;

for j = 1:50

E(:,j) = eig(M^j) ;

end

11 Code Development Tools

The Current Folder window provides a pull-down Actions

menu on its top right corner, which looks like this:

The menu gives you options for creating new M-files of

various types, and options for how files and folders are

viewed in the window (what characteristics are shown, and

how they are sorted and grouped). The Show ◮Description

option is particularly useful. It displays the H1 line of each

M-file.

The menu gives you access to six different reports that

provide useful information about your M-files. These tools

are described below in this chapter. Also described is the

File and Folder Comparison tool, which you can find in the

Desktop ◮File and Folder Comparisons menu.

11.1 Code Analyzer (M-Lint) report

Navigate to the folder where you created the ddomloops

M-file (see Section 10.6), and select ◮Reports ◮Code

Analyzer Report in the Current Folder window. This report

examines all M-files in the folder and checks them for

77

i

i

“8primer” — 2010/6/7 — 16:45 — page 78 — #94
i

i

i

i

i

i

suspicious constructs. Scroll down to the report on

ddomloops.m, and note that one warning is listed:

5: The value assigned here to ’m’ appears

to be unused. Consider replacing it with ~.

Click on the underlined 5:. The Editor window opens the

ddomloops.m file and highlights the variable m in line 5:

[m, n] = size(A) ;

The little orange block near the top right of the Editor

window tells you the M-Lint Code Analyzer has found

problems with your code.

The variable m is assigned by this statement, but not used.

This is not an error, just a warning. You could ask

MATLAB to fix it automatically. If you hover your mouse

over the error and click Fix, and MATLAB will replace m

with a tilde (~) to denote an unused output argument.

However, this warning should remind you that ddomloops

is only intended for square matrices. This is a helpful

reminder, because no test is made to ensure the matrix is

square. Try:

ddomloops(ones(2,3))

An obscure error occurs because the non-existent entry

A(3,3) is referenced. The function should fail with this

input, but the error message is useless.

Save a copy of your original ddomloops.m file and call it

ddomloops_orig.m. You will need it for the exercise in

Section 11.8.

Add the following code to ddomloops just after line 5:

if (m ~= n)

error(’A must be square’) ;

end

78

i

i

“8primer” — 2010/6/7 — 16:45 — page 79 — #95
i

i

i

i

i

i

Rerun the Code Analyzer report by clicking this button at

the top of the report:

The warning has gone away and your code is more robust.

Try ddomloops(ones(2,3)) again. It correctly reports an

error that A must be square.

The Code Analyzer can also analyze a single file. In the

Editor, select Tools ◮Show Code Analyzer Report. This

option is useful if you have many M-files in a single folder

and want to examine just one file at a time. Alternatively,

type mlint ddomloops in the Command Window.

11.2 Advanced Editor features

The Editor is a powerful tool for writing, testing, and

documenting your M-files. You have already used it to

create basic M-file scripts and functions, by working

through the examples in Sections 6.1 and 6.2.

Two additional features of the Editor described in this

section are code folding and M-file configuration.

Open one or both of the bisect.m and ddomloops.m files

that you worked through earlier in this book (Section 10.1

on page 70, and Section 10.6 on page 76, respectively).

Notice the thin lines to the left of the code, with minus signs

inside little boxes:

Click one of the boxes. The Editor collapses a region of

your code into a single line, such as the body of a for or

while loop, or a region of comments. Your code is not

gone, of course, just not displayed. This code-folding

feature helps you navigate through a large M-file. By

79

i

i

“8primer” — 2010/6/7 — 16:45 — page 80 — #96
i

i

i

i

i

i

default, cells (Chapter 23), if/else blocks, and

switch/case blocks cannot be folded, but you can change

this in the File ◮Preferences menu, under the

Editor/Debugger ◮Code Folding tab.

An M-file configuration is a way of providing a basic

stand-alone method for testing your M-file functions.

Normally, a function requires inputs. Try clicking the “run”

icon to run one of these functions:

MATLAB complains that the inputs are not defined. The

same thing happens if you type bisect or ddomloops at

the command line. You can provide a default set of inputs to

your functions by selecting the Debug ◮Run Configuration

for bisect.m menu option (for example). Modify the line

with just the word bisect, replacing it with this test case:

bisect(@sin, [3 4])

Now click the “run” button once more. The bisect

function is called with the two inputs you specified in its

M-file configuration, above. This gives you a quick way to

test your M-files, without having to write a separate test

code.

Chapter 23 (Cell Publishing) shows you how to use the

Editor to create elegant reports with text, MATLAB code,

results, and figures, which can be recomputed and recreated

with a single push of a button.

11.3 TODO/FIXME report

The TODO/FIXME Report lists all lines in an M-file

containing the words TODO, FIXME, or NOTE, along with the

line numbers in which they appear. Clicking the line

number brings up the Editor at that line. This is useful

during incremental development of a large project.

80

i

i

“8primer” — 2010/6/7 — 16:45 — page 81 — #97
i

i

i

i

i

i

11.4 Help report

The Help Report examines each M-file in the current folder

for the comment lines that appear when you type help or

doc followed by the M-file name. Select ◮Reports

◮Help Report. Here is the report for ddomloops:

B = ddomloops(A) returns a diagonally

B = ddomloops(A) returns a diagonally

dominant matrix B by modifying the

diagonal of A.

No examples

No See Also line

No copyright line

The first line in the report is the description line, which is

the first line after the function statement itself (if the line is

a comment line). The MATLAB convention is for the first

comment line to be a stand-alone one-line description of the

function, starting with the name of the function in all capital

letters. This is called the H1 line of an M-file. The first

token in this line should be the function name, in capital

letters and with no space between the % and the function

name.

Edit ddomloops and add a new description line, as the

second line in the file:

%DDOMLOOPS make matrix diagonally dominant

Make sure the option ◮Show ◮Description is checked in

the Current Folder window. Take a look at your newly

modified ddomloops.m function in the window. The

helpful one-line H1 description now appears below the

filename.

81

i

i

“8primer” — 2010/6/7 — 16:45 — page 82 — #98
i

i

i

i

i

i

Now go back to the Help Report window. This report

complains that there is no example, no See Also line, and no

copyright line for ddomloops.m. An example starts with a

comment line that starts with the word example or

Example and ends at the next blank comment line. The See

Also line is a comment line that starts with the words See

also, and is followed by a list of functions related to this

function. The copyright line is a comment that starts with

the word Copyright, followed by the year and your name.

These constructs are all optional, of course, but adding them

to the M-file makes the code easier to use. After the last

comment line, add the following comments:

%

% Example

% A = [1 0 ; 4 1]

% B = ddomloops(A)

% B is the same as A, except B(2,2)

% is slightly greater than 4.

%

% See also DDOM.

Finally, add a blank line (not a comment), and then the line:

% Copyright 2010, Me.

The function name DDOM appears in upper case, telling

MATLAB to recognize it as the name of a function. Rerun

the Help Report. All these these constructs are listed in the

report. Type help ddomloops or doc ddomloops in the

Command Window. Since MATLAB recognizes DDOM as a

function name, it underlines the word ddom in blue as an

active link. Clicking the link displays the corresponding

help or doc for ddom (assuming you created the function

when working through the examples in Chapter 6).

Even if you do not plan on sharing your code with someone

else, get into the habit of carefully documenting your code

82

i

i

“8primer” — 2010/6/7 — 16:45 — page 83 — #99
i

i

i

i

i

i

with an H1 line and examples. Six months later, when you

look at your code again, you will be the “someone else”

trying to understand your code.

11.5 Contents report

The Contents Report generates a special file called

Contents.m that summarizes all of the M-files in a single

folder. The Contents.m file is a very useful index when

you have lots of M-files in a single folder, particularly if all

those files are part of a single large project.

Create a folder entitled diagonal_dominance and place

all of the related M-files in this folder (just ddom.m and

ddomloops.m, for now). Add the diagonal_dominance

folder to your path (see Section 6.8). Now that this folder is

on your path, whatever your current folder is, the command

help diagonal_dominance lists the Contents.m index,

and the ddom and ddomloops functions are always

available to you. You can use them in the Command

Window, or in other M-files, no matter what your current

folder is.

Navigate to this folder in the Current Folder window, and

select the Contents Report (◮Reports ◮Contents

Report). Click yes if MATLAB prompts you to create a new

Contents.m file, then scroll down until you see your

modified ddomloops function. Its name is followed by its

one-line description, generated automatically from the

description line in ddomloops.m. You can edit

Contents.m to add more description, and then click the

refresh button to generate a new Contents Report. Any

discrepancies are reported to you. For example, if you edit

the one-line description in Contents.m, but not in the

corresponding M-file, a warning appears and MATLAB

offers to fix the discrepancy.

83

i

i

“8primer” — 2010/6/7 — 16:45 — page 84 — #100
i

i

i

i

i

i

Type the command help diagonal_dominance. This use

of the help command prints the Contents.m listing in the

diagonal_dominance folder, and highlights the name of

each function. Click on ddomloops in the list; the help

ddomloops information appears. Many functions in

MATLAB are implemented as M-files and are documented

in the same way that you have documented your current

folder. For example, help general lists the Contents.m

file of the folder MATLAB/toolbox/matlab/general

(where MATLAB is the folder in which MATLAB is

installed).

11.6 Dependency report

If you would like to share your MATLAB project with

someone else, you need to make sure that none of the

required M-files in your project are left out. This is where

the Dependency Report comes in handy. Assuming that

your current folder is diagonal_dominance, select

◮Reports ◮Dependency Report in the Current Folder

window. For each M-file in the current folder, the

Dependency Report lists the M-files and mexFunctions that

it relies on, and which M-files rely on it. If you see

something that your code relies on, but which is not in the

right place, then you should move it into the

diagonal_dominance folder before you share that folder

with someone else.

Since ddom and ddomloops are such simple functions, the

Dependency Report is not very interesting. Create an M-file

script in the diagonal_dominance folder called

simple.m:

A = [1 2 ; 3 0]

B = ddomloops(A)

C = ddom(A)

84

i

i

“8primer” — 2010/6/7 — 16:45 — page 85 — #101
i

i

i

i

i

i

Re-run the dependency report. simple is listed as a parent

of its child functions ddomloops and ddom.

11.7 Profiler tool and Coverage report

MATLAB provides an M-file Profiler that lets you see how

much computation time each line of an M-file uses.

Try this example. Create a short M-file script, ddomtest.m,

ideally in your diagonal_dominance folder:

A = rand(1000) ;

B = ddomloops(A) ;

Then select Tools ◮Open Profiler in the Editor window,

select Desktop ◮Profiler, or type profile viewer in the

Command Window. Type ddomtest in the text box entitled

Run this code and hit enter (or click Start Profiling). A short

table appears with the number of calls and time spent in

each function. Most of the time is spent in ddomloops.

Click on the function name and you are given a lengthy

description of the time spent in each line of code of

ddomloops. This report is useful for improving code

performance and for debugging. Untested lines of code

could harbor a bug.

The Coverage Report provides a short overview of the

profile coverage of each file in a folder. Selecting it shows

that ddomtest was fully exercised (100% coverage), but a

few lines of code in ddomloops were not tested. The code

you added to check for rectangular matrices was not tested,

and the case when the diagonal entry A(i,i) is negative

was not tested.

11.8 File and Folder Comparison tool

The File and Folder Comparisons tool is very useful for

tracking changes to your code as you develop it, particularly

85

i

i

“8primer” — 2010/6/7 — 16:45 — page 86 — #102
i

i

i

i

i

i

for large projects. Select Desktop ◮File and Folder

Comparisons, and click the New File Comparison button.

Select ddomloops_orig.m as one file, and ddomloops.m

as the second file. A color-coded side-by-side display of

these two functions is displayed, showing you the lines that

match and the lines that differ. You may need to adjust the

Columns visible setting to fit both files on your screen. The

up and down arrows to the right of this box navigate to the

next region of code that differs between the two files. The

report should show a single difference, with three lines

appearing in ddomloops.m that do not appear in

ddomloops_orig.m.

You can also select two different folders for comparison, or

two different MAT files.

12 Calling C from MATLAB

There are times when a MATLAB M-file itself is not

enough. You may have a large application or library written

in another language that you would like to use from

MATLAB, or it might be that the performance of your

M-file is not what you would like. Harnessing the strengths

of both C and M is a powerful problem-solving combination

(see page 232).

MATLAB can call routines written in C, Fortran, or Java.

Similarly, programs written in C and Fortran can call

MATLAB. In this chapter, we will just look at how to call a

C routine from MATLAB. For more information, see

Help:MATLAB ◮User Guide ◮External Interfaces, or see the

online PDF documents External Interfaces and C and

Fortran API Reference. The discussion in this chapter

assumes that you already know C.

86

i

i

“8primer” — 2010/6/7 — 16:45 — page 87 — #103
i

i

i

i

i

i

12.1 A simple example

A routine written in C that can be called from MATLAB is

called a MEX-file. The routine must always have the name

mexFunction, and the arguments to this routine are always

the same, regardless of what the mexFunction does. Here is

a very simple MEX-file; type it in as the file hello.c in the

MATLAB Editor or in your favorite text editor.

#include "mex.h"

void mexFunction

(

int nargout,

mxArray *pargout [],

int nargin,

const mxArray *pargin []

)

{

mexPrintf ("hello world\n") ;

}

Compile and run it by typing:

mex hello.c

hello

If this is the first time you have compiled a C MEX-file on a

PC with Microsoft Windows, you will be prompted to select

a C compiler.

The arguments nargout and nargin are the number of

outputs and inputs to the function (just as an M-file

function), and pargout and pargin are pointers to the

arguments themselves (of type mxArray).

The mexPrintf function is just the same as printf in C.

You can also use printf itself; the mex command redefines

it as mexPrintf with a #define when the program is

compiled. This way, you can write a routine that can be

used from MATLAB or from a stand-alone C application,

without MATLAB.

87

i

i

“8primer” — 2010/6/7 — 16:45 — page 88 — #104
i

i

i

i

i

i

Although this hello.c MEX-file does not have any inputs

or outputs, you could modify it to print out nargin and

nargout, and try this:

[a,b] = hello(’there’)

MATLAB complains that the two outputs are not assigned,

but this is just a starter example.

12.2 C versus MATLAB arrays

MATLAB stores its arrays in column major order, while the

convention for C is to store them in row major order. Also,

the number of columns in an array is not known until the

mexFunction is called. Thus, two-dimensional arrays in

MATLAB must be accessed with one-dimensional indexing

in C (see also Section 5.7). In the example in the next

section, the INDEX macro helps with this translation.

Array indices also appear differently. MATLAB is written

primarily in C/C++, and it stores all of its arrays internally

using zero-based indexing in which an m-by-n matrix has

rows 0 to m-1 and columns 0 to n-1. However, when

accessed via an M-file or via commands in the Command

Window, MATLAB variables use one-based indexing,

where an m-by-n matrix has rows 1 to m and columns 1 to n.

When you type the MATLAB command x=A(i,j),

MATLAB subtracts one from i and j to reflect this

difference. Likewise, indices returned by mexFunctions

must start with one, not zero. In the example below, one is

added to the List array returned by diagdom to account

for this difference. As an author of C mexFunctions, you

will need to constantly translate between zero-based and

one-based indexing.

88

i

i

“8primer” — 2010/6/7 — 16:45 — page 89 — #105
i

i

i

i

i

i

12.3 A matrix computation in C

In Chapters 6 and 10, you wrote the function ddom.m. Here

is the same function written as an ANSI C MEX-file.

Download the code from the web site for the book, or type

in these three files: diagdom.c, diagdom.h, and

diagdom_mex.c.

Below is the diagdom.h definitions file. You should use

either ptrdiff_t or mwSignedIndex as the default

integer type inside a MATLAB mexFunction. This type is

32 bits in size on 32-bit computers, and 64 bits on a 64-bit

computer. If you are using a 32-bit version of MATLAB on

a 64-bit computer, then change the #define to

mwSignedIndex.

#include <float.h>

#include <stddef.h>

#define INDEX(i,j,m) ((i)+(j)*(m))

#define ABS(x) ((x) >= 0 ? (x) : -(x))

#define MAX(x,y) (((x)>(y)) ? (x):(y))

#define INT ptrdiff_t

The main computational routine, diagdom.c, is on the next

page. Compare it with with the loop-based version

ddomloops.m in Section 10.6. The logic is very similar,

since C has no vectorized expressions. The

diagdom_mex.c file is the gateway routine that connects

MATLAB with your computational routine. Appending
_mex to this filename is not required; it is just a useful

practice so that you can easily tell the two files apart.

MATLAB mx and mex routines are described in

Section 12.4. Place the files in your

diagonal_dominance folder, and try this example:

mex diagdom.c diagom_mex.c

A = rand(6) ;

B = ddom(A) ;

C = diagdom(A) ;

89

i

i

“8primer” — 2010/6/7 — 16:45 — page 90 — #106
i

i

i

i

i

i

#include "diagdom.h"

void diagdom

(

double *A, INT n, double *B,

double tol, INT *List, INT *nList

)

{

double d, a, f, bij, bii ;

INT i, j, k ;

for (k = 0 ; k < n*n ; k++)

{

B [k] = A [k] ;

}

if (tol < 0)

{

tol = 100 * DBL_EPSILON ;

}

k = 0 ;

for (i = 0 ; i < n ; i++)

{

d = B [INDEX (i,i,n)] ;

a = ABS (d) ;

f = 0 ;

for (j = 0 ; j < n ; j++)

{

if (i != j)

{

bij = B [INDEX (i,j,n)] ;

f += ABS (bij) ;

}

}

if (f >= a)

{

List [k++] = i ;

bii = (1 + tol) * MAX (f, tol) ;

if (d < 0)

{

bii = -bii ;

}

B [INDEX (i,i,n)] = bii ;

}

}

*nList = k ;

}

The diagdom_mex.c file is listed on the next two pages.

90

i

i

“8primer” — 2010/6/7 — 16:45 — page 91 — #107
i

i

i

i

i

i

#include "mex.h"

#include "diagdom.h"

void error (char *s)

{

mexPrintf

("Usage: [B,i] = diagdom (A,tol)\n") ;

mexErrMsgTxt (s) ;

}

void mexFunction

(

int nargout, mxArray *pargout [],

int nargin, const mxArray *pargin []

)

{

double tol, *A, *B, *I ;

INT n, k, *List, nList ;

/* get inputs A and tol */

if (nargout > 2 || nargin > 2 || nargin==0)

{

error ("Wrong number of arguments") ;

}

if (mxIsSparse (pargin [0]))

{

error ("A cannot be sparse") ;

}

n = mxGetN (pargin [0]) ;

if (n != mxGetM (pargin [0]))

{

error ("A must be square") ;

}

A = mxGetPr (pargin [0]) ;

tol = -1 ;

if (nargin > 1)

{

if (!mxIsEmpty (pargin [1]) &&

mxIsDouble (pargin [1]) &&

!mxIsComplex (pargin [1]) &&

mxIsScalar (pargin [1]))

{

tol = mxGetScalar (pargin [1]) ;

}

else

{

error ("tol must be scalar") ;

}

91

i

i

“8primer” — 2010/6/7 — 16:45 — page 92 — #108
i

i

i

i

i

i

}

/* create output B */

pargout [0] =

mxCreateDoubleMatrix (n, n, mxREAL) ;

B = mxGetPr (pargout [0]) ;

/* get temporary workspace */

List = (INT *) mxMalloc (n * sizeof (INT)) ;

/* do the computation */

diagdom (A, n, B, tol, List, &nList) ;

/* create output I */

pargout [1] =

mxCreateDoubleMatrix (nList, 1, mxREAL);

I = mxGetPr (pargout [1]) ;

for (k = 0 ; k < nList ; k++)

{

I [k] = (double) (List[k] + 1) ;

}

/* free the workspace */

mxFree (List) ;

}

The matrices B and C are the same (round-off error might

cause them to differ slightly). On my MacBook Air, the C

mexFunction diagdom is about twice as fast than the M-file

ddom for large matrices. However, ddom.m is much easier

to write and maintain. The performance gap between C and

MATLAB continually drops in newer versions of

MATLAB, so switching to a mexFunction is less and less a

requirement. Use a mexFunction only if the programming

effort is worth the payoff.

The Profiler (Section 11.7) comes in handy for finding

performance bottlenecks in your code. If you are unable to

optimize your M-file to a sufficient degree, you can try

replacing select bottlenecks with mexFunctions. Be advised

that for some operations, the built-in functions can be many

times faster than a simple C mexFunction. For example,

x=A\b for large and/or sparse matrices can be an orders of

92

i

i

“8primer” — 2010/6/7 — 16:45 — page 93 — #109
i

i

i

i

i

i

magnitude faster than a simple C (or Fortran) mexFunction

for computing the same thing.

12.4 MATLAB mx and mex routines

In the last example, the C gateway routine (in

diagdom_mex.c) calls several MATLAB routines with the

prefix mx or mex. Routines with mx prefixes operate on

MATLAB matrices and include:

mxIsEmpty 1 if the matrix is empty, 0 otherwise

mxIsSparse 1 if the matrix is sparse, 0 otherwise

mxGetN number of columns of a matrix

mxGetM number of rows of a matrix

mxGetPr pointer to the real values of a matrix

mxGetScalar the value of a scalar

mxCreateDoubleMatrix create MATLAB matrix

mxMalloc like malloc in ANSI C

mxFree like free in ANSI C

Routines with mex prefixes operate on the MATLAB

environment and include:

mexPrintf like printf in C

mexErrMsgTxt like MATLAB error statement

mexFunction the gateway routine from MATLAB

Many other mx and mex routines are available. The memory

management routines in MATLAB (mxMalloc, mxFree,

and mxCalloc) are much easier to use than their ANSI C

counterparts. If a memory allocation request fails, the

mexFunction terminates and control is passed backed to

MATLAB. Any workspace allocated by mxMalloc that is

not freed when the mexFunction returns or terminates is

automatically freed by MATLAB. This is why no memory

allocation error checking is included in diagdom_mex.c; it

is not necessary.

93

i

i

“8primer” — 2010/6/7 — 16:45 — page 94 — #110
i

i

i

i

i

i

Note that all of the references to MATLAB mx and mex

routines are limited to the mexFunction gateway routine

(diagdom_mex.c). This is not required; it is just a good

idea, because you can use your diagdom.c function in

other codes, not just in a MATLAB mexFunction.

In this example, no memory allocation was required in

diagdom.c itself. If you need to allocate memory, using

the C malloc function is dangerous because it can lead to

memory leaks. MATLAB does not know about memory

allocated by malloc, but just mxMalloc instead.

This leads to a conundrum. How do you avoid using mx

functions in your computational routine, while at the same

time use mxMalloc? The solution is to exploit the

MATLAB_MEX_FILE macro, which is only defined when

compiling with the MATLAB mex command. If you add the

following code to diagdom.h, then you can use MALLOC

and FREE instead of the C or MATLAB versions of these

functions.
#ifdef MATLAB_MEX_FILE

#include "mex.h"

#define MALLOC mxMalloc

#define FREE mxFree

#else

#include <stdlib.h>

#define MALLOC malloc

#define FREE free

#endif

Alternatively, if you have an existing set of files in C and do

not want to replace malloc with the MALLOC macro

throughout your code, try this, which replaces malloc with

a macro.
#ifdef MATLAB_MEX_FILE

#include "mex.h"

#define malloc mxMalloc

#define free mxFree

#endif

You can do the same with calloc and realloc, if you

need the MATLAB versions of those standard C functions.

94

i

i

“8primer” — 2010/6/7 — 16:45 — page 95 — #111
i

i

i

i

i

i

12.5 Online help for MEX routines

Create an M-file called diagdom.m and place it in your

diagonal_dominance folder:

function [B,i] = diagdom(A,tol)

%DIAGDOM: modify the matrix A.

% [B,i] = diagdom(A,tol) returns a

% diagonally dominant matrix B by

% modifying the diagonal of A. i is a

% list of modified diagonal entries.

error(’diagdom mexFunction not found’);

Now type help diagdom or doc diagdom. This is a simple

method for providing online help for your own MEX-files.

If both diagdom.m and the compiled diagdom

mexFunction are on the MATLAB path, then the diagdom

mexFunction is called. If only the M-file is in the path, it is

called instead; thus the error statement in diagdom.m

above. This usually means that the diagdom mexFunction

has not yet been compiled. Triggering an error in this M-file

is much better than returning silently.

12.6 Larger examples on the web

You can find many C/C++ mexFunctions in the File

Exchange at MATLAB Central (see Section 2.6). The site

www.cise.ufl.edu/research/sparse contains many

mexFunctions for sparse matrix computations (see

Chapter 18).

13 Calling Fortran from MATLAB

C and C++ are great languages for numerical calculations,

particularly if the data structures are complicated.

MATLAB itself is written primarily in C/C++, except for

95

i

i

“8primer” — 2010/6/7 — 16:45 — page 96 — #112
i

i

i

i

i

i

many of the core dense matrix computations (LAPACK and

the BLAS), which are written in Fortran. In this chapter we

will look at how to call a Fortran subroutine from

MATLAB. A Fortran subroutine is accessed via a

mexFunction in much the same way as a C subroutine is

called. Normally, the mexFunction acts as a gateway routine

that gets its input arguments from MATLAB, calls a

computational routine, and then returns its output arguments

to MATLAB, just like the C example in the previous

chapter.

13.1 Solving a transposed system

The linsolve function was introduced in Section 5.5, with

an example that solves x=U’\b where U is dense, square,

real, and upper triangular. Here is a computational routine

written in Fortran that computes the same thing. It has no

calls to MATLAB-specific mx or mex routines. Both

linsolve (with the right opts input) and utsolve solve

the system x=U’\b without explicitly forming the

transpose, U’.

subroutine utsolve (n, x, A, b)

integer n

real*8 x(n), A(n,n), b(n), xi

integer i, j

do 1 i = 1,n

xi = b(i)

do 2 j = 1,i-1

xi = xi - A(j,i) * x(j)

2 continue

x(i) = xi / A(i,i)

1 continue

return

end

96

i

i

“8primer” — 2010/6/7 — 16:45 — page 97 — #113
i

i

i

i

i

i

13.2 A Fortran mexFunction with %val

To call this computational subroutine from MATLAB as

x=utsolve(A,b), we need a gateway routine, the first

lines of which must be:

subroutine mexFunction

$ (nargout, pargout, nargin, pargin)

integer nargout, nargin

integer pargout (*), pargin (*)

where the $ is in column 6. These lines must be the same

for any Fortran mexFunction (you do not need to split the

first line). Note that pargin and pargout are arrays of

integers. If you have a 64-bit version of MATLAB, use

integer*8 for all integers except nargin and nargout.

MATLAB passes its inputs and outputs as pointers to

objects of type mxArray, but Fortran cannot handle

pointers. Most Fortran compilers can convert integer

“pointers” to references to Fortran arrays via the

non-standard %val construct. We will use this in our

gateway routine. The next two lines of the gateway routine

declare some MATLAB mx routines.

integer mxGetN, mxGetPr

integer mxCreateDoubleMatrix

This is required because standard Fortran has no include-file

mechanism. The next lines determine the size of the input

matrix and create the n-by-1 output vector x. The variable

one is needed if you are on a 64-bit MATLAB and use

integer*8 variables.

integer n, one

one = 1

n = mxGetN (pargin (1))

pargout (1) =

$ mxCreateDoubleMatrix (n, one, 0)

97

i

i

“8primer” — 2010/6/7 — 16:45 — page 98 — #114
i

i

i

i

i

i

We can now convert “pointers” into Fortran array references

and call the computational routine.

call utsolve (n,

$ %val (mxGetPr (pargout (1))),

$ %val (mxGetPr (pargin (1))),

$ %val (mxGetPr (pargin (2))))

return

end

The arrays in both MATLAB and Fortran are

column-oriented and one-based, so translation is not

necessary as it was in the C mexFunction.

Combine the two routines into a single file called

utsolve.f and type:

mex utsolve.f

in the MATLAB Command Window. Error checking could

be added to ensure that the two input arguments are of the

correct size and type. The code would look much like the C

example in Chapter 12, so it is not included. Test this

routine on as large a matrix that your computer can handle.

n = 5000

A = triu(rand(n,n)) ;

b = rand(n,1) ;

tic ; x = A’\b ; toc

opts.UT = true

opts.TRANSA = true

tic ; x2 = linsolve(A,b,opts) ; toc

tic ; x3 = utsolve(A,b) ; toc

norm(x-x2)

norm(x-x3)

The solutions should agree quite closely. In older versions

of MATLAB (7.6 and earlier), linsolve and utsolve are

an order of magnitude faster than x=A’\b. They require

98

i

i

“8primer” — 2010/6/7 — 16:45 — page 99 — #115
i

i

i

i

i

i

less memory, as well, since they do not have to construct

A’. Recent versions (7.9 and later) treat ’\ as a single

operator, so that the transpose is not formed when

computing x=A’\b. In these versions of MATLAB,

utsolve, linsolve, and x=A’\b have about the same

performance. linsolve was introduced in MATLAB 7.0.

13.3 If you cannot use %val

If your Fortran compiler does not support the %val

construct, then you will need to call MATLAB mx routines

to copy the MATLAB arrays into Fortran arrays, and

vice-versa. The GNU f77 compiler supports %val, but

issues a warning that you can safely ignore. In this

utsolve example, add this to your mexFunction gateway

routine:

integer nmax

parameter (nmax = 5000)

real*8 A(nmax,nmax), x(nmax), b(nmax)

where nmax is the largest dimension you want your function

to handle. Unless you want to live dangerously, you should

check n to make sure it is not too big:

if (n .gt. nmax) then

call mexErrMsgTxt ("n too big")

endif

Replace the call to utsolve with this code.

call mxCopyPtrToReal8

$ (mxGetPr (pargin (1)), A, n**2)

call mxCopyPtrToReal8

$ (mxGetPr (pargin (2)), b, n)

call utsolve (n, x, A, b)

call mxCopyReal8ToPtr

$ (x, mxGetPr (pargout (1)), n)

99

i

i

“8primer” — 2010/6/7 — 16:45 — page 100 — #116
i

i

i

i

i

i

This copies the input MATLAB arrays A and b to their

Fortran counterparts, calls the utsolve routine, and then

copies the solution x to its MATLAB counterpart. Although

this is more portable, it takes more memory and is

significantly slower. If possible, use %val.

14 Calling Java from MATLAB

While C and Fortran excel at numerical computations, Java

is well-suited to web-related applications and graphical user

interfaces. MATLAB can handle native Java objects in its

workspace and can directly call Java methods on those

objects. No mexFunction is required.

14.1 A simple example

Try this in the MATLAB Command Window:

t = ’hello world’

s = java.lang.String(t)

s.indexOf(’w’) + 1

find(s == ’w’)

whos

You have just created a Java string in the MATLAB

workspace, and determined that the character ’w’ appears

as the seventh entry in the string using both the indexOf

Java method and the find MATLAB function.

14.2 Encryption/decryption

MATLAB can handle strings on its own, without help from

Java, of course. Here is a more interesting example. Type in

the following as the M-file getkey.m or download it from

the web site for this book.

100

i

i

“8primer” — 2010/6/7 — 16:45 — page 101 — #117
i

i

i

i

i

i

function key = getkey(password)

%GETKEY: key = getkey(password)

% Converts a string into a key for use

% in the encrypt and decrypt functions.

% Uses triple DES.

import javax.crypto.spec.*
b = int8(password) ;

n = length(b) ;

b((n+1):24) = 0 ;

b = b(1:24) ;

key = SecretKeySpec(b, ’DESede’) ;

The getkey routine takes a password string and converts it

into a 24-byte triple DES key using the javax.crypto

package. You can then encrypt a string with the encrypt

function:

function e = encrypt(t, key)

%ENCRYPT: e = encrypt(t, key)

% Encrypt the plaintext string t into

% the encrypted byte array e using a key

% from getkey.

import javax.crypto.*
cipher = Cipher.getInstance(’DESede’) ;

cipher.init(Cipher.ENCRYPT_MODE, key) ;

e = cipher.doFinal(int8(t))’ ;

Except for the function statement and the comments, this

looks almost exactly the same as the equivalent Java code.

This is not a Java program, however, but a MATLAB M-file

that uses Java objects and methods. Finally, the decrypt

function undoes the encryption:

function t = decrypt(e, key)

%DECRYPT: t = decrypt(e, key)

% Decrypt the encrypted byte array e

% into to plaintext string t using a key

101

i

i

“8primer” — 2010/6/7 — 16:45 — page 102 — #118
i

i

i

i

i

i

% from getkey.

import javax.crypto.*
cipher = Cipher.getInstance(’DESede’) ;

cipher.init(Cipher.DECRYPT_MODE, key) ;

t = char(cipher.doFinal(e))’ ;

With these three functions in place, try:

k = getkey(’this is a secret password’)

e = encrypt(’a hidden message’,k)

decrypt(e,k)

Now you encrypt and decrypt strings in MATLAB (a

feature MATLAB does not provide on its own).

14.3 Java class path

If you define your own Java classes that you want to use

within MATLAB, you need to modify your Java class path.

This path is different than the path used to find M-files. You

can add folders to the static Java path by editing the file

classpath.txt, or you can add them to your dynamic

Java path with the command

javaaddpath folder

where folder is the name of a folder containing compiled

Java classes. javaclasspath lists the folders where

MATLAB looks for Java classes. Use the command which

classpath.txt to find where your static class path file is

located. If you do not have write permission to

classpath.txt, you need to type the javaaddpath

command every time you start MATLAB. It is easier to do

this automatically by creating an M-file script called

startup.m and placing in it the javaaddpath command.

Place your startup.m file in one of the folders in your

MATLAB path, or in the folder in which you launch

MATLAB, and it will be executed whenever MATLAB

starts.

102

i

i

“8primer” — 2010/6/7 — 16:45 — page 103 — #119
i

i

i

i

i

i

14.4 Calling your own Java methods

To write your own Java classes that you can call from

MATLAB, you must first download and install the Java

SDK (Software Development Kit) from java.sun.com. You

may need to edit your operating system’s PATH variable so

that you can type the command javac in your operating

system command prompt.

MATLAB includes two M-files that can download a web

page into either a string (urlread) or a file (urlwrite).

Try:

s = urlread(’http://www.mathworks.com’)

The urlread function is an M-file. You can take a look at

it with the command edit urlread. It uses a Java package

from The MathWorks called

mlwidgets.io.InterruptibleStreamCopier, but

only the compiled class file is distributed, not the Java

source file. Create your own URL reader, a purely Java

program, and put it in a file called myreader.java. The

code appears on the next page.

The geturl method opens the URL given by the string u,

and copies it into a file whose name is given by the string f.

You can compile this Java program and run it by typing

these commands at your operating system command

prompt:

javac myreader.java

java myreader http://www.google.com my.txt

The second command copies Google’s home page into your

own file called my.txt. You can also type the commands in

the MATLAB Command Window, as in:

!javac myreader.java

103

i

i

“8primer” — 2010/6/7 — 16:45 — page 104 — #120
i

i

i

i

i

i

import java.io.* ;

import java.net.* ;

public class myreader

{

public static void main (String [] args)

{

geturl (args [0], args [1]) ;

}

public static void geturl (String u, String f)

{

try

{

URL url = new URL (u) ;

InputStream i = url.openStream ();

OutputStream o = new FileOutputStream (f);

byte [] s = new byte [4096] ;

int b ;

while ((b = i.read (s)) != -1)

{

o.write (s, 0, b) ;

}

i.close () ;

o.close () ;

}

catch (Exception e)

{

System.out.println (e) ;

}

}

}

Now that you have your own Java method, you can call it

from MATLAB just as the java.lang.String and

javax.crypto.* methods. In the MATLAB Command

Window, type (as one line):

myreader.geturl

(’http://www.google.com’,’my.txt’)

14.5 Loading a URL as a matrix

An even more interesting use of the myreader.geturl

method is to load a MAT-file or ASCII file from a web page

directly into the MATLAB workspace as a matrix. Here is a

104

i

i

“8primer” — 2010/6/7 — 16:45 — page 105 — #121
i

i

i

i

i

i

simple loadurl M-file that does just that. It can read

compressed files; the Java method uncompresses the URL

automatically if it is compressed.

function result = loadurl(url)
% result = loadurl(url)
% Reads the URL given by the input
% string, url, into a temporary file
% using myread.java, loads it into a
% MATLAB variable, and returns the
% result. The URL can contain a MATLAB-
% readable text file, or a MAT-file.
t = tempname ;
myreader.geturl(url, t) ;
try

result = load(t) ;
catch

try
result = load(’-mat’, t) ;

catch
result = [] ;

end
end
if (exist(t, ’file’))

delete(t) ;
end

Try it with a simple text file (type this in as one line):

w = loadurl(’http://www.cise.ufl.edu/

~davis/MATLABPrimer8E/w’)

which loads in a 2-by-2 matrix. Also try it with this rather

lengthy URL (type the string on one line). spy plots a

sparse matrix (see Section 18.5).

s = loadurl(’http://www.cise.ufl.edu/

research/sparse/mat/HB/west0479.mat’)

prob = s.Problem

spy(prob.A)

title([prob.name ’: ’ prob.title])

105

i

i

“8primer” — 2010/6/7 — 16:45 — page 106 — #122
i

i

i

i

i

i

15 Two-Dimensional Graphics

MATLAB is a powerful tool for creating beautiful plots

with very little effort on your part. The primary command

for creating two-dimensional plots is plot. Chapter 16

discusses three-dimensional graphics. To preview some of

these capabilities, enter the command demo and select some

of the visualization and graphics demos. See Chapter 19 for

a discussion of how to plot symbolic functions.

15.1 Planar plots

The plot command creates linear x-y plots; if x and y are

vectors of the same length, the command plot(x,y) opens

a graphics window and draws an x-y plot of the elements of

y versus the elements of x. You can, for example, draw the

graph of the sine function over the interval -4 to 4 with the

following commands:

x = -4:0.01:4 ;

y = sin(x) ;

plot(x, y) ;

Try it. The vector x is a partition of the domain with mesh

size 0.01, and y is a vector giving the values of sine at the

nodes of this partition (recall that sin operates entry-wise).

When plotting a curve, the plot routine is actually

connecting consecutive points induced by the partition with

line segments. Thus, the mesh size should be chosen

sufficiently small so that the curve is smooth.

The next example draws the graph of y = e−x2

over the

interval -3 to 3. Note that you must precede ^ by a period to

ensure that it operates entry-wise:

x = -3:.01:3 ;

y = exp(-x.^2) ;

plot(x, y) ;

106

i

i

“8primer” — 2010/6/7 — 16:45 — page 107 — #123
i

i

i

i

i

i

Select Tools ◮Zoom In or Tools ◮Zoom Out in the Figure

window to zoom in or out, or click these buttons (or see the

zoom command):

Then click on the figure where you want to zoom in or out.

The Tools ◮Pan option allows you to click and drag the

range and domain displayed by the Figure window.

15.2 Multiple figures

You can have several concurrent Figure windows, one of

which will at any time be the designated current figure in

which graphs from subsequent plotting commands will be

placed. If, for example, Figure 1 is the current figure, then

the command figure(2) (or simply figure) opens a

second figure (if necessary) and makes it the current figure.

The command figure(1) exposes Figure 1 and makes it

again the current figure. The command gcf returns the

current figure number, and figure(gcf) brings the current

figure window to the front.

Just like any other window, a Figure window can be docked

in the main MATLAB window. If you have many figures,

try using the Figures window. It is available as a Desktop

tool under the Desktop ◮Figures menu item, and it also

comes up automatically whenever you dock a Figure.

Without this tool, all of your figures appear by default as

separate undocked windows in MATLAB. If you have a lot

of figures, your desktop can become hard to manage with

many cluttered windows.

MATLAB does not draw a plot right away. It waits until all

computations are finished, until a figure command is

encountered, or until the script or function requests user

input (see Section 10.4). To force MATLAB to draw a plot

107

i

i

“8primer” — 2010/6/7 — 16:45 — page 108 — #124
i

i

i

i

i

i

right away, use the command drawnow. This command is

very useful to animate the results of your computations as

they are computed.

15.3 Graph of a function

MATLAB supplies a function fplot to plot the graph of a

function. For example, to plot the graph of the function in

the last example, you can first define the function in an

M-file called, say, expnormal.m containing:

function y = expnormal(x)

y = exp(-x.^2) ;

Then:

fplot(@expnormal, [-3 3])

produces the graph over the indicated x-domain. Using an

anonymous function gives the same result without creating

expnormal.m:

f = @(x) exp(-x.^2)

fplot(f, [-3 3])

15.4 Parametrically defined curves

Plots of parametrically defined curves can also be made:

t = 0:.001:2*pi ;

x = cos(3*t) ;

y = sin(2*t) ;

plot(x, y) ;

108

i

i

“8primer” — 2010/6/7 — 16:45 — page 109 — #125
i

i

i

i

i

i

15.5 Titles, labels, text in a graph

The graphs can be given titles, axes can be labeled, and text

can be placed within the graph with the following

commands, which take a string as an argument.

title graph title

xlabel x-axis label

ylabel y-axis label

gtext place text on graph using the mouse

text position text at specified coordinates

For example, the command:

title(’A parametric cos/sin curve’)

gives a graph a title. The command gtext(’The Spot’)

lets you interactively place the designated text on the

current graph by placing the mouse crosshair at the desired

position and clicking the mouse. It is a good idea to prompt

the user before using gtext. To place text in a graph at

designated coordinates, use the command text (see doc

text). These commands are also in the Insert menu in the

Figure window. Select Insert ◮TextBox, click on the figure,

type something, and then click somewhere else to finish

entering the text. If the Edit Plot button

is depressed (or select Tools ◮Edit Plot), you can right-click

on anything in the figure and see a pop-up menu that gives

you options to modify the item you just clicked. You can

click and drag objects on the figure. Selecting Edit ◮Axes

Properties brings up a window with many more options.

For example, clicking the Grid: X, Y boxes adds grid lines

(as does the grid command).

109

i

i

“8primer” — 2010/6/7 — 16:45 — page 110 — #126
i

i

i

i

i

i

15.6 Control of axes and scaling

By default, MATLAB scales the axes itself (auto-scaling).

This can be overridden by the command axis or by

selecting Edit ◮Axes Properties. Some features of the axis

command are:

axis([xmin xmax ymin ymax]) sets the axes

axis manual freezes the current axes for new plots

axis auto returns to auto-scaling

v = axis vector v shows current scaling

axis square axes of same size (not same scale)

axis equal same scale and tic marks on axes

axis off removes the axes

axis on restores the axes

The axis command should be given after the plot

command. Try axis([-2 2 -3 3]) with the current

figure. Note that text entered on the figure using the text

or gtext commands moves as the scaling changes (think of

it as attached to the data you plotted). Text entered via

Insert ◮TextBox stays put.

15.7 Multiple plots

Here is one way to make multiple plots on a single graph:

x = 0:.01:2*pi;

y1 = sin(x) ;

y2 = sin(2*x) ;

y3 = sin(4*x) ;

plot(x, y1, x, y2, x, y3)

Another method uses a matrix y containing the functional

values as columns:

x = (0:.01:2*pi)’ ;

y = [sin(x), sin(2*x), sin(4*x)] ;

plot(x, y)

110

i

i

“8primer” — 2010/6/7 — 16:45 — page 111 — #127
i

i

i

i

i

i

The x and y vectors must have the same length, but each

pair can have different lengths. Try:

plot(x, y, [0 2*pi], [0 0])

The command hold on freezes the current graphics screen

so that subsequent plots are superimposed on it. The axes

may, however, become rescaled. Entering hold off

releases the hold. clf clears the figure, and close closes it.

legend places a legend in the current figure to identify the

different graphs. See doc legend.

15.8 Line types, marker types, colors

You can override the default line types, marker types, and

colors. For example,

x = 0:.01:2*pi ;

y1 = sin(x) ;

y2 = sin(2*x) ;

y3 = sin(4*x) ;

plot(x,y1, ’--’, x,y2, ’:’, x,y3, ’o’)

renders a dashed line and dotted line for the first two

graphs, whereas for the third the symbol o is placed at each

node. The line types are:

’-’ solid ’:’ dotted

’--’ dashed ’-.’ dashdot

and the marker types are:

’.’ point ’o’ circle

’x’ x-mark ’+’ plus

’*’ star ’s’ square

’d’ diamond ’v’ triangle-down

’^’ triangle-up ’<’ triangle-left

’>’ triangle-right ’p’ pentagram

’h’ hexagram

111

i

i

“8primer” — 2010/6/7 — 16:45 — page 112 — #128
i

i

i

i

i

i

Colors can be specified for the line and marker types:

’y’ yellow ’m’ magenta

’c’ cyan ’r’ red

’g’ green ’b’ blue

’w’ white ’k’ black

Thus, plot(x,y1,’r--’) plots a red dashed line.

15.9 Subplots and specialized plots

The command subplot(m,n,p) partitions a single figure

into an m-by-n array of panes, and makes pane p the current

plot. The panes are numbered left to right. A subplot can

span multiple panes by specifying a vector p. Here is the

last example with each data set plotted in a separate subplot:

subplot(2,2,1)

plot(x,y1, ’--’)

subplot(2,2,2)

plot(x,y2, ’:’)

subplot(2,2,[3 4])

plot(x,y3, ’o’)

Other specialized planar plotting functions you may wish to

explore via help are:

bar feather hist quiver

compass fill polar rose stairs

15.10 Graphics hard copy

Select File ◮Print or click the print button

in the Figure window to send a copy of your figure to your

default printer. Layout options and selecting a printer can be

done with File ◮Page Setup and File ◮Print Setup.

112

i

i

“8primer” — 2010/6/7 — 16:45 — page 113 — #129
i

i

i

i

i

i

You can save the figure as a file for later use in a MATLAB

Figure window. Try the save button

or File ◮Save. This saves the figure as a .fig file, which

can be later opened in the Figure window with the open

button

or with File ◮Open. Selecting File ◮Export Setup or File

◮Save As allows you to convert your figure to many other

formats.

16 Three-Dimensional Graphics

Primary commands for creating three-dimensional graphics

of numerically-defined functions are plot3, mesh, surf,

and light. Plotting of symbolic functions is discussed in

Chapter 19. The menu options and commands for setting

axes, scaling, and placing text, labels, and legends on a

graph also apply for 3-D graphs. A zlabel can be added.

The axis command requires a vector of length 6 with a 3-D

graph.

16.1 Curve plots

Completely analogous to plot in two dimensions, the

command plot3 produces curves in three-dimensional

space. If x, y, and z are three vectors of the same size, then

the command plot3(x,y,z) produces a perspective plot

of the piecewise linear curve in three-space passing through

the points whose coordinates are the respective elements of

x, y, and z. These vectors are usually defined

parametrically. For example,

113

i

i

“8primer” — 2010/6/7 — 16:45 — page 114 — #130
i

i

i

i

i

i

t = .01:.01:20*pi ;

x = cos(t) ;

y = sin(t) ;

z = t.^3 ;

plot3(x, y, z)

produces a helix that is compressed near the x-y plane (a

“slinky”). Try it.

16.2 Mesh and surface plots

The mesh command draws three-dimensional wire mesh

surface plots. The command mesh(z) creates a

three-dimensional perspective plot of the elements of the

matrix z. The mesh surface is defined by the z-coordinates

of points above a rectangular grid in the x-y plane. Try

mesh(eye(20)).

Similarly, three-dimensional faceted surface plots are drawn

with the command surf. Try surf(eye(20)).

To draw the graph of a function z = f (x,y) over a rectangle,

first define vectors xx and yy, which give partitions of the

sides of the rectangle. Then [x,y]=meshgrid(xx,yy)

creates a matrix x, each row of which equals xx (whose

column length is the length of yy) and similarly a matrix y,

each column of which equals yy. A matrix z, to which

mesh or surf can be applied, is then computed by

evaluating the function f entry-wise over the matrices x and

y. You can, for example, draw the graph of z = e−x2−y2

over

the square [−2,2]× [−2,2] as follows:

xx = -2:.2:2 ;

yy = xx ;

[x, y] = meshgrid(xx, yy) ;

z = exp(-x.^2 - y.^2) ;

mesh(z)

114

i

i

“8primer” — 2010/6/7 — 16:45 — page 115 — #131
i

i

i

i

i

i

Try this plot with surf instead of mesh. Note that you must

use x.^2 and y.^2 instead of x^2 and y^2 to ensure that

the function acts entry-wise on x and y.

16.3 Parametrically defined surfaces

Plots of parametrically defined surfaces can also be made.

See the MATLAB functions sphere and cylinder for

example. The next example displays the cover of this book,

with lighting, color, and viewpoint defined in Section 16.6.

First, start a figure and set up the mesh:

figure(1) ; clf

t = linspace(0, 2*pi, 512) ;

[u,v] = meshgrid(t) ;

Next, define the surface:1

a = -0.2 ; b = .5 ; c = .1 ;

n = 2 ;

x = (a*(1-v/(2*pi)).*(1+cos(u)) + c) ...

.* cos(n*v) ;

y = (a*(1-v/(2*pi)).*(1+cos(u)) + c) ...

.* sin(n*v) ;

z = b*v/(2*pi) + ...

a*(1-v/(2*pi)) .* sin(u) ;

Plot the surface, using y-2*x to define the color, and turn

off the mesh lines on the surface:

surf(x,y,z,y-2*x)

shading interp

Also try a=-0.5, which gives the back cover.

Other three-dimensional plotting functions you may wish to

explore via help or doc are meshz, surfc, surfl,

1von Seggern, CRC Standard Curves and Surfaces, 2nd ed., CRC Press,

1993, pp. 306-307.

115

i

i

“8primer” — 2010/6/7 — 16:45 — page 116 — #132
i

i

i

i

i

i

contour, and pcolor. For plotting symbolically defined

parametric surfaces (including the same seashell you plotted

above), see Section 19.7.

16.4 Volume and vector visualization

MATLAB has an extensive suite of volume and vector

visualization tools. The following example evaluates a

function of three variables, v=f(x,y,z), that represents a

fluid flow problem. It returns both v and the coordinates (x,

y, and z) at which the function was evaluated.

[x,y,z,v] = flow ;

Now try visualizing it. The first method plots the surface at

which v is -3; the second plots slices of the data:

figure(1) ; clf

isosurface(x, y, z, v, -3)

figure(2) ; clf

slice(x, y, z, v, [3 8], 0, 0)

Type doc specgraph for more volume and vector

visualization tools.

16.5 Color shading and color profile

The color shading of surfaces is set by the shading

command. There are three settings for shading: faceted

(default), interpolated, and flat. These are set by the

commands:

shading faceted

shading interp

shading flat

Note that on surfaces produced by surf, the settings

interpolated and flat remove the superimposed mesh

116

i

i

“8primer” — 2010/6/7 — 16:45 — page 117 — #133
i

i

i

i

i

i

lines. Experiment with various shadings on the surface

produced above. The command shading (as well as

colormap and view described below) should be entered

after the surf command.

The color profile of a surface is controlled by the colormap

command. Available predefined color maps include hsv

(the default), hot, cool, jet, pink, copper, flag, gray,

bone, prism, and white. For example, colormap(cool)

sets the cool color profile for the current figure.

Experiment with various color maps on the surface

produced above. See also doc colorbar.

16.6 Perspective of view

The Figure window provides a wide range of controls for

viewing the figure. Select View ◮Camera Toolbar to see

these controls, or pull down the Tools menu. Try, for

example, selecting Tools ◮Rotate 3D, and then click the

mouse in the Figure window and drag it to rotate the object.

Some of these options can be controlled by the view and

rotate3d commands, respectively.

The MATLAB function peaks generates an interesting

surface on which to experiment with shading, colormap,

and view. Type peaks, select Tools ◮Rotate 3D, and click

and drag the figure to rotate it.

In MATLAB, light sources and camera position can be set.

Taking the peaks surface from the example above, select

Insert ◮Light, or type light to add a light source. See the

online document MATLAB 7 Graphics for camera and

lighting help.

This example defines the color, shading, lighting, surface

material, and viewpoint for the cover of the book:

axis off

117

i

i

“8primer” — 2010/6/7 — 16:45 — page 118 — #134
i

i

i

i

i

i

axis equal

colormap(hsv(1024))

shading interp

material shiny

lighting gouraud

lightangle(80, -40)

lightangle(-90, 60)

view([-120 0])

17 Advanced Graphics

MATLAB possesses a number of other advanced graphics

capabilities. Significant ones are bitmapped images,

object-based graphics (called Handle Graphics R©), and

Graphical User Interface (GUI) tools.

17.1 Handle Graphics

Beyond those just described, the MATLAB graphics system

provides low-level functions that let you control virtually all

aspects of the graphics environment to produce

sophisticated plots. The commands set and get allow

access to all the properties of your plots. Try set(gcf) to

see some of the properties of a figure that you can control.

set(gca) lists the properties of the current axes (see

Section 17.3 for an example). This system is called Handle

Graphics R©. See MATLAB 7 Graphics for more information.

17.2 Graphical user interface

The graphics system in MATLAB also provides the ability

to add sliders, push-buttons, menus, and other user interface

controls to your own figures. For information on creating

user interface controls, try doc uicontrol. This allows

you to create interactive graphical-based applications. GUIs

118

i

i

“8primer” — 2010/6/7 — 16:45 — page 119 — #135
i

i

i

i

i

i

use callback functions, which are called whenever a

user-interface object is triggered (when the user presses a

button, for example).

Try guide (short for Graphic User Interface Development

Environment). This brings up the Layout Editor window

that you can use to interactively design a graphic user

interface. Also see the online document Creating Graphical

User Interfaces.

17.3 Images

The image function plots a matrix, where each entry in the

matrix defines the color of a single pixel or block of pixels

in the figure. image(K) paints the (i,j)th block of the

figure with color K(i,j) taken from the colormap. Here is

an example of the Mandelbrot set. The bottom left corner is

defined as (x0,y0), and the upper right corner is

(x0+d,y0+d). Try changing x0, y0, and d to explore other

regions of the set (x0=-.38, y0=.64, d=.01 is also very

pretty). This is also a good example of one-dimensional

indexing:

x0 = -2 ; y0 = -1.5 ; d = 3 ; n = 512 ;

maxit = 256 ;

x = linspace(x0, x0+d, n) ;

y = linspace(y0, y0+d, n) ;

[x,y] = meshgrid(x, y) ;

C = x + y*1i ;

Z = C ;

K = ones(n, n) ;

for k = 1:maxit

a = find((real(Z).^2+imag(Z).^2) < 4);

Z(a) = (Z(a)).^2 + C(a) ;

K(a) = k ;

end

figure(1) ; clf

119

i

i

“8primer” — 2010/6/7 — 16:45 — page 120 — #136
i

i

i

i

i

i

colormap(jet(maxit)) ;

image(x0 + [0 d], y0 + [0 d], K) ;

set(gca, ’YDir’, ’normal’) ;

axis equal

axis tight

image, by default, reverses the y direction and plots the

K(1,1) entry at the top left of the figure (just like the spy

function described in Section 18.5). The set function resets

this to the normal direction, so that K(1,1) is plotted in the

bottom left corner. Try replacing the fourth argument in

surf, for the seashell example, with K, to paint the seashell

surface with the Mandelbrot set.

18 Sparse Matrix Computations

A sparse matrix is one with mostly zero entries. MATLAB

provides the capability to take advantage of the sparsity of

matrices.

18.1 Storage modes

MATLAB has two storage modes, full and sparse, with full

the default. Currently, only double or logical vectors or

two-dimensional arrays can be stored in the sparse mode.

The functions full and sparse convert between the two

modes. Nearly all MATLAB operators and functions

operate seamlessly on both full and sparse matrices. For a

matrix A, full or sparse, nnz(A) returns the number of

nonzero elements in A.

An m-by-n sparse matrix is stored as a set of sparse

columns, where each column is represented as a packed list

of nonzero values and their row indices. Thus, if A is sparse,

x=A(9,:) takes much more time than x=A(:,9), and

s=A(4,5) is also slow. To get high performance when

120

i

i

“8primer” — 2010/6/7 — 16:45 — page 121 — #137
i

i

i

i

i

i

dealing with sparse matrices, use matrix expressions instead

of for loops and vector or scalar expressions. If you must

operate on the rows of a sparse matrix A, compute the

transpose (C=A’) and work with the columns of C instead.

If a full tridiagonal matrix F is created via, say,

F = randi([0 9], 6)

F = triu(tril(F,1), -1)

then the statement S=sparse(F) converts F to sparse

mode. Try it. Note that the output lists the nonzero entries

in column major order along with their row and column

indices because of how sparse matrices are stored. The

statement F=full(S) returns F in full storage mode. You

can check the storage mode of a matrix A with the command

issparse(A).

18.2 Generating sparse matrices

A sparse matrix is usually generated directly rather than by

applying the function sparse to a full matrix. A sparse

banded matrix can be easily created via the function

spdiags by specifying diagonals. For example, a familiar

sparse tridiagonal matrix is created by:

m = 6 ;

n = 6 ;

e = ones(n,1) ;

d = -2*e ;

T = spdiags([e d e], [-1 0 1], m, n)

Try it. The integral vector [-1 0 1] specifies in which

diagonals the columns of [e d e] should be placed (use

full(T) to see the full matrix T and spy(T) to view T

graphically). Experiment with other values of m and n and,

say, [-3 0 2] instead of [-1 0 1]. See doc spdiags

for further features of spdiags.

121

i

i

“8primer” — 2010/6/7 — 16:45 — page 122 — #138
i

i

i

i

i

i

The sparse analogs of eye, zeros, and rand for full

matrices are, respectively, speye, sparse, and sprand.

The spones and sprand functions take a matrix argument

and replace only the nonzero entries with ones and

uniformly distributed random numbers, respectively.

sparse(m,n) creates a sparse zero matrix. sprand also

permits the sparsity structure to be randomized. This is a

useful method for generating simple sparse test matrices,

but be careful. Random sparse matrices are not truly

“sparse” because they experience catastrophic fill-in when

factorized. Sparse matrices arising in real applications

typically do not share this characteristic (see

www.cise.ufl.edu/research/sparse/matrices).

The versatile function sparse also permits creation of a

sparse matrix via listing its nonzero entries:

i = [1 2 3 4 4 4] ;

j = [1 2 3 1 2 3] ;

s = [5 6 7 8 9 10] ;

S = sparse(i, j, s, 4, 3)

full(S)

The last two arguments to sparse in the example above are

optional. They tell sparse the dimensions of the matrix; if

not present, then S is max(i)-by-max(j). If there are

repeated entries in [i j], then the entries are added

together. The commands below create a matrix whose

diagonal entries are 2, 1, and 1.

i = [1 2 3 1] ;

j = [1 2 3 1] ;

s = [1 1 1 1] ;

S = sparse(i, j, s)

full(S)

The entries in i, j, and s can be in any order (the same

order for all three arrays, of course).

122

i

i

“8primer” — 2010/6/7 — 16:45 — page 123 — #139
i

i

i

i

i

i

In general, if the vector s lists the nonzero entries of S and

the integral vectors i and j list their corresponding row and

column indices, then sparse(i,j,s,m,n) creates the

desired sparse m-by-n matrix S. As another example try:

n = 6 ;

e = randi([0 9], n-1, 1) ;

E = sparse(2:n, 1:n-1, e, n, n)

Creating a sparse matrix by assigning values to it one at a

time is exceedingly slow; never do it if you can avoid it.

The next example constructs the same matrix as

A=sparse(i,j,s,m,n) (except for handling duplicate

entries), but it should never be used because it is so slow:

A = sparse(m,n) ;

for k = 1:length(s)

A(i(k),j(k)) = s(k) ;

end

18.3 Computation with sparse matrices

The arithmetic operations and most MATLAB functions can

be applied independent of storage mode. The storage mode

of the result depends on the storage mode of the operands or

input arguments. Operations on full matrices always give

full results. If F is a full matrix (not a scalar), S and Z are

sparse matrices, and n is a (full) scalar, then these

operations give sparse results:

S+S S*S S.*S S.*F

S-S S/Z S\Z -S

S’ S.’ inv(S) chol(S)

lu(S) diag(S) max(S) sum(S)

S*n S/n S^n S.^n

n\S

These give full results (even if n is full(0)):

123

i

i

“8primer” — 2010/6/7 — 16:45 — page 124 — #140
i

i

i

i

i

i

S+F F\S S/F S+n

S*F S\F F/S S-n

A matrix built from blocks, such as [A, B; C, D], is

stored in sparse mode if any constituent block is sparse. To

compute the eigenvalues or singular values of a sparse

matrix S, you must convert S to a full matrix and then use

eig or svd, as eig(full(S)) or svd(full(S)). If S is a

large sparse matrix and you wish only to compute some of

the eigenvalues or singular values, then you can use the

eigs or svds functions (eigs(S) or svds(S)).

18.4 Permutation vectors and matrices

Permuting a matrix in MATLAB is often essential for

obtaining good performance and reliable numerical results.

A permutation can be represented as an index vector or as a

sparse matrix. Try this example, which uses the west0479

test matrix included in MATLAB.

load west0479 ; A = west0479 ;

[L,U,P,Q] = lu(A) ;

[L,U,p,q] = lu(A, ’vector’) ;

Both commands return an LU factorization so that

LU = PAQ, where P is the row permutation and Q is the

column permutation. The permutation matrices are P and Q,

so that L*U equals P*A*Q. The permutation vectors are p

and q, so that L*U equals A(p,q). Sometimes you may

have one representation of a permutation (vector or matrix)

and need to compute the other one. Here are the rules for

conversion, where A is m-by-n.

[p j x] = find(P’) converts P*A to A(p,:)

[q j x] = find(Q) converts A*Q to A(:,q)

P=sparse(1:m, p, 1) converts A(p,:) to P*A

Q=sparse(q, 1:n, 1) converts A(:,q) to A*Q

124

i

i

“8primer” — 2010/6/7 — 16:45 — page 125 — #141
i

i

i

i

i

i

18.5 Visualizing matrices

The spy function introduced in the last section plots the

nonzero pattern of a sparse matrix. spy can also be used on

full matrices. It is useful for matrix expressions coming

from relational operators. Try this example (see Chapter 6

for the ddom function):

A = [

-1 2 3 -4

0 2 -1 0

1 2 9 1

-3 4 1 1]

C = ddom(A)

figure(1) ; spy(A ~= C)

figure(2) ; spy(A > 2)

What you see is a picture of where A and C differ, and

another picture of which entries of A are greater than 2.

19 The Symbolic Math Toolbox

The Symbolic Math Toolbox extends the numeric and

graphic power of MATLAB by adding the capability of

computing and manipulating symbolic mathematical

expressions. The Symbolic Math Toolbox is included in the

Student Version of MATLAB. Since the Symbolic Math

Toolbox is not part of the Professional Version of MATLAB

(by default), it may not be installed on your system, in

which case this chapter will not apply.

Many of the functions in the Symbolic Math Toolbox have

the same names as their numeric counterparts. MATLAB

selects the correct one depending on the type of inputs to

the function. Typing doc eig and doc symbolic/eig

displays the help for the numeric eigenvalue function and its

symbolic counterpart, respectively.

125

i

i

“8primer” — 2010/6/7 — 16:45 — page 126 — #142
i

i

i

i

i

i

19.1 Symbolic variables

You can declare a variable as symbolic with the syms

statement. For example,

syms x

creates a symbolic variable x. The statement:

syms x real

declares to MATLAB that x is a symbolic variable with no

imaginary part.

You can also assert to MATLAB that x is always positive,

with syms x positive. To clear the real status of x, use

syms x clear. Now MATLAB must assume that x can be

either real or complex.

Symbolic computations are handled by a separate symbolic

engine called MuPAD, which keeps track of all your

symbolic variables. The statement clear x deletes the

variable from the MATLAB workspace, but not the MuPAD

workspace. If you declare x as real, and then clear it and

recreate it, MuPAD thinks that x is still limited to real.

Thus, use syms x clear to clear the real status of x, or

use reset(symengine) to reset the MuPAD symbolic

engine and return all symbolic variables to their defaults.

The statement clear all clears the MATLAB workspace

and also resets the MuPAD symbolic engine.

Symbolic variables can be constructed from existing

numeric variables using the sym function. Try:

z = 1/10

a = sym(z)

y = rand(1)

b = sym(y, ’d’)

although better ways to create a include:

126

i

i

“8primer” — 2010/6/7 — 16:45 — page 127 — #143
i

i

i

i

i

i

a = sym(’1/10’)

a = 1 / sym(10)

If you want to ensure a precise symbolic expression, you

must avoid numeric computations. Compare these three

expressions. The first is only accurate to double-precision

numeric computation (about 16 digits). The second and

third avoid numeric computation completely.

sym(log(2))

sym(’log(2)’)

log(sym(2))

You can create a symbolic abstract function. This example

declares f(x) as some unknown function of x:

syms x

f = sym(’f(x)’)

The syms command and sym function have many more

options. See doc syms and doc sym.

19.2 Calculus

The function diff computes the symbolic derivative of a

function defined by a symbolic expression. First, to define a

symbolic expression, you should create symbolic variables

and then proceed to build an expression as you would

mathematically. For example,

syms x

f = x^2 * exp(x)

diff(f)

creates a symbolic variable x, builds the symbolic

expression f = x2ex, and returns the symbolic derivative of

f with respect to x: x^2*exp(x) + 2*x*exp(x) in

MATLAB notation. Try it. Next,

127

i

i

“8primer” — 2010/6/7 — 16:45 — page 128 — #144
i

i

i

i

i

i

syms t

diff(sin(pi*t))

returns the derivative of sin(πt), as a function of t.

Here are examples of taking the derivative of an abstract

function, illustrating the product, quotient, and reciprocal

rules of calculus, and a special case of the chain rule. The

function pretty displays a symbolic expression in an

easier-to-read form resembling typeset mathematics. See

Section 19.5 for simple.

syms x n

f = sym(’f(x)’)

g = sym(’g(x)’)

pretty(diff(f*g))

pretty(diff(f/g))

pretty(diff(1/f))

pretty(simple(diff(f^n)))

Formats in addition to pretty include latex, ccode, and

fortran. Try, for example,

syms x a b

f = x/(a*x+b)

pretty(f)

g = int(f)

pretty(g)

latex(g)

ccode(g)

fortran(g)

int(g)

pretty(ans)

Partial derivatives can also be computed. Try:

syms x y

g = x*y + x^2

diff(g) computes δg/δx

128

i

i

“8primer” — 2010/6/7 — 16:45 — page 129 — #145
i

i

i

i

i

i

diff(g, x) also computes δg/δx

diff(g, y) computes δg/δy

To permit omission of the second argument for functions

such as the above, MATLAB chooses a default symbolic

variable for the symbolic expression. The findsym

function returns the default choice. Its rule is to choose the

variable whose name is nearest x in the alphabet. You can,

of course, override the default choice as shown above. Try,

for example,

syms x x1 x2 theta

F = x * (x1*x2 + x1 - 2)

findsym(F,1)

diff(F, x) computes δF/δx

diff(F, x1) computes δF/δx1

diff(F, x2) computes δF/δx2

G = cos(theta*x)

diff(G, theta) computes δG/δθ

diff can compute second or higher-order derivatives. The

second derivative of sin(2x) is given by either of the

following two examples:

diff(sin(2*x), 2)

diff(sin(2*x), x, 2)

With a numeric argument, diff is the difference operator

of basic MATLAB, which can be used to numerically

approximate the derivative of a function. See doc diff or

help diff for the numeric function, and doc

symbolic/diff or help sym/diff for the symbolic

derivative function.

The function int attempts to compute the indefinite integral

(antiderivative) of a function defined by a symbolic

expression. Try, for example,

129

i

i

“8primer” — 2010/6/7 — 16:45 — page 130 — #146
i

i

i

i

i

i

syms a b t x y z theta

int(sin(a*t + b))

int(sin(a*theta + b), theta)

int(x*y^2 + y*z, y)

int(x^2 * sin(x))

Note that, as with diff, when the second argument of int

is omitted, the default symbolic variable (as selected by

findsym) is chosen as the variable of integration. In some

instances, int is unable to give a result in terms of

elementary functions. Consider, for example,

int(exp(-x^2))

int(sqrt(1 + x^3))

In the first case the result is given in terms of the error

function erf, whereas in the second, the result is given in

terms of ellipticF, a function defined by an integral.

Here is a basic integral rule with an abstract function:

f = sym(’f(x)’)

int(diff(f) / f)

Definite integrals can also be computed by using additional

input arguments. Try, for example,

int(sin(x), 0, pi)

int(sin(theta), theta, 0, pi)

In the first case, the default symbolic variable x was used as

the variable of integration to compute:

Z π

0
sinxdx

whereas, in the second, theta was chosen. Other definite

integrals you can try are:

130

i

i

“8primer” — 2010/6/7 — 16:45 — page 131 — #147
i

i

i

i

i

i

int(x^5, 1, 2)

int(log(x), 1, 4)

int(x * exp(x), 0, 2)

int(exp(-x^2), 0, inf)

It is important to realize that the results returned are

symbolic expressions, not numeric ones. The function

double converts these into MATLAB floating-point

numbers, if desired. For example, the result returned by the

first integral above is 21/2. Entering double(ans) then

returns the MATLAB numeric result 10.5000.

Alternatively, you can use the function vpa (variable

precision arithmetic; see Section 19.3) to convert the

expression into a symbolic number of arbitrary precision.

For example,

int(exp(-x^2), 0, inf)

gives the result:

pi^(1/2)/2

Then the statement:

vpa(ans, 25)

symbolically gives the result to 25 significant digits:

.8862269254527580136490837

You may wish to contrast these techniques with the

MATLAB numerical integration functions quad and quadl

(see Section 20.4).

The limit function is used to compute the symbolic limits

of various expressions. For example,

syms h n x

limit((1 + x/n)^n, n, inf)

131

i

i

“8primer” — 2010/6/7 — 16:45 — page 132 — #148
i

i

i

i

i

i

computes limn→∞(1+ x/n)n as (inf represents ∞ in a

MATLAB). You should also try:

limit(sin(x), x, 0)

limit((sin(x+h)-sin(x))/h, h, 0)

The taylor function computes the Maclaurin and Taylor

series of symbolic expressions. For example,

taylor(cos(x) + sin(x))

returns the fifth order Maclaurin polynomial approximating

cosx+ sinx. This returns the eighth degree Taylor

approximation to cosx2 centered at the point x0 = π:

taylor(cos(x^2), 8, x, pi)

19.3 Variable precision arithmetic

Three kinds of arithmetic operations are available:

numeric floating-point arithmetic in MATLAB

rational exact symbolic arithmetic in MuPAD

VPA variable precision arithmetic in MuPAD

One can obtain exact rational results with, for example,

s = simple(sym(’13/17 + 17/23’))

You are already familiar with numeric computations. For

example, with format long,

pi*log(2)

gives the numeric result 2.17758609030360.

Numeric computations in MATLAB are done in

approximately 16 decimal digit floating-point arithmetic.

With vpa, you can obtain results to arbitrary precision,

within the limitations of time and memory. Try:

132

i

i

“8primer” — 2010/6/7 — 16:45 — page 133 — #149
i

i

i

i

i

i

vpa(’pi * log(2)’)

vpa(sym(pi) * log(sym(2)))

vpa(’pi * log(2)’, 50)

The default precision for vpa is 32. Hence, the two results

are accurate to 32 digits, whereas the third is accurate to the

specified 50 digits. Ludolf van Ceulen (1540-1610)

calculated π to 36 digits. The Symbolic Math Toolbox can

quite easily compute π to 10,000 digits or more. Try:

pretty(vpa(’pi’, 10000))

The default precision can be changed with the function

digits. While the rational and VPA computations can be

more accurate, they are in general slower than numeric

computations. If you pass a numeric expression to vpa,

MATLAB evaluates it numerically first, so use a symbolic

expression or place the expression in quotes. Compare your

results, above, with:

vpa(pi * log(2))

which is accurate to only about 16 digits (even though 32

digits are displayed). This is a common mistake with the

use of vpa and the Symbolic Math Toolbox in general.

19.4 Numeric and symbolic substitution

Once you have a symbolic expression, you can modify it or

evaluate it numerically with the subs function. The

function subs replaces all occurrences of the symbolic

variable in an expression by a specified second expression.

This corresponds to the composition of two functions. Try,

for example,

syms x s t

subs(sin(x), x, pi/3)

subs(sin(x), x, sym(pi)/3)

133

i

i

“8primer” — 2010/6/7 — 16:45 — page 134 — #150
i

i

i

i

i

i

double(ans)

subs(g*t^2/2, t, sqrt(2*s))

subs(sqrt(1-x^2), x, cos(x))

subs(sqrt(1-x^2), 1-x^2, cos(x))

The general idea is that in the statement

subs(expr,old,new) the third argument (new) replaces

the second argument (old) in the first argument (expr).

Compare the first two examples above. The result is

numeric if all variables in the expression are substituted

with numeric values, or symbolic otherwise.

You can substitute multiple symbolic expressions, numeric

expressions, or any combination, using cell arrays of

symbolic or numeric values. Try:

syms x y

S = x^y

subs(S, x, 3)

subs(S, {x y}, {3 2})

subs(S, {x y}, {3 x+1})

You can perform multiple substitutions for any one

symbolic variable, which returns a matrix of symbolic

expressions or numeric values. Try this, which constructs a

function F, finds its derivative G, and evaluates G at

x=0:.1:1.

syms x

F = x^2 * sin(x)

G = diff(F)

subs(G, x, 0:.1:1)

Also try:

a = subs(S, y, 1:9)

a(3)

a = subs(S, {x y},{2*ones(9,1) (1:9)’})

134

i

i

“8primer” — 2010/6/7 — 16:45 — page 135 — #151
i

i

i

i

i

i

The first expression returns a row vector containing the

symbolic expressions x, x^2, ... x^9. The second

substitution returns a numeric column vector containing the

powers of 2 from 2 to 512. Each entry in the cell array must

be of the same size.

Substitution acts just like composition in calculus. Taking

the derivative of function composition illustrates the chain

rule of calculus:

f = sym(’f(x)’)

g = sym(’g(x)’)

diff(subs(f, g))

pretty(ans)

19.5 Algebraic simplification

Convenient algebraic manipulations of symbolic

expressions are available.

The function expand distributes products over sums and

applies other identities, whereas factor attempts to do the

reverse. The function collect views a symbolic

expression as a polynomial in its symbolic variable (which

may be specified) and collects all terms with the same

power of the variable. To explore these capabilities, try the

following:

syms a b x y z

expand((a + b)^5)

factor(ans)

expand(exp(x + y))

expand(sin(x + 2*y))

factor(x^6 - 1)

collect(x * (x * (x + 3) + 5) + 1)

horner(ans)

collect((x + y + z)*(x - y - z))

135

i

i

“8primer” — 2010/6/7 — 16:45 — page 136 — #152
i

i

i

i

i

i

collect((x + y + z)*(x - y - z), y)

collect((x + y + z)*(x - y - z), z)

diff(x^3 * exp(x))

factor(ans)

The powerful function simplify applies many identities in

an attempt to reduce a symbolic expression to a simple

form. Try, for example,

simplify(sin(x)^2 + cos(x)^2)

simplify(exp(5*log(x) + 1))

d = diff((x^2 + 1)/(x^2 - 1))

simplify(d)

The alternate function simple computes several

simplifications and chooses the shortest of them. It often

gives better results on expressions involving trigonometric

functions. Try the following commands:

simplify(cos(x) + (-sin(x)^2)^(1/2))

simple (cos(x) + (-sin(x)^2)^(1/2))

simplify((1/x^3+6/x^2+12/x+8)^(1/3))

simple ((1/x^3+6/x^2+12/x+8)^(1/3))

The function factor can also be applied to a numeric or

symbolic integer argument to compute the prime

factorization of the integer. Try, for example,

factor(4248)

factor(sym(’4248’))

factor(sym(’4549319348693’))

factor(sym(’4549319348597’))

19.6 Two-dimensional graphs

The MATLAB function fplot (see Section 15.3) provides

a tool to conveniently plot the graph of a function. Since it

is, however, the name or handle of the function to be plotted

136

i

i

“8primer” — 2010/6/7 — 16:45 — page 137 — #153
i

i

i

i

i

i

that is passed to fplot, the function must first be defined in

an M-file (or else be a built-in function or anonymous

function).

In the Symbolic Math Toolbox, ezplot lets you plot the

graph of a function directly from its defining symbolic

expression. For example, to plot a function of one variable

try:

syms t x y

ezplot(sin(2*x))

ezplot(t + 3*sin(t))

ezplot(2*x/(x^2 - 1))

ezplot(1/(1 + 30*exp(-x)))

By default, the x-domain is [-2*pi, 2*pi]. This can be

overridden by a second input variable, as with:

ezplot(x*sin(1/x), [-.2 .2])

You will often need to specify the x-domain and y-domain

to zoom in on the relevant portion of the graph. Compare,

for example,

ezplot(x*exp(-x))

ezplot(x*exp(-x), [-1 4])

ezplot attempts to make a reasonable choice for the y-axis.

With the last figure, select Edit ◮Axes Properties in the

Figure window and modify the y-axis to start at -3, and hit

enter. Changing the x-axis in the Property Editor does not

cause the function to be reevaluated, however.

To plot an implicitly defined function of two variables, try

this:

ezplot(x^2 + y^2 - 1)

which plots the unit circle over the default x-domain and

y-domain of [-2*pi, 2*pi]. Since this is too large for

the unit circle, try this instead:

137

i

i

“8primer” — 2010/6/7 — 16:45 — page 138 — #154
i

i

i

i

i

i

ezplot(x^2 + y^2 - 1, [-1 1 -1 1])

The first two entries in the second argument define the

x-domain. The second two define the y-domain. If the

y-domain is the same as the x-domain, then you only need

to specify the x-domain (see the next example).

In both of the previous examples, you plotted a circle but it

looks like an ellipse. This is because with auto-scaling, the

x and y axes are not equal. Fix this by typing:

axis equal

To plot a parametrized function, provide two function

arguments. Try this, which plots a cycloid over the domain

−4π to 4π.

x = t-sin(t)

y = 1-cos(t)

ezplot(x,y, [-4*pi 4*pi])

The ezpolar function creates polar plots. Try creating a

three-leaf rose and a hyperbolic spiral:

ezpolar(sin(3*t))

ezpolar(1/t, [1 10*pi])

Entering the command funtool (no input arguments)

brings up three graphic figures, two of which will display

graphs of functions and one containing a control panel. This

function calculator lets you manipulate functions and their

graphs for pedagogical demonstrations. Type doc funtool

for details.

19.7 Three-dimensional surface graphs

MATLAB has several easy-to-use functions for creating

three-dimensional surface graphs.

138

i

i

“8primer” — 2010/6/7 — 16:45 — page 139 — #155
i

i

i

i

i

i

ezcontour 3-D contour plot

ezcontourf 3-D filled contour plot

ezmesh 3-D mesh plot

ezmeshc 3-D mesh and contour plot

ezsurf 3-D surface plot

ezsurfc 3-D surface and contour plot

Here is an interesting function to try:

syms x y

f = sin((x^2+y)/2)/(x^2-x+2)

ezsurfc(f)

Try each of these plotting functions with this function f.

For this function, ezcontourf gives more information than

ezcontour because the function fluctuates across a single

contour in several regions. The default domain for x and y is

−2π to 2π. You can change this with an optional second

parameter. Try:

ezsurf(f, [-4 4 -pi pi])

which defines the x-domain as -4 to 4, and the y-domain as

−π to π The appearance of the plots can be modified by the

shading command after the figure is plotted (see

Section 16.5).

Functions with discontinuities or singularities can cause

difficulty for these graphing functions. Here is an example

that is similar to the function f above,

f = sin(abs(sqrt(x^2+y)))/(x^2-x+2)

ezsurf(f)

Click the rotate button

in the Figure window, then click and drag the graph itself.

The function touches the z = 0 plane along the curve

139

i

i

“8primer” — 2010/6/7 — 16:45 — page 140 — #156
i

i

i

i

i

i

defined by y = −x2, but the graph does not capture this

property very well because the gradient is not defined along

that curve. To plot this function accurately, you would need

to define your own mesh points, compute the function

numerically, and use surf or another numerical graphing

function instead.

The four mesh and surface functions listed above can also

plot parametrized surface functions. The first three

arguments are the x(s, t), y(s, t), and z(s, t) functions, and

the last (optional) argument defines the domain. To create a

symbolic seashell, start a new figure and define your

symbolic variables:

figure(1) ; clf

syms u v x y z

Next, define x, y, and z, just as you did for the numeric

seashell in Section 16.3 (do not use the linspace and

meshgrid commands). The MATLAB statements are the

same, except that now these variables are defined

symbolically, not numerically. Plot the symbolic surface:

ezsurfc(x,y,z,[0 2*pi])

Turn off the axis and set the shading, material, lighting,

color, and viewpoint, just as in Sections 16.3 and 16.6.

19.8 Three-dimensional curves

Parameterized 3-D curves are plotted with ezplot3. Try

this example, which combines a folium of Descartes in the

x-y plane with a sinusoid in the z direction:

syms x y z t

x = 3*t / (1+t^3)

y = 3*t^2 / (1+t^3)

z = sin(t)

ezplot3(x,y,z)

140

i

i

“8primer” — 2010/6/7 — 16:45 — page 141 — #157
i

i

i

i

i

i

The default domain for t is 0 to 2π. Here is an example of

how to change it:

ezplot3(x,y,z,[-.9 10])

The ezplot3 function can animate the plot so that you can

observe how x, y, and z depend on t. Try both of these

examples. The ball moves quickly over the first half of the

curve but more slowly over the second half:

ezplot3(x,y,z,’animate’)

ezplot3(x,y,z, [-.9 10], ’animate’)

The 2-D curve plotting function ezplot cannot animate its

plot, but you can do the same with ezplot3. Just give it a z

argument of zero. Try:

syms z

z = 0

ezplot3(x,y,z,’animate’)

and then rotate the graph so that you are viewing the x-y

plane. Click the rotate button and drag the graph, or

right-click the graph and select Go to X-Y view. Then click

the Repeat button in the bottom left corner.

19.9 Symbolic matrix operations

This toolbox lets you represent matrices in symbolic form

as well as numeric form. Given numeric matrix a, sym(a)

converts a to a symbolic matrix. Try:

a = magic(3)

A = sym(a)

The function double(A) converts the symbolic matrix

back to a numeric one.

Symbolic matrices can also be generated directly. Try, for

example,

141

i

i

“8primer” — 2010/6/7 — 16:45 — page 142 — #158
i

i

i

i

i

i

syms a b s

K = [a + b, a - b ; b - a, a + b]

G = [cos(s), sin(s); -sin(s), cos(s)]

Here G is a symbolic Givens rotation matrix.

Algebraic matrix operations with symbolic matrices are

computed as you would in MATLAB:

K+G matrix addition

K-G matrix subtraction

K*G matrix multiplication

K\G left matrix division

K/G right matrix division

G^2 power

G.’ array transpose

G’ matrix transpose

These operations are illustrated by the following, which use

the matrices K and G generated above. The last expression

demonstrates that G is orthogonal.

L = K^2

collect(L)

factor(L)

diff(L, a)

int(K, a)

J = K/G

simplify(J*G)

simplify(G*(G.’))

The initial result of the basic operations may not be in the

form desired for your application; so it may require further

processing with simplify, collect, factor, or expand.

These functions, as well as diff and int, act entry-wise on

a symbolic matrix.

142

i

i

“8primer” — 2010/6/7 — 16:45 — page 143 — #159
i

i

i

i

i

i

19.10 Symbolic linear algebraic functions

In addition to the MATLAB matrix operators, some of the

functions that are useful for symbolic computation include:

det determinant

inv inverse

null basis for null space

colspace basis for column space

eig eigenvalues and eigenvectors

poly characteristic polynomial

svd singular value decomposition

jordan Jordan canonical form

These functions take either symbolic or numeric matrices as

inputs. Computations with symbolic rational matrices are

carried out exactly. The inv and det functions should

rarely be used for numeric matrices, but work well for

symbolic matrices. Try, for example,

c = randi([0 9], 4)

D = sym(c)

A = inv(D)

inv(A)

inv(A) * A

det(A)

b = ones(4,1)

x = A\b

A*x

A^3

For the matrices K and G defined in the previous section, try:

inv(K)

simplify(inv(G))

p = poly(G)

simplify(p)

pretty(simple(solve(p)))

143

i

i

“8primer” — 2010/6/7 — 16:45 — page 144 — #160
i

i

i

i

i

i

pretty(simple(eig(G)))

y = simple(svd(G))

pretty(y)

syms s real

r = simple(svd(G))

syms s clear

Compare y and r. If you do not declare s as real, the svd

of the 2-by-2 Givens rotation matrix does not demonstrate

that the singular values are all equal to one.

A typical exercise in a linear algebra course is to determine

those values of t so that, say,

A = [t 1 0 ; 1 t 1 ; 0 1 t]

is singular. The following simple computation:

syms t

A = [t 1 0 ; 1 t 1 ; 0 1 t]

p = det(A)

solve(p)

shows that this occurs for t = 0,
√

2, and −
√

2. See the next

section (19.11) for the solve function.

The function eig attempts to compute the eigenvalues and

eigenvectors in an exact closed form. Try, for example,

for n = 4:6

A = sym(magic(n))

[V, D] = eig(A)

end

Except in special cases, however, the result is usually too

complicated to be useful. Try, for example, executing:

144

i

i

“8primer” — 2010/6/7 — 16:45 — page 145 — #161
i

i

i

i

i

i

A = sym(randi([0 9], 3))

[V, D] = eig(A)

pretty(V)

a few times. The eigenvectors V are not very pretty. For this

reason, it is usually more efficient to do the computation in

variable-precision arithmetic, as is illustrated by:

A = vpa(randi([0 9], 3))

[V, D] = eig(A)

The comments above regarding eig apply as well to the

computation of the singular values of a matrix by svd, as

can be observed by repeating some of the computations

above using svd instead of eig.

19.11 Solving algebraic equations

For a symbolic expression S, the statement solve(S) will

attempt to find the values of the symbolic variable for which

the symbolic expression is zero. The solve function cannot

solve all equations. It does well with low-degree

polynomial equations, but can have difficulty with

trigonometric or other transcendental equations. If an exact

symbolic solution is found, you can convert it to a

floating-point solution via double. If an exact symbolic

solution cannot be found, then a variable precision one is

computed. Here are three similar equations. The first

returns a symbolic result, the second a numeric vpa result,

and the last one fails.

syms x b

solve(2^x - b)

solve(2^x + 3^x - 1)

solve(2^x + 3^x - b)

If you have an expression that contains several symbolic

variables, you can solve for a particular variable by

145

i

i

“8primer” — 2010/6/7 — 16:45 — page 146 — #162
i

i

i

i

i

i

including it as an input argument in solve. The default

variable solved for is x, or the one closest (alphabetically)

to x if x is not a variable in the equation. Try this example:

syms x

f = x*cos(x) - 1

s = solve(f)

Here are some more examples:

Z = solve(x^2 + 2*x - 1)

pretty(Z)

syms x y z

f = x^2 + y^2 + z^2 + x*y*z

a = solve(f)

pretty(a)

simplify (subs (f, ’x’, a))

b = solve(f, y)

pretty(b)

simplify (subs (f, ’y’, b))

a is a solution in the variable x, and b is a solution in y. The

inputs to solve can be quoted strings or symbolic

expressions. To solve an equation whose right-hand side is

not zero, use a quoted string or rearrange the equation:

X = solve(’log(x) = x - 2’)

X = solve(log(x) - x + 2)

vpa(X)

X = solve(’2^x = x + 2’)

X = solve(2^x - x - 2)

vpa(X)

This solves for the variable a:

solve(’1 + (a+b)/(a-b) = b’, ’a’)

146

i

i

“8primer” — 2010/6/7 — 16:45 — page 147 — #163
i

i

i

i

i

i

This solves the same for b, finding two solutions:

solve(’1 + (a+b)/(a-b) = b’, ’b’)

The solution to the next example should be familiar. Try:

syms a b c x

solve(a*x^2 + b*x + c, x)

pretty(ans)

The function solve can also compute solutions of systems

of general algebraic equations. To solve, for example, the

nonlinear system below, it is convenient to first express the

equations as strings.

S1 = ’x^2 + y^2 + z^2 = 2’

S2 = ’x + y = 1’

S3 = ’y + z = 1’

The solutions are then computed by:

[X, Y, Z] = solve(S1, S2, S3)

If you request the set of solutions in a single output with

multiple unknowns, a struct is returned. Try

a = solve(S1, S2, S3)

a.x

a.y

a.z

If you alter S2 to:

S2 = ’x + y + z = 1’

then the solution computed by:

[X, Y, Z] = solve(S1, S2, S3)

will be given in terms of square roots. If you prefer solving

symbolic expressions instead of strings, try

147

i

i

“8primer” — 2010/6/7 — 16:45 — page 148 — #164
i

i

i

i

i

i

syms x y z

S1 = x^2 + y^2 + z^2 - 2

S2 = x + y - 1

S3 = y + z - 1

a = solve(S1, S2, S3)

The output of solve is in alphabetical order. For example,

if you changed the name of z to w in these three equations

the results would be returned in the order [W,X,Y]. The

solve function can take quoted strings or symbolic

expressions as input arguments, or a mixture of both.

19.12 Solving differential equations

The function dsolve solves ordinary differential equations.

The symbolic differential operator is D:

Y = dsolve(’Dy = x^2*y’, ’x’)

produces the solution C2*exp(x^3/3) to the differential

equation y′ = x2y, where C2 is some unspecified constant.

The solution to an initial value problem can be computed by

adding a second symbolic expression giving the initial

condition.

Y = dsolve(’Dy = x^2*y’, ’y(0)=4’, ’x’)

Notice that in both examples above, the final input

argument, ’x’, is the independent variable of the

differential equation. If no independent variable is supplied

to dsolve, then it is assumed to be t. The higher order

symbolic differential operators D2, D3, ... can be used to

solve higher order equations. Try:

dsolve(’D2y + y = 0’)

dsolve(’D2y + y = x^2’, ’x’)

dsolve(’D2y + y = x^2’, ...

’y(0) = 4’, ’Dy(0) = 1’, ’x’)

148

i

i

“8primer” — 2010/6/7 — 16:45 — page 149 — #165
i

i

i

i

i

i

dsolve(’D2y - Dy = 2*y’)

dsolve(’D2y + 6*Dy = 13*y’)

dsolve(’D3y - 3*Dy = 2*y’)

pretty(ans)

Systems of differential equations can also be solved:

E1 = ’Dx = -2*x + y’

E2 = ’Dy = x - 2*y + z’

E3 = ’Dz = y - 2*z’

The solutions are then computed with:

[x, y, z] = dsolve(E1, E2, E3)

pretty(x)

pretty(y)

pretty(z)

You can explore further details with doc dsolve.

19.13 Further MuPAD access

In all of the examples you have worked through so far, you

accessed the MuPAD symbolic engine through MATLAB

commands. You can access more features in the Symbolic

Math Toolbox via a powerful GUI interface called the

MuPAD Notebook. Type mupadwelcome at the command

line, and create a new Notebook. Once the GUI starts, you

can enter commands directly into the MuPAD Notebook.

The syntax of the MuPAD language is much like Pascal. It

is very different than the MATLAB language and beyond

the scope of this primer. For help, type doc(symengine)

in the MATLAB Command Window (be sure to use the

parentheses) or click the help button in the menu bar at the

top of the MuPAD Notebook. For an extensive tutorial on

MuPAD, click on the PDF documentation link in the

MuPAD Help window, and read The MuPAD Tutorial.

149

i

i

“8primer” — 2010/6/7 — 16:45 — page 150 — #166
i

i

i

i

i

i

20 Polynomials, Interpolation, and

Integration

Polynomial functions are frequently used by numerical

methods, and thus MATLAB provides several routines that

operate on polynomials and piece-wise polynomials.

20.1 Representing polynomials

Polynomials are represented as vectors of their coefficients,

so f (x) = x3 −15x2 −24x+360 is simply

p = [1 -15 -24 360]

The roots of this polynomial (15,
√

24, and −
√

24):

r = roots(p)

Given a vector of roots r, poly(r) constructs the

coefficients of the polynomial with those roots. With a little

bit of roundoff error, you should see the coefficients of the

original polynomial. Try it.

The poly function also computes the characteristic

polynomial of a matrix whose roots are the eigenvalues of

the matrix. The polynomial f(x) was chosen as the

characteristic equation of the magic(3) matrix. Try:

A = magic(3)

s = poly(A)

roots(s)

eig(A)

f = poly(sym(A))

solve(f)

eig(sym(A))

150

i

i

“8primer” — 2010/6/7 — 16:45 — page 151 — #167
i

i

i

i

i

i

20.2 Evaluating polynomials

You can evaluate a polynomial at one or more points with

the polyval function.

x = -1:2 ;

y = polyval(p,x)

Compare y with x.^3-15*x.^2-24*x+360. You can

construct a symbolic polynomial from the coefficient vector

p and back again:

syms x

f = poly2sym(p)

sym2poly(f)

20.3 Polynomial interpolation

Polynomials are useful as easier-to-compute

approximations of more complicated functions, via a Taylor

series expansion or by a low-degree best-fit polynomial

using the polyfit function. The statement:

p = polyfit(x, y, n)

finds the best-fit n-degree polynomial that approximates the

data points x and y. Try this example:

x = 0:.1:pi ;

y = sin(x) ;

p = polyfit(x, y, 5)

figure(1) ; clf

ezplot(@sin, [0 pi])

hold on

xx = 0:.001:pi ;

plot(xx, polyval(p,xx), ’r-’)

Piecewise-polynomial interpolation is typically better than a

single high-degree polynomial. Try this example:

151

i

i

“8primer” — 2010/6/7 — 16:45 — page 152 — #168
i

i

i

i

i

i

n = 10

x = -5:.1:5 ;

y = 1 ./ (x.^2+1) ;

p = polyfit(x, y, n)

figure(2) ; clf

ezplot(@(x) 1 ./ (x.^2+1))

hold on

xx = -5:.01:5 ;

plot(xx, polyval(p,xx), ’r-’)

As n increases, the error in the center improves but

increases dramatically near the endpoints. The spline and

pchip functions compute piecewise-cubic polynomials

which are better for this problem. Try:

figure(3) ; clf

yy = spline(x, y, xx) ;

plot(xx, yy, ’g’)

Alternatively, with two inputs, spline and pchip return a

struct that contains the piecewise polynomial, which can

be later evaluated with ppval. Try:

figure(4) ; clf

pp = spline(x, y)

yy = ppval(pp, xx) ;

plot(xx, yy, ’c’)

The spline function computes the conventional cubic

spline, with a continuous second derivative. In contrast,

pchip returns a piecewise polynomial with a discontinuous

second derivative, but it preserves the shape of the function

better than spline. pchip and spline have the same

input and output arguments; they just compute different

piecewise cubic polynomials that interpolate the data.

Polynomial multiplication and division (convolution and

deconvolution) are performed by the conv and deconv

functions. MATLAB also has a built-in fast Fourier

transform function, fft.

152

i

i

“8primer” — 2010/6/7 — 16:45 — page 153 — #169
i

i

i

i

i

i

20.4 Numeric integration (quadrature)

The quad and quadl functions are the numeric equivalent

of the symbolic int function, for computing a definite

integral. Both rely on polynomial approximations of

subintervals of the function being integrated. quadl is a

higher-order method that can be more accurate. The syntax

quad(@f,a,b) computes an approximate of the definite

integral,
Z b

a
f (x)dx

Compare these examples:

quad(@(x) x.^5, 1, 2)

quad(@log, 1, 4)

quad(@(x) x .* exp(x), 0, 2)

quad(@(x) exp(-x.^2), 0, 1e6)

quad(@(x) sqrt(1 + x.^3), -1, 2)

quad(@(x) real(airy(x)), -3, 3)

with the same results from the Symbolic Math Toolbox:

int(’x^5’, 1, 2)

int(’log(x)’, 1, 4)

int(’x * exp(x)’, 0, 2)

int(’exp(-x^2)’, 0, inf)

int(’sqrt(1 + x^3)’, -1, 2)

int(’real(airy(x))’, -3, 3)

Symbolic integration (int) can find a simple closed-form

solution to the first four examples, above. The fifth example

is not in closed form, and the last example cannot be solved

by int at all. It can only be computed numerically, with

quad.

The function f provided to quad and quadl must operate

on a vector x and return f(x) for each component of the

153

i

i

“8primer” — 2010/6/7 — 16:45 — page 154 — #170
i

i

i

i

i

i

vector. An optional fourth argument to quad and quadl

modifies the error tolerance. Double and triple integrals are

evaluated by dblquad and triplequad. Array-valued

functions are integrated with quadv.

21 Solving Equations

Solving equations is at the core of what MATLAB does.

First, we will look back at the kinds of equations you have

seen so far in the book. Next, in this chapter you will learn

how MATLAB finds numerical solutions to nonlinear

equations and systems of differential equations.

21.1 Symbolic equations

The Symbolic Math Toolbox can solve symbolic linear

systems of equations using backslash (Section 19.9),

nonlinear systems of equations using the solve function

(Section 19.11), and systems of differential equations using

dsolve (Section 19.12). The rest of MATLAB focuses on

finding numeric solutions to equations, not symbolic.

21.2 Linear systems of equations

The pervasive and powerful backslash operator solves linear

systems of equations of the form A*x=b (Sections 3.3, 18.3,

and 19.9). The expression x=A\b handles the case when A

is square or rectangular (under- or over-determined),

full-rank or rank-deficient, full or sparse, numeric or

symbolic, symmetric or unsymmetric, and real or complex.

It efficiently handles triangular, permuted triangular,

symmetric positive-definite, and Hessenberg matrices.

When the matrix has specific known properties, the

linsolve function can be faster (see Section 5.5, and a

related Fortran code in Chapter 13).

154

i

i

“8primer” — 2010/6/7 — 16:45 — page 155 — #171
i

i

i

i

i

i

21.3 Polynomial roots

Solving the function f (x) = 0 for the special case when f is

a polynomial and x is a scalar is discussed in Section 20.1.

The more general case is discussed in the next section.

21.4 Nonlinear equations

The fzero function finds a numerical solution to f (x) = 0

when f is a real function over the real domain (both x and

f (x) must be real scalars). This is useful when an analytic

solution is not possible. You must supply either an initial

guess, or two values of x for which the function differs in

sign. Here is a simple example that computes
√

2.

fzero(@(x) x^2-2, 1)

The fzero function can only find an x for which f (x)
crosses the x-axis. If the sign of f (x) does not differ on

either side of x, the zero point x will not be found. Try this

example. Create two anonymous functions (regular M-files

can also be used):

fa = @(x) (x-2)^2

fb = @(x) (x-2)^2 - 1e-12

The zero of fa cannot be found, and neither can a zero of

fb be found if your initial guess is too far from the solution.

Both of these examples will fail:

fzero(fa, 1)

fzero(fb, 3)

Both functions can be easily solved with the Symbolic Math

Toolbox. Note that solve correctly reports that 2 is a

double root of (x-2)^2. Try:

155

i

i

“8primer” — 2010/6/7 — 16:45 — page 156 — #172
i

i

i

i

i

i

syms x

solve((x-2)^2)

s = solve((x-2)^2-1e-12)

fb(s(1))

fb(s(2))

The zeros of fb can be found numerically only if you guess

close enough, or if you provide two initial values of x for

which fb differs in sign:

fzero(fb, 2)

format long

fzero(fb, [2 3])

fzero(fb, [1 2])

All of the functions used in the examples so far can be

solved analytically. Here is one that cannot (also plot the

function so that you can see where it crosses the x-axis):

f = @(x) real(airy(x))

figure(1) ; clf

ezplot(f)

solve(’real(airy(x))’)

The first zero is easy to compute numerically:

s = fzero(f, 0)

hold on

plot(s, f(s), ’ro’)

The fminbnd function finds a local minimum of a function,

given a fixed interval. This example looks for a minimum in

the range -4 to 0.

xmin = fminbnd(f, -4, 0)

plot(xmin, f(xmin), ’ko’)

To find a local maximum, simply find the minimum of -f.

156

i

i

“8primer” — 2010/6/7 — 16:45 — page 157 — #173
i

i

i

i

i

i

g = @(x) -real(airy(x))

xmax = fminbnd(g, -5, -4)

plot(xmax, f(xmax), ’ko’)

Now find the zero between these two values of x:

s = fzero(f, [xmax xmin])

plot(s, f(s), ’ro’)

The fminbnd function can only find minima of real-valued

functions of a real scalar. To find a local minimum of a

scalar function of a real vector x, use fminsearch instead.

It takes an initial guess for x rather than an interval. Try this

example:

xmin = fminsearch(f, -6)

plot(xmin, f(xmin), ’kx’)

21.5 Ordinary differential equations

The symbolic solution to the ordinary differential equation

y′ = t2y appears in Section 19.12. Here is the same ODE,

with a specific initial value of y(0) = 1, along with its

symbolic solution.

syms t y

Y = dsolve(’Dy = t^2*y’, ’y(0)=1’, ’t’)

Not all ODEs can be solved analytically, so MATLAB

provides a suite of numerical methods. The primary method

for initial value problems is ode45. For an ODE of the form

y′ = f (t,y), the basic usage is:

[tt,yy] = ode45(@f, tspan, y0)

where @f is a handle for a function yprime=f(t,y) that

computes the derivative of y, tspan is the time span to

compute the solution (a 2-element vector), and y0 is the

initial value of y. The variable t is a scalar, but y can be a

157

i

i

“8primer” — 2010/6/7 — 16:45 — page 158 — #174
i

i

i

i

i

i

vector. The solution is a column vector tt and a matrix yy.

At time tt(i) the numerical approximation to y is

yy(i,:).

To solve this ODE numerically, create an anonymous

function:

f1 = @(t,y) t^2 * y

Now you can compute the numeric solution:

[tr,yr] = ode45(f1, [0 2], 1) ;

Compare it with the symbolic solution:

ts = 0:.05:2 ;

ys = subs(Y, t, ts) ;

figure(2) ; clf

plot(ts,ys, ’r-’, tr,yr, ’bx’) ;

legend(’symbolic’, ’numeric’)

ys = subs(Y, t, tr) ;

[tr ys yr ys-yr]

err = norm(ys-yr) / norm(ys)

To solve higher-order ODEs, you need to convert your ODE

into a first-order system of ODEs. Consider the ODE

y′′ + y = t2 with initial values y(0) = 1 and y′(1) = 0. The

symbolic solution to this ODE appears in Section 19.12, but

here is the solution with initial values specified:

Y = dsolve(’D2y + y = t^2’, ...

’y(0)=1’, ’Dy(0)=0’, ’t’)

Define y1 = y and y2 = y′. The new system is y′2 = t2 − y1

and y′1 = y2. Create an anonymous function:

f2 = @(t,y) [y(2) ; t^2-y(1)]

The function f2 returns a 2-element column vector. The

first entry is y′1 and the second is y′2. We can now solve this

ODE numerically:

158

i

i

“8primer” — 2010/6/7 — 16:45 — page 159 — #175
i

i

i

i

i

i

[tr,yy] = ode45(f2, [0 2], [1 0]’) ;

yr = yy(:,1) ;

Note that ode45 returns a 61-by-2 solution yy. Row i of

yy contains the numerical approximation to y1 and y2 at

time tr(i). Compare the symbolic and numeric solutions

using the same code for the previous ODE.

ode45 can return a structure s=ode45(...) which can be

used by deval to evaluate the numerical solution at any

time t that you specify. There are seven other ODE solvers,

able to handle stiff ODEs and for differential algebraic

equations. Some can be more efficient, depending on the

type of ODE you are trying to solve. Type doc ode45 for

more information.

21.6 Other differential equations

Delay differential equations (DDEs) are solved by dde23.

The function bvp4c solves boundary value ODE problems.

Finally, partial differential equations are solved with pdepe

and pdeval. See the online help facility for more

information on these ODE, DDE, and PDE solvers.

22 Displaying Results

The format command provides basic control over how

your results are printed in the Command Window. Try this,

for a trigonometric table with a few digits of precision:

format short

x = [0:.1:pi]’ ;

f = {@sin, @cos, @tan, @cot} ;

y = x ;

for i = 1:length(f)

y = [y f{i}(x)] ;

end

159

i

i

“8primer” — 2010/6/7 — 16:45 — page 160 — #176
i

i

i

i

i

i

disp(y)

The length function gives the length of a vector or the

largest dimension of an array (length(f) is 4 in this

example). The cell array f is used in this example. Another

way to construct y would be:

y = [x sin(x) cos(x) tan(x) cot(x)] ;

You can increase the number of digits printed with format

long, but that does not allow you to define how many digits

are printed. If you tried to add pi/2 to the table, the tan

column would contain a huge (erroneous) value that causes

the rest of the digits in the table to be obscured. Try adding

the statement x=[x ; pi/2] after x is first defined.

This problem is where fprintf is useful. If you know C, it

acts just like the standard C fprintf, except that the

reference to the file is optional in the MATLAB fprintf,

and the MATLAB fprintf can print arrays. The basic

syntax (like printf in C) is:

fprintf(format_string, arg1, arg2, ...)

The format string tells MATLAB how to print each

argument (arg1, arg2, ...). It contains plain text, which is

printed verbatim, plus special conversion codes that start

with ’%’ (to print an argument) or ’\’ (to print a special

character such as a newline, tab, or backslash). The basic

syntax for a conversion code is %W.Pc, where W is the

optional field width (the total number of characters used to

represent the number), P is the optional precision (the

number of digits to the right of the decimal point), and c is

the conversion type. Both W and P are fixed integers. The

dot before the P field is required only if P is specified. The

most common conversion types are:

d decimal (integer)

e exponential notation (as in 2.3e+002)

160

i

i

“8primer” — 2010/6/7 — 16:45 — page 161 — #177
i

i

i

i

i

i

f fixed-point notation

g e or f, whichever is more compact

s string

Special characters include \n for newline, \t for tab, and

\\ for backslash itself. Here is a simple example that prints

π with 8 digits past the decimal point, in a space of 12

characters:

fprintf(’pi is %12.8f\n’, pi)

Try changing the 12 to 14, and you will see how fprintf

pads the string for pi to make it 14 characters wide. Note

the last character is ’\n’, which is a newline. If this were

excluded, the next line of output would start at the end of

this line. Sometimes that is what you want (see below for an

example).

Unlike printf or fprintf in the C language, the

MATLAB fprintf can print arrays. It accesses an array

column by column, and reuses the format string as needed.

This simple example prints the magic(3) array. It also

gives you an example of how to print a backslash and a

single quote:

A = magic(3)

fprintf(’%4.2f %4.2f %4.2f\n’, A’)

b = (1:3)’ ;

fprintf(’A\\b is [%g %g %g]’’\n’, A\b);

The array A is transposed in the first fprintf, because

fprintf cycles through its data column by column, but

each use of the format string prints a single line of text as

one row of characters on the Command Window.

Fortunately it makes no difference for vectors:

fprintf(’x is %d\n’, 1:5)

fprintf(’x is %d\n’, (1:5)’)

Here is a way of adding extra information to your display:

161

i

i

“8primer” — 2010/6/7 — 16:45 — page 162 — #178
i

i

i

i

i

i

fprintf(...

’row %d is %4.2f %4.2f %4.2f\n’, ...

[(1:3)’ A]’)

Here is a revised trigonometric table using fprintf

instead. A header has been added as well:

x = [0:.1:pi]’ ;

f = {@sin, @cos, @tan, @cot} ;

y = x ;

fprintf(’ x’) ;

for i = 1:length(f)

fprintf(’ %s(x)’,func2str(f{i}));

y = [y f{i}(x)] ;

end

fprintf(’\n’) ;

fprintf(...

’%3.2f %9.4f %9.4f %9.4f %9.4f\n’,y’);

fprintf, by default, prints to the Command Window. You

can instead open a file, write to it with fprintf, and close

the file. Add:

fid = fopen(’mytable.txt’, ’w’) ;

to the beginning of the example. Add fid as the first

argument to each fprintf. Finally, close the file at the end

with the statement:

fclose(fid) ;

Your table is now in the file mytable.txt.

The sprintf function is just like fprintf, except that it

sends its output to a string instead of the Command Window

or a file. It is useful for plot titles and other annotation, as

in:

title(sprintf(’The result is %g’, pi))

162

i

i

“8primer” — 2010/6/7 — 16:45 — page 163 — #179
i

i

i

i

i

i

You cannot control the field width or precision with a

variable as you can in the C printf or fprintf, but string

concatenation along with sprintf or num2str can help

here. Try:

for n = 1:16

s = num2str(n) ;

s = [’%2d digits: %.’ s ’g\n’] ;

fprintf(s, n, pi) ;

end

23 Cell Publishing

Cell publishing creates nicely formatted reports of

MATLAB code, Command Window text output, figures,

and graphics in HTML, LaTeX, PDF, or XML.

The term cell publishing has nothing to do with the cell

array data type. In this context, a cell is a section of an

M-file that corresponds to a section of your report. A cell

starts with a cell divider, which is a comment with two

percent signs at the beginning of a line, and ends either at

the start of the next cell, or the end of the M-file. Cell

publishing is normally done via scripts, not functions.

Create a new M-file with this 2-cell example. Give it the

name myfirstcell.m.

%% Integrate a function

syms x

f = x^2

e = int(f)

%% Plot the results

figure(1)

ezplot(e)

163

i

i

“8primer” — 2010/6/7 — 16:45 — page 164 — #180
i

i

i

i

i

i

Now publish the report to HTML, by selecting File

◮Publish myfirstcell.m or by clicking the publish button:

The M-file is evaluated and the report is presented in HTML

form in a new window (the MATLAB Web Browser). The

report is also saved to a file with the same name as your

M-file but with an html file type. It includes the cell titles

(the text after the double %%), the code itself, the output of

the code, and any figures generated. You can change this

default behavior in the File ◮Publish Configuration for

myfirstcell.m menu option.

To run the M-file without publishing the results, simply

click the run button, as usual, or select Cell ◮Evaluate

Entire File. Individual cells can also be evaluated, one at a

time. To publish and view the results from the MATLAB

command line, use these commands:

publish myfirstcell.m

web html/myfirstcell.html

Additional descriptive text can be added as plain comments

(one %) after the cell divider but before any commands. The

text can be marked in various styles (bold, monospaced,

TeX equations, and bullet lists, for example). See the Cell

◮Insert Text Markup ◮... menu for a complete list.

To add descriptive text without starting a new report section,

start with a cell divider that has no title (a line containing

just %%). This creates a new cell, but it appears in the same

section of the report as the cell before it.

For a longer example of a report generated via cell

publishing, download the factorize object discussed in

Section 9.4, and look in the Factorize/html directory.

164

i

i

“8primer” — 2010/6/7 — 16:45 — page 165 — #181
i

i

i

i

i

i

A Appendix: The MATLAB Top 500

Open the online Help window, select Help:MATLAB

◮Functions and Help:Symbolic Math Toolbox ◮Functions,

and you will see a lengthy index of all functions in

MATLAB and the Symbolic Math Toolbox. Many of these

functions are needed only in special cases, however, or for

very specific kinds of applications. This Appendix gives

you a more manageable index, with a description of the 500

most frequently used functions, operators, and special

characters in MATLAB and the Symbolic Math Toolbox, in

the same outline as the Help ◮Functions documentation. In

this Appendix, a page reference in brackets refers to a

discussion of the function in the main part of the book.

Other page references refer to this Appendix.

B Desktop Tools and Development

Environment

B.1 Command Window and History

clc clears the Command Window display, giving you an empty
screen. [p. 6]

diary logs Command Window output to a file. diary on starts

the log; diary off stops it. Flush the diary by turning it off and
then on again. diary(s) uses the filename given by the string s.
Default filename is diary. [p. 5]

format changes how numeric values are displayed in the
Command Window. Try format long and format short. Has no
effect on fprintf. [p. 6]

165

i

i

“8primer” — 2010/6/7 — 16:45 — page 166 — #182
i

i

i

i

i

i

system executes a command in your operating system shell.

Try system(’ls’) in UNIX. See also p. 191 for the ! character.
[p. 103]

B.2 Help for Using MATLAB

help prints the help text for a function in the Command Window.

Try help disp, or help function for any other function. [p. 42]

web opens a web browser. Try web www.mathworks.com. Also
useful for viewing HTML files created via cell publishing. [p. 164]

B.3 Workspace

clear deletes variables from workspace. clear, by itself, clears
all variables. clear x y clears just x and y. clear classes clears
object class definitions. [p. 10]

delete deletes a file or graphics object. [p. 8]

exist determines if a variable, file, folder, or class exists.
exist(’x’) returns a value from 0 to 8, depending on what x is.
A second parameter (’file’, ’var’, ’class’, ’builtin’, or
’dir’) only looks for items of that type, and returns 1 if it exists, 0
otherwise. [p. 105]

which determines which function or file a word refers to, or
whether there is a variable with that name. Try i=3;
which i -all. [p. 71]

whos lists variables in the workspace. whos prints a list.
s=whos returns a struct with information about each variable. [p. 9]

B.4 Managing Files

B.4.1 Search Path

addpath adds folders to the search path. Try addpath(pwd).

path displays or changes the search path. [p. 43]

166

i

i

“8primer” — 2010/6/7 — 16:45 — page 167 — #183
i

i

i

i

i

i

which determines what function or file a name refers to. See
p. 166.

B.4.2 File Operations

cd changes the current folder (short for change directory). [p. 8]

copyfile makes a copy of a file.

delete deletes a file. [p. 8]

dir lists the files and folders in a folder. dir by itself lists the
current folder. dir(’F’) or dir F lists the folder F. [p. 8]

isdir tests whether a string refers to a folder.

ls lists the contents of the current folder.

matlabroot lists the folder where MATLAB is installed.

mkdir creates a folder.

pwd returns the current folder as a string. [p. 8]

type displays the contents of a file. Try type factorial. [p. 8]

B.5 Programming Tools

computer returns information about your computer.

system executes an operating system command. See p. 166.

ispc tests if your computer is running Microsoft Windows.

ver displays the version of MATLAB and all Toolboxes.

version returns the MATLAB version number as a string.

167

i

i

“8primer” — 2010/6/7 — 16:45 — page 168 — #184
i

i

i

i

i

i

C Data Import and Export

C.1 File Name Construction

fileparts extracts the components of a filename and its path.

filesep returns the file separator (’\’ on Microsoft Windows,

’/’ on Linux or Mac).

fullfile constructs the full filename (with its entire path) from
a list of folders and a base filename.

C.2 File Opening, Loading, and Saving

load loads variables from a MAT-file. [p. 10]

open opens a file in the Editor, Workspace, or Figure Window.

save saves variables to a MAT-file. [p. 10]

uigetdir displays a dialog box for selecting a directory.

uigetfile displays a dialog box for accessing files.

uiputfile displays a dialog box for saving files.

C.3 Low-Level File I/O

fclose closes a file opened by fopen. [p. 162]

feof tests if the end-of-file has been reached.

fgetl reads a line from a text file, discarding newline characters.

fgets reads a line from a text file, keeping newline characters.

fopen opens a file. f=fopen(’foo’,’w’) opens the file

’foo’ for writing, creating it if necessary. f=fopen(’foo’,’r’)
opens the file ’foo’ for reading. [p. 162]

168

i

i

“8primer” — 2010/6/7 — 16:45 — page 169 — #185
i

i

i

i

i

i

fprintf displays numbers and strings (or prints them to a file)

with tight control over how they are displayed. Try
fprintf(’%10.1e\n’,eps). [p. 160]

fread reads data from a binary file. With the file from the
fwrite example below, try f=fopen(’a.bin’,’r’);
C=fread(f,’double’);, and compare with A(:).

fscanf reads formatted data from a text file, with a format
string similar to the one used by fprintf.

fseek moves to a specified position in a file, where the next
fread or fwrite will take place.

ftell returns the current position in a file, as the number of
bytes from the beginning of the file.

fwrite writes binary data from a file. Try A=rand(4);
f=fopen(’a.bin’,’w’); fwrite(f,A,’double’);
fclose(f). Then try the fread example above.

C.4 Text Files

textscan reads formatted data from a text file or string.

type displays the contents of a file. Try type factorial. [p. 8]

C.5 Audio and Video

wavread reads an audio signal from a .wav file.

sound plays audio from a signal. Try load handel;
sound(y,Fs).

C.6 Images

imread reads an image from a graphics file. Supported formats
include TIFF, JPEG, GIF, PNG, BMP, ICO, and may others. Image
processing typically uses uint8, uint16, and other compact
integer data types. Use image to display an image.

imwrite writes an image to a graphics file.

169

i

i

“8primer” — 2010/6/7 — 16:45 — page 170 — #186
i

i

i

i

i

i

D Mathematics

D.1 Arrays and Matrices

D.1.1 Basic Information

disp displays a MATLAB variable in the Command Window.

This works for all data types in MATLAB (scalars, vectors,
matrices, higher-dimensional arrays, strings, cell arrays, structs,
and objects). Use format to control the detail displayed by disp.
Use fprintf instead of disp for even more control. [p. 18]

display displays a MATLAB variable or expression in the

Command Window, as if it was the result of a statement with no
trailing semicolon.

isempty determines if a matrix has no entries. isempty(A) is

true if A is an empty array with one or more dimension of zero size.
Same as min(size(A))==0. [p. 23]

isequal tests two variables for equality, returning 1 if equal, 0

otherwise. isequal(a,b) compares two scalars, arrays, structs,
cells, objects, or any other pair of MATLAB variables. [p. 52]

isfinite tests if a number is finite (not +inf, -inf, or nan).

isinf tests if a number is +inf or -inf.

islogical tests if a variable is logical. See p. 188.

isnan tests if a number is a NaN.

isnumeric tests if a variable has a numeric type. See p. 188.

isscalar tests if a variable is a scalar.

isvector tests if a variable is a row or column vector. A vector
has size n-by-1 or 1-by-n with n>=0.

length returns the length of an array. length(A) is the number

of entries along the largest dimension of A. It is max(size(A)) if
A is non-empty, or zero otherwise. [p. 160]

170

i

i

“8primer” — 2010/6/7 — 16:45 — page 171 — #187
i

i

i

i

i

i

max finds the largest entries in an array. max(x) for a vector x
returns a scalar. max(A) for a matrix returns a row vector of length
size(A,2) with the largest entry in each column. For computing
the maximum along other dimensions, use max(A,[],d) for
dimension d. C=max(A,B) returns an array the same size as A and
B, where each entry in C is the larger of the two corresponding
entries in A and B. A second output returns the indices of the largest
entries in A. [p. 25]

min finds the smallest entries in an array. The syntax of min is
the same as max, above. [p. 33]

ndims returns the number of array dimensions. ndims(x) is
always ≥ 2. ndims(rand(5,5,5)) is 3, for a 3-D array.

numel number of elements in an array. numel(A) is the same as
prod(size(A)).

size returns the size of an array. d=size(A) returns d as a
vector of length ndims(A) (normally of size 2), with the size of
each dimension of A. Try size(rand(3,4)). [m,n]=size(A)
returns the dimensions as scalars m and n. size(A,2) is the
number of columns of a 2-D array A. [p. 23]

D.1.2 Operators

See 190. [See also pp. 14–16 for a discussion of matrix and
entry-wise operators.]

D.1.3 Elementary Matrices and Arrays

diag extracts the diagonal of a matrix, or creates a diagonal

matrix. diag(A) is the diagonal of a matrix A. diag(A,k) is the
kth diagonal (use k=-1 for the subdiagonal). diag(x) for a vector
x is a diagonal matrix. [p. 23]

eye returns an identity matrix. eye(n) is the n-by-n identity

matrix. eye(m,n) or eye([m n]) is an m-by-n matrix with ones
on the diagonal and zeros elsewhere. [p. 24]

ind2sub converts linear indices to subscripts.

171

i

i

“8primer” — 2010/6/7 — 16:45 — page 172 — #188
i

i

i

i

i

i

linspace creates a linearly spaced vector. linspace(a,b) is

a row vector of 100 points between a and b. linspace(a,b,n)
generates n points. [p. 20]

logspace creates a logarithmically spaced vector.

logspace(...) is 10.^linspace(...), except that the default
number of points is 50, not 100.

meshgrid creates X, Y, and Z arrays for 3-D plots. [p. 114]

ndgrid creates X, Y, and Z arrays for plots of N-D functions.

rand computes uniformly distributed pseudo-random numbers.
rand(n) is an n-by-n array of random numbers. rand(m,n) is
m-by-n. [p. 23]

randn computes normally distributed pseudo-random numbers.
Same syntax as rand. [p. 23]

sub2ind converts subscripts to linear indices. If k=find(A)
and [i,j]=find(A), the k=sub2ind(size(A),i,j).

ones returns a matrix of all ones. Same syntax as zeros, below.
[p. 23]

zeros returns a matrix of all zeros. zeros(n) is an all-zero
n-by-n matrix. zeros(m,n) is of size m-by-n. The inputs can also
be given as a vector whose length is the dimension of the array. For
higher dimensional arrays, simply use more input parameters.
[p. 23]

D.1.4 Array Operations

bsxfun applies a binary function with singleton expansion. Try
C=bsxfun(@minus, A, mean(A)); sum(C). [p. 32]

cross computes the cross product of two vectors of length 3.

cumprod computes the cumulative product. If y=cumprod(x),

then y(k) is prod(x(1:k)).

cumsum computes the cumulative sum. If y=cumsum(x), then
y(k) is sum(x(1:k)).

dot computes the dot product. For two column vectors,
dot(x,y) is x’*y.

172

i

i

“8primer” — 2010/6/7 — 16:45 — page 173 — #189
i

i

i

i

i

i

kron computes the Kronecker tensor product.

prod computes the products of the entries of an array. For a

vector, prod(x) is the product of the entries. For a matrix,
prod(A) is a row vector of the product of each column of A.
prod(A,2) is a column vector of row products. [p. 25]

sum sums entries along one dimension. For a vector, sum(x) is
the sum of the entries. For a matrix, sum(A) is a row vector of the
sums of each column of A. sum(A,2) is a column vector of row
sums. [p. 46]

tril extracts the lower triangular part of a matrix. tril(A) is
the lower triangular part. tril(A,k) is all zero above the kth
diagonal and equal to A elsewhere. [p. 121]

triu extracts the upper triangular part of a matrix. triu(A) is
the upper triangular part. triu(A,k) is all zero below the kth
diagonal and equal to A elsewhere. [p. 121]

D.1.5 Array Manipulation

cat concatenates arrays along a given dimension. cat(1,A,B)
is the same as [A;B] and cat(2,A,B) is [A,B]. [p. 57]

circshift shifts the entries of a matrix.

diag extracts the diagonal of a matrix, or creates a diagonal

matrix. See p. 171.

end specifies the end of an array dimension. A(k,3:end) is the
kth row of A, excluding the first two entries. [p. 22]

fliplr flips a matrix along its columns. fliplr(A) is the

same as A(:,end:-1:1).

flipud flips a matrix along its rows. flipud(A) is the same as

A(end:-1:1,:).

permute rearranges the dimensions of an N-D array.

permute(A,[2 1]) for a 2-D array is the same as A.’.

repmat replicates and tiles an array. C=repmat(A,m,n) creates

a matrix C by replicating A, m times along the rows of C, and n
times along the columns. [p. 32]

173

i

i

“8primer” — 2010/6/7 — 16:45 — page 174 — #190
i

i

i

i

i

i

reshape reshapes an array. C=reshape(A,m,n) is m-by-n

with entries taken column-wise from A. [p. 30]

rot90 rotates a matrix, like rotating an image.

sort sorts entries in an array. sort(x) sorts a row or column
vector x. sort(A) sorts each column of A. sort(A,2) sorts each
row. [C,i]=sort(...) returns the permutation i from the sort.
[p. 60]

sortrows sorts the rows of a matrix. sortrows(S) for a
character array is a dictionary sort. sortrows(A) for a numeric
matrix sorts A in ascending order according to the first column, with
ties broken by subsequent columns. A second argument changes
which columns to use, and whether to sort in ascending or
descending order.

squeeze removes singleton dimensions of N-D arrays.

squeeze(rand(3,1,4)) is a 3-by-4 matrix. Has no effect on 2-D
arrays.

D.2 Linear Algebra

D.2.1 Matrix Analysis

cond computes the condition number of a matrix. cond(A) is

the 2-norm condition number, ||A||2||A−1||2, or the ratio of the
largest singular value over the smallest. cond(A,p) is
||A||p||A−1||p for p=1, 2, ’fro’, or inf. [p. 61]

det computes the determinant of a matrix. Never use det to test
for singularity; use rank(A) < min(size(A)) instead.

norm computes the norm of a matrix. norm(A) is ||A||2,
norm(A,p) is ||A|||p for p=1, 2, inf, or ’fro’ (for Frobenius
norm). [p. 68]

null computes a basis for the null space of a matrix.

rank computes the rank of a matrix. rank(A) is the number of
linearly-independent rows or columns of A, equivalently the
number of singular values of A that are not too tiny.

trace sums the diagonal entries of a matrix, trace(A) is
sum(diag(A)).

174

i

i

“8primer” — 2010/6/7 — 16:45 — page 175 — #191
i

i

i

i

i

i

D.2.2 Linear Equations

chol computes the Cholesky factorization of a symmetric
positive definite matrix. R=chol(A) is upper triangular, so that
R’*R=A. [R,k,P]=chol(A) returns a positive integer k and a
permutation matrix P so that R’*R=P’*A*P. If k<size(A,1) then
A is not positive definite. P is available for sparse A only; using it
leads to a much sparser R. With a second input, ’vector’, P is a
permutation vector. [p. 27]

cond computes the condition number of a matrix. See p. 174.

inv computes A−1. This is the most frequently abused function
in MATLAB. Never compute inv(A)*B or B*inv(A). Instead,
use A\B or B/A, respectively. To use something like the inv(A)*B
syntax, download the factorize package from the MATLAB File
Exchange or from the web page for this book. With that package,
inverse(A)*B computes inv(A)*B without actually computing
the inverse. It uses a chol, lu, or qr factorization of A instead, and
solves A\B. In the rare case when you actually need a few entries of
the inverse, use S=inverse(A) and S(1,1) (for example).

lu computes the LU factorization. [L,U,P]=lu(A) returns a
lower triangular matrix L, an upper triangular matrix U, and a
permutation matrix P so that L*U=P*A. A fourth output Q is
available when A is sparse; using it leads to much sparser factors L
and U. With two outputs [L,U]=lu(A), L is a permuted triangular
matrix. With a second input, ’vector’, P and Q are permutation
vectors. [pp. 58, 124]

pinv computes the Moore-Penrose pseudo-inverse.

qr computes the QR factorization. [Q,R]=qr(A) returns a

unitary matrix Q and an upper triangular matrix R so that Q*R=A.
[Q,R,E]=qr(A) computes Q*R=A*E instead. If A is full, E is
chosen so that abs(diag(R)) is monotonically decreasing. If A is
sparse, E is chosen to reduce the number of nonzeros in R.
R=qr(A) returns only R.

D.2.3 Eigenvalues and Singular Values

eig computes the eigenvalues and eigenvectors of a matrix, or

finds the generalized eigenvalues/eigenvectors. d=eig(A) is a

175

i

i

“8primer” — 2010/6/7 — 16:45 — page 176 — #192
i

i

i

i

i

i

vector of eigenvalues. [V,D]=eig(A) gives A*V=V*D where D is
diagonal. [V,D]=eig(A,B) gives A*V=B*V*D. For the sparse
case, can only to find eigenvalues for a sparse symmetric A. [p. 26]

poly constructs a polynomial from a set of specified roots, or

constructs the characteristic polynomial of a matrix. [p. 150]

svd computes the singular value decomposition.
[U,S,V]=svd(A) computes two unitary matrices U and V (with
left and right singular vectors) and a diagonal matrix S (containing
the singular values) so that U*S*V’=A. The rank, cond, pinv, and
null functions rely on svd. Does not work for sparse A.

D.2.4 Factorization

chol computes the Cholesky factorization. See p. 175.

lu computes the LU factorization. See p. 175.

qr computes the QR factorization. See p. 175.

svd computes the singular value decomposition. See above.

D.3 Elementary Math

D.3.1 Trigonometric

The 6 basic trigonometric functions operate entry-wise on each
element of an array. [p. 24]

sin computes the sine in radians.

cos computes the cosine in radians.

tan computes the tangent in radians. tan(x) = sin(x)/cos(x).

sec computes the secant in radians. sec(x) = 1/cos(x).

csc computes the cosecant in radians. csc(x) = 1/sin(x).

cot computes the cotangent in radians. cot(x) = cos(x)/sin(x).

Each of the 6 functions above has 6 different variants. Append d for
degrees instead of radians. Append h for the hyperbolic version.
Prepend a for the inverse. All 36 functions are listed below.

176

i

i

“8primer” — 2010/6/7 — 16:45 — page 177 — #193
i

i

i

i

i

i

sin sind sinh asin asind asinh
cos cosd cosh acos acosd acosh
tan tand tanh atan atand atanh
sec secd sech asec asecd asech
csc cscd csch acsc acscd acsch
cot cotd coth acot acotd acoth

atan2 is the four-quadrant version of atan. Use atan2(y,x)

instead of atan(y/x) to compute tan−1(y/x).

D.3.2 Exponential

exp computes the exponential of entries in an array. exp(x) is ex

for the scalar x. [p. 106]

log computes the exponential of entries in an array. log(x) is

logx for the scalar x. [p. 153]

log10 computes the base-10 logarithm. [p. 24]

log2 computes the base-2 logarithm, and dissects a number x

into its mantissa f and integer exponent e, so that x=f*2^e. [p. 46]

sqrt sqrt(A) is the square root of each entry of A. [p. 24]

D.3.3 Complex

abs computes the absolute value of each entry in an array. [p. 34]

angle computes the phase angle of each entry in an array.

complex constructs a complex number from two real numbers.

complex(A,B) is A+1i*B.

conj computes the complex conjugate of each entry in an array.

i returns the imaginary unit, sqrt(-1). Often shadowed by the
commonly used loop index i. Use 1i instead. See also j. [p. 18]

imag returns the imaginary part of a number. [p. 63]

isreal tests if a variable is real.

177

i

i

“8primer” — 2010/6/7 — 16:45 — page 178 — #194
i

i

i

i

i

i

real returns the real part of a complex number. [p. 119]

sign returns the sign of a number. sign(x) is 1 if x>0, zero if

x==0, and -1 if x<0. [p. 39]

D.3.4 Rounding and Remainder

ceil rounds towards +∞. ceil(1.7) is 2 and ceil(-1.7) is
-1. [p. 24]

fix rounds towards zero. C=fix(A) rounds each entry in A.
fix(1.7) is 1 and fix(-1.7) is -1. The term dates back to the
early days of Fortran, which has a function ifix that rounds a
floating-point number to a fixed-point integer. [p. 20]

floor rounds towards −∞. floor(1.7) is 1 and
floor(-1.7) is -2. [p. 24]

mod computes the modulus after division. m=mod(x,y) is the
remainder after the integer division x/y, for the integer division
conventionally used in discrete mathematics. [p. 47]

rem computes the remainder after division. r=rem(x,y) is the
remainder after the integer division x/y, for the integer division
conventionally used in computer programming languages. [p. 24]

round rounds towards the nearest integer. [p. 24]

D.3.5 Discrete Math

factor computes the prime factors of a nonnegative integer. Try
factor(42), which is [2 3 7]. prod(factor(n)) is n. [p. 136]

factorial computes the factorial. factorial(n) is n!, or
prod(1:n).

D.4 Polynomials

conv performs convolution and polynomial multiplication. Try
conv([1 3 2],[3 -2 1]), which gives [3 7 1 -1 2]), since
(x2 +3x+2)(3x2 −2x+1) = 3x4 +7x3 + x2 − x+2. [p. 152]

178

i

i

“8primer” — 2010/6/7 — 16:45 — page 179 — #195
i

i

i

i

i

i

poly constructs a polynomial from a set of specified roots, or

constructs the characteristic polynomial of a matrix. Try
poly([1 2]), which creates the polynomial (x−1)(x−2) =
x2 −3x+2, and returns the coefficients [1 -3 2]). [p. 150]

polyfit fits a polynomial to data. [p. 151]

polyval evaluates a polynomial. Try polyval([1 -3 2], 7),

which evaluates p(7) where p(x) = x2 −3x+2. [p. 151]

roots computes the roots of a polynomial. Try
roots([1 -3 2], 7), which returns the roots [2;1]. [p. 150]

D.5 Interpolation and Computational

Geometry

D.5.1 Interpolation

interp1 interpolates a 1-D function. Try x=0:.1:2*pi;

y=sin(x); interp1(x,y,pi) for an interpolation of sin(π)
using a coarse grid.

meshgrid creates X, Y, and Z arrays for 3-D plots. [p. 114]

ndgrid creates X, Y, and Z arrays for plots of N-D functions.

spline constructs a cubic spline interpolation. [p. 152]

D.5.2 Domain Generation

meshgrid creates X, Y, and Z arrays for 3-D plots. [p. 114]

ndgrid creates X, Y, and Z arrays for plots of N-D functions.

D.6 Nonlinear Numerical Methods

D.6.1 Ordinary Differential Equations

ode45 is the primary ODE solver in MATLAB. [p. 157]

179

i

i

“8primer” — 2010/6/7 — 16:45 — page 180 — #196
i

i

i

i

i

i

odeset creates an options struct for ODE solvers.

D.6.2 Optimization

fminsearch finds the minimum of a function. Try
fminsearch(@cos,3), which finds a 6-digit approximation of
pi. [p. 157]

fzero finds a root of a continuous function. Try
fzero(@sin,3), which finds pi. [p. 155]

optimset creates an options struct for optimization functions.

D.6.3 Numerical Integration (Quadrature)

quad performs numerical integration. Try quad(@sin,0,pi),

and compare with syms x; int(sin(x),0,pi). [p. 153]

D.7 Specialized Math

besselj computes the Bessel function of the first kind, Jν(z).

beta computes the Beta function, B(x,y).

gamma computes the Gamma function, Γ(a). For positive

integers, Γ(n) = (n−1)!.

psi computes the psi (polygamma) function, ψk(x).

D.8 Sparse Matrices

find finds indices and values of nonzeros. i=find(A) returns
1-D indices of all nonzeros in a full or sparse matrix A.
i=find(A,k) returns just the first k entries; add the string ’last’
as a third argument to get the last k. [i,j,x]=find(A, ...)
returns 2-D indices and values x, so that x(k)=A(i(k),j(k)) is
the kth nonzero in A. [p. 28]

full converts a matrix to a full representation. [p. 120]

180

i

i

“8primer” — 2010/6/7 — 16:45 — page 181 — #197
i

i

i

i

i

i

sparse builds a sparse matrix from a list of entries (via

S=sparse(i,j,x)) or converts a full matrix to a sparse
representation (via S=sparse(A)). sparse(m,n) is an all-zero
m-by-n sparse matrix. You should normally not create a sparse
matrix S=sparse(A) from a full matrix A. Use
S=sparse(i,j,x) instead, which builds a sparse matrix from
three vectors containing a list of nonzero entries. [p. 122]

nnz finds the number of nonzeros in a matrix (whether sparse or
full). [p. 120]

randperm constructs a pseudo-random permutation.

randperm(n) is a permutation of 1:n.

D.9 Math Constants

eps determines the floating-point relative accuracy. eps is the

smallest number so that 1+eps>eps. eps(x) is the distance to the
next floating-point number larger than x. On most computers, eps

is 2−52), or about 2.2×10−16. [p. 39]

i returns the imaginary unit, sqrt(-1). Often shadowed by the
commonly used loop index i. Use 1i instead. See also j. [p. 18]

inf is the IEEE representation of ∞. Also appears as Inf. The
syntax of inf is the same as zeros, ones, and nan (for creating a
matrix of Inf’s). [p. 132]

nan is the IEEE representation of Not-a-Number (the result of
dividing zero by zero, for example). Also appears as NaN. The
syntax of nan is the same as zeros, ones, and inf (for creating a
matrix of NaN’s). NaN’s propagate, since any computation with a
NaN produces a NaN. Comparisons with NaN always return 0
(false). Thus, x==x is true for all numbers except for x=nan.

pi is a 16-digit approximation to π. [p. 6]

181

i

i

“8primer” — 2010/6/7 — 16:45 — page 182 — #198
i

i

i

i

i

i

E Data Analysis

E.1 Basic Operations

cumprod computes the cumulative product. See p. 172.

cumsum computes the cumulative sum. See p. 172.

prod computes the products of the entries of an array. See p. 173.

sort sorts entries in an array. See p. 174.

sortrows sorts the rows of a matrix. See p. 174.

sum sums entries along one dimension. See p. 173.

E.2 Descriptive Statistics

cov computes the covariance matrix, or the variance of a vector.

max finds the largest entry in an array. See p. 171.

mean computes the mean. mean(x) is the mean of a vector x.
mean(A) for a matrix is a row vector with the mean of each column
of A. mean(A,2) is the mean of each row. [p. 25]

median computes the median. median(x) is the median of a x.
median(A) for a matrix is a row vector with the median of each
column of A. median(A,2) is the median of each row. [p. 25]

min finds the smallest entry in an array. See p. 171.

mode computes the mode. mode(x) is the mode of a vector x.
mode(A) for a matrix is a row vector with the mode of each
column of A. mode(A,2) is the mode of each row. [p. 25]

std computes the standard deviation. std(x) is the standard
deviation of a vector x. std(A) for a matrix is a row vector with
the standard variation of each column of A. [p. 25]

var computes the variance. var(x) is the variance of a vector x.
var(A) for a matrix is a row vector with the variance of each
column of A. [p. 25]

182

i

i

“8primer” — 2010/6/7 — 16:45 — page 183 — #199
i

i

i

i

i

i

E.3 Filtering and Convolution

conv performs convolution and polynomial multiplication. See
p. 178.

conv2 performs 2-D convolution.

filter applies a digital filter to a data sequence.

E.4 Interpolation and Regression

interp1 interpolates a 1-D function. See p. 179.

polyfit fits a polynomial to data. [p. 151]

polyval evaluates a polynomial. [p. 151]

E.5 Fourier Transforms

abs computes the absolute value of each entry in an array. [p. 34]

angle computes the phase angle of each entry in an array.

fft computes the discrete Fourier transform (DFT). fft(x) is
the DFT of the vector x. fft(A) for a matrix computes the DFT of
each column.

fft2 computes the 2-D DFT.

fftshift centers the spectrum by shifting the zero-frequency
component.

ifft computes the inverse DFT. If y=fft(x) for a vector x, the
x=ifft(y).

ifft2 computes the inverse 2-D DFT.

E.6 Derivatives and Integrals

diff computes differences between adjacent entries.
diff((1:5).^2) is [3 5 7 9]. [p. 129]

gradient computes the numerical gradient.

183

i

i

“8primer” — 2010/6/7 — 16:45 — page 184 — #200
i

i

i

i

i

i

F Programming and Data Types

F.1 Data Types

F.1.1 Numeric Types

cat concatenate arrays. See p. 173.

class returns the class of a variable as a string.
class(eye(2)) is ’double’, class(@log) is
’function_handle’, and class(’s’) is ’char’, for example.

find returns the indices and values of nonzeros in a matrix. See
p. 180.

isa tests whether a variable is from a given class
(isa(x,’double’), for example). See p. 188.

isequal tests two variables for equality. See p. 170.

isfinite tests if a number is finite (not +inf, -inf, or nan).

isinf tests if a number is +inf or -inf.

isnan tests if a number is a NaN.

isnumeric tests if a variable has a numeric type. See p. 188.

isreal tests if a variable is real (as opposed to complex).

isscalar tests if a variable is a scalar.

isvector tests if a variable is a vector. See p. 170.

permute rearranges the dimensions of an N-D array. See p. 173.

reshape reshapes an array. See p. 174.

squeeze removes singleton dimensions. See p. 174.

zeros returns an array of all zeros. See p. 172.

184

i

i

“8primer” — 2010/6/7 — 16:45 — page 185 — #201
i

i

i

i

i

i

F.1.2 Characters and Strings

cellstr creates a cell array of strings from a character array. If
S is m-by-n, then C=cellstr(S) is a cell array of length m, with
each entry a row of S.

char converts an array of integers to a character array. [p. 101]

eval executes MATLAB expressions or statements from a
string. See p. 198.

findstr Finds strings within another string. Use strfind
instead.

regexp searches a string for a regular expression, which is a

kind string that can match many strings. For example, to search for
a digit followed by a colon, try s=datestr(now),
regexp(s,’[0-9]:’).

sprintf creates a formatted string of other numbers and

strings, with tight control over how they are displayed. [p. 162]

sscanf reads formatted data from a string, with a format string
similar to the one used by fprintf.

strcat concatenates strings horizontally. See p. 192.

strcmp compares strings. See p. 193.

strcmpi is a case-insensitive version of strcmp. See p. 193.

strfind determines if one string is a substring of another
string. Try strfind(’look in this book’,’oo’), which
gives [2 15].

strmatch determines if one string is a prefix of another. See
p. 194.

strrep finds and replaces substrings. strrep(s,a,b)

replaces all occurrences of the substring a with b in the string s.

strtrim removes leading and trailing spaces.

185

i

i

“8primer” — 2010/6/7 — 16:45 — page 186 — #202
i

i

i

i

i

i

F.1.3 Structures

class determines the class of a variable. See p. 184.

deal distributes inputs to outputs. Useful for assigning fields of
a struct array from a cell array. If s is a 1-by-4 struct array, try
c={1,2,3,4}; [s.f]=deal(c{:}), which is the same as for
i=1:4, s(i).f=c{i}; end.

fieldnames returns a cell array of strings with the name of
each member of a struct or object.

getfield gets one or more fields from a struct.

getfield(x,’y’) is the same as x.y.

isa tests whether a variable is from a given class
(isa(s,’struct’), for example). See p. 188.

isequal tests two structs for equality. The order of members of

each struct does not matter. See p. 170.

isfield checks for a member of a struct. isfield(x,’s’) is
true if x.s is a member of the struct x. Use isfield(x,c) where
c is a cell array to check for multiple fields.

isscalar tests if a variable is a scalar. A 1-by-1 struct is
considered scalar, even if it contains multiple members or array
members.

isstruct tests if a variable is a struct. See p. 188.

isvector tests if a variable is a vector. See p. 170.

rmfield removes fields from a struct.

setfield sets fields in a struct.

struct creates a struct array. Try x.a=1; x.b=’s’, which can
also be done with x=struct(’a’,1,’b’,’s’). [p. 54]

struct2cell converts a struct to a cell array. See p. 187.

186

i

i

“8primer” — 2010/6/7 — 16:45 — page 187 — #203
i

i

i

i

i

i

F.1.4 Cell Arrays

cell constructs an empty cell array. cell(m,n) is a m-by-n cell
array, with every entry equal to the empty array ([]). [p. 53]

cell2mat constructs a matrix from a cell array of matrices. See
p. 190.

cellfun applies a function to each entry of a cell array.

cellstr creates a cell array of strings from a character array.
See p. 185.

class determines the class of a variable. See p. 184.

deal distributes inputs to outputs. See p. 186.

isa tests whether a variable is from a given class
(isa(c,’cell’), for example). See p. 188.

iscell tests if a variable is a cell array. See p. 188.

iscellstr tests if a variable is a cell array of strings.

isequal tests two cell arrays for equality. See p. 170.

isscalar tests if a variable is a scalar. A 1-by-1 cell array is a
scalar, even if it contains an array. Try isscalar({rand(4)}).

isvector tests if a variable is a vector. See p. 170.

num2cell converts a numeric array into a cell array, placing
each entry in its own cell. See p. 190.

struct2cell converts a struct to a cell array, placing each
field in its own cell.

F.1.5 Function Handles

class determines the class of a variable. See p. 184.

feval evaluates a function via a function handle.
feval(@f,x) is the same as f(x) for the function handle @f.
feval remains in MATLAB for historical reasons.

187

i

i

“8primer” — 2010/6/7 — 16:45 — page 188 — #204
i

i

i

i

i

i

isa tests whether a variable is from a given class
(isa(f,’function_handle’), for example). See p. 188.

isequal tests two function handles for equality. See p. 170.

str2func constructs a function handle from a string.
str2func(’f’) is the same as @f. [p. 68]

F.1.6 Data Type Identification

isa tests whether a variable is from a given class.
isa(x,’struct’) is true if x is a struct, for example. Classes
include logical, char, numeric (integer or floating-point),
integer, float, int8 (and variants), single, double, cell,
struct, function_handle, and any MATLAB or Java class.

iscell tests if a variable is a cell array. Same as
isa(x,’cell’).

iscellstr tests if a variable is a cell array of strings.

ischar tests if a variable is a string (a char array). Same as
isa(x,’char’). [p. 70]

isfield checks for a member of a struct. See p. 186.

islogical tests if a variable is logical. Same as

isa(x,’logical’).

isnumeric tests if a variable has a numeric type (integer or
floating-point). Same as isa(x,’numeric’).

isreal tests if a variable is real (as opposed to complex).

isstruct tests if a variable is a struct. Same as
isa(x,’struct’).

whos lists variables in the workspace. See p. 166.

F.2 Data Type Conversion

F.2.1 Numeric

double converts numbers to IEEE double precision. [p. 56]

188

i

i

“8primer” — 2010/6/7 — 16:45 — page 189 — #205
i

i

i

i

i

i

int16 converts numbers to 16-bit signed integers.

int32 converts numbers to 32-bit signed integers.

single converts numbers to IEEE single precision.

Computations in single are less accurate than double, but can be
faster. [p. 56]

uint8 converts numbers to 8-bit unsigned integers. Often used
for images. [p. 56]

uint16 converts numbers to 16-bit unsigned integers.

F.2.2 String to Numeric

hex2dec converts a string with a hexadecimal number to a
number. hex2dec(’1F’) is 31.

str2double converts a string to a single number.
str2double(’3.14’) is the number 3.14. str2double(c)
with a cell array of strings converts each entry in c. [p. 19]

str2num converts a string to one or more numbers, via eval.
Use str2double to avoid side-effects of functions in the string.
[p. 19]

F.2.3 Numeric to String

char converts an array of integers to a character array. [p. 101]

dec2bin converts a number to a string, in binary.

int2str converts an integer to a formatted string, for display.
Try int2str(magic(5)).

mat2str converts an integer to a formatted string, for display or
evaluation. Try mat2str(magic(5)).

num2str converts a numeric array to a string, for display.
num2str(A) uses the default format %11.4g (a width of 11, with 4
digits displayed). num2str(pi,8) displays 8 digits of π, and
num2str(A,s) uses the format string s (like fprintf). [p. 163]

189

i

i

“8primer” — 2010/6/7 — 16:45 — page 190 — #206
i

i

i

i

i

i

F.2.4 Other Conversions

cell2mat constructs a matrix from a cell array of matrices. Try
A=magic(5) and C=num2cell(A). Then cell2mat(C)
reconstructs A. For the 2-D case, the matrices in each row of the
cell array (C{i,:}) must all have the same number of rows, and the
matrices in each column (C{:,j}) must all have the same number
of columns.

datestr converts the result from clock or now into a string.
See p. 196.

logical converts an array to logical. See p. 195.

num2cell converts a numeric array into a cell array, placing
each entry in its own cell. Try A=magic(5); C=num2cell(A),
which creates a cell array C so that C{i,j}=A(i,j).

str2func constructs a function handle from a string. See
p. 188.

struct2cell converts a struct to a cell array. See p. 187.

F.3 Operators and Special Characters

[See pp. 14–16, 33, 123, and 142 for a discussion of each operator.]

F.3.1 Arithmetic Operators

A+B adds two matrices, or a matrix and a scalar
A-B subtracts two matrices, or a matrix and a scalar
-A negates the matrix A

A*B multiplies two matrices, or a matrix and a scalar
B/A solves XA = B. Use in place of B*inv(A)
A\B solves AX = B. Use in place of inv(A)*B
A^B A to the power B. A or B must be a scalar

A.*B element-wise array multiplication
A./B element-wise array right division
A.\B element-wise array left division
A.^B element-wise array power

A’ matrix transpose (complex conjugate, if complex)
A.’ array transpose (not complex conjugate)

190

i

i

“8primer” — 2010/6/7 — 16:45 — page 191 — #207
i

i

i

i

i

i

F.3.2 Relational Operators

A<B less than
A<=B less than or equal to
A>B greater than
A=>B greater than or equal to
A==B equal to
A~=B not equal to

F.3.3 Logical Operators

A&&B short-circuit logical and (scalars only)
A||B short-circuit logical or (scalars only)
A&B logical and

A|B logical or

~A logical not

F.3.4 Special Characters

= assignment [p. 3]
: colon operator [pp. 19–22]
() input parameters, precedence, subscript [pp. 5, 13]
[] output parameters, construct array [pp. 4, 26]
{} construct and subscript cell array [p. 53]
3.14 decimal point [p. 4]
A.B member of struct or object [pp. 53, 58]
A.(B) dynamic member of struct or object [p. 55]
.. parent folder [p. 8]
... continue statement on next line [p. 4]
, array rows, parameters, statements [pp. 4, 13]
; array columns, terminate statement [pp. 4, 13]
% comment [p. 42]
%% code cell [p. 43]
%{ start block comment [p. 43]
%} end block comment [p. 43]
! system command [p. 103]
’s’ character string [p. 18]
@ object class folder, function handle [pp. 61, 67]
~ unused argument [p. 42]
< inheritance [p. 62]

191

i

i

“8primer” — 2010/6/7 — 16:45 — page 192 — #208
i

i

i

i

i

i

F.4 Strings

F.4.1 String Creation

blanks creates a string of blanks.

cellstr creates a cell array of strings from a character array.
See p. 185.

char converts an array of integers to a character array. [p. 101]

sprintf creates a formatted string. See p. 185.

strcat concatenations strings horizontally. strcat(s1,s2) is
like [s1,s2], except that strcat removes trailing spaces.

F.4.2 String Identification

isa tests whether a variable is from a given class
(isa(s,’char’), for example). See p. 188.

iscellstr tests if a variable is a cell array of strings.

ischar tests if a variable is a string (a char array). Same as
isa(x,’char’). [p. 70]

isscalar tests if a variable is a scalar. Try isscalar(’a’)
and isscalar(’ab’).

isspace tests if a variable is whitespace (space, tab, return, ...).

isvector tests if a variable is a vector. See p. 170.

F.4.3 String Manipulation

deblank removes trailing blanks from the end of a string.
deblank(c) for a cell array of strings operates on all strings in c.

lower converts a string to lower case. lower(c) for a cell array
of strings c operations on all the strings in c.

strrep finds and replaces substrings. See p. 185.

192

i

i

“8primer” — 2010/6/7 — 16:45 — page 193 — #209
i

i

i

i

i

i

strtrim removes leading and trailing spaces.

upper converts a string to upper case. upper(c) for a cell array

of strings c operations on all the strings in c.

F.4.4 String Parsing

findstr Finds strings within another string. Use strfind
instead.

regexp searches a string for a regular expression. See p. 185.

regexprep finds and replaces a substring using a regular

expression.

sscanf reads formatted data from a string, with a format string
similar to the one used by fprintf.

strfind determines if one string is a substring of another
string. See p. 185.

strtok extracts tokens from a string. Try
[t,r]=strtok(’this is a string’), which gives the token
t=’this’ and the remainder r=’ is a string’.

F.4.5 String Evaluation

eval executes MATLAB expressions or statements from a
string. Avoid whenever possible. See p. 198.

evalin evaluates MATLAB expressions or statements from a
string in the workspace of the caller, or in the base workspace.
Avoid whenever possible. See p. 198.

F.4.6 String Comparison

strcmp compares strings. strcmp(a,b) is 1 if they are

identical, 0 otherwise. To compare multiple strings, one or both
arguments can be a cell array of strings. [p. 19]

strcmpi is a case-insensitive version of strcmp. [p. 19]

193

i

i

“8primer” — 2010/6/7 — 16:45 — page 194 — #210
i

i

i

i

i

i

strmatch determines if one string is a prefix of another.
strmatch(s,c) finds the strings in the character array or cell
array of strings c that have the string s as a prefix. With a third
argument ’exact’, only exact matches are sought.

strncmp compares the first n characters of strings. Otherwise

identical to strcmp.

strncmpi is a case-insensitive version of strncmp.

F.5 Bit-Wise Operations

Bit-wise operations can be performed only on unsigned integers, or
arrays of unsigned integers.

bitand computes a bitwise and.

bitcmp computes a bitwise not.

bitget extracts a bit. bitget(A,1) is 1 if A is odd.

bitor computes a bitwise or.

bitset sets a bit.

bitshift shifts bits left or right.

bitxor computes a bitwise xor.

F.6 Logical Operations

all is the ∀ logical quantifier. all(x) is true if all entries in the
vector x are nonzero. all(A) for a matrix computes a result for
each column. [p. 51]

and is the logical and. and(A,B) is (A&B). [p. 16]

any is the ∃ logical quantifier. any(x) is true if any entries in the

vector x are nonzero. any(A) for a matrix computes a result for
each column. [p. 51]

false returns logical 0, for false, or an array of logical 0’s. Its
syntax is essentially the same as zeros. [p. 17]

194

i

i

“8primer” — 2010/6/7 — 16:45 — page 195 — #211
i

i

i

i

i

i

find returns the indices and values of nonzeros in a matrix. See
p. 180.

logical converts an array to logical. logical(A) is (A~=0).

[p. 31]

not is the logical not. not(A) is (~A). [p. 16]

or is the logical or. or(A,B) is (A|B). [p. 16]

true returns logical 1, for true, or an array of logical 1’s. Its
syntax is essentially the same as ones. [p. 17]

xor is the logical xor. xor(A,B) is (A|B)&(~(A&B)), which is
true if either A or B are true, but not both. [p. 16]

F.7 Relational Operations

eq : equal. eq(A,B) is (A==B). [p. 33]

ge : greater than or equal. ge(A,B) is (A>=B). [p. 33]

gt : greater than. gt(A,B) is (A>B). [p. 33]

le : less than or equal to. le(A,B) is (A<=B). [p. 33]

lt : less than. lt(A,B) is (A<B). [p. 33]

ne : not equal. ne(A,B) is (A~=B). [p. 33]

F.8 Set Operations

Sets are represented as vectors of numbers, characters, or cell
arrays of strings.

intersect computes the intersection of two sets. [p. 55]

ismember tests if an element is a member of a set. [p. 55]

setdiff computes the set difference of two sets. [p. 55]

union computes the union of two sets. [p. 55]

unique finds the unique elements of a set. [p. 55]

195

i

i

“8primer” — 2010/6/7 — 16:45 — page 196 — #212
i

i

i

i

i

i

F.9 Date and Time Operations

clock returns the current time as a date vector ([year month
day hour minute seconds]). The seconds term has a fractional
part; all others are integers.

cputime returns the total CPU time (in seconds) used by

MATLAB since the application started. Not recommended for
performance evaluation, since it can wrap around when the internal
representation overflows. [p. 73]

date returns today’s date as a string (excluding the hours,
minutes, and seconds).

datenum converts a date string to a serial date number.
datenum is the inverse of datestr. Try datenum(date) and
datenum(’1-Jan-0000’).

datestr converts the result from clock or now into a string.
Try datestr(now).

etime returns the elapsed time in seconds between two date
vectors (as returned by clock).

now returns the current time as a serial date number (the number
of days since December 31, 2BC, in the Gregorian calendar).

tic starts a stopwatch timer. Find the elapsed time of a statement
with tic; statement; toc. For multiple timers, use s=tic with
t=toc(s), where t is the time since s was started. [p. 73]

toc reads a stopwatch timer. t=toc gives the time since the last
tic. [p. 73]

F.10 Programming in MATLAB

F.10.1 Functions and Scripts

echo controls the display of statements as they are executed.

end defines the last line of a block of code. See p. 200.

196

i

i

“8primer” — 2010/6/7 — 16:45 — page 197 — #213
i

i

i

i

i

i

function is the first line of any M-file function. function
[a,b]=f(x,y) declares a function with two inputs x and y and
two outputs a and b. [p. 39]

input prompts the user for keyboard input. [p. 72]

inputname returns the name of an input parameter to a

function, as a string.

mfilename returns the filename of the currently-running
function.

nargchk checks if the number of input arguments is valid.

nargin is the number of input arguments passed to a function.

[p. 41]

nargout is the number of output arguments expected from a

function. nargout is zero if the result is ans. [p. 41]

nargoutchk checks if the number of output arguments is valid.

varargin specifies a variable input argument list. In the

function statement of an M-file, use varargin as the last input
argument to collect an arbitrary number of arguments. These are
placed in a cell array of the same name. [p. 41]

varargout specifies a variable output argument list. In the

function statement of an M-file, use varargout as the last
output argument. Then inside the function, assign outputs to
varargout{1}, varargout{2}, and so on. [p. 42]

F.10.2 Evaluation

ans returns the result of the most recently evaluated MATLAB
expression that was not an assignment. [p. 4]

builtin executes a built-in function, ignoring overloading and
shadowing. Try i=3; builtin(’i’) and then which i -all.

cellfun applies a function to each entry of a cell array.

echo controls the display of statements as they are executed.

197

i

i

“8primer” — 2010/6/7 — 16:45 — page 198 — #214
i

i

i

i

i

i

eval executes MATLAB expressions or statements from a
string. Try eval(’x=4’). Avoid using eval whenever possible.
eval can have nasty side effects that are difficult to avoid.

evalin evaluates MATLAB expressions or statements from a
string in the workspace of the caller, or in the base workspace (what
you see in the Workspace window). For example,
evalin(’base’,’x’) returns the value of x in the base
workspace. Like eval, avoid whenever possible.

feval evaluates a function via a function handle. See p. 187.

pause pauses the Command Window output. Hit any key on the

keyboard to continue. pause(3) pauses for 3 seconds. [p. 72]

run runs a script that need not be on the current path.

F.10.3 Timer

timer creates a timer object, which calls a function f(t,e,s)
at given intervals (t is the timer object, e is the event, and s is
optional). Try t=timer(’TimerFcn’,@(t,e)why,’Period’,
1,’ExecutionMode’,’fixedRate’). Then start(t) creates
a timer that calls why once each second.

delete deletes a timer, with delete(t).

start starts a timer. Try start(t).

stop stops a timer. Try stop(t).

F.10.4 Variables and Functions in Memory

ans returns the result of the most recently evaluated MATLAB
expression that was not an assignment. [p. 4]

assignin assigns a value to a variable in the base workspace or

caller workspace. Avoid if possible, since it can lead to
hard-to-debug code. See also evalin (p. 198).

global declares variables as global. Global variables can be

accessed from any function without the need to pass them as
arguments. Try not to use global, since it can lead to
hard-to-debug code. [p. 39]

198

i

i

“8primer” — 2010/6/7 — 16:45 — page 199 — #215
i

i

i

i

i

i

persistent defines a variable local to a function, which is

retained between subsequent calls to that function.

F.10.5 Control Flow

for loops across a block of statements terminated with end. for
i=a, statements, end iterates across the statements, setting the loop
index i to one column of a at a time. Try for i=1:5,i,end and
for i=eye(3),i,end. [p. 44]

if defines a conditional statement. Use with else, elseif, and
end. if(A) for a matrix A is true only if all entries are nonzero.
Try if(x<0), s=-1, elseif(x>0), s=1, else, s=0, end,
which is s=sign(x) for the scalar x. [p. 47]

elseif is a part of a conditional statement. The
elseif(expression) is tested only when the if test is false. [p. 48]

else is a part of a conditional statement. The else part is
executed when the if test and any elseif tests are all false. [p. 48]

return is the normal return from a function. A function also
returns normally after executing the last statement in the function.
Unlike many programming languages, the return statement in
MATLAB does not accept any input arguments. [p. 40]

switch selects among cases, depending on a single expression.
Each case is defined by a case statement. [p. 48]

case defines a block of statements for one case of a switch
statement. The statements after case(e) are triggered if the
switch expression s is equal to e. The statements after
case{e1,e2} are triggered if s is equal to e1 or e2. [p. 48]

otherwise defines a part of a switch statement. if no case in
a switch statement matches the expression, the otherwise block
of statements is executed. [p. 48]

while executes a block of statements. while(e) tests the
expression e each iteration. If the expression e is false, the loop
terminates. Try x=2^10, while(x>1), x=x/2, end. [p. 46]

break terminates a for or while loop. Statements after the
break are not executed. [p. 47]

199

i

i

“8primer” — 2010/6/7 — 16:45 — page 200 — #216
i

i

i

i

i

i

continue skips the remaining statements in a for or while
loop, and goes to the next iteration of the loop. [p. 47]

error abnormally terminates a script or function. error(msg)
prints the msg string and terminates the current function. An error
may instead be caught via a try/catch statement. [p. 71]

try executes a block of code and recovers from errors. If an

error occurs, the try block of code is terminated and the catch
block (if any) is executed. [p. 49]

catch defines the second part of a try/catch statement. If an
error occurs, the try part is terminated and the statements after the
catch part are executed. An optional argument (catch ME) gives
information about the error. [p. 49]

end defines the last line of a for, while, if, switch, or
try/catch block of code. In a classdef file, end defines the last
line of the classdef, properties, methods, and events blocks
of code. Also defines the last line of a function, but this is required
only if an M-file contains more than one function, or if the function
is in a classdef file. [p. 44]

goto does not exist in MATLAB because it leads to

unmanageable code. Use break to exit a loop. Use continue to
skip a loop iteration. Place code in a function and use return. Use
try/catch to handle errors and special conditions. [p. 232]

F.10.6 Error Handling

error abnormally terminates a script or function (see above).

rethrow reissues a previously-caught error. [p. 49]

try executes code and recovers from errors (see above).

catch is the second part of a try/catch statement (see above).

warning issues a warning. warning(’oops’) displays the

warning but does not terminate the function. [p. 72]

F.10.7 MEX Programming

mex compiles a C/C++ or Fortran mexFunction. [p. 87]

200

i

i

“8primer” — 2010/6/7 — 16:45 — page 201 — #217
i

i

i

i

i

i

G Object-Oriented Programming

G.1 Classes and Objects

class determines the class of a variable. See p. 184.

classdef is a statement that defines a class, with properties and
methods. The class definition is terminated by an end statement.
[p. 57]

exist determines if a class or object exists. See p. 166.

methods is both a function and a keyword. The function
methods(A) lists the public methods of a class or object A. As a
keyword, the methods statement defines the set of methods for a
class, terminated by an end statement. [p. 59]

properties is both a function and a keyword. The function

properties(A) lists the public properties of a class or object A.
As a keyword, the properties statement defines the set of
properties for a class, terminated by an end statement. [p. 58]

subsref is the method for subscripted references to objects.

G.2 Handle Classes

delete deletes a handle object.

findobj finds a graphics object with specific properties.

get returns the properties of an object. See p. 205.

handle is the superclass for all handle classes, including Handle
Graphics. [p. 66]

set lists or sets the properties of an object. set(H) lists the
properties that can be modified via set(H,’Property’,value).
See p. 205.

201

i

i

“8primer” — 2010/6/7 — 16:45 — page 202 — #218
i

i

i

i

i

i

H Graphics

H.1 Basic Plots and Graphs

box displays or hides the boundary of a plot.

hold controls how new data is plotted. With hold on, a plot
command overlays the new plot onto the old one. With hold off
(the default), a new plot erases the old. [p. 111]

line creates a line object (a low-level version of plot).

loglog draws a logarithmic 2-D line plot, with logarithmic x-y

axes. Otherwise identical to plot.

plot draws a 2-D line plot. plot(Y) plots the columns of a real

matrix Y versus the row index. With multiple arguments,
plot(x,y) plots the vector x versus y.
plot(x1,y1,x2,y2,...) plots multiple lines on a single figure.
Adding a string after each pair sets the line color and type. [p. 106]

plot3 draws a 3-D line plot. [p. 113]

semilogx draws a semi-logarithmic 2-D line plot, with a

logarithmic x-axis and a linear y-axis. Otherwise identical to plot.

semilogy draws a semi-logarithmic 2-D line plot, with a linear

x-axis and a logarithmic y-axis. Otherwise identical to plot.

subplot creates a tiled array of plots in a single figure.

subplot(2,3,1) creates a 2-by-3 tiling of 6 plots, and sets the
first one (in the (1,1) position) as the current plot. [p. 112]

H.2 Plotting Tools

rotate3d rotates the 3-D view using the mouse. [p. 117]

zoom zooms into or out of a plot. [p. 107]

202

i

i

“8primer” — 2010/6/7 — 16:45 — page 203 — #219
i

i

i

i

i

i

H.3 Annotating Plots

legend adds a legend to a plot. If three plot commands have

been drawn on a figure, use legend(’s1’,’s2’,’s3’), where
each string describes each plot. Add ,’Location’,
’SouthEast’ as the last two arguments to place the legend in the
bottom right corner (for example). [p. 111]

rectangle draws a rectangle.

title sets the title of a plot. [p. 109]

xlabel sets the label for the x-axis. [p. 109]

ylabel sets the label for the y-axis. [p. 109]

zlabel sets the label for the z-axis, for a 3-D plot. [p. 113]

H.4 Specialized Plotting

area displays an area plot, which is just like a 2-D line plot
except that the area below the curve is filled in with a color.

bar draws a bar graph. Try bar(sin(0:.1:pi)).

contour draws a contour plot.

stem plots a discrete sequence of data.

hist draws a histogram plot. hist(y) uses 10 bins;
hist(y,20) uses 20. hist(y,x) uses bins centered at the points
in x.

histc counts the elements in each bin of a histogram (without
actually drawing the plot). The bins are defined differently than
hist, however. histc(y,x) defines the bins by their edges,
where y(i) is in the kth bin if x(k)<=y(i)<=x(k+1).

fill draws colored polygons.

slice draws a volumetric slice plot. [p. 116]

getframe captures a movie frame.

203

i

i

“8primer” — 2010/6/7 — 16:45 — page 204 — #220
i

i

i

i

i

i

H.5 Bit-Mapped Images

image displays an image. [p. 119]

imagesc scales and displays an image, so that the full color

range is used.

imread reads an image from a graphics file. See p. 169.

imwrite writes an image to a graphics file.

H.6 Printing

orient defines hard-copy landscape/portrait orientation.

print prints a figure.

saveas saves a figure to a file.

H.7 Handle Graphics

H.7.1 Graphics Object Identification

delete deletes a graphics object.

findall finds all graphics objects.

findobj finds a graphics object with specific properties.

gca returns the current axis. [p. 118]

gcbf returns the figure handle of a callback function. [p. 118]

gcbo returns the object handle of a callback function.

gco returns the current graphics object.

ishandle tests if a variable is a Handle Graphics handle.

204

i

i

“8primer” — 2010/6/7 — 16:45 — page 205 — #221
i

i

i

i

i

i

get gets the properties of a Handle Graphics object. Use

get(H) to print all properties, and s=get(H) to return the result as
a struct. With the example below (for set), try
get(gca,’XTick’), which returns a vector of the tick marks on
the x-axis. [p. 118]

set sets the properties of a Handle Graphics object. Use
set(H) for a list of properties to set. Try creating a figure
(plot(rand(5)), for example). Then use set(gcf), set(gca),
and set(gco) to see the properties that can be modified by set.
Try set(gca,’XTick’,1:5) to change the tick marks on the
x-axis, and set(gca,’XGrid’,’on’) to turn on the grid lines on
the x-axis. [p. 118]

H.7.2 Object Creation

axes creates a graphics object for the axes of a plot.

figure creates a new figure, or sets the current figure to be a

previous-created one. The current figure is where all commands
such as plot, title, and xlabel, place their results. figure(3)
makes Figure 3 the current figure, creating it if necessary. [p. 107]

image displays an image. [p. 119]

light creates a light at a specified location. [p. 117]

line creates a line object (a low-level version of plot).

patch creates one or more filled polygons.

rectangle draws a rectangle.

surface is a low-level function for creating a surface object.

text adds text to a plot. text(x,y,s) adds the string s to the
plot at position (x,y). [p. 109]

uicontextmenu creates a context menu, for right-clicking an
object.

205

i

i

“8primer” — 2010/6/7 — 16:45 — page 206 — #222
i

i

i

i

i

i

H.7.3 Figure Windows

clf clears a figure. clf clears the current figure. clf(2) clears
Figure 2. [p. 111]

close closes a figure. close closes the current figure.
close(2) closes Figure 2. [p. 111]

closereq is called by default when a figure is closed.

drawnow executes all pending plotting operations. [p. 108]

gcf returns the current figure. [p. 107]

saveas saves a figure to a file.

H.7.4 Axes Operations

axis controls axis scaling for plots. axis auto is the default.
axis([xmin xmax ymin ymax]) specifies the limits of the x and y

axes. For a 3-D plot, use a vector of length 6. axis tight fits the
axes to the data. [p. 110]

box displays or hides the boundary of a plot.

cla clears the current axes.

gca returns the current axis. [p. 118]

grid controls the grid lines of a plot. grid on turns on the grid;

grid off turns it off. [p. 109]

ishold tests if hold is on or off. See p. 202.

206

i

i

“8primer” — 2010/6/7 — 16:45 — page 207 — #223
i

i

i

i

i

i

I 3-D Visualization

I.1 Surface and Mesh Plots

I.1.1 Surface and Mesh Creation

hidden removes or reveals hidden lines in a mesh plot.

mesh draws a 3-D mesh plot. Try mesh(peaks). [p. 114]

peaks is an example function for surface plots. peaks returns a

matrix of function evaluations f(x,y) over a uniformly distributed
set of x-y points, for a certain function f. [p. 117]

surf creates a 3-D surface plot. See the cover of this book for an
example. Try surf(mesh). [p. 114]

surface is a low-level function for creating a surface object.

I.1.2 Domain Generation

meshgrid creates X, Y, and Z arrays for 3-D plots. [p. 114]

I.1.3 Color Operations

colorbar adds a color legend to a plot. [p. 117]

colormap sets or returns the colormap for an image. [p. 117]

shading sets color shading properties for 3-D plot. [p. 116]

I.2 View Control

I.2.1 Camera Viewpoint

view specifies the viewpoint for a 3-D plot. [p. 117]

207

i

i

“8primer” — 2010/6/7 — 16:45 — page 208 — #224
i

i

i

i

i

i

I.2.2 Aspect Ratio and Axis Limits

xlim sets or queries the x-axis limits.

ylim sets or queries the y-axis limits.

zlim sets or queries the z-axis limits.

I.2.3 Object Manipulation

reset resets the properties of a graphics object to their defaults.

rotate3d rotates the 3-D view using the mouse. [p. 117]

zoom zooms into or out of a plot. [p. 107]

I.3 Lighting

light creates a light at a specified location. [p. 117]

lighting specifies the lighting algorithm (flat, gouraud,

phong, or none). [p. 117]

I.4 Volume Visualization

slice draws a volumetric slice plot, which plots slices of data
from a 3-D volume. [p. 116]

208

i

i

“8primer” — 2010/6/7 — 16:45 — page 209 — #225
i

i

i

i

i

i

J GUI Development

J.1 Predefined Dialog Boxes

errordlg displays an error dialog. Try errordlg(’ack!’).

inputdlg displays an input dialog. Try inputdlg(’x:’).

msgbox displays a message box. Try msgbox(’done’).

questdlg displays a question box. Try questdlg(’go?’).

uigetdir displays a dialog box for selecting a directory.

uigetfile displays a dialog box for accessing files.

uiputfile displays a dialog box for saving files.

waitbar displays a wait bar. Try h=waitbar(0,’working’);
and then for x=0:.1:1, waitbar(x,h), pause(1), end.

warndlg displays a warning dialog.

J.2 User Interface Deployment

guidata stores or retrieves GUI data.

guihandles returns all handles in a figure.

movegui moves a GUI figure to a specified screen location.

openfig opens a figure from a .fig file.

J.3 User Interface Development

getappdata gets the value of application-defined GUI data.

getpref gets the current setting of a preference.

ginput gets graphical input from the mouse or cursor.

209

i

i

“8primer” — 2010/6/7 — 16:45 — page 210 — #226
i

i

i

i

i

i

guidata stores or retrieves GUI data.

isappdata tests if application-defined data exists.

rmappdata removes application-defined data from an object.

setappdata sets the value of application-defined GUI data.

waitfor pauses until a specified condition occurs.

waitforbuttonpress pauses for the user input.

J.4 User Interface Objects

menu creates a GUI menu.

uicontextmenu creates a (right-click) context menu.

uicontrol creates a user interface object. [p. 118]

uimenu creates a user-interface menu.

uipanel creates a panel for grouping components.

J.5 Objects from Callbacks

findall finds all graphics objects.

findobj finds a graphics object with specific properties.

gcbf returns the figure handle of a callback function. [p. 118]

gcbo returns the object handle of a callback function.

J.6 Program Execution

uiresume resumes execution after uiwait. Typically used in a
callback function. [p. 118]

uiwait pauses execution until uiresume is called. [p. 118]

210

i

i

“8primer” — 2010/6/7 — 16:45 — page 211 — #227
i

i

i

i

i

i

K External Interfaces

K.1 Shared Libraries

calllib calls an external function in a shared library.

K.2 Java

import imports a Java package for use in MATLAB. [p. 100]

K.3 Component Object Model and ActiveX

actxserver creates a COM server on Microsoft Windows.

delete deletes a COM server.

invoke invokes a method on a COM server.

211

i

i

“8primer” — 2010/6/7 — 16:45 — page 212 — #228
i

i

i

i

i

i

L Symbolic Math Toolbox

L.1 Calculus

diff performs symbolic differentiation. Try
syms x; diff(x^2). [p. 127]

int performs symbolic indefinite or definite integration. Try
syms x; int(x^2); and int(x,0,1). [p. 129]

limit computes the limit of a symbolic expression. [p. 131]

L.2 Linear Algebra

det computes the determinant of a symbolic matrix. [p. 144]

diag extracts the diagonal of a symbolic matrix, or creates a

symbolic diagonal matrix. See p. 171.

eig computes the eigenvalues and eigenvectors of a symbolic

matrix, or finds the generalized eigenvalues/eigenvectors. [p. 143]

inv computes the inverse of a symbolic matrix. Does not suffer
the inaccuracy of inv(A) for a numerical matrix A. [p. 143]

null computes a basis for the null space of a symbolic matrix.

poly constructs a polynomial from a set of specified roots, or

constructs the characteristic polynomial of a matrix. [p. 143]

rank computes the rank of a symbolic matrix.

svd computes the singular value decomposition of a symbolic
matrix. [p. 143]

tril extracts the lower triangular part of a symbolic matrix. See
p. 173.

triu extracts the upper triangular part of a symbolic matrix. See
p. 173.

212

i

i

“8primer” — 2010/6/7 — 16:45 — page 213 — #229
i

i

i

i

i

i

L.3 Simplification

factor factors a symbolic expression into a product of
subexpressions, or factors a numeric or symbolic nonnegative
integer into its prime factors. [p. 135]

subs substitutes one symbolic expression into another.
subs(s,2) replaces the default variable (typically x) with the
value 2. subs(s,y,z+1) replaces y with z+1 in the expression s.
All occurrences are replaced. [p. 133]

L.4 Special Functions

zeta computes the Riemann zeta function, ζ(x), or its
derivatives.

L.5 Conversions

double converts a symbolic expression to a numeric one (in
IEEE double precision). [p. 131]

L.6 Basic Operations

ceil rounds a symbolic expression towards +∞. See p. 178.

conj computes the complex conjugate of each entry in a

symbolic array.

eq tests if two symbolic expressions are equal. eq(A,B) is

(A==B). See p. 195.

fix rounds a symbolic expression towards zero. See p. 178.

floor rounds a symbolic expression towards −∞.

imag returns the imaginary part of a symbolic expression.

log10 computes the base-10 logarithm of a symbolic expression.

log2 computes the base-2 logarithm of a symbolic expression.

213

i

i

“8primer” — 2010/6/7 — 16:45 — page 214 — #230
i

i

i

i

i

i

mod computes the remainder after symbolic division. See p. 178.

real returns the real part of a symbolic expression. [p. 153]

round rounds a symbolic expression towards the nearest integer.

size returns the size of a symbolic array. See p. 171.

sort sorts entries in a symbolic array, as if they were text entries.
sort([z 1 y x]) is [1, x, y, z].

sym creates a symbolic number or variable. sym(A) where A is a

numeric matrix constructs a symbolic representation of the matrix.
A second argument controls how the numbers are converted (’f’
for floating-point, ’r’ for rational, and ’d’ for decimal).
sym(’x’) creates a symbolic variable. A second argument
controls what kind of symbolic variable is created (’real’ if x is
real, ’positive’ if x is real and positive, and ’clear’ if there
are no restrictions on x).

syms creates symbolic numbers and variables. syms x y is short

for x=sym(’x’); y=sym(’x’). [p. 126]

214

	Contents
	Preface
	Introduction
	1 Getting Started
	2 The MATLAB Desktop
	3 Matrices and Matrix Operations
	4 Submatrices and Colon Notation
	5 MATLAB Functions
	6 M-Files
	7 Control Flow Statements
	8 Advanced Data Structures
	9 Object-Oriented Programming
	10 Advanced M-file Features
	11 Code Development Tools
	12 Calling C from MATLAB
	13 Calling Fortran from MATLAB
	14 Calling Java from MATLAB
	15 Two-Dimensional Graphics
	16 Three-Dimensional Graphics
	17 Advanced Graphics
	18 Sparse Matrix Computations
	19 The Symbolic Math Toolbox
	20 Polynomials, Interpolation, andIntegration
	21 Solving Equations
	22 Displaying Results
	23 Cell Publishing
	A Appendix: The MATLAB Top 500
	B Desktop Tools and DevelopmentEnvironment
	C Data Import and Export
	D Mathematics
	E Data Analysis
	F Programming and Data Types
	G Object-Oriented Programming
	H Graphics
	I 3-D Visualization
	J GUI Development
	K External Interfaces
	L Symbolic Math Toolbox
	Back cover

