

Preface

It is a trite but true Observation, that Examples work
more forcibly on the Mind than Precepts.

—Henry Fielding, Joseph Andrews

Students in undergraduate science and engineering programs typically take
one semester of computer programming, often using Fortran or C or, more
recently, Java or C++. Although these languages are all used to write scientific
software, in one or two semesters it is difficult for students to develop the skills
needed to write useful programs. Students who go on to graduate school are
frequently unprepared to begin writing, or even using, scientific software.

Interactive Data Language (IDL) is a high-level language designed specifi-
cally for scientific programming and data analysis. In addition to a complete
set of basic programming tools (numerical types, strings, arrays, structures,
pointers, etc.), it includes a wide range of graphical functions and device
drivers. A major advantage of IDL compared to traditional programming
languages is that beginners can begin writing programs and plotting graphs
after only a few hours of use. Although not covered in this book, IDL also
makes it easy to create programs with point-and-click graphical user interfaces
and to develop programs using an object-oriented style. IDL is available on
Microsoft Windows and Unix-derived operating systems, including popular
commercial versions of Unix, Linux, and Apple’s Mac OS X. With a little
planning, IDL programs can be moved easily between platforms.

This book is intended to be used in an introductory computer program-
ming course for science and engineering students at either the undergraduate
or graduate level. Students can learn IDL quickly enough that it can be taught
as part of a topical course, either as a separate “lab” section or as an integral
part of the course. It does not assume that students have experience with
another programming language, although occasional comparisons are made
with Fortran or C to help students who are familiar with those languages
adjust to IDL syntax and programming style.

The goal of this book is to teach beginners enough about programming, and
give them enough practical experience, that they can write useful programs for

xi

xii Preface

courses in their discipline or for their research. This book introduces students
to the following concepts:

■ Variables and data structures

– Variable assignment and expression evaluation

– When to use integers and floating-point numbers

– Underflow and overflow

– Round-off error

– Infinities and Not-a-Numbers

– Arrays and IDL array syntax

– Data structures

■ Input and output

– When and how to use text files, binary files, and scientific file formats,
such as netCDF

– Trade-offs among speed, portability, simplicity, and transparency

■ Procedures and functions

– How procedures and functions work

– Positional arguments

– Keyword arguments

■ Programming style

– Writing readable programs

– Modularizing programs

■ Graphics

– Making good graphs: line graphs, contour graphs, and maps

– Generating printed output

■ Typical applications

– Basic statistics and pseudorandom numbers

– Interpolation

– Fast Fourier transforms

You will notice that this list contains some relatively fundamental concepts,
such as integer and floating-point arithmetic, and some very practical topics,
such as how to plot a map or print a graph. In keeping with the quotation at the
beginning of this preface, these concepts are taught primarily through exam-
ples. The example programs and data sets used in this book are all available
via the World Wide Web (see Chapter 3 for details).

Acknowledgments

Many people assisted with the preparation of this book; my apologies to
anyone I may have overlooked. My thanks go first to the students in my
classes atTexas A&M University for whom I wrote this book. They used earlier
versions when it was only a set of class notes and helped track down numerous
errors along the way. The people of Research Systems, Inc., the developers
of IDL, have been very supportive of this effort, particularly Karl Nichols,
who encouraged me when I first approached RSI for help. Much of the final
draft of the book was completed while I was a visitor to the Atmospheric
Chemistry Division (ACD) at the National Center for Atmospheric Research
(NCAR), which is funded by the National Science Foundation. My thanks
to my host, Bill Randel, and an outstanding group of colleagues and friends,
Andrew Gettelman, Doug Kinnison, Steve Massie, Dan Marsh, Laura Pan,
and many others, as well as to ACD and NCAR, for providing such an excellent
environment in which to work. I would like to thank all of the contributors to
the Usenet newsgroup comp.lang.idl−pvwave, where zealous, convivial,
and sometimes perplexing discussions of IDL go on every day. Over the years
I have learned much of what I know about IDL from the generous assistance of
its participants. It is, in my experience, a unique group of online compatriots,
many of whom have met only electronically. Finally, thanks to my family,
Jean Ann and Ellie, for putting up with all the time away from them needed
to write a book.

xiii

1

Introduction

1.1 What Is IDL?

IDL is a computer software system that is produced and sold by Research
Systems Inc. of Boulder, Colorado. IDL is an acronym for Interactive Data
Language.1 IDL consists of both an interactive programming environment
and a programming language. It is used in a wide range of science and
engineering disciplines for processing and analyzing numerical and image
data. It draws features from many other programming languages, including
Fortran, C, BASIC, and APL, but it differs from each of those languages in
important ways.

The most important difference between IDL and many of the languages
used for data analysis is that it is truly interactive. Within the IDL envi-
ronment (or interpreter), it is possible to type a command and see the results
immediately. This is quite different from Fortran and C, two languages that
are often used to write scientific data analysis software. To create a Fortran
program, a programmer must first create a file (or multiple files) containing
the Fortran program (also called the source code). This is done with a text
editor, which is a word-processing program suited for writing computer pro-
grams. The Fortran program consists of statements in the Fortran language.
The Fortran program is then compiled into a form that the computer can
understand and execute. The compiled program is referred to as the object
code. The object code is then linked with any other precompiled programs
(libraries) that are needed. The object code can then be executed. If an error
(or bug) is found in the program, it can be corrected, recompiled, relinked,
and then re-executed. Although much of this process can be automated (using
a utility program called make, for example), it can be rather time-consuming
to write and debug a Fortran program.

Compiled languages like Fortran and C do have some advantages over
interactive or interpreted languages. For one thing, compilers can often orga-
nize the object code so that it executes very quickly. This is called optimization.
As a result, compiled languages can usually execute a program faster than
the equivalent program written in an interactive language. Large computer

1 Not to be confused with another type of software called Interface Definition Language that
has the same acronym.

3

4 Introduction

models that have heavy computational requirements are usually written in
Fortran or C.

Many modern desktop computers and workstations have more than one
central processing unit (CPU). For some types of operations, IDL can make
use of a small number of CPUs (probably in the range of two to eight CPUs)
using a technique called multithreading. Large-scale scientific computers, on
the other hand, often have hundreds or even thousands of CPUs. IDL is not
designed to make use of those massively parallel computers. Therefore, when
developing for high-performance, highly parallel computers, programmers
generally use advanced parallel Fortran and C compilers.

Why use IDL, then? There are several good reasons. One is that you can
take a quick look at a data set without going to the trouble of writing an
entire program for that purpose. Using IDL it is often possible to browse
through a large data set with only a few IDL commands. Even complex
graphs can usually be plotted with only a few lines of IDL. A second reason
to use IDL is that the “programmer’s loop” of write-compile-execute-debug
can be done very quickly without the use of special software known as a
debugger. (IDL is the debugger.) Third, IDL contains a large number of built-
in functions for statistics, graphics, linear algebra, and the like. Finally, it is
remarkably easy to write self-contained programs in IDL with truly interactive
interfaces, including menus, buttons, windows, dialog boxes, and graphics.
In the author’s experience, the combination of these factors makes it possible
to write better, more flexible programs much faster than using Fortran or C.
If you have experience with other programming languages, some of the other
advantages of IDL will become more apparent as you use it.

The most recent version of IDL runs under a variety of operating systems,
including the most commonly used versions of Unix, Linux, Mac OS X,
and Windows. (This book was developed and tested with IDL Version 6.1.)
Visit the Research Systems web site (see Section 1.2) for current information
on the platforms supported. With a modest amount of care, IDL programs
can be written that will run on all supported systems. IDL programs are thus
quite portable.

Recent versions of IDL also include extensive object-oriented program-
ming features. However, object-oriented programming is not covered in
this book.

1.2 IDL Resources

Information about IDL is available from the Research Systems web site:

http://rsinc.com

Among other things, you can download an almost fully functional demo
version of IDL from the web site and install it on your computer. With-
out purchasing a license, the demo version will run for 7 minutes before
automatically exiting.

1.3 The IDL Software System 5

RSI also sells a student version of IDL. If you qualify, you can purchase the
student version for your personal computer at a reduced price. At the present
time, the student version of IDL is a fully functional copy of the next-to-last
release of IDL.

Another useful source of IDL information is the Usenet newsgroup
comp.lang.idl−pvwave. (PV-WAVE is a data analysis and visualization
package based on IDL that is produced and sold by Visual Numerics, Inc.
At one time IDL and PV-WAVE were identical, but the two products have
diverged over the years. The basic syntax and functionality remain the same,
however.) Do not go to the newsgroup comp.lang.idl, which concerns
the Interface Definition Language mentioned earlier. If you are not famil-
iar with Usenet or newsgroups, ask your local system administrator for help.
Comp.lang.idl−pvwave is a bulletin board for the exchange of questions
and answers about IDL. Newcomers to comp.lang.idl−pvwave are encour-
aged to read the newsgroup for at least a few days before posting questions
in order to learn the Usenet rules of etiquette. The volume of traffic in
comp.lang.idl−pvwave is generally low. If you are spending a lot of time
programming in IDL, it will be worth your time to read the newsgroup on a
daily basis.

1.3 The IDL Software System

The heart of the IDL software system is the interpreter, which translates IDL
statements into instructions that the computer can understand and execute.
You can use IDL in its simplest form by simply typing idl at the system
prompt in a terminal window. IDL must be installed on your computer and
located where your user environment can find it. (On a computer running
Windows, you double-click the IDL icon, which starts the full IDL Devel-
opment Environment, which is discussed below.) A snapshot of IDL running
in a terminal window is shown in Figure 1.1. When using IDL in a terminal
window, you can enter commands and execute them or you can run more
complex programs stored in files. This approach to running IDL is referred to
as the command-line environment. To create and save programs, you will need
to use a separate program mentioned earlier, a text editor. Basics of using the
command-line environment are covered in Chapter 3.

In addition to the command-line interpreter, IDL has device drivers, which
are software packages that allow IDL to display graphics on different types
of graphic devices. On Microsoft Windows systems, IDL uses the standard
Windows graphics functions to display graphics windows. On Unix and Mac
OS X systems, a software package called X-Windows is used to display graphical
output on the screen. X-Windows is a separate software package that must be
running at the same time as IDL. If you are using this book in a class, your
instructor will show you how to start IDL and X-Windows on your computer.

IDL also includes a device driver for creating PostScript output. This is
the preferred method for creating printed graphical output, although other

Chapter 1

6 Introduction

FIGURE 1.1 IDL running at the command line in a terminal window. (Screen capture)

options are available. Creating printed output in IDL will be covered in several
different chapters in Part IV of this book.

Recent versions of IDL include a complete software Development Environ-
ment (IDLDE) that can be used to run and edit IDL programs and to display
graphics. To start IDLDE you enter idlde at the command line instead of idl.
On Mac OS X and Unix systems, the IDL Development Environment uses
X-Windows. On Windows systems, you double-click the IDL icon. A snap-
shot of the IDL Development Environment running on a Mac OS X system
is shown in Figure 1.2. With newer versions of Windows, it is not possible to use
the command-line version of IDL. When you start IDL on Windows systems it
will automatically use the Development Environment version.

The Development Environment provides windows for editing programs,
entering commands, viewing text output, viewing graphics, debugging, and
managing program files. On Unix, Linux, and OS X systems, the Develop-
ment Environment uses the X-Windows system to display all of the necessary
windows.

Although it is possible to use the Development Environment on any sys-
tem on which IDL runs (Unix, Linux, OS X, or Windows), this book does
not make specific reference to DE functions. There are several reasons for
this. First, the DE on X-Windows systems is somewhat clunky compared
to the Windows version. As a result, there is less incentive to use the DE
on non-Windows systems. Second, the DE has a complicated interface with
many menus, buttons, and settings. It takes up a great deal of screen space,
and many of the functions are of little use to beginning programmers. This

1.3 The IDL Software System 7

FIGURE 1.2 The IDL Development Environment. (Screen capture)

book concentrates on the IDL language, not on the Development Envi-
ronment. Third, it is not necessary to use the DE to learn IDL. To keep
this book from growing even longer than it is, material on the DE has
been omitted. Fourth, at the author’s institution we have Unix labs and
Mac labs, but no PC (Windows) labs, and we customarily do not use the
DE. Fifth, many users prefer a different text editor to the one included in
the DE. (Unix and Mac OS X users can find a very nice emacs mode for
IDL. Search comp.lang.idl−pvwave for references to emacs.) Finally, this
is largely a matter of personal taste, so if you find that you prefer to use the
Development Environment, please do so. Microsoft Windows users will, of
course, have to use the DE.

Chapter 1

2

IDL Manuals and Books

This chapter describes some of the features of this book, the parts of the IDL
user manuals that you are most likely to use, and a few of the third-party
books that are available on IDL programming.

2.1 Features of This Book

2.1.1 Example Programs and Data

Because IDL is an interactive language, many of the programming examples
in this book can be executed by typing the commands at the IDL prompt.
Here is a one-line example:

IDL> print, ‘Hello, world.’

Hello, world.

This sort of example appears in the book exactly as it would appear on
your computer terminal if you executed the same commands. As you work
through this book, it is a good idea to have an IDL session open on your
computer so that you can try the examples and experiment on your own.

Sequences of IDL commands that are too long to enter at the command
line can be saved in program files. These files can be executed in different ways
(more on this later). IDL program files have the suffix “.pro”, for example,
animate.pro or surface1.pro. All of the example programs and data files
used in this book are available at

http://idl.tamu.edu

You should download those files to your computer and place them in your
IDL search path. Details of how to do that are in Chapter 3 and on the web
site. A list of the program files and short descriptions of each program are
included in Appendix B, organized by topic.

2.1.2 Figures and Illustrations

Most of the figures in this book were created using IDL. The programs that
created each figure are included with the example programs. Furthermore,

9

10 IDL Manuals and Books

each figure caption includes the name of the IDL procedure that generated
the figure. The source is either screen capture (a snapshot of the actual computer
screen), the program name (for example, LINEGRAPH1), or not IDL (if the
figure was not created with IDL).

In order to keep the programming examples in this book short and
clear, and also include good graphics, multiple versions of some pro-
grams are included. For example, surface1.pro plots a wiremesh-type
surface plot on the computer screen. A longer version of the same program,
surface1_ps.pro creates a more detailed plot (including labels, for example)
and can optionally save the graphics output to a PostScript file. The PostScript
file created by surface1_ps.pro was used to make Figure 18.4. Both versions
of the program are included with the example programs.

2.2 IDL Documentation from Research Systems

All told, RSI provides thousands of pages of documentation divided among
many different manuals. Although the sheer size of the IDL manuals can be
daunting, the online files provided by RSI usually make it easy to find what
you need.

The IDL manuals are included with the IDL software in the form of
Portable Document Format (PDF) files. These files can be viewed with the
free Adobe Acrobat Reader software (and with some third-party software).
The manuals consist of a number of volumes (“books”). Each volume is in
a separate PDF file. The files are located in the /help directory of the IDL
distribution. On a Unix or OS X system, the files are typically found in
/usr/local/rsi/idl_6.1/help (for IDL version 6.1). You may need to ask
your system manager for the location of the files on your computer.

To accommodate older operating systems that do not allow long file
names, the PDF files have somewhat obscure names like getstart.pdf,
datamine.pdf, and onlguide.pdf. For convenience I generally create a link
(also called a shortcut or alias) to the file onlguide.pdf so that I can open it
easily. This file has links to all of the other RSI documentation. You should
not move or rename any of the PDF files. If you do, Acrobat Reader may not
be able to follow the links from one book to another.

The complete IDL documentation can be accessed from the Online Guide
(onlguide.pdf). While working through this book, the two manuals that
you will use most often are:

IDL Reference Guide This volume has descriptions of the hundreds of
built-in IDL procedures and functions. Once you learn basic IDL syn-
tax, you will find yourself referring to this volume much more often than
any of the others. To find a description of a procedure or function, click
on IDL Reference Guide, then IDL Commands, then Alphabetical List
of Routines. This provides quick access to each procedure definition.

Scientific Data Formats This manual contains descriptions of the proce-
dures and functions used to read and write netCDF, CDF, and HDF

2.3 Other IDL Books 11

data files. These files are commonly used in science and engineering
to store scientific data. Reading and writing netCDF files is covered in
Chapters 13 and 14.

The PDF files contain embedded links to make it easy to find related material.
For example, click your way to the description of the BYTE function in IDL
Reference Guide. On the first page you will see a link to the section of Building
IDL Applications that describes type-conversion functions. At the bottom of
the next page are links to the reference pages for the other type-conversion
functions in IDL Reference Guide (these include DOUBLE, FLOAT, LONG, and
others).

To find documentation for a particular topic, you can use the following:

IDL Master Index As the name indicates, this is a combined index to all of
the volumes of manuals.

IDL Quick Reference This contains a list of all the IDL procedures and
functions sorted into categories, such as Array Creation or Color Table
Manipulation.

As you learn more about IDL, or to learn details of a particular topic, you
can refer to:

Using IDL This is a reasonably good introduction to IDL for experienced
programmers. It is difficult for beginners, though.

Building IDL Applications This is a typical computer-language reference
manual. It contains descriptions of IDL syntax, data types, input and
output methods, and more.

Image Processing in IDL As the name indicates, this volume covers image
display and analysis techniques, as well as the use of color in IDL.

The IDL manuals, like most computer manuals, make it easy to find
something if you already know its name. On the other hand, if you are trying
to find a procedure to search an ordered list of numbers, how would you
know that it is called VALUE_LOCATE? (The sort function is called SORT, but
the search function is called VALUE_LOCATE. As you can see, some procedure
names are not as obvious as one might hope!) For that you must use the
Master Index or IDL Quick Reference.

Throughout the rest of the book, there will be marginal notes like this
See the VALUE_LOCATE

function in IDL
Reference Guide.

example to point you to particular parts of the IDL documentation.

2.3 Other IDL Books

There are a number of books available on IDL that are not produced by RSI.
Two of these may be of interest to experienced programmers who are new
to IDL.

The first is Practical IDL Programming, by Liam E. Gumley (Gumley, 2002).
This book covers a large part of the IDL language and toolkits. It has

Chapter 2

12 IDL Manuals and Books

many examples, and is a good choice for a reference book to follow this
one. Like this book, Practical IDL Programming does not cover how to use
IDL objects. Liam Gumley maintains a web site at http://www.gumley.com
with information about the book and some very useful sample programs.

The second book is IDL Programming Techniques, Second Edition by
David W. Fanning (Fanning, 2002). This is also a relatively comprehen-
sive look at IDL, and is particularly strong in the area of graphics output.
It includes substantial material on writing programs with graphical user inter-
faces (widget interfaces). Finally, it introduces the ideas of object-oriented
programming and shows how to write basic object-oriented programs in
IDL. David Fanning has an extensive web site of IDL-related material
(http://www.dfanning.com) with a wide variety of useful IDL programs,
as well as very helpful explanations of some of the more obscure corners of
the language.

3

Interactive IDL

This chapter is a quick introduction to using IDL for interactive calculations.
The goal of this chapter is to get you started using IDL, entering interactive
commands, and plotting graphs.

3.1 IDL Commands

The following IDL procedures and functions are used in this chapter:

■ PRINT procedure

■ EXIT command

■ .continue executive command (.c)

■ HELP procedure

■ FINDGEN function

■ LINDGEN function

■ PLOT procedure

■ WINDOW procedure

■ XSURFACE procedure

3.2 Setting Up IDL

To get the most from this chapter, you should be sitting at your computer with
IDL running. You need to follow several steps before IDL will run correctly.
These include:

1. Install and license IDL and set up the IDL environment so that the
operating system can find the main IDL program and related files.

2. Set up your personal IDL directory and optionally install the example
programs and data files from this book.

3. Set user preferences for IDL.

If you have problems with the initial installation and configuration, consult
your system administrator or local computer guru for help.

13

14 Interactive IDL

3.2.1 Installing and Licensing IDL

If IDL is not already installed on your computer, follow the directions in
the manual Installing and Licensing IDL on the IDL installation CD-ROM.
Separate installation procedures are provided for Windows, Unix, and Mac
OS X installations. If you do not have administrative privileges for your
computer, you will need to ask your system administrator to install IDL.

On Unix systems, including Mac OS X, when a user types a command at
the system prompt, the user’s Unix shell program is responsible for finding the
desired program and executing it. For Unix and Mac OS X users, instructions
for setting up your shell so that it can find IDL are in the chapter Setting Up
and Running IDL on UNIX/Macintosh in Installing and Licensing IDL.

On Windows systems, IDL is started by double-clicking the IDL icon.

3.2.2 Your Personal IDL Directory

Before using IDL you should create a directory in which to store your IDL
program files. Within your home directory create a subdirectory called idl.
Note the use of lowercase for the directory name.

All of the example programs and data files used in this book can be down-
loaded and run on your computer. To download the example programs and
data, go to

http://idl.tamu.edu

Follow the links to the example programs and then select the appropriate
download version for your computer. When uncompressed, the example pro-
grams and data require approximately 20 MB of disk space. Uncompress the
downloaded file within your idl directory. The result is a subdirectory named
bowman containing the example programs and data sets.

If you are new to IDL and have not already created a startup.pro file,
copy the file startup.pro in the bowman subdirectory up one level to the idl
directory.1 If you do not wish to download the example programs and data
sets, you should at least download the example startup.pro file and place it
in your idl directory.

When you finish installing the example programs, the contents of your idl
directory should look like this:

idl/

bowman/

add_arrays.pro

.

.

1 Copying thestartup.pro file instead of moving it leaves the original file in thebowman
directory. This can be a useful reference in the event you have problems after making
changes to your startup.pro file.

3.2 Setting Up IDL 15

data/

doc.html

.

.

image/

.

.

ps/

.

.

wx_ob__define.pro

startup.pro

Dots indicate that items have been omitted from the list. A slash at the end
of a name indicates that the item is a directory. The file doc.html contains
descriptions of each of the example programs. You can view the file with any
web browser. The image and ps directories contain images and PostScript
files, respectively, created by the example programs.

You can create additional subdirectories within the idl directory to orga-
nize your program files. For example, you may want to create directories
called image and ps within idl to hold image or PostScript output created
by your own programs. When you create new directories, I recommend that
you follow the Unix convention and use names that are entirely lowercase.

3.2.3 Setting IDL Preferences

User preferences are specified by the IDL startup file. This file contains IDL
commands that are automatically executed when IDL is started. This section
explains how to set up IDL to use the startup.pro file in your idl directory.2

As you gain experience with IDL, you can customize the startup.pro file as
needed.

Designating the Startup File

For Windows and IDLDE users, the location of the startup.pro file is set
by using the Preferences menu item on the File menu. Select Preferences
from the File menu and then click the Startup tab. Click the Select
Startup File... button and then navigate to the startup.pro file. Select
the startup.pro file and click OK.

For Unix and Mac OS X users running from the command line, the loca-
tion of the startup file is contained in the user’s shell variable IDL_STARTUP.
C shell and t-shell users should have something like this in their .cshrc or
.tcshrc files:

setenv IDL_STARTUP ˜/idl/startup.pro

2 The file does not have to be named startup.pro, but it is customary.

Chapter 3

16 Interactive IDL

For Bourne shell and k-shell users, their .profile file should contain a line
like this:

export IDL_STARTUP=$HOME/idl/startup.pro

The tilde or $HOME indicates the user’s home directory. These shell
commands set the user’s shell environment variable IDL_STARTUP to
˜/idl/startup.pro. This is how it looks on my computer. I can print
my home directory with

csrp3> echo ˜

/Users/bowman

or

csrp3> echo $HOME

/Users/bowman

And I can print my IDL_STARTUP variable with

csrp3> echo $IDL_STARTUP

/Users/bowman/idl/startup.pro

My home directory is /Users/bowman, and my IDL_STARTUP variable is
set to /Users/bowman/idl/startup.pro. That file is executed each time
I start IDL.

Contents of the Example Startup File

The example startup.pro file that you downloaded above looks like
this:

;Set compiler options

COMPILE_OPT IDL2

;User’s directory for IDL programs

!PATH = !PATH + ’:’ + EXPAND_PATH(’+idl’)

;Have IDL provide backing store

DEVICE, RETAIN = 2

;Path to example programs and data

DEFSYSV, ’!Bowman’, (FILE_SEARCH(’idl/bowman/’, $

/FULLY_QUALIFY_PATH, /MARK_DIRECTORY))[0]

;Double precision degrees to radians

DEFSYSV, ’!DDTOR’, !DPI/180.0D0, 1

3.2 Setting Up IDL 17

;Double precision radians to degrees

DEFSYSV, ’!DRADEG’, 180.0D0/!DPI, 1

;Speed of light in vacuum (m sˆ−1)

DEFSYSV, ’!Speed_of_light’, 299792458.0D0, 1

;Planck constant (J s)

DEFSYSV, ’!Planck’, 6.62606876D−34, 1

;Universal gas constant (J Kˆ−1 kmolˆ−1)

DEFSYSV, ’!Universal_gas’, 8314.4720D0, 1

;Stefan−Boltzman constant (W mˆ−2 Kˆ−4)

DEFSYSV, ’!Stefan_Boltzmann’, 5.670400D−08, 1

;Avogadro’s number (molecules kmolˆ−1)

DEFSYSV, ’!Avogadro’, 6.02214199D+26, 1

;Gravitational constant (J Kˆ−1)

DEFSYSV, ’!Gravitation’, 6.673D−11, 1

;Boltzmann’s constant (N mˆ2 kgˆ−2)

DEFSYSV, ’!Boltzmann’, 1.3806503D−23, 1

The lines beginning with semicolons are comments.
The first three IDL commands in this file are the most important. The

first is

COMPILE_OPT IDL2

which tells IDL to create 4-byte integers by default (LONGs) rather than 2-byte
integers (INTs). It also tells IDL to require the use of square brackets, [and],
rather than parentheses, (and), for array subscripts. Parentheses can be used
only for function references, for example, SIN(x). More information on these
topics can be found in Chapters 5 and 15, respectively.

The second IDL command is:

!PATH = !PATH + ’:’ + EXPAND_PATH(’+idl’)

This line adds your personal IDL directory idl to the IDL search path. The
IDL search path is the list of directories that IDL searches when you enter a
command at the IDL prompt. By adding your idl directory and its subdi-
rectories to the search path, IDL can automatically find your programs and
compile and run them. If you store IDL programs in locations outside the
idl directory, IDL will not be able to find them automatically unless you
add those directories to the search path.

The IDL search path is stored in the IDL system variable !PATH. The excla-
mation point is part of the variable name. Names of all IDL system variables
begin with an exclamation point. System variables are global variables that can
be accessed from within any IDL program or from the command line.

When you start IDL, !PATH is initially set so that IDL can find all of the
built-in procedures and functions. Users should add their personal directo-
ries at the end of the search path, so that IDL finds built-in functions first.

Chapter 3

18 Interactive IDL

The above command adds the user’s idl directory to the search path. The +

sign tells the EXPAND_PATH function to find all of the subdirectories within
the idl directory (recursively). These are also added to the search path.

The third IDL command (DEVICE, RETAIN = 2) ensures that graphics
windows are redrawn when they are covered by other windows and then
uncovered. On Unix and Mac systems, this can also be accomplished by
changing your X-Windows settings.

The remaining lines in the startup.pro file define optional system vari-
ables by using the DEFSYSV command. The first example defines a system
variable !Bowman that contains that path to the example programs and data.
The remaining lines are primarily physical constants. Defining these con-
stants as system variables, rather than entering them explicitly into each
program that uses them, ensures that consistent values are used throughout
your programs. As an example,

IDL> print, !planck

6.6260688e−34

Because I use IDL in atmospheric science classes, my startup file includes a
number of physical constants, such as the speed of light. For brevity, some of
the constants included in the example startup file have been omitted from the
listing above. The point to remember is that the startup file is a good place to
define constants that you want to be sure have the same value in all of your
programs. This helps to ensure consistency in your numerical calculations.

3.3 Starting and Exiting IDL

Once the necessary environment variables have been set, the idl directory
has been created, and the startup.pro file has been designated, it’s time to
start IDL.

IDL is started by entering idl at the system prompt or by double-clicking
the IDL icon in Windows. Most Unix commands are given in lowercase
letters. Unix is case sensitive, and unless special arrangements have been
made, typing IDL or Idl will result in an error message:

csrp3> IDL

IDL: Command not found.

Depending on other factors, the error message may be obscure:

csrp3> Idl

Idl: Permission denied.

Both of these error messages really mean “There is no executable file (program)
with exactly that name on this computer”. If IDL does not start, and you get
an error message that you cannot decipher, ask your system administrator for
help or contact RSI.

3.4 Interrupting and Restarting IDL Calculations 19

When you start IDL, you should see something like this:

csrp3> idl

IDL Version 6.0, Mac OS X (darwin ppc m32). (c) 2003, Research Systems, Inc.

Installation number: 8233−12−6.

Licensed for use by: DEPARTMENT OF METEOROLOGY

IDL> print, 3 + 5

8

IDL> quit

% Attempt to call undefined procedure/function: ’QUIT’.

% Execution halted at: $MAIN$

IDL> exit

csrp3>

In this case, IDL is running on a computer named csrp3. The Unix command-
line prompt csrp3> includes the computer’s name. Your command-line
prompt will generally be different.

As it starts up, IDL prints the version number and the type of operating
system on which it is running. In this case, it is Mac OS X, which is a Unix-
based operating system. The next line is the license number, followed by the
name of the licensee. After completing the start-up process, IDL displays
the input prompt, IDL>. When you see this prompt you can enter IDL
commands to do calculations or create graphics. Here we printed the result
of the operation 3 + 5.

As discussed earlier, if you are running on a Unix or Mac OS X system, you
should also have X-Windows running so that you can display graphics. Once
you have IDL running, you can test whether X-Windows is also running by
entering window at the IDL prompt. It should open a new, empty graphics

See the WINDOW

procedure in IDL
Reference Guide.

window. If you are using the IDL Development Environment (if, for example,
you are running on a Windows computer), graphics windows should open
automatically.

To exit IDL and return to the command line, enter exit at the IDL prompt.
As you can see above, IDL does not recognize the command quit. It prints
an error message in response. Only exit will end the current IDL session.

3.4 Interrupting and Restarting
IDL Calculations

Many IDL operations are very quick and are completed immediately after
the command is entered. When working with large arrays of data or lengthy
programs, however, some operations can require large amounts of time to
complete (theoretically, as long as necessary). While IDL is performing cal-
culations, the IDL prompt is not available to the user, and new commands
cannot be executed. Depending on the type of IDL license, however, multiple
IDL sessions can usually be started in separate terminal windows. This allows

Chapter 3

20 Interactive IDL

the user to work interactively while long calculations are done in a separate
IDL session.

Sometimes it is necessary for the user to interrupt calculations in progress.
For example, while testing a new program, the user may realize that the pro-
gram contains an error (bug). Rather than wait for the program to complete
(or crash), the calculation can be interrupted by pressing control−c on the
keyboard. When this is done, IDL will stop execution as soon as it completes
the currently executing IDL command (that is, the current line of the pro-
gram). Because execution of a single line may take quite a lot of time, the
program may still not be interrupted immediately. If you cannot wait for the
current command to finish, the only option is to kill the IDL session by using
features of the operating system (for example, the Unix kill command or the
Mac OS X Activity Monitor).

To continue execution once it has been interrupted, enter .continue at the
command line. (The dot is part of the command.) This can be abbreviated .c.

The .continue command is an example of an IDL executive command.
IDL has a small set of executive commands that are used to compile IDL
programs, control IDL sessions, and control IDL execution. A list of all of
the IDL executive commands is given in Chapter 4 of Using IDL. To use this
book, however, you will only need to know two executive commands. One
is the .continue (.c) command just mentioned. The other is the .compile
executive command, which, as the name indicates, is used to compile IDL
programs. The .compile command can be abbreviated .com. (Programs can
also be compiled with the .run command, which can be abbreviated .r.
Chapter 15 contains more on compiling programs.)

3.5 Simple IDL Statements

It is a tradition in computer programming textbooks for the first example
program to produce the greeting “Hello, world.” In IDL, this is quite simple

IDL> print, ’Hello, world.’

Hello, world.

The PRINT command tells IDL to print in the terminal window the results
See the PRINT

procedure in IDL
Reference Guide.

of evaluating the expressions that follow the PRINT command. There can be
more than one expression, separated by commas. In this case, there is only
one expression, a literal string containing the phrase “Hello, world.” The
beginning and end of the string are indicated by the single quotation marks.
Note that the quotation marks do not appear in the output, but the period,
which is inside the quotes, does.

In IDL you can use either single or double quotes to delimit a string
See String Constants
in Building IDL
Applications.

(starting and ending quotes must match):

IDL> print, "Hello, world."

Hello, world.

3.5 Simple IDL Statements 21

This is handy for occasions when you want to include quotation marks (or an
apostrophe) inside a string:

IDL> print, "Ken’s world."

Ken’s world.

Generally this book will use single quotes, except in cases where nested quotes
(quotes within quotes) are needed.

IDL commands and variable names are not case sensitive. This means that

IDL> print, ’Hello, world.’

Hello, world.

and

IDL> PRINT, ’Hello, world.’

Hello, world.

produce exactly the same result. IDL does not care whether you type the
PRINT command as print or as PRINT, or even as PrInT.

Literal strings, however, are case sensitive, so

IDL> print, ’Hello, world.’

Hello, world.

and

IDL> print, ’HELLO, WORLD.’

HELLO, WORLD.

give different results.
In this book, I use lowercase letters for IDL commands when entering them

at the command line. This saves some effort when typing and is the way that
people typically work when trying out short calculations interactively. When
writing programs, however, I follow a strict rule of entering all IDL commands
in uppercase. Generally, variable names will be lowercase. (Except for instances
when upper case makes sense, such as writing T instead of t to represent
temperature.) Using upper- and lowercase consistently makes it much easier
to see the structure of a program. This, in turn, makes it easier to find errors in
programs, which is an extremely important part of programming. Guidelines
for writing readable programs and examples of good and bad programming
style are given in Appendix A.

Let’s move on and try some numerical calculations:

IDL> print, 3 + 5

8

Chapter 3

22 Interactive IDL

IDL generally does not care whether you include spaces or not, because it
looks for commas to separate items in a list. So the following statements
produce the same output:

IDL> print,3+5

8

IDL> print, 3 + 5

8

IDL may not care, but for humans there are big differences in the readability
of the three versions of this simple statement. The human brain is very good
at identifying patterns (and deviations from patterns) in visual material. Later
on I will offer guidelines on how to lay out programs so as to make it as easy
as possible to detect errors.

The command above tells IDL to evaluate the expression 3 + 5 and print
the result. Obviously IDL knows about numbers, as well as strings, and how
to carry out arithmetic operations. By the way, the following is also a valid
IDL command

IDL> print, ’3’ + ’5’

35

You can see from this that the + sign has two meanings in IDL. If the operands
See String
Concatenation in
Building IDL
Applications.

are numbers, then it means addition. If the operands are strings, it means
concatenation (that is, stick the strings together). In this example, the 35 is
actually a string, not a number.

Note that the results of the operations above (a number or a string) are
printed and then discarded. They are not automatically stored for later use.
In order to save results, you must assign the result to a variable (more on
that shortly).

3.6 Getting Information

If you have any question about a particular expression or variable, there is a
See the HELP procedure
in IDL Reference Guide.

powerful, built-in facility to answer those questions, HELP:

IDL> help, 3 + 5

<Expression> LONG = 8

In this case, HELP tells us that 3 + 5 is an expression. It has a type of LONG
and a value of 8. For comparison,

IDL> help, ’3’ + ’5’

<Expression> STRING = ’35’

3.7 Variables 23

You can always use HELP at the command line. It is usually the quickest and
easiest way to sort out a complex operation, and it is essential for diagnosing
errors in your program (debugging).

IDL can evaluate standard arithmetic expressions:

IDL> print, (3 + 5) * (2 + 4)ˆ3

1728

Note that parentheses are used in the traditional manner to indicate the order
of operations. The ˆ character indicates exponentiation.

3.7 Variables

In all of the examples so far, we have evaluated an expression and then simply
See Variables in
Building IDL
Applications.

printed the result. Obviously there are times when it is necessary to save the
results of a calculation for later use. In IDL, as in many computer languages,
this is done with the equal sign, as in:

IDL> x = 3 + 5

IDL> help, x

X LONG = 8

IDL> print, x

8

In the first statement above, the equal sign means “evaluate the expression on
the right-hand side of the equal sign, store the result in computer memory,
and use the name x to access the stored value.” The thing named x is called
a variable because the actual value assigned to that name can change. Note
that this use of the equal sign is very different from the usual mathematical
meaning of the equal sign. Typing “help, x” tells us that IDL has created a
variable named x. The type of the variable x is LONG, and its value is 8.

The fundamental operation of assignment is one area in which IDL is differ-
ent from many other computer languages. In many languages, the properties
(type and size) of a variable must be defined before it is used. In IDL, on the
other hand, if a variable does not exist, a new variable is automatically created
with properties that match those of the expression on the right-hand side. Similarly,
in some languages it is not possible to assign an expression of one type to a
variable of another type. In IDL, on the other hand, if a variable already exists,
assigning a new value to it causes the old value in memory to be destroyed
and replaced with the value of the expression on the right-hand side, even if
the type or structure of the variable is different. Here is an example:

IDL> x = 6.0

IDL> help, x

X FLOAT = 6.00000

IDL> x = 3 + 5

Chapter 3

24 Interactive IDL

IDL> help, x

X LONG = 8

First, a variable named x is created and given the value of 6.0. The HELP

command tells us that x is a floating-point variable. Executing the statement
x = 3 + 5 destroys the old variable and replaces it with a LONG type variable
with a value of 8.

This mutability of variables can be disconcerting to a Fortran or C pro-
grammer. It has both advantages and disadvantages. If you don’t keep track of
your variables, it is possible to make some very obscure mistakes. IDL will not
tell you if you destroy an existing variable or change its type, size, or value.
On the other hand, there are considerable advantages to being able to create
variables on the fly. For one thing, the lengthy type declaration statements of
Fortran and C are unnecessary. Programs are frequently much shorter in IDL
than in Fortran or C. Partly as a result of this, IDL programs can usually be
written much more quickly than equivalent Fortran or C programs.

As in any computer language, it is the responsibility of the programmer
to keep track of variable names and types. It is important to pick variable
names carefully so that their type and meaning are as obvious as possible.
As a simple first step, you should try to follow the programming convention
of using names that start with i, j, k, l, m, or n for integers, and starting
floating-point variable names with other letters. This is also consistent with
general mathematical usage. Like most style rules, this one is not absolute,
but you should have a good reason for breaking it.

3.8 Arrays

In addition to simple variables that have a single value (these are called
See Arrays in Building
IDL Applications.

scalars), IDL has powerful features for working with arrays. One-dimensional
arrays are often referred to as vectors. Two-dimensional arrays can be used to
store matrices for linear algebra calculations. An array is a multidimensional
rectangular grid of values. IDL allows up to seven dimensions. The best way
to understand arrays is to look at some examples.

The built-in IDL function FINDGEN produces an array of numbers
See the FINDGEN

function in IDL
Reference Guide.

in sequence starting at 0.0. (FINDGEN stands for Floating-point INDex
GENerator.) The simplest arrays are one-dimensional.

IDL> x = findgen(5)

IDL> print, x

0.00000 1.00000 2.00000 3.00000 4.00000

In the first IDL statement, the constant 5 is the argument of the FINDGEN

function. In the second statement, x is the argument of the PRINT procedure.
Note that there is a difference in the notation or syntax for functions and
procedures. Functions use parentheses around the argument list, whereas
procedures use only commas. If the function or procedure has more than one

3.8 Arrays 25

argument, they are separated by commas. Functions and procedures are used
somewhat differently, so don’t try to use a function like a procedure, or vice
versa. IDL will let you know if you do!

IDL> findgen(5)

findgen(5)

ˆ

% Syntax error.

IDL> y = print, x

y = print, x

ˆ

% Syntax error.

You can learn more about the array x that was created above by using HELP:

IDL> help, x

X FLOAT = Array[5]

The result of the FINDGEN command is an array (list) of five numbers in
sequence from 0.0 to 4.0. The “F” character at the beginning of the FINDGEN
command indicates that the result should be a floating-point array of num-
bers. You can identify a floating-point number by the presence of a decimal
point. This ability to automatically create arrays of numbers helps make IDL
programs short and easy to read.

In IDL you can refer to any of the individual elements in an array using
subscripts. IDL subscripts start at 0, not 1. If there are n elements in the array,
the indices run from 0 to n − 1. (This is the same as in C, but is different
from Fortran. In Fortran array indices run from 1 to n.)

IDL> print, x[0]

0.00000

IDL> print, x[4]

4.00000

Note that parentheses are used to specify arguments to the function
FINDGEN, similar to standard mathematical notation, but square brackets
are used for array subscripts. You should always use square brackets for array
subscripts. For reasons too complicated to go into here, it is possible to use
parentheses, but it is not a good idea.

If you try to access an array element that does not exist (such as a negative
array index or an index that is too large), IDL prints an error message and
stops execution:

IDL> print, x[−1]

% Attempt to subscript X with <LONG (−1)> is out of range.

Chapter 3

26 Interactive IDL

% Execution halted at: $MAIN$

IDL> print, x[5]

% Attempt to subscript X with <LONG (5)> is out of range.

% Execution halted at: $MAIN$

There are functions like FINDGEN to generate sequences of each type
See the LINDGEN

function in IDL
Reference Guide.

of IDL variable. LINDGEN, for example, will generate an array of LONG

integers:

IDL> i = lindgen(4)

IDL> print, i

0 1 2 3

To make a two-dimensional array, you specify the size of each dimension
as arguments to FINDGEN. (Much more on arguments in Chapter 15.) This is
a rectangular array with dimensions of size 3 and 4:

IDL> x = findgen(3, 4)

IDL> print, x

0.00000 1.00000 2.00000

3.00000 4.00000 5.00000

6.00000 7.00000 8.00000

9.00000 10.0000 11.0000

Note that this is different from an array with dimensions of size 4 and 3,

IDL> x = findgen(4, 3)

IDL> print, x

0.00000 1.00000 2.00000 3.00000

4.00000 5.00000 6.00000 7.00000

8.00000 9.00000 10.0000 11.0000

although the values of the elements of the array are the same. The definition
of the shape of the array is different in the two cases.

To access individual elements, you can use subscripts. Remember that
indices start at 0:

IDL> print, x[2,1]

6.00000

IDL will generally do an arithmetic operation on an entire array with a
single statement:

IDL> x = findgen(5)

IDL> print, x

0.00000 1.00000 2.00000 3.00000 4.00000

3.9 Graphics 27

IDL> y = xˆ2

IDL> print, y

0.00000 1.00000 4.00000 9.00000 16.0000

Most arithmetic operations on arrays can be written in IDL without the
explicit use of program loops. These are referred to as array expressions. IDL
programs can be written with explicit loops, like Fortran, but IDL almost
always runs faster when you use array expressions instead.

3.9 Graphics

IDL has powerful built-in graphics capabilities. Here are some examples.
Figure 3.1 shows the results of the following commands:

IDL> x = findgen(10)

IDL> y = xˆ2

IDL> window, xsize = 400, ysize = 400

IDL> plot, x, y

The WINDOW command is not required. IDL will automatically open a graphics
window when one is needed. In this case the WINDOW command is used with
the XSIZE and YSIZE keywords to ensure that the output window is square
and the graphs have the same shape as the examples in the figures below. Feel
free to experiment with windows of different shapes. In this case the PLOT

100

80

60

40

20

0
0 2 4 6 8 10

FIGURE 3.1 A simple line graph. (LINEGRAPH1)

Chapter 3

28 Interactive IDL

command has two arrays as arguments, x and y. Each array has the same
See the PLOT procedure
in IDL Reference Guide.

number of elements—five in this case. The PLOT command plots each pair of
numbers on a standard two-dimensional graph, with x for the abscissa and y

for the ordinate, and connects the points with a solid line. As we will see later,
the appearance of graphs can be customized in many ways.

Note that the abscissa variable does not have to be named x and the
ordinate y. This form works just as well:

IDL> plot, y, x

The results are shown in Figure 3.2. Note that the two graphs are different!
It is not the names of the variables that matter, it is the order of the arguments
to the PLOT command. With PLOT, the first argument is always the abscissa
and the second the ordinate.

A quick note on an important built-in IDL convenience. The cursor (arrow)
keys on your keyboard can be used to retrieve and edit previously entered
commands. To make a quick change to the PLOT command, use the up arrow
to recall the command, then use the left arrow and the Delete key to replace
the 5 with a 10. Hit Enter or Return to execute the revised command.

IDL> plot, findgen(10)ˆ2

or to replace the 2 with a 3

IDL> plot, findgen(10)ˆ3

10

8

6

4

2

0
0 20 40 60 80 100

FIGURE 3.2 The order of the arguments is the reverse of that in Figure 3.1. (LINEGRAPH2)

3.10 Graphics 29

The cursor keys can save you a great deal of typing when you are working
interactively.

It is also possible to create interactive programs with a graphical user interface
See the XSURFACE

procedure in IDL
Reference Guide.

(abbreviated GUI and pronounced gooey) entirely in IDL. Here is an example
that is provided by RSI as part of IDL:

IDL> device, decomposed = 1

IDL> xsurface, dist(50)

% Compiled module: XREGISTERED.

% Compiled module: CW_PDMENU.

% Compiled module: XMANAGER.

The XSURFACE window is shown in Figure 3.3. Click the Done button when
you are finished playing.

FIGURE 3.3 XSURFACE is an IDL application with a graphical user interface (GUI).
(Screen capture)

Chapter 3

30 Interactive IDL

3.10 Summary

In this chapter you learned how to start IDL, how to do simple calculations,
and how to plot basic one- and two-dimensional graphs.

This chapter also described how to interrupt IDL calculations with
control−c and restart them with .c (or .continue).

50 40

30

20

10

50
40

30
20

10
0 0 10 20 30 40 50

40

30

20

10

0
0 10 20 30 40 50

10

10

30

10

40

30

20

10

50
40

30
20

10
0 0 10 20 30 40 50

40

30

20

10

50
40

30
20

10
0 0 10 20 30 40 50

0

0 0

FIGURE 3.4 Some other types of graphics possible with IDL. (MULTIGRAPH) Also see
Figure 3.4 in color in the color plates section.

3.11 Exercises 31

3.11 Exercises

Enter the following commands at the IDL prompt. Use the HELP or PRINT
command to learn the characteristics of the variables that you create.

1. b = bindgen(5)

i = indgen(5)

j = lindgen(5)

a = dindgen(3, 3)

c = cindgen(2, 2)

2. Try the following commands to see some of the other types of graphics
that are possible with IDL.

IDL> !p.multi = [0, 2, 2]

IDL> z = dist(50)

IDL> contour, z, /follow

IDL> surface, z

IDL> shade_surf, z

IDL> device, decomposed = 0

IDL> loadct, 39

IDL> shade_surf, z, shades = bytscl(z)

IDL> !p.multi = 0

The results of the preceding commands are shown in Figure 3.4.

Chapter 3

50
40 30 20 10 50

40
30

20
10

0
0

10
20

30
40

50

40 30 20 10 0 0
10

20
30

40
50

10

10

30

10

40 30 20 10 50
40

30
20

10
0

0
10

20
30

40
50

40 30 20 10 50
40

30
20

10
0

0
10

20
30

40
50

0

0
0

10

FI
G

U
R

E
3.

4
So

m
e

ot
he

r
ty

pe
s

of
gr

ap
hi

cs
po

ss
ib

le
w

it
h

ID
L.

(M
U
L
T
I
G
R
A
P
H
)

4

IDL Scripts (Batch Jobs)

This chapter covers how to create simple IDL scripts, which are referred to in
See Executing Batch
Jobs in IDL in Using IDL.

the IDL documentation as batch jobs.

4.1 IDL Commands and Notation

■ @script_name

■ JOURNAL

4.2 A Note on Files and File Names

Different operating systems have different requirements for file names. Some
are case sensitive, some are not. Some require file name suffixes, some do
not. In order to avoid some potential problems, particularly when moving
programs between different computers, the following simple rules for naming
files that contain IDL programs (procedures, functions, or scripts) should be
followed:

■ File names can contain letters, numerals, and the underscore character. Do
not use any other characters (including spaces). Example: my_prog.pro,
not my prog.pro.

■ File names should start with a letter (not a number) and should be
entirely lowercase. Example: prog2.pro, not PROG2.pro, Prog2.pro,
or 2prog.pro.

■ File names should end with “.pro”. This is the standard suffix for IDL files.

■ Each file should contain only one procedure or function. The name of the
file should exactly match the name of the procedure or function. Internally,
IDL is not case sensitive, so a file named my_prog.pro would start with the
statement

PRO MY_PROG

33

34 IDL Scripts (Batch Jobs)

or

FUNCTION MY_PROG

depending on whether the file contains a procedure or a function.

Following these rules, and setting your IDL search path correctly, will allow
IDL to automatically locate your IDL files.

4.3 Making a Script

Rather than repeatedly typing a sequence of IDL statements, you can save the
statements in a script file and execute them with a single command. The IDL
documentation refers to this as a batch job, although script seems to me to
more accurately reflect current computer jargon.

Using your text editor, or the IDL Development Environment, create
a file containing the following lines and save it in your idl directory as
log_plot.pro:

See the ALOG10 function
in IDL Reference Guide.

n = 10

x = 1.0 + FINDGEN(n)

y = ALOG10(x)

PLOT, x, y

To execute the script, simply type @log_plot at the IDL prompt. There is no
space between the @ symbol and the file name. You should see a graph like
that in Figure 4.1.

The @log_plot command tells IDL to do the following:

1. Search the directories in the IDL search path until a file named
log_plot.pro is found.

2. Execute each line in the file log_plot.pro one line at a time.

If the script file does not exist, you will see an error message:

IDL> @log_plots

% Error opening file. File: log_plots

(The file we want is called log_plot.pro, not log_plots.pro.)
Using the text editor, we can clean up the log_plot script and add some

comments. That way, when we look at the script again in a few months, we
will have some clue as to what it does. We can also add some labels to the
graph.

See Commenting Your
IDL Code in Building
IDL Applications.

On each line of an IDL program or script, everything to the right of a
semicolon is treated as a comment and is ignored when the program is executed .
This makes it easy to add comments wherever necessary. Comments are an

4.4 Making a Script 35

1.0

0.8

0.6

0.4

0.2

0.0
0 2 4 6 8 10

FIGURE 4.1 A line graph created by the script log_plot.pro. (LOG_PLOT_PS)

essential part of any computer program. You should get in the habit of adding
comments as you write each program.

The updated script is saved as log_plot2.pro.

; Script to plot log10(x)

n = 10 ;Number of points to plot

x = 1.0 + FINDGEN(n) ;Compute abscissa

y = ALOG10(x) ;Compute ordinate

PLOT, x, y, $;Plot the graph

TITLE = ’Plot of base−10 logarithm of x’, $

XTITLE = ’x’, $

YTITLE = ’log10(x)’

When you type @log_plot2 at the IDL prompt, you should see a graph like
that in Figure 4.2.

The PLOT command above uses several keyword parameters: TITLE, XTITLE,
and YTITLE. These keywords are used to pass the various strings containing
titles to the PLOT procedure. Because of the length of the titles, the PLOT

command does not fit on a single line. In IDL the $ character is used to
continue a command on the following line. Each line of the PLOT command
has the continuation character ($), except the last. As the first line of the PLOT
command demonstrates, you can place a comment on a line even if it is
continued.

Chapter 4

36 IDL Scripts (Batch Jobs)

Plot of base–10 logarithm of x
1.0

0.8

0.6

0.4

0.2

0.0
0 2 4 6 8 10

lo
g

10
(x

)

x

FIGURE 4.2 The new line graph created by the updated script log_plot2.pro.
(LOG_PLOT2_PS)

4.4 Journaling

If you know that you are going to be creating a script, you can save the
statements you enter at the IDL prompt to a journal file. This is a plain text
file that contains everything that you enter into IDL. Recording of statements,
or journaling, is turned on and off with the JOURNAL command. The name of

See the JOURNAL

procedure in IDL
Reference Guide.

the journal file is specified in the first JOURNAL command. Here’s an example:

IDL> journal, ’exp_plot.pro’

IDL> x = −1.0 + 0.1*findgen(21)

IDL> y = exp(x)

IDL> plot, x, y

IDL> journal

Use your text editor to examine the file exp_plot.pro, which should be in
your idl/bowman directory.

; IDL Version 5.6, Mac OS X (darwin ppc m32)

; Journal File for bowman@csrp3.local.

; Working directory: /Users/bowman

; Date: Sun May 18 08:31:39 2003

4.5 Summary 37

x = −1.0 + 0.1*findgen(21)

y = exp(x)

plot, x, y

The first few lines are comments inserted by IDL and can be deleted safely.
(Note that the first character of the first four lines is a semicolon. Thus,
all four of the lines are treated as comments.) The function EXP(x) com-
putes ex . This file can be modified with any text editor and executed like any
other script file. When you execute the script by entering @exp_plot, you
should see a graph like the one in Figure 4.3.

If you forget to turn on journaling, you can always copy and paste the
contents of the terminal window into a text file. You will need to delete the
IDL prompts and any IDL output, but it can save you from retyping the IDL
statements.

4.5 Summary

This chapter has covered the basics of creating script files (batch jobs) with a
text editor or by using the JOURNAL command.

Script files are a quick and convenient way to save a sequence of IDL
statements for repeated execution. Scripts have some important limitations,
however. First, each line in a script is executed one line at a time. It is not

3.0

2.5

2.0

1.5

1.0

0.5

0.0

−1.0 −0.5 0.0 0.5 1.0

FIGURE 4.3 The line graph created by running the script exp_plot_ps.pro.
(EXP_PLOT_PS)

Chapter 4

38 IDL Scripts (Batch Jobs)

possible to execute blocks of statements in a script.1 Second, scripts don’t
accept arguments, so you can’t easily change what a script does (the value of
n in the log_plot script, for example) without changing the script itself.

We will see later that developing IDL procedures and functions is very easy,
and that procedures and functions have a number of advantages over scripts.
In fact, it is usually very easy to convert a script to a procedure.

■ Scripts are good for

– Developing and testing short sequences of IDL statements

– Repeatedly executing short sequences of IDL statements that do not
change often

■ Scripts are not good for

– Sequences of more than about 10 to 20 IDL statements

– Anything that requires using blocks of IDL statements

– Complex projects that require multiple scripts or nested scripts

– Anything that can be done more easily with a procedure or function

4.6 Exercises

1. Write a script to print “So long, farewell, ...” and then exit IDL. (2 lines)

2. Write a script to plot the graph in Figure 3.1.

3. Write a script that uses the CD command to print the current direc-
tory. (2 lines)

1 This is not strictly true, but if you need to execute a block of statements, use a procedure
or function.

5

Integer Constants and Variables

IDL has a variety of built-in ways to represent and store numbers. We will
start by looking at how integers are represented. This chapter explains the
basic properties and limitations of integer variable types. Chapter 6 describes
floating-point numbers.

5.1 IDL Commands and Notation

■ Integer constants: 15B, 15S, 15L, 15LL

■ BYTE function

■ INT function

■ LONG function

■ LONG64 function

■ COMPILE_OPT statement

5.2 Decimal and Binary Notation

Integers are useful for keeping track of things that you can count ; that is,
things that logically cannot be divided into fractional parts. There are two
limitations of integers that programmers need to be aware of at all times. The
first is inherent in the mathematical concept of an integer (no fractional part).
The second comes from the way integers are represented on computers (with
a finite number of digits).

Normally we use familiar decimal notation to write numbers. Decimal
notation uses 10 different symbols (the digits 0 through 9). Each position in a
number is used to represent a power of 10. The rightmost position represents
1’s (100), the next position to the left represents 10’s (101), the next 100’s (102),
and so on. In principal it is possible to write a decimal number of any size by
using enough digits. For a given number of digits, however, there is a limit
to the magnitude of the largest number that can be written. For example,
with 3 decimal digits it is possible to write a total of 1000 different decimal
numbers from 0 to 999 (0 to 103 − 1).

39

40 Integer Constants and Variables

Internally, computers use binary notation to represent numbers. Binary
notation uses only two different symbols, 0 and 1, instead of the 10 symbols
used in the decimal system. Each “binary digit” is referred to as a bit. When
writing an integer using binary notation, each position is used to represent
a power of 2. The rightmost position represents 1’s (20), the next position
represents 2’s (21), the next 4’s (22), and so on. Examples of binary numbers
are given in Table 5.1. As with decimal numbers, the largest number that can
be represented depends on how many bits are used.

5.3 BYTE Constants and Variables

In all modern computers, computer memory is divided into bytes. Each byte
is made up of 8 bits. Bytes can be grouped together to create larger numbers,
but the smallest “chunk of bits” that can be accessed directly is one byte. The
largest number that can be written using 8 bits is 255 (28 −1). It is important
to remember that although it is possible to write 256 (28) different numbers
using 8 bits, because 0 is included the largest number that can be represented
is 255, not 256.

IDL has a built-in ability to use 8-bit binary numbers, which are known,
See Integer Constants
in Building IDL
Applications.

naturally enough, as BYTE constants and variables. Using the BYTE variable
type you can store 8-bit numbers and do arithmetic with them. Because a
byte contains 8 bits, you can think of it as representing numbers as shown
in Table 5.2.1

A BYTE constant is written by adding the letter B to the end of a numerical
constant. Note that because there cannot be a fractional part, there is no
decimal point in an integer constant.

IDL> x = 15B

IDL> help, x

X BYTE = 15

TABLE 5.1 Examples of binary repre-
sentation of some integers.

Binary Decimal

0 0
1 1

10 2
11 3

1000 8
1001 9
1111 15

11111111 255

1 For technical reasons, on most computers integers are not represented internally exactly
as given in Table 5.2, but the differences are not important for our purposes.

5.3 BYTE Constants and Variables 41

TABLE 5.2 Binary representation of integers
using 1 byte (8 bits). The values of all 8 bits are
shown for each number, including leading zeros.

Binary Decimal

00000000 0
00000001 1
00000010 2
00000011 3
00000100 4
00000101 5
00000110 6
00000111 7
00001000 8
00001001 9

.

.

.
11111110 254
11111111 255

When you type x = 15B, IDL will translate the decimal number 15 into a
1-byte internal binary representation (00001111). The value represented by
the characters 15B is a constant. It is, obviously, always equal to 15. Because
its value can be changed, the quantity indicated by the name x is a variable.
It can be changed simply by assigning it a new value:

IDL> x = 19B

IDL> help, x

X BYTE = 19

If you omit the B, by default IDL will create a 32-bit (4-byte) integer called
a LONG:2

IDL> y = 15

IDL> help, y

Y LONG = 15

More on LONG-type integers in Section 5.5.
Whatever the number of bits used, there are two main things to watch out

for when using integer data types. The first is that there is a limited range
of numbers that can be represented. If you do an arithmetic operation that
results in a value that is outside the range for that type, the result is likely to
be something that you don’t expect. For example,

IDL> x = 240B

2 Make sure you have COMPILE_OPT IDL2 in your startup.pro file.

Chapter 5

42 Integer Constants and Variables

IDL> y = 32B

IDL> print, x + y

16

Both 240 and 32 can be represented as BYTE-type variables, but their sum,
272, is too large to be represented with 8 bits. The result overflows or “wraps
around” to give 16 (240 + 32 − 256 = 16).3

Here is another example:

IDL> print, y − x

48

If a BYTE variable could represent a negative integer, the result would be
−208, but BYTE variables must lie between 0 and 255, so once again the result
“wraps around.” Notice that in each case IDL did not issue an error message.
Each of these results is completely correct insofar as BYTE arithmetic is defined.

It is easy to get similar results when multiplying:

IDL> print, 16B * 16B

0

Once again, the result wraps around ((16 × 16) mod 256 = 0).
Division presents another type of problem, because the result of dividing

two integers may not be an integer. BYTE type variables, however, can only
represent integers:

IDL> x = 32B

IDL> y = 24B

IDL> print, x/y

1

IDL> print, y/x

0

When dividing two integer variables, the fractional part is thrown away. The
result of 32/24 is 1. Similarly, the result of 24/32 is 0. In each case the fractional
part cannot be represented by a BYTE variable, or by any other integer type,
for that matter.

A numerical type that only allows storing integer values between 0 and
255 is of limited use for general numerical calculations. Imagine a scientific
calculator with only three digits, no negative numbers, and so on. So what
good are BYTE variables? One occasional use is when you really need to save
space, and you only need to count things in a very limited range. Rather than
using a 4-byte integer variable to store numbers, if you are certain that the
values will be between 0 and 255, you can use a BYTE variable and save a factor

3 More generally, the result is (240 + 32) mod 256 = 16.

5.4 BYTE Constants and Variables 43

of 4 in memory or disk storage. The main use for BYTE variables, though, is to
store images. A black-and-white (grayscale) photographic image can be stored
digitally with fairly good fidelity using only 256 shades of gray for each small
picture element, or pixel. Here’s an example of a grayscale image:

IDL> window, xsize=400, ysize=400

IDL> image = bytscl(dist(400))

IDL> help, image

IMAGE BYTE = Array[400, 400]

IDL> print, min(image), max(image)

0 255

IDL> tv, image

The resulting graphic is shown in Figure 5.1. First we create a new window that
is 400 × 400 pixels. The DIST function creates a 400 × 400 array of floating-

See the DIST, BYTSCL,
and TV functions in IDL
Reference Guide.

point values. (In this example, DIST is just a convenient way to create an array
filled with numbers.) BYTSCL scales the values generated by the DIST function
into the range 0 to 255. We check these things with HELP and PRINT. The TV
command sends the array image to the screen as shades of gray. Color images
can be stored using 3 bytes per pixel—one byte for red, one for green, and
one for blue. Professional-quality digital imaging systems nowadays usually
use more than 8 bits for each color (or channel), but 8-bit grayscale and 24-bit
color images work very well for most computer applications.

FIGURE 5.1 A grayscale image created by using a BYTE array. (GRAYSCALE)

Chapter 5

44 Integer Constants and Variables

5.4 INT Constants and Variables

Fortunately, IDL has other integer types with more than 8 bits. In fact, the
See Integer Constants
in Building IDL
Applications.

standard default type for an integer variable is a 2-byte integer type called an
INT (sometimes called a “short”). With 16 bits it would seem to be possible
to store values between 0 and 216 − 1, but this is not quite the case. The INT
type sets aside one bit as a sign bit to indicate whether the number is positive
or negative. Therefore, the INT type can represent integers between −215 and
+215 − 1 (−32,768 to 32,767). (Note the small asymmetry between positive
and negative numbers.)

Unless you tell IDL otherwise (with the COMPILE_OPT statement, for exam-
ple), when you use an integer constant, it will generally be taken as an INT

(2-byte) number. Beginning IDL programmers often unknowningly create
INT variables and then run into one of the problems seen above with BYTE

variables: trying to use numbers larger than the capacity of the type. To explic-
itly create an INT variable, the letter S (for short integer) is appended to the
numerals

IDL> x = 20000S

IDL> help, x

X INT = 20000

IDL> print, 2S * x

−25536

The expected result in this case, 40,000, is too large to be represented by an
INT variable, and the arithmetic “wraps around.” In this case, because negative
numbers are possible, it wraps around to a negative value. Once again, there
is no error message. One common way to make this mistake is to use an INT

as a loop counter and then attempt to count past 32,767.
There are two ways to avoid this problem. The first is to always explicitly

specify that an integer constant is a 4-byte value, known as a LONG, by adding
an L to the number:

IDL> i = 15L

IDL> help, i

I LONG = 15

A lowercase l will work, but you should always use an uppercase L because
the lowercase l looks very much like the numeral 1 (one). In some computer
typefaces, the two are identical!

Writing all integer constants with an L at the end is a bit ugly; and until
it becomes a habit, it is easy to forget. A better way to avoid this problem of
inadvertently creating INTs is to change the default behavior of IDL by using

See the COMPILE_OPT

statement in IDL
Reference Guide.

the COMPILE_OPT statement. The startup.pro file provided with this book
contains the following statement:

COMPILE_OPT IDL2

5.5 LONG Constants and Variables 45

This tells IDL that the default integer type should be LONG. (It also specifies
that array subscripts must use square brackets.) Thus:

IDL> i = 15

IDL> help, i

I LONG = 15

You should include COMPILE_OPT IDL2 in every procedure and function that
your write. (Unless you have a very good reason not to!)

There is one case where integer arithmetic does generate an error message:
division by zero.

IDL> i = 3/0

% Program caused arithmetic error: Integer divide by 0

IDL> help, i

I LONG = 3

Note that the value 3 is assigned to i, but that is not the result of the operation
specified. (The result is actually not a number.)

At one time there were advantages to using SHORT integers, notably faster
execution speed and use of less memory. On current workstations and per-
sonal computers, however, those advantages have largely disappeared, so you
should use 4-byte integers (LONGs) except for images. This does not completely
eliminate the possibility of overflow, but does make it much less likely. The
LONG type is discussed further in the following section.

5.5 LONG Constants and Variables

The LONG data type is a 32-bit (4-byte) signed integer. As you might
See Integer Constants
in Building IDL
Applications.

expect, it allows values between −231 and +231 − 1 (−2,147,483,648 to
2,147,483,647), or about ±2 billion.

As with any integer type, it is possible to get unexpected results when you
try to calculate something that is outside the range of values that the type can
represent (see the exercises at the end of the chapter). And, of course, when
dividing integers the fractional part is thrown away:

IDL> print, 5/2

2

Note that by throwing away the fractional part, integer division “rounds
toward zero.” It does not round to the smaller number (that is, “to the left”
on the number line):

IDL> print, −5/2

−2

Chapter 5

46 Integer Constants and Variables

5.6 Other Integer Types

IDL does have other integer types, including unsigned versions of most types
See Integer Constants
in Building IDL
Applications.

(in the same way that BYTEs are unsigned). There is also a 64-bit (8-byte)
integer type, the LONG64. The range of LONG64 variables is −263 to +263 − 1
(−9,223,372,036,854,775,808 to 9,223,372,036,854,775,807, which can
be handy for those occasions when you need to count really high (that’s 9
quintillion, by the way). LONG64 constants are written by appending an LL to
the end of the numerals:

IDL> help, 2LLˆ63−1

<Expression> LONG64 = 9223372036854775807

How long would it take to count from 0 to 263? If your computer could
count once per clock cycle, and it had a clock frequency of 1 GHz, it would
take approximately

IDL> print, ((2LLˆ63−1)/(10LLˆ9))/(365LL * 86400LL), ’ years’

292 years

(There are approximately 365 × 86, 400 seconds in a year.)

5.7 Converting One Integer Type to Another

In some cases IDL will automatically convert one type to another. For example,

IDL> x = 20000S

IDL> help, x

X INT = 20000

IDL> print, 2*x

40000

IDL> help, 2*x

<Expression> LONG = 40000

Because we used the COMPILE_OPT IDL2 statement in our startup file,
the default integer type is LONG. Therefore, the constant 2 is treated as a
LONG. Before the multiplication with x is carried out, x is converted to a LONG.
IDL automatically promotes a variable to the “higher” type before carrying
out an operation between two different types. The promotion prevented the
operation from exceeding the limits of an INT variable.

You can also explicitly tell IDL to convert the type of a variable:
See Type Conversion
Functions in Building
IDL Applications.IDL> help, 200B

<Expression> BYTE = 200

IDL> help, LONG(200B)

5.9 Exercises 47

<Expression> LONG = 200

Be careful, though! If you convert to a “lower” type, strange things can happen:

IDL> help, BYTE(300L)

<Expression> BYTE = 44

5.8 Summary

The commonly used integer types are summarized inTable 5.3. The other inte-
ger types available in IDL are described in the IDL documentation (Building
IDL Applications).

The two most commonly used integer types are BYTEs (for images) and
LONGs (for most kinds of counting). On rare occasions it may be worthwhile
to use BYTEs or INTs instead of LONGs to save some space in memory or in a
file. If you need to use integers greater than about ±2 billion, you can use
64-bit integers (LONG64s).

There are three potential problems that you should always be aware of
when using integers: arithmetic operations that result in values outside the
range of the integer type used; division, which discards any fractional part of
a result; and division by zero.

With all of these limitations, why use integer variable types at all? Why
not just use floating-point numbers? One answer is that floating-point types
have their own limitations, as will be discussed in Chapter 6.

5.9 Exercises

Unless otherwise indicated, do the following problems first without using
IDL. Then, use IDL to check your answer.

1. What is the binary representation of 17? (No need to use IDL.)

2. What is the (decimal) result of the following numerical operations?
(Assume that the default integer type is LONG.)

7B + 5B

128B + 128B

TABLE 5.3 Commonly used integer types. Other integer types that are available in IDL are
described in the IDL documentation.

Range (powers of 2) Range (powers of 10)
Type Bits Bytes Minimum Maximum Minimum Maximum

BYTE 8 1 0 28 − 1 0 255
INT 16 2 −215 215 − 1 −32,768 32,767
LONG 32 4 −231 231 − 1 ∼ −2 · 109 ∼ 2 · 109

LONG64 64 8 −263 263 − 1 ∼ −9 · 1018 ∼ 9 · 1018

Chapter 5

48 Integer Constants and Variables

32/33

33/33

33/32

−33/32

3. Assume that you want to keep track of time using units of seconds. How
many years can you count before a LONG variable is unable to represent the
elapsed time?

4. Use IDL to print the values of the following constants.

300B

40000S

4000000000L

6

Floating-Point Constants and
Variables

This chapter explains the basic principles of using floating-point numbers.

6.1 IDL Commands and Notation

■ Floating and double-precision notation: 0.0, 1.0E3, 2.0D4, Inf, NaN

■ FLOAT function

■ DOUBLE function

■ LONG function

■ FINDGEN function

■ !VALUES system variable

■ TOTAL function and NAN keyword

6.2 Development of Floating-Point Methods

As we saw in Chapter 5, the various integer types are useful for things that can
be counted, but not for general-purpose scientific calculations, where types
that can directly represent real numbers would be more appropriate. For this
purpose, computers have several floating-point variable types that provide an
approximate representation of the real number system.

Throughout the history of electronic computing, a number of different
schemes have been devised for doing floating-point arithmetic. Each typ-
ically gave (slightly) different answers to any particular calculation. Each
typically had its own incompatible binary representation for floating-point
numbers; that is, the bits used to represent a number on one computer were
different from the bits used on a different brand of computer. This made it
very difficult to move data files from one computer to another. That was not
a problem as long as you never bought a computer from a different company
or worked with anyone who did.

49

50 Floating-Point Constants and Variables

Fortunately, order was brought to this situation by the development of a
standard scheme for representing floating-point numbers and doing floating-
point arithmetic. The standard was developed by the Institute of Electrical
and Electronics Engineers (IEEE, pronounced I-triple-E) and is referred to as
IEEE 754. Fortunately, the IEEE 754 standard has been adopted by all of the
major computer manufacturers. Modern central processing units (CPUs) can
usually do at least one floating-point operation (flop) per clock cycle. With
current clock rates well above 1 GHz, most modern workstations and per-
sonal computers can perform more than 1 billion floating-point calculations
per second (referred to as 1 gigaflop).

This chapter covers the most important aspects of floating-point arithmetic
for beginning programmers.

6.3 Limitations of Floating-Point Arithmetic

To illustrate some of the problems that can occur when making calculations
with floating-point numbers, we’ll start with some examples using decimal
notation.

As with integers, the fundamental problem with floating-point numbers
on computers is that in practice we can use only a finite number of digits.
There are, however, infinitely many real numbers. In fact, between any two
(different) real numbers there are infinitely many other real numbers. With a
finite number of digits, however, it is possible to exactly represent only a finite
subset of those real numbers.

For simplicity, let’s assume that we have a computer that stores floating-
point numbers with three decimal digits in the fraction (also called the mantissa
or the significand) and two digits in the exponent, along with the signs of both
parts of the number. Some examples are shown in Table 6.1. We have chosen
not to allow leading zeros to the right of the decimal point; that is, the
smallest number that can be written is +0.100 × 10−99. These are referred to
as normalized numbers. With some loss of precision, we could have written
+0.001 × 10−99, which would be a denormalized form. Generally, IEEE
floating-point numbers are stored in normalized form.

Note that the rational number 1/3 cannot be stored exactly because it is
an infinitely repeating decimal number. The floating-point representation of
1/3 must be rounded to three significant digits. This can lead to odd results
such as 3 × (1/3) = 0.999 × 100, not 1. In this case, doing the inverse of

TABLE 6.1 Some floating-point numbers in decimal nota-
tion with three-digit precision.

Largest positive number +0.999 × 10+99

Smallest positive number +0.100 × 10−99

Smallest negative number −0.100 × 10−99

Largest negative number −0.999 × 10+99

1/3 (approximate) +0.333 × 100

6.4 Single-Precision Constants and Variables 51

an operation does not return the original value. This is one of the possible
problems that can occur with floating-point numbers due to round-off.

Here is another example of a problem that results from having only a
finite number of digits. Let’s say that you want to find the sum of 1 and
1 × 10−3. These numbers are stored as 0.100 × 1001 and 0.100 × 10−02.
The first step in the addition is to align the decimal points. This would give
0.100 × 1001 + 0.0001 × 1001. The second number requires four digits, but
only three are available. Therefore, the second number is rounded to 0, and
the operation becomes 0.100 × 1001 + 0.000 × 1001, which gives a value of
0.100 × 1001. In this case, adding a non-zero quantity to a number does not
change its value!

The IEEE floating-point standard attempts to minimize these kinds of
problems by rounding arithmetic results as carefully as possible and by pro-
viding extra digits of precision for intermediate results. The designers of the
IEEE standard also tried to ensure that the same calculation carried out on
two different computers (that both follow the standard) would give the same
results. Some limitations are unavoidable, however, so you should plan care-
fully when doing floating-point arithmetic. Some additional examples are
given below.

6.4 Single-Precision Constants and Variables

IDL distinguishes floating-point constants from integer constants by the
presence of a decimal point:

See Floating Point and
Double Precision
Constants in Building
IDL Applications.

IDL> a = 1.0

IDL> i = 1

IDL> help, a, i

A FLOAT = 1.00000

I LONG = 1

For readability, it is a good idea to always include at least one digit on each
side of the decimal point when writing floating-point constants. That is, write
0.1, not .1 and 1.0, not 1.

The basic IEEE floating-point type uses 32 bits (4 bytes). This is referred
to as a single-precision floating-point number (FLOAT). In a single-precision
floating-point number, 1 bit is used to indicate the sign of the number, 8 bits
for the exponent (positive and negative), and 23 bits for the fraction. In
practice this allows for a precision of about seven to eight decimal digits, and
a range from ∼−3.4 × 1038 to ∼3.4 × 1038. The smallest numbers that can
be written1 have an absolute value of ∼1.2 × 10−38.

Many numbers that can be written exactly with only a few decimal
digits cannot be written in binary notation with a finite number of bits.

1 Denormalized numbers can be as small as ∼1.4 × 10−45. The technical details are not of
importance here.

Chapter 6

52 Floating-Point Constants and Variables

For example, in decimal notation it is possible to write the number 1/10
exactly as 0.100 × 100. In binary notation 0.1 is a repeating binary number
1.10011001100110011001100 . . . × 2−4. In order to store the real number
0.1 as a floating-point number on a computer, it must be rounded to a binary
number that can be stored exactly. Try this example in IDL:

IDL> x = 0.1

IDL> print, x

0.100000

Everything looks precisely correct, but when you print more digits, the
result may not be quite what you expect:

IDL> print, x, format = "(F20.15)"

0.100000001490116

The decimal number 0.1 is stored as a binary number that is nearly, but
not exactly, equal to 0.1.

Here are a few other examples of potential problems with decimal numbers:

IDL> a = 1.0

IDL> b = 1.0E−10

IDL> print, a, b, a + b, format ="(F20.15)"

1.000000000000000

0.000000000100000

1.000000000000000

The notation 1.0E−10 is used to represent 1.0 × 10−10. In this case the
individual numbers can both be written with good precision, but the sum is
incorrect. This is the same problem we saw in Section 6.3 when adding two
numbers with very different magnitudes. If you do this repeatedly, you can
get very inaccurate answers. The following example adds 1.0 × 10−6 together
1 million times. The result should be exactly 1:

IDL> a = 1.0E−6

IDL> b = 0.0

IDL> for i = 1, 1000000 DO b = b + a

IDL> print, b, format ="(F20.15)"

1.009038925170898

Initially the values in the sum have similar magnitude (a ≈ b), but as b
gets larger, the errors that occur with each addition increase and accumulate.
Even though single-precision floating-point numbers provide seven to eight
digits of decimal precision, in this case the result of many accumulated errors
is only accurate to about two significant figures. The result is ∼1.01, rather
than the correct answer, 1.

6.5 Double-Precision Constants and Variables 53

Another instance in which you can have serious loss of precision is when
subtracting variables of similar magnitude:

IDL> x = 1.234567

IDL> y = 1.234566

IDL> print, x − y

1.07288e−06

The correct answer would be 1.000000E-06. This result, however, is correct
only to about two significant figures.

Think carefully about the order in which you do floating-point operations.
You may be able to get better precision by doing the operations in the optimum
order. For example, when summing the terms in a power series expansion, it
is usually best to sum from smallest to largest. This helps to ensure that each
addition is between two values with similar magnitudes.

6.5 Double-Precision Constants
and Variables

With integers, we saw that storing larger numbers requires more bits. Simi-
larly, with floating-point numbers, storing larger numbers or achieving higher
precision requires more bits. All modern computers include a 64-bit (8-byte)
floating-point type referred to as double precision (DOUBLE). Table 6.2 at the

See Floating Point and
Double Precision
Constants in Building
IDL Applications.

end of this chapter shows the range of values possible with double-precision
floating-point types. To write a double-precision constant in IDL you must
use both a decimal point and an exponent that begins with D (for double):

IDL> d = 1.0D0

IDL> help, d

D DOUBLE = 1.0000000

Double precision can reduce some floating-point errors. If we repeat the
calculations from the previous section using double-precision arithmetic, we
get the following:

IDL> a = 1.0D0

IDL> b = 1.0E−10

IDL> print, a, b, a + b, format ="(F20.15)"

1.000000000000000

0.000000000100000

1.000000000100000

With double precision we have enough precision to add these two numbers
together accurately, despite their widely different magnitudes. Similarly, for

Chapter 6

54 Floating-Point Constants and Variables

the following loop:

IDL> a = 1.0D−06

IDL> b = 0.0D0

IDL> for i = 1, 1000000 DO b = b + a

IDL> print, b, format ="(F20.15)"

1.000000000007918

the final result is much more accurate than the single-precision calculation.
Using double precision does not solve all floating-point problems; it just

expands the range of problems that can be done with good precision. On some
computers double-precision operations are slower than single-precision, so
you probably do not want to automatically do everything in double precision.
(On other computers double-precision operations are just as fast as single-
precision operations.) Also, double-precision numbers require twice as much
computer memory as single-precision numbers. If you are using large arrays
of numbers, the difference can be significant. Finally, if you write double-
precision values to a file, the file will be twice as large as the equivalent file
with single-precision values. One possible solution to this problem is to do the
calculation in double precision, but convert the numbers to single precision
before writing them to files. If speed and memory are not limitations, or your
computer has full 64-bit arithmetic hardware, then you may want to routinely
do all calculations in double precision.

6.6 Type Conversion

IDL has built-in functions to convert between different numerical types:
See Type Conversion
Functions in Building
IDL Applications.

IDL> a = 5.5

IDL> print, long(a)

5

IDL> i = 5

IDL> print, float(i)

5.00000

IDL> print, double(i)

5.0000000

When a FLOAT or DOUBLE is converted to a LONG, the fractional part is thrown
away (like integer division).

When doing mixed arithmetic (arithmetic between different types), IDL
automatically promotes (converts) variables to the higher type:

IDL> help, i*a

<Expression> FLOAT = 27.5000

IDL> b=5.5d0

IDL> help, i*b

<Expression> DOUBLE = 27.500000

6.8 Infinities and Not-a-Numbers 55

That is, the LONG variable i is converted to a FLOAT or a DOUBLE before the
multiplication is carried out. If you must do mixed-type arithmetic, it is a good
idea to explicitly convert the types to be sure that the calculation is carried out
the way you want.

6.7 Rounding

IDL has built-in functions to control rounding of floating-point variables:

IDL> a = 5.6

IDL> b = −5.6

IDL> print, round(a), round(b)

6 −6

IDL> print, floor(a), floor(b)

5 −6

IDL> print, ceil(a), ceil(b)

6 −5

The ROUND function rounds to the nearest integer, CEIL returns the closest
See the ROUND, CEIL,
and FLOOR functions in
IDL Reference Guide.

integer greater than or equal to the argument, and FLOOR returns the closest
integer less than or equal to the argument.

6.8 Infinities and Not-a-Numbers

The IEEE 754 floating-point standard has several additional features that
are very useful when doing floating-point calculations. Two important fea-
tures deal with calculations that produce results that cannot be represented as
floating-point numbers. One example is the result of division by zero:

IDL> x = 3.0/0.0

% Program caused arithmetic error: Floating divide by 0

IDL> help, x

X FLOAT = Inf

Note that trying to divide by zero produces two important effects. First, IDL
issues an error message to inform you that something went wrong. Second,
the value assigned to x is a special IEEE value (bit pattern) used to represent
infinity (∞). The IEEE standard even distinguishes between ±∞:

See Special Floating
Point Values in Building
IDL Applications.IDL> y = −3.0/0.0

% Program caused arithmetic error: Floating divide by 0

IDL> help, y

Y FLOAT = −Inf

Chapter 6

56 Floating-Point Constants and Variables

If you try to calculate 0.0/0.0, the result is another special value called a
Not-a-Number (NaN):

IDL> z = 0.0/0.0

% Program caused arithmetic error: Floating illegal operand

IDL> help, z

Z FLOAT = NaN

One very important feature of Infs and NaNs is that they propagate through
a calculation. That is, if intermediate calculations generate an Inf or a NaN,
the final result will be an Inf or a NaN. This is important so that intermediate
errors are not hidden by later calculations.

You should design your programs so that you only get floating-point errors when
something has really gone wrong. Don’t write programs that generate floating-
point errors while producing “correct” results. Because you normally only get
one floating-point exception message when your program terminates, if your
program generates a floating-point exception in normal operation, it can hide
a real floating-point error that occured elsewhere in the program. Whenever
IDL reports a floating-point error, you need to figure out where something
went wrong.2

NaNs can be very useful for representing missing data. That way, if you
inadvertently do a calculation with a missing value (NaN), the result will be an
NaN. Before IEEE arithmetic, programmers often tried to use special values
like −999.0 to represent missing values in a data set. If you inadvertently use
the “missing” value in a calculation, however, you may never know it, because
−999.0 is a valid floating-point number. With the IEEE NaN, the special
value propagates through the calculation, and the final result will reveal an
obvious problem.

Many built-in IDL functions automatically exclude all NaNs if you use the
proper keyword. Here is an example. First we create a short array and use the
TOTAL function to find the sum of the value in the array:

See the TOTAL function
in IDL Reference Guide.

IDL> x = findgen(5)

IDL> print, x

0.00000 1.00000 2.00000 3.00000 4.00000

IDL> print, total(x)

10.0000

Next, we replace one of the values in the array by a NaN to represent a miss-
ing observation. Conveniently, IDL has built-in constants containing the
special IEEE values. They are stored in the system variable !VALUES. (Recall

See System Variables in
Building IDL
Applications.

that the names of all system variables begin with an exclamation point; that

2 A good start is to set !EXCEPT = 2 and rerun your calculation. That will cause IDL to
report errors, if any, immediately after they occur.

6.8 Infinities and Not-a-Numbers 57

is, the exclamation point is part of the variable name.) The system variable
!VALUES is actually a structure that contains four separate values: NaNs and
Infs for both single- and double-precision types. You can see the contents of
the !VALUES structure by using the HELP command. (For more on structures,
see Chapter 9.)

IDL> help, !values, /structure

** Structure !VALUES, 4 tags, length=24, data length=24:

F_INFINITY FLOAT Inf

F_NAN FLOAT NaN

D_INFINITY DOUBLE Infinity

D_NAN DOUBLE NaN

To reference a value within a structure, a period is used to separate the variable
name (!VALUES) from the tag name (F_NAN):

IDL> x[2] = !values.f_nan

IDL> print, x

0.00000 1.00000 NaN 3.00000 4.00000

If we sum all of the values in x, the result is NaN (because one of the values in
the sum is a NaN):

IDL> print, total(x)

NaN

To treat the NaN as missing data, and omit it from the sum, use the NaN

keyword:

IDL> print, total(x, /nan)

8.00000

Be careful, however, if your array is completely filled with NaNs:

IDL> x = replicate(!values.f_nan, 5)

IDL> print, x

NaN NaN NaN NaN NaN

IDL> print, total(x)

NaN

IDL> print, total(x, /nan)

0.00000

RSI erred in the implementation of the NAN keyword in the TOTAL function
(and several other functions). It would be more convenient for the programmer
if the result in this case were also a NaN, but as you can see, it is not. Therefore, if
you want to use the NAN keyword to treat NaNs as missing values, you must still

Chapter 6

58 Floating-Point Constants and Variables

TABLE 6.2 Commonly used floating-point types.

Decimal Minimum
Type Bits Digits Range Magnitude

Single precision 32 7 to 8 ±3.4 × 1038 ±1.2 × 10−38

Double precision 64 15 to 16 ±1.8 × 10308 ±2.2 × 10−308

check your arrays for the possibility that all values might be NaNs. This greatly
reduces the utility of the NAN keyword.

6.9 Summary

The commonly used floating-point types are summarized in Table 6.2.
The other floating-point types available in IDL are described in the IDL
documentation (Building IDL Applications).

Some general guidelines for floating-point calculations:

1. Do not use floating-point numbers when integers are more natural (for
example, for counting things, especially loop counters).

2. Try to avoid adding numbers that have different magnitudes.

3. Try to avoid subtracting numbers that have similar magnitudes.

4. Double precision can expand the range of calculations that you can do
with good precision.

5. Use explicit type conversions.

6. Use NaNs for missing data.

7. Write your programs so they do not generate floating-point errors unless
something has gone wrong.

6.10 Exercises

1. Try some interactive experiments to find the largest values of x for which
you can compute ex and e−x without floating-point underflow or over-
flow errors. Try the calculations using both single- and double-precision
numbers.

2. Try some interactive experiments to find the smallest value of x for which
you can compute sin(x) without floating-point underflow errors. Try the
calculations using both single- and double-precision numbers.

7

Using Arrays

This chapter describes how to create arrays and use them efficiently to do some
common arithmetic operations using IDL’s built-in array syntax.

7.1 IDL Procedures and Functions

The following IDL procedures are discussed:

■ Array-creation functions (BYTARR, INTARR, LONARR, LON64ARR, FLTARR,
DBLARR, COMPLEXARR, STRARR, MAKE_ARRAY, REPLICATE)

■ Index-generation functions (BINDGEN, INDGEN, LINDGEN, L64INDGEN,
FINDGEN, DINDGEN, CINDGEN, SINDGEN, MAKE_ARRAY)

■ N_ELEMENTS function

■ SIZE function

■ REFORM function and the OVERWRITE keyword

■ REBIN function and the SAMPLE keyword

■ REVERSE function

■ ROTATE function

■ SHIFT function

7.2 Creating Arrays

An array is a multidimensional, rectangular grid or lattice of variables. The
variables in an array can be any IDL variable type, including integers, floats,
strings, and even structures (see Chapter 9 for information about structures).
All of the elements of an array must be the same type. IDL arrays can have
up to eight dimensions. The elements of an array are referenced by subscripts.
If the size of a dimension is n, the subscripts for that dimension range from
0 to n − 1.

59

60 Using Arrays

Here are some simple examples that use built-in IDL array-creation
functions to create new array variables:

IDL> i = lonarr(4)

IDL> help, i

I LONG = Array[4]

IDL> print, i

0 0 0 0

IDL> x = fltarr(4, 2)

IDL> help, x

X FLOAT = Array[4, 2]

IDL> print, x

0.00000 0.00000 0.00000 0.00000

0.00000 0.00000 0.00000 0.00000

In the examples, the arguments specify the sizes of each dimension of the
arrays to be created. The array i is a one-dimensional LONG array with four
elements. The array x is a two-dimensional FLOAT array with dimensions 4 and
2 (8 elements total). By default, arrays created with the basic array-creation
functions are filled with zeroes. To create an array that is filled with a non-zero
value, use the REPLICATE or MAKE_ARRAY function. Alternatively, you can
create a new array and then use an array assignment statement to assign the
same value to all elements, as illustrated here:

IDL> x = fltarr(3, 2)

IDL> print, x

0.00000 0.00000 0.00000

0.00000 0.00000 0.00000

IDL> x[*] = 3.2

IDL> print, x

3.20000 3.20000 3.20000

3.20000 3.20000 3.20000

Notice that you can use the [*] notation to refer to all of the elements in an
array, even if it has multiple dimensions. More on array syntax follows.

Some of the available array creation functions are given in Table 7.1.
Other type-specific functions are available for the unsigned integer types.
The MAKE_ARRAY and REPLICATE functions can be used to create arrays of any
of the available types.

7.3 Arithmetic with Arrays

From its initial conception, IDL was designed as an array-oriented language.
It owes some of its design features to the interactive array-oriented language

7.3 Arithmetic with Arrays 61

TABLE 7.1 Array creation functions.

Type Function

BYTE BYTARR

INT INTARR

LONG LONARR

LONG64 LON64ARR

FLOAT FLTARR

DOUBLE DBLARR

COMPLEX COMPLEXARR

STRING STRARR

specified by keyword MAKE_ARRAY

specified by variable REPLICATE

APL. Using IDL’s array features has several major benefits. Programs written
using array syntax are easier to write, easier to read, and less likely to have
errors. Additionally, operations that use array syntax are much faster than
those that use explicit loops.

We begin with a look at two different ways to carry out a basic operation:
adding together two one-dimensional floating-point arrays of size n, element
by element, to create a new array, also of size n. If you know Fortran 77, you
would probably write this operation in IDL in the following way. (We assume
that the arrays x and y already exist and have the same number of elements, n.)

n = N_ELEMENTS(x)

z = FLTARR(n)

FOR i = 0, n−1 DO z[i] = x[i] + y[i]

The N_ELEMENTS function determines the number of elements in the array
See the N_ELEMENTS

and FLTARR functions
and the FOR statement in
IDL Reference Guide.

x. The FLTARR function creates a new floating-point array z with n elements.
Recall that when an array is created, the elements of the array are set equal
to zero. The FOR loop then counts from 0 to n−1 and adds the i-th elements
of x and y together to get the i’th element of z. (Remember that IDL array
indices start at 0.) Subscripts are indicated by using square brackets. If you use
a FOR loop, the output array z must be created ahead of time with the FLTARR
statement.

Although this Fortran-like approach gives the correct result, it is definitely
not the best way to do this operation in IDL. In IDL, there is a much simpler
way using array syntax:

z = x + y

With array syntax, the FLTARR statement is not needed. IDL automatically
creates a new array of the correct type and size to store the result of the
operation x + y.

Chapter 7

62 Using Arrays

If the two arrays have a different number of elements, IDL will produce a
result with as many elements as there are in the smaller array:

IDL> x = findgen(5)

IDL> print, x

0.00000 1.00000 2.00000 3.00000 4.00000

IDL> y = findgen(3)

IDL> print, y

0.00000 1.00000 2.00000

IDL> print, x + y

0.00000 2.00000 4.00000

As mentioned above, there are two important differences between the
Fortran approach (with the IDL equivalent of a Fortran DO loop) and the IDL
array-oriented approach. First, although the FOR loop does not appear that
complicated, it is remarkably easy to make a blunder or typographical error
when writing loops. All of the detail (indices, brackets, loop limits, etc.) adds
greatly to the complexity of that one line of IDL. The array-oriented approach
is much easier to read, understand, and program correctly. Second, the first
version is much slower than the second. We can show this with the following
IDL script, named add_arrays:

; Compare times for different methods of adding two arrays

n = 10ˆ6

x = FINDGEN(n)

y = FINDGEN(n)

z = FLTARR(n)

time0 = SYSTIME(/SECONDS)

FOR i = 0, n−1 DO z[i] = x[i] + y[i]

time_for = SYSTIME(/SECONDS) − time0

time0 = SYSTIME(/SECONDS)

z = x + y

time_array = SYSTIME(/SECONDS) − time0

PRINT, ’Time using FOR loop = ’, time_for

PRINT, ’Time using array syntax = ’, time_array

PRINT, ’Array syntax is ’, time_for/time_array, ’ times faster.’

In this script, the input and output arrays x, y, and z are created. Then the
See the SYSTIME

function in IDL
Reference Guide.

time is compared for the FOR loop and the array syntax by calculating the
elapsed time with the SYSTIME function. (This includes only the time to do
the arithmetic operation, omitting the time required to allocate the arrays in

7.4 Index Arrays 63

memory.) After running the script several times, the results are:

IDL> @add_arrays

Time using FOR loop = 2.8655750 s

Time using array syntax = 0.075492978 s

Array syntax is 37.958165 times faster.

If you run the script again, the answers will vary slightly depending on what
else the computer is doing. On this computer the array syntax is almost 40
times faster than the FOR loop. If you are doing multiple array operations, the
differences can really add up.

So, one very important guideline for writing IDL programs is to use array
syntax and avoid FOR loops whenever possible.

7.4 Index Arrays

It is often possible to avoid using FOR loops in IDL by creating index arrays.
An index array is simply an array that contains, in order, n values from 0 to
n−1. IDL has built-in functions to create index arrays of any type of variable.
Here are some examples:

IDL> i = lindgen(5)

IDL> help, i

I LONG = Array[5]

IDL> print, i

0 1 2 3 4

IDL> x = findgen(3, 2)

IDL> help, x

X FLOAT = Array[3, 2]

IDL> print, x

0.00000 1.00000 2.00000

3.00000 4.00000 5.00000

IDL> print, x[1,0]

1.00000

IDL> print, x[1,1]

4.00000

In the examples, the arguments of the LINDGEN and FINDGEN functions specify
the size of the array to be created. The last two PRINT commands are exam-
ples of array subscripting. The order in which x is stored in the computer’s
memory is x[0,0], x[1,0], x[2,0], x[0,1], x[1,1], x[2,1]; that is, the
first subscript varies fastest.

Some of the available index generation functions are given in Table 7.2.
Other type-specific functions are available for the unsigned integer types.
When used with the INDEX keyword, MAKE_ARRAY can be used to generate
index arrays.

Chapter 7

64 Using Arrays

TABLE 7.2 Index-generation functions.

Type Function

BYTE BINDGEN

INT INDGEN

LONG LINDGEN

LONG64 L64INDGEN

FLOAT FINDGEN

DOUBLE DINDGEN

COMPLEX CINDGEN

STRING SINDGEN

specified by keyword MAKE_ARRAY with /INDEX keyword

7.5 Generating a Coordinate Array

One very common array operation is generating a “coordinate” variable. For
example, you might wish to compute

y = sin(2πx) (7.1)

for a set of n evenly spaced values of x between 0 and 1. That is, you want to
calculate

yi = sin(2πxi), where xi = i · δx, δx = 1/(n − 1), and

i = 0, 1, 2, . . . , n − 1. (7.2)

In order to compute yi , it is first necessary to compute the values of the
independent coordinate xi . The Fortran approach to this problem using FOR

loops is:

IDL> n = 10

IDL> x = fltarr(n)

IDL> for i = 0, n−1 do x[i] = float(i)/(n−1)

IDL> print, x

0.00000 0.111111 0.222222 0.333333 0.444444

0.555556 0.666667 0.777778 0.888889 1.00000

Remember that array subscripts use square brackets, whereas function ref-
erences (such as the FLOAT function) use parentheses. Because i is explicitly
converted to a FLOAT, the expression n−1 is automatically promoted to a FLOAT.
You can write it this way

IDL> for i = 0, n−1 do x[i] = float(i)/float(n−1)

7.5 Generating a Coordinate Array 65

to be certain that the operation is carried out using the correct variable
types.

The IDL approach using array syntax is:

IDL> x = findgen(n)/(n−1)

IDL> print, x

0.00000 0.111111 0.222222 0.333333 0.444444

0.555556 0.666667 0.777778 0.888889 1.00000

Again, because the result of the FINDGEN function is a floating-point array,
the result of the expression (n−1) is automatically promoted to a FLOAT. The
array-syntax method works because the FINDGEN function creates an array of
n elements filled with the values [0.0, 1.0, 2.0,. . ., n−1]. Each element
of this array is multiplied by δx, that is, by 1.0/(n−1). IDL automatically
creates the floating-point output array x to store the result.

Note that if you want 10 equal-sized intervals, rather than 10 points, then
you need 11 points:

IDL> n = 11

IDL> x = findgen(n)/(n−1)

IDL> print, x

0.00000 0.100000 0.200000 0.300000 0.400000

0.500000 0.600000 0.700000 0.800000 0.900000

1.00000

Now that we have x, it is easy to calculate y using IDL array syntax:

IDL> y = sin(2.0 * !pi * x)

IDL> print, y

0.00000 0.587785 0.951057 0.951056 0.587785

−8.74228e−08 −0.587786 −0.951056 −0.951056 −0.587785

1.74846e−07

The system variable !PI contains the numerical value of π :

IDL> print, !pi

3.14159

Due to round-off error, the values are not exactly zero at x = 0.5 and x = 1.0.
They are, however, zero to within the expected precision of a single-precision
floating-point number.

Check can your result with the PLOT command:

IDL> plot, x, y

Chapter 7

66 Using Arrays

7.6 Changing the Shape of an Array

Every IDL array variable carries with it information about the type, size, and
shape of the array. For example:

IDL> x = findgen(4, 4)

IDL> print, x

0.00000 1.00000 2.00000 3.00000

4.00000 5.00000 6.00000 7.00000

8.00000 9.00000 10.0000 11.0000

12.0000 13.0000 14.0000 15.0000

IDL> help, x

X FLOAT = Array[4, 4]

Within a program you can access this information using the SIZE function:
See the SIZE function in
IDL Reference Guide.IDL> print, size(x)

2 4 4 4 16

The array returned by the SIZE function includes the number of dimensions
(2), the size of each dimension (4 and 4), the type of the variable (4 means
FLOAT), and the total number of elements (16). This is very different from
C and Fortran, where a variable is nothing but an address in memory that
contains the first element of the array.

To access a single element of an array, you supply subscripts for each
dimension:

IDL> print, x[2,1]

6.00000

This is column index 2 and row index 1. Remember that IDL indices start
at 0, so in this example we get the third column and second row. You can
access an entire row or column by using the * notation. This example prints
the second row:

IDL> print, x[*,1]

4.00000 5.00000 6.00000 7.00000

IDL has the very nice property that you can treat an array as though it were
one-dimensional, even if it has multiple dimensions. Here are two examples:

IDL> print, x[6]

6.00000

IDL> print, x[*]

0.00000 1.00000 2.00000 3.00000 4.00000

5.00000 6.00000 7.00000 8.00000 9.00000

10.0000 11.0000 12.0000 13.0000 14.0000

15.0000

7.6 Changing the Shape of an Array 67

The * notation returns all index values (0 through 15). You can even do
arithmetic with arrays of different shape, as this example demonstrates:

IDL> y = findgen(16)

IDL> help, x, y

X FLOAT = Array[4, 4]

Y FLOAT = Array[16]

IDL> print, x + y

0.00000 2.00000 4.00000 6.00000

8.00000 10.0000 12.0000 14.0000

16.0000 18.0000 20.0000 22.0000

24.0000 26.0000 28.0000 30.0000

It is sometimes convenient to change the shape of an array without changing
its values. This is done with the REFORM command:

See the REFORM function
in IDL Reference Guide.

IDL> x = findgen(4, 4)

IDL> print, x

0.00000 1.00000 2.00000 3.00000

4.00000 5.00000 6.00000 7.00000

8.00000 9.00000 10.0000 11.0000

12.0000 13.0000 14.0000 15.0000

IDL> y = reform(x, 2, 8)

IDL> print, y

0.00000 1.00000

2.00000 3.00000

4.00000 5.00000

6.00000 7.00000

8.00000 9.00000

10.0000 11.0000

12.0000 13.0000

14.0000 15.0000

In this example a new array y is created with the same values as x but a different
shape (2 × 8 instead of 4 × 4).

You can also change the shape of an array without making a new array:

IDL> x = reform(x, 8, 2, /overwrite)

IDL> print, x

0.00000 1.00000 2.00000 3.00000 4.00000

5.00000 6.00000 7.00000

8.00000 9.00000 10.0000 11.0000 12.0000

13.0000 14.0000 15.0000

The /OVERWRITE keyword tells REFORM to change the shape of the data
but not to copy the data itself. With the /OVERWRITE keyword, re-forming an
array is a very fast operation.

Chapter 7

68 Using Arrays

Note that the total number of elements in the new array must match the
number in the original array:

IDL> x = reform(x, 1, 8)

% REFORM: New subscripts must not change the number elements in X.

% Execution halted at: $MAIN$

You can even change the number of dimensions, as long as the total number
of elements does not change:

IDL> x = reform(x, 2, 2, 2, 2, /overwrite)

IDL> print, x

0.00000 1.00000

2.00000 3.00000

4.00000 5.00000

6.00000 7.00000

8.00000 9.00000

10.0000 11.0000

12.0000 13.0000

14.0000 15.0000

Sometimes it is useful to think of an array as a row vector:

IDL> y = findgen(4)

IDL> print, y

0.00000 1.00000 2.00000 3.00000

IDL> help, y

Y FLOAT = Array[4]

and sometimes as a column vector:

IDL> y = reform(y, 1, 4, /overwrite)

IDL> print, y

0.00000

1.00000

2.00000

3.00000

IDL> help, y

Y FLOAT = Array[1, 4]

IDL arrays can have dimensions of size 1, although in some situations
IDL automatically removes trailing dimensions of size 1. If you want
to get rid of any dimensions of size 1, use REFORM without specifying any

7.7 Using Part of an Array 69

dimensions:

IDL> y = reform(y, /overwrite)

IDL> help, y

Y FLOAT = Array[4]

7.7 Using Part of an Array

IDL has several shortcuts for working with only part of an array. These are
referred to as subarrays. Subarrays are conveniently specified by using subscript
ranges. Below are some examples of using subscript ranges on a 4×4 floating-

See Subscript Ranges
in Building IDL
Applications.

point array:

IDL> x = findgen(4, 4)

IDL> print, x

0.00000 1.00000 2.00000 3.00000

4.00000 5.00000 6.00000 7.00000

8.00000 9.00000 10.0000 11.0000

12.0000 13.0000 14.0000 15.0000

IDL> print, x[*] ;Example 1

0.00000 1.00000 2.00000 3.00000 4.00000

5.00000 6.00000 7.00000 8.00000 9.00000

10.0000 11.0000 12.0000 13.0000 14.0000

15.0000

IDL> print, x[*,1] ;Example 2

4.00000 5.00000 6.00000 7.00000

IDL> print, x[1,*] ;Example 3

1.00000

5.00000

9.00000

13.0000

IDL> print, x[1:2,0:3] ;Example 4

1.00000 2.00000

5.00000 6.00000

9.00000 10.0000

13.0000 14.0000

IDL> print, x[2:*,0:1] ;Example 5

2.00000 3.00000

6.00000 7.00000

IDL> print, x[0:*:2,*] ;Example 6

0.00000 2.00000

4.00000 6.00000

8.00000 10.0000

12.0000 14.0000

A single asterisk * by itself means all elements of the array, even if it has multiple
dimensions (Example 1). Using an asterisk to subscript a particular dimension

Chapter 7

70 Using Arrays

will return all possible subscripts of that dimension (Examples 2 and 3 above).
Note the difference between row and column subscripts. You can select a
limited range from a given dimension using the : notation (Example 4). You
can think of this as indexing from:to. An asterisk after the colon means “to
the largest subscript for that dimension” (Example 5). Finally, recent versions
of IDL allow a from:to:by notation. In Example 6, the first subscript goes
from 0 to the last element of that dimension, by 2. The by value is referred
to as the stride. As the examples show, you can use different types of subscript
ranges for each dimension.

The different types of array subscript ranges are listed in Table 7.3.

7.8 Expanding or Shrinking (Rebinning) an Array

Using subscript ranges with a stride, it is possible to extract a regular subgrid
of elements from an array (like selecting only the black squares on a checker-
board). This operation can also be done with the REBIN function, but only

See the REBIN function
in IDL Reference Guide.

when the dimensions of the new array are an integral divisor of the input
array. For example, to extract every other element of an array, use REBIN in
the following way:

IDL> x = findgen(4, 4)

IDL> print, x

0.00000 1.00000 2.00000 3.00000

4.00000 5.00000 6.00000 7.00000

8.00000 9.00000 10.0000 11.0000

12.0000 13.0000 14.0000 15.0000

IDL> print, rebin(x, 2, 2, /sample)

0.00000 2.00000

8.00000 10.0000

REBIN in this form is not as versatile as subscript ranges with strides, but REBIN
has other useful abilities.

If the /SAMPLE keyword is omitted, for example, REBIN averages the values
within blocks of adjacent array elements:

IDL> print, rebin(x, 2, 2)

2.50000 4.50000

10.5000 12.5000

TABLE 7.3 Forms of subscript ranges.

Form Meaning Example

i A simple subscript expression x[3]

i0:i1 Subscript range from i0 to i1 x[3:5]

i0:i1:i2 Subscript range from i0 to i1 with a stride of i2 x[3:9:2]

i0:* All points from element i0 to end x[3:*]

i0:*:i2 All points from element i0 to end with a stride of i2 x[3:*:3]

* All points in the dimension x[*]

7.8 Expanding or Shrinking (Rebinning) an Array 71

REBIN can also be used to expand an array. The following is an example that
illustrates some of the power of REBIN. Section 7.5 of this chapter shows how
to compute a one-dimensional coordinate variable with array syntax by using
the FINDGEN function. It is convenient (and fast) to use the same approach
with multidimensional arrays. For example, you might wish to compute

z(x, y) = sin(2πx) sin(2πy) (7.3)

for a set of Nx × Ny grid points that are evenly spaced between 0 and 1 in
both x and y, that is

zi,j = sin(2πxi) sin(2πyj) (7.4)

where xi = i · δx, δx = 1/(Nx − 1), and i = 0, 1, 2, . . . , Nx − 1 (7.5)

and yj = j · δy, δy = 1/(Ny − 1), and j = 0, 1, 2, . . . , Ny − 1 (7.6)

To compute zi,j , it is first necessary to compute the values of the independent
coordinates xi and yj . In order to use IDL array syntax, x and y must be 2-D
arrays.

The trick to doing this in IDL is to create one-dimensional coordinate
arrays and then expand them into two-dimensional arrays by using the REBIN
function. Here is a simple example that expands x in the y direction by
duplicating rows:

IDL> x = findgen(4)

IDL> print, x

0.00000 1.00000 2.00000 3.00000

IDL> print, rebin(x, 4, 3, /sample)

0.00000 1.00000 2.00000 3.00000

0.00000 1.00000 2.00000 3.00000

0.00000 1.00000 2.00000 3.00000

To do the same with y, it is necessary to first transform a 1-D row vector
into a 2-D column vector (with a leading dimension of 1) by using REFORM:

IDL> y = findgen(3)

IDL> print, y

0.00000 1.00000 2.00000

IDL> y = reform(y, 1, 3, /overwrite)

IDL> print, y

0.00000

1.00000

2.00000

IDL> y = rebin(y, 4, 3, /sample)

IDL> print, y

Chapter 7

72 Using Arrays

0.00000 0.00000 0.00000 0.00000

1.00000 1.00000 1.00000 1.00000

2.00000 2.00000 2.00000 2.00000

Here is a complete script that will create 2-D x and y coordinates, compute
z from the formula above, and plot a contour graph of the result:

; Generate 2−D coordinates and plot a sample function

nx = 21 ;Number of x−grid points

ny = 26 ;Number of y−grid points

dx = 1.0/(nx−1) ;x−grid point spacing

dy = 1.0/(ny−1) ;y−grid point spacing

x = dx*FINDGEN(nx) ;Compute 1−D x−coordinates

y = dy*FINDGEN(ny) ;Compute 1−D y−coordinates

xx = REBIN(x, nx, ny, /SAMPLE) ;Expand x−coordinates to 2−D

yy = REBIN(REFORM(y, 1, ny), nx, ny, /SAMPLE) ;Expand y−coordinates to 2−D

z = SIN(2.0*!PI*xx) * SIN(2.0*!PI*yy) ;Compute z

HELP, xx, yy, z

CONTOUR, z, x, y, /FOLLOW, $;Plot contour graph

LEVELS = −1.0+0.2*FINDGEN(11), $

TITLE = ’Plot of sin(2 pi x) * sin(2 pi y)’, $

XTITLE = ’x’, $

YTITLE = ’y’

For clarity, the coordinate arrays are created in three separate steps: first,
compute dx and dy; next, compute the 1-D coordinates x and y; and finally,
expand x and y into 2-D coordinates xx and yy. These steps could be combined
into one line for each coordinate, but the resulting IDL statements would be
harder to read. Executing the script gives:

IDL> @two_d_coords

X FLOAT = Array[21, 26]

Y FLOAT = Array[21, 26]

Z FLOAT = Array[21, 26]

The graph produced by the script is shown in Figure 7.1.

7.9 Reversing an Array

See the REVERSE

function in IDL
Reference Guide.

IDL has a built-in function to reverse the order of the elements in an array.
This does require that values be moved around in memory. As with most
array operation, it is much faster to use REVERSE than a FOR loop. Here is an

7.9 Reversing an Array 73

y

x

Plot of sin(2 pi x) * sin(2 pi y)
1.0

0.8

0.6

0.4

0.2

0.0
0.0 0.2 0.4 0.6 0.8 1.0

0.2 0.2

0.6

0.6

0.2

0.2

0.2

0.6

0.2

0.6

0.2

0.2

FIGURE 7.1 A simple contour graph. (TWO_D_COORDS_PS)

example:

IDL> a = findgen(5)

IDL> print, a

0.00000 1.00000 2.00000 3.00000 4.00000

Idl> b = reverse(a)

% Compiled module: REVERSE.

IDL> print, b

4.00000 3.00000 2.00000 1.00000 0.00000

You can also use REVERSE to reverse the elements of any dimension of a
multidimensional array. The second argument indicates which dimension of
i should be reversed:

IDL> i = lindgen(3, 3)

IDL> print, i

0 1 2

3 4 5

6 7 8

IDL> print, reverse(i, 1)

2 1 0

5 4 3

8 7 6

Chapter 7

74 Using Arrays

IDL> print, reverse(i, 2)

6 7 8

3 4 5

0 1 2

7.10 Rotating or Transposing an Array

The built-in IDL function to rotate or transpose an array is ROTATE.1 ROTATE
See the ROTATE function
in IDL Reference Guide.

only works on 1- and 2-D arrays and only rotates in 90◦ increments. The
first argument to ROTATE is the array to be rotated; the second is the type
of rotation or transposition. There are eight possible rotation/transposition
options. The table in the IDL Reference Guide entry for ROTATE describes the
effects of each option on the elements of a 2-D array. Here are some examples:

IDL> print, i

0 1 2

3 4 5

6 7 8

IDL> print, rotate(i, 0) ;No rotation or transposition

0 1 2

3 4 5

6 7 8

IDL> print, rotate(i, 1) ;Rotate 90, no transposition

6 3 0

7 4 1

8 5 2

IDL> print, rotate(i, 4) ;No rotation, transpose

0 3 6

1 4 7

2 5 8

IDL> print, rotate(i, 5) ;Transpose, then rotate 90

2 1 0

5 4 3

8 7 6

7.11 Shifting an Array

The built-in IDL function to shift an array is SHIFT. SHIFT works on arrays
See the SHIFT function
in IDL Reference Guide.

with any number of dimensions. For multidimensional arrays, you must
specify the shift to be applied to each dimension. All shifts are circular.

1 There is also a TRANSPOSE function that allows dimension permutation of multidimen-
sional arrays.

7.13 Exercises 75

Elements shifted off the end of a dimension are shifted onto the other end.
Positive shifts are to the right, negative shifts to the left. Here are some
examples:

IDL> x = lindgen(4, 4)

IDL> print, x

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

IDL> print, shift(x, 1, 0)

3 0 1 2

7 4 5 6

11 8 9 10

15 12 13 14

IDL> print, shift(x, −1, 0)

1 2 3 0

5 6 7 4

9 10 11 8

13 14 15 12

IDL> print, shift(x, 0, 3)

4 5 6 7

8 9 10 11

12 13 14 15

0 1 2 3

7.12 Summary

IDL programs are generally faster and easier to read if you use array operations
rather than loops. In addition to standard arithmetic operations with arrays,
IDL has a number of built-in functions that can rotate, reverse, reform, rebin,
and shift arrays. These functions can be used to carry out most array operations
that require loops in Fortran or C.

7.13 Exercises

1. Make a small two-dimensional string index array using the SINDGEN

function and print the results.

2. Create a 2 × 2 FLOAT index array and rebin it to a 6 × 6 array with and
without the /SAMPLE keyword. Print the results. Try the same operations
with a LONG array.

Chapter 7

76 Using Arrays

3. Create a coordinate array with n values equally spaced between −1.0 and
1.0. Compare the results when n is even and when n is odd.

4. Generate a two-dimensional array containing the values of the function

z(x, y) = x y2 (7.7)

Plot the array using contour or surface. Examine the effects of using
ROTATE, REVERSE, or SHIFT on the array.

8

Searching and Sorting

This chapter covers how to search for specific values within IDL arrays and
sort the values of IDL arrays into increasing or decreasing order.

8.1 IDL Procedures and Functions

The following IDL procedures are discussed:

■ WHERE function and the COUNT, COMPLEMENT, and NCOMPLEMENT keywords

■ SORT function

■ VALUE_LOCATE function

8.2 Finding Values in an Array That
Satisfy a Logical Condition

A common programming task is to find the elements of an array that sat-
isfy a particular condition. For example, if you have an array filled with
floating-point numbers, you might want to know which elements of the array
are less than some threshold value. Here is a six-element array filled with
pseudorandom numbers1 between 0 and 1:

IDL> seed = 11

IDL> x = randomu(seed, 6)

IDL> print, x

0.0187254 0.717428 0.0846801 0.320515 0.713097

0.949264

To find the values less than 0.5, use the WHERE function:
See the WHERE function
in IDL Reference Guide.IDL> i = where(x LT 0.5, count)

IDL> print, i

0 2 3

1 Setting seed to 11 ensures that you will see the same sequence of pseudorandom numbers
as in the example. If you want to try these operations with a different set of numbers, omit
the statement seed = 11.

77

78 Searching and Sorting

IDL> print, count

3

IDL> print, x[i]

0.0187254 0.0846801 0.320515

The array i contains the subscripts of all of the elements in x that satisfy
the logical expression x LT 0.5. Note that i contains the subscripts of the
elements, not the elements themselves. If you print i, you see that in this
example elements 0, 2, and 3 are less than 0.5. The optional scalar variable
count is also returned by the WHERE function. It contains the number of
elements for which the logical expression is true (3 in this case).

The last line in the example above shows the real power of the WHERE

function. You can use the array i to subscript the array x, which picks out
all of the elements that satisfy the logical expression. This is referred to as an
array subscript. If you like, you can copy the selected values to a new array:

IDL> y = x[i]

IDL> help, y

Y FLOAT = Array[3]

IDL> print, y

0.0187254 0.0846801 0.320515

The first argument of the WHERE function is always a logical expression. IDL
includes the standard relational operators for arithmetic comparisons, which

See Relational
Operators in Building
IDL Applications.

are listed in Table 8.1. Note that you do not use the mathematical symbols
<, >, and so forth for relational expressions. Those symbols have a different
function in IDL. The IDL relational symbols are similar to those in Fortran.

IDL also includes the logical or Boolean operators listed in Table 8.2.
See Boolean Operators
in Building IDL
Applications.

The second argument of the WHERE function, count, is optional, but you
should include count every time you use the WHERE function. The example below
shows why. (As this example shows, the name of the count variable does not
have to be count.)

IDL> j = where(x GT 2.0, jcount)

IDL> print, j

−1

TABLE 8.1 Relational operators.

Operator Description

EQ Equal to

NE Not equal to

GE Greater than or equal to

GT Greater than

LE Less than or equal to

LT Less than

8.3 Sorting an Array 79

TABLE 8.2 Boolean operators.

Operator Description

AND Logical and

OR Logical or

NOT Logical not (opposite)

XOR Logical exclusive or

IDL> print, x[j]

% Attempt to subscript X with J is out of range.

% Execution halted at: $MAIN$

IDL> if (jcount GT 0) then print, x[j]

IDL>

In this example, no elements satisfy the logical condition. The value returned for
j is −1. If you try to subscript x with j, an error results. The lesson here is
that you should always test the value of count before using the subscript array
returned by the WHERE function. In the example above, the logical expression
(jcount GT 0) is false, so the PRINT statement is not executed and does not
generate an error.

As with other array operations in IDL, WHERE is generally much faster than
the equivalent Fortran-style program that uses a FOR loop. Avoid programming
like this:

FOR i = 0, n−1 DO BEGIN

IF (x[i] LT x0) THEN

... do one thing

ENDIF ELSE BEGIN

... do something else

ENDELSE

ENDFOR

Instead use this form:

i = WHERE(x LT x0, icount, COMPLEMENT = j, NCOMPLEMENT = jcount)

IF (icount GT 0) THEN x[i] = ... do one thing

IF (jcount GT 0) THEN x[j] = ... do something else

The COMPLEMENT keyword returns an array (in this case called j) that contains
the indices of the elements that do not satisfy the logical condition. The
NCOMPLEMENT keyword contains the number of elements that do not satisfy
the logical condition.

8.3 Sorting an Array

See the SORT function in
IDL Reference Guide.

The built-in IDL function to sort the elements of an array is SORT. In a
manner similar to WHERE, SORT returns a list of the indices of the array sorted

Chapter 8

80 Searching and Sorting

in the proper order, not the elements themselves. This example sorts the
pseudorandom numbers contained in x:

IDL> k = sort(x)

IDL> print, k

0 2 3 4 1

5

IDL> print, x[k]

0.0187254 0.0846801 0.320515 0.713097 0.717428

0.949264

To get the values in descending order, reverse the subscript array:

IDL> print, x[reverse(k)]

% Compiled module: REVERSE.

0.949264 0.717428 0.713097 0.320515 0.0846801

0.0187254

To sort the actual values of x into ascending order, use the array subscript:

IDL> x = x[SORT(x)]

IDL> print, x

0.0187254 0.0846801 0.320515 0.713097 0.717428

0.949264

8.4 Finding a Value in a Sorted Array

The WHERE function can be used to find a single value within an array:

IDL> print, x

0.0187254 0.0846801 0.320515 0.713097 0.717428

0.949264

IDL> x0 = x[3]

IDL> print, x0

0.713097

IDL> i = where(x EQ x0, count)

IDL> print, i, count

3

1

It is important to remember, however, that the WHERE function applies the
logical test to every element of an array. If you are repeatedly searching for a
single value within an array using WHERE, each time you call WHERE, it will
search the entire array. If there are n elements in the array, then WHERE will do
n comparisons. For repeated searches of large arrays, this can be very slow.

8.5 Summary 81

If you sort the elements of the array first, however, you can use much faster
searching techniques, such as a binary search. A binary search requires at most
only log2(n) comparisons. For an array with 106 elements, that is only ∼20
comparisons, which is an improvement by a factor of 50,000 over the linear
search used by WHERE. The IDL function to carry out a binary search is called
VALUE_LOCATE. VALUE_LOCATE also finds the element in the array with the

See the VALUE_LOCATE

function in IDL
Reference Guide.

value closest to the value you are searching for. This makes it very useful, for
example, when interpolating irregularly spaced data.

The procedure SEARCH_COMPARE compares the search times for WHERE and
VALUE_LOCATE when carrying out 1000 searches on an array of 106 pseudo-
random numbers. The results are shown below:

IDL> .r search_compare

% Compiled module: SEARCH_COMPARE.

IDL> SEARCH_COMPARE

Time required for 1000 searches in a 1000000−element array.

Time using WHERE = 70.726247 s

Time using VALUE_LOCATE = 3.5786340 s

VALUE_LOCATE is 19.763476 times faster.

The difference in this example is about a factor of 20. (Remember that using
VALUE_LOCATE does require sorting the array first, which takes some time.)

As you can see, if you have to search an array only once, a single WHERE state-
ment is faster and easier than sorting the array and then using VALUE_LOCATE.
If you are searching an array many times, however, it may well prove faster to
use SORT and then VALUE_LOCATE.

As the number of searches increases, the overhead of sorting the values first
becomes less important, and the difference between the two methods becomes
much larger. Here is a comparison for 10,000 searches:

IDL> SEARCH_COMPARE

Time required for 10000 searches in a 1000000−element array.

Time using WHERE = 684.59085 s

Time using VALUE_LOCATE = 3.5752939 s

VALUE_LOCATE is 191.47820 times faster.

In this case, the time used by the VALUE_LOCATE method is almost entirely
for the initial sort (about 3 seconds); the time required to do the searches is
almost negligible. The times for the two methods in this case are ∼11 minutes
using WHERE and ∼4 seconds using SORT and VALUE_LOCATE!

8.5 Summary

The WHERE function is the essential tool for doing fast conditional array opera-
tions in IDL. Most operations that could be done in a Fortran-like style using
FOR loops and IF statements can be done faster and more elegantly in IDL
using WHERE.

Chapter 8

82 Searching and Sorting

WHERE applies the logical test to every element of the array. SORT and
VALUE_LOCATE sort arrays and search ordered arrays, respectively.

8.6 Exercises

1. Create an array of integers from 100 to 199 by 1. Use WHERE to find the
indices of all of the even and odd values in the array. Hint: i MOD 2 is
0 if i is even and 1 if i is odd. Print the resulting lists of even and odd
numbers.

2. Create a coordinate variable x that goes from 1 to 10 by 0.1 and use it
to compute a table of logarithms y = log10 x. Generate a pseudorandom
number x0 between 1 and 10 using RANDOMU and use VALUE_LOCATE to
estimate the logarithm of x0 by finding the index of the closest x. Print the
actual logarithm of x0, the value estimated from the table, and the error
(difference). For extra credit, linearly interpolate the table of logarithms
to the point x0.

9

Structures

In IDL, structures are collections of variables that can be referenced with
a single name. Their primary purpose is to allow you to keep logically or
functionally related variables together. Structures can help you to organize
your variables (data) like procedures and functions help you to organize your
program (algorithms). This chapter describes IDL structures and how to
use them.

9.1 IDL Commands and Keywords

The following IDL commands can be used to create structures or get
information about existing structures:

■ CREATE_STRUCT procedure

■ N_TAGS function

■ TAG_NAMES function

9.2 Named Structures

IDL provides two types of structures: named structures and anonymous
structures. This section describes named structures:

Like other IDL data types (scalars, arrays, etc.), structures can be created
dynamically at any point in a program. Here is a script that creates a named
structure:

; named_structure.pro

data = {COORDINATE, $

values : FINDGEN(4), $

n : 4}

PRINT, ’Structure contents :’

PRINT, data.values

PRINT, data.n

83

84 Structures

Executing the script produces the following:

IDL> @named_structure

Structure contents :

0.00000 1.00000 2.00000 3.00000

4

The structure variable named data is created by providing a list with the
structure name at the beginning (COORDINATE in this case), followed by pairs
of tag names and tag definitions. Each pair consists of a tag name (which
must satisfy the IDL rules for variable names), a colon, and the tag definition
(a variable or expression). Each pair of items identified by a tag name is referred
to as a field. The structure itself (that is, the name plus the list of fields) is
delimited by braces { and }. The structure name does not have a tag definition
associated with it.

In this example, the tag names are values and n. Structure defini-
tions are much easier to read and debug if they are written as above, one
tag_name : tag_definition pair per line, with the colons lined up to create
a two-column table.

As the last two lines in the script illustrate, a variable stored within a
structure is referenced by using the syntax variable_name.tag_name. You
can use the same tag name within multiple structures because the field can
only be referenced if the variable name is also included. If you try to access
a variable inside a structure, n, for example, without providing the structure
variable name, an error occurs:

IDL> print, n

% PRINT: Variable is undefined: N.

% Execution halted at: $MAIN$

IDL> print, data.n

4

You can also use HELP to inquire about the variables contained in a structure:

IDL> help, data, /structure

** Structure COORDINATE, 2 tags, length=20, data length=18:

VALUES FLOAT Array[4]

N INT 4

There is an important difference between structure fields and regular IDL
variables. The size and type of regular IDL variables can be changed at any
time simply by assigning a new expression to the old variable name. With
variables inside a structure (structure fields), this is not possible. The size and
type of each field is fixed when the structure is defined. Attempting to change

9.2 Named Structures 85

data.values to a larger array, for example, causes an error:

IDL> data.values = findgen(10)

% Conflicting data structures: structure tag,<FLOAT Array[10]>.

% Execution halted at: $MAIN$

You can change the value of a variable inside a structure, but not its size
or type:

IDL> data.values = SQRT(data.values)

IDL> print, data.values

0.00000 1.00000 1.41421 1.73205

IDL> data.values[2] = 13.0

IDL> print, data.values

0.00000 1.00000 13.0000 1.73205

Although you cannot change the internal definition of structure fields, you
can change a structure variable just like any other IDL variable. A structure
variable can be dynamically replaced by another variable of any type:

IDL> data = fltarr(2, 2)

IDL> help, data

DATA FLOAT = Array[2, 2]

Once a named structure is defined, its definition is stored within your IDL
session. To create a new structure variable with the same type, just reference
the structure name:

IDL> newdata = {coordinate}

IDL> help, newdata, /str

** Structure COORDINATE, 2 tags, length=20, data length=20:

VALUES FLOAT Array[4]

N LONG 4

IDL> print, newdata.values

0.00000 0.00000 0.00000 0.00000

Note that when a new structure is created using a previously defined structure,
the fields are zeroed. String fields are set to the null string.

Chapter 9

86 Structures

9.2.1 Automatic Structure Definition

Named structures can be defined automatically by putting the structure defi-
nition for a named structure into a special kind of procedure. The first time the
named structure is referenced, the procedure is automatically compiled and
executed. The procedure below, WX_OB__DEFINE, shows how to use automatic
structure definition:

PRO WX_OB__DEFINE

; Structure definition for named structure WX_OB

data = {WX_OB, $

station_name : ’’, $

T : 0.0, $

T_units : ’’, $

p : 0.0, $

p_units : ’’}

END

Note that the name of the procedure must match the structure name,
with __DEFINE added at the end. (That’s two underscores before DEFINE!)
Attempting to create a WX_OB structure variable, ob, causes IDL to search for
a procedure named WX_OB__DEFINE. If it exists, it is automatically compiled
and executed. The structure variable that is created is zeroed, as expected:

IDL> ob = {wx_ob}

% Compiled module: WX_OB__DEFINE.

IDL> help, ob, /str

** Structure WX_OB, 5 tags, length=44, data length=44:

STATION_NAME STRING ’’

T FLOAT 0.00000

T_UNITS STRING ’’

P FLOAT 0.00000

P_UNITS STRING ’’

Values can be stored in ob using standard assignment statements:

IDL> ob.station_name = ’CLL’

IDL> ob.T = 83.0

IDL> ob.T_units = ’degrees F’

IDL> ob.p = 1012.5

IDL> ob.p_units = ’hPa’

IDL> help, ob, /str

** Structure WX_OB, 5 tags, length=44, data length=44:

9.3 Anonymous Structures 87

STATION_NAME STRING ’CLL’

T FLOAT 83.0000

T_UNITS STRING ’degrees F’

P FLOAT 1012.50

P_UNITS STRING ’hPa’

The end result is a single variable (ob) that carries around a collection of related
information. One important feature of structures is that all of the variables
inside a structure can be passed between procedures and functions by using
only the structure variable name, ob.

9.3 Anonymous Structures

As the name suggests, the primary way that anonymous structures differ
from named structures is by not having an explicit name associated with
the structure.

Here is a short script that creates two variables, a STRING variable called
name and a floating-point array called x. Those variables are copied into a
structure variable named data, along with the size of the array x:

; anonymous_structure.pro

name = ’Example anonymous structure’

x = FINDGEN(5)

data = {name : name, $

values : x, $

n : N_ELEMENTS(x)}

PRINT, ’Variable info :’

PRINT, name

PRINT, x

PRINT, ’Structure info :’

PRINT, data.name

PRINT, data.values

PRINT, data.n

In this example, the tag names are name, values, and n. Note that name is a
field name, not the structure name. Executing the script produces this output:

IDL> @anonymous_structure

Variable info :

Example anonymous structure

0.00000 1.00000 2.00000 3.00000 4.00000

Chapter 9

88 Structures

Structure info :

Example anonymous structure

0.00000 1.00000 2.00000 3.00000 4.00000

5

Note that the ordinary variables name and x are copied into the structure. The
original variables, name and x, are not affected by the creation of the structure.

To store values into a structure field, use the “dot” syntax to identify the
field:

IDL> data.values[2] = −2.0

IDL> print, data.values

0.00000 1.00000 −2.00000 3.00000 4.00000

As with named structures, you can inquire about an anonymous structure
variable by using the HELP procedure. By itself, HELP merely tells you that
data is a structure:

IDL> help, data

DATA STRUCT = −> <Anonymous> Array[1]

Adding the /STRUCTURE keyword to HELP (abbreviated /STR) produces a list
of the structure’s tag names and definitions:

IDL> help, data, /str

** Structure <11d4020>, 3 tags, length=36, data length=36, refs=1:

NAME STRING ’Example structure’

VALUES FLOAT Array[5]

N LONG 5

You also can get information about a structure using the N_TAGS and
See the N_TAGS and
TAG_NAMES functions in
IDL Reference Guide.

TAG_NAMES functions:

IDL> help, n_tags(data)

<Expression> LONG = 3

IDL> help, tag_names(data)

<Expression> STRING = Array[3]

IDL> print, tag_names(data)

NAME VALUES N

Structures can also be created dynamically using the CREATE_STRUCT

function.

9.4 Hierarchical Structures 89

9.4 Hierarchical Structures

Structure variables can be placed inside other structures to create hierarchical
See the CREATE_STRUCT

function in IDL
Reference Guide.

structures. Here is a script that creates a hierarchical structure:

; hierarchical_structure.pro

nx = 20

x = {name : ’Longitude’, $

values : FLTARR(nx)}

ny = 25

y = {name : ’Latitude’, $

values : FLTARR(ny)}

data = {name : ’Temperature’, $

values : FLTARR(nx, ny), $

x : x, $

y : y}

HELP, data, /str

HELP, data.x, /str

HELP, data.y, /str

PRINT, data.name

PRINT, data.x.name

PRINT, data.y.name

Running the script gives the following results:

IDL> @hierarchical_structure

** Structure <165730>, 4 tags, length=2216, data length=2216, refs=1:

NAME STRING ’Temperature’

VALUES FLOAT Array[20, 25]

X STRUCT −> <Anonymous> Array[1]

Y STRUCT −> <Anonymous> Array[1]

** Structure <e1e00>, 2 tags, length=92, data length=92, refs=3:

NAME STRING ’Longitude’

VALUES FLOAT Array[20]

** Structure <e18a0>, 2 tags, length=112, data length=112, refs=3:

NAME STRING ’Latitude’

VALUES FLOAT Array[25]

Temperature

Longitude

Latitude

Chapter 9

90 Structures

The last three lines of the script show how to access variables within the
structure hierarchy. The values field within the field x is accessed with, for
example,

IDL> print, data.x.values[0:4]

0.00000 0.00000 0.00000 0.00000 0.00000

9.5 Additional Topics

Structures can be organized into arrays of structures; that is, each element of
the array is a structure. In an array of structures, all of the structures must be
identical. For information on structure arrays, see Building IDL Applications.

9.6 Summary

This chapter has covered the basics of creating and using named and anony-
mous structures. Anonymous structures are suitable for most instances in
which you need to use structures, particularly when you do not know the
specifics of the structure content ahead of time.

Named structures are convenient for those structures where you know the
exact types and sizes of the variables in the structure ahead of time. With
named structures you should use automatic structure definition. It is much
easier to find the structure definition if it is stored in a __DEFINE procedure
rather than buried within some function or procedure. This also helps prevent
inadvertently using two structures with the same name.

9.7 Exercises

1. Create a named structure to contain the date and time to the nearest
second. If you wished to have higher precision, what would you do?

2. Create an anonymous structure to hold a coordinate variable. It should
contain the following fields: coordinate values (an array), name, units, and
the number of points in the coordinate. You could also include fields to
indicate whether the coordinate grid is regular or irregular, and whether it
is stored in increasing or decreasing order. Including that information in
the structure can make it easier to use the coordinate information in your
programs.

10

Printing Text

This chapter covers how to send text output to the terminal screen or to a
file; that is, how to prepare output for humans to read. This is referred to as
text or formatted or ASCII output. ASCII (pronounced as-key) is an acronym
for American Standard Code for Information Interchange. The ASCII code is
simply a table that assigns upper- and lowercase letters in the Latin alphabet,
numerals, punctuation marks, and other items to different byte values between
0 and 127. For example, the uppercase letter A is assigned the value 65 in the
ASCII table. ASCII provides a simple way to store text in a file composed of
bytes, one byte per character.1

Generally, when you need to transfer numerical data between programs
or between computers, you should use binary formats, which are covered in
Chapters 12, 13, and 14.

10.1 IDL Commands and Keywords

The following IDL commands and keywords are used for printing text to the
terminal screen and to files:

■ PRINT procedure and FORMAT keyword

■ OPENW procedure and GET_LUN keyword

■ PRINTF procedure and FORMAT keyword

■ FREE_LUN procedure

10.2 Free-Format Output

See Using Free Format
Input/Output in Building
IDL Applications.

We have already used the PRINT command many times to print the values of
IDL constants, expressions, and variables. Like most IDL commands, PRINT
has a default behavior. If you PRINT the BYTE variable x in the example below,

1 ASCII is being replaced gradually by a new standard called UNICODE. UNICODE
tables can contain thousands of characters and symbols, which allows them to support a
much wider set of languages.

93

94 Printing Text

the internal binary representation (8 bits) of the BYTE variable are converted
See the PRINT

procedure in IDL
Reference Guide.

to the characters 1 and 5 (that is, a string) and displayed on the screen:

IDL> x = 15B

IDL> y = 250B

IDL> print, x, y

15 250

As you can see, you can supply more than one expression or variable to be
printed in a list of items separated by commas. Because BYTE variables cannot
have more than three decimal digits, and negative values are not allowed, the
output for a BYTE is allotted four characters by default. This allows for a space
between successive output values.

You can print various kinds of variables or expressions in a single
statement:

IDL> i = 34567

IDL> a = 15.0

IDL> b = 123456.7

IDL> c = 9.876E23

IDL> d = 7.654D−21

IDL> text = ’This is a string.’

IDL> print, i, a, b, c, d, text

34567 15.0000 123457. 9.87600e+23

7.6540000e−21This is a string.

Note that the string variable text, unlike the other variables, did not get any
See String Constants in
Building IDL
Applications.

extra blanks. You must provide those yourself:

IDL> print, i, a, b, c, d, ’ ’, text

34567 15.0000 123457. 9.87600e+23

7.65400e−21 This is a string.

IDL has built-in rules for writing each type of variable. This default behav-
ior is called free-format output because the format of the output is not specified
explicitly. Free-format output is usually adequate for interactive calculations.
If free-form output is not satisfactory, you can specify the output format using
the FORMAT keyword (see the next section).

Be careful! If you try to print a large array, IDL will happily print millions
of numbers to the screen. (Don’t try this example unless you are very patient!)

IDL> x = findgen(100000)

IDL> print, x

0.00000 1.00000 2.00000 3.00000 4.00000

5.00000 6.00000 7.00000 8.00000 9.00000

10.0000 11.0000 12.0000 13.0000 14.0000

10.3 Formatted Output 95

15.0000 16.0000 17.0000 18.0000 19.0000

20.0000 21.0000 22.0000 23.0000 24.0000

25.0000 26.0000 27.0000 28.0000 29.0000

30.0000 31.0000 32.0000 33.0000 34.0000

35.0000 36.0000 37.0000 38.0000 39.0000

.

.

.

You can use control−c to interrupt output, but it may take some time for
the interrupt to work.

10.3 Formatted Output

10.3.1 Printing Integers

The PRINT command accepts optional arguments called keywords to con-
See Using Explicitly
Formatted Input/Output
in Building IDL
Applications.

trol the output. The only keyword that we are concerned with here is
the FORMAT keyword. Here is a simple example of how to use the FORMAT

keyword:

IDL> print, x, y, format = "(I2, I10)"

15 250

The expression inside the double quotes is a string that contains a standard
Fortran format specification.2 The complete rules for format specification are
complex, but this simple case is fairly easy to understand. In the example
there are two format specifications, separated by a comma. The first number
is output as an integer using 2 columns (I2), the second is also output as
an integer, in this case using 10 columns (I10). Be careful when you specify
explicit formats like this. If you reverse the order of the output arguments,
you get this:

IDL> print, y, x, format = "(I2, I10)"

** 15

The number 250 cannot be printed with only two digits. This error is indicated
by the ** printed in the first two columns.

At times it is useful to be able to print integers with leading zeros. For
example, if you need to print a sequence of file names: file001, file002,

2 IDLPRINT statements can also use Cprintf-style format codes. For information about
using C-style codes, see Format Codes in Building IDL Applications.

Chapter 10

96 Printing Text

etc. you could use the following format3:

IDL> i = lindgen(4)

IDL> print, i, FORMAT = "(’file’,I3.3)"

file000

file001

file002

file003

This format definition has two parts. First, it writes the string file. Because
it is contained within the larger string that makes up the complete format
specification, file must be enclosed in single quotes. Next, a three-column
integer is written with enough leading zeros to fill all three columns (indicated
by the I3.3 format code). Because the output uses a format specification, it
does not automatically insert any blanks. The PRINT command prints all four
values contained in the array i, even though the format specification only
provides for printing a single value. When the end of the format is reached, if
there are still items to be output, a new output line is started and processing
starts over from the beginning of the format specification. This “automatic
repeat” function is convenient for printing lists or arrays.

10.3.2 Printing Floating-Point Numbers

Floating-point numbers have slightly more complicated format codes than
integers:

IDL> a = 15.0

IDL> b = 123456.7

IDL> c = 9.876E23

IDL> d = 7.654D−21

IDL> print, a, b, c, d

15.0000 123457. 9.87600e+23 7.6540000e−21

By default, IDL prints FLOATs with about six-digit precision and provides
blanks so that successive numbers do not run together. As we have seen, six-
digit precision is about all that can be expected from a 32-bit floating-point
number. Because d is double precision, it is printed with eight digits by default.
When writing floating-point variables, IDL automatically rounds the output
to the precision specified (the default precision, in this case). Note that the
printed value of b is rounded up to 123457.. The value of b stored in computer
memory is not changed. The rounding by PRINT affects only the way the FLOAT
is translated into decimal characters in the printed output. If the number is
large or small enough to need it, exponential notation is used.

You can force IDL to provide more precision:

IDL> print, b, format = "(F15.6)"

123456.703125

3 Creating standardized file names like this can make other tasks easier.

10.4 Printing a Table 97

This format specifies that the result should occupy 15 columns, with 6 digits
to the right of the decimal place. Note that the output value is not the same as
the constant specified above. This happens because many decimal numbers
cannot be represented exactly in binary notation using only 32 bits (see
Chapter 6).

10.4 Printing a Table

In this section we use free-form and formatted output to print a short table
of base-10 logarithms:

IDL> x = findgen(10)

IDL> y = alog10(x)

% Program caused arithmetic error: Floating divide by 0

Oops! We forgot that we cannot take the logarithm of zero:

IDL> x = 1.0 + findgen(10)

IDL> y = alog10(x)

IDL> print, x

1.00000 2.00000 3.00000 4.00000 5.00000

6.00000 7.00000 8.00000 9.00000 10.0000

IDL> print, y

0.00000 0.301030 0.477121 0.602060 0.698970

0.778151 0.845098 0.903090 0.954243 1.00000

We do a quick PRINT to make sure our values look correct. Next we will format
these values into a more easily readable table. Remember that the formatting
is entirely to make the data easier to read.

IDL> x = 1.0 + findgen(10)

IDL> y = alog10(x)

IDL> FOR i = 0, 9 DO PRINT, x[i], y[i], FORMAT = "(2F12.5)"

1.00000 0.00000

2.00000 0.30103

3.00000 0.47712

4.00000 0.60206

5.00000 0.69897

6.00000 0.77815

7.00000 0.84510

8.00000 0.90309

9.00000 0.95424

10.00000 1.00000

The statement FOR i = 0, 9 DO... is another example of a loop. In this
case, the variable i counts from 0 to 9 by 1. Each time i is incremented by Chapter 10

98 Printing Text

one, IDL executes the PRINT statement, which prints the values of the i’th
elements of x and y using the format provided.

You can ensure that there is space between each of the items that are printed
either by making the format code wide enough to leave space at the beginning
of each number or by explicitly inserting spaces, either with the X format
specifier:

IDL> FOR i = 0, 3 DO PRINT, x[i], y[i], FORMAT = "(F12.5, 5X, F12.5)"

1.00000 0.00000

2.00000 0.30103

3.00000 0.47712

4.00000 0.60206

or by inserting an explicit string containing spaces:

IDL> FOR i = 0, 3 DO PRINT, x[i], y[i], FORMAT = "(F12.5, ’ ’, F12.5)"

1.00000 0.00000

2.00000 0.30103

3.00000 0.47712

4.00000 0.60206

10.5 Output to Files

IDL can send printed output to a file as well as to the terminal screen. Before
See the OPEN procedure
in IDL Reference Guide.

printing to a file, IDL has to know to which file you want to send the output.
This information is provided through the OPEN command. There are actually
three different versions of the OPEN command: OPENW, OPENR, and OPENU.
OPENW opens a new file for writing. If the file already exists, it is overwritten,
and any previous content is lost (unless writing is prohibited by the operating
system). OPENR opens a file for reading only. If you only want to read from a
file, but not write to it, you should use OPENR to reduce the possibility of a
programming blunder that might destroy the file. OPENU opens an existing file
for both input and output. This is called update mode. Generally it is better
to avoid reading from and writing to the same file. It is very easy to make a
programming error that damages or destroys the contents of an existing file.

Here is an example of how to write the table in the previous section to a
file by using OPENW:

IDL> openw, ounit, ’table.txt’, /GET_LUN

IDL> print, ounit

100

IDL> FOR i = 0, 9 DO PRINTF, ounit, x[i], y[i], FORMAT = "(2F12.5)"

IDL> free_lun, ounit

The OPENW command tells IDL to open a connection to a file called table.txt.
Because we have not provided a complete path to the file (that is, including

10.6 Summary 99

all parent directories), IDL creates a file inside the current directory, which
is usually your home directory. Within IDL the file is referred to by a tag
called a logical unit number or LUN. The LUN, which is simply an integer, is
stored in the variable named ounit, which is a short name for “output unit
number”. The /GET_LUN keyword tells IDL to find the first available unused
LUN between 100 and 128. After entering the OPENW command, we print the
value of ounit and see that it is set to 100.

To print the table to the file, we use the PRINTF command rather than the
See the PRINTF

procedure in IDL
Reference Guide.

PRINT command (PRINT sends output to the terminal). The first argument of
the PRINTF command must be the unit number.

When the output is complete, the LUN is freed and the file is closed with
the FREE_LUN command. You should always close a file when you are finished

See the FREE_LUN

procedure in IDL
Reference Guide.

reading from it or writing to it. This frees the LUN for use with another file.
Among other things, there is a limit to the number of files that can be open
simultaneously. Closing files when finished with them will help you avoid
running out of LUNs.

You can also specify an LUN explicitly,

IIDL> openw, 21, ’table.txt’, /GET_LUN

IDL> FOR i = 0, 9 DO PRINTF, 21, x[i], y[i], FORMAT = "(2F12.5)"

IDL> close, ounit

but why do that when IDL can find an available LUN for you?
Using a text editor or the IDL Development Environment, open the file

table.txt and compare its contents to the terminal output in the previous
section:

1.00000 0.00000

2.00000 0.30103

3.00000 0.47712

4.00000 0.60206

5.00000 0.69897

6.00000 0.77815

7.00000 0.84510

8.00000 0.90309

9.00000 0.95424

10.00000 1.00000

10.6 Summary

This chapter has covered the basics of sending printed output to the terminal
or to a file. Here are some points to remember:

■ PRINT sends output to the terminal, PRINTF to a file.

■ You must open a file before writing to it.

■ Close files when you are finished writing to them.

Chapter 10

100 Printing Text

■ Avoid reading from and writing to the same file.

■ Use the /GET_LUN keyword with the OPENW command and the FREE_LUN

command to avoid having to provide a logical unit number.

■ ASCII output (either free-form or formatted) is for humans to read. It is,
however, a bad way to transfer data between computer programs. When
writing data for computers to read, use a binary format (see Chapters 12,
13, and 14).

■ Format codes are hard to get right the first time. Plan on some trial and
error when preparing a format specification.

10.7 Exercises

1. Write a script to print a table of sin(θ) and cos(θ) for θ between 0 and 2π .
Check some sample values with a hand calculator. Hint: Like most com-
puter languages, IDL expects the arguments of trigonometric functions to
be in radians.

2. Write a script to print a table of ln(x), ex , and e−x for x between 1 and 10.

3. Using the Planck function, write a script to print a table of the radi-
ance emitted by a blackbody at 300 K for wavelengths between 1 nm
and 30 nm.

4. Using the Clausis-Clapeyron equation, write a script to print a table of the
saturation vapor pressure from water between 0 and 50 ◦C.

5. Print a table of the major constituent gases of the Earth’s atmosphere, their
chemical symbol, molecular weight, and mass or mole fraction. Hint: You
can explicitly specify an array of strings like this:

gas = [’Nitrogen’, ’Oxygen’, ’Argon’]

11

Reading Text

This chapter shows how to read text data (formatted or ASCII data) from the
terminal or a file.

11.1 IDL Commands and Keywords

The following IDL commands and keywords are used for reading text from
the terminal prompt and from files:

■ READ procedure

■ READF and FORMAT keywords

■ OPENR procedure and GET_LUN keyword

■ FREE_LUN procedure

11.2 Reading Text from the Terminal

You may need to write IDL programs that get input from the user. Here is a
simple example:

PRO PLOT_POWER

; Demonstrate reading from the terminal.

COMPILE_OPT IDL2 ;Set compile options

n = 0 ;Make sure n is an integer

READ, n, PROMPT = ’Enter exponent and <cr>: ’ ;Read the exponent

x = FINDGEN(10) ;Create x−array

y = xˆn ;Compute y−array

101

102 Reading Text

PLOT, x, y, $;Plot y(x)

TITLE = ’Plot of xˆ’ + STRTRIM(STRING(n), 2), $

XTITLE = ’x’, $

YTITLE = ’y’

END

The program is run as follows:

IDL> plot_power

% Compiled module: PLOT_POWER.

Enter exponent : 3

IDL>

Following the colon, the user enters an integer and then a carriage return. The
program stores the value 3 in n and then computes and plots xn.

When you use READ to input the value of a variable that does not already
See the READ procedure
in IDL Reference Guide.

exist, by default IDL creates a FLOAT (regardless of the name of the variable).
In this case we would like to input an integer, not a float. To accomplish this,
a LONG variable called n is created before the READ statement. Then the value
of n is read from the terminal with the READ statement. This is an example of
one of the few instances in IDL in which it is necessary to explicitly declare
the type of a variable before using it.

Whenever a program expects input from the keyboard, it is a good idea to
print a prompt so the user knows what the program expects. In this example
the prompt “Enter exponent and <cr>: ” is generated by the line

READ, n, PROMPT = ’Enter exponent and <cr>: ’

The PROMPT keyword provides a string to be printed with the READ statement
(<cr> is standard shorthand for carriage return).

11.3 Reading Text from Files

As we saw in Chapter 10, text (ASCII) files have advantages and disadvantages
as a means of storing data. The primary advantage of text files is that they are
human readable (with a text editor). Additionally, you can use a text editor
to create a text file to be read by your computer program. Finally, text files
are relatively portable, and can be moved from one computer to another with
little difficulty.

The major disadvantages of text files are that input and output are slow
relative to binary files (this is important for large files) and the transformation
from internal binary numbers to formatted text characters and back to binary
numbers is not exact.

IDL usually handles simple cases with sensible default behavior. Here is
an example. We can use the logarithm table that we created in Chapter 10,
table.txt, as a test case.

11.3 Reading Text from Files 103

The following short IDL procedure demonstrates how to read values from
a file into IDL variables:

PRO READ_LOG_TABLE, x, logx

; Demonstrate reading from a file

infile = !Bowman + ’data/table.txt’ ;Input file name

n = FILE_LINES(infile) ;Get number of lines in the file

x = FLTARR(n) ;Create array for x values

logx = FLTARR(n) ;Create array for log(x) values

x0 = 0.0 ;FLOAT input variable

logx0 = 0.0 ;FLOAT input variable

OPENR, iunit, infile, /GET_LUN ;Open input file

FOR i = 0, n−1 DO BEGIN

READF, iunit, x0, logx0 ;Read one line from the file

x[i] = x0 ;Store x value

logx[i] = logx0 ;Store log(x) value

ENDFOR

FREE_LUN, iunit ;Close input file

FOR i = 0, n−1 DO PRINT, x[i], logx[i], $;Print values to terminal

FORMAT = "(2F12.5)"

END

See the READF

procedure in IDL
Reference Guide.

The built-in procedure to read from files is called READF. There are several
important details in this example that you should note. First, it is easier to
read data into a program if you know the size of the arrays to be read ahead
of time. The FILE_LINES function is an easy way to get that information.

See the FILE_LINES

function in IDL
Reference Guide.

IDL has a number of other functions (the function names begin with FILE_)
to get information about files or change their attributes. It is possible to read
arrays of unknown size, but as you might expect, programs that do so are more
complex. (Another way to deal with this problem is to include the size of the
arrays within the file itself.) Second, when reading elements of an array, as
opposed to entire arrays, you must use scalar variables in the READ statement
itself (x0 and logx0 in READ_LOG_TABLE). You cannot use the Fortran method
of reading directly into an array element like this:

READF, iunit, x[i], y[i]

For reasons having to do with how arguments are passed to procedures and
functions, this does not work in IDL.

Chapter 11

104 Reading Text

Running the program gives the following:

IDL> .r read_log_table

% Compiled module: READ_LOG_TABLE.

IDL> READ_LOG_TABLE, a, loga

1.00000 0.00000

2.00000 0.30103

3.00000 0.47712

4.00000 0.60206

5.00000 0.69897

6.00000 0.77815

7.00000 0.84510

8.00000 0.90309

9.00000 0.95424

10.00000 1.00000

IDL> print, a

1.00000 2.00000 3.00000 4.00000 5.00000

6.00000 7.00000 8.00000 9.00000 10.0000

IDL> print, loga

0.00000 0.301030 0.477120 0.602060 0.698970

0.778150 0.845100 0.903090 0.954240 1.00000

The READF command also accepts the FORMAT keyword, which can be used
See Using Explicitly
Formatted Input/Output
in Building IDL
Applications.

to specify an exact format with which to read the data. You should use the
FORMAT keyword only for reading files for which the contents of the file are
known exactly.

11.4 Summary

This chapter has covered the basics of reading text (ASCII) output from the
terminal or a file. Here are some points to remember:

■ READ reads input from the terminal, READF reads from a file.

■ You must open a file before reading from it.

■ Close files when you are finished reading from them.

■ Avoid reading from and writing to the same file.

■ Use the /GET_LUN keyword with the OPENR command and the FREE_LUN

command to avoid having to provide logical unit numbers.

■ Free-form and formatted (ASCII) output are for humans to read. They
are a bad way to transfer data between programs. When writing data
for computers to read, use binary formats (see Chapters 12, 13,
and 14).

11.5 Exercises 105

11.5 Exercises

1. Write an IDL program to read and plot some of the data from the following
text files:

■ wc151_1804_new.txt

■ wc151_18010_new.txt

■ wc151_18016_new.txt

■ wc151_18112_new.txt

in the directory data/flux/. In these files the variables are organized into
columns. A README file in that directory describes the contents of the files.

2. Write an IDL program to read and plot some of the data from the text
files:

■ wc151_1804.txt

■ wc151_18010.txt

■ wc151_18016.txt

■ wc151_18112.txt

in the directory data/flux/. These files are a little harder to read than the
files from Exercise 1. A README file in that directory describes the contents
of the files.

Chapter 11

12

Writing and Reading Binary Files

This chapter describes how to write data to and read data from binary files. As
we saw in Chapters 10 and 11, it is possible to write IDL variables to text
(ASCII) files. When writing text files, the internal binary representation of
each variable is translated to text characters. You can choose to use the default
formatting rules (free-format) or specify exactly how to translate them by
using a format specification. Data can be read from text files and the infor-
mation converted back into internal IDL variables (integers, floating-point
variables, etc.).

Text files have the big advantage that they are human-readable, but they
have several disadvantages. The conversion process from binary to text and
back is relatively slow. Also, due to the translation from binary to ASCII
characters, it is not easy to ensure that the process is exactly reversible; that is,
that the numbers that you read are exactly the numbers you wrote.

Binary files make a different set of trade-offs. Reading and writing binary
files is very fast, and you can read into one program exactly what was written
by another program. On the other hand, you must know exactly how the file is
written. You cannot look at a binary file with a text editor and expect to see
anything intelligible. Remember, each byte of computer memory can store
255 different patterns of bits, but only about 75 of those patterns represent
printable characters (letters, numbers, punctuation, etc.). Because the con-
tents of the file are an exact copy of the variables in memory, a particular byte
in a binary file might be a byte from a floating-point number, an integer, or a
character string. Without knowing the variable type, it is impossible to know
what a given byte represents. In practical terms, this means that in order to
read a binary file you need to have either the program that wrote the file or
an exact description of how the file was written.

12.1 IDL Commands and Keywords

The following IDL commands and keywords are used for writing and reading
binary files:

■ OPENW procedure and GET_LUN and F77_UNFORMATTED keywords

■ OPENR procedure and GET_LUN and F77_UNFORMATTED keywords

■ WRITEU procedure
107

108 Binary Files

■ READU procedure

■ FREE_LUN procedure

12.2 Writing Binary Files

Here is a short example of a program to write a binary file:

PRO WRITE_MY_BINARY

;+

; Name:

; WRITE_MY_BINARY

; Purpose:

; Write a binary file containing different data types.

; Calling sequence:

; WRITE_MY_BINARY

; Inputs:

; None.

; Output:

; Binary file binary.dat containing different data types.

; Keywords:

; None.

; Author and history:

; Kenneth P. Bowman, 2004.

;−

COMPILE_OPT IDL2 ;Set compile options

outfile = !Bowman + ’data/binary.dat’ ;Binary output file name

n = 20 ;Array i dimension size

m = 400 ;Array z dimension size

i = LINDGEN(n, n, n) ;Create array i

z = DIST(m) ;Create array z

b = BYTSCL(z) ;Create array b

HELP, n, m, i, z, b ;Print info on variables

PRINT, z[0:3,0:3] ;Print part of z

PRINT, ’File size = ’, $;Print file size in bytes

4*(1+1+n*n*n+m*m) + m*m

OPENW, ounit, outfile, /GET_LUN ;Open output file

WRITEU, ounit, n, m ;Write array dimensions

WRITEU, ounit, i, z, b ;Write arrays

12.2 Writing Binary Files 109

FREE_LUN, ounit ;Close binary output file

END

The output file is named binary.dat. Because we have not specified a full
file path, the file is created in the current directory.

The first part of this example program creates several different kinds of
IDL variables: n, m, and i are LONG variables (two scalars and an array), z is a
two-dimensional floating-point array, and b is a 2-D BYTE array. To confirm
that the variables are what we expect, we use the HELP command to print their
properties. We also print a small part of the array z. For an extra check, before
writing all of these variables to the output file, we calculate and print the size
of the file by adding up the number of bytes in each variable. The first four
variables are all 4 bytes per element, the array b is 1 byte per element.

The next step is to open binary.dat for writing. The GET_LUN keyword
tells OPENW to get the next available logical unit number (LUN) and assign it

See the OPENW

procedure in IDL
Reference Guide.

to the variable ounit. The next two lines use the WRITEU procedure to write
the two scalar variables n and m, followed by the three arrays, i, z, and b.
(The reason for using two separate calls to WRITEU is discussed below.) Each
call to WRITEU transfers all of the bytes that make up the variables in the

See the WRITEU

procedure in IDL
Reference Guide.

argument list from computer memory to the output device (usually a file on
a disk drive). Thus, WRITEU, ounit, n, m writes 8 bytes in the output file
(4 bytes each for the integers n and m). The total size of the arrays i, z, and b

is 832,000 bytes, so the second WRITEU statement transfers 832,000 bytes to
the file. Finally, the program frees the logical unit number ounit and closes
the output file using FREE_LUN.

See the FREELUN

procedure in IDL
Reference Guide.

The output from this program looks like this:

IDL> WRITE_MY_BINARY

% Compiled module: WRITE_BINARY.

% Compiled module: DIST.

N LONG = 20

M LONG = 400

I LONG = Array[20, 20, 20]

Z FLOAT = Array[400, 400]

B BYTE = Array[400, 400]

0.00000 1.00000 2.00000 3.00000

1.00000 1.41421 2.23607 3.16228

2.00000 2.23607 2.82843 3.60555

3.00000 3.16228 3.60555 4.24264

File size = 832008

We use the command line to check the file size,

csrp3> ls −l binary.dat

−rw−r−−r−− 1 bowman unknown 832008 Aug 23 14:14 binary.dat

which is what we expect: 832,008 bytes.

Chapter 12

110 Binary Files

If you try to open binary.dat with a text editor, you’ll see gibberish. Most
of the bytes in the file do not translate into printable characters. Text editors
typically display blanks or boxes for unprintable characters. Go ahead and try
it; you won’t break anything. Just don’t try to print the file!

12.3 Reading Binary Files

A program to read binary.dat is very similar to the program that wrote it:

PRO READ_MY_BINARY

;+

; Name:

; READ_MY_BINARY

; Purpose:

; Read a binary file containing different data types.

; Calling sequence:

; READ_MY_BINARY

; Inputs:

; Binary file containing different data types.

; Output:

; None.

; Keywords:

; None.

; Author and history:

; Kenneth P. Bowman, 2004.

;−

COMPILE_OPT IDL2 ;Set compile options

infile = !Bowman + ’data/binary.dat’ ;Input file name

OPENR, iunit, infile, /GET_LUN ;Open input file

n = 0 ;Make n a LONG

m = 0 ;Make m a LONG

READU, iunit, n, m ;Read n and m

i = LONARR(n, n, n) ;Create i array

z = FLTARR(m, m) ;Create z array

b = BYTARR(m, m) ;Create b array

READU, iunit, i, z, b ;Read i, z, and b

FREE_LUN, iunit ;Close input file

12.3 Reading Binary Files 111

HELP, n, m, i, z, b ;Print variable info

PRINT, z[0:3,0:3] ;Print part of z

END

Notice that in this program we use OPENR (for open-read) rather than OPENU
See the OPENR

procedure in IDL
Reference Guide.

or OPENW (for open-update or open-write). This prevents accidentally writing
to the file and destroying its contents due to a programming error. Before
reading the two integers n and m, we ensure that the program knows that they
are integers. We do this by creating two integer variables m and n, both equal
to 0. Only then can we read the integers with the READU command. (If you

See the READU

procedure in IDL
Reference Guide.

do not explicitly create integers, IDL automatically creates FLOATs.)
At this point it should be clearer why we used two separate WRITEU state-

ments in the first program. Doing so allows us to read the values of n and m,
and then use those values to create the array variables i, z, and b. (It is not
strictly necessary to use two separate WRITEUs, but it helps make the logic of
the program easier to understand.) After reading those variables, we use HELP
to display the variable information, close the file, and print the same small
section of the array z:

IDL> READ_MY_BINARY

N LONG = 20

M LONG = 400

I LONG = Array[20, 20, 20]

Z FLOAT = Array[400, 400]

B BYTE = Array[400, 400]

0.00000 1.00000 2.00000 3.00000

1.00000 1.41421 2.23607 3.16228

2.00000 2.23607 2.82843 3.60555

3.00000 3.16228 3.60555 4.24264

As we expected, the values in z are exactly what was written by the previous
program.

What if we had made a mistake about the variable type, thinking z was
an integer? Our program would look almost identical, except for the line that
creates the array z, where we replace FLTARR with LONARR:

PRO READ_MY_BINARY2

;+

; Name:

; READ_MY_BINARY2

; Purpose:

; Read a binary file containing different data types.

Chapter 12

112 Binary Files

; Calling sequence:

; READ_MY_BINARY2

; Inputs:

; Binary file containing different data types.

; Output:

; None.

; Keywords:

; None.

; Author and history:

; Kenneth P. Bowman, 2004.

;−

COMPILE_OPT IDL2 ;Set compile options

infile = !Bowman + ’data/binary.dat’ ;Input file name

OPENR, iunit, infile, /GET_LUN ;Open input file

n = 0 ;Make n a LONG

m = 0 ;Make m a LONG

READU, iunit, n, m ;Read n and m

i = LONARR(n, n, n) ;Create i array

z = LONARR(m, m) ;Create z array

b = BYTARR(m, m) ;Create b array

READU, iunit, i, z, b ;Read i, z, and b

FREE_LUN, iunit ;Close input file

HELP, n, m, i, z, b ;Print variable info

PRINT, z[0:3,0:3] ;Print part of z

END

Now the program output looks like this:

N LONG = 20

M LONG = 400

I LONG = Array[20, 20, 20]

Z LONG = Array[400, 400]

B BYTE = Array[400, 400]

0 1065353216 1073741824 1077936128

1065353216 1068827891 1074731965 1078616770

1073741824 1074731965 1077216499 1080475994

1077936128 1078616770 1080475994 1082639286

12.6 Exercises 113

As it happens, the bytes in the file that represent floating-point numbers
between 0.0 and 5.0 also represent integers in the range of 1,000,000,000!
READU and WRITEU simply transfer bytes between memory and file. They don’t
know or care what the variable type is. This example emphasizes the point
that it is necessary to know exactly what is in a binary file in order to be able
to read it.

12.4 Exchanging Files with Fortran Programs

Many scientific data files are written and read using Fortran programs. In
Fortran, each binary (unformatted) WRITE statement writes the bytes that
make up the variables in the argument list to the file. Each Fortran WRITE

also writes an integer that contains the number of bytes of data transferred
(twice, once before and once after the data itself). That is, each Fortran
WRITE statement also writes the size of the data written. This size is used by
Fortran when reading the data. IDL includes these additional length bytes
when writing files, and uses them properly when reading, if the file is opened
with the F77_UNFORMATTED keyword set. Use this keyword when you need
to write a file to be read by a Fortran program, or read a file that was written
by a Fortran program.

12.5 Summary

This chapter has covered the basics of writing and reading binary files.
Binary input and output has the advantage of speed and simplicity. It has

the disadvantage of obscurity and limited portability. The files are obscure
because a binary file tells you nothing about its contents, and a text editor
generally won’t help. Binary files have limited portability because different
computer systems use different binary representations for integers or floating-
point numbers (IEEE arithmetic notwithstanding). One common problem
is that different computers store the bits within each byte in different orders.
(In homage to Jonathan Swift’s Gulliver’s Travels, these are referred to as “little-
endian” and “big-endian” computers.)

IDL has keywords to swap “endian-ness,” but any scientific programmer
who has worked with binary data files can tell you what a hassle it is to try
to read a binary file from another system. There are several alternatives for
writing and reading binary files that avoid many of these problems. These are
discussed in Chapters 13 and 14.

I find nowadays that I very rarely write a plain binary file. Although it is
useful to know how to read and write binary files, think long and hard, and
know what you are getting into, before resorting to the quick fix of plain
binary input and output.

Chapter 12

114 Binary Files

12.6 Exercises

1. Write an IDL program to generate an array containing 1 million pseu-
dorandom numbers. (See Chapter ?? for a description of how to generate
pseudorandom numbers.) Write the array to a binary file. Close the file.
Reopen it and read the numbers back into the program. Compare the
numbers to see if they are exactly what was written.

2. Do the same exercise as above, but write the random numbers to a text file.
When you read the array, do the values exactly match what was written?

3. Using the programs above, compare the time required to write and read
the binary file and the text file.

13

Reading NetCDF Files

Several file formats and software libraries have been developed to overcome
some of the limitations of plain binary files. NetCDF is one. The HDF and
CDF formats, which are not covered in this book, are two others. All three
file types can be read and written with IDL.

NetCDF (for Networked Common Data Form) is a file format that is
designed for efficient reading and writing of many types of scientific data, par-
ticularly array data. NetCDF files are self-documenting ; that is, each netCDF
file contains the basic information needed to read the file. With a little extra
work, programs that create netCDF files can go beyond basic information to
include a full and detailed description of the file contents.

The netCDF format and software to read and write netCDF files were
developed by the University Data Program (Unidata) at the University Corpo-
ration for Atmospheric Research (UCAR).Through the use of special libraries,
netCDF files are highly portable between different computers and can be writ-
ten or read quickly using Fortran, C, IDL, and a number of other languages.
The netCDF interface also provides random access to any part of the file.
Because reading netCDF files is somewhat simpler than writing them, this
chapter describes how to read netCDF files. Writing netCDF files is discussed
in Chapter 14.

13.1 IDL Procedures and Functions

The IDL commands used to read and write netCDF files are described
in a separate manual, Scientific Data Formats, which also contains the
documentation for HDF and CDF commands.

The following IDL procedures are used to read netCDF files:

■ NCDF_OPEN function

■ NCDF_VARGET procedure

■ NCDF_ATTGET procedure

■ NCDF_CLOSE procedure

The chapter also discusses the ncdump command-line procedure.

115

116 Reading NetCDF Files

13.2 NetCDF Basics

NetCDF files can contain a variety of types of data, including BYTE, CHAR,
SHORT, LONG, FLOAT, and DOUBLE. NetCDF files are primarily intended to
store rectangular arrays of data (like IDL arrays). NetCDF files are not the
best choice for storing irregular data structures, such as lists of items with
different lengths or large amounts of text.

One of the biggest advantages of netCDF files is that they contain not
only data, but also a description of the data. The descriptive part of the file
is referred to as the metadata, that is, data about data. Storing the metadata
within the file itself means that you can find out what is in a netCDF file
without having external documentation or the program that created the file.1

It is possible to create netCDF files with minimal metadata, but don’t be lazy!
When you create a netCDF file, you should always make the extra effort to
include enough metadata so that you can understand the file when you go
back to it long after you originally wrote it. That will happen more often than
you expect!

It is possible to write IDL programs that use the IDL netCDF inquire
functions to find out what is in a netCDF file. In many cases it is simpler
to use a command-line utility called ncdump to print a description of the file
contents. The ncdumputility is not part of IDL, but is included with the general
distribution of the netCDF software libraries from Unidata.2 Source code is
available, and binary distributions are available for most operating systems.
If you plan to use netCDF files, you should install the netCDF libraries on
your system or ask your system administrator to do so.

A listing of the metadata for a netCDF file named random.ncd, as produced
by ncdump, is shown below:

csrp3> ncdump −h random.ncd

netcdf random {

dimensions:

Time = UNLIMITED ; // (1000 currently)

variables:

int Time(Time) ;

Time:longname = "Time since 2003−08−19 18:00:00Z" ;

Time:units = "s" ;

float w(Time) ;

w:longname = "Vertical velocity" ;

w:units = "m sˆ−1" ;

float T(Time) ;

T:longname = "Temperature" ;

T:units = "K" ;

1 Given an unfamiliar ASCII file, it is sometimes possible to decipher its contents. With
plain binary files, it is generally impossible.

2 The web address for Unidata is http://unidata.ucar.edu.

13.2 NetCDF Basics 117

// global attributes:

:Description = "Near surface measurements of vertical

velocity and temperature" ;

}

The −h flag tells ncdump to print only the header information (the meta-
data), not the entire file. If you use the −c flag instead, ncdump will also
print the coordinate variables (more on coordinate variables in the following
paragraph). If you omit both flags, ncdump will print the entire contents of
the file, data and all!3 The file random.ncd has one dimension called Time,
and three variables: Time, T, and w. Time is a LONG array, whereas the other
two are FLOATs. All three of the variables are dimensioned by Time. The size
of the Time dimension is 1,000, so each variable is a one-dimensional array
containing 1,000 elements.

It may seem confusing to have two different things within the file both
named Time, but in fact, this does make sense. There is a dimension named
Time, and there is also a variable named Time that contains the actual values
for that dimension, in this case time in seconds. A variable that has the same
name as a dimension is referred to as a coordinate variable. Coordinate variables
generally contain the values associated with a particular physical dimension,
such as longitude or time, and can be thought of as the independent variables of
a data set. Coordinate variables are not mandatory, but it usually makes sense
to include them. The other two variables, w and T (which represent Vertical
velocity and Temperature), both depend on time and can be thought of as
dependent variables.

Three notes on ncdump and netCDF files: First, the ncdump utility uses
the C-language convention for displaying array dimensions. That means that
when a variable has more than one dimension, the dimensions are listed in
the reverse order of the way the array would be used in IDL. Second, also
following the C convention, an int in an ncdump listing is a 4-byte integer
(a LONG in IDL), not a 2-byte integer (an INT in IDL). Third, unlike IDL,
netCDF dimension and variable names are case sensitive. That means that it is
possible to have one variable named T and another named t in the same file.
That does not mean it is a good idea, though!

After using the ncdump command to display the file metadata, it is a simple
matter to write an IDL program to read the file. Here is a short IDL program
called READ_NETCDF1 that reads the contents of the file random.ncd and plots
a scatterplot of T vs. w.

3 A useful Unix trick to browse through the actual data in a netCDF file is to send
the output of the ncdump command to more, which will display text one page
at a time. For a file named randomn.ncd, this is done with the Unix command
ncdump random.ncd | more.

Chapter 13

118 Reading NetCDF Files

PRO READ_NETCDF1, infile

;+

; Name:

; READ_NETCDF1

; Purpose:

; This program reads a simple netCDF file and

; plots a scatterplot.

; Calling sequence:

; READ_NETCDF1

; Inputs:

; infile : name of input file

; Output:

; Scatterplot of data from the netCDF file.

; Keywords:

; None.

; Author and history:

; Kenneth P. Bowman, 2004.

;−

COMPILE_OPT IDL2 ;Set compile options

IF (N_ELEMENTS(infile) EQ 0) THEN $;Default input file

infile = !Bowman + ’data/random.ncd’

iid = NCDF_OPEN(infile) ;Open input file

NCDF_VARGET, iid, ’Time’, time ;Read time

NCDF_VARGET, iid, ’T’, T ;Read temperature

NCDF_VARGET, iid, ’w’, w ;Read vertical velocity

NCDF_CLOSE, iid ;Close input file

HELP, time, T, w ;Print info about variables

PLOT, w, T, PSYM = 1, /YNOZERO, $;Plot data

XTITLE = ’w’, $

YTITLE = ’T’

END

Running the program READ_NETCDF1 gives the following results:

IDL> read_netcdf1

% Compiled module: READ_NETCDF1.

% Loaded DLM: NCDF.

TIME LONG = Array[1000]

T FLOAT = Array[1000]

W FLOAT = Array[1000]

13.3 Reading Attributes 119

As you can see in Scientific Data Formats, about 25 different functions
and procedures are used with netCDF files. Fortunately, to read netCDF files
we only need to use three of those procedures. The first step is to open the
netCDF file for reading. This is done with the NCDF_OPEN function. This

See the NCDF_OPEN

function in Scientific
Data Formats.

function returns a file ID, which is a LONG variable that we save with the name
iid (for “input ID”). We use this variable in other NCDF_ commands to refer to
this particular file. If you need to have a second netCDF file open at the same
time (when reading from one file and writing to another, for example), you
save its ID with a different name, such as oid. (NCDF_OPEN is the equivalent
of OPENR, and iid is equivalent to the LUN for text and binary files.)

The next three lines of the program use the NCDF_VARGET procedure to
See the NCDF_VARGET

procedure in Scientific
Data Formats.

read the variables Time, T, and w. The three arguments to the NCDF_VARGET

procedure tell it which file to read from, which variable in the file to read, and
the name of the local IDL variable in which the data will be stored in memory.
Because the netCDF file contains all of the metadata needed to describe its
own contents, IDL is able to get the type and size of the data in the file from
the file itself and then create the necessary IDL variables. The NCDF_VARGET

procedure transfers data from the file to the IDL program. The result is three
array variables named time, T, and w. The names of the variables in the file
and the names of the local IDL variables do not have to match, but it usually
makes the program easier to understand. We use the HELP command to check
that we are getting what we expect, three floating-point arrays of size 1000.

It is possible to read a subsection of an array by using the OFFSET, COUNT,
and STRIDE keywords with the NCDF_VARGET procedure. If the keywords are
omitted, as we have done here, the default behavior is to read the entire
variable. This is a good example of IDL’s ability to create variables on the fly.
In this case, the NCDF_functions are smart enough to automatically create
arrays of the proper size and type. Unlike Fortran, in IDL it is not necessary
to define the variables’ sizes and types first.

The next line closes the file with the NCDF_CLOSE procedure. IDL can have
See the NCDF_CLOSE

procedure in Scientific
Data Formats.

only a limited number of netCDF files open at one time, so it is important
to close a file when you are finished with it. If your program crashes before
reaching NCDF_CLOSE, the file is left open. Therefore, it is a good idea to close
a file as soon as you are finished reading from it or writing to it. Exiting IDL
closes any open files.

Lastly, the program plots a scatterplot of T vs. w. The results are shown in
Figure 13.1.

13.3 Reading Attributes

You may have noticed that the ncdump utility showed some additional infor-
mation in the netCDF file that we have not made use of. The variables Time, T,
and w all have units and long names associated with them. These metadata are
known as attributes. Attributes can be attached to variables or to the file itself
(global attributes). An attribute is nothing but extra information that can be
referenced by using the attribute name. Attributes are often strings (character

Chapter 13

120 Reading NetCDF Files

296

294

292

290

288

286

284
−4 −2 0 2 4

T

W

FIGURE 13.1 A scatterplot of T vs. w from the values in the file random.ncd.
(READ_NETCDF1_PS)

variables), but they can be numbers or even arrays. Note that multiple variables
can have attributes with the same name.

Attributes are read with the NCDF_ATTGET procedure. We can use the
attribute information from the file to improve the plots. Here is an exam-
ple of a program that reads the attribute data from the file and uses it to
provide more informative labels for the plots. Note that STRING variables are
read as BYTE arrays, which can be converted to IDL strings by using the STRING
function.

PRO READ_NETCDF2, infile

;+

; Name:

; READ_NETCDF2

; Purpose:

; This program reads a simple netCDF file

; and plots several graphs.

; Calling sequence:

; READ_NETCDF2

; Inputs:

; infile : name of input file

; Output:

; Plots of data from netCDF file.

13.3 Reading Attributes 121

; Keywords:

; None.

; Author and history:

; Kenneth P. Bowman, 2004.

;−

COMPILE_OPT IDL2 ;Set compile options

IF (N_ELEMENTS(infile) EQ 0) THEN $;Default input file

infile = !Bowman + ’data/random.ncd’

iid = NCDF_OPEN(infile) ;Open input file

NCDF_VARGET, iid, ’Time’, time ;Read time

NCDF_VARGET, iid, ’T’, T ;Read temperature

NCDF_VARGET, iid, ’w’, w ;Read vertical velocity

NCDF_ATTGET, iid, ’Time’, ’longname’, $;Get long name of time

time_name

NCDF_ATTGET, iid, ’Time’, ’units’, $;Get units of time

time_units

NCDF_ATTGET, iid, ’T’, ’longname’, $;Get long name of T

T_name

NCDF_ATTGET, iid, ’T’, ’units’, $;Get units of T

T_units

NCDF_ATTGET, iid, ’w’, ’longname’, $;Get long name of w

w_name

NCDF_ATTGET, iid, ’w’, ’units’, $;Get units of w

w_units

NCDF_CLOSE, iid ;Close input file

time_name = STRING(Time_name) ;Convert to string

time_units = STRING(Time_units) ;Convert to string

T_name = STRING(T_name) ;Convert to string

T_units = STRING(T_units) ;Convert to string

w_name = STRING(w_name) ;Convert to string

w_units = STRING(w_units) ;Convert to string

b = REGRESS(w, t, YFIT = T_fit, $;Linear regression

CONST = a, /DOUBLE)

!P.MULTI = [0, 2, 2, 0, 0] ;Set plots per page

PLOT, time, w, /YNOZERO, $;Plot w(time)

XTITLE = time_name + ’ (’ + time_units + ’)’, $

YTITLE = w_name + ’ (’ + w_units + ’)’

Chapter 13

122 Reading NetCDF Files

PLOT, time, T, /YNOZERO, $;Plot T(time)

XTITLE = time_name + ’ (’ + time_units + ’)’, $

YTITLE = T_name + ’ (’ + T_units + ’)’

PLOT, w, T, PSYM = 3, /YNOZERO, $;Plot T vs. w

XTITLE = w_name + ’ (’ + w_units + ’)’, $

YTITLE = T_name + ’ (’ + T_units + ’)’

OPLOT, [!X.CRANGE[0], !X.CRANGE[1]], $;Plot linear fit

[a + b[0]*!X.CRANGE[0], a + b[0]*!X.CRANGE[1]]

!P.MULTI = 0 ;Reset !P.MULTI

END

The resulting graphs are shown in Figure 13.2. These graphs also illustrate the
importance of looking at your data in different ways. It is difficult to see any
relationship between T and w when comparing the noisy time series plots. The
scatterplot, however, shows a very clear correlation between the two variables.
We have used the IDL REGRESS procedure to compute the linear least-squares
fit between the data and plotted the results on the lower graph using the OPLOT

See the REGRESS and
OPLOT procedures in
IDL Reference Guide.

command.

13.4 A Real Data File

A sample netCDF file containing real surface-flux data from a field experi-
ment is included with the example programs and data files.4 The file is named
wc151_18010.ncd. It contains one hour of velocity, temperature, humidity,
and carbon dioxide measurements made near the Earth’s surface. In order
to measure the effects of turbulence close to the surface, the data were col-
lected at a rate of 20 Hz (20 times per second). Therefore, the file contains
72,000 observations. The original text file used to create the netCDF file,
wc151_18010.txt, is also included.

Here is the metadata (header information) from the files:

netcdf wc151_18010 {

dimensions:

Time = 72000 ;

variables:

int Year(Time) ;

int Month(Time) ;

int Day(Time) ;

int Hour(Time) ;

int Minute(Time) ;

4 Many thanks to Prof. Tony Cahill of the Civil Engineering Department at Texas A&M
for providing these data.

13.4 A Real Data File 123

4

2

0

0 200 400 600 800 1000

−2

−4

Time since 2003-08-19 18:00:00Z (s) Time since 2003-08-19 18:00:00Z (s)

296

294

292

290

288

286

284

0 200 400 600 800 1000
Te

m
pe

ra
tu

re
 (

K
)

Te
m

pe
ra

tu
re

 (
K

)

296

294

292

290

288

286

284
−4 −2 0 2 4

Vertical velocity (m s–1)

V
er

tic
al

 v
el

oc
ity

 (
m

 s
–1

)

FIGURE 13.2 Multiple plots of the variables in the file random.ncd that make use of
the variable attributes. (READ_NETCDF2_PS)

int Second(Time) ;

int Millisecond(Time) ;

float u(Time) ;

u:longname = "U−velocity" ;

u:units = "m sˆ−1" ;

float v(Time) ;

v:longname = "V−velocity" ;

v:units = "m sˆ−1" ;

float w(Time) ;

w:longname = "W−velocity" ;

w:units = "m sˆ−1" ;

float T(Time) ;

T:longname = "Temperature" ;

T:units = "degrees C" ;

Chapter 13

124 Reading NetCDF Files

int flag(Time) ;

float CO2(Time) ;

CO2:longname = "CO2 density" ;

CO2:units = "mg mˆ−3" ;

float H2O(Time) ;

H2O:longname = "H2O density" ;

H2O:units = "g mˆ−3" ;

float p(Time) ;

p:longname = "Pressure" ;

p:units = "kPa" ;

// global attributes:

:Site name = "Walnut Creek, Iowa, USA" ;

:Site number = 151 ;

:Longitude = 263.7f ;

:Latitude = 42.f ;

:Instrument height = "3.1 m" ;

:Description = "Flat cornfield" ;

}

One of the exercises for this chapter is to write a program to read this files and
plot some of the data. Some sample output is shown in Figure 13.3.

13.5 Summary

This chapter has covered the basics of reading data from netCDF files:

■ Use ncdump to show the contents of a netCDF file (the metadata).

■ First open the file with NCDF_OPEN.

■ Read data with NCDF_VARGET.

■ Read attributes with NCDF_ATTGET.

■ Don’t forget to close files with NCDF_CLOSE when you are finished reading
from them.

13.6 Exercises

1. Write an IDL program to read the data in the text file wc151_18010.txt.
Write the data to a new netCDF file similar to wc151_18010.ncd. A
description of the text file is contained in the README file in the flux/

directory.

2. Write an IDL program to read wc151_18010.ncd and plot the graphs
shown in Figure 13.3. The file wc151_18010_ncdump.txt contains an
ncdump of the file’s header information.

3 34

33

32

31

30

29
0 1000

Time since 2002-06-30 16:00:00Z (s) Time since 2002-06-30 16:00:00Z (s)Time since 2002-06-30 16:00:00Z (s)
2000 3000 4000

2

1

0

−1

−2
0 1000 2000 3000 4000

22

21

20

19

18

17

16

22

21

20

19

18

17

16
29 30 31 32 33 34

2234

33

32

31

30

29
−2 −1 0 1 2 3

21

20

19

18

17

16
−2 −1 0 1 2 3

0 1000 2000 3000 4000

W
-v

el
oc

ity
 (

m
 s

−1
)

W-velocity (m s−1)
Sensible heat flux = 79.5 W m−2

W-velocity (m s−1)
Latent heat flux = 308.9 W m−2

Temperature (degrees C)

Te
m

pe
ra

tu
re

 (
de

gr
ee

s
C

)

Te
m

pe
ra

tu
re

 (
de

gr
ee

s
C

)

H
2O

 d
en

si
ty

 (
g

m
−3

)
H

2O
 d

en
si

ty
 (

g
m

−3
)

H
2O

 d
en

si
ty

 (
g

m
−3

)

FIGURE 13.3 Multiple plots of the variables in the file wc151_18010.ncd. The plots make use of the variable attributes read from the netCDF file.
Because the large number of data points tends to make the plots difficult to read, only every 20th point is plotted.

14

Writing NetCDF Files

Chapter 13 covers the basics of reading netCDF files. NetCDF files are
particularly easy to read with IDL because each netCDF file contains metadata
that describes the file’s contents. The IDL functions that read netCDF files can
automatically read the metadata and create IDL variables with the appropriate
types and array sizes to store the data read from the files.

In order for this magical process to work, the metadata (description of the
file contents) must be written into the file at the time it is created. For this
reason, writing netCDF files is slightly more complicated than reading them.
This chapter describes the steps required to write simple netCDF files.

14.1 IDL Procedures and Functions

The IDL commands used to read and write netCDF files are described in a
separate manual, Scientific Data Formats, along with the documentation for
HDF and CDF commands.

The following IDL procedures are used to write netCDF files:

■ NCDF_CREATE function and CLOBBER keyword

■ NCDF_DIMDEF function

■ NCDF_VARDEF function

■ NCDF_ATTPUT procedure

■ NCDF_CONTROL procedure and ENDEF keyword

■ NCDF_VARPUT procedure

■ NCDF_CLOSE procedure

14.2 Writing a NetCDF File

Although it is possible to write to an existing netCDF file (or other kinds of
files, for that matter), you should generally avoid doing so. One minor bug
in a program can easily destroy a file, obliterating its contents. For simplicity
and safety, the programs in this chapter create new files from scratch.

127

128 Writing NetCDF Files

When you create a new netCDF file (with the NCDF_CREATE function),
See the NCDF_CREATE

function in Scientific
Data Formats.

you need to decide what to do if a file already exists with the same name.
The default behavior is to stop, issue an error message, and not destroy
the old file. If you wish to wipe out the existing file and replace it with
a new file with the same name, either use the operating system to delete
the file before running your IDL program or add the CLOBBER keyword
to NCDF_CREATE. (NCDF_CREATE is equivalent to OPENW for text and binary
files.)

The quickest way to learn how to write a netCDF file is with an exam-
ple program. The following program creates the file random.ncd used in
Chapter 13:

PRO WRITE_RANDOM_NETCDF, outfile, n, seed, a, b, eps

;+

; Name:

; WRITE_RANDOM_NETCDF

; Purpose:

; This program creates a simple netCDF file containing

; random, correlated data.

; Calling sequence:

; WRITE_RANDOM_NETCDF, outfile, n, seed, a, b, eps

; Input:

; outfile : name of output file

; n : number of pairs of random numbers to generate

; seed : seed for random number generator

; a : intercept

; b : slope

; eps : magnitude of random component

; Output:

; NetCDF file containing random output

; Keywords:

; None.

; Author and history:

; Kenneth P. Bowman, 2004.

;−

COMPILE_OPT IDL2

IF (N_PARAMS() EQ 0) THEN BEGIN

outfile = !Bowman + ’data/random.ncd’ ;Default output file name

n = 1000 ;Default number of points

seed = 117 ;Random number seed

a = 290.0 ;Intercept

b = 1.5 ;Slope

eps = 0.5 ;Default scaling factor

ENDIF

14.2 Writing a NetCDF File 129

description = ’Near surface measurements of ’ + $

’vertical velocity and temperature’

time = LINDGEN(n) ;Generate time

time_name = $;Variable name

’Time since 2003−08−19 18:00:00Z’

time_units = ’s’ ;Variable units

w = RANDOMN(seed, n) ;Generate random vertical velocity

w_name = ’Vertical velocity’ ;Variable name

w_units = ’m sˆ−1’ ;Variable units

T = a+b*w+eps*RANDOMN(seed, n) ;Compute correlated temperature

t_name = ’Temperature’ ;Variable name

t_units = ’K’ ;Variable units

oid = NCDF_CREATE(outfile, /CLOBBER) ;Create output file

NCDF_ATTPUT, oid, ’Description’, $;Write time units

description, /GLOBAL

tid = NCDF_DIMDEF(oid, ’Time’, $;Define time dimension

/UNLIMITED)

vid = NCDF_VARDEF(oid, ’Time’, [tid], $;Define time variable

/LONG)

vid = NCDF_VARDEF(oid, ’w’, [tid], $;Define vertical velocity variable

/FLOAT)

vid = NCDF_VARDEF(oid, ’T’, [tid], $;Define temperature variable

/FLOAT)

NCDF_ATTPUT, oid, ’Time’, ’longname’, $;Write time long name

time_name

NCDF_ATTPUT, oid, ’Time’, ’units’, $;Write time units

time_units

NCDF_ATTPUT, oid, ’w’, ’longname’, $;Write vertical velocity long name

w_name

NCDF_ATTPUT, oid, ’w’, ’units’, $;Write vertical velocity units

w_units

NCDF_ATTPUT, oid, ’T’, ’longname’, $;Write temperature long name

t_name

NCDF_ATTPUT, oid, ’T’, ’units’, $;Write temperature units

t_units

NCDF_CONTROL, oid, /ENDEF ;Exit define mode

NCDF_VARPUT, oid, ’Time’, time ;Write the time

Chapter 14

130 Writing NetCDF Files

NCDF_VARPUT, oid, ’T’, T ;Write the temperature

NCDF_VARPUT, oid, ’w’, w ;Write the vertical velocity

NCDF_CLOSE, oid ;Close the netCDF file

b = REGRESS(w, t, YFIT = T_fit, $;Compute linear regression

/CONST = a, DOUBLE)

PLOT, w, T, PSYM = 3, /YNOZERO, $;Plot data

XTITLE = w_name + ’ (’ + w_units + ’)’, $

YTITLE = T_name + ’ (’ + T_units + ’)’

OPLOT, [!X.CRANGE[0], !X.CRANGE[1]], $;Plot linear fit

[a + b[0]*!X.CRANGE[0], a + b[0]*!X.CRANGE[1]]

END

The first part of this program creates the data arrays that will be written to the
netCDF file: time, w, and T. The variable time is created with the LINDGEN

function, while w and T are created by using the built-in IDL pseudoran-
dom number generator, RANDOMN. Some additional STRING variables, such as

See the tt RANDOMN
function in IDL
Reference Guide.

w_name and w_units, are created with descriptive information about each of
the data variables. These will be used to add variable attributes to the netCDF
file. The middle part of the program defines the contents of the netCDF file,
and the last part (after the NCDF_CONTROL statement) actually writes the data
to the file.

The first step in writing a netCDF file is to create the file with the
NCDF_CREATE statement. In this case, if the output file already exists, we
have chosen to CLOBBER (overwrite) it. The NCDF_CREATE function returns
a LONG variable (named oid, for “output ID”) containing the file ID. The
netCDF file ID is similar to the logical unit numbers (LUNs) used to identify
text and plain binary files. You need the ID to do any other operation with
the file (writing to it, closing it, etc.)

Next, a global attribute is written to the file with NCDF_ATTPUT. Global
attributes can contain any descriptive information about the file that you want
to include in the file itself. We choose to name this attribute Description.
You can write multiple global attributes to a file.

Next, dimensions are defined with the NCDF_DIMDEF function. Each call
See the tt
NCDF_DIMDEF function
in Scientific Data
Formats.

to the NCDF_DIMDEF function returns a LONG variable that is used to refer to
that particular dimension. This file has only one dimension, called Time.
The dimension ID is saved in the variable tid (for ‘time ID’). Remem-
ber that names of netCDF attributes, dimensions, and variables are case
sensitive.

The netCDF standard allows two types of dimensions, fixed and unlimited.
Unlimited dimensions grow as needed when data are written to the file.
NetCDF files can contain more than one dimension, but only one unlimited
dimension is allowed per netCDF file.

14.3 Writing Parts of an Array 131

The next three lines use NCDF_VARDEF to define the three variables in the
See the NCDF_VARDEF

function in Scientific
Data Formats.

file. In this example, each variable is dimensioned by Time, which is indicated
by the array containing the dimension ID, [tid]. A three-dimensional array
would have a list of three dimension IDs, such as [xid, yid, tid]. If there is
an unlimited dimension, it must be the last one in the list of IDs. NetCDF files
can contain BYTE, CHAR, SHORT, LONG, FLOAT, and DOUBLE data types. In this
case, Time is a LONG array, whereas w and T are FLOATs. Because variables can
be referred to by name (as well as by ID number), it is not necessary to save the
variable IDs for each variable. (This is why we can reuse the same variable ID
name (vid) for each variable.) Using variable names instead of ID numbers
makes the program easier to read.

The next six lines of the program use NCDF_ATTPUT to write the variable
See the NCDF_ATTPUT

procedure in Scientific
Data Formats.

attributes to the file. In this case the attributes are strings containing the
long name and units for each of the variables. The names of the attributes
are longname and units. The values of the attributes are things such as
“Vertical velocity”.

At this point, all of the metadata for the file have been defined (dimen-
sion names and sizes, variable names and dimensions, and attributes). The
NCDF_CONTROL, id, /ENDEF statement takes the file out of define mode (that

See the NCDF_CONTROL

procedure in Scientific
Data Formats.

is, defining the file contents) and puts it into data mode (ready to read or
write data). It is a minor limitation of the netCDF software that it has these
two modes. The practical effect is that a program can be either defining the
file contents or writing to the file, but the two cannot be intermingled. It is
possible to switch back to define mode and add more dimensions, variables,
or attributes, but it should be avoided. Among other things, it requires that a
new copy be made of the entire file.

See the NCDF_VARPUT

procedure in Scientific
Data Formats.

Toward the bottom of the program the arrays time, w, and T are written to
the output file by using NCDF_VARPUT commands.

Finally, the output file is closed with NCDF_CLOSE.
See the NCDF_CLOSE

procedure in Scientific
Data Formats.

The listing of the metadata for the file as given by ncdump is below (identical
to Chapter 13). As you can see, writing a netCDF file is a little more involved
than writing a plain binary file. The payoff is that the file is very portable,
easy to access, and self-documenting. These features may not seem important
until you have spent several days moving a plain binary file between two
different computers or deciphering the contents of a binary file (yours or
someone else’s).

14.3 Writing Parts of an Array

It is important to point out that netCDF files do not require you to read
and write entire arrays at one time. Indeed, due to computer memory limita-
tions it is often necessary to work on only part of a data file at one time. The
netCDF interface makes it very easy to read or write arbitrary portions of a
data array.

Chapter 14

132 Writing NetCDF Files

If you use the code snippet below to replace the three NCDF_VARPUT state-
ments in the earlier program, the resulting output file is the same in both cases,
although the use of the FOR loop and multiple writes will make the program
somewhat slower:

FOR s = 0, n−1 DO BEGIN

NCDF_VARPUT, oid, ’Time’, time[s], $;Write the time

OFFSET = [s], COUNT = [1]

NCDF_VARPUT, oid, ’T’, T[s], $;Write the temperature

OFFSET = [s], COUNT = [1]

NCDF_VARPUT, oid, ’w’, w[s], $;Write the vertical velocity

OFFSET = [s], COUNT = [1]

ENDFOR

In this version the values in the three arrays are written one element at a time
to the output file. The index s counts through all of the possible subscripts
for the arrays time, w, and T. For each s, one value from each array is written
to the output file. The OFFSET keyword contains the index of the array in the

See the OFFSET and
COUNT keywords for
NCDF_VARGET and
NCDF_VARPUT in
Scientific Data Formats.

file where writing should begin. The COUNT keyword tells how many values
should be written (just 1 in this case). These two keywords make it possible to
easily write any “rectangular” chunk of a multidimensional array. The COUNT
and OFFSET keywords can also be used with NCDF_VARGET to read parts of
an array.

14.4 Summary

NetCDF files are a great way to store array-oriented scientific data in an
eminently portable, self-documenting format. NetCDF is usually not a good
format for more irregular data structures.

The hardest part of writing a netCDF file is not understanding the technical
details of the various NCDF_functions and procedures. That will come with a
little practice. The next hardest part is having the patience and discipline to
write all of the metadata to the file. Try to think ahead!

The basic steps for creating a netCDF file are:

1. Create a new netCDF file with NCDF_OPEN.

2. Write global attributes to the file with NCDF_ATTPUT.

3. Define the dimensions with NCDF_DIMDEF.

4. Define the variables with NCDF_VARDEF.

5. Write variable attributes to the file with NCDF_ATTPUT.

6. Exit define mode with NCDF_CONTROL.

7. Write data with NCDF_VARPUT.

8. Close the file with NCDF_CLOSE when finished writing.

14.5 Exercises 133

14.5 Exercises

1. Write an IDL program to create a netCDF file containing a synthetic two-
or three-dimensional data array.

2. Write an IDL program to read a surface-flux data file from Chapter 13 and
rewrite that data to a new netCDF file.

Chapter 14

15

Procedures and Functions

Procedures and functions are the building blocks of all but the simplest pro-
grams. Deciding how to break the different parts of a complex program into
components is one of the most difficult aspects of software development. This
chapter covers the basic mechanics of how to use procedures and functions.
It touches only briefly on the more difficult problem of how to organize the
procedures and functions into a working program.

Procedures and functions are much easier to write, debug, and use if
they are written in a clear, consistent style. You should develop the habits
of including comments and using a consistent programming style in all of
your programs. Good style will save you much time and frustration down the
line. The example programs included in this book follow the style guidelines
discussed in Appendix A.

15.1 IDL Commands and Keywords

The following IDL commands and keywords are used for printing text to the
terminal screen and to files:

■ PRO statement

■ FUNCTION statement

■ RETURN statement

■ END statement

15.2 Built-in Procedures and Functions

IDL comes with hundreds of built-in procedures and functions. We have used
some already, such as the PLOT procedure, which plots line graphs, and the
ALOG10 function, which computes base-10 logarithms. Each of the procedures
and functions supplied by RSI are described in IDL Reference Guide.

Although IDL is an interactive language, user procedures and functions,
and some built-in functions, must be compiled before they are used. Because
the IDL compiler does not spend much effort on optimization, it com-
piles very quickly. Most of the RSI-supplied procedures and functions are
precompiled, so when you use them, they are immediately available. This

137

138 Procedures and Functions

statement uses the PRINT procedure to print the results of the FINDGEN

function:

IDL> print, findgen(5)

0.00000 1.00000 2.00000 3.00000 4.00000

The actual programs (source code) that carry out the PRINT and FINDGEN

operations are not available to users.
Other procedures and functions provided by RSI are written in the IDL

language. An example is the REGRESS function, which performs linear regres-
See the REGRESS

function in IDL
Reference Guide.

sion. You can examine the actual REGRESS program in the file regress.pro,
which is in the lib directory of the IDL installation. You can also copy the
REGRESS function to your own directory, change both file and function names
(I would name it REGRESS_KPB), and modify it for your special purposes.

When you use the REGRESS function, IDL first locates the file regress.pro
(the lib directory is included in the IDL search path by default). IDL then
automatically compiles the REGRESS function and executes it:

IDL> a = regress(findgen(10), findgen(10))

% Compiled module: REGRESS.

IDL> print, a

1.00000

Note the message indicating that the REGRESS procedure was compiled.
IDL automatically compiles your procedures and functions if:

■ Each procedure or function is in a separate file.

■ The file name matches the procedure or function name exactly and ends
in .pro.

■ The file name is all lowercase.

■ The file is in your IDL search path.

If these conditions are not true, IDL may find the file and compile it, depend-
ing on how your computer system matches file names.

IDL does not automatically keep track of whether you have changed a
procedure or function. If you make changes to a program unit that has already
been compiled in your current IDL session, you must recompile it before using
it. Otherwise you will actually be executing the previously compiled version.
You can manually compile (or recompile) a procedure or function using the
.compile or .run commands.

See Running IDL
Program Files in Using
IDL.

The.compile command can be shortened to.com, and the.run command
can be shortened to .r. I have gotten into the habit of using .r to compile
procedures and functions:

IDL> .com regress

% Compiled module: REGRESS.

15.3 Writing Procedures 139

IDL> .r regress

% Compiled module: REGRESS.

Each time you compile an IDL program unit, the new version replaces the
previous version in your current session.

15.3 Writing Procedures

IDL provides for two kinds of programming modules: procedures and func-
tions. The difference between procedures and functions is actually relatively

See Procedures and
Functions in Building
IDL Applications.

minor. With a few minor changes, any procedure could potentially be turned
into a function, and any function could be turned into a procedure. Which
to choose is largely a matter of convenience and should become clear after
studying a few examples of each.

This section covers the basics of procedures, but almost everything applies
equally to functions.

A procedure is a sequence of IDL statements that carries out a specific
operation. As you can see, this is a very general definition. An IDL program,
even a very complex program, could be written as a single, very long pro-
cedure. Programmers have learned by experience, however, that it is much
better to organize programs into modules or program units. Modules are typ-
ically of short to medium length, that is, from a few IDL commands to at
most a few hundred. Well-designed modules usually do one thing and do it
well. For example, if you have a program that reads data from a file, performs
some calculations with the data, and then plots a graph, it would be logical to
organize the program into four modules, one to read the data, one to do the
calculations, and one to plot the graph. The fourth module would be a pro-
cedure that is usually called the main program. Executing it would execute the
other three modules. Depending on their complexity, the subtasks (reading,
calculating, and plotting) might be part of the main program.

Writing four procedures to carry out one “program” might seem needlessly
complex, but in fact, long, single programs are more difficult to write, debug,
and modify than well-designed modular programs. Another advantage of
modular programming: You may be able to reuse the individual modules in
future programs, saving much time and effort.

An IDL procedure always begins with a PRO statement and ends with an
See the PRO statement
in IDL Reference Guide.

END statement. Any statements after the END statement are ignored. You can
put comments before the PRO statement, but I recommend against doing that.
It can make it hard to find the PRO statement when you look at a procedure
file. For readability, the PRO statement should be the first line in the file. (You
will find many IDL library files in which this is not true, however.)

A procedure looks like this:

PRO PROCEDURE_TEMPLATE, arg1, arg2, KEY1 = key1

;+

Chapter 15

140 Procedures and Functions

; Name:

; PROCEDURE_TEMPLATE

; Purpose:

; This is a template for creating IDL procedure files.

; Calling sequence:

; PROCEDURE_TEMPLATE, arg1, arg2

; Input:

; arg1 : positional parameter 1

; Output:

; arg2 : positional parameter 2

; Keywords:

; key1 : keyword parameter 1

; Author and history:

; Kenneth P. Bowman.

;−

COMPILE_OPT IDL2 ;Set compile options

END

This is the template that I use for creating new procedures. A similar template
for functions is available in the file FUNCTION_TEMPLATE. The name of the
procedure, which is how it is referred to in an IDL program, immediately
follows the word PRO. If you use this template, replace “PROCEDURE_TEMPLATE”
with the name of the procedure that you are writing. Don’t forget to save the
file with a new name (lowercase) that matches the procedure name.

After the procedure name is a list of the arguments or parameters of the
procedure. (The two terms are used interchangably.) The template contains
three parameters: two positional parameters (arg1 and arg2), and one keyword
parameter (KEY1 = key1).

The template contains a standard block of comments near the top of the
procedure that is used to describe what the procedure does, how it does it,
and how to use it. The two lines at the beginning and end of the comment
block, one starting with ;+ and one starting with ;− are not mandatory. The
IDL procedure MK_HTML_HELP uses those tags to create Hypertext Markup
Language (HTML) help files. Here is a one-line procedure to make an HTML
file containing the comment blocks from all of the example programs.

PRO MAKE_HTML_HELP

MK_HTML_HELP, !Bowman, !Bowman + ’examples.html’, $

TITLE = ’IDL Example Programs’, /VERBOSE

END

15.3 Writing Procedures 141

The HTML output file is called examples.html. It is included with the
example programs. You should be able to open it with any Web browser.

After the comment block is the IDL statement

COMPILE_OPT IDL2 ;Set compile options

I include this statement in every IDL procedure or function that I write.
The COMPILE_OPT IDL2 statement ensures that integers defined within the

See COMPILE_OPT in
IDL Reference Guide.

procedure, such as i = 3, are created as 4-byte LONGs, rather than 2-bytes
INTs. It also requires that array subscripts be written using square brackets,
[and], not parentheses, (and). Parentheses can be used only for function
calls. The reasons for doing this are slightly obscure. Suffice it to say that
it will help to avoid occasional problems distinguishing between arrays and
functions.

The IDL statements to be executed follow the COMPILE_OPT statement,
and the procedure ends with the END statement.

The key to writing and using procedures is understanding two concepts:
(1) local variables and (2) argument passing. These are often among the most
difficult concepts for new programmers to understand. Here are the basic
principles of using procedure and function parameters in IDL:

■ First, the variables and variable names in a procedure are local to the pro-
cedure. This means that a variable in one procedure cannot be accessed in
another procedure unless it is passed through the argument list.1 If vari-
ables were not local, you would have to ensure that your variable names did
not inadvertently match variables in any of the other modules that you use.

■ Second, variables in the argument list are matched between the calling
procedure and the called procedure according to their order in the argument
list. The names of the variables in the calling procedure and the called
procedure do not have to be the same.

These principles are best illustrated with an example. (The comments are
omitted for brevity.) Here are two simple procedures, a main procedure called
MYPRO:

PRO MYPRO

COMPILE_OPT IDL2 ;Set compile options

a = 2.0 ;Set a to 2.0

d = 4.0 ;Set d to 4.0

PRINT, ’Step 1: Values in MYPRO before calling MYSUB.’

HELP, a, b, c, d, x, y, z, t

1 Or placed in a common block or a system variable.

Chapter 15

142 Procedures and Functions

MYSUB, a, b, c ;Call procedure MYSUB

PRINT

PRINT, ’Step 4: Values in MYPRO after calling MYSUB.’

HELP, a, b, c, d, x, y, z, t

END

and a subprocedure called MYSUB:

PRO MYSUB, x, y, z

COMPILE_OPT IDL2 ;Set compile options

PRINT

PRINT, ’Step 2: Values when entering MYSUB.’

HELP, a, b, c, d, x, y, z, t

y = xˆ2 ;Compute square of x

z = 3.0 ;Set z to 3.0

t = 5 ;Set t to 5

PRINT

PRINT, ’Step 3: Values when exiting MYSUB.’

HELP, a, b, c, d, x, y, z, t

END

MYPRO, which has no arguments, sets the values of the variables a and d and
then calls (executes) the procedure MYSUB. In MYPRO, the argument list for
MYSUB contains the three variables a, b, and c. (These are sometimes referred
to as actual arguments.) Within MYSUB, these variables are referred to by the
names x, y, and z. (These are sometimes called dummy arguments.) To illustrate
that variables are local, the two procedures use the HELP function to show the
values of all variables at several stages of the program evolution. If you execute
MYPRO, you get the following output on the terminal screen:

IDL> mypro

% Compiled module: MYPRO.

Step 1: Values in MYPRO before calling MYSUB.

A FLOAT = 2.00000

B UNDEFINED = <Undefined>

C UNDEFINED = <Undefined>

D FLOAT = 4.00000

X UNDEFINED = <Undefined>

Y UNDEFINED = <Undefined>

Z UNDEFINED = <Undefined>

15.3 Writing Procedures 143

T UNDEFINED = <Undefined>

% Compiled module: MYSUB.

Step 2: Values when entering MYSUB.

A UNDEFINED = <Undefined>

B UNDEFINED = <Undefined>

C UNDEFINED = <Undefined>

D UNDEFINED = <Undefined>

X FLOAT = 2.00000

Y UNDEFINED = <Undefined>

Z UNDEFINED = <Undefined>

T UNDEFINED = <Undefined>

Step 3: Values when exiting MYSUB.

A UNDEFINED = <Undefined>

B UNDEFINED = <Undefined>

C UNDEFINED = <Undefined>

D UNDEFINED = <Undefined>

X FLOAT = 2.00000

Y FLOAT = 4.00000

Z FLOAT = 3.00000

T LONG = 5

Step 4: Values in MYPRO after calling MYSUB.

A FLOAT = 2.00000

B FLOAT = 4.00000

C FLOAT = 3.00000

D FLOAT = 4.00000

X UNDEFINED = <Undefined>

Y UNDEFINED = <Undefined>

Z UNDEFINED = <Undefined>

T UNDEFINED = <Undefined>

First, IDL automatically finds the file mypro.pro and compiles it for
execution.

At Step 1, within MYPRO, the values of a and d are known, but the other vari-
ables have not been defined. IDL then finds the file mysub.pro and compiles
it for execution. Execution passes into MYSUB.

The variables in MYPRO and MYSUB are matched, as shown in the Table 15.1,
according to their order in the argument lists.

Step 2 shows the values of all variables at the beginning of MYSUB. As you
can see, at this point MYSUB does not know anything about the variables a, b,
c, and d. If you match the internal argument list of MYSUB (x, y, and z) with
the arguments actually passed to MYSUB from MYPRO (a, b, and c), you can see
that within MYSUB the variable a goes by the name x. Because b and c were
undefined in MYPRO, y and z are undefined in MYSUB. MYSUB then computes a
value for y using x and sets the values of z and t.

Chapter 15

144 Procedures and Functions

TABLE 15.1 Pairing of arguments in the calling and called procedures.

MYPRO MYSUB

a ⇔ x
b ⇔ y
c ⇔ z
d (none)

(none) t

Step 3 shows that x, y, z, and t are now all defined. The execution now
returns to MYPRO.

At Step 4, the variables a, b, c, and d are all known. The variables x, y, z,
and t, which are local to MYSUB, are undefined.

You can use the same names for variables in a calling and called procedure.
Often, that is the logical way to define the names in the calling procedure.
Remember, though, a variable named x in the calling procedure and another
variable named x in the called procedure are not the same thing unless they
occur in the same position in the argument lists of the calling procedure and
the called procedure.

You do not have to use variables in an argument list in the calling procedure;
you can also use constants:

IDL> print, 0.5

0.500000

15.4 Writing Functions

There are only two real differences between procedures and functions. The
first is how they are used in the calling procedure. The PLOT procedure, for
example, is used in the following way, in this case interactively at the command
line:

IDL> x = findgen(11)

IDL> y = xˆ2

IDL> plot, x, y

In this example, the variables x and y are passed to the PLOT procedure. The
values of x and y are used to plot a graph. In this case both x and y are input
variables. This procedure does not return any variables in the argument list.

A function, on the other hand, always returns a value, so it can only be
used in the calling program in a context where a returned value is needed.
For example,

IDL> x = 1.0

IDL> y = sin(x)

15.4 Writing Functions 145

IDL> print, x, y

1.00000 0.841471

or

IDL> print, x, sin(x)

1.00000 0.841471

You can think of the function as returning a value, in this case the floating-
point number 0.841471, that replaces the expression sin(x) in the statement
where it is used.

Just as it makes no sense to type

IDL> 0.841471

0.841471

ˆ

% Syntax error.

it makes no sense to enter

IDL> sin(x)

sin(x)

ˆ

% Syntax error.

You could convert the SIN function into a procedure like this:

PRO MYSIN, x, y

y = SIN(x)

END

You can use this procedure form of the SIN function as follows:

IDL> mysin, x, y

% Compiled module: MYSIN.

IDL> print, y

0.841471

When you try to execute the procedure MYSIN, IDL automatically searches
and finds the file mysin.pro (assuming it is in your IDL search path), com-
piles the procedure, and then executes it. Note that the MYSIN procedure does
not have a RETURN statement. All values are returned through the positional
parameter y.

Chapter 15

146 Procedures and Functions

A function can return more than a single value. For example:

IDL> x = findgen(4)

IDL> y = sin(x)

IDL> print, x

0.00000 1.00000 2.00000 3.00000

IDL> print, y

0.00000 0.841471 0.909297 0.141120

IDL> help, x, y

X FLOAT = Array[4]

Y FLOAT = Array[4]

In this case the input argument is an array of four elements. IDL automatically
returns an output array that is the same size as the input array.

As stated above, a function always returns a value. The second difference
between a function and a procedure is that a function must contain a RETURN

See the RETURN
statement in IDL
Reference Guide.

statement that specifies the variable to be returned to the calling program.
Procedures can also have RETURN statements (procedures and functions can,
in fact, have more than one RETURN statement), but RETURN statements in a
procedure must not provide a variable to be returned. When you write your
own functions, you must include a RETURN statement that specifies the value
to be returned.

Here is a simple function:

FUNCTION MYSQUARE, x

y = xˆ2

RETURN, y

END

Note that a function always begins with a FUNCTION statement instead of a
See the FUNCTION

statement in IDL
Reference Guide.

PRO statement. You can use this function in the usual way:

IDL> y = mysquare(x)

% Compiled module: MYSQUARE.

IDL> print, y

0.00000 1.00000 4.00000 9.00000

Once again, IDL searched the directories in the search path, found the file
mysquare.pro, compiled the function, and executed it. (There is, of course,
no reason to write a new function to compute the squares of the elements in
an array; you can simply use the exponentiation operator ˆ.)

15.5 Keyword Parameters 147

So, as you can see, functions are useful when you want to return a variable to
use immediately in a mathematical operation, when used in a print statement,
and so on. One very nice feature of IDL is that you can return any type of
IDL variable: scalars, arrays, and even structures.

Like procedures, functions can have multiple arguments in the argument
list, including keyword arguments.

15.5 Keyword Parameters

As we saw above, positional parameters are matched between calling and called
procedures according to the order they are given in the argument list. IDL
provides another way to match parameters between the calling and called pro-
cedure: keyword parameters. Instead of depending on position (order), keyword
parameters have a tag (the keyword) that is used to match the variables between
the calling and called routines. Because keyword parameters are matched by
keyword name, they can be given in any order in the argument list. They can
even be mixed in with the positional parameters. IDL does not count keyword
parameters when determining position. Because of their flexibility, keywords
are often used for optional parameters.

A good example of a procedure with keyword parameters is the PLOT

procedure, as in this code snippet:

title = ’Position vs. time’

abscissa = ’Time (s)’

ordinate = ’Distance (m)’

PLOT, x, y, $;Plot y(x)

TITLE = title, $

XTITLE = abscissa, $

YTITLE = ordinate

The variables title, abscissa, and ordinate are string variables that con-
tain labels for the graph drawn by PLOT. These variables are passed into the
PLOT procedure by associating them with the appropriate keywords. The PLOT
program contains similar keyword definitions that connect the keyword tags
to local variables within the PLOT procedure.

Within a procedure or function, it usually makes sense for the variable
associated with a keyword to have the same name as the keyword, but it is not
required.

Keywords are frequently used as toggles or switches to turn a particular
option within a procedure or function on or off. For example, you might
write a program whose default behavior is to display a graph on the screen.
The program could include an optional keyword to allow the user to send the
graph to a printer instead. IDL has special notation and functions to make

Chapter 15

148 Procedures and Functions

this easy. Here is a program that works in the way described:

PRO PLOT_MY_GRAPH, PRINT = print, LANDSCAPE = landscape

IF KEYWORD_SET(print) THEN PRINTER_ON, LANDSCAPE = landscape

... program to create a plot

IF KEYWORD_SET(print) THEN PRINTER_OFF

END

This program has two keywords, PRINT and LANDSCAPE. In this example, the
keyword names are the same as the local variables to which any keyword values
are passed. Writing the keyword name in uppercase and the local variable name
in lowercase helps to distinguish the two things conceptually. (Because IDL
is not case sensitive, you could also write PRINT = PRINT or print = print

and get the same result.) It usually makes sense for the names to match, but
it is not required. You could do this instead:

PRO PLOT_MY_GRAPH, PRINT = send_to_printer, LANDSCAPE = print_wide

IF KEYWORD_SET(send_to_printer) THEN PRINTER_ON, LANDSCAPE = print_wide

... create a plot

IF KEYWORD_SET(send_to_printer) THEN PRINTER_OFF

END

Note that the KEYWORD_SET function checks the value of the local variable
send_to_printer, not the keyword name PRINT.

The KEYWORD_SET function, not surprisingly, checks to see if a keyword is
See the KEYWORD_SET

function in IDL
Reference Guide.

set. If it is, the PRINTER_ON procedure is called at the beginning of the program
to switch the graphics device from the screen to a printer. At the end of the
program the PRINTER_OFF procedure is called to send the graphics output to
the printer and switch the output back to the screen.

If the PRINT keyword is omitted or equal to zero

IDL > plot_my_graph

or

IDL > plot_my_graph, PRINT = 0

then the variable print is either undefined or zero within PLOT_MY_GRAPH.
In that case KEYWORD_SET(print) returns FALSE, and the PRINTER_ON and
PRINTER_OFF procedures are not executed.

15.7 Optional Parameters 149

If the PRINT keyword is nonzero

IDL > plot_my_graph, /PRINT

or

IDL > plot_my_graph, PRINT = 1

then the variable print is set within PLOT_MY_GRAPH. In that case
KEYWORD_SET(print) returns TRUE, and the PRINTER_ON and PRINTER_OFF

procedures are executed.
The main program above, PLOT_MY_GRAPH, also includes the keyword

LANDSCAPE. The value of this keyword, if it is defined, is passed through
to the PRINTER_ON procedure.

The notation /PRINT is shorthand for PRINT = 1. Because of the somewhat
peculiar way in which KEYWORD_SET evaluates its arguments, the KEYWORD_SET
function should be used only with keywords like the one illustrated here, in
which the keyword is used to indicate on or off.

If a keyword is not being used as an on-off switch, and you need to
see whether the variable attached to the keyword is defined, do not use
KEYWORD_SET. Use the function N_ELEMENTS instead. If the variable is unde-
fined, N_ELEMENTS returns zero. If it is defined, it will return a number greater
than zero.

15.6 Optional Parameters

IDL allows for programs to be written with optional parameters. The PLOT

procedure is a good example. PLOT can be called either with two arguments

IDL > plot, x, y

or with one

IDL > plot, y

In the second case, PLOT automatically generates a default array for x using
FINDGEN(n), where n is the number of elements in y.

Using optional arguments requires careful planning and is somewhat
advanced for this book. If you want to learn more about writing procedures
and functions with optional arguments, see Practical IDL Programming or
IDL Programming Techniques.

15.7 Summary

This chapter has covered the basics of writing and using procedures and
functions. Remember the following essential points about IDL programming

Chapter 15

150 Procedures and Functions

modules:

■ Variables are local to the procedure or function that contains them unless
they are included in the argument list.

■ Arguments in the argument list are matched according to the order in the
list in the calling procedure and the called procedure.

■ Keyword parameters can be given in any order and even mixed with
positional parameters.

■ Within a procedure or function, the keyword name should generally be
the same as the local variable it is associated with (for example, PRINT =

print). The capitalization simply emphasizes that there is a keyword tag
PRINT.

15.8 Exercises

1. Convert the scripts from the exercises in Chapter 4 into procedures.

2. The intensity of the radiation emitted by a blackbody, Bλ(T), as a function
of temperature T and wavelength λ is given by the Planck function

Bλ(T) = 2hc2

πλ5(ehc/kλT − 1)
.

In this equation, h = 6.6262 · 10−34 J s is Planck’s constant, c =
2.99793 ·108 m s−1 is the speed of light, and k = 1.38062 ·10−23 J K−1

is Boltzmann’s constant. The temperature T is in Kelvin (K) and the
wavelength λ in meters (m). The units of Bλ are W m−2 m−1.

Write a function to compute the Planck (blackbody) function for a
given temperature and wavelength.

3. Write a function to compute the solar declination δ as a function of time
of year using the following Fourier series expansion:

δ =
3∑

k=0

[
ak cos (2πkt) + bk sin (2πkt)

]

where t is the time in years, and the coefficients ak and bk are given in the
following table:

k ak bk

0 0.006918
1 −0.399912 0.070257
2 −0.006758 0.000907
3 −0.002697 0.001480

The series expansion is from Spencer (1971).

15.8 Exercises 151

4. Write a function to compute the solar-distance parameter (d̄ /d)2 as a
function of time of year using the following Fourier series expansion:

(
d̄
d

)2

=
2∑

k=0

[
ak cos (2πkt) + bk sin (2πkt)

]

where t is the time in years, and the coefficients ak and bk are given in the
following table:

k ak bk

0 1.000110
1 0.034221 0.001280
2 0.000719 0.000077

The series expansion is from Spencer (1971).

5. Write a function to compute the hour of sunrise and sunset h0 as a function
of latitude φ and time of year t using the functions above. The hour of
sunrise is given by

cos(h0) = − tan(φ) tan(δ)

Care must be taken in high latitudes during the polar night or day (times
of year when the sun does not rise or does not set), particularly at the poles,
as tan(δ) → ±∞ as δ → ±π /2.

6. Write a function to compute the solar zenith angle θs as a function of
latitude φ, time of year t , and local time h using the functions above. The
solar zenith angle is given by

cos(θs) = sin(φ) sin(δ) + cos(φ) cos(δ) cos(h)

7. Write a function to compute the daily-mean insolation Q̄ as a function of
latitude φ and time of year t using the functions from Exercises 3, 4, and
5 above. The daily-mean insolation is given by

Q̄ = S0

π

(
d̄
d

)2 [
h0 sin(φ) sin(δ) + cos(φ) cos(δ) sin(h0)

]

8. Use the approximate form of the Clausius-Clapeyron equation below
(Bohren and Albrecht, 1998) to write a function to compute the saturation
vapor pressure of water es as a function of temperature T

es(T) = es0e

(
a− b

T

)

where es0 = 611 Pa is es at 0◦C, a = 19.83, b = 5417 K, and T is in
Kelvin (K).

Chapter 15

16

Program Control

Normally IDL executes each statement in a program or script in sequence.
Often it is useful to conditionally execute a statement or block of statements,
or to repeatedly execute a statement or block of statements (that is, to execute
a loop). IDL has a number of different program control options to do this
kind of thing. This chapter covers the most frequently used control structures:
IF...THEN statements, FOR loops, and WHILE loops.

16.1 IDL Commands and Keywords

The following IDL commands and keywords are used to control the execution
of IDL statements and to repeatedly execute statements (loop):

■ BEGIN...END statements

■ IF...THEN...ENDIF...ELSE...ENDELSE statements

■ FOR...DO...ENDFOR statements

■ WHILE...DO...ENDWHILE statements

■ REPEAT...UNTIL...ENDREP statements

■ CASE...ENDCASE statements

16.2 BEGIN...END Statements

Most IDL control structures can be used either in “single-line” form, in which a
single statement is executed conditionally or repeatedly, or in “block” form, in
which a sequence of multiple statements is executed. The IDL reserved words
BEGIN and END are used to identify the beginning and end of a block. Each type

See the BEGIN...END

statements in IDL
Reference Guide.

of IDL control structure has a matching form of the END statement: ENDIF,
ENDELSE, ENDFOR, ENDWHILE, etc. You are not required to use the specific
forms of the END statement; you can use a plain END statement. I strongly
recommend, however, that you always use the specific forms because they
make it much easier to find the beginning and end of blocks.

In an IDL script or batch job (executed with the @ sign), statements are
executed one at a time. As a result, scripts cannot use blocks. If you need to
use blocks, write a procedure or function, not a script.

153

154 Program Control

16.3 IF...THEN...ELSE Statements

16.3.1 Single-Line Form

The IF...THEN...ELSE statement evaluates a logical expression and executes
See the
IF...THEN...ELSE

statements in IDL
Reference Guide.

a statement or block of statements if the expression evaluates to true. Here are
some examples of the single-line form:

IF (i NE 0) THEN y = xˆi

IF (N_ELEMENTS(z) GT 0) THEN z = zˆ2

IF ((a EQ 0) AND (b EQ 0)) THEN PLOT, x, y

In each of these examples, if the logical expression in parentheses is true,
the statement following THEN is executed. If false, the statement following
THEN is not executed, and execution continues with the next statement in the
procedure or function.

IF...THEN statements can have an optional ELSE part:

IF (i NE 0) THEN y = xˆi ELSE y = 0.0

If the logical expression is true, the first statement is executed. If it is false,
the statement following ELSE is executed. In either case, only one of the two
statements is executed.

If the statements to be executed are short, as above, the whole thing can
be placed on a single line. Often, the structure of the statement is clearer if it
is split over two or more lines using the continuation character $.

IF (i NE 0) THEN y = xˆi $

ELSE y = 0.0

16.3.2 Block Form

IF...THEN statements can be used to execute a block of statements by using
the BEGIN...END construction described earlier:

IF (i NE 0) THEN BEGIN

y = xˆi

z = 0.0

ENDIF

Blocks do not have to contain multiple statements. You can create blocks that
contain only one statement:

IF (i NE 0) THEN BEGIN

y = xˆi

ENDIF ELSE BEGIN

16.4 FOR Loops 155

y = 0.0

ENDELSE

The indentation is not mandatory, but it makes the structure of the program
much easier to identify.

An IF...THEN statement can have multiple sections:

IF (i GT 0) THEN BEGIN

y = xˆi

ENDIF ELSE IF (i EQ 0) THEN BEGIN

y = 0.0

ENDIF ELSE BEGIN

y = SQRT(x)

ENDELSE

If an IF...THEN statement has multiple sections, IDL tests each of the logical
expressions in order. If it finds an expression that is true, the statement or block
of statements following that expression is executed. None of the other blocks
are executed. If an ELSE statment is included and none of the logical expres-
sions is true, the ELSE block is executed. ELSE statements are not required,
however. If an ELSE statment is not included and none of the expressions is
true, none of the blocks are executed.

16.4 FOR Loops

16.4.1 Single-Line Form

FOR loops use a loop counter variable to repeatedly execute a statement or
See the FOR...DO

statement in IDL
Reference Guide.

block of statements. A single-line FOR loop looks like this:

IDL> FOR i = 0, 4 DO PRINT, iˆ2

0

1

4

9

16

IDL> PRINT, i

5

This statement could be read as “For i equals 0 to 4 by 1, execute the statement
PRINT, iˆ2.” In detail, this is how the statement works. The variable i

is initialized to 0. The statement following DO is executed repeatedly. Each
time the statement is executed, i is incremented by 1 after the statement is
executed. When i is greater than 4, execution jumps to the line following the
FOR statement. Note that when the loop is finished, i = 5.

Chapter 16

156 Program Control

FOR loops can count backwards or by increments other than 1:

IDL> FOR i = 4, 0, −1 DO PRINT, i

4

3

2

1

0

IDL> FOR i = 0, 7, 2 DO PRINT, i

0

2

4

6

You can also use variables other than integers as the loop counter:

IDL> FOR x = 0.0, 1.0, 0.2 DO PRINT, x

0.00000

0.200000

0.400000

0.600000

0.800000

1.00000

Be very careful when you do this. Roundoff errors in floating-point arithmetic
may cause the loop to execute more or fewer times than you expect. Whenever
you can, use integers as loop counters.

16.4.2 Block Form

A FOR loop with a block of statments looks like this:

FOR i = 0, n−1 DO BEGIN

y[i] = x[i]ˆ2

z[i] = SQRT(y[i])

ENDFOR

IDL FOR loops work essentially exactly like Fortran DO loops.
Most operations with arrays can be done in a faster and clearer way using

array syntax rather than FOR loops (see Chapter 7). Fortran programmers, in
particular, should always think twice (or ask an IDL expert) before writing a
FOR loop to do an array operation.

16.5 WHILE Loops

See the WHILE...DO

statement in IDL
Reference Guide.

WHILE loops can be thought of as general-purpose FOR loops in which
the programmer is responsible for managing the “loop” variable. Here is
an example:

16.7 Summary 157

i = 1

WHILE (i NE 0) DO BEGIN

PRINT, ’Enter an integer other than 0 (enter 0 to exit): ’

READ, i

PRINT, ’The square of ’, i, ’ is ’, iˆ2

ENDWHILE

The statements between the BEGIN and END are executed repeatedly until the
logical expression in parentheses is false. In this case, the loop control variable
i is initialized to 1. With the logical test that is used here (i NE 0), this
ensures that the loop is executed at least once. Within the loop, the user is
asked to enter an integer, and the program prints the square of that integer.
This process is repeated until the logical expression is false, that is, until the
user enters 0. This example shows that WHILE loops are capable of more diverse
control methods than simply counting.

Note that something within the WHILE loop must change the loop control
variable (i in this case). Otherwise, the loop will execute forever. This is
known as an infinite loop. Infinite loops can be interrupted with control-c.

Because it is necessary to update the loop variable as well as do something
useful (which usually requires at least two statements), WHILE loops almost
always use a block structure.

16.6 Other Control Structures

IDL includes several other kinds of control structures. These include
REPEAT...UNTIL, CASE, and SWITCH statements. The REPEAT...UNTIL struc-
ture is similar to a WHILE loop, but it tests the loop condition at the end of
the loop, rather than at the beginning. The CASE statement can be used
to select one case from a list of possible cases. It is more convenient than
IF...THEN...ELSE statements in some circumstances. The SWITCH statement
is similar to the CASE statement, with the difference that if a case is found to
be true, that case and all of the following cases in the list are executed. More
information on these control structures can be found in IDL Reference Guide.

16.7 Summary

This chapter has covered the basics of IDL program control statements. Here
are some suggestions for avoiding problems with control statements:

■ Use END statements that match the control structure; that is, use ENDIF,
ENDELSE, ENDFOR, ENDWHILE, and so on.

■ Check your starting and ending values in FOR loops carefully. It is easy to
be off by one at either end.

■ Indent block statements for readability.

■ Choose the control structure that best matches the problem at hand.

Chapter 16

17

Line Graphs

This chapter covers some of the options available when creating line graphs,
including drawing multiple lines on a single graph and plotting multiple
graphs on a single page.

17.1 IDL Commands for Plotting Line Graphs

Simple line graphs, and multiple plots per page, are created with the following
commands and system variables:

■ The PLOT procedure and its many keywords

■ The OPLOT procedure

■ The !P.MULTI system variable

17.2 Plotting Styles

17.2.1 Basic Line Graphs

The PLOT procedure has keywords that can be used to customize line graphs.
See the PLOT procedure
in IDL Reference Guide.

Without any keywords, IDL produces a very basic plot with no labels or title.

IDL> x = findgen(11)

IDL> y = sqrt(x)

IDL> plot, x, y

The result of this statement can be seen in Figure 17.1.
IDL will automatically choose scales for the abscissa and ordinate. A second

curve can be plotted on the same graph with the OPLOT procedure (short for
See the OPLOT
procedure in IDL
Reference Guide.

over-plot):

IDL> oplot, x, 2.0*y

When the graph was drawn by the PLOT command, the axes were scaled to fit
the original data provided to PLOT. In this example, the data plotted by OPLOT

161

162 Line Graphs

4

3

2

1

0
0 2 4 6 8 10

FIGURE 17.1 A simple line graph created with PLOT. The second line is over-plotted by
using the OPLOT command. (LINEGRAPH3)

have a larger range than will fit on the graph that was drawn by PLOT. OPLOT
does not redraw the original graph; instead, the curve is clipped to the existing
plotting window. To correctly plot multiple curves within a single window,
you need to determine the maximum and minimum values for the abscissa
and ordinate for all of the graphs to be drawn before calling PLOT. Once you
know those values, the range of the graph can be set with the XRANGE and
YRANGE keywords.

17.2.2 Logarithmic Graphs

Log-linear, linear-log, and log-log plots can be created with the XLOG and YLOG

keywords, which direct PLOT to use logarithmic scaling for the abscissa and
ordinate, respectively. Figure 17.2 is an example of a log-log plot. Because the
logarithm of zero is undefined, we omit the the first element of the arrays x
and y. The PSYM keyword is used to plot a marker at each of the data points
(see the next section):

IDL> plot, x[1:10], y[1:10], /xlog, /ylog, psym = −4

As you can see, with log-log scaling the square root function becomes linear.
Notice that markers plotted close to the edges of the plot box are clipped to
the plotting rectangle. To distinguish different lines on the graph, different

17.2 Plotting Styles 163

10

1
1 10

FIGURE 17.2 A log-log graph of y = √
x created with PLOT. (LINEGRAPH4)

plotting symbols, line styles, and colors can be used. The relevant keywords
are discussed in the next two sections.

17.2.3 Plotting Symbols

The default style for PLOT is to connect the pairs of x and y values by a
solid line without plotting any markers. To plot markers without connecting
the dots, use the PSYM keyword with a positive value. IDL includes eight
standard plotting symbols (including no symbol) plus one that can be defined
by the user. See Figure 17.3 and Table 17.1.

IDL> plot, x, y

IDL> for i = 1, 7 do oplot, x, y/i, psym = i

To plot symbols and connect them with line segments, use a negative value
for PSYM (Figure 17.4):

IDL> plot, x, y

IDL> for i = 1, 7 do oplot, x, y/i, psym = −i

Because symbol 3 plots the smallest possible dot for the current graphics
device, PSYM = −3 looks the same as PSYM = 0. Positive values of PSYM are
useful for scatterplots.

Chapter 17

164 Line Graphs

8

6

4

2

0
0 2 4 6 8 10

FIGURE 17.3 Built-in plotting symbols. PSYM = 0 connects each pair of points, but plots
no symbol. The other curves (PSYM = 1 to PSYM = 7) are drawn without lines connecting
the symbols. As this figure demonstrates, graphs can be difficult to interpret when symbols are
plotted on top of each other. (LINEGRAPH5)

TABLE 17.1 IDL plotting symbols specified by the PSYM keyword.

Value Plotting Symbol

0 no symbol
1 plus sign (+)
2 asterisk (*)
3 period (.)
4 diamond
5 triangle
6 square
7 X
8 user-defined. See USERSYM procedure

in IDL Reference Guide.

17.2.4 Line Styles

An alternative to using plotting symbols to distinguish multiple curves is to use
different line styles. IDL provides six different line styles, listed in Table 17.2
(Figure 17.5).

IDL> plot, x, y

IDL> for i = 1, 5 do oplot, x, y/i, linestyle = i

17.3 Titles and Labels 165

8

6

4

2

0
0 2 4 6 8 10

FIGURE 17.4 Built-in plotting symbols. In this case, the symbols in each curve are
connected by solid lines. (LINEGRAPH6)

TABLE 17.2 IDL line styles specified by the LINESTYLE keyword.

Index Linestyle

0 Solid
1 Dotted
2 Dashed
3 Dash Dot
4 Dash Dot Dot
5 Long Dashes

It is possible to combine line styles and plotting symbols (Figure 17.6):

IDL> plot, x, y

IDL> for i = 1, 5 do oplot, x, y/i, linestyle = i, psym = −i

17.3 Titles and Labels

A scientific graph is not complete without proper labels (Figure 17.7):

IDL> plot, x, y, title = ’Square−root function’, $

IDL> xtitle = ’x’, ytitle = ’y’, $

IDL> subtitle = ’You can have a subtitle too.’

Chapter 17

166 Line Graphs

8

6

4

2

0
0 2 4 6 8 10

FIGURE 17.5 Built-in line styles. (LINEGRAPH7)

8

6

4

2

0
0 2 4 6 8 10

FIGURE 17.6 These curves are plotted using both symbols and line styles. (LINEGRAPH8)

17.4 Axes 167

Square–root function

you can have a subtitle too.
x

y

4

3

2

1

0
0 2 4 6 8 10

FIGURE 17.7 Titles for the graph and axes are added with the TITLE, XTITLE, YTITLE,
and SUBTITLE keywords. (LINEGRAPH9)

You will often want to create the labels ahead of time and store them in
variables:

IDL> title = ’Square−root function’

IDL> xtitle = ’x’

IDL> ytitle = ’y’

IDL> plot, x, y, title = title, xtitle = xtitle, ytitle = ytitle

17.4 Axes

By default, the PLOT procedure selects a range for each axis that is large enough
to include all of the data with “nice” upper and lower limits. Each axis is divided
into intervals with major and minor tick marks. Labels are displayed for each
major tick mark. You can override the defaults for each of these properties and
define each axis to have exactly the style that you want. You might do this, for
example, when you are plotting multiple related graphs and you want all of
them to have the same scales.

The following examples show two plots of the same data. The first
(Figure 17.8) uses the default for all axis parameters:

IDL> x = −90.0 + 5.0*findgen(37)

IDL> y = 28.0 − (0.09*x)ˆ2

IDL> plot, x, y

Chapter 17

168 Line Graphs

40

20

0

−20

−40
−100 −50 0 50 100

FIGURE 17.8 Example in which all axis parameters are set to their defaults. (LINEGRAPH10)

In this case, the abscissa represents latitude and has values ranging from −90◦
to 90◦. When IDL automatically scales the abscissa, it chooses limits of
±100. Because latitude is always in the range [−90◦, +90◦], the resulting
graph is incorrect.

In the next example, shown in Figure 17.9, the axis parameters are specified
explicitly:

IDL> plot, x, y, $

title = ’Annual−Mean Temperature’, $

xtitle = ’Latitude (degrees)’, $

xstyle = 1, $

xrange = [−90.0, 90.0], $

xticks = 6, $

xminor = 3, $

ytitle = ’Temperature (K)’, $

ystyle = 1, $

yrange = [−40.0, 30.0], $

yticks = 7, $

yminor = 2

The XSTYLE keyword indicates that the range of the abscissa should be set
to exactly the range specified by the XRANGE keyword (−90 to +90). The
number of major and minor tick marks are set to appropriate values (XTICKS
and XMINOR). The range and tick marks for the ordinate are specified similarly.
Titles are provided for the axes and the graph.

17.5 Multiple Plots Per Page 169

Annual–Mean Temperature
30

20

10

0

−10

−20

−30

−40
−90 −60 −30 0 30 60 90

Te
m

pe
ra

tu
re

 (
K

)

Latitude (degrees)

FIGURE 17.9 In this graph the axis parameters are set explicitly so that each axis has the
correct range and tick spacing. (LINEGRAPH11)

17.5 Multiple Plots Per Page

IDL makes it easy to plot multiple graphs on a single page, like panes in a
window.

Plot characteristics can be changed by using the IDL system variable !P.
!P is a structure that contains a variety of variables that are used to control
plot characteristics, such as background color, line thickness, line style, and
so on. Multiple plots per page are controlled by !P.MULTI. !P.MULTI is a

See Graphics System
Variables procedure in
IDL Reference Guide.

five-element array of long integers. For most purposes, you should need to
set only two of the values of !P.MULTI: the number of columns and rows of
panes on a page. To start a new plotting page with two columns and three
rows of panes, set

!P.MULTI = [0, 2, 3, 0, 0]

By default, IDL starts plotting in the upper left pane and automatically
advances across each row as calls are made to PLOT, CONTOUR, and so on.
The other elements of !P.MULTI are used to set the current plotting pane,
to change the plotting order (that is, to plot by columns rather than rows),
and to stack plots in the Z dimension. An example of a graph using a 2 × 2
arrangement can be seen in Figure 3.4.

Chapter 17

170 Line Graphs

The values in !P.MULTI are preserved until they are explicitly reset or the
plotting device is changed. Therefore, when you have finished plotting a page
with multiple plots, do not forget to set !P.MULTI back to zero!

!P.MULTI = 0

17.6 Summary

This chapter covers the basics of customizing line graphs using keywords with
the PLOT and OPLOT commands:

■ The plotting symbol is specified with the PSYM keyword.

■ Lines connecting the plot symbols are turned on by making PSYM negative.

■ The line style is specified with the LINESTYLE keyword.

■ Axis scaling is controlled separately for each axis with the (XYZ)STYLE,
(XYZ)RANGE, (XYZ)TICKS, and (XYZ)MINOR keywords.

18

Contour and Surface Plots

This chapter shows how to make contour and surface plots.

18.1 IDL Commands and Keywords

The following IDL commands and keywords are used for making contour
and surface plots:

■ CONTOUR procedure

■ SURFACE procedure

■ SHADE_SURF procedure

18.2 Contour Plots

Contour plots are one way to graphically represent the values of a function
of two variables, such as z(x, y). Familiar examples of contour plots are topo-
graphic maps used for outdoor activities. Contours or isopleths are lines that
connect points of equal value (equal altitude in the case of a topographic map).
Figure 18.1 illustrates the concept of contour plots.

Contour plots are drawn with the CONTOUR procedure. CONTOUR takes three
See the CONTOUR

procedure in IDL
Reference Guide.

positional parameters, z, x, and y, which can take several different forms. In
this chapter we will cover only the simplest form, where z is a two-dimensional
array, z(nx, ny). If x and y are omitted, CONTOUR will create independent
coordinates x = 0, 1, ..., nx−1 and y = 0, 1, ..., ny−1. Generally,
you will want to provide x and y coordinate arrays to correctly scale the
plot axes.

CONTOUR can also produce contour plots for irregularly distributed data,
which is discussed in Chapter 24.

CONTOUR has many optional keyword parameters that enable you to control
almost every aspect of the plot. CONTOUR-specific keywords are principally used
to control properties of the contour lines (contour value, color, line width,
line style, and labeling). Additionally, CONTOUR accepts most of the keywords
accepted by PLOT.

171

172 Contour and Surface Plots

sin(pi * x) * sin(pi * y)
1.0

0.5

0.0
0.0 0.5 1.0

0.
25 0.50

0.75

0.75

0.
50

0.25

0.25
0.25

0.50

x

y

1.00

0.75

0.50

0.25

0.00

0.0

0.0 0.0

0.0

1.0

x

z

y

FIGURE 18.1 Contour plot of the function z(x, y) = sin(πx) sin(πy). Contours are drawn
at z = 0.25, 0.5, and 0.75. The right-hand panel illustrates that the contours are defined by
the intersections between the surface z = sin(πx) sin(πy) and the surfaces z = 0.25, 0.5, and
0.75. (CONTOUR1)

The following program illustrates some of the options available with
CONTOUR keywords. The resulting plot is shown in Figure 18.2.

PRO CONTOUR2

COMPILE_OPT IDL2 ;Set compiler options

WINDOW, XSIZE = 600, YSIZE = 600 ;Open graphics window

!P.MULTI = [0, 2, 2, 0, 0] ;2 x 2 plot panes

nx = 25 ;Number of x−grid points

ny = 25 ;Number of y−grid points

x = FINDGEN(nx)/(nx−1) ;Compute 1−D x−coordinates

y = FINDGEN(ny)/(ny−1) ;Compute 1−D y−coordinates

xx = REBIN(x, nx, ny, /SAMPLE) ;Expand x−coordinates to 2−D

yy = REBIN(REFORM(y, 1, ny), $;Expand y−coordinates to 2−D

nx, ny, /SAMPLE)

z = SIN(!PI*xx) * SIN(!PI*yy) ;Compute z

CONTOUR, z, $;All defaults

TITLE = ’All defaults’

CONTOUR, z, x, y, $;Coordinates provided

TITLE = ’x and y coords’

18.2 Contour Plots 173

All defaults x and y coords
25

20

15

10

5

0

1.0

0.8

0.6

0.4

0.2

0.0
0.0 0.2 0.4 0.6 0.8 1.0

0 5 10 15 20 25

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.5

0.0
0.0 0.5 1.0

0.0 0.2 0.4 0.6 0.8 1.0

Contour labels

Multiple keywords

y

x

0.2

0.25

0.6

0.2 0.25

0.50

0.75

FIGURE 18.2 Contour plot of the function z(x, y) = sin(πx) sin(πy) illustrating some of
the options available with the CONTOUR procedure. (CONTOUR2_PS)

CONTOUR, z, x, y, /FOLLOW, $;Contour labels

TITLE = ’Contour labels’

CONTOUR, z, x, y, /ISOTROPIC, $;Plot contour graph

LEVELS = 0.25*FINDGEN(20), $;Specify contour levels

C_LABELS = REPLICATE(1, 20), $;Label all contour levels

TITLE = ’Multiple keywords’, $

XTITLE = ’x’, $

XSTYLE = 1, $

XRANGE = [0.0, 1.0], $

XTICKS = 2, $

Chapter 18

174 Contour and Surface Plots

XMINOR = 5, $

YTITLE = ’y’, $

YSTYLE = 1, $

YRANGE = [0.0, 1.0], $

YTICKS = 2, $

YMINOR = 5

!P.MULTI = 0 ;Reset !P.MULTI

END

The example program CONTOUR2 illustrates a good way to develop a pro-
gram that uses a complex procedure such as CONTOUR. Begin by using the
defaults, and then add keywords as needed to produce the plot that you
desire.

Contouring programs work best with smooth data. The following program
illustrates what happens when you try to contour noisy data. The resulting
plots are shown in Figure 18.3.

PRO CONTOUR3

COMPILE_OPT IDL2 ;Set compiler options

WINDOW, XSIZE = 400, YSIZE = 400 ;Open graphics window

!P.MULTI = [0, 2, 2, 0, 0] ;2 x 2 panes

... create z−array (see CONTOUR2)

seed = 17 ;Pseudorandom number seed

noise = RANDOMN(seed, nx, ny) ;Compute noise

CONTOUR, z + 0.01*noise, /FOLLOW, $;Plot 1

TITLE = ’Very weak noise’

CONTOUR, z + 0.10*noise, /FOLLOW, $;Plot 2

TITLE = ’Weak noise’

CONTOUR, z + 1.00*noise, /FOLLOW, $;Plot 3

TITLE = ’Moderate noise’

CONTOUR, z + 10.00*noise, /FOLLOW, $;Plot 4

TITLE = ’Strong noise’

!P.MULTI = 0 ;Reset !P.MULTI

END

As this illustrates, CONTOUR works best for smooth functions. In the third
and fourth plots (moderate and strong noise), the shape of the underlying
function z becomes increasingly difficult to discern.

18.3 Surface Plots 175

25

20

15

10

5

0

25

20

15

10

5

0

25

20

15

10

5

0

25

20

15

10

5

0

0 5 10 15 20 25 0 5 10 15 20 25

0 5 10 15 20 250 5 10 15 20 25

Very weak noise Weak noise

Strong noiseModerate noise

FIGURE 18.3 Contour plot of the function z(x, y) = sin(πx) sin(πy) + R, where R is
a random normal variable, illustrating how noise affects the graphs produced by CONTOUR.
(CONTOUR3_PS)

18.3 Surface Plots

A second method for plotting a function of two variables is what is commonly
referred to as a wire-mesh plot. IDL can draw wire-mesh plots using the
SURFACE procedure. The following program repeats the previous plots of

See the SURFACE

procedure in IDL
Reference Guide.

noisy data using the SURFACE procedure. The resulting plots are shown in
Figure 18.4.

PRO SURFACE1

COMPILE_OPT IDL2 ;Set compiler options

Chapter 18

176 Contour and Surface Plots

Very weak noise

1.2

1.0

0.8

0.6

0.4

0.2

0.0

−0.2
1.0

0.8
0.6

0.4
0.2

0.0 0.0 0.2 0.4 0.6 0.8 1.0

1.0
0.8

0.6
0.4

0.2
0.0 0.0 0.2 0.4 0.6 0.8 1.0

1.0
0.8

0.6
0.4

0.2
0.0 0.0 0.2 0.4 0.6 0.8 1.0

Weak noise

1.5

1.0

0.5

0.0

−0.5
1.0

0.8
0.6

0.4
0.2

0.0 0.0 0.2 0.4 0.6 0.8 1.0

4
Moderate noise Strong noise

40

20

0

−20

−40

2

0

−2

−4

FIGURE 18.4 Surface plot of the function z(x, y) = sin(πx) sin(πy) + R, where R is
a random normal variable, illustrating how noise affects the graphs produced by SURFACE.
(SURFACE1_PS)

WINDOW, XSIZE = 400, YSIZE = 400 ;Open graphics window

!P.MULTI = [0, 2, 2, 0, 0] ;2 x 2 panes

... create z−array (see CONTOUR1)

seed = 17 ;Pseudorandom number seed

noise = RANDOMN(seed, nx, ny) ;Compute noise

18.4 Shaded Surface Plots 177

SURFACE, z + 0.01*noise, x, y, $;Plot 1

TITLE = ’Very weak noise’

SURFACE, z + 0.10*noise, x, y, $;Plot 2

TITLE = ’Weak noise’

SURFACE, z + 1.00*noise, x, y, $;Plot 3

TITLE = ’Moderate noise’

SURFACE, z + 10.00*noise, x, y, $;Plot 4

TITLE = ’Strong noise’

!P.MULTI = 0 ;Reset !P.MULTI

END

Surface plots can be better than contour plots for noisy data. Comparing
Figure 18.4 with 18.3, you can at least get a feel for the shape of the function
z when it is shown as a surface. SURFACE has keyword parameters to control
the viewing angles of the plot.

Surface plots do have disadvantages compared to contour plots. For one
thing, part of the surface plot is almost always hidden. For another, with con-
tour plots you can usually estimate numerical values of z, which is considerably
more difficult with wire mesh plots.

18.4 Shaded Surface Plots

A third method for plotting a function of two variables is a smooth rendered
surface, which can be plotted with the SHADE_SURF procedure. A third version

See the SHADE_SURF

procedure in IDL
Reference Guide.

of the noisy plots is shown in Figure 18.5.

PRO SHADE_SURF1

COMPILE_OPT IDL2 ;Set compiler options

WINDOW, XSIZE = 400, YSIZE = 400 ;Open graphics window

!P.MULTI = [0, 2, 2, 0, 0] ;2 x 2 panes

... create z−array (see CONTOUR1)

seed = 17 ;Create pseudorandom numbers

noise = RANDOMN(seed, nx, ny) ;Compute noise

SHADE_SURF, z + 0.01*noise, x, y, $;Plot 1

TITLE = ’Very weak noise’

SHADE_SURF, z + 0.10*noise, x, y, $;Plot 2

TITLE = ’Weak noise’

Chapter 18

178 Contour and Surface Plots

Very weak noise

Moderate noise Strong noise

Weak noise1.2

1.0

0.8

0.6

0.4

0.2

0.0

−0.2
1.0

0.8
0.6

0.4
0.2

0.0 0.0 0.2 0.4 0.6 0.8 1.0

1.0
0.8

0.6
0.4

0.2
0.0 0.0 0.2 0.4 0.6 0.8 1.0

1.0
0.8

0.6
0.4

0.2
0.0 0.0 0.2 0.4 0.6 0.8 1.0

1.0
0.8

0.6
0.4

0.2
0.0 0.0 0.2 0.4 0.6 0.8 1.0

1.5

1.0

0.5

0.0

−0.5

4

2

0

−2

−4

40

20

0

−20

−40

FIGURE 18.5 Shaded surface plot of the function z(x, y) = sin(πx) sin(πy)+R, where R is
a random normal variable, illustrating how noise affects the graphs produced by SHADE_SURF.
(SHADE_SURF_1_PS)

SHADE_SURF, z + 1.00*noise, x, y, $;Plot 3

TITLE = ’Moderate noise’

SHADE_SURF, z + 10.00*noise, x, y, $;Plot 4

TITLE = ’Strong noise’

!P.MULTI = 0 ;Reset !P.MULTI

END

18.5 Summary 179

The XSURFACE procedure can be used to interactively rotate SURFACE and
SHADE_SURF plots.

18.5 Summary

This chapter has covered the basics of plotting contour, surface, and shaded
surface plots using CONTOUR, SURFACE, and SHADE_SURF:

■ When using these plotting routines, start by using the default options.
Gradually add options to get the final plot you desire. Some trial and
error is often necessary to get all of the details of contour and surface plots
correct.

Chapter 18

19

Mapping

This chapter shows how to plots maps using IDL.
Mapping the spherical Earth onto a flat surface requires compromises. Dif-

ferent map projections can preserve directions, distances, areas, or shapes, but
not all four simultaneously. This chapter contains examples of map projections
that are commonly used to plot Earth-referenced data.1

19.1 IDL Commands and Keywords

The following IDL commands and keywords are used for drawing maps and
setting up the mapping transformation:

■ MAP_SET procedure

■ MAP_GRID procedure

■ MAP_CONTINENTS procedure

19.2 Drawing Maps

19.2.1 Setting Up the Map Projection

IDL can plot maps using a wide variety of map projections. Once the
mathematical transformation for the map projection is set up, data can be
superimposed on the maps using contours, images, or symbols. The available
map projections are listed in Table 19.1.

The map projection is selected with the MAP_SET procedure. MAP_SET can
See the MAP_SET

procedure in IDL
Reference Guide.

take three optional, positional parameters, P0LAT, P0LON, and ROT. The first
two parameters specify the latitude and longitude of the point on the Earth’s
surface that is mapped to the center of the map. The third parameter specifies
the rotation of the map around that point. Some projections have additional
keywords associated with them to set specific properties of those projections.

MAP_SET can also draw latitude-longitude grids and various boundary data
on the maps (continental outlines, rivers, etc.). These options are controlled

1 The U.S. Geological Survey has a web page illustrating many different map projections at
http://erg.usgs.gov/isb/pubs/MapProjections/projections.html

181

182 Mapping

TABLE 19.1 Map projections available in IDL and keywords.

Name Keyword

Aitoff /AITOFF

Albers equal-area conic /ALBERS

Azimuthal equidistant /AZIMUTHAL

Lambert conformal conic /CONIC

Cylindrical equidistant /CYLINDRICAL

Gnomonic /GNOMIC

Goode’s homolosine /GOODESHOMOLOSINE

Hammer-Aitoff equal area /HAMMER

Lambert azimuthal equal area /LAMBERT

Mercator /MERCATOR

Miller cylindrical /MILLER_CYLINDRICAL

Mollweide /MOLLWEIDE

Orthographic /ORTHOGRAPHIC

Robinson psuedo-cylindrical /ROBINSON

Satellite /SATELLITE

Sinusoidal /SINUSOIDAL

Stereographic /STEREOGRAPHIC

Transverse Mercator /TRANSVERSE_MERCATOR

with MAP_SET keywords. Alternatively, grids and boundaries can be added in
separate steps by using the MAP_GRID and MAP_CONTINENTS procedures after

See the MAP_GRID and
MAP_CONTINENTS

procedures in IDL
Reference Guide.

the map projection is established by MAP_SET. These procedures allow you to
control the order in which data, boundaries, and grids are drawn. Among
other things, this permits boundaries and grids to be superimposed on top of
data, such as satellite images.

Some map projections can display the entire globe, whereas others can
display only a portion of the globe. When plotting complete global data, two
useful projections are the cylindrical equidistant and Hammer projections.
The Mercator projection should generally be avoided because it leads to large
distortions at high latitudes and is incapable of plotting data near the poles.

19.2.2 Cylindrical Equidistant Projection

The cylindrical equidistant projection is particularly simple. Longitude is
plotted on the abscissa and latitude on the ordinate. Both scales are linear.
Figure 19.1 shows four examples of cylindrical equidistant projections. The
title of each map gives the values of P0LAT, P0LON, and ROT used. The MAP_SET
calls used to create each map are given below. The complete program used to
create Figure 19.1 is MAP_CYLINDRICAL_PS.

MAP_SET, 0.0, 0.0, /CYLINDRICAL, /CONTINENTS, $

TITLE = ’P0LAT = 0.0, P0LON = 0.0, ROT = 0.0’

MAP_SET, 0.0, 90.0, /CYLINDRICAL, /ISOTROPIC, /CONTINENTS, $

/ADVANCE, /NOBORDER, /GRID, GLINESTYLE = 0, $

TITLE = ’P0LAT = 0.0, P0LON = 90.0, ROT = 0.0’

19.2 Drawing Maps 183

POLAT = 0.0, POLON = 0.0, ROT = 0.0 POLAT = 0.0, POLON = 90.0, ROT = 0.0

POLAT = 90.0, POLON = 0.0, ROT = 0.0POLAT = 0.0, POLON = 0.0, ROT = 0.0

FIGURE 19.1 Examples of cylindrical equidistant maps. (MAP_CYLINDRICAL_PS)

MAP_SET, 0.0, 0.0, /CYLINDRICAL, /ISOTROPIC, /CONTINENTS, $

/ADVANCE, /NOBORDER, /GRID, GLINESTYLE = 0, $

TITLE = ’P0LAT = 0.0, P0LON = 0.0, ROT = 0.0’

CONTOUR, T.values[*,*,0], T.x.values, T.y.values, $

/OVERPLOT, /FOLLOW, LEVELS = 200.0 + 10.0*FINDGEN(20)

MAP_SET, 90.0, 0.0, /CYLINDRICAL, /ISOTROPIC, /CONTINENTS, $

/ADVANCE, /NOBORDER, /GRID, GLINESTYLE = 0, $

TITLE = ’P0LAT = 90.0, P0LON = 0.0, ROT = 0.0’

In each case, the projection type is specified with the /CYLINDRICAL keyword.
If the /ISOTROPIC keyword is omitted, as in the first example, MAP_SET

stretches the projection to fill the available space. This can lead to inconsistency
between the horizontal and vertical scales. Including the /ISOTROPIC keyword
ensures that the horizontal and vertical scales are the same. (For most map
projections, it is unusual not to include the /ISOTROPIC keyword.)

These examples illustrate that the center of the map can be adjusted with
the P0LON parameter. Normally, for a cylindrical equidistant projection, P0LAT
is set to 0. If not, as in the lower right panel of Figure 19.1, the projection can
look rather odd (although it is perfectly valid).

Normally, MAP_SET behaves like PLOT or CONTOUR. When called, it erases
the current window or starts a new page. In these examples, we are using

Chapter 19

184 Mapping

the !P.MULTI system variable to plot four maps per page. In order to cause
MAP_SET to advance to the next pane without erasing the previous plots, the
/ADVANCE keyword is used. This keyword is necessary only if you are using
!P.MULTI.

For some reason known only to RSI, MAP_SET draws a rectangular border
around each map, slightly larger than the map area. The border can be omit-
ted by using the /NOBORDER keyword. As you can see in the examples, IDL
sometimes has problems drawing latitude-longitude gridlines at the edges of
maps. Adding the /HORIZON keyword helps, but does not solve the problem
in all cases. The only good solution that I have found for cylindrical equidis-
tant projections is to draw the boundary directly using the PLOTS procedure.
MAP_SET also does not label gridlines in a very attractive manner. Once again,
the only solution is to directly label grid lines using XYOUTS, rather than using
the built-in labelling options in MAP_SET.

The cylindrical equidistant projection exaggerates areas at higher latitudes,
although not as severely as the Mercator projection. One advantage of the
cylindrical equidistant projection is that it is easy to read values at a par-
ticular latitude and longitude. This is illustrated in the lower-left panel of
Figure 19.1, in which the surface air temperature (in K) on January 1, 2001
is contoured atop the map. The contours are drawn using the CONTOUR pro-
cedure with the /OVERPLOT keyword. /OVERPLOT tells CONTOUR to not erase
the screen and to draw the contours using the existing coordinate system (the
map projection in this case).

19.2.3 Hammer Equal-Area and Conic Projections

An alternative global projection that does not distort areas at high latitudes is
the Hammer equal-area projection. Examples of the Hammer projection are
given in three of the panels of Figure 19.2. (The complete program to create
these maps is MAP_HAMMER_PS.)

MAP_SET, /HAMMER, /ISOTROPIC, /HORIZON, $

TITLE = ’P0LAT = 0.0, P0LON = 0.0, ROT = 0.0’

MAP_CONTINENTS, FILL = 1, COLOR = COLOR_24(192)

MAP_GRID, LATDEL = 30, LONDEL = 90, GLINESTYLE = 0

MAP_SET, 0.0, −90.0, /HAMMER, /ISOTROPIC, /HORIZON, $

/NOBORDER, /ADVANCE, $

TITLE = ’P0LAT = 0.0, P0LON = −90.0, ROT = 0.0’

MAP_CONTINENTS, COLOR = COLOR_24(192), FILL = 1

CONTOUR, T.values[*,*,0], T.x.values, T.y.values, /OVERPLOT, $

/FOLLOW, LEVELS = 200.0 + 10.0*FINDGEN(20)

MAP_GRID, LATDEL = 30, LONDEL = 90, GLINESTYLE = 0

19.2 Drawing Maps 185

POLAT = 0.0, POLON = 0.0, ROT = 0.0 POLAT = 0.0, POLON = −90.0, ROT = 0.0

POLAT = 0.0, POLON = −90.0, ROT = 0.0 POLAT = 30.0, POLON = −90.0, ROT = 0.0

FIGURE 19.2 Examples of Hammer equal-area (top and lower left) and conic map
projections. (MAP_HAMMER_PS)

MAP_SET, 0.0, −90.0, /HAMMER, /ISOTROPIC, /HORIZON, $

/NOBORDER, /ADVANCE, $

TITLE = ’P0LAT = 0.0, P0LON = −90.0, ROT = 0.0’

CONTOUR, T.values[*,*,0], T.x.values, T.y.values, /OVERPLOT, $

/FOLLOW, LEVELS = 200.0 + 10.0*FINDGEN(20)

MAP_GRID, GLINESTYLE = 0, LATDEL = 30, LONDEL = 90

MAP_CONTINENTS, COLOR = COLOR_24(192), FILL = 1

MAP_SET, 30.0, −90.0, /CONIC, SCALE = 1.0E8, /ISOTROPIC, $

/GRID, GLINESTYLE = 0, /CONTINENTS, /USA, /ADVANCE, $

TITLE = ’P0LAT = 30.0, P0LON = −90.0, ROT = 0.0’

CONTOUR, T.values[*,*,0], T.x.values, T.y.values, /OVERPLOT, $

/FOLLOW, LEVELS = 200.0 + 5.0*FINDGEN(30)

This example also shows how to plot filled continents, rather than
simply outlining the continental boundaries. The filled continents are gen-
erated by setting FILL = 1 and COLOR = COLOR_24(192) (light gray) in
MAP_CONTINENTS. (COLOR_24 is not a built-in IDL routine. It is included
with the example programs for this book. For more information on using
color, see Chapter 21.)

Chapter 19

186 Mapping

The lower left panel illustrates what can happen if the data, the continents,
and the grids are not plotted in the correct order. Here, the filled continents
obscure the data and grid lines.

The lower right panel in Figure 19.2 is an example of a conic projection. As
the name suggests, conic projections project the spherical Earth onto a cone,
which can then be cut and laid flat without stretching. Conic projections are
frequently used for regional maps. They minimize the distortion of the map
by projecting onto a surface that is tangent to Earth’s surface near the region
of interest.

19.2.4 Azimuthal-Equidistant Projection

In atmospheric and oceanic applications, we often want to plot maps of either
the northern or southern hemisphere, usually to focus on data in the middle
and high latitudes. There are several types of polar projections to choose from.
Two that are frequently used are the azimuthal-equidistant and orthographic
projections. Examples of the azimuthal-equidistant projection are given in
Figure 19.3. (The calls to the CONTOUR procedure that are used to plot the
temperature contours are omitted in the IDL listing below. The full program
can be found in MAP_AZIMUTHAL_PS.)

MAP_SET, 90.0, 0.0, 0.0, /AZIMUTHAL, /ISOTROPIC, $

LIMIT = [0.0, −180.0, 90.0, 180.0], /CONTINENTS, $

/GRID, GLINESTYLE = 0, LATDEL = 30, LONDEL = 90, $

TITLE = ’P0LAT = 90.0, P0LON = 0.0, ROT = 0.0’

MAP_SET, 90.0, 0.0, −90.0, /AZIMUTHAL, /ISOTROPIC, $

LIMIT = [0.0, −180.0, 90.0, 180.0], /CONTINENTS, $

/GRID, GLINESTYLE = 0, LATDEL = 30, LONDEL = 90, $

/NOBORDER, /ADVANCE, $

TITLE = ’P0LAT = 90.0, P0LON = 0.0, ROT = −90.0’

MAP_SET, −90.0, 0.0, 0.0, /AZIMUTHAL, /ISOTROPIC, $

LIMIT = [−90.0, −180.0, 0.0, 180.0], /CONTINENTS, $

/GRID, GLINESTYLE = 0, LATDEL = 30, LONDEL = 90, $

/NOBORDER, /ADVANCE, $

TITLE = ’P0LAT = −90.0, P0LON = 0.0, ROT = 0.0’

MAP_SET, −90.0, 0.0, 90.0, /AZIMUTHAL, /ISOTROPIC, $

LIMIT = [−90.0, −180.0, 0.0, 180.0], /CONTINENTS, $

/GRID, GLINESTYLE = 0, LATDEL = 30, LONDEL = 90, $

/NOBORDER, /ADVANCE, $

TITLE = ’P0LAT = −90.0, P0LON = 0.0, ROT = 90.0’

The LIMIT keyword is used to specify the area of the globe to be plotted. The
four elements of the LIMIT array specify the minimum latitude, minimum

19.2 Drawing Maps 187

POLAT = 90.0, POLON = 0.0, ROT = 0.0 POLAT = 90.0, POLON = 0.0, ROT = −90.0

POLAT = −90.0, POLON = 0.0, ROT = 0.0 POLAT = −90.0, POLON = 0.0, ROT = 90.0

FIGURE 19.3 Examples of azimuthal-equidistant maps. Three of the maps include contours
displaying the surface temperature field on January 1, 2001 in Kelvins. (MAP_AZIMUTHAL_PS)

longitude, maximum latitude, and maximum longitude of the area to be
plotted.

The /ISOTROPIC keyword is required for azimuthal projections (unless the
plotting area happens to be exactly square). These examples illustrate the use
of the ROT parameter to orient the map as desired, for European or American
audiences, for example.

Notice that the latitude circles are equally spaced in the azimuthal-
equidistant projection. The azimuthal-equidistant projection is essentially the
same as a standard two-dimensional polar coordinate system. The angular
coordinate is longitude, and the radial coordinate is the colatitude (angle
measured from the pole). This projection distorts areas to some degree, but
makes it possible to see the entire hemisphere, including the tropics.

Chapter 19

188 Mapping

19.2.5 Orthographic Projection

The other polar projection illustrated here is the orthographic projection.
Examples of the orthographic maps are given in Figure 19.4. (The calls
to the CONTOUR procedure that are used to plot the temperature contours
are omitted in the IDL listing below. The full program can be found in
MAP_ORTHOGRAPHIC_PS.)

MAP_SET, 90.0, 0.0, 0.0, /ORTHOGRAPHIC, /ISOTROPIC, $

/GRID, GLINESTYLE = 0, /CONTINENTS, $

LIMIT = [0.0, −180.0, 90.0, 180.0], LATDEL = 30, LONDEL = 90, $

TITLE = ’P0LAT = 90.0, P0LON = 0.0, ROT = 0.0’

POLAT = 90.0, POLON = 0.0, ROT = 0.0 POLAT = 90.0, POLON = 0.0, ROT = −90.0

POLAT = −90.0, POLON = 0.0, ROT = 0.0 POLAT = −90.0, POLON = 0.0, ROT = 90.0

FIGURE 19.4 Examples of orthographic maps. (MAP_ORTHOGRAPHIC_PS)

19.3 Contour Plots on Maps 189

MAP_SET, 90.0, 0.0, −90.0, , /ORTHOGRAPHIC, /ISOTROPIC, $

/GRID, GLINESTYLE = 0, /CONTINENTS, /ADVANCE, $

LIMIT = [0.0, −180.0, 90.0, 180.0], LATDEL = 30, LONDEL = 90, $

TITLE = ’P0LAT = 90.0, P0LON = 0.0, ROT = −90.0’

MAP_SET, −90.0, 0.0, 0.0, /ORTHOGRAPHIC, /ISOTROPIC, $

/GRID, GLINESTYLE = 0, /CONTINENTS, /ADVANCE, $

LIMIT = [−90.0, −180.0, 0.0, 180.0], LATDEL = 30, LONDEL = 90, $

TITLE = ’P0LAT = −90.0, P0LON = 0.0, ROT = 0.0’

MAP_SET, −90.0, 0.0, 90.0, /ORTHOGRAPHIC, /ISOTROPIC, $

/GRID, GLINESTYLE = 0, /CONTINENTS, /ADVANCE, $

LIMIT = [−90.0, −180.0, 0.0, 180.0], LATDEL = 30, LONDEL = 90, $

TITLE = ’P0LAT = −90.0, P0LON = 0.0, ROT = 90.0’

Note that in the orthographic projection the latitude circles are closer
together near the equator. This projection is not suitable for viewing the
tropics, but works well for regions poleward of about 30◦ latitude. A third
polar projection that is sometimes used is the stereographic projection. It can
provide better display of lower latitude regions when a polar projection is
desired. Usage is very similar to azimuthal and orthographic projections.

19.3 Contour Plots on Maps

A common use of maps is to plot contour maps of geophysical quanti-
ties. Figure 19.5 shows northern and southern hemisphere maps of surface
temperature.

MAP_SET, 90.0, 0.0, −90.0, TITLE = ’Surface Temperature (K)’, $

/AZIMUTHAL, /ISOTROPIC, LIMIT = [0.0, −180.0, 90.0, 180.0], $

/NOBORDER, /ADVANCE

MAP_CONTINENTS, COLOR = COLOR_24(192), FILL = 1

CONTOUR, T.values[*,*,0], T.x.values, T.y.values, $

/OVERPLOT, /FOLLOW, LEVELS = 200.0 + 5.0*FINDGEN(20)

MAP_GRID, GLINESTYLE = 0, LATDEL = 30, LONDEL = 90

MAP_SET, −90.0, 0.0, 90.0, TITLE = ’Surface Temperature (K)’, $

/AZIMUTHAL, /ISOTROPIC, LIMIT = [−90.0, −180.0, 0.0, 180.0], $

/NOBORDER, /ADVANCE

MAP_CONTINENTS, COLOR = COLOR_24(192), FILL = 1

CONTOUR, T.values[*,*,0], T.x.values, T.y.values, $

/OVERPLOT, /FOLLOW, LEVELS = 200.0 + 5.0*FINDGEN(20)

MAP_GRID, GLINESTYLE = 0, LATDEL = 30, LONDEL = 90

The order in which maps, contours, and gridlines are drawn can be impor-
tant. In these examples, the map projection is defined with MAP_SET, then

Chapter 19

190 Mapping

Surface Temperature (K) Surface Temperature (K)

FIGURE 19.5 Contours drawn on top of polar maps. (MAP_CONTOUR_PS)

Random Points

FIGURE 19.6 This map illustrates the use of PLOTS to plot symbols on a map.
(MAP_PLOTS_PS)

19.5 Summary 191

continents are drawn with MAP_CONTINENTS. Next, data are drawn with
CONTOUR, and finally the grid lines are drawn with MAP_GRID. This ensures
that the continents do not cover (obscure) the data or grid lines.

19.4 Other Plots on Maps

Maps can also be used to plot point data. Figure 19.6 shows 25 randomly
distributed points plotted on a local map.

MAP_SET, 30.0, −90.0, TITLE = ’Random Points’, $

/CONIC, SCALE = 5.0E6, /ISOTROPIC, /HIRES, /USA

PLOTS, x, y, PSYM = 5, SYMSIZE = 2

Markers are plotted by using the PLOTS command. PLOTS is similar to
See the PLOTS

procedure in IDL
Reference Guide.

the PLOT command, but it does not draw axes or set up the plotting
transformation. It assumes that the plotting coordinates have already been
defined.

19.5 Summary

This chapter covers the basics of plotting data on maps using MAP_SET,
MAP_GRID, MAP_CONTINENTS, and CONTOUR or PLOTS.

Chapter 19

20

Printing Graphics

This chapter shows you how to send graphics output to a printer or file.

20.1 IDL Commands and Keywords

The following IDL commands and keywords are used to direct graphics output
to the PS (PostScript) or PRINTER devices:

■ SET_PLOT procedure

■ PS_ON procedure

■ PS_OFF procedure

■ DEVICE procedure

■ DIALOG_PRINTERSETUP function

■ PRINTER_ON procedure

■ PRINTER_OFF procedure

20.2 Device Drivers

Each time you issue an IDL graphics command, IDL sends the appropriate
graphics instructions to intermediate software called a device driver, which
translates the IDL instructions into commands that the current device can
understand. The device drivers available in IDL are described in IDL Graphics
Devices in IDL Reference Guide. When you start IDL, the graphics device is
set to the default device for your system. For Unix and Mac OS X systems it is
the X-Windows (X) device. For Windows systems it is WIN. Issuing the PLOT

See the X and WIN

devices in IDL
Reference Guide.

command causes a window to automatically appear on your screen and a line
graph to be drawn.

To print graphics output, you must select the device driver for a hardcopy
See the SET_PLOT and
DEVICE procedures in
IDL Reference Guide.

device, typically a printer, before running the graphics commands. The device
is selected with the SET_PLOT command. Once the device is selected, the
DEVICE procedure can be used to control the various options for the device,

193

194 Printing Graphics

such as paper size, font, and so on. IDL includes device drivers for a number
of different output devices. This chapter discusses the basics of two of those
devices: the PS (PostScript) and PRINTER devices. PostScript is a language
developed by Adobe, Inc. specifically for printing graphics. Because many
printers can understand the PostScript language, the PRINTER device can also
be used to generate PostScript output.

See the PS and PRINTER

devices in IDL
Reference Guide.

In an ideal world it would be easy to write an IDL graphics program that
worked with any graphics device. In reality, each graphics device has capabil-
ities or limitations that do not translate well to other devices. Some devices
are black-and-white only, some use 8-bit color, some use 24-bit color, and
so on. To make attractive graphical output on different devices, often you
must customize your graphics programs for each graphics device you use.
In most cases this is a straightforward task. To keep things simple, we will
not cover all of the features of the PS and PRINTER devices in this chapter.
For example, we will not use PostScript fonts with the PS device or True-
type fonts with the PRINTER device. Instead, we will use the default built-in
IDL fonts (also called vector fonts or Hershey fonts). For more information
on customizing graphics, see the books by Gumley and Fanning listed in the
bibliography.

20.3 The PostScript Device

The PS device driver creates a file that contains graphics commands in the
PostScript language. PostScript is widely used to print text and graphics on
laser printers and other hardcopy devices. To create PostScript output, you
select the PS device, issue IDL graphics commands, close the PS device, and
then send the PostScript file to a printer. You can also save the file for later
printing or editing.

An important advantage of PostScript output is the variety of software
tools that can work with PostScript files. Some are commercial software; some
are freeware or shareware. For example, there are software tools to convert
PostScript files to Portable Document Format (PDF) files. PDF files can
be viewed with the free Adobe Acrobat Reader software and are commonly
used to send graphics electronically. Adobe Illustrator (and other drawing
programs) can be used to open and edit PostScript files interactively. This is
very convenient when you need to make changes to an IDL graph to make it
suitable for publication or presentation.

With a few exceptions, the figures in this book were generated using
standard IDL graphics commands and the PS device driver. In a few cases
the PostScript files were opened in Adobe Illustrator and modified slightly.
The PostScript files were then converted to PDF files and imported directly
into the book. Depending on your software and printing requirements, other
workflows with PostScript files are possible. The result is high-quality out-
put that can be easily used with other programs, including standard word
processing programs such as Microsoft Word.

20.3 The PostScript Device 195

20.3.1 Using the PS Device

The PS device has a sometimes confusing set of options that are controlled
with the DEVICE command. To ease the process of using the PS device, two
procedures are included with the example programs: PS_ON and PS_OFF.These
programs are simplified versions of the PSON and PSOFF procedures described
in Practical IDL Programming by Gumley. The original procedures by Gumley
can be downloaded from http://www.gumley.com.

IDL graphics programs are usually written so that the default behavior is
to draw graphics in a window on the screen using the X or WIN device. An
optional keyword is used to tell the program to send the graphics output to a
PostScript file instead. The example program below, taken from Chapter 17,
shows how to use the PS_ON and PS_OFF procedures:

PRO LINEGRAPH3, PS = ps

;+

; Name:

; LINEGRAPH3

; Purpose:

; Plots a simple line graph and optionally saves a PostScript file.

; Calling sequence:

; LINEGRAPH3

; Inputs:

; None.

; Output:

; Line graph and optional PostScript file.

; Keywords:

; PS : If set, save the PostScript output to linegraph3.ps.

; Author and history:

; Kenneth P. Bowman, 2004.

;−

COMPILE_OPT IDL2 ;Set compiler options

xsize = 4.0 ;Width of graphic

ysize = 4.0 ;Height of graphic

dpi = 100 ;Screen dots per inch

margin = 0.1 ;Margins of graphic

IF KEYWORD_SET(ps) THEN BEGIN

psfile = !Bowman + ’ps/linegraph3.ps’ ;PostScript file name

PS_ON, FILENAME = psfile, MARGIN = margin, $;Set device to PostScript

PAGE_SIZE = [xsize, ysize], /INCHES

ENDIF ELSE BEGIN

WINDOW, XSIZE = dpi*xsize, YSIZE = dpi*ysize ;Open graphics window

ENDELSE

Chapter 20

196 Printing Graphics

x = FINDGEN(11) ;Abscissa

y = SQRT(x) ;Ordinate

PLOT, x, y ;Draw line graph

OPLOT, x, 2.0*y ;Overplot second line

IF KEYWORD_SET(ps) THEN PS_OFF ;End PostScript output

END

The first four lines of the program define the size of the graphics window and
the printed output. If the PS keyword is not set, like this,

IDL> linegraph3

a screen window is opened. In this case the window size is 400 × 400 pixels,
as specified by the XSIZE and YSIZE keywords of the WINDOW procedure. A
simple line graph is drawn in the window using PLOT and OPLOT. Because the
PS keyword is not set, the PS_OFF procedure is not called at the end of the
program.

If the PS keyword is set, like this,

IDL> linegraph3, /ps

Starting PS output to /Users/bowman/idl/bowman/ps/linegraph3.ps

PS output ended.

the device is switched to PS by the PS_ON procedure. The keyword parameters
of PS_ON allow you to specify the name of the PostScript output file, the size of
the output page, the margin size, the units, and other options. See the PS_ON
program file for details. As before, the program draws a simple line graph.
Before exiting, the PS device is closed and the previous device is restored by
calling the PS_OFF procedure. In this example the PostScript output is written
to the file name stored in the variable psfile. If no file name is provided,
the PostScript output is written to the file idl.ps in your current directory
(usually your home directory).

Using the PS device for color output is covered in Chapter 21.

20.4 The PRINTER Device

In addition to the PS device, IDL also supports the PRINTER device, which
can interact directly with printers connected to your computer or network.
Before IDL can use a printer, your computer must know how to talk to it.
Follow the instructions that came with your printer, refer to the operating
system documentation, or see your system administrator for help configuring
a printer at the operating system level.

20.4 The PRINTER Device 197

Once your computer is aware of a printer, the next step is to set up your
PRINTER device inside IDL. Details of configuring printers within IDL are
found in Printing in IDL in Using IDL.

20.4.1 Setting Up the PRINTER Device for Windows

On Windows systems, IDL interacts with the standard operating system
printing facilities. For more information about configuring printers under
Windows, see the Windows documentation.

20.4.2 Setting Up the PRINTER Device for
Mac OS X and Unix

On Unix and Mac OS X systems, IDL uses the Xprinter technology from
Bristol Systems. The following is an outline of how to configure a printer to
create a PostScript file as output. You can also use the PRINTER device to send
output directly to an available printer. Additional information on configuring
printers can be found in Using IDL.

In the following instructions the printer is assumed to be named
myprinter. You should replace myprinter with the name of your printer
wherever it is used. The first step in using the PRINTER device is to make IDL
aware of that printer. This is done with the DIALOG_PRINTERSETUP function.

See the
DIALOG_PRINTERSETUP

procedure in IDL
Reference Guide.

As the name indicates, DIALOG_PRINTERSETUP displays an interactive dialog
box that allows you to configure your printer. To set up your printer, enter
the following command (make sure X-Windows is running first):

IDL> r = DIALOG_PRINTERSETUP()

This function requires no arguments, so no arguments are provided between
the parentheses.

DIALOG_PRINTERSETUP opens a dialog box that allows you to configure
your printer. The organization of DIALOG_PRINTERSETUP is rather difficult
to follow. The procedure below works for me, but I cannot guarantee that
it will work on all systems. If you have problems, see the documentation for
DIALOG_PRINTERSETUP.

1. At the top, select Printer Specific. Click the Install button in the lower
right.

2. In the new (second) dialog box that appears, select Add Printer. A third
dialog box appears.

3. From the list on the left side, select Generic PostScript Printer.

4. Click Define New Port, which opens a fourth dialog box.

5. Click the Spooler button at the bottom of the dialog; select myprinter
=lp −d myprinter.

6. Click Add-Replace, then Dismiss.

Chapter 20

198 Printing Graphics

7. From the list on the right side, select myprinter =lp -d myprinter.

8. In the third dialog box, click Add Selected, followed by Dismiss. The
third dialog box closes.

9. You should now see something like Generic PostScript Printer on
myprinter in the list of printers.

10. Click on that line to highlight it, then click the Dismiss button.

11. Finally, in the first dialog box click the Options button. This opens a
dialog box with a list of pop-up menus.

12. Open the first menu and select the printer that you just added. Click OK
and then OK again to close the first dialog box.

You can use the DIALOG_PRINTJOB function to control compression, scal-
ing, and the number of copies printed with the PRINTER device. It is used in
a similar fashion to the DIALOG_PRINTERSETUP function:

IDL> r = DIALOG_PRINTJOB()

20.4.3 Using the PRINTER Device

As with the PS device, the PRINTER device has a number of options. To simplify
the process of using the PRINTER device, two procedures are included with
the example programs: PRINTER_ON and PRINTER_OFF. These procedures are
based on PRINTON and PRINTOFF from Liam Gumley’s book, Practical IDL
Programming. The original procedures by Gumley can be downloaded from
http://www.gumley.com.

The PRINTER_ON procedure switches from the current device to PRINTER.
PRINTER_OFF sends the output to the selected printer and switches back to the
original device. The following example program illustrates how to send output
to the PRINTER device. This program is the previous example (LINEGRAPH3)
modified to use the PRINTER device.

PRO LINEGRAPH3_PRINTER, PRINTER = printer

;+

; Name:

; LINEGRAPH3_PRINTER

; Purpose:

; Plots a simple line graph and prints the output

; using the PRINTER device.

; Calling sequence:

; LINEGRAPH3_PRINTER

; Inputs:

; None.

20.5 The PRINTER Device 199

; Output:

; Line graph and optional PRINTER output.

; Keywords:

; PRINTER : If set, use the currently configured PRINTER device.

; Author and history:

; Kenneth P. Bowman, 2004.

;−

COMPILE_OPT IDL2 ;Set compiler options

xsize = 4.0 ;Width of graphic

ysize = 4.0 ;Height of graphic

dpi = 100 ;Screen dots per inch

margin = 0.1 ;Margins of graphic

IF KEYWORD_SET(printer) THEN BEGIN

PRINTER_ON, MARGIN = margin, /INCHES, $;Set device to PostScript

PAGE_SIZE = [xsize, ysize]

ENDIF ELSE BEGIN

WINDOW, XSIZE = dpi*xsize, YSIZE = dpi*ysize ;Open graphics window

ENDELSE

x = FINDGEN(11) ;Abscissa

y = SQRT(x) ;Ordinate

PLOT, x, y ;Draw line graph

OPLOT, x, 2.0*y ;Overplot second line

IF KEYWORD_SET(printer) THEN PRINTER_OFF ;End PostScript output

END

To execute the program and have the graphics output go to the screen,
simply enter

IDL> linegraph3_printer

To execute the program and have the graphics output go to the printer, enter

IDL> linegraph3_printer, /printer

Starting PRINTER output.

PRINTER output ended.

The PRINTER device does not allow you to specify the output file name. If
you have configured the PRINTER device to create a PostScript file, the output
is written to xprinter.out in your current directory. Before viewing the file,
you may need to change the file suffix from .out to .ps.

Using the PRINTER device for color output is covered in Chapter 21.

Chapter 20

200 Printing Graphics

20.5 Some Limitations of the PRINTER
and PS Devices

The PRINTER and PS device drivers provided by RSI have a few limitations.
The PS driver can handle 24-bit (truecolor) images (bitmaps), but not

truecolor vector graphics (lines, markers, etc.) Vector graphics are limited to
8-bit colors (256 different colors). In addition, the PostScript device cannot
rotate PostScript fonts properly in three-dimensional plots, such as those
created by SURFACE. If you need high-quality fonts in 3-D graphs, use the
DEVICE command to select the Truetype fonts.

The PostScript output produced by the PRINTER device driver can produce
24-bit color for vector graphics. It cannot, however, use PostScript fonts. It
uses Truetype fonts instead. Truetype fonts are available that are very similar
to many PostScript fonts. Output sent from the PRINTER device directly to
a PostScript printer appears nearly identical to equivalent output from the
PS device. Problems can arise, however, if you try to edit a PostScript file
generated by the PRINTER device in a program like Adobe Illustrator. Because
the fonts are not true PostScript fonts, they are actually rendered as collections
of polygons. These polygons are vector graphics, and cannot be edited directly
like text composed of PostScript fonts.

20.6 Summary

IDL has a number of graphics device drivers to create printed output. The
most commonly used are the PS and PRINTER devices.

■ The PS_ON procedure can be used to switch the output to the PS

(PostScript) device. When the graphics are complete, the PS_OFF pro-
cedure is used to send the output to the selected printer and switch back
to the previous output device (typically the terminal screen).

■ The PRINTER device is configured using the DIALOG_PRINTERSETUP and
DIALOG_PRINTJOB functions. Printers must be available to the operating
system before they can be configured with DIALOG_PRINTERSETUP.

■ The PRINTER_ON procedure can be used to switch the output to the
PRINTER device. When the graphics are complete, the PRINTER_OFF pro-
cedure is used to send the output to the selected printer and switch back
to the previous output device (typically the terminal screen).

■ Options for the various devices are set with the DEVICE command.

20.7 Exercises

1. Run the LINEGRAPH3 procedure to test PostScript output.

2. Run the LINEGRAPH3_PRINTER procedure to test that your printer is set
up correctly.

21

Color and Image Display

Color graphics are simple in principal, but can be complicated in practice due
to differences among various color output devices. This chapter explains the
basics of 8- and 24-bit color graphics in IDL.

21.1 IDL Commands and Keywords

The following IDL commands are used to create and display color graphics:

■ COLOR_CONVERT procedure

■ DEVICE procedure

■ TVLCT procedure

■ LOADCT procedure

■ XLOADCT procedure

■ TV procedure

■ TVSCL procedure

■ TVRD procedure

21.2 Color Basics

21.2.1 Pixels

Virtually every computer graphics device creates an image by dividing the dis-
play region into a grid of pixels (short for picture elements). Current computer
monitors (video displays) range in size from small (640 × 480 pixels) to large
(more than 2000 × 1600 pixels). Display technology continues to improve
in both size and resolution.

Printers, on the other hand, whether color or black-and-white, generally
start at 300 dpi (dots-per-inch) and range up to several thousand dpi. The
total number of pixels (dots) on a page depends on the size of the paper that
the printer can handle. Even a low-resolution (300 dpi) printer can print more
dots on a standard-size page than the number of pixels on the best current
monitors.

201

202 Color and Image Display

To display a graph or image, the pixels that represent each graphical element
(line, polygon, etc.) must be set to the appropriate colors. This process is called
rasterization. Generally, rasterization is handled by the graphics device driver,
and the user does not have to worry about things at the level of individual
pixels. An exception is the display of bitmapped or raster images, which are
already rasterized into pixels. The display of images is covered later in this
chapter.

21.2.2 The RGB Color System

To create a color image, each pixel of your computer screen can emit a com-
bination of red, green, and blue light (hence the name RGB). By combining
the correct intensities of those three colors, any desired color can be displayed
in each pixel on the screen.1 This method of creating color is referred to as
the RGB or additive color system.

For the convenience of the computer (not the user), the intensity of each
of the three color components is allowed to vary in integral steps between 0
and 255. Therefore, the intensity of each color component can be specified
by using 1 byte of computer memory. Because each byte is composed of
8 bits, this color resolution is referred to as 24-bit color. Each of the three
color components can have 256 different values, so the number of possible
colors that can be displayed in a single pixel is 256 × 256 × 256 = 224 =
16, 777, 216. Of course, a single pixel can display only one color at a time.

Table 21.1 lists the combinations of red, green, and blue intensities that
produce some common colors.

The red, green, and blue primary colors, and the mixtures used to create
other colors, are not the same as the primary colors you learned when finger-
painting. On the computer screen, combining red and green produces yellow.

TABLE 21.1 Common colors in terms of their RGB components.

Color Red Green Blue

black 0 0 0

white 255 255 255

red 255 0 0

green 0 255 0

blue 0 0 255

yellow 255 255 0

magenta 255 0 255

cyan 0 255 255

gray (50%) 128 128 128

1 This is true within the limits of the display’s ability to emit the component colors, which
depends on the type and quality of the display.

21.2 Color Basics 203

With paint pigments, on the other hand, mixing blue and yellow produces
green. This difference occurs because, on paper, colors are created by absorp-
tion of some colors and reflection of others, rather than emission of component
colors. Because colored paints and inks create color by absorbing some wave-
lengths, this color system is referred to as subtractive color. The process of
mixing subtractive colors is fundamentally different from that for additive
color. Color printers generally add varying amounts of four different-colored
inks (cyan, magenta, yellow, and black) to produce the full range of colors.
Cyan is light blue, while magenta is a reddish purple. The black ink is neces-
sary to produce darker colors and good quality grays. This is often referred to
as the CMYK color system.

Fortunately, you do not need to deal directly with the CMYK color system.
In IDL, all colors can be specified using the RGB system. For printed output,
RGB colors are automatically converted to CMYK colors by the printer’s
device driver. Without expending considerable effort, however, you cannot
expect the printed colors to exactly match the colors on the screen.

21.2.3 The HSV Color System

Mixing RGB components to create desired colors can be a frustrating,
trial-and-error process. Fortunately, other more intuitive color schemes are
available. My personal favorite is the hue-saturation-value (HSV) system.2

The HSV system can be thought of as a color wheel. An example of an HSV
color wheel is shown in Figure 21.1. The program used to create Figure 21.1
(HSV_WHEEL_PS) is included with this book. HSV_WHEEL_PS displays the image
on the screen and optionally writes the image to a PostScript file. A similar
program that creates a PNG file is also included (HSV_WHEEL_PNG).

The hue, which determines the color, is specified by the angle around the
color wheel in degrees. Angles are measured clockwise from the up direction,
so 0◦ is red, 60◦ is yellow, 120◦ is green, 180◦ is cyan, 240◦ is blue, and 300◦
is magenta.

You can think of the saturation as the amount of colored pigment of a
particular hue that is added to a can of white paint. On the color wheel,
saturation is indicated by the radial distance from the center, which ranges
from 0 to 1. A saturation of 0 is located at the center, and indicates that no
pigment has been added. If the saturation is 0, the color is always white (or
gray if the value is less than 1) regardless of the hue. Moving radially outward
at a given hue gradually increases the saturation of the color. For example, a
hue of 0 and a saturation of 0.5 produces pink.

The value parameter can be thought of as adding black pigment to the
paint. A value of 1 indicates no black pigment. As the value decreases toward 0,
the color becomes darker. If the value is 0, the color is black, regardless of
the hue or saturation. A complete color wheel for a value of 0.5 is shown in
Figure 21.2.

2 This is also sometimes referred to as the hue-saturation-brightness (HSB) system.

Chapter 21

204 Color and Image Display

FIGURE 21.1 Example of a color wheel created using the HSV color system. In this case
the value v is set to 1.0. Also see this figure in the color plates section. (HSV_WHEEL_PS)

FIGURE 21.2 Example of a color wheel created using the HSV color system. In this case
the value v is set to 0.5. Also see this figure in the color plates section. (HSV_WHEEL_PS)

21.3 24-Bit Devices 205

The IDL COLOR_CONVERT procedure can be used to convert an HSV color
See the COLOR_CONVERT

procedure in IDL
Reference Guide.

specification into RGB intensities (or vice versa). The RGB intensities can
then be used to specify colors in your IDL programs. When converting from
HSV to RGB, the calling sequence is:

COLOR_CONVERT, h, s, v, r, g, b, /HSV_RGB

Here are some examples of converting HSV coordinates to RGB intensities:

IDL> color_convert, 0.0, 1.0, 1.0, r, g, b, /hsv_rgb ;red

IDL> print, r, g, b

255 0 0

IDL> color_convert, 0.0, 0.5, 1.0, r, g, b, /hsv_rgb ;pink

IDL> print, r, g, b

255 127 127

IDL> color_convert, 0.0, 1.0, 0.5, r, g, b, /hsv_rgb ;dark red

IDL> print, r, g, b

127 0 0

IDL> color_convert, 180.0, 1.0, 1.0, r, g, b, /hsv_rgb ;cyan

IDL> print, r, g, b

0 255 255

21.3 24-Bit Devices

Some IDL graphics devices support 24-bit color. This means that each pixel
of the device has (at least) 3 bytes of memory to store the red, green, and blue
intensities of the RGB components (or the equivalent for a CMYK device).
The available 24-bit devices include most video displays, the PRINTER device,
and the POSTSCRIPT device (for bitmapped images only). Because 24-bit
displays are capable of displaying realistic images, they are referred to within
IDL as truecolor displays.

Newer personal computers and workstations usually have 24-bit color video
displays. The memory required to store the RGB components for each pixel
of the display is special-purpose memory located on the computer’s graphics
or video card. To determine whether your computer display supports 24-bit
color, use the HELP command with the /DEVICE keyword, as shown here:

IDL> help, /device

Available Graphics Devices: CGM HP LJ NULL PCL PRINTER PS REGIS TEK X Z

Current graphics device: X

Server: X11.0, The XFree86 Project, Inc, Release 40300000

Display Depth, Size: 24 bits, (1152,768)

Visual Class: TrueColor (4)

Bits Per RGB: 8 (8/8/8)

Physical Color Map Entries (Emulated / Actual): 256 / 256

Colormap: Private, 16777216 colors. Translation table: Enabled

Chapter 21

206 Color and Image Display

Graphics pixels: Decomposed, Dither Method: Ordered

Write Mask: 16777215 (decimal) ffffff (hex)

Graphics Function: 3 (copy)

Current Font: <default>, Current TrueType Font: <default>

Default Backing Store: Req from Server.

The first line after the HELP command lists the available graphics devices. The
X in the list of devices indicates that the X-Windows device is available on
this computer. If you are using the Windows version of IDL, you should
see an available WIN device instead of X. The WIN and X devices have similar
capabilities. In this chapter we discuss only the X and WIN devices, which are
used to display graphics on your computer screen, and the PRINTER and PS

(PostScript) devices, which are used for printing.
The output from the HELP command above shows that the computer in

the example is currently using the X device. The screen size is 1152 × 768
pixels. Each pixel has 24 bits of depth associated with it, making it a truecolor
device. Furthermore, each color component has 8 bits of depth (256 intensity
levels per component), which gives a total of 16,777,216 colors. Not all X or
WIN devices will support 24-bit color. Use the HELP command to determine
your computer’s capabilities.

Running the HSV_WHEEL_PS procedure on this computer produces a
window containing the color wheel shown in Figure 21.1.

If the device is changed to PRINTER, then HELP gives the following:

IDL> set_plot, ’printer’

IDL> help, /device

Available Graphics Devices: CGM HP LJ NULL PCL PRINTER PS REGIS TEK X Z

Current graphics device: PRINTER

Printer : HP Color LaserJet PS

Orientation: Portrait

Scale Factor: 1

Resolution: 300 dots per inch

Font: −adobe−courier−medium−r−normal−−0−0−300−300−m−0−iso8859−1,

TrueType Font: <none>

Size (X,Y): (17.78,12.7) cm., (7,5) in.

Offset (X,Y): (1.905,12.7) cm., (0.75,5) in.

In this case, the PRINTER device has been configured to use an HP color laser
printer.

Setting the device to PS produces the following information. Some details,
such as available fonts, are omitted.

IDL> set_plot, ’ps’

IDL> device, /color, bits_per_pixel = 8

IDL> help, /device

Available Graphics Devices: CGM HP LJ NULL PCL PRINTER PS REGIS TEK X Z

Current graphics device: PS

21.3 24-Bit Devices 207

File: <none>

Mode: Portrait, Non−Encapsulated, EPSI Preview Disabled, Color Enabled

Offset (X,Y): (1.905,12.7) cm., (0.75,5) in.

Size (X,Y): (17.78,12.7) cm., (7,5) in.

Scale Factor: 1

Font Size: 12

Font Encoding: AdobeStandard

Font: Helvetica TrueType Font: <default>

bits per image pixel: 8

Because the PS device does not automatically have color turned on, the DEVICE
See the DEVICE

procedure in IDL
Reference Guide.

command is used to enable color and set the color depth to 8 bits per pixel.
This is done automatically by the PS_ON procedure described in Chapter 20.
The PostScript device driver provided by RSI has a very important limitation:
Bitmapped images sent to the PS device (using the TV command) can use
24-bit color, but ordinary line graphics, such as those produced by the PLOT

command, can use only 8-bit color (discussed in the next section). If you need
to use full 24-bit color to display graphics other than bitmapped images, the
PRINTER device can be used to produce PostScript output.

21.3.1 Specifying 24-Bit Colors

Most IDL graphics commands, such as PLOT and CONTOUR, include a COLOR

keyword to set the main color of the graph. Some procedures, such as CONTOUR,
have separate keywords to specify the colors of specific graphical elements
(text, contour lines, etc.). If your current graphics device supports 24-bit
color, you can specify any of more than 16 million possible colors for each
color-related keyword. Rather than passing three separate values (the R, G,
and B intensities) for each color, the three components are combined into a
single 32-bit integer. Three of the four bytes that make up the integer are used
for the component values. The first byte is used for the red component, the
second for the green, and the third for the blue. The three components can
be combined into a LONG integer with the simple arithmetic operation

color = r + 256*(g + 256*b)

where r, g, and b are component intensities between 0 and 255. To avoid
having to write (and remember) this formula, the COLOR_24 function will
convert the R, G, and B components into an integer.

FUNCTION COLOR_24, r, g, b

; NAME:

; COLOR_24

; PURPOSE:

; Convert r, g, and b color value(s) to 24−bit color

; values. R, g, and b should be integers in the

; range [0, 255]. If not, they are converted to LONGs

Chapter 21

208 Color and Image Display

; and then truncated to that range. R, g, and b can

; be three scalars or three arrays of equal dimension.

;

; If g and b are omitted and r is a numerical

; expression, then r is assumed to represent a

; grayscale value. That is, the g and b values are

; set equal to r.

;

; This function also includes a set of predefined

; colors that can be selected by name. If g and b

; are omitted and r is a STRING expression, COLOR_24

; attempts to find a color with that name in the

; predefined table of colors. If the current device

; is not a 24−bit device (such as the PS device),

; COLOR_24 assumes that LOAD_BASIC_COLORS has been

; called to load the predefined colors into the color

; table.

; CATEGORY:

; Color calculations.

; CALLING SEQUENCE:

; color = COLOR_24(r, g, b) for 24−bit color

; color = COLOR_24(r) for 24−bit grayscale

; color = COLOR_24(’name’) for pre−defined color

; INPUT:

; r : red value(s). r is converted to LONG and

; truncated to the range [0, 255]

; g : green value(s). g is converted to LONG and

; truncated to the range [0, 255]

; b : blue value(s). b is converted to LONG and

; truncated to the range [0, 255]

;

; r : string containing the name of a predefined color

; OUTPUT:

; Scalar or array of 24−bit color value(s) of type LONG.

; MODIFICATION HISTORY:

; K. Bowman, 2004.

COMPILE_OPT IDL2 ;Set compile options

IF (N_PARAMS() EQ 1L) THEN BEGIN ;Find a predefined color

IF (SIZE(r, /TNAME) EQ ’STRING’) THEN BEGIN ;Look for name in table

IF (!D.N_COLORS NE 256ˆ3) THEN BEGIN ;Use indexed color

CASE STRUPCASE(r) OF

’BLACK’ : RETURN, 0

’WHITE’ : RETURN, 1

’RED’ : RETURN, 2

’GREEN’ : RETURN, 3

21.3 24-Bit Devices 209

’BLUE’ : RETURN, 4

’YELLOW’ : RETURN, 5

’MAGENTA’ : RETURN, 6

’CYAN’ : RETURN, 7

’GRAY0’ : RETURN, 8

’GRAY10’ : RETURN, 9

’GRAY20’ : RETURN, 10

’GRAY30’ : RETURN, 11

’GRAY40’ : RETURN, 12

’GRAY50’ : RETURN, 13

’GRAY60’ : RETURN, 14

’GRAY70’ : RETURN, 15

’GRAY80’ : RETURN, 16

’GRAY90’ : RETURN, 17

’GRAY100’ : RETURN, 18

ELSE : BEGIN

MESSAGE, ’Color ’ + r + $

’ is not defined.’, /CONTINUE

RETURN, 0

END

ENDCASE

ENDIF ELSE BEGIN ;Use 24−bit color

CASE STRUPCASE(r) OF

’BLACK’ : RETURN, COLOR_24(0, 0, 0)

’WHITE’ : RETURN, COLOR_24(255, 255, 255)

’RED’ : RETURN, COLOR_24(255, 0, 0)

’GREEN’ : RETURN, COLOR_24(0, 255, 0)

’BLUE’ : RETURN, COLOR_24(0, 0, 255)

’YELLOW’ : RETURN, COLOR_24(255, 255, 0)

’MAGENTA’ : RETURN, COLOR_24(255, 0, 255)

’CYAN’ : RETURN, COLOR_24(0, 255, 255)

’GRAY0’ : RETURN, COLOR_24(0, 0, 0)

’GRAY10’ : RETURN, COLOR_24(25, 25, 25)

’GRAY20’ : RETURN, COLOR_24(51, 51, 51)

’GRAY30’ : RETURN, COLOR_24(76, 76, 76)

’GRAY40’ : RETURN, COLOR_24(102, 102, 102)

’GRAY50’ : RETURN, COLOR_24(127, 127, 127)

’GRAY60’ : RETURN, COLOR_24(153, 153, 153)

’GRAY70’ : RETURN, COLOR_24(178, 178, 178)

’GRAY80’ : RETURN, COLOR_24(204, 204, 204)

’GRAY90’ : RETURN, COLOR_24(229, 229, 229)

’GRAY100’ : RETURN, COLOR_24(255, 255, 255)

ELSE : BEGIN

MESSAGE, ’Color ’ + r + $

’ is not defined.’, /CONTINUE

RETURN, 0

END

Chapter 21

210 Color and Image Display

ENDCASE

ENDELSE

ENDIF ELSE BEGIN ;Assume gray

g = r

b = r

ENDELSE

ENDIF

RETURN, ((0 > LONG(r)) < 255) + $;Convert to 24−bit color

256*(((0 > LONG(g)) < 255) + $

256* ((0 > LONG(b)) < 255))

END

For added flexibility, COLOR_24 can be used in several different ways. The
first is to provide three arguments: the individual r, g, and b components.
The arguments can be scalars or arrays of equal size. The output matches the
size of the input. Before computing the 24-bit color value, the component
intensities are converted to LONGs and clipped to the range 0 to 255; that is,
if the intensity of any component is less than zero, the intensity is set to zero.
If the intensity is greater than 255, it is set to 255. The second way to use
COLOR_24 is to pass a single value or array. If the single argument is numerical,
it is assumed to contain gray levels between 0 and 255. In this case, the g and b

components are set equal to r. If the single argument is a string or an array
of strings, the strings are assumed to be the names of colors. A limited set of
named color definitions is included in the procedure (the colors in Table 21.1
plus some gray values). You can add other color definitions as desired.

The examples below show how to use 24-bit color keywords for some
simple plots. This example draws the entire plot in red:

IDL> plot, findgen(10), findgen(10)ˆ2, color = color_24(’red’)

To plot the graph axes using the default color and the graph data using a
different color, use the following.

IDL> plot, findgen(10), findgen(10)ˆ2, /nodata

IDL> oplot, findgen(10), findgen(10)ˆ2, color = color_24(’green’)

To draw colored contour lines, use the C_COLOR keyword of the CONTOUR

command:

IDL> contour, dist(50), c_color = color_24(’blue’)

The color of individual contour lines can be set by passing an array of colors
with the C_COLOR keyword.

21.3.2 24-Bit Images

The following examples illustrate how to display images on a 24-bit display.
For convenience, a two-dimensional array of floating-point numbers is created

21.3 24-Bit Devices 211

with the DIST function. This array is plotted in Figures 3.3 and 3.4 using other
display methods.

IDL> z = dist(400)

IDL> window, xsize = 400, ysize = 400

IDL> tv, z

IDL> print, min(z), max(z)

0.00000 282.843

IDL> print, byte(max(z))

26

The first line above creates the 400 × 400 array z using the DIST func-
tion. The second opens a display window of the proper size to display z

as an image. The next line displays z in the window using the TV procedure.
The resulting image is shown in Figure 21.3 (upper left). TV automatically
converts the floating-point values in z to BYTE type. As a result, values close

FIGURE 21.3 Examples of different images. Top left: image without scaling. Top right:
image with automatic scaling by TVSCL. Bottom left: scaled image loaded into the red channel
only. Bottom right: identical scaled images loaded into both the red and green channels. Also
see this figure in color in the color plates section. (IMAGE1)

Chapter 21

212 Color and Image Display

to the center of the array z, which are greater than 255, wrap around to val-
ues between 0 and 26. The center pixels appear black, but are actually very
dark gray.

To properly display all of the values in z, they must first be scaled into the
appropriate range [0, 255]. You can scale the values explicitly like this:

IDL> tv, 255*z/max(z)

or you can do it by using the BYTSCL procedure:

IDL> tv, bytscl(z)

The resulting image is shown in Figure 21.3 (upper right). BYTSCL scales the
actual data into the appropriate range with the the following transformation

zoutput = N
z − zmin

zmax − zmin
, (21.1)

where N is the number of entries in the color table and zmin and zmax are the
minimum and maximum values of the array z. The value of N is stored in
the system variable !D:

IDL> print, !d.table_size

256

For most devices this value is at least 256; but older video displays may have
smaller color tables. This value is not the total number of colors that can be
displayed. In this case, the device is a 24-bit display and there are possible
colors:

IDL> print, !d.n_colors

16777216

Although the display in the example supports 24-bit color, the array z has
only a single byte value for each pixel. It does not contain separate red, green,
and blue color information. By default, TV uses the same value for the R, G,
and B intensities for each pixel; that is, it loads the same image into the red,
green, and blue channels of the display. The resulting image is shades of gray.
To load the image into a single color channel, the CHANNEL keyword is used:

IDL> erase

IDL> tv, bytscl(z), channel = 1

Because channel 1 is the red channel, the resulting image ranges from black to
red (Figure 21.3, lower left). The ERASE statement is necessary to clear (zero)
the green and blue channels. If only a single channel is written, TV does not
automatically erase the other channels.

21.3 24-Bit Devices 213

Loading z into channel 2 changes the colors to shades of yellow
(Figure 21.3, lower right). The red and green intensities are equal in each
pixel, with the blue intensity set to zero. Adding red and green gives yellow.

IDL> tv, bytscl(z), channel = 2

You can easily create a true 24-bit color image with more than 256 different
colors by using the HSV color system:

IDL> h = 240.0*rebin(findgen(400), 400, 400, /sample)/400.0

IDL> s = transpose(rebin(findgen(400), 400, 400, /sample)/400.0)

IDL> v = replicate(1.0, 400, 400)

IDL> color_convert, h, s, v, r, g, b, /hsv_rgb

IDL> tv, r, channel = 1

IDL> tv, g, channel = 2

IDL> tv, b, channel = 3

The three different image planes can also be combined into a truecolor image
and displayed with a single call to TV by using the following array notation
and the TRUE keyword:

IDL> tv, [[[r]], [[g]], [[b]]], true = 3

The result is shown in the upper-left panel of Figure 21.4. In this image, the
hue varies from 0.0 (red) at the left edge of the image to 240.0 (blue) at the
right edge. The saturation varies from 1.0 (fully saturated) at the top edge to
0.0 (unsaturated) at the bottom. The value is 1.0 everywhere in the image.
Separate plots of the hue and saturation are shown in the lower panels of
Figure 21.4.

21.3.3 Reading Images from the Screen

Images can be read from the video display by using the TVRD function. By
default, TVRD will read the entire contents of the current graphics window
into a BYTE array. When using a 24-bit display, you can specify which dimen-
sion should be the color dimension or interleave dimension. If your window
has ni × nj pixels, the resulting image can be dimensioned 3 × ni × nj
(TRUE = 1), ni × 3 × nj (TRUE = 2), or ni × nj × 3 (TRUE = 3). The choice
of interleave dimension is up to you, but be aware that some output file types
require that the image be interleaved over a particular dimension. To read an
image from the screen to be written as a PNG file, for example, TRUE should
be set to 1:

IDL> image = tvrd(true = 1)

IDL> help, image

IMAGE BYTE = Array[3, 400, 400]

Chapter 21

214 Color and Image Display

FIGURE 21.4 A 24-bit color image created using the HSV color system. The hue is shown
by itself in the lower left panel. The saturation is shown in the lower right. The saturation,
which ranges from 0 to 1, is scaled in the image from 0 to 255. The value for all of three images
is equal to 1. Also see this figure in the color plates section. (IMAGE2)

The BYTE variable image is a 3 × 400 × 400 array containing the R, G, and
B values of each pixel.

21.3.4 Writing Images to Files

IDL supports writing to a variety of standard image file types, including BMP,
GIF, JPEG, PICT, PNG, PPM, and TIFF. My personal preference is PNG
images. The PNG standard is open and freely usable. It can handle both
8- and 24-bit images. Its lossless compression scheme is quite efficient, and
many popular programs can display PNG files, including most web browsers.

To write the array image above to a PNG file use the WRITE_PNG function:

IDL> write_png, ’image.png’, image

Chapter 22 shows how to read PNG files with the READ_PNG function. Imag
files of different types can also be written and read interactively with the
DIALOG_WRITE_IMAGE and DIALOG_READ_IMAGE functions.

21.4 8-Bit Devices 215

21.4 8-Bit Devices

Eight-bit color is largely a holdover from times when video memory was expen-
sive. Instead of storing 24 bits of color information for each pixel (3 bytes),
8-bit devices store only 8 bits (1 byte). As a result, only 28 = 256 different
colors can be displayed on the screen at a time. Generally even fewer colors
are available to an IDL program because some colors must be reserved to draw
window borders, menus, the cursor, and the like. Despite these drawbacks,
there are situations in which 8-bit color must be used. One instance is when
drawing three-dimensional graphics using the Z (Z-buffer) device. Another is
when drawing line graphs with the PS device. This section briefly covers how
to use 8-bit color devices.

Although 8-bit devices can display only 256 colors on the screen at a time,
those colors can usually be selected from the full palette of 24-bit colors. Color
selection is accomplished by using a color lookup table, sometimes referred to
as a CLUT or CT. Each pixel of the display device has a single byte of memory
associated with it. The value of each byte is used to look up a triplet of red,
green, and blue intensities in an RGB color table. An example of a possible
color table is shown in Table 21.2. The first five entries in the table are black,
white, red, green, and blue. If this table was loaded in an 8-bit device, a pixel
with A value of 3 would appear as bright green.

The contents of the color table can be loaded or retrieved with the TVLCT
See the TVLCT

procedure in IDL
Reference Guide.

procedure. Before using an 8-bit color table on a 24-bit device, you need to
turn off decomposed color (separate R, G, and B values) with the following
command:

IDL> device, decomposed = 0

To load the values in Table 21.2 into the first five elements of the current
device’s color table, use the following commands:

IDL> r = [0, 255, 255, 0, 0]

IDL> g = [0, 255, 0, 255, 0]

IDL> b = [0, 255, 0, 0, 255]

IDL> tvlct, r, g, b

The three arrays of intensities for the R, G, and B components are loaded in
the color table starting at index 0. Additional parameters and keywords can

TABLE 21.2 Part of an 8-bit color table.

Index R G B

0 0 0 0
1 255 255 255
2 255 0 0
3 0 255 0
4 0 0 255
...

Chapter 21

216 Color and Image Display

be used to load values at any point in the tables and to use the HLS (hue-
lightness-saturation) or HSV color systems. To switch from 8-bit color back to
decomposed color on a 24-bit capable device use DEVICE, DECOMPOSED = 1.

IDL includes some predefined color tables that can be loaded with the
LOADCT or XLOADCT procedures. For example,

See the LOADCT and
XLOADCT procedures in
IDL Reference Guide.IDL> LOACT, 0

will load the three color component tables (R, G, and B) with (0, ..., 255),
which gives a linear gray scale. The XLOADCT command provides an interactive
interface to view and select from the available predefined color tables.

To get the current values of the color tables, use the GET keyword like this:

IDL> TVLCT, r, g, b, /GET

The arrays r, g, and b contain the component intensities associated with each
index value.

An advantage of 8-bit over 24-bit displays is that the colors displayed on the
screen can be changed by changing only the color tables. You need not redraw
the graphics on the screen. The limitations of 8-bit color and the complications
of using color tables, however, mean that 24-bit color is preferable in most
circumstances.

21.5 Printing Color Output

The preferred method for producing printed output is usually to produce a
PostScript file. A PostScript file can be sent directly to a PostScript printer, or
the file can be modified, if necessary, with other software programs, such as
Adobe Illustrator. The PS and PRINTER devices will both produce PostScript
output. The devices are similar in most ways, but have some important dif-
ferences. Files produced by the PS device can contain 24-bit color bitmapped
images, but only 8-bit color is supported for line graphics. The PRINTER device
supports 24-bit color for both images and line graphics. The PS device can
create plots with PostScript fonts, whereas the PRINTER device uses Truetype
fonts. When printed, the appearance of the two kinds of fonts is quite similar,
but only PostScript fonts can be edited easily in programs like Illustrator.

The example program HSV_WHEEL_PS illustrates how to make PostScript
files containing 24-bit color images with the PS device. If the PS keyword is set
in HSV_WHEEL_PS, the device is switched to PS and a PostScript file containing
the image of the color wheel is created.

As noted earlier, 24-bit color does not work with the PS device and com-
mands such as PLOT and CONTOUR. If you only need a small number of colors,
however, the PS device does support 8-bit color for vector graphics. Calling the
LOAD_BASIC_COLORS procedure after starting the PS device will load a set of
basic colors into the bottom part of the 8-bit color table. The COLOR_24 func-
tion will correctly look up that set of colors by name. You can load additional

21.6 Summary 217

4

3

2

1

0
0 2 4 6 8 10

FIGURE 21.5 Example of using 8-bit color with the PLOT command and the PS device.
Also see this figure in the color plates section. (LINEGRAPH12)

colors into the color table and reference them by index number. An example
of 8-bit color plotting with the PS device is shown in Figure 21.5.

An example program (RGB_PLOT_PRINTER) is included to show how to
use 24-bit color with nonimage graphics (programs like PLOT and CONTOUR)
and the PRINTER device. RGB_PLOT_PRINTER plots a set of randomly located
points. The color of the points depends on their location. The red compo-
nent intensity is proportional to the x value, whereas the green intensity is
proportional to the y value. As a result, points in the lower left part of the
plot have low intensities of both components and tend toward black. Points
in the lower right have large red intensities but small green intensities and so
appear red. Points in the upper left have large green intensities but small red
intensities and so appear green. Finally, points in the upper right have large
red and green intensities that, when mixed, appear yellow. The output from
RGB_PLOT_PRINTER is shown in Figure 21.6. In this case the PRINTER device
has been configured to use an HP color laser printer and send the output to
a file.

21.6 Summary

This chapter has covered the basics of using 24- and 8-bit color in IDL. Because
the interaction between color and the various devices can be complicated,
several IDL authors have written general purpose image display routines that
automatically handle different bit depths (8 and 24) and different devices

Chapter 21

218 Color and Image Display

1.0

0.8

0.6

0.4

0.2

0.0
0.0 0.2 0.4 0.6 0.8 1.0

FIGURE 21.6 Example of using 24-bit color with the PLOT command and the PRINTER
device. Also see this figure in color plates section. (RGB_PLOT_PRINTER)

(video displays and printers). These include the IMDISP program in Liam
Gumley’s book, Practical IDL Programming and several image display routines
available from David Fanning’s web site (http://dfanning.com).

Users interested in advanced image processing should consult the man-
ual Image Processing in IDL that is provided by RSI as part of the IDL
documentation and the other books recommended in Chapter 2.

If you wish to develop your own color and image display programs, the
following procedures are useful:

■ COLOR_CONVERT procedure. COLOR_CONVERT can be used to convert color
intensities among the different color systems (RGB, HSV, and HLS).

■ DEVICE procedure. The DEVICE procedure has a large number of keywords
that are used to control the behavior of the various graphics devices.

■ TVLCT procedure. TVLCT is used to load a color table to an 8-bit device, or
to read the current color table.

■ LOADCT procedure. LOADCT allows the user to select and load a variety of
predefined 8-bit color tables.

■ XLOADCT procedure. XLOADCT allows the user to interactively view, select,
and load a variety of predefined 8-bit color tables.

FIGURE 21.1 Example of a color wheel created using the HSV
color system. In this case the value v is set to 1.0. (HSV_WHEEL_PS)

FIGURE 21.2 Example of a color wheel created using the HSV
color system. In this case the value v is set to 0.5. (HSV_WHEEL_PS)

FI
G

U
R

E
21

.3
E

xa
m

pl
es

of
di

ff
er

en
t

im
ag

es
.

To
p

le
ft

:
im

ag
e

w
it

ho
ut

sc
al

in
g.

To
p

ri
gh

t:
im

ag
e

w
it

h
au

to
m

at
ic

sc
al

in
g

by
T
V
S
C
L
.B

ot
to

m
le

ft
:s

ca
le

d
im

ag
e

lo
ad

ed
in

to
th

e
re

d
ch

an
ne

l
on

ly
.

B
ot

to
m

ri
gh

t:
id

en
ti

ca
l

sc
al

ed
im

ag
es

lo
ad

ed
in

to
bo

th
th

e
re

d
an

d
gr

ee
n

ch
an

ne
ls

.
(I
M
A
G
E
1
)

FI
G

U
R

E
21

.4
A

24
-b

it
co

lo
ri

m
ag

e
cr

ea
te

d
us

in
g

th
e

H
SV

co
lo

rs
ys

te
m

.T
he

hu
e

is
sh

ow
n

by
it

se
lf

in
th

e
lo

w
er

le
ft

pa
ne

l.
T

he
sa

tu
ra

ti
on

is
sh

ow
n

in
th

e
lo

w
er

ri
gh

t.
T

he
sa

tu
ra

ti
on

,
w

hi
ch

ra
ng

es
fr

om
0

to
1,

is
sc

al
ed

in
th

e
im

ag
e

fr
om

0
to

25
5.

T
he

va
lu

e
fo

ra
ll

of
th

re
e

im
ag

es
is

eq
ua

lt
o

1.
(I
M
A
G
E
2
)

4

3

2

1

0
0 2 4 6 8 10

FIGURE 21.5 Example of using 8-bit color with the PLOT

command and the PS device. (LINEGRAPH12)

1.0

0.8

0.6

0.4

0.2

0.0
0.0 0.2 0.4 0.6 0.8 1.0

FIGURE 21.6 Example of using 24-bit color with the PLOT

command and the PRINTER device. (RGB_PLOT_PRINTER)

22

Animation

This chapter shows how to create animations using XINTERANIMATE.

22.1 IDL Commands and Keywords

The following IDL commands are used to create and display animations:

■ XINTERANIMATE procedure

■ READ_PNG procedure

■ WRITE_PNG procedure

22.2 Background

Like a motion picture, computers can create the illusion of motion (animation)
by rapidly displaying a sequence of still images. Fast computers with properly
designed programs can actually create each frame quickly enough that the
result is perceived as smooth motion. Many computer games work this way,
updating the display of a scene in real time as the user interacts with the game.
These programs take advantage of modern computer graphics cards (video
cards) to handle much of the processing required to display each image. These
video cards are designed to display three-dimensional (rendered) graphics at
very high speed.

For scientific applications, however, several factors can slow the graphics
display process. First, data often must be read from disk storage, and disks
are much slower than computer memory. Second, a scientific graph may
require substantial amounts of computation to create the graph. Finally, on
Unix and Mac OS X systems, IDL uses the X-Windows system to display
graphics. X-Windows is not designed primarily for speed. If you try to create
animations by repeatedly drawing graphics to the screen, the results are usually
jerky, irregular motion.

Because of these limitations, animations are better produced by drawing
and storing each of the complete images that make up an animation sequence
in computer memory. These images can then be sent to the screen quickly using

219

220 Animation

standard image display methods.1 Even using X-Windows, most graphics
systems can load images quickly enough to produce smooth animation.

22.3 Using XINTERANIMATE

22.3.1 Creating an Animation

IDL includes a procedure, XINTERANIMATE, for creating and displaying
animations using the technique of storing all of the complete images in
memory.

See the XINTERANIMATE

procedure in IDL
Reference Guide.

The following three steps are used to create an animation using
XINTERANIMATE:

1. Call XINTERANIMATE once to set up the animation. The essential infor-
mation required here includes the size of the animation window (height
and width in pixels) and the number of frames or images in the animation.
This information is used to allocate a block of memory in which all of
the individual frames are stored.

2. Draw each frame. Each frame is drawn individually and then loaded into
memory by calling XINTERANIMATE once for each frame. Normally, this
step is done inside a loop.

3. Run the animation. A final call to XINTERANIMATE starts the animation
and makes interactive controls (buttons and sliders) available. The controls
allow you to change the speed and direction of the animation and close
the animation window when finished.

The following example shows how to create an animation with
XINTERANIMATE:

PRO ANIMATE

;+

; Name:

; ANIMATE

; Purpose:

; Create a sample animation sequence.

; Calling sequence:

; ANIMATE

; Inputs:

; None.

1 IDL can display three-dimensional rendered graphics using the built-in IDL Object Graph-
ics system. On most computers, Object Graphics uses the processing power of the
computer’s video card. The Object Graphics system is best suited for applications in
which three-dimensional visualization of surfaces or volumes is required. Object Graphics
are not discussed in this book. For ordinary scientific graphs, the Direct Graphics system
with its many available devices and plotting functions is usually preferred.

22.3 Using XINTERANIMATE 221

; Output:

; Interactive animation sequence.

; Keywords:

; None.

; Author and history:

; Kenneth P. Bowman, 2004.

;−

COMPILE_OPT IDL2 ;Set compile options

xsize = 300 ;Width of window

ysize = 300 ;Height of window

nframes = 20 ;Number of frames

speed = 5 ;Animation speed

np = 1000 ;Number of points

x = FINDGEN(np)/np ;Create x−coordinate

y = SIN(2.0*!Pi*x) ;Function to plot

WINDOW, XSIZE = xsize, YSIZE = ysize, $;Create pixmap

/PIXMAP

!P.BACKGROUND = COLOR_24(’white’) ;Set background to white

IF (!D.N_COLORS EQ 256ˆ3) THEN bpp = 3 $;Bytes per pixel

ELSE bpp = 1

PRINT, ’Memory required : ’, $;Memory requirements

(xsize*ysize*nframes*bpp)/(2.0ˆ20), ’ MB’

XINTERANIMATE, /SHOWLOAD, $;1) Initialize animator

SET = [xsize, ysize, nframes], $

TITLE = ’Animation Demo 1’

FOR n = 0, nframes−1 DO BEGIN ;Create each frame

PLOT, x, SHIFT(y, n*(np/nframes)), $;Plot graph

COLOR = 0, PSYM = 3

image = TVRD(TRUE = 3) ;Read image from pixmap

XINTERANIMATE, IMAGE = image, FRAME = n ;2) Copy image to animator

ENDFOR

XINTERANIMATE, speed ;3) Run animation

!P.BACKGROUND = 0 ;Set background to black

END

XINTERANIMATE creates a window that includes the graphics display area
and several control buttons and sliders. A sample window is shown in
Figure 22.1.

Chapter 22

222 Animation

FIGURE 22.1 The XINTERANIMATE window. (Screen capture)

22.3.2 Animating Files

You can use the basic framework provided above in the ANIMATE program
for different approaches to animation. For example, if you have a series of
previously created images stored as files in a directory, you can create an
animation by using the animation program below, which is very similar to the
previous example:

PRO ANIMATE_FILES, indir

;+

; Name:

; ANIMATE_FILES

; Purpose:

; Animate existing created PNG files.

; Calling sequence:

; ANIMATE_FILES, indir

; Inputs:

; indir : path to input directory.

; Output:

; Interactive animation sequence.

; Keywords:

; None.

; Author and history:

; Kenneth P. Bowman, 2004.

;−

COMPILE_OPT IDL2 ;Set compile options

22.3 Using XINTERANIMATE 223

IF (N_ELEMENTS(indir) EQ 0) THEN $

indir = !Bowman + ’data/animation/’ ;Default input directory

file = FILE_SEARCH(indir + ’*’, $;Find all files in indir

COUNT = nframes)

IF (nframes EQ 0) THEN $

MESSAGE, ’No files found in ’ + indir

status = QUERY_PNG(file[0], info) ;Get frame size

xsize = info.dimensions[0] ;Width of graphic window

ysize = info.dimensions[1] ;Height of graphic window

speed = 5 ;Initial animation speed

IF (!D.N_COLORS EQ 256ˆ3) THEN bpp = 3 $;Bytes per pixel

ELSE bpp = 1

PRINT, ’Memory required : ’, $;Memory requirements

(xsize*ysize*nframes*bpp)/(2.0ˆ20), ’ MB’

XINTERANIMATE, /SHOWLOAD, $;1) Initialize animator

SET = [xsize, ysize, nframes], $

TITLE = ’Animation Demo 1’

FOR n = 0, nframes−1 DO BEGIN ;Create each frame

image = READ_PNG(file[n]) ;Read image from file

XINTERANIMATE, IMAGE = image, FRAME = n ;2) Copy image to animator

ENDFOR

)

XINTERANIMATE, speed ;3) Run animation

END

In this example, each image frame is read from a file, rather than being created
within the program. The program finds all of the files in the directory indir

and loads them into the animator. In this case, the files are assumed to be
PNG files.2 PNG is a widely used, high-quality, lossless, open source library
for storing graphic image files. PNG files can be written and read in IDL
by using the WRITE_PNG and READ_PNG functions. To ensure that the files

See the XINTERANIMATE

procedure in IDL
Reference Guide.

are loaded in the correct order, they should be given sequential names like
frame.000, frame.001, and so on. All of the images in the files are assumed
to have the same height and width. (ANIMATE_FILES could be modified to
check that the file sizes all match.)

IDL can also read other graphic format types, including JPEG,TIFF, PICT,
and BMP.

See the various READ_

procedures in IDL
Reference Guide.

2 PNG stands for Portable Network Graphics or PNG’s Not GIF

Chapter 22

224 Animation

22.3.3 Saving Your Animation

If you or your institution has purchased a license for the MPEG video file
format, you can use XINTERANIMATE to save your animation in MPEG format.
If you do not have a license, the Write MPEG button is greyed out. The
MPEG standard was primarily designed for storing video signals (that is,
movies) in digital format. Unless properly used, MPEG video of scientific
graphics can look very bad. You may need to experiment with the MPEG
compression settings to achieve a satisfactory result. If you do not have an
MPEG license, you can still save the individual images (using WRITE_PNG, for
example) and use an external program to convert the sequence of individual
images into various video formats.

22.4 Summary

This chapter has covered the basics of creating and running animations with
XINTERANIMATE. Animations can be created as part of the program or stored
in image files in various formats, such as GIF, JPEG, or PNG. Animations
created with XINTERANIMATE are stored in computer memory, so the length
of the animation is limited by the amount of available memory.

22.5 Exercises

1. Use XINTERANIMATE along with CONTOUR, SURFACE, or SHADE_SURF to
plot an animation of the function

z(x, y, t) = z0 cos

(
2π t
τ

)
sin(πx) sin(πy)

over one complete period τ .

23

Statistics and Pseudorandom
Numbers

This chapter covers the basics of computing statistics and generating pseudo-
random numbers using IDL.

23.1 IDL Commands and Keywords

The following IDL commands are used for statistical problems:

■ RANDOMU function

■ RANDOMN function

■ HISTOGRAM function

■ MEAN function

■ VARIANCE function

■ STDEV function

■ SKEWNESS function

■ KURTOSIS function

■ MOMENT function

■ MIN function

■ MAX function

■ MEDIAN function

■ CORRELATE function

■ A_CORRELATE function

■ C_CORRELATE function

■ M_CORRELATE function

■ P_CORRELATE function

■ R_CORRELATE function

227

228 Statistics and Pseudorandom Numbers

23.2 Pseudorandom Numbers

23.2.1 Background

There are many applications for which it is useful to be able to generate random
numbers. You might wish, for example, to simulate a process that you know
contains random elements. There are a number of common ways to generate
random numbers. For example, if you roll a pair of dice, the physical processes
involved (the collisions and tumbling of the dice) are so complicated that it is
impossible to predict the outcome. If the dice are not loaded, the probability
that any given side will end up on top should be the same. Therefore, a single
die can be used to generate a series of random integers between 1 and 6. In
a sequence of many rolls, the proportion of each side that ends up on top will
tend toward one-sixth, and each roll is independent of previous and following
rolls (that is, they are uncorrelated).

A computer, on the other hand, should always give the same result when
carrying out the same calculation (unless the computer is broken!). As a result,
it is difficult to use a computer to generate truly random numbers.1 To get
around this limitation, methods have been developed to generate what are
called pseudorandom numbers. A good pseudorandom number generation algo-
rithm will produce numbers with the desired distribution (such as uniform
or normal) and the right statistical properties (such as no serial correlation).

To generate a sequence of pseudorandom numbers, the pseudorandom
number algorithm must start with a numerical value called a seed. A good
way to select a relatively random number for the seed is to use the computer’s
system clock. Unless you run the program many times, the precise instant at
which you start a calculation should be a nearly random event. If you wish to
be able to repeat the calculation with the same set of random numbers, the
seed can be stored and used again.

Once the seed is selected, the pseudorandom number generation algorithm
applies a moderately complicated nonlinear mathematical operation to the
seed. The resulting value is then used as the seed for the next number in the
sequence. If properly designed, the algorithm should generate a sequence of
numbers that has the same statistical properties as a sequence of true random
numbers.

A little thought will show that this approach cannot generate a truly random
sequence of numbers. Because there are only a finite number of different
floating-point numbers that can be represented with 32 bits, eventually the
sequence will return to a previously calculated value. From that point on, the
entire sequence will repeat. Designers of pseudorandom number generation
algorithms use a number of clever ideas to ensure that the repeat period is very
long. Even if the sequence does repeat, it may not matter for your particular

1 Special hardware devices can be purchased that use a physical noise source to generate true
random numbers. There are even true random number generators available on the Web
that your computer can contact to get a small set of random numbers.

23.2 Pseudorandom Numbers 229

application. Keep in mind, however, that these computer algorithms generate
pseudorandom numbers, not true random numbers.

23.2.2 IDL Pseudorandom Number Functions

IDL originally had two functions that could be called to generate pseudoran-
dom numbers: RANDOMU, which generates pseudorandom numbers uniformly
distributed between 0 and 1, and RANDOMN, which generates normally dis-
tributed (Gaussian) pseudorandom numbers with a mean of 0 and standard
deviation of 1. Both of these functions now include keywords that can be used
to specify the distribution from which the pseudorandom numbers should be
drawn, so either function can be used. The available distributions include the
uniform, normal, binomial, gamma, and Poisson distributions. Both func-
tions will return a single pseudorandom number or an array containing a
sequence of pseudorandom numbers. You can specify the dimensions of the
array using the functions’ arguments. If no dimensions are specified, a single
scalar result is returned.

Here are some examples of short sequences of pseudorandom numbers:

IDL> x = randomu(seed, 5, 5)

IDL> print, x

0.648501 0.334211 0.505953 0.652182 0.158174

0.912751 0.257593 0.810990 0.267308 0.188872

0.237323 0.312265 0.551604 0.944883 0.673464

0.613302 0.0874299 0.782052 0.374534 0.0799968

0.581460 0.433864 0.459824 0.634644 0.182057

IDL> print, seed

791874665 390964491 1775310458 2051248307 1009066971 350453954

1376904518 1787724064 1787857450 928973326 1710094693 1048576392

909535867 2004054417 578950449 974237040 1586606552 495713212

780717323 1172613062 710221238 1122306036 791874665 1123704022

82658645 763960694 780458725 1278106473 505076188 332487872

1282223531 834638471 650304515 851438674 0 0

In this case we have generated uniformly distributed pseudorandom numbers
(equal probability of lying anywhere between 0 and 1). The first argument of
the function is the seed. If the variable seed is undefined, as it is in this case,
IDL uses the system clock to create the seed. The following two arguments
specify the size of the output array, 5 × 5 in this case. Printing the output
array shows 25 numbers between 0 and 1. If we print the value of seed,
we see that it is not in fact a single number, but an array of integers. The
multiple elements of the seed are used to improve the statistical properties of
the algorithm. Be careful not to modify the values of the seed variable. Its only
use is to be passed to a subsequent call to the RANDOMU function. Because the
seed is based on the system clock at the time this program was run, if you try
this calculation, you should see a different set of output numbers.

Chapter 23

230 Statistics and Pseudorandom Numbers

You can do some basic checks of the statistical properties of this function
by generating a large number of pseudorandom numbers and plotting the
distribution of values. Use the HISTOGRAM function to calculate the number
of values that fall within a set of equal-sized bins:

IDL> x = randomu(seed, 100000)

IDL> h = histogram(x, min = 0.0, binsize = 0.01)

IDL> plot, h

A fancier version of the resulting plot is shown in Figure 23.1. As expected, the
number of values within each bin is close to, but not exactly equal to, 1000.

We can similarly generate normally distributed (Gaussian) pseudorandom
numbers:

IDL> x = RANDOMN(seed, 100000)

IDL> h = HISTOGRAM(x, MIN = −5.0, BINSIZE = 0.1, NBINS = 100)

IDL> plot, h

Because normally distributed numbers can be less than 0 or greater than 1,
we set the limits of the histogram bins using the MIN, BINSIZE, and NBINS

keywords. A fancier version of the resulting plot is shown in Figure 23.2.

Uniformly distributed pseudorandom numbers

x

C
ou

nt

1200

1000

800

600

400

200

0
0.0 0.2 0.4 0.6 0.8 1.0

FIGURE 23.1 Histogram of a set of 100,000 uniformly distributed pseudorandom
numbers. The bin size is 0.01, so each bin should contain approximately 1000 numbers.
(RANDOM1)

23.3 Basic Statistics 231

Normally distributed pseudorandom numbers

x

C
ou

nt

0.5

0.4

0.3

0.2

0.1

0.0
−6 −4 −2 0 2 4 6

FIGURE 23.2 Histogram of a set of 100,000 normally distributed pseudorandom num-
bers. The bin size is 0.1. A theoretical normal distribution with a mean of 0 and a standard
deviation of 1 is over-plotted on the histogram (smooth curve). The results are normalized so
that the area under the curves is equal to 1. (RANDOM2)

The BINOMIAL, GAMMA, and POISSON keywords can be used with either
RANDOMU or RANDOMN to generate pseudorandom numbers from those distri-
butions.

23.3 Basic Statistics

The MEAN, STDEV, VARIANCE, SKEWNESS, and KURTOSIS functions can be used
to compute basic descriptive statistics. These quantities can also be com-
puted by using the MOMENT function. The following example shows how these
functions work. We start with an array of 10 pseudorandom numbers:

IDL> x = randomn(seed, 10)

IDL> print, x

2.52840 0.913887 −0.277393 −1.66645 0.591064

0.525165 −1.93741 1.28269 −0.0126883 −0.433611

IDL> print, mean(x)

0.151365

Chapter 23

232 Statistics and Pseudorandom Numbers

If any of the values in the array are NaNs, the result is an NaN

IDL> x[3] = !values.f_nan

IDL> print, x

2.52840 0.913887 −0.277393 NaN 0.591064

0.525165 −1.93741 1.28269 −0.0126883 −0.433611

IDL> print, mean(x)

NaN

unless the NAN keyword is used:

IDL> print, mean(x, /nan)

0.353345

If all of the values are NaNs

IDL> x[*] = !values.f_nan

IDL> print, x

NaN NaN NaN NaN NaN

NaN NaN NaN NaN NaN

IDL> print, mean(x, /nan)

NaN

the result is also NaN. The DOUBLE keyword can be used to ensure that all
internal calculations are carried out using double precision arithmetic. It is
generally a good idea to use the DOUBLE keyword unless you have a specific
reason not to. The other statistical functions work in a similar manner. Addi-
tional functions can compute the mean absolute deviation (MEANABSDEV), the
minimum value (MIN), the maximum value (MAX), and the median (MEDIAN).

The MOMENT function returns all four moments (mean, variance, skewness,
and kurtosis) in a single array. It also accepts the NAN and DOUBLE keywords.

All of the statistical functions described above calculate statistics for the
entire input array. If you need to compute statistics over just one dimension,
you can use the TOTAL function, as the following example illustrates for rows
and columns of a 2-D array:

IDL> x = randomn(seed, 4, 3)

IDL> print, x

−1.65983 1.31386 0.333662 −1.42991

−0.708080 0.493735 1.06967 −0.668656

−0.237232 −0.223428 1.62977 −0.627912

IDL> print, transpose(total(x, 1)/4)

−0.360556

0.0466679

0.135298

IDL> print, total(x, 2)/3

−0.868382 0.528056 1.01103 −0.908827

23.5 Curve Fitting 233

In the first example, which sums across the rows (the first dimension), the
TRANSPOSE function is used to print the results in a column for consistency
with the input array.

23.4 Regression and Correlation

If two variables, x and y, are related by the linear relationship

yi = a + bxi + εi , (23.1)

where εi is a random variable, the coefficients a and b can be computed by
using linear regression. To demonstrate linear regression, we compute a set of
random variables and use the REGRESS procedure to calculate a, b, and the
correlation coefficient r :

IDL> n = 100

IDL> x = randomn(seed, n)

IDL> y = x + 0.5* randomn(seed, n)

IDL> b = regress(x, y, const = a, correlation = r, /double)

IDL> plot, x, y, psym = 1

IDL> oplot, [−4.0, 4.0], [a − b*4.0, a + b*4.0]

IDL> print, a, b[0], r[0]

0.051745942 1.0281032 0.87449634

The results are plotted in Figure 23.3. The OPLOT command plots the linear
fit calculated by REGRESS. As shown in the example, REGRESS will optionally
compute the correlation coefficient r . Because REGRESS can also compute
multiple linear regressions, b and r are returned as arrays, even when they
contain only one element.

IDL also has specialized procedures to compute correlations, cross-
correlations, and autocorrelations. These includeCORRELATE (correlation coef-
ficients), A_CORRELATE (autocorrelations), C_CORRELATE (cross-correlations),
M_CORRELATE (multiple correlations), P_CORRELATE (partial correlations), and
R_CORRELATE (rank correlations). Here is an example that uses the random
variables from above:

IDL> print, correlate(x, y, /double)

0.87449634

23.5 Curve Fitting

Linear regression is the simplest case of the general problem of curve fitting.
The REGRESS procedure is able to compute multiple linear regressions against

Chapter 23

234 Statistics and Pseudorandom Numbers

4

2

0

−2

−4
−4 −2 0 2 4

Correlation = 0.84435645

Linear Regression

x

y

FIGURE 23.3 Example of linear regression. (LINEAR_REGRESS)

arbitrary functions, and can be used for polynomial curve fitting, for exam-
ple. IDL has a number of other procedures and functions that can be used
to apply various curve fitting methods, including nonlinear curve fitting
algorithms, such as CURVEFIT and SVDFIT.2

23.6 Significance Tests

IDL has functions that can compute a number of the statistical functions that
are needed to evaluate statistical significance. These include the Gaussian, χ2,
F , and t distributions, and the cutoff values of those distributions. For more
information, see the IDL Reference Guide. For a list of the available procedures
and functions, see the IDL Quick Reference.

2 A robust, general-purpose, curve fitting program MPFIT is available from Craig B.
Markwardt on the World Wide Web. It can be found by searching the web or the IDL
newsgroup comp.lang.idl−pvwave.

23.7 Summary 235

23.7 Summary

This chapter covers basic descriptive statistics and pseudorandom number
generation in IDL. IDL has built-in functions to handle many descriptive
statistics and significance testing problems. IDL also includes functions to
generate pseudorandom numbers from a variety of different distributions.

Chapter 23

24

Interpolation

A problem that often arises in data analysis is interpolation, that is, estimating
the value of a function between points at which the function is known. This
chapter presents several simple interpolation examples using the built-in IDL
interpolation functions.

24.1 IDL Commands and Keywords

The following built-in IDL functions can be used to interpolate data:

■ INTERPOL function

■ BILINEAR function

■ INTERPOLATE function

■ TRIANGULATE function

■ TRIGRID function

24.2 Background

Given a function that is tabulated at a finite set of points, interpolation is
the problem of estimating the value of the function at locations between the
tabulated points. Extrapolation is the problem of estimating the value of the
function outside the range of tabulated points. To interpolate or extrapo-
late, the tabulated values are used to construct an interpolating function. The
interpolating function is often a piecewise polynomial of relatively low order,
typically linear, quadratic, or cubic, although other kinds of functions can be
used. In order to be considered interpolation, as opposed to curve fitting, the
interpolating function should pass exactly through the tabulated points.

IDL includes several built-in functions to do interpolation using various
kinds of interpolating functions. These include INTERPOL and INTERPOLATE.

24.3 1-D Interpolation

The IDL function INTERPOL can do several different kinds of one-dimensional
interpolation, specifically linear, quadratic, and cubic spline interpolation.

237

238 Interpolation

Here is a quick demonstration of how to use INTERPOL. Annotated versions
of the resulting graphs are plotted in Figure 24.1.

IDL> x = findgen(6)

IDL> y = [0.1, 0.9, 0.2, 0.8, 0.3, 0.7]

IDL> xx = 5.0*findgen(26)/25

IDL> yy = interpol(y, x, xx)

IDL> plot, x, y, psym = −4, symsize = 2

IDL> oplot, xx, yy, psym = −1

Linear Interpolation

Spline Interpolation

x

x x

y y

y

Quadratic Interpolation
1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

FIGURE 24.1 Examples of 1-D interpolation using linear interpolation (top left), quadratic
interpolation (top right), and spline interpolation (bottom left). (INTERPOLATE1)

24.4 Bilinear Interpolation 239

This example starts by creating a regularly spaced, independent coordinate x
and an oscillatory set of dependent values y. The coordinates of the tabulated
points do not have to be regularly spaced, but they must be monotonic (that
is, in either increasing or decreasing order of x). The variable xx contains the
coordinates of the points that we want to interpolate to. These points do not
need to be monotonic. The interpolated values (yy) are computed using the
INTERPOL function. By default, INTERPOL uses linear interpolation. Finally,
the original points (x, y) are plotted and the interpolated points (xx, yy)
are overplotted. The resulting graph is the upper left panel of Figure 24.1.
The original data points are indicated by diamonds, the interpolated val-
ues by pluses. As expected for a piecewise linear interpolating function, the
interpolated values lie on straight lines connecting the tabulated points.

To use a quadratic interpolating function, add the QUADRATIC keyword:

IDL> yy = interpol(y, x, xx, /quadratic)

IDL> plot, x, y, psym = −4, symsize = 2

IDL> oplot, xx, yy, psym = −1

The result is plotted in the upper right panel of Figure 24.1. Because quadratic
interpolation requires three data points to construct the pieces of the inter-
polating function, there are two possible choices for the points to be used to
interpolate each segment. Either choice will be asymmetric. In part due to this
asymmetry, interpolating functions of odd order are usually preferred (linear,
cubic, etc.). In this case, you can see that although the interpolating function
passes through the tabulated points, it has kinks at the tabulated points and
looks obviously different on either side of those points.

Splines are interpolating functions that are specifically designed to be
smooth. Setting the SPLINE keyword tells INTERPOL to use cubic splines,
which ensures that the interpolating function and its first and second deriva-
tives are continuous everywhere, including the tabulated points.

IDL> yy = interpol(y, x, xx, /spline)

IDL> plot, x, y, psym = −4, symsize = 2

IDL> oplot, xx, yy, psym = −1

The resulting interpolated points are shown in the lower left panel of
Figure 24.1. Note that the extrema of the interpolated values do not coincide
with the tabulated points.

As you can see, interpolation schemes of different order have different char-
acteristics that need to be taken into account when selecting an interpolation
method. Higher order does not necessarily mean better!

24.4 Bilinear Interpolation

IDL includes two primary functions for doing two-dimensional interpolation.
The simpler of the two is BILINEAR, which, as the name suggests, performs

Chapter 24

240 Interpolation

bilinear interpolation. Bilinear interpolation is often used to interpolate two-
dimensional gridded data between similar data grids (from the corners of a
rectangular grid to the centers of the grid boxes, for example) or when a fast,
simple interpolation scheme is sufficient.

The concept of bilinear interpolation is illustrated in Figure 24.2. Tabu-
lated values of a function z are assumed to be available on a two-dimensional
grid, indicated by black dots. The grid does not need to be regular (evenly
spaced), but the grid lines do need to be perpendicular; that is, the
x-coordinates of the grid points depend only on i, and the y-coordinates
depend only on j.

The desired quantity is the value ẑ at the point (x̂, ŷ), which is indi-
cated by the red circle. Applying the ideas of linear interpolation to this
two-dimensional problem suggests two possible approaches. One is to inter-
polate first in the x-direction to get values at the locations marked by the
filled red squares. Then interpolate in the y-direction to get ẑ. The second
approach would be to interpolate first in the y-direction to get values at
the locations marked by the open red squares. Then interpolate in the
x-direction to get ẑ. This ambiguity suggests that one might get differ-
ent answers depending on the order in which the calculation is done. In
fact, comparing the two approaches reveals that, due to the linearity of
the method, the two approaches give the same answer. (The algorithm is

0
0

2

3

2

1

1

x

y

x

ŷ

^

FIGURE 24.2 Schematic illustrating the concept of bilinear interpolation. Also see the
color version of this figure in the color plates. (Not IDL)

24.4 Bilinear Interpolation 241

usually implemented by computing weights w so that, when x̂ lies between
xi and xi+1 and ŷ lies between yj and yj+1, the result can be written
ẑ = wi,j zi,j + wi+1,j zi+1,j + wi,j+1zi,j+1 + wi+1,j+1zi+1,j+1. The weights
depend on x̂ and ŷ.)

BILINEAR requires only three arguments and has no keywords. The user
need only supply the 2-D array of tabulated data and the coordinates of the
output grid (x̂ ’s and ŷ’s). Here is a simple example that interpolates coarsely
gridded values of the function z(x, y) = sin(πx) sin(πy) to a finer grid. The
original coordinates x and y both range from 0 to 1.

IDL> WINDOW, XSIZE = 600, YSIZE = 600

IDL> !P.MULTI = [0, 2, 2]

IDL> x_lo = FINDGEN(5)/4

IDL> y_lo = FINDGEN(5)/4

IDL> z_lo = SIN(!PI*x_lo) # SIN(!PI*y_lo)

IDL> SURFACE, z_lo, x_lo, y_lo

The resulting surface plot is shown in the upper left panel of Figure 24.3. For
comparison, a higher-resolution version of data is plotted in the upper right
panel of Figure 24.3.

IDL> x_hi = FINDGEN(17)/16

IDL> y_hi = FINDGEN(17)/16

IDL> z_hi = SIN(!PI*x_hi) # SIN(!PI*y_hi)

IDL> SURFACE, z_hi, x_hi, y_hi

The higher-resolution grid gives a much smoother picture of the underlying
function. Finally, the low-resolution data are interpolated to the high-
resolution grid by using BILINEAR. The coordinates used by BILINEAR are
grid coordinates, which are based on the indices of the grid points. In this
example, the grid coordinates range from 0 to 4 in both directions. Unlike
grid indices, which are integers, the grid coordinates are floating-point values.
In Figure 24.2, x̂ ≈ 1.25, while ŷ ≈ 2.5. The user must provide the grid
coordinates to BILINEAR. BILINEAR computes the interpolated values, which
are returned as a 2-D array.

IDL> z_int = BILINEAR(z_lo, 4*x_hi, 4*y_hi)

IDL> SURFACE, z_int, x_hi, y_hi

The result is shown in the lower left panel of Figure 24.3. As can be seen
in the figure, there is a noticeable difference between the interpolated values
and the high-resolution values. Because the sine function is a complex curve,
the bilinear interpolating function cannot fully capture its curvature. As a
result, the interpolated values have “facets” between the tabulated data points.
This is a reminder that interpolation does not magically fill in between known
data points; it only provides an estimate of the unknown values.

Chapter 24

242 Interpolation

Low Resolution Data1.0

0.8

0.6

0.4

0.2

−0.0
1.0

0.8
0.6

0.4
0.2

0.0 0.0 0.2 0.4 0.6 0.8 1.0

Interpolated Data (Bilinear)1.0

0.8

0.6

0.4

0.2

−0.0
1.0

0.8
0.6

0.4
0.2

0.0 0.0 0.2 0.4 0.6 0.8 1.0

High Resolution Data1.0

0.8

0.6

0.4

0.2

−0.0
1.0

0.8
0.6

0.4
0.2

0.0 0.0 0.2 0.4 0.6 0.8 1.0

FIGURE 24.3 Examples of bilinear (2-D) interpolation. Original low-resolution function
(top left), high-resolution version of original function (top right), original function interpolated
to high-resolution grid (bottom left). (BILINEAR1)

24.5 Higher Dimensions

The IDL function INTERPOLATE will do one-, two-, and three-dimensional
linear interpolation. It will also do cubic convolution on two-dimensional
arrays. If you need to interpolate data with more than three dimensions, you
may be able to use the built-in IDL functions on one or two dimensions at
a time, or you may be forced to develop your own interpolation procedure.
There are a great many different interpolation schemes that are not included
in the IDL built-in functions. Before writing your own procedure, be sure to
search the publicly available IDL libraries. Someone may have already done
the work for you!

24.6 Irregular Grids 243

24.6 Irregular Grids

IDL has several built-in tools for dealing with irregularly gridded data. Data
can be considered to be irregularly gridded if they do not fit naturally into
standard rectangular data arrays. An example of irregularly gridded data
would be temperatures at major cities. The locations of cities do not fall
onto a rectangular grid.

One useful approach to analyzing and displaying irregularly gridded data
is triangulation. When a data set is triangulated, a network or mesh of triangles
is constructed with the data points at the vertices of the triangles. The mesh
of triangles defines a piecewise-planar interpolating function; that is, each
triangle is a piece of a plane surface. Note that the mathematical form of the
triangular surfaces (flat planes) is different from the bilinear functions used
for interpolating rectangularly gridded data.1

Given the x and y coordinates of a set of irregularly distributed data
points, the IDL procedure TRIANGULATE will construct a triangular mesh
from those points (known as a Delaunay triangulation) and return a list
of the indices of the vertices of each triangle. Constructing the triangular
mesh requires only a single IDL command, but plotting the results is slightly
more complicated than some other types of plots. Therefore, this process is
demonstrated using the IDL script below. (The script is available in the file
triangulate_script.pro in the scripts directory.) The graphs produced by
the script are shown in Figure 24.4.

Irregular Grid, Triangulation, and Contours Regular Grid and Contours
1.0

0.8

0.6

0.4

0.2

0.0
0.0 0.2 0.4 0.6 0.8 1.0

1.0

0.8

0.6

0.4

0.2

0.0
0.0 0.2 0.4 0.6 0.8 1.0

y y

x x

FIGURE 24.4 Examples of a 2-D triangular mesh created from irregularly gridded data by
TRIANGULATE (left panel) and the data interpolated to a regular rectangular grid (right panel).
Also see the color version of this figure in the color plates section. (TRIANGULATE_PS)

1 A rectangular grid could be converted to a triangular grid by drawing a diagonal through
each rectangle of the grid. The triangles could then be used to construct an interpolating
function for the data. Depending on which diagonal is chosen, however, the resulting
triangles are generally different, which introduces ambiguity into the problem.

Chapter 24

244 Interpolation

WINDOW, XSIZE = 800, YSIZE = 400 ;Open graphics window

!P.MULTI = [0, 2, 1] ;Two graphics panes

; PART 1 − Create irregular grid and display triangulation

n = 50 ;Number of random points

seed = 47 ;Make result reproducible

x = RANDOMU(seed, n) ;x−coords of irregular grid

y = RANDOMU(seed, n) ;y−coords of irregular grid

z = SIN(!PI*x)*SIN(!PI*y) ;Compute dependent variable

TRIANGULATE, x, y, tri ;Compute triangulation

ntri = (SIZE(tri))[2] ;Number of triangles

PLOT, x, y, PSYM = 3, $;Plot data points

TITLE = ’Irregular Grid and Triangulation’, $

XTITLE = ’x’, $

YTITLE = ’y’

FOR i = 0, ntri−1 DO $;Draw each triangle

PLOTS, [x[tri[*,i]], x[tri[0,i]]], $

[y[tri[*,i]], y[tri[0,i]]]

CONTOUR, z, x, y, TRIANGULATION = tri, $;Draw contours using triangles

/OVERPLOT, /FOLLOW, $

LEVELS = 0.1*FINDGEN(11), $

COLOR = COLOR_24(’red’)

; PART 2 − Interpolate data to a regular grid and plot using CONTOUR

nx = 25 ;x−resolution of regular grid

ny = 25 ;y−resolution of regular grid

zz = TRIGRID(x, y, z, tri, $;Interpolate to regular grid

NX = nx, NY = ny, $;Resolution of output grid

XGRID = xx, YGRID = yy, $;Coordinates of output grid

MISSING = !VALUES.F_NAN) ;Points outside triangles are

set to NaN

CONTOUR, zz, xx, yy, /FOLLOW, $;Contour data on regular grid

C_COLOR = COLOR_24(’blue’), $

LEVELS = 0.1*FINDGEN(11), $

TITLE = ’Regular Grid and Contours’, $

XTITLE = ’x’, $

YTITLE = ’y’

xg = REBIN(xx, nx, ny, /SAMPLE) ;Make xx into 2−D grid

yg = REBIN(TRANSPOSE(yy), nx, ny, /SAMPLE) ;Make yy into 2−D grid

24.6 Irregular Grids 245

i = WHERE(FINITE(zz)) ;Find points within triangulation

PLOTS, xg[i], yg[i], PSYM = 3 ;Plot grid points within

triangulation

!P.MULTI = 0 ;Restore !P.MULTI

The first two lines of the script open a graphics window for two plots.
Next, the script creates an irregular grid of 50 data points by using the

RANDOMU function to generate random x and y coordinates between 0 and 1.
For the dependent variable z we use the same function as in the previous
examples, z(x, y) = sin(πx) sin(πy). The triangular mesh is computed
using the TRIANGULATE procedure. The list of the indices of the vertices
of the triangles is returned in the array tri, which is dimensioned 3×
ntri, where ntri is the number of triangles needed to create the mesh.
We use the SIZE function to get the number of triangles from the dimensions
of tri.

Next, the data points are plotted (do not connect the dots!), and then, for
each triangle, the three sides are drawn using the coordinates of the vertices
of the triangles. Note that some triangles are nearly equilateral, whereas others
are long and thin.

Given the irregularly gridded data and the list of triangles, the CONTOUR

procedure will draw contour lines. These are drawn in red on top of the tri-
angular mesh. Notice that the contours are straight lines within each triangle.
This results from the fact that the contour segments are straight lines defined by
the intersection of each triangle and the surfaces z = {0.0, 0.1, 0.2, . . . , 1.0}.
As you can see, although the function z is symmetric around the center of
the plot box, the contours are not. Also, sizable parts of the box have no data
points at all. This indicates that this set of 50 randomly distributed points is
not sufficient to characterize this function well. Setting the IRREGULAR key-
word to CONTOUR is equivalent to calling TRIANGULATE and then CONTOURwith
the TRIANGULATION keyword.

If the only use of the data is to display contour plots, then the steps above
are sufficient. In some cases, however, it is useful to interpolate the irregularly
gridded data onto a regular grid. This can be done by using the TRIGRID

function, which is demonstrated in the second part of the script.
The properties of the regular output grid can be specified by using various

keywords of the TRIGRID function. Here we specify that the output grid be
dimensioned 25 × 25. By default, the grid is created so that its rectangular
border just includes all of the points of the mesh. The coordinates of the
grid points are returned in the arrays xx and yy. Points that fall outside the
boundary of the triangular mesh are set to NaN. Points inside are interpolated
using the triangular mesh computed earlier by TRIANGULATE. If desired, points
outside the mesh can be estimated by extrapolation, but the results are often
unsatisfactory. The interpolated values on the regular grid are returned in the
array zz.

Chapter 24

246 Interpolation

The regularly gridded interpolated values are plotted in blue using a stan-
dard call to CONTOURwithout the TRIANGULATE keyword. Finally, the locations
of the regular grid points that fall within the triangular mesh (points with val-
ues that are not NaN) are drawn. Because contours are drawn differently on
the irregular and regular grids, the two sets of contours are very similar, but
not identical. You can see this by modifying the script triangulate.pro to
over-plot the two sets of contours on the same graph.

24.7 Summary

This chapter covers the basics of interpolation using the INTERPOL and
BILINEAR functions. Displaying irregularly gridded data by using a trian-
gular mesh, and interpolating to a regular grid are demonstrated using the
TRIANGULATE and TRIGRID functions.

0
0

2

3 2

1

1

x

y

x

ŷ

^

FI
G

U
R

E
24

.2
Sc

he
m

at
ic

ill
us

tr
at

in
g

th
e

co
nc

ep
t

of
bi

lin
ea

r
in

te
rp

ol
a-

ti
on

.(
N

ot
ID

L)

Ir
re

gu
la

r
G

rid
, T

ria
ng

ul
at

io
n,

 a
nd

 C
on

to
ur

s
R

eg
ul

ar
 G

rid
, a

nd
 C

on
to

ur
s

1.
0

0.
8

0.
6

0.
4

0.
2

0.
0 0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

1.
0

0.
8

0.
6

0.
4

0.
2

0.
0 0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

y

y

x
x

FI
G

U
R

E
24

.4
E

xa
m

pl
es

of
a

2-
D

tr
ia

ng
ul

ar
m

es
h

cr
ea

te
d

fr
om

ir
re

gu
la

rl
y

gr
id

de
d

da
ta

by
T
R
I
A
N
G
U
L
A
T
E

(l
ef

t
pa

ne
l)

an
d

th
e

da
ta

in
te

rp
ol

at
ed

to
a

re
gu

la
r

re
ct

an
gu

la
r

gr
id

(r
ig

ht
pa

ne
l)

.(
T
R
I
A
N
G
U
L
A
T
E
_
P
S
)

25

Fourier Analysis

This chapter shows how to use IDL to compute discrete Fourier transforms
using the built-in IDL fast Fourier transform procedure FFT.

25.1 IDL Commands and Keywords

The following IDL command is used to compute forward and inverse Fourier
transforms:

■ FFT function and the INVERSE, DOUBLE, DIMENSION, and OVERWRITE

keywords

25.2 Background

One of the most remarkable results in mathematics is the discovery by Fourier
that any reasonably well-behaved function f (x) can be represented as the sum
of a (possibly infinite) set of sine and cosine functions. This discovery has
had major theoretical and practical applications throughout mathematics and
physical science. For example, Fourier transforms are useful for such diverse
problems as solving differential equations, analyzing numerical methods, and
filtering noise from a signal.

The use of Fourier transforms in data analysis was revolutionized in the
middle of the twentieth century by the development of algorithms that allow
fast, efficient numerical calculation of Fourier transforms. These algorithms
are referred to as fast Fourier transforms (hence the name FFT). Because
of their widespread use and potentially heavy computational requirements,
many variations of the FFT algorithm have been developed for particular
applications or computer systems. IDL includes a general-purpose fast Fourier
transform algorithm that can be accessed via the built-in FFT function.

See the FFT function in
IDL Reference Guide.25.2.1 Basic Fourier Theory

There are a number of ways to develop the mathematical basis of Fourier
theory. This section provides a short review of Fourier transforms aimed at the
physical sciences and the computational use of fast Fourier transforms.

247

248 Fourier Analysis

Consider an arbitrary function f (x) that is defined on the finite interval
0 ≤ x < L. Although it is not essential, for simplicity we assume that f is
smooth and continuous. The basic premise of the Fourier transform is that
f (x) can be represented as a sum of trigonometric functions:

f (x) =
∞∑

k=0

[
ak cos

(
2πkx

L

)
+ bk sin

(
2πkx

L

)]
. (25.1)

The coefficients ak and bk are constants that depend on the function f . The
index k is an integer that can be thought of as a frequency. It specifies the
number of complete cycles of the cosine or sine functions per length L.

A particular coefficient, say am, can be found by multiplying Equation 25.1
by cos

(2πmx
L

)
and integrating over the interval [0, L]:

∫ L

0
f (x) cos

(
2πmx

L

)
dx (25.2)

=
∫ L

0

∞∑

k=0

[
ak cos

(
2πkx

L

)
+ bk sin

(
2πkx

L

)]
cos

(
2πmx

L

)
dx.

Reversing the order of the summation and integration and separating the
cosine and sine terms gives:

∫ L

0
f (x) cos

(
2πmx

L

)
dx

= a0

∫ L

0
cos

(
2π · 0 · x

L

)
cos

(
2πmx

L

)
dx

+ a1

∫ L

0
cos

(
2π · 1 · x

L

)
cos

(
2πmx

L

)
dx

+ a2

∫ L

0
cos

(
2π · 2 · x

L

)
cos

(
2πmx

L

)
dx +

... (25.3)

b0

∫ L

0
sin

(
2π · 0 · x

L

)
cos

(
2πmx

L

)
dx

+ b1

∫ L

0
sin

(
2π · 1 · x

L

)
cos

(
2πmx

L

)
dx

+ b2

∫ L

0
sin

(
2π · 2 · x

L

)
cos

(
2πmx

L

)
dx

...

25.2 Background 249

Similarly, the coefficients of the sine terms (the bk ’s) are found by multiplying
Equation 25.1 by sin

(2πmx
L

)
and integrating over the interval [0, L].

The key to the Fourier transform is evaluating the integrals on the right-
hand side of Equation 25.3. As it turns out, integrals of products of cosines
and sines can be evaluated analytically. Because of the symmetry of the cosine
and sine functions, integrating these products over an integral number of
periods gives a very simple result:

∫ L

0
cos

(
2πkx

L

)
cos

(
2πmx

L

)
dx =

0 : k �= m
L : k = m = 0

L/2 : k = m �= 0
(25.4)

∫ L

0
sin

(
2πkx

L

)
sin

(
2πmx

L

)
dx =

0 : k �= m
0 : k = m = 0

L/2 : k = m �= 0
(25.5)

∫ L

0
cos

(
2πkx

L

)
sin

(
2πmx

L

)
dx = 0 (25.6)

These are known as the orthogonality relations for the cosine and sine func-
tions. If the frequencies are different (k �= m) or the functions are different
(that is, one function is a sine and the other a cosine), then the integrals van-
ish. If the frequencies are the same (k = m) and the functions are the same
(both cosines or both sines), then the integrals evaluate to L/2, except for the
special case where k = m = 0. When k and m are both zero, the integrals
evaluate to L for the cosine case and 0 for the sine case.

Applying these rules to Equation 25.3 we see that all of the integrals on the
right-hand side vanish except for one: the integral containing the products of
cosines with k = m (that is, cos2(2πkx

L)). Therefore,

∫ L

0
cos

(
2πkx

L

)
f (x) dx = ak

L
2

. (25.7)

(Remember that when k = 0 the integral evaluates on the right-hand side to
L, not L/2; see below.) Solving for ak gives

ak = 2

L

∫ L

0
cos

(
2πkx

L

)
f (x) dx. (25.8)

A similar result holds for the sine coefficients (bk ’s).
In general, the coefficients of the Fourier series can be computed by

evaluating the following integrals. For k = 0:

a0 = 1

L

∫ L

0
f (x) dx (25.9)

b0 = 0 (25.10)

Chapter 25

250 Fourier Analysis

and for k �= 0:

ak = 2

L

∫ L

0
f (x) cos

(
2πkx

L

)
dx (25.11)

bk = 2

L

∫ L

0
f (x) sin

(
2πkx

L

)
dx (25.12)

In order to calculate each coefficient, one integral must be evaluated.
Calculating the coefficients ak and bk from f (x) is referred to as Fourier

analysis; that is, the function f (x) is analyzed (split) into its Fourier components.
This is also called a foward Fourier transform.

Computing the function f (x) from the coefficients using Equation 25.1 is
called the Fourier synthesis or inverse Fourier transform.

25.2.2 The Discrete Fourier Transform

The theory developed above is for continuous functions. Numerical data, on
the other hand, consists of discrete values, fj , j = 0, 1, 2, . . . , N − 1. In this
case, we could write

fj =
N /2∑

k=0

[
ak cos

(
2πkj

N

)
+ bk sin

(
2πkj

N
,

)]
. (25.13)

where j/N can be thought of as a “coordinate” that ranges from 0 to 1. The
difference from Equation 25.1 is that the dependent variable fj is available
only at a finite number of discrete points. For discrete data the “length” of the
data record is taken to be N , the number of points in the record.

A theory for discrete data can be developed that is exactly analogous to that
in the previous section for continuous functions. The Fourier transform in
Equation 25.13 is referred to as a discrete Fourier transform. The coefficients
of the Fourier series, ak and bk , are computed by evaluating sums, rather
than integrals. The sums can be thought of as discrete approximations to the
integrals in Equations 25.9, 25.10, 25.11, and 25.12.

Because real data series have a finite number of points, it is not necessary
to have an infinite number of terms in the Fourier series. If a data series has
N data points, only N terms are needed in the series. That is, N /2 cosine
coefficients and N /2 sine coefficients together give a total of N coefficients.
Thus, the total number of Fourier coefficients (a’s and b’s) is equal to the
number of points in the data series.1

If you have N data points and wish to compute the Fourier transform,
direct calculation of each coefficient (each sum) requires ∼N operations

1 The sum written in Equation 25.13 has N + 2, coefficients, but two of the coefficients
(b0 and bN /2) are always zero, leaving N nonzero coefficients.

25.2 Background 251

(multiplications and additions). Calculating all N of the coefficients by
directly evaluating the sums requires ∼N 2 operations. If your data series has
1000 points, for example, on the order of 1 million operations are required
to compute the Fourier coefficients.

25.2.3 The Fast Fourier Transform (FFT)

The fast Fourier transform (FFT) is a highly efficient algorithm to compute the
discrete Fourier transform and inverse transform. FFT algorithms are based
on the realization that, due to the symmetries of the cosine and sine func-
tions, many of the operations in the discrete Fourier transform are redundant.
There are several properties of FFTs that are important to keep in mind. First,
the FFT assumes that data samples are equally spaced in the independent
coordinate. If the data points are not equally spaced, other methods, such as
least-squares, must be used. Second, for an FFT to work correctly, there must
not be any missing values. Again, if there are missing values, least-squares
could be used to estimate the coefficients. Third, the number of operations
required to compute the complete Fourier transform (all of the coefficients)
using commonly available FFT algorithms is proportional to N times the
sum of the prime factors of N (instead of the N 2 operations required for a
straightforward discrete Fourier transform). This means that the best perfor-
mance is achieved when N can be factored into many small prime factors.
Thus, it is roughly five times faster to compute the Fourier transform of 64
points (2 + 2 + 2 + 2 + 2 + 2 = 12), than 61 points (61 is prime). In
fact, in the best case, where N is a power of 2, the Fourier transform can be
completed using only ∼N · log2 N operations. For N = 1024, this gives an
improvement over a plain discrete Fourier transform of about a factor of 100
(because log2 1024 = 10).

For all FFT algorithms, the speed of the transform depends on how well
N can be factored. In general, FFTs are fast only when N can be factored
into many small primes. The optimum choice is for N equal to a power of 2,
but other values that have small prime factors will generally give reasonably
good performance. What should you do if you have a data series with a length
that is not highly factorable? There are several possibilities. One is to delete a
small amount of data from one end or the other of the series to get a length
that factors better. Another possibility is to pad the end of the series with
zeroes to get a better length, such as a power of 2. Be cautious doing either
of these until you have some experience with interpreting Fourier transforms
and understand the implications of modifying the input data.

If there is a known periodicity in the data, then it is a good idea for the
length of the series to be an integral number of multiples of that period. If
you have hourly temperature data, for example (24 hours per day), you will
be better off if your data series contains an integral number of days (integral
multiple of 24), even if it means dropping some data at the beginning or end
of the series.

Chapter 25

252 Fourier Analysis

25.3 The IDL FFT

25.3.1 Computing the Fourier Transform

Computing FFTs in IDL is very easy. The IDL FFT function can compute
either forward or inverse transforms. The direction of the transform is set
either by using the direction parameter of the FFT function or by using
the INVERSE keyword.

Although computing the FFT is simple, using the results requires some care.
There are two potentially confusing aspects to the Fourier coefficients calcu-
lated by the IDL FFT function. The first is the order in which the coefficients
(ak ’s and bk ’s) are stored in the output array. The second is the fact that the
IDL FFT is a general purpose FFT that works on complex numbers. For-
mally, the complex Fourier synthesis (inverse transform) performed by IDL is
written

fj =
N −1∑

k=0

gk ei 2πkj
N , (25.14)

while the Fourier analysis (forward transform) is

gk = 1

N

N −1∑

k=0

fj e−i 2πkj
N . (25.15)

In these equations, i represents
√−1. In both equations, the coefficients (gk

and fj) are complex numbers.
Often, the user wants only the Fourier transform of a real (FLOAT) array.

IDL handles this by automatically converting the input array (either f or g)
from FLOAT to COMPLEX, with the imaginary parts set to zero. It is important
to remember that the output of FFT is always COMPLEX. This can introduce
some minor additional complexity to your programs.

The best way to understand the organization of FFT output is to study
an example. This section illustrates how IDL stores the array of complex
coefficients that results from computing the transform and inverse trans-
form of a real data series. The example function consists of a single cosine
wave (amplitude 1.0, frequency 1) and a single sine wave (amplitude 0.6,
frequency 4):

fj = cos
(

1 · 2π · j
N

)
+ 0.6 sin

(
4 · 2π · j

N

)
. (25.16)

PRO FOURIER1

;+

; Name:

; FOURIER1

25.3 The IDL FFT 253

; Purpose:

; Demonstrate a Fourier transform and inverse Fourier transform.

; Plot the original function and the spectrum.

; Calling sequence:

; FOURIER1

; Inputs:

; None.

; Output:

; Graphs of sample function and spectrum.

; Keywords:

; None.

; Author and history:

; Kenneth P. Bowman, 2004.

;−

COMPILE_OPT IDL2 ;Set compiler options

n = 16 ;Number of points in sampled function

x = FINDGEN(n)/n ;Independent coordinate

f = COS((2.0*!PI)*x) ;Compute function

+ 0.6*SIN((2.0*!PI)*4.0*x)

k = [LINDGEN(n/2 + 1), $;Compute frequencies

REVERSE(−(1 + LINDGEN(n/2 − 1)))]

g = FFT(f) ;Compute Fourier transform

ff = FFT(g, /INVERSE) ;Compute inverse Fourier transform

; Print results

PRINT, ’Original Function’

PRINT, ’ j x[j] f[j]’

FOR j = 0, n−1 DO PRINT, j, x[j], f[j], FORMAT = "(I6, 2F12.3)"

PRINT

PRINT, ’Fourier Coefficients’

PRINT, ’ n k[n] Real[n] Imag[n] Amp[n]’

FOR i = 0, n−1 DO PRINT, i, k[i], FLOAT(g[i]), IMAGINARY(g[i]), ABS(g[i]), $

FORMAT = "(2I6, 4F12.3)"

PRINT

PRINT, ’Resynthesized Function’

PRINT, ’ j x[j] Real[j] Imag[j] Error[j]’

FOR j = 0, n−1 DO PRINT, j, x[j], FLOAT(ff[j]), IMAGINARY(ff[j]),

ABS(ff[j]−f[j]), $ FORMAT = "(I6, 3F12.3, E12.3)"

END

Chapter 25

254 Fourier Analysis

Running FOURIER1 produces the following output. First, the original function
with 16 points is printed:

Original Function

j x[j] f[j]

0 0.000 1.000

1 0.062 1.524

2 0.125 0.707

3 0.188 −0.217

4 0.250 0.000

5 0.312 0.217

6 0.375 −0.707

7 0.438 −1.524

8 0.500 −1.000

9 0.562 −0.324

10 0.625 −0.707

11 0.688 −0.983

12 0.750 0.000

13 0.812 0.983

14 0.875 0.707

15 0.938 0.324

This is followed by the coefficients of the Fourier transform:

Fourier Coefficients

n k[n] Real[n] Imag[n] Amp[n]

0 0 −0.000 0.000 0.000

1 1 0.500 0.000 0.500

2 2 −0.000 −0.000 0.000

3 3 0.000 −0.000 0.000

4 4 0.000 −0.300 0.300

5 5 0.000 0.000 0.000

6 6 0.000 0.000 0.000

7 7 −0.000 0.000 0.000

8 8 −0.000 −0.000 0.000

9 −7 −0.000 −0.000 0.000

10 −6 0.000 −0.000 0.000

11 −5 0.000 −0.000 0.000

12 −4 0.000 0.300 0.300

13 −3 0.000 0.000 0.000

14 −2 −0.000 0.000 0.000

15 −1 0.500 −0.000 0.500

Look carefully at the table of coefficients. The first column is the array index
of each coefficient n. There are the same number of coefficients (16) as
there are points in the original series. The second column is the frequency
of each component in cycles per total length of the data series. Note that the

25.3 The IDL FFT 255

list includes both positive and negative frequencies. The largest frequency
included is N /2 cycles per N points. This is known as the Nyquist fre-
quency, and is the highest frequency that can be resolved given N input
points.

The next two columns are the real and imaginary parts of the complex
Fourier coefficients. The original signal consists of a cosine function with
frequency 1 and amplitude 1 and a sine function with frequency 4 and ampli-
tude 0.6. The coefficients of the cosine components of f are stored in the real
part of the complex coefficients. Each cosine coefficient (ak) is the sum of the
two real parts for the pair of positive and negative frequencies k and −k. The
sine coefficients are stored in the imaginary part of the complex coefficients.
Each sine coefficient (bk) is the sum of the negative of the imaginary part for
frequency k and the imaginary part for frequency −k.

The last column is the amplitude (magnitude) of the complex coefficient

for each frequencies (that is,
√

a2
k + b2

k).

To check the result, the program resynthesizes the original signal using the
complex coefficients and the inverse Fourier transform. The result is a complex
array. In this case the original signal was real, so we are only interested in the
real parts of the result. We see that the imaginary part is zero to within
the roundoff error of a single-precision floating-point variable. The errors
(differences between the original f and the resynthesized f) due to round-off
error are negligible.

Resynthesized Function

j x[j] Real[j] Imag[j] Error[j]

0 0.000 1.000 0.000 0.000E+00

1 0.062 1.524 0.000 1.846E−25

2 0.125 0.707 −0.000 5.960E−08

3 0.188 −0.217 −0.000 1.192E−07

4 0.250 0.000 0.000 2.523E−08

5 0.312 0.217 −0.000 8.941E−08

6 0.375 −0.707 0.000 5.960E−08

7 0.438 −1.524 0.000 1.192E−07

8 0.500 −1.000 0.000 5.960E−08

9 0.562 −0.324 0.000 5.960E−08

10 0.625 −0.707 −0.000 5.960E−08

11 0.688 −0.983 −0.000 1.549E−24

12 0.750 0.000 0.000 2.523E−08

13 0.812 0.983 −0.000 1.846E−25

14 0.875 0.707 0.000 1.000E−24

15 0.938 0.324 0.000 1.549E−24

A longer version of this example program (fourier2.pro) that also plots the
original function and the spectrum is available in the programs/directory. The
resulting output is shown in Figure 25.1. The top panel of the figure shows the
original “continuous” function and the 16-point sampled function f used in
the program (red pluses). The two individual components of the function are

Chapter 25

256 Fourier Analysis

Signal (black), Wave Components (gray), Sampled Signal (red)

Spectrum : real part (red), imaginary part (blue), amplitude (black)

2

1

0

0 1

0.6

0.4

0.2

0.0

−0.2

−0.4

−0.6
−8 −4 0

Frequency
4 8

−1

−2

x

M
ag

ni
tu

de

FIGURE 25.1 An example of a Fourier transform and spectrum for a signal composed of
a pure cosine wave and a pure sine wave. Also see the color version of this figure in the color
plates section. (FOURIER1_PS)

shown in gray. The lower panel shows the real (cosine) and imaginary (sine)
parts of the complex Fourier coefficients. Note that for real input data the
real parts are symmetric around zero (Real(g (k)) = Real(g (−k))), whereas
the imaginary parts are antisymmetric (Im(g (k)) = Im(g (−k))); that is, the
coefficients of the negative frequencies are the complex conjugates of the
coefficients of the corresponding positive frequencies. For real data it is not
really necessary to plot the spectrum for both positive and negative frequen-
cies. Given the coefficients for either the positive or negative frequencies, the
complementary set can be found by simply taking the complex conjugate of
the first.

Because IDL has only a general-purpose complex FFT, it is somewhat
inefficient for Fourier transforms of real functions.2

2 Programs that use FFTs very heavily, and where computational time is a problem, can link
to highly optimized, special-purpose FFTs written in Fortran or C. That topic is beyond
the scope of this book.

25.4 Fourier Filtering 257

25.3.2 Additional Properties and Keywords

IDL will automatically compute multidimensional Fourier transforms if the
input array is multidimensional. Multidimensional FFTs are beyond the scope
of this book, but if you need to compute multidimensional FFTs, I suggest
that you develop a simple example like the one in the preceding section. The
IDL demonstration program, which can be accessed by running demo at the
IDL prompt, includes a demonstration of two-dimensional Fourier filtering
of image data.

If you want to compute the Fourier transform of a multidimensional array
in only one dimension, the DIMENSION keyword allows you to specify which
dimension to transform. The first dimension is dimension 1, the second is
dimension 2, and so on.

FFT will compute the Fourier transform using double-precision arithmetic
if you specify the DOUBLE keyword.

If memory usage is a problem (for example, when computing the trans-
form of a large multidimensional array), the OVERWRITE keyword can reduce
memory usage by overwriting the input array with the output array. It is not
sufficient to simply say:

a = FFT(a)

It is also necessary to include the OVERWRITE keyword.

a = FFT(a, /OVERWRITE)

To use OVERWRITE, the input array must be COMPLEX, not FLOAT.

25.4 Fourier Filtering

25.4.1 Filtering Methods

One of the many uses of the Fourier transform is filtering. Filtering is the
process of reducing (or possibly amplifying) selected frequencies within a
signal. Filtering can be done to a data series directly by using convolution.3

This is usually referred to as filtering in the time domain or space domain,
depending on the type of independent coordinate of the data series in question.
For some applications, this may be the easiest and most efficient way to filter
a data series. However, care must be taken when computing the filter weights
and dealing with the ends of the data series to ensure that the results are correct.
For example, the running-mean filter, which is commonly used to smooth data
series, has complex spectral response characteristics that may change the data
series in unexpected ways.

3 In IDL, convolution can be done with the CONVOL function.

Chapter 25

258 Fourier Analysis

Filtering can also be done using FFTs by:

1. computing the FFT of the data series in question,

2. multiplying the spectral coefficients by a frequency-dependent filter to
reduce or amplify selected components, and

3. computing the inverse FFT to synthesize the filtered data series.

This process is usually referred to as Fourier filtering or filtering in the spectral
domain. This approach may seem to involve a lot of extra work, because
it requires both a transform and an inverse transform; but in fact, with the
advent of the fast Fourier transform, Fourier filtering is often as fast as or faster
than filtering in the time or space domain. In addition, it is easy to design
a filter with precisely the spectral filtering properties desired; for example, a
filter could be designed to pass a narrow band of frequencies and reject all
others.

25.4.2 Types of Filters

Filters come in a wide variety of different types for different applications. Fil-
ters are commonly classified as low-pass, high-pass, or band-pass (other types
can be defined). A low-pass filter passes the low-frequency components more
or less unaltered, while reducing the high-frequency components. Similarly, a
high-pass filter passes the high-frequency components, and a band-pass filter
passes a selected band of frequencies. An ideal filter (demonstrated in the next
section) passes a selected range of frequencies unaltered, while completely
removing other frequencies. The ideal filter is essentially a step function of
frequency (that is, either 0 or 1, depending on frequency).

Other mathematical functions, such as trigonometric or Gaussian func-
tions, can be used to create filters that vary smoothly with frequency. The
choice of filter depends on the application and the nature of the signal being
filtered.

25.4.3 An Ideal Filter in IDL

The following program, FOURIER_FILTER1, implements an ideal filter using
the IDL FFT function:

PRO FOURIER_FILTER1, type

;+

; Name:

; FOURIER_FILTER1

; Purpose:

; Demonstrate Fourier filtering and plot the original

; and filtered functions.

; Calling sequence:

; FOURIER_FILTER1

25.4 Fourier Filtering 259

; Inputs:

; type : String variable specifying the type of filter.

; Output:

; Graphs of sample function with noise and filtered function.

; Keywords:

; None.

; Author and history:

; Kenneth P. Bowman, 2004.

;−

COMPILE_OPT IDL2 ;Set compiler options

IF (N_ELEMENTS(type) EQ 0) THEN TYPE = ’lowpass’ ;Default filter type

WINDOW, XSIZE = 600, YSIZE = 600 ;Open graphics window

n = 1024 ;Number of samples in signal

amp = 0.1 ;Noise amplitude

x = FINDGEN(n)/n ;Compute independent coordinate

f = SIN(2.0*!PI* 2.0*x) + $;Create synthetic signal

SIN(2.0*!PI*16.0*x) + $

amp*RANDOMN(3957, n)

k = [LINDGEN(n/2 + 1), $;Compute wavenumbers

REVERSE(−(1 + LINDGEN(n/2 − 1)))]

filter = FLTARR(n) ;Define filter array

CASE STRUPCASE(type) OF

’LOWPASS’ : i = WHERE(ABS(k) LT 8, count) ;Find low frequencies

’HIGHPASS’ : i = WHERE(ABS(k) GT 24, count) ;Find high frequencies

’BANDPASS’ : i = WHERE((ABS(k) GT 8) AND $;Find band−pass frequencies

(ABS(k) LT 24), count)

ELSE : MESSAGE, ’Filter type must be specified.’

ENDCASE

IF (count EQ 0) THEN MESSAGE, ’Error creating filter’

filter[i] = 1.0 ;Create filter

ff = FLOAT(FFT(filter*FFT(f), /INVERSE)) ;Filter the signal

!P.MULTI = [0, 1, 2, 0, 0] ;Two plots per page

PLOT, x, f, $;Plot original signal

TITLE = ’Original signal’, $

XTITLE = ’x’, $

XMINOR = 1, $

YTITLE = ’f’, $

YMINOR = 1

PLOT, x, ff, $;Plot filtered signal

TITLE = ’Filtered signal’, $

Chapter 25

260 Fourier Analysis

XTITLE = ’x’, $

XMINOR = 1, $

YMINOR = 1

!P.MULTI = 0 ;Reset !P.MULTI

END

In this example, the input signal has 1024 points (N = 1024) and consists
of two pure sine waves (frequencies of 2 and 16 cycles, respectively) plus a
random component. The amplitude of the random component is 10% of

Original signal

Filtered signal

x

x

3

2

1

0

−1

−2

−3

1.5

1.0

0.5

0.0

−0.5

−1.0

−1.5
0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

f

FIGURE 25.2 An example of Fourier filtering with an ideal low-pass filter. The top panel
shows the original signal, and the bottom panel shows the filtered signal. The original signal
consists of two pure harmonics and a random, white-noise background. Frequency components
below the specified cutoff frequency are passed unaltered, and frequency components above
the cutoff are set to zero. (FOURIER_FILTER1_PS)

25.4 Fourier Filtering 261

3

2

1

0

0.0 0.2 0.4 0.6 0.8 1.0

−1

1.5

1.0

0.5

0.0

−0.5

−1.0

−1.5

1.5

1.0

0.5

0.0

−0.5

−1.0

−1.5
0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

−2

−3

1.0000

0.1000

0.0100

0.0010

0.0001

1.0000

0.1000

0.0100

0.0010

0.0001

2.0

1.5

1.0

0.5

0.0
−64 −48 −32 −16 0 16 32 48 64

−64 −48 −32 −16 0 16 32 48 64

−64 −48 −32 −16 0 16 32 48 64

Original signal

Filtered signal

x

Removed signal Filtered spectrum

Filter

k

x k

x k

Spectrum

F
ilt

er
S

pe
ct

ru
m

f

F
ilt

er

FIGURE 25.3 An example of Fourier filtering with an ideal band-pass filter. The left column
shows the original signal, the signal after filtering, and part of the signal removed by the filter.
The right column shows the spectrum of the original signal, the filter as a function of frequency,
and the spectrum after filtering. The original signal consists of two pure harmonics and a
random, white-noise background. Frequency components within the specified band are passed
unaltered. All other frequency components are set to zero. (FOURIER_FILTER2_PS)

the amplitude of the two waves. The program creates the input signal and
a filter with the specified cutoff frequency (or two frequencies in the case of
the band-pass filter). The remaining steps are to transform the input signal,
multiply the spectral coefficients by the filter, and inverse transform to create
the filtered signal. These three operations are carried out by a single line of

Chapter 25

262 Fourier Analysis

IDL. Because the input signal is real (not complex), the output is converted to
FLOAT. Finally, the program plots the original and filtered signals. The output
is shown in Figure 25.2.

A slightly longer version of the filtering program, FOURIER_FILTER2_PS, is
included with the example programs. In addition to the original and filtered
signals, this version plots the part of the signal removed by the filter, the
original spectrum, the spectral filter, and the filtered spectrum. The output is
shown in Figure 25.3.

25.5 Summary

This chapter covers the basics of using the IDL fast Fourier transform (FFT).

■ FFT. The IDL FFT function is a general-purpose complex fast Fourier
transform. If your input signal is real, remember that the output from FFT

is always complex.

25.6 Exercises

1. Compute the Fourier transform of a step function

f (x) =

0 : x ≤ L
2

1 : x > L
2

(25.17)

and plot the complex spectrum.

2. Compute the Fourier transform of a purely imaginary function. How does
the complex spectrum compare with that of a real function?

3. Compute the Fourier transform of a complex function.

4. Generate a random data series and filter it with either a low-pass or high-
pass filter.

S
ig

na
l (

bl
ac

k)
, W

av
e

C
om

po
ne

nt
s

(g
ra

y)
, S

am
pl

ed
 S

ig
na

l (
re

d)

S
pe

ct
ru

m
 :

re
al

 p
ar

t (
re

d)
, i

m
ag

in
ar

y
pa

rt
 (

bl
ue

),
 a

m
pl

itu
de

 (
bl

ac
k)

2 1 0

0
1

0.
6

0.
4

0.
2

0.
0

−0
.2

−0
.4

−0
.6

−8
−4

0
Fr

eq
ue

nc
y

4
8

−1 −2

x
Magnitude

FI
G

U
R

E
25

.1
A

n
ex

am
pl

e
of

a
Fo

ur
ie

r
tr

an
sf

or
m

an
d

sp
ec

tr
um

fo
r

a
si

gn
al

co
m

po
se

d
of

a
pu

re
co

si
ne

w
av

e
an

d
a

pu
re

si
ne

w
av

e.
(F
O
U
R
I
E
R
1
_
P
S
)

Appendix A

An IDL Style Guide

The style in which a program is written can have a major effect on how easy
it is to read, understand, debug, and modify. The human visual system is very
good at distinguishing patterns and deviations from patterns. Good visual clues
(capitalization, indentation, alignment, etc.) make it much easier to grasp the
structure of a program and locate errors.

There are many possible ways to present an IDL program with good style.
Like other computer subjects (text editors, programming languages, PCs vs.
Macs, and so on), programming-style discussions can become very heated.
The guidelines that I present in this appendix are what I have discovered to
work well through many years of experience programming in Fortran and
IDL. They are not dogma. I suggest that you try to follow these guidelines
closely, at least until you consider yourself to be well-skilled at IDL pro-
gramming. The rules may seem both tedious and unnecessary, but believe
me, time spent cleaning up your programs is not time wasted! It will save a
much greater amount of time later when you are debugging and revising your
code. After you have been programming for a few years, you can evolve your
own style.

Some development environments, including the IDLDE and the emacs
mode for IDL, will automatically color code the text of your programs (for
example, comments are red, IDL reserved words are blue, and so on). I am
not opposed to syntax coloring, but it is not a substitute for proper text layout
and comments. At times, programs must be printed, and color printers are
not always available. Some colors may show well on the screen but not on
the printed page. Use syntax coloring in your development environment if
it helps you to program, but write your programs as though syntax coloring
were not available.

A.1 IDL Style Rules

Writing a program is like writing any other technical document. Plan to
edit and correct your programs until they meet high standards for clarity,
conciseness, and correctness.

263

264 An IDL Style Guide

A.1.1 Goals of the IDL Style Rules

The basic goals of the IDL style rules are:

■ to make the program easy to read, understand, debug, and modify.

■ to make the program as compact as possible. (This can reduce tedious
scrolling while writing programs.)

A.1.2 Names and Reserved Words

■ IDL commands and reserved words should be all uppercase. A list of IDL
reserved words is given at the end of this appendix.

■ Procedure and function names should be all uppercase.

■ Variable names should generally be lowercase. You can make exceptions if
the standard symbols are normally uppercase, such as T for temperature.
Remember that IDL is not case sensitive, so using t for time and T for
temperature in the same program will not work!

■ Keep names as short as you can, but don’t make them needlessly obscure.
It makes sense for the variable containing a logical unit number for a file to
be named ifile, not m. On the other hand, input_file_unit_number
is probably overkill.

A.1.3 Spaces, Alignment, and Indentation

■ Indent, align, and space your code for readability.

■ Use single blank lines to separate related blocks of material. Avoid double
blank lines; they make programs too long and lead to lots of scrolling up
and down.

■ I find that a three-space indent is large enough for readability and small
enough not to waste too much of a line. Set the tab width of your
programming editor or environment to three spaces.

■ Use tabs, not spaces, to indent at the beginning of a line.1

■ Use spaces within a line and within multiple lines to align similar program
structures.

■ Use tabs between the end of the IDL statement and a comment on the
same line.

■ Put at least one space on each side of an equal sign. Line up the equal signs
in contiguous blocks of program statements.

1 The example program files do not contain any tabs. This is done to allow the programs
to be executed in IDL and imported directly into the text of this book without causing
formatting problems.

A.1 IDL Style Rules 265

■ Indent the inside lines of all blocks of code (IF blocks, FOR loops, etc.).
Do not indent the first and last lines. Example:

FOR i = 0, n−1 DO BEGIN

data[i] = READ_NETCDF(infile[i])

ENDFOR

■ Indent continuation lines (hanging indent).

■ Use nested indentation for nested structures, such as an IF block inside a
FOR loop.

■ Put the comment on the first line of a multiline statement.

■ Align comments. Generally, you should align all comments within a
single procedure. This makes the entire program into a two-column
table with program statements in the left column and comments in
the right. An occasional long program line with an unaligned comment
is okay.

■ Break statements into multiple lines so that you can align similar
structures. In this example, the keywords of the PLOT command are
aligned:

PLOT, x, y, $;Plot y(x)

TITLE = ’Plot of xˆ’ + STRTRIM(STRING(n), 2), $

XTITLE = ’x’, $

YTITLE = ’y’

A.1.4 Comments

■ Include a block of comments at the top of the procedure describing the
procedure and its arguments. A standard layout for these comments can
be found in the example program templates: PROGRAM_TEMPLATE and
FUNCTION_TEMPLATE.

■ Most statements should have a comment.

■ I usually do not comment PRINT or MESSAGE statements. They are largely
self-commenting.

■ If you print your programs on standard paper using landscape orientation,
you can have relatively long lines (including comments) without wrapping
onto the next line.

■ Usually you can avoid lines containing nothing but a comment, although
you may occasionally want to label a block of statements in a longer pro-
gram. Comments at the end of a line containing a command are usually
sufficient.

Appendix A

266 An IDL Style Guide

A.2 Examples of Good and Bad Style

The following three examples show the same program with different styles.
All three programs will work exactly the same. The computer doesn’t care
whether you include comments or not. The style rules are for the computer
users—you and anyone else who uses your programs.

A.2.1 An Example of Bad Style

The example of bad style below has no comments, no spacing or alignment,
and no apparent organization. Because everything is uppercase, there are no
visual clues to help distinguish commands from variables. To decipher this
program, you have to go through each line, one at a time.

PRO READ_NETCDF2,INFILE

COMPILE_OPT IDL2

IF (N_ELEMENTS(INFILE) EQ 0) THEN $

INFILE=!BOWMAN+’data/random.ncd’

IID= NCDF_OPEN(INFILE)

NCDF_VARGET,IID,’TIME’,TIME

NCDF_VARGET,IID,’T’,T

NCDF_VARGET,IID,’W’,W

NCDF_ATTGET,IID,’TIME’,’LONGNAME’,TIME_NAME

NCDF_ATTGET,IID,’TIME’,’UNITS’,TIME_UNITS

NCDF_ATTGET,IID,’T’,’LONGNAME’,T_NAME

NCDF_ATTGET,IID,’T’,’UNITS’,T_UNITS

NCDF_ATTGET,IID,’W’,’LONGNAME’,W_NAME

NCDF_ATTGET,IID,’W’,’UNITS’,W_UNITS

NCDF_CLOSE,IID

TIME_NAME=STRING(TIME_NAME)

TIME_UNITS=STRING(TIME_UNITS)

T_NAME=STRING(T_NAME)

T_UNITS=STRING(T_UNITS)

W_NAME=STRING(W_NAME)

W_UNITS=STRING(W_UNITS)

B= REGRESS(W,T,YFIT= T_FIT,CONST= A,/DOUBLE)

!P.MULTI= [0,2,2,0,0]

PLOT,TIME,W,/YNOZERO,XTITLE= TIME_NAME + ’ (’+TIME_UNITS+)’,$

YTITLE= W_NAME+’ (’+W_UNITS+’)’

PLOT,TIME,T,/YNOZERO,XTITLE= TIME_NAME+’ (’+TIME_UNITS+’)’,$

YTITLE= T_NAME+’ (’+T_UNITS + ’)’

PLOT,W,T,PSYM=3,/YNOZERO,XTITLE= W_NAME+’ (’+W_UNITS+’)’,$

YTITLE= T_NAME+’ (’+T_UNITS+’)’

OPLOT,[!X.CRANGE[0],!X.CRANGE[1]],[A + B[0]*!X.CRANGE[0],A + B[0]*!X.CRANGE[1]]

!P.MULTI= 0

END

A.2 Examples of Good and Bad Style 267

A.2.2 An Example of Mediocre Style

This example of mediocre style does have comments, and it uses case to
distinguish different elements, but it lacks breaks to show how the program is
organized. Also, similar structures are not aligned well. This obscures the fact
that many lines are doing the same operation on different variables.

PRO READ_NETCDF2, infile

; This program reads a simple netCDF file and plots several graphs.

COMPILE_OPT IDL2 ;Set compile options

IF (N_ELEMENTS(infile) EQ 0) THEN $;Default input file

infile = !Bowman + ’data/random.ncd’

iid = NCDF_OPEN(infile) ;Open input file

NCDF_VARGET,iid,’Time’,time ;Read time

NCDF_VARGET,iid,’T’,T ;Read temperature

NCDF_VARGET,iid,’w’,w ;Read vertical velocity

NCDF_ATTGET,iid,’Time’,’longname’,time_name ;Get long name of time

NCDF_ATTGET,iid,’Time’,’units’,time_units ;Get units of time

NCDF_ATTGET,iid,’T’,’longname’,T_name ;Get long name of T

NCDF_ATTGET,iid,’T’,’units’,T_units ;Get units of T

NCDF_ATTGET,iid,’w’,’longname’,w_name ;Get long name of w

NCDF_ATTGET,iid,’w’,’units’,w_units ;Get units of w

NCDF_CLOSE,iid ;Close input file

time_name = STRING(Time_name) ;Convert to string

time_units = STRING(Time_units) ;Convert to string

T_name = STRING(T_name) ;Convert to string

T_units = STRING(T_units) ;Convert to string

w_name = STRING(w_name) ;Convert to string

w_units = STRING(w_units) ;Convert to string

b = REGRESS(w, t, YFIT = T_fit, CONST = a, /DOUBLE) ;Compute linear regression

!P.MULTI = [0, 2, 2, 0, 0] ;Multiple plots per page

PLOT, time, w, /YNOZERO, $;Plot w(t)

XTITLE = time_name + ’ (’ + time_units + ’)’, $

YTITLE = w_name + ’ (’ + w_units + ’)’

PLOT, time, T, /YNOZERO, $;Plot T(t)

XTITLE = time_name + ’ (’ + time_units + ’)’, $

YTITLE = T_name + ’ (’ + T_units + ’)’

PLOT, w, T, PSYM = 3, /YNOZERO, $;Plot T vs. w

XTITLE = w_name + ’ (’ + w_units + ’)’, $

YTITLE = T_name + ’ (’ + T_units + ’)’

OPLOT, [!X.CRANGE[0], !X.CRANGE[1]], $;Plot linear fit

[a + b[0]*!X.CRANGE[0], a + b[0]*!X.CRANGE[1]]

!P.MULTI = 0 ;Single plot per page

END
Appendix A

268 An IDL Style Guide

A.2.3 An Example of Good Style

This example of good style is well commented and organized into distinct
blocks of related statements. Because the comments are all aligned, it is easy
to read down the comments like a table and follow the flow of the program.
Some lines have been wrapped with the continuation character $ in order to
fit the program on the pages of this book.

PRO READ_NETCDF2, infile

;+

; Name:

; READ_NETCDF2

; Purpose:

; This program reads a simple netCDF file

; and plots several graphs.

; Calling sequence:

; READ_NETCDF2

; Inputs:

; infile : name of input file

; Output:

; Plots of data from netCDF file.

; Keywords:

; None.

; Author and history:

; Kenneth P. Bowman, 2004.

;−

COMPILE_OPT IDL2 ;Set compile options

IF (N_ELEMENTS(infile) EQ 0) THEN $;Default input file

infile = !Bowman + ’data/random.ncd’

iid = NCDF_OPEN(infile) ;Open input file

NCDF_VARGET, iid, ’Time’, time ;Read time

NCDF_VARGET, iid, ’T’, T ;Read temperature

NCDF_VARGET, iid, ’w’, w ;Read vertical velocity

NCDF_ATTGET, iid, ’Time’, ’longname’, $;Get long name of time

time_name

NCDF_ATTGET, iid, ’Time’, ’units’, $;Get units of time

time_units

NCDF_ATTGET, iid, ’T’, ’longname’, $;Get long name of T

T_name

NCDF_ATTGET, iid, ’T’, ’units’, $;Get units of T

T_units

A.3 IDL Reserved Words 269

NCDF_ATTGET, iid, ’w’, ’longname’, $;Get long name of w

w_name

NCDF_ATTGET, iid, ’w’, ’units’, $;Get units of w

w_units

NCDF_CLOSE, iid ;Close input file

time_name = STRING(Time_name) ;Convert to string

time_units = STRING(Time_units) ;Convert to string

T_name = STRING(T_name) ;Convert to string

T_units = STRING(T_units) ;Convert to string

w_name = STRING(w_name) ;Convert to string

w_units = STRING(w_units) ;Convert to string

b = REGRESS(w, t, YFIT = T_fit, $;Linear regression

CONST = a, /DOUBLE)

!P.MULTI = [0, 2, 2, 0, 0] ;Set plots per page

PLOT, time, w, /YNOZERO, $;Plot w(time)

XTITLE = time_name + ’ (’ + time_units + ’)’, $

YTITLE = w_name + ’ (’ + w_units + ’)’

PLOT, time, T, /YNOZERO, $;Plot T(time)

XTITLE = time_name + ’ (’ + time_units + ’)’, $

YTITLE = T_name + ’ (’ + T_units + ’)’

PLOT, w, T, PSYM = 3, /YNOZERO, $;Plot T vs. w

XTITLE = w_name + ’ (’ + w_units + ’)’, $

YTITLE = T_name + ’ (’ + T_units + ’)’

OPLOT, [!X.CRANGE[0], !X.CRANGE[1]], $;Plot linear fit

[a + b[0]*!X.CRANGE[0], a + b[0]*!X.CRANGE[1]]

!P.MULTI = 0 ;Reset !P.MULTI

END

A.3 IDL Reserved Words

The words in Table A.1 are reserved in IDL for special purposes. You should
not use these words for other purposes, such as variable names. You cannot,
for example, use MOD as a variable name.

IDL> mod = 3

mod = 3

ˆ

% Syntax error.

Appendix A

270 An IDL Style Guide

TABLE A.1 List of IDL reserved words.

AND GE

BEGIN GOTO

BREAK GT

CASE IF

COMMON INHERITS

COMPILE_OPT LE

CONTINUE LT

DO MOD

ELSE NE

END NOT

ENDCASE OF

ENDELSE ON_IOERROR

ENDFOR OR

ENDIF PRO

ENDREP REPEAT

ENDSWITCH SWITCH

ENDWHILE THEN

EQ UNTIL

FOR WHILE

FORWARD_FUNCTION XOR

FUNCTION

Appendix B

Example Procedures, Functions,
Scripts, and Data Files

B.1 Example Procedures, Functions, and Scripts

B.1.1 List of Procedures, Functions, and Scripts
by Chapter

Table B.1 is a list of all of the procedures, functions, and scripts used in this
book organized by chapter. If the file contains a procedure or function, the
procedure or function name is given in uppercase. If the file contains a script,
the name is given in lowercase. The actual file names are always lowercase, that
is, the procedure ANIMATE is contained in the file animate.pro. The script
add_arrays is contained in the file add_arrays.pro.

TABLE B.1 List of procedures, functions, and scripts by chapter.

Chapter or Appendix Name Type

3 - Interactive IDL startup startup script
LINEGRAPH1 procedure
LINEGRAPH2 procedure
MULTIGRAPH procedure

4 - IDL Scripts log_plot script
LOG_PLOT_PS procedure
log_plot2 script
LOG_PLOT2_PS procedure
exp_plot script
EXP_PLOT_PS procedure

5 - Integer Constants and Variables GRAYSCALE procedure
7 - Using Arrays add_arrays script

two_d_coords script
TWO_D_COORDS_PS procedure

8 - Searching and Sorting SEARCH_COMPARE procedure

9 - Structures named_structure script
WX_OB__DEFINE procedure
anonymous_structure script
hierarchical_structure script

continued on next page

271

272 Example Procedures, Functions, Scripts, and Data Files

TABLE B.1 continued

Chapter or Appendix Name Type

11 - Reading Text PLOT_POWER procedure
READ_LOG_TABLE procedure

12 - Binary Files WRITE_MY_BINARY procedure
READ_MY_BINARY procedure
READ_MY_BINARY2 procedure

13 - Reading NetCDF Files READ_NETCDF1 procedure
READ_NETCDF1_PS procedure
READ_NETCDF_2 procedure
READ_NETCDF2_PS procedure

14 - Writing NetCDF Files WRITE_RANDOM_NETCDF procedure
WRITE_RANDOM_NETCDF2 procedure

15 - Procedures and Functions PROCEDURE_TEMPLATE procedure
MYPRO procedure
MYSUB procedure
MYSIN procedure
MYSQUARE function
FUNCTION_TEMPLATE function

17 - Line Graphs LINEGRAPH3 procedure
LINEGRAPH4 procedure
LINEGRAPH5 procedure
LINEGRAPH6 procedure
LINEGRAPH7 procedure
LINEGRAPH8 procedure
LINEGRAPH9 procedure
LINEGRAPH10 procedure
LINEGRAPH11 procedure

18 - Contour and Surface Plots CONTOUR1 procedure
CONTOUR2 procedure
CONTOUR2_PS procedure
CONTOUR3 procedure
CONTOUR3_PS procedure
SURFACE1 procedure
SURFACE1_PS procedure
SHADE_SURF1 procedure
SHADE_SURF1_PS procedure

19 - Mapping MAP_CYLINDRICAL_PS procedure
MAP_HAMMER_PS procedure
MAP_AZIMUTHAL_PS procedure
MAP_ORTHOGRAPHIC_PS procedure
MAP_CONTOUR_PS procedure
MAP_PLOTS_PS procedure

20 - Printing Graphics PS_ON procedure
PS_OFF procedure
LINEGRAPH3 procedure
PRINTER_ON procedure
PRINTER_OFF procedure
LINEGRAPH3_PRINTER procedure

continued on next page

B.1 Example Procedures, Functions, and Scripts 273

TABLE B.1 continued

Chapter or Appendix Name Type

21 - Color and Image Display COLOR_24 function
HSV_WHEEL_PNG procedure
HSV_WHEEL_PS procedure
IMAGE1 procedure
IMAGE2 procedure
LINEGRAPH12 procedure
LOAD_BASIC_COLORS procedure
RGB_PLOT_PRINTER procedure

22 - Animation ANIMATE procedure
ANIMATE_FILES procedure

23 - Statistics and Pseudorandom Numbers RANDOM1 procedure
RANDOM2 procedure
LINEAR_REGRESS procedure

24 - Interpolation INTERPOLATE1 procedure
BILINEAR1 procedure
triangulate_script script
TRIANGULATE_PS procedure

25 - Fourier Analysis FOURIER1 procedure
FOURIER1_PS procedure
FOURIER_FILTER1 procedure
FOURIER_FILTER1_PS procedure
FOURIER_FILTER2_PS procedure

A - IDL Style Guide READ_NETCDF2_BAD procedure
READ_NETCDF2_MEDIOCRE procedure

B.1.2 Alphabetical List of Procedures, Functions,
and Scripts

Table B.2 is an alphabetical list of all of the procedures, functions, and scripts
used in this book. If the file contains a procedure or function, the procedure
or function name is given in uppercase. If the file contains a script, the
name is given in lowercase. The actual file names are always lowercase; that
is, the procedure ANIMATE is contained in the file animate.pro. The script
add_arrays is contained in the file add_arrays.pro.

TABLE B.2 Alphabetical list of procedures, functions, and scripts used in this book.

Name Type Chapter or Appendix

add_arrays script 7 - Using Arrays
ANIMATE procedure 22 - Animation
ANIMATE_FILES procedure 22 - Animation
anonymous_structure script 9 - Structures
BILINEAR1 procedure 24 - Interpolation
COLOR_24 function 21 - Color and Image Display
CONTOUR1 procedure 18 - Contour and Surface Plots
CONTOUR2 procedure 18 - Contour and Surface Plots

continued on next page

Appendix B

274 Example Procedures, Functions, Scripts, and Data Files

TABLE B.2 continued

Name Type Chapter or Appendix

CONTOUR2_PS procedure 18 - Contour and Surface Plots
CONTOUR3 procedure 18 - Contour and Surface Plots
CONTOUR3_PS procedure 18 - Contour and Surface Plots
COORD__DEFINE procedure 9 - Structures
exp_plot script 4 - IDL Scripts
EXP_PLOT_PS procedure 4 - IDL Scripts
FOURIER_FILTER1 procedure 25 - Fourier Analysis
FOURIER_FILTER1_PS procedure 25 - Fourier Analysis
FOURIER_FILTER2_PS procedure 25 - Fourier Analysis
FOURIER1 procedure 25 - Fourier Analysis
FOURIER1_PS procedure 25 - Fourier Analysis
FUNCTION_TEMPLATE function 15 - Procedures and Functions
GRAYSCALE procedure 5 - Integer Constants and Variables
hierarchical_structure script 9 - Structures
HSV_WHEEL_PNG procedure 21 - Color and Image Display
HSV_WHEEL_PRINTER procedure 21 - Color and Image Display
HSV_WHEEL_PS procedure 21 - Color and Image Display
IMAGE1 procedure 21 - Color and Image Display
IMAGE2 procedure 21 - Color and Image Display
INTERPOLATE1 procedure 24 - Interpolation
LINEAR_REGRESS procedure 23 - Statistics and Pseudorandom Numbers
LINEGRAPH1 procedure 3 - Interactive IDL
LINEGRAPH2 procedure 3 - Interactive IDL
LINEGRAPH3 procedure 17 - Line Graphs
LINEGRAPH3_PRINTER procedure 20 - Printing Graphics
LINEGRAPH4 procedure 17 - Line Graphs
LINEGRAPH5 procedure 17 - Line Graphs
LINEGRAPH6 procedure 17 - Line Graphs
LINEGRAPH7 procedure 17 - Line Graphs
LINEGRAPH8 procedure 17 - Line Graphs
LINEGRAPH9 procedure 17 - Line Graphs
LINEGRAPH10 procedure 17 - Line Graphs
LINEGRAPH11 procedure 17 - Line Graphs
LINEGRAPH12 procedure 21 - Color and Image Display
LOAD_BASIC_COLORS procedure 21 - Color and Image Display
log_plot script 4 - IDL Scripts
LOG_PLOT_PS procedure 4 - IDL Scripts
log_plot2 script 4 - IDL Scripts
LOG_PLOT2_PS procedure 4 - IDL Scripts
MAP_AZIMUTHAL_PS procedure 19 - Mapping
MAP_CONTOUR_PS procedure 19 - Mapping
MAP_CYLINDRICAL_PS procedure 19 - Mapping
MAP_HAMMER_PS procedure 19 - Mapping
MAP_ORTHOGRAPHIC_PS procedure 19 - Mapping
MAP_PLOTS_PS procedure 19 - Mapping
MULTIGRAPH procedure 3 - Interactive IDL
MYPRO procedure 15 - Procedures and Functions
MYSIN procedure 15 - Procedures and Functions
MYSQUARE function 15 - Procedures and Functions
MYSUB procedure 15 - Procedures and Functions
named_structure script 9 - Structures
plot_power script 7 - Using Arrays

continued on next page

B.2 Data Files 275

TABLE B.2 continued

Name Type Chapter or Appendix

PRINT_OFF procedure 20 - Printing Graphics
PRINT_ON procedure 20 - Printing Graphics
PROCEDURE_TEMPLATE procedure 15 - Procedures and Functions
PS_OFF procedure 20 - Printing Graphics
PS_ON procedure 20 - Printing Graphics
RANDOM1 procedure 23 - Statistics and Pseudorandom Numbers
RANDOM2 procedure 23 - Statistics and Pseudorandom Numbers
READ_LOG_TABLE procedure 11 - Reading Text
READ_MY_BINARY procedure 12 - Binary Files
READ_MY_BINARY2 procedure 12 - Binary Files
READ_NETCDF1 procedure 13 - Reading NetCDF Files
READ_NETCDF1_PS procedure 13 - Reading NetCDF Files
READ_NETCDF2 procedure 13 - Reading NetCDF Files and A - IDL Style Guide
READ_NETCDF2_BAD procedure A - IDL Style Guide
READ_NETCDF2_MEDIOCRE procedure A - IDL Style Guide
READ_NETCDF2_PS procedure 13 - Reading NetCDF Files
RGB_PLOT_PRINTER procedure 21 - Color and Image Display
RGB_PLOT_PS procedure 21 - Color and Image Display
SEARCH_COMPARE procedure 8 - Searching and Sorting
SHADE_SURF1 procedure 18 - Contour and Surface Plots
SHADE_SURF1_PS procedure 18 - Contour and Surface Plots
startup startup script 3 - Interactive IDL
SURFACE1 procedure 18 - Contour and Surface Plots
SURFACE1_PS procedure 18 - Contour and Surface Plots
TRIANGULATE_PS procedure 24 - Interpolation
triangulate_script script 24 - Interpolation
two_d_coords script 7 - Using Arrays
TWO_D_COORDS_PS procedure 7 - Using Arrays
WRITE_MY_BINARY procedure 12 - Binary Files
WRITE_RANDOM_NETCDF procedure 14 - Writing NetCDF Files
WRITE_RANDOM_NETCDF2 procedure 14 - Writing NetCDF Files
WX_OB__DEFINE procedure 9 - Structures

B.2 Data Files

Table B.3 lists the data files used by the example programs in this book.

TABLE B.3 List of data files by chapter.

File Name Programs Chapter or Appendix

table.txt READ_LOG_TABLE 11 - Reading Text

binary.dat WRITE_MY_BINARY 12 - Binary Files
READ_MY_BINARY
WRITE_MY_BINARY2

random.ncdump output of ncdump utility 13 - Reading NetCDF Files
random.ncd RANDOM1

READ_NETCDF1
continued on next page

Appendix B

276 Example Procedures, Functions, Scripts, and Data Files

TABLE B.3 continued

File Name Programs Chapter or Appendix

READ_NETCDF1_PS
WRITE_RANDOM_NETCDF
WRITE_RANDOM_NETCDF2

random2.ncd RANDOM2
flux/wc151_1810.ncd.ncd READ_NETCDF2

READ_NETCDF2_PS

NCEP/2001/ncep_20010101T00Z.ncd MAP_CYLINDRICAL_PS 19 - Mapping
MAP_HAMMER_PS
MAP_AZIMUTHAL_PS
MAP_ORTHOGRAPHIC_PS
MAP_CONTOUR_PS

animation/frame.001.png ANIMATE_PNG and ANIMATE2 22 - Animation
animation/frame.002.png
.
.
.

Bibliography

Bohren, Craig F. and Bruce E. Albrecht (1998). Atmospheric Thermodynamics.
Oxford University Press, New York.

Fanning, David W. (2002). IDL Programming Techniques, Second Edition.
Fanning Press, Ft. Collins, CO, USA.

Gumley, Liam E. (2002). Practical IDL Programming. Morgan Kaufman,
San Francisco.

Spencer, J. W. (1971). Fourier series representation of the position of the
sun. Search, 2:172.

277

Index

Numerics
1-D interpolation, 237–239
8-bit color, 215–216
24-bit color, 205–214

Symbols
* (asterisk), 60, 66–67, 69–70
[] (brackets), 25
$ (dollar sign), 35
= (equal sign), 23
() parentheses, for function arguments, 24–25
. (period), 57, 84
’ (single quote), 20
” (double quotes), 20
; (semicolon), 34–35

A
A_CORRELATE procedure, 233
additive color system, 202
ADVANCE keyword (MAP_SET procedure), 184
alignment of IDL code, 264–265
animation, 219–224
anonymous structures, 87–88
arithmetic operations

arrays, 60–63
BYTE variable type, 41–42
floating-point, 49–58
mixed, 54–55

arrays, 24–27, 59–75
arithmetic with, 60–63
coordinate arrays, 64–65
creating, 59–60
expanding and shrinking, 70–72
finding values in, 77–81
index arrays, 63
parts of, using, 69

reversing, 72–74
rotating and transposing, 74
shape of, changing, 66–69
shifting, 74–75
sorting elements of, 79–81
writing parts to netCDF files, 131–132

arrow keys, 28
ASCII files, 102, 107. See also text
assignment of variables, 23
asterisk (*), 60, 66–67, 69–70
attributes, netCDF files, 119–122
autocorrelations, 233
axes, graph, 167–169
azimuthal-equidistant projections, 186–187

B
bad style, example of, 266
band-pass Fourier filtering, 258
basic line graphs, 161–162
batch jobs (scripts), 33–38
BEGIN...END statements, 153
big-endian computers, 113
BILINEAR() function, 239–242
bilinear interpolation, 239–242
binary files, 107–113
binary notation, 40
BINDGEN() function, 64
BINOMIAL keyword (RANDOMU, RANDOMN

functions), 231
BINSIZE keyword (HISTOGRAM function), 230
block-form control structures, 153
books about IDL, 11–12
brackets [], 25
BYTARR() function, 61
BYTE variable type, 40–43
BYTSCL procedure, 212

279

280 Index

C
calculations, interrupting and restarting, 20
capitalization. See case sensitivity
case sensitivity

file names, 33
IDL procedures and variable names, 21
UNIX procedures, 18

CASE statement, 157
C_COLOR keyword (CONTOUR procedure), 210
C_CORRELATE procedure, 233
ceil() function, 55
CHANNEL keyword (BYTSCL procedure), 212
CINDGEN() function, 64
CLOBBER keyword (NCDF_CREATE procedure),

128, 130
CLOSE procedure, 99
closing files, 99
CLUT (color lookup table), 215
CMYK color system, 203
code style guide, 263–269
colon (:), 70
: (colon), 70
COLOR keyword (MAP_CONTINENTS

procedure), 185
COLOR keyword (PLOT and CONTOUR

procedures), 207
color lookup table, 215
COLOR_24() function, 207–210, 216
COLOR_CONVERT procedure, 205, 218
colors, 201–218

PS and PRINTER devices and, 200
commands, IDL. See also specific command by name

control structures, 153–157
loops, 27, 155–157

executive commands, 20
comments in IDL code, 34–35, 265
COMPILE_OPT statement, 17, 44–45
COMPLEMENT keyword (WHERE function), 79
COMPLEX variable type, 252
COMPLEXARR() function, 61
conic projections, 184–186
constant types

converting between, 46–47, 54–55
floating-point types, 49–58
integer types, 40–47
printing, 94

continuation character ($), 35
.continue procedure, 20
contour plots, 171–175

on maps, 189–191

CONTOUR procedure, 171–175, 184, 245
control structures, 153–157
converting between variable types, 46–47, 54–55
coordinate arrays, 64–65
CORRELATE procedure, 233
correlation, 233
COUNT keyword (NCDF_ procedures), 119, 132
CREATE_STRUCT() function, 88
cross-correlations, 233
CT (color lookup table), 215
cubic convolution, 242
cursor (arrow) keys, 28
curve fitting, 233–234
cylindrical equidistant projections, 182–184
CYLINDRICAL keyword (MAP_SET

procedure), 183

D
data mode (netCDF files), 131
data types. See variable types
DBLARR() function, 61
DE (Development Environment), 6–7
decimal notation, 39
decomposed color, 215
DECOMPOSED keyword (DEVICE procedure),

215–216
define mode (netCDF files), 131
DEFSYSV procedure, 18
Delaunay triangulation, 243
demo version of IDL, 4
denormalized form, 50
Development Environment (IDLDE), 6–7
device drivers, 5, 193–194

PRINTER device driver, 196–200
color output, 216–217

PS device driver, 194–196, 200
color output, 216–217

DEVICE keyword (HELP procedure), 205
DEVICE procedure, 193, 207, 218
DIALOG_PRINTERSETUP() function, 197
DIALOG_PRINTJOB() function, 198
DIALOG_READ_IMAGE() function, 214
DIALOG_WRITE_IMAGE() function, 214
DIMENSION keyword (FFT function), 257
dimensions, netCDF files, 130
DINDGEN() function, 64
directory for IDL program files, 14
discrete Fourier transform, 250–251
display channels, 212

Index 281

division
BYTE variable type, 42
by zero, 45, 55–56

documentation on IDL, 10–12
dollar sign ($), 35
double() function, 54
DOUBLE keyword (FFT function), 257
DOUBLE keyword (statistical functions), 232
double-precision variable types, 53–54, 58
double quotes, 20
DOUBLE variable type, 53–54
drawing maps, 181–189

E
8-bit color, 215–216
elements of arrays, accessing. See subscripts
ELSE keyword. See IF...THEN...ELSE statements
equal sign, 23
ERASE statement, 212
errors, floating-point, 50–51, 56
examples (in this book), 9, 271–276
exchanging files with Fortran programs, 113
executive commands, 20
exiting IDL, 19
expanding arrays, 71–72
extrapolation, 237

F
fast Fourier transform (FFT), 251–257
FFT() function, 252–257
FFT (fast Fourier transform), 251–257
fields, structures, 84
figures (in this book), 9–10
file names, 33
FILE_LINES() function, 103
files

animating, 222–224
binary files, 107–113
exchanging with Fortran programs, 113
netCDF files, reading, 115–124
netCDF files, writing to, 127–132
outputting to text files, 98–99
reading from text files, 102–104
writing images to, 214

FILL keyword (MAP_CONTINENTS
procedure), 185

filtering methods (Fourier), 257–262
FINDGEN() function, 24–26

coordinate arrays, creating, 65
index arrays, creating, 63

finding arrays values. See searching
fixed dimensions, netCDF files, 130
float() function, 54
FLOAT variable type, 51–53

printing, 96
floating-point arithmetic, 49–58

infinities and NaN, 55–57
limitations of, 50
type conversion, 54

floating-point numbers, printing, 96–97
floor() function, 55
FLTARR() function, 61
FOR statement, 61, 97–98, 155–156
FORMAT keyword (PRINT procedure), 95, 104
format specifications, 95, 104
formatted output, 95–97
Fortran programs, exchanging files with, 113
Fourier analysis, 247–262

filtering, 257–262
free-format output, 93–95
FREE_LUN keyword, 99, 109
from:to:by notation, 70

G
GAMMA keyword (RANDOMU, RANDOMN

functions), 231
generating random numbers, 228–231
GET_LUN keyword, 99, 109
global attributes (netCDF files), 130
good style, example of, 268–269
GPLOT procedure, 161–162
graphical user interface (GUI), 29
graphics, 27–29

24-bit images, 210–213
animation, 219–224
color and image display, 201–218
contour plots, 171–175
grayscale images, 43
line graphs, 161–170
mapping, 181–191
printing, 193–200
reading images from screen, 213–214
surface plots, 175–179
titles and labels, 165–167
writing images to files, 214

grayscale images, 43
grid coordinates, 241
GUI (graphical user interface), 29

Index

282 Index

H
Hammer equal-area projections, 184–186
HELP procedure, 22–23, 205–206
hierarchical structures, 89
high-pass Fourier filtering, 258
higher-dimensional interpolation, 242
HISTOGRAM() function, 230
HORIZON keyword (MAP_SET procedure), 184
HSV color system, 203–205
HSV_WHEEL_PS procedure, 206, 216
hue, 203

I
ideal filters (Fourier), 258–262
idl directory, creating, 14
IDL (Interactive Data Language), defined, 3
IDL Reference Guide, 10
IDL scripts, 33–38
IDL, setting up, 13–18
IDL software system, 5–7
IDL, starting and exiting, 18–19
IDL statements, 20–22. See also control structures
IDL style guide, 263–269
IDLDE (IDL Development Environment), 6–7
IEEE754 standard, 50
IF...THEN...ELSE statements, 154
illustrations (in this book), 9–10
images. See graphics
indentation of IDL code, 264–265
index arrays, 63–64
INDGEN() function, 64
infinity (Inf), 55–56
input. See reading
installing IDL, 14
INT variable type, 44–45
INTARR() function, 61
integer variable types, 40–47

printing, 95
interactive IDL, 13–30

arrays, 24–27
graphics, 27–29
HELP procedure, 22
interrupting and restarting calculations, 19
setting preferences, 15–18
starting and exiting, 18
variables, 23

interleave dimension, 213
INTERPOL() function, 237–239
INTERPOLATE() function, 242
interpolation, 237–246

interpreter, IDL, 5–7
interrupting calculations, 19–20
irregular grids, 243–246
IRREGULAR keyword (CONTOUR

procedure), 245
isopleths. See contour plots
ISOTROPIC keyword (MAP_SET procedure),

183, 187

J
JOURNAL procedure, 36
journaling, 36–37

K
KURTOSIS() function, 231

L
L, added to numerals, 44
L64INDGEN() function, 64
labels, graphs, 165–167
licensing IDL, 14
LIMIT keyword (MAP_SET procedure), 186
LINDGEN() function, 26

index arrays, creating, 63–64
line graphs, 161–170

axes, 167–169
multiple plots per page, 169–170
titles and labels, 165–167

line styles (in graphs), 164–165
linear interpolation, 238–239
linear regression, 233
LINESTYLE keyword (PLOT procedure), 164–165
little-endian computers, 113
LOADCT procedure, 216, 218
logarithmic graphs, 162–163
logical expressions, 78
logical unit number (LUN), 99
LON64ARR() function, 61
LONARR() function, 61
long() function, 54
LONG variable type, 45
LONG64 variable type, 46
loops, 27, 155–157
low-pass Fourier filtering, 258
lowercase. See case sensitivity
LUN (logical unit number), 99

M
MAKE_ARRAY() function, 60, 64
manuals on IDL, 10–11

Index 283

MAP_CONTINENTS procedure, 182, 185
MAP_GRID procedure, 182
mapping, 181–191
MAP_SET procedure, 181–191
MAX() function, 232
M_CORRELATE procedure, 233
MEAN() function, 231
MEANABSDEV() function, 232
MEDIAN() function, 232
mediocre style, example of, 267
MIN() function, 232
MIN keyword (HISTOGRAM function), 230
missing data, NaN as, 56–57
mixed arithmetic, 54–55
MOMENT() function, 232
MPEG format, saving animations as, 224
multiple correlations, 233

N
named structures, 83–87
names and reserved words, 264
names of colors, using, 210
NAN keyword, 57–58, 232
NaN (not a number), 55–57
NBINS keyword (HISTOGRAM function), 230
NCDF_ATTGET procedure, 120–122
NCDF_ATTPUT procedure, 130, 131
NCDF_CLOSE procedure, 119, 131
NCDF_CONTROL procedure, 131
NCDF_CREATE() function, 128, 130
NCDF_DIMDEF() function, 130
NCDF_OPEN() function, 119
NCDF_VARDEF() function, 131
NCDF_VARGET procedure, 119
NCDF_VARPUT procedure, 131, 132
ncdump utility, 116–117
negative infinity, 55–56
N_ELEMENTS() function, 61
netCDF files

attributes, 119–122
reading, 115–124
writing to, 127–132

newsgroup about IDL, 5
NOBORDER keyword (MAP_SET procedure), 184
NOCOMPLEMENT keyword (WHERE

function), 79
noisy data, CONTOUR procedure with, 174
normalized form, 50
N_TAGS() function, 88
Nyquist frequency, 255

O
OFFSET keyword (NCDF_ procedures), 119, 132
one-dimensional arrays, 24, 68. See also arrays
one-dimensional interpolation, 237–239
OPEN procedure, 98
OPENR procedure, 98, 111
OPENU procedure, 98
OPENW procedure, 98
optimization, 3
orthographic projections, 188–189
output

color, 216–217
device drivers, 5, 193–194

PRINTER device driver, 196–200, 216–217
PS device driver, 194–196, 200, 216–217

printing text, 93–98
writing images to files, 214
writing to files, 98–99

OVERPLOT keyword (CONTOUR
procedure), 184

OVERWRITE keyword (REFORM procedure), 67

P
parentheses (), for function arguments, 24–25
partial correlations, 233
!PATH system variable, 16–17
PATH system variable, 17
P_CORRELATE procedure, 233
PDF files, 10, 194
period (.), 57, 84
personal directories, 14–15
!PI system variable, 65
pixels, 201–202
PLOT procedure, 27–28, 161–170
plots. See graphics
PLOTS procedure, 184, 191
plotting styles, 161–165
plotting symbols, 163–164
!P.MULTI array, 169–170
PNG standard, 214
POISSON keyword (RANDOMU, RANDOMN

functions), 231
polar projections, 186–187
POLAT keyword (MAP_SET procedure), 181, 183
POLON keyword (MAP_SET procedure), 181, 183
PostScript device, 194–196, 200
PostScript output, 5–6
preferences, IDL, 15–18
PRINT procedure, 20, 93–94

FORMAT keyword, 95–97

Index

284 Index

PRINTER device driver, 196–200
color output, 216–217

PRINTER_OFF procedure, 198
PRINTER_ON procedure, 198
PRINTF procedure, 99
printing

color output, 216–217
graphics, 193–200

multiple plots per page, 169–170
text, 93–98

to files. See writing to files
as tables, 97–98

procedure-line interpreter, 5
procedures, IDL. See also specific command by name

control structures, 153–157
loops, 27, 155–157

executive commands, 20
program control, 153–157

loops, 27, 155–157
projections. See mapping
PROMPT keyword (READ procedure), 102
prompting for user input, 102
PS device driver, 194–196, 200

color output, 216–217
pseudorandom numbers, 228–231
PS_OFF procedure, 195–196
PS_ON procedure, 195–196
PSYM keyword (PLOT procedure), 162–164
PV-WAVE package, 5

Q
quadratic interpolation, 238–239
QUADRATIC keyword (INTERPOL

function), 239
quitting IDL, 19
quotes, 20

R
random numbers, 228–231
RANDOMN() function, 229
RANDOMU() function, 229
rank correlations, 233
R_CORRELATE procedure, 233
READ procedure, 101–102
READF procedure, 103–104
reading

binary files, 110–113
images from screen, 213–214
netCDF files, 115–124

PNG files, 214
text files, 101–104

READ_PNG() function, 214, 223
READU procedure, 111, 113
REBIN() function, 70–72
rebinning arrays, 70–72
REFORM() function, 67, 71–72
reforming arrays, 66–69
REGRESS procedure, 233
regression, 233
relational operators, 78
rendered surfaces, 177–179
REPEAT...UNTIL statements, 157
REPLICATE() function, 60
reserved words, 264, 269–270
resolution, 201
resources on IDL, 4–5, 10–12
restarting calculations, 20
REVERSE() function, 72–74
reversing arrays, 72–74
RGB color system, 202
ROT keyword (MAP_SET procedure), 181
ROTATE() function, 74
rotating arrays, 74
round() function, 55
round-off error, 50–51, 156
RSI documentation on IDL, 10–11

S
S, added to numerals, 44
SAMPLE keyword (REBIN function), 70–72
saturation, 203
Scientific Data Formats, 10–11
scripts, 33–38

journaling, 36–37
search path, 17
searching for array values, 77–81
seed, random number generators, 228
semicolon (;), 34–35
SET_PLOT procedure, 193
setting up IDL, 13–18
shaded surface plots, 177–179
SHADE_SURF procedure, 177–179
shape of arrays. See arrays
SHIFT() function, 74–75
shifting arrays, 74–75
shorts. See INT variable type
shrinking arrays, 70–72
significance tests, 234
SINDGEN() function, 64

Index 285

single-line control structures, 153
single-precision variable types, 51–53, 58
single quotes, 20
SIZE() function, 66
SKEWNESS() function, 231
smooth functions, CONTOUR procedure

with, 174
SORT() function, 79–80
sorting array elements, 79–81
spaces in IDL code, 264–265
spectral domain filtering, 257–262
spline interpolation, 238–239
SPLINE keyword (INTERPOK keyword), 239
square brackets [], 25
starting IDL, 18–19
startup file (startup.pro), 14–18
statements, IDL, 20–22. See also control structures
statistics computations, 231–234
STDEV() function, 231
stopping IDL, 19, 20
STRARR() function, 61
STRIDE keyword (NCDF_VARGET

procedure), 119
structures, 57, 83–90

anonymous structures, 87–88
hierarchical structures, 89
named structures, 83–87

student version of IDL, 5
style guide for IDL, 263–269
subarrays, 69–70
subscripts, 25, 26, 59, 66

ranges of (for subarrays), 69–70
SUBTITLE keyword (PLOT procedure), 165–167
surface plots, 175–179
SURFACE procedure, 175–177
SWITCH statement, 157
symbols, plot, 163–164
SYSTIME() function, 62

T
tables, printing, 97–98
tag names and definitions (structures), 84
TAG_NAMES() function, 88
testing for significance, 234
text, 102, 107

printing, 93–98
as tables, 97–98

reading, 101–104
writing to files. See also output

binary files, 108–110

netCDF files, 127–132
text files, 98–99

THEN keyword. See IF...THEN...ELSE statements
three-dimensional graphics, 215
tick marks (plots), 167–169
TITLE keyword (PLOT procedure), 165–167
titles, graphs, 165–167
TOTAL() function, 232
TRANSPOSE() function, 232
transposing arrays, 74
TRIANGULATE() function, 243–246
triangulation, 243–246
TRIANGULATION keyword (CONTOUR

procedure), 245
TRIGRID() function, 245
TV procedure, 211–213
TVLCT procedure, 215, 218
TVRD() function, 213
24-bit color, 205–214
two-dimensional arrays, 24. See also arrays
two-dimensional interpolation, 239–242
types. See variable types

U
unlimited dimensions, netCDF files, 130
uppercase. See case sensitivity
user input, reading, 101–102

V
value (HSV color system), 203
VALUE_COMPARE() function, 81
!VALUES system variable, 56–57
variable types

converting between, 46–47, 54–55
floating-point types, 49–58
integer types, 40–47
printing, 94

variables, 23–24
VARIANCE() function, 231
vectors (one-dimensional arrays), 24, 68. See also

arrays

W
WHERE() function, 77–81
WHILE statement, 156–157
whitespace in IDL code, 264–265
WIN device, 206
WINDOW procedure, 27, 196
wire-mesh plots. See surface plots
WRITE_PNG() function, 223

Index

286 Index

WRITEU procedure, 109, 111, 113
writing to files. See also output

binary files, 108–110
images, 214
netCDF files, 127–132
text files, 98–99

X
X device, 206
XINTERANIMATE procedure, 220–224
XLOADCT procedure, 216, 218
XLOG keyword (PLOT procedure), 162
XMINOR keyword (PLOT procedure), 168
XRANGE keyword (PLOT procedure), 168

XSIZE keyword (WINDOW procedure), 27, 196
XSTYLE keyword (PLOT procedure), 168
XTICKS keyword (PLOT procedure), 168
XTITLE keyword (PLOT procedure), 165–167
XYOUTS keyword (MAP_SET procedure), 184

Y
YLOG keyword (PLOT procedure), 162
YSIZE keyword (WINDOW procedure), 27, 196
YTITLE keyword (PLOT procedure), 165–167

Z
Z-buffer device, 215
zero, division by, 45, 55–56

	51KG1BJCMZL.jpg
	1.pdf
	2.pdf
	3.pdf
	4.pdf
	5.pdf
	6.pdf
	7.pdf
	8.pdf
	9.pdf
	10.pdf
	11.pdf
	12.pdf
	13.pdf
	14.pdf
	15.pdf
	16.pdf
	17.pdf
	18.pdf
	19.pdf
	20.pdf
	21.pdf
	22.pdf
	23.pdf
	24.pdf
	25.pdf
	26.pdf
	27.pdf
	28.pdf
	29.pdf
	30.pdf
	31.pdf

