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Preface to the First Edition

Atoms, Radiation, and Radiation Protection was written from material developed
by the author over a number of years of teaching courses in the Oak Ridge Res-
ident Graduate Program of the University of Tennessee’s Evening School. The
courses dealt with introductory health physics, preparation for the American Board
of Health Physics certification examinations, and related specialized subjects such
as microdosimetry and the application of Monte Carlo techniques to radiation pro-
tection. As the title of the book is meant to imply, atomic and nuclear physics and
the interaction of ionizing radiation with matter are central themes. These subjects
are presented in their own right at the level of basic physics, and the discussions are
developed further into the areas of applied radiation protection. Radiation dosime-
try, instrumentation, and external and internal radiation protection are extensively
treated. The chemical and biological effects of radiation are not dealt with at length,
but are presented in a summary chapter preceding the discussion of radiation-
protection criteria and standards. Non-ionizing radiation is not included. The book
is written at the senior or beginning graduate level as a text for a one-year course
in a curriculum of physics, nuclear engineering, environmental engineering, or an
allied discipline. A large number of examples are worked in the text. The traditional
units of radiation dosimetry are used in much of the book; SI units are employed in
discussing newer subjects, such as ICRP Publications 26 and 30. SI abbreviations
are used throughout. With the inclusion of formulas, tables, and specific physical
data, Atoms, Radiation, and Radiation Protection is also intended as a reference for
professionals in radiation protection.

I have tried to include some important material not readily available in textbooks
on radiation protection. For example, the description of the electronic structure
of isolated atoms, fundamental to understanding so much of radiation physics,
is further developed to explain the basic physics of “collective” electron behavior
in semiconductors and their special properties as radiation detectors. In another
area, under active research today, the details of charged-particle tracks in water are
described from the time of the initial physical, energy-depositing events through
the subsequent chemical changes that take place within a track. Such concepts are
basic for relating the biological effects of radiation to particle-track structure.

I am indebted to my students and a number of colleagues and organizations,
who contributed substantially to this book. Many individual contributions are ac-
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XVI Preface to the First Edition

knowledged in figure captions. In addition, I would like to thank J. H. Corbin and
W. N. Drewery of Martin Marietta Energy Systems, Inc.; Joseph D. Eddleman of
Pulcir, Inc.; Michael D. Shepherd of Eberline; and Morgan Cox of Victoreen for
their interest and help. I am especially indebted to my former teacher, Myron F.
Fair, from whom I learned many of the things found in this book in countless
discussions since we first met at Vanderbilt University in 1952.

It has been a pleasure to work with the professional staff of Pergamon Press, to
whom I express my gratitude for their untiring patience and efforts throughout the
production of this volume.

The last, but greatest, thanks are reserved for my wife, Renate, to whom this
book is dedicated. She typed the entire manuscript and the correspondence that
went with it. Her constant encouragement, support, and work made the book a
reality.

Oak Ridge, Tennessee James E. Turner

November 20, 1985
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Preface to the Second Edition

The second edition of Atoms, Radiation, and Radiation Protection has several im-
portant new features. SI units are employed throughout, the older units being de-
fined but used sparingly. There are two new chapters. One is on statistics for health
physics. It starts with the description of radioactive decay as a Bernoulli process and
treats sample counting, propagation of error, limits of detection, type-I and type-II
errors, instrument response, and Monte Carlo radiation-transport computations.
The other new chapter resulted from the addition of material on environmental ra-
dioactivity, particularly concerning radon and radon daughters (not much in vogue
when the first edition was prepared in the early 1980s). New material has also been
added to several earlier chapters: a derivation of the stopping-power formula for
heavy charged particles in the impulse approximation, a more detailed discussion
of beta-particle track structure and penetration in matter, and a fuller description
of the various interaction coefficients for photons. The chapter on chemical and bi-
ological effects of radiation from the first edition has been considerably expanded.
New material is also included there, and the earlier topics are generally dealt with
in greater depth than before (e.g., the discussion of data on human exposures). The
radiation exposure limits from ICRP Publications 60 and 61 and NCRP Report No.
116 are presented and discussed. Annotated bibliographies have been added at the
end of each chapter. A number of new worked examples are presented in the text,
and additional problems are included at the ends of the chapters. These have been
tested in the classroom since the 1986 first edition. Answers are now provided to
about half of the problems. In summary, in its new edition, Atoms, Radiation, and

Radiation Protection has been updated and expanded both in breadth and in depth
of coverage. Most of the new material is written at a somewhat more advanced level
than the original.

I am very fortunate in having students, colleagues, and teachers who care about
the subjects in this book and who have shared their enthusiasm, knowledge, and
talents. I would like to thank especially the following persons for help I have re-
ceived in many ways: James S. Bogard, Wesley E. Bolch, Allen B. Brodsky, Darryl J.
Downing, R. J. Michael Fry, Robert N. Hamm, Jerry B. Hunt, Patrick J. Papin, Her-
wig G. Paretzke, Tony A. Rhea, Robert W. Wood, Harvel A. Wright, and Jacquelyn
Yanch. The continuing help and encouragement of my wife, Renate, are gratefully
acknowledged. I would also like to thank the staff of John Wiley & Sons, with whom
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I have enjoyed working, particularly Gregory T. Franklin, John P. Falcone, and An-
gioline Loredo.

Oak Ridge, Tennessee James E. Turner

January 15, 1995



XIX

Preface to the Third Edition

Since the preparation of the second edition (1995) of Atoms, Radiation, and Ra-

diation Protection, many important developments have taken place that affect the
profession of radiological health protection. The International Commission on Ra-
diological Protection (ICRP) has issued new documents in a number of areas that
are addressed in this third edition. These include updated and greatly expanded
anatomical and physiological data that replace “reference man” and revised mod-
els of the human respiratory tract, alimentary tract, and skeleton. At this writing,
the Main Commission has just adopted the Recommendations 2007, thus laying
the foundation and framework for continuing work from an expanded contempo-
rary agenda into future practice. Dose constraints, dose limits, and optimization are
given roles as core concepts. Medical exposures, exclusion levels, and radiation pro-
tection of nonhuman species are encompassed. The National Council on Radiation
Protection and Measurements (NCRP) in the United States has introduced new
limiting criteria and provided extensive data for the design of structural shield-
ing for medical X-ray imaging facilities. Kerma replaces the traditional exposure as
the shielding design parameter. The Council also completed its shielding report
for megavoltage X- and gamma-ray radiotherapy installations. In other areas, the
National Research Council’s Committee on the Biological Effects of Ionizing Radia-
tion published the BEIR VI and BEIR VII Reports, respectively dealing with indoor
radon and with health risks from low levels of radiation. The very successful com-
pletion of the DS02 dosimetry system and the continuing Life Span Study of the
Japanese atomic-bomb survivors represent additional major accomplishments dis-
cussed here.

Rapid advances since the last edition of this text have been made in instrumenta-
tion for the detection, monitoring, and measurement of ionizing radiation. These
have been driven by improvements in computers, computer interfacing, and, in
no small part, by heightened concern for nuclear safeguards and home security.
Chapter 10 on Methods of Radiation Detection required extensive revision and the
addition of considerable new material.

As in the previous edition, the primary regulatory criteria used here for discus-
sions and working problems follow those given in ICRP Publication 60 with limits
on effective dose to an individual. These recommendations are the principal ones
employed throughout the world today, except in the United States. The ICRP-60
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XX Preface to the Third Edition

limits for individual effective dose, with which current NCRP recommendations
are consistent, are also generally encompassed within the new ICRP Recommen-
dations 2007. The earlier version of the protection system, limiting effective dose

equivalent to an individual, is generally employed in the U.S. Some discussion and
comparison of the two systems, which both adhere to the ALARA principle (“as
low as reasonable achievable”), has been added in the present text. As a practical
matter, both maintain a comparable degree of protection in operating experience.

It will be some time until the new model revisions and other recent work of the
ICRP become fully integrated into unified general protocols for internal dosimetry.
While there has been partial updating at this time, much of the formalism of ICRP
Publication 30 remains in current use at the operating levels of health physics in
many places. After some thought, this formalism continues to be the primary focus
in Chapter 16 on Internal Dosimetry and Radiation Protection. To a considerable
extent, the newer ICRP Publications follow the established format. They are de-
scribed here in the text where appropriate, and their relationships to Publication
30 are discussed.

As evident from acknowledgements made throughout the book, I am indebted
to many sources for material used in this third edition. I would like to express
my gratitude particularly to the following persons for help during its preparation:
M. I. Al-Jarallah, James S. Bogard, Rhonda S. Bogard, Wesley. E. Bolch, Roger J.
Cloutier, Darryl J. Downing, Keith F. Eckerman, Joseph D. Eddlemon, Paul W.
Frame, Peter Jacob, Cynthia G. Jones, Herwig G. Paretzke, Charles A. Potter, Robert
C. Ricks, Joseph Rotunda, Richard E. Toohey, and Vaclav Vylet. Their interest and
contributions are much appreciated. I would also like to thank the staff of John Wi-
ley & Sons, particularly Esther Dörring, Anja Tschörtner, and Dagmar Kleemann,
for their patience, understanding, and superb work during the production of this
volume.

Oak Ridge, Tennessee James E. Turner

March 21, 2007



1

1
About Atomic Physics and Radiation

1.1
Classical Physics

As the nineteenth century drew to a close, man’s physical understanding of the
world appeared to rest on firm foundations. Newton’s three laws accounted for the
motion of objects as they exerted forces on one another, exchanging energy and
momentum. The movements of the moon, planets, and other celestial bodies were
explained by Newton’s gravitation law. Classical mechanics was then over 200 years
old, and experience showed that it worked well.

Early in the century Dalton’s ideas revealed the atomic nature of matter, and
in the 1860s Mendeleev proposed the periodic system of the chemical elements.
The seemingly endless variety of matter in the world was reduced conceptually to
the existence of a finite number of chemical elements, each consisting of identical
smallest units, called atoms. Each element emitted and absorbed its own character-
istic light, which could be analyzed in a spectrometer as a precise signature of the
element.

Maxwell proposed a set of differential equations that explained known electric
and magnetic phenomena and also predicted that an accelerated electric charge
would radiate energy. In 1888 such radiated electromagnetic waves were generated
and detected by Hertz, beautifully confirming Maxwell’s theory.

In short, near the end of the nineteenth century man’s insight into the nature of
space, time, matter, and energy seemed to be fundamentally correct. While much
exciting research in physics continued, the basic laws of the universe were gener-
ally considered to be known. Not many voices forecasted the complete upheaval
in physics that would transform our perception of the universe into something
undreamed of as the twentieth century began to unfold.

1.2
Discovery of X Rays

The totally unexpected discovery of X rays by Roentgen on November 8, 1895 in
Wuerzburg, Germany, is a convenient point to regard as marking the beginning of
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2 1 About Atomic Physics and Radiation

Fig. 1.1 Schematic diagram of an early Crooke’s, or
cathode-ray, tube. A Maltese cross of mica placed in the path of
the rays casts a shadow on the phosphorescent end of the tube.

Fig. 1.2 X-ray picture of the hand of Frau Roentgen made by
Roentgen on December 22, 1895, and now on display at the
Deutsches Museum. (Figure courtesy of Deutsches Museum,
Munich, Germany.)
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the story of ionizing radiation in modern physics. Roentgen was conducting exper-
iments with a Crooke’s tube—an evacuated glass enclosure, similar to a television
picture tube, in which an electric current can be passed from one electrode to an-
other through a high vacuum (Fig. 1.1). The current, which emanated from the
cathode and was given the name cathode rays, was regarded by Crooke as a fourth
state of matter. When the Crooke’s tube was operated, fluorescence was excited in
the residual gas inside and in the glass walls of the tube itself.

It was this fluorescence that Roentgen was studying when he made his discov-
ery. By chance, he noticed in a darkened room that a small screen he was using
fluoresced when the tube was turned on, even though it was some distance away.
He soon recognized that he had discovered some previously unknown agent, to
which he gave the name X rays.1) Within a few days of intense work, Roentgen had
observed the basic properties of X rays—their penetrating power in light materi-
als such as paper and wood, their stronger absorption by aluminum and tin foil,
and their differential absorption in equal thicknesses of glass that contained dif-
ferent amounts of lead. Figure 1.2 shows a picture that Roentgen made of a hand
on December 22, 1895, contrasting the different degrees of absorption in soft tis-
sue and bone. Roentgen demonstrated that, unlike cathode rays, X rays are not
deflected by a magnetic field. He also found that the rays affect photographic plates
and cause a charged electroscope to lose its charge. Unexplained by Roentgen, the
latter phenomenon is due to the ability of X rays to ionize air molecules, leading to
the neutralization of the electroscope’s charge. He had discovered the first example
of ionizing radiation.

1.3
Some Important Dates in Atomic and Radiation Physics

Events moved rapidly following Roentgen’s communication of his discovery and
subsequent findings to the Physical–Medical Society at Wuerzburg in December
1895. In France, Becquerel studied a number of fluorescent and phosphorescent
materials to see whether they might give rise to Roentgen’s radiation, but to no
avail. Using photographic plates and examining salts of uranium among other sub-
stances, he found that a strong penetrating radiation was given off, independently
of whether the salt phosphoresced. The source of the radiation was the uranium
metal itself. The radiation was emitted spontaneously in apparently undiminish-
ing intensity and, like X rays, could also discharge an electroscope. Becquerel an-
nounced the discovery of radioactivity to the Academy of Sciences at Paris in Feb-
ruary 1896.

1 That discovery favors the prepared mind is
exemplified in the case of X rays. Several
persons who noticed the fading of
photographic film in the vicinity of a Crooke’s
tube either considered the film to be defective
or sought other storage areas. An interesting

account of the discovery and near-discoveries
of X rays as well as the early history of
radiation is given in the article by R. L.
Kathren cited under “Suggested Reading” in
Section 1.6.
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The following tabulation highlights some of the important historical markers in
the development of modern atomic and radiation physics.

1810 Dalton’s atomic theory.
1859 Bunsen and Kirchhoff originate spectroscopy.
1869 Mendeleev’s periodic system of the elements.
1873 Maxwell’s theory of electromagnetic radiation.
1888 Hertz generates and detects electromagnetic waves.
1895 Lorentz theory of the electron.
1895 Roentgen discovers X rays.
1896 Becquerel discovers radioactivity.
1897 Thomson measures charge-to-mass ratio of cathode rays (electrons).
1898 Curies isolate polonium and radium.
1899 Rutherford finds two kinds of radiation, which he names “alpha” and “beta,”

emitted from uranium.
1900 Villard discovers gamma rays, emitted from radium.
1900 Thomson’s “plum pudding” model of the atom.
1900 Planck’s constant, h = 6.63 × 10–34 J s.
1901 First Nobel prize in physics awarded to Roentgen.
1902 Curies obtain 0.1 g pure RaCl2 from several tons of pitchblend.
1905 Einstein’s special theory of relativity (E = mc2).
1905 Einstein’s explanation of photoelectric effect, introducing light quanta (pho-

tons of energy E = hν).
1909 Millikan’s oil drop experiment, yielding precise value of electronic charge,

e = 1.60 × 10–19 C.
1910 Soddy establishes existence of isotopes.
1911 Rutherford discovers atomic nucleus.
1911 Wilson cloud chamber.
1912 von Laue demonstrates interference (wave nature) of X rays.
1912 Hess discovers cosmic rays.
1913 Bohr’s theory of the H atom.
1913 Coolidge X-ray tube.
1914 Franck–Hertz experiment demonstrates discrete atomic energy levels in

collisions with electrons.
1917 Rutherford produces first artificial nuclear transformation.
1922 Compton effect.
1924 de Broglie particle wavelength, λ = h/momentum.
1925 Uhlenbeck and Goudsmit ascribe electron with intrinsic spin h̄/2.
1925 Pauli exclusion principle.
1925 Heisenberg’s first paper on quantum mechanics.
1926 Schroedinger’s wave mechanics.
1927 Heisenberg uncertainty principle.
1927 Mueller discovers that ionizing radiation produces genetic mutations.
1927 Birth of quantum electrodynamics, Dirac’s paper on “The Quantum Theory

of the Emission and Absorption of Radiation.”
1928 Dirac’s relativistic wave equation of the electron.
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1930 Bethe quantum-mechanical stopping-power theory.
1930 Lawrence invents cyclotron.
1932 Anderson discovers positron.
1932 Chadwick discovers neutron.
1934 Joliot-Curie and Joliot produce artificial radioisotopes.
1935 Yukawa predicts the existence of mesons, responsible for short-range nu-

clear force.
1936 Gray’s formalization of Bragg-Gray principle.
1937 Mesons found in cosmic radiation.
1938 Hahn and Strassmann observe nuclear fission.
1942 First man-made nuclear chain reaction, under Fermi’s direction at Univer-

sity of Chicago.
1945 First atomic bomb.
1948 Transistor invented by Shockley, Bardeen, and Brattain.
1952 Explosion of first fusion device (hydrogen bomb).
1956 Discovery of nonconservation of parity by Lee and Yang.
1956 Reines and Cowen experimentally detect the neutrino.
1958 Discovery of Van Allen radiation belts.
1960 First successful laser.
1964 Gell-Mann and Zweig independently introduce quark model.
1965 Tomonaga, Schwinger, and Feynman receive Nobel Prize for fundamental

work on quantum electrodynamics.
1967 Salam and Weinberg independently propose theories that unify weak and

electromagnetic interactions.
1972 First beam of 200-GeV protons at Fermilab.
1978 Penzias and Wilson awarded Nobel Prize for 1965 discovery of 2.7 K mi-

crowave radiation permeating space, presumably remnant of “big bang”
some 10–20 billion years ago.

1981 270 GeV proton–antiproton colliding-beam experiment at European Or-
ganization for Nuclear Research (CERN); 540 GeV center-of-mass energy
equivalent to laboratory energy of 150,000 GeV.

1983 Electron–positron collisions show continuing validity of radiation theory up
to energy exchanges of 100 GeV and more.

1984 Rubbia and van der Meer share Nobel Prize for discovery of field quanta for
weak interaction.

1994 Brockhouse and Shull receive Nobel Prize for development of neutron spec-
troscopy and neutron diffraction.

2001 Cornell, Ketterle, and Wieman awarded Nobel Prize for Bose-Einstein con-
densation in dilute gases for alkali atoms.

2002 Antihydrogen atoms produced and measured at CERN.
2004 Nobel Prize presented to Gross, Politzer, and Wilczek for discovery of as-

ymptotic freedom in development of quantum chromodynamics as the the-
ory of the strong nuclear force.

2005 World Year of Physics 2005, commemorates Einstein’s pioneering contri-
butions of 1905 to relativity, Brownian motion, and the photoelectric effect
(for which he won the Nobel Prize).
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Figures 1.3 through 1.5 show how the complexity and size of particle accelerators
have grown. Lawrence’s first cyclotron (1930) measured just 4 in. in diameter. With
it he produced an 80-keV beam of protons. The Fermi National Accelerator Labora-
tory (Fermilab) is large enough to accommodate a herd of buffalo and other wildlife
on its grounds. The LEP (large electron-positron) storage ring at the European Or-
ganization for Nuclear Research (CERN) on the border between Switzerland and
France, near Geneva, has a diameter of 8.6 km. The ring allowed electrons and
positrons, circulating in opposite directions, to collide at very high energies for the
study of elementary particles and forces in nature. The large size of the ring was
needed to reduce the energy emitted as synchrotron radiation by the charged par-
ticles as they followed the circular trajectory. The energy loss per turn was made
up by an accelerator system in the ring structure. The LEP was recently retired,
and the tunnel is being used for the construction of the Large Hadron Collider
(LHC), scheduled for completion in 2007. The LHC will collide head-on two beams
of 7-TeV protons or other heavy ions.

In Lawrence’s day experimental equipment was usually put together by the in-
dividual researcher, possibly with the help of one or two associates. The huge ma-
chines of today require hundreds of technically trained persons to operate. Ear-
lier radiation-protection practices were much less formalized than today, with little
public involvement.

Fig. 1.3 E. O. Lawrence with his first cyclotron. (Photo by
Watson Davis, Science Service; figure courtesy of American
Institute of Physics Niels Bohr Library. Reprinted with
permission from Physics Today, November 1981, p. 15.
Copyright 1981 by the American Institute of Physics.)
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Fig. 1.4 Fermi National Accelerator Laboratory, Batavia, Illinois.
Buffalo and other wildlife live on the 6800 acre site. The
1000 GeV proton synchrotron (Tevatron) began operation in
the late 1980s. (Figure courtesy of Fermi National Accelerator
Laboratory. Reprinted with permission from Physics Today,
November 1981, p. 23. Copyright 1981 by the American
Institute of Physics.)
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Fig. 1.5 Photograph showing location of underground LEP ring
with its 27 km circumference. The SPS (super proton
synchrotron) is comparable to Fermilab. Geneva airport is in
foreground. [Figure courtesy of the European Organization for
Nuclear Research (CERN).]

1.4
Important Dates in Radiation Protection

X rays quickly came into widespread medical use following their discovery. Al-
though it was not immediately clear that large or repeated exposures might be
harmful, mounting evidence during the first few years showed unequivocally that
they could be. Reports of skin burns among X-ray dispensers and patients, for ex-
ample, became common. Recognition of the need for measures and devices to pro-
tect patients and operators from unnecessary exposure represented the beginning
of radiation health protection.

Early criteria for limiting exposures both to X rays and to radiation from radioac-
tive sources were proposed by a number of individuals and groups. In time, organi-
zations were founded to consider radiation problems and issue formal recommen-
dations. Today, on the international scene, this role is fulfilled by the International
Commission on Radiological Protection (ICRP) and, in the United States, by the
National Council on Radiation Protection and Measurements (NCRP). The Inter-
national Commission on Radiation Units and Measurements (ICRU) recommends
radiation quantities and units, suitable measuring procedures, and numerical val-
ues for the physical data required. These organizations act as independent bodies
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composed of specialists in a number of disciplines—physics, medicine, biology,
dosimetry, instrumentation, administration, and so forth. They are not government
affiliated and they have no legal authority to impose their recommendations. The
NCRP today is a nonprofit corporation chartered by the United States Congress.

Some important dates and events in the history of radiation protection follow.

1895 Roentgen discovers ionizing radiation.
1900 American Roentgen Ray Society (ARRS) founded.
1915 British Roentgen Society adopts X-ray protection resolution; believed to be

the first organized step toward radiation protection.
1920 ARRS establishes standing committee for radiation protection.
1921 British X-Ray and Radium Protection Committee presents its first radiation

protection rules.
1922 ARRS adopts British rules.
1922 American Registry of X-Ray Technicians founded.
1925 Mutscheller’s “tolerance dose” for X rays.
1925 First International Congress of Radiology, London, establishes ICRU.
1928 ICRP established under auspices of the Second International Congress of

Radiology, Stockholm.
1928 ICRU adopts the roentgen as unit of exposure.
1929 Advisory Committee on X-Ray and Radium Protection (ACXRP) formed in

United States (forerunner of NCRP).
1931 The roentgen adopted as unit of X radiation.
1931 ACXRP publishes recommendations (National Bureau of Standards Hand-

book 15).
1934 ICRP recommends daily tolerance dose.
1941 ACXRP recommends first permissible body burden, for radium.
1942 Manhattan District begins to develop atomic bomb; beginning of health

physics as a profession.
1946 U.S. Atomic Energy Commission created.
1946 NCRP formed as outgrowth of ACXRP.
1947 U.S. National Academy of Sciences establishes Atomic Bomb Casualty

Commission (ABCC) to initiate long-term studies of A-bomb survivors in
Hiroshima and Nagasaki.

1949 NCRP publishes recommendations and introduces risk/benefit concept.
1952 Radiation Research Society formed.
1953 ICRU introduces concept of absorbed dose.
1955 United Nations Scientific Committee on the Effects of Atomic Radiation

(UNSCEAR) established.
1956 Health Physics Society founded.
1956 International Atomic Energy Agency organized under United Nations.
1957 NCRP introduces age proration for occupational doses and recommends

nonoccupational exposure limits.
1957 U.S. Congressional Joint Committee on Atomic Energy begins series of

hearings on radiation hazards, beginning with “The Nature of Radioactive
Fallout and Its Effects on Man.”
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1958 United Nations Scientific Committee on the Effects of Atomic Radiation
publishes study of exposure sources and biological hazards (first UNSCEAR
Report).

1958 Society of Nuclear Medicine formed.
1959 ICRP recommends limitation of genetically significant dose to population.
1960 U.S. Congressional Joint Committee on Atomic Energy holds hearings on

“Radiation Protection Criteria and Standards: Their Basis and Use.”
1960 American Association of Physicists in Medicine formed.
1960 American Board of Health Physics begins certification of health physicists.
1964 International Radiation Protection Association (IRPA) formed.
1964 Act of Congress incorporates NCRP.
1969 Radiation in space. Man lands on moon.
1974 U.S. Nuclear Regulatory Commission (NRC) established.
1974 ICRP Publication 23, “Report of Task Group on Reference Man.”
1975 ABCC replaced by binational Radiation Effects Research Foundation

(RERF) to continue studies of Japanese survivors.
1977 ICRP Publication 26, “Recommendations of the ICRP.”
1977 U.S. Department of Energy (DOE) created.
1978 ICRP Publication 30, “Limits for Intakes of Radionuclides by Workers.”
1978 ICRP adopts “effective dose equivalent” terminology.
1986 Dosimetry System 1986 (DS86) developed by RERF for A-bomb survivors.
1986 Growing public concern over radon. U.S. Environmental Protection Agency

publishes pamphlet, “A Citizen’s Guide to Radon.”
1987 NCRP Report No. 91, “Recommendations on Limits for Exposure to Ioniz-

ing Radiation.”
1988 United Nations Scientific Committee on the Effects of Atomic Radiation,

“Sources, Effects and Risks of Ionizing Radiation.” Report to the General
Assembly.

1988 U.S. National Academy of Sciences BEIR IV Report, “Health Risks of Radon
and Other Internally Deposited Alpha Emitters—BEIR IV.”

1990 U.S. National Academy of Sciences BEIR V Report, “Health Effects of Ex-
posure to Low Levels of Ionizing Radiation—BEIR V.”

1991 International Atomic Energy Agency report on health effects from the April
1986 Chernobyl accident.

1991 10 CFR Part 20, NRC.
1991 ICRP Publication 60, “1990 Recommendations of the International Com-

mission on Radiological Protection.”
1993 10 CFR Part 835, DOE.
1993 NCRP Report No. 115, “Risk Estimates for Radiation Protection.”
1993 NCRP Report No. 116, “Limitation of Exposure to Ionizing Radiation.”
1994 Protocols developed for joint U.S., Ukraine, Belarus 20-y study of thyroid

disease in 85,000 children exposed to radioiodine following Chernobyl acci-
dent in 1986.

1994 ICRP Publication 66, “Human Respiratory Tract Model for Radiological Pro-
tection.”
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2000 UNSCEAR 2000 Report on sources of radiation exposure, radiation-
associated cancer, and the Chernobyl accident.

2003 Dosimetry System 2002 (DS02) formally approved.
2005 ICRP proposes system of radiological protection consisting of dose con-

straints and dose limits, complimented by optimization.
2007 Final decision expected. ICRP 2007 Recommendations.

1.5
Sources and Levels of Radiation Exposure

The United Nations Scientific Committee on the Effects of Atomic Radiation (UN-
SCEAR) has carried out a comprehensive study and analysis of the presence and ef-
fects of ionizing radiation in today’s world. The UNSCEAR 2000 Report (see “Sug-
gested Reading” at the end of the chapter) presents a broad review of the various
sources and levels of radiation exposure worldwide and an assessment of the radi-
ological consequences of the 1986 Chernobyl reactor accident.

Table 1.1, based on information from the Report, summarizes the contributions
that comprise the average annual effective dose of about 2.8 mSv (see Chapter 14)
to an individual. They do not necessarily pertain to any particular person, but

Table 1.1 Annual per Capita Effective Doses in Year 2000 from
Natural and Man-Made Sources of Ionizing Radiation
Worldwide*

Annual Effective
Source Dose (mSv) Typical Range (mSv)

Natural Background
External

Cosmic rays 0.4 0.3–1.0
Terrestrial gamma rays 0.5 0.3–0.6

Internal
Inhalation (principally radon) 1.2 0.2–10.
Ingestion 0.3 0.2–0.8

Total 2.4 1–10

Medical (primarily diagnostic X rays) 0.4 0.04–1.0

Man-Made Environmental
Atmospheric nuclear-weapons tests 0.005 Peak was 0.15 in 1963.
Chernobyl accident 0.002 Highest average was 0.04 in

northern hemisphere in 1986.
Nuclear power production 0.0002 See paragraph 34 in Report for

basis of estimate.

* Based on UNSCEAR 2000 Report.



12 1 About Atomic Physics and Radiation

reflect averages from ranges given in the last column. Natural background radi-
ation contributes the largest portion (∼85%), followed by medical (∼14%), and
then man-made environmental (<1%). As noted in the table, background can vary
greatly from place to place, due to amounts of radioactive minerals in soil, water,
and rocks and to increased cosmic radiation at higher altitudes. Radon contributes
roughly one-half of the average annual effective dose from natural background.
Medical uses of radiation, particularly diagnostic X rays, result in the largest av-
erage annual effective dose from man-made sources. Depending on the level of
healthcare, however, the average annual medical dose is very small in many parts
of the world. The last three sources in Table 1.1 represent the relatively small
contributions from man-made environmental radiation. Of all man’s activities, at-
mospheric nuclear-weapons testing has resulted in the largest releases of radionu-
clides into the environment. According to the UNSCEAR Report, the annual ef-
fective dose from this source at its maximum in 1963 was about 7% as large as
natural background. The Report also includes an analysis of occupational radiation
exposures.
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2
Atomic Structure and Atomic Radiation

2.1
The Atomic Nature of Matter (ca. 1900)

The work of John Dalton in the early nineteenth century laid the foundation for
modern analytic chemistry. Dalton formulated and interpreted the laws of definite,
multiple, and equivalent proportions, based on the existence of identical atoms as
the smallest indivisible unit of a chemical element. The law of definite proportions
states that in every sample of a chemical compound, the proportion by mass or
weight of the constituent elements is always the same. When two elements com-
bine to form more than one compound, the law of multiple proportions says that
the proportions by mass of the different elements are always in simple ratios to
one another. When two elements react completely with a third, then the ratio of
the masses of the two is the same, regardless of what the third element is, a fact
expressed by the law of equivalent proportions. Dalton also assumed a rule of great-
est simplicity—that elements forming only a single compound do so by means of
a simple one-to-one combination of atoms. This rule does not always hold.

These ideas were supported by the work of Dalton’s contemporary, Gay-Lussac,
on the law of combining volumes of gases. This law states that the volumes of
gases that enter into chemical combination with one another are in the ratio of
simple whole numbers when all volumes are measured under the same conditions
of pressure and temperature. Avogadro hypothesized that equal volumes of any
gases at the same pressure and temperature contain the same number of mole-
cules. Avogadro also suggested that the molecules of some gaseous elements could
be composed of two or more atoms of that element.

Today we recognize that a gram atomic weight of any element contains Avo-
gadro’s number, N0 = 6.022 × 1023, of atoms.1) Furthermore, a gram molecular
weight of any gas also contains N0 molecules and occupies a volume of 22.41 L
(liters) at standard temperature and pressure [STP, 0◦C (=273 K on the absolute
temperature scale) and 760 torr (1 torr = 1 mm Hg)]. The modem scale of atomic
and molecular weights is set by stipulating that the gram atomic weight of the car-
bon isotope, 12C, is exactly 12.000. . . g. A periodic chart, giving atomic numbers,

1 See Appendices A and B for physical
constants, units, and conversion factors.

Atoms, Radiation, and Radiation Protection. James E. Turner
Copyright © 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-40606-7
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atomic weights, densities, and other information about the chemical elements, is
shown in the back of this book.

Example

How many grams of oxygen combine with 2.3 g of carbon in the reaction C + O2 →
CO2? How many molecules of CO2 are thus formed? How many liters of CO2 are
formed at 20◦C and 752 torr?

Solution

In the given reaction, 1 atom of carbon combines with one molecule (2 atoms) of oxy-
gen. From the atomic weights given on the periodic chart in the back of the book, it
follows that 12.011 g of carbon reacts with 2×15.9994 = 31.9988 g of oxygen. Round-
ing off to three significant figures, letting y represent the number of grams of oxygen
asked for, and taking simple proportions, we have y = (2.3/12.0) × 32.0 = 6.13 g.
The number N of molecules of CO2 formed is equal to the number of atoms in 2.3
g of C, which is 2.3/12.0 times Avogadro’s number: N = (2.3/12.0) × 6.02 × 1023 =
1.15 × 1023. Since Avogadro’s number of molecules occupies 22.4 L at STP, the vol-
ume of CO2 at STP is (1.15 × 1023/6.02 × 1023) × 22.4 = 4.28 L. At the given higher
temperature of 20◦C = 293 K, the volume is larger by the ratio of the absolute temper-
atures, 293/273; the volume is also increased by the ratio of the pressures, 760/752.
Therefore, the volume of CO2 made from 2.3 g of C at 20◦C and 752 torr is 4.28
(293/273) (760/752) = 4.64 L. This would also be the volume of oxygen consumed in
the reaction under the same conditions of temperature and pressure, since 1 mole-
cule of oxygen is used to form 1 molecule of carbon dioxide.

As mentioned in Chapter 1, mid-nineteenth century scientists could analyze light
to identify the elements present in its source. Light entering an optical spectrome-
ter is collimated by a lens and slit system, through which it is then directed toward
an analyzer (e.g., a diffraction grating or prism). The analyzer disperses the light,
changing its direction by an amount that depends on its wavelength. White light,
for example, is spread out into the familiar rainbow of colors. Light that is dis-
persed at various angles with respect to the incident direction can be seen with
the eye, photographed, or recorded electronically. Light from a single chemical ele-
ment is observed as a series of discrete line images of the entrance slit that emerge
at various angles from the analyzer. The spectrometer can be calibrated so that
the angles at which the lines occur give the wavelengths of the light that appears
there. Each chemical element produces its own unique, characteristic series of lines
which identify it. The series is referred to as the optical, or line, spectrum of the
element, or simply as the spectrum. When a number of elements are present in
a light source, their spectra appear superimposed in the spectrometer, and the in-
dividual elemental spectra can be sorted out. Elements absorb light of the same
wavelengths they emit.

Figure 2.1 shows the lines in the visible and near-ultraviolet spectrum of atomic
hydrogen. [The wavelength of visible light is between about 4000 Å (violet) and
7500 Å (red).] In 1885 Balmer published an empirical formula that gives these
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Fig. 2.1 Balmer series of lines in the spectrum of atomic hydrogen.

observed wavelengths, λ, in the hydrogen spectrum. His formula is equivalent to
the following:

1
λ

= R∞
(

1
22 –

1
n2

)
, (2.1)

where R∞ = 1.09737 × 107 m–1 is called the Rydberg constant and n = 3, 4, 5, . . .
represents any integer greater than 2. When n = 3, the formula gives λ = 6562 Å;
when n = 4, λ = 4861 Å; and so on. The series of lines, which continue to get
closer together as n increases, converges to the limit λ = 3647 Å in the ultraviolet
as n → ∞. Balmer correctly speculated that other series might exist for hydrogen,
which could be described by replacing the 22 in Eq. (2.1) by the square of other
integers. These other series, however, lie entirely in the ultraviolet or infrared por-
tions of the electromagnetic spectrum. We shall see in Section 2.3 how the Balmer
formula (2.1) was derived theoretically by Bohr in 1913.

As mentioned in Section 1.3, J. J. Thomson in 1897 measured the charge-to-mass
ratio of cathode rays, which marked the experimental “discovery” of the electron as
a particle of matter. The value he found for the ratio was about 1700 times that
associated with the hydrogen atom in electrolysis. One concluded that the elec-
tron was less massive than the hydrogen atom by this factor. Thomson pictured
atoms as containing a large number of the negatively charged electrons in a pos-
itively charged matrix filling the volume of the electrically neutral atom. When a
gas was ionized by radiation, some electrons were knocked out of the atoms in the
gas molecules, leaving behind positive ions of much greater mass. Thomson’s con-
cept of the structure of the atom is sometimes referred to as the “plum pudding”
model.
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2.2
The Rutherford Nuclear Atom

The existence of alpha, beta, and gamma rays was known by 1900. With the dis-
covery of these different kinds of radiation came their use as probes to study the
structure of matter itself.

Rutherford and his students, Geiger and Marsden, investigated the penetration
of alpha particles through matter. Because the range of these particles is small,
an energetic source and thin layers of material were employed. In one set of ex-
periments, 7.69-MeV collimated alpha particles from 214

84Po (RaC′) were directed at
a 6 × 10–5 cm thick gold foil. The relative number of particles leaving the foil at
various angles with respect to the incident beam could be observed through a mi-
croscope on a scintillation screen. While most of the alpha particles passed through
the foil with only slight deviation from their original direction, an occasional par-
ticle was scattered through a large angle, even backwards from the foil. About 1
in 8000 was deflected more than 90◦. An enormously strong electric or magnetic
field would be required to reverse the direction of the fast and relatively massive
alpha particle. (In 1909 Rutherford conclusively established that alpha particles are
doubly charged helium ions.) “It was about as credible as if you had fired a 15-in.
shell at a piece of tissue paper and it came back and hit you,” said Rutherford of
this surprising discovery. He reasoned that the large-angle deflection of some alpha
particles was evidence for the existence of a very small and massive nucleus, which
was also the seat of the positive charge of an atom. The rare scattering of an alpha
particle through a large angle could then be explained by the large repulsive force it
experienced when it approached the tiny nucleus of a single atom almost head-on.
Furthermore, the light electrons in an atom must move rapidly about the nucleus,
filling the volume occupied by the atom. Indeed, atoms must be mostly empty
space, allowing the majority of alpha particles to pass right through a foil with little
or no scattering. Following these ideas, Rutherford calculated the distribution of
scattering angles for the alpha particles and obtained quantitative agreement with
the experimental data. In contrast to the plum pudding model. Rutherford’s atom
is sometimes called a planetary model, in analogy with the solar system.

Today we know that the radius of the nucleus of an atom of atomic mass number
A is given approximately by the formula

R ∼= 1.3A1/3 × 10–15 m. (2.2)

The radius of the gold nucleus is 1.3(197)1/3 × 10–15 = 7.56 × 10–15 m. The atomic
radius of gold is 1.79 × 10–10 m. The ratio of the two radii is (7.56 × 10–15/1.79 ×
10–10) = 4.22 × 10–5. In physical extent, the massive nucleus is only a tiny speck at
the center of the atom.
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Nuclear size increases with atomic mass number A. Equation (2.2) indicates
that the nuclear volume is proportional to A. The so-called strong, or nuclear,
forces2) that hold nucleons (protons and neutrons) together in the nucleus have
short ranges (∼ 10–15 m). Nuclear forces saturate; that is, a given nucleon inter-
acts with only a few others. As a result, nuclear size is increased in proportion as
more and more nucleons are merged to form heavier atoms. The size of all atoms,
in contrast, is more or less the same. All electrons in an atom, no matter how
many, are attracted to the nucleus and repelled by each other. Electric forces do not
saturate—all pairs of charges interact with one another.

2.3
Bohr’s Theory of the Hydrogen Atom

An object that does not move uniformly in a straight line is accelerated, and an
accelerated charge emits electromagnetic radiation. In view of these laws of classi-
cal physics, it was not understood how Rutherford’s planetary atom could be stable.
Electrons orbiting about the nucleus should lose energy by radiation and spiral into
the nucleus.

In 1913 Bohr put forward a bold new hypothesis, at variance with classical laws,
to explain atomic structure. His theory gave correct predictions for the observed
spectra of the H atom and single-electron atomic ions, such as He+, but gave wrong
answers for other systems, such as He and H+

2. The discovery of quantum mechan-
ics in 1925 and its subsequent development has led to the modem mathematical
theory of atomic and molecular structure. Although it proved to be inadequate,
Bohr’s theory gives useful insight into the quantum nature of matter. We shall see
that a number of properties of atoms and radiation can be understood from its
basic concepts and their logical extensions.

Bohr assumed that an atomic electron moves without radiating only in certain
discrete orbits about the nucleus. He further assumed that the transition of the
electron from one orbit to another must be accompanied by the emission or ab-
sorption of a photon of light, the photon energy being equal to the orbital energy
lost or gained by the electron. In principle, Bohr’s ideas thus account for the exis-
tence of discrete optical spectra that characterize an atom and for the fact that an
element emits and absorbs photons of the same wavelengths.

Bohr discovered that the proper electronic energy levels, yielding the observed
spectra, were obtained by requiring that the angular momentum of the electron
about the nucleus be an integral multiple of Planck’s constant h divided by 2π

(� = h/2π ). (Classically, any value of angular momentum is permissible.) For an

2 The four fundamental forces in nature are
(1) gravitational, (2) electromagnetic,
(3) strong (nuclear), and (4) weak
(responsible for beta decay). The attractive
nuclear force is strong enough to overcome

the mutual Coulomb repulsion of protons in
the nucleus (Section 3.1). The
electromagnetic and weak forces are now
recognized as a single, unified force.
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Fig. 2.2 Schematic representation of electron (mass m, charge
–e) in uniform circular motion (speed v, orbital radius r) about
nucleus of charge +Ze.

electron of mass m moving uniformly with speed v in a circular orbit of radius r

(Fig. 2.2), we thus write

mvr = n�, (2.3)

where n is a positive integer, called a quantum number (n = 1, 2, 3, . . .). [Angular
momentum, mvr, is defined in Appendix C; and � = 1.05457 × 10–34 J s (Appen-
dix A)]. If the electron changes from an initial orbit in which its energy is Ei to a
final orbit of lower energy Ef, then a photon of energy

hν = Ei – Ef (2.4)

is emitted, where ν is the frequency of the photon. (Ef > Ei if a photon is absorbed.)
Equations (2.3) and (2.4) are two succinct statements that embody Bohr’s ideas
quantitatively. We now use them to derive the properties of single-electron atomic
systems.

When an object moves with constant speed v in a circle of radius r, it experiences
an acceleration v2/r, directed toward the center of the circle. By Newton’s second
law, the force on the object is mv2/r, also directed toward the center (Problem 10).
The force on the electron in Fig. 2.2 is supplied by the Coulomb attraction between
the electronic and nuclear charges, –e and +Ze. Therefore, we write for the equation
of motion of the electron,

mv2

r
= k0Ze2

r2 , (2.5)

where k0 = 8.98755 × 109 N m2 C–2 (Appendix C). Solving for the radius gives

r = k0Ze2

mv2 . (2.6)

Solving Eq. (2.3) for v and substituting into (2.6), we find for the radii rn of the
allowed orbits

rn = n2
�

2

k0Ze2m
. (2.7)
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Substituting values of the constants from Appendix A, we obtain

rn = n2(1.05457 × 10–34)2

(8.98755 × 109Z)(1.60218 × 10–19)2(9.10939 × 10–31)

= 5.29 × 10–11 n2

Z
m. (2.8)

The innermost orbit (n = 1) in the hydrogen atom (Z = 1) thus has a radius of
5.29 × 10–11 m = 0.529 Å, often referred to as the Bohr radius.

In similar fashion, eliminating r between Eqs. (2.3) and (2.6) yields the orbital
velocities

vn = k0Ze2

n�
= 2.19 × 106 Z

n
m s–1. (2.9)

The velocity of the electron in the first Bohr orbit (n = 1) of hydrogen (Z = 1) is
2.19 × 106 m s–1. In terms of the speed of light c, the quantity v1/c = k0e2/�c ∼=
1/137 is called the fine-structure constant. Usually denoted by α, it determines the
relativistic corrections to the Bohr energy levels, which give rise to a fine structure
in the spectrum of hydrogen.

It follows that the kinetic and potential energies of the electron in the nth orbit
are

KEn = 1
2

mv2
n = k2

0Z2e4m

2n2�2 (2.10)

and

PEn = –
k0Ze2

rn

= –
k2

0Z2e4m

n2�2 , (2.11)

showing that the potential energy is twice as large in magnitude as the kinetic
energy (virial theorem). The total energy of the electron in the nth orbit is therefore

En = KEn + PEn = –
k2

0Z2e4m

2n2�2 = –
13.6Z2

n2 eV. (2.12)

[The energy unit, electron volt (eV), given in Appendix B, is defined as the en-
ergy acquired by an electron in moving freely through a potential difference of
1 V: 1 eV = 1.60 × 10–19 J.] The lowest energy occurs when n = 1. For the H
atom, this normal, or ground-state, energy is –13.6 eV; for He+ (Z = 2) it is
–13.6 × 4 = –54.4 eV. The energy required to remove the electron from the ground
state is called the ionization potential, which therefore is 13.6 eV for the H atom
and 54.4 eV for the He+ ion.

It remains to calculate the optical spectra for the single-electron systems based on
Bohr’s theory. Balmer’s empirical formula (2.1) gives the wavelengths found in the
visible spectrum of hydrogen. According to postulate (2.4), the energies of photons
that can be emitted or absorbed are equal to the differences in the energy values
given by Eq. (2.12). When the electron makes a transition from an initial orbit with
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quantum number ni to a final orbit of lower energy with quantum number nf (i.e.,
ni > nf), then from Eqs. (2.4) and (2.12) the energy of the emitted photon is

hν = hc

λ
= k2

0Z2e4m

2�2

(
–

1
n2

i
+

1
n2

f

)
, (2.13)

where λ is the wavelength of the photon and c is the speed of light. Substituting
the numerical values3) of the physical constants, one finds from Eq. (2.13) that

1
λ

= 1.09737 × 107Z2
(

1
n2

f

–
1
n2

i

)
m–1. (2.14)

When Z = 1, the constant in front of the parentheses is equal to the Rydberg con-
stant R∞ in Balmer’s empirical formula (2.1). The integer 2 in the Balmer formula
is interpretable from Bohr’s theory as the quantum number of the orbit into which
the electron falls when it emits the photon. Derivation of the Balmer formula and
calculation of the Rydberg constant from the known values of e, m, h, and c pro-
vided undeniable evidence for the validity of Bohr’s postulates for single-electron
atomic systems, although the postulates were totally foreign to classical physics.

Figure 2.3 shows a diagram of the energy levels of the hydrogen atom, calculated
from Eq. (2.12), together with vertical lines that indicate the electron transitions
that result in the emission of photons with the wavelengths shown. There are in-
finitely many orbits in which the electron has negative energy (bound states of the
H atom). The orbital energies get closer together near the ionization threshold,
13.6 eV above the ground state. When an H atom becomes ionized, the electron
is not bound and can have any positive energy. In addition to the Balmer series,
Bohr’s theory predicts other series, each corresponding to a different final-orbit
quantum number nf and having an infinite number of lines. The set that results
from transitions of electrons to the innermost orbit (nf = 1, ni = 2, 3, 4, . . .) is called
the Lyman series. The least energetic photon in this series has an energy

E = –13.6
(

1
22 –

1
12

)
= –13.6

(
–

3
4

)
= 10.2 eV, (2.15)

as follows from Eqs. (2.4) and (2.12) with Z = 1. Its wavelength is 1216 Å. As ni

increases, the Lyman lines get ever closer together, like those in the Balmer series,
converging to the energy limit of 13.6 eV, the ionization potential of H. The photon
wavelength at the Lyman series limit (nf = 1, ni → ∞) is obtained from Eq. (2.14):

1
λ

= 1.09737 × 107
(

1
12 –

1
∞2

)
= 1.09737 × 107 m–1, (2.16)

or λ = 911 Å. The Lyman series lies entirely in the ultraviolet region of the electro-
magnetic spectrum. The series with nf ≥ 3 lie in the infrared. The shortest wave-
length in the Paschen series (nf = 3) is given by 1/λ = (1.09737 × 107)/9 m–1, or
λ = 8.20 × 10–7 m = 8200 Å.

3 For high accuracy, the reduced mass of the
electron must be used. See last paragraph in
this section.
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Fig. 2.3 Energy levels of the hydrogen atom. Vertical lines
represent transitions that the electron can make between
various levels with the associated emitted photon wavelengths
shown.

Example

Calculate the wavelength of the third line in the Balmer series in Fig. 2.1. What is the
photon energy in eV?

Solution

We use Eq. (2.14) with Z = 1, nf = 2, and ni = 5:

1
λ

= 1.09737 × 107
(

1
4

–
1
25

)
= 2.30448 × 106 m–1. (2.17)
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Thus λ = 4.34 × 10–7 m = 4340 Å. A photon of this wavelength has an energy

E = hc

λ
= 6.63 × 10–34 × 3 × 108

4.34 × 10–7 = 4.58 × 10–19 J, (2.18)

or 2.86 eV. Alternatively, we can obtain the photon energy from Eq. (2.12). The en-
ergy levels involved in the electronic transition are 13.6/4 = 3.40 eV and 13.6/25 =
0.544 eV; their difference is 2.86 eV.

Example

What is the largest quantum number of a state of the Li2+ ion with an orbital radius
less than 50 Å?

Solution

The radii of the orbits are described by Eq. (2.8) with Z = 3. Setting rn = 50 Å =
5 × 10–9 m and solving for n, we find that

n =
√

rnZ

5.29 × 10–11 =
√

5 × 10–9 × 3
5.29 × 10–11 = 16.8. (2.19)

A nonintegral quantum number is not defined in the Bohr theory. Equation (2.19)
tells us, though, that rn > 50 Å when n = 17 and rn < 50 Å when n = 16. Therefore,
n = 16 is the desired answer.

Example

Calculate the angular velocity of the electron in the ground state of He+.

Solution

With quantum number n, the angular velocity ωn in radians s–1 is equal to 2π fn,
where fn is the frequency, or number of orbital revolutions of the electron about the
nucleus per second. In general, fn = vn/(2πrn); and so ωn = vn/rn. With n = 1 and
Z = 2, Eqs. (2.8) and (2.9) give ω1 = v1/r1 = 1.66 × 1017 s–1, where the dimensionless
angular unit, radian, is understood.

In deriving Eq. (2.14) it was tacitly assumed that an electron of mass m orbits
about a stationary nucleus. In reality, the electron and nucleus (mass M) orbit about
their common center of mass. The energy levels are determined by the relative
motion of the two, in which the effective mass is the reduced mass of the system
(electron plus nucleus), given by

mr = mM

m + M
. (2.20)

For the hydrogen atom, M = 1836m, and so the reduced mass mr = 1836m/1837 =
0.9995m is nearly the same as the electron mass. The heavier the nucleus, the closer
the reduced mass is to the electron mass. The symbol R∞ is used to denote the
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Rydberg constant for a stationary (infinitely heavy) nucleus, with mr = m. Then the
Rydberg constant for ions with different nuclear masses M is given by

RM = R∞
1 + m/M

. (2.21)

Problem 29 shows an example in which the reduced mass plays a significant role.
Problem 31 indicates how Eq. (2.20) can be derived for motion in one dimension.

2.4
Semiclassical Mechanics, 1913–1925

The success of Bohr’s theory for hydrogen and single-electron ions showed that
atoms are “quantized” systems. They radiate photons with the properties described
earlier by Planck and by Einstein. At the same time, the failure of the Bohr theory
to give correct predictions for other systems led investigators to search for a more
fundamental expression of the quantum nature of atoms and radiation.

Between Bohr’s 1913 theory and Heisenberg’s 1925 discovery of quantum me-
chanics, methods of semiclassical mechanics were explored in physics. A general
quantization procedure was sought that would incorporate Bohr’s rules for single-
electron systems and would also be applicable to many-electron atoms and to mole-
cules. Basically, as we did above with Eq. (2.5), one used classical equations of mo-
tion to describe an atomic system and then superimposed a quantum condition,
such as Eq. (2.3).

A principle of “adiabatic invariance” was used to determine which variables of
a system should be quantized. It was recognized that quantum transitions occur
as a result of sudden perturbations on an atomic system, not as a result of gradual
changes. For example, the rapidly varying electric field of a passing photon can re-
sult in an electronic transition with photon absorption by a hydrogen atom. On the
other hand, the electron is unlikely to make a transition if the atom is simply placed
in an external electric field that is slowly increased in strength. The principle thus
asserted that those variables in a system that were invariant under slow, “adiabatic”
changes were the ones that should be quantized.

A generalization of Bohr’s original quantum rule (2.3) was also worked out (by
Wilson and Sommerfeld, independently) that could be applied to pairs of variables,
such as momentum and position. So-called phase integrals were used to quantize
systems after the classical laws of motion were applied.

These semiclassical procedures had some successes. For example, elliptical or-
bits were introduced into Bohr’s picture and relativistic equations were used in
place of the nonrelativistic Eq. (2.5). The relativistic theory predicted a split in some
atomic energy levels with the same quantum number, the magnitude of the energy
difference depending on the fine-structure constant. The existence of the split gives
rise to a fine structure in the spectrum of most elements in which some “lines”
are observed under high resolution to be two closely separated lines. The well-
known doublet in the sodium spectrum, consisting of two yellow lines at 5890 Å
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and 5896 Å, is due to transitions from two closely spaced energy levels, degener-
ate in nonrelativistic theory. In spite of its successes in some areas, semiclassical
atomic theory did not work for many-electron atoms and for such simple systems
as some diatomic molecules, for which it gave unambiguous but incorrect spectra.

As a guide for discovering quantum laws, Bohr in 1923 introduced his corre-
spondence principle. This principle states that the predictions of quantum physics
must be the same as those of classical physics in the limit of very large quantum
number n. In addition, any relationships between states that are needed to obtain
the classical results for large n also hold for all n. The diagram of energy levels in
Fig. 2.3 illustrates the approach of a quantum system to a classical one when the
quantum numbers become very large. Classically, the electron in a bound state has
continuous, rather than discrete, values of the energy. As n → ∞, the bound-state
energies of the H atom get arbitrarily close together.

Advances toward the discovery of quantum mechanics were also being made
along other lines. The classical Maxwellian wave theory of electromagnetic radi-
ation seemed to be at odds with the existence of Einstein’s corpuscular photons
of light. How could light act like waves in some experiments and like particles in
others? The diffraction and interference of X rays was demonstrated in 1912 by
von Laue, thus establishing their wave nature. The Braggs used X-ray diffraction
from crystal layers of known separation to measure the wavelength of X rays. In
1922, discovery of the Compton effect (Section 8.4)—the scattering of X-ray pho-
tons from atoms with a decrease in photon energy—demonstrated their nonwave,
or corpuscular, nature in still another way. The experimental results were explained
by assuming that a photon of energy E has a momentum p = E/c = hν/c, where ν

is the photon frequency and c is the speed of light. In 1924, de Broglie proposed
that the wave/particle dualism recognized for photons was a characteristic of all
fundamental particles of nature. An electron, for example, hitherto regarded as a
particle, also might have wave properties associated with it. The universal formula
that links the property of wavelength, λ, with the particle property of momentum,
p, is that which applies to photons: p = hν/c = h/λ. Therefore, de Broglie proposed
that the wavelength associated with a particle be given by the relation

λ = h

p
= h

γmv
, (2.22)

where m and v are rest mass and speed of the particle and γ is the relativistic factor
defined in Appendix C.

Davisson and Germer in 1927 published the results of their experiments, which
demonstrated that a beam of electrons incident on a single crystal of nickel is dif-
fracted by the regularly spaced crystal layers of atoms. Just as the Braggs mea-
sured the wavelength of X rays from crystal diffraction, Davisson and Germer
measured the wavelength for electrons. They found excellent agreement with Eq.
(2.22). The year before this experimental confirmation of the existence of electron
waves, Schroedinger had extended de Broglie’s ideas and developed his wave equa-
tion for the new quantum mechanics, as described in the next section.
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A convenient formula can be used to obtain the wavelength λ of a non-relativistic
electron in terms of its kinetic energy T. (An electron is nonrelativistic as long as
T is small compared with its rest energy, mc2 = 0.511 MeV.) The nonrelativistic
formula relating momentum p and kinetic energy T is p = √

2mT (Appendix C). It
follows from Eq. (2.22) that

λ = h√
2mT

. (2.23)

It is often convenient to express the wavelength in Å and the energy in eV. Using
these units for λ and T in Eq. (2.23), we write

λÅ × 10–10 = 6.6261 × 10–34√
2 × 9.1094 × 10–31 × TeV × 1.6022 × 10–19

, (2.24)

or

λÅ = 12.264√
TeV

= 12.3√
TeV

. (Nonrelativistic electrons) (2.25)

The subscripts indicate the units for λ and T when this formula is used.
An analogous expression can be derived for photons. Since the photon energy is

given by E = hν, the wavelength is λ = c/ν = ch/E. Analogously to Eq. (2.25), we
find

λÅ = 12398
EeV

= 12400
EeV

. (Photons) (2.26)

Example

In some of their experiments, Davisson and Germer used electrons accelerated
through a potential difference of 54 V. What is the de Broglie wavelength of these
electrons?

Solution

The nonrelativistic formula (2.25) gives, with TeV = 54 eV, λÅ = 12.3/
√

54 = 1.67 Å.
Electron wavelengths much smaller than optical ones are readily obtainable. This is
the basis for the vastly greater resolving power that electron microscopes have over
optical microscopes (wavelengths � 4000 Å).

Example

Calculate the de Broglie wavelength of a 10-MeV electron.

Solution

We must treat the problem relativistically. We thus use Eq. (2.22) after determining γ

and v. From Appendix C, with T = 10 MeV and mc2 = 0.511 MeV, we have

10 = 0.511(γ – 1), (2.27)
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giving γ = 20.6. We can compute v directly from γ. In this example, however, we
know that v is very nearly equal to c. Using v = c in Eq. (2.22), we therefore write

λ = h

γmc
= 6.63 × 10–34

20.6 × 9.11 × 10–31 × 3 × 108 = 1.18 × 10–13 m. (2.28)

For the last example one can, alternatively, derive the relativistic form of Eq. (2.25)
for electrons. The result is (Problem 42)

λÅ = 12.264√
TeV

(
1 + TeV

1.022×106

) . (Relativistic electrons) (2.29)

The last term in the denominator is TeV/(2mc2) and is, therefore, not important
when the electron’s kinetic energy can be neglected compared with its rest energy.
Equation (2.29) then becomes identical with Eq. (2.25).

Also, in the period just before the discovery of quantum mechanics, Pauli formu-
lated his famous exclusion principle. This rule can be expressed by stating that no
two electrons in an atom can have the same set of four quantum numbers. We shall
discuss the Pauli principle in connection with the periodic system of the elements
in Section 2.6.

2.5
Quantum Mechanics

Quantum mechanics was discovered by Heisenberg in 1925 and, from a com-
pletely different point of view, independently by Schroedinger at about the same
time. Heisenberg’s formulation is termed matrix mechanics and Schroedinger’s
is called wave mechanics. Although they are entirely different in their mathemati-
cal formulation, Schroedinger showed in 1926 that the two systems are completely
equivalent and lead to the same results. We shall discuss each in turn.

Heisenberg associated the failure of the Bohr theory with the fact that it was
based on quantities that are not directly observable, like the classical position and
speed of an electron in orbit about the nucleus. He proposed a system of mechanics
based on observable quantities, notably the frequencies and intensities of the lines
in the emission spectrum of atoms and molecules. He then represented dynamical
variables (e.g., the position x of an electron) in terms of observables and worked
out rules for representing x2 when the representation for x is given. In so doing,
Heisenberg found that certain pairs of variables did not commute multiplicatively
(i.e., xp �= px when x and p represent position and momentum in the direction of x),
a mathematical property of matrices recognized by others after Heisenberg’s orig-
inal formulation. Heisenberg’s matrix mechanics was applied to various systems
and gave results that agreed with those predicted by Bohr’s theory where the latter
was consistent with experiment. In other instances it gave new theoretical predic-
tions that also agreed with observations. For example, Heisenberg explained the
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pattern of alternating strong and weak lines in the spectra of diatomic molecules, a
problem in which Bohr’s theory had failed. He showed that two forms of molecular
hydrogen should exist, depending on the relative directions of the proton spin, and
that the form with spins aligned (orthohydrogen) should be three times as abun-
dant as the other with spins opposed (parahydrogen). This discovery was cited in
the award of the 1932 Nobel Prize in physics to Heisenberg.

The concept of building an atomic theory on observables and its astounding suc-
cesses let to a revolution in physics. In classical physics, objects move with certain
endowed properties, such as position and velocity at every moment in time. If one
knows these two quantities at any one instant and also the total force that an object
experiences, then its motion is determined completely for all times by Newton’s
second law. Such concepts are applied in celestial mechanics, where the positions
of the planets can be computed backwards and forwards in time for centuries. The
same determinism holds for the motion of familiar objects in everyday life. How-
ever, on the atomic scale, things are inherently different. In an experiment that
would measure the position and velocity of an electron in orbit about a nucleus,
the act of measurement itself introduces uncontrollable perturbations that prevent
one’s obtaining all the data precisely. For example, photons of very short wave-
length would be required to localize the position of an electron within an atomic
dimension. Such photons impart high momentum in scattering from an electron,
thereby making simultaneous knowledge of the electron’s position and momen-
tum imprecise.

In 1927 Heisenberg enunciated the uncertainty principle, which sets the limits
within which certain pairs of quantities can be known simultaneously. For momen-
tum p and position x (in the direction of the momentum) the uncertainty relation
states that

�p�x ≥ �. (2.30)

Here �p and �x are the uncertainties (probable errors) in these quantities, deter-
mined simultaneously; the product of the two can never be smaller than �, which
it can approach under optimum conditions. Another pair of variables consists of
energy E and time t, for which

�E�t ≥ �. (2.31)

The energy of a system cannot be measured with arbitrary precision in a very short
time interval. These uncertainties are not due to any shortcomings in our measur-
ing ability. They are a result of the recognition that only observable quantities have
an objective meaning in physics and that there are limits to making measurements
on an atomic scale. The question of whether an electron “really” has a position and
velocity simultaneously—whether or not we try to look—is metaphysical. Schools
of philosophy differ on the fundamental nature of our universe and the role of the
observer.

Whereas observation is immaterial to the future course of a system in classical
physics, the observer’s role is a basic feature of quantum mechanics, a formal-
ism based on observables. The uncertainty relations rule out classical determinism
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for atomic systems. Knowledge obtained from one measurement, say, of an elec-
tron’s orbital position, will not enable one to predict with certainty the result of a
second measurement of the orbital position. Instead of this determinism, quan-
tum mechanics enables one to predict only the probabilities of finding the electron
in various positions when the second measurement is made. Operationally, such
a probability distribution can be measured by performing an experiment a large
number of times under identical conditions and compiling the frequency distribu-
tion of the different results. The laws of quantum mechanics are definite, but they
are statistical, rather than deterministic, in nature. As an example of this distinc-
tion, consider a sample of 1016 atoms of a radioactive isotope that is decaying at an
average rate of 104 atoms per second. We cannot predict which particular atoms will
decay during any given second nor can we say exactly how many will do so. How-
ever, we can predict with assurance the probability of obtaining any given number
of counts (e.g., 10,132) in a given second, as can be checked by observation.

Example

What is the minimum uncertainty in the momentum of an electron that is localized
within a distance �x = 1 Å, approximately the diameter of the hydrogen atom? How
large can the kinetic energy of the electron be, consistent with this uncertainty?

Solution

The relation (2.30) requires that the uncertainty in the momentum be at least as large
as the amount

�p ∼= �

�x
= 1.05 × 10–34 J s

10–10 m
∼ 10–24 kg m s–1. (2.32)

To estimate how large the kinetic energy of the electron can be, we note that its mo-
mentum p can be as large as �p. With p ∼ �p, the kinetic energy T of the electron
(mass m) is

T = p2

2m
∼ (10–24)2

2 × 9.11 × 10–31 ∼ 5 × 10–19 J, (2.33)

or about 3 eV. This analysis indicates that an electron confined within a distance
�x ∼ 1 Å will have a kinetic energy in the eV range. In the case of the H atom we
saw that the electron’s kinetic energy is 13.6 eV. The uncertainty principle implies
that electrons confined to even smaller regions become more energetic, as the next
example illustrates.

Example

If an electron is localized to within the dimensions of an atomic nucleus, �x ∼
10–15 m, estimate its kinetic energy.

Solution

In this case, we have p ∼ �p ∼ �/�x ∼ 10–34/10–15 ∼ 10–19 kg m s–1. Comparison
with the last example (p ∼ 10–24 kg m s–1) indicates that we must use the relativistic
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formula to find the kinetic energy from the momentum in this problem (Appendix C).
The total energy ET of the electron is given by

E2
T = p2c2 + m2c4 (2.34)

= (10–19)2(3 × 108)2 + (9 × 10–31)2(3 × 108)4 (2.35)

= 9 × 10–22 J2, (2.36)

from which we obtain ET ∼ 200 MeV. It follows that electrons in atomic nuclei would
have energies of hundreds of MeV. Before the discovery of the neutron in 1932 it was
speculated that a nucleus of atomic number Z and atomic mass number A consists
of A protons and A – Z electrons. The uncertainty principle argued against such a
picture, since maximum beta-particle energies of only a few MeV are found. (In addi-
tion, some nuclear spins would be different from those observed if electrons existed
in the nucleus.) The beta particle is created in the nucleus at the time of decay.

We turn now to Schroedinger’s wave mechanics. Schroedinger began with de
Broglie’s hypothesis (Eq. 2.22) relating the momentum and wavelength of a parti-
cle. He introduced an associated oscillating quantity, ψ , and constructed a differen-
tial equation for it to satisfy. The coefficients in the equation involve the constants h

and the mass and charge of the particle. Equations describing waves are well known
in physics. Schroedinger’s wave equation is a linear differential equation, second
order in the spatial coordinates and first order in time. It is linear, so that the sum
of two or more solutions is also a solution. Linearity thus permits the superposition
of solutions to produce interference effects and the construction of wave packets
to represent particles. The wave-function solution ψ must satisfy certain bound-
ary conditions, which lead to discrete values, called eigenvalues, for the energies of
bound atomic states. Applied to the hydrogen atom, Schroedinger’s wave equation
gave exactly the Bohr energy levels. It also gave correct results for the other sys-
tems to which it was applied. Today it is widely used to calculate the properties of
many-electron atomic and molecular systems, usually by numerical solution on a
computer.

A rough idea can be given of how wave mechanics replaces Bohr’s picture of the
H atom. Instead of the concept of the electron moving in discrete orbits about the
nucleus, we envision the electron as being represented by an oscillating cloud. Fur-
thermore, the electron cloud oscillates in such a way that it sets up a standing wave
about the nucleus. A familiar example of standing waves is provided by a vibrating
string of length L stretched between two fixed points P1 and P2, as illustrated in
Fig. 2.4. Standing waves are possible only with wavelengths λ given by

L = n
λ

2
, n = 1, 2, 3, . . . . (2.37)

This relation describes a discrete set of wavelengths λ. In an analogous way, an
electron standing-wave cloud in the H atom can be envisioned by requiring that
an integral number of wavelengths nλ fit exactly into a circumferential distance
2πr about the nucleus: 2πr = nλ. Using the de Broglie relation (2.22) then implies
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Fig. 2.4 Examples of standing waves in string of length L
stretched between two fixed points P1 and P2. Such waves exist
only with discrete wavelengths given by λ = 2L/n, where
n = 1, 2, 3, . . . .

nonrelativistically (γ = 1) that 2πr = nh/mv, or mvr = n�. One thus arrives at Bohr’s
original quantization law, Eq. (2.3).

Schroedinger’s wave equation is nonrelativistic, and he proposed a modification
of it in 1926 to meet the relativistic requirement for symmetry between space and
time. As mentioned earlier, the Schroedinger differential equation is second order
in space and first order in time variables. His relativistic equation, which contained
the second derivative with respect to time, led to a fine structure in the hydrogen
spectrum, but the detailed results were wrong. Taking a novel approach, Dirac pro-
posed a wave equation that was first order in both the space and time variables. In
1928 Dirac showed that the new equation automatically contained the property of
intrinsic angular momentum for the electron, rotating about its own axis. The pre-
dicted value of the electron’s spin angular momentum was �/2, the value ascribed
experimentally in 1925 by Uhlenbeck and Goudsmit to account for the structure of
the spectra of the alkali metals. Furthermore, the fine structure of the hydrogen-
atom spectrum came out correctly from the Dirac equation. Dirac’s equation also
implied the existence of a positive electron, found later by Anderson, who discov-
ered the positron in cosmic radiation in 1932. In 1927 Dirac also laid the foundation
for quantum electrodynamics—the modern theory of the emission and absorption
of electromagnetic radiation by atoms. The reader is referred to the historical out-
line in Section 1.3 for a chronology of events that occurred with the discovery of
quantum mechanics.
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2.6
The Pauli Exclusion Principle

Originally based on the older, semiclassical quantum theory, the Pauli exclusion
principle plays a vital role in modern quantum mechanics. The principle was de-
veloped for electrons in orbital states in atoms. It holds that no two electrons in an
atom can be in the same state, characterized by four quantum numbers which we
now define. The Pauli principle enables one to use atomic theory to account for the
periodic system of the chemical elements.

In the Bohr theory with circular orbits, described in Section 2.3, only a single
quantum number, n, was used. This is the first of the four quantum numbers,
and we designate it as the principal quantum number. In Bohr’s theory each value
of n gives an orbit at a given distance from the nucleus. For an atom with many
electrons, we say that different values of n correspond to different electron shells.
Each shell can accommodate only a limited number of electrons. In developing
the periodic system, we postulate that, as more and more electrons are present in
atoms of increasing atomic number, they fill the innermost shells. The outer-shell
electrons determine the gross chemical properties of an element; these properties
are thus repeated successively after each shell is filled. When n = 1, the shell is
called the K shell; n = 2 denotes the L shell; n = 3, the M shell; and so on.

The second quantum number arises in the following way. As mentioned in Sec-
tion 2.4, elliptical orbits and relativistic mechanics were also considered in the older
quantum theory of the hydrogen atom. In nonrelativistic mechanics, the mean en-
ergy of an electron is the same for all elliptical orbits having the same major axis.
Furthermore, the mean energy is the same as that for a circular orbit with a diam-
eter equal to the major axis. (The circle is the limiting case of an ellipse with equal
major and minor axes.) Relativistically, the situation is different because of the in-
crease in velocity and hence mass that an electron experiences in an elliptical orbit
when it comes closest to the nucleus. In 1916 Sommerfeld extended Bohr’s theory
to include elliptical orbits with the nucleus at one focus. The formerly degenerate
energies of different ellipses with the same major axis are slightly different rela-
tivistically, giving rise to the fine structure in the spectra of elements. The observed
fine structure in the hydrogen spectrum was obtained by quantizing the ratio of
the major and minor axes of the elliptical orbits, thus providing a second quantum
number, called the azimuthal quantum number. In modern theory it amounts to
the same thing as the orbital angular-momentum quantum number, l, with values
l = 0, 1, 2, . . . , n – 1. Thus, for a given shell, the second quantum number can be any
non-negative integer smaller than the principal quantum number. When n = 1,
l = 0 is the only possible azimuthal quantum number; when n = 2, l = 0 and l = 1
are both possible.

The magnetic quantum number m is the third. It was introduced to account for
the splitting of spectral lines in a magnetic field (Zeeman effect). An electron or-
biting a nucleus constitutes an electric current, which produces a magnetic field.
When an atom is placed in an external magnetic field, its own orbital magnetic
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field lines up only in certain discrete directions with respect to the external field.
The magnetic quantum number gives the component of the orbital angular mo-
mentum in the direction of the external field. Accordingly, m can have any inte-
gral value between +l and –l; viz., m = 0,±1,±2, . . . ,±l. With l = 1, for example,
m = –1, 0, 1.

Although the Bohr–Sommerfeld theory explained a number of features of atomic
spectra, problems still persisted. Unexplained was the fact that the alkali-metal
spectra (e.g., Na) show a doublet structure even though these atoms have only a sin-
gle valence electron in their outer shell (as we show in the next section). In addition,
spectral lines do not split into a normal pattern in a weak magnetic field (anom-
alous Zeeman effect). These problems were cleared up when Pauli introduced a
fourth quantum number of “two-valuedness,” having no classical analogue. Then,
in 1925, Uhlenbeck and Goudsmit proposed that the electron has an intrinsic an-
gular momentum 1

2 � due to rotation about its own axis; thus the physical signifi-
cance of Pauli’s fourth quantum number was evident. The electron’s intrinsic spin
endows it with magnetic properties. The spin quantum number, s, has two values,
s = ± 1

2 . In an external magnetic field, the electron aligns itself either with “spin
up” or “spin down” with respect to the field direction.

The Pauli exclusion principle states that no two electrons in an atom can occupy
a state with the same set of four quantum numbers n, l, m, and s. The principle can
also be expressed equivalently, but more generally, by saying that no two electrons
in a system can have the same complete set of quantum numbers. Beyond atomic
physics, the Pauli exclusion principle applies to all types of identical particles of
half-integral spin (called fermions and having intrinsic angular momentum 1

2 �,
3
2 �, etc.). Such particles include positrons, protons, neutrons, muons, and others.
Integral-spin particles (called bosons) do not obey the exclusion principle. These
include photons, alpha particles, pions, and others.

We next apply the Pauli principle as a basis for understanding the periodic sys-
tem of the elements.

2.7
Atomic Theory of the Periodic System

The K shell, with n = 1, can contain at most two electrons, since l = 0, m = 0, and
s = ± 1

2 are the only possible values of the other three quantum numbers. The two
electrons in the K shell differ only in their spin directions. The element with atomic
number Z = 2 is the noble gas helium. Like the other noble-gas atoms it has a
completed outer shell and is chemically inert. The electron configurations of H and
He are designated, respectively, as 1s1 and 1s2. The symbols in the configurations
give the principal quantum number, a letter designating the azimuthal quantum
number (s denotes l = 0; p denotes l = 1; d, l = 2; and f, l = 3), and a superscript
giving the total number of electrons in the states with the given values of n and l.
The electron configurations of each element are shown in the periodic table in the
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back of this book, to which the reader is referred in this discussion. The first period
contains only hydrogen and helium.

The next element, Li, has three electrons. Two occupy the full K shell and the
third occupies a state in the L shell (n = 2). Electrons in this shell can have l = 0
(s states) or l = 1 (p states). The 2s state has lower energy than the 2p, and so the
electron configuration of Li is 1s22s1. With Z = 4 (Be), the other 2s state is occupied,
and the configuration is 1s22s2. No additional s electrons (l = 0) can be added in
these two shells. However, the L shell can now accommodate electrons with l = 1
(p electrons) and with three values of m: –1, 0, +1. Since two electrons with opposite
spins (spin quantum numbers ± 1

2 ) can occupy each state of given n, l, and m, there
can be a total of six electrons in the 2p states. The configurations for the next six
elements involve the successive filling of these states, from Z = 5 (B), 1s22s2p1,
to Z = 10 (Ne), 1s22s2p6. The noble gas neon has the completed L shell. To save
repeating the writing of the identical inner-shell configurations for other elements,
one denotes the neon configuration by [Ne]. The second period of the table begins
with Li and ends with Ne.

With the next element, sodium, the filling of the M shell begins. Sodium has
a 3s electron and its configuration is [Ne]3s1. Its single outer-shell electron gives
it properties akin to those of lithium. One sees that the other alkali metals in the
group IA of the periodic table are all characterized by having a single s electron in
their outer shell. The third period ends with the filling of the 3s2p6 levels in the
noble gas, Ar (Z = 18). The chemical and physical properties of the eight elements
in the third period are similar to those of the eight elements in the second period
with the same outer-shell electron configurations.

The configuration of Ar (Z = 18), which is [Ne]3s2p6, is also designated as [Ar].
All of the states with n = 1, l = 0; n = 2, l = 0, 1; and n = 3, l = 0, 1 are occupied in
Ar. However, the M shell is not yet filled, because d states (l = 2) are possible when
n = 3. Because there are five values of m when l = 2, there are five d states, which
can accommodate a total of ten electrons (five pairs with opposite spin), which is the
number needed to complete the M shell. It turns out that the 4s energy levels are
lower than the 3d. Therefore, the next two elements, K and Ca, that follow Ar have
the configurations [Ar]4s1 and [Ar]4s2. The next ten elements, from Sc (Z = 21)
through Zn (Z = 30), are known as the transition metals. This series fills the 3d
levels, sometimes in combination with 4s1 and sometimes with 4s2 electrons. The
configuration of Zn is [Ar]3d104s2, at which point the M shell (n = 3) is complete.
The next six elements after Zn fill the six 4p states, ending with the noble gas, Kr,
having the configuration [Ar]3d104s2p6.

After Ar, the shells with a given principal quantum number do not get filled
in order. Nevertheless, one can speak of the filling of certain subshells in order,
such as the 4s subshell and then the 3d in the transition metals. The lanthanide
series of rare-earth elements, from Z = 58 (Ce) to Z = 71 (Lu), occurs when the 4f
subshell is being filled. For these states l = 3, and since –3 ≤ m ≤ 3, a total of 7×2 =
14 elements compose the series. Since it is an inner subshell that is being filled,
these elements all have very nearly the same chemical properties. The situation is
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repeated with the actinide elements from Z = 90 (Th) to Z = 103 (Lr), in which the
5f subshell is being filled.

The picture given here is that of an independent-electron model of the atom,
in which each electron independently occupies a given state. In reality, the atomic
electrons are indistinguishable from one another and an atomic wave function is
one in which any electron can occupy any state with the same probability as any
other electron. Moreover, hybrid atomic states of mixed configurations are used to
explain still other phenomena (e.g., the tetrahedral bonds in CH4).

2.8
Molecules

Quantum mechanics has also been very successful in areas other than atomic
structure and spectroscopy. It has also explained the physics of molecules and
condensed matter (liquids and solids). Indeed, the nature of the chemical bond
between two atoms, of either the same or different elements, is itself quantum
mechanical in nature, as we now describe.

Consider the formation of the H2 molecule from two H atoms. Experimentally, it
is known from the vibrational spectrum of H2 that the two protons’ separation os-
cillates about an equilibrium distance of 0.74 Å and the dissociation energy of the
molecule is 4.7 eV. The two electrons move very rapidly about the two nuclei, which,
by comparison, move slowly back and forth along the direction between their cen-
ters. When the nuclei approach each other, their Coulomb repulsion causes them
to reverse their directions and move apart. The electrons more than keep pace and
move so that the separating nuclei again reverse directions and approach one an-
other. Since the electrons move so quickly, they make many passes about the nuclei
during any time in which the latter move appreciably. Therefore, one can gain con-
siderable insight into the structure of H2 and other molecules by considering the
electronic motion at different fixed separations of the nuclei (Born-Oppenheimer
approximation).

To analyze H2, we begin with the two protons separated by a large distance R,
as indicated in Fig. 2.5(a). The lowest energy of the system will then occur when
each electron is bound to one of the protons. Thus the ground state of the H2

system at large nuclear separations is that in which the two hydrogen atoms, HA

and HB, are present in their ground states. We denote this structure by writing
(HA1, HB2), indicating that electron number one is bound in the hydrogen atom
HA and electron number two in HB. Another stable structure at large R is an ionic
one, (HA12–, H+

B), in which both electrons orbit one of the protons. This structure
is shown in Fig. 2.5(b). Since 13.6 eV is required to remove an electron from H and
its binding energy in the H– ion is only 0.80 eV, the ionic structure in Fig. 2.5(b)
has less binding energy than the natural one in (a). In addition to the states shown
in the figure, one can consider the same two structures in which the two electrons
are interchanged, (HA2, HB1) and (HA21–, H+

B).
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Fig. 2.5 At large internuclear separation R, the structure of the
H2 molecule can approach (a) that of two neutral H atoms, H
+ H, or (b) that of two ions, H– + H+. These structures merge
at close separations in (c). The indistinguishability of the two
electrons gives stability to the bond formed through the
quantum-mechanical phenomenon of resonance.

Next, we consider what happens when R becomes smaller. When the nuclei move
close together, as in Fig. 2.5(c), the electron wave functions associated with each
nucleus overlap. Detailed calculations show that neither of the structures shown
in Fig. 2.5(a) or (b) nor a combination of the two leads to the formation of a stable
molecule. Instead, stability arises from the indistinguishable participation of both
electrons. The neutral structure alone will bind the two atoms when, in place of
either (HA1, HB2) or (HA2, HB1) alone, one uses the superposed structure (HA1,
HB2) + (HA2, HB1). The need for the superposed structure is a purely quantum-
mechanical concept, and is due to the fact that the two electrons are indistinguish-
able and their roles must be exchangeable without affecting observable quantities.
The energy contributed to the molecular binding by the electron exchange is called
the resonance energy, and its existence with the neutral structure in Fig. 2.5(c) ac-
counts for ∼80% of the binding energy of H2. The type of electron-pair bond that
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Fig. 2.6 Total energy of the H2 molecule as a function of
internuclear separation R. A stable molecule is formed when
the spins of the two electrons are antiparallel. A nonbonding
energy level is formed when the spins are parallel. The two
energies coincide at large R.

is thus formed by the exchange is called covalent. Resonance also occurs between
the ionic structures (HA12–, H+

B) and (HA21–, H+
B) from Fig. 2.5(b) and contributes

∼5% of the binding energy, giving the H2 bond a small ionic character. The re-
maining 15% of the binding energy comes from other effects, such as deformation
of the electron wave functions from the simple structures discussed here and from
partial shielding of the nuclear charges by each electron from the other. In general,
for covalent bonding to occur, the two atoms involved must have the same number
of unpaired electrons, as is the case with hydrogen. However, the atoms need not
be identical.

The character of the bond in HF and HCl, for example, is more ionic than in
the homonuclear H2 or N2. The charge distribution in a heteronuclear diatomic
molecule is not symmetric, and so the molecule has a permanent electric dipole
moment. (The two types of bonds are called homopolar and heteropolar.)

Figure 2.6 shows the total energy of the H2 molecule as a function of the inter-
nuclear separation R. (The total energy of the two H atoms at large R is taken as the
reference level of zero energy.) The bound state has a minimum energy of –4.7 eV
at the equilibrium separation of 0.74 Å, in agreement with the data given earlier
in this section. In this state the spins of the bonding electron pair are antiparallel.
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A second, nonbonding state is formed with parallel spins. These two energy levels
are degenerate at large R, where the wave functions of the two atomic electrons do
not overlap appreciably.

Molecular spectra are very complicated. Changes in the rotational motion of
molecules accompany the emission or absorption of photons in the far infrared.
Vibrational changes together with rotational ones usually produce spectra in the
near infrared. Electronic transitions are associated with the visible and ultraviolet
part of molecular spectra. Electronic molecular spectra have a fine structure due
to the vibrational and rotational motions of the molecule. Molecular spectra also
show isotopic structure. The presence of the naturally occurring 35Cl and 37Cl iso-
topes in chlorine, for example, gives rise to two sets of vibrational and rotational
energy-level differences in the spectrum of HCl.

2.9
Solids and Energy Bands

We briefly discuss the properties of solids and the origin of energy bands, which are
essential for understanding how semiconductor materials can be used as radiation
detectors (Chapter 10).

Solids can be crystalline or noncrystalline (e.g., plastics). Crystalline solids, of
which semiconductors are an example, can be put into four groups according to
the type of binding that exists between atoms. Crystals are characterized by regular,
repeated atomic arrangements in a lattice.

In a molecular solid the bonds between molecules are formed by the weak, attrac-
tive van der Waals forces. Examples are the noble gases, H2, N2, and O2, which are
solids only at very low temperatures and can be easily deformed and compressed.
All electrons are paired and hence molecular solids are poor electrical conductors.

In an ionic solid all electrons are also paired. A crystal of NaCl, for example,
exists as alternating charged ions, Na+ and Cl–, in which all atomic shells are filled.
These solids are also poor conductors. The electrostatic forces between the ions
are very strong, and hence ionic solids are hard and have high melting points.
They are generally transparent to visible light, because their electronic absorption
frequencies are in the ultraviolet region and lattice vibration frequencies are in the
infrared.

A covalent solid is one in which adjacent atoms are covalently bound by shared
valence electrons. Such bonding is possible only with elements in Group IVB of
the periodic system; diamond, silicon, and germanium are examples. In diamond,
a carbon atom (electronic configuration 1s22s2p2) shares one of its four L-shell elec-
trons with each of four neighbors, which, in turn, donates one of its L electrons for
sharing. Each carbon atom thus has its full complement of eight L-shell electrons
through tight binding with its neighbors. Covalent solids are very hard and have
high melting points. They have no free electrons, and are therefore poor conduc-
tors. Whereas diamond is an insulator, Si and Ge are semiconductors, as will be
discussed in Chapter 10.
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In a metallic solid (e.g., Cu, Au) the valence electrons in the outermost shells are
weakly bound and shared by all of the atoms in the crystal. Vacancies in these shells
permit electrons to move with ease through the crystal in response to the presence
of an electric field. Metallic solids are good conductors of electricity and heat. Many
of their properties can be understood by regarding some of the electrons in the
solid as forming an “electron gas” moving about in a stationary lattice of positively
charged ions. The electrons satisfy the Pauli exclusion principle and occupy a range
of energies consistent with their temperature. This continuous range of energies
is called a conduction band.

To describe the origin of energy bands in a solid, we refer to Fig. 2.6. We saw
that the twofold exchange degeneracy between the electronic states of two widely
separated hydrogen atoms was broken when their separation was reduced enough
for their electron wave functions to overlap appreciably. The same twofold split-
ting occurs whenever any two identical atoms bind together. Moreover, the excited
energy levels of isolated atoms also undergo a similar twofold splitting when the
two atoms unite. Such splitting of exchange-degenerate energy levels is a general
quantum-mechanical phenomenon. If three identical atoms are present, then the
energy levels at large separations are triply degenerate and split into three different
levels when the atoms are brought close together. In this case, the three levels all
lie in about the same energy range as the first two if the interatomic distances are
comparable. If N atoms are brought together in a regular arrangement, such as a
crystal solid, then there are N levels in the energy interval.

Figure 2.7 illustrates the splitting of electronic levels for N = 2, 4, and 8 and the
onset of band formation. Here the bound-state energies E are plotted schematically
as functions of the atomic separations R, with R0 being the normal atomic spacing
in the solid. When N becomes very large, as in a crystal, the separate levels are
“compressed together” into a band, within which an electron can have any energy.
At a given separation, the band structure is most pronounced in the weakly bound
states, in which the electron cloud extends over large distances. The low-lying lev-
els, with tightly bound electrons, remain discrete and unperturbed by the presence
of neighboring atoms. Just as for the discrete levels, electrons cannot exist in the
solid with energies between the allowed bands. (The existence of energy bands also
arises directly out of the quantum-mechanical treatment of the motion of electrons
in a periodic lattice.)

While the above properties are those of “ideal” crystalline solids, the presence
of impurities—even in trace amounts—often changes the properties markedly. We
shall see in Chapter 10 how doping alters the behavior of intrinsic semiconductors
and the scintillation characteristics of crystals.

2.10
Continuous and Characteristic X Rays

Roentgen discovered that X rays are produced when a beam of electrons strikes a
target. The electrons lose most of their energy in collisions with atomic electrons
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Fig. 2.8 Schematic diagram of modern X-ray tube with fixed target anode.

in the target, causing the ionization and excitation of atoms. In addition, they can
be sharply deflected in the vicinity of the atomic nuclei, thereby losing energy by
irradiating X-ray photons. Heavy nuclei are much more efficient than light nuclei in
producing the radiation because the deflections are stronger. A single electron can
emit an X-ray photon having any energy up to its own kinetic energy. As a result, a
monoenergetic beam of electrons produces a continuous spectrum of X rays with
photon energies up to the value of the beam energy. The continuous X rays are also
called bremsstrahlung, or “braking radiation.”

A schematic diagram, showing the basic elements of a modern X-ray tube, is
shown in Fig. 2.8. The tube has a cathode and anode sealed inside under high
vacuum. The cathode assembly consists of a heated tungsten filament contained
in a focusing cup. When the tube operates, the filament, heated white hot, “boils
off” electrons, which are accelerated toward the anode in a strong electric field
produced by a large potential difference (high voltage) between the cathode and
anode. The focusing cup concentrates the electrons onto a focal spot on the anode,
usually made of tungsten. There the electrons are abruptly brought to rest, emitting
continuous X rays in all directions. Typically, less than 1% of the electrons’ energy
is converted into useful X rays that emerge through a window in the tube. The
other 99+ % of the energy, lost in electronic collisions, is converted into heat, which
must be removed from the anode. Anodes can be cooled by circulating oil or water.
Rotating anodes are also used in X-ray tubes to keep the temperature lower.

Figure 2.9 shows typical continuous X-ray spectra generated from a tube operated
at different voltages with the same current. The efficiency of bremsstrahlung pro-
duction increases rapidly when the electron energy is raised. Therefore, the X-ray
intensity increases considerably with tube voltage, even at constant current. The
wavelength of an X-ray photon with maximum energy can be computed from Eq.
(2.26). For the top curve in Fig. 2.9, we find λmin = 12400/50000 = 0.248 Å, where
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Fig. 2.9 Typical continuous X-ray spectra from tube operating
at three different peak voltages with the same current.

this curve intersects the abscissa. The X-ray energies are commonly referred to in
terms of their peak voltages in kilovolts, denoted by kVp.

If the tube voltage is sufficient, electrons striking the target can eject electrons
from the target atoms. (The K-shell binding energy is EK = 69.525 keV for tung-
sten.) Discrete X rays are then also produced. These are emitted when electrons
from higher shells fill the inner-shell vacancies. The photon energies are charac-
teristic of the element of which the target is made, just as the optical spectra are
in the visible range. Characteristic X rays appear superimposed on the continuous
spectrum, as illustrated for tungsten in Fig. 2.10. They are designated Kα , Kβ , and
so forth, when the K-shell vacancy is filled by an electron from the L shell, M shell,
and so on. (In addition, when L-shell vacancies are filled, characteristic Lα , Lβ , and
so forth, X rays are emitted. These have low energy and are usually absorbed in the
tube housing.)

Because the electron energies in the other shells are not degenerate, the K X rays
have a fine structure, not shown in Fig. 2.10. The L shell, for example, consists
of three subshells, in which for tungsten the electron binding energies in keV are
ELI = 12.098, ELII = 11.541, and ELIII = 10.204. The transition LIII → K gives a Kα1

photon with energy EK – ELIII = 69.525 – 10.204 = 59.321 keV; the transition LII →
K gives a Kα2 photon with energy 57.984 keV. The optical transition LI → K is
quantum mechanically forbidden and does not occur.

The first systematic study of characteristic X rays was carried out in 1913 by
the young British physicist, H. G. J. Moseley, working in Rutherford’s laboratory.
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Fig. 2.10 Spectrum showing characteristic Kα and Kβ discrete
X rays in addition to the continuous X rays. Characteristic K X
rays are present only when the tube operating voltage is high
enough to give the incident electrons sufficient energy to eject
an electron from the K shell in the target atoms. Potential
difference across the tube in volts is then practically ≥ K-shell
binding energy in eV.

The diffraction of X rays by crystals had been discovered by von Laue in 1912,
and Moseley used this process to compare characteristic X-ray wavelengths. He
found that the square root of the frequencies of corresponding lines (e.g., Kα1)
in the characteristic X-ray spectra increases by an almost constant amount from
element to element in the periodic system. Alpha-particle scattering indicated that
the number of charge units on the nucleus is about half the atomic weight. Moseley
concluded that the number of positive nuclear charges and the number of electrons
both increase by one from element to element. Starting with Z = 1 for hydrogen,
the number of charge units Z determines the atomic number of an element, which
gives its place in the periodic system.

The linear relationship between
√

ν and Z would be predicted if the electrons
in many-electron atoms occupied orbits like those predicted by Bohr’s theory for
single-electron systems. As seen from Eq. (2.13), the frequencies of the photons
for a given transition i → f in different elements are proportional to Z2.
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In view of Moseley’s findings, the positions of cobalt and nickel had to be re-
versed in the periodic system. Although Co has the larger atomic weight, 58.93
compared with 58.70, its atomic number is 27, while that of Ni is 28. Moseley also
predicted the existence of a new element with Z = 43. Technetium, which has no
stable form, was discovered after nuclear fission.

2.11
Auger Electrons

An atom in which an L electron makes a transition to fill a vacancy in the K shell
does not always emit a photon, particularly if it is an element of low Z. A different,
nonoptical transition can occur in which an L electron is ejected from the atom,
thereby leaving two vacancies in the L shell. The electron thus ejected from the
atom is called an Auger electron.

The emission of an Auger electron is illustrated in Fig. 2.11. The downward ar-
row indicates the transition of an electron from the LI level into the K-shell vacancy,

Fig. 2.11 Schematic representation of an atomic transition that
results in Auger-electron emission.



46 2 Atomic Structure and Atomic Radiation

Fig. 2.12 K fluorescence yield as a function of atomic number Z.

thus releasing an energy equal to the difference in binding energies, EK –ELI. As the
alternative to photon emission, this energy can be transferred to an LIII electron,
ejecting it from the atom with a kinetic energy

T = EK – ELI – ELIII. (2.38)

Two L-shell vacancies are thus produced. The Auger effect can occur with other
combinations of the three L-shell levels. Equations analogous to (2.38) provide the
possible Auger-electron energies.

The Auger process is not one in which a photon is emitted by one atomic elec-
tron and absorbed by another. In fact, the LI → K transition shown in Fig. 2.11 is
optically forbidden.

The K fluorescence yield of an element is defined as the number of K X-ray pho-
tons emitted per vacancy in the K shell. Figure 2.12 shows how the K fluorescence
yield varies from essentially zero for the low-Z elements to almost unity for high Z.
Auger-electron emission is thus favored over photon emission for elements of low
atomic number.

The original inner-shell vacancy in an Auger-electron emitter can be created
by orbital electron capture, internal conversion, or photoelectric absorption of a
photon from outside the atom. (These processes are described in Chapter 3.) As
pointed out previously, emission of an Auger electron increases the number of va-
cancies in the atomic shells by one unit. Auger cascades can occur in relatively
heavy atoms, as inner-shell vacancies are successively filled by the Auger process,
with simultaneous ejections of the more loosely bound atomic electrons. An orig-
inal, singly charged ion with one inner-shell vacancy can thus be converted into a
highly charged ion by an Auger cascade. This phenomenon is being studied in radi-
ation research and therapy. Auger emitters can be incorporated into DNA and other
biological molecules. For example, 125I decays by electron capture. The ensuing cas-
cade can release some 20 electrons, depositing a large amount of energy (∼1 keV)
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within a few nanometers. A highly charged 125Te ion is left behind. A number of
biological effects can be produced, such as DNA strand breaks, chromatid aberra-
tions, mutations, bacteriophage inactivation, and cell killing.

2.12
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48 2 Atomic Structure and Atomic Radiation

13 Rozemtal, S., ed., Niels Bohr, North-
Holland, Amsterdam, Netherlands
(1967). [A collection of essays and per-
sonal accounts of the life and work of
Bohr by his colleagues and contempo-
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opment of quantum mechanics and
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convey the excitement of science and
discovery to general readers. This de-
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2.13
Problems

1. How many atoms are there in 3 L of N2 at STP?
2. What is the volume occupied by 1 kg of methane (CH4) at 23◦C

and 756 torr?
3. How many hydrogen atoms are there in the last problem?
4. What is the mass of a single atom of aluminum?
5. Estimate the number of atoms/cm2 in an aluminum foil that is

1 mm thick.
6. Estimate the radius of a uranium nucleus. What is its

cross-sectional area?
7. What is the density of the nucleus in a gold atom?
8. What was the minimum distance to which the 7.69-MeV alpha

particles could approach the center of the gold nuclei in
Rutherford’s experiments?

9. How much energy would an alpha particle need in order to
“just touch” the nuclear surface in a gold foil?

10. Figure 2.13 represents a particle moving with constant speed
v(= |v1| = |v2|) in a circular orbit of radius r. When the particle
advances through a small angle �θ about the center of the
circle, the change in velocity �v = v2 – v1 is indicated. Denoting
the elapsed time by �t, one has �θ = ω�t, where ω = v/r is the
angular velocity expressed in radians per unit time.
(a) For small �t, show that the acceleration of the particle is

given by a ∼= �v/�t ∼= v�θ/�t.
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Fig. 2.13 See Problem 10.

(b) In the limit �t → 0, show that the acceleration of the
particle is directed toward the center of the circle and has a
magnitude a = ωv = v2/r, as used in writing Eq. (2.5).

11. How much force acts on the electron in the ground state of the
hydrogen atom?

12. What is the angular momentum of the electron in the n = 5
state of the H atom?

13. How does the angular momentum of the electron in the n = 3
state of H compare with that in the n = 3 state of He+?

14. Calculate the ionization potential of Li2+.
15. Calculate the radius of the n = 2 electron orbit in the Bohr

hydrogen atom.
16. Calculate the orbital radius for the n = 2 state of Li2+.
17. Do H and He+ have any states with the same orbital radius?
18. What is the principal quantum number n of the state of the H

atom with an orbital radius closest to that of the n = 3 state of
He+?

19. What are the energies of the photons with the two longest
wavelengths in the Paschen series (Fig. 2.3)?

20. Calculate the wavelengths in the visible spectrum of the He+

ion in which the electron makes transitions from higher states
to states with quantum number n = 1, 2, 3, or 4.

21. How many energy levels of the He+ ion lie below –1 eV?
22. Calculate the current of the electron in the ground state of the

hydrogen atom.
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Fig. 2.14 See Problem 31.

23. What is the lowest quantum number of an H-atom electron
orbit with a radius of at least 1 cm?

24. According to Bohr theory, how many bound states of He+ have
energies equal to bound-state energies in H?

25. How much energy is needed to remove an electron from the
n = 5 state of He+?

26. (a) In the Balmer series of the hydrogen atom, what is the
smallest value of the principal quantum number of the
initial state for emission of a photon of wavelength less
than 4200 Å?

(b) What is the change in the angular momentum of the
electron for this transition?

27. Calculate the reduced mass for the He+ system.
28. What percentage error is made in the Rydberg constant for

hydrogen if the electron mass is used instead of the reduced
mass?

29. The negative muon is an elementary particle with a charge
equal to that of the electron and a mass 207 times as large. A
proton can capture a negative muon to form a hydrogen-like
“mesic” atom. (The muon was formerly called the mu meson.)
For such a system, calculate

(a) the radius of the first Bohr orbit
(b) the ionization potential.
Do not assume a stationary nucleus.

30. What is the reduced mass for a system of two particles of equal
mass, such as an electron and positron, orbiting about their
center of mass?

31. Figure 2.14 shows two interacting particles, having masses m1

and m2 and positions x1 and x2. The particles are free to move
only along the X-axis. Their total energy is
E = 1

2 m1ẋ2
1 + 1

2 m2ẋ2
2 + V(x), where ẋ1 = dx1/dt and ẋ2 = dx2/dt

are the velocities, and the potential energy V(x) depends only
on the separation x = x2 – x1 of the particles. Let z be the
coordinate of the center of mass C : m1(z – x1) = m2(x2 – z).
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Show that E = 1
2 (m1 + m2)ż2 + 1

2 mrẋ
2 + V(x), where mr, is the

reduced mass, given by Eq. (2.20), and ẋ = dx/dt. The total
energy is thus the sum of the translational kinetic energy of the
motion of the total mass along the X-axis and the total energy
associated with the relative motion (coordinate x and mass mr).

32. What is meant by the fine structure in the spectrum of
hydrogen and what is its physical origin?

33. Calculate the momentum of an ultraviolet photon of
wavelength 1000 Å.

34. What is the momentum of a photon of lowest energy in the
Balmer series of hydrogen?

35. Calculate the de Broglie wavelength of the 7.69-MeV alpha
particles used in Rutherford’s experiment. Use nonrelativistic
mechanics.

36. What is the energy of a proton that has the same momentum
as a 1-MeV photon?

37. What is the energy of an electron having a wavelength of
0.123 Å?

38. Calculate the de Broglie wavelength of a 245-keV electron.
39. (a) What is the momentum of an electron with a de Broglie

wavelength of 0.02 Å?
(b) What is the momentum of a photon with a wavelength of

0.02 Å?
40. Calculate the kinetic energy of the electron and the energy of

the photon in the last problem.
41. A microscope can resolve as distinct two objects or features

that are no closer than the wavelength of the light or electrons
used for the observation.
(a) With an electron microscope, what energy is needed for a

resolution of 0.4 Å?
(b) What photon energy would be required of an optical

microscope for the same resolution?
42. Show that Eq. (2.29) follows from Eq. (2.22) for relativistic

electrons.
43. Estimate the uncertainty in the momentum of an electron

whose location is uncertain by a distance of 2 Å. What is the
uncertainty in the momentum of a proton under the same
conditions?

44. What can one conclude about the relative velocities and
energies of the electron and proton in the last problem? Are
wave phenomena apt to be more apparent for light particles
than for heavy ones?

45. The result given after Eq. (2.36) shows that an electron
confined to nuclear dimensions, �x ∼ 10–15 m, could be
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expected to have a kinetic energy T ∼ 200 MeV. What would be
the value of �x for T ∼ 100 eV?

46. (a) Write the electron configuration of carbon.
(b) How many s electrons does the C atom have?
(c) How many p electrons?

47. The configuration of boron is 1s22s2p1.
(a) How many electrons are in the L shell?
(b) How many electrons have orbital angular-momentum

quantum number l = 0?
48. How many electrons does the nickel atom have with azimuthal

quantum number l = 2?
49. What is the electron configuration of the magnesium ion,

Mg2+?
50. What is incorrect in the electron configuration

1s22s2p63s2p8d10?
51. (a) What are the largest and the smallest values that the

magnetic quantum number m has in the Zn atom?
(b) How many electrons have m = 0 in Zn?

52. Show that the total number of states available in a shell with
principal quantum number n is 2n2.

53. What is the wavelength of a photon of maximum energy from
an X-ray tube operating at a peak voltage of 80 kV?

54. If the operating voltage of an X-ray tube is doubled, by what
factor does the wavelength of a photon of maximum energy
change?

55. (a) How many electrons per second strike the target in an
X-ray tube operating at a current of 50 mA?

(b) If the potential difference between the anode and cathode
is 100 kV, how much power is expended?

56. If the binding energies for electrons in the K, L, and M shells of
an element are, respectively, 8979 eV, 951 eV, and 74 eV, what
are the energies of the Kα and Kβ characteristic X rays? (These
values are representative of Cu without the fine structure.)

57. Given that the Kα1 characteristic X ray of copper has an energy
of 8.05 keV, estimate the energy of the Kα1 X ray of tin.

58. The oxygen atom has a K-shell binding energy of 532 eV and
L-shell binding energies of 23.7 eV and 7.1 eV. What are the
possible energies of its Auger electrons?
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2.14
Answers

1. 1.61 × 1023

2. 1530 L
7. 1.81 × 1017 kg m–3

9. 23.6 MeV
11. 8.23 × 10–8 N
12. 5.27 × 10–34 J s
14. 122 eV
16. 0.705 Å
18. 2
19. 0.661 eV; 0.967 eV
20. 4030, 4100, 4200,

4340, 4540, 4690,
4860, 5420, and
6560 Å

21. 7
22. 1.05 mA
26. (a) 6

(b) 4�

27. 0.99986m

29. (a) 2.84 × 10–13 m

(b) 2.53 keV
33. 6.63 × 10–27 kg m s–1

35. 5.19 × 10–5 Å
36. 533 eV
38. 0.0222 Å
40. 0.294 MeV;

0.621 MeV
41. (a) 946 eV

(b) 31.0 keV
43. 5.27 × 10–25 kg m s–1;

same
45. 0.2 Å
47. (a) 3

(b) 4
51. (a) ±2

(b) 14
53. 0.155 Å
55. (a) 3.12 × 1017 s–1

(b) 5000 W
57. 24 keV
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3
The Nucleus and Nuclear Radiation

3.1
Nuclear Structure

The nucleus of an atom of atomic number Z and mass number A consists of Z pro-
tons and N = A – Z neutrons. The atomic masses of all individual atoms are nearly
integers, and A gives the total number of nucleons (i.e., protons and neutrons) in
the nucleus. A species of atom, characterized by its nuclear constitution—its values
of Z and A (or N)—is called a nuclide. It is conveniently designated by writing the
appropriate chemical symbol with a subscript giving Z and superscript giving A.
For example, 1

1H, and 2
1H, and 238

92U are nuclides. Nuclides of an element that have
different A (or N) are called isotopes; nuclides having the same number of neutrons
are called isotones; for example, 206

82Pb and 204
80Hg are isotones with N = 124. Hydro-

gen has three isotopes, 1
1H, 2

1H, and 3
1H, all of which occur naturally. Deuterium,

2
1H, is stable; tritium, 3

1H, is radioactive. Fluorine has only a single naturally oc-
curring isotope, 19

9F; all of its other isotopes are man-made, radioactive, and short
lived. The measured atomic weights of the elements reflect the relative abundances
of the isotopes found in nature, as the next example illustrates.

Example

Chlorine is found to have two naturally occurring isotopes: 35
17Cl, which is 76% abun-

dant, and 37
17Cl, which is 24% abundant. The atomic weights of the two isotopes

are 34.97 and 36.97. Show that this isotopic composition accounts for the observed
atomic weight of the element.

Solution

Taking the weighted average of the atomic weights of the two isotopes, we find for the
atomic weight of Cl, 0.76 × 34.97 + 0.24 × 36.97 = 35.45, as observed. (See periodic
table in back of book.)

Since the electron configuration of the different isotopes of an element is the
same, isotopes cannot be separated chemically. The existence of isotopes does
cause a very slight perturbation in atomic energy levels, leading to an observed
“isotope shift” in some spectral lines. In addition, the different nuclear spins of
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different isotopes of the same element are responsible for hyperfine structure in
the spectra of elements. As we mentioned at the end of Section 2.8, the existence
of isotopes has a big effect on the vibration–rotation spectra of molecules.

Nucleons are bound together in a nucleus by the action of the strong, or nuclear,
force. The range of this force is only of the order of nuclear dimensions, ∼10–15 m,
and it is powerful enough to overcome the Coulomb repulsion of the protons in
the nucleus. Figure 3.1(a) schematically shows the potential energy of a proton as a
function of the distance r separating its center and the center of a nucleus. The po-
tential energy is zero at large separations. As the proton comes closer, its potential
energy increases, due to the work done against the repulsive Coulomb force that

Fig. 3.1 (a) Potential energy (PE) of a proton as a function of
its separation r from the center of a nucleus, (b) Potential
energy of a neutron and a nucleus as a function of r. The
uncharged neutron has no repulsive Coulomb barrier to
overcome when approaching a nucleus.
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acts between the two positive charges. Once the proton comes within range of the
attractive nuclear force, though, its potential energy abruptly goes negative and it
can react with the nucleus. If conditions are right, the proton’s total energy can also
become negative, and the proton will then occupy a bound state in the nucleus. As
we learned in the Rutherford experiment in Section 2.2, a positively charged par-
ticle requires considerable energy in order to approach a nucleus closely. In con-
trast, the nucleus is accessible to a neutron of any energy. Because the neutron is
uncharged, there is no Coulomb barrier for it to overcome. Figure 3.1(b) shows the
potential-energy curve for a neutron and a nucleus.

Example

Estimate the minimum energy that a proton would have to have in order to react with
the nucleus of a stationary Cl atom.

Solution

In terms of Fig. 3.1(a), the proton would have to have enough energy to overcome the
repulsive Coulomb barrier in a head-on collision. This would allow it to just reach
the target nucleus. We can use Eq. (2.2) to estimate how far apart the centers of the
proton and nucleus would then be, when they “just touch.” With A = 1 and A = 35
in Eq. (2.2), we obtain for the radii of the proton (rp) and the chlorine nucleus (rCl)

rp = 1.3 × 11/3 × 10–15 = 1.3 × 10–15 m, (3.1)

rCl = 1.3 × 351/3 × 10–15 = 4.3 × 10–15 m. (3.2)

The proton has unit positive charge, e = 1.60 × 10–19 C, and the chlorine (Z = 17)
nucleus has a charge 17e. The potential energy of the two charges separated by the
distance rp + rCl = 5.6 × 10–15 m is therefore (Appendix C)

PE = 8.99 × 109 × 17 × (1.60 × 10–19)2

5.6 × 10–15

= 7.0 × 10–13 J = 4.4 MeV. (3.3)

(Problem 9 in Chapter 2 is worked like this example.)

Like an atom, a nucleus is itself a quantum-mechanical system of bound parti-
cles. However, the nuclear force, acting between nucleons, is considerably more
complicated and more uncertain than the electromagnetic force that governs the
structure and properties of atoms and molecules. In addition, wave equations de-
scribing nuclei cannot be solved with the same degree of numerical precision that
atomic wave equations can. Nevertheless, many detailed properties of nuclei have
been worked out and verified experimentally. Both the proton and the neutron are
“spin- 1

2 ” particles and hence obey the Pauli exclusion principle. Just as excited elec-
tron states exist in atoms, excited states can exist in nuclei. Whereas an atom has
an infinite number of bound excited states, however, a nucleus has only a finite
number, if any. This difference in atomic and nuclear structure is attributable to
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Fig. 3.2 Energy levels of the 6
3Li nucleus, relative to the ground state of zero energy.

the infinite range of the Coulomb force as opposed to the short range and lim-
ited, though large, strength of the nuclear force. The energy-level diagram of the
6
3Li nucleus in Fig. 3.2 shows that it has a number of bound excited states.1) The
deuteron and alpha particle (nuclei of 2

1H and 4
2He) are examples of nuclei that have

no bound excited states.

3.2
Nuclear Binding Energies

Changes can occur in atomic nuclei in a number of ways, as we shall see through-
out this book. Nuclear reactions can be either exothermic (releasing energy) or
endothermic (requiring energy in order to take place). The energies associated
with nuclear changes are usually in the MeV range. They are thus ∼106 times

1 The “level” at 4.52 MeV is very short lived and
therefore does not have a sharp energy. All
quantum-mechanical energy levels have a
natural width, a manifestation of the
uncertainty relation for energy and time, �E

�t � h̄ [Eq. (2.31)]. The lifetimes of atomic

states (∼10–8 s) are long and permit precise
knowledge of their energies (�E ∼ 10–7 eV).
For many excited nuclear states, the lifetime
�t is so short that the uncertainty in their
energy, �E, is large, as is the case here.
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greater than the energies associated with the valence electrons that are involved in
chemical reactions. This factor characterizes the enormous difference in the en-
ergy released when an atom undergoes a nuclear transformation as compared with
a chemical reaction.

The energy associated with exothermic nuclear reactions comes from the con-
version of mass into energy. If the mass loss is �M, then the energy released, Q ,
is given by Einstein’s relation, Q = (�M)c2, where c is the velocity of light. In this
section we discuss the energetics of nuclear transformations.

We first establish the quantitative relationship between atomic mass units
(AMU) and energy (MeV). By definition, the 12C atom has a mass of exactly
12 AMU. Since its gram atomic weight is 12 g, it follows that

1 AMU = 1/(6.02 × 1023) = 1.66 × 10–24 g = 1.66 × 10–27 kg. (3.4)

Using the Einstein relation and c = 3 × 108 m s–1, we obtain

1 AMU = (1.66 × 10–27)(3 × 108)2

= 1.49 × 10–10 J (3.5)

= 1.49 × 10–10 J
1.6 × 10–13 J MeV–1 = 931 MeV. (3.6)

More precisely, 1 AMU = 931.49 MeV.
We now consider one of the simplest nuclear reactions, the absorption of a ther-

mal neutron by a hydrogen atom, accompanied by emission of a gamma ray. This
reaction, which is very important for understanding the thermal-neutron dose to
the body, can be represented by writing

1
0n + 1

1H → 2
1H + 0

0γ, (3.7)

the photon having zero charge and mass. The reaction can also be designated
1
1H(n,γ)2

1H. To find the energy released, we compare the total masses on both sides
of the arrow. Appendix D contains data on nuclides which we shall frequently use.
The atomic weight M of a nuclide of mass number A can be found from the mass
difference, �, given in column 3. The quantity � = M – A gives the difference be-
tween the nuclide’s atomic weight and its atomic mass number, expressed in MeV.
(By definition, � = 0 for the 12C atom.) Since we are interested only in energy dif-
ferences in the reaction (3.7), we obtain the energy released, Q, directly from the
values of �, without having to calculate the actual masses of the neutron and indi-
vidual atoms. Adding the � values for 1

0n and 1
1H and subtracting that for 2

1H, we
find

Q = 8.0714 + 7.2890 – 13.1359 = 2.2245 MeV. (3.8)

This energy appears as a gamma photon emitted when the capture takes place (the
thermal neutron has negligible kinetic energy).
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The process (3.7) is an example of energy release by the fusion of light nuclei.
The binding energy of the deuteron is 2.2245 MeV, which is the energy required to
separate the neutron and proton. As the next example shows, the binding energy
of any nuclide can be calculated from a knowledge of its atomic weight (obtainable
from �) together with the known individual masses of the proton, neutron, and
electron.

Example

Find the binding energy of the nuclide 24
11Na.

Solution

One can work in terms of either AMU or MeV. The atom consists of 11 protons,
13 neutrons, and 11 electrons. The total mass in AMU of these separate constituents
is, with the help of the data in Appendix A,

11(1.0073) + 13(1.0087) + 11(0.00055) = 24.199 AMU. (3.9)

From Appendix D, � = –8.418 MeV gives the difference M – A. Thus, the mass of
the 24

11Na nuclide is less than 24 by the amount 8.418 MeV/(931.49 MeV AMU–1) =
0.0090371 AMU. Therefore, the nuclide mass is M = 23.991 AMU. Comparison with
(3.9) gives for the binding energy

BE = 24.199 – 23.991 = 0.208 AMU = 194 MeV. (3.10)

This figure represents the total binding energy of the atom—nucleons plus elec-
trons. However, the electron binding energies are small compared with nuclear
binding, which accounts for essentially all of the 194 MeV. Thus the binding en-
ergy per nucleon in 24

11Na is 194/24 = 8.08 MeV. [Had we worked in MeV, rather
than AMU, the data from Appendix A give, in place of (3.9), 2.2541 × 104 MeV.
Expressed in MeV, A = 24 × 931.49 = 2.2356 × 104 MeV. With � = –8.418 MeV
we have M = A + � = 2.2348 × 104 MeV. Thus the binding energy of the atom is
(2.2541 – 2.2348) × 104 = 193 MeV.]

The average binding energy per nucleon is plotted as a function of atomic mass
number in Fig. 3.3. The curve has a broad maximum at about 8.5 MeV from A = 40
to 120.2) It then drops off as one goes either to lower or higher A. The implication
from this curve is that the fusion of light elements releases energy, as does the fis-

sion of heavy elements. Both transformations are made exothermic through the
increased average nucleon binding energy that results. The 1

1H(n,γ)2
1H reaction

considered earlier is an example of the release of energy through fusion. With a
few exceptions, the average binding energies for all nuclides fall very nearly on
the single curve shown. The nuclides 4

2He, 12
6C, and 16

8O show considerably tighter

2 The fact that the average nucleon binding
energy is nearly constant over such a wide
range of A is a manifestation of the

saturation property of nuclear forces,
mentioned at the end of Section 2.2.
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Fig. 3.3 Average energy per nucleon as a function of atomic mass number.

binding than their immediate neighbors. These nuclei are all “multiples” of the al-
pha particle, which appears to be a particularly stable nuclear subunit. (No nuclides
with A = 5 exist for longer than ∼10–21 s.3)

The loss of mass that accompanies the binding of particles is not a specifically
nuclear phenomenon. The mass of the hydrogen atom is smaller than the sum of
the proton and electron masses by 1.46×10–8 AMU. This is equivalent to an energy
1.46 × 10–8 AMU × 931 MeV/AMU–1 = 1.36 × 10–5 MeV = 13.6 eV, the binding
energy of the H atom.

We turn now to the subject of radioactivity, the property that some atomic species,
called radionuclides, have of undergoing spontaneous nuclear transformation. All
of the heaviest elements are radioactive; 209

83Bi is the only stable nuclide with Z > 82.
All elements have radioactive isotopes, the majority being man-made. The various
kinds of radioactive decay and their associated nuclear energetics are described in
the following sections.

3 Various forms of shell models have been
studied for nuclei, analogous to an atomic
shell model. The alpha particle consists of
two spin- 1

2 protons and two spin- 1
2 neutrons

in s states, forming the most tightly bound,

“inner” nuclear shell. Generally, nuclei with
even numbers of protons and neutrons
(“even–even” nuclei) have the largest binding
energies per nucleon.
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3.3
Alpha Decay

Almost all naturally occurring alpha emitters are heavy elements with Z ≥ 83. The
principal features of alpha decay can be learned from the example of 226Ra:

226
88Ra → 222

86Rn + 4
2He. (3.11)

The energy Q released in the decay arises from a net loss in the masses MRa,N,
MRn,N, and MHe,N, of the radium, radon, and helium nuclei:

Q = MRa,N – MRn,N – MHe,N. (3.12)

This nuclear mass difference is very nearly equal the atomic mass difference,
which, in turn, is equal to the difference in � values.4) Letting �P, �D, and �He

denote the values of the parent, daughter, and helium atoms, we can write a general
equation for obtaining the energy release in alpha decay:

Qα = �P – �D – �He. (3.13)

Using the values in Appendix D for the decay of 226
88Ra to the ground state of 222

86Rn,
we obtain

Q = 23.69 – 16.39 – 2.42 = 4.88 MeV. (3.14)

The Q value (3.14) is shared by the alpha particle and the recoil radon nucleus,
and we can calculate the portion that each acquires. Since the radium nucleus was
at rest, the momenta of the two decay products must be equal and opposite. Letting
m and v represent the mass and initial velocity of the alpha particle and M and V

those of the recoil nucleus, we write

mv = MV. (3.15)

Since the initial kinetic energies of the products must be equal to the energy re-
leased in the decay, we have

1
2 mv2 + 1

2 MV2 = Q. (3.16)

Substituting V = mv/M from Eq. (3.15) into (3.16) and solving for v2, one finds

v2 = 2MQ

m(m + M)
. (3.17)

4 Specifically, the relatively slight difference in
the binding energies of the 88 electrons on
either side of the arrow in (3.11) is neglected
when atomic mass loss is equated to nuclear

mass loss. In principle, nuclear masses are
needed; however, atomic masses are much
better known. These small differences are
negligible for most purposes.
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One thus obtains for the alpha-particle energy

Eα = 1
2 mv2 = MQ

m + M
. (3.18)

With the roles of the two masses interchanged, it follows that the recoil energy of
the nucleus is

EN = 1
2 MV2 = mQ

m + M
. (3.19)

As a check, we see that Eα + EN = Q. Because of its much smaller mass, the alpha
particle, having the same momentum as the nucleus, has much more energy. For
226Ra, it follows from (3.14) and (3.18) that

Eα = 222 × 4.88
4 + 222

= 4.79 MeV. (3.20)

The radon nucleus recoils with an energy of only 0.09 MeV.
The conservation of momentum and energy, Eqs. (3.15) and (3.16), fixes the en-

ergy of an alpha particle uniquely for given values of Q and M. Alpha particles
therefore occur with discrete values of energy.

Appendix D gives the principal radiations emitted by various nuclides. We
consider each of those listed for 226Ra. Two alpha-particle energies are shown:
4.785 MeV, occurring with a frequency of 94.4% of all decays, and 4.602 MeV, oc-
curring 5.5% of the time. The Q value for the less frequent alpha particle can be
found from Eq. (3.18):

Q = (m + M)Eα

M
= 226 × 4.60

222
= 4.68 MeV. (3.21)

The decay in this case goes to an excited state of the 222Rn nucleus. Like excited
atomic states, excited nuclear states can decay by photon emission. Photons from
the nucleus are called gamma rays, and their energies are generally in the range
from tens of keV to several MeV. Under the gamma rays listed in Appendix D for
226Ra we find a 0.186-MeV photon emitted in 3.3% of the decays, in addition to
another that occurs very infrequently (following alpha decay to still another excited
level of higher energy in the daughter nucleus). We conclude that emission of the
higher energy alpha particle (Eα = 4.79 MeV) leaves the daughter 222Rn nucleus in
its ground state. Emission of the 4.60 MeV alpha particle leaves the nucleus in an
excited state with energy 4.79 – 4.60 = 0.19 MeV above the ground state. A photon
of this energy can then be emitted from the nucleus, and, indeed, one of energy
0.186 MeV is listed for 3.3% of the decays. As an alternative to photon emission, un-
der certain circumstances an excited nuclear state can decay by ejecting an atomic
electron, usually from the K or L shell. This process, which produces the electrons
listed (e–), is called internal conversion, and will be discussed in Section 3.6.5) For

5 In atoms, an Auger electron can be ejected
from a shell in place of a photon,

accompanying an electronic transition (Sect.
2.11).
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Fig. 3.4 Nuclear decay scheme of 226
88 Ra.

226Ra, since the excited state occurs in 5.5% of the total disintegrations and the
0.186 MeV photon is emitted only 3.3% of the time, it follows that internal con-
version occurs in about 2.2% of the total decays. As we show in more detail in
Section 3.6, the energy of the conversion electron is equal to the excited-state en-
ergy (in this case 0.186 MeV) minus the atomic-shell binding energy. The listing in
Appendix D shows one of the e– energies to be 0.170 MeV. In addition, since inter-
nal conversion leaves a K- or L-shell vacancy in the daughter atom, one also finds
among the photons emitted the characteristic X rays of Rn. Finally, as noted in the
radiations listed in Appendix D for 226Ra, various kinds of radiation are emitted
from the radioactive daughters, in this case 222Rn, 218Po, 214Pb, 214Bi, and 214Po.

Decay-scheme diagrams, such as that shown in Fig. 3.4 for 226Ra, conveniently
summarize the nuclear transformations. The two arrows slanting downward to the
left6) show the two modes of alpha decay along with the alpha-particle energies and
frequencies. Either changes the nucleus from that of 226Ra to that of 222Rn. When
the lower energy particle is emitted, the radon nucleus is left in an excited state with
energy 0.186 MeV above the ground state. (The vertical distances in Fig. 3.4 are
not to scale.) The subsequent gamma ray of this energy, which is emitted almost
immediately, is shown by the vertical wavy line. The frequency 3.3% associated
with this photon emission implies that an internal-conversion electron is emitted
in the other 2.2% of the total number of disintegrations. Radiations not emitted
directly from the nucleus (i.e., the Rn X rays and the internal-conversion electron)
are not shown on such a diagram, which represents the nuclear changes. Relatively
infrequent modes of decay could also be shown, but are not included in Fig. 3.4 (see
Fig. 3.7). (A small round-off error occurs in the energies.)

The most energetic alpha particles are found to come from radionuclides having
relatively short half-lives. An early empirical finding, known as the Geiger–Nuttall
law, implies that there is a linear relationship between the logarithm of the range R

6 By convention, going left represents a
decrease in Z and right, an increase in Z.

Photon emission is represented by a vertical
wavy line.
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of an alpha particle in air and the logarithm of the emitter’s half-life T. The relation
can be expressed in the form

– ln T = a + b ln R, (3.22)

where a and b are empirical constants.
To conclude this section, we briefly consider the possible radiation-protection

problems that alpha emitters can present. As we shall see in Chapter 5, alpha par-
ticles have very short ranges and cannot even penetrate the outer, dead layer of
skin. Therefore, they generally pose no direct external hazard to the body. Inhaled,
ingested, or entering through a wound, however, an alpha source can present a haz-
ard as an internal emitter. Depending upon the element, internal emitters tend to
seek various organs and irradiate them. Radium, for example, seeks bone, where it
can become lodged and irradiate an individual over his or her lifetime. In addition
to the internal hazard, one can generally expect gamma rays to occur with an al-
pha source, as is the case with radium. Also, many alpha emitters have radioactive
daughters that present radiation-protection problems.

3.4
Beta Decay (β–)

In beta decay, a nucleus simultaneously emits an electron, or negative beta particle,
0

–1β , and an antineutrino, 0
0ν̄. Both of these particles are created at the moment

of nuclear decay. The antineutrino, like its antiparticle7) the neutrino, 0
0ν, has no

charge and little or no mass;8) they have been detected only in rather elaborate
experiments.

As an example of beta decay, we consider 60Co:

60
27Co → 60

28Ni + 0
–1β + 0

0ν̄. (3.23)

In this case, the value of Q is equal to the difference between the mass of the 60Co
nucleus, MCo,N, and that of the 60Ni nucleus, MNi,N, plus one electron (m):

Q = MCo,N – (MNi,N + m). (3.24)

The nickel atom has one more electron than the cobalt atom. Therefore, if we ne-
glect differences in atomic-electron binding energies, Eq. (3.24) implies that Q is

7 The Dirac equation predicts the existence of
an antiparticle for every spin- 1

2 particle and
describes its relationship to the particle.
Other examples include the positron, 0

+1β ,
antiparticle to the electron; the antiproton;
and the antineutron. Creation of a spin- 1

2
particle is always accompanied by creation of
a related particle, which can be the
antiparticle, such as happens in the creation

of an electron–positron pair.
Particle–antiparticle pairs can annihilate, as
electrons and positrons do. A bar over a
symbol is used to denote an antiparticle: for
example, ν, ν̄. Several kinds of neutrinos
have been found—electron, muon, and tau.

8 Experimentally, the neutrino and
antineutrino masses cannot be larger than
about 30 eV.
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simply equal to the difference in the masses of the 60Co and 60Ni atoms.9) There-
fore, it follows that one can compute the energy released in beta decay from the
difference in the values �P and �D, of the parent and daughter atoms:

Qβ– = �P – �D. (3.25)

Using the data from Appendix D, we find for the energy released in a β– transfor-
mation of 60Co to the ground state of 60Ni

Q = –61.651 – (–64.471) = 2.820 MeV. (3.26)

In accordance with (3.23), this energy is shared by the beta particle, antineutrino,
and recoil 60Ni nucleus. The latter, because of its relatively large mass, receives
negligible energy, and so

Eβ– + Eν̄ = Q, (3.27)

where Eβ– and Eν̄ are the initial kinetic energies of the electron and antineutrino.
Depending on the relative directions of the momenta of the three decay products
(β–, ν̄, and recoil nucleus), Eβ– and Eν̄ can each have any value between zero and
Q, subject to the condition (3.27) on their sum. Thus the spectrum of beta-particle
energies Eβ– is continuous, with 0 ≤ Eβ– ≤ Q, in contrast to the discrete spectra
of alpha particles, as required by Eq. (3.18). Alpha particles are emitted in a decay
into two bodies, which must share energy and momentum in a unique way, giving
rise to discrete alpha spectra. Beta particles are emitted in a decay into three bod-
ies, which can share energy and momentum in a continuum of ways, resulting in
continuous beta spectra. The shape of a typical spectrum is shown in Fig. 3.5.10)

The maximum beta-particle energy is always equal to the Q value for the nuclear
transition. As a rule of thumb, the average beta energy is about one-third of Q:
Eβ– ∼ Q/3.

To construct the decay scheme for 60Co we consult Appendix D. We see that
99 + % of the decays occur with Q = 0.318 MeV and that both of the gamma pho-
tons occur with almost every disintegration. Therefore, almost every decay must
go through an excited state of the daughter 60Ni nucleus with an energy at least
1.173 + 1.332 = 2.505 MeV above the ground state. Adding the maximum beta
energy to this gives 2.505 + 0.318 = 2.823 MeV, the value [Eq. (3.26), except for
round-off ] calculated for a transition all the way to the ground state of the 60Ni nu-
cleus. Therefore, we conclude that the 60Co nucleus first emits a beta particle, with
Q = 0.318 MeV, which is followed successively by the two gamma rays. It remains

9 We can think of adding and subtracting 27
electron masses in Eq. (3.24), giving
Q = (MCo,N + 27m) – (MNi,N + 28m).
Neglecting the difference in electron binding
energies, then, we have Q = MCo,A – MNi,A ,
where the subscript A denotes the atomic
masses. It follows that Q is equal to the
difference in � values for the two atoms.

10 Beta-ray spectra exhibit a variety of shapes.
The spectra of some 100 nuclides of
importance for radiation protection and
biomedical applications are presented by W.
G. Gross, H. Ing, and N. Freedman, “A Short
Atlas of Beta-Ray Spectra,” Phys. Med. Biol.
28, 1251–1260 (1983).
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Fig. 3.5 Shape of typical beta-particle energy spectrum.

Fig. 3.6 Decay scheme of 60
27Co.

to determine the energy of the nuclear excited state from which the second pho-
ton is emitted: 1.173 MeV or 1.332 MeV? Appendix D lists a rare beta particle with
Q = 1.491 MeV. This decay must go to a level in the daughter nucleus having an en-
ergy 2.823 – 1.491 = 1.332 MeV above the ground state. Thus we can conclude that
the 1.332 MeV photon is emitted last in the transition to the ground state. The decay
scheme is shown in Fig. 3.6. The arrows drawn slanting toward the right indicate
the increase in atomic number that results from β– decay. The rare mode is shown
with a dashed line. No significant internal conversion occurs with this radionuclide.
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A number of beta emitters have no accompanying gamma rays. Examples of
such pure beta emitters are 3H, 14C, 32P, 90Sr, and 90Y. Mixed beta–gamma emit-
ters include 60Co, 137Cs, and many others. A number of radionuclides emit beta
particles in decaying to several levels of the daughter nucleus, thus giving rise to
complex beta spectra. A few radioisotopes can decay by emission of either an alpha
or a beta particle. For example, 212

83Bi decays by alpha emission 36% of the time and
by beta emission 64% of the time.

Beta rays can have sufficient energy to penetrate the skin and thus be an external
radiation hazard. Internal beta emitters are also a hazard. As is the case with 60Co,
many beta radionuclides also emit gamma rays. High-energy beta particles (i.e.,
in the MeV range) can emit bremsstrahlung, particularly in heavy-metal shielding.
The bremsstrahlung from a beta source may be the only radiation that escapes the
containment.

3.5
Gamma-Ray Emission

As we have seen, one or more gamma photons can be emitted from the excited
states of daughter nuclei following radioactive decay. Transitions that result in
gamma emission leave Z and A unchanged and are called isomeric; nuclides in
the initial and final states are called isomers.

As the examples in the last two sections illustrate, the gamma-ray spectrum from
a radionuclide is discrete. Furthermore, just as optical spectra are characteristic of
the chemical elements, a gamma-ray spectrum is characteristic of the particular
radionuclides that are present. By techniques of gamma-ray spectroscopy (Chap-
ter 10), the intensities of photons at various energies can be measured to determine
the distribution of radionuclides in a sample. When 60Co is present, for example,
photons of energy 1.173 MeV and 1.332 MeV are observed with equal frequency.
(Although these are called “60Co gamma rays,” we note from Fig. 3.6 that they are
actually emitted by the daughter 60Ni nucleus.) Radium can also be easily detected
by its gamma-ray spectrum, which is more complex than indicated by Fig. 3.4.
Since individual photons are registered in a spectrometer, gamma rays from infre-
quent modes of radioactive decay can often be readily measured. Figure 3.7 shows
a more detailed decay scheme for 226Ra, which involves three excited states of the
daughter 222Rn nucleus and the emission of photons of four different energies.
Transitions from the highest excited level (0.601 MeV) to the next (0.448 MeV) and
from there to ground are “forbidden” by selection rules.

Example

Like 60
27Co, another important gamma-ray source is the radioisotope 137

55Cs. Consult
Appendix D and work out its decay scheme.
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Fig. 3.7 Detailed decay scheme for 226
88 Ra, showing origin of

photons found in its gamma spectrum (position of initial 226
88 Ra

energy level not to scale).

Solution

Also like 60
27Co, 137

55Cs is a β– emitter that leaves its daughter, stable 137
56Ba, in an excited

state that results in gamma emission. The decay is represented by

137
55Cs → 137

56Ba + 0
–1β + 0

0ν̄. (3.28)

From the � values in Appendix D, we obtain for decay to the daughter ground state
Q = –86.9 + 88.0 = 1.1 MeV. Comparison with the radiations listed in the Appendix
indicates that decay by this mode takes place 5% of the time, releasing 1.174 MeV.
Otherwise, the decay in 95% of the cases leaves the daughter nucleus in an excited
state with energy 1.174 – 0.512 = 0.662 MeV. A photon of this energy is shown with
85% frequency. Therefore, internal conversion occurs in 95 – 85 = 10% of the dis-
integrations, giving rise to the conversion electrons, e–, with the energies shown.
Characteristic Ba X rays are emitted following the inner-shell vacancies created in
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Fig. 3.8 Decay scheme of 137
55 Cs.

the atom by internal conversion. The decay scheme of 137
55Cs is drawn in Fig. 3.8; the

spectrum of electrons emitted by the source is shown schematically in Fig. 3.9.

The lifetimes of nuclear excited states vary, but ∼10–10 s can be regarded as typi-
cal. Thus, gamma rays are usually emitted quickly after radioactive decay to an ex-
cited daughter state. In some cases, however, selection rules prevent photon emis-
sion for an extended period of time. The excited state of 137

56Ba following the decay of
137

55Cs has a half-life of 2.55 min. Such a long-lived nuclear state is termed metastable

and is designated by the symbol m: 137m
56Ba.

Another example of a metastable nuclide is 99m
43Tc, which results from the beta

decay of the molybdenum isotope 99
42Mo. 99m

43Tc has a half-life of 6.02 h in making
an isomeric transition (IT) to the ground state:

99m
43Tc → 99

43Tc + 0
0γ. (3.29)

The energy released in an isomeric transition is simply equal to the difference in
� values of the parent and daughter atoms:

QIT = �P – �D. (3.30)

Example

Work out the decay scheme of 99m
43Tc with the help of the data given in Appendix D.

Solution

Using Eq. (3.30) and the given values of �, we obtain for the energy released in go-
ing to the ground state in the transition (3.29), Q = 87.33 – 87.18 = 0.15 MeV. This
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Fig. 3.9 Sources of electrons from 137
55 Cs and their energy

spectra. There are two modes of β– decay, with maximum
energies of 0.512 MeV (95%) and 1.174 MeV (5%).
Internal-conversion electrons also occur, with discrete energies
of 0.624 MeV (from the K shell) and 0.656 MeV (L shell) with a
total frequency of 10%. See decay scheme in Fig. 3.8. The total
spectrum of emitted electrons is the sum of the curves shown
here.

transition is responsible for the gamma photon listed in Appendix D, 0.140 (89%). By
implication, internal conversion must occur the other 11% of the time, and one finds
two electron energies (e–), one a little less than the photon energy (by an amount that
equals the L-shell electron binding energy in the Tc atom). Because internal conver-
sion leaves inner-shell vacancies, a 99m

43Tc source also emits characteristic Tc X rays,
as listed. Since 99

43Tc decays by β– emission into stable 99
44Ru, this daughter radiation

also occurs.

The way in which gamma rays penetrate matter is fundamentally different from
that of alpha and beta particles. Because of their charge, the latter lose energy al-
most continually as a result of electromagnetic forces that the electrons in matter
exert on them. A shield of sufficient thickness can be used to absorb a beam of
charged particles completely. Photons, on the other hand, are electrically neutral.
They can therefore travel some depth in matter without being affected. As dis-
cussed in Section 8.5, monoenergetic photons, entering a uniform medium, have
an exponential distribution of flight distances before they experience their first in-
teraction. Although the intensity of a beam of gamma rays is steadily attenuated
by passage through matter, some photons can traverse even thick shields with no
interaction. Protection from gamma and X radiation is the subject of Chapter 15.
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3.6
Internal Conversion

Internal conversion is the process in which the energy of an excited nuclear state
is transferred to an atomic electron, most likely a K- or L-shell electron, ejecting it
from the atom. It is an alternative to emission of a gamma photon from the nu-
cleus.11) We had examples of internal conversion in discussing the decay of 137Cs
and 99mTc. In the case of the latter, however, the situation is somewhat more in-
volved than described in the last example. The dominant mode of the isomeric
transition to the ground state takes place in two steps. The first, internal conversion
with release of nuclear energy by ejection of a 2-keV orbital electron, consumes vir-
tually all of the 6.02-h half-life of 99mTc. The second step, nuclear emission of the
140-keV gamma photon, then follows almost immediately, in <10–9 s. The relatively
soft gamma ray and the 6.02-h half-life, together with the ease of production (neu-
tron bombardment of 98Mo in a reactor) as well as the special chemical properties
of the element, endow 99mTc with extremely useful properties for medical imaging.
An example is shown in Fig. 3.10.

The internal conversion coefficient α for a nuclear transition is defined as the ra-
tio of the number of conversion electrons Ne and the number of competing gamma
photons Nγ for that transition:

α = Ne

Nγ
. (3.31)

The kinetic energy Ee of the ejected atomic electron is very nearly equal to the
excitation energy E∗ of the nucleus minus the binding energy EB of the electron in
its atomic shell:

Ee = E∗ – EB. (3.32)

The conversion coefficients α increase as Z3, the cube of the atomic number, and
decrease with E∗. Internal conversion is thus prevalent in heavy nuclei, especially
in the decay of low-lying excited states (small E∗). Gamma decay predominates in
light nuclei.

3.7
Orbital Electron Capture

Some nuclei undergo a radioactive transformation by capturing an atomic electron,
usually from the K shell, and emitting a neutrino. An isotope of palladium under-

11 Internal conversion does not occur as a
two-step process in which a photon is emitted
by the nucleus and then absorbed by the

atomic electron. The mechanism is entirely
different. A similar observation was made in
regard to Auger electrons in Section 2.11.
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Fig. 3.10 Images of a woman with a history of
breast carcinoma, now with extensive
metastatic disease throughout the spine, ribs,
and pelvis. Additional lesions can be seen in
the skull, shoulders, and proximal femurs.
Patient was administered 25 mCi
99mTc-hydroxymethylene diphosphonate
(99mTc-HDP) and imaged 2–3 hours post
injection. Anterior and posterior whole-body

images were acquired simultaneously in
approximately 15 min with a large field of view,
dual head gamma camera. Images on left are
displayed with a linear gray scale; those on
right use a logarithmic gray scale, enhancing
the soft-tissue activity. (Courtesy Glenn J.
Hathaway, School of Nuclear Medicine,
University of Tennessee Medical Center,
Knoxville, TN.)

goes this process of electron capture (EC), going to a metastable state of the nucleus
of the daughter rhodium:

103
46Pd + 0

–1e → 103m
45Rh + 0

0ν. (3.33)

The neutrino acquires the entire energy Q released by the reaction.
To find Q, we note that the captured electron releases its total mass, m – EB, to

the nucleus when it is absorbed there, EB being the mass equivalent of the binding
energy of the electron in the atomic shell. Therefore, in terms of the masses MPd,N

and MmRh,N of the parent and daughter nuclei, the energy released by the reaction
(3.33) is given by

Q = MPd,N + m – EB – MmRh,N. (3.34)

Since the palladium atom has one more electron than the rhodium atom, it follows
that (neglecting the small difference in the electron binding energies) Q is equal to
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Fig. 3.11 Decay scheme of 103
46 Pd.

the difference in the two atomic masses, less the energy EB.12) Since the difference
in the atomic masses is equal to the difference in the parent and daughter � values,
we can write the general expression for the energy release by electron capture:

QEC = �P – �D – EB. (3.35)

Orbital electron capture thus cannot take place unless �P –�D > EB. For the K shell
of palladium, EB = 0.024 MeV. Using the � values from Appendix D in Eq. (3.35),
we find that, for the decay to 103mRh,

Q = –87.46 – (–87.974) – 0.024 = 0.490 MeV. (3.36)

In subsequently decaying to the ground state, 103mRh releases an energy –87.974 +
88.014 = 0.040 MeV, as found from the values in Appendix D.

A decay scheme for 103Pd is given in Fig. 3.11. Since electron capture decreases
the atomic number of the nucleus, it is symbolized by an arrow pointing downward
toward the left. The solid arrow represents the transition to 103mRh that we just an-
alyzed. The presence of the gamma rays listed for 103Pd in Appendix D implies that

12 A similar argument was given in the footnote
after Eq. (3.24), except that EB was not
involved there.
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EC sometimes leaves the nucleus in other excited levels, as shown. These transi-
tions, as well as one directly to the ground state, are indicated by the dashed arrows.
It is not possible from the information given in Appendix D to specify the frequency
of these transitions relative to that represented by the solid arrow. Since electron
capture necessarily leaves an inner-atomic-shell vacancy, characteristic X rays of the
daughter are always emitted. (Electron capture is detected through the observation
of characteristic X rays and Auger electrons as well as the recoil of the daughter
nucleus.)

The radiations listed for 103mRh in Appendix D can also be explained. The pho-
ton with energy 0.040 MeV is shown in Fig. 3.11. Its 0.07% frequency implies that
99.03% of the time the metastable nucleus decays to the ground state by inter-
nal conversion, resulting in the ejection of atomic electrons (e–) with the energies
shown. (The present instance affords an example of internal conversion being fa-
vored over gamma emission in the decay of low-lying excited states in heavy nuclei,
mentioned at the end of the last section.) Internal conversion also leaves a vacancy
in an atomic shell, and hence the characteristic X rays of Rh are also found with a
103mRh source.

The neutrino emitted in electron capture has a negligible interaction with mat-
ter and offers no radiation hazard, as far as is known. Characteristic X rays of the
daughter will always be present. In addition, if the capture does not leave the daugh-
ter in its ground state, gamma rays will occur.

3.8
Positron Decay (β+)

Some nuclei, such as 22
11Na, disintegrate by emitting a positively charged electron

(positron, β+) and a neutrino:

22
11Na → 22

10Ne + 0
1β + 0

0ν. (3.37)

Positron decay has the same net effect as electron capture, reducing Z by one unit
and leaving A unchanged. The energy released is given in terms of the masses
MNa,N and MNe,N of the sodium and neon nuclei by

Q = MNa,N – MNe,N – m. (3.38)

Thus the mass of the parent nucleus must be greater than that of the daughter
nucleus by at least the mass m of the positron it creates. As before, we need to
express Q in terms of atomic masses, MNa,A and MNe,A. Since Na has 11 electrons
and Ne 10, we write

Q = MNa,N + 11m – (MNe,N + 10m) – 2m (3.39)

= MNa,A – MNe,A – 2m, (3.40)
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where the difference in the atomic binding of the electrons has been neglected
in writing the last equality. In terms of the values �P and �D of the parent and
daughter, the energy released in positron decay is given by

Qβ+ = �P – �D – 2mc2. (3.41)

Therefore, for positron emission to be possible, the mass of the parent atom must
be greater than that of the daughter by at least 2mc2 = 1.022 MeV. Using the infor-
mation from Appendix D, we find for the energy released via positron emission in
the decay (3.37) to the ground state of 22

10Ne

Qβ+ = –5.182 – (–8.025) – 1.022 = 1.821 MeV. (3.42)

Electron capture, which results in the same net change as positron decay, can com-
pete with (3.37):

0
–1e + 22

11Na → 22
10Ne + 0

0ν. (3.43)

Neglecting the electron binding energy in the 22
11Na atom, we obtain from Eq. (3.35)

for the energy released by electron capture

QEC = –5.182 + 8.025 = 2.843 MeV. (3.44)

[Comparison of Eqs. (3.35) and (3.41) shows that the Q value for EC is greater than
that for β+ decay by 1.022 MeV when EB is neglected.]

We next develop the decay scheme for 22
11Na. Appendix D indicates that β+ emis-

sion occurs 89.8% of the time and EC 10.2%. A gamma ray with energy 1.275 MeV
occurs with 100% frequency, indicating that either β+ emission or EC leaves the
daughter nucleus in an excited state with this energy. The positron decay scheme
is shown in Fig. 3.12(a) and that for electron capture in (b). The two are combined
in (c) to show the complete decay scheme for 22

11Na. The energy levels are drawn
relative to the ground state of 22

10Ne as having zero energy. The starting EC level is
2mc2 higher than the starting level for β+ decay.

Additional radiations are given in Appendix D for 22
11Na. Gamma rays of energy

0.511 MeV are shown with 180% frequency. These are annihilation photons that
are present with all positron emitters. A positron slows down in matter and then
annihilates with an atomic electron, giving rise to two photons, each having energy
mc2 = 0.511 MeV and traveling in opposite directions. Since a positron is emitted
in about 90% of the decay processes, the frequency of an annihilation photon is
1.8 per disintegration of a 22

11Na atom. The remaining radiation shown, Ne X rays,
comes as the result of the atomic-shell vacancy following electron capture.

As this example shows, electron capture and positron decay are competitive
processes. However, whereas positron emission cannot take place when the
parent–daughter atomic mass difference is less than 2mc2, electron capture can,
the only restriction being �P – �D > EB, as implied by Eq. (3.35). The nuclide 126

53I
can decay by three routes: EC (60.2%), β– (36.5%), or β+ (3.3%).13)

13 In general, the various possible decay modes
for a nuclide are those for which Q > 0 for a
transition to the daughter ground state.
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Fig. 3.12 Decay scheme of 22
11Na.

The radiation-protection problems associated with positron emitters include all
those of β– emitters (direct radiation and possible bremsstrahlung) and then some.
As already mentioned, the 0.511-MeV annihilation photons are always present. In
addition, because of the competing process of electron capture, characteristic X rays
can be expected.

Example

Refer to Appendix D and deduce the decay scheme of 26
13Al.
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Solution

This nuclide decays by β+ emission (81.8%) and EC (18.2%) into 26
12Mg. The energy

release for EC with a transition to the daughter ground state is, from the � values,

QEC = –12.211 + 16.214 = 4.003 MeV. (3.45)

Here we have neglected the small binding energy of the atomic electron. The corre-
sponding value for β+ decay to the ground state is Qβ+ = 4.003 – 1.022 = 2.981 MeV.
A 1.809-MeV gamma photon is emitted with 100% frequency, and so we can assume
that both EC and β+ decay modes proceed via an excited daughter state of this energy.
Adding this to the maximum β+ energy, we have 1.809 + 1.174 = 2.983 MeV = Qβ+ .
Therefore, the positron decay occurs as shown in Fig. 3.13(a). Its 81.8% frequency
accounts for the annihilation photons listed with 164% frequency in Appendix D.
The other 18.2% of the decays via EC also go through the level at 1.809 MeV. An ad-
ditional photon of energy 1.130 MeV and frequency 2.5% is listed in Appendix D.
This can arise if a fraction of the EC transformations go to a level with energy
1.809 + 1.130 = 2.939 MeV above ground. The complete decay scheme is shown in
Fig. 3.13(b). (Some small inconsistencies result from round-off.)

Fig. 3.13 Decay scheme of 26
13Al (see example in text).
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Table 3.1 Formulas for Energy Release, Q, in Terms of Mass
Differences, �P and �D, of Parent and Daughter Atoms

Type of decay Formula Reference

α Qα = �P – �D – �He Eq. (3.13)
β– Qβ– = �P – �D Eq. (3.25)
γ QIT = �P – �D Eq. (3.30)
EC QEC = �P – �D – EB Eq. (3.35)
β+ Qβ+ = �P – �D – 2mc2 Eq. (3.41)

This completes the description of the various types of radioactive decay. The for-
mulas for finding the energy release Q from the mass differences � of the parent
and daughter atoms are summarized in Table 3.1.

3.9
Suggested Reading
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2 Cember, H., Introduction to Health

Physics, 3rd ed., McGraw-Hill, New
York, NY (1996). [See especially Chap-
ter 4 on radioactivity.]

3 Evans, R. D., The Atomic Nucleus,
McGraw-Hill, New York, NY (1955).
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4 Faw, R. E., and Shultis, J. K., Radiolog-
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Wide Web. One extensive source, for example, with links to a number of re-
lated sites, is Lawrence Berkeley National Laboratory’s Isotope Project Home Page,
http://ie.lbl.gov.
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3.10
Problems

1. Gallium occurs with two natural isotopes, 69Ga (60.2%
abundant) and 71Ga (39.8%), having atomic weights 68.93 and
70.92. What is the atomic weight of the element?

2. The atomic weight of lithium is 6.941. It has two natural
isotopes, 6Li and 7Li, with atomic weights of 6.015 and 7.016.
What are the relative abundances of the two isotopes?

3. What minimum energy would an alpha particle need in order
to react with a 238U nucleus?

4. Calculate the energy released when a thermal neutron is
absorbed by deuterium.

5. Calculate the total binding energy of the alpha particle.
6. How much energy is released when a 6Li atom absorbs a

thermal neutron in the reaction 6
3Li(n, α)3

1H?
7. What is the mass of a 6Li atom in grams?
8. Calculate the average binding energy per nucleon for the

nuclide 40
19K.

9. The atomic weight of 32P is 31.973910. What is the value of �

in MeV?
10. Show that 1 AMU = 1.49 × 10–10 J.
11. Calculate the gamma-ray threshold for the reaction

12C(γ, n)11C.
12. (a) Calculate the energy released by the alpha decay of 222

86Rn.
(b) Calculate the energy of the alpha particle.
(c) What is the energy of the recoil polonium atom?

13. The 238
92U nucleus emits a 4.20-MeV alpha particle. What is the

total energy released in this decay?
14. The 226

88Ra nucleus emits a 4.60-MeV alpha particle 5.5% of the
time when it decays to 222

86Rn.
(a) Calculate the Q value for this decay.
(b) What is the recoil energy of the 222Rn atom?

15. The Q value for alpha decay of 239
94Pu is 5.25 MeV. Given the

masses of the 239Pu and 4He atoms, 239.052175 AMU and
4.002603 AMU, calculate the mass of the 235

92U atom in AMU.
16. Calculate the Q value for the beta decay of the free neutron into

a proton, 1
0n → 1

1p + 0
–1β + 0

0ν̄.
17. (a) Calculate the energy released in the beta decay of 32

15P.
(b) If a beta particle has 650 keV, how much energy does the

antineutrino have?
18. Calculate the Q value for tritium beta decay.
19. Draw the decay scheme for 42

19K.
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20. A 108
49In source emits a 633-keV gamma photon and a 606-keV

internal-conversion electron from the K shell. What is the
binding energy of the electron in the K shell?

21. (a) Draw the decay scheme for 198
79Au.

(b) Estimate the K-shell electron binding energy from the data
given in Appendix D.

22. Draw the decay scheme for 59
26Fe, labeling energies and

frequencies (percentages) for each transition.
23. Draw the decay scheme for 203

80Hg.
24. Nuclide A decays into nuclide B by β+ emission (24%) or by

electron capture (76%). The major radiations, energies (MeV),
and frequencies per disintegration are, in the notation of
Appendix D:

β+: 1.62 max (16%), 0.98 max (8%)
γ: 1.51 (47%), 0.64 (55%), 0.511 (48%, γ±)
Daughter X rays
e–: 0.614

(a) Draw the nuclear decay scheme, labeling type of decay,
percentages, and energies.

(b) What leads to the emission of the daughter X rays?
25. Draw the decay scheme for 84

37Rb.
26. (a) Calculate the Q values for the decay of 57

28Ni by positron
emission and by electron capture.

(b) Draw the decay scheme.
27. A parent nuclide decays by beta-particle emission into a stable

daughter. The major radiations, energies (MeV), and
frequencies are, in the notation of Appendix D:

β–: 3.92 max (7%), 3.10 max (5%), 1.60 max (88%)
γ: 2.32 (34%), 1.50 (54%), 0.820 (49%)
e–: 0.818, 0.805

(a) Draw the decay scheme.
(b) What is the maximum energy that the antineutrino can

receive in this decay?
(c) What is the value of the internal-conversion coefficient?
(d) Estimate the L-shell electron binding energy of the

daughter nuclide.
(e) Would daughter X rays be expected also? Why or why not?

28. Calculate the recoil energy of the technetium atom as a result of
photon emission in the isomeric transition 99m

43Tc → 99
43Tc + γ.

29. Refer to the decay scheme of 137
55Cs in Fig. 3.8. The binding

energies of the K- and L-shell electrons of the daughter 137
56Ba

atom are 38 keV and 6 keV.
(a) What are the energies of the internal-conversion electrons

ejected from these shells?
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(b) What is the wavelength of the barium Kα X ray emitted
when an L-shell electron makes a transition to the K shell?

(c) What is the value of the internal-conversion coefficient?
30. (a) Calculate the Q value for K orbital-electron capture by the

37
18Ar nucleus, neglecting the electron binding energy.

(b) Repeat (a), including the binding energy, 3.20 keV, of the
K-shell electron in argon.

(c) What becomes of the energy released as a result of this
reaction?

31. What is the maximum possible positron energy in the decay of
35
18Ar?

32. Explain the origins of the radiations listed in Appendix D for
85
39Y. Draw the decay scheme.

33. The nuclide 65
30Zn decays by electron capture (98.5%) and by

positron emission (1.5%).
(a) Calculate the Q value for both modes of decay.
(b) Draw the decay scheme for 65Zn.
(c) What are the physical processes responsible for each of the

major radiations listed in Appendix D?
(d) Estimate the binding energy of a K-shell electron in copper.

34. Does 26m
13Al decay to the ground state of its daughter 26

12Mg?
35. Show that 55

26Fe, which decays by electron capture, cannot decay
by positron emission.

36. The isotope 126
53I can decay by EC, β–, and β+ transitions.

(a) Calculate the Q values for the three modes of decay to the
ground states of the daughter nuclei.

(b) Draw the decay scheme.
(c) What kinds of radiation can one expect from a 126I source?

3.11
Answers

2. 7.49% 6Li, 92.51% 7Li
4. 6.26 MeV
9. –24.303 MeV

15. 235.0439 AMU
16. 0.782 MeV
20. 27 keV

28. 0.106 eV
29. (a) 0.624 MeV and

0.656 MeV
(b) 0.388 Å
(c) 0.118

31. 4.94 MeV
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4
Radioactive Decay

4.1
Activity

The rate of decay, or transformation, of a radionuclide is described by its activity,
that is, by the number of atoms that decay per unit time. The unit of activity is
the becquerel (Bq), defined as one disintegration per second: 1 Bq = 1 s–1. The
traditional unit of activity is the curie (Ci), which was originally the activity ascribed
to 1 g of 226Ra. The curie is now defined as 1 Ci = 3.7 × 1010 Bq, exactly.

4.2
Exponential Decay

The activity of a pure radionuclide decreases exponentially with time, as we now
show. If N represents the number of atoms of a radionuclide in a sample at any
given time, then the change dN in the number during a short time dt is propor-
tional to N and to dt. Letting λ be the constant of proportionality, we write

dN = –λN dt. (4.1)

The negative sign is needed because N decreases as the time t increases. The quan-
tity λ is called the decay, or transformation, constant; it has the dimensions of in-
verse time (e.g., s–1). The decay rate, or activity, A, is given by

A = –
dN

dt
= λN. (4.2)

We separate the variables in Eq. (4.1) by writing

dN

N
= –λdt. (4.3)

Integration of both sides gives

ln N = –λt + c, (4.4)

Atoms, Radiation, and Radiation Protection. James E. Turner
Copyright © 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-40606-7
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where c is an arbitrary constant of integration, fixed by the initial conditions. If we
specify that N0 atoms of the radionuclide are present at time t = 0, then Eq. (4.4)
implies that c = ln N0. In place of (4.4) we write

ln N = –λt + ln N0, (4.5)

ln
N

N0
= –λt (4.6)

or

N

N0
= e–λt. (4.7)

Equation (4.7) describes the exponential radioactive decay law. Since the activity of
a sample and the number of atoms present are proportional, activity follows the
same rate of decrease,

A

A0
= e–λt, (4.8)

where A0 is the activity at time t = 0. The dose rate at a given location in the neigh-
borhood of a fixed radionuclide source also falls off at the same exponential rate.

The function (4.8) is plotted in Fig. 4.1. During successive times T, called the
half-life of the radionuclide, the activity drops by factors of one-half, as shown. To

Fig. 4.1 Exponential radioactivity decay law, showing relative
activity, A/A0, as a function of time t; λ is the decay constant
and T the half-life.
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find T in terms of λ, we write from Eq. (4.8) at time t = T,

1
2 = e–λT. (4.9)

Taking the natural logarithm of both sides gives

–λT = ln
( 1

2

) = – ln 2, (4.10)

and therefore

T = ln 2
λ

= 0.693
λ

. (4.11)

Written in terms of the half-life, the exponential decay laws (4.7) and (4.8) become

N

N0
= A

A0
= e–0.693t/T. (4.12)

The decay law (4.12) can be derived simply on the basis of the half-life. If, for
example, the activity decreases to a fraction A/A0 of its original value after passage
of time t/T half-lives, then we can write

A

A0
=

(
1
2

)t/T

. (4.13)

Taking the logarithm of both sides of Eq. (4.13) gives

ln
A

A0
= –

t

T
ln 2 = –

0.693t

T
, (4.14)

from which Eq. (4.12) follows.

Example

Calculate the activity of a 30-MBq source of 24
11Na after 2.5 d. What is the decay con-

stant of this radionuclide?

Solution

The problem can be worked in several ways. We first find λ from Eq. (4.11) and
then the activity from Eq. (4.8). The half-life T = 15.0 h of the nuclide is given in
Appendix D. From (4.11),

λ = 0.693
T

= 0.693
15.0 h

= 0.0462 h–1. (4.15)

With A0 = 30 MBq and t = 2.5 d × 24 h d–1 = 60.0 h,

A = 30 e–(0.0462 h–1×60 h) = 1.88 MBq. (4.16)

Note that the time units employed for λ and t must be the same in order that the
exponential be dimensionless.



86 4 Radioactive Decay

Example

A solution contains 0.10 µCi of 198Au and 0.04 µCi of 131I at time t = 0. What is the
total beta activity in the solution at t = 21 d? At what time will the total activity decay
to one-half its original value?

Solution

Both isotopes decay to stable daughters, and so the total beta activity is due to these
isotopes alone. (A small fraction of 131I decays into 131mXe, which does not contribute
to the beta activity.) From Appendix D, the half-lives of 198Au and 131I are, respectively,
2.70 days and 8.05 days. At the end of 21 days, the activities AAu and AI of the nuclides
are, from Eq. (4.12),

AAu = 0.10e–0.693×21/2.70 = 4.56 × 10–4 µCi (4.17)

and

AI = 0.04e–0.693×21/8.05 = 6.56 × 10–3 µCi. (4.18)

The total activity at t = 21 days is the sum of these two activities, 7.02 × 10–3 µCi. To
find the time t in days at which the activity has decayed to one-half its original value
of 0.10 + 0.04 = 0.14 Ci, we write

0.07 = 0.1e–0.693t/2.70 + 0.04e–0.693t/8.05. (4.19)

This is a transcendental equation, which cannot be solved in closed form for t. The
solution can be found either graphically or by trial and error, focusing in between
two values of t that make the right-hand side of (4.19) >0.07 and <0.07. We present
a combination of both methods. The decay constants of the two nuclides are, for Au,
0.693/2.70 = 0.257 d–1 and, for I, 0.693/8.05 = 0.0861 d–1. The activities in µCi, as
functions of time t, are

AAu(t) = 0.10e–0.257t (4.20)

and

AI(t) = 0.04e–0.0861t. (4.21)

Figure 4.2 shows a plot of these two activities and the total activity, A(t) = AAu + AI,
calculated as functions of t from these two equations. Plotted to scale, the total ac-
tivity A(t) is found to reach the value 0.07 µCi near t = 3.50 d. We can improve on
this approximate graphical solution. Direct calculation from Eqs. (4.20) and (4.21)
shows that A(3.50) = 0.0703 and A(3.60) = 0.0689. Linear interpolation suggests the
solution t = 3.52 d; indeed, one can verify that A(3.52) = 0.0700 µCi.

The average, or mean, life τ of a radionuclide is defined as the average of all of
the individual lifetimes that the atoms in a sample of the radionuclide experience.
It is equal to the mean value of t under the exponential curve in Fig. 4.3. Therefore,
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Fig. 4.2 Graphical solution to example in text.

Fig. 4.3 The average life τ of a radionuclide is given by τ = 1/λ.

τ defines a rectangle, as shown, with area equal to the area under the exponential
curve:

1 × τ =
∫ ∞

0
e–λt dt = –

1
λ

e–λt

∣∣∣∣
∞

0
= 1

λ
. (4.22)

Thus the mean life is the reciprocal of the decay constant. In terms of the half-life,
we have

τ = 1
λ

= T

0.693
, (4.23)

showing that τ > T.
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4.3
Specific Activity

The specific activity of a sample is defined as its activity per unit mass, for example,
Bq g–1 or Ci g–1. If the sample is a pure radionuclide, then its specific activity SA
is determined by its decay constant λ, or half-life T, and by its atomic weight M as
follows. Since the number of atoms per gram of the nuclide is N = 6.02 × 1023/M,
Eq. (4.2) gives for the specific activity

SA = 6.02 × 1023 λ

M
= 4.17 × 1023

MT
. (4.24)

If T is in seconds, then this formula gives the specific activity in Bq g–1. In practice,
using the atomic mass number A in place of M usually gives sufficient accuracy.

Example

Calculate the specific activity of 226Ra in Bq g–1.

Solution

From Appendix D, T = 1600 y and M = A = 226. Converting T to seconds, we have

SA = 4.17 × 1023

226 × 1600 × 365 × 24 × 3600
(4.25)

= 3.66 × 1010 s–1 g–1 = 3.7 × 1010 Bq g–1. (4.26)

This, by definition, is an activity of 1 Ci.

The fact that 226Ra has unit specific activity in terms of Ci g–1 can be used in place
of Eq. (4.24) to find SA for other radionuclides. Compared with 226Ra, a nuclide of
shorter half-life and smaller atomic mass number A will have, in direct proportion,
a higher specific activity than 226Ra. The specific activity of a nuclide of half-life T

and atomic mass number A is therefore given by

SA = 1600
T

× 226
A

Ci g–1, (4.27)

where T is expressed in years. (The equation gives SA = 1 Ci g–1 for 226Ra.)

Example

What is the specific activity of I4C?

Solution

With T = 5730 y and A = 14, Eq. (4.27) gives

SA = 1600
5730

× 226
14

= 4.51 Ci g–1. (4.28)
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Alternatively, we can use Eq. (4.24) with T = 5730 × 365 × 24 × 3600 = 1.81 × 1011 s,
obtaining

SA = 4.17 × 1023

14 × 1.81 × 1011 = 1.65 × 1011 Bq g–1 (4.29)

= 1.65 × 1011 Bq g–1

3.7 × 1010 Bq Ci–1 = 4.46 Ci g–1, (4.30)

in agreement with (4.28).

Specific activity need not apply to a pure radionuclide. For example, 14C produced
by the 14N(n,p)14C reaction can be extracted chemically as a “carrier-free” radionu-
clide, that is, without the presence of nonradioactive carbon isotopes. Its specific
activity would be that calculated in the previous example. A different example is af-
forded by 60Co, which is produced by neutron absorption in a sample of 59Co (100%
abundant), the reaction being 59Co(n,γ )60Co. The specific activity of the sample de-
pends on its radiation history, which determines the fraction of cobalt atoms that
are made radioactive. Specific activity is also used to express the concentration of
activity in solution; for example, µCi mL–1 or Bq L–1.

4.4
Serial Radioactive Decay

In this section we describe the activity of a sample in which one radionuclide pro-
duces one or more radioactive offspring in a chain. Several important cases will be
discussed.

Secular Equilibrium (T1 � T2)

First, we calculate the total activity present at any time when a long-lived parent (1)
decays into a relatively short-lived daughter (2), which, in turn, decays into a sta-
ble nuclide. The half-lives of the two radionuclides are such that T1 � T2; and we
consider intervals of time that are short compared with T1, so that the activity A1

of the parent can be treated as constant. The total activity at any time is A1 plus the
activity A2 of the daughter, on which we now focus. The rate of change, dN2/dt, in
the number of daughter atoms N2 per unit time is equal to the rate at which they
are produced, A1, minus their rate of decay, λ2N2:

dN2

dt
= A1 – λ2N2. (4.31)

To solve for N2, we first separate variables by writing

dN2

A1 – λ2N2
= dt, (4.32)
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where A1 can be regarded as constant. Introducing the variable u = A1 – λ2N2, we
have du = –λ2dN2 and, in place of Eq. (4.32),

du

u
= –λ2 dt. (4.33)

Integration gives

ln(A1 – λ2N2) = –λ2t + c, (4.34)

where c is an arbitrary constant. If N20 represents the number of atoms of nuclide
(2) present at t = 0, then we have c = ln(A1 – λ2N20). Equation (4.34) becomes

ln
A1 – λ2N2

A1 – λ2N20
= –λ2t, (4.35)

or

A1 – λ2N2 = (A1 – λ2N20)e–λ2t. (4.36)

Since λ2N2 = A2, the activity of nuclide (2), and λ2N20 = A20 is its initial activity,
Eq. (4.36) implies that

A2 = A1(1 – e–λ2t) + A20e–λ2t. (4.37)

In many practical instances one starts with a pure sample of nuclide (1) at t = 0,
so that A20 = 0, which we now assume. The activity A2 then builds up as shown
in Fig. 4.4. After about seven daughter half-lives (t � 7T2), e–λ2t � 1 and Eq. (4.37)
reduces to the condition A1 = A2, at which time the daughter activity is equal to

Fig. 4.4 Activity A2 of relatively short-lived radionuclide
daughter (T2 � T1) as a function of time t with initial condition
A20 = 0. Activity of daughter builds up to that of the parent in
about seven half-lives (∼7T2). Thereafter, daughter decays at
the same rate it is produced (A2 = A1), and secular equilibrium
is said to exist.



4.4 Serial Radioactive Decay 91

that of the parent. This condition is called secular equilibrium. The total activity
is 2A1. In terms of the numbers of atoms, N1 and N2, of the parent and daughter,
secular equilibrium can be also expressed by writing

λ1N1 = λ2N2. (4.38)

A chain of n short-lived radionuclides can all be in secular equilibrium with a long-
lived parent. Then the activity of each member of the chain is equal to that of the
parent and the total activity is n + 1 times the activity of the original parent.

General Case

When there is no restriction on the relative magnitudes of T1 and T2, we write in
place of Eq. (4.31)

dN2

dt
= λ1N1 – λ2N2. (4.39)

With the initial condition N20 = 0, the solution to this equation is

N2 = λ1N10

λ2 – λ1
(e–λ1t – e–λ2t), (4.40)

as can be verified by direct substitution into (4.39). This general formula yields
Eq. (4.38) when λ2 � λ1 and A20 = 0, and hence also describes secular equilibrium.

Transient Equilibrium (T1 � T2)

Another practical situation arises when N20 = 0 and the half-life of the parent is
greater than that of the daughter, but not greatly so. According to Eq. (4.40), N2

and hence the activity A2 = λ2N2 of the daughter initially build up steadily. With
the continued passage of time, e–λ2t eventually becomes negligible with respect
to e–λ1t, since λ2 > λ1. Then Eq. (4.40) implies, after multiplication of both sides
by λ2, that

λ2N2 = λ2λ1N10e–λ1t

λ2 – λ1
. (4.41)

Since A1 = λ1N1 = λ1N10e–λ1t is the activity of the parent as a function of time, this
relation says that

A2 = λ2A1

λ2 – λ1
. (4.42)

Thus, after initially increasing, the daughter activity A2 goes through a maximum
and then decreases at the same rate as the parent activity. Under this condition,
illustrated in Fig. 4.5, transient equilibrium is said to exist. The total activity also
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Fig. 4.5 Activities as functions of time when T1 is somewhat
larger than T2 (T1 � T2) and N20 = 0. Transient equilibrium is
eventually reached, in which all activities decay with the
half-life T1 of the parent.

reaches a maximum, as shown in the figure, at a time earlier than that of the max-
imum daughter activity. Equation (4.42) can be differentiated to find the time at
which the daughter activity is largest. The result is (Problem 25)

t = 1
λ2 – λ1

ln
λ2

λ1
, for maximum A2. (4.43)

The total activity is largest at the earlier time (Problem 26)

t = 1
λ2 – λ1

ln
λ2

2

2λ1λ2 – λ2
1

, for maximum A1 + A2. (4.44)

The time at which transient equilibrium is established depends on the individual
magnitudes of T1 and T2. Secular equilibrium can be viewed as a special case of
transient equilibrium in which λ2 � λ1 and the time of observation is so short that
the decay of the activity A1 is negligible. Under these conditions, the curve for A1

in Fig. 4.5 would be flat, A2 would approach A1, and the figure would resemble
Fig. 4.4.
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No Equilibrium (T1 < T2)

When the daughter, initially absent (N20 = 0), has a longer half-life than the parent,
its activity builds up to a maximum and then declines. Because of its shorter half-
life, the parent eventually decays away and only the daughter is left. No equilibrium
occurs. The activities in this case exhibit the patterns shown in Fig. 4.6.

Example

Starting with a 10.0-GBq (= 1010 Bq) sample of pure 90Sr at time t = 0, how long will
it take for the total activity (90Sr + 90Y) to build up to 17.5 GBq?

Solution

Appendix D shows that 90
38Sr β– decays with a half-life of 29.12 y into 90

39Y, which β–

decays into stable 90
40Zr with a half-life of 64.0 h. These two isotopes illustrate a long-

lived parent (T1 = 29.12 y) decaying into a short-lived daughter (T2 = 64.0 h). Secular
equilibrium is reached in about seven daughter half-lives, that is, in 7 × 64 = 448 h.
At the end of this time, the 90Sr activity A1 has not diminished appreciably, the 90Y
activity A2 has increased to the level A2 = A1 = 10.0 GBq, and the total activity is
20.0 GBq. In the present problem we are asked, in effect, to find the time at which the
90Y activity reaches 7.5 GBq. The answer will be less than 448 h. Equation (4.37) with
A20 = 0 applies here.1) The decay constant for 90Y is λ2 = 0.693/T2 = 0.693/64.0 =
0.0108 h–1. With A1 = 10.0 GBq, A2 = 7.5 GBq, and A20 = 0, Eq. (4.37) gives

7.5 = 10.0(1 – e–0.0108t), (4.45)

where t is in hours. Rearranging, we have

e–0.0108t = 1
4 , (4.46)

giving t = 128 h. (In this example note that the 90Y activity increases in an in-
verse fashion to the way a pure sample of 90Y would decay. It takes two half-lives,
2T2 = 128 h, for the activity to build up to three-fourths its final value at secular equi-
librium.)

Example

How many grams of 90Y are in secular equilibrium with 1 mg of 90Sr?

Solution

The amount of 90Y will be that having the same activity as 1 mg of 90Sr. The specific
activity, SA, of 90Sr (T1 = 29.12 y) is [ from Eq. (4.27)]

SA1 = 1600
29.12

× 226
90

= 138 Ci g–1. (4.47)

1 Equation (4.40), describing the general case
without restriction on the relative magnitudes
of T1 and T2, can always be applied. To the
degree of accuracy with which we are

working, one will obtain the same numerical
answer from the simplified Eq. (4.37), which
already contains the appropriate
approximations.
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Fig. 4.6 Activities as functions of time when T2 > T1 and
N20 = 0. No equilibrium conditions occur. Eventually, only the
daughter activity remains.

Therefore, the activity of the 1 mg sample of 90Sr is

A1 = 10–3 g × 138 Ci g–1 = 0.138 Ci, (4.48)

which is also equal to the activity A2 of the 90Y. The latter has a specific activity

SA2 = 1600 y

64.0 h × 1
24

d
h

× 1
365

y
d

× 226
90

(4.49)

= 5.50 × 105 Ci g–1. (4.50)

Therefore, the mass of 90Y in secular equilibrium with 1 mg of 90Sr is

0.138 Ci
5.50 × 105 Ci g–1 = 2.51 × 10–7 g = 0.251 µg. (4.51)

Example

A sample contains 1 mCi of 191Os at time t = 0. The isotope decays by β– emission
into metastable 191mIr, which then decays by γ emission into 191Ir. The decay and
half-lives can be represented by writing

191
76Os

β–
–––––––––→

15.4 d

191m
77 Ir

γ
–––––––––→

4.94 s
191
77Ir. (4.52)

(a) How many grams of 191Os are present at t = 0?
(b) How many millicuries of 191mIr are present at t = 25 d?
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(c) How many atoms of 191mIr decay between t = 100 s and
t = 102 s?

(d) How many atoms of 191mIr decay between t = 30 d and t = 40 d?

Solution

As in the last two examples, the parent half-life is large compared with that of the
daughter. Secular equilibrium is reached in about 7 × 4.9 = 34 s. Thereafter, the ac-
tivities A1 and A2 of the 191Os and 191mIr remain equal, as they are in secular equilib-
rium. During the periods of time considered in (b) and in (d), however, the osmium
will have decayed appreciably; and so one deals with an example of transient equilib-
rium. The problem can be solved as follows.
(a) The specific activity of 191Os is, from Eq. (4.27),

SA1 = 1600 × 365
15.4

× 226
191

= 4.49 × 104 Ci g–1. (4.53)

The mass of the sample, therefore, is

10–3 Ci
4.49 × 104 Ci g–1 = 2.23 × 10–8 g. (4.54)

(b) At t = 25 d,

A2 = A1 = 1 × e–0.693×25/15.4 = 0.325 mCi. (4.55)

(c) Between t = 100 s and 102 s secular equilibrium exists with the
osmium source essentially still at its original activity. Thus the
191mIr decay rate at t = 100 s is A2 = 1 mCi = 3.7 × 107 s–1.
During the next 2 s the number of 191mIr atoms that decay is
2 × 3.7 × 107 = 7.4 × 107.

(d) This part is like (c), except that the activities A1 and A2 do not
stay constant during the time between 30 and 40 d. Since
transient equilibrium exists, the numbers of atoms of 191mIr
and 191Os that decay are equal. The number of 191mIr atoms that
decay, therefore, is equal to the integral of the 191Os activity
during the specified time (t in days):

3.7 × 107
∫ 40

30
e–0.693t/15.4 dt = 3.7 × 107

–0.0450
e–0.0450t

∣∣∣∣
40

30
(4.56)

= –8.22 × 108(0.165 – 0.259)

= 7.73 × 107. (4.57)
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4.5
Natural Radioactivity

All of the heavy elements (Z > 83) found in nature are radioactive and decay by al-
pha or beta emission. The nuclide 209

83Bi is the only one with atomic number greater
than that of lead (82) that is stable. The heaviest elements decay into successive ra-
dioactive daughters, forming series of radionuclides that end when a stable species
is produced. It is found that all of the naturally occurring heavy radionuclides be-
long to one of three series. Since the atomic mass number can change by only four
units (viz., when alpha emission occurs), a given nuclide can be easily identified as
belonging to one series or another by noting the remainder obtained when its mass
number is divided by four. The uranium series, for example, begins with 238

91U and
ends with stable 206

82Pb. When divided by four the mass number of every member of
the uranium series has remainder two. The thorium series, starting with 232

90Th and
ending with 208

82Pb, has remainder zero. The third group, the actinium series, which
begins with 235

92U and ends with 207
82Pb, has remainder three. A fourth series, with

remainder one, is the neptunium series. However, its longest-lived member, 237
93Np,

has a half-life of 2.2 × 106 years, which is short on a geological time scale. Neptu-
nium is not found in nature, but has been produced artificially, starting with 241

94Pu
and ending with 209

82Pb. All four series contain one gaseous member (an isotope
of Rn) and end in a stable isotope of Pb.

Primordial 238U would be found in secular equilibrium with its much shorter-
lived daughters, if undisturbed by physical or chemical processes in nature. It is
more likely, however, that secular equilibrium will be found only among certain
subsets of nuclides in the series. In this regard, a significant change occurs when
226Ra decays into 222Rn. The daughter, radon, is a noble gas, not bound chemically
in the material where its parents resided. The half-life of 222Rn is long enough for
much of the gas to work its way out into the atmosphere. As seen from Table 1.1,
radon (more precisely, its short-lived daughters) contributes an average of about
one-half the effective dose to persons from natural background radiation. This im-
portant source of human exposure is discussed in the next section.

Several lighter elements have naturally occurring, primordial radioactive iso-
topes. One of the most important from the standpoint of human exposure is 40K,
which has an isotopic abundance of 0.0118% and a half-life of 1.28 × 109 years.
The nuclide decays by β– emission (89%) or EC (11%). The maximum β– energy is
1.312 MeV. This isotope is an important source of human internal and external ra-
diation exposure, because potassium is a natural constituent of plants and animals.
In addition to the beta particle, 40K emits a penetrating gamma ray (1.461 MeV) fol-
lowing electron capture (11%).

Other naturally occurring radionuclides are of cosmogenic origin. Only those
produced as a result of cosmic-ray interactions with constituents of the atmosphere
result in any mentionable exposure to man: 3H, 7Be, 14C, and 22Na. The reaction
14N(n, p)14C with atmospheric nitrogen produces radioactive 14C, which has a half-
life of 5730 y. The radioisotope, existing as CO2 in the atmosphere, is utilized by
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plants and becomes fixed in their structure through photosynthesis. The time at
which 14C was assimilated in a previously living specimen, used to make furniture
or paper, for example, can be inferred from the relative amount of the isotope re-
maining in it today. Thus the age of such objects can be determined by radiocarbon
dating. In modern times, the equilibrium of natural 14C and 3H in the atmosphere
has been upset by the widespread burning of fossil fuels and by the testing of nu-
clear weapons in the atmosphere.

Example

How many alpha and beta particles are emitted by a nucleus of an atom of the ura-
nium series, which starts as 238

92U and ends as stable 206
82Pb?

Solution

Nuclides of the four heavy-element radioactive series decay either by alpha or beta
emission. A single disintegration, therefore, either (1) reduces the atomic number
by 2 and the mass number by 4 or (2) increases the atomic number by 1 and leaves
the mass number unchanged. Since the atomic mass numbers of 238

92U and 206
82Pb

differ by 32, it follows that 8 alpha particles are emitted in the series. Since this alone
would reduce the atomic number by 16, as compared with the actual reduction of 10,
a total of 6 beta particles must also be emitted.

4.6
Radon and Radon Daughters

As mentioned in the last section, the noble gas 222Rn produced in the uranium
series can become airborne before decaying. Soil and rocks under houses are or-
dinarily the principal contributors to indoor radon, which is typically four or five
times more concentrated than radon outdoors, where greater air dilution occurs.
Additional contributions to indoor radon come from outside air, building materi-
als, and the use of water and natural gas. Circumstances vary widely in time and
place, and so exceptions to generalizations are frequent.

Airborne radon itself poses little health hazard. As an inert gas, inhaled radon
is not retained in significant amounts by the body. The potential health hazard
arises when radon in the air decays, producing nongaseous radioactive daughters.
When inhaled, the airborne daughters can be trapped in the respiratory system,
where they are likely to decay before being removed by normal lung-clearing mech-
anisms of the body. Some of the daughter atoms in air are adsorbed onto micron-
or submicron-sized aerosols or dust particles (the “attached fraction”). Others (the
“unattached fraction”) remain in the air as essentially free ions or in small mole-
cular agglomerates (e.g., with several water molecules). Still other decay products
plate out on various surfaces. In assessing hazard, it is common to characterize the
radon daughters in an atmosphere by specifying the unattached fraction of each.
When inhaled, this fraction is trapped efficiently, especially in the upper respiratory
tract.
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As shown in Fig. 4.7, 222Rn decays into a series of short-lived daughters, two of
which, 218Po and 214Po, are alpha emitters.2) When an alpha particle is emitted in
the lung, it deposits all of its energy locally within a small thickness of adjacent
tissue. An alpha particle from 214Po, for example, deposits its 7.69 MeV of energy
within about 70 µm. A 1-MeV beta particle from 214Bi, on the other hand, deposits
its energy over a much larger distance of about 4000 µm. The dose to the cells of
the lung from the beta (and gamma) radiation from radon daughters is very small
compared with that from the alpha particles. The “radon problem,” technically, is
that of alpha-particle irradiation of sensitive lung tissue by the short-lived daughters
of radon and the associated risk of lung cancer.

The health hazard from radon is thus closely related to the air concentration of
the potential alpha-particle energy of the short-lived daughters. Depending on local
conditions, the daughters will be in various degrees of secular equilibrium with one
another and with the parent radon in an atmosphere. Rather than using individual
concentrations of the various progeny, one can characterize an atmosphere radio-
logically by means of a collective quantity: the potential alpha-energy concentration
(PAEC). The PAEC is defined as the amount of alpha energy per unit volume of

Fig. 4.7 Radon and radon daughters. Alpha emission is
represented by an arrow slanting downward toward the right;
beta emission, by a vertical arrow. Alpha-particle and average
beta-particle energies and half-lives are shown in the boxes.

2 In earlier terminology, the successive
short-lived daughters, 218Po through 210Pb,
were called RaA, RaB, RaC, RaC′ , and RaD,
respectively.
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undisturbed air that would ultimately be released from the particular mixture of
short-lived daughters in their decay to 210Pb. The PAEC can be expressed in J m–3

or MeV m–3. For a given PAEC, the equilibrium-equivalent decay-product concen-
tration (EEDC) is defined as the concentration of each decay product that would
be present if secular equilibrium existed. The ratio of the EEDC and the concen-
tration of radon is called the equilibrium factor. By definition, this factor is equal to
unity if the radon and all of its short-lived daughters are in secular equilibrium.
Equilibrium factors for most indoor atmospheres are in the range of 0.2 to 0.6, a
factor of 0.5 often being assumed as a rule of thumb. A limitation of the quantities
described in this paragraph is that they do not distinguish between the attached
and unattached fractions.

Until now, we have discussed only 222Rn, which is a member of the uranium se-
ries. Radon is also generated in the other two series of naturally occurring radionu-
clides. However, these isotopes of radon are of lesser radiological importance. The
thorium series generates 220Rn, which is also called thoron. The parent nuclide,
232Th, is somewhat more abundant than 238U, but has a longer half-life. As a re-
sult, the average rate of production of 220Rn in the ground is about the same as that
of 222Rn. However, the shorter half-life of 220Rn, 56 s, as compared with 3.82 d for
222Rn, gives it a much greater chance to decay before becoming airborne. The con-
tributions of the daughters of 220Rn to lung dose are usually negligible compared
with 222Rn. The third (actinium) series produces 219Rn, also called actinon, after
several transformations from the relatively rare original nuclide 235U. Its half-life
is only 4 s, and its contribution to airborne radon is insignificant.

Example

Measurements of room air show the nuclide activity concentrations given in Table 4.1.
Calculate the PAEC for this case.

Solution

The PAEC (and EEDC) pertain to the short-lived decay products and do not involve
the radon itself, which is not retained by the lungs. To obtain the PAEC, we need to
calculate the number of daughter atoms of each type per unit volume of air; multiply
these numbers by the potential alpha-particle energy associated with each type of

Table 4.1

Activity
Concentration

Nuclide (Bq m–3)

222Rn 120
218Po 93
214Pb 90
2l4Bi 76
214Po 76
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Table 4.2

A λ N E NE

Nuclide (Bq m–3) (s–1) (m–3) (MeV) (MeV m–3)

2l8Po 93 3.79 × 10–3 2.45 × 104 13.69 3.35 × 105

214Pb 90 4.31 × 10–4 2.09 × 105 7.69 1.61 × 106

214Bi 76 5.83 × 10–4 1.30 × 105 7.69 1.00 × 106

214Po 76 4.23 × 103 1.80 × 10–2 7.69 1.38 × 10–1

atom; and then sum. The number of atoms N of a radionuclide associated with an
activity A is given by Eq. (4.2), N = A/λ, where λ is the decay constant. For the first
daughter, 218Po, for example, we find from the half-life T = 183 s given in Fig. 4.7
(or Appendix D) that λ = 0.693/T = 3.79 × 10–3 s–1. From the activity density A =
93 Bq m–3 given in Table 4.1, it follows that the number density of 218Po atoms is

N = A

λ
= 93 Bq m–3

3.79 × 10–3 s–1 = 2.45 × 104 m–3, (4.58)

where the units Bq and s–1 cancel. Each atom of 218Po will emit a 6.00-MeV alpha par-
ticle. Each will also lead to the emission later of a 7.69-MeV alpha particle with the de-
cay of its daughter 214Po into 210Pb. Thus, the presence of one 218Po atom represents
a potential alpha-particle energy E = 6.00 + 7.69 = 13.69 MeV from the short-lived
radon daughters. Using N from Eq. (4.58), we find for the potential alpha-particle en-
ergy per unit volume contributed by the atoms of 218Po, NE = 3.35 × 105 MeV m–3.
Similar calculations can be made for the contributions of the other three daughters
in Table 4.1 to the PAEC. The only modification for the others is that the potential
alpha energy associated with each atom is 7.69 MeV (Fig. 4.7).

The complete calculation is summarized in Table 4.2. The individual nuclide
contributions in the last column can be added to give the final answer, PAEC =
2.95 × 106 MeV m–3. Note that the half-life of 214Po, which is in secular equilibrium
with 214Bi (equal activity densities), is so short that very few atoms are present. Its
contribution to the PAEC is negligible.

Example

Calculate the EEDC in the last example. What is the equilibrium factor?

Solution

By definition, the EEDC is the activity concentration of the short-lived radon daugh-
ters that would give a specified value of the PAEC under the condition of secular
equilibrium. For the last example, the EEDC is the (equal) concentration that would
appear in the second column of Table 4.2 for each nuclide that would result in
the given value, PAEC = 2.95 × 106 MeV m–3. The solution can be set up in more
than one way. We compute the PAEC for secular equilibrium at unit activity density



4.6 Radon and Radon Daughters 101

Table 4.3

NE/A

Nuclide (MeV Bq–1)

218Po 3.60 × 103

214Pb 1.79 × 104

214Bi 1.32 × 104

214Po 1.82 × 10–3

(1 Bq m–3), from which the answer follows immediately. The contribution per unit
activity from 218Po, for example, is obtained from Table 4.2:

NE

A
= 3.35 × 105 MeV m–3

93 Bq m–3 = 3.60 × 103 MeV Bq–1. (4.59)

Values for the four nuclides are shown in Table 4.3. Adding the numbers in the sec-
ond column gives a total of 3.47 × 104 MeV Bq–1. This is the PAEC (MeV m–3) per
unit activity concentration (Bq m–3) of each daughter in secular equilibrium. There-
fore, for the last example we have

EEDC = PAEC
3.47 × 104 MeV Bq–1

= 2.95 × 106 MeV m–3

3.47 × 104 MeV Bq–1 = 85.0 Bq m–3.
(4.60)

The equilibrium factor is the ratio of this activity concentration and that of the radon
(Table 4.1): 85.0/120 = 0.708.

This example shows the useful relationship between an equilibrium concentra-
tion of 1 Bq m–3 of the short-lived radon daughters and the associated potential
alpha-energy concentration:

3.47 × 104 MeV m–3

1 Bq m–3 = 3.47 × 104 MeV Bq–1. (4.61)

Note that the potential alpha energy per unit activity of the daughters in secular
equilibrium is independent of the actual concentration of the daughters in air.

An older unit for the PAEC is the working level (WL), defined as a potential alpha-
particle energy concentration of 1.3 × 105 MeV L–1 of air for the short-lived radon
daughters. This value corresponds to the presence of 100 pCi L–1 = 3.7 Bq L–1 of the
daughters in secular equilibrium, that is, to an EEDC of 3.7 Bq L–1. The exposure
of persons to radon daughters is often expressed in working-level months (WLM),
with a working month defined as 170 h. The WLM represents the integrated expo-
sure of an individual over a specified time period. Concentrations of radon itself
are sometimes reported, rather than PAECs or WLs, which pertain to the daugh-
ters. As a rule of thumb, 1 WL of radon daughters is often associated with a radon
concentration of 200 pCi L–1, corresponding to an equilibrium factor of 0.5.
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Example

A person spends an average of 14 hours per day at home, where the average concen-
tration of radon is 1.5 pCi L–1 (a representative value for many residences). What is
his exposure in WLM over a six-month period?

Solution

Using the rule of thumb just given, we estimate the daughter concentration to be
(1.5/200) (1 WL) = 0.0075 WL. The exposure time in hours for the six months
(= 183 d) is 183 × 14 = 2560 h. Since there are 170 h in a working month, the ex-
posure time is 2560/170 = 15.1 working months. The person’s exposure to radon
daughters over the six-month period is therefore 0.0075 × 15.1 = 0.11 WLM.
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4.8
Problems

1. What is the value of the decay constant of 40K?
2. What is the decay constant of tritium?
3. The activity of a radioisotope is found to decrease by 30% in

1 wk. What are the values of its
(a) decay constant
(b) half-life
(c) mean life?

4. What percentage of the original activity of a radionuclide
remains after
(a) 5 half-lives
(b) 10 half-lives?

5. The isotope 132I decays by β– emission into stable 132Xe with a
half-life of 2.3 h.
(a) How long will it take for 7

8 of the original 132I atoms to
decay?

(b) How long it will take for a sample of 132I to lose 95% of its
activity?

6. A very old specimen of wood contained 1012 atoms of 14C in
1986.
(a) How many 14C atoms did it contain in the year 9474 B.C.?
(b) How many 14C atoms did it contain in 1986 B.C.?

7. A radioactive sample consists of a mixture of 35S and 32P.
Initially, 5% of the activity is due to the 35S and 95% to the 32P.
At what subsequent time will the activities of the two nuclides
in the sample be equal?

8. The gamma exposure rate at the surface of a shielded 198Au
source is 10 R h–1 (roentgen/hour, Sec. 12.2). What will be the
exposure rate in this position after 2 wk?

9. Compute the specific activity of
(a) 238U
(b) 90Sr
(c) 3H.

10. How many grams of 32P are there in a 5 mCi source?
11. How many atoms are there in a 1.16-MBq source of

(a) 24Na?
(b) 238U?

12. An encapsulated 210Po radioisotope was used as a heat source,
in which an implanted thermocouple junction converts heat
into electricity with an efficiency of 15% to power a small
transmitter for an early space probe.
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(a) How many curies of 210Po are needed at launch time if the
transmitter is to be supplied with 100 W of electricity 1 y
after launch?

(b) Calculate the number of grams of 210Po needed.
(c) If the transmitter shuts off when the electrical power to it

falls below 1 W, how long can it be expected to operate after
launch?

(d) What health physics precautions would you recommend
during fabrication, encapsulation, and handling of the
device?

13. The Cassini spacecraft went into orbit about the planet, Saturn,
in July 2004, after a nearly seven-year journey from Earth.
On-board electrical systems were powered by heat from three
radioisotope thermoelectric generators, which together utilized
a total of 32.7 kg of 238Pu, encapsulated as PuO2. The isotope
has a half-life of 86.4 y and emits an alpha particle with an
average energy of 5.49 MeV. The daughter 234U has a half-life of
2.47 × 105 y.
(a) Calculate the specific thermal-power generation rate of

238Pu in W g–1.
(b) How much total thermal power is generated in the

spacecraft?
14. A 0.2-g sample of 85

36Kr gas, which decays into stable 85
37Rb, is

accidentally broken and escapes inside a sealed warehouse
measuring 40 × 30 × 20 m. What is the specific activity of the
air inside?

15. A 6.2-mg sample of 90Sr is in secular equilibrium with its
daughter 90Y.
(a) How many Bq of 90Sr are present?
(b) How many Bq of 90Y are present?
(c) What is the mass of 90Y present?
(d) What will the activity of the 90Y be after 100 y?

16. A sample contains 1.0 GBq of 90Sr and 0.62 GBq of 90Y.
(a) What will be the total activity of the sample 10 days later?
(b) What will be the total activity of the sample 29.12 years

later?
17. Consider the following β– nuclide decay chain with the

half-lives indicated:

210
82Pb

β–
–––––––––→

22 y
210
83Bi

β–
–––––––––→

5.0 d

210
84Po.

A sample contains 30 MBq of 210Pb and 15 MBq of 210Bi at
time t = 0.
(a) Calculate the activity of 210Bi at time t = 10 d.
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(b) If the sample was originally pure 210Pb, then how old is it
at time t = 0?

18. What is the mean life of a 226Ra atom?
19. 59Fe has a half-life of 45.53 d.

(a) What is the mean life of a 59Fe atom?
(b) Calculate the specific activity of 59Fe.
(c) How many atoms are there in a 10-mCi source of 59Fe?

20. At time t = 0 a sample consists of 2 Ci of 90Sr and 8 Ci of 90Y.
(a) What will the activity of 90Y be in the sample after 100 h?
(b) At what time will the 90Y activity be equal to 3 Ci?

21. 136Cs (half-life = 13.7 d) decays (β–) into 136mBa
(half-life = 0.4 s), which decays (γ ) into stable 136Ba:

136Cs
β–

–––––––––→
13.7 d

136mBa
γ

–––––––––→
0.4 s

136Ba.

(a) Calculate the decay constant of 136Cs.
(b) Calculate the specific activity of 136Cs.
(c) Starting with a pure 1010-Bq sample of 136Cs at time t = 0,

how many atoms of 136mBa decay between time t1 = 13.7 d
(exactly) and time t2 = 13.7 d + 5 s (exactly)?

22. Show that Eq. (4.40) leads to secular equilibrium, A1 = A2,
under the appropriate conditions.

23. Show by direct substitution that the solution given by Eq. (4.40)
satisfies Eq. (4.39).

24. A 40-mg sample of pure 226Ra is encapsulated.
(a) How long will it take for the activity of 222Rn to build up to

10 mCi?
(b) What will be the activity of 222Rn after 2 years?
(c) What will be the activity of 222Rn after 1000 years?
(d) What is the ratio of the specific activity of 222Rn to that

of 226Ra?
25. Verify Eq. (4.43).
26. (a) Verify Eq. (4.44).

(b) Show that the time of maximum total activity occurs earlier
than the time of maximum daughter activity in Fig. 4.5.

(c) Does Eq. (4.43) apply to A2 when there is no equilibrium
(Fig. 4.6)?

27. To which of the natural series do the following heavy
radionuclides belong: 213

83Bi, 215
84Po, 230

90Th, 233
92U, and 224

88Ra?
28. The average mass of potassium in the human body is about

140 g. From the abundance and half-life given in Appendix D,
estimate the average activity of 40K in the body.

29. An atmosphere contains radon and its short-lived daughters in
secular equilibrium at a concentration of 52 Bq m–3.
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(a) What is the PAEC?
(b) The equilibrium factor?

30. An air sample taken from a room shows the nuclide activity
concentrations given in Table 4.4. Calculate
(a) the potential alpha-energy concentration
(b) the EEDC
(c) the equilibrium factor.

Table 4.4 Problem 30

Concentration
Nuclide (Bq L–1)

222Rn 9.2
218Po 4.6
214Pb 2.7
214Bi 2.0
214Po 2.0

31. A 5-L sample of air contains the activities (disintegrations per
minute, dpm) of radon daughters shown in Table 4.5. Calculate
(a) the potential alpha-energy concentration
(b) the equilibrium-equivalent decay-product concentration.

Table 4.5 Problem 31

Nuclide dpm

218Po 1690
214Pb 1500
214Bi 1320
214Po 1320

32. A room contains 222Rn at a concentration of 370 Bq m–3. The
PAEC is 7.8 × 106 MeV m–3. What is the equilibrium factor?

33. (a) Show that the EEDC for the short-lived 222Rn daughters is
given by

EEDC = 0.104C(218Po) + 0.516C(214Pb) + 0.380C(214Bi),

where C(218Po), C(214Pb), and C(214Bi) are the
concentrations of the daughters indicated.

(b) What units are implied in this expression?
(c) Why is the expression independent of C(214Po)?
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34. If the radon concentration (222Rn) inside a building is
0.85 pCi L–1 and the equilibrium factor is 0.6, what is the rate of
release of alpha-particle energy in MeV L–1 h–1?

35. Show that
(a) 1 WL = 2.1 × 10–5 J m–3

(b) 1 WLM = 0.0036 J h m–3.
36. A 3-L air sample contains the following radon-daughter

activities: 218Po, 16.2 Bq; 214Pb, 15.0 Bq; 214Bi, 12.2 Bq; and
214Po, 12.2 Bq. Calculate the WL concentration.

37. A person spends an average of 10 hours per day, 5 days per
week, in an atmosphere where the average radon-daughter
concentration is 0.68 WL. What is his exposure in WLM after
one year of this activity?

38. A basement measures 12 m × 10 m × 2.5 m. The air inside
contains the nuclide inventory shown in Table 4.6.
(a) Calculate the WL concentration.
(b) If the given activities are average and a person occupies the

basement 10 hours per day, 7 days per week, for
12 months, what will be his exposure in WLM?

Table 4.6 Problem 38

Activity
Nuclide (µCi)

222Rn 0.81
218Po 0.69
214Pb 0.44
214Bi 0.25
214Po 0.25

39. A room measures 10 m × 8 m × 3 m. It contains 80 pCi L–1

of 218Po, 60 pCi L–1 of 214Pb, and 25 pCi L–1 each of 214Bi
and 214Po.
(a) Calculate the WL concentration in the room.
(b) Calculate the total potential alpha-particle energy in the

room.
(c) What is the concentration of 214Po atoms in the air?
(d) If secular equilibrium existed at this working-level

concentration, what would be the activity concentration of
214Pb atoms?

(e) What would be the exposure in WLM of an individual who
occupied the room 12 hours per day, 6 days per week, for
one year?
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40. An atmosphere contains the numbers of atoms per liter shown
in Table 4.7.
(a) Calculate the PAEC in J m–3.
(b) Calculate the EEDC.
(c) Calculate the equilibrium factor.

Table 4.7 Problem 40

Nuclide Atoms L–1

222Rn 2.34 × 105

218Po 52
214Pb 407
214Bi 214
214Po 2

4.9
Answers

2. 0.0564 y–1

5. (a) 6.90 h
(b) 9.94 h

6. (a) 4.00 × 1012

(b) 1.62 × 1012

7. 72.5 d
10. 1.75 × 10–8 g
12. (a) 1.30 × 105 Ci

(b) 28.9 g
(c) 1280 d

13. (a) 0.575 W g–1

(b) 18.8 kW
14. 120 MBq m–3

15. (a) 3.13 × 1010 Bq
(b) 3.13 × 1010 Bq
(c) 1.56 µg
(d) 2.90 × 109 Bq

16. (a) 1.97 GBq
(b) 1.00 GBq

21. (a) 0.0506 d–1

(b) 2.59 × 1018 Bq kg–1

(c) 2.5 × 1010

30. (a) 9.15 × 107 MeV m–3

(b) 2630 Bq m–3

(c) 0.29
31. (a) 1.68 × 108 MeV m–3

(b) 4830 Bq m–3

36. 1.25 WL
37. 10.4 WLM
39. (a) 0.481 WL

(b) 1.50 × 1010 MeV
(c) 2.19 × 10–4 L–1

(d) 48.1 pCi L–1

(e) 10.6 WLM
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5
Interaction of Heavy Charged Particles with Matter

This chapter and the next four deal with the mechanisms by which different types
of ionizing radiation interact with matter. Knowledge of the basic physics of radi-
ation interaction and energy transfer is fundamental to radiation detection, mea-
surement, and control, as well as to understanding the biological effects of radia-
tion on living tissue. We consider “heavy” charged particles first, that is charged
particles other than the electron and positron.

5.1
Energy-Loss Mechanisms

A heavy charged particle traversing matter loses energy primarily through the ion-
ization and excitation of atoms. (Except at low velocities, a heavy charged particle
loses a negligible amount of energy in nuclear collisions.) The moving charged par-
ticle exerts electromagnetic forces on atomic electrons and imparts energy to them.
The energy transferred may be sufficient to knock an electron out of an atom and
thus ionize it, or it may leave the atom in an excited, nonionized state. As we show
in the next section, a heavy charged particle can transfer only a small fraction of its
energy in a single electronic collision. Its deflection in the collision is negligible.
Thus, a heavy charged particle travels an almost straight path through matter, los-
ing energy almost continuously in small amounts through collisions with atomic
electrons, leaving ionized and excited atoms in its wake. Occasionally, however, as
observed in Rutherford’s experiments with alpha-particle scattering from a gold
foil, a heavy charged particle will undergo a substantial deflection due to elastic
scattering from an atomic nucleus.

Electrons and positrons also lose energy almost continuously as they slow down
in matter. However, they can lose a large fraction of their energy in a single col-
lision with an atomic electron (having equal mass), thereby suffering relatively
large deflections. Because of their small mass, electrons are frequently scattered
through large angles by nuclei. In contrast to heavy charged particles, electrons
and positrons do not generally travel through matter in straight lines. An electron
can also be sharply deflected by an atomic nucleus, causing it to emit photons in
the process called bremsstrahlung (braking radiation). Figure 5.1 shows the con-
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Fig. 5.1 (Top) Alpha-particle autoradiograph of
rat bone after inhalation of 241Am. Biological
preparation by R. Masse and N. Parmentier.
(Bottom) Beta-particle autoradiograph of
isolated rat-brain nucleus. The 14C-thymidine
incorporated in the nucleolus is located at the
track origin of the electron emitted by the

tracer element. Biological preparation by
M. Wintzerith and P. Mandel. (Courtesy
R. Rechenmann and
E. Wittendorp-Rechenmann, Laboratoire de
Biophysique des Rayonnements et de
Methodologie INSERM U.220, Strasbourg,
France.)
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trast between the straight tracks of two alpha particles and the tortuous track of a
beta particle in photographic emulsion.

5.2
Maximum Energy Transfer in a Single Collision

In this section we calculate the maximum energy that a charged particle can lose
in colliding with an atomic electron. We assume that the particle moves rapidly
compared with the electron and that the energy transferred is large compared with
the binding energy of the electron in the atom. Under these conditions the electron
can be considered to be initially free and at rest, and the collision is elastic. We treat
the problem classically and then give the relativistic results.

Figure 5.2(a) shows schematically a charged particle (mass M and velocity V )
approaching an electron (mass m, at rest). After the collision, which for maximum
energy transfer is head-on, the particles in (b) move with speeds V1 and v1 along
the initial line of travel of the incident particle. Since the total kinetic energy and
momentum are conserved in the collision, we have the two relationships

1
2 MV2 = 1

2 MV2
1 + 1

2 mv2
1 (5.1)

and

MV = MV1 + mv1. (5.2)

If we solve Eq. (5.2) for v1 and substitute the result into (5.1), we obtain

V1 = (M – m)V
M + m

. (5.3)

Using this expression for V1, we find for the maximum energy transfer

Qmax = 1
2

MV2 –
1
2

MV2
1 = 4mME

(M + m)2 , (5.4)

where E = MV2/2 is the initial kinetic energy of the incident particle.

Fig. 5.2 Representation of head-on collision of a particle of
mass M and speed V with an electron of mass m, initially free
and at rest.
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When the incident particle is an electron or positron, the special circumstance
arises in which its mass is the same as that of the struck particle: M = m. Equa-
tion (5.4) then implies that Qmax = E, and so its entire energy can be transferred in
a single, billiard-ball-type collision. As already mentioned, electrons and positrons
can thus experience relatively large energy losses and deflections, which contribute
to their having tortuous paths in matter. The next particle more massive than the
electron is the muon, having a mass M = 207m.1) The maximum fraction of energy
that a muon can transfer in a single collision is, from Eq. (5.4),

Qmax

E
= 4m(207m)

(208m)2
∼= 4

208
= 0.0192. (5.5)

Thus, the muon (and all heavy charged particles) travel essentially straight paths in
matter, except for occasional large-angle deflections by atomic nuclei.

The exact relativistic expression for the maximum energy transfer, with m and M

denoting the rest masses of the electron and the heavy particle, is

Qmax = 2γ2mV2

1 + 2γm/M + m2/M2 , (5.6)

where γ = 1/
√

1 – β2, β = V/c, and c is the speed of light (Appendix C). Except at
extreme relativistic energies, γm/M � 1, in which case (5.6) reduces to

Qmax = 2γ2mV2 = 2γ2mc2β2, (5.7)

which is the usual relativistic result.

Example

Calculate the maximum energy that a 10-MeV proton can lose in a single electronic
collision.

Solution

For a proton of this energy the nonrelativistic formula (5.4) is accurate. Neglecting m

compared with M, we have Qmax = 4mE/M = 4 × 1 × 10/1836 = 2.18 × 10–2 MeV =
21.8 keV, which is only 0.22% of the proton’s energy.

Example

Use the relativistic formula (5.7) to calculate the maximum possible energy loss in a
single collision of the 10-MeV proton in the last example.

Solution

We first find γ. Since the proton rest energy is Mc2 = 938 MeV (Appendix A), we can
use the formula in Appendix C for the relativistic kinetic energy, T = 10 MeV, to write

1 The muon (M = 207m), pion (270m), and
kaon (967m) are unstable particles with
masses intermediate between those of the
electron (m) and proton (1836m). They occur
with cosmic radiation and can also be
generated in particle accelerators.
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Table 5.1 Maximum Possible Energy Transfer, Qmax, in Proton Collision with Electron

Proton Kinetic Maximum Percentage
Energy E Qmax Energy Transfer

(MeV) (MeV) 100Qmax/E

0.1 0.00022 0.22
1 0.0022 0.22

10 0.0219 0.22
100 0.229 0.23

103 3.33 0.33
104 136. 1.4
105 1.06×104 10.6
106 5.38×105 53.8
107 9.21×106 92.1

10 = 938(γ – 1). It follows that γ = 1.01066 and β2 = 0.02099. Since the electron rest
energy is mc2 = 0.511 MeV (Appendix A), Eq. (5.7) yields Qmax = 21.9 keV.

Table 5.1 gives numerical results for a range of proton energies. Except at extreme
relativistic energies, where Eq. (5.6) must be used, the maximum fractional energy
loss for a heavy charged particle is small. At these extreme energies, the rest energy
of the colliding particle contributes little to its total energy (Appendix C). The dif-
ference in rest mass between it and the struck electron then has little effect on the
collision. One sees that Qmax/E approaches 100% in Table 5.1. Encounters in which
an amount of energy comparable to Qmax is transferred are very rare, though, par-
ticularly at high energies. The probabilities for losing different amounts of energy
are described by single-collision energy-loss spectra, discussed in the next section.

Equations (5.4), (5.6), and (5.7) for maximum energy loss are kinematic in na-
ture. That is, they follow from the simultaneous conservation of momentum and
kinetic energy, independently of the kinds of forces that act. Under the conditions
stated at the beginning of this section, it is a good approximation to calculate Qmax

as though the struck electron were not bound, the collision then being elastic.
Charged-particle energy losses to atomic electrons are, in fact, inelastic; the stated
conditions do not apply when a small amount of energy is transferred. In Chapter 9
we shall apply Eq. (5.4) to the elastic scattering of neutrons by atomic nuclei, such
collisions being truly elastic. The special case M = m and Qmax = E arises then for
neutron scattering by hydrogen.

5.3
Single-Collision Energy-Loss Spectra

The foregoing analysis of Qmax enables one to understand part of the physical basis
for the different kinds of trajectories seen for electrons and for heavy charged par-
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ticles in matter. Further details about charged-particle penetration are embodied
in the spectra of single-collision energy losses to atomic electrons. These spectra
include the effects of the binding of electrons in atoms. As pointed out in the last
paragraph, the electronic collisions by which charged particles transfer energy to
matter are inelastic. Kinetic energy is lost in overcoming the binding energies of
the struck electrons.

Figure 5.3 shows single-collision energy-loss spectra calculated for 50-eV and
150-eV electrons and 1-MeV protons in liquid water. The ordinate gives the proba-
bility density W(Q) per eV, such that W(Q) dQ is the probability that a given collision
will result in an energy loss between Q and Q + dQ, with Q expressed in eV. (The
curves are normalized to unit area.) Similar spectra calculated for more energetic
electrons and protons lie almost on top of the curves for the 150-eV electrons and
1-MeV protons. For other energetic particles, the principal difference in the curves
is their association with different values of Qmax, where the functions W(Q) are very
small.

The most striking feature of energy-loss spectra for fast charged particles (i.e.,
those with speeds greater than the orbital speeds of the atomic electrons) is their
remarkable similarity in the region from about 10 eV to 70 eV, where energy losses
are most probable. As discussed in more detail in Section 5.5, this universality
is attributable to other factors being generally of secondary importance when a
quantum transition in an atom is induced by the very swift passage of charge. Such
an encounter is referred to as a “sudden” collision.

The energy-loss spectra of slow charged particles differ from one another. The
time of interaction is longer than for fast particles, the binding of the electrons is
more important, and the most probable energy losses are closer to Qmax. In addi-
tion, slow particles have a greater tendency to excite atoms rather than ionize them.
Figure 5.3 shows by way of example the different shape of the energy-loss spectrum
for 50-eV electrons.

Fig. 5.3 Single-collision energy-loss spectra for 50-eV and
150-eV electrons and 1-MeV protons in liquid water. (Courtesy
Oak Ridge National Laboratory, operated by Martin Marietta
Energy Systems, Inc., for the Department of Energy.)
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One also sees in Fig. 5.3 that energy is not lost by a charged particle in arbitrarily
small amounts. The binding of the electrons in the discrete energy states of the
medium requires that a minimum, or threshold, energy, Qmin > 0, be transferred
for excitation or ionization of an atom.

Example

Estimate the probability that a 50-MeV proton will lose between 30 eV and 40 eV in a
collision with an atomic electron in penetrating the soft tissue of the body.

Solution

Soft tissue is similar in atomic composition to liquid water (Table 12.3), and so we
use Fig. 5.3 to make the estimate. As implied in the text, the energy-loss spectrum
for 50-MeV protons is close to that for 1-MeV protons, except that it extends out to
a different value of Qmax. We see that the area under the curve between 30 eV and
40 eV in Fig. 5.3 is approximately

W(Q)�Q = (0.019 eV–1)(40 – 30) eV = 0.19. (5.8)

Thus, a 50-MeV proton has about a 20% chance of losing between 30 eV and 40 eV
in a single electronic collision in soft tissue.

5.4
Stopping Power

The average linear rate of energy loss of a heavy charged particle in a medium
(expressed, for example, in MeV cm–1) is of fundamental importance in radiation
physics and dosimetry. This quantity, designated –dE/dx, is called the stopping
power of the medium for the particle. It is also referred to as the linear energy
transfer (LET) of the particle, usually expressed as keV µm–1 in water. Stopping
power and LET are closely associated with the dose delivered by charged particles
(or charged recoil particles produced by incident photons or neutrons) and with the
biological effectiveness of different kinds of radiation (Section 7.3).

Stopping powers can be calculated from energy-loss spectra like those discussed
in the last section. For a given type of charged particle at a given energy, the stop-
ping power is given by the product of (1) the probability µ per unit distance of travel
that an electronic collision occurs and (2) the average energy loss per collision, Qavg.
The former is called the macroscopic cross section, or attenuation coefficient, and
has the dimensions of inverse length. The latter is given by

Qavg =
∫ Qmax

Qmin

QW(Q) dQ , (5.9)

where Qmin was introduced at the end of the last section. Thus, the stopping power
is given by

–
dE

dx
= µQavg = µ

∫ Qmax

Qmin

QW(Q) dQ. (5.10)
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If µ is expressed in cm–1 and Q in MeV, then Eq. (5.10) gives the stopping power
in MeV cm–1. The quantities µ and Qavg, and hence –dE/dx, depend upon the type
of particle, its energy, and the medium traversed.

Example

The macroscopic cross section for a 1-MeV proton in water is 410 µm–1, and the
average energy lost in an electronic collision is 72 eV. What is the stopping power in
MeV cm–1 and in J m–1?

Solution

With µ = 410 µm–1 and Qavg = 72 eV, Eq. (5.10) gives

–
dE

dx
= µQavg = 410 × 72 = 2.95 × 104 eVµm–1.

Since 1 eV = 10–6 MeV and 1 µm = 10–4 cm, we obtain –dE/dx = 295 MeV cm–1.
Converting units further, we have –dE/dx = 295 MeV cm–1 × 1.60 × 10–13 J MeV–1 ×
100 cm m–1 = 4.72 × 10–9 J m–1.

In this example, note that the average energy loss of 72 eV for a 1-MeV pro-
ton is considerably larger than the range of the most probable energy losses in
Fig. 5.3. Table 5.1 shows that the maximum energy loss is 2200 eV, which lies be-
yond the horizontal scale in the figure by a factor of 22. The energy-loss distribution
W(Q) for heavy charged particles is thus very skewed for large losses out to Qmax.
Although W(Q) is small when Q is large, the stopping power reflects an energy-
loss-weighted average, QW(Q), and hence substantial contributions from the tail of
the energy-loss distribution. In traveling short distances in matter, when the total
number of collisions is relatively small, the average energy lost by a charged parti-
cle (as implied by the stopping power) and the most probable energy lost can differ
substantially. This phenomenon of energy straggling is discussed in Section 7.5.

To understand what “short distances” mean in the present context, we recall that
the macroscopic cross section µ is the probability per unit distance of travel that an
electronic collision takes place. Its role in charged-particle penetration is analogous
to that of the decay constant λ, which is the probability of disintegration per unit
time in radioactive decay. Equation (4.22) showed that the reciprocal of the decay
constant is equal to the mean life. In the same way, the reciprocal of µ is the mean
distance of travel, or mean free path, of a charged particle between collisions. In
the last example, the mean free path of the 1-MeV proton is 1/µ = 1/(410 µm–1) =
0.0024 µm = 24 Å. Atomic diameters are of the order of 1 Å to 2 Å.

5.5
Semiclassical Calculation of Stopping Power

Quantum mechanically, stopping power is the mean, or expectation, value of the
linear rate of energy loss. In 1913 Bohr derived an explicit formula giving the stop-
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ping power for heavy charged particles. Because quantum mechanics had not yet
been discovered, Bohr relied on intuition and insight to obtain the proper semiclas-
sical representation of atomic collisions. He calculated the energy loss of a heavy
particle in a collision with an electron at a given distance of passing and then aver-
aged over all possible distances and energy losses. The nonrelativistic formula that
Bohr obtained gave the correct physical features of stopping power as borne out by
experiment and by the later quantum mechanical theory of Bethe. We present here
a derivation along the lines of Bohr.

In Fig. 5.4 we consider a heavy particle (charge ze and velocity V) that travels
swiftly past an electron (charge –e and mass m) in a straight line at a distance b,
called the impact parameter. We assume that the electron is initially free and at rest
at the origin of the XY coordinate system shown. We assume, further, that the col-
lision is sudden: it takes place rapidly and is over before the electron moves appre-
ciably. Perpendicular components Fx and Fy of the Coulomb force F = k0ze2/r2 that
the particle exerts on the electron at a given instant are shown in Fig. 5.4. With the
approximation that the electron remains stationary, the component Fx transfers no
net momentum to it over the duration of the collision. (This component acts sym-
metrically, first toward the left and then toward the right, its net effect being zero).
The charged particle transfers momentum to the electron through the action of the
other, perpendicular, force component Fy. The total momentum imparted to the
electron in the collision is

p =
∫ ∞

–∞
Fy dt =

∫ ∞

–∞
F cos θ dt = k0ze2

∫ ∞

–∞
cos θ

r2 dt. (5.11)

Fig. 5.4 Representation of the sudden collision of a heavy
charged particle with an electron, located at the origin of XY
coordinate axes shown. See text.
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To carry out the integration, we let t = 0 represent the time at which the heavy
charged particle crosses the Y-axis in Fig. 5.4. Since cos θ = b/r and the integral is
symmetric in time, we write∫ ∞

–∞
cos θ

r2 dt = 2
∫ ∞

0

b

r3 dt = 2b

∫ ∞

0

dt

(b2 + V2t2)3/2

= 2b

[
t

b2(b2 + V2t2)1/2

]∞

0
= 2

Vb
. (5.12)

Combining this result with (5.11) gives, for the momentum transferred to the elec-
tron in the collision,2)

p = 2k0ze2

Vb
. (5.13)

The energy transferred is

Q = p2

2m
= 2k2

0z2e4

mV2b2 . (5.14)

In traversing a distance dx in a medium having a uniform density of n electrons
per unit volume, the heavy particle encounters 2πnb db dx electrons at impact pa-
rameters between b and b + db, as indicated in Fig. 5.5. The energy lost to these
electrons per unit distance traveled is therefore 2πnQb db. The total linear rate of
energy loss is found by integration over all possible energy loses. Using Eq. (5.14),
we find that

–
dE

dx
= 2πn

∫ Qmax

Qmin

Qb db = 4πk2
0z2e4n

mV2

∫ bmax

bmin

db

b
= 4πk2

0z2e4n

mV2 ln
bmax

bmin
. (5.15)

Here the energy limits of integration have been replaced by maximum and min-
imum values of the impact parameter. It remains to evaluate these quantities ex-
plicitly.

The maximum value of the impact parameter can be estimated from the physical
principle that a quantum transition is likely only when the passage of the charged
particle is rapid compared with the period of motion of the atomic electron. We de-
note the latter time by 1/f, where f is the orbital frequency. The duration of the col-
lision is of the order of b/V. Thus, the important impact parameters are restricted
to values approximately given by

b

V
<

1
f

or bmax ∼ V

f
. (5.16)

2 If one assumes that a constant force
F ∼ k0ze2/b2 (equal to that at the distance of
closest approach) acts on the electron for a
time t ∼ b/V, then it follows that the
momentum transferred is p = Ft ∼ k0ze2/Vb.
This simple estimate differs by a factor of 2
from (5.13), which is exact within the
conditions specified.
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Fig. 5.5 Annular cylinder of length dx centered about path of heavy charged particle. See text.

For the minimum impact parameter, the analysis implies that the particles’ posi-
tions remain separated by a distance bmin at least as large as their de Broglie wave-
lengths during the collision. This condition is more restrictive for the less massive
electron than for the heavy particle. In the rest frame of the latter, the electron
has a de Broglie wavelength λ = h/mV, since it moves approximately with speed V

relative to the heavy particle. Accordingly, we choose

bmin ∼ h

mV
. (5.17)

Combining the relations (5.15), (5.16), and (5.17) gives the semiclassical formula
for stopping power,

–
dE

dx
= 4πk2

0z2e4n

mV2 ln
mV2

hf
. (5.18)

We see that only the charge ze and velocity V of the heavy charged particle enter
the expression for stopping power. This fact is consistent with the universality of
charged-particle energy-loss spectra in sudden collisions, mentioned in Section 5.3.
For the medium, only the electron density n (appearing merely as a multiplicative
factor) and the orbital frequency f appear in (5.18). The quantity hf in the denom-
inator of the logarithmic term is to be interpreted as an average energy associated
with the electronic quantum states of the medium. This energy is well defined
in the quantum-mechanical derivation. The essential correctness of much of the
physics in Bohr’s derivation was vindicated by the later quantum stopping-power
formula, to which we turn in the next section.

Example

Calculate the maximum and minimum impact parameters for electronic collisions
for an 8-MeV proton. To estimate the orbital frequency f, assume that it is about the
same as that of the electron in the ground state of the He+ ion.



120 5 Interaction of Heavy Charged Particles with Matter

Solution

The proton velocity is given by V = (2T/M)1/2, where T is the kinetic energy and M is
the mass:

V =
[

2 × 8 MeV × 1.60 × 10–13J MeV–1

1.67 × 10–27 kg

]1/2

= 3.92 × 107 m s–1. (5.19)

The orbital frequency of the electron in the ground state of He+ can be found by using
Eqs. (2.8) and (2.9) with Z = 2 and n = 1:

f = v1

2πr1
= 4.38 × 106 m s–1

2π × 2.65 × 10–11 m
= 2.63 × 1016 s–1. (5.20)

Equation (5.16) gives for the maximum impact parameter

bmax ∼ V

f
= 3.92 × 107 m s–1

2.63 × 1016 s–1 = 1.49 × 10–9 m = 15 Å. (5.21)

The minimum impact parameter is, from Eq. (5.17),

bmin ∼ h

mV
= 6.63 × 10–34 J s

9.11 × 10–31 kg × 3.92 × 107 m s–1

= 1.86 × 10–11 m = 0.19 Å. (5.22)

This example quantitatively illustrates some of the concepts that entered the semi-
classical theory of stopping power. Additional numerical analysis will be carried out
next with the quantum theory.

5.6
The Bethe Formula for Stopping Power

Using relativistic quantum mechanics, Bethe derived the following expression for
the stopping power of a uniform medium for a heavy charged particle:

–
dE

dx
= 4πk2

0z2e4n

mc2β2

[
ln

2mc2β2

I(1 – β2)
– β2

]
. (5.23)

In this relation
k0 = 8.99 × 109 N m2 C–2 (Appendix C),
z = atomic number of the heavy particle,
e = magnitude of the electron charge,
n = number of electrons per unit volume in the medium,
m = electron rest mass,
c = speed of light in vacuum,
β = V/c = speed of the particle relative to c,
I = mean excitation energy of the medium.
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One sees that the (nonrelativistic) result (5.18) is identical with the Bethe formula
when β � 1, and we write V = βc and hf = I/2. Whereas the energy hf in the semi-
classical theory has only a rather vague meaning, the mean excitation energy I is
explicitly defined in the quantum theory in terms of the properties of the target
atoms. This quantity is discussed in the next section.

Figure 5.6 shows the stopping power of liquid water in MeV cm–1 for a number
of charged particles as a function of their energy. The logarithmic term in Eq. (5.23)
leads to an increase in stopping power at very high energies (as β → 1), just dis-
cernable for muons in the figure. At low energies, the factor in front of the bracket
in (5.23) increases as β → 0. However, the logarithm term then decreases, causing
a peak (called the Bragg peak) to occur. The linear rate of energy loss is a maximum
there.

The mass stopping power of a material is obtained by dividing the stopping
power by the density ρ. Common units for mass stopping power, –dE/ρ dx, are
MeV cm2 g–1. The mass stopping power is a useful quantity because it expresses
the rate of energy loss of the charged particle per g cm–2 of the medium traversed.
In a gas, for example. –dE/dx depends on pressure, but –dE/ρdx does not, be-
cause dividing by the density exactly compensates for the pressure. In addition,
the mass stopping power does not differ greatly for materials with similar atomic
composition. For example, for 10-MeV protons the mass stopping power of H2O is
45.9 MeV cm2 g–1 and that of anthracene (C14H10) is 44.2 MeV cm2 g–1. The curves
in Fig. 5.6 for water can be scaled by density and used for tissue, plastics, hydrocar-
bons, and other materials that consist primarily of light elements. For Pb (Z = 82),
on the other hand, –dE/ρdx = 17.5 MeV cm2 g–1 for 10-MeV protons. Generally,
heavy atoms are less efficient on a g cm–2 basis for slowing down heavy charged
particles, because many of their electrons are too tightly bound in the inner shells
to participate effectively in the absorption of energy.

5.7
Mean Excitation Energies

Mean excitation energies I for a number of elements have been calculated from the
quantum-mechanical definition obtained in the derivation of Eq. (5.23). They can
also be measured in experiments in which all of the quantities in Eq. (5.23) except I

are known. The following approximate empirical formulas can be used to estimate
the I value in eV for an element with atomic number Z:

I ∼=




19.0 eV, Z = 1 (hydrogen) (5.24)
11.2 + 11.7 Z eV, 2 ≤ Z ≤ 13
52.8 + 8.71 Z eV, Z > 13. (5.26)

(5.25)

Since only the logarithm of I enters the stopping-power formula, values obtained
by using these formulas are accurate enough for most applications. The value of I

for an element depends only to a slight extent on the chemical compound in which
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the element is found and on the state of condensation of the material, solid, liquid,
or gas (Bragg additivity rule).

When the material is a compound or mixture, the stopping power can be calcu-
lated by simply adding the separate contributions from the individual constituent
elements. If there are Ni atoms cm–3 of an element with atomic number Zi and
mean excitation energy Ii, then in formula (5.23) one makes the replacement

n ln I =
∑

i

NiZi ln Ii, (5.27)

where n is the total number of electrons cm–3 in the material (n = ∑
i NiZi). In

this way the composite ln I value for the material is obtained from the individual
elemental ln Ii values weighted by the electron densities NiZi of the various ele-
ments. When the material is a pure compound, the electron densities n and NiZi in
Eq. (5.27) can be replaced by the electron numbers in a single molecule, as shown
in the next example.

Example

Calculate the mean excitation energy of H2O.

Solution

We obtain the I values for H and O from Eqs. (5.24) and (5.25), and then apply (5.27).
For H, IH = 19.0 eV, and for O, IO = 11.2 + 11.7×8 = 105 eV. The electronic densities
NiZi and n can be computed in a straightforward way. However, only the ratios NiZi/n

are needed to find I, and these are much simpler to use. Since the H2O molecule has
10 electrons, 2 of which belong to H (Z = 1) and 8 to O (Z = 8), we may write from
Eq. (5.27)

ln I = 2 × 1
10

ln 19.0 +
1 × 8

10
ln 105 = 4.312, (5.28)

giving I = 74.6 eV.

5.8
Table for Computation of Stopping Powers

In this section we develop a numerical table to facilitate the computation of stop-
ping power for a heavy charged particle in any material. In the next section we use
the table to calculate the proton stopping power of H2O as a function of energy.

The multiplicative factor in Eq. (5.23) can be written with the help of the con-
stants in Appendix A and Appendix C as

4πk2
0z2e4n

mc2β2 = 4π (8.99 × 109)2z2(1.60 × 10–19)4n

9.11 × 10–31(3.00 × 108)2β2

= 8.12 × 10–42 z2n

β2 J m–1. (5.29)
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The units are those of k2
0e4n/mc2:

(N m2 C–2)2C4 m–3

J
= N2 m

N m
= J m–1. (5.30)

Converting to the more common units, MeV cm–1, we have

8.12 × 10–42z2n

β2

J
m

× 1
1.60 × 10–13

MeV
J

× 1
100

m
cm

= 5.08 × 10–31z2n

β2 MeV cm–1. (5.31)

In the dimensionless logarithmic term in (5.23) we express the energies conve-
niently in eV. The stopping power is then

–
dE

dx
= 5.08 × 10–31z2n

β2

[
ln

1.02 × 106β2

IeV(1 – β2)
– β2

]
MeV cm–1. (5.32)

This general formula for any heavy charged particle in any medium can be written

–
dE

dx
= 5.08 × 10–31z2n

β2 [F(β) – ln IeV] MeV cm–1, (5.33)

where

F(β) = ln
1.02 × 106β2

1 – β2 – β2. (5.34)

Example

Compute F(β) for a proton with kinetic energy T = 10 MeV.

Solution

In the second example in Section 5.2 we found that β2 = 0.02099. Substitution of this
value into Eq. (5.34) gives F(β) = 9.972.

The quantities β2 and F(β) are given for protons of various energies in Table 5.2.
Since, for a given value of β , the kinetic energy of a particle is proportional to its rest
mass, the table can also be used for other heavy particles as well. For example, the
ratio of the kinetic energies Td and Tp of a deuteron and a proton traveling at the
same speed is

Td

Tp
= Md

Mp
= 2. (5.35)

The value of F(β) = 9.973 that we just computed for a 10-MeV proton applies, there-
fore, to a 20-MeV deuteron. Linear interpolation can be used where needed in the
table.
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Table 5.2 Data for Computation of Stopping Power for Heavy Charged Particles

Proton Kinetic
Energy F(β)
(MeV) β2 Eq. (5.34)

0.01 0.000021 2.179
0.02 0.000043 3.775
0.04 0.000085 4.468
0.06 0.000128 4.873
0.08 0.000171 5.161
0.10 0.000213 5.384
0.20 0.000426 6.077
0.40 0.000852 6.771
0.60 0.001278 7.175
0.80 0.001703 7.462
1.00 0.002129 7.685
2.00 0.004252 8.376
4.00 0.008476 9.066
6.00 0.01267 9.469
8.00 0.01685 9.753

10.00 0.02099 9.972
20.00 0.04133 10.65
40.00 0.08014 11.32
60.00 0.1166 11.70
80.00 0.1510 11.96

100.0 0.1834 12.16
200.0 0.3205 12.77
400.0 0.5086 13.36
600.0 0.6281 13.73
800.0 0.7088 14.02

1000. 0.7658 14.26

5.9
Stopping Power of Water for Protons

For protons, z = 1 in Eq. (5.33). The gram molecular weight of water is 18.0 g, and
the number of electrons per molecule is 10. Since 1 m3 of water has a mass of
106 g, the density of electrons is

n = 6.02 × 1023 × 106 g m–3

18.0 g
× 10 = 3.34 × 1029 m–3. (5.36)

Also, as found at the end of Section 5.7, ln IeV = 4.312. From Eq. (5.33) it follows
that the stopping power of water for a proton of speed β is given by

–
dE

dx
= 0.170

β2 [F(β) – 4.31] MeV cm–1. (5.37)
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At 1 MeV, for example, we find in Table 5.2 that β2 = 0.00213 and F(β) = 7.69;
therefore Eq. (5.37) gives

–
dE

dx
= 0.170

0.00213
(7.69 – 4.31) = 270 MeV cm–1. (5.38)

This is numerically equal to the value of the stopping power plotted in Fig. 5.6 for
water. The curves in the figure were obtained by such calculations.

5.10
Range

The range of a charged particle is the distance it travels before coming to rest. The
reciprocal of the stopping power gives the distance traveled per unit energy loss.
Therefore, the range R(T ) of a particle of kinetic energy T is the integral of this
quantity down to zero energy:

R(T ) =
∫ T

0

(
–

dE

dx

)–1

dE. (5.39)

Table 5.3 gives the mass stopping power and range of protons in water. The latter
is expressed in g cm–2; that is, the range in cm multiplied by the density of water
(ρ = 1 g cm3). Like mass stopping power, the range in g cm–2 applies to all materials
of similar atomic composition.

Although the integral in (5.39) cannot be evaluated in closed form, the explicit
functional form of (5.33) enables one to scale the proton ranges in Table 5.3 to
obtain the ranges of other heavy charged particles in water. Inspection of Eqs. (5.33)
and (5.39) shows that the range of a heavy particle is given by an equation of the
form

R(T ) = 1
z2

∫ T

0

dE′

G(β ′)
, (5.40)

in which z is the charge and the function G(β ′) depends only on the velocity β ′.
Since E′ = Mc2/

√
1 – β ′2, where M is the particle’s rest mass, the variable of inte-

gration in (5.40) can be expressed as dE′ = Mg(β ′) dβ ′, where g is another function
of velocity alone. It follows that Eq. (5.40) has the form

R(β) = M

z2

∫ β

0

g(β ′)
G(β ′)

dβ ′ = M

z2 f(β), (5.41)

where the function f(β) depends only on the initial velocity of the heavy charged
particle. The structure of Eq. (5.41) enables one to scale ranges for different parti-
cles in the following manner. Since f(β) is the same for two heavy charged particles
at the same initial speed β , the ratio of their ranges is simply

R1(β)
R2(β)

= z2
2M1

z2
1M2

, (5.42)
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Table 5.3 Mass Stopping Power –dE/ρdx and Range Rp for Protons in Water

Kinetic Energy –dE/ρdx Rp
(MeV) β2 (MeV cm2 g–1) (g cm–2)

0.01 .000021 500. 3 × 10–5

0.04 .000085 860. 6 × 10–5

0.05 .000107 910. 7 × 10–5

0.08 .000171 920. 9 × 10–5

0.10 .000213 910. 1 × 10–4

0.50 .001065 428. 8 × 10–4

1.00 .002129 270. 0.002
2.00 .004252 162. 0.007
4.00 .008476 95.4 0.023
6.00 .01267 69.3 0.047
8.00 .01685 55.0 0.079

10.0 .02099 45.9 0.118
12.0 .02511 39.5 0.168
14.0 .02920 34.9 0.217
16.0 .03327 31.3 0.280
18.0 .03731 28.5 0.342
20.0 .04133 26.1 0.418
25.0 .05126 21.8 0.623
30.0 .06104 18.7 0.864
35.0 .07066 16.5 1.14
40.0 .08014 14.9 1.46
45.0 .08948 13.5 1.80
50.0 .09867 12.4 2.18
60.0 .1166 10.8 3.03
70.0 .1341 9.55 4.00
80.0 .1510 8.62 5.08
90.0 .1675 7.88 6.27

100. .1834 7.28 7.57
150. .2568 5.44 15.5
200. .3207 4.49 25.5
300. .4260 3.52 50.6
400. .5086 3.02 80.9
500. .5746 2.74 115.
600. .6281 2.55 152.
700. .6721 2.42 192.
800. .7088 2.33 234.
900. .7396 2.26 277.

1000. .7658 2.21 321.
2000. .8981 2.05 795.
4000. .9639 2.09 1780.
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where M1 and M2 are the rest masses and z1 and z2 are the charges. If particle
number 2 is a proton (M2 = 1 and z2 = 1), then we can write for the range R of the
other particle (mass M1 = M proton masses and charge z1 = z)

R(β) = M

z2 Rp(β), (5.43)

where Rp(β) is the proton range.

Example

Use Table 5.3 to find the range of an 80-MeV 3He2+ ion in soft tissue.

Solution

Applying (5.43), we have z2 = 4, M = 3, and R(β) = 3Rp(β)/4. Thus the desired range
is three-quarters that of a proton traveling with the speed of an 80-MeV 3He2+ ion. At
this speed, the proton has an energy of 80/3 = 26.7 MeV, that is, an energy smaller
than that of the helium ion by the ratio of the masses. Interpolation in Table 5.3 gives
for the proton range at this energy Rp = 0.705 g cm–2. It follows that the range of the
80-MeV 3He2+ particle is ( 3

4 )(0.705) = 0.529 g cm–2, or 0.529 cm in unit-density soft
tissue.

Figure 5.7 shows the ranges in g cm–2 of protons, alpha particles, and electrons
in water or muscle (virtually the same), bone, and lead. For a given proton en-
ergy, the range in g cm–2 is greater in Pb than in H2O, consistent with the smaller
mass stopping power of Pb, as mentioned at the end of Section 5.6. The same
comparison is true for electrons in Pb and water at the lower energies in Fig. 5.7
(�20 MeV). At higher energies, bremsstrahlung greatly increases the rate of energy
loss for electrons in Pb, reducing the range in g cm–2 below that in H2O.

Figure 5.8 gives the range in cm of protons, alpha particles, and electrons in air
at standard temperature and pressure. For alpha particles in air at 15◦C and 1-atm
pressure, the following approximate empirical relations3) fit the observed range R

in cm as a function of energy E in MeV:

R = 0.56E, E < 4; (5.44)

R = 1.24E – 2.62, 4 < E < 8. (5.45)

Alpha rays from sources external to the body present little danger because their
range is less than the minimum thickness of the outermost, dead layer of cells of
the skin (epidermis, minimum thickness ∼7 mg cm–2). The next example illus-
trates the nature of the potential hazard from one important alpha emitter when
inhaled and trapped in the lung.

3 U.S. Public Health Service, Radiological

Health Handbook, Publ. No. 2016, Bureau of
Radiological Health, Rockville, MD (1970).
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Fig. 5.7 Ranges of protons, alpha particles, and electrons in
water, muscle, bone, and lead, expressed in g cm–2. (Courtesy
Oak Ridge National Laboratory, operated by Martin Marietta
Energy Systems, Inc., for the Department of Energy.)

Example

The radon daughter 214
84Po (Section 4.6), which emits a 7.69-MeV alpha particle, is

present in the atmosphere of uranium mines. What is the range of this particle in
soft tissue? Describe briefly the nature of the radiological hazard from inhalation of
this nuclide.

Solution

We use the proton range in Table 5.3 to find the alpha-particle range in tissue.
Applied to alpha rays, Eq. (5.43) gives (z2 = 4 and M = 4) Rα(β) = Rp(β). Thus,
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Fig. 5.8 Ranges in cm of protons, alpha particles, and electrons
in air at STP. (Courtesy Oak Ridge National Laboratory,
operated by Martin Marietta Energy Systems, Inc., for the
Department of Energy.)

the ranges of an alpha particle and a proton with the same velocity are the same.
The ratio of the kinetic energies at the same speed is Tα/Tp = Mα/Mp = 4, and so
Tp = Tα/4 = 7.69/4 = 1.92 MeV. The alpha-particle range is, therefore, equal to the
range of a 1.92-MeV proton. Interpolation in Table 5.3 gives Rp = Rα = 0.0066 cm in
tissue of unit density. The 214Po alpha particles thus cannot penetrate the 0.007 cm
minimum epidermal thickness from outside the body to reach living cells. On the
other hand, inhaled particulate matter containing 214Po can be deposited in the lung.
There the range of the alpha particles is sufficient to reach the basal cells of the
bronchial epithelium. The increase in lung-cancer incidence among uranium miners
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over that normally expected has been linked to the alpha-particle dose from inhaled
radon daughters.

Because of the statistical nature of energy losses by atomic collisions, all particles
of a given type and initial energy do not travel exactly the same distance before com-
ing to rest in a medium. This phenomenon, called range straggling, is discussed
in Section 7.6. The quantity defined by Eq. (5.39) provides the range in what is
called the continuous-slowing-down approximation, or csda. It ignores fluctuations of
energy loss in collisions and assumes that a charged particle loses energy contin-
uously along its path at the linear rate given by the instantaneous stopping power.
Unless otherwise indicated, we shall use the term “range” to mean the csda range.
For all practical purposes, the csda range at a fixed initial energy is the same as the
average pathlength that a charged particle travels in coming to rest. Heavy charged
particles of a given type with the same initial energy travel almost straight ahead in
a medium to about the same depth, distributed narrowly about the csda range. As
we shall see in the next chapter, electrons travel tortuous paths, with the result that
there is no simple relationship between their range and the depth to which a given
electron will penetrate.4) Electron transport is discussed more fully in the next two
chapters.

5.11
Slowing-Down Time

We can use the stopping-power formula to calculate the mean rate at which a heavy
charged particle slows down. The time rate of energy loss, –dE/dt, can be expressed
in terms of the stopping power by using the chain rule of differentiation: –dE/dt =
–(dE/dx)/(dt/dx) = V(–dE/dx), where V = dx/dt is the velocity of the particle. For a
proton with kinetic energy T = 0.5 MeV in water, for example, the rate of energy
loss is –dE/dt = 4.19 × 1011 MeV s–1.

A rough estimate can be made of the time it takes a heavy charged particle to
stop in matter, if one assumes that the slowing-down rate is constant. For a particle
with kinetic energy T, this time is approximately,

τ ∼ T

–dE/dt
= T

V(–dE/dx)
. (5.46)

For a 0.5-MeV proton in water, τ ∼ (0.5 MeV)/(4.19 × 1011 MeV s–1) = 1.2 × 10–12 s.
Slowing-down rates and estimated stopping times for protons of other energies are
given in Table 5.4. Because, as seen from Fig. 5.6, the stopping power increases as
a proton slows down, actual stopping times are shorter than the estimates.

4 “Range” is sometimes used in the literature to
mean the depth of penetration for electrons.



132 5 Interaction of Heavy Charged Particles with Matter

Table 5.4 Calculated Slowing-Down Rates, –dE/dt, and
Estimated Stopping Times τ for Protons in Water

Slowing-Down Rate Estimated Stopping
Proton Energy T –dE/dt Time τ

(MeV) (MeV s–1) (s)

0.5 4.19 × 1011 1.2×10–12

1.0 3.74 × 1011 2.7×10–12

10.0 2.00 × 1011 5.0×10–11

100.0 9.35 × 1010 1.1 × 10–9

1000.0 5.81 × 1010 1.7 × 10–8

5.12
Limitations of Bethe’s Stopping-Power Formula

The stopping-power formula (5.23) is valid at high energies as long as the inequality
γm/M � 1, mentioned before Eq. (5.7), holds (e.g., up to ∼106 MeV for protons).
Other physical factors, not included in Bethe’s theory, come into play at higher
energies. These include forces on the atomic electrons due to the particle’s spin and
magnetic moment as well as its internal electric and magnetic structures (particle
form factors). Bethe’s formula is also based on the assumption that the particle
moves much faster than atomic electrons. At low energies the formula (5.23) fails
because the term ln 2mc2β2/I eventually becomes negative, giving a negative value
for the stopping power.

In the low-energy region, also, a positively charged particle captures and loses
electrons as it moves, thus reducing its net charge and stopping power. Electron
capture becomes important when the speed V of the heavy particle is comparable
to or less than the speed that an electron needs in order to orbit about the particle
as a nucleus. Based on Eq. (2.9) of the discussion of Bohr’s theory, the orbital speed
of an electron in the ground state about a nucleus of charge ze is k0ze2/h̄. Thus, as
a condition for electron capture and loss one has k0ze2/h̄V � 1. For electron capture
by protons (z = 1), we see from Eq. (2.9) that V = 2.2 × 106 m s–1, corresponding to
a kinetic energy of ∼25 keV.

The dependence of the Bethe formula on z2, the square of the charge of the
heavy particle, implies that pairs of particles with the same mass and energy but
opposite charge, such as pions, π±, and muons, µ±, have the same stopping power
and range. Departures from this prediction have been measured and theoretically
explained by the inclusion of z3 and higher powers of the charge in the stopping-
power formula. Bethe’s formula is obtained by calculating the stopping power in
the first Born approximation in quantum mechanics. Successive Born approxima-
tions yield terms proportional to the higher powers z3, z4, and so on, of the incident
particle’s charge.
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The validity of the Born-approximation formalism rests on the assumption that
the speed V of the incident particle is large compared with the speeds of the atomic
electrons. (This assumption is akin to use of the impulse approximation in Sec-
tion 5.5 for the semiclassical computation of stopping power.) Since speeds cannot
exceed that of light, V often is not large compared with orbital electron speeds, es-
pecially for the inner shells of heavy elements. To compensate for this deficiency,
successive shell-correction terms CK, CL, and so on, can be calculated and added to
the terms in the square brackets in Eq. (5.23).

Derivation of the Bethe formula is based on the additive interaction (called Bragg
additivity) of energy loss by the incident particle to individual atoms. In condensed
media, other effects can come into play, such as the coherent (plasmon) oscillations
of many electrons collectively. The electric field of the incident charged particle
can also polarize the condensed medium, thus reducing the rate of energy loss.
Polarization, also called the density effect, depends on the dielectric constant of the
medium and becomes important at relativistic speeds.
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The Physical Reference Data Website, http://physics.nist.gov/PhysRefData/, of
the National Institute of Standards and Technology is a valuable resource for in-
formation and numerical data in many areas of physics. Included are data bases
for the following subjects: physical constants, atomic and molecular data, X and
gamma rays, radiation dosimetry, nuclear physics, and others. The stopping-power
and range information for protons, helium ions, and electrons comprise all of the
tables for 26 elements and 48 compounds and mixtures in ICRU Reports 37 and 49
and much more. Calculations can be performed on line. Also, FORTRAN-77 source
codes for the three charged particles can be downloaded. Total, electronic, and nu-
clear mass stopping powers are calculated as well as csda and projected ranges, and
detour factors. Radiative mass stopping powers are included for electrons. The user
can specify energies desired, and the results can be obtained in graphical, as well
as numerical, form. Default energy ranges are from 1 keV to 10 GeV for protons,
1 keV to 1 GeV for helium ions, and 1 keV to 10 GeV for electrons. For electrons,
computations can also be performed for any user-specified material.

5.14
Problems

1. Derive Eq. (5.4).
2. Derive Eq. (5.6).
3. Show that Eq. (5.7) follows from Eq. (5.6).
4. (a) Calculate the maximum energy that a 3-MeV alpha particle

can transfer to an electron in a single collision.
(b) Repeat for a 100-MeV pion.

5. According to Eq. (5.7), what would be the relationship between
the kinetic energies Tp and Td of a proton and a deuteron that
could transfer the same maximum energy to an atomic
electron?

6. Which can transfer more energy to an electron in a single
collision—a proton or an alpha particle? Explain.

7. Calculate the maximum energy that a 10-MeV muon can lose
in a single collision with an electron.

8. (a) Estimate the probability that a 1-MeV proton will lose
between 70 eV and 80 eV in a collision with an atomic
electron in water.

(b) Is the collision elastic?
9. (a) What is the magnitude, approximately, of the most

probable energy loss by a fast charged particle in a single
collision with an atomic electron?

(b) Are the most probable and the average energy losses
comparable in magnitude? Explain.
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10. If the macroscopic cross section for a charged particle is
62 µm–1, what is the average distance of travel before having a
collision?

11. Use the semiclassical theory in Section 5.5 to calculate the
momentum transferred by a 15-MeV proton to an electron at
an impact parameter of 10 Å.

12. Calculate the energy transferred in the last problem.
13. Compute the mean excitation energy of (a) Be, (b) Al, (c) Cu,

(d) Pb.
14. Calculate the mean excitation energy of C6H6.
15. Compute the mean excitation energy of SiO2.
16. What is the I value of air? Assume a composition of 4 parts N2

to 1 part O2 by volume.
17. Show that the stopping-power formula (5.23) gives –dE/dx in

the dimensions of energy/length.
18. (a) Calculate F(β) directly from Eq. (5.34) for a 52-MeV proton.

(b) Use Table 5.2 to obtain F(β) by interpolation.
19. Find F(β) from Table 5.2 for a 500-MeV alpha particle.
20. (a) Use Table 5.2 to determine F(β) for a 5-MeV deuteron.

(b) What is the stopping power of water for a 5-MeV deuteron?
21. (a) What is F(β) for a 100-MeV muon?

(b) Calculate the stopping power of copper for a 100-MeV
muon.

22. Using Eq. (5.37), calculate the stopping power of water for
(a) a 7-MeV proton,
(b) a 7-MeV pion,
(c) a 7-MeV alpha particle.
Compare answers with Fig. 5.6.

23. Using Table 5.3 for the proton mass stopping power of water,
estimate the stopping power of Lucite (density = 1.19 g cm–3)
for a 35-MeV proton.

24. Refer to Fig. 5.6.
(a) By what factor can the stopping power of water for alpha

particles exceed that for protons?
(b) By what factor does the maximum alpha-particle stopping

power exceed the maximum proton stopping power?
(c) Why is the answer to (b) not 4, the ratio of the square of

their charges?
(d) What is the value of the maximum stopping power for

pions?
25. From Table 5.3 determine the minimum energy that a proton

must have to penetrate 30 cm of tissue, the approximate
thickness of the human body.

26. What is the range of a 15-MeV 3He2+ particle in water?
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27. Write a formula that gives the range of a π+ at a given velocity
in terms of the range of a proton at that velocity.

28. How much energy does an alpha particle need to penetrate the
minimal protective epidermal layer of skin (thickness
∼7 mg cm–2)?

29. Use Table 5.3 to determine the range in cm of an 11-MeV
proton in air at STP.

30. A proton and an alpha particle with the same velocity are
incident on a soft-tissue target. Which will penetrate to a
greater depth?

31. What is the range of a 5-MeV deuteron in soft tissue?
32. (a) What is the range of a 4-MeV alpha particle in tissue?

(b) Using the answer for (a), estimate the range in cm in air at
STP. Compare with Fig. 5.8.

33. 239Pu emits a 5.16-MeV alpha particle. What is its range in cm
in
(a) muscle,
(b) bone of density 1.9 g cm–3,
(c) air at 22◦C and 750 mm Hg?

34. Convert the formulas (5.44) and (5.45), which apply to alpha
particles in air at 15◦C and 1 atm, to air at STP.

35. Calculate the slowing-down rate of a 10-MeV proton in water.
36. Calculate the slowing-down rate of a 6-MeV alpha particle in

water.
37. Estimate the time it takes for a 6-MeV proton to stop in water.
38. (a) How does the stopping time for a 6-MeV proton in water

(Problem 37) compare with the stopping time in lead?
(b) How does the stopping time in water compare with that in

air?
39. Estimate the time required for a 2.5-MeV alpha particle to stop

in tissue.
40. (a) Estimate the slowing-down time for a 2-MeV pion in water.

(b) Repeat for a 2-MeV muon.
(c) Give a physical reason for the difference in the times.

41. Estimate the energy at which an alpha particle begins to
capture and lose electrons when slowing down.

42. Estimate the energy at which electron capture and loss become
important when a positive pion slows down.
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5.15
Answers

4. (a) 1.63 keV
(b) 2.02 MeV

5. Td = 2Tp

13. (a) 58.0 eV
(b) 163 eV
(c) 305 eV
(d) 767 eV

16. 95.4 eV
19. 12.31
20. (a) 8.549

(b) 136 MeV cm–1

22. (a) 61.1 MeV cm–1

(b) 12.9 MeV cm–1

(c) 711 MeV cm–1

26. 0.0263 cm
27. Rπ (β) = 0.147Rp(β)
28. ∼8 MeV
32. (a) 0.002 cm

(b) 1.6 cm
35. 2.00 × 1011 MeV s–1

39. 1.5 × 10–12 s
40. (a) 1.1 × 10–11 s

(b) 1.2 × 10–11 s
41. 0.40 MeV
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6
Interaction of Electrons with Matter

6.1
Energy-Loss Mechanisms

We treat electron and positron energy-loss processes together, referring to both
simply as “electrons” or “beta particles.” Their stopping powers and ranges are
virtually the same, except at low energies, as can be seen from Fig. 5.6. Energetic
gamma photons produced by the annihilation of positrons with atomic electrons
(Sect. 8.5) present a radiation problem with β+ sources that does not occur with β–

emitters.
Like heavy charged particles, beta particles can excite and ionize atoms. In ad-

dition, they can also radiate energy by bremsstrahlung. As seen from Fig. 5.6, the
radiative contribution to the stopping power (shown by the dashed line) becomes
important only at high energies. At 100 MeV, for example, radiation accounts for
about half the total rate of energy loss in water. We consider separately the colli-
sional stopping power (–dE/dx)col and the radiative stopping power (–dE/dx)rad for
beta particles. Beta particles can also be scattered elastically by atomic electrons, a
process that has a significant effect on beta-particle penetration and diffusion in
matter at low energies.

6.2
Collisional Stopping Power

The collisional stopping power for beta particles is different from that of heavy
charged particles because of two physical factors. First, as mentioned in Section 5.1,
a beta particle can lose a large fraction of its energy in a single collision with an
atomic electron, which has equal mass. Second, a β– particle is identical to the
atomic electron with which it collides and a β+ is the electron’s antiparticle. In
quantum mechanics, the identity of the particles implies that one cannot distin-
guish experimentally between the incident and struck electron after a collision.
Energy loss is defined in such a way that the electron of lower energy after collision
is treated as the struck particle. Unlike heavy charged particles, the identity of β–

Atoms, Radiation, and Radiation Protection. James E. Turner
Copyright © 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-40606-7
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and the relation of β+ to atomic electrons imposes certain symmetry requirements
on the equations that describe their collisions with atoms.

The collisional stopping-power formulas for electrons and positrons can be writ-
ten (

–
dE

dx

)±

col
= 4πk2

0e4n

mc2β2

[
ln

mc2τ
√

τ + 2√
2I

+ F±(β)
]

, (6.1)

where

F –(β) = 1 – β2

2

[
1 +

τ 2

8
– (2τ + 1) ln 2

]
(6.2)

is used for electrons and

F +(β) = ln 2 –
β2

24

[
23 +

14
τ + 2

+
10

(τ + 2)2 +
4

(τ + 2)3

]
(6.3)

for positrons. Here τ = T/mc2 is the kinetic energy T of the β– or β+ particle ex-
pressed in multiples of the electron rest energy mc2. The other symbols in these
equations, including I, are the same as in Eq. (5.23). Similar to Eq. (5.33), we have
from (6.1)

(
–

dE

dx

)±

col
= 5.08 × 10–31n

β2

[
ln

3.61 × 105τ
√

τ + 2
IeV

+ F ±(β)
]

MeV cm–1. (6.4)

As with heavy charged particles, this can be put into a general form:
(

–
dE

dx

)±

col
= 5.08 × 10–31n

β2 [G±(β) – ln IeV] MeV cm–1, (6.5)

where

G±(β) = ln(3.61 × 105τ
√

τ + 2) + F ±(β). (6.6)

Example

Calculate the collisional stopping power of water for 1-MeV electrons.

Solution

This quantity is (–dE/dx)–
col, given by Eq. (6.5). We need to compute β2, τ , F –(β) and

then G–(β). As in Section 5.9, we have n = 3.34 × 1029 m–3 and ln IeV = 4.31. Using
the relativistic formula for kinetic energy with T = 1 MeV and mc2 = 0.511 MeV, we
write

1 = 0.511
(

1√
1 – β2

– 1
)

, (6.7)

giving β2 = 0.886. Also, τ = T/mc2 = 1/0.511 = 1.96. From Eq. (6.2),

F –(β) = 1 – 0.886
2

[
1 +

(1.96)2

8
– (2 × 1.96 + 1) ln 2

]
, (6.8)
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giving F –(β) = –0.110. From Eq. (6.6),

G–(β) = ln(3.61 × 105 × 1.96
√

1.96 + 2) – 0.110 = 14.0. (6.9)

Finally, applying Eq. (6.5), we find(
–

dE

dx

)–

col
= 5.08 × 10–31 × 3.34 × 1029

0.886
[14.0 – 4.31]

= 1.86 MeV cm–1. (6.10)

It is of interest to compare this result with that for a 1-MeV positron. The quanti-
ties β2 and τ are the same. Calculation gives F +(β) = –0.312, which is a little larger
in magnitude than F –(β). In place of (6.9) and (6.10) one finds G +(β) = 13.8 and
(–dE/dx)+

col = 1.82 MeV cm–1. The β+ collisional stopping power is practically equal
to that for β– at 1 MeV in water.

The collisional, radiative, and total mass stopping powers of water as well as
the radiation yield and range for electrons are given in Table 6.1. The total stopping
power for β– or β+ particles is the sum of the collisional and radiative contributions:(

–
dE

dx

)±

tot
=

(
–

dE

dx

)±

col
+

(
–

dE

dx

)±

rad
, (6.11)

with a similar relation holding for the mass stopping powers. Radiative stopping
power, radiation yield, and range are treated in the next three sections. Table 6.1
can also be used for positrons with energies above about 10 keV.

The calculated mass stopping power of liquid water for electrons at low energies
is shown in Fig. 6.1. (Measurement of this important quantity does not appear to
be technically feasible.) The radiative stopping power is negligible at these ener-
gies, and so no subscript is needed to distinguish between the total and collisional
stopping powers. The threshold energy (Qmin) required for excitation to the lowest
lying electronic quantum state is estimated to be 7.4 eV. The curve in Fig. 6.1 joins
smoothly onto the electron stopping power at 10–2 MeV in Fig. 5.6. The electron-
transport computer code, NOREC, was used to calculate the stopping power in
Fig. 6.1.1)

The relative importance of ionization, excitation, and elastic scattering at ener-
gies up to 1 MeV can be seen from the plot of the respective attenuation coeffi-
cients, µ, in Fig. 6.2, also from the NOREC code. The ordinate gives the values of µ

in units of reciprocal micrometers. Recall from the discussion at the end of Sec-
tion 5.4 that µ represents the probability of interaction per unit distance traveled,
which is also the inverse of the mean free path. Elastic scattering is the dominant
process at the lowest energies. Slow electrons undergo almost a random diffusion,
changing direction through frequent elastic collisions without energy loss. Even-
tually, the occasional competing inelastic excitation and ionization collisions bring

1 See Semenenko, V. A., Turner, J. E., and
Borak, T. B. in Section 6.8.
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Table 6.1 Electron Collisonal, Radiative, and Total Mass
Stopping Powers; Radiation Yield; and Range in Water

–
1
ρ

(
dE

dx

)–

col
–

1
ρ

(
dE

dx

)–

rad
–

1
ρ

(
dE

dx

)–

tot
Kinetic Radiation Range
Energy β2 (MeV cm2 g–1) (MeV cm2 g–1) (MeV cm2 g–1) Yield (g cm–2)

10 eV 0.00004 4.0 — 4.0 — 4 × 10–8

30 0.00012 44. — 44. — 2 × 10–7

50 0.00020 170. — 170. — 3 × 10–7

75 0.00029 272. — 272. — 4 × 10–7

100 0.00039 314. — 314. 5 × 10–7

200 0.00078 298. — 298. — 8 × 10–7

500 eV 0.00195 194. — 194. — 2 × 10–6

1 keV 0.00390 126. — 126. — 5 × 10–6

2 0.00778 77.5 — 77.5 — 2 × 10–5

5 0.0193 42.6 — 42.6 — 8 × 10–5

10 0.0380 23.2 — 23.2 0.0001 0.0002
25 0.0911 11.4 — 11.4 0.0002 0.0012
50 0.170 6.75 — 6.75 0.0004 0.0042
75 0.239 5.08 — 5.08 0.0006 0.0086

100 0.301 4.20 — 4.20 0.0007 0.0140
200 0.483 2.84 0.006 2.85 0.0012 0.0440
500 0.745 2.06 0.010 2.07 0.0026 0.174
700 keV 0.822 1.94 0.013 1.95 0.0036 0.275

1 MeV 0.886 1.87 0.017 1.89 0.0049 0.430
4 0.987 1.91 0.065 1.98 0.0168 2.00
7 0.991 1.93 0.084 2.02 0.0208 2.50

10 0.998 2.00 0.183 2.18 0.0416 4.88
100 0.999+ 2.20 2.40 4.60 0.317 32.5

1000 MeV 0.999+ 2.40 26.3 28.7 0.774 101.

the energies of the electrons down into the region where they can react chemically
with water molecules or became hydrated. The excitation and ionization probabil-
ities rise steeply from the lowest energies. At about 200 eV, ionization and elastic
scattering are comparable and considerably more probable than excitation. There-
after, the attenuation-coefficient curves do not cross. At the highest energies, elas-
tic scattering occurs increasingly in the forward direction. While elastic scattering
affects electron transport through redirection of the electron paths, it does not con-
tribute to the stopping power, because there is no associated energy loss.

Figures 6.1 and 6.2 are basic to radiation physics and the subsequent chemistry
that takes place in irradiated living systems. The end result of the absorption of
any kind of ionizing radiation in tissue is the production of large numbers of sec-
ondary electrons. These, in turn, cause additional ionizations as they lose energy
and slow down, until all liberated electrons reach energies in the eV range. Since
it takes an average of only about 22 eV to produce a secondary electron in liquid
water, radiation produces low-energy electrons in abundance. A 10-keV electron,
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Fig. 6.1 Mass stopping power of water for low-energy electrons.

Fig. 6.2 Attenuation coefficients for excitation, ionization,
elastic scattering, and total interaction for electrons in liquid
water as functions of energy.
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for example, ultimately produces a total of about 450 secondary electrons, a large
fraction of which occur with initial energies of less than 100 eV. The details of elec-
tron transport and charged-particle track structure and their relation to chemical
and biological effects will be considered in Chapter 13.

6.3
Radiative Stopping Power

The acceleration of a heavy charged particle in an atomic collision is usually small,
and except under extreme conditions negligible radiation occurs. A beta particle, on
the other hand, having little mass can be accelerated strongly by the same electro-
magnetic force within an atom and thereby emit radiation, called bremsstrahlung.
Bremsstrahlung occurs when a beta particle is deflected in the electric field of a nu-
cleus and, to a lesser extent, in the field of an atomic electron. At high beta-particle
energies, the radiation is emitted mostly in the forward direction, that is, in the
direction of travel of the beta particle. As indicated in Fig. 6.3, this circumstance
is observed in a betatron or synchrotron, a device that accelerates electrons to high
energies in circular orbits. Most of the synchrotron radiation, as it is called, is emit-
ted in a narrow sweeping beam nearly in the direction of travel of the electrons that
produce it.

Energy loss by an electron in radiative collisions was studied quantum mechani-
cally by Bethe and Heitler. If the electron passes near a nucleus, the field in which
it is accelerated is essentially the bare Coulomb field of the nucleus. If it passes at a
greater distance, the partial screening of the nuclear charge by the atomic electrons
becomes important, and the field is no longer coulombic. Thus, depending on how
close the electron comes to the nucleus, the effect of atomic-electron screening will
be different. The screening and subsequent energy loss also depend on the energy
of the incident beta particle. The maximum energy that a bremsstrahlung photon
can have is equal to the kinetic energy of the beta particle. The photon energy spec-
trum is approximately flat out to this maximum.

Fig. 6.3 Synchrotron radiation. At high energies, photons are
emitted by electrons (charge –e) in circular orbits in the
direction (crosshatched area) of their instantaneous velocity v.
The direction of the electrons’ acceleration a is also shown.
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Unlike collisional energy losses, no single analytic formula exists for calculating
the radiative stopping power (–dE/dx)±rad. Instead, numerical procedures are used
to obtain values, such as those in Table 6.1. Details of the analysis show that energy
loss by radiation behaves quite differently from that by ionization and excitation.
The efficiency of bremsstrahlung in elements of different atomic number Z varies
nearly as Z2. Thus, for beta particles of a given energy, bremsstrahlung losses are
considerably greater in high-Z materials, such as lead, than in low-Z materials,
such as water. As seen from Eq. (6.1), the collisional energy-loss rate in an ele-
ment is proportional to n and hence to Z. In addition, the radiative energy-loss rate
increases nearly linearly with beta-particle energy, whereas the collisional rate in-
creases only logarithmically. At high energies, therefore, bremsstrahlung becomes
the predominant mechanism of energy loss for beta particles, as can be seen from
Table 6.1.

The following approximate formula gives the ratio of radiative and collisional
stopping powers for an electron of total energy E, expressed in MeV, in an element
of atomic number Z:

(–dE/dx)–
rad

(–dE/dx)–
col

∼= ZE

800
. (6.12)

This formula shows that in lead (Z = 82), for example, the two rates of energy loss
are approximately equal at a total energy given by

82E

800
∼= 1. (6.13)

Thus E ∼= 9.8 MeV, and the electron’s kinetic energy is T = E – mc2 ∼= 9.3 MeV.
In oxygen (Z = 8), the two rates are equal when E ∼= 100 MeV ∼= T, an order-of-
magnitude higher energy than in lead. The radiative stopping power (–dE/dx)–

rad
for electrons is shown by the dashed curve in Fig. 5.6.

At very high energies the dominance of radiative over collisional energy losses
gives rise to electron-photon cascade showers. Since the bremsstrahlung photon
spectrum is approximately flat out to its maximum (equal to the electron’s kinetic
energy), high-energy beta particles emit high-energy photons. These, in turn, pro-
duce Compton electrons and electron-positron pairs, which then produce addi-
tional bremsstrahlung photons, and so on. These repeated interactions result in
an electron-photon cascade shower, which can be initiated by either a high-energy
beta particle or a photon.

6.4
Radiation Yield

We have discussed the relative rates of energy loss by collision and by radiation.
Radiation yield is defined as the average fraction of its energy that a beta particle
radiates as bremsstrahlung in slowing down completely. Radiation yields are given
in Table 6.1 for electrons of various energies in water. At 100 MeV, for example,
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the rates of energy loss by collision and by radiation are approximately equal. As
the electron slows down, however, the relative amount lost by radiation decreases
steadily. In slowing down completely, a 100-MeV electron loses an average of 0.317
of its initial energy (i.e., 31.7 MeV) by radiation. Radiation yield increases with
electron energy. A 1000-MeV electron stopping in water will lose an average of
0.774 of its energy by bremsstrahlung. For an electron of given energy, radiation
yield also increases with atomic number.

An estimate of radiation yield can give an indication of the potential brems-
strahlung hazard of a beta-particle source. If electrons of initial kinetic energy T

in MeV are stopped in an absorber of atomic number Z, then the radiation yield is
given approximately by the formula1)

Y ∼= 6 × 10–4ZT

1 + 6 × 10–4ZT
. (6.14)

To keep bremsstrahlung to a minimum, low-Z materials can be used as a shield
to stop beta particles. Such a shield can, in turn, be surrounded by a material of
high Z to efficiently absorb the bremsstrahlung photons.

Example

Estimate the fraction of the energy of a 2-MeV beta ray that is converted into
bremsstrahlung when the particle is absorbed in aluminum and in lead.

Solution

For Al, ZT = 13 × 2 = 26, and Y ∼= 0.016/1.016 = 0.016. For Pb (Z = 82), Y ∼= 0.090.
Thus, about 1.6% of the electron kinetic energy is converted into photons in Al, while
the corresponding figure for Pb is about 9.0%.

For radiation-protection purposes, conservative assumptions can be made in or-
der to apply Eq. (6.14) to the absorption of beta particles from a radioactive source.
To this end, the maximum beta-particle energy is used for T. This assumption over-
estimates the energy converted into radiation because bremsstrahlung efficiency is
less at the lower electron energies. Furthermore, assuming that all bremsstrahlung
photons have the energy T will also give a conservative estimate of the actual pho-
ton hazard.

Example

A small 3.7 × 108 Bq 90Y source is enclosed in a lead shield just thick enough to
absorb the beta particles, which have a maximum energy of 2.28 MeV and an average
energy of 0.94 MeV. Estimate the rate at which energy is radiated as bremsstrahlung.
For protection purposes, estimate the photon fluence rate at a distance of 1 m from
the source.

1 H. W. Koch and J. W. Motz, “Bremsstrahlung
Cross Section Formulas and Related Data,”
Rev. Mod. Phys. 31, 920–955 (1959).
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Solution

Setting T = 2.28 and Z = 82 in Eq. (6.14) gives for the fraction of the beta-particle
energy converted into photons Y ∼= 0.10. The total beta-particle energy released per
second from the source is (3.7×108 s–1) (0.94 MeV) = 3.48×108 MeV s–1. Multiplica-
tion by Y gives, for the rate of energy emission by bremsstrahlung, ∼3.48 × 107 MeV.
The energy fluence rate at a distance of 1 m is therefore ∼(3.48 × 107 MeV s–1)/(4π ×
1002 cm2) = 277 MeV cm–2 s–1. For assessing the radiation hazard, we assume that
the photons have an energy of 2.28 MeV. Therefore, the photon fluence rate at this
distance is ∼227/2.28 = 121 photons cm–2 s–1. For comparison, we note that use of an
aluminum (Z = 13) shield to stop the beta particles would give Y ∼= 0.017, reducing
the bremsstrahlung by a factor of 5.9.

6.5
Range

The range of a beta particle is defined like that of heavy particles by Eq. (5.39) in
which the total stopping power (–dE/dx)±tot is used. Unlike a heavy particle, how-
ever, its range is only a poor indicator of the depth to which a given electron is
likely to go into a target. Nevertheless, we shall employ electron csda ranges and
the assumption of straight-ahead travel in order to make at least rough estimates
in working problems. One must always bear in mind that this procedure over-
estimates electron penetration in matter. A more quantitative relationship between
the pathlength and the maximum penetration depth is considered in Section 6.7.

Table 6.1 gives electron ranges in water down to 10 eV. As with heavy charged
particles, the ranges expressed in g cm–2 are approximately the same in different
materials of similar atomic composition. Electron ranges in H2O, muscle, bone,
Pb, and air are included in Figs. 5.7 and 5.8. For the same reasons as with heavy
charged particles (discussed at the end of Sect. 5.6), the collisional mass stopping
power for beta particles is smaller in high-Z materials, such as lead, than in water.
In Fig. 5.7, this fact accounts for the greater range of electrons in Pb compared with
H2O at energies below about 20 MeV. At higher energies, the radiative energy-loss
rate in Pb more than compensates for the difference in the collisional rate, and the
electron range in Pb is less than in H2O.

The following empirical equations for electrons in low-Z materials relate the
range R in g cm–2 to the kinetic energy T in MeV:
For 0.01 ≤ T ≤ 2.5 MeV,

R = 0.412T 1.27–0.0954 ln T (6.15)

or

ln T = 6.63 – 3.24(3.29 – ln R)1/2; (6.16)

for T > 2.5 MeV,

R = 0.530T – 0.106, (6.17)

or
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T = 1.89R + 0.200. (6.18)

These relations fit the curve plotted in Fig. 6.4.1)

Example

How much energy does a 2.2-MeV electron lose on the average in passing through
5 mm of Lucite (density ρ = 1.19 g cm–3)?

Solution

Lucite is a low-Z material, and so we may apply Eqs. (6.15)–(6.18) or use Fig. 6.4
directly. We shall employ the equations and check the results against the figure. First,
we find how far the 2.2-MeV electron can travel in Lucite. From Eq. (6.15) with T =
2.2 MeV,

R = 0.412(2.2)1.27–0.0954 ln 2.2 = 1.06 g cm–2, (6.19)

in agreement with Fig. 6.4. This range gives a distance

d = R

ρ
= 1.06 g cm–2

1.19 g cm–3 = 0.891 cm. (6.20)

Since the Lucite is only 0.5 cm thick, the electron emerges with enough energy T ′
to carry it another 0.391 cm, or 0.465 g cm–2. The energy T ′ can be found from
Eq. (6.16):

ln T ′ = 6.63 – 3.24(3.29 – ln 0.465)1/2 = 0.105, (6.21)

and so T ′ = 1.11 MeV, again in agreement with Fig. 6.4. It follows that the energy lost
by the electron is T – T ′ = 2.20 – 1.11 = 1.09 MeV. The analysis and numerical values
found here are the same also for a 2.2-MeV positron.

Unlike alpha particles, beta rays from many radionuclides have a range greater
than the thickness of the epidermis. As seen from Fig. 6.4, a 70-keV electron has
a range equal to the minimum thickness of 7 mg cm–2 of the epidermal layer. 90Y,
for example, emits a beta particle with a maximum energy of 2.28 MeV, which has
a range of over 1 g cm–2 in tissue. In addition to being an internal radiation hazard,
beta emitters can potentially damage the skin and eyes.

6.6
Slowing-Down Time

The rate of slowing down and the stopping time for electrons and positrons can be
estimated by the methods used for heavy charged particles in Section 5.11, the total

1 Figure 6.4 and the relations (6.15)–(6.18) are
taken from the U.S. Public Health Service,
Radiological Health Handbook, Publ. No. 2016,

Bureau of Radiological Health, Rockville, MD
(1970).
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stopping power being employed for beta rays. Estimating the stopping time as the
ratio of the initial energy and the total slowing-down rate is not grossly in error. For
a 1-MeV electron, for example, this ratio is τ = 1.9 × 10–11 s; numerical integration
over the actual total stopping rate as a function of energy gives 1.3 × 10–11s.

Example

Calculate the slowing-down rate of an 800-keV electron in water and estimate the
stopping time.

Solution

The slowing-down rate for a beta particle of speed v is given by –dE/dt = v(–dE/dx)–
tot.

For an 800-keV beta particle, we find by interpolating in Table 6.1, β2 = 0.843. The ve-
locity of the electron is v = βc = √

0.843 × 3 × 1010 = 2.75 × 1010 cm s–1. The interpo-
lated total stopping power at 800 keV from Table 6.1 is (–dE/dx)–

tot = 1.93 MeV cm–1.
The slowing-down rate is

–
dE

dt
= v

(
–

dE

dx

)–

tot
= 2.75 × 1010 cm

s
× 1.93

MeV
cm

= 5.31 × 1010 MeV s–1. (6.22)

With T = 0.800 MeV, the stopping time is

τ ∼= T

–dE/dt
= 0.800 MeV

5.31 × 1010 MeV s–1 = 1.5 × 10–11 s. (6.23)

6.7
Examples of Electron Tracks in Water

Figure 6.5 shows a three-dimensional representation of three electron “tracks” cal-
culated by a Monte Carlo computer code to simulate electron transport in water.
Each primary electron starts with an energy of 5 keV from the origin and moves
initially toward the right along the horizontal axis. Each dot represents the loca-
tion, at 10–11 s, of a chemically active species produced by the action of the primary
electron or one of its secondaries. The Monte Carlo code randomly selects collision
events from specified distributions of flight distance, energy loss, and angle of scat-
ter in order to calculate the fate of individual electrons, simulating as nearly as is
known what actually happens in nature. All electrons are transported in the calcu-
lation until their energies fall below the threshold of 7.4 eV for electronic excitation.
Ticks along the axes are 0.1 µm = 1000 Å apart.

These examples illustrate a number of characteristics of the tracks of electrons
that stop in matter. As we have mentioned already, the tracks tend to wander, due
to large-angle deflections that electrons can experience in single collisions. The
wandering is augmented at low energies, near the end of a track, by the greatly
increased and almost isotropic elastic scattering that occurs there. In addition,
energy-loss events are more sparsely distributed at the beginning of the track,
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Fig. 6.5 Three calculated tracks of 5-keV
electrons in liquid water. Each electron starts
from the origin and initially travels along the
horizontal axis toward the right. Each dot gives
the position of a chemically active species at
10–11 s. [From J. E. Turner, J. L. Magee,
H. A. Wright, A. Chatterjee, R. N. Hamm, and

R. H. Ritchie, “Physical and Chemical
Development of Electron Tracks in Liquid
Water,” Rad. Res. 96, 437–449 (1983). Courtesy
Oak Ridge National Laboratory, operated by
Martin Marietta Energy Systems, Inc., for the
Department of Energy.]

where the primary electron is moving faster. This is generally true of charged-
particle tracks, since the stopping power is smaller at high energies than near the
end of the range. Note also the clustering of events, particularly in the first part of
the tracks. Such groupings, called “spurs,” are due to the production of a secondary
electron with just enough energy to produce several additional ionizations and ex-
citations. The range of the original secondary electron is usually not great enough
to take it appreciably away from the region through which the primary electron
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passes. Clustering occurs as a result of the broad shape of the single-collision spec-
tra in Fig. 5.3 with most of the area covering energy losses �70 eV.

Figure 6.6(a) gives a stereoscopic representation of another 5-keV electron track,
traveling out of the page toward the reader, calculated in water. The same track is
shown from the side in (b), except that the primary electron was forced to move
straight ahead in the calculation.

As another example, Fig. 6.7 displays ten tracks randomly calculated for 740-keV
electrons in liquid water. They are normally incident from the left at the origin
of the X–Y axes. The dots show the coordinates of every one-hundredth inelastic
event in the track projected onto the X–Y plane. Of the ten electrons comprising
the figure, nine slow down and stop in the phantom, and one is backscattered into
the space x < 0. The diverse, tortuous paths of the electrons are in stark contrast to
those of heavy charged particles. Under identical initial conditions, the latter travel
in almost straight lines to about the same depth.

Whereas the application of range-energy tables and graphs for shielding and
dosimetry with heavy charged particles is relatively straightforward, their use with
beta particles warrants a closed look. As related at the beginning of Section 6.5,
the range of an electron of given energy is the average pathlength that it travels in
coming to rest. Figure 6.7 illustrates that there is a considerable difference between
electron range and the depth of penetration in matter. The calculated distributions

(a) (b)
Fig. 6.6 (a) Stereoscopic view of a 5-keV electron track in water.
(b) Lateral view of same track in which the primary electron is
forced to always move straight ahead. (Courtesy R. N. Hamm,
Oak Ridge National Laboratory, operated by Martin Marietta
Energy Systems, Inc., for the Department of Energy.)
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of pathlengths and of maximum depths of penetration for 740-keV electrons in wa-
ter are shown in Fig. 6.8. They were compilied from the histories of 1.5×106 tracks
randomly generated on the computer. The skewed shape of the single-collision
energy-loss spectrum with a high-energy tail for energetic electrons (Fig. 5.3), is
reflected in the skewed shape for the pathlength curve in Fig. 6.8. The computed
mean pathlength, or range, was 3,000 µm and the average maximum depth of pen-
etration was 1,300 µm. It is seen that the maximum depth reached by relatively few
electrons is even close to the range. As a rule of thumb, the average deepest pene-
tration for beta particles is roughly one-half the range. The particular range chosen
for discussion here is the nominal tissue depth of 0.3 cm for the lens of the eye,
specified in regulatory documents.

This chapter covers much of the basic physics underlying our understanding
of some effects of ionizing radiation in matter. All ionizing radiation produces

Fig. 6.7 Calculated tracks (projected into the X–Y plane of the
figure) of ten 740-keV electrons entering a water slab normally
from the left at the origin. One electron is seen to be scattered
back out of the slab.
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Fig. 6.8 Probability density functions for maximum depth of
penetration and pathlength for 740-keV electrons normally
incident on a water slab.

low-energy electrons in great abundance. Studies with water, a main constituent
of living systems, can be partially checked by radiochemical measurements. They
shed considerable light on the physical and chemical changes induced by radiation
that must ultimately lead to biological effects. The subsequent chemical evolution
that follows energy deposition within the tracks of charged particles in water is
described in Chapter 13.

6.8
Suggested Reading
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Wiley, New York (1986). [See Chap-
ter 8.]
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for Electrons and Positrons, Interna-
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Units and Measurements, Bethesda,
MD (1984). [Tables give collisional,
radiative, and total mass stopping
powers; ranges; radiation yields;
and other data for electrons and
positrons (10 keV–1 GeV) for a num-
ber of elements, compounds, and
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as other data are available on-line,
http://physics.nist.gov/PhysRefData/.
See note at end of Section 5.13.]

3 Semenenko, V. A., Turner, J. E., and
Borak, T. B., “NOREC,” a Monte Carlo
Code for Simulating Electron Tracks
in Liquid Water,” Radiat. Env. Biophys.
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References to original documents are
cited.]
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cludes electron interactions with mat-
ter and some related health-physics
applications.]

6.9
Problems

1. Calculate F –(β) for a 600-keV electron.
2. Calculate F +(β) for a 600-keV positron.
3. Derive Eq. (6.4) from Eq. (6.1).
4. Calculate the collisional stopping power of water for 600-keV

electrons.
5. Calculate the collisional stopping power of water for 600-keV

positrons.
6. Show that, when β2 � 1, the collisional stopping-power

formula for an electron with kinetic energy T can be written

(
–

dE

dx

)–

col
= πk2

0e4n

T

(
ln

T 2

2I 2 + 1
)

.

7. Use the formula from the last problem to calculate the
stopping power of CO2 at STP for 9.5-keV electrons.

8. (a) From Fig. 6.2, estimate for a 100-eV electron the probability
that a given energy-loss event will result in excitation, rather
than ionization, in water.
(b) What fraction of the collisions at 100 eV are due to elastic

scattering?
9. Use Fig. 6.2 to estimate the fraction of the collisions of a

100-keV electron in water that are due to
(a) ionization
(b) excitation
(c) elastic scattering.

10. Estimate the kinetic energy at which the collisional and
radiative stopping powers are equal for electrons in
(a) Be
(b) Cu
(c) Pb.

11. What is the ratio of the collisional and radiative stopping
powers of Al for electrons of energy
(a) 10 keV
(b) 1 MeV
(c) 100 MeV ?

12. Estimate the radiation yield for 10-MeV electrons in
(a) Al
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(b) Fe
(c) Au.

13. A small 1.85-GBq 198Au source (maximum beta-particle energy
0.961 MeV, average 0.315 MeV) is enclosed in a lead shield just
thick enough to absorb all the beta particles.
(a) Estimate the energy fluence rate due to bremsstrahlung at

a point 50 cm away.
(b) What is the estimated bremsstrahlung photon fluence rate

at that point for the purpose of assessing the potential
radiation hazard?

14. A 12-mA electron beam is accelerated through a potential
difference of 2 × 105 V in an X-ray tube with a tungsten target.
X rays are generated as bremsstrahlung from the electrons
stopping in the target. Neglect absorption in the tube.
(a) Estimate the fraction of the beam power that is emitted as

radiation.
(b) How much power is radiated as bremsstrahlung?

15. Estimate the range in cm of the maximum-energy beta ray
(2.28 MeV) from 90Y in bone of density 1.9 g cm–3.

16. Use Eq. (6.15) to estimate the range of a 400-keV beta particle
in water. How does the answer compare with Table 6.1?

17. Derive Eq. (6.16) from Eq. (6.15).
18. Use Table 6.1 to estimate the range in cm in air at STP for

electrons of energy
(a) 50 keV
(b) 830 keV
(c) 100 MeV.

19. A positron emerges normally from a 4-mm-thick plastic slab
(density 1.14 g cm–3) with an energy of 1.62 MeV. What was its
energy when it entered the slab?

20. Use the range curve in Fig. 5.7 and make up a formula or
formulas like Eqs. (6.15) and (6.17), giving the range of
electrons in lead as a function of energy.

21. A cell culture (Fig. 6.9) is covered with a 1-cm sheet of Lucite
(density = 1.19 g cm–3). What thickness of lead (in cm) is
needed on top of the Lucite to prevent 10-MeV beta rays from
reaching the culture? Use the approximate empirical formulas
relating range R in g cm–2 to electron kinetic energy T in MeV:

Lucite: R = 0.334T1.48, 0 ≤ T ≤ 4
lead: R = 0.426T1.14, 0.1 ≤ T ≤ 10.

22. To protect the cell culture in the last problem from radiation,
what advantage would be gained if the positions of the Lucite
and the lead were swapped, so that the Lucite was on top?
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Fig. 6.9 Cell culture covered with Lucite and lead (Problems 21 and 22).

23. Estimate the slowing-down time in water for positrons of
energy
(a) 100 keV
(b) 1 MeV.

24. (a) Use the information from Problems 6 and 7 to calculate
the slowing-down rate of a 9.5-keV electron in CO2 at STP.

(b) Estimate the stopping time for the electron.
25. (a) Estimate the stopping time of a 9.5-keV electron in soft

tissue.
(b) Why is this time considerably shorter than the time in

Problem 24(b)?
26. (a) Calculate the ratio of the slowing-down times of a 1-MeV

proton and a 1-MeV electron in water.
(b) Calculate the ratio for a 250-MeV proton and a 0.136-MeV

electron (β = 0.614 for both).
(c) Discuss physical reasons for the time difference in (a)

and (b).
27. (a) Approximately how many secondary electrons are

produced when a 5-MeV electron stops in water?
(b) What is the average number of ions per cm (specific

ionization) along its track?
28. For a 150-eV electron, the ordinate in Fig. 5.3 has an average

value of about 0.03 in the energy-loss interval between 19 eV
and 28 eV. What fraction of the collisions of 150-eV electrons in
water result in energy losses between 19 eV and 28 eV?

29. (a) Use Fig. 6.8 to estimate the probability that a normally
incident, 740-keV electron will penetrate a water phantom to a
maximum depth between 1,500 µm and 2,000 µm.
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(b) What is the probability that the pathlength will be between
these two distances?

30. In Problem 21, the range R represents the mean value of the
pathlength in each medium. In view of Fig. 6.8, make a rough,
but more realistic, estimate of the lead thickness needed.

6.10
answers

1. –0.122
4. 1.97 MeV cm–1

7. 0.0383 MeV cm–1

9. (a) 120
(b) 41
(c) 0.61

12. (a) 0.072
(b) 0.13
(c) 0.32

13. (a) 840 MeV cm–2 s–1

(b) 870 cm–2 s–1

14. (a) 0.0088

(b) 21 W
18. (a) 3.3 cm

(b) 270 cm
(c) 250 m

19. 2.2 MeV
21. 0.42 cm
24. (a) 2.19×108 MeV s–1

(b) 4.3 × 10–11 s
25. (a) 6.6 × 10–14 s
27. (a) ∼227,000

(b) ∼105

28. 0.27



159

7
Phenomena Associated with Charged-Particle Tracks

7.1
Delta Rays

A heavy charged particle or an electron traversing matter sometimes produces a
secondary electron with enough energy to leave the immediate vicinity of the pri-
mary particle’s path and produce a noticeable track of its own. Such a secondary
electron is called a delta ray. Figure 7.1 shows a number of examples of delta rays
along calculated tracks of protons and alpha particles at several energies with the
same speeds. The 20-MeV alpha particle produces a very-high-energy delta ray,
which itself produces another delta ray. There is no sharp distinction in how one
designates one secondary electron along a track as a delta ray and another not, ex-
cept that its track be noticeable or distinct from that of the primary charged particle.
Delta rays can also be seen along the electron tracks in Fig. 6.7. (Note the difference
in scale compared with Fig. 7.1.)

7.2
Restricted Stopping Power

As will be discussed in Chapter 12, radiation dose is defined as the energy absorbed
per unit mass in an irradiated material. Absorbed energy thus plays a preeminent
role in dosimetry and in radiation protection.

Stopping power gives the energy lost by a charged particle in a medium. This is
not always equal to the energy absorbed in a target, especially if the target is small
compared with the ranges of secondary electrons produced. On the biological scale,
many living cells have diameters of the order of microns (10–4 cm). Subcellular
structures can be many times smaller; the DNA double helix, for example, has a
diameter of about 20 Å. Delta rays and other secondary electrons can effectively
transport energy out of the original site in which it is lost by a primary particle.

The concept of restricted stopping power has been introduced to associate en-
ergy loss in a target more closely with the energy that is actually absorbed there.
The restricted stopping power, written (–dE/dx)�, is defined as the linear rate of
energy loss due only to collisions in which the energy transfer does not exceed a

Atoms, Radiation, and Radiation Protection. James E. Turner
Copyright © 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-40606-7
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Fig. 7.1 Calculated track segments (0.7 µm) of protons and
alpha particles having the same velocities in water. (Courtesy
Oak Ridge National Laboratory, operated by Martin Marietta
Energy Systems, Inc., for the Department of Energy.)

specified value �. To calculate this quantity, one integrates the weighted energy-
loss spectrum only up to �, rather than Qmax. In place of Eq. (5.10) one defines the
restricted stopping power as

(
–

dE

dx

)
�

= µ

∫ �

Qmin

QW(Q) dQ. (7.1)
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Depending on the application, different values of � can be selected, for exam-
ple, (–dE/dx)100 eV, (–dE/dx)1 keV, and so forth. In the context of restricted stopping
power, the subscript Qmax or ∞ is used to designate the usual stopping power:

–
dE

dx
=

(
–

dE

dx

)
Qmax

=
(

–
dE

dx

)
∞

. (7.2)

We see from Table 6.1 that restricting single-collision energy losses by electrons
in water to 100 eV or less, for example, limits the range of secondary electrons to
∼ 5×10–7 cm, or about 50 Å. With � = 1 keV, the maximum range of the secondary
electrons contributing to the restricted stopping power is 5 × 10–6 cm, or about
500 Å.

Example

A sample of viruses, assumed to be in the shape of spheres of diameter 300 Å, is to
be irradiated by a charged-particle beam in an experiment. Estimate a cutoff value
that would be appropriate for determining a restricted stopping power that would be
indicative of the actual energy absorbed in the individual virus particles.

Solution

As an approximation, one can specify that the range of the most energetic delta ray
should not exceed 300 Å = 3 × 10–6 cm. We assume that the virus sample has unit
density. Table 6.1 shows that this distance is approximately the range of a 700-eV
secondary electron. Therefore, we choose � = 700 eV and use the restricted stopping
power (–dE/dx)700 eV as a measure of the average energy absorbed in an individual
virus particle from a charged particle traversing it.

Restricted mass stopping powers of water for protons are given in Table 7.1.
At energies of 0.05 MeV and below, collisions that transfer more than 100 eV do
not contribute significantly to the total stopping power, and so (–dE/ρ dx)100 eV =
(–dE/ρ dx)∞. In fact, at 0.05 MeV, Qmax = 109 eV. At 0.10 MeV, on the other hand,
Qmax = 220 eV; and so the restricted mass stopping power with � = 1 keV is signifi-
cantly larger than that with � = 100 eV. At 1 MeV, a negligible number of collisions
result in energy transfers of more than 10 keV; at 10 MeV, about 8% of the stopping

Table 7.1 Restricted Mass Stopping Power of Water, (–dE/ρdx)� in MeV cm2 g–1, for Protons

Energy (MeV)
(

– dE
ρdx

)
100 eV

(
– dE

ρdx

)
1 keV

(
– dE

ρdx

)
10 keV

(
– dE

ρdx

)
∞

0.05 910. 910. 910. 910.
0.10 711. 910. 910. 910.
0.50 249. 424. 428. 428.
1.00 146. 238. 270. 270.

10.0 24.8 33.5 42.2 45.9
100. 3.92 4.94 5.97 7.28
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Table 7.2 Restricted Collisional Mass Stopping Power of Water,
(–dE/ρdx)� in MeV cm2 g–1, for Electrons

Energy (MeV)
(

– dE
ρdx

)
100 eV

(
– dE

ρdx

)
1 keV

(
– dE

ρdx

)
10 keV

(
– dE

ρdx

)
∞

0.0002 298. 298. 298. 298.
0.0005 183. 194. 194. 194.
0.001 109. 126. 126. 126.
0.003 40.6 54.4 60.1 60.1
0.005 24.9 34.0 42.6 42.6
0.01 15.1 20.2 23.2 23.2
0.05 4.12 5.26 6.35 6.75
0.10 2.52 3.15 3.78 4.20
1.00 1.05 1.28 1.48 1.89

power is due to collisions that transfer more than 10 keV. Corresponding data for
the restricted collisional mass stopping power for electrons are presented in Ta-
ble 7.2. Here, the restricted stopping powers are different at much lower energies
than in Table 7.1.

7.3
Linear Energy Transfer (LET)

The concept of linear energy transfer, or LET, was introduced in the early 1950s to
characterize the rate of energy transfer per unit distance along a charged-particle
track. As such, LET and stopping power were synonymous. In studying radiation
effects in terms of LET, the distinction was made between the energy transferred
from a charged particle in a target and the energy actually absorbed there. In 1962
the International Commission on Radiation Units and Measurements (ICRU) de-
fined LET as the quotient –dEL/dx, where dEL is the “average energy locally im-
parted” to a medium by a charged particle in traversing a distance dx. The words
“locally imparted,” however, were not precisely specified, and LET was not always
used with exactly the same meaning. In 1980, the ICRU defined LET� as the re-
stricted stopping power for energy losses not exceeding �:

LET� =
(

–
dE

dx

)
�

, (7.3)

with the symbol LET∞ denoting the usual (unrestricted) stopping power.
LET is often found in the literature with no subscript or other clarification. It can

generally be assumed then that the unrestricted stopping power is implied.

Example

Use Table 7.1 to determine LET1 keV and LET5 keV for 1-MeV protons in water.



7.4 Specific Ionization 163

Solution

Note that Eq. (7.3) for LET involves stopping power rather than mass stopping power.
Since ρ = 1 for water, the numbers in Table 7.1 also give (–dE/dx)� in MeV cm–1. We
find LET1 keV = 238 MeV cm–1 given directly in the table. Linear interpolation gives
LET5 keV = 252 MeV cm–1.

LET is often expressed in units of keV µm–1 of water. Conversion of units shows
that 1 keV µm–1 = 10 MeV cm–1 (Problem 10).

In 1998, the ICRU introduced the following new definition, also called “linear
energy transfer, or restricted linear electronic stopping power, L�”:

L� = –
dE�

dx
. (7.4)

Here E� is the total energy lost by the charged particle due to electronic collisions
in traversing a distance dx, minus the sum of the kinetic energies of all electrons
released with energies in excess of �. Compared with the 1980 definition, Eq. (7.3),
there are two important differences. First, the binding energies for all collisions are
included in (7.4). Second, the threshold kinetic energy of the secondary electrons
for a collision is now �, rather than � minus the binding energy. Equation (7.4)
can be written in the alternate form,

L� = –
dE

dx
–

dEke,�

dx
, (7.5)

where dEke,� is the sum of the kinetic energies greater than � of the secondary
electrons. We shall not deal further with the newer quantity. The reader is referred
to the 1980 and 1998 ICRU Reports 33 and 60 listed in Section 7.8.

7.4
Specific Ionization

The average number of ion pairs that a particle produces per unit distance trav-
eled is called the specific ionization. This quantity, which expresses the density of
ionizations along a track, is often considered in studying the response of materials
to radiation and in interpreting some biological effects. The specific ionization of
a particle at a given energy is equal to the stopping power divided by the average
energy required to produce an ion pair at that particle energy. The stopping power
of air for a 5-MeV alpha particle is 1.23 MeV cm–1, and an average of about 36 eV
is needed to produce an ion pair. Thus, the specific ionization of a 5-MeV alpha
particle in air is (1.23 × 106 eV cm–1)/(36 eV) = 34,200 cm–1. For a 5-MeV alpha
particle in water or soft tissue, –dE/dx = 950 MeV cm–1 (Fig. 5.6). Since about 22
eV is required to produce an ion pair, the specific ionization is 4.32 × 107 cm–1.
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7.5
Energy Straggling

As a charged particle penetrates matter, statistical fluctuations occur in the num-
ber of collisions along its path and in the amount of energy lost in each collision.
As a result, a number of identical particles starting out under identical conditions
will show (1) a distribution of energies as they pass a given depth and (2) a distribu-
tion of pathlengths traversed before they stop. The phenomenon of unequal energy
losses under identical conditions is called energy straggling and the existence of dif-
ferent pathlengths is referred to as range straggling. We examine these two forms of
straggling in this and the next section.

Energy straggling can be observed experimentally by the setup shown schemat-
ically in Fig. 7.2. A monoenergetic beam of protons (or other charged particles) is
passed through a gas-filled cylindrical proportional counter parallel to its axis. The
ends of the cylinder can be thin aluminum or other material that absorbs little en-
ergy. Each proton makes a number of electronic collisions and produces a single
pulse in the counter, which is operated so that the pulse height is proportional to
the total energy that the proton deposits in the counter gas. (Proportional counters
are described in Chapter 10.) Thus, by measuring the distribution of pulse heights,
called the pulse-height spectrum, in an experiment one obtains the distribution of
proton energy losses in the gas. By changing the gas pressure and repeating the ex-
periment, one can study how the energy-loss distribution depends on the amount
of matter traversed.

Some data are shown in Fig. 7.3, based on experiments reported by Gooding
and Eisberg, using 37-MeV protons and a 10-cm-long counter filled with a mixture
of 96% Ar and 4% CO2 at pressures up to 1.2 atm. The average energy needed to
produce an ion pair in the gas is about 25 eV. Data are provided for gas pressures of
0.2 atm and 1.2 atm. The ordinate shows the relative number of counts at different

Fig. 7.2 Schematic arrangement for studying energy straggling experimentally.
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Fig. 7.3 Pulse-height spectra for 37-MeV protons traversing
proportional counter with gas at 0.2-atm and 1.2-atm pressure.
See text. [Based on T. J. Gooding and R. M. Eisberg, “Statistical
Fluctuations in Energy Losses of 37-MeV Protons,” Phys. Rev.
105, 357–360 (1957).]

pulse heights given by the abscissa. We can examine both curves quantitatively. For
reference, the value Qmax = 80.6 keV for a single collision of a 37-MeV proton with
an electron is also shown.

At 0.2 atm, the most probable energy loss measured for a proton traversing the
gas is Ep = 27 keV and the average loss is E = 34 keV. Since about 25 eV is needed to
produce an ion pair, the average number of secondary electrons is 34,000/25 = 1360
per proton. Some of these electrons are produced directly by the proton and the
others are produced by secondary electrons. If we assume that the proton directly
ejects secondary electrons with a mean energy of ∼60 eV, then the proton makes
approximately 34,000/60 = 570 collisions in traversing the gas. At this lower pres-
sure, where the proton mean energy loss is considerably less than Qmax and only
a few hundred collisions take place, the pulse-height spectrum shows the skewed
distribution characteristic of the single-collision spectrum (Fig. 5.3). The relative
separation of the peak and mean energies is (E – Ep)/E = (34 – 27)/34 = 0.21.

At 1.2 atm, an average of six times as many proton collisions takes place. The
observed mean energy loss E = 212 keV is some three times Qmax. The pulse-height
spectrum, while still skewed, is somewhat more symmetric. The relative separation
of the peak and mean energies is (212 – 202)/212 = 0.05, which is considerably less
than that at 0.2 atm. At still higher gas pressures, the pulse-height spectrum shifts
further to the right and becomes more symmetric, approaching a Gaussian shape
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Fig. 7.4 Relative number of protons at different energies that
experience energy losses shown on the abscissa in traversing
1 µm of water. (Courtesy Oak Ridge National Laboratory,
operated by Martin Marietta Energy Systems, Inc., for the
Department of Energy.)

with Ep = E. Statistical aspects of radiation interaction and energy loss in matter
will be discussed in Chapter 11.

Figure 7.4 shows the energy straggling calculated for protons traversing a thick-
ness of 1 µm of water at several energies. The curves are normalized to the same
area. The energy loss is given in keV, and so its mean value at each proton en-
ergy (indicated by the vertical arrows) is numerically equal to the stopping power
in keV µm–1. The stopping power is smallest for the 10-MeV protons; they make
the fewest collisions on average and show the most skewed straggling distribution.
The most probable energy loss for them is only about 60% of the average. Thus,
using the value of the stopping power as an estimate of energy loss for 10-MeV
protons in micron-sized volumes of tissue can be misleading. Most protons lose
considerably less energy than the mean, while a few experience energy losses sev-
eral times greater. At the lower proton energies the number of collisions and the
stopping power increase progressively. The straggling curves assume more closely
a Gaussian shape, with the average and the most probable values being close. In
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contrast to 10 MeV, at 1 MeV it is relatively unlikely that a given proton will experi-
ence an energy loss 20% or more different from the mean (i.e., outside an interval
±5 keV about the mean of 25 keV). The relation between single-collision energy-
loss spectra, stopping power, and energy straggling was discussed in Section 5.4.

The physics behind Fig. 7.4 is of fundamental importance to radiation biology.
As pointed out in Section 7.2, radiation damages living tissue directly on a scale
of microns and below. At this level, energy straggling, as well as (related) delta-ray
effects, play important roles in the interaction of radiation with matter. The subject
of microdosimetry (Section 12.10) deals with the distribution and fluctuations in
energy loss and deposition in small volumes of tissue.

7.6
Range Straggling

Range straggling for heavy charged particles can be measured with the experimen-
tal arrangement shown in Fig. 7.5(a). A monoenergetic beam is directed on an
absorber whose thickness can be varied by using additional layers of the material.
A count-rate meter is used to measure the relative number of beam particles that
emerge from the absorber as a function of its thickness. A plot of relative count

Fig. 7.5 (a) Experimental arrangement for observing range
straggling, (b) Plot of relative count rate vs. absorber thickness,
showing the mean and extrapolated ranges.
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rate versus thickness for energetic heavy charged particles has the form shown in
Fig. 7.5(b). At first the absorber serves only to reduce the energy of the particles
traversing it, and therefore the count-rate curve is flat. When additional absorber
material is added, the curve remains flat until the thickness approaches the range
of the particles. Then the number of particles emerging from the absorber begins
to decrease rapidly and almost linearly as more material is added until all of the
particles are stopped in the absorber.

The mean range is defined as the absorber thickness at which the relative count
rate is 0.50, as shown in Fig. 7.5(b). The extrapolated range is determined by extend-
ing the straight portion of the curve to the abscissa. The distribution of stopping
depths about the mean range is nearly Gaussian in shape.

Range straggling is not large for heavy charged particles. For 100-MeV protons
in tissue, for example, the root-mean-square fluctuation in pathlength is about
0.09 cm. The range is 7.57 cm (Table 5.3), and so the relative spread in stopping
distances is (0.09/7.57) × 100 = 1.2%.

When monoenergetic electrons are used with an experimental setup like that in
Fig. 7.5, a different penetration pattern is found. Figure 7.6 shows the relative num-
ber of 100-keV electrons that pass through a water absorber of variable thickness.
The relative number slightly exceeds unity for the thinnest absorbers because of the

Fig. 7.6 Relative number of normally incident, 100-keV
electrons that get through water slabs of different thicknesses
with arrangement like that in Fig. 7.5(a). The reduction in
transmission as a function of absorber thickness differs
markedly from that in Fig. 7.5(b) for monoenergetic heavy
charged particles.



7.7 Multiple Coulomb Scattering 169

buildup of secondary electrons as the incident beam initially penetrates and ionizes
the target. With increasing absorber thickness the relative number that penetrate
falls off steadily out to about 110 µm, and then tails off. Mean and extrapolated
ranges can be similarly defined as in Fig. 7.5. The csda range for 100-keV electrons
in water is 140 µm.

7.7
Multiple Coulomb Scattering

We have seen how straggling affects the penetration of charged particles and in-
troduces some fuzziness into the concept of range. Another phenomenon, elas-
tic scattering from atomic nuclei via the Coulomb force, further complicates the
analysis of particle penetration. The path of a charged particle in matter—even a
fast electron or a heavy charged particle—deviates from a straight line because it
undergoes frequent small-angle nuclear scattering events.

Figure 7.7 illustrates how a heavy particle, starting out along the X-axis at the
origin O in an absorber might be deviated repeatedly by multiple Coulomb scatter-
ing until coming to rest at a depth X0. The total pathlength traveled, R, which is
the quantity calculated from Eq. (5.39) and given in the tables, is greater than the
depth of penetration X0. The latter is sometimes called the projected range. The
difference between R and X0 for heavy charged particles is typically �1%, and so R

is usually considered to be the same as X0.
Another effect of multiple Coulomb scattering is to spread a pencil beam of

charged particles into a diverging beam as it penetrates a target, as illustrated in
Fig. 7.8. The magnitude of the spreading increases with the atomic number of the
material. When a pencil beam of 120-MeV protons penetrates 1 cm of water, for
example, about 4% of the particles emerge outside an angle ϕ = 1.5◦ in Fig. 7.8.

The arrangement in Fig. 7.8 is basically the same as that used by Ruther-
ford when he investigated alpha-particle scattering through thin metal foils (Sec-
tion 2.2). The occasional, unexpected, large-angle scattering of a particle led him to
the discovery of the nucleus.

Fig. 7.7 Schematic representation of the effect of multiple
Coulomb scattering on the path of a heavy charged particle that
starts moving from the origin O toward the right along the
X-axis. The displacement lateral to the X-axis is exaggerated for
illustrative purposes.
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Fig. 7.8 Multiple Coulomb scattering causes spread in a pencil
beam of charged particles as they penetrate matter.

In radiotherapy with charged-particle beams, multiple Coulomb scattering can
significantly diminish the dose that can be concentrated in a tumor, particularly
when it is located at some depth in the body.
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7.9
Problems

1. A 4-MeV proton in water produces a delta ray with energy
0.1Qmax. How large is the range of this delta ray compared with
the range of the proton?

2. How does the maximum energy of a delta ray that can be
produced by a 3-MeV alpha particle compare with that from a
3-MeV proton?

3. What is the energy of a proton that can produce a delta ray with
enough energy to traverse a cell having a diameter of 2.5 µm?

4. Find (–dE/dx)500 eV for a 500-keV proton in water.
5. (a) For 0.05-MeV protons in water, what is the smallest value

of � for which (–dE/dx)� = (–dE/dx)∞?
(b) Repeat for 0.10-MeV protons.
(c) Are your answers consistent with Table 7.1?

6. Use Table 7.1 to estimate the restricted mass stopping power
(–dE/ρdx)2 keV of water for 10-MeV protons.

7. Use Table 7.2 to estimate the ratio of the restricted stopping
power of water (–dE/dx)500 eV to the total stopping power for
50-keV electrons.

8. Find LET1 keV for 10-MeV protons in
(a) soft tissue,
(b) bone of density 1.93 g cm–3

9. From Fig. 5.6 find LET∞ for a
(a) 2-MeV alpha particle,
(b) 100-MeV muon,
(c) 100-keV positron.

10. Show that the common LET unit, keV µm–1, is equal to
10 MeV cm–1.

11. What is the specific ionization of a 12-MeV proton in tissue if
an average of 22 eV is needed to produce an ion pair?

12. In Section 7.4 we calculated the specific ionization of a 5-MeV
alpha particle in air (3.42 × 104 cm–1) and in water
(4.32 × 107 cm–1). Why is the specific ionization so much
greater in water?

13. How does the maximum specific ionization of an alpha particle
in tissue compare with that of a proton?

14. (a) Define energy straggling.
(b) Does energy straggling cause range straggling?

15. (a) From the numerical analysis of Fig. 7.3 given in
Section 7.5, how many total ionizations per proton would
be expected at a pressure of 0.7 atm?
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X(cm) counts per minute

1.0 380
2.0 374
2.5 379
2.6 381
2.7 375
2.8 365
2.9 308
3.0 243
3.1 181
3.2 98
3.3 10
3.4 0

Fig. 7.9 Count rate from a collimated, monoenergetic alpha-particle beam (Problem 16).

(b) How many of these ionizations would be produced by
secondary electrons?

16. Figure 7.9 shows an experimental arrangement in which the
count rate from a collimated, monoenergetic alpha-particle
beam is measured at different separations x in air. From the
given data, determine
(a) the mean range,
(b) the extrapolated range.

7.10
Answers

1. ∼ 1.8 × 10–4

3. 5.0 MeV
4. 330 MeV cm–1

6. 34 MeV cm2 g–1

7. 0.69
13. ∼2.7
16. (a) 3.1 cm

(b) 3.3 cm
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8
Interaction of Photons with Matter

8.1
Interaction Mechanisms

Unlike charged particles, photons are electrically neutral and do not steadily lose
energy as they penetrate matter. Instead, they can travel some distance before inter-
acting with an atom. How far a given photon will penetrate is governed statistically
by a probability of interaction per unit distance traveled, which depends on the
specific medium traversed and on the photon energy. When the photon interacts,
it might be absorbed and disappear or it might be scattered, changing its direction
of travel, with or without loss of energy.

Thomson and Raleigh scattering are two processes by which photons interact
with matter without appreciable transfer of energy. In Thomson scattering an elec-
tron, assumed to be free, oscillates classically in response to the electric vector of
a passing electromagnetic wave. The oscillating electron promptly emits radiation
(photons) of the same frequency as the incident wave. The net effect of Thomson
scattering, which is elastic, is the redirection of some incident photons with no
transfer of energy to the medium. In the modern, quantum-mechanical theory of
photon–electron interactions, Thomson scattering represents the low-energy limit
of Compton scattering, as the incident photon energy approaches zero.

Raleigh scattering of a photon results from the combined, coherent action of an
atom as a whole. The scattering angle is usually very small. There is no appreciable
loss of energy by the photon to the atom, which, however, does “recoil” enough to
conserve momentum. We shall not consider Thomson or Raleigh scattering fur-
ther.

The principal mechanisms of energy deposition by photons in matter are pho-
toelectric absorption, Compton scattering, pair production, and photonuclear reac-
tions. We treat these processes in some detail.

Atoms, Radiation, and Radiation Protection. James E. Turner
Copyright © 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-40606-7
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8.2
Photoelectric Effect

The ejection of electrons from a surface as a result of light absorption is called the
photoelectric effect. The arrangement in Fig. 8.1 can be used to study this process
experimentally. Monochromatic light passes into an evacuated glass tube through
a quartz window (which allows ultraviolet light to be used) and strikes an electrode
1 causing photoelectrons to be ejected. Electrode 1 can be made of a metal to be
studied or have its surface covered with such a metal. The current I that flows
during illumination can be measured as a function of the variable potential dif-
ference V21 applied between the two electrodes, 1 and 2, of the tube. Curves (a)
and (b) represent data obtained at two different intensities of the incident light.
With the surface illuminated, there will be some current even with V21 = 0. When
V21 is made positive and increased, the efficiency of collecting photoelectrons at
electrode 2 increases; the current rises to a plateau when all of the electrons are be-

Fig. 8.1 Experiment on photoelectric effect. With electrode 1
illuminated with monochromatic light of constant intensity, the
current I is measured as a function of the potential difference
V21 between electrodes 2 and 1. Curves (a) and (b) represent
data at two different intensities of the incident light.
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ing collected. The ratio of the plateau currents is equal to the relative light intensity
used for curves (a) and (b).

When the polarity of the potential difference is reversed (V21 < 0), photoelectrons
ejected from the illuminated electrode 1 now experience an attractive force back to-
ward it. Making V21 more negative allows only the most energetic photoelectrons to
reach electrode 2, thus causing the current I to decrease. Independently of the light
intensity, the photoelectric current drops to zero when the reversed potential differ-
ence reaches a magnitude V0, called the stopping potential. The potential energy
eV0, where e is the magnitude of the electronic charge, is equal to the maximum
kinetic energy, Tmax, of the photoelectrons:

Tmax = eV0. (8.1)

The stopping potential V0 varies linearly with the frequency ν of the monochro-
matic light used. A threshold frequency ν0 is found below which no photoelectrons
are emitted, even with intense light. The value of ν0 depends on the metal used for
electrode 1.

The photoelectric effect is of special historical significance. The experimental
findings are incompatible with the classical wave theory of light, which had been
so successful in the latter part of the nineteenth century. Based on a wave concept,
one would expect the maximum kinetic energy of photoelectrons, Tmax in Eq. (8.1),
to increase as the intensity of the incident light is increased. Yet the value of V0

for a metal was found to be independent of the intensity (Fig. 8.1). Furthermore,
one would also expect some photoelectrons to be emitted by light of any frequency,
simply by making it intense enough. However, a threshold frequency ν0 exists for
every metal.

To explain the photoelectric effect, Einstein in 1905 proposed that the incident
light arrives in discrete quanta (photons), having an energy given by E = hν, where
h is Planck’s constant. He further assumed that a photoelectron is produced when
a single electron in the metal completely absorbs a single photon. The kinetic en-
ergy T with which the photoelectron is emitted from the metal is equal to the pho-
ton energy minus an energy ϕ that the electron expends in escaping the surface:

T = hν – ϕ. (8.2)

The energy ϕ may result from collisional losses (stopping power) and from work
done against the net attractive forces that normally keep the electron in the metal.
A minimum energy, ϕ0, called the work function of the metal, is required to remove
the most loosely bound electron from the surface. The maximum kinetic energy
that a photoelectron can have is given by

Tmax = hν – ϕ0. (8.3)

Einstein received the Nobel Prize in 1921 “for his contributions to mathematical
physics, and especially for his discovery of the law of the photoelectric effect.”

The probability of producing a photoelectron when light strikes an atom is
strongly dependent on the atomic number Z and the energy hν of the photons.
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It is largest for high-Z materials and low-energy photons with frequencies above
the threshold value ν0. The probability varies as Z4/(hν)3.

Example

(a) What threshold energy must a photon have to produce a photoelectron from Al,
which has a work function of 4.20 eV? (b) Calculate the maximum energy of a photo-
electron ejected from Al by UV light with a wavelength of 1500 Å. (c) How does the
maximum photoelectron energy vary with the intensity of the UV light?

Solution

(a) The work function ϕ0 = 4.20 eV represents the minimum energy that a photon
must have to produce a photoelectron. (b) The energy of the incident photons in eV
is given in terms of the wavelength λ in angstroms by Eq. (2.26):

E = hν = 12400
λ

= 12400
1500

= 8.27 eV. (8.4)

From Eq. (8.3),

Tmax = 8.27 – 4.20 = 4.07 eV. (8.5)

(c) Tmax is independent of the light intensity.

8.3
Energy–Momentum Requirements for Photon Absorption by an Electron

As with charged particles, when the energy transferred by a photon to an atomic
electron is large compared with its binding energy, then the electron can be treated
as initially free and at rest. We now show that the conservation of energy and mo-
mentum prevents the absorption of a photon by an electron under these conditions.
Thus, the binding of an electron and its interaction with the rest of the atom are
essential for the photoelectric effect to occur. However, a photon can be scattered

from a free electron, either with a reduction in its energy (Compton effect, next
section) or with no change in energy (Thomson scattering).

If an electron, initially free and at rest (rest energy mc2), absorbs a photon of
energy hν and momentum hν/c (Appendix C), then the conservation of energy and
momentum requires, respectively, that

mc2 + hν = γmc2 (8.6)

and

hν/c = γmcβ. (8.7)

Here γ = (1 – β2)–1/2 is the relativistic factor and β = v/c is the ratio of the speed of
the electron after absorbing the photon and the speed of light c. Multiplying both
sides of Eq. (8.7) by c and subtracting from (8.6) gives

mc2 = γmc2(1 – β). (8.8)
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This equation has only the trivial solution β = 0 and γ = 1, which, by Eq. (8.6), leads
to the condition hν = 0. We conclude that the photoelectric effect occurs because
the absorbing electron interacts with the nucleus and the other electrons in the
atom to conserve the total energy and momentum of all interacting partners.

We now turn to the scattering of photons by electrons.

8.4
Compton Effect

Figure 8.2 illustrates the experimental arrangement used by Compton in 1922.
Molybdenum Kα X rays (photon energy 17.4 keV, wavelength λ = 0.714 Å) were
directed at a graphite target and the wavelengths λ′ of scattered photons were mea-
sured at various angles θ with respect to the incident photon direction. The intensi-
ties of the scattered radiation versus λ′ for three values of θ are sketched in Fig. 8.3.
Each plot shows peaks at two values of λ′: one at the wavelength λ of the incident
photons and another at a longer wavelength, λ′ > λ. The appearance of scattered
radiation at a longer wavelength is called the Compton effect. The Compton shift
in wavelength, �λ = λ′ – λ, was found to depend only on θ ; it is independent of the
incident-photon wavelength λ. In the crucial new experiment in 1922, Compton
measured the shift �λ = 0.024 Å at θ = 90◦.

The occurrence of scattered radiation at the same wavelength as that of the inci-
dent radiation can be explained by classical electromagnetic wave theory. The elec-
tric field of an incident wave accelerates atomic electrons back and forth at the same
frequency ν = c/λ with which it oscillates. The electrons therefore emit radiation
with the same wavelength. This Thomson scattering of radiation from atoms with
no change in wavelength was known before Compton’s work. The occurrence of
the scattered radiation at longer wavelengths contradicted classical expectations.

Fig. 8.2 Compton measured the intensity of scattered photons
as a function of their wavelength λ′ at various scattering
angles θ . Incident radiation was molybdenum Kα X rays, having
a wavelength λ = 0.714 Å.
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Fig. 8.3 Intensity vs. wavelength λ′ of photons scattered at
angles (a) θ = 45◦ , (b) 90◦ , and (c) 135◦ .

To account for his findings, Compton proposed the following quantum model.
In Fig. 8.4(a), a photon of energy hν and momentum hν/c (wavy line) is incident
on a stationary, free electron. After the collision, the photon in (b) is scattered at
an angle θ with energy hν′ and momentum hν′/c. The struck electron recoils at an
angle ϕ with total energy E′ and momentum P′. Conservation of total energy in
the collision requires that

hν + mc2 = hν′ + E′. (8.9)

Conservation of the components of momentum in the horizontal and vertical di-
rections gives the two equations

hν

c
= hν′

c
cos θ + P′ cosϕ (8.10)
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Fig. 8.4 Diagram illustrating Compton scattering of photon
(energy hν, momentum hν/c) from electron, initially free and
at rest with total energy mc2. As a result of the collision, the
photon is scattered at an angle θ with reduced energy hν′ and
momentum hν′/c, and the electron recoils at angle ϕ with total
energy E′ and momentum P′ .

and

hν′

c
sin θ = P′ sinϕ. (8.11)

Eliminating P′ and ϕ from these three equations and solving for ν′, one finds that
(Problem 12)

hν′ = hν

1 + (hν/mc2)(1 – cos θ )
. (8.12)

With this result, the Compton shift is given by

�λ = λ′ – λ = c

(
1
ν′ –

1
ν

)
= h

mc
(1 – cos θ ). (8.13)

Thus, as Compton found experimentally, the shift does not depend on the incident
photon frequency ν. The magnitude of the shift at θ = 90◦ is

�λ = h

mc
= 6.63 × 10–34

9.11 × 10–31 × 3.00 × 108 = 2.43 × 10–12 m, (8.14)
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which agrees with the measured value. The quantity h/mc = 0.0243 Å is called the
Compton wavelength.

Example

A 1.332-MeV gamma photon from 60Co is Compton scattered at an angle of 140◦.
Calculate the energy of the scattered photon and the Compton shift in wavelength.
What is the momentum of the scattered photon?

Solution

The energy of the scattered photons is given by Eq. (8.12):

hν′ = 1.332 MeV
1 + (1.332/0.511)[1 – (–0.766)]

= 0.238 MeV. (8.15)

The Compton shift is given by Eq. (8.13) with h/mc = 0.0243 Å:

�λ = (0.0243 Å)[1 – (–0.766)] = 0.0429 Å. (8.16)

The momentum of the scattered photon is

hν′

c
= 0.238 MeV × 1.6 × 10–13 J MeV–1

3 × 108 m s–1 = 1.27 × 10–22 kg m s–1, (8.17)

where we have used the fact that 1 J = 1 kg m2 s–2 (Appendix B).

We next examine some of the details of energy transfer in Compton scattering.
The kinetic energy acquired by the secondary electron is given by

T = hν – hν′. (8.18)

Substituting (8.12) for hν′ and carrying out a few algebraic manipulations, one
obtains (Problem 13)

T = hν
1 – cos θ

mc2/hν + 1 – cos θ
. (8.19)

The maximum kinetic energy, Tmax, that a secondary electron can acquire occurs
when θ = 180◦. In this case, Eq. (8.19) gives

Tmax = 2hν

2 + mc2/hν
. (8.20)

When the photon energy becomes very large compared with mc2, Tmax approaches
hν.

The recoil angle of the electron, ϕ in Fig. 8.4, is related to hν and θ . Using
Eqs. (8.10) and (8.11) together with the trigonometric identity sinϕ/ cosϕ = tanϕ,
one obtains

tanϕ = hν′ sin θ

hν – hν′ cos θ
. (8.21)
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Substituting from Eq. (8.12) for hν′ gives

tanϕ = sin θ

(1 + hν/mc2)(1 – cos θ )
. (8.22)

The trigonometric term in θ can be conveniently expressed in terms of the half-
angle. Since sin θ = 2 sin(θ/2) cos(θ/2) and 1 – cos θ = 2 sin2(θ/2), it reduces to

sin θ

1 – cos θ
= 2 sin(θ/2) cos(θ/2)

2 sin2(θ/2)
= cot

θ

2
. (8.23)

Equation (8.22) can thus be written in the compact form

cot
θ

2
=

(
1 +

hν

mc2

)
tanϕ. (8.24)

When θ is small, cot θ/2 is large and ϕ is near 90◦. In this case, the photon travels in
the forward direction, imparting relatively little energy to the electron, which moves
off nearly at right angles to the direction of the incident photon. As θ increases
from 0◦ to 180◦, cot θ/2 decreases from ∞ to 0. Therefore, ϕ decreases from 90◦

to 0◦. The electron recoil angle ϕ in Fig. 8.4 is thus always confined to the forward
direction (0 ≤ ϕ ≤ 90◦), whereas the photon can be scattered in any direction.

Example

In the previous example a 1.332-MeV photon from 60Co was scattered by an electron
at an angle of 140◦. Calculate the energy acquired by the recoil electron. What is the
recoil angle of the electron? What is the maximum fraction of its energy that this
photon could lose in a single Compton scattering?

Solution

Substitution into Eq. (8.19) gives the electron recoil energy,

T = 1.332
1 – (–0.766)

0.511/1.332 + 1 – (–0.766)
= 1.094 MeV. (8.25)

Note from Eq. (8.15) that T + hν′ = 1.332 MeV = hν, as it should. The angle of recoil
of the electron can be found from Eq. (8.24). We have

tanϕ = cot (140◦/2)
1 + 1.332/0.511

= 0.101, (8.26)

from which it follows that ϕ = 5.76◦. This is a relatively hard collision in which the
photon is backscattered, retaining only the fraction 0.238/1.332 = 0.179 of its energy
and knocking the electron in the forward direction. From Eq. (8.20),

Tmax = 2 × 1.332
2 + 0.511/1.332

= 1.118 MeV. (8.27)

The maximum fractional energy loss is Tmax/hν = 1.118/1.332 = 0.839.
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All of the details that we have worked out thus far for Compton scattering fol-
low kinematically from the energy and momentum conservation requirements
expressed by Eqs. (8.9)–(8.11). We have said nothing about how the photon and
electron interact or about the probability that the photon will be scattered in the
direction θ . The quantum-mechanical theory of Compton scattering, based on the
specific photon–electron interaction, gives for the angular distribution of scattered
photons the Klein–Nishina formula

deσ

d�
= k2

0e4

2m2c4

(
ν′

ν

)2(
ν

ν′ +
ν′

ν
– sin2 θ

)
m2 sr–1. (8.28)

Here deσ /d�, called the differential scattering cross section, is the probability per unit
solid angle in steradians (sr) that a photon, passing normally through a layer of
material containing one electron m–2, will be scattered into a solid angle d� at
angle θ . The integral of the differential cross section over all solid angles, d� =
2π sin θdθ , is called the Compton collision cross section. It gives the probability eσ

that the photon will have a Compton interaction per electron m–2:

eσ = 2π

∫
deσ

d�
sin θdθ m2. (8.29)

The Compton cross section, eσ , can be thought of as the cross-sectional area, like
that of a target, presented to a photon for interaction by one electron m–2. It is thus
rigorously the stated interaction probability. However, the area eσ , which depends
on the energy of the photon, is not the physical size of the electron.

The dependence of the differential cross section (8.28) on θ can be written ex-
plicitly with the help of Eq. (8.12) (Problem 24). Equation (8.28) can then be used
with the kinematic equations we derived to calculate various quantities of inter-
est. For example, the energy spectrum of Compton recoil electrons produced by
1-MeV photons is shown in Fig. 8.5. The relative number of recoil electrons de-
creases from T = 0 until it begins to rise rapidly as T approaches Tmax = 0.796 MeV,
where the spectrum has its maximum value (called the Compton edge in gamma-ray
spectroscopy). The most probable collisions are those that transfer relatively large
amounts of energy. The Compton electron energy spectra are similar in shape for
photons of other energies.

Of special importance for dosimetry is the average recoil energy, Tavg, of Comp-
ton electrons. For photons of a given energy hν, one can write the differential
Klein–Nishina energy-transfer cross section (per electron m–2)

deσtr

d�
= T

hν

deσ

d�
. (8.30)

The average recoil energy is then given by

Tavg = hν
eσtr

eσ
, (8.31)
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Fig. 8.5 Relative number of Compton recoil electrons as a
function of their energy for 1-MeV photons.

where eσ is given by Eq. (8.29) and eσtr is the Compton energy-transfer cross sec-
tion (per electron m–2). The latter is found by integrating the differential cross
section (8.30) over all solid angles:

eσtr = 2π

∫
deσtr

d�
sin θ dθ . (8.32)

This cross section gives the average fraction of the incident photon energy that
is transferred to Compton electrons per electron m–2 in the material traversed.
Table 8.1 shows values of Tavg for a range of photon energies. Also shown is the
fraction of the incident photon energy that is converted into the kinetic energy of
the Compton electrons. This fraction increases steadily with photon energy.

Similarly, the differential cross section for energy scattering (i.e., the energy car-
ried by the scattered photons) is defined by writing

deσs

d�
= ν′

ν

deσ

d�
. (8.33)

The average energy of the scattered photons for incident photons of energy hν is

(hν′)avg = hν
eσs

eσ
. (8.34)

Here the ratio of eσs, obtained by integration of both sides of Eq. (8.33) over all solid
angles, and eσ gives the fraction of the incident photon energy that is Compton
scattered per electron m–2. Since

Tavg

hν
+

(hν′)avg

hν
= 1, (8.35)
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Table 8.1 Average Kinetic Energy, Tavg, of Compton Recoil
Electrons and Fraction of Incident Photon Energy, hν

Photon Energy Average Recoil Average Fraction of
hν (MeV) Electron Energy Incident Energy

Tavg (MeV) Tavg/hν

0.01 0.0002 0.0187
0.02 0.0007 0.0361
0.04 0.0027 0.0667
0.06 0.0056 0.0938
0.08 0.0094 0.117
0.10 0.0138 0.138
0.20 0.0432 0.216
0.40 0.124 0.310
0.60 0.221 0.368
0.80 0.327 0.409
1.00 0.440 0.440
2.00 1.06 0.531
4.00 2.43 0.607
6.00 3.86 0.644
8.00 5.34 0.667

10.0 6.84 0.684
20.0 14.5 0.727
40.0 30.4 0.760
60.0 46.6 0.776
80.0 62.9 0.787

100.0 79.4 0.794

the Compton collision cross section is the sum of the energy-transfer and energy-
scattering cross sections. Thus, it follows from Eqs. (8.31), (8.34), and (8.35) that

eσ = eσ

[
Tavg

hν
+

(hν′)avg

hν

]
= eσ

[
eσtr

eσ
+ eσs

eσ

]
= eσtr + eσs. (8.36)

If the material traversed consists of N atoms m–3 of an element of atomic num-
ber Z, then the number of electrons m–3 is n = NZ. The Compton interaction prob-
ability per unit distance of travel for the photon in the material is then

σ = NZ eσ = n eσ . (8.37)

The quantity Z eσ is the Compton collision cross section per atom, and σ is the
Compton macroscopic cross section, or attenuation coefficient, having the dimen-
sions of inverse length. If the material is a compound or mixture, then the cross
sections of the individual elements contribute additively to σ as NZ eσ .

The (Compton) linear attenuation coefficients for energy transfer and energy
scattering can be obtained from Eqs. (8.31) and (8.34) after multiplication by the
density of electrons. They are

σtr = σ
Tavg

hν
(8.38)



8.5 Pair Production 185

and

σs = σ
(hν′)avg

hν
. (8.39)

From Eq. (8.36), the (total) Compton attenuation coefficient can be written

σ = σtr + σs. (8.40)

Example

The Compton collision cross section for the interaction of an 8-MeV photon with
an electron is 5.99 × 10–30 m2. For water, find the following quantities for Compton
scattering: (a) the collision cross section per molecule; (b) the linear attenuation co-
efficient; (c) the linear attenuation coefficient for energy transfer; and (d) the linear
attenuation coefficient for energy scattering.

Solution

(a) The Compton collision cross section, defined by Eq. (8.29), is eσ = 5.99×10–30 m2.
Since there are 10 electrons in a water molecule, the Compton cross section per mole-
cule is 10eσ = 5.99 × 10–29 m2. [See discussion in connection with Eq. (8.37).]
(b) Using Eq. (8.37) with n = 3.34 × 1029 m–3 (calculated in Section 5.9), we find for
the linear attenuation coefficient, σ = neσ = (3.44 × 1029 m–3) × (5.99 × 10–30 m2) =
2.06 m–1.
(c) In Table 8.1 we find that Tavg/hν = 0.667 for 8-MeV photons. It follows from
Eq. (8.38) that the linear attenuation coefficient for energy transfer is σtr = 0.667σ =
0.667 × 2.06 = 1.37 m–1.
(d) From Eq. (8.39) we find that σs = 0.333σ = 0.333×2.06 = 0.686 m–1. Alternatively,
one can use Eq. (8.40) and the answer from (c): σs = σ – σtr = 2.06 –1.37 = 0.69 m–1.

Like the photoelectric effect, the Compton effect gave confirmation of the cor-
puscular nature of light. The discovery of quantum mechanics followed Compton’s
experiments by a few years. Modern quantum electrodynamics accounts very suc-
cessfully for the dual wave–photon nature of electromagnetic radiation.

8.5
Pair Production

A photon with an energy of at least twice the electron rest energy, hν ≥ 2mc2, can
be converted into an electron–positron pair in the field of an atomic nucleus. Pair
production can also occur in the field of an atomic electron, but the probability
is considerably smaller and the threshold energy is 4mc2. (This process is often
referred to as “triplet” production because of the presence of the recoiling atomic
electron in addition to the pair.) When pair production occurs in a nuclear field, the
massive nucleus recoils with negligible energy. Therefore, the photon energy hν is
converted into 2mc2 plus the kinetic energies T+ and T– of the partners:

hν = 2mc2 + T+ + T–. (8.41)
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The distribution of the excess energy between the electron and positron is con-
tinuous; that is, the kinetic energy of either can vary from zero to a maximum of
hν – 2mc2. Furthermore, the energy spectra are almost the same for the two parti-
cles and depend on the atomic number of the nucleus. The threshold photon wave-
length for pair production is 0.012 Å (Problem 28). Pair production becomes more
likely with increasing photon energy, and the probability increases with atomic
number approximately as Z2.

The inverse process also occurs when an electron and positron annihilate to pro-
duce photons. A positron can annihilate in flight, although it is more likely first to
slow down, attract an electron, and form positronium. Positronium is the bound
system, analogous to the hydrogen atom, formed by an electron–positron pair or-
biting about their mutual center of mass. Positronium exists for ∼10–10 s before
the electron and positron annihilate. Since the total momentum of positronium
before decay is zero, at least two photons must be produced in order to conserve
momentum. The most likely event is the creation of two 0.511-MeV photons go-
ing off in opposite directions. If the positron annihilates in flight, then the total
photon energy will be 2mc2 plus its kinetic energy. Three photons are occasionally
produced. The presence of 0.511-MeV annihilation photons around any positron
source is always a potential radiation hazard.

8.6
Photonuclear Reactions

A photon can be absorbed by an atomic nucleus and knock out a nucleon. This
process is called photodisintegration. An example is gamma-ray capture by a
206
82 Pb nucleus with emission of a neutron: 206

82 Pb(γ, n)205
82 Pb. The photon must have

enough energy to overcome the binding energy of the ejected nucleon, which is
generally several MeV. Like the photoelectric effect, photodisintegration can occur
only at photon energies above a threshold value. The kinetic energy of the ejected
nucleon is equal to the photon energy minus the nucleon’s binding energy.

The probability for photonuclear reactions is orders of magnitude smaller than
the combined probabilities for the photoelectric effect, Compton effect, and pair
production. However, unlike these processes, photonuclear reactions can produce
neutrons, which often pose special radiation-protection problems. In addition,
residual nuclei following photonuclear reactions are often radioactive. For these
reasons, photonuclear reactions can be important around high-energy electron ac-
celerators that produce energetic photons.

The thresholds for (γ, p) reactions are often higher than those for (γ, n) reactions
because of the repulsive Coulomb barrier that a proton must overcome to escape
from the nucleus (Fig. 3.1). Although the probability for either reaction is about
the same in the lightest elements, the (γ, n) reaction is many times more probable
than (γ, p) in heavy elements.
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Other photonuclear reactions also take place. Two-nucleon knock-out reactions
such as (γ, 2n) and (γ, np) occur, as well as (γ,α) reactions. Photon absorption can
also induce fission in heavy nuclei.

Example

Compute the threshold energy for the (γ, n) photodisintegration of 206Pb. What is
the energy of a neutron produced by absorption of a 10-MeV photon?

Solution

The mass differences, �, from Appendix D, are –23.79 MeV for 206Pb, –23.77 MeV
for 205Pb, and 8.07 MeV for the neutron. The mass difference after the reaction is
–23.77 + 8.07 = –15.70 MeV. The threshold energy needed to remove the neutron
from 206Pb is therefore –15.70 – (–23.79) = 8.09 MeV. Absorption of a 10-MeV photon
produces a neutron and recoil 205Pb nucleus with a total kinetic energy of 10 – 8.09 =
1.91 MeV. The absorbed photon contributes negligible momentum. In analogy with
Eq. (3.18) for alpha decay, the energy of the neutron is (1.91 × 205)/206 = 1.90 MeV.

8.7
Attenuation Coefficients

As pointed out at the beginning of this chapter, photon penetration in matter is
governed statistically by the probability per unit distance traveled that a photon in-
teracts by one physical process or another. This probability, denoted by µ, is called
the linear attenuation coefficient (or macroscopic cross section) and has the di-
mensions of inverse length (e.g., cm–1). The coefficient µ depends on photon en-
ergy and on the material being traversed. The mass attenuation coefficient µ/ρ
is obtained by dividing µ by the density ρ of the material. It is usually expressed
in cm2 g–1, and represents the probability of an interaction per g cm–2 of material
traversed.

Monoenergetic photons are attenuated exponentially in a uniform target, as we
now show. Figure 8.6 represents a narrow beam of N0 monoenergetic photons
incident normally on a slab. As the beam penetrates the absorber, some photons
can be scattered and some absorbed. We let N(x) represent the number of photons
that reach a depth x without having interacted. The number that interact within the
next small distance dx is proportional to N and to dx. Thus we may write

dN = –µN dx, (8.42)

where the constant of proportionality µ is the linear attenuation coefficient. The
solution is1)

N(x) = N0e–µx. (8.43)

1 Also, in analogy with Eq. (4.22), 1/µ is the
average distance traveled by a photon before
interacting; hence µ is also called the inverse

mean free path. This relationship was
described for charged particles at the end of
Section 5.4.
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Fig. 8.6 Pencil beam of N0 monoenergetic photons incident on
slab. The number of photons that reach a depth x without
having an interaction is given by N(x) = N0e–µx , where µ is the
linear attenuation coefficient.

Fig. 8.7 Illustration of “good” scattering geometry for
measuring linear attenuation coefficient µ. Photons from a
narrow beam that are absorbed or scattered by the absorber do
not reach a small detector placed in beam line some distance
away.

It follows that e–µx is just the probability (i.e., N/N0) that a normally incident photon
will traverse a slab of thickness x without interacting. The factor e–µx thus generally
describes the fraction of “uncollided photons” that go through a shield.

The linear attenuation coefficient can be measured by the experimental arrange-
ment shown in Fig. 8.7. A narrow beam of monoenergetic photons is directed to-
ward an absorbing slab of thickness x. A small detector of size d is placed at a
distance R � d behind the slab directly in the beam line. Under these conditions,
referred to as “narrow-beam” or “good” scattering geometry, only photons that tra-
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verse the slab without interacting will be detected. One can measure the relative
rate at which photons reach the detector as a function of the absorber thickness
and then use Eq. (8.43) to obtain the value of µ (Problem 33).

The linear attenuation coefficient for photons of a given energy in a given mater-
ial comprises the individual contributions from the various physical processes that
can remove photons from the narrow beam in Fig. 8.7. We write

µ = τ + σ + κ , (8.44)

where τ , σ , and κ denote, respectively, the linear attenuation coefficients for the
photoelectric effect, Compton effect [Eq. (8.40)], and pair production. The respec-
tive mass attenuation coefficients are τ/ρ, σ /ρ, and κ/ρ for a material of density ρ.
We could also add the (usually) small contributions to the attenuation due to pho-
tonuclear reactions and the Raleigh scattering, but we are neglecting these.

Figures 8.8 and 8.9 give the mass attenuation coefficients for five chemical el-
ements and a number of materials for photons with energies from 0.010 MeV to
100 MeV. The structure of these curves reflects the physical processes we have been
discussing. At low photon energies the binding of the atomic electrons is important
and the photoelectric effect is the dominant interaction. High-Z materials provide
greater attenuation and absorption, which decrease rapidly with increasing photon
energy. The coefficients for Pb and U rise abruptly when the photon energy is suffi-

Fig. 8.8 Mass attenuation coefficients for various elements.
[Reprinted with permission from K. Z. Morgan and J. E. Turner,
eds., Principles of Radiation Protection, Wiley, New York (1967).
Copyright 1967 by John Wiley & Sons.]
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Fig. 8.9 Mass attenuation coefficients for various materials.
[Reprinted with permission from K. Z. Morgan and J. E. Turner,
eds., Principles of Radiation Protection, Wiley, New York (1967).
Copyright 1967 by John Wiley & Sons.]

cient to eject a photoelectron from the K shell of the atom. The curves for the other
elements show the same structure at lower energies. When the photon energy is
several hundred keV or greater, the binding of the atomic electrons becomes rela-
tively unimportant and the dominant interaction is Compton scattering. Since the
elements (except hydrogen) contain about the same number of electrons per unit
mass, there is not a large difference between the values of the mass attenuation
coefficients for the different materials. Compton scattering continues to be impor-
tant above the 1.022-MeV pair-production threshold until the latter process takes
over as the more probable. Attenuation by pair production is enhanced by a large
nuclear charge of the absorber.

Example

What thickness of concrete and of lead are needed to reduce the number of 500-
keV photons in a narrow beam to one-fourth the incident number? Compare the
thicknesses in cm and in g cm–2. Repeat for 1.5-MeV photons.

Solution

We use Eq. (8.43) with N(x)/N0 = 0.25. The mass attenuation coefficients µ/ρ ob-
tained from Figs. 8.8 and 8.9 are shown in Table 8.2. At 500 keV, the linear attenu-
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ation coefficient for concrete is µ = (0.089 cm2 g–1) (2.35 g cm–3) = 0.209 cm–1; that
for lead is µ = (0.15)(11.4) = 1.71 cm–1. Using Eq. (8.43), we have for concrete

0.25 = e–0.209x, (8.45)

giving x = 6.63 cm. For lead,

0.25 = e–1.71x, (8.46)

giving x = 0.811 cm. The concrete shield is thicker by a factor of 6.63/0.811 = 8.18.
In g cm–2, the concrete thickness is 6.63 cm × 2.35 g cm–3 = 15.6 g cm–2, while that
for lead is 0.811 × 11.4 = 9.25 g cm–2. The concrete shield is more massive in thick-
ness by a factor of 15.6/9.25 = 1.69. Lead is a more efficient attenuator than concrete
for 500-keV photons on the basis of mass. Photoelectric absorption is important at
this energy, and the higher atomic number of lead is effective. The calculation can
be repeated in exactly the same way for 1.5-MeV photons. Instead, we do it a little
differently by using the mass attenuation coefficient directly, writing the exponent in
Eq. (8.43) as µx = (µ/ρ)ρx. For 1.5-MeV photons incident on concrete,

0.25 = e–0.052ρx, (8.47)

giving ρx = 26.7 g cm–2 and x = 11.4 cm. For lead,

0.25 = e–0.051ρx, (8.48)

and so ρx = 21.2 g cm–2 and x = 2.39 cm. At this energy the Compton effect is the
principal interaction that attenuates the beam, and therefore all materials (except hy-
drogen) give comparable attenuation per g cm–2. Lead is almost universally used
when low-energy photon shielding is required. It can be used to line the walls of
X-ray rooms, be incorporated into aprons worn by personnel around X-ray equip-
ment, and be fabricated into containers for gamma sources. Lead bricks also afford a
convenient and effective way to erect shielding. The design of shielding is described
in Chapter 15.

As discussed in connection with Eq. (8.37), the attenuation coefficient for Comp-
ton scattering in an elemental medium can be expressed as the product of the
number of atoms per unit volume and the Compton cross section per atom. The
same kind of relationship holds between the density of atoms and atomic cross
sections for the photoelectric effect and pair production. (Unlike the Compton ef-
fect, however, the atomic cross sections for the latter two interactions are physically

Table 8.2 Mass Attenuation Coefficients

µ/ρ (cm2 g–1)

Concrete Pb
hν ρ = 2.35 g cm–3 ρ = 11.4 g cm–3

500 keV 0.089 0.15
1.5 MeV 0.052 0.051
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not the sums of separate electronic cross sections, like eσ .) The linear attenuation
coefficient µ, given by Eq. (8.44), is also equal to the product of the atomic density
NA and the total atomic cross section σA for all processes:

µ = NAσA. (8.49)

The number of atoms cm–3 of an element is given by NA = (ρ/A)N0, where ρ is the
density of the material in g cm–3, A is the gram atomic weight, and N0 is Avogadro’s
number. Thus, we can write µ = ρN0σA/A, or

µ

ρ
= N0σA

A
, (8.50)

giving the relationship between the mass attenuation coefficient and the atomic
cross section for photon interaction with any element. For a compound or mixture,
one can add the separate contributions from each element to obtain µ.

Cross sections are often expressed in the unit, barn, where 1 barn = 10–24 cm2.

Example

What is the atomic cross section of lead for 500-keV photons?

Solution

From Fig. 8.8, the mass attenuation coefficient is µ/ρ = 0.16 cm2 g–1. The gram
atomic weight of lead is 207 g. We find from Eq. (8.50) that

σA =
(

µ

ρ

)(
A

N0

)
= (0.16 cm2 g–1)

(
207 g

6.02 × 1023

)
= 5.50 × 10–23 cm2. (8.51)

Alternatively, σA = 55.0 barn.

8.8
Energy-Transfer and Energy-Absorption Coefficients

In dosimetry we are interested in the energy absorbed in matter exposed to pho-
tons. This energy is related to the linear attenuation coefficients given in Eq. (8.44).
However, some care is needed in making the connections.

Figure 8.10 shows a uniform, broad, parallel beam of monoenergetic photons
normally incident on an absorber of thickness x. The incident fluence �0 is the
number of photons per unit area that cross a plane perpendicular to the beam.2)

The number that cross per unit area per unit time at any instant is called the fluence

rate, or flux density: �̇0 = d�0/dt (= ϕ0). Examples of units for �0 and �̇0 are,
respectively, m–2 and m–2 s–1. The energy that passes per unit area is called the
energy fluence 0, having the units J m–2. The corresponding instantaneous rate
of energy flow per unit area per unit time is the energy fluence rate, or energy

2 Our notation is consistent with that of ICRU
Report 60, listed in Section 8.10.
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Fig. 8.10 Broad, uniform, parallel beam of monoenergetic
photons normally incident on an absorber of thicknesses x.
Incident energy fluence rate is ̇0, and transmitted energy
fluence rate is ̇ .

flux density: ̇0 = d0/dt (= ψ0). This quantity is also called the intensity. For the
special beam in Fig. 8.10,

0 = �0hν and ̇0 = �̇0hν. (8.52)

Energy fluence rate (intensity) can be expressed in J m–2 s–1 = W m–2.
To infer the rate of energy absorption in the slab from the uniform beam in

Fig. 8.10, one can compare the intensity ̇ of the radiation reaching a detector
placed right behind the slab to the incident intensity ̇0. Figures 8.7 and 8.10 to-
gether indicate that, under the broad-beam conditions, the detector receives uncol-
lided as well as scattered and other (e.g., bremsstrahlung and fluorescence) pho-
tons. Thus, not all of the energy of the incoming photons that interact in the slab is
necessarily absorbed there. The decrease in beam intensity with increasing x can
be expected to be less than that described by the linear attenuation coefficient, e–µx.
We consider each of the principal energy-loss mechanisms in turn, discussing first
the energy-transfer coefficient and then the energy-absorption coefficient.

In the photoelectric effect, absorption of a photon of energy hν by an atom pro-
duces a secondary electron with initial kinetic energy T = hν – B, where B is the
binding energy of the ejected electron. Following ejection of the photoelectron, the
inner-shell vacancy in the atom is immediately filled by an electron from an upper
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level. This and subsequent electronic transitions are accompanied by the simulta-
neous emission of photons or Auger electrons (Sections 2.10 and 2.11). The frac-
tion of the incident intensity transferred to electrons (i.e., the photoelectron and the
Auger electrons) can be expressed as 1–δ/hν, where δ is the average energy emitted
as fluorescence radiation following photoelectric absorption in the material. Just as
the mass attenuation coefficient τ/ρ, defined after Eq. (8.44), describes the fraction
of photons that interact by photoelectric absorption per g cm–2 of matter traversed,
the mass energy-transfer coefficient,

τtr

ρ
= τ

ρ

(
1 –

δ

hν

)
, (8.53)

gives the fraction of the intensity that is transferred to electrons per g cm–2. To
the extent that the photoelectron and Auger electrons subsequently emit photons
(as bremsstrahlung), the energy-transfer coefficient does not adequately describe
energy absorption in the slab. We return to this point after defining the mass energy-
transfer coefficients for Compton scattering and pair production.

For Compton scattering of monoenergetic photons (Fig. 8.4), the mass energy-
transfer coefficient follows directly from Eq. (8.38):

σtr

ρ
= σ

ρ

Tavg

hν
. (8.54)

The factor Tavg/hν gives the average fraction of the incident photon energy that
is converted into the initial kinetic energy of the Compton electrons. As with the
photoelectric effect, the energy-transfer coefficient (8.54) takes no account of sub-
sequent bremsstrahlung by the Compton electrons.

A photon of energy hν produces an electron–positron pair with a total initial
kinetic energy hν – 2mc2, where 2mc2 is the rest energy of the pair [Eq. (8.41)].
Therefore, the mass energy-transfer coefficient for pair production is related to the
mass attenuation coefficient, defined after Eq. (8.44), as follows:

κtr

ρ
= κ

ρ

(
1 –

2mc2

hν

)
. (8.55)

This relationship applies to pair production in the field of an atomic nucleus; we
neglect the small contribution from triplet production (Section 8.5).

The total mass energy-transfer coefficient µtr/ρ for photons of energy hν in a
given material is found by combining the last three equations:

µtr

ρ
= τtr

ρ
+

σtr

ρ
+

κtr

ρ
(8.56)

= τ

ρ

(
1 –

δ

hν

)
+

σ

ρ

(
Tavg

hν

)
+

κ

ρ

(
1 –

2mc2

hν

)
. (8.57)

This coefficient determines the total initial kinetic energy of all electrons produced
by the photons, both directly (as in photoelectric absorption, Compton scattering,
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Fig. 8.11 Mass energy-absorption coefficients for various
elements. [Reprinted with permission from K. Z. Morgan and
J. E. Turner, eds., Principles of Radiation Protection, Wiley, New
York (1967). Copyright 1967 by John Wiley & Sons.]

and pair production) and indirectly (as Auger electrons). Except for the subsequent
bremsstrahlung that the electrons might emit, the energy absorbed in the imme-
diate vicinity of the interaction site would be the same as the energy transferred
there.3)

Letting g represent the average fraction of the initial kinetic energy transferred
to electrons that is subsequently emitted as bremsstrahlung, one defines the mass
energy-absorption coefficient as

µen

ρ
= µtr

ρ
(1 – g). (8.58)

Generally, the factor g is largest for materials having high atomic number and for
photons of high energy. Figures 8.11 and 8.12 show the mass energy-absorption
coefficients for the elements and other materials we considered earlier.

Differences in the various coefficients are illustrated by the data shown for water
and lead in Table 8.3. It is seen that bremsstrahlung is relatively unimportant in
water for photon energies less than ∼10 MeV (i.e., µtr/ρ is not much larger than
µen/ρ). In lead, on the other hand, bremsstrahlung accounts for a significant differ-

3 A positron that annihilates in flight will also
cause the absorbed energy to be less than the

energy transferred. We ignore this usually
small effect.
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Fig. 8.12 Mass energy-absorption coefficients for various
materials. [Reprinted with permission from K. Z. Morgan and
J. E. Turner, eds., Principles of Radiation Protection, Wiley, New
York (1967). Copyright 1967 by John Wiley & Sons.]

Table 8.3 Mass Attenuation, Mass Energy-Transfer, and Mass
Energy-Absorption Coefficients (cm2 g–1) for Photons in Water
and Lead

Photon Energy Water Lead

(MeV) µ/ρ µtr/ρ µen/ρ µ/ρ µtr/ρ µen/ρ

0.01 5.33 4.95 4.95 131. 126. 126.
0.10 0.171 0.0255 0.0255 5.55 2.16 2.16
1.0 0.0708 0.0311 0.0310 0.0710 0.0389 0.0379

10.0 0.0222 0.0163 0.0157 0.0497 0.0418 0.0325
100.0 0.0173 0.0167 0.0122 0.0931 0.0918 0.0323

Source: Based on P. D. Higgins, F. H. Attix, J. H. Hubbell,
S. M. Seltzer, M. J. Berger, and C. H. Sibata, Mass

Energy-Transfer and Mass Energy-Absorption Coefficients,

Including In-Flight Positron Annihilation for Photon Energies

1 keV to 100 MeV, NISTIR 4680, National Institute of
Standards and Technology, Gaithersburg, MD (1991).

ence in the mass energy-transfer and mass energy-absorption coefficients at much
lower energies.
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Fig. 8.13 Linear attenuation and energy-absorption coefficients
as functions of energy for photons in water.

It is instructive to see how the individual physical processes contribute to the in-
teraction coefficients as functions of the photon energy. Figure 8.13 for water shows
τ , σs, σtr, and κ as well as the coefficients µ and µen. Also shown for comparison
is the attenuation coefficient σr for Raleigh scattering, which we have ignored. At
the lowest energies (<15 keV), the photoelectric effect accounts for virtually all of
the interaction. As the photon energy increases, τ drops rapidly and goes below σs.
Between about 100 keV and 10 MeV, most of the attenuation in water is due to the
Compton effect. Above about 1.5 MeV, σtr > σs. The Compton coefficients then fall
off with increasing energy, and pair production becomes the dominant process at
high energies.

8.9
Calculation of Energy Absorption and Energy Transfer

It remains to show how the coefficients µtr and µen are used in computations.
We consider again the idealized broad, parallel beam of monoenergetic photons in
Fig. 8.10 and ask how one can determine the rate at which energy is absorbed in
the slab, given the description of the incident photon field.

We begin by assuming that the slab is thin compared with the mean free paths
of the incident and secondary photons, so that (1) multiple scattering of photons in
the slab is negligible and (2) virtually all fluorescence and bremsstrahlung photons
escape from it. On the other hand, we assume that the secondary electrons pro-
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Fig. 8.14 Rate of energy absorption per unit mass in thin slab
(dose rate, Ḋ) is equal to the product of the incident intensity
and mass energy-absorption coefficient.

duced by the photons are stopped in the slab. Under these conditions, the trans-
mitted intensity in Fig. 8.10 is given by

̇ = ̇0e–µenx. (8.59)

For µenx � 1, which is consistent with our assumptions, one can write e–µenx ≈
1 – µenx. Equation (8.59) then implies that

̇0 – ̇ = ̇0µenx. (8.60)

With reference to Fig. 8.14, the rate at which energy is absorbed in the slab over an
area A is (̇0 – ̇)A = ̇0µenxA. Since the mass of the slab over this area is ρAx,
where ρ is the density, the rate of energy absorption per unit mass, Ḋ, in the slab
is

Ḋ = ̇0µenxA

ρAx
= ̇0

µen

ρ
. (8.61)

The quantity Ḋ is, by definition, the average dose rate in the slab. As discussed in
Chapter 12, under the condition of electronic equilibrium Eq. (8.61) also implies
that the dose rate at a point in a medium is equal to the product of the intensity, or
energy fluence rate, at that point and the mass energy-absorption coefficient.

The mass energy-transfer coefficient can be employed in a similar derivation.
The quantity thus obtained,

K̇ = ̇0
µtr

ρ
, (8.62)

is called the average kerma rate in the slab. Equation (8.62) also gives the kerma rate
at a point in a medium in terms of the energy fluence rate at that point, irrespective
of electronic equilibrium. As described in Section 12.10, kerma is defined generally
as the total initial kinetic energy of all charged particles liberated by uncharged
radiation (photons and/or neutrons) per unit mass of material.
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The ideal geometry and other conditions represented by Fig. 8.10 and Eq. (8.59)
are approached in practice only to various degrees of approximation. The nonuni-
formity and finite width of real beams, for example, are two factors that usually
deviate significantly from the ideal. The computation of attenuation and energy
absorption in thick slabs is treated with the help of buildup factors (Charter 15).
Nevertheless, µen is frequently useful for estimating absorbed energy in a number
of situations, as the following examples illustrate.

Example

A parallel beam of 1-MeV photons is normally incident on a 1.2-cm aluminum
slab (ρ = 2.70 g cm–3) at a rate of 103 s–1. The mass attenuation and mass energy-
absorption coefficients are, respectively, 0.0620 cm2 g–1 and 0.0270 cm2 g–1. (a) What
fraction of the photons is transmitted without interacting? (b) What fraction of the
incident photon energy is transmitted by the slab? (c) How much energy is absorbed
per second by the slab? (d) What fraction of the transmitted energy is carried by the
uncollided photons? (e) If the mass energy-transfer coefficient is 0.0271 cm2 g–1, what
fraction of the initial kinetic energy transferred to the electrons in the slab is emitted
as bremsstrahlung?

Solution

(a) The values given for the mass attenuation and mass energy-absorption coefficients
can be checked against Figs. 8.8 and 8.11. The attenuation coefficient is µ = 0.0620 ×
2.70 = 0.167 cm–1. The fraction of photons that penetrate the 1.2-cm slab without
interacting is therefore e–(0.167×1.2) = 0.818.
(b) The energy transmitted by the slab can be inferred from Eq. (8.59), irrespective
of the beam width and uniformity, provided the slab can be regarded as “thin.” This
criterion is satisfied to a good approximation, since 0.818 of the incident photons do
not interact (µx = 0.200). The energy absorption coefficient is µen = 0.0270 × 2.70 =
0.0729 cm–1. It follows from Eq. (8.59) that the fraction of the incident photon energy
that is transmitted by the slab is

Ė

Ė0
= e–µenx = e–0.0729×1.2 = 0.916, (8.63)

where Ė and Ė0 are the transmitted and incident rates of energy flow. Whereas the
result (8.63) is approximate, the answer to part (a) is exact.
(c) The rate of energy absorption by the slab is the difference between the incident and
transmitted rates. The result (8.63) implies that the fraction of the incident photon
energy that is absorbed by the slab is 0.084. With the incident rate Ė0 = (1.0 MeV) ×
(103 s–1) = 1.0 × 103 MeV s–1, we find that the rate of energy absorption in the slab is
0.084Ė0 = 84.0 MeV s–1.
(d) From part (a) it follows that the rate of energy transmission through the slab by
the uncollided photons is (exactly)

Ė0e–µx = 1.0 × 103 × 0.818 = 818 MeV s–1. (8.64)
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Since 84.0 MeV s–1 is absorbed by the slab, 1000 – 84 = 916 MeV s–1 is transmitted.
The fraction of the total transmitted energy carried by the uncollided photons is there-
fore 818/916 = 0.893.
(e) With µen/ρ = 0.0270 cm2 g–1 and µtr/ρ = 0.0271 cm2 g–1, we have µen/µtr =
0.0270/0.0271 = 0.9963. Equation (8.58) implies that the fraction of the secondary-
electron initial kinetic energy that is emitted as bremsstrahlung is

g = 1 –
µen

µtr
= 1 – 0.9963 = 0.0037. (8.65)

Example

A 137Cs source is stored in a laboratory. The photon fluence rate in air at a point in
the neighborhood of the source is 5.14 × 107 m–2 s–1. Calculate the rate of energy
absorption per unit mass (dose rate) in the air at that point.

Solution

The desired quantity is given by Eq. (8.61). The mass energy-absorption coefficient of
air for the photons emitted by 137Cs (hν = 0.662 MeV, Appendix D) is, from Fig. 8.12,
µen/ρ = 0.030 cm2 g–1. The incident fluence rate is �̇ = 5.14 × 107 m–2 s–1, and so
the energy fluence rate is

̇ = �̇hν = 3.40 × 107 MeV m–2 s–1 = 3.40 × 103 MeV cm–2 s–1. (8.66)

Thus, Eq. (8.61) gives

Ḋ = ̇
µen

ρ
= 102 MeV g–1 s–1. (8.67)

Expressed in SI units,

Ḋ = 102 MeV
g s

× 1.60 × 10–13 J

MeV
× 103 g

kg
(8.68)

= 1.63 × 10–8 J kg–1 s–1 = 0.0587 mGy h–1. (8.69)

The unit, J kg–1, is called the gray (Gy). Note that the dose rate is independent of the
temperature and pressure of the air. An exact balance occurs between the amount of
energy absorbed and the amount of mass present, regardless of the other conditions.
For a given material, the mass interaction coefficients (Figs. 8.8, 8.9, 8.11, and 8.12)
are independent of the density. On the other hand, the value of the linear coefficients
does depend on density. For example, Fig. 8.13 applies to water in the liquid phase
(unit density), whereas the values given in Figs. 8.9 and 8.11 are the same for both
liquid water and water vapor.
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8.10
Suggested Reading

1 Attix, F. H., Introduction to Radiolog-

ical Physics and Radiation Dosimetry,

Wiley, New York (1986). [Chapter 8 of
this excellent text is devoted to X- and
gamma-ray interactions with matter.
In addition, the book deals thoroughly
with virtually all aspects of photon
interaction coefficients, covering the
fine points. Appendix D gives tables
of numerical data for interaction co-
efficients. One of the best available
resources on the subject of this chap-
ter.]

2 Hubbell, J. H., and Seltzer, S. M.,
Tables of X-Ray Mass Attenuation Co-

efficients and Mass Energy-Absorption

Coefficients, National Institute of
Standards and Technology, on line,
http://physics.nist.gov/PhysRefData/
XrayMassCoef. [Tables and graphs of
µ/ρ and µen/ρ for elements Z = 1 to
92 and 48 compounds and mixtures of
radiological interest.]

3 ICRU Report 60, Fundamental Quan-

tities and Units for Ionizing Radiation,
International Commission on Ra-
diation Units and Measurements,
Bethesda, MD (1998). [Gives defin-

itions of radiometric quantities, in-
teraction coefficients, and dosimetric
quantities.]

4 Johns, H. E., and Cunningham, J. R.,
The Physics of Radiology, 4th ed.,
Charles C. Thomas, Springfield, IL
(1983). [Chapters 5 and 6 discuss in-
teraction coefficients and the basic
physics of photon interactions.]

5 Seltzer, S. M., “Calculation of Photon
Mass Energy-Transfer Coefficients
and Mass Energy-Absorption Coeffi-
cients,” Rad. Res. 136, 147–170 (1993).
[A critical analysis of all aspects of
the subject, with coefficients derived
from the cross-section database of the
National Institute of Standards and
Technology.]

6 Turner, J. E., “Interaction of Ioniz-
ing Radiation with Matter,” Health
Phys. 86, 228–252 (2004). [Review pa-
per describes the physics of photon
interactions and various interaction
coefficients, with examples in health
physics. Reference is made to the pho-
ton as the field quantum of the elec-
tromagnetic interaction in quantum
electrodynamics.]

8.11
Problems

1. The work function for lithium is 2.3 eV.
(a) Calculate the maximum kinetic energy of photoelectrons

produced by photons with energy of 12 eV.
(b) What is the cutoff frequency?
(c) What is the threshold wavelength?

2. The threshold wavelength for tungsten is 2700 Å. What is the
maximum kinetic energy of photoelectrons produced by
photons of wavelength 2200 Å?

3. What stopping potential is needed to turn back a photoelectron
having a kinetic energy of 3.84 × 10–19 J?

4. The threshold wavelength for producing photoelectrons from
sodium is 5650 Å.
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(a) What is the work function?
(b) What is the maximum kinetic energy of photoelectrons

produced by light with a wavelength of 4000 Å?
5. Light of wavelength 1900 Å is incident on a nickel surface

(work function 4.9 eV).
(a) Calculate the stopping potential.
(b) What is the cutoff frequency for nickel?
(c) What is the threshold wavelength?

6. A potential difference of 3.90 V is needed to stop
photoelectrons of maximum kinetic energy when ultraviolet
light of wavelength 2200 Å is incident on a metal surface. What
is the threshold frequency for the metal for the photoelectric
effect?

7. In a photoelectric experiment, the stopping potential is found
to be 3.11 volts when light, having a wavelength of 1700 Å, is
shone on a certain metal.
(a) What is the work function of the metal?
(b) What frequency of light would be needed to double the

stopping potential?
8. (a) Make a sketch of the stopping potential versus light

frequency for the photoelectric effect in silicon, which has
a work function of 4.4 eV.

(b) Write an equation for the stopping potential as a function
of frequency.

(c) What stopping potential is needed for light of frequency
1.32 × 1015 s–1?

9. (a) If the curve in the last problem is extended to values of ν

below threshold, show that it intersects the vertical axis at a
voltage –ϕ0/e, where ϕ0 is the work function and e is the
electronic charge.

(b) Are the curves for two metals, having different threshold
values, ν0, parallel?

10. In an experiment with potassium, a potential difference of
0.80 V is needed to stop the photoelectron current when light
of wavelength 4140 Å is used. When the wavelength is changed
to 3000 Å, the stopping potential is 1.94 V. Use these data to
determine the value of Planck’s constant.

11. From the information given in Problem 10, determine
(a) the threshold wavelength,
(b) the cutoff frequency,
(c) the work function of potassium.

12. Derive Eq. (8.12) from Eqs. (8.9)–(8.11).
13. Show that Eq. (8.19) follows from (8.18) and (8.12).
14. A 1-MeV photon is Compton scattered at an angle of 55◦.

Calculate
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(a) the energy of the scattered photon,
(b) the change in wavelength,
(c) the angle of recoil of the electron,
(d) the recoil energy of the electron.

15. If a 1-MeV gamma ray loses 200 keV in a Compton collision, at
what angle is it scattered with respect to its original direction?

16. A 662-keV photon is Compton scattered at an angle of 120◦

with respect to its incident direction.
(a) What is the energy of the scattered electron?
(b) What is the angle between the paths of the scattered

electron and photon?
17. A 900-keV photon is Compton scattered at an angle of 115◦

with respect to its original direction.
(a) How much energy does the recoil electron receive?
(b) At what angle is the electron scattered?

18. (a) What is the maximum recoil energy that an electron can
acquire from an 8-MeV photon?

(b) At what angle of scatter will an 8-MeV photon lose 95% of
its energy in a Compton scattering?

(c) Sketch a curve showing the fraction of energy lost by an
8-MeV photon as a function of the angle of Compton
scattering.

19. At what energy can a photon lose at most one-half of its energy
in Compton scattering?

20. In a Compton scattering experiment a photon is observed to be
scattered at an angle of 122◦ while the electron recoils at an
angle of 17◦ with respect to the incident photon direction.
(a) What is the incident photon energy?
(b) What is the frequency of the scattered photon?
(c) How much energy does the electron receive?
(d) What is the recoil momentum of the electron?

21. Monochromatic X rays of wavelength 0.5 Å and 0.1 Å are
Compton scattered from a graphite target and the scattered
photons are viewed at an angle of 60◦ with respect to the
incident photon direction.
(a) Calculate the Compton shift in each case.
(b) Calculate the photon energy loss in each case.

22. Show that the fractional energy loss of a photon in Compton
scattering is given by

T

hν
= �λ

λ + �λ
.

23. How much energy will 104 scattered photons deposit, on
average, in the graphite target in Fig. 8.2? (Use Table 8.1.)



204 8 Interaction of Photons with Matter

24. Use Eq. (8.12) to write the formula for the Klein–Nishina cross
section (8.28) in terms of the photon scattering angle θ :

deσ

d�
= k2

0e4

2m2c4

[
1

1 +
hν

mc2 (1 – cos θ )

]2

(1 + cos2 θ )

×


1 +

( hν
mc2 )2(1 – cos θ )2

(1 + cos2 θ )
[
1 +

hν

mc2 (1 – cos θ )
]

 m2 sr–1.

25. The Klein–Nishina cross section for the collision of a 1-MeV
photon with an electron is 2.11 × 10–25 cm2. Calculate, for
Compton scattering on aluminum,
(a) the energy-transfer cross section (per electron cm–2)
(b) the energy-scattering cross section (per electron cm–2)
(c) the atomic cross section
(d) the linear attenuation coefficient.

26. Which of the quantities (a)–(d) in the last problem are the same
for Compton scattering from other chemical elements?

27. Repeat Problem 25 for tin.
28. Show that the threshold photon wavelength for producing an

electron–positron pair is 0.012 Å.
29. A 4-MeV photon creates an electron–positron pair in the field

of a nucleus. What is the total kinetic energy of the pair?
30. Calculate the threshold energy for the reaction 12

6 C(γ, n)11
6 C.

The mass differences are given in Appendix D.
31. Calculate the energy of the proton ejected in the 16

8 O(γ, p)15
7 N

reaction with a 20-MeV photon.
32. (a) What is the threshold energy for the 206

82 Pb(γ, p)205
81 Tl

reaction, which competes with 206Pb(γ, n)205Pb?
(b) Why is the (γ, p) threshold lower than that of (γ, n)?
(c) Which process is more probable?

33. An experiment is carried out with monoenergetic photons in
the “good” geometry shown in Fig. 8.7. The relative count rate
of the detector is measured with different thicknesses x of tin
used as absorber. The following data are measured:

x (cm) 0 0.50 1.0 1.5 2.0 3.0 5.0

Relative count rate 1.00 0.861 0.735 0.621 0.538 0.399 0.210

(a) What is the value of the linear attenuation coefficient?
(b) What is the value of the mass attenuation coefficient?
(c) What is the photon energy?

34. Show that Eq. (8.42) implies that µ is the probability per unit
distance that a photon interacts.
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35. A narrow beam of 400-keV photons is incident normally on a
2 mm iron liner.
(a) What fraction of the photons have an interaction in the

liner?
(b) What thickness of Fe is needed to reduce the fraction of

photons that are transmitted without interaction to 10%?
(c) If Al were used instead of Fe, what thickness would be

needed in (b)?
(d) How do the answers in (b) and (c) compare when

expressed in g cm–2?
(e) If lead were used in (b), how would its thickness in g cm–2

compare with those for Al and Fe?
36. The linear attenuation coefficient of copper for 800-keV

photons is 0.58 cm–1. Calculate the atomic cross section.
37. The mass attenuation coefficient for 1-MeV photons in carbon

is 0.0633 cm g–1.
(a) Calculate the atomic cross section.
(b) Estimate the total Compton cross section per electron.

38. The mass attenuation coefficients of Cu and Sn for 200-keV
photons are, respectively, 0.15 cm2 g–1 and 0.31 cm2 g–1. What
are the macroscopic cross sections?

39. Calculate the microscopic cross sections in Problem 38 for Cu
and Sn.

40. A bronze absorber (density = 8.79 g cm–3), made of 9 parts of
Cu and 1 part Sn by weight, is exposed to 200-keV X rays (see
Problem 38). Calculate the linear and mass attenuation
coefficients of bronze for photons of this energy.

41. The atomic cross sections for 1-MeV photon interactions with
carbon and hydrogen are, respectively, 1.27 barns and
0.209 barn.
(a) Calculate the linear attenuation coefficient for paraffin.

(Assume the composition CH2 and density 0.89 g cm–3.)
(b) Calculate the mass attenuation coefficient.

42. What is the atomic cross section of Fe for 400-keV photons?
What is the atomic energy-absorption cross section?

43. A pencil beam of 200-keV photons is normally incident on a
1.4-cm-thick sheet of aluminum pressed against a 2-mm-thick
sheet of lead behind it.
(a) What fraction of the incident photons penetrate both

sheets without interacting?
(b) What would be the difference if the photons came from the

other direction, entering to lead first and then the
aluminum?
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44. A parallel beam of 1-MeV photons is normally incident on a
sheet of uranium, 1.0 mm thick. The incident beam intensity is
104 MeV cm–2 s–1.
(a) Calculate the energy fluence rate transmitted by the sheet.
(b) What fraction of the transmitted energy fluence rate is due

to uncollided photons?
(c) What physical processes are responsible for energy transfer

to the sheet?
(d) What processes are responsible for energy absorption in

the sheet?
45. A narrow beam of 500-keV photons is directed normally at a

slab of tin, 1.08 cm thick.
(a) What fraction of the photons interact in the slab?
(b) If 200 photons per minute are incident on the slab, what is

the rate of energy transmission through it?
(c) What fraction of the transmitted energy is carried by the

uncollided photons?
46. A narrow beam of 104 photons s–1 is normally incident on a

6-mm aluminum sheet. The beam consists of equal numbers
of 200-keV photons and 2-MeV photons.
(a) Calculate the number of photons s–1 of each energy that are

transmitted without interaction through the sheet.
(b) How much energy is removed from the narrow beam per

second by the sheet?
(c) How much energy is absorbed in the sheet per second?

47. (a) Show that a 1.43-mm lead sheet has the same thickness in
g cm–2 as the aluminum sheet in the last problem.

(b) Calculate the number of photons s–1 of each energy that are
transmitted without interaction when the Al sheet in
Problem 46 is replaced by 1.43 mm of Pb.

(c) Give a physical reason for any differences or similarities in
the answers to Problems 46(a) and 47(b).

48. From Fig. 8.13 determine the energy at which the photoelectric
effect and Compton scattering contribute equally to the
attenuation coefficient of water.

49. The mass attenuation coefficient of Pb for 70-keV photons is
3.0 cm2 g–1 and the mass energy–absorption coefficient is
2.9 cm2 g–1 (Figs. 8.8 and 8.11).
(a) Why are these two values almost equal?
(b) How many cm of Pb are needed to reduce the transmitted

intensity of a 70-keV X-ray beam to 1% of its original value?
(c) What percentage of the photons penetrate this thickness

without interacting?
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50. A broad, uniform, parallel beam of 0.5-MeV gamma rays is
normally incident on an aluminum absorber of thickness
8 g cm–2. The beam intensity is 8.24 J m–2 s–1.
(a) Calculate the fraction of photons transmitted without

interaction.
(b) What is the total transmitted beam intensity?
(c) What is the rate of energy absorption per unit mass in the

aluminum?
51. What fraction of the energy in a 10-keV X-ray beam is

deposited in 5 mm of soft tissue?
52. A broad beam of 2-MeV photons is normally incident on a

20-cm concrete shield.
(a) What fraction is transmitted without interaction?
(b) Estimate the fraction of the beam intensity that is

transmitted by the shield.
53. A dentist places the window of a 100-kVp (100-kV, peak voltage)

X-ray machine near the face of a patient to obtain an X-ray of
the teeth. Without filtration, considerable low-energy (assume
20 keV) X rays are incident on the skin.
(a) If the intervening tissue has a thickness of 5 mm, calculate

the fraction of the 20-keV intensity absorbed in it.
(b) What thickness of aluminum filter would reduce the

20-keV radiation exposure by a factor of 10?
(c) Calculate the reduction in the intensity of 100-keV X rays

transmitted by the filter.
(d) After adding the filter, the exposure time need not be

increased to obtain the same quality of X-ray picture. Why
not?

54. A parallel beam of 500-keV photons is normally incident on a
sheet of lead 8 mm thick. The rate of energy transmission is
4 × 104 MeV s–1.
(a) What fraction of the incident photon energy is absorbed in

the sheet?
(b) How many photons per second are incident on the sheet?
(c) What fraction of the transmitted energy is due to

uncollided photons?

8.12
Answers

1. (a) 9.7 eV
(b) 5.55 × 1014 s–1

(c) 5400 Å
3. 2.40 V

5. (a) 1.63 V
(b) 1.18 × 1015 s–1

(c) 2540 Å
6. 4.20 × 1014 s–1
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11. (a) 5636 Å
(b) 5.32 × 1014 s–1

(c) 2.20 eV
14. (a) 0.545 MeV

(b) 0.0103 Å
(c) 33.0◦

(d) 0.455 MeV
15. 29.3◦

17. (a) 0.643 MeV
(b) 13.0◦

18. (a) 7.75 MeV
(b) 102◦

20. (a) 0.415 MeV
(b) 4.47 × 1019 s–1

(c) 0.230 MeV
(d) 2.86 × 10–22

kg m s–1

23. 5.7 MeV
25. (a) 9.28 × 10–26 cm2

(b) 1.18 × 10–25 cm2

(c) 2.74 × 10–24 cm2

(d) 0.165 cm–1

30. 18.72 MeV
33. (a) 0.309 cm–1

(b) 0.0423 cm2 g–1

(c) ∼2 MeV

35. (a) 0.135
(b) 3.18 cm
(c) 9.28 cm
(d) both ∼25 g cm–2

(e) 11.0 g cm–2

36. 6.83 × 10–24 cm2

39. 0.158 and 0.611 barn
40. 1.4 cm–1;

0.16 cm2 g–1

43. (a) 0.078
(b) None

44. (a) 9.15 × 103

MeV cm–2 s–1

(b) 0.946
46. (a) 4120 s–1; 4670 s–1

(b) 836 MeV s–1

(c) 394 MeV s–1

49. (b) 0.14 cm
(c) 0.86%

51. 0.93
53. (a) 0.27

(b) 0.30 cm
(c) 2.9%

54. (a) 0.598
(b) 1.99 × 105 s–1

(c) 0.580
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9
Neutrons, Fission, and Criticality

9.1
Introduction

The neutron was discovered by Chadwick in 1932. Nuclear fission, induced by cap-
ture of a slow neutron in 235U, was discovered by Hahn and Strassman in 1939.
In principle, the fact that several neutrons are emitted when fission takes place
suggested that a self-sustaining chain reaction might be possible. Under Fermi’s
direction, the world’s first man-made nuclear reactor went critical on December 2,
1942.1) The neutron thus occupies a central position in the modern world of atoms
and radiation.

In this chapter we describe the principal sources of neutrons, their interactions
with matter, neutron activation, nuclear fission, and criticality. The most important
neutron interactions from the standpoint of radiation protection will be stressed.

9.2
Neutron Sources

Nuclear reactors are the most copious sources of neutrons. The energy spectrum of
neutrons from the fission of 235U extends from a few keV to more than 10 MeV. The
average energy is about 2 MeV. Research reactors often have ports through which
neutron beams emerge into experimental areas outside the main reactor shielding.
These neutrons are usually degraded in energy, having passed through parts of
the reactor core and coolant as well as structural materials. Figure 9.1 shows an
example of a research reactor.

The High Flux Isotope Reactor (HFIR) is one of the most powerful research reac-
tors in the world (Fig. 9.2). The 85-MW unit employs highly enriched uranium fuel,

1 In 1972 the French Atomic Energy
Commission found unexpectedly low assays
of 235U/238U isotopic ratios in uranium ores
from the Oklo deposit in Gabon, Africa. Close
examination revealed that several sites in the
Oklo mine were natural nuclear reactors in

the distant past. As far as is known, the Oklo
phenomenon, as it is called, is unique. For
more information the reader is referred to the
article by M. Maurette, “Fossil Nuclear
Reactors,” Ann. Rev. Nucl. Sci. 26, 319 (1976).
Also see Physics Today 57(12), 9 (2004).

Atoms, Radiation, and Radiation Protection. James E. Turner
Copyright © 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-40606-7
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Fig. 9.1 Oak Ridge Bulk Shielding Reactor, an early
swimming-pool type in which water served as coolant,
moderator, and shield. Glow around reactor core is blue light
emitted as Cerenkov radiation (Section 10.4) by electrons that
travel faster than light in the water. (Photo courtesy Oak Ridge
National Laboratory, operated by Martin Marietta Energy
Systems, Inc., for the Department of Energy.)

and has a peak thermal-neutron fluence rate of 2.6 × 1015 cm–2 s–1. Its neutrons are
used to explore the structure and behavior of irradiated materials such as met-
als, polymers, high-temperature superconductors, and biological samples. Unique
studies of materials after welding and other stresses as well as neutron-activation
analyses are conducted. The HFIR produces some 35 primary radioisotopes for
medical and industrial purposes. It is the Western World’s sole producer of 252Cf.

Particle accelerators are used to generate neutron beams by means of a number
of nuclear reactions. For example, accelerated deuterons that strike a tritium target
produce neutrons via the 3H(d,n)4He reaction, that is,

2
1H + 3

1H → 4
2He + 1

0n. (9.1)

To obtain monoenergetic neutrons with an accelerator, excited states of the product
nucleus are undesirable. Therefore, light materials are commonly used as targets
for a proton or deuteron beam. Table 9.1 lists some important reactions that are
used to obtain monoenergetic neutrons. The first two are exothermic and can be
used with ions of a few hundred keV energy in relatively inexpensive accelerators.
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(a)

(b)
Fig. 9.2 (a) Control room of the High Flux Isotope Reactor.
(b) View of workmen over vessel head of the reactor. (Courtesy
William H. Cabage, Oak Ridge National Laboratory, managed
by UT-Battelle, LLC, for the U. S. Department of Energy.)
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Table 9.1 Reactions Used to Produce Monoenergetic Neutrons
with Accelerated Protons (p) and Deuterons (d)

Reaction Q Value (MeV)

3H(d,n)4He 17.6
2H(d,n)3He 3.27
12C(d,n)13N –0.281
3H(p,n)3He –0.764
7Li(p,n)7Be –1.65

Table 9.2 (α, n) Neutron Sources

Source Average Neutron
Energy (MeV)

Half-life

210PoBe 4.2 138 d
210PoB 2.5 138 d
226RaBe 3.9 1600 y
226RaB 3.0 1600 y
239PuBe 4.5 24100 y

For a given ion-beam energy, neutrons leave a thin target with energies that depend
on the angle of exit with respect to the incident beam direction.

An alpha source, usually radium, polonium, or plutonium and a light metal,
such as beryllium or boron, can be mixed together as powders and encapsulated
to make a “radioactive” neutron source. Neutrons are emitted as a result of (α, n)
reactions, such as the following:

4
2He + 9

4Be → 12
6C + 1

0n. (9.2)

Light metals are used in order to minimize the Coulomb repulsion between the
alpha particle and nucleus. The neutron intensity from such a source dies off with
the half-life of the alpha emitter. Neutrons leave the source with a continuous en-
ergy spectrum, because the alpha particles slow down by different amounts before
striking a nucleus. The neutron and the recoil nucleus [e.g., 12

6C in (9.2)] share a
total energy equal to the sum of the Q value and the kinetic energy that the alpha
particle has as it strikes the nucleus. Some common (α, n) sources are shown in
Table 9.2.

Similarly, photoneutron sources, making use of (γ, n) reactions, are also avail-
able. Several examples are listed in Table 9.3. In contrast to (α, n) sources, which
emit neutrons with a continuous energy spectrum, monoenergetic photoneutrons
can be obtained by selecting a nuclide that emits a gamma ray of a single energy.
Photoneutron sources decay in intensity with the half-life of the photon emitter.
All the sources in Table 9.3 are monoenergetic except the last; 226Ra emits gamma
rays of several energies. It is important for radiation protection to remember that
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(a)

(b)

Fig. 9.3 (a) Artist’s rendering of the Spallation Neutron Source.
(b) Arial photograph of facility in 2006. (Courtesy William H.
Cabage, Oak Ridge National Laboratory, managed by
UT-Battelle, LLC, for the U. S. Department of Energy.)
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Table 9.3 (γ, n) Neutron Sources

Source Neutron Energy (MeV) Half-life

24NaBe 0.97 15.0 h
24NaD2O 0.26 15.0 h
116InBe 0.38 54 min
124SbBe 0.024 60 d
140LaBe 0.75 40 h
226RaBe 0.7 (maximum) 1600 y

all photoneutron sources have gamma-ray backgrounds of >1000 photons per neu-
tron.

Some very heavy nuclei fission spontaneously, emitting neutrons in the process.
They can be encapsulated and used as neutron sources. Examples of some impor-
tant spontaneous-fission sources are 254Cf, 252Cf, 244Cm, 242Cm, 238Pu, and 232U.
In most cases the half-life for spontaneous fission is much greater than that for al-
pha decay. An exception is 254Cf, which decays almost completely by spontaneous
fission with a 60-day half-life.

The Spallation Neutron Source (SNS), shown in Fig. 9.3 at the Oak Ridge
National Laboratory, produced its first neutrons in 2006. This cooperative effort
among a number of laboratories operates as a user facility and offers an order-of-
magnitude improvement in neutron beam intensity compared with other sources.
Neutrons are produced by bombarding a target module containing 20 tons of circu-
lating mercury with 1-GeV protons from a linear accelerator, using superconductor
technology, and an accumulator-ring system. The SNS will make research possible
in a number of heretofore unreachable areas in instrumentation, materials proper-
ties and dynamics, high-temperature superconductivity, biological structures, and
nanoscience.

9.3
Classification of Neutrons

It is convenient to classify neutrons according to their energies. At the low end of
the scale, neutrons can be in approximate thermal equilibrium with their surround-
ings. Their energies are then distributed according to the Maxwell–Boltzmann for-
mula. The energy of a thermal neutron is sometimes given as 0.025 eV, which is
the most probable energy in the distribution at room temperature (20◦C). The aver-
age energy of thermal neutrons at room temperature is 0.038 eV. Thermal-neutron
distributions do not necessarily have to correspond to room temperature. “Cold”
neutrons, with lower “temperatures,” are produced at some facilities, while others
generate neutrons with energy distributions characteristic of temperatures consid-
erably above 20◦C. Thermal neutrons gain and lose only small amounts of energy
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through elastic scattering in matter. They diffuse about until captured by atomic
nuclei.

Neutrons of higher energies, up to about 0.01 MeV or 0.1 MeV (the convention
is not precise), are known variously as “slow,” “intermediate,” or “resonance” neu-
trons. “Fast” neutrons are those in the next-higher-energy classification, up to about
10 MeV or 20 MeV. “Relativistic” neutrons have still higher energies.

9.4
Interactions with Matter

Like photons, neutrons are uncharged and hence can travel appreciable distances
in matter without interacting. Under conditions of “good geometry” (cf. Sec-
tion 8.7) a narrow beam of monoenergetic neutrons is also attenuated exponen-
tially by matter. The interaction of neutrons with electrons, which is electromag-
netic in nature,2) is negligible. In passing through matter a neutron can collide
with an atomic nucleus, which can scatter it elastically or inelastically. The scatter-
ing is elastic when the total kinetic energy is conserved; that is, when the energy
lost by the neutron is equal to the kinetic energy of the recoil nucleus. When the
scattering is inelastic, the nucleus absorbs some energy internally and is left in an
excited state. The neutron can also be captured, or absorbed, by a nucleus, leading
to a reaction, such as (n, p), (n, 2n), (n,α), or (n,γ). The reaction changes the atomic
mass number and/or atomic number of the struck nucleus.

Typically, a fast neutron will lose energy in matter by a series of (mostly) elastic
scattering events. This slowing-down process is called neutron moderation. As the
neutron energy decreases, scattering continues, but the probability of capture by
a nucleus generally increases. If a neutron reaches thermal energies, it will move
about randomly by elastic scattering until absorbed by a nucleus.

Cross sections for the interactions of neutrons with atomic nuclei vary widely
and usually are complicated functions of neutron energy. Figure 9.4 shows the to-
tal cross sections for neutron interactions with hydrogen and carbon as functions
of energy. Because the hydrogen nucleus (a proton) has no excited states, only elas-
tic scattering and neutron capture are possible. The total hydrogen cross section
shown in Fig. 9.4 is the sum of the cross sections for these two processes. The
capture cross section for hydrogen is comparatively small, reaching a value of only
0.33 barn (1 barn = 10–24 cm2) at thermal energies, where it is largest. Thermal-
neutron capture is an important interaction in hydrogenous materials.

2 Although the neutron is electrically neutral, it
has spin, a magnetic moment, and a nonzero
distribution of electric charge within it. These
properties, coupled with the charge and spin
of the electron, give rise to electromagnetic
forces between neutrons and electrons. These
forces, however, are extremely weak. In

contrast, the neutron interacts with protons
and neutrons at close range by means of the
strong, or nuclear, force. The stopping power
of matter for neutrons due to their
electromagnetic interaction with atomic
electrons has been calculated (see
Section 9.12).
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Fig. 9.4 Total cross sections for neutrons with hydrogen and carbon as functions of energy.

In contrast, the carbon cross section in Fig. 9.4 shows considerable structure,
especially in the region 1–10 MeV. The nucleus possesses discrete excited states,
which can enhance or depress the elastic and inelastic scattering cross sections at
certain values of the neutron energy (cf. Fig. 3.2).

9.5
Elastic Scattering

As mentioned in the last section, elastic scattering is the most important process
for slowing down neutrons; the contribution by inelastic scattering is usually small
in comparison. We treat elastic scattering here.
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Table 9.4 Maximum Fraction of Energy Lost, Qmax/En from
Eq. (9.3), by Neutron in Single Elastic Collision with Various
Nuclei

Nucleus Qmax/En

1
1H 1.000
2
1H 0.889
4
2He 0.640
9
4Be 0.360
12
6C 0.284

16
8O 0.221

56
26Fe 0.069
118
50Sn 0.033

238
92U 0.017

The maximum energy that a neutron of mass M and kinetic energy En can trans-
fer to a nucleus of mass m in a single (head-on) elastic collision is given by Eq. (5.4):

Qmax = 4mMEn

(M + m)2 . (9.3)

Setting M = 1, we can calculate the maximum fraction of a neutron’s energy that
can be lost in a collision with nuclei of different atomic-mass numbers m. Some
results are shown in Table 9.4 for nuclei that span the periodic system. For ordinary
hydrogen, because the proton and neutron masses are equal, the neutron can lose
all of its kinetic energy in a head-on, billiard-ball-like collision. As the nuclear mass
increases, one can see how the efficiency of a material per collision for moderating
neutrons grows progressively worse. As a rule of thumb, the average energy lost
per collision is approximately one-half the maximum.

An interesting consequence of the equality of the masses in neutron–proton scat-
tering is that the particles separate at right angles after collision, when the collision
is nonrelativistic. Figure 9.5(a) represents a neutron of mass M and momentum
MV approaching a stationary nucleus of mass m. After collision, in Figure 9.5(b),
the nucleus and neutron, respectively, have momenta mv′ and MV′. The conserva-
tion of momentum requires that the sum of the vectors, mv′ + MV′, be equal to the
initial momentum vector MV, as shown in Figure 9.5(c). Since kinetic energy is
conserved, we have

1
2

MV2 = 1
2

mv′2 +
1
2

MV′2. (9.4)

If M = m, then V2 = v′2 + V′2, which implies the Pythagorean theorem for the trian-
gle in (c). Therefore, v′ and V′ are at right angles.

The elastic scattering of neutrons plays an important role in neutron energy mea-
surements. As discussed in the next chapter, under suitable conditions the recoil



218 9 Neutrons, Fission, and Criticality

Fig. 9.5 Momenta of colliding particles (a) before and (b) after
collision. (c) Representation of momentum conservation.

energies of nuclei in a proportional-counter gas under neutron bombardment can
be measured. The nuclear recoil energy and angle are directly related to the neutron
energy. For example, as illustrated in Fig. 9.6, when a neutron of energy En strikes
a proton, which recoils with energy Q at an angle θ with respect to the incident-
neutron direction, then the conservation of energy and momentum requires that
(Problem 9)

Q = En cos2 θ . (9.5)

Thus, if Q and θ can be measured individually for a number of incident neutrons,
one obtains the incident neutron spectrum directly. (The proton-recoil neutron
spectrometer is discussed in Section 10.5.) More often, only the energies of the
recoil nuclei in the gas (e.g., 3He, 4He, or 1H and 12C from CH4) are determined,
and the neutron energy spectrum must be unfolded from its statistical relationship
to the recoil-energy spectra. The unfolding is further complicated by the fact that
the recoil tracks do not always lie wholly within the chamber gas (wall effects).

Because of the magnitude of the cross section, the efficiency of energy transfer,
and the abundance of hydrogen in soft tissue, neutron–proton (n–p) scattering is
usually the dominating mechanism whereby fast neutrons deliver dose to tissue.
As we shall see in Section 12.9, over 85% of the “first-collision” dose in soft tissue
(composed of H, C, O, and N) arises from n–p scattering for neutron energies
below 10 MeV.
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Fig. 9.6 Schematic representation of elastic scattering of a
neutron by a proton. The initial neutron energy En is given in
terms of the proton recoil energy Q and angle θ by Eq. (9.5).

9.6
Neutron–Proton Scattering Energy-Loss Spectrum

Like Eq. (8.19) for Compton scattering, Eq. (9.5) for neutron–proton scattering is
purely kinematic in nature, reflecting (nonrelativistically) the conservation of ki-
netic energy and momentum. It provides no information about the probability that
the neutron is scattered in the direction θ . Experimentally, for neutron energies up
to about 10 MeV, it is observed that neutron–proton scattering is isotropic in the
center-of-mass coordinate system. That is, the neutron (as well as the proton) is
scattered with equal likelihood in any direction in three dimensions in this coordi-
nate system. One can translate this experimental finding into the probability den-
sity for having a proton recoil at an angle θ as seen in the laboratory system. Equa-
tion (9.5) can then be used to compute the probability density P(Q) for Q, which
is then the neutron energy-loss spectrum. As we now show, isotropic scattering in
the center-of-mass system results in a flat energy-loss spectrum for neutron–proton
scattering in the laboratory system.

The collision is represented in the laboratory system by Fig. 9.5. In (a), with the
two masses equal (M = m), the center of mass is located midway between the neu-
tron and proton and moves toward the right with constant speed 1

2 V. The center of
mass crosses the collision point at the instant of collision and continues moving to-
ward the right with speed 1

2 V thereafter. (Its motion is unchanged by interaction of
the particles.) Figure 9.7(a) shows the locations of the collision point O, the center
of mass C, the neutron N and proton P at unit time after the collision. At this time,
the scattered neutron and proton have displacements equal numerically to V′ and
v′ relative to O. (We use the same symbols in this discussion as in Figs. 9.5 and 9.6.)
Also, the center of mass C bisects the line NP at a displacement 1

2 V from O. The
scattering angle of the proton is θ in the laboratory system and ω in the center-of-
mass system. Before collision, the neutron and proton approach each other from
opposite directions with speeds 1

2 V in the center-of-mass system. Since momentum
is conserved, the particles are scattered “back-to-back” with equal speeds. Because
no kinetic energy is lost, the speeds of the neutron and proton in the center-of-mass
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Fig. 9.7 (a) Positions of the proton P and
neutron N at unit time following the collision
at O. In unit time, their displacements are the
same in magnitude and direction as the
velocity vectors v′ and V′ . The center of mass C
has displacement V/2 and bisects the line NP.
The proton scattering angle is θ in the

laboratory system and ω in the center-of-mass
system. Drawing is in the laboratory system.
(b) Sphere of radius R centered about C in the
center-of-mass system. For isotropic
scattering, the probability that the proton
passes through any area on the surface of the
sphere is proportional to the size of that area.

system are not changed by the collision. Therefore, the triangles in Fig. 9.7(a) are
isosceles: OC = CP = CN. In the upper triangle, since angle OPC and θ are equal,

ω = 2θ , (9.6)

giving the relationship between the proton recoil angles in the center-of-mass and
laboratory systems.

Figure 9.7(b) shows a sphere of radius R centered about the center of mass in
that system. Because the scattering is isotropic, the probability that the proton is
scattered through any area of the sphere’s surface is, by definition, equal to the ratio
of that area and the total area A = 4πR2 of the sphere. In particular, the probability
Pω(ω) dω that the proton is scattered into the area dA of the band between ω and
ω + dω in Fig. 9.7(b) is

Pω(ω) dω = dA

4πR2 = 2πR sinω × R dω

4πR2 = 1
2

sinω dω. (9.7)

The probability Pθ (θ ) dθ of scattering into the angular interval between θ and θ + dθ

in the laboratory system is given by

Pθ (θ ) dθ = Pω(ω) dω. (9.8)

With the help of Eqs. (9.6) and (9.7), this relation gives

Pθ (θ ) dθ = 1
2

sin 2θ d(2θ ) = sin 2θ dθ = 2 sin θ cos θ dθ . (9.9)

The probability that the neutron loses an energy between Q and Q + dQ is

P(Q) dQ = Pθ (θ ) dθ = 2 sin θ cos θ

(
dQ

dθ

)–1

dQ. (9.10)
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Fig. 9.8 Normalized energy-loss spectrum for scattering of
neutrons of energy En from hydrogen. P(Q) dQ is the
probability that the energy loss is between Q and Q + dQ.
Isotropic scattering in the center-of-mass system leads to the
flat spectrum.

Equation (9.5) implies that dQ/dθ = 2En cos θ sin θ .3) Therefore, the neutron
energy-loss spectrum (9.10) becomes, simply,

P(Q) dQ = 2 sin θ cos θ dQ

2En cos θ sin θ
= 1

En
dQ. (9.11)

The (normalized) spectrum for the scattering of neutrons of energy En by pro-
tons is shown in Fig. 9.8. Because the spectrum is flat and the maximum energy
loss is Qmax = En, the probability that a neutron loses an amount of energy �Q is
simply the fraction �Q/En (independently of where �Q is located in Fig. 9.8). The
average energy loss is Qavg = 1

2 Qmax(= 1
2 En). This relationship, mentioned earlier

as a rule of thumb for neutron scattering, is exact for isotropic scattering in the
center-of-mass system. The energy-loss spectrum is also flat for isotropic center-of-
mass scattering when the masses are unequal, and Qavg = 1

2 Qmax, with Qmax given
by Eq. (9.3). The last relation is approximately valid for neutron elastic scattering
by C, N, and O in tissue.

Example

A 2.6-MeV neutron has a collision with hydrogen. (a) What is the probability that it
loses between 0.63 and 0.75 MeV? (b) If the neutron loses 0.75 MeV, at what angle
is it scattered? (c) What is the average energy lost by 2.6-MeV neutrons in collisions
with carbon? (d) In (b), how much energy does the neutron lose in the center-of-mass
system?

Solution

(a) In Fig. 9.8, with En = 2.6 MeV and �Q = 0.75 – 0.63 = 0.12 MeV, it follows that
the probability of a neutron energy loss in the specified interval is �Q/En = 0.0462.

3 We ignore the negative sign from
differentiating cos θ , which indicates that Q

decreases as θ increases. We write all
probabilities as positive definite.
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(b) Applying Eq. (9.5) with Q = 0.75 MeV and En = 2.6 MeV, we obtain cos2 θ =
0.288, giving θ = 57.5◦ for the scattering angle of the proton (Fig. 9.6). Therefore, the
neutron scattering angle is 90.0◦ – 57.5◦ = 32.5◦.
(c) The average energy loss, Qavg, is approximately one-half the maximum possible.
With M = 1 and m = 12 in Eq. (9.3), we find for neutron collisions with carbon

Qmax = 4 × 12 × 1
(1 + 12)2 En = 0.284En. (9.12)

Thus, Qmax = 0.284 × 2.6 = 0.738 MeV; and Qavg = 0.369 MeV.
(d) As measured by an observer at rest with respect to the center of mass of the
colliding neutron and proton, neither particle loses energy in the collision. The two,
having equal masses, first approach each other with equal speeds. The energy lost by
the neutron in the center-of-mass system is zero.

Example

(a) In the last problem, what are the energies of the neutron and proton in the center-
of-mass system? (b) How much energy is associated with the motion of the center of
mass in the laboratory system?

Solution

(a) Since the speed of both particles in the center-of-mass system is 1
2 V and the masses

are equal, the neutron and proton each have the energy

ε = 1
2 M( 1

2 V)2 = 1
8 MV2 = 1

4 En = 0.650 MeV. (9.13)

(b) To an observer at rest relative to the center of mass, each of the colliding par-
ticles has an energy ε. The total energy associated with this relative motion is
εrel = 2ε = 1

2 En = 1.30 MeV. In the laboratory system, the total energy En is the
sum of the energy of relative motion, εrel, and the energy of motion of the center
of mass, Ecom. Therefore

Ecom = En – εrel = En – 1
2 En = 1

2 En = 1.30 MeV, (9.14)

which is the desired answer. An alternative way of analyzing the problem is the fol-
lowing. As we have seen (Chapter 2, Problem 31), the total energy in the laboratory
system is the sum of the energies of the center-of-mass motion and the relative mo-
tion. The total mass, M + M = 2M, moves with speed 1

2 V. The energy of this motion
is

Ecom = 1
2 (2M)( 1

2 V)2 = 1
4 MV2 = 1

2 En, (9.15)

in agreement with (9.14). The effective mass for the relative motion is given by
Eq. (2.20) for the reduced mass, which with equal masses is mr = 1

2 M. The relative
velocity of the neutron and proton is V. Thus, the energy of relative motion is

εrel = 1
2 mrV

2 = 1
4 MV2 = 1

2 En, (9.16)

as found earlier.
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The last example shows that the collision of a 2.6-MeV neutron with a stationary
proton is the same as that of a 0.650-MeV neutron and a 0.650-MeV proton that
approach each other from opposite directions. In high-energy particle accelerators,
considerable advantage in effective particle energy accrues from having the labo-
ratory itself be the center-of-mass system. The large electron–positron storage ring
(LEP) (Fig. 1.5) is an example of such a colliding-beam facility. The electron and
its antiparticle, the positron, are accelerated in opposite directions in the same ma-
chine and allowed to collide head-on with equal energies. These collisions occur at
relativistic energies, but the same principle applies as found here. The effective col-
lision energy is much greater than that for positrons of the same energy colliding
with electrons in a stationary target.

9.7
Reactions

In this section we describe several neutron reactions that are important in vari-
ous aspects of neutron detection and radiation protection. The way in which the
reactions are used for detection will be described in Chapter 10.

1H(n,γ)2H
We have already mentioned the capture of thermal neutrons by hydrogen. This
reaction is an example of radiative capture; that is, neutron absorption followed by
the immediate emission of a gamma photon. Explicitly,

1
0n + 1

1H → 2
1H + 0

0γ. (9.17)

Since the thermal neutron has negligible energy by comparison, the gamma pho-
ton has the energy Q = 2.22 MeV released by the reaction, which represents the
binding energy of the deuteron.4) When tissue is exposed to thermal neutrons, the
reaction (9.17) provides a source of gamma rays that delivers dose to the tissue. The
capture cross section for the reaction (9.17) for thermal neutrons is 0.33 barn.

Capture cross sections for low-energy neutrons generally decrease as the recipro-
cal of the velocity as the neutron energy increases. This phenomenon is often called
the “1/v law.” Thus, if the capture cross section σ0 is known for a given velocity v0

(or energy E0), then the cross section at some other velocity v (or energy E) can be
estimated from the relations

σ

σ0
= v0

v
=

√
E0

E
. (9.18)

These expressions can generally be used for neutrons of energies up to 100 eV or
1 keV, depending on the absorbing nucleus.

4 The energetics were worked out in Chapter 3
[Eq. (3.8)].
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Example

The capture cross section for the reaction (9.17) for thermal neutrons is 0.33 barn.
Estimate the cross section for neutrons of energy 10 eV.

Solution

The thermal-neutron energy is usually assumed to be the most probable value, E0 =
0.025 eV. Applying Eq. (9.18) with σ0 = 0.33 barn and E = 10 eV, we find for the
capture cross section at 10 eV

σ = σ0

√
E0

E
= 0.33

√
0.025

10
= 0.0165 barn. (9.19)

3He(n, p)3H
The cross section for thermal-neutron capture is 5330 barns and the energy Q =
765 keV is released by the reaction following thermal-neutron capture. Some pro-
portional counters used for fast-neutron monitoring contain a little added 3He for
calibration purposes. A polyethylene sleeve slipped over the tube thermalizes inci-
dent neutrons by the time they enter the counter gas. The pulse-height spectrum
then shows a peak, which identifies the channel number in which a pulse height
of 765 keV is registered. With the energy per channel thus established, the poly-
ethylene sleeve can be removed and the instrument used for fast-neutron monitor-
ing. Other neutron devices use 3He as the proportional-counter gas. They measure
a continuum of pulse heights due to the recoil 3He nuclei from elastic scattering.
In addition, when a neutron with kinetic energy T is captured by a 3He nucleus, an
energy of T + 765 keV is released (see Fig. 10.45).

6Li(n, t)4He
This reaction, which produces a 3H nucleus, or triton (t), and has a Q value
of 4.78 MeV, is also used for thermal-neutron detection. The cross section is
940 barns, and the isotope 6Li is 7.42% abundant. Neutron-sensitive LiI scintillators
can be made, and Li can also be added to other scintillators to register neutrons.
Lithium enriched in the isotope 6Li is available.

10B(n,α)7Li
For this reaction, σ = 3840 barns for thermal neutrons. The isotope 10B is 19.7%
abundant. In 96% of the reactions the 7Li nucleus is left in an excited state and
emits a 0.48-MeV gamma ray. The total kinetic energy shared by the alpha particle
and 7Li recoil nucleus is then Q = 2.31 MeV. The other 4% of the reactions go to
the ground state of the 7Li nucleus with Q = 2.79 MeV. BF3 is a gas that can be used
directly in a neutron counter. Boron is also employed as a liner inside the tubes of
proportional counters for neutron detection. It is also used as a neutron shielding
material. Boron enriched in the isotope 10B is available. Additional information is
given in Section 10.7.
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14N(n, p)14C
Since nitrogen is a major constituent of tissue, this reaction, like neutron capture
by hydrogen, contributes to neutron dose. The cross section for thermal neutrons
is 1.70 barns, and the Q value is 0.626 MeV. Since their ranges in tissue are small,
the energies of the proton and 14C nucleus are deposited locally at the site where
the neutron was absorbed. Capture by hydrogen and by nitrogen are the only two
processes through which thermal neutrons deliver a significant dose to soft tissue.

23Na(n,γ)24Na
Absorption of a neutron by 23Na gives rise to the radioactive isotope 24Na. The latter
has a half-life of 15.0 h and emits two gamma rays, having energies of 2.75 MeV
and 1.37 MeV, per disintegration. The thermal-neutron capture cross section is
0.534 barn. Since 23Na is a normal constituent of blood, activation of blood sodium
can be used as a dosimetric tool when persons are exposed to relatively high doses
of neutrons, for example, in a criticality accident.

32S(n, p)32P
For this reaction to occur, the neutron must have an energy of at least 0.957 MeV
[Eq. (9.32)]. It is an example of but one of many threshold reactions used for neu-
tron detection. As described in Section 10.7, the simultaneous activation of foils
made from a series of nuclides with different thresholds provides a means of es-
timating neutron spectra. The existence of 32S in human hair has also been used
to help estimate high-energy (∼3.2 MeV) neutron doses to persons exposed in crit-
icality accidents. The product 32P, a pure beta emitter with a maximum energy of
1.71 MeV and a half-life of 14.3 days, is easily counted.

113Cd(n,γ)114Cd
Because of the large, 21,000-barn, thermal-neutron capture cross section of 113Cd,
cadmium is used as a neutron shield and as a reactor control-rod material. The
relative abundance of the 113Cd isotope is 12.3%. The absorption cross section of
113Cd for neutrons is large from thermal energies up to ∼0.2 eV. It drops off two
orders of magnitude between 0.2 eV and 0.6 eV. A method for measuring the ratio
of thermal to resonance neutrons consists of comparing the induced activities in
two identical foils (e.g., indium), one bare and the other covered with a cadmium
shield. The latter absorbs essentially all neutrons with energies below the so-called
cadmium cutoff of ∼0.4 eV.

115In(n,γ)116mIn
The cross section for thermal-neutron capture by 115In (95.7% abundant) is
157 barns, and the metastable 116mIn decays with a half-life of 54.2 min. The in-
duced activity in indium foils worn by persons suspected of having been exposed
to neutrons can be checked as a quick-sort method following a criticality accident.
In practical cases the method is sensitive enough to permit detection with an ion-
ization chamber as well as a GM or scintillation survey instrument. The degree
of foil activity depends so strongly on the orientation of the exposed person, the
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neutron-energy spectrum, and other factors that it does not provide a useful basis
for even a crude estimate of dose. However, the fact that an exposure occurred (or
did not) can thus be established.

197Au(n,γ)198Au
This isotope, which is 100% abundant, has a thermal-neutron capture cross section
of 98.8 barns. Although not as sensitive as indium, its longer half-life of 2.70 days
permits monitoring at later times after exposure.

235U(n, f)
Fission (f) is discussed in Section 9.10. Because of the large release of energy
(∼200 MeV), the fission process provides a distinct signature for detecting thermal
neutrons, even in high backgrounds of other types of radiation (cf. Section 10.7).

9.8
Energetics of Threshold Reactions

As mentioned in the last section in connection with the reaction 32
16S(n, p)32

15P, the
activation of different nuclides through reactions with different threshold energies
provides information on the spectrum of neutrons to which they are exposed. In
this section we show how threshold energies can be calculated.

An endothermic reaction, by definition, requires the addition of energy in or-
der to take place. The reaction thus converts energy into mass. (In the notation of
Section 3.2, Q < 0.) Such a reaction can be brought about by one particle striking
another at rest, provided the incident particle has sufficient energy. In Section 8.6
we considered threshold energies for photonuclear reactions. In this instance, the
reaction occurs when the photon has an energy hν ≥ –Q needed to provide the in-
crease in mass. The condition for the threshold energy for a neutron reaction is
different. The neutron must have enough energy to supply both the increase in
mass, –Q, and also the continued motion of the center of mass of the colliding
particles after the collision. For photons, the latter is negligible.

To calculate threshold energies we consider a head-on collision. A particle with
mass M1 strikes a particle with mass M2, initially at rest. The identity of the parti-
cles is changed by the reaction, and so there will generally be different masses, M3

and M4, after the encounter. The collision is shown schematically in Fig. 9.9. The

Fig. 9.9 Schematic representation of a head-on collision
producing a nuclear reaction in which the identity of the
particles can change.
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change in rest energy, Q = M1 + M2 – (M3 + M4), is negative for the endothermic
reaction.5) The conservation of total energy requires that

E1 = E3 + E4 – Q , (9.20)

where E1, E3, and E4 are the kinetic energies of the moving particles. Conservation
of momentum gives

p1 = p3 + p4, (9.21)

where p1, p3, and p4 are the magnitudes of the respective momenta. To calculate
the threshold energy E1, we eliminate either E3 or E4 from these two equations
and solve for the other. This procedure will give the explicit condition that E1 must
fulfill.

We eliminate E4. Using the relationship, E4 = p2
4/2M4, between energy and mo-

mentum, we write with the help of Eq. (9.21)

E4 = p2
4

2M4
= 1

2M4
(p1 – p3)2. (9.22)

Substituting p1 = (2M1E1)1/2 and p3 = (2M3E3)1/2 gives

E4 = 1
M4

[M1E1 – 2(M1M3)1/2(E1E3)1/2 + M3E3]. (9.23)

Using this expression in Eq. (9.20) and carrying out some algebraic manipulations,
one finds for E3 that

E3 –
2(M1M3E1)1/2

M3 + M4

√
E3 –

(M4 – M1)E1 + M4Q

M3 + M4
= 0. (9.24)

This is a quadratic equation in
√

E3, having the form

E3 – 2A
√

E3 – B = 0, (9.25)

where A and B are the coefficients that appear in Eq. (9.24). The two roots yield

E3 = B + 2A2
(

1 ± 1
A

√
A2 + B

)
. (9.26)

For E3 to be real, A2 + B ≥ 0:

M1M3E1

(M3 + M4)2 +
(M4 – M1)E1 + M4Q

M3 + M4
≥ 0, (9.27)

or

E1 ≥ –Q

(
1 +

M1

M3 + M4 – M1

)
. (9.28)

5 We assume that both particles are in their
ground states after the collision. If particle 3
or 4 is a nucleus in an excited state with

energy E* above the ground-state energy,
then one must replace Q by Q – E* in this
discussion.
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The smallest possible value of E1, satisfying the equality, is the threshold energy
for the incident particle:

Eth = –Q

(
1 +

M1

M3 + M4 – M1

)
. (9.29)

The smaller the incident-particle mass M1 is, compared with the total mass M3 +
M4, the more nearly the threshold energy is equal to –Q. It differs from –Q by the
energy needed to keep the center of mass in motion (Fig. 9.9).

Example

Calculate the threshold energy for the reaction 32S(n, p)32P.

Solution

For a neutron (mass M1) incident on a sulfur atom at rest in the laboratory, we write

1
0n + 32

16S → 1
1H + 32

15P. (9.30)

Since the number of electrons is the same on both sides of the arrow, we can use the
atomic mass differences � given in Appendix D to find Q. Taking the values in the
order in which they occur in (9.30), we obtain

Q = 8.0714 – 26.013 – (7.2890 – 24.303) = –0.9276. (9.31)

The threshold energy is, from Eq. (9.29),

Eth = 0.9276
(

1 +
1

1 + 32 – 1

)
= 0.957 MeV. (9.32)

Nuclear cross sections for neutron reactions with a threshold usually increase
steadily from zero at Eth to a maximum and then decline at higher energies. The
activity induced in a foil is indicative of the relative number of neutrons over a
range of energies above the threshold. The energy at which the cross section has
approximately its average value is called the effective threshold energy, which is larger
than Eth. For 32S, the effective threshold energy for neutron activation is about
3.2 MeV.

For a nuclear reaction to be induced by a positively charged projectile, the re-
pulsive Coulomb barrier must be overcome. For example, the reaction 14N(α, p)17O
has the value Q = –1.19 MeV. Equation (9.29) implies that the threshold energy for
the reaction is Eth = 1.53 MeV. However, the Coulomb barrier for the alpha particle
and the nitrogen nucleus is 3.9 MeV. The effective threshold energy for the reaction
to occur at an appreciable rate is about 4.6 MeV.

9.9
Neutron Activation

The time dependence of the activity induced by neutron capture can be described
quantitatively. If a sample containing NT target atoms with cross section σ is ex-
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posed to a uniform, broad beam of monoenergetic neutrons with a fluence rate �̇,
then the production rate of daughter atoms from neutron absorption is �̇σNT. If
the number of daughter atoms in the sample is N and the decay constant is λ, then
the rate of loss of daughter atoms from the sample is λN. Thus, the rate of change
dN/dt in the number of daughter atoms present at any time while the sample is
being bombarded is given by

dN

dt
= �̇σNT – λN. (9.33)

To solve this equation, we assume that the fluence rate is constant and that the
original number of target atoms is not significantly depleted, so that NT is also
constant. Without the term �̇σNT, which is then constant, Eq. (9.33) would be the
same as the linear homogeneous Eq. (4.2). Therefore, we try a solution to (9.33)
in the same form as (4.7) for the homogeneous equation plus an added constant.
Substituting N = a + be–λt into Eq. (9.33) gives

–bλe–λt = �̇σNT – aλ – bλe–λt. (9.34)

The exponential terms on both sides cancel, and one finds that a = �̇σNT/λ. Thus,
the general solution is

N = �̇σNT

λ
+ be–λt. (9.35)

The constant b depends on the initial conditions. Specifying that no daughter
atoms are present when the neutron irradiation begins (i.e., N = 0 when t = 0),
we find from (9.35) that b = –�̇σNT/λ. Thus we obtain the final expression

λN = �̇σNT(1 – e–λt). (9.36)

The left-hand side expresses the activity of the daughter as a function of the time t.
The quantity �̇σNT is called the saturation activity because it represents the max-
imum activity obtainable when the sample is irradiated for a long time (t → ∞).
A sketch of the function (9.36) is shown in Fig. 9.10.

When the neutrons are not monoenergetic, the terms in Eq. (9.33) can be treated
in separate energy groups. Alternatively, Eq. (9.36) can be used as is, provided the
proper average cross section is used for σ .

Example

A 3-g sample of 32S is irradiated with fast neutrons having a constant fluence rate
of 155 cm–2 s–1. The cross section for the reaction 32S(n, p)32P is 0.200 barn, and the
half-life of 32P is T = 14.3 d. What is the maximum 32P activity that can be induced?
How many days are needed for the level of the activity to reach three quarters of the
maximum?

Solution

The total number of target atoms is NT = 3
32 × 6.02 × 1023 = 5.64 × 1022. The max-

imum (saturation) activity is �̇σNT = (155 cm–2 s–1)(0.2 × 10–24 cm2)(5.64 × 1022) =
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Fig. 9.10 Buildup of induced activity λN, as given by Eq. (9.36),
during neutron irradiation at constant fluence rate.

1.75 s–1 = 1.75 Bq. [Expressed in curies, the saturation activity is 1.75/(3.7 × 1010) =
4.73 × 10–11 Ci.] The time t needed to reach three-quarters of this value can be found
from Eq. (9.36) by writing 3

4 = 1 – e–λt. Then e–λt = 1
4 and t = 2T = 28.6 d. Note that

the buildup toward saturation activity is analogous to the approach to secular equilib-
rium by the daughter of a long-lived parent (Sect. 4.4).

Example

Estimate the fraction of the 32S atoms that would be consumed in the last example in
28.6 days.

Solution

The rate at which 32S atoms are used up is �̇σNT = 1.75 s–1. Since t = 28.6 d =
2.47 × 106 s, the number of 32S atoms lost is 1.75 × 2.47 × 106 = 4.32 × 106. The frac-
tion of 32S atoms consumed, therefore, is 4.32 × 106/(5.64 × 1022) = 7.66 × 10–17,
a negligible amount. Note that fractional burnup does not depend on the sam-
ple size NT. The problem can also be worked by writing for the desired fraction
�̇σNTt/NT = �̇σ t = 155 × 0.2 × 10–24 × 2.47 × 106 = 7.66 × 10–17. The assumption
of constant NT for the validity of Eq. (9.36) is therefore warranted. The actual fraction
of 32S atoms consumed during a long time t is, of course, less than �̇σ t.

9.10
Fission

As described in Section 3.2, the binding energy per nucleon for heavy elements
decreases as the atomic mass number increases (Fig. 3.3). Thus, when heavy nu-
clei are split into smaller pieces, energy is released. Alpha decay is an example of
one such process that is spontaneous. With the discovery of nuclear fission, an-
other process was realized, in which the splitting was much more dramatic and
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the energy release almost two orders of magnitude greater. Nuclear fission can be
induced in certain nuclei as a result of absorbing a neutron. With 235U, 239Pu, and
233U, absorption of a thermal neutron can set up vibrations in the nucleus which
cause it to become so distended that it splits apart under the mutual electrostatic
repulsion of its parts. The thermal-neutron fission cross sections for these isotopes
are, respectively, 580, 747, and 525 barns. A greater activation energy is required to
cause other nuclei to fission. An example is 238U, which requires a neutron with a
kinetic energy in excess of 1 MeV to fission. Cross sections for such “fast-fission”
reactions are much smaller than those for thermal fission. The fast-fission cross
section for 238U, for instance, is 0.29 barn. Also, fission does not always result
when a neutron is absorbed by a fissionable nucleus. 235U fissions only 85% of the
time after thermal-neutron absorption.

Nuclei with an odd number of nucleons fission more readily following neutron
absorption than do nuclei with an even number of nucleons. This fact is related to
the greater binding energy per nucleon found in even–even nuclei, as mentioned
in Section 3.2. The 235U nucleus is even–odd in terms of its proton and neutron
numbers. Addition of a neutron transforms it into an even–even nucleus with a
larger energy release than that following neutron absorption by 238U.

Fissionable nuclei break up in a number of different ways. The 235U nucleus
splits in some 40 or so modes following the absorption of a thermal neutron. One
typical example is the following:

1
0n + 235

92U → 147
57La + 87

35Br + 21
0n. (9.37)

An average energy of about 195 MeV is released in the fission process, distributed
as shown in Table 9.5. The major share of the energy (162 MeV) is carried away by
the charged fission fragments, such as the La and Br fragments in (9.37). Fission
neutrons and gamma rays account for another 12 MeV. Subsequent fission-product
decay accounts for 10 MeV and neutrinos carry off 11 MeV. In a new reactor, in
which there are no fission products, the energy output is about 175 MeV per fission.
In an older reactor, with a significant fission-product inventory, the corresponding
figure is around 185 MeV. The energy produced in a reactor is converted mostly into
heat from the stopping of charged particles, including the recoil nuclei struck by
neutrons and the secondary electrons produced by gamma rays. Neutrinos escape
with negligible energy loss.

As exemplified by (9.37), nuclear fission produces asymmetric masses with high
probability. The mass distribution of fission fragments from 235U is thus bimodal.

All fission fragments are radioactive and most decay through several steps to
stable daughters. The decay of the collective fission-product activity following the
fission of a number of atoms at t = 0 is given by

A ∼= 10–16t–1.2 curies/fission, (9.38)

where t is in days. This expression can be used for estimating residual fission-
product activity between about 10 s and 1000 h.

The average number of neutrons produced per fission of 235U is 2.5. This num-
ber must exceed unity in order for a chain reaction to be possible. Some 99.36% of
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Table 9.5 Average Distribution of Energy Among Products
Released by Fission of 235U

Kinetic energy of charged fission fragments 162 MeV
Fission neutrons 6
Fission gamma rays 6
Subsequent beta decay 5
Subsequent gamma decay 5
Neutrinos 11
Total 195 MeV

the fission neutrons are emitted promptly (in ∼10–14 s) from the fission fragments,
while the other (delayed) neutrons are emitted later (up to ∼1 min or more). The
delayed neutrons play an important role in the ease of control of a nuclear reactor,
as discussed in the next section.

9.11
Criticality

An assembly of fissionable material is said to be critical when, on the average,
exactly one of the several neutrons emitted in the fission process causes another
nucleus to fission. The power output of the assembly is then constant. The other
fission neutrons are either absorbed without fission or else escape from the sys-
tem. Criticality thus depends upon geometrical factors as well as the distribution
and kinds of the material present. If an average of more than one fission neutron
produces fission of another nucleus, then the assembly is said to be supercritical,
and the power output increases. If less than one fission occurs per fission neutron
produced, the unit is subcritical.

Criticality is determined by the extent of neutron multiplication as successive
generations are produced. If Ni thermal neutrons are present in a system, their ab-
sorption will result in a certain number Ni+1 of next-generation thermal neutrons.
The effective multiplication factor is defined as

keff = Ni+1

Ni

. (9.39)

The system is critical if keff = 1, exactly; supercritical if keff > 1; and subcritical if
keff < 1.

It is useful to discuss keff independently of the size and shape of an assembly.
Therefore, we introduce the infinite multiplication factor, k∞, for a system that is
infinite in extent. For a finite system one can then write

keff = Lk∞, (9.40)

where L is the probability that a neutron will not escape. The value of k∞ will de-
pend on several factors, as we now describe for uranium fuel.
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Of Ni total thermal neutrons present in the ith generation in an infinite system,
generally only a fraction f, called the thermal utilization factor, will be absorbed in
the fissionable fuel (viz., 235U and 238U). The rest will be absorbed by other kinds
of atoms (moderator and impurities). If η represents the average number of fission
neutrons produced per thermal-neutron capture in the uranium fuel, then the dis-
appearance of the Ni thermal neutrons will result in the production of Nifη fission
neutrons that belong to the next generation. Some of these neutrons will produce
fast fission in 238U before they have a chance to become thermalized. The fast-
fission factor ε is defined as the ratio of the total number of fission neutrons and
the number produced by thermal fission. Then the absorption of the original Ni

thermal neutrons results in the production of a total of Nifηε fission neutrons. Not
all of these will become thermalized, because they may undergo radiative capture
in the fuel (238U) and moderator. Many materials have resonances in the (n,γ) cross
section at energies of several hundred eV and downward. Letting p represent the
resonance escape probability (i.e., the probability that a fast neutron will slow down
to thermal energies without radiative capture), we obtain for the total number Ni+1

of thermal neutrons in the next generation

Ni+1 = Nifηεp. (9.41)

From the definition (9.39), it follows that the infinite-system multiplication factor
is given by

k∞ = fηεp. (9.42)

The right-hand side of Eq. (9.42) is called the four-factor formula, describing the
multiplication factor for an infinitely large system. The factors f, ε, and p depend
on the composition and enrichment of the fuel and its physical distribution in the
moderator. For a pure uranium-metal system, f = 1. The thermal utilization factor
can be small if competition for thermal absorption by other materials is great. For
pure natural uranium, the fast-fission factor has the value ε = 1.3; for a homoge-
neous distribution of fuel and moderator, ε ∼ 1. Generally, but depending on the
particular circumstances, p ranges from ∼0.7 to ∼1 for enriched systems. For pure
235U, p = 1. For natural uranium metal, p = 0; and so such a system—even of infi-
nite extent—will not be critical. The fourth factor, η, depends only on the fuel. The
isotope 235U emits an average of 2.5 neutrons per fission. However, since thermal
capture by 235U results in fission only 85% of the time, if follows that, for pure
235U, η = 0.85 × 2.5 = 2.1. For other enrichments, η < 2.1.

Example

Given the thermal-neutron fission cross section of 235U, 580 barns, and the thermal-
neutron absorption cross section for 238U, 2.8 barns, find the value of η for natural
uranium, which consists of 0.72% 235U and 99.28% 238U.

Solution

By definition, η is the average number of fission neutrons produced per thermal
neutron absorbed in the uranium fuel (235U plus 238U), which is the only element
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present. From the given fission cross section it follows that the thermal-neutron
absorption cross section for 235U, which fissions 85% of the time, is 580/0.85 =
682 barns. The fraction of thermal-neutron absorption events in the natural uranium
fuel that result in fission is therefore 0.0072 × 580/(0.0072 × 682 + 0.9928 × 2.8) =
0.543. Since, on the average, 2.5 neutrons are emitted when 235U fissions, it follows
that η = 0.543 × 2.5 = 1.36.

Example

Compute η for solid uranium metal that is 90% enriched in 235U.

Solution

Similar to the last problem, we have here

η = 0.90 × 580
0.90 × 682 + 0.10 × 2.8

× 2.5 = 2.13. (9.43)

Note that the largest possible value for η (that for pure 235U) is 580
682 ×2.5 = 0.85×2.5 =

2.13, as pointed out earlier.

In its basic form, a nuclear reactor is an assembly that consists of fuel (usually
enriched uranium); a moderator, preferably of low atomic mass number, for ther-
malizing neutrons; control rods made of materials with a high thermal-neutron
absorption cross section (e.g., cadmium or boron steel); and a coolant to remove
the heat generated. With the control rods fully inserted in the reactor, the multipli-
cation constant k is less than unity. As a rod is withdrawn, k increases; and when
k = 1, the reactor becomes critical and produces power at a constant level. Further
withdrawal of control rods makes k > 1 and causes a steady increase in the power
level. When the desired power level is attained, the rods are partially reinserted to
make k = 1, and the reactor operates at a steady level.

As mentioned in the last section, 99.36% of the fission neutrons from 235U are
prompt; that is, they are emitted immediately in the fission process, while the other
0.64% are released at times of the order of seconds to over a minute after fission.
Since a fission neutron can be thermalized in a fraction of a second, the existence
of these delayed neutrons greatly facilitates the control of a uranium reactor. If
1 < k < 1.0064, the reactor is said to be in a delayed critical condition, since the
delayed neutrons are essential to maintaining the chain reaction. The rate of power
increase is then sufficiently slow to allow control through mechanical means, such
as the physical adjustment of control-rod positions. When k > 1.0064, the chain
reaction can be maintained by the prompt neutrons alone, and the condition is
called prompt critical. The rate of increase in the power level is then much faster
than when delayed critical.

Whenever fissionable material is chemically processed, machined, transported,
stored, or otherwise handled, care must be taken to prevent accidental criticality.
Generally, procedures for avoiding criticality depend on limiting the total mass or
concentration of fissionable material present and on the geometry in which it is
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contained. For example, an infinitely long, water-reflected cylinder of aqueous so-
lution with a concentration of 75 g 235U per liter is subcritical as long as its diameter
is less than 6.3 in. Without water reflection the limiting diameter is 8.7 in. When
using such “always safe” geometry, attention must be given to the possibility that
two or more subcritical units could become critical in close proximity.
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9.13
Problems

1. Calculate the neutron energy from a 24NaD2O source
(Table 9.3).

2. (a) What is the maximum energy that a 4-MeV neutron can
transfer to a 10B nucleus in an elastic collision?

(b) Estimate the average energy transferred per collision.
3. (a) Estimate the average energy that a 2-MeV neutron transfers

to a deuteron in a single collision.
(b) What is the maximum possible energy transfer?

4. Make a rough estimate of the number of collisions that a
neutron of 2-MeV initial energy makes with deuterium in order
for its energy to be reduced to 1 eV.

5. Repeat Problem 4 for a 4-MeV neutron in carbon.
6. (a) If a neutron starts with an energy of 1 MeV in a graphite

moderator, what is the minimum number of collisions it
must make with carbon nuclei in order to become
thermalized?

(b) What is the minimum number of collisions if the
moderator is hydrogen?
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7. A parallel beam of neutrons incident on H2O produces a
4-MeV recoil proton in the straight-ahead direction.
(a) What is the maximum energy of the neutrons?
(b) What is the maximum recoil energy of an oxygen nucleus?

8. (a) Estimate the average recoil energy of a carbon nucleus
scattered elastically by 1-MeV neutrons.

(b) What is the average recoil energy of a hydrogen nucleus?
(c) Discuss the relative importance of these two reactions as a

basis for producing biological effects in soft tissue exposed
to 1-MeV neutrons.

9. Derive Eq. (9.5).
10. A parallel beam of 10-MeV neutrons is normally incident on a

layer of water, 0.5 cm thick. Ignore neutron collisions with
oxygen and multiple collisions with hydrogen.
(a) How many neutron collisions per second deposit energy at

a rate of 10–7 J s–1?
(b) How many incident neutrons per second are needed to

produce this rate of energy deposition?
11. (a) What is the probability that a 5-MeV neutron will lose

between 4.0 and 4.2 MeV in a single collision with an atom
of hydrogen?

(b) What is the probability of this energy loss for an 8-MeV
neutron?

12. Show that the probability given by Eq. (9.7) is normalized.
13. What is the probability that a fast neutron will be scattered by a

proton at an angle between 100◦ and 120◦ in the center-of-mass
system?

14. (a) What is the probability that a proton will recoil at an angle
between 20◦ and 30◦ in the laboratory system when struck
by a fast neutron?

(b) What is the probability that a fast neutron will be scattered
at an angle between 20◦ and 30◦ by a proton in the
laboratory system?

(c) Account for the fact that these probabilities do not depend
on the neutron energy.

15. Show that the center of mass in Fig. 9.9 moves in the
laboratory system with speed M1V/(M1 + M2), where V is the
speed of the incident particle.

16. Construct a figure like 9.7(a) for the collision of two particles of
unequal masses. Show that the relation, ω = 2θ , also holds in
this case for the scattering angles of the struck particle in the
two coordinate systems.

17. Why does the photon in the reaction (9.17) get the energy
Q = 2.22 MeV, while the deuteron gets negligible energy?

18. Estimate the capture cross section for 19-eV neutrons by 235U.
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19. (a) Estimate the capture cross section of 10B for 100-eV
neutrons.

(b) What is the capture probability per cm for a 100-eV
neutron in pure 10B (density = 2.17 g cm–3)?

(c) Estimate the probability that a 100-eV neutron will
penetrate a 1 cm 10B shield and produce a fission in a
1-mm 239Pu foil (density 18.5 g cm–3) behind it. Neglect
energy loss of the neutron due to elastic scattering.

20. The thermal-neutron reaction 10
5B(n,α)7

3Li leaves the 7
3Li

nucleus in the ground state 4% of the time. Otherwise, the
reaction leaves the 7

3Li nucleus in an excited state, from which
it decays to the ground state by emission of a 0.48-MeV gamma
ray.
(a) Calculate the Q value of the reaction in both cases.
(b) Calculate the alpha-particle energy in both cases.

21. How much energy is released per minute by the 14
7N(n, p)14

6C
reaction in a 10-g sample of soft tissue bombarded by 2 × 1010

thermal neutrons cm–2 s–1? Nitrogen atoms constitute 3% of
the mass of soft tissue.

22. (a) Calculate the Q value for the reaction 3H(p, n)3He.
(b) What is the threshold energy for this reaction when

protons are incident on a tritium target?
23. How much kinetic energy is associated with the center-of-mass

motion in the last problem?
24. Calculate the threshold energy for neutron production by

protons striking a lithium target via the reaction 7Li(p,n)7Be.
25. Calculate the maximum energy of the neutrons produced when

10-MeV protons strike a 7Li target.
26. Verify Eqs. (9.20)–(9.29).
27. A sample containing 127 g of 23Na (100% abundant) is exposed

to a beam of thermal neutrons at a constant fluence rate of
1.19 × 104 cm–2 s–1. The thermal-neutron capture cross section
for the reaction 23Na(n,γ)24Na is 0.53 barn.
(a) Calculate the saturation activity.
(b) Calculate the 24Na activity in the sample 24 h after it is

placed in the beam.
(c) How many 23Na atoms are consumed in the first 24 h?

28. What is the saturation activity of 24Na that can be induced in a
400-g sample of NaCl with a constant thermal-neutron fluence
rate of 5 × 1010 cm–2 s–1? The isotope 23Na is 100% abundant
and has a thermal-neutron capture cross section of 0.53 barn.

29. A sample containing 62 g of 31P (100% abundant) is exposed to
2 × 1011 thermal neutrons cm–2 s–1. If the thermal-neutron
capture cross section is 0.19 barn, how much irradiation time
is required to make a 1-Ci source of 32P?
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30. To make a 60Co source, a 50-g sample of cobalt metal (59Co,
100% abundant) is exposed to thermal neutrons at a constant
fluence rate of 109 cm–2 s–1. The thermal-neutron capture cross
section is 37 barns.
(a) How much exposure time is required to make a 1-mCi

source of 60Co?
(b) Estimate the number of 59Co atoms consumed in 1 week.

31. A metal sample to be analyzed for its cobalt content is exposed
to thermal neutrons at a constant fluence rate of
7.20 × 1010 cm–2 s–1 for 10 days. The thermal-neutron
absorption cross section for 59Co (100% abundant) to form
60Co is 37 barns. If, after the irradiation, the sample shows a
disintegration rate of 23 min–1 from 60Co, how many grams of
cobalt are present?

32. A sample containing an unknown amount of chromium is
irradiated at a constant thermal-neutron fluence rate of
1012 cm–2 s–1. The isotope 50Cr (4.31% abundant, by number)
absorbs a thermal neutron (cross section 13.5 barns) to form
radioactive 51Cr, which decays with a half-life of 27.8 d. If, after
5 d of irradiation, the induced activity of 51Cr is 1121 Bq, what
is the mass of chromium in the sample?

33. Estimate the fission-product activity 48 h following a criticality
accident in which there were 5 × 1015 fissions.

34. If the exposure rate at a given location in Problem 33 is 5 R h–1

10 h after the accident, estimate what it will be there exactly
1 wk after the accident.

35. The “seven–ten” rule for early fallout from a nuclear explosion
states that, for every sevenfold increase in time after the
explosion, the exposure rate decreases by a factor of 10. Using
this rule and the exposure rate at 1 h as a reference value,
estimate the relative exposure rates at 7, 7 × 7, and 7 × 7 × 7 h.
Compare with ones obtained with the help of Eq. (9.38).

36. A reactor goes critical for the first time, operates at a power
level of 50 W for 3 h, and is then shut down. How many
fissions occurred?

37. What is the fission-product inventory in curies for the reactor
in the last problem 8 h after shutdown?

38. Calculate η for uranium enriched to 3% in 235U. The
thermal-neutron fission cross section of 235U is 580 barns and
the thermal-neutron absorption cross section for 238U is 2.8
barns.

39. If k = 1.0012, by what factor will the neutron population be
increased after 10 generations?

40. How many generations are needed in the last problem to
increase the power by a factor of 1000?
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9.14
Answers

1. 0.26 MeV
2. (a) 1.32 MeV

(b) 0.661 MeV
4. 25
6. (a) 53

(b) 1
8. (a) 0.142 MeV

(b) 0.500 MeV
10. (a) 1.25 × 105 s–1

(b) 4.03 × 106 s–1

13. 0.163
18. 24.7 barns
19. (a) 60.7 barns

(b) 7.93 cm–1

(c) 1.9 × 10–5

21. 1.65 × 1010 MeV min–1

22. (a) –0.764 MeV
(b) 1.02 MeV

27. (a) 2.10 × 104 Bq
(b) 1.41 × 104 Bq
(c) 1.81 × 109

28. 1.09 × 1011 Bq
30. (a) 5.43 d

(b) 1.14 × 1016

32. 1.42 × 10–6 g
33. 0.22 Ci
34. 0.17 R h–1

36. 1.9 × 1016

37. 6 Ci
38. 1.88
39. 1.0121
40. 5760



241

10
Methods of Radiation Detection

This chapter describes ways in which ionizing radiation can be detected and mea-
sured. Section 10.7 covers special methods applied to neutrons. In Chapter 12 we
shall see how these techniques are applied in radiation dosimetry.

10.1
Ionization in Gases

Ionization Current

Figure 10.1(a) illustrates a uniform, parallel beam of monoenergetic charged parti-
cles that steadily enter a gas chamber across an area A with energy E and come to
rest in the chamber. A potential difference V applied across the parallel chamber
plates P1 and P2 gives rise to a uniform electric field between them. As the par-
ticles slow down in the chamber, they ionize gas atoms by ejecting electrons and
leaving positive ions behind. The ejected electrons can immediately produce addi-
tional ion pairs. If the electric field strength, which is proportional to V, is relatively
weak, then only a few of the total ion pairs will drift apart under its influence, and a
small current I will flow in the circuit. Most of the other ion pairs will recombine to
form neutral gas atoms. As shown in Fig. 10.1(b), the current I can be increased by
increasing V up to a value V0, at which the field becomes strong enough to collect
all of the ion pairs produced by the incident radiation and its secondary electrons.
Thereafter, the current remains on a plateau at its saturation value I0 when V > V0.

Since it is readily measurable, it is important to see what information the satu-
ration current gives about the radiation. If the fluence rate is �̇ cm–2 s–1, then the
intensity �̇ of the radiation (Section 8.8) entering the chamber is given by �̇ = �̇E.
If W denotes the average energy needed to produce an ion pair when a particle of
initial energy E stops in the chamber, then the average number N of ion pairs pro-
duced by an incident particle and its secondary electrons is N = E/W. The average
charge (either + or –) produced per particle is Ne, where e is the magnitude of the
electronic charge. The saturation current I0 in the circuit is equal to the product
of Ne and �̇A, the total number of particles that enter the chamber per unit time.
Therefore, we have

Atoms, Radiation, and Radiation Protection. James E. Turner
Copyright © 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-40606-7
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Fig. 10.1 (a) Monoenergetic beam of particles stopping in
parallel-plate ionization chamber with variable potential
difference V applied across plates P1 and P2 (seen edge on).
(b) Plot of current I vs. V.

I0 = Ne�̇A = e�̇AE

W
. (10.1)

It follows that

�̇ = �̇E = I0W

eA
, (10.2)

showing that the beam intensity is proportional to the saturation current.
The important relationship (10.2) is of limited use, because it applies to a uni-

form, parallel beam of radiation. However, since the rate of total energy absorption
in the chamber gas, Ėabs, is given by Ėabs = �̇A, we can write in place of Eq. (10.2)

Ėabs = I0W

e
. (10.3)
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Thus, the saturation current gives a direct measure of the rate of energy absorption
in the gas. The relationship (10.3) holds independently of any particular condition
on beam geometry, and is therefore of great practical utility. Fortunately, it is the
energy absorbed in a biological system that is relevant for dosimetry; the radiation
intensity itself is usually of secondary importance.

Example

Good electrometers measure currents as small as 10–16 A. What is the corresponding
rate of energy absorption in a parallel-plate ionization chamber containing a gas for
which W = 30 eV per ion pair (eV ip–1)?

Solution

From Appendix B, 1 A = 1 C s–1. Equation (10.3) gives

Ėabs = (10–16 C s–1) × 30 eV
1.6 × 10–19 C

= 1.88 × 104 eV s–1. (10.4)

Ionization measurements are very sensitive. This average current would be produced,
for example, by a single 18.8-keV beta particle stopping in the chamber per second.

W Values

Figure 10.2 shows W values for protons (H), alpha particles (He), and carbon and
nitrogen ions of various energies in nitrogen gas, N2. The values represent the
average energy expended per ion pair when a particle of initial energy E and all of
the secondary electrons it produces stop in the gas. The value for electrons, Wβ =
34.6 eV ip–1, shown by the horizontal line, is about the same as that for protons at
energies E > 10 keV. W values for heavy ions, which are constant at high energies,
increase with decreasing energy because a larger fraction of energy loss results in
excitation rather than ionization of the gas. Elastic scattering of the ions by nuclei
also causes a large increase at low energies.

The data in Fig. 10.2 indicate that W values for a given type of charged parti-
cle are approximately independent of its initial energy, unless that energy is small.
This fact is of great practical significance, since it often enables absorbed energy to
be inferred from measurement of the charge collected, independently of the iden-
tity or energy spectrum of the incident particles. Alternatively, the rate of energy
absorption can be inferred from measurement of the current.

W values for many polyatomic gases are in the range 25–35 eV ip–1. Table 10.1
gives some values for alpha and beta particles in a number of gases.

We have defined W as the average energy needed to produce an ion pair and
expressed it in eV ip–1. Since 1 eV = 1.60 × 10–19 J and the charge separated per
ion pair is 1.60 × 10–19 C, it follows that W has the same numerical value when
expressed either in eV ip–1 or J C–1 (Problem 13).
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Fig. 10.2 W values for electrons, protons, alpha particles,
carbon ions, and nitrogen ions in nitrogen gas as a function of
initial particle energy E. The points represent experimental
data, through which the curves are drawn. (Courtesy Oak Ridge
National Laboratory, operated by Martin Marietta Energy
Systems, Inc., for the Department of Energy.)

Table 10.1 W Values, Wα and Wβ , for Alpha and Beta Particles in Several Gases

Wα Wβ

Gas (eV ip–1) (eV ip–1) Wα/Wβ

He 43 42 1.02
H2 36 36 1.00
O2 33 31 1.06
CO2 36 33 1.09
CH4 29 27 1.07
C2H4 28 26 1.08
Air 36 34 1.06
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Ionization Pulses

In addition to measuring absorbed energy, a parallel-plate ionization chamber op-
erated in the plateau region [Fig. 10.1(b)] can also be used to count particles. When
a charged particle enters the chamber, the potential difference across the plates
momentarily drops slightly while the ions are being collected. After collection, the
potential difference returns to its original value. The electrical pulse that occurs
during ion collection can be amplified and recorded electronically to register the
particle. Furthermore, if the particle stops in the chamber, then, since the number
of ion pairs is proportional to its original energy, the size of each pulse can be used
to determine the energy spectrum. While such measurements can, in principle, be
carried out, pulse ionization chambers are of limited practical use because of the
attendant electronic noise.

The noise problem is greatly reduced in a proportional counter. Such a counter
utilizes a gas enclosed in a tube often made with a fine wire anode running
along the axis of a conducting cylindrical-shell cathode, as shown schematically
in Fig. 10.3. The electric field strength at a distance r from the center of the anode
in this cylindrical geometry is given by

ε(r) = V

r ln(b/a)
, (10.5)

where V is the potential difference between the central anode and the cylinder
wall, b is the radius of the cylinder, and a is the radius of the anode wire. With this
arrangement, very large field strengths are possible when a is small in the region
near the anode, where r is also small. This fact is utilized as follows.

Consider the pulse produced by an alpha particle that stops in the counter gas.
When the applied voltage is low, the tube operates like an ionization chamber. The
number of ion pairs collected, or pulse height, is small if the voltage is low enough

Fig. 10.3 (a) Schematic side view and (b) end view of
cylindrical proportional-counter tube. Variation of electric field
strength with distance r from center of anode along cylindrical
axis is given by Eq. (10.5).
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Fig. 10.4 Regions of operation of gas-filled cylindrical
ionization chamber operated in pulse mode.

to allow recombination. As the potential difference is increased, the size of the
pulse increases and then levels off over the plateau region, typically up to ∼200 V, as
shown in Fig. 10.4. When the potential difference is raised to a few hundred volts,
the field strength near the anode increases to the point where electrons produced
by the alpha particle and its secondary electrons acquire enough energy there to
ionize additional gas atoms. Gas multiplication then occurs, and the number of
ions collected in the pulse is proportional to the original number produced by the
alpha particle and its secondaries. The tube operates as a proportional counter up
to potential differences of ∼700 V and can be used to measure the energy spectrum
of individual alpha particles stopping in the gas. Gas multiplication factors of ∼104

are typical.
When the potential difference is further increased the tube operates with limited

proportionality, and then, at still higher voltage, enters the Geiger–Mueller (GM) re-
gion. In the latter mode, the field near the anode is so strong that any initial ioniza-
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tion of the gas results in a pulse, the size being independent of the number of initial
ion pairs. With still further increase of the voltage, the field eventually becomes so
strong that it ionizes gas atoms directly and the tube continually discharges.

Compared with an alpha particle, the pulse-height curve for a beta particle is
similar, but lower, as Fig. 10.4 shows. The two curves merge in the GM region.

Gas-Filled Detectors

Most ionization chambers for radiation monitoring are air-filled and unsealed, al-
though sealed types that employ air or other gases are common. Used principally
to monitor beta, gamma, and X radiation, their sensitivity depends on the vol-
ume and pressure of the gas and on the associated electronic readout components.
The chamber walls are usually air equivalent or tissue equivalent in terms of the
secondary-electron spectra they produce in response to the radiation.

Ionization chambers are available both as active and as passive detectors. An
active detector, such as that illustrated by Fig. 10.1, gives an immediate reading in
a radiation field through direct processing of the ionization current in an external
circuit coupled to the chamber. Examples of this type of device include the free-air
ionization chamber (Section 12.3) and the traditionally popular cutie pie (Fig. 10.5),
a portable beta–gamma survey rate meter still in use today.

Passive pocket ionization chambers were used a great deal in the past. Basically
a plastic condenser of known capacitance C, the unit is given a charge Q = CV at
a fixed potential difference V before use. Exposure to radiation produces ions in
the chamber volume. These partially neutralize the charge on the chamber and

Fig. 10.5 Portable ionization-chamber survey meter (cutie pie). (Courtesy Victoreen, Inc.)
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cause a voltage drop, �V. The amount of lost charge �Q, which depends on the
energy absorbed, is directly proportional to the measured voltage change: �Q =
C�V. Calibrated self-reading pocket ionization chambers, like that in Fig. 10.6, are
still in use.

Proportional counters can be used to detect different kinds of radiation and, un-
der suitable conditions, to measure radiation dose (Chapter 12). A variety of gases,
pressures, and tube configurations are employed, depending on the intended pur-
poses. The instrument shown in Fig. 10.7 uses a sealed gas proportional-counter

(a) (b)

Fig. 10.6 (a) Direct-reading, condenser-type pocket ionization
chamber. Amount of exposure to X and gamma radiation can
be read on calibrated scale through eyepiece. (b) Charger uses
standard D battery. (Courtesy Arrow-Tech, Inc.)

Fig. 10.7 Proportional-counter monitor for measuring dose and
dose rate. See text. (Courtesy Berthold Technologies USA, LLC.)
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probe to measure dose and dose rate. It can serve as a portable or stationary mon-
itor. Different probes can be attached for different radiations (alpha, beta, gamma,
and neutrons) and for different purposes, such as general surveys, surface contam-
ination monitoring, or air monitoring. The basic control module, which contains
extensive software, identifies the attached probe and automatically adjusts for it.
Proportional-counter tubes may be either of a sealed or gas-flow type. As illus-
trated schematically in Fig. 10.8, the latter type of “windowless” counter is useful
for counting alpha and soft beta particles, because the sample is in direct contact
with the counter gas. Figure 10.9 displays such a system that monitors tritium ac-
tivity concentration in air. The unit on the left regulates the incoming blend of the
counter gas (methane or P-10, a mixture of 90% argon and 10% methane) with air,
and also houses the detector and associated electronics. The unit on the right an-
alyzes and displays the data. Single pulses of tritium beta particles (maximum en-
ergy 18.6 keV) are differentiated from other events by pulse-shape discrimination.

Pulse-height discrimination with proportional counters affords an easy means
for detecting one kind of radiation in the presence of another. For example, to count
a combined alpha–beta source with an arrangement like that in Fig. 10.8(a) or (b),
one sets the discriminator level so that only pulses above a certain size are reg-

Fig. 10.8 Diagram of (a) 2π and (b) 4π gas-flow proportional counters.
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istered. One then measures the count rate at different operating voltages of the
tube, leaving the discriminator level set. The resulting count rate from the alpha–
beta source will have the general characteristics shown in Fig. 10.10. At low volt-
ages, only the most energetic alpha particles will produce pulses large enough to
be counted. Increasing the potential difference causes the count rate to reach a
plateau when essentially all of the alpha particles are being counted. With a further
increase in voltage, increased gas multiplication enables pulses from the beta par-
ticles to surpass the discriminator level and be counted. At still higher voltages, a
steeper combined alpha–beta plateau is reached. The use of proportional counters
for neutron measurements is described in Section 10.7. Gamma-ray discrimination

Fig. 10.9 Gas-flow proportional counter for monitoring tritium
activity concentration in air. See text. (Courtesy Berthold
Technologies USA, LLC.)

Fig. 10.10 Count rate vs. operating voltage for a proportional
counter used with discriminator for counting mixed alpha–beta
sources.
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Fig. 10.11 Portable survey and count-rate meter with optional
GM pancake probe. See text. (Courtesy Fluke Biomedical.)

is used to advantage in monitoring for neutrons in mixed gamma-neutron fields.
The charged recoil nuclei from which the neutrons scatter generally produce large
pulses compared to those from the Compton electrons and photoelectrons pro-
duced by the photons.

Geiger–Mueller counters are very convenient and reliable radiation monitors,
providing both visual and audible responses. They usually come equipped with a
removable shield that covers a thin window to enable the detection of beta and al-
pha particles in addition to gamma rays. Readout can be, e.g., in counts per minute
or in mR h–1 with 137Cs calibration. With the latter, special energy compensation
of the probe is needed to flatten the energy response for low-energy photons. Fig-
ure 10.11 shows an example of a counter with a pancake GM probe. The instrument
is also compatible with other kinds of probes, and can be used to detect alpha, beta,
gamma, and neutron radiation. Examples of various GM and scintillation (Sec-
tion 10.3) probes employed in a variety of applications are shown in Fig. 10.12.

Ideally, after the primary discharge in a GM tube, the positive ions from the
counter gas drift to the cathode wall, where they are neutralized. Because of the
high potential difference, however, some positive ions can strike the cathode with
sufficient energy to release secondary electrons. Since these electrons can initiate
another discharge, leading to multiple pulses, some means of quenching the dis-
charge must be used. By one method, called external quenching, a large resistance
between the anode and high-voltage supply reduces the potential difference after
each pulse. This method has the disadvantage of making the tube slow (∼10–3 s)
in returning to its original voltage. Internal quenching of a GM tube by addition
of an appropriate gas is more common. The quenching gas is chosen with a lower
ionization potential and a more complex molecular structure than the counter gas.
When a positive ion of the counter gas collides with a molecule of the quench-
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Fig. 10.12 Examples of Geiger–Mueller and scintillation probes
with specifications. (Courtesy Fluke Biomedical.)

ing gas, the latter, because of its lower ionization potential, can transfer an elec-
tron to the counter gas, thereby neutralizing it. Positive ions of the quenching gas,
reaching the cathode wall, spend their energy in dissociating rather than producing
secondary electrons. A number of organic molecules (e.g., ethyl alcohol) are suit-
able for internal quenching. Since the molecules are consumed by the dissociation
process, organically quenched GM tubes have limited lifetimes (∼109 counts). Al-
ternatively, the halogens chlorine and bromine are used for quenching. Although
they dissociate, they later recombine. Halogen-quenched GM tubes are often pre-
ferred for extended use, although other factors limit their lifetimes.

10.2
Ionization in Semiconductors

Band Theory of Solids

Section 2.9 briefly described crystalline solids and the origin of the band structure
of their electronic energy levels. In addition to the forces that act on an electron
to produce the discrete bound states in an isolated atom, neighboring atoms in
the condensed phase can also affect its behavior. The influence is greatest on the
motion of the most loosely bound, valence electrons in the atoms and least on
the more tightly-bound, inner-shell electrons. As depicted schematically in Fig. 2.7,
with many atoms present, coalescing of the discrete states into the two bands of
allowed energies with a forbidden gap between them depends on the size of R0,
the orderly spacing of atoms in the crystal. The figure indicates that bands are not
formed if R0 is very large. By the same token, the bands would overlap into a single
continuum with no forbidden gap if R0 is small.
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While the study of crystals is a complex subject, some insight into their electrical
properties can be gained by pursuing these simple physical concepts. With isolated
bands present, the upper hatched area on the far right in Fig. 2.7 is called the con-

duction band, and the lower hatched area, the valence band. Electrically, solids can
be classified as insulators, semiconductors, or conductors. The distinction is manifest
in the mobility of electrons in response to an electric field applied to the solid. This
response, in turn, is intimately connected with the particular atomic/molecular
crystal structure and resultant band gap. The three classifications are represented
in Fig. 10.13. Like most ionic solids (Section 2.9), NaCl, for example, is an insu-
lator. The pairing of the univalent sodium and chlorine atoms completely fills the
valence band, leaving no vacancies into which electrons are free to move. In prin-
ciple, thermal agitation is possible and could provide sufficient energy to promote
some valence electrons into the unoccupied conduction band, where they would be
mobile. However, the probability for this random occurrence is exceedingly small,

Fig. 10.13 Band structure of insulators, semiconductors, and
conductors. Starting from zero at the bottom of the valence
band, the vertical scale shows schematically the energies
spanned by the valence and conduction bands and the
forbidden gap. The energy at the top of the valence band is
denoted by E0. The energy at the bottom of the conduction
band is EC = E0 + EG, where EG is the size of the band gap.
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because the excitation energy required to span the forbidden gap is of the order of
8.5 eV. Generally, when the gap is greater than about 5 eV, the material is an insula-
tor. While the details are different, a similar situation describes the covalent solids.
The width of the band gap in carbon is 5.4 eV, making it an insulator. In silicon
the gap is 1.14 eV and in germanium, 0.67 eV. At absolute zero temperature the
valence bands in these two metals are completely filled and the conduction band is
empty. They are insulators. At room temperatures (kT ∼ 0.025 eV), a small fraction
of their electrons are thermally excited into the conduction band, giving them some
conductivity. Covalent solids having an energy gap ∼1 eV are called intrinsic semi-
conductors. In conductors, the valence and conduction bands merge, as indicated
in Fig. 10.13, providing mobility to the valence electrons. Sodium, with its single
atomic ground-state 3s electron is a conductor in the solid phase.

We focus now on semiconductors and the properties that underlie their impor-
tance for radiation detection and measurement. One can treat conduction electrons
in the material as a system of free, identical spin- 1

2 particles (Sections 2.5, 2.6). They
can exchange energy with one another, but otherwise act independently, like mole-
cules in an ideal gas, except that they also obey the Pauli exclusion principle. Under
these conditions, it is shown in statistical mechanics that the average number N(E)
of electrons per quantum state of energy E is given by the Fermi distribution,

N(E) = 1
e(E–EF)/kT + 1

. (10.6)

Here k is the Boltzmann constant, T is the absolute temperature, and EF is called
the Fermi energy. At any given time, each quantum state in the system is either
empty or occupied by a single electron. The value of N(E) is the probability that a
state with energy E is occupied. To help understand the significance of the Fermi
energy, we consider the distribution at the temperature of absolute zero, T = 0. For
states with energies E > EF above the Fermi energy, the exponential term in the de-
nominator of (10.6) in infinite; and so N(E) = 0. For states with energies below EF,
the exponential term is zero; and so N(E) = 1. Thus, all states in the system be-
low EF are singly occupied, while all above EF are empty. This configuration has
the lowest energy possible, as expected at absolute zero. At temperatures T > 0, the
Fermi energy is defined as that energy for which the average, or probable, number
of electrons is 1

2 .
It is instructive to diagram the relative number of free electrons as a function of

energy in various types of solids at different temperatures. Figure 10.14(a) shows
the energy distribution of electrons in the conduction band of a conductor at a
temperature above absolute zero (T > 0). Electrons occupy states with a thermal
distribution of energies above EC. The lower energy levels are filled, but unoccupied
states are available for conduction near the top of the band. A diagram for the same
conductor at T = 0 is shown in Fig. 10.14(b). All levels with E < EF are occupied and
all with E > EF are unoccupied.

Figure 10.15(a) shows the electron energy distribution in an insulator with T > 0.
The valence band is full and the forbidden-gap energy EG (∼5 eV) is so wide that
the electrons cannot reach the conduction band at ordinary temperatures. Fig-
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Fig. 10.14 Relative number of electrons in the conduction band
of a conductor at absolute temperatures (a) T > 0 and (b) T = 0.

ure 10.15(b) shows a semiconductor in which EG ∼ 1 eV is considerably narrower
than in the insulator. The tail of the thermal distribution [Eq. (10.6)] permits a rel-
atively small number of electrons to have energies in the conduction band. In this
case, the number of occupied states in the conduction band is equal to the number
of vacant states in the valence band and EF lies midway in the forbidden gap at an
energy E0 + EG/2. At room temperature, the density of electrons in the conduction
band is 1.5 × 1010 cm–3 in Si and 2.4 × 1013 cm–3 in Ge.

Semiconductors

Figure 10.16 schematically represents the occupation of energy states for the semi-
conductor from Fig. 10.15(b) with T > 0. The relatively small number of electrons in
the conduction band are denoted with minus signs and the equal number of pos-
itive ions they leave in the valence band with plus signs. The combination of two
charges is called an electron–hole pair, roughly analogous to an ion pair in a gas.
Under the influence of an applied electric field, electrons in the conduction band
will move. In addition, electrons in the valence band move to fill the holes, leaving
other holes in their place, which in turn are filled by other electrons, and so on.
This, in effect, causes the holes to migrate in the direction opposite to that of the
electrons. The motions of both the conduction-band electrons and the valence-band
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Fig. 10.15 Relative number of electrons in valence and
conduction bands of (a) an insulator and (b) a semiconductor
with T > 0.

holes contribute to the observed conductivity. The diagram in Fig. 10.16 represents
an intrinsic (pure) semiconductor. Its inherent conductivity at room temperature
is restricted by the small number of electron–hole pairs, which, in turn, is limited
by the size of the gap compared with kT.

The conductivity of a semiconductor can be greatly enhanced by doping the crys-
tal with atoms from a neighboring group in the periodic system. As an example, we
consider the addition of a small amount of arsenic to germanium.1) When a crystal
is formed from the molten mixture, the arsenic impurity occupies a substitutional

1 The reader is referred to the Periodic Table at
the back of the book.
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Fig. 10.16 Occupation of energy states in an intrinsic
semiconductor at room temperature. A relatively small number
of electrons (–) are thermally excited into the conduction band,
leaving an equal number of holes (+) in the valence band. The
Fermi energy EF lies at the middle of the forbidden gap.

Fig. 10.17 Addition of a small quantity of pentavalent As to Ge
crystal lattice provides very loosely bound “extra” electrons that
have a high probability of being thermally excited into the
conduction band at room temperatures. Arsenic is called a
donor impurity and the resulting semiconductor, n-type.

position in the germanium lattice, as indicated schematically in Fig. 10.17. (The
As atom has a radius of 1.39 Å compared with 1.37 Å for Ge.) Since As has five
valence electrons, there is one electron left over after all of the eight covalent bonds
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have been formed with the neighboring Ge atoms. In Fig. 10.17, two short straight
lines are used to represent a pair of electrons shared covalently by neighboring
atoms and the loop represents, very schematically, the orbit of the extra electron
contributed by As+, which is in the crystal lattice. There is no state for the extra
electron to occupy in the filled valence band. Since it is only very loosely bound to
the As+ ion (its orbit can extend over several tens of atomic diameters), this elec-
tron has a high probability of being thermally excited into the conduction band at
room temperature. The conductivity of the doped semiconductor is thus greatly in-
creased over its value as an intrinsic semiconductor. The amount of increase can
be controlled by regulating the amount of arsenic added, which can be as little as
a few parts per million. An impurity such as As that contributes extra electrons is
called a donor and the resulting semiconductor is called n-type (negative).

Since little energy is needed to excite the extra electrons of an n-type semicon-
ductor into the conduction band, the energy levels of the donor impurity atoms
must lie in the forbidden gap just below the bottom of the conduction band. The
energy-level diagram for Ge doped with As is shown in Fig. 10.18. The donor states
are found to lie 0.013 eV below the bottom of the conduction band, as compared
with the total gap energy, EG = 0.67 eV, for Ge. At absolute zero all of the donor
states are occupied and no electrons are in the conduction band. The Fermi en-
ergy lies between the donor levels and the bottom of the conduction band. As T is
increased, thermally excited electrons enter the conduction band from the donor
states, greatly increasing the conductivity. Antimony can also be used as a donor
impurity in Ge or Si to make an n-type semiconductor.

Another type of semiconductor is formed when Ge or Si is doped with gallium
or indium, which occur in the adjacent column to their left in the periodic system.

Fig. 10.18 Energy-level diagram for Ge crystal containing As
donor atoms (n-type semiconductor).
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Fig. 10.19 Energy-level diagram for Ge crystal containing Ga
acceptor atoms (p-type semiconductor).

In this case, the valence shell of the interposed impurity atom has one less electron
than the number needed to form the regular covalent crystal. Thus, the doped crys-
tal contains positively charged “holes,” which can accept electrons. The dopant is
then called an acceptor impurity and the resulting semiconductor, p-type (positive).
Holes in the valence band move like positive charges as electrons from neighbor-
ing atoms fill them. Because of the ease with which valence-band electrons can
move and leave holes with the impurity present, the effect of the acceptor impurity
is to introduce electron energy levels in the forbidden gap slightly above the top
of the valence band. Figure 10.19 shows the energy-level diagram for a p-type Ge
semiconductor with Ga acceptor atoms added. The action of the p-type semicon-
ductor is analogous to that of the n-type. At absolute zero all of the electrons are in
the valence band, the Fermi energy lying just above. When T > 0, thermally excited
electrons occupy acceptor-level states, giving enhanced conductivity to the doped
crystal.

Semiconductor Junctions

The usefulness of semiconductors as electronic circuit elements and for radiation
measurements stems from the special properties created at a diode junction where
n- and p-type semiconductors are brought into good thermodynamic contact. Fig-
ure 10.20 shows an electron energy-level diagram for an n–p junction. The two
semiconductor types in contact form a single system with its own characteristic
Fermi energy EF. Because EF lies just below the conduction band in the isolated
n region and just above the valence band in the isolated p region, the bands must
become deformed over the junction region, as shown in the figure. When the n-
and p-type semiconductors are initially brought into contact, electrons flow from
the donor impurity levels on the n side over to the lower-energy acceptor sites on
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Fig. 10.20 Energy-level diagram for n–p junction.

the p side. This process accumulates negative charge on the p side of the junc-
tion region and leaves behind immobile positive charges on the n side in the form
of ionized donor impurity atoms. The net effect at equilibrium is the separation of
charge across the junction region (as indicated by the + and – symbols in Fig. 10.20)
and the maintenance of the deformed bands.

Even with thermal equilibrium, electrons move both ways through the junction
region. With reference to Fig. 10.20, thermal agitation will cause some electrons
to get randomly promoted into the conduction band in the p region, at the same
time leaving holes in the valence band. A promoted electron can then travel freely
to the junction region, where it will be drawn into the n region. This process gives
rise to a spontaneous thermal current of electrons in the direction from the p to
the n side of the junction. Also, some conduction-band electrons in the n region
randomly receive enough energy to be able to move into the p region. There an
electron can combine with a vacated hole in the valence band. This process provides
a recombination current of electrons from the n to the p side. It balances the thermal
current, so that no net charge flows through the device. Holes in the valence band
appear to migrate by being successively filled by neighboring electrons, thus acting
like positive charge carriers. Silicon devices (1.14 eV band gap) operate at room
temperatures. The smaller gap of germanium (0.67 eV) necessitates operation at
low temperatures (e.g., 77 K, liquid nitrogen) to suppress thermal noise.
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The junction region over which the charge imbalance occurs is also called the
depletion region, because any mobile charges initially there moved out when the
two sides were joined. The depletion region acts, therefore, like a high-resistivity
parallel-plate ionization chamber, making it feasible to use it for radiation detec-
tion. Ion pairs produced there will migrate out, their motion giving rise to an
electrical signal. The performance of such a device is greatly improved by using
a bias voltage to alleviate recombination and noise problems. The biased junction
becomes a good rectifier, as described next.

Consider the n–p junction device in Fig. 10.21(a) with the negative side of an
external bias voltage V applied to the n side. When compared with Fig. 10.20, it is
seen that the applied voltage in this direction lowers the potential difference across
the junction region and causes a relatively large current I to flow in the circuit. Bias
in this direction is called forward, and a typical current–voltage curve is shown at
the right in Fig. 10.21(a). One obtains a relatively large current with a small bias
voltage. When a reverse bias is applied in Fig. 10.21(b), comparison with Fig. 10.20
shows that the potential difference across the junction region increases. Therefore,
a much smaller current flows—and in the opposite direction—under reverse bias,
as illustrated on the right in Fig. 10.21(b). Note the vastly different voltage and cur-
rent scales on the two curves in the figure. Such n–p junction devices are rectifiers,
passing current readily in one direction but not the other.

Fig. 10.21 (a) Forward- and (b) reverse-biased n–p junctions
and typical curves of current vs. voltage. Note the very different
scales used for the two curves. Such an n–p junction is a good
rectifier.
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Radiation Measuring Devices

The reverse-biased n–p junction constitutes an attractive radiation detector. The
depletion region, which is the active volume, has high resistivity, and ions produced
there by radiation can be collected swiftly and efficiently. It can serve as a rate meter
or to analyze pulses. The number of electron–hole pairs produced in a pulse is
proportional to the energy absorbed in the active volume, and so the junction can
be used as a spectrometer. The “W values” for Si and Ge are, respectively, 3.6 eV
and 3.0 eV per electron–hole pair, as compared with the corresponding figure of
∼30 eV per ion pair in gases. Statistically, the relatively large number of charge
carriers produced per unit energy absorbed in semiconductors endows them with
much better energy resolution than other detectors. Unique among detectors is
the fact that the physical size of the depletion region can be varied by changing the
bias voltage. For measuring alpha and beta radiation, junctions are fabricated with a
very thin surface barrier between the outside of the device and the depletion region.
Several examples of semiconductor radiation instruments will be briefly described.

Electronic dosimeters have advanced rapidly in recent years. They are in wide-
spread use, particularly in nuclear power-plant, home-security, and military applica-
tions. Figure 10.22 shows a silicon diode personal electronic dosimeter for photons
in the energy range 50 keV to 6 MeV. Other models in the series measure photons
down to 20 keV and beta radiation. The unit operates as both a passive and an active
dosimeter. It has adjustable dose and dose-rate warning and alarm levels. It can be
used either in an autonomous or in a satellite mode, with remote computer inter-
facing with exposure-records management software. The device performs regular
internal operating checks and reports dose increments, date, and time at specified
intervals. A microprocessor counts pulses, converts them to dose, and calculates
dose rate.

High-purity germanium (HPGe) detectors are available for a wide variety of tasks
(Fig. 10.23). The crystals are housed in a vacuum-tight cryostat unit, which typically
contains the preamplifier in a cylindrical package. Depending on the intended ap-
plication, germanium detectors come in a number of different planar and coaxial
configurations.

A light-weight, rugged, portable multichannel analyzer for gamma spectra is
shown in Fig. 10.24. It is controlled from a key pad connected through an interface
module to the HPGe detector. The unit has 16k channels and gives a live display
of data being acquired. It holds 23 spectra in its internal memory. Nuclide ID and
activity calculations are performed by using stored calibration information. The in-
strument can also interface with a computer to utilize other software applications.

CZT is the name given to cadmium zinc telluride semiconductors, which oper-
ate at normal temperatures. The relatively high-density crystal is advantageous for
stopping secondary electrons. The resolution is intermediate between Ge and Si.
With its high sensitivity for gamma detection, CTZ applications include homeland
security, waste effluent monitoring, and first-responder technology. Detectors, such
as the one shown in Fig. 10.25, are small, rugged, programmable, and operate with
very low energy consumption.
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Fig. 10.22 Silicon diode electronic dosimeter. See text for
description. (Courtesy MGP Instruments, Inc.)

The sensitive lung counter in Fig. 10.26 employs three coaxial HPGe crystal
detectors. It is specially designed to measure the relatively low-energy (15 keV–
400 keV) gamma and X rays emitted by uranium and other actinides in the lung
(e.g., 241Am, 239Pu, 238Pu, 237Np). If there is insoluable material in the organ, it is
not amenable to bioassay monitoring. External measurements to identify the weak
photons in the presence of background entail considerable technical challenges.
The counter is calibrated with torso phantoms, employing a series of chest-wall
plates, like the one shown in the figure. Calibration phantoms, having differing
thicknesses of overlay and fat-to-muscle ratios are used to better represent a wide
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Fig. 10.23 Examples of HPGe detectors. (Courtesy Canberra, Inc.)

Fig. 10.24 Portable HPGe multichannel analyzer. (Image
provided courtesy of ORTEC, a brand of Advanced
Measurement Technology, AMETEK.)
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Fig. 10.25 Cadmium zinc telluride (CZT) crystal detector. (Courtesy RFTrax, Inc.)

Fig. 10.26 ORNL lung counter with calibration torso. See text.
(Courtesy Robert L. Coleman, Oak Ridge National Laboratory,
managed by UT-Battelle, LLC, for the U.S. Department of
Energy.)
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Fig. 10.27 Particle identifier.

range of male and female subjects. Ultrasound measurements are used to corre-
late calibration parameters with the height and weight of persons being measured.
For reduced background, the facility is shielded by 14-inch thick irreplaceable steel
from pre-World-War II battleships, free of radioisotopes of cobalt, cesium, and
other nuclides of the atomic age.

The particle identifier utilizes two detectors in the configuration shown in
Fig. 10.27. A heavy particle passes through a thin detector (1) and is stopped in
a thick detector (2). The pulse height from 1 is proportional to the stopping power,
–dE/dx, and that from 2 is proportional to the kinetic energy, E = Mv2/2, with
which the particle enters it, where M is the particle’s mass and v is its velocity. The
signals from 1 and 2 can be combined electronically in coincidence to form the
product E(–dE/dx). Since the ln term in the stopping-power formula [Eq. (5.23)]
varies slowly with the particle energy E, it follows that

E

(
–

dE

dx

)
= kz2M, (10.7)

approximately, where z is the particle’s charge and k is a constant of proportionality.
The quantity z2M, which is thus determined by the measurement, is characteristic
of a particular heavy particle, which can then be identified.

10.3
Scintillation

General

Scintillation was the first method used to detect ionizing radiation (Roentgen hav-
ing observed the fluorescence of a screen when he discovered X rays). When ra-
diation loses energy in a luminescent material, called a scintillator or phosphor,
it causes electronic transitions to excited states in the material. The excited states
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decay by emitting photons, which can be observed and related quantitatively to the
action of the radiation. If the decay of the excited state is rapid (10–8 or 10–9 s), the
process is called fluorescence; if it is slower, the process is called phosphorescence.

Scintillators employed for radiation detection are usually surrounded by reflect-
ing surfaces to trap as much light as possible. The light is fed into a photomulti-
plier tube for generation of an electrical signal. There a photosensitive cathode con-
verts a fraction of the photons into photoelectrons, which are accelerated through
an electric field toward another electrode, called a dynode. In striking the dynode,
each electron ejects a number of secondary electrons, giving rise to electron mul-
tiplication. These secondary electrons are then accelerated through a number of
additional dynode stages (e.g., 10), achieving electron multiplication in the range
107–1010. The magnitude of the final signal is proportional to the scintillator light
output, which, under the right conditions, is proportional to the energy loss that
produced the scintillation.

Since materials emit and absorb photons of the same wavelength, impurities are
usually added to scintillators to trap energy at levels such that the wavelength of
the emitted light will not fall into a self-absorption region. Furthermore, because
many substances, especially organic compounds, emit fluorescent radiation in the
ultraviolet range, impurities are also added as wavelength shifters. These lead to the
emission of photons of visible light, for which glass is transparent and for which
the most sensitive photomultiplier tubes are available.

Good scintillator materials should have a number of characteristics. They should
efficiently convert the energy deposited by a charged particle or photon into de-
tectable light. The efficiency of a scintillator is defined as the fraction of the energy
deposited that is converted into visible light. The highest efficiency, about 13%, is
obtained with sodium iodide. A good scintillator should also have a linear energy
response; that is, the constant of proportionality between the light yield and the
energy deposited should be independent of the particle or photon energy. The lu-
minescence should be rapid, so that pulses are generated quickly and high count
rates can be resolved. The scintillator should also be transparent to its own emit-
ted light. Finally, it should have good optical quality for coupling to a light pipe or
photomultiplier tube. The choice of a particular scintillation detector represents a
balancing of these factors for a given application.

Two types of scintillators, organic and inorganic, are used in radiation detection.
The luminescence mechanism is different in the two.

Organic Scintillators

Fluorescence in organic materials results from transitions in individual molecules.
Incident radiation causes electronic excitations of molecules into discrete states,
from which they decay by photon emission. Since the process is molecular, the
same fluorescence can occur with the organic scintillator in the solid, liquid, or
vapor state. Fluorescence in an inorganic scintillator, on the other hand, depends
on the existence of a regular crystalline lattice, as described in the next section.
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Organic scintillators are available in a variety of forms. Anthracene and stilbene
are the most common organic crystalline scintillators, anthracene having the high-
est efficiency of any organic material. Organic scintillators can be polymerized
into plastics. Liquid scintillators (e.g., xylene, toluene) are often used and are prac-
tical when large volumes are required. Radioactive samples can be dissolved or
suspended in them for high-efficiency counting. Liquid scintillators are especially
suited for measuring soft beta rays, such as those from 14C or 3H. High-Z elements
(e.g., lead or tin) are sometimes added to organic scintillator materials to achieve
greater photoelectric conversion, but usually at the cost of decreased efficiency.

Compared with inorganic scintillators, organic materials have much faster re-
sponse, but generally yield less light. Because of their low-Z constituents, there
are little or no photoelectric peaks in gamma-ray pulse-height spectra without the
addition of high-Z elements. Organic scintillators are generally most useful for
measuring alpha and beta rays and for detecting fast neutrons through the recoil
protons produced.

Inorganic Scintillators

Inorganic scintillator crystals are made with small amounts of activator impuri-
ties to increase the fluorescence efficiency and to produce photons in the visible
region. As shown in Fig. 10.28, the crystal is characterized by valence and con-
duction bands, as described in Section 10.2. The activator provides electron energy
levels in the forbidden gap of the pure crystal. When a charged particle interacts
with the crystal, it promotes electrons from the valence band into the conduction
band, leaving behind positively charged holes. A hole can drift to an activator site
and ionize it. An electron can then drop into the ionized site and form an excited
neutral impurity complex, which then decays with the emission of a visible pho-
ton. Because the photon energies are less than the width of the forbidden gap, the
crystal does not absorb them.

Fig. 10.28 Energy-level diagram for activated crystal scintillator.
Because the energy levels of the activator complex are in the
forbidden gap, the crystal is transparent at the fluorescent
photon energies hν.
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The alkali halides are good scintillators. In addition to its efficient light yield,
sodium iodide doped with thallium [NaI(Tl)] is almost linear in its energy response.
It can be machined into a variety of sizes and shapes. Disadvantages are that it is
hygroscopic and somewhat fragile. NaI has become a standard scintillator material
for gamma-ray spectroscopy. CsI(Na), CsI(Tl), and LiI(Eu) are examples of other
inorganic scintillators. Silver-activated zinc sulfide is also commonly used. It is
available only as a polycrystalline powder, from which thin films and screens can
be made. The use of ZnS, therefore, is limited primarily to the detection of heavy
charged particles. (Rutherford used ZnS detectors in his alpha-particle scattering
experiments.) Glass scintillators are also widely used.

Two examples of scintillator probes are displayed in Fig. 10.29. In addition to the
detector material, each contains a photomultiplier tube, which is reflected in its
size. The unit on the left is used for gamma surveys. It has a cylindrical NaI(Tl)
crystal with a height and diameter of 2.5 cm. It operates between 500 V and 1200 V.
The unit on the right uses ZnS and is suitable for alpha/beta surveys. It operates
in the same voltage range. The window area is approximately 100 cm2.

Specialized scintillation devices have been designed for other specific purposes.
One example is the phoswich (= phosphor sandwich) detector, which can be used
to count beta particles or low-energy photons in the presence of high-energy pho-
tons. It consists of a thin NaI(Tl) crystal in front coupled to a larger scintillator
of another material, often CsI(Tl), having a different fluorescence time. Signals
that come from the photomultiplier tube can be distinguished electronically on
the basis of the different decay times of the two phosphors to tell whether the
light came only from the thin front crystal or from both crystals. In this way, the
low-energy radiation can be counted in the presence of a high-energy gamma-ray
background.

Figure 10.30 shows a pulse-height spectrum measured with a 4 × 4 in. NaI(Tl)
scintillator exposed to 662-keV gamma rays from 137Cs. Several features should
be noted. Only those photons that lose all of their energy in the crystal contribute
to the total-energy peak, also called the photopeak. These include incident photons
that produce a photoelectron directly and those that undergo one or more Compton

Fig. 10.29 Examples of scintillation probes: (left) NaI(Tl) for
gamma surveys; (right) ZnS for alpha/beta monitoring.
(Courtesy Ludlum Instruments, Inc.)
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Fig. 10.30 Pulse-height spectrum measured with 4 × 4 in.
NaI(Tl) scintillator exposed to 662-keV gamma rays from 137Cs.
The resolution is about 8% of the peak energy. The maximum
Compton-electron energy is 478 keV. [Reprinted with
permission from R. D. Evans, “Gamma Rays,” in American
Institute of Physics Handbook, 3d ed., p. 8-210, McGraw-Hill,
New York (1972). Copyright 1972 by McGraw-Hill Book
Company.]

scatterings and then produce a photoelectron. In the latter case, the light produced
by the Compton recoil electrons and that produced by the final photoelectron com-
bine to yield a single scintillation pulse around 662 keV. (The light produced by
Auger electrons and characteristic X rays absorbed in the crystal is also included in
the same pulse, these processes taking place rapidly.) Other photons escape from
the crystal after one or more Compton scatterings, and therefore do not deposit
all of their energy in producing the scintillation. These events give rise to the con-
tinuous Compton distribution at lower pulse heights, as shown in the figure. The
Compton edge at 478 keV is the maximum Compton-electron recoil energy, Tmax,
given by Eq. (8.20). The pulses that exceed Tmax in magnitude come from two or
more Compton recoil electrons produced by the photon before it escapes from the
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crystal. The backscatter peak is caused by photons that are scattered into the scintil-
lator from surrounding materials. The energy of a 137Cs gamma ray that is scattered
at 180◦ is 662 – Tmax = 662 – 478 = 184 keV. The backscattered radiation peaks at an
energy slightly above this value, as shown.

The relative area under the total-energy peak and the Compton distribution in
Fig. 10.30 depends on the size of the scintillator crystal. If the crystal is very large,
then relatively few photons escape. Most of the pulses occur around 662 keV. If it is
small, then only single interactions are likely and the Compton continuum is large.
In fact, the ratio of the areas under the total-energy peak and the Compton distri-
bution in a small detector is equal to the ratio of the photoelectric and Compton
cross sections in the crystal material.

The occurrence of so-called escape peaks is accentuated when a detector is small,
whether it be a scintillator or semiconductor. In NaI, for example, when a K-shell
vacancy in iodine following photoelectric absorption is filled by an L-shell electron,
a 28-keV characteristic X ray is emitted. The X ray will likely escape if the crystal is
small, and a pulse size of hν0 – 28 keV will be registered, where hν0 is the energy
of the incident photon. When the incident photons are monoenergetic, the pulse-
height spectrum shows the escape peak, as illustrated in Fig. 10.31. The relative
size of the peaks at the two energies hν0 and hν0 – 28 keV depends on the physical
dimensions of the NaI crystal. Germanium has an X-ray escape peak 11 keV below
the photopeak. Another kind of escape peak can occur in the pulse-height spectra
of monoenergetic high-energy photons of energy hν0, which produce electron–
positron pairs in the detector. The positron quickly stops and annihilates with an

Fig. 10.31 When characteristic X rays from iodine escape from
a NaI scintillator, an escape peak appears 28 keV below the
photopeak.
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atomic electron, producing two 0.511-MeV photons. In small detectors one or both
annihilation photons can escape without interacting, leading to escape peaks at the
energies hν0 – 0.511 and hν0 – 1.022 MeV.

An example of a portable NaI gamma analyzer for laboratory and field use is
shown in Fig. 10.32. It has 512 channels and can store 30 spectra in memory. The
instrument displays spectra and dose rates, as seen in the figure. Software includes
peak analysis, nuclide identification search, and capability for data transfer. Ad-
justable alarm thresholds with an audible signal can be set.

Example

Monoenergetic 450-keV gamma rays are absorbed in a NaI(Tl) crystal having an
efficiency of 12%. Seventy-five percent of the scintillation photons, which have an
average energy of 2.8 eV, reach the cathode of a photomultiplier tube, which con-
verts 20% of the incident photons into photoelectrons. Assume that variations in the
pulse heights from different gamma photons are due entirely to statistical fluctua-
tions in the number of visible photons per pulse that reach the cathode. (a) Calculate
the average number of scintillation photons produced per absorbed gamma photon.
(b) How many photoelectrons are produced, on the average, per gamma photon?
(c) What is the average energy expended by the incident photon to produce a pho-
toelectron from the cathode of the photomultiplier tube (the “W value”)? (d) Com-
pare this value with the average energy needed to produce an ion pair in a gas or a
semiconductor.

Solution

(a) The total energy of the visible light produced with 12% efficiency is 450 keV ×
0.12 = 54.0 keV. The average number of scintillation photons is therefore 54,000/
2.8 = 19,300. (b) The average number of photons that reach the photomultiplier cath-
ode is 0.75 × 19,300 = 14,500, and so the average number of photoelectrons that
produce a pulse is 0.20 × 14,500 = 2900. (c) Since one 450-keV incident gamma
photon produces an average of 2900 photoelectrons that initiate the signal, the
“W value” for the scintillator is 450,000/2900 = 155 eV/photoelectron. (d) For gases,
W ∼ 30 eV ip–1; and so the average number of electrons produced by absorption of
a photon would be about 450,000/30 = 15,000. For a semiconductor, W ∼ 3 eV ip–1

and the corresponding number of electrons would be 150,000. A “W value” of sev-
eral hundred eV per electron produced at the photocathode is typical for scintillation
detectors. Energy resolution is discussed in Section 11.11.

The energy resolution of a spectrometer depends on several factors, such as the
efficiency of light or charge collection and electronic noise. Resolution is also inher-
ently limited by random fluctuations in the number of charge carriers collected when
a given amount of energy is absorbed in the detector. As the last example shows, the
number of charge carriers produced in germanium is substantially larger than that
in a scintillator. Therefore, as discussed in the next chapter, the relative fluctuation
about the mean—the inherent resolution—is much better for germanium. The up-
per panel in the example presented in Fig. 10.33 compares pulse-height spectra mea-
sured with a NaI detector for pure 133Ba and for a mixture of 133Ba and 239Pu. The
soft Pu gamma photons, at energies marked by the arrows, are not distinguished.
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(a)

(b)
Fig. 10.32 (a) Hand-held NaI gamma analyzer and dose-rate
meter with (b) close-up of display. (Courtesy Berthold
Technologies USA, LLC.)
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Fig. 10.33 Comparison of spectra of 133Ba and 133Ba-239Pu
mixture made with NaI and HPGe detectors. (Image provided
courtesy of ORTEC, a brand of Advanced Measurement
Technology, AMETEK.)

The lower panel compares the same spectra measured with HPGe. With this much
greater resolution, the presence of both nuclides is unmistakable.

Research has accelerated on the development of new scintillation as well as other
methods of radiation detection, driven by concerns for homeland security. Large inor-
ganic scintillators provide the most sensitive means for general detection of gamma
rays. Promising new approaches in this direction include the investigation of cerium-
doped lanthanum halides, LaCl3 : Ce3+ and LaBr3 : Ce3+. Large crystals can be pro-
duced with relatively high light yield and good energy resolution. Figure 10.34 shows
radiation monitors in place at a typical border crossing into the United States.
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Fig. 10.34 Sensitive monitors installed at
portals in passenger lanes of border crossings
into the U.S. can detect small amounts of
radioactive material. Alarms are sometimes
triggered by naturally radioactive agricultural
products, ceramic tiles, and occasionally by a
passenger, recently administered radioactive

thalium, technetium, or iodine by a physician.
(Courtesy Joseph C. McDonald. Reprinted with
permission from “Detecting Illicit Radioactive
Sources,” by Joseph C. McDonald, Bert M.
Coursey, and Michael Carter in Physics Today,
November 2004. Copyright 2004, American
Institute of Physics.)

10.4
Photographic Film

Since the early days of experience with ionizing radiation, films have been used ex-
tensively for detection and measurement. (Recall from Section 1.3 how Becquerel
discovered radioactivity.) Film emulsions contain small crystals of a silver halide
(e.g., AgBr), suspended in a gelatine layer spread over a plastic or glass surface,
wrapped in light-tight packaging. Under the action of ionizing radiation, some sec-
ondary electrons released in the emulsion become trapped in the crystalline lattice,
reducing silver ions to atomic silver. Continued trapping leads to the formation of
microscopic aggregates of silver atoms, which comprise the latent image. When
developed, the latent images are converted into metallic silver, which appears to
the eye as darkening of the film. The degree of darkening, called the optical den-
sity, increases with the amount of radiation absorbed. An optical densitometer can
be used to measure light transmission through the developed film.

Badges containing X-ray film packets have been worn, clipped to the clothing,
for beta–gamma personnel radiation-dose monitoring and for worker identifica-
tion. As discussed below, doses from gamma and beta radiation can be inferred by
comparing densitometer readings from exposed film badges with readings from
a calibrated set of films given different, known doses under the same conditions.
The darkening response of film to neutrons, on the other hand, is too weak to be
used in this way for neutron personnel monitoring. Instead, special fine-grain, nu-
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clear track emulsions are employed. The tracks of individual recoil protons that
neutrons produce in the emulsion are then observed and counted under a micro-
scope. The work is tedious, and the technique is limited by the fact that the ranges
of recoil protons with energies less than about 2.5 MeV are too short to produce
recognizable tracks.

Film calibration and the use of densitometer readings to obtain dose would ap-
pear, in principle, to be straightforward. In practice, however, the procedure is com-
plicated by a number of factors. First, the density produced in film from a given
dose of radiation depends on the emulsion type and the particular lot of the man-
ufacturer. Second, firm is affected by environmental conditions, such as exposure
to moisture, and by general aging. Elevated temperatures contribute to base fog
in an emulsion before development. Third, significant variations in density are
introduced by the steps inherent in the film-development process itself. These in-
clude the type, concentration, and age of the developing solution as well as the
development time and handling through agitation, rinsing, and fixing. Variations
from these sources are significantly reduced by applying the following procedure
to both the film dosimeters worn by workers and those used for the calibration of
the dosimeters. All units should be from the same manufacturer’s production lot,
stored and handled in similar fashion, developed at the same time under the same
conditions, and read with a single densitometer, and even by a single operator. Ex-
perience shows that an acceptable degree of reproducibility can be thus attained.

A serious problem of a different nature for dose determination is presented by
the strong response of film to low-energy photons. The upper curve in Fig. 10.35
illustrates the relative response (darkening) of film enclosed in thin plastic to a fixed
dose of monoenergetic photons as a function of their energy. From about 5 MeV
down to 200 keV, the relative response, set at unity in the figure, is flat. Below about
200 keV, the rising photoelectric absorption cross section of the silver in the film
leads increasingly to more blackening at the fixed dose than would occur if film
were tissue- or air-equivalent. The relative response peaks at around 40 keV and
then drops off at still lower energies because of absorption of the photons in the
packaging material around the film.

The lower curve in Fig. 10.35 shows the relative response when the incident
radiation passes through a cadmium absorber of suitable thickness placed over the
film. The absorption of photons in the cadmium filter tends to compensate for the
over-response of the film at low energies, while having little effect at high energies,
thus extending the usefulness of the badge to lower-energy photons.

Film badges are also used for personnel monitoring of beta radiation, for which
there is usually negligible energy dependence of the response. For mixed beta–
gamma radiation exposures, the separate contribution of the beta particles is as-
sessed by comparing (1) the optical density behind a suitable filter that absorbs
them and (2) the density through a neighboring “open window.” The latter consists
only of the structural material enclosing the film. Since beta particles have short
ranges, a badge that has been exposed to them alone will be darkened behind the
open window, but not behind the absorbing filter. Such a finding would also result
from exposure to low-energy photons. To distinguish these from beta particles, one
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Fig. 10.35 Relative response of film to a fixed dose of
monoenergetic photons as a function of energy. Upper curve is
for film covered only with thin layer of plastic. Lower curve is for
film covered with a cadmium filter to compensate for the
over-response to low-energy photons.

can employ two additional filters, one of high and the other of low atomic number,
such as silver and aluminum. They should have the same density thickness, so as
to be equivalent beta-particle absorbers. The high-Z filter will strongly absorb low-
energy photons, which are attenuated less by the low-Z material. The presence of
low-energy photons will contribute to a difference in darkening behind the two.

Figure 10.36 shows an exploded view of a multi-purpose film badge used at sev-
eral sites from about 1960 to 1980. It was designed for routine beta–gamma and
neutron personnel monitoring; criticality applications; assessment of a large, acci-
dental gamma dose; and for personal security identification. The laminated picture
front, identifying the wearer, was of low-Z material. An assembly, comprised of fil-
ters and other units, was placed behind the picture and in front of the film packs,
which included both X-ray and nuclear track emulsions. There were four filter ar-
eas in the assembly through which radiation could pass to reach the firm. (1) At
the window position, the only material traversed in addition to the laminated pic-
ture (52 mg cm–2) was the paper wrapper around the film (28 mg cm–2), giving
a total density thickness of 80 mg cm–2. (2) The (low-Z) plastic filter had a thick-
ness of about 215 mg cm–2. (3) A gold foil was sandwiched between two pieces of
cadmium, each 0.042 cm thick. The combination presented a Cd-Au-Cd absorber
thickness of about 1000 mg cm–2. (4) The aluminum filter (275 mg cm–2) was pro-
visionally included at the time for eventual help in determining the effective energy
of photon exposures.
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Fig. 10.36 Multi-element film badge in use during the period
1960–1980. [From W. T. Thornton, D. M. Davis, and
E. D. Gupton, The ORNL Badge Dosimeter and its Personnel
Monitoring Applications, Report ORNL-3126, Oak Ridge, TN
(1961).]

Readings from badges worn by personnel were analyzed to provide a number of
dose quantities, as mandated by regulations, basically in the following ways. The
optical density behind the Cd-Au-Cd filter served as a measure of “deep dose” to
tissues inside the body. The thickness of the plastic filter plus the picture and film
wrapper (300 mg cm–2) corresponded to the 3-mm depth specified for the lens of
the eye. Assessment of “skin dose” (specified at a depth of 7 mg cm–2) was based
on the Cd-Au-Cd reading and the difference between the densities behind the win-
dow and the plastic filter. Depending on the particular beta fields anticipated, an
empirical constant was worked out for weighting this difference in the evaluation
of the skin dose. The numerical value of the constant was determined from cali-
bration with a particular beta source, often natural uranium. Considerable uncer-
tainty attended determination of skin dose from a badge exposed to an unknown
beta–gamma radiation field. The fluence of fast neutrons was proportional to the
number of recoil proton tracks observed in the film behind the Cd-Au-Cd filter,
which strongly absorbed thermal neutrons. Thermal neutrons produced protons
of 0.524 MeV energy in the 14N(n,p)14C reaction with nitrogen (Section 9.7) in the
emulsions. These were observed in the window portion of the film, and their num-
ber was proportional to the fluence of thermal neutrons. These data plus knowledge
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of tissue composition and neutron cross sections were applied to estimate neutron
doses.

As mentioned, the badge in Fig. 10.36 served other purposes in addition to per-
sonal identification and routine radiation monitoring. As an adjunct, three silver
meta-phosphate glass rods could measure gamma doses in excess of 100 rad (Sec-
tion 12.2) and also responded to thermal neutrons. The three rods were surrounded
by different shields of lead, copper, and plastic. Comparing their relative responses
gave an indication of the effective energy of the photons. The response of the glass
rods would be potentially important for accidental exposures to high-level radia-
tion. The chemical dosimeter could enable a swift visual indication of persons ex-
posed in an incident. Several elemental foils with different neutron-activation en-
ergy thresholds were included to provide data about the neutron energy spectrum
in case of a criticality accident (Section 10.9). A 0.5-g sulfur pellet is activated ef-
fectively only by neutrons with energies greater than about 3.2 MeV (Section 9.7).
There were two gold foils, which are activated by thermal neutrons. One was en-
closed in the Cd-Au-Cd filter and the other was inserted bare behind the sulfur
pellet. Significant exposure to neutrons in a criticality accident can be readily iden-
tified by the induced activity in the indium foil contained in the badge (Section 9.7).
Activity induced in the gold could also serve the same purpose. Although less sen-
sitive than indium, the longer half-life of 198Au (2.696 d) compared with 116mIn
(54.15 min) is an advantage.

Multi-element film dosimeters for personnel monitoring became largely re-
placed by thermoluminescent dosimeters (next section) during the 1980s. How-
ever, film badges still serve in many applications, such as hospitals, universities,
and small laboratories, where radiation fields are relatively uncomplicated and well
known.

10.5
Thermoluminescence

In connection with Fig. 10.28, we described how ionizing radiation can produce
electron–hole pairs in an inorganic crystal. These lead to the formation of excited
states with energies that lie in the forbidden gap when particular added activator
impurities are present. In a scintillation detector, it is desirable for the excited states
to decay quickly to the ground states, so that prompt fluorescence results. In an-
other class of inorganic crystals, called thermoluminescent dosimeters (TLDs), the
crystal material and impurities are chosen so that the electrons and holes remain
trapped at the activator sites at room temperature. Placed in a radiation field, a TLD
crystal serves as a passive integrating detector, in which the number of trapped elec-
trons and holes depends on its radiation exposure history.

After exposure, the TLD material is heated. As the temperature rises, trapped
electrons and holes migrate and combine, with the accompanying emission of pho-
tons with energies of a few eV. Some of the photons enter a photomultiplier tube
and produce an electronic signal. The sample is commonly processed in a TLD
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Fig. 10.37 Typical TLD glow curve.

reader, which automatically heats the material, measures the light yield as a func-
tion of temperature, and records the information in the form of a glow curve, such
as that shown in Fig. 10.37. Typically, several peaks occur as traps at different en-
ergy levels are emptied. The total light output or the area under the glow curve can
be compared with that from calibrated TLDs to infer radiation dose. All traps can
be emptied by heating to sufficiently high temperature, and the crystal reused.

A number of TLD materials are in use. Manganese-activated calcium sulfate,
CaSO4 : Mn, is sensitive enough to measure doses of a few tens of µrad. Its traps
are relatively shallow, however, and it has the disadvantage of “fading” significantly
in 24 h. CaSO4 : Dy is better. Another popular TLD crystal is LiF, which has in-
herent defects and impurities and needs no added activator. It exhibits negligible
fading and is close to tissue in atomic composition. It can be used to measure
gamma-ray doses in the range of about 0.01–1000 rad. Other TLD materials in-
clude CaF2 : Mn, CaF2 : Dy, and Li2B4O7 : Mn.

Figure 10.38 shows schematic drawings of two TLD personnel dosimeters. The
beta–gamma system on the left has four LiF chips. Elements 1, 2, and 3 are Har-
shaw TLD-700 material, which is essentially pure 7LiF and, therefore, insensitive
to neutrons.2) The first chip has a thickness of 0.015 in = 0.38 mm, and is situated
behind 1,000 mg cm–2 of Teflon and plastic to measure the regulatory “deep dose”
(Section 14.9). Chip 2 is set behind a thin absorber and a 0.004 in = 0.10 mm layer
of copper, giving a total thickness of 333 mg cm–2. The copper filters out low-energy
photons while transmitting some beta particles. Its response, compared with that
of chip 3 behind a thin absorber (“open window”) for low-energy photon discrim-
ination, is used for the assessment of shallow dose (Section 14.9). The remaining
element 4 consists of TLD-600, which is enriched to about 96% in the isotope 6Li.
This chip is sensitive to thermal neutrons and is at the regulatory depth of the lens
of the eye (300 mg cm–2). If a person wearing the dosimeter is exposed to fast neu-

2 Natural lithium is 92.5% 7Li and 7.5% 6Li.
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Fig. 10.38 Schematic views of beta–gamma (left) and
neutron (right) TLD dosimeters. (Courtesy Thermo Electron
Corp.)

trons, some will be moderated by the body and detected as slow neutrons only in
chip 4 of the dosimeter, thus furnishing evidence of neutron exposure.

When a potential for exposure to neutrons exists, a special TLD dosimeter, such
as that shown on the right in Fig. 10.38, should be employed. Readings from the
pairs of TLD-600 and TLD-700 elements, one sensitive and the other insensitive
to neutrons, can be compared. Since their responses to gamma rays are identical,
differences can be attributed to neutrons. The cadmium filters for chips 1 and 2
absorb incident thermal neutrons. Differences in their readings, therefore, are as-
sociated with fast neutrons. Without the cadmium filters, differences between ele-
ments 3 and 4 indicate total (fast-plus-thermal) neutron exposure.

The beta–gamma dosimeter of Fig. 10.38 and its system of filters is displayed
in Fig. 10.39. Thermoluminesent dosimeters can be processed by automated read-
out systems, which can transfer results to a central computer system for dosime-
try records. Computer algorithms have been written to unfold the required dose
assessments for individuals from the readings obtained from the different chips.
Laboratory accreditation is provided through the National Voluntary Laboratory Ac-
creditation Program (NVLAP).

10.6
Other Methods

Particle Track Registration

A number of techniques have been devised for directly observing the tracks of in-
dividual charged particles. Neutron dosimetry with the film badge described in
Section 10.4 utilized neutron-sensitive emulsions in which the tracks of recoil pro-
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Fig. 10.39 Left: closed TLD dosimeter. Right: open dosimeter,
showing four filter areas, chips removed. (Courtesy Thermo
Electron Corp.)

tons from the elastic scattering of fast neutrons could be counted and analyzed.
Figure 5.1 shows an example of alpha- and beta-particle tracks in photographic
film. In the cloud chamber, moisture from a supersaturated vapor condenses on
the ions left in the wake of a passing charged particle, rendering the track visible.
In the bubble chamber, tiny bubbles are formed as a superheated liquid starts to
boil along a charged particle’s track. Another device, the spark chamber, utilizes a
potential difference between a stack of plates to cause a discharge along the ionized
path of a charged particle that passes through the stack.

Track etching is possible in some organic polymers and in several types of
glasses. A charged particle causes radiation damage along its path in the mater-
ial. When treated chemically or electrochemically, the damaged sites are attacked
preferentially and made visible, either with a microscope or the unaided eye. Track
etching is feasible only for particles of high LET. The technique is widely used in
neutron dosimetry (e.g., CR-39 detectors). Although neutral particles do not pro-
duce a trail of ions, the tracks of the charged recoil particles they produce can be
registered by techniques discussed here.

Optically Stimulated Luminescence

Optically stimulated luminescence (OSL) shares some similarities and some contrasts
with thermoluminescence. A number of materials exhibit both phenomena. Under
irradiation, electrons become trapped in long-lived excited states of doped crystals.
With TLDs, dose is inferred from the amount of light emitted under thermal stim-
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ulation. With OSL, the light emission is caused by optical stimulation. Reading a
TLD empties all of the trapped-electron states, erasing the primary record and re-
turning the dosimeter to its original condition for reuse. Reading with OSL, on the
other hand, depletes relatively little of the stored charge, essentially preserving the
primary record and enabling the dosimeter to be read again. The variable stimu-
lation power with OSL can be used to advantage to achieve sensitivity over a wide
range of doses.

Although a decades-old idea, practical use of OSL for dosimetry became a real-
ity with the development of the Luxel® personnel dosimeters by Landau, Inc. in
the late 1990s. The detector material is aluminum oxide, grown in the presence
of carbon, Al2O3 : C. (Crystals with different dopants can be fabricated for special-
ized applications.) Figure 10.40 displays a Luxel® dosimeter. A thin Al2O3 strip
is sandwiched between a multi-element, sealed filter pack. As with film and TLD,
the different filters are used to provide specific information about mixed radia-
tion fields for personnel dose assessment. The individual read outs are fed into a
computer algorithm that estimates the regulatory deep and shallow doses. Neutron
dose assessment can be added by the inclusion of an optional CR-39 detector in the
dosimeter, which is analyzed by track etching and counting.

Landauer employs two dosimeter read-out methods. Since the induced light
emitted from the detector must be measured in the presence of the stimulating
light, it is essential that the two light sources not be mixed. In one method, the stim-
ulation is caused by a pulsed laser and the emission signal is read between pulses.
The other method employs continuous stimulation by light-emitting diodes (LEDs)
or CW (continuous-wave) laser, and the measurement of the light emitted from the
detector at wavelengths outside the LED or laser spectrum. The pulsed system is
more expensive and more complex, but considerably faster than the continuous-
stimulation method.

Direct Ion Storage (DIS)

Direct Ion Storage (DIS) has been recently developed into an important basis for a
personal dosimeter. A predetermined amount of electric charge is placed on the
floating plate of a nonvolatile solid-state DIS memory cell. The charge is tunneled
onto the gate through oxide-silicon material that surrounds it. At normal temper-
atures, the stored charge is trapped permanently on the gate because of the ex-
tremely low probability of thermal excitations of electrons through the adjacent
material. The amount of charge stored on the gate can be “read” without disturb-
ing it by making conductivity measurements with the cell. In this configuration
the device is not sensitive to ionizing radiation, because the low mobility of charge
carriers in the oxide prevents neutralization of charge on the gate before recombi-
nation.

To make a dosimeter, the memory cell is enclosed within a conductive wall, form-
ing in a small (∼10 cm3) ionization chamber, containing air or other gas. The oxide
layer is provided with a small opening to make contact between the floating plate
and the chamber gas. Radiation now produces ion pairs with high mobility in the
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(a)

(b)

Fig. 10.40 Luxel® personnel dosimeter. (b) Filter pack,
showing detector, filters, and open window. (Courtesy
Landauer, Inc.)

gas. Electric fields direct the charge carriers through the hole in the oxide layer to re-
duce the charge initially stored on the floating plate. DIS dosimeters are calibrated
to provide dose assessment from the measured loss of charge. Depending on the
radiation fields to be monitored, characteristics of the wall material and thickness
as well as other factors can be varied to fit the application.

The basic design of the direct ion storage dosimeter gives it the flat energy
response of an ionization chamber. It has instant, non-destructive read-out. The
dosimeter shown in Fig. 10.41 with its reader is rugged, light (20 g without holder),
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(a) (b)
Fig. 10.41 (a) Direct ion storage personal dosimeter and
(b) reader. (Courtesy RADOS Technology.)

and waterproof. It measures photon dose equivalent in the range 1–40 µSv and
beta dose equivalent from 10 µSv–40 Sv.

Radiophotoluminescence

The film badge in Fig. 10.36 contained three silver meta-phosphate glass rods to
measure large photon doses (≥100 rad = 1 Gy), as might occur in an accident. En-
ergy absorbed from the ionizing radiation leads to the migration of electrons to
permanent sites associated with the silver in the glass. As a result, new absorption
frequencies are produced, and the glass will fluoresce under exposure to ultravio-
let light. The fluorescence yield can then be compared with calibrated standards to
infer dose. Since the fluorescence does not change the glass, the read-out is nonde-
structive. Although radiophotoluminescence has been used for routine personnel
dosimetry, it has generally been limited to high-dose applications.

Chemical Dosimeters

Radiation produces chemical changes. One of the most widely studied chemical
detection systems is the Fricke dosimeter, in which ferrous ions in a sulfate solu-
tion are oxidized by the action of radiation. As in all aqueous chemical dosimeters,
radiation interacts with water to produce free radicals (e.g., H and OH), which are
highly reactive. The OH radical, for example, can oxidize the ferrous ion directly:
Fe2+ + OH → Fe3+ + OH–. After irradiation, aqueous chemical dosimeters can be
analyzed by titration or light absorption. The useful range of the Fricke dosime-
ter is from about 40 to 400 Gray (Gy). The dose measurements are accurate and
absolute. The aqueous system approximates soft tissue.



286 10 Methods of Radiation Detection

Other chemical-dosimetry systems are based on ceric sulfate, oxalic acid, or a
combination of ferrous sulfate and cupric sulfate. Doses of the order of 0.1 Gy can
be measured chemically with some chlorinated hydrocarbons, such as chloroform.
Higher doses result in visible color changes in some systems.

Calorimetry

The energy imparted to matter from radiation is usually efficiently converted into
heat. (Radiation energy can also be expended in nuclear transformations and chem-
ical changes.) If the absorber is thermally insulated, as in a calorimeter, then
the temperature rise can be used to infer absorbed dose absolutely. However, a
relatively large amount of radiation is required for calorimetric measurements.
An absorbed energy of 4180 J kg–1 (= 4180 Gy) in water raises the temperature
only 1◦C (Problem 39). Because they are relatively insensitive, calorimetric meth-
ods in dosimetry have been employed primarily for high-intensity radiation beams,
such as those used for radiotherapy. Calorimetric methods are also utilized for the
absolute calibration of source strength.

Cerenkov Detectors

When a charged particle travels in a medium faster than light, it emits visible elec-
tromagnetic radiation, analogous to the shock wave produced in air at supersonic
velocities. The speed of light in a medium with index of refraction n is given by c/n,
where c is the speed of light in a vacuum. Letting v = βc represent the speed of the
particle, we can express the condition for the emission of Cerenkov radiation as
βc > c/n, or

βn > 1. (10.8)

The light is emitted preferentially in the direction the particle is traveling and is
confined to a cone with vertex angle given by cos θ = 1/βn. It follows from (10.8)
that the threshold kinetic energy for emission of Cerenkov light by a particle of rest
mass M is given by (Problem 40)

T = Mc2
(

n√
n2 – 1

– 1
)

. (10.9)

The familiar “blue glow” seen coming from a reactor core [e.g., Figs. 9.1 and 9.2(b)]
is Cerenkov radiation, emitted by energetic beta particles traveling faster than light
in the water.

Cerenkov detectors are employed to observe high-energy particles. The emitted
radiation can also be used to measure high-energy beta-particle activity in aqueous
samples.
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10.7
Neutron Detection

Slow Neutrons

Neutrons are detected through the charged particles they produce in nuclear re-
actions, both inelastic and elastic. In some applications, pulses from the charged
particles are registered simply to infer the presence of neutrons. In other situa-
tions, the neutron energy spectrum is sought, and the pulses must be further an-
alyzed. For slow neutrons (kinetic energies T � 0.5 eV), detection is usually the
only requirement. For intermediate (0.5 eV � T � 0.1 MeV) and fast (T � 0.1 MeV)
neutrons, spectral measurements are frequently needed. We discuss slow-neutron
detection methods first.

Table 10.2 lists the three most important nuclear reactions for slow-neutron de-
tection. The reaction-product kinetic energies and cross sections are given for cap-
ture of thermal neutrons (energy = 0.025 eV). Since the incident kinetic energy
of a thermal neutron is negligible, the sum of the kinetic energies of the reaction
products is equal to the Q value itself. Given Q , equations analogous to Eqs. (3.18)
and (3.19) can be applied to calculate the discrete energies of the two products,
leading to the values given in Table 10.2. We shall describe slow-neutron detection
by means of these reactions and then briefly discuss detection by fission reactions
and foil activation.

10B(n,α)
One of the most widely used slow-neutron detectors is a proportional counter us-
ing boron trifluoride (BF3) gas. For increased sensitivity, the boron is usually highly
enriched in 10B above its 19.7% natural isotopic abundance. If the dimensions of
the tube are large compared with the ranges of the reaction products, then pulse
heights at the Q values of 2.31 MeV and 2.79 MeV should be observed with areas

Table 10.2 Reactions Used for Slow-Neutron Detection
(Numerical Data Apply to Thermal-Neutron Capture)

Q Value Product Kinetic Cross Section
Reaction (MeV) Energies (MeV) (Barns)

10
5B + 1

0n →




7
3Li* + 4

2He (96%)

7
3Li + 4

2He (4%)

2.31
TLi = 0.84
THe = 1.47

3840

2.79
TLi = 1.01
THe = 1.78

6
3Li + 1

0n → 3
1H + 4

2He 4.78
TH = 2.73
THe = 2.05

940

3
2He + 1

0n → 3
1H + 1

1H 0.765
T3H = 0.191
T1H = 0.574

5330
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Fig. 10.42 (a) Idealized thermal-neutron pulse-height spectrum
from large BF3 tube in which reaction products are completely
absorbed in the gas. (b) Spectrum from tube showing wall
effects.

in the ratio 96 : 4, as shown in Fig. 10.42(a). With most practical sizes, however,
a significant number of Li nuclei and alpha particles enter the wall of the tube,
and energy lost there is not registered. Since the two reaction products separate
“back-to-back” to conserve momentum, when one strikes the wall the other is di-
rected away from it. This wall effect introduces continua to the left of the peaks.
As sketched in Fig. 10.42(b), one continuum takes off from the peak at 2.31 MeV
and is approximately flat down to 1.47 MeV. (A similar continuum occurs below



10.7 Neutron Detection 289

the small peak at 2.79 MeV.) Over this interval, the total energy (1.47 MeV) of the
alpha particle is absorbed in the gas while only part of the energy of the Li nucleus
is absorbed there, the rest going into the wall. Below 1.47 MeV, the spectrum again
drops and is approximately flat down to the energy 0.84 MeV of the Li recoil. Pulses
occur here when the Li nucleus stops in the gas and the alpha particle enters the
wall.

The BF3 proportional counter can discriminate against gamma rays, which are
usually present with neutrons and produce secondary electrons that ionize the gas.
Compared with the neutron reaction products, electrons produced by the photons
are sparsely ionizing and give much smaller pulses. As indicated in Fig. 10.42(a),
amplitude discrimination can be used to eliminate these counts as well as elec-
tronic noise if the gamma fluence rate is not too large. In intense gamma fields,
however, the pileup of multiple pulses from photons can become a problem.

In other counter designs, a boron compound is used to line the interior walls of
the tube, in which another gas, more suitable for proportional counting than BF3,
is used. Boron-loaded scintillators (e.g., ZnS) are also employed for slow-neutron
detection.

6Li(n,α)
As shown in Table 10.2, this reaction, compared with 10B(n,α), has a higher Q

value (potentially better gamma-ray discrimination), but lower cross section (less
sensitivity). The isotope 6Li is 7.42% abundant in nature, but lithium enriched in
6Li is available.

Lithium scintillators are frequently used for slow-neutron detection. Analogous
to NaI(Tl), crystals of LiI(Eu) can be employed. They can be made large compared
with the ranges of the reaction products, so that the pulse-height spectra are free of
wall effects. However, the scintillation efficiency is then comparable for electrons
and heavy charged particles, and so gamma-ray discrimination is much poorer than
with BF3 gas.

Lithium compounds can be mixed with ZnS to make small detectors. Because
secondary electrons produced by gamma rays easily escape, gamma-ray discrimi-
nation with such devices is good.

3He(n,p)
This reaction has the highest cross section of the three in Table 10.2. Like the BF3

tube, the 3He proportional counter exhibits wall effects. However, 3He is a better
counter gas and can be operated at higher pressures with better detection efficiency.
Because of the low value of Q, though, gamma discrimination is worse.

(n,f )
Slow-neutron-induced fission of 233U, 235U, or 239Pu is utilized in fission counters.
The Q value of ∼200 MeV for each is large. About 165 MeV of this energy is con-
verted directly into kinetic energy of the heavy fission fragments. Fission pulses
are extremely large, enabling slow-neutron counting to be done at low levels, even
in a high background. Most commonly, the fissile material is coated on the in-
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ner surface of an ionization chamber. A disadvantage of fissionable materials is
that they are alpha emitters, and one must sometimes contend with the pileup of
alpha-particle pulses.

Activation Foils
Slow neutrons captured by nuclei induce radioactivity in a number of elements,
which can be made into foils for neutron detection. The amount of induced activity
will depend on a number of factors—the element chosen, the mass of the foil, the
neutron energy spectrum, the capture cross section, and the time of irradiation.
Examples of thermal-neutron activation-foil materials include Mn, Co, Cu, Ag, In,
Dy, and Au.

Intermediate and Fast Neutrons

Nuclear reactions are also important for measurements with intermediate and fast
neutrons. In addition, neutrons at these speeds can, by elastic scattering, transfer
detectable kinetic energies to nuclei, especially hydrogen. Elastic recoil energies are
negligible for slow neutrons. Detector systems can be conveniently discussed in
four groups—those based on neutron moderation, nuclear reactions, elastic scat-
tering alone, and foil activation. Recent developments also include bubble detec-
tors.

Neutron Moderation
Two principal systems in this category have been developed: the long counter and
moderating spheres enclosing a small thermal-neutron detector. A cross section of
the cylindrical long counter is shown in Fig. 10.43. This detector, which is one of
the oldest still in use, can be constructed to give nearly the same response from a
neutron of any energy from about 10 keV to 5 MeV. The long counter contains a
BF3 tube surrounded by an inner paraffin moderator, as shown. The instrument
is sensitive to neutrons incident from the right. Those from other directions are
either reflected or thermalized by the outer paraffin jacket and then absorbed in the
B2O3 layer. Neutrons that enter from the right are slowed down in the inner paraf-
fin moderator, high-energy neutrons reaching greater depths on the average than
low-energy ones. With this arrangement, the probability that a moderated neutron
will enter the BF3 tube and be registered does not depend strongly on the initial
energy with which it entered the counter. Holes on the front face make it eas-
ier for neutrons with energies <1 MeV to penetrate past the surface, from which
they might otherwise be reflected. The long counter does not measure neutron
spectra.

Neutron spectral information can be inferred by the use of polyethylene mod-
erating spheres (Bonner spheres) of different diameters with small lithium iodide
scintillators at their centers. A series of five or more spheres, ranging in diame-
ter from 2 to 12 in., is typically used. The different sizes provide varying degrees
of moderation for neutrons of different energies. The response of each sphere is
calibrated for monoenergetic neutrons from thermal energy to 10 MeV or more.
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Fig. 10.43 The original long counter of Hanson and McKibben.
[Reprinted with permission from A. O. Hanson and
M. L. McKibben, “A Neutron Detector Having Uniform
Sensitivity from 10 keV to 5 MeV,” Phys. Rev. 72, 673 (1947).
Copyright 1947 by the American Physical Society.]

The spheres are then exposed in an unknown neutron field and the count rates
measured. An unfolding procedure is used to infer information about the neutron
spectrum from knowledge of the calibration curves and the measured count rates.
Because the unfolding procedure does not yield very precise results, this method
is not widely used for spectral measurements. With a relatively large sphere, it
is found that the response as a function of neutron energy is similar to the dose
equivalent per neutron. It therefore serves as a neutron rem meter in many applied
health physics operations. Such an instrument is shown in Fig. 10.44.

Nuclear Reactions
The 6Li(n,α) and 3He(n,p) reactions are the only ones of major importance for neu-
tron spectrometry. Ideally, an incident neutron of energy T that undergoes a reac-
tion causes a detector to register a peak at an energy Q + T. In practice, many times
another peak also occurs at an energy Q due to neutrons that have been slowed
by multiple scattering in building walls and shielding around the detector. Slow-
neutron cross sections can be orders of magnitude larger than at higher energies.
The additional peak at Q is sometimes called the epithermal peak.

Crystals of LiI(Eu) are used in neutron spectroscopy. However, the nonlinearity
of their response with the energy of the reaction products (tritons and alpha par-
ticles) is a serious handicap. Lithium-glass scintillators are also in use, principally
as fast responding detectors in neutron time-of-flight measurements. In another
type of neutron spectrometer, a thin LiF sheet is placed between two semiconduc-
tor diodes. At relatively low neutron energies T, the recoil products will tend to be
ejected back-to-back, giving coincidence counts in both semiconductors with a total
pulse height of Q + T, from which T can be ascertained.

In the 3He(n,p) proportional counter, monoenergetic neutrons of energy T pro-
duce a peak at energy T + 0.765 MeV, as illustrated in Fig. 10.45. The epithermal
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Fig. 10.44 Instrument for measuring neutron
dose-equivalent rate. A 3He proportional
counter tube is located at the center of a
polyethylene moderator sphere. The cylindrical
tube has approximately equal height and
diameter to minimize directional dependence

of the response. Sensitivity is about 3 counts
per nSv (3 counts per µrem) in the energy
range 1 to 10 MeV. Good gamma
discrimination. (Courtesy Berthold
Technologies USA, LLC.)

peak is also shown at the energy Q = 0.765 MeV. In addition to these peaks from
the reaction products, one finds a continuum of pulse heights from recoil 3He
nuclei that elastically scatter incident neutrons. It follows from Eq. (9.3) that the
maximum kinetic energy that a neutron of mass m = 1 and kinetic energy T can
transfer to a helium nucleus of mass M = 3 is

Tmax = 4mM

(m + M)2 T = 4 × 1 × 3
(1 + 3)2 T = 3

4
T. (10.10)

The elastic continuum in Fig. 10.45 thus extends up to the energy 0.75T. Wall ef-
fects can be reduced in the 3He proportional counter by using gas pressures of
several atmospheres and also by adding a heavier gas (e.g., Kr).

Elastic Scattering
A number of instruments are based on elastic scattering alone, especially from hy-
drogen. As discussed in Section 9.5, a neutron can lose all of its kinetic energy T

in a single head-on collision with a proton. Also, since n–p scattering is isotropic
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Fig. 10.45 Pulse-height spectrum from 3He proportional
counter for monoenergetic neutrons of energy T.

in the center-of-mass system for neutron laboratory energies up to ∼10 MeV, the
average energy imparted to protons by neutrons in this energy range is T/2 (Sec-
tion 9.6).

Organic proton-recoil scintillators are available for neutron spectrometry in a va-
riety of crystal, plastic, and liquid materials. The full proton recoil energies can
be caught in these scintillators. Complications in the use of proton-recoil scintilla-
tors include nonlinearity of response, multiple neutron scattering, and competing
nuclear reactions. For applications in mixed fields, the gamma response can, in
principle, be separated electronically from the neutron response on the basis of
quicker scintillation.

Proportional counters have been designed with hydrocarbon gases, such as CH4.
These have inherently lower detection efficiencies than solid-state devices, but offer
the potential for better gamma discrimination. Wall effects can be important. Pro-
portional counters have also been constructed with polyethylene or other hydroge-
nous material surrounding the tube. One such device, based on the Bragg–Gray
principle, will be discussed in Section 12.6.

A proton-recoil telescope, illustrated in Fig. 10.46, can be used to accurately mea-
sure the spectrum of neutrons in a collimated beam. At an angle θ , the energy Tp

of a recoil proton from a thin target struck by a neutron of incident energy T is, by
Eq. (9.5),

Tp = T cos2 θ . (10.11)

The E(–dE/dx) coincidence particle identifier (Fig. 10.27) can be used to reduce
background, eliminate competing events, and measure Tp.
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Fig. 10.46 Arrangement of proton-recoil telescope for measuring spectrum of a neutron beam.

Neutron spectra can also be inferred from the observed range distribution of
recoil protons in nuclear track emulsions. Neutrons with at least several hundred
keV of energy are needed to produce protons with recognizable tracks.

Threshold Foil Activation
Like low-energy neutrons, intermediate and fast neutrons can be detected by the
radioactivity they induce in various elements. With many nuclides, a threshold en-
ergy exists for the required nuclear reaction. When foils of several nuclides are
simultaneously exposed to a neutron field, differences in the induced activity be-
tween them can be used to obtain information about the neutron energy spectrum
as well as the fluence.

As described at the end of Section 9.8, the activity induced in a foil or other target
is a combined result of (1) the neutron fluence (and fluence rate) at energies above
threshold and (2) the energy-dependent cross section for the reaction. Activation
provides an estimate of neutron fluence at an effective threshold energy above the
minimum given by Eq. (9.29). The effective threshold energy is thus only an ap-
proximate concept; for a given material, different specific values can be found in
the literature. Table 10.3 lists some reactions and their effective threshold energies
used for fast-neutron detection. As an example, if an exposed aluminum foil shows
induced activity from 27Mg and a simultaneously exposed cobalt foil shows no in-
duced activity from 56Mn, then one can infer that neutrons with energies 3.8 MeV <
T < 5.2 MeV were present. To obtain accurate spectral data from threshold-detector
systems, one must take into account such factors as the masses of the particular
isotopes in the foils, their neutron cross sections as functions of energy, the expo-
sure history of the foils, and the half-lives of the induced radioisotopes.

Bubble Detectors
The popular bubble detector is a unique and important personal neutron dosime-
ter. Figure 10.47 shows a pair of detectors, one exposed to neutrons and the other
unexposed. The basic dosimeter consists of 8 cm3 of a clear polymer in which tens
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Table 10.3 Reactions for Threshold Activation Detectors of Neutrons

Reaction Effective Threshold (MeV)

115In(n,n′)115mIn 0.5
58Ni(n,p)58Co 1.9
27Al(n,p)27Mg 3.8
56Fe(n,p)56Mn 4.9
59Co(n,α)56Mn 5.2
24Mg(n,p)24Na 6.0
197Au(n,2n)196Au 8.6

Fig. 10.47 Bubble detectors before and after exposure to
neutrons. (Courtesy H. Ing, Bubble Technology Industries, Inc.)

of thousands of microscopic droplets of a superheated liquid (Freon-12, for exam-
ple) are dispersed. A liquid that continues to exist as such at temperatures above
its normal boiling point is said to be superheated. Under this condition, a sudden
disturbance in the droplet, such as the passage of a charged particle generated from
a neutron interaction, can produce a boiling, explosive phase transition into a va-
por. Droplets are instantly transformed into small, visible bubbles in the dosimeter.
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They are fixed indefinitely in the polymer, and can be counted visually or with an
automatic reader. Dosimeter properties can be adjusted to meet different objectives
by varying the polymer and the detecting liquid. After reading, the bubbles can be
made to disappear by recompression through a screw-cap assembly on the unit,
thus restoring it to the unexposed state.

The bubble detector is a sensitive, passive neutron dosimeter. Although com-
monly manufactured to have about one bubble per mrem of fast-neutron dose
equivalent (Section 12.2), it has been produced with up to three orders of magni-
tude higher sensitivity. Its threshold neutron energy of about 100 keV is lower than
that of nuclear-track film. The tissue-equivalent dose response is flat from approx-
imately 200 keV to more than 15 MeV. It is isotropic and completely insensitive to
gamma radiation. A compound containing 6Li and dispersed in the polymer can be
used to monitor thermal neutrons. Sets of bubble detectors, fabricated with differ-
ent neutron-energy thresholds, have been employed to obtain spectral information
for dosimetry.

10.8
Suggested Reading

The best sources of information in the diverse
and rapidly expanding field of radiation de-
tection and instrumentation are on the World
Wide Web. Detailed data can be found on
virtually any current or historic topic. The
following publications are suggested as sup-
plements to this chapter.

1 Frame, Paul W., “A History of Radi-
ation Detection Instrumentation,”
Health Phys. 88, 613–637 (2005). [This
important publication appears in the
issue commemorating the 50th an-
niversary of the Health Physics So-
ciety. It provides a comprehensive,
in-depth review of the history of ra-
diation detection from early days
through modern technology. Exten-
sive bibliography. The numerous
photographs in the article are of in-
struments in Oak Ridge Associated
Universities’ Historical Instrumenta-
tion Collection, which is managed
by Dr. Frame. The collection can

be accessed on-line at http://www.
orau.org/ptp/museumdirectory.htm.]

2 ICRU Report 31, Average Energy Re-

quired to Produce an Ion Pair, Inter-
national Commission on Radiation
Units and Measurements, Washing-
ton, DC (1979).

3 Knoll, Glenn F., Radiation Detection

and Measurement, 3rd Ed., Wiley, New
York (2000). [This authoritative text-
book covers many of the subjects of
this chapter in detail.]

4 Poston, John W., Sr., “External
Dosimetry and Personnel Monitor-
ing,” Health Phys. 88, 557–564 (2005).
[This review is another in the issue
commemorating the 50th anniver-
sary of the Health Physics Society.
Radiation detection is discussed with
emphasis on personnel dosimetry. Ac-
companying historical information is
included. Bibliography.]

10.9
Problems

1. How many electrons are collected per second in an ionization
chamber when the current is 5 × 10–14 A? What is the rate of
energy absorption if W = 29.9 eV ip–1?
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2. How many ion pairs does a 5.6-MeV alpha particle produce in
N2 (Fig. 10.2)?

3. Why do the W values for heavy charged particles increase at
low energies (Fig. 10.2)?

4. A beam of alpha particles produced a current of 10–14 A in a
parallel-plate ionization chamber for 8 s. The chamber
contained air at STP.
(a) How many ion pairs were produced?
(b) How much energy did the beam deposit in the chamber?
(c) If the chamber volume was 240 cm3, what was the energy

absorbed per unit mass in the chamber gas (1 gray
absorbed dose = 1 J kg–1)?

5. A 10-cm2 beam of charged particles is totally absorbed in an
ionization chamber, producing a saturation current of 10–6 A.
If W = 30 eV ip–1, what is the average beam intensity in units of
eV cm–2 s–1?

6. A 5-MeV alpha-particle beam of cross-sectional area 2 cm2 is
stopped completely in an ionization chamber, producing a
current of 10 µA under voltage saturation conditions.
(a) If W = 32 eV ip–1, what is the intensity of the beam?
(b) What is the fluence rate?

7. A thin radioactive source placed in an ionization chamber
emits 106 alpha particles per second with energy 3.81 MeV. The
particles are completely stopped in the gas, for which
W = 36 eV ip–1. Calculate
(a) the average number of ion pairs produced per second
(b) the current that flows under saturation conditions
(c) the amount of charge collected in 1 h.

8. Assume that the W values for protons and carbon-recoil nuclei
are both 30 eV ip–1 in C2H4 gas. What is the maximum
number of ion pairs that can be produced by a 3-MeV neutron
interacting elastically with (a) H or (b) C?

9. An alpha-particle source is fabricated into a thin foil. Placed
first in a 2π gas-flow proportional counter, it shows only a
single pulse height and registers 7080 counts min–1

(background negligible). The source is next placed in 4π

geometry in an air ionization chamber operated under
saturation conditions, where it produces a current of
5.56 × 10–12 A. Assume that the foil stops the recoil nuclei
following alpha decay but absorbs a negligible amount of
energy from the alpha particles.
(a) What is the activity of the source?
(b) What is the alpha-particle energy?
(c) Assume that the atomic mass number of the daughter

nucleus is 206 and calculate its recoil energy.
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10. A 210Po source is placed in an air ionization chamber, and a
saturation current of 8 × 10–12 A is observed. Assume that the
ionization is due entirely to 5.30-MeV alpha particles stopping
in the chamber. How many stop per second?

11. An ionization chamber is simultaneously bombarded by a
beam of 8 × 106 helium ions per second and a beam of 1 × 108

carbon ions per second. The helium ions have an initial energy
of 5 MeV, and the carbon ions have an initial energy of 100 keV.
All ions stop in the chamber gas. For the helium ions,
W = 36 eV ip–1; for the carbon ions, W = 48 eV ip–1. Calculate
the saturation current.

12. A source emits 5.16-MeV alpha particles, which are absorbed at
a rate of 842 per minute in the gas of a parallel-plate ionization
chamber. The saturation current is 3.2 × 10–13 A. Calculate the
W value for the alpha particles in the gas.

13. Show that 1 eV ip–1 = 1 J C–1.
14. A saturation current of 2.70 × 10–14 A is measured with a

parallel-plate ionization chamber in a radiation field. The
chamber contains air (W = 34 eV ip–1) at 20◦C and 752 torr.
(a) What is the rate of energy absorption in the chamber?
(b) If the chamber has a sensitive volume of 750 cm3, what is

the dose rate in the air in J kg–1 s–1 (= Gy s–1)?
15. A parallel-plate ionization chamber is being designed to work

with air (W = 34 eV ip–1) at STP. When the dose rate in the
chamber is 10.0 mGy h–1, the saturation current is to be
10–11 A. What volume must the chamber have?

16. Where does most of the gas multiplication occur inside a
cylindrical proportional-counter tube?

17. What is the ratio of the pulse heights from a 1-MeV proton
(W = 30 eV ip–1) and a 1-MeV carbon nucleus (W = 40 eV ip–1)
absorbed in a proportional counter?

18. Why is a GM counter not useful for determining the absorbed
energy in a gas?

19. Show that, at high energies, where the average number of
electrons per quantum state is small, the quantum-mechanical
distribution Eq. (10.6) approaches the classical Boltzmann
distribution, N = exp(–E/kT).

20. Figure 10.15(b) shows the relative number of electrons at
energies E in an intrinsic semiconductor when T > 0. Make
such a sketch for the As-doped Ge semiconductor shown in
Fig. 10.18.

21. What type of semiconductor results when Ge is doped with
(a) Sb or (b) In?

22. Make a sketch like that in Fig. 10.17 for Ge doped with Ga
(p-type semiconductor).
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23. Use the nonrelativistic stopping-power formula and show that
Eq. (10.7) holds.

24. What are the relative magnitudes of the responses of an
E(–dE/dx) particle identifier to a proton, an alpha particle, and a
stripped carbon nucleus?

25. The W value for silicon is 3.6 eV ip–1. Calculate the mean
number of ion pairs produced by a 300-keV beta particle
absorbed in Si.

26. Calculate the number of ion pairs produced by a 4-MeV alpha
particle in
(a) an ionization chamber filled with air (W = 36 eV ip–1)
(b) a silicon surface-barrier detector (W = 3.6 eV ip–1).

27. At a temperature of absolute zero, some electrons occupy states
at the donor impurity levels of an n-type semiconductor
(Fig. 10.18). True or false?

28. Why is reverse, rather than forward, bias used for
semiconductor junctions in radiation measurements?

29. A 1.27-MeV photon loses 540 keV and 210 keV in successive
Compton scattering events in the sensitive volume of a Ge
detector before escaping.
(a) Estimate the total number of secondary electrons produced

by the events.
(b) Would the device register the passage of the photon as a

single event or as two events?
30. A silicon semiconductor detector has a dead layer of 1 µm

followed by a depletion region 250 µm in depth.
(a) Are these detector dimensions suitable for alpha-particle

spectroscopy up to 4 MeV?
(b) For beta-particle spectroscopy up to 500 keV?

31. If 2.1 MeV of absorbed alpha-particle energy produces 41,100
scintillation photons of average wavelength 4800 Å in a
scintillator, calculate its efficiency.

32. A 600-keV photon is absorbed in a NaI(Tl) crystal having an
efficiency of 11.2%. The average wavelength of the scintillation
photons produced is 5340 Å, and 11% of them produce a signal
at the cathode of the photomultiplier tube. Calculate the
average energy from the incident radiation that produces one
photoelectron at the cathode (the “W value”).

33. Figure 10.30 was obtained for a 4 × 4 in. NaI(Tl) crystal
scintillator. Sketch the observed spectrum if measurements
were made with the same source, but with a NaI crystal that
was
(a) very large
(b) very small.
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(c) In (b), interpret the relative areas under the photopeak and
the Compton continuum.

34. In Fig. 10.30, what physical process gives rise to pulses with
energies between the Compton edge and the total energy peak?

35. A 1.17-MeV gamma ray is Compton scattered once at an angle
of 48◦ in a scintillator and again at an angle of 112◦ before
escaping.
(a) What (average) pulse height is registered?
(b) If the photon were scattered once at 48◦ and then

photoelectrically absorbed, what pulse height would be
registered?

36. The mass attenuation coefficient of NaI (density = 3.67 g cm–3)
for 500-keV photons is 0.090 cm2 g–1. What percentage of
normally incident photons interact in a crystal 4 cm thick?

37. Calculate the energy of the backscatter peak for 3-MeV gamma
photons.

38. What sequence of events produces the escape peak seen at
11 keV below the total-energy peak when pulse heights from
monoenergetic photons are measured with a germanium
detector? (See Fig. 10.31.)

39. Calculate the temperature rise in a calorimetric water
dosimeter that absorbs 10 J kg–1 from a radiation beam (= an
absorbed dose of 10 Gy, a lethal dose if given acutely over the
whole body). What absorbed dose is required to raise the
temperature 1◦C?

40. Prove Eq. (10.9).
41. (a) Calculate the threshold kinetic energy for an electron to

produce Cerenkov radiation in water (index of
refraction = 1.33).

(b) What is the threshold energy for a proton?
42. An electron enters a water shield (index of refraction 1.33) with

a speed v = 0.90c, where c is the speed of light in a vacuum.
Assuming that 0.1% of its energy loss is due to Cerenkov
radiation as long as this is possible, calculate the number of
photons emitted if their average wavelength is 4200 Å.

43. Given the value Q = 4.78 MeV for the 6Li(n,α)3H reaction in
Table 10.2, calculate TH and THe.

44. Sketch the pulse-height spectrum from a 3He proportional
counter exposed to thermal neutrons. Include wall effects at
the appropriate energies.

45. (a) What is the maximum energy that a 3-MeV neutron can
transfer to a 3He nucleus by elastic scattering?

(b) What is the maximum energy that can be registered in
a 3He proportional counter from a 3-MeV neutron?
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46. Sketch the pulse-height spectrum from a thin layered
boron-lined proportional counter tube for thermal neutrons.
Repeat for a layer thicker than the ranges of the reaction
products.

47. A proportional-counter tube is lined with a thin coating of a
lithium compound (containing 6Li). The tube size and gas
pressure are sufficiently large to stop any charged particle that
enters the gas. The counter gas is insensitive to thermal
neutrons.
(a) Sketch the pulse-height spectrum when the tube is exposed

to thermal neutrons. Show the relevant energies and
indicate what kind of events produce the signal there.

(b) Repeat for a thick layer of the lithium compound.
48. At what neutron energy is the cross section for the 3He(n,p)

reaction equal to the thermal-neutron cross section for the
6Li(n,α) reaction?

49. In the proton-recoil telescope (Fig. 10.46), what is the energy of
the scattered neutron if θ = 27◦ and Tp = 1.18 MeV?

50. Calculate the threshold energy (a) neglecting and (b) including
nuclear recoil for the reaction 24Mg(n,p)24Na shown in
Table 10.3. The 24Na nucleus is produced in an excited state
from which it emits a 1.369-MeV gamma photon and goes to
its ground state. (See Appendix D.)

10.10
Answers

1. 3.12 × 105 s–1;
9.33 MeV s–1

2. 1.54 × 105 on average
4. (a) 5.00 × 105

(b) 18.0 MeV
(c) 9.29 × 10–9 Gy

5. 1.87 × 1013 eV cm–2 s–1

9. (a) 236 Bq
(b) 5.29 MeV
(c) 0.101 MeV

11. 2.11 × 10–7 A
15. 95.1 cm3

24. 1 : 16 : 432

30. (a) Yes
(b) No

31. 5.1%
32. 190 eV
35. (a) 0.933 MeV

(b) 1.17 MeV
36. 73.3%
39. 0.00239◦C; 4180 Gy
41. (a) 264 keV

(b) 485 MeV
42. 135
49. 0.31 MeV
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11
Statistics

11.1
The Statistical World of Atoms and Radiation

As we have seen throughout this book, the mathematical descriptions used to make
quantitative predictions about nature on the atomic scale do so on a statistical ba-
sis. How much energy will a 1-MeV proton lose in its next collision with an atomic
electron? Will a 400-keV photon penetrate a 2-mm lead shield without interact-
ing? How many disintegrations will occur during the next minute with a given
radioactive source? These questions can be answered precisely, but only in statisti-
cal terms. Whether we measure a number of counts to infer the activity of a source
or the number of electrons produced in a proportional counter to infer the energy
of a photon, there is an irreducible uncertainty due to statistical fluctuations in the
physical processes that occur. Repetition of the measurement results in a spread of
values. How certain, then, is a measurement?

In this chapter we formalize some statistical concepts in order to place confi-
dence limits on the measured values of quantities. The uncertainties we address
here are the inherent ones due to quantum physics. Other sources of error or un-
certainty, such as the precision with which the position of a pointer on a dial can
be read, are not considered here. We begin by analyzing the determination of the
activity of a radioactive sample by counting.

11.2
Radioactive Disintegration—Exponential Decay

To determine the activity of a long-lived radionuclide in a sample, the sample can
be counted for a specified length of time. Knowledge of the counter efficiency—
the ratio of the number of counts and the number of disintegrations—then yields
the sample activity. If the counting experiment is repeated many times, the num-
bers of counts observed in a fixed length of time will be found to be distributed
about their mean value, which represents the best estimate of the true activity. The
spread of the distribution about its mean is a measure of the uncertainty of the
determination.

Atoms, Radiation, and Radiation Protection. James E. Turner
Copyright © 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-40606-7
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In the following sections, we shall calculate the probability for a given number
of disintegrations to occur during time t when N atoms of a radionuclide with
decay constant λ are initially present. The half-life of the nuclide need not be long
compared with the observation time. We consider the probability of decay for each
atom, assuming that all atoms are identical and independent and that the decay
process is spontaneous and random.

Equation (4.7) shows that the relative number of atoms that have not decayed in
a sample in time t is e–λt. We can interpret exponential decay as implying that the
probability that an atom survives a time t without disintegrating is

q = probability of survival = e–λt. (11.1)

For decay during the time t, it follows that

p = probability of decay = 1 – q = 1 – e–λt. (11.2)

Note that there are only two alternatives for a given atom in the time t, since
p + q = 1.

In Section 4.2 we treated the number of atoms N present at time t as a continuous
variable. It is, of course, a discrete variable, taking on only non-negative integral
values. In the context of the discussion there, we tacitly regarded N as being very
large. Fluctuations were not considered, and the decay of a sample over time was
represented smoothly by the exponential function. In what follows, the number
of radioactive atoms that decay in a sample will be treated properly as a discrete
variable.

11.3
Radioactive Disintegration—a Bernoulli Process

Consider a set of N identical atoms, characterized by a decay constant λ, at time
t = 0. We ask, “What is the probability that exactly n atoms will decay between
t = 0 and a specified later time t?” The integer n can have any value in the range
0 ≤ n ≤ N. During t, each atom can be regarded as “trying” to decay (success) or
not decay (failure). Observation of a set of N atoms from time 0 to time t can thus
be regarded as an experiment that meets the following conditions:
1. It consists of N trials (i.e., N atoms each having a chance to

decay).
2. Each trial has a binary outcome: success or failure (decay or not).
3. The probability of success (decay) is constant from trial to trial

(all atoms have an equal chance to decay).
4. The trials are independent.

In statistics, these four conditions characterize a Bernoulli process. The number
of successes, n, from N trials—called Bernoulli trials—is a binomial random vari-
able, and the probability distribution of this discrete random variable is called the
binomial distribution.
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The preceding conditions are met for a set of N identical radioactive atoms, ob-
served for a time t. Therefore, if many such sets of N atoms are prepared and
observed for time t, the numbers of atoms that decay from each set are expected
to be represented by the binomial distribution. After the next example, illustrating
radioactive decay as a Bernoulli process, we derive this distribution and show how
it and its spread depend upon N, n, p, q, and the observation time t.

Example

A sample of N = 10 atoms of 42K (half-life = 12.4 h) is prepared and observed for a
time t = 3 h.

(a) What is the probability that atoms number 1, 3, and 8 will decay during this
time?

(b) What is the probability that atoms 1, 3, and 8 decay, while none of the others
decay?

(c) What is the probability that exactly three atoms (any three) decay during the 3
hours?

(d) What is the probability that exactly six atoms will decay in the 3 hours?
(e) What is the chance that no atoms will decay in 3 hours?
(f) What is the general formula for the probability that exactly n atoms will decay,

where 0 ≤ n ≤ 10?
(g) What is the sum of all possible probabilities from (f)?
(h) If the original sample consisted of N = 100 atoms, what would be the chance

that no atoms decay in 3 hours?

Solution

(a) The decay constant for 42K is λ = 0.693/(12.4 h) = 0.0559 h–1. The probability that
a given atom survives the time t = 3 h without decaying is, by Eq. (11.1),

q = e–λt = e–0.0559×3 = e–0.168 = 0.846. (11.3)

The probability that a given atom will decay is

p = 1 – q = 0.154. (11.4)

The probability that atoms 1, 3, and 8 decay in this time is

p3 = (0.154)3 = 0.00365. (11.5)

(b) The answer to (a) is independent of the fate of the other seven atoms. The
probability that none of the others decay in the 3 hours is q7 = (0.846)7 = 0.310. The
probability that only atoms 1, 3, and 8 decay while the others survive is therefore

p3q7 = (0.00365)(0.310) = 0.00113. (11.6)

(c) The last answer, p3q7, gives the probability that a particular, designated three
atoms decay—and only those three—in the specified time. The probability that exactly
three atoms (any three) decay is p3q7 times the number of ways that a group of three
can be chosen from among the N = 10 atoms. To make such a group, there are 10
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choices for the first member, 9 choices for the second member, and 8 choices for the
third member. Thus, there are N(N – 1)(N – 2) = 10 × 9 × 8 = 720 ways of selecting
the three atoms for decay. However, these groups are not all distinct. In a counting
experiment, the decay of atoms 1, 3, and 8 in that order is not distinguished from
decay in the order 1, 8, and 3. The number of ways of ordering the three atoms that
decay is 3 × 2 × 1 = 3! = n! = 6. Therefore, the number of ways that any n = 3 atoms
can be chosen from among N = 10 is given by the binomial coefficient1)

(
N

n

)
=

(
10
3

)
≡ 10!

3!7!
= 10 × 9 × 8

3!
= 720

6
= 120. (11.7)

The probability that exactly 3 atoms decay is

P3 =
(

10
3

)
p3q7 = 120 × 0.00113 = 0.136. (11.8)

(d) The probability that exactly 6 atoms decay in the 3 hours is

P6 =
(

10
6

)
p6q4 = 10!

6!4!
(0.154)6(0.846)4 = 0.00143. (11.9)

(e) The probability that no atom decays is

P0 =
(

10
0

)
p0q10 = 10!

0!10!
(0.846)10 = 0.188. (11.10)

Thus, there is a probability of 0.188 that no disintegrations occur in the 3-hour period,
which is approximately one-fourth of the half-life.

(f) We can see from (c) and (d) that the general expression for the probability that
exactly n of the 10 atoms decay is

Pn =
(

10
n

)
pnq10–n. (11.11)

(g) The sum of the probabilities for all possible numbers of disintegrations, n = 0
to n = 10, should be unity. From Eq. (11.11), and with the help of the last footnote for
the binomial expansion, we write

10∑
n=0

Pn =
10∑

n=0

(
10
n

)
pnq10–n = (p + q)10. (11.12)

Since p + q = 1, the total probability (11.12) is unity.
(h) With N = 100 atoms in the sample, the probability that none would decay in

the 3 h is q100 = (0.846)100 = 5.46 × 10–8. This is a much smaller probability than in
(e), where there are only 10 atoms in the initial sample. Seeing no atoms decay in a
sample of size 100 is a rare event.

1 The general expansion of a binomial to an
integral power N is given by

(p + q)N =
N∑

n=0

(
N

n

)
pnqN–n,

where

(
N

n

)
= N!

n!(N – n)!
= N(N – 1) · · · (N – n + 1)

n!
.
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11.4
The Binomial Distribution

We summarize the results that describe the Bernoulli process of radioactive decay
and generalize Eq. (11.11) for any initial number N of identical radioactive atoms.
The probability that exactly n will disintegrate in time t is

Pn =
(

N

n

)
pnqN–n. (11.13)

Here p and q are defined by Eqs. (11.1) and (11.2). Since the Pn are just the terms in
the binomial expansion and since p + q = 1, the probability distribution represented
by Eq. (11.13) is normalized; that is,

N∑
n=0

Pn = (p + q)N = 1. (11.14)

The function defined by Eq. (11.13) with p + q = 1 is called the binomial distribu-
tion and applies to any Bernoulli process. Besides radioactive decay, other familiar
examples of binomial distributions include the number of times “heads” occurs
when a coin is tossed N times and the frequency with which exactly n sixes occur
when five dice are rolled. The binomial distribution finds widespread industrial
applications in product sampling and quality control.

The expected, or mean, number of disintegrations in time t is given by the aver-
age value µ of the binomial distribution (11.13):

µ ≡
N∑

n=0

nPn =
N∑

n=0

n

(
N

n

)
pnqN–n. (11.15)

This sum is evaluated in Appendix E. The result, given by Eq. (E.4), is

µ = Np. (11.16)

Thus, the mean is just the product of the total number of trials and the probability
of the success of a single trial.

Repeated observations of many sets of N identical atoms for time t is expected to
give the binomial probability distribution Pn for the number of disintegrations n.
The scatter, or spread, of the distribution of n is characterized quantitatively by
its variance σ 2 or standard deviation σ , defined as the positive square root of the
variance. The variance is defined as the expected value of the squared deviation
from the mean of all values of n:

σ 2 ≡
N∑

n=0

(n – µ)2Pn. (11.17)

As shown in Appendix E, [Eq. (E.14)], the standard deviation is given by

σ = √
Npq. (11.18)
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Although we have been discussing the number of disintegrations of a radio-
nuclide, the results can also be applied to the number of counts registered from
disintegrations in an experiment. Unless the efficiency ε of a counter is 100%, the
number of counts will be less than the number of disintegrations. With N atoms
initially present, the probability that a given atom will disintegrate in time t and be
registered as a count is, in place of Eq. (11.2),

p* = prob. of a count = εp = ε(1 – e–λt). (11.19)

The probability that the given atom will not give a count, either by not decaying or
by decaying but not being registered, is

q* = prob. of no count = 1 – p* = 1 – ε + εe–λt. (11.20)

The formalism developed thus far for the number of disintegrations can be applied
to the number of counts by using p* and q* in place of p and q. The binomial distrib-
ution function Pn then applies to the number of counts, rather than disintegrations,
obtained in time t. If ε = 1, then Eqs. (11.19) and (11.20) are identical with (11.2)
and (11.1), respectively. Also, one can divide the number of disintegrations by the
time t and then apply the above formalism to obtain the average disintegration and
count rates over the observation time.

Example

An experimenter repeatedly prepares a large number of samples identical to that in
the example from the last section: N = 10 atoms of 42K at time t = 0. He does not
know how much activity is initially present, but he wants to estimate it by determin-
ing the mean number of disintegrations that occur in a given time. To this end, each
new sample is placed in a counter, having an efficiency ε = 32%, and observed for
3 h, the same time period as before.

(a) What is the probability that exactly 3 counts will be observed?
(b) What is the expected number of counts in 3 h?
(c) What is the expected count rate, averaged over the 3 h?
(d) What is the expected disintegration rate, averaged over the 3 h?
(e) What is the standard deviation of the count rate over the 3 h?
(f) What is the standard deviation of the disintegration rate over the 3 h?
(g) If ε = 100%, the count rate would be equal to the disintegration rate. What

would then be the expected value and standard deviation of the disintegration rate?

Solution

(a) In the previous example, Eq. (11.8) gave a probability P3 = 0.136 for the occur-
rence of exactly 3 disintegrations. This, of course, remains true here. However, with
ε = 0.32, the probability of observing exactly 3 counts in the time t = 3 h is smaller,
because obtaining 3 counts will generally require more man 3 atoms to decay, with a
correspondingly lower probability. We let n* represent the number of disintegrations
detected by the counter. The probability for exactly 3 counts, that is, for n* = 3, is
given by Eq. (11.8) with p and q replaced by p* and q*. From Eqs. (11.19) and (11.4),



11.4 The Binomial Distribution 309

we have p* = εp = 0.32 × 0.154 = 0.049; and, from Eq. (11.20), q* = 0.951. The prob-
ability of observing exactly 3 counts is, from Eq. (11.8),

P*
3 =

(
10
3

)
p*3q*7 = 120(0.049)3(0.951)7 = 0.00993. (11.21)

(b) The expected number of counts µ* is given by Eq. (11.16) with p replaced by p*:

µ* = Np* = 10 × 0.049 = 0.490. (11.22)

This is the expected number of counts in 3 h. [With ε = 1.00, µ* = µ = Np = 1.54.
The ratio µ*/µ is the average fraction of disintegrating atoms that get counted, that
is, the counter efficiency, ε.]

(c) The expected count rate for t = 3 h is rc = µ*/t = 0.490/(3 h) = 0.163 h–1.
(d) The average disintegration rate for t = 3 h is rd = µ*/tε = (0.163 h–1)/0.32 =

0.509 h–1. [Because the observation time is not small compared with the half-life,
the average disintegration rate over 3 h is less than the initial activity. The latter is
λN = (0.0559 h–1)(10) = 0.559 h–1.]

(e) The standard deviation of the count rate is, from Eq. (11.18),

σcr =
√

Np*q*

t
=

√
10 × 0.049 × 0.951

3 h
= 0.228 h–1. (11.23)

(f) The standard deviation of the disintegration rate is σcr = σcr/ε = 0.713 h–1.
(g) The actual disintegration rate, which would be equal to the count rate if ε = 1.00,

is

rd = Np

t
= 10 × 0.154

3 h
= 0.513 h–1. (11.24)

The standard deviation is then

σdr =
√

Npq

t
=

√
10 × 0.154 × 0.846

3
= 0.380 h–1. (11.25)

The disintegration rate rd, Eq. (11.24), is the same as that found in (d), except for
round-off (ε was given to only two significant figures). The ratio rc/rd is just equal
to the counter efficiency, since µ*/µ = ε. It follows that a large number of repeated
measurements would be expected to give a distribution of values for the disintegra-
tion rate about its true mean, independently of the counter efficiency. Note, however,
that the standard deviation (11.25) obtained for the disintegration rate is considerably
smaller here than in (f). Thus rd is determined with greater precision here. Improv-
ing counter efficiency results in a larger number of counts in a given time period, the
increased sample size (number of counts) giving greater precision in the statistical
results.

This example has dealt with a radioactive source that is unrealistically weak to
measure. However, it illustrates the basic way in which the random process of ra-
dioactive decay can be registered by an instrument that counts events. Information
needed to characterize a source (e.g., activity, half-life) is obtained in this manner
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on a statistical basis. In practice, it is usually desirable to obtain estimates with high
statistical precision, acquired by sampling large numbers of events.

Example

More realistically, consider a 42K source with an activity of 37 Bq (= 1 nCi). The source
is placed in a counter, having an efficiency of 100%, and the numbers of counts in
one-second intervals are registered.

(a) What is the mean disintegration rate?
(b) Calculate the standard deviation of the disintegration rate.
(c) What is the probability that exactly 40 counts will be observed in any second?

Solution

(a) The mean disintegration rate is the given activity, rd = 37 s–1.
(b) The standard deviation of the disintegration rate is given by Eq. (11.18). We

work with the time interval, t = 1 s. Since the decay constant is λ = 0.0559 h–1 =
1.55 × 10–5 s–1, we have

q = e–λt = e–1.55×10–5×1 = 0.9999845 (11.26)

and p = 1 – q = 0.0000155.2) The number of atoms present is

N = rd

λ
= 37 s–1

1.55 × 10–5 s–1 = 2.39 × 106. (11.27)

From Eq. (11.18), we obtain for the standard deviation of the disintegration rate

σdr =
√

Npq

t
=

√
2.39 × 106 × 0.0000155 × 0.9999845

1 s
= 6.09 s–1, (11.28)

which is about 16% of the mean disintegration rate.
(c) The probability of observing exactly n = 40 counts in 1 s is given by Eq. (11.13).

However, the factors quickly become unwieldy when N is not small (e.g., 69! =
1.71 × 1098). For large N and small n, as we have here, we can write for the bino-
mial coefficient(

N

n

)
≡ N(N – 1) · · · (N – n + 1)

n!
∼= Nn

n!
, (11.29)

since each of the n factors in the numerator is negligibly different from N. Equation
(11.13) then gives

P40 = (2.39 × 106)40

40!
(0.0000155)40(0.9999845)2.39×106–40 (11.30)

= (2.39)40(10240)(0.0000155)40(0.9999845)2.39×106

40!
, (11.31)

where n = 40 � N has been dropped from the last exponent. The right-hand side can
be conveniently evaluated with the help of logarithms. To reduce round-off errors, we

2 Note that, for small λt,
p = 1 – e–λt ∼= 1 – (1 – λt) = λt.
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use four decimal places:

log(2.39)40 = 15.1359

log(10)240 = 240.0000

log(0.0000155)40 = –192.3867

log(0.9999845)2.39×106 = –16.0886

– log 40! = –47.9116

log P40 = –1.251. (11.32)

Thus, P40 = 10–1.251 = 0.0561.

This example shows that computations employing the basic binomial distribu-
tion that describes the Bernoulli process of radioactive decay can get quite cumber-
some. Precise numerical evaluations can present formidable problems, especially
for large N, large n, and small p. These are the conditions typically met in practice,
as this example illustrates. Fortunately, very good approximations can be made to
the binomial distribution for just these cases, greatly simplifying numerical work.
We consider in the next two sections the Poisson and then the normal, or Gaussian,
distributions. These distributions also arise naturally in describing many phenom-
ena.

11.5
The Poisson Distribution

We consider the conditions N � 1, N � n, and p � 1, as we did in the last exam-
ple. As seen from Eqs. (11.1) and (11.2), small p implies that q is near unity and
therefore λt � 1. Under these conditions, as shown in Appendix E, the terms of the
binomial distribution (11.13) are given to a very good approximation by the Poisson
distribution [Eq. (E.23)]:

Pn = µne–µ

n!
. (11.33)

It is also shown in Appendix E that µ = Np is the mean of the Poisson distribu-
tion, as it is for the binomial. The standard deviation of the Poisson distribution
[Eq. (E.28)] is the square root of the mean:

σ = √
µ. (11.34)

Whereas the binomial distribution is characterized by two independent parame-
ters, N and p (or q), the Poisson distribution has the single parameter µ.

As the next example shows, computations for radioactive decay can be simpli-
fied considerably when the conditions for representation by Poisson statistics are
satisfied.
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Example

Repeat the last example by using Poisson statistics to approximate the binomial dis-
tribution.

Solution

(a) As before, the mean disintegration rate is the given activity, which we write as
µ = 37 s–1.

(b) The standard deviation [Eq. (11.34)] is

σ = √
µ = √

37 = 6.08 s–1, (11.35)

as compared with 6.09 s–1 found before [Eq. (11.28)].
(c) The probability of exactly 40 disintegrations occurring in a given second is, by

Eq. (11.33),

P40 = 3740e–37

40!
= 0.0559, (11.36)

in close agreement with the value 0.0561 found before. (Lack of exact agreement
to several significant figures between the results found here with the binomial and
Poisson distributions can be attributed to round-off.)

Like the binomial distribution, the distribution (11.33) can be derived in its own
right for a Poisson process.3) The conditions required are the following:
1. The number of successes in any one time interval is

independent of the number in any other disjoint time interval.
(The Poisson process has no memory.)

2. The probability that a single success occurs in a very short time
interval is proportional to the length of the interval.

3. The probability that more than one success will occur in a very
short time interval is negligible.

The Poisson process can describe such diverse phenomena as the number of traffic
accidents that occur during August in a certain county, the number of eggs laid
daily by a brood of hens, and the number of cosmic rays registered hourly in a
counter. The events occur at random, but at an expected average rate. Generally,
the Poisson distribution describes the number of successes for any random process
whose probability is small (p � 1) and constant.

Figure 11.1 shows a comparison of the binomial and Poisson distributions. In all
panels, the mean, µ = 10, of both distributions is kept fixed; the probability of suc-
cess p and sample size N are varied between panels. Since the mean is the same,
the Poisson distribution is the same throughout the figure. Both distributions are
asymmetric, favoring values of n ≤ µ. As pointed out after Eq. (E.19), although the
binomial probability Pn = 0 when n > N, the Poisson Pn are never exactly zero. (In
the upper left-hand panel of Fig. 11.1 when n > 15, for example, it can be seen

3 However, we shall not carry out the derivation
of Eq. (11.33) from the postulates.
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Fig. 11.1 Comparison of binomial (histogram) and Poisson
(solid bars) distributions, having the same mean, µ = 10, but
different values of the probability of success p and sample
size N. The ordinate in each panel shows the probability Pn of
exactly n successes, shown on the abscissa. With fixed µ, the
Poisson distribution is the same throughout. (Courtesy James
S. Bogard.)

that Pn = 0 for the binomial, but not the Poisson, distribution.) As p gets smaller
in Fig. 11.1, the Poisson distribution approaches the binomial (having the same
mean) more and more closely, as we have discussed. The two distributions are
close to one another when p = 0.10 and become virtually indistinguishable when
p = 0.01. Both distributions also become progressively more bell-shaped with de-
creasing p, suggesting a relationship with the normal distribution (next section).

In the typical counting of radioactive samples with significant activity, the ap-
proximation of using Poisson statistics in place of the exact, but often cumbersome,
binomial distribution is usually warranted. However, the justification for doing so
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Fig. 11.2 Comparison of binomial (histogram) and Poisson
(solid bars) distributions for fixed N and different p. The
ordinate shows Pn and the abscissa, n. The mean of the two
distributions in a given panel is the same. (Courtesy James S.
Bogard.)

depends on the extent to which p � 1 and N � 1. In the last two examples, involv-
ing 37 Bq of 42K and 1-s counting intervals, the Poisson description was seen to
be extremely accurate. We had for the probability of success (decay) p = 1.55 × 10–5

and N = 2.39 × 106 trials (atoms).
Figure 11.2 shows a comparison of another sort, in which N = 100 is held con-

stant and p is varied. The middle panel on the right (p = 0.10) is the same as
in Fig. 11.1. The mean value is the same for both distributions in each panel of
Fig. 11.2; but it shifts from panel to panel, becoming progressively smaller as p is
decreased. Again, we see that the binomial and Poisson distributions become vir-
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tually indistinguishable for small p. However, they are not bell-shaped when they
become similar, as they were in the last figure.

11.6
The Normal Distribution

Figure 11.1 indicates that the binomial and Poisson distributions become similar
and tend to approach the shape of a normal, or Gaussian, distribution as p gets
small and N gets large. The latter distribution although defined for a continuous
(rather than discrete) variable, will be found to be an extremely useful and accurate
approximation to the binomial and Poisson distributions for large N.

In Appendix E, it is shown how the normal distribution can be obtained from
the Poisson under specific conditions. The distribution, Eq. (E.35), can be written
as the probability density for the continuous random variable x:

f(x) = 1√
2πσ

e–(x–µ)2/2σ2
. (11.37)

The probability that x lies between x and x+dx is f(x) dx. The function is normalized
to unit area when integrated over all values of x, from –∞ < x < ∞. In place of the
single Poisson parameter µ, the normal distribution (11.37) is characterized by two
independent parameters, its mean µ and standard deviation σ . It has inflection
points at x = µ ± σ , where it changes from concave downward to concave upward
in going away from the mean (Problem 18).

Figure 11.3 shows a comparison of binomial and normal distributions, having
the same means and standard deviations. The binomial distributions in the two
upper panels appeared in the two previous figures. In the upper left, the binomial
and normal distributions are quite different in shape. The normal random vari-
able can be negative, whereas the binomial integer n cannot be negative. Also, the
binomial distribution is skewed; the normal is symmetric. As we saw in the lower
right-hand panel of Fig. 11.2, the Poisson distribution matches the binomial closely
for the conditions in the upper left panel of Fig. 11.3. In fact, the binomial and Pois-
son distributions match throughout Fig. 11.3. As N increases, µ becomes larger;
and both the binomial and normal distributions shift toward the right. The bino-
mial and Poisson practically match the normal distribution when µ = 30 (lower left
panel).

The probability that x has a value between x1 and x2 is equal to the area under
the curve f(x) between these two values:

P(x1 ≤ x ≤ x2) = 1√
2πσ

∫ x2

x1

e–(x–µ)2/2σ2
dx. (11.38)

For computational purposes, it is convenient to transform the normal distribution,
which depends on the two parameters µ and σ , into a single, universal form. The
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Fig. 11.3 Comparison of binomial (histogram) and normal
(solid line) distributions, having the same means and standard
deviations. The ordinate in each panel gives the probability Pn
for the former and the density f(x) [Eq. (11.37)] for the latter, the
abscissa giving n or x. (Courtesy James S. Bogard.)

standard normal distribution, having zero mean and unit standard deviation, is
obtained by making the substitution

z = x – µ

σ
. (11.39)

Equation (11.38) then becomes (dx = σ dz)

P(z1 ≤ z ≤ z2) = 1√
2π

∫ z2

z1

e–z2/2 dz. (11.40)

Table 11.1 lists values of the integral,

P(z ≤ z0) = 1√
2π

∫ z0

–∞
e–z2/2 dz, (11.41)

giving the probability that the normal random variable z has a value less than or
equal to z0. This probability is illustrated by the shaded area under the standard
normal curve, as indicated at the top of Table 11.1. The following example illus-
trates the use of the table.

Example

Repeated counts are made in 1-min intervals with a long-lived radioactive source.
The observed mean value of the number of counts is 813, with a standard devia-



11.6 The Normal Distribution 317

tion of 28.5 counts. (a) What is the probability of observing 800 or fewer counts in a
given minute? (b) What is the probability of observing 850 or more counts in 1 min?
(c) What is the probability of observing 800 to 850 counts in a minute? (d) What is
the symmetric range of values about the mean number of counts within which 90%
of the 1-min observations are expected to fall?

Solution

The normal distribution is indistinguishable from the binomial and Poisson distri-
butions within the precision given in the problem. Whereas the desired quantities
would be tedious to calculate by using either of the latter two, they are readily ob-
tained for the normal distribution.

(a) We use as estimates of the true mean and standard deviation µ = 813 and
σ = 28.5. Let x represent the number of counts observed in 1 min. We have for the
standard normal random variable, from Eq. (11.39), z = (x – 813)/28.5. The probabil-
ity that x has a value less than or equal to 800 is the same as the probability that z is
less than or equal to (800 – 813)/28.5 = –0.456. Interpolating in Table 11.1, we find
that P(x ≤ 800) = P(z ≤ –0.456) = 0.324.

(b) For x = 850, z = (850 – 813)/28.5 = 1.30. Whereas Table 11.1 gives values P(z ≤
z0), we are asked here for a complementary value, P(z ≥ z0) = 1 – P(z ≤ z0). Thus,
P(x ≥ 850) = P(z ≥ 1.30) = 1 – P(z ≤ 1.30) = 1 – 0.9032 = 0.097.

(c) It follows from (a) and (b) that the probability that x lies between 800 and 850
is equal to the area under the standard normal distribution in the interval 0.456 < z <
1.30. Using Table 11.1, we find that

P(800 < x < 850) = P(–0.456 < z < 1.30) (11.42)

= P(z < 1.30) – P(z < –0.456) (11.43)

= 0.903 – 0.324 = 0.579. (11.44)

As a check, the sum of the answers to (a), (b), and (c) must add to give unity (except
for possible roundoff): 0.324 + 0.097 + 0.579 = 1.000.

(d) With respect to the standard normal curve, 90% of the area in the symmetric
interval ± z about z = 0 corresponds to the value of z for which P(z ≤ z0) = 0.9500.
From Table 11.1 we see that this occurs when z0 = 1.645. Equation (11.39) implies
that the corresponding interval in x is ± 1.645 standard deviations from the mean µ.
Thus, 90% of the values observed for x are expected to fall within the range 813 ±
1.645(28.5) = 813 ± 46.9.

Table 11.2 lists some useful values of one-tail areas complementary to the areas
given in Table 11.1. To illustrate its use, the answer to part (b) of the last example
can be gotten by interpolating in Table 11.2 with kα = 1.30, giving P(x ≥ 850) =
0.0975. Also, the second entry in the table shows that one-half of the area under a
normal distribution lies within the interval ±0.675σ about the mean.
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Table 11.2 One-Tail Areas α Under the Standard Normal Distribution from z = kα to ∞

Area, α kα

0.5000 0.000
0.2500 0.675
0.1587 1.000
0.1000 1.282
0.0500 1.645
0.0250 1.960
0.0228 2.000
0.0100 2.326
0.0050 2.576
0.0013 3.000
0.0002 3.500

11.7
Error and Error Propagation

As we have seen, the standard deviation of the values observed for a random vari-
able provides a measure of the uncertainty in the knowledge of the mean of that
variable. The uncertainty is often expressed as the probable error, which is the sym-
metric range about the mean within which there is a 50% chance that a measure-
ment will fall. For a normal distribution, the probable error is thus ±0.675σ (Ta-
ble 11.2).

Another measure of uncertainty is the fractional standard deviation, defined as
the ratio of the standard deviation and the mean of a distribution, σ /µ. This di-
mensionless quantity, which is also called the coefficient of variation, expresses the
uncertainty in relative terms. For the Poisson distribution, the fractional standard
deviation is simply

σ

µ
=

√
µ

µ
= 1√

µ
. (11.45)

In Fig. 11.1, for example, the standard deviation of the Poisson distribution is
√

µ =√
10 = 3.16. The fractional standard deviation is 1/

√
10 = 0.316.

Often in practice one has only a single measurement of a random variable, such
as a number n of counts, and wishes to express an uncertainty associated with it.
The best estimate of the mean of the distribution from this single measurement is
that result: namely, n. If one assumes that the distribution sampled is Poisson or
normal, then the best estimate of the standard deviation is

√
n. The significance of

the measurement, then, is that the true mean is estimated to lie within the interval
n ± √

n, with a probability (confidence) of 0.683.
Many measurements involve more than one random variable. For example, the

activity of a source can be obtained by counting a sample and then subtracting the
number of background counts measured with a blank. Both the number of gross
counts with the sample present and the number of background counts are subject
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to the random statistical fluctuations that we have been discussing. The number
of net counts, gross minus background, is ascribed to the activity of the sample.
The subject of error propagation deals with estimating the standard deviation of
a quantity that depends on fluctuations in more than one independent random
variable.

Consider a quantity Q(x, y) that depends on two independent, random variables x

and y. We can make N repeated measurements of x and y, obtaining a set of N pairs
of data, xt and yi, with i = 1, 2, . . . , N. The sample means and standard deviations,
σx and σy, can be computed for the two variables. Also, for each data pair the values
Qi = Q(xi, yi) can be calculated. We assume that the scatter of the xi and yi about
their means is small. As shown in Appendix E, the standard deviation of Q is given
by [Eq. (E.41)]

σQ =
√(

∂Q

∂x

)2

σ 2
x +

(
∂Q

∂y

)2

σ 2
y . (11.46)

We shall apply this relation in subsequent sections.

11.8
Counting Radioactive Samples

We turn now to the statistics of count-rate measurements and their associated con-
fidence limits. We discuss gross count rates, net count rates, and optimum count-
ing times for long-lived sources. We conclude the section with a discussion of the
counting of short-lived samples.

Gross Count Rates

To obtain the gross count rate of a long-lived sample-plus-background, for example,
one measures a number of counts ng in a time tg. The gross count rate is then
simply rg = ng/tg. The standard deviation of this rate is determined by the standard
deviation of ng. (We shall assume throughout that time measurements are precise.)
Assuming that the number of gross counts is Poisson distributed with mean µg,
we have for its standard deviation σg = √

µg. Therefore, the standard deviation of
the gross count rate is given by

σgr = σg

tg
=

√
µg

tg
=

√
rg

tg
, (11.47)

where µg = rgtg has been used in writing the last equality. Since the count rate
of a long-lived sample is constant, Eq. (11.47) shows that the standard deviation
associated with its measurement decreases as the square root of the counting time.

Example

The activity of a long-lived sample is measured with 35% efficiency in a counter with
negligible background. The sample has a reported activity of 42.0 dpm (disintegra-
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tions per minute = min–1). To check this value, technician A takes a 1-min reading,
that registers 19 counts. His observed rate, 19.0 cpm (counts per minute = min–1),
differs from that based on the reported activity, namely, 0.35 × 42.0 = 14.7 cpm, by
4.3 cpm. Technician B takes a 60-min reading, which registers 1148 counts. His
observed count rate, 19.13 cpm, differs from that based on the reported activity by
4.4 cpm, about the same as A.

(a) Does A’s check substantiate the reported activity?
(b) What is the estimated activity, based on B’s check?
(c) How can A’s and B’s findings for the measured activity be reconciled?

Solution

(a) Assuming that the reported activity is the true activity, one can ask, “What is the
probability that technician A’s measurement would differ from the expected value by
no more than he found?” Based on the reported activity, we assume that the mean
number of counts in the 1-min interval is µA = 14.7, 4.3 counts less than the ob-
served 19. Also, the assumed standard deviation of the number of counts in this time
interval is

√
µA = 3.83. The actual number of counts observed by technician A ex-

ceeds the assumed true mean by 4.3/3.83 = 1.12 standard deviations. Referring to
Table 11.1, we find that the interval µ ± 1.12σ includes 0.737 of the total unit area.
A’s observation, therefore, is consistent with the stated activity, in that there is a prob-
ability of 0.737 that a single measurement would be as close, or closer, to the mean
as he found.

(b) Technician B’s rate of 19.13 cpm is almost the same as that (19.0 cpm) of A.
However, B has a much larger number of counts, and so his result inherently has
greater statistical significance, as we now show. Again, we assume that the reported
activity is the true activity. Thus, we assume for the mean number of counts in 1 h,
µB = 14.7 × 60 = 882, with a standard deviation

√
µB = √

882 = 29.7. The difference
between B’s observation nB = 1148 and the expected number of counts is, in multi-
ples of the standard deviation,

nB – µB√
µB

= 1148 – 882
29.7

= 8.96. (11.48)

The probability that B’s observation is a random occurrence, 9 standard deviations
away from the assumed true mean is about 1 × 10–19. B’s measurement strongly
suggests that the true activity is likely in the neighborhood of (19.13 min–1)/0.35 =
54.7 dpm.

(c) Whereas technician A’s observation is consistent with the reported activity, B’s
observation makes it very unlikely that the reported activity is close to the true value.
There is nothing inherently inconsistent with the two findings, however. Indeed, an
estimate of the true activity, based on A’s observation, is (19.0 cpm)/0.35 = 54.3 dpm,
virtually the same as B’s estimate. It is the total number of counts that determines
the statistical significance of the observation. It is not unlikely that A’s single, 1-min
observation would differ by 4.3 counts from an expected mean of 14.7. It is highly
unlikely, though, that B’s observation would differ by 1148 – 882 = 266 counts from
an expected mean of 882.
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Net Count Rates

As an application of the error-propagation formula, Eq. (11.46), we find the stan-
dard deviation of the net count rate of a sample, obtained experimentally as the
difference between gross and background count rates, rg and rb. As with gross
counting, one also measures the number nb of background counts in a time tb.
The net count rate ascribed to the sample is then the difference

rn = rg – rb = ng

tg
–

nb

tb
. (11.49)

To find the standard deviation of rn, we apply Eq. (11.46) with Q = rn, x = ng, and
y = nb. From Eq. (11.49) we have ∂rn/∂ng = l/tg and ∂rn/∂nb = –1/tb. Thus, the
standard deviation of the net count rate is given by

σnr =
√

σ 2
g

t2
g

+
σ 2

b

t2
b

=
√

σ 2
gr + σ 2

br. (11.50)

Here σg and σb are the standard deviations of the numbers of gross and background
counts, and σgr and σbr are the standard deviations of the gross and background
count rates. Equation (11.50) expresses the well-known result for the standard de-
viation of the sum or difference of two Poisson or normally distributed random
variables. Using ng and nb as the best estimates of the means of the gross and
background distributions and assuming that the numbers of counts obey Poisson
statistics, we have σ 2

g = ng and σ 2
b = nb. Therefore, the last equation can be written

σnr =
√

ng

t2
g

+
nb

t2
b

=
√

rg

tg
+

rb

tb
, (11.51)

where the substitutions rg = ng/tg and rb = nb/tb have been made to obtain the last
equality. Both expressions in (11.51) are useful in solving problems, depending on
the particular information given.

Example

A long-lived radioactive sample is placed in a counter for 10 min, and 1426 counts are
registered. The sample is then removed, and 2561 background counts are observed
in 90 min. (a) What is the net count rate of the sample and its standard deviation?
(b) If the counter efficiency with the sample present is 28%, what is the activity of
the sample and its standard deviation in Bq? (c) Without repeating the background
measurement, how long would the sample have to be counted in order to obtain the
net count rate to within ±5% of its true value with 95% confidence? (d) Would the
time in (c) also be sufficient to ensure that the activity is known to within ±5% with
95% confidence?

Solution

(a) We have ng = 1426, tg = 10 min, nb = 2561, and tb = 90 min. The gross and
background count rates are rg = 1426/10 = 142.6 cpm and rb = 2561/90 = 28.5 cpm.
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Therefore, the net count rate is rn = 142.6 – 28.5 = 114 cpm. The standard deviation
can be found from either of the expressions in (11.51). Using the first (which does
not depend on the calculated values, rg and rb), we find

σnr =
√

1426
(10 min)2 +

2561
(90 min)2 = 3.82 min–1 = 3.82 cpm. (11.52)

(b) Since the counter efficiency is ε = 0.28, the inferred activity of the sample is
A = rn/ε = (114 min–1)/0.28 = 407 dpm = 6.78 Bq. The standard deviation of the
activity is σnr/ε = (3.82 min–1)/0.28 = 13.6 dpm = 0.227 Bq.

(c) A 5% uncertainty in the net count rate is 0.05rn = 0.05 × 114 = 5.70 cpm. For
the true net count rate to be within this range of the mean at the 95% confidence
level means that 5.70 cpm = 1.96σnr (Table 11.2), or that σnr = 2.91 cpm. Using the
second expression in (11.51) with the background rate as before (since we do not yet
know the new value of ng), we write

σnr = 2.91 min–1 =
√

142.6 min–1

tg
+

28.5 min–1

90 min
. (11.53)

Solving, we find that tg = 17.5 min.
(d) Yes. The relative uncertainties remain the same and scale according to the effi-

ciency. If the efficiency were larger and the counting times remained the same, then
a larger number of counts and less statistical uncertainty would result.

Optimum Counting Times

If the total time T = tg + tb for making the gross and background counts is fixed,
one can partition the individual times tg and tb in a certain way to minimize the
standard deviation of the net count rate. To find this partitioning, we can write the
second equality in (11. 51) as a function of either time variable alone and minimize
it by differentiation.4) Substituting T – tg for tb and minimizing the mathematical
expression for the variance, rather than the standard deviation (simpler than deal-
ing with the square root), we write

d
dtg

σ 2
nr = d

dtg

(
rg

tg
+

rb

T – tg

)
= 0. (11.54)

It follows that

–
rg

t2
g

+
rb

(T – tg)2 = 0 (11.55)

or

–
rg

t2
g

+
rb

t2
b

= 0, (11.56)

4 Alternatively, the function
f(tg, tb) ≡ σnr – λ(tg + tb), involving the
Lagrange multiplier λ, can be minimized by

solving the two equations, ∂ f/∂tg = 0 and
∂ f/∂tb = 0. Equation (11.57) results.
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giving

tg

tb
=

√
rg

rb
. (11.57)

The ratio of the optimum counting times is thus equal to the square root of the
ratio of the respective count rates.

Counting Short-Lived Samples

As we have seen, radioactive decay is a Bernoulli process. The distribution in the
number of disintegrations in a given time for identical samples of a pure radionu-
clide is thus described by the binomial distribution. When p � 1 and N � 1, the
Poisson and normal distributions give excellent approximations to the binomial.
However, for a rapidly decaying radionuclide, or whenever the time of observation
is not short compared with the half-life, p will not be small. The formalism pre-
sented thus far in this section cannot be applied for counting such samples. As an
illustration of dealing statistically with a short-lived radionuclide, the section con-
cludes with an analysis of a counting experiment in which the activity dies away
completely and background is zero.

We show how the binomial distribution leads directly to the formulas we have
been using when λt � 1 and then what the distribution implies when λt is large.
The expected number of atoms that disintegrate during time t in a sample of size
N can be written, with the help of Eqs. (11.16) and (11.2),

µ = N(1 – e–λt). (11.58)

For a long-lived sample (or short counting time), λt � 1, e–λt ∼= 1 – λt, and so µ ∼=
Nλt. The expected disintegration rate is µ/t = λN, as we had in an earlier chapter
[Eq. (4.2)]. With the help of Eqs. (11.18), (11.1), and (11.2), we see that the standard
deviation of the number of disintegrations is

σ =
√

N(1 – e–λt)e–λt =
√

µe–λt. (11.59)

Again, for λt � 1, we obtain σ = √
µ. This very important property of the binomial

distribution is exactly true for the Poisson distribution. Thus, a single observation
from a distribution that is expected to be binomial gives estimates of both the mean
and the standard deviation of the distribution when λt � 1. If the number of counts
obtained is reasonably large, then it can be used for estimating σ .

Equations (11.58) and (11.59) also hold for long times (λt � 1), for which the
Poisson description of radioactive decay is not accurate. If we make an observation
over a time so much longer than the half-life that the nuclide has decayed away
(λt → ∞), then Eqs. (11.58) and (11.59) imply that µ = N and σ = 0. The interpre-
tation of this result is straightforward. The expected number of disintegrations is
equal to the original number of atoms N in the sample and the standard deviation
of this number is zero. We have observed every disintegration and know exactly
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how many atoms were originally present. Repeating the experiment over and over,
one would always obtain the same result.

The situation is different if one registers disintegrations with a counter having
an efficiency ε < 1. Not observing every decay introduces uncertainty in the number
of atoms initially present. In place of Eqs. (11.58) and (11.59) one has for the mean
and standard deviation of the number of counts, with the help of Eqs. (11.19) and
(11.20),

µc = εN(1 – e–λt) (11.60)

and

σc =
√

εN(1 – e–λt)(1 – ε + εe–λt). (11.61)

When the sample has decayed away completely (λt → ∞), the result is µc = εN and

σc = √
εN(1 – ε) = √

µc(1 – ε). (11.62)

The standard deviation of the number of atoms initially present is σ = σc/ε.

Example

A sample containing a certain radionuclide registers 91,993 counts before dying com-
pletely away. Background is zero. What is the expected value of the initial number of
atoms of the radionuclide and the standard deviation of the initial number, if the
counter efficiency ε is (a) 100% and (b) 42%?

Solution

(a) With ε = 1, the numbers of counts and disintegrations are the same. There were
exactly µ = 91,993 atoms present initially (σ = 0).

(b) With ε = 0.42, we use the observed number of counts as the estimate of µc. The
expected number of atoms originally present is then µc/ε = 91,993/0.42 = 2.19×105.
The standard deviation of the number of counts is, by Eq. (11.62),

σc = √
91993(1 – 0.42) = 231. (11.63)

The standard deviation of the number of atoms initially present is σ = σc/ε =
231/0.42 = 550.

11.9
Minimum Significant Measured Activity—Type-I Errors

In many operations that involve counting a sample (e.g., bioassay monitoring,
smear counting), a decision has to be made as to whether the sample contains
“significant” activity. A high gross count number for a particular sample could be
the result of a large random fluctuation in background, or it could be due to the
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Fig. 11.4 Probability density Pn(rn) for measurement of net
count rate rn when no activity is present. See example in text.
(Courtesy James S. Bogard.)

radioactivity of the sample. In practice, a critical count level is often established
for screening when large numbers of samples must be routinely processed un-
der identical conditions. If a given sample reads more than the critical number of
gross counts, it is assumed to have significant activity, and graded action can then
be taken. A type-I error is said to occur if it is concluded that activity is present
when, in fact, there is none (false positive). A type-II error occurs when it is wrongly
concluded that no activity is present (false negative). The two types of error carry
different implications. This section and the next develop some statistical proce-
dures that have been formulated to ascertain “minimum significant measured ac-
tivity” and “minimum detectable true activity.” We assume that the distributions
of gross and background counts are normal and consider only long-lived radio-
nuclides.

Example

A sample, counted for 10 min, registers 530 gross counts. A 30-min background
reading gives 1500 counts. (a) Does the sample have activity? (b) Without changing
the counting times, what minimum number of gross counts can be used as a decision
level such that the risk of making a type-I error is no greater than 0.050?

Solution

(a) The numbers of gross and background counts are ng = 530 and nb = 1500; the re-
spective counting times are tg = 10 min and tb = 30 min. The gross and background
count rates are rg = ng/tg = 53 cpm and rb = nb/tb = 50 cpm, giving a net count rate
rn = rg – rb = 3 cpm. The question of whether activity is present cannot be answered
in an absolute sense from these measurements. The observed net rate could occur
randomly with or without activity in the sample. We can, however, compute the prob-
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ability that the result would occur randomly when we assume that the sample has
no activity. To do this, we compare the net count rate with its estimated standard
deviation σnr, given by Eq. (11.51):

σnr =
√

rg

tg
+

rb

tb
=

√
53
10

+
50
30

= 2.64 cpm. (11.64)

The observed net rate differs from 0 by 3/2.64 = 1.14 standard deviations. As found
in Table 11.1, the area under the standard normal curve to the right of this value is
0.127. Assuming that the activity A is zero, as shown in Fig. 11.4, we conclude that an
observation giving a net count rate greater than the observed rn = 1.14σnr = 3 cpm
would occur randomly with a probability of 0.127. This single set of measurements,
gross and background, is thus consistent with the conclusion that the sample likely
contains little or no activity. However, one does not know where the bell-shaped curve
in Fig. 11.4 should be centered. Based on this single measurement, the most likely
place is rn = 3 cpm, with the sample activity corresponding to that value of the net
count rate.

(b) Assigning a maximum probability for type-I errors enables one to give a more
definitive answer, with that proviso, for reporting the presence or absence of activity
in a sample. When A = 0, as in Fig. 11.4, the net rate that leaves 5% of the area under
the normal curve to its right is r1 = 1.65σnr (Table 11.2). Using Eq. (11.51), we write

r1 = 1.65

√
rg

tg
+

rb

tb
= 1.65

√
r1 + 50

10
+

50
30

, (11.65)

where the substitution rg = r1 + rb has been made. This equation is quadratic in r1.
After some manipulation, one finds that

r2
1 – 0.272r1 – 18.2 = 0. (11.66)

The solution is r1 = 4.40 cpm. The corresponding gross count rate is rg = r1 + rb =
4.40 + 50 = 54.4 cpm, and so the critical number of gross counts is ng = rgtg =
(54.4 min–1) × (10 min) = 544. Thus, a sample giving ng > 544 (i.e., a minimum of
545 gross counts) can be reported as having significant activity, with a probability no
greater than 0.05 of making a type-I error.

We can generalize the last example to compute decision levels for arbitrary
choices of tg, tb, and the maximum acceptable probability α for type-I errors. As
in Table 11.2, we let kα represent the number of standard deviations of the net
count rate that gives a one-tail area equal to α. Then, like Eq. (11.65), we can write
for r1, the minimum significant measured net count rate,

r1 = kα

√
σ 2

gr + σ 2
br = kα

√
r1 + rb

tg
+

rb

tb
. (11.67)

Solving for r1, we obtain (Problem 38)

r1 = k2
α

2tg
+

kα

2

√
k2
α

t2
g

+ 4rb

(
tg + tb

tgtb

)
. (11.68)
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This general expression leads to other useful formulas when the counting
times are equal (tg = tb = t). The last term under the radical can then be written
4rb(2t/t2) = 8nb/t2, where nb = rbt is the number of background counts obtained in
the time t. The minimum significant count difference (gross minus background)
becomes (Problem 39)

�1 = r1t = 1
2 k2

α + 1
2 kα

√
k2
α + 8nb, (11.69)

= kα

√
2nb

(
kα√
8nb

+

√
1 +

k2
α

8nb

)
. (11.70)

If the counter efficiency is ε, then the corresponding net number of disintegrations
in the sample during the time t is �1/ε. It follows that the minimum significant
measured activity is

AI = �1

εt
. (11.71)

In many instances, kα/
√

nb � 1. One then has the approximate formula,

�1 ∼= kα

√
2nb, (11.72)

in place of (11.70).
Often, background is stable and the expected number of background counts B in

the time t is known with much greater accuracy than that associated with the single
measurement nb. In that case, with no activity present, the standard deviation of
the number of net counts is simply

√
B. It follows that the minimum significant

net count difference is then

�1 = kα

√
B (Background accurately known). (11.73)

Comparison with Eqs. (11.72) and (11.70) shows that the minimum significant
measured net count difference and hence the minimum significant measured ac-
tivity are lower by a factor of approximately

√
2 when the background is well known.

For fixed counting times, tg and tb, the minimum significant measured activity
AI is determined completely by the choice of α, the level of the background, and
the accuracy with which the background is known.

Example

A 10-min background measurement with a certain counter yields 410 counts. A sam-
ple is to be measured for activity by taking a gross count for 10 min. The maximum
acceptable risk for making a type-I error is 0.05. The counter efficiency is such that
3.5 disintegrations in a sample result, on average, in one net count.

(a) Calculate the minimum significant net count difference and the minimum sig-
nificant measured activity in Bq.

(b) How much error is made in (a) by using the approximate formula (11.72) in
place of (11.69)?
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(c) What is the decision level for type-I errors in terms of the number of gross
counts in 10 min?

Solution

(a) With equal counting times, tg = tb = t = 10 min, one can use Eq. (11.69) in place
of the general expression (11.68). For α = 0.05, kα = 1.65. With nb = 410, we obtain

�1 = 1
2 (1.65)2 + 1

2 (1.65)
√

(1.65)2 + 8(410) = 48.6 = 49 (11.74)

for the minimum significant count difference in 10 min (rounded upward to the near-
est integer). The counter efficiency is ε = 1/3.5 = 0.286 dpm/cpm. It follows from
Eq. (11.71) that the minimum significant measured activity is AI = 48.6/(0.286 ×
10 min) = 17.0 dpm = 0.283 Bq.

(b) The approximate formula (11.72) gives �1 ∼= 1.65(2 × 410)1/2 = 47 net counts.
The percent error made by using the approximation in this example is [(49 – 47)/49]×
100 = 4.1%. [The criterion for the validity of (11.72) is that kα/

√
nb � 1. In this exam-

ple, kα/
√

nb = 1.65/
√

410 = 0.081.]
(c) The decision level for gross counts in 10 min is n1 = nb + �1 = 459.

The value n1 = 459 in the last example can serve as a decision level for screen-
ing samples for the presence of activity by gross counting for 10 min. A sample
showing ng < 459 counts can be reported as having less than the “minimum sig-
nificant measured activity,” AI = 0.283 Bq. A sample showing ng ≥ 459 counts can
be reported as having an activity (ng – nb)/εt = (ng – 410)/2.86 dpm. A blank will
read high, on average, one time in twenty. Use of a decision level thus implies
acceptance of a certain risk, set by choosing α, for making a type-I error.

For samples having zero activity, the probability of making a type-I error is just
equal to the value chosen for α. For samples having activity, a type-I error cannot
occur, by definition. Therefore, when one screens a large collection of samples,
some with A = 0 and some with A > 0, the probability of making a type-I error with
any given sample never exceeds α.

11.10
Minimum Detectable True Activity—Type-II Errors

We consider next the implications for making a type-II error by using a critical de-
cision level. We denote the maximum acceptable risk for a type-II error by β . With
the critical net count rate set at r1, based on the choice of α for type-I errors, the
situation is depicted in Fig. 11.5. For a certain net count rate r2, corresponding to a
sample activity AII, the area under the curve to the left of r1 in the figure will be β .
When A = AII, use of r1 as a screening level thus leads to a type-II error with prob-
ability β . When A > AII, the probability of a type-II error is less than β ; and when
A < AII, the probability is more than β . The activity AII, which is the smallest that
will not be missed with frequency greater than β , is called the minimum detectable
true activity. We now show how it can be calculated.
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Fig. 11.5 Probability density Pn(rn) for net count rate rn. When
activity A = 0, r1 is fixed by choice of probability α for type-I
errors. Use of r1 and choice of probability β for type-II errors
fixes r2, corresponding to the minimum detectable true activity
AII . (If α = β , then the intersection of the two curves occurs at
the value rn = r1.) (Courtesy James S. Bogard.)

Repeated measurements of the gross and background count rates with the ac-
tivity AII in a sample would give the net count rate, rg – rb, distributed about r2,
as shown in Fig. 11.5. Since the quantity rg – rb – r2 is distributed normally about
the mean value of zero, we can describe it with the help of the standard normal
distribution. Letting kβ represent the number of standard deviations that leave an
area β to its left, we write [analogous to Eq. (11.67)]

rg – rb – r2 = –kβ

√
rg

tg
+

rb

tb
(11.75)

= –kβ

√
rg – rb

tg
+ rb

(
tg + tb

tgtb

)
, (11.76)

where rb/tg has been subtracted and added under the radical. On both sides of this
equation we set the net count rate rg – rb = r1, the decision-level rate established for
type-I errors. We can now write

r2 = r1 + kβ

√
r1

tg
+ rb

(
tg + tb

tgtb

)
. (11.77)

Substituting for r1 from Eq. (11.68), we obtain

r2 = kα

[
kα

2tg
+

1
2

√
k2
α

t2
g

+ 4rb

(
tg + tb

tgtb

)]
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+ kβ

[
kα

tg

(
kα

2tg
+

1
2

√
k2
α

t2
g

+ 4rb

(
tg + tb

tgtb

))
+ rb

(
tg + tb

tgtb

)]1/2

. (11.78)

This general result gives the net rate that corresponds to the minimum detectable
true activity for a given background rate rb and arbitrary choices of α, β , and the
counting times. When the latter are equal (tg = tb = t), Eq. (11.78) gives for the
number of net counts with the minimum detectable true activity

�2 = r2t = √
2nb

{
kα

[
kα√
8nb

+

√
1 +

k2
α

8nb

]

+ kβ

[
1 +

k2
α

4nb
+

kα√
2nb

√
1 +

k2
α

8nb

]1/2}
. (11.79)

With the help of Eq. (11.70), we can also write

�2 = �1 + kβ

√
2nb

[
1 +

k2
α

4nb
+

kα√
2nb

√
1 +

k2
α

8nb

]1/2

. (11.80)

The minimum detectable true activity is given by

AII = �2

εt
, (11.81)

where ε is the counter efficiency. As with Eqs. (11.70) and (11.72), we obtain a
simple formula when kα/

√
nb � 1:

�2 ∼= (kα + kβ )
√

2nb. (11.82)

When the background count B is accurately known, we have seen by Eq. (11.73)
that the minimum significant count difference is �1 = kα

√
B. If a sample has ex-

actly the minimum detectable true activity, then the expected number of net counts
�2 is just kβ standard deviations greater than �1. The standard deviation of the net
count rate is

√
(B + �2). Thus,

�2 = kα

√
B + kβ

√
B + �2. (11.83)

Solving for �2, we find

�2 = √
B

(
kα +

k2
β

2
√

B
+ kβ

√
1 +

kα√
B

+
k2
β

4B

)
(11.84)

(Background accurately known).

This expression for �2 is then to be used in Eq. (11.81) to obtain the minimum
detectable true activity. When kα/

√
B � 1 and kβ/

√
B � 1, one has, approximately,

in place of Eq. (11.82),

�2 ∼= (kα + kβ )
√

B (Background accurately known). (11.85)
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As with �1 and AI, accurate knowledge of the background lowers �2 and AII by
about a factor of

√
2.

Example

The counting arrangement (α = 0.05, ε = 0.286, tg = tb = 10 min, and nb = 410) and
critical gross count number n1 = 459 from the last example are to be used to screen
samples for activity. The maximum acceptable probability for making a type-II error
is β = 0.025. (a) Calculate the minimum detectable true activity in Bq. (b) How much
error is made by using the approximate formula (11.82) in place of the exact (11.79)
or (11.80)?

Solution

(a) With equal gross and background counting times, we can use Eqs. (11.80) and
(11.81) to find AII. For β = 0.025, kβ = 1.96 (Table 11.2). With �1 = 48.6 counts from
the last example [Eq. (11.74)], Eq. (11.80) gives

�2 = 48.6 + 1.96
√

2(410)

[
1 +

(1.65)2

4(410)
+

1.65√
2(410)

√
1 +

(1.65)2

8(410)

]1/2

= 106

(11.86)

net counts. The minimum true detectable activity is, from Eq. (11.81),

AII = 106
0.286 × 10 min

= 37.1 dpm = 0.618 Bq. (11.87)

(b) The approximate formula (11.82) gives �2 ∼= (1.65 + 1.96)(2 × 410)1/2 = 103 net
counts. The error made in using the approximation to compute AII in this case is
[(106 – 103)/106] × 100 = 2.8%.

This example illustrates how a protocol can be set up for reporting activity in a
series of samples that are otherwise identical. As shown in Fig. 11.6, the decision
level for a 10-min gross count is n1 = 459, corresponding to the minimum signif-
icant count difference �1 = 49 and the minimum significant measured activity,
AI = 0.283 Bq. A sample for which ng < 459 is considered as having no reportable
activity. When ng ≥ 459, a sample is reported as having an activity

A = ng – nb

εt
= ng – 410

(0.286)(600 s)
= ng – 410

172
Bq. (11.88)

Note that A will be greater than the minimum significant measured activity, AI =
0.283 Bq. From part (a) in the last example, when ng = �2 + 410 = 516, the reported
value of the activity will be AII = 0.618 Bq, the minimum detectable true activity.
For a sample of unknown activity, the probability of making a type-I error does not
exceed α = 0.05. (If A = 0, the probability equals α.) The probability of making a
type-II error with a given sample does not exceed β = 0.025, as long as the activity is
greater than AII = 0.618 Bq. (If A = AII, the probability equals β .) When 0 < A < AII,
the probability for a type-II error is greater than β .
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Fig. 11.6 Gross and net counts for reporting activity in
samples. See text after example in Section 11.10. (Courtesy
James S. Bogard.)

In practice, one does not usually do a background count with each sample. If the
only source of background variation is the random fluctuation in the count rate rb,
then the latter can be assessed with a long count. As seen from Eqs. (11.68) and
(11.78), increasing tg alone reduces the decision level and hence AI and AII.5)

11.11
Criteria for Radiobioassay, HPS Nl3.30-1996

The analysis discussed in the last two sections largely follows work presented by
Altshuler and Pasternack (1963).6) The important subject of radiobioassay has re-
ceived a great deal of attention over the years. Different decision rules have been
suggested for activity determinations in low-level radioactive counting [Strom and
MacLellan (2001)]. Much of the literature relates back to the seminal papers of Cur-
rie (1968, 1984), who carefully defined basic concepts and objectives. He considered

5 D. J. Strom and P. S. Stansbury, “Minimum
Detectable Activity when Background is
Counted Longer than the Sample,” Health

Phys. 63, 360–361 (1992).

6 Citations made in this section can be found
in Section 11.14, Suggested Reading.
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operational quantities such as a level that may be recognized as “detected”, one that
is expected to lead to detection, and one that has adequate measurement precision
for quantitative assessment.

A large effort, involving a number of agencies and many specialists, led to the
development and publication of An American National Standard—Performance Cri-

teria for Radiobioassay, approved in 1996 by the American National Standards Insti-
tute and published by the Health Physics Society as HPS N13.30-1996. The express
purpose of the Standard “. . . is to provide criteria for quality assurance, evaluation
of performance, and the accreditation of radiobioassay service laboratories. These
criteria include bias, precision, and determination of the MDA [minimum detectable

amount].”
Building on the original work of Currie and others, the N13.30 Standard presents

a protocol that defines a decision level and a minimum detectable amount (MDA) for
measurements of a radioactive analyte in a sample. These quantities play the same
roles as their counterparts in the last two sections. However, they differ from the
former in the way in which background is assessed. In our earlier treatment, the
decision level is applied to net counts above background, measured with a subject
under analysis. The background count is typically made with the subject replaced
by an appropriate blank—e.g., synthetic urine, radiometrically the same as the sub-
ject, but having no added radioactivity. In N13.30, an additional measurement is
made by the routine procedure, where the subject contains no analyte above that of
the appropriate blank. When systematic errors are negligible, the N13.30 decision
level replaces the term

√
2nb in Eq. (11.72) above by the standard deviation s0 of the

net count of a subject with no added analyte. It thus includes contributions of both
a subject with no added analyte under the routine procedure and the background
as measured with the appropriate blank. Instead of comparing the subject count
with the single background determination as before, the comparison is made with
the specified net count, having standard deviation s0.

The MDA defined in N13.30 is similarly comparable to Eq. (11.82) with
√

2nb

replaced by s0. However, an additional complication arises when dealing with very
low background rates. A well maintained alpha-particle counter might register a
single count on average over a long counting time with a blank having no activity.
Use of the formalism is based on having good estimates of the mean and standard
deviation of the background. A semi-empirical value of three counts is added to
kβ s0 in the formula for the MDA in order to render β ≤ 0.05 when the background
is very low.

The American National Standards Institute has played an important part in the
quality of radiation protection in the United States. Their work led to the Nuclear
Regulatory Commission’s test program administered by the National Voluntary
Laboratory Accreditation Program (NVLAP) and to the Department of Energy’s
Laboratory Accreditation Program (DOELAP). The Institute’s activities extend into
other areas besides radiobioassay.
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11.12
Instrument Response

We treat two common statistical aspects basic to understanding and interpreting
certain radiation measurements. The measurements deal with energy resolution
in pulse-height analysis and the effects of instrument dead time on count rates.

Energy Resolution

In Fig. 10.30, the resolution of the total-energy peak, 8%, refers to the relative width
of the peak at one-half its maximum value. Called the full width at half maximum
(FWHM), one has FWHM = 0.08(662) = 53 keV. For a normal curve, which the
peak in Fig. 10.30 approximates well, with standard deviation σ , it can be shown
that FWHM = 2.35σ .

The resolution of a spectrometer depends on several factors. These include noise
in the detector and associated electronic systems as well as fluctuations in the
physical processes that convert radiation energy into a measured signal. The latter
source of variation is dominant in many applications, and we discuss it here. The
random fluctuations associated with the statistical nature of energy loss present an
irreducible physical limit to the resolution attainable with any energy-proportional
device. Assuming that other sources of random noise are small, we can relate the
width of the total energy peak in Fig. 10.30 to the distribution of the number of
entities that are collected to register an event.

When a 662-keV photon is absorbed in the Nal crystal, one or more Compton
electrons can be ejected along with a photoelectron to produce an event registered
under the energy peak. A number of low-energy secondary electrons are also pro-
duced. Scintillation photons are generated, many of which enter the photomulti-
plier tube. The tube converts a fraction of these into photoelectrons, whose number
is then proportional to the size of the pulse registered. (Electron multiplication in
the photomultiplier tube occurs with relatively small standard deviation.) Repeated
absorption of 662-keV photons in the crystal produces a distribution in the number
of photoelectrons, which is just that shown by the total-energy peak in Fig. 10.30.
Applying Poisson statistics, we can express the resolution in terms of the average
number µ of photoelectrons (with standard deviation σ = √

µ):

R = FWHM
µ

= 2.35σ

µ
= 2.35√

µ
, (11.89)

with FWHM now referring to the number, rather than energy, distribution. With
R = 0.08 for the scintillator, it follows that the average number of photoelectrons
collected per pulse is µ = 863.

For different types of detectors, the physical limitation on resolution imposed by
the inherent statistical spread in the number of entities collected can be compared
in terms of the average energy needed to produce a single entity. For the Nal detec-
tor just given, since an event is registered with the expenditure of 662 keV, this aver-
age energy is “W” = (662000 eV)/(863 photoelectrons) = 767 eV per photoelectron.
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Table 11.3 Comparison of Resolution of Typical Nal, Gas, and
Semiconductor Detectors for 137Cs Photons

Average Energy
Per Entity

Detector Collected (eV) Resolution (%)

Nal 767 8.0
Gas 30 1.6
Semiconductor 3 0.50

By comparison, for a gas proportional counter W ∼= 30 eV per ion pair (Table 10.1).
The average number of electrons produced by the absorption of a 137Cs photon in
a gas is 662000/30 = 22100. The resolution of the total-energy peak (other sources
of fluctuations being negligible) with a gas counter is R = 2.35/(22100)1/2 = 0.016.
For germanium, W ∼= 3 eV per ion pair; and the resolution for 137Cs photons is
R = 2.35/(221,000)1/2 = 0.0050. A comparison of spectra measured with Nal and
with Ge was shown in Fig. 10.33.

Resolution improves as the square root of the average number of entities col-
lected. The preceding comparisons are summarized in Table 11.3. Note that the
resolution defined by Eq. (11.89) depends on the energy of the photons being de-
tected through the average value µ.

Example

For the scintillator analyzed in the example given after Fig. 10.30, it was found that
the average energy needed to produce a photoelectron was 155 eV. (a) What is the
resolution for the total-energy peak for 450-keV photons? (b) What is the width of the
total-energy peak (FWHM) in keV? (c) What is the resolution for 1.2-MeV photons?

Solution

(a) The average number of photoelectrons produced by absorption of a 450-keV
photon is 450,000/155 = 2900. The resolution is therefore by Eq. (11.89), R =
2.35/(2900)1/2 = 0.0436.

(b) For 450-keV photons, it follows that FWHM = 0.0436 × 450 = 19.6 keV.
(c) Equation (11.89) implies that the resolution decreases as the square root of the

photon energy. Thus, the resolution for 1.2-MeV photons is 0.0436 (0.450/1.2)1/2 =
0.0267.

The resolution achievable in gas and semiconductor detectors is considerably
better (by a factor of about 2 to 4) than the Poisson limit implied by Eq. (11.89). The
departure of ionization events from complete randomness is not surprising in view
of the energy-loss spectrum for charged particles discussed earlier (Section 5.3).
Some energy is spent in excitations, rather than ionizations, and in overcoming
electron binding energies. Also, a typical energy loss of several tens of eV gives
a secondary electron enough energy to produce several more ion pairs in clusters
along a track. The Fano factor has been introduced as a measure of the departure of
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fluctuations from pure Poisson statistics. It is defined as the ratio of the observed
variance and the variance predicted by the latter:

F = Observed variance
Poisson variance

. (11.90)

Reported values of Fano factors for gas proportional counters are in the range from
about 0.1 to 0.2 and, for semiconductors, from 0.06 to 0.15. For scintillation detec-
tors, F is near unity, indicating a Poisson-limited resolution.

Dead Time

An instrument that responds sequentially to individual events requires a certain
minimum time to recover from one event before it is ready to respond to the next.
This recovery interval, called the dead time, can be due to physical processes in the
detector and to instrument electronics. When a radioactive sample is counted, there
is a possibility that two interactions in the detector will occur too close together in
time to be registered as separate events.

Two models have been proposed to approximate the dead-time behavior of coun-
ters. Following a count, a paralyzable detector is unable to provide a second response
until a certain dead time τ has passed without another event occurring. Another
event during τ causes the insensitive period to be restarted. A nonparalyzable detec-

tor, on the other hand, simply ignores other events if they occur during τ . Differ-
ences in the two models are illustrated in Fig. 11.7.

The top line represents seven events as they occur along the horizontal time axis,
and the two axes below show the responses of the two types of detector. Events 1

Fig. 11.7 Illustration of counts registered by paralyzable and
nonparalyzable models with dead time τ . See text.
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and 2 are registered by both counters. After event 2 is registered, events 3 and then
4 restart the dead period for the paralyzable detector, which misses both. Event 3
is ignored by the nonparalyzable counter, which recovers in time from event 2
to register 4. Events 5 and 7 are recorded by both, but 6 is missed. Of the seven
events in this example, the paralyzable counter registers four and the nonparalyz-
able, five. Such instruments thus actually count the number of intervals between
events to which they respond, rather than the number of events themselves. In
practice, counting systems often exhibit behavior intermediate to the two extremes
illustrated in Fig. 11.7.

Dead-time corrections can be made to convert a measured count rate rc into a
true event rate rt. With a nonparalyzable system, the fraction of the time that the
instrument is dead is rcτ . Therefore, the fraction of the time that it is sensitive is
1 – rcτ , which is also the fraction of the number of true events that can be recorded:

rc

rt
= 1 – rcτ . (11.91)

Thus, the true event rate for a nonparalyzable counter is given in terms of the
recorded count rate and the dead time by the relation

rt = rc

1 – rcτ
(Nonparalyzable). (11.92)

When the count rate is low or the dead time short (rcτ � 1),

rt ∼= rc(1 + rcτ ). (11.93)

With a paralyzable counter, on the other hand, only intervals longer than τ are
registered. To analyze for the dead time, we need the distribution of time intervals
between successive random events that occur at the average rate rt. The average
number of events that take place in a time t is rtt. If an event occurs at time t = 0,
then the probability that no events occur in time t immediately following that event
is given by the Poisson term, P0 = exp(–rtt). The probability that an event will occur
in the next time interval dt is rt dt. Therefore, given an event at time t = 0, the
probability that the next event will occur between t and t + dt is

P(t) dt = rte–rtt dt. (11.94)

The probability that a time interval larger than t will elapse is

∫ ∞

τ

rte–rtt dt = e–rtτ . (11.95)

The observed count rate rc is the product of the true event rate rt and this probabil-
ity:

rc = rte–rtτ (Paralyzable). (11.96)
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Fig. 11.8 Relationship between observed count rates rc and
true event rates rt for nonparalyzable and paralyzable counters
with dead time τ .

Unlike Eq. (11.92), one can only solve Eq. (11.96) numerically for rt in terms of rc

and τ . For low event rates or short dead time (rtτ � 1), Eq. (11.96) gives

rc = rt(1 – rtτ ). (11.97)

This relationship also leads to the same Eq. (11.93) for nonparalyzable systems
when rtτ � 1 (Problem 61).

Figure 11.8 shows plots of the measured count rates rc as functions of the true
event rate rt for the nonparalyzable and paralyzable models. For small rt, both give
nearly the same result (Problem 61). For the nonparalyzable model, Eq. (11.92)
shows that rc cannot exceed 1/τ . Therefore, as rt increases, rc approaches the as-
symptotic value 1/τ , which is the highest possible count rate. For the paralyzable
counter, on the other hand, the behavior at high event rates is quite different. Dif-
ferentiation of Eq. (11.96) shows that the observed count rate goes through a maxi-
mum 1/eτ when rt = 1/τ (Problem 63). With increasing event rates, the measured
count rate with a paralyzable system will decrease beyond this maximum and ap-
proach zero, because of the decreasing opportunity to recover between events. With
a paralyzable system, there are generally two possible event rates that correspond
to a given count rate.

Example

A counting system has a dead time of 1.7 µs. If a count rate of 9×104 s–1 is observed,
what is the true event rate if the counter is (a) nonparalyzable or (b) paralyzable?

Solution

(a) For the nonparalyzable counter with rc = 9 × 104 s–1 and τ = 1.7 × 10–6 s,
Eq. (11.92) gives for the true event rate

rt = 9 × 104 s–1

1 – (9 × 104 s–1)(1.7 × 10–6 s)
= 1.06 × 105 s–1. (11.98)
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(b) For the paralyzable case, Eq. (11.96) gives

9 × 104 = rte–1.7×10–6rt . (11.99)

We expect there to be two solutions for rt, which we find by iteration. We can work
directly with Eq. (11.99), but it is more convenient to take the natural logarithm of
both sides and rearrange slightly:

1.7 × 10–6rt = ln
rt

9 × 104 . (11.100)

In view of the answer to part (a), we try the solution rt = 1.06×105 s–1 here. The left-
hand side of (11.100) then has the value 0.180, compared with the smaller value on
the right-hand side, 0.164. Since the paralyzable counter misses more events than
the nonparalyzable, rt should be larger now that in part (a). Trying rt = 1.10×105 s–1

gives 0.187 on the left of (11.100) compared with the larger 0.201 on the right. Thus,
Eq. (11.100) is satisfied by a value of rt between these two trial values. Further
refinement yields the solution rt = 1.08 × 105 s–1. Since this solution is close to the
result (11.98) for the nonparalyzable counter, we expect the second solution to be
at a higher event rate. We proceed by increasing the event rate in steps by an order
of magnitude. For rt = 10–6 s–1, the left- and right-hand sides of Eq. (11.100) give,
respectively, 1.70 and 2.41. For rt = 107 s–1, the results are 17.0 and 4.71. Therefore,
the solution is between these two values of rt. One finds rt = 1.75 × 106 s–1.

11.13
Monte Carlo Simulation of Radiation Transport

We saw in Section 5.4 for charged particles, Section 8.7 for photons, and Section
9.4 for neutrons how radiation transport through matter is governed by attenuation
coefficients or cross sections, giving the interaction probabilities. Use of the linear
attenuation coefficient to describe the statistical nature of radiation penetration in
matter can be illustrated by an example for photons.

Equation (8.43), coupled with the “good-geometry” experiment (Fig. 8.7) that
measures µ, implies that the probability that a normally incident photon will reach
a depth x in a material without interacting is P(x) = e–µx. For example, the at-
tenuation coefficient for 500-keV photons in soft tissue is µ = 0.097 cm–1. The
probabilities that a normally incident, 500-keV photon will reach a depth of 1 cm
or 2 cm in tissue without interacting are, respectively, P(1) = e–0.0907×1 = 0.908
and P(2) = e–0.0907×2 = 0.824. The probability that an incident photon will have
its first interaction somewhere between x = 1 cm and x = 2 cm is, therefore,
P(1) – P(2) = 0.0839. The probability of the first interaction’s being between 9 cm
and 10 cm is P(9) – P(10) = 0.418 – 0.379 = 0.039. The last result can be obtained in
another way. It is the product of the probability P(9) that a given incident photon
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Fig. 11.9 Cumulative probability Pc(x) = 1 – e–µx that a given
incident photon has its first interaction before reaching a
depth x. The linear attenuation coefficient is µ.

will reach a depth of 9 cm and the probability 1 – P(1) that it will interact in the
first cm thereafter:

P(9)[1 – P(1)] = 0.418(1 – 0.908) = 0.039. (11.101)

Also, the probability that an incident photon reaches a depth of 9 cm without inter-
acting is just [P(1)]9 = (0.908)9 = 0.420 = P(9).

In general, the probability that the first interaction of a normally incident photon
will take place at a depth between x and x + dx is given by P1(x) dx = P(x)µdx, P(x)
being the probability that it will reach the depth x and µdx the probability that it
will interact in dx. The cumulative probability that a normally incident photon will
interact before reaching a depth x is

Pc(x) =
∫ x

0
P1(x) dx = µ

∫ x

0
e–µx dx = 1 – e–µx. (11.102)

(The relative number that have interacted is equal to 1 minus the relative number
that have not.) This function is shown in Fig. 11.9.

Probabilities describing radiation transport, such as we have been discussing
here, are in agreement with numerous experimental measurements made under
specified conditions. From the knowledge of the numerical value of µ, we can also
simulate radiation transport on a computer by using Monte Carlo procedures. The
Monte Carlo method is a technique of numerical analysis that uses random sam-
pling to construct the solution of a mathematical or physical problem. For exam-
ple, the numerical value of π can be estimated as follows. Figure 11.10 shows a
quadrant of a circle enclosed by a square having sides of unit length. Computer
programs generate a sequence of random numbers, 0 ≤ R < 1, each number con-
taining a “seed” used to generate the next. Pairs of random numbers can be se-
lected as values (xi, yi) that determine points which lie in the square in Fig. 11.10.
For each point, one tests whether x2

i + y2
i ≤ 1, the radius of the circular arc. If so,

then the point lies inside the circle, and is tallied; if not, the point is ignored. After
a large number of random trials, one computes the ratio of the number of tallied
points and the total number of points tested. With increasingly many trials, this
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Fig. 11.10 Diagram for evaluating π by a Monte Carlo procedure.

Fig. 11.11 Geometrical arrangement for computation of
neutron depth–dose curve in tissue slab.

ratio should approach the area π/4 of the circular arc, thus enabling π to be evalu-
ated.

To illustrate the use of Monte Carlo techniques for calculating radiation trans-
port and for dosimetry, we outline the computation of absorbed dose as a function
of depth for a uniform, broad beam of monoenergetic neutrons normally incident
on a 30-cm soft-tissue slab, infinite in lateral extent. A numerical example then fol-
lows. In Fig. 11.11 we consider a neutron incident along an axis X at the origin O

on the slab face. We simulate the fate of this (and subsequent) neutrons by Monte
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Carlo procedures. We first select a flight distance for the neutron to its first colli-
sion, based on the attenuation coefficient µ. for the neutrons of specified energy
in tissue. This is accomplished by setting the cumulative probability for flight dis-
tances equal to the first number R1 obtained from the computer random-number
generator:

Pc(x) = 1 – e–µx = R1, (11.103)

with 0 ≤ R1 < 1. Solving for x, we obtain for the location of the first collision site7)

x = –
1
µ

ln(1 – R1). (11.104)

If x > 30 cm, then the neutron traverses the slab completely without interacting,
and we start the simulation again with another neutron. Given a collision site in
the slab, one can next select the type of nucleus struck: H, O, C, or N, the principal
elements in soft tissue. This can be done, as shown in the example that follows, by
partitioning the unit interval into sections with lengths equal to the relative attenu-
ation coefficients for these elements at the given neutron energy. A second random
number R2 then determines the type of nucleus struck. Another random number
can be used to pick the kind of interaction (i.e., elastic or inelastic scattering or
absorption). Additional random numbers then determine all other specifics, such
as the energies and directions of travel of any secondary products. The choices are
made from cumulative probability distributions based on experimental data, theo-
retical models, or both. The input data to the computer code must contain all the
necessary information to simulate the events as they occur statistically in nature.
As much detailed information and possible alternatives as desired can be included,
though at a cost of increased running time. All secondary products can also be
transported and allowed to interact or escape from the slab. Such a complete his-
tory is calculated for each incident neutron and all of its products. For analysis of
results, the slab can be subdivided along the X-axis into parallel subslabs as indi-
cated in Fig. 11.11, for example, at 1-cm intervals. The energies deposited in each
subslab as well as any other details [e.g., values of linear energy transfer (LET)] are
accumulated for a large number of incident neutrons to obtain statistically signif-
icant results. (Standard deviations in the compiled statistical quantities are readily
calculated.) The end results can be compiled into a histogram showing the average
energy deposited in each subslab per incident neutron. This energy is proportional
to the average absorbed dose at the depth of the subslab per unit fluence from a
uniform, broad beam of neutrons normally incident on the slab.8) One thus obtains
a histogram that represents the dose as a function of depth in the slab. Individual
contributions at different values of LET can also be compiled to furnish the dose
equivalent as a function of depth. In fact, the Monte Carlo simulation, by its nature,

7 In Fig. 11.9, if we chose a large number of
points randomly along the ordinate between
0 and 1 and use Eq. (11.104) to determine the

resulting values of x, the latter will be
distributed as the function P(x) = e–µx .

8 See last reference listed in Section 11.14.
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gives complete details of all physical events that occur, to the extent that they are
represented by the input data to the code.

Example

As in Fig. 11.11, consider a 100-keV neutron normally incident on a soft-tissue slab,
having a thickness of 3 cm to simulate a small rodent. Elastic scattering from nuclei
is the only important neutron interaction at this energy. The linear attenuation coef-
ficients µi by element for 100-keV neutrons in tissue are given in Table 11.4. Develop
a Monte Carlo procedure to calculate the energy deposited at different depths in the
slab as a result of 100-keV incident neutrons. Use the “random”-number sequence in
Table 11.5 to compute a neutron history.

Solution

An algorithm for radiation transport is not unique; things can be arranged in a num-
ber of ways. Once the algorithm is specified, however, it should be applied in exactly
the same manner for each incident neutron. We first select a flight distance for the
incident neutron, using Eq. (11.104), the value of µ given in Table 11.4, and the first
random number, R1, in Table 11.5:

x = –
1

0.92315
ln(1 – 0.87810) = 2.28 cm. (11.105)

We use the next random number to determine the type of nucleus struck, comparing
it with the cumulative probability in the last column of Table 11.4. The second ran-
dom number, R2 = 0.68671, is in the first interval, assigned to hydrogen. [For 0.842 ≤
R2 < 0.950 the collision would have been with oxygen, etc.] Thus, the first neutron has
a collision with a hydrogen nucleus (proton) at a depth of 2.28 cm. We next select an

Table 11.4 Data Used to Pick Flight Distances and Struck Nuclei
for 100-keV Neutrons in Soft Tissue

Element µi (cm–1) µi/µ Cumulative µi/µ

H 0.777 0.842 0.842
O 0.100 0.108 0.950
C 0.0406 0.044 0.994
N 0.00555 0.006 1.000
Totals µ = 0.92315 1.000

Table 11.5 Random Numbers

i Ri

1 0.87810
2 0.68671
3 0.03621
4 0.10389
5 0.97268
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energy loss, Q, employing the spectrum given in Fig. 9.6. Since the spectrum is flat,
a simple choice is Q = R3En = 0.03621 × 100 keV = 3.62 keV. A proton of this en-
ergy has a range of less than 0.3 µm (Table 5.3), and so this amount of energy can
be assumed to be absorbed locally at the collision site. [Energy-loss spectra for neu-
tron collisions with the other nuclei, O, C, and N, need to be supplied, either from
experimental data or a model. Assuming isotropic scattering in the center-of-mass
system would be a reasonable approximation in this example.] The new direction of
travel for the neutron after scattering can be determined next. Equation (9.5) gives
the polar angle of recoil of the struck proton: cos2 θ = Q/En = 3.62/100 = 0.0362.
Thus, θ = 79.0◦; and the neutron is scattered at a polar angle ξ = 90◦ – θ = 11.0◦ with
respect to the line along which the neutron was incident. The azimuthal angle of scat-
ter, η, is completely random between 0◦ and 360◦. We select η = 0◦ to be the vertical
direction and use the next random number to pick η clockwise about this direction:
η = 360R4 = 360 × 0.10389 = 37.4◦.

The scattered neutron is transported next. Typically, tables like Table 11.4 are en-
tered into a Monte Carlo computer code at a number of energies, close enough to
allow interpolation between. Because the energy of the scattered neutron in this
example is close to 100 keV, we use Table 11.4 to select the next flight distance.
Using R5 in place of R1 in Eq. (11.104), we find that the distance of travel to the
next collision is 3.90 cm. The remaining distance in the slab from the first colli-
sion point to the back surface along the line of travel of the scattered neutron is
(3.00 – 2.28)/ cos 11◦ = 0.733 cm. Therefore, the scattered neutron exits the back face
of the slab with no further interaction.

The Monte Carlo method finds wide application in calculations for radiation
transport, shielding, and dosimetry. Because of its generality and literal simula-
tion of events, special assumptions are not a requirement. Radiation fields need
not be uniform, parallel, or monoenergetic. Targets can have any shape or com-
position. Data describing energy and angular cross sections can be input with any
desired degree of fineness in mesh. Subslabs or other subvolumes for analysis can
be made smaller for finer detail. Generally, the more versatile a code is made and
the greater the detail of the input and output, the longer the running time will
be. Smaller analysis subvolumes require a larger number of particle histories for
a given degree of statistical confidence in the results. In practice, a thoughtful bal-
ance between the demands put on a Monte Carlo code and the reasons for wanting
the results can best guide the design of such calculations.

A number of techniques can help streamline Monte Carlo computations and
make them more efficient. Stratified sampling can often reduce variance. For ex-
ample, for the calculations of the first collision of 1000 neutrons in the previous
example, we could use Table 11.4 as described. However, instead of selecting the
struck nucleus randomly each time from Table 11.4, we could eliminate the vari-
ance due to this step entirely by letting the first 842 neutrons collide with H, the
next 108 collide with O, the next 44 with C, and the last 6 with N.

Splitting and Russian roulette are two other schemes often employed. In com-
puting neutron penetration of thick shields, for instance, only a small fraction of
the incident neutrons get through, limiting the statistical significance of the com-
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puted spectra of energies and angles of the emergent particles. The bulk of com-
puter time can be spent in transporting neutrons with many collisions in the shield
only to find that they are eventually absorbed before they come out. A series of
depths can be assigned such that, when a neutron crosses one, it is replaced by
n identical, independent neutrons, each carrying a statistical weight of 1/n. This
splitting gives a larger number of neutrons at the greater depths, each carrying a
lesser weight, with total weight preserved. Splitting can be made more efficient by
playing Russian roulette with a neutron that tends to become less desirable for the
calculations, such as one that tends to return to the entrance surface. At some point
in the computations, such a particle is given a chance p to survive Russian roulette
or be killed with probability 1 – p. If the neutron is killed, its transport is stopped;
otherwise, its statistical weight is increased by the factor 1/p.

Importance sampling can be used to increase the efficiency of Monte Carlo cal-
culations, depending on what is being sought. In dosimetry, one is often interested
in LET distributions of the recoil nuclei produced by neutron collisions. In the
last example, the least probable collision is one with nitrogen. One can increase
the effective sample size for such a collision by replacing it each time with several
that are then assigned reduced statistical weights. Still other techniques used to
increase the efficiency of Monte Carlo computations include the use of exponential
transformations to artificially increase mean free paths for deep penetration prob-
lems, rejection methods, and special sampling functions to represent complicated
distributions.
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11.15
Problems

1. What is the probability that a normally incident, 400-keV
photon will penetrate a 2-mm lead sheet without interacting
(Section 8.7)?

2. (a) What is the probability that a given atom of 226Ra will live
1000 y before decaying?

(b) What is the probability that it will live 2000 y?
(c) If the atom is already 10,000 years old, what is the

probability that it will live another 1000 y?
3. An unbiased die is rolled 10 times.

(a) What is the probability that exactly 4 threes will occur?
(b) What is the probability that exactly 4 of any one number

alone will occur?
(c) What is the probability that two numbers occur exactly 4

times?
4. (a) What is the mean number of threes expected in 10 rolls of a

die?
(b) What would be the probability of observing exactly 4 threes,

according to Poisson statistics?
(c) Why is the answer to part (b) different from the answer to

Problem 3(a)?
(d) Which answer is correct? Why?

5. What is the standard deviation of the number of threes that
occur in 10 rolls of a die?
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6. In the example in Section 11.3 with N = 10, the probabilities
P3, P6, and P0 were evaluated.
(a) Calculate the other values of Pn and show explicitly that the

Pn add to give unity.
(b) Plot the distribution Pn vs. n.

7. A sample consists of 16 atoms of 222Rn.
(a) What is the probability that exactly one-half of the atoms

will decay in 2 d?
(b) In 3 d?
(c) Calculate the probability that one week could pass without

the decay of a single atom.
(d) What is the probability that all of the atoms will decay in

the first day?
8. (a) In the last problem, what is the mean number of atoms

that decay in 2 d?
(b) What is the mean value of the square of the number of

atoms that decay in 2 d?
(c) What is the standard deviation of the number of atoms that

decay in 2 d?
9. Identical samples containing 32P are measured for a period of

1 h in a counter, having an efficiency of 44% and negligible
background. From a large number of observations, the mean
number of counts in 1 h is found to be 2.92 × 104.
(a) What is the activity of 32P in a sample?
(b) Estimate the standard deviation of the number of counts

obtained in 1 h.
10. (a) Estimate the number of 32P atoms in a sample in the last

problem.
(b) Estimate the standard deviation of the sample activity in Bq.
(c) If the counter efficiency were 100% and the same mean

number of counts were observed in 1 h, what would be the
standard deviation of the activity in Bq?

11. For the Poisson distribution, show that Pn+1 = µPn/(n + 1).
12. For the Poisson distribution with µ = 4.0, show that

P3 = P4 = 0.195; and with µ = 8.0, show that P7 = P8 = 0.140.
13. When the mean value µ of the Poisson distribution is an

integer, show that the probability of observing one less than the
mean is equal to the probability of observing the mean (as
illustrated by the last problem).

14. Using a counter having an efficiency of 38% and negligible
background, a technician records a total of 1812 counts from a
long-lived radioactive source in 2 min.
(a) Estimate the activity of the source in Bq.
(b) Estimate the standard deviation of the activity.
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(c) How long would the source have to be counted in order for
the standard deviation of the activity to be 1% of its mean?

15. (a) Estimate the probability that exactly 17 counts would be
registered in 1 s in the last problem.

(b) Repeat for 27 counts.
16. (a) In the last problem, what is the probability that no counts

would be registered in 1 s?
(b) In 2 s?
(c) How are the probabilities in parts (a) and (b) related?

17. (a) What are the means and standard deviations for the two
distributions in the lower left panel of Fig. 11.3?

(b) For the normal distribution calculate f(35) and f(40).
(c) Determine the probability P(35 ≤ x ≤ 40).

18. Show directly from Eq. (11.37) that the normal distribution has
inflection points at x = µ ± σ . (The second derivative vanishes
at an inflection point.)

19. Use Table 11.1 to verify the entries in Table 11.2.
20. The activities of two sources can be compared by counting

them for equal times and then taking the ratio of the two count
numbers, n1 and n2. Show that the standard deviation of the
ratio Q = n1/n2 is given by

σQ = Q

(
σ 2

1

n2
1

+
σ 2

1

n2
1

)1/2

,

where σ1 and σ2 are the standard deviations of the two
individual count numbers.

21. See the last problem. Two sources are counted for 15 min each
and yield n1 = 1058 and n2 = 1416 counts.
(a) What is the standard deviation of the ratio n1/n2?
(b) What is the standard deviation of n2/n1?

22. The estimated count rate for a long-lived radioactive sample is
93 cpm. Background is negligible. What is the estimated
fractional standard deviation of the rate when it is counted for
(a) 5 min?
(b) 24 h?
(c) 1 wk?

23. A sample of long-lived radionuclide gives 939 counts in 3 min.
(a) What is the probable error in the count rate?
(b) How long must the sample be counted to determine the

count rate to within ±3% with 95% confidence?
24. The count rate in the last problem is 5.22 cps.

(a) What is the probability that exactly 26 counts would be
observed in 5 s?

(b) Is the use of Poisson statistics warranted here?
(c) Justify your answer to part (b).
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25. According to Poisson statistics, how many counts are needed to
obtain a coefficient of variation of 1%?

26. If a 5-min gross count of a sample gives a fractional standard
deviation of 2.5%, how much longer should it be counted to
reduce the uncertainty to 0.5%?

27. The true count rate of a long-lived radioactive source is
316 cpm. Background is negligible.
(a) What is the expected number of counts in 5 min?
(b) What is the standard deviation of the number of counts in

5 min?
(c) What is the standard deviation of the count rate obtained

from a 5-min count?
28. Technician A is asked to make a 5-min measurement with the

source in the last problem to determine the count rate and its
standard deviation. The measurement yields 1558 counts.
Background can be neglected.
(a) What is the observed count rate?
(b) What is the standard deviation of the count rate?
(c) What is the probability that technician B, in an

independent 5-min measurement, would obtain a value as
close, or closer, to the true count rate as technician A?

(d) If technician B counts for 1 h, what is the answer to
part (c)?

29. A 1-h measurement of background with a certain counter gives
1020 counts. A long-lived sample is placed in the counter, and
120 counts are registered in 5 min.
(a) What is the standard deviation of the net count rate?
(b) Without doing additional background counting, how long

would the sample have to be counted in order to obtain a
standard deviation that is 10% of the net count rate?

30. With a certain counting system, a 6-h background
measurement registers 6588 counts. A long-lived sample is
then placed in the counter, and 840 gross counts are registered
in 30 min.
(a) What is the net count rate?
(b) What is the standard deviation of the net count rate?
(c) Without additional background counting, how many gross

counts would be needed in order to obtain the net count
rate of the sample to within ±5% of its true value with 90%
confidence?

(d) Without a remeasurement of background, what is the
smallest value obtainable for the standard deviation of the
net count rate by increasing the gross counting time?

31. In the last problem, a total time of 6 h 30 min was used for
background and gross counts. What division of this total time
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would give the smallest standard deviation of the net count
rate?

32. A certain counter has an efficiency of 35%. A background
measurement gives 367 counts in 100 min. When a long-lived
sample is placed in the counter, 48 gross counts are registered
in 10 min.
(a) Estimate the standard deviation of the sample activity in Bq.
(b) For optimum statistical accuracy, how should the total time

of 110 min be apportioned between taking background and
gross counts?

33. A sample containing a short-lived radionuclide is placed in a
counter, which registers 57,912 counts before the activity
disappears completely. Background is zero.
(a) If the counter efficiency is 28%, how many atoms of the

radionuclide were present at the beginning of the counting
period?

(b) What is the standard deviation of the number?
34. Repeat the last problem for an efficiency of (a) 45% and

(b) 80%.
35. What value ε < 1 of the counter efficiency maximizes the

standard deviation of the count number, Eq. (11.62)? Interpret
your answer.

36. Describe an experiment for obtaining the half-life of a
radionuclide when its activity decreases noticeably during the
time an observation is made. Include a provision for
background counts. How can one minimize the statistical
uncertainty in the half-life determination? (See R. D. Evans, The

Atomic Nucleus, pp. 812–816, cited in Section 11.14.)
37. How are Eqs. (11.58)–(11.62) affected when background is

taken into account?
38. Show that Eq. (11.68) follows from (11.67).
39. Show that Eqs. (11.69) and (11.70) follow from (11.67) when

tg = tb.
40. A sample is to be placed in a counter and a gross count taken

for 10 min. The maximum acceptable risk for making a type-I
error is 0.050. The efficiency of the counter is such that 3.5
disintegrations in a sample result in one net count. A 20-min
background measurement yields 820 counts. Under these
conditions, what is the minimum significant measured activity
in Bq, as inferred from a 10-min gross count?

41. At a certain facility, gross and background counts are made for
the same length of time, and α = 0.050 and β = 0.025. The
background is not accurately known beforehand. Calibration at
the facility shows that one net count corresponds to a sample
activity of 260 Bq. The minimum significant measured activity
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is 159 Bq. Using approximate formulas, calculate the
minimum detectable true activity.

42. You are to establish a procedure for measuring the radioactivity
of samples placed in a counter. The calibration of the counter is
such that one net count in the allotted time corresponds to
2.27 Bq of sample activity. The expected number of background
counts, B = 1080, during the allotted time is accurately known.
The acceptable risk for making a type-I error is 5% and that for
a type-II error, 1%.
(a) What is the minimum significant net sample count?
(b) What is the minimum significant measured activity?
(c) What is the minimum detectable true activity?
(d) A certain sample-plus-background reading registers 1126

gross counts. What is the implied sample activity?
(e) What would be the answer to (d) if one were willing to risk

a type-I error in 10% of the measurements?
(f) With the type-I error probability set at its original value of

5%, what would be the minimum detectable true activity if
one were to accept a 10% (instead of 1%) risk of a type-II
error?

43. What percentage error is made in parts (b), (c), (e), and (f) of
the last problem by using approximate formulas?

44. You are shown a counting facility for analyzing samples for
radioactivity. The calibration is such that 84 net counts
correspond to 3.85 × 104 Bq of sample activity. The background
count of 1270 is stable and accurately known. You are told that
the minimum significant net sample count is 70.
(a) What is the minimum significant measured activity for the

facility?
(b) What is the maximum risk of making a type-I error?
(c) What is the minimum detectable true activity, if the

maximum risk for making a type-II error is 5%?
(d) Does the minimum detectable true activity increase or

decrease, if the risk of a type-II error is decreased from 5%?
(e) If the true activity is exactly equal to the minimum

detectable true activity AII, what is the probability that a
single measurement will give a result that implies an
activity less than AII?

45. Two counting systems are being considered for routine use.
The calibration constant for activity for counter 1 is 0.459 Bq
per net count; and the expected number of background counts,
B1 = 7928, is accurately known. The calibration constant for
counter 2 is 0.294 Bq per net count; and the expected number
of background counts, B2 = 15,160, is also accurately known.
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(a) At a given level of risk for a type-I error, what is the ratio of
the minimum significant measured activities for the two
counters?

(b) It is decided that the acceptable risks for type-I and type-II
errors are both to be 10%. Additional shielding can be
placed around counter 1 to reduce its background. If
nothing else is changed, what number of background
counts, B1, would then be required to achieve a minimum
detectable true activity of 30 Bq?

(c) What factors determine the value of the calibration
constant?

(d) What difference does it make in the minimum significant
measured activity and in the minimum detectable true
activity, if the expected number of background counts is not
accurately known?

46. At a certain facility, one net count corresponds to an activity of
12.9 Bq in a sample; and the expected number, 816, of
background counts is well known.
(a) If the maximum acceptable risk for making a type-I error is

0.050, what is the minimum significant net count?
(b) If the minimum detectable true activity is AII = 1300 Bq,

what is the risk of making a type-II error when a sample
has an activity exactly equal to AII? (Use the approximate
formula.)

(c) What is the probability of making a type-II error in a single
measurement with a sample that has an activity exactly
equal to the minimum significant measured activity?

(d) If the minimum detectable true activity AII were taken to be
the same as the minimum significant measured activity A{,
what would be the probability of making a type-II error
with a sample having an activity equal to AII?

47. Repeat Problem 42 with the measured number of background
counts 1080 not accurately known.

48. Repeat Problem 46(a) and (b) with the measured number of
background counts 816 not accurately known.

49. Show that Eqs. (11.79) and (11.80) follow from Eq. (11.78).
50. In a court of law, one judge might tend to be lenient, while

another is a “hanging judge.” With respect to the possible guilt
of a defendant, what relative importance do the two judges
place on not making errors of type-I and type-II?

51. The resolution of a scintillation counter is 8.2% for 0.662-MeV
gamma photons from 137Cs. What is its resolution for
1.17-MeV gamma rays from 60Co?
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52. The W value for silicon is 3.6 eV ip–1 at 77 K. Calculate the
Poisson energy resolution (FWHM in keV) for the absorption
of 5.3-MeV alpha particles.

53. The W value for Ge is 3.0 eV ip–1 at 77 K. Based on Poisson
statistics, calculate the expected energy resolution (FWHM) of
an HPGe detector for 0.662-MeV photons from 137Cs. Assume
that charge collection is complete and that electronic noise is
negligible.

54. The resolution of a certain HPGe spectrometer
(W = 3.0 eV ip–1) for 662-keV 137Cs photons is found to be
0.50%. Assume that variations in pulse height are due entirely
to statistical fluctuations in the number of ions produced by an
absorbed photon. What is the resolution for the 1.332-MeV
gamma ray from 60Co?

55. Using Poisson statistics, calculate the energy resolution
(percent) of both detectors for the 4-MeV alpha particles in
Problem 26 of the last chapter. How would the resolution of the
two compare if the alpha-particle energy were 6 MeV?

56. A 30-keV beta particle is absorbed in a scintillator having an
efficiency of 8%. The average scintillation photon energy is
3.4 eV. If 21% of the photons are counted, what is the
resolution for the measured beta-particle energy? What would
be the resolution in a semiconductor detector (W = 3 eV ip–1)?

57. What are the pros and cons of using Nal scintillators vs. HPGe
detectors for gamma-ray spectroscopy?

58. Give an argument that, because of energy conservation alone,
the Fano factor cannot be unity.

59. From the definition (11.90) of the Fano factor, show that the
resolution of a counter can be expressed as
R = FWHM/µ = 2.35(F/µ)1/2.

60. The resolution for 360-keV photons with a certain gas
proportional counter (W = 30 eV ip–1) is observed to be 0.80%.
Determine the Fano factor.

61. Show that Eq. (11.97) leads to (11.93) when rtτ � 1.
62. A nonparalyzable counter with a source in place registers

128,639 counts in 2.5 s. An identical source is added, and
210,649 counts are recorded in 2.5 s. Background is zero, and
self-absorption in the sources is negligible. What is the dead
time of the counter?

63. Show that the maximum count rate obtainable with a
paralyzable system having a dead time τ is 1/eτ .

64. If the maximum count rate attainable with a paralyzable
counter is 64,100 s–1, what is the dead time?

65. The mass attenuation coefficient for 600-keV photons in
aluminum is 0.080 cm2 g–1.
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(a) What is the mean free path of the photons?
(b) What is the probability that a normally incident photon will

penetrate a 10-cm Al slab without interacting?
(c) If the photon penetrates the first 9 cm, what is the

probability that it will penetrate the additional 1 cm?
(d) How does the probability in (c) compare with the

probability that the photon will penetrate the first cm?
(e) If the photon penetrates the first 9 cm, what is the

probability that it would penetrate another 10 cm, for a total
of 19 cm?

(f) Do the answers to (b) and (e) imply that a photon can
penetrate 10 cm or 19 cm with equal likelihood? Explain.

66. A 2-MeV neutron has a collision with hydrogen.
(a) What is the probability that it loses an energy between

0.63 MeV and 0.75 MeV?
(b) If the neutron loses 0.75 MeV, at what angle is it scattered?

67. (a) What is the probability that a 10-MeV neutron will lose
6 MeV or more in a collision with hydrogen?

(b) When a 10-MeV neutron loses 6 MeV or more in a collision
with hydrogen, what is the range of scattering angles that
the neutron can make with respect to the original direction?

68. Monoenergetic neutrons are normally incident on a
homogeneous slab of thickness 1.70 cm followed by a second
homogeneous slab of thickness 2.10 cm. The attenuation
coefficients for the two slabs are, respectively, 0.085 cm–1 and
1.10 cm–1.
(a) Outline a Monte Carlo procedure to determine the first

collision depths of successive incident neutrons, based on
the use of a random-number sequence.

(b) Use the sequence in Table 11.5 to find the first collision site
of two neutrons.

(c) What is the probability that a neutron will penetrate both
slabs without having an interaction?

(d) How is the answer to part (c) affected, if the order of the
slabs is reversed?

69. Monoenergetic neutrons normally incident on the plane
surface S in Fig. 11.12 have a 30% chance of penetrating the
surface and a 70% chance of being reflected isotropically back.
Write formulas that can be used with a random-number
sequence in a Monte Carlo procedure to determine
(a) whether an incident neutron will be reflected
(b) the polar and azimuthal angles for a reflected neutron.

70. A Monte Carlo calculation is made with 50,000 monoenergetic
neutrons normally incident at a point on a homogeneous tissue
slab of unit density, as indicated in Fig. 11.11. The energy
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Fig. 11.12 Problem 69.

deposited in a subslab of thickness 0.25 cm at a certain depth in
the slab is found to be 347 MeV. From these data, determine
what the energy absorbed per unit mass (absorbed dose) would
be at this depth for a uniform, broad beam of normally incident
neutrons with unit fluence.

71. The total linear attenuation coefficient for 10-keV electrons in
water is 77.6 µm–1, partitioned as follows:

Elastic scattering 38.2 µm–1

lonization 37.4
Excitation 2.0
Total 77.6 µm–1

(a) What is the probability that a 10-keV electron will travel
100 Å without having an interaction?

(b) What is the probability that it will travel 200 Å without
interacting and then experience its first collision as an
ionization within the next 10 Å?

(c) What is the probability that the first collision will be an
excitation at a distance between 60 Å and 80 Å?

72. Attenuation coefficients for 10-keV electrons in water are given
in the last problem. Using the sequence of random numbers
Ri, in Table 11.6, find the flight distance and type of collision
for three electrons. Take the event types in the order given as
the last problem.

73. In a certain radiation-transport problem, the probability density
P(Q) for energy loss Q decreases linearly with Q from Q = 0 to
the maximum possible value of Q, Q = 800 eV, where
P(800) = 0.
(a) Write an analytic function for the normalized distribution

P(Q) with Q expressed in eV.
(b) What are the units of P(Q)?
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Table 11.6 Problem 72

i Ri

1 0.1018
2 0.7365
3 0.3248
4 0.4985
5 0.8685
6 0.2789

(c) What is the probability that a collision will result in an
energy loss Q between 300 eV and 350 eV?

(d) Write an analytic function for the cumulative probability
Pc(Q) for energy loss ≤ Q.

(e) Use Pc(Q) from part (d) to solve part (c).
(f) Calculate the median energy loss.

11.16
Answers

2. (a) 0.648
(b) 0.421
(c) 0.648

4. (a) 1.67
(b) 0.0610

5. 1.18
8. (a) 4.86

(b) 27.0
(c) 1.84

10. (a) 3.28 × 107

(b) 0.108 Bq
(c) 0.0475 Bq

14. (a) 39.7 Bq
(b) 0.933 Bq
(c) 11.0 min

15. (a) 0.0858
(b) 0.00173

21. (a) 0.0303
(b) 0.0543

23. (a) ±6.89 cpm
(b) 13.6 min

24. (a) 0.0780
(b) Yes

25. 104

27. (a) 1580
(b) 39.7
(c) 7.95 cpm

28. (a) 312 cpm
(b) 7.90 cpm
(c) 0.420
(d) 0.918

29. (a) 2.25 cpm
(b) 116 min

32. (a) 0.0342 Bq
(b) tb = 51.4 min

tg = 58.6 min
40. 0.247 Bq
41. 348 Bq
42. (a) 54

(b) 123 Bq
(c) 307 Bq
(d) No sign. act.
(e) 104 Bq
(f) 222 Bq

46. (a) 47
(b) 0.030
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(c) 0.50
(d) 0.50

52. 10.3 keV
54. 0.532%
55. 0.71% and 0.22%;

0.58% and 0.18%
60. 0.14
62. 4.30 µs
65. (a) 4.63 cm

(b) 0.115
(c) 0.806
(d) Same
(e) 0.115
(f) No

67. (a) 0.40
(b) 50.8◦ to 90.0◦

71. (a) 0.460
(b) 0.00763
(c) 0.00233

72. 13.8 Å, ionization
50.6 Å, ionization
261 Å, elastic

73. (a) P(Q) = 0.0025 –
3.13 × 10–6Q

(b) eV–1

(c) 0.0741
(d) Pc(Q) = 0.0025Q –

1.57 × 10–6Q2

(f) 235 eV
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12
Radiation Dosimetry

12.1
Introduction

Radiation dosimetry is the branch of science that attempts to quantitatively relate
specific measurements made in a radiation field to physical, chemical, and/or bio-
logical changes that the radiation would produce in a target. Dosimetry is essential
for quantifying the incidence of various biological changes as a function of the
amount of radiation received (dose–effect relationships), for comparing different
experiments, for monitoring the radiation exposure of individuals, and for surveil-
lance of the environment. In this chapter we describe the principal concepts upon
which radiation dosimetry is based and present methods for their practical utiliza-
tion.

When radiation interacts with a target it produces excited and ionized atoms and
molecules as well as large numbers of secondary electrons. The secondary electrons
can produce additional ionizations and excitations until, finally, the energies of all
electrons fall below the threshold necessary for exciting the medium. As we shall
see in detail in the next chapter, the initial electronic transitions, which produce
chemically active species, are completed in very short times (�10–15 s) in local re-
gions within the path traversed by a charged particle. These changes, which require
the direct absorption of energy from the incident radiation by the target, represent
the initial physical perturbations from which subsequent radiation effects evolve. It
is natural therefore to consider measurements of ionization and energy absorption
as the basis for radiation dosimetry.

As experience and knowledge have been gained through the years, basic ideas,
philosophy, and concepts behind radiation protection and dosimetry have continu-
ally evolved. This process continues today. On a world scale, the recommendations
of the International Commission on Radiological Protection (ICRP) have played a
major role in establishing protection criteria at many facilities that deal with radia-
tion. In the United States, recommendations of the National Council on Radiation
protection and Measurements (NCRP) have provided similar guidance. There is
close cooperation among these two bodies and also the International Commission
on Radiation Units and Measurements (ICRU). As a practical matter, there is a cer-
tain time delay between the publication of the recommendations and the official
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promulgation of statutory regulations by organizations responsible for radiation
protection. As a result, at any point in time, some differences might exist among
particular procedures in effect at different locations, even though they are based on
publications of the ICRP or NCRP. We shall discuss the implementation of radia-
tion protection criteria and exposure limits in Chapter 14. The present chapter will
deal with radiation quantities and units of historical and current importance.

12.2
Quantities and Units

Exposure

Exposure is defined for gamma and X rays in terms of the amount of ionization
they produce in air. The unit of exposure is called the roentgen (R) and was intro-
duced at the Radiological Congress in Stockholm in 1928 (Chap. 1). It was origi-
nally defined as that amount of gamma or X radiation that produces in air 1 esu
of charge of either sign per 0.001293 g of air. (This mass of air occupies 1 cm3

at standard temperature and pressure.) The charge involved in the definition of
the roentgen includes both the ions produced directly by the incident photons as
well as ions produced by all secondary electrons. Since 1962, exposure has been
defined by the International Commission on Radiation Units and Measurements
(ICRU) as the quotient �Q/�m, where �Q is the sum of all charges of one sign
produced in air when all the electrons liberated by photons in a mass �m of air are
completely stopped in air. The unit roentgen is now defined as

1 R = 2.58 × 10–4 C kg–1. (12.1)

The concept of exposure applies only to electromagnetic radiation; the charge and
mass used in its definition, as well as in the definition of the roentgen, refer only
to air.

Example

Show that 1 esu cm–3 in air at STP is equivalent to the definition (12.1) of 1 R of
exposure.

Solution

Since the density of air at STP is 0.001293 g cm–3 and 1 esu = 3.34 × 10–10 C (Appen-
dix B), we have

1 esu
cm3 = 3.34 × 10–10 C

0.001293 g × 10–3 kg g–1 = 2.58 × 10–4 C kg–1. (12.2)

Absorbed Dose

The concept of exposure and the definition of the roentgen provide a practical, mea-
surable standard for electromagnetic radiation in air. However, additional concepts
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are needed to apply to other kinds of radiation and to other materials, particularly
tissue. The primary physical quantity used in dosimetry is the absorbed dose. It is
defined as the energy absorbed per unit mass from any kind of ionizing radiation
in any target. The unit of absorbed dose, J kg–1, is called the gray (Gy). The older
unit, the rad, is defined as 100 erg g–1. It follows that

1 Gy ≡ 1 J
kg

= 107 erg
103 g

= 104 erg
g

= 100 rad. (12.3)

The absorbed dose is often referred to simply as the dose. It is treated as a point
function, having a value at every position in an irradiated object.

One can compute the absorbed dose in air when the exposure is 1 R. Photons
produce secondary electrons in air, for which the average energy needed to make
an ion pair is W = 34 eV ip–1 = 34 J C–1 (Sect. 10.1). Using a more precise W value,1)

one finds

1 R = 2.58 × 10–4 C
kg

× 33.97 J
C

= 8.76 × 10–3 J kg–1. (12.4)

Thus, an exposure of 1 R gives a dose in air of 8.76 × 10–3 Gy (= 0.876 rad).
Calculations also show that a radiation exposure of 1 R would produce a dose of
9.5 × 10–3 Gy (= 0.95 rad) in soft tissue. This unit is called the rep (“roentgen-
equivalent-physical”) and was used in early radiation-protection work as a measure
of the change produced in living tissue by radiation. The rep is no longer employed.

Dose Equivalent

It has long been recognized that the absorbed dose needed to achieve a given level
of biological damage (e.g., 50% cell killing) is often different for different kinds
of radiation. As discussed in the next chapter, radiation with a high linear energy
transfer (LET) (Sect. 7.3) is generally more damaging to a biological system per unit
dose than radiation with a low LET (for example, cf. Fig. 13.16).

To allow for the different biological effectiveness of different kinds of radiation,
the International Commission on Radiological Protection (ICRP), National Coun-
cil on Radiation Protection and Measurements (NCRP), and ICRU (Chap. 1) intro-
duced the concept of dose equivalent for radiation-protection purposes. The dose
equivalent H is defined as the product of the absorbed dose D and a dimensionless
quality factor Q, which depends on LET:

H = QD. (12.5)

In principle, other multiplicative modifying factors can be included along with Q

to allow for additional considerations (e.g., dose fractionation), but these are not
ordinarily used. Until the 1990 recommendations made in ICRP Publication 60,
the dependence of Q on LET was defined as given in Table 12.1. Since then, the

1 See p. 29 in Attix reference, Section 12.11.
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Table 12.1 Dependence of Quality Factor Q on LET of Radiation
as Formerly Recommended by ICRP, NCRP, and ICRU

LET (keV µm–1 in Water) Q

3.5 or less 1
3.5–7.0 1–2
7.0–23 2–5
23–53 5–10
53–175 10–20
Gamma rays, X rays, electrons,

positrons of any LET 1

Table 12.2 Dependence of Quality Factor Q on LET as Currently
Recommended by ICRP, NCRP, and ICRU

LET, L (keV µm–1 in Water) Q

<10 1
10–100 0.32L–2.2
>100 300/

√
L

ICRP, NCRP, and ICRU have defined Q in accordance with Table 12.2. In the con-
text of quality factor, LET is the unrestricted stopping power, L∞, as discussed in
Section 7.3. For incident charged particles, it is the LET of the radiation in water,
expressed in keV per µm of travel. For neutrons, photons, and other uncharged
radiation, LET refers to that which the secondary charged particles they generate
would have in water. Like absorbed dose, dose equivalent is a point function. When
dose is expressed in Gy, the (SI) unit of dose equivalent is the sievert (Sv). With the
dose in rad, the older unit of dose equivalent is the rem (“roentgen-equivalent-
man”). Since 1 Gy = 100 rad, 1 Sv = 100 rem.

Dose equivalent has been used extensively in protection programs as the quantity
in terms of which radiation limits are specified for the exposure of individuals.
Dose equivalents from different types of radiation are simply additive.

Example

A worker receives a whole-body dose of 0.10 mGy from 2-MeV neutrons. Estimate the
dose equivalent, based on Table 12.1.

Solution

Most of the absorbed dose is due to the elastic scattering of the neutrons by the
hydrogen in tissue (cf. Table 12.6). To make a rough estimate of the quality fac-
tor, we first find Q for a 1-MeV proton—the average recoil energy for 2-MeV neu-
trons. From Table 5.3 we see that the stopping power for a 1-MeV proton in water
is 270 MeV cm–1 = 27 keV µm–1. Under the current recommendations of the ICRP,
NCRP, and ICRU, Q is defined according to Table 12.2. However, the older recom-
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mendations, which include Table 12.1, are still in effect at a number of installations.
We see from Table 12.1 that an estimate of Q ∼ 6 should be reasonable for the re-
coil protons. The recoil O, C, and N nuclei have considerably higher LET values, but
do not contribute as much to the dose as H. (LET is proportional to the square of a
particle’s charge.) Without going into more detail, we take the overall quality factor,
Q ∼ 12, to be twice that for the recoil protons alone. Therefore, the estimated dose
equivalent is H ∼ 12 × 0.10 = 1.2 mSv. [The value Q = 10 is obtained from detailed
calculations (cf. Table 12.5).] We note that Table 12.2 implies a comparable value,
Q = 6.4, for the protons. Changes in the recommendations are discussed more fully
in Chapter 14.

By the early 1990s, the ICRP and NCRP replaced the use of LET-dependent qual-
ity factors by radiation weighting factors, w, specified for radiation of a given type
and energy. The quantity on the left-hand side of the replacement for Eq. (12.5),
H = wD, is then called the equivalent dose. In some regulations the older terminol-
ogy, dose equivalent and quality factor, is still employed. However, the latter has
come to be specified by radiation type and energy, rather than LET.

12.3
Measurement of Exposure

Free-Air Ionization Chamber

Based on its definition, exposure can be measured operationally with the “free-air,”
or “standard,” ionization chamber, sketched in Fig. 12.1. X rays emerge from the
target T of an X-ray tube and enter the free-air chamber through a circular aperture
of area A, defining a right circular cone TBC of rays. Parallel plates Q and Q′ in
the chamber collect the ions produced in the volume of air between them with
center P′.

Fig. 12.1 Schematic diagram of the “free-air” or “standard” ionization chamber.
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The exposure in the volume DEFG in roentgens would be determined directly if
the total ionization produced only by those ions that originate from X-ray interac-
tions in the truncated conical volume DEFG could be collected and the resulting
charge divided by the mass of air in DEFG. This mass is given by M = ρA′L, where
ρ is the density of air, A′ is the cross-sectional area of the truncated cone at its mid-
point P′, and L, the thickness of the cone, is equal to the length of the collecting
plates Q and Q′. Unfortunately, the plates collect all of the ions between them, not
the particular set that is specified in the definition of the roentgen. Some electrons
produced by X-ray interactions in DEFG escape this volume and produce ions that
are not collected by the plates Q, Q′. Also, some ions from electrons originally pro-
duced outside DEFG are collected. Thus, only part of the ionization of an electron
such as e1 in Fig. 12.1 is collected, while ionization from an “outside” electron,
such as e2, is collected. When the distance from P to DG is sufficiently large (e.g.,
∼ 10 cm for 300-keV X rays), electronic equilibrium will be realized; that is, there
will be almost exact compensation between ionization lost from the volume DEFG

by electrons, such as e1, that escape and ionization gained from electrons, such as
e2, that enter. The distance from P to DG, however, should not be so large as to
attenuate the beam significantly between P and P′. Under these conditions, when
a charge q is collected, the exposure at P′ is given by

EP′ = q

ρA′L
. (12.6)

In practice, one prefers to know the exposure EP at P, the location where the
entrance port is placed, rather than EP′ . By the inverse-square law, EP = (d′/d)2EP′ .
Since A = (d/d′)2A′, Eq. (12.6) gives

EP =
(

d′

d

)2 q

ρA′L
= q

ρAL
. (12.7)

Example

The entrance port of a free-air ionization chamber has a diameter of 0.25 cm and the
length of the collecting plates is 6 cm. Exposure to an X-ray beam produces a steady
current of 2.6×10–10 A for 30 s. The temperature is 26◦C and the pressure is 750 torr.
Calculate the exposure rate and the exposure.

Solution

We can apply Eq. (12.7) to exposure rates as well as to exposure. The rate of charge col-
lection is q̇ = 2.6 × 10–10 A = 2.6 × 10–10 C s–1. The density of the air under the stated
conditions is ρ = (0.00129)(273/299)(750/760) = 1.16 × 10–3 g cm–3. The entrance-
port area is A = π (0.125)2 = 4.91 × 10–2 cm2 and L = 6 cm. Equation (12.7) implies,
for the exposure rate,

ĖP = q̇

ρAL
= 2.6 × 10–10 C s–1

1.16 × 10–3 × 4.91 × 10–2 × 6 g

× 1 R
2.58 × 10–7 C g–1 = 2.95 R s–1. (12.8)

The total exposure is 88.5 R.
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Measurement of exposure with the free-air chamber requires some care and at-
tention to details. For example, the collecting plates Q and Q′ in Fig. 12.1 must
be recessed away from the active volume DEFG by a distance not less than the
lateral range of electrons produced there. We have already mentioned minimum
and maximum restrictions on the distance from P to DG. When the photon energy
is increased, the minimum distance required for electronic equilibrium increases
rapidly and the dimensions for a free-air chamber become excessively large for
photons of high energy. For this and other reasons, the free-air ionization chamber
and the roentgen are not used for photon energies above 3 MeV.

The Air-Wall Chamber

The free-air ionization chamber is not a practical instrument for measuring routine
exposure. It is used chiefly as a primary laboratory standard. For routine use, cham-
bers can be built with walls of a solid material, having photon response properties
similar to those of air. Chambers of this type were discussed in Section 10.1.

Such an “air-wall” pocket chamber, built as a capacitor, is shown schematically in
Fig. 12.2. A central anode, insulated from the rest of the chamber, is given an initial
charge from a charger-reader device to which it is attached before wearing. When
exposed to photons, the secondary electrons liberated in the walls and enclosed
air tend to neutralize the charge on the anode and lower the potential difference
between it and the wall. The change in potential difference is directly proportional
to the total ionization produced and hence to the exposure. Thus, after exposure to
photons, measurement of the change in potential difference from its original value
when the chamber was fully charged can be used to find the exposure. Direct-
reading pocket ion chambers are available (Fig. 10.6).

Example

A pocket air-wall chamber has a volume of 2.5 cm3 and a capacitance of 7 pF. Initially
charged at 200 V, the reader showed a potential difference of 170 V after the chamber
was worn. What exposure in roentgens can be inferred?

Solution

The charge lost is �Q = C�V = 7 × 10–12 × (200 – 170) = 2.10 × 10–10 C. The mass
of air [we assume standard temperature and pressure (STP)] is M = 0.00129 × 2.5 =
3.23 × 10–3 g. It follows that the exposure is

2.10 × 10–10 C
3.23 × 10–3 g

× 1 R
2.58 × 10–7 C g–1 = 0.252 R. (12.9)

Fig. 12.2 Air-wall pocket ionization chamber, having a plastic
wall with approximately the same response to photons as air.
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Literally taken, the data given in this problem indicate only that the chamber was
partially discharged. Charge loss could occur for reasons other than radiation (e.g.,
leakage from the central wire). Two pocket ion chambers can be worn simultaneously
to improve reliability.

In practice, air-wall ionization chambers involve a number of compromises from
an ideal instrument that measures exposure accurately. For example, if the wall is
too thin, incident photons will produce insufficient ionization inside the chamber.
If the wall is too thick, it will significantly attenuate the incident radiation. The
optimal thickness is reached when, for a given photon field, the ionization in the
chamber gas is a maximum. This value, called the equilibrium wall thickness, is
equal to the range of the most energetic secondary electrons produced in the wall.
In addition, a solid wall can be only approximately air equivalent. Air-wall chambers
can be made with an almost energy-independent response from a few hundred keV
to about 2 MeV—the energy range in which Compton scattering is the dominant
photon interaction in air and low-Z wall materials.

12.4
Measurement of Absorbed Dose

One of the primary goals of dosimetry is the determination of the absorbed dose in
tissue exposed to radiation. The Bragg–Gray principle provides a means of relating
ionization measurements in a gas to the absorbed dose in some convenient mate-
rial from which a dosimeter can be fabricated. To obtain the tissue dose, either the
material can be tissue equivalent or else the ratio of the absorbed dose in the ma-
terial to that in tissue can be inferred from other information, such as calculations
or calibration measurements.

Consider a gas in a walled enclosure irradiated by photons, as illustrated in
Fig. 12.3. The photons lose energy in the gas by producing secondary electrons
there, and the ratio of the energy deposited and the mass of the gas is the absorbed
dose in the gas. This energy is proportional to the amount of ionization in the gas

Fig. 12.3 Gas in cavity enclosed by wall to illustrate Bragg–Gray principle.
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when electronic equilibrium exists between the wall and the gas. Then an electron,
such as e1 in Fig. 12.3, which is produced by a photon in the gas and enters the
wall before losing all of its energy, is compensated by another electron, like e2,
which is produced by a photon in the wall and stops in the gas. When the walls and
gas have the same atomic composition, then the energy spectra of such electrons
will be the same irrespective of their origin, and a high degree of compensation
can be realized. The situation is then analogous to the air-wall chamber just dis-
cussed. Electronic equilibrium requires that the wall thickness be at least as great
as the maximum range of secondary charged particles. However, as with the air-
wall chamber, the wall thickness should not be so great that the incident radiation
is appreciably attenuated.

The Bragg–Gray principle states that, if a gas is enclosed by a wall of the same
atomic composition and if the wall meets the thickness conditions just given, then
the energy absorbed per unit mass in the gas is equal to the number of ion pairs
produced there times the W value divided by the mass m of the gas. Furthermore,
the absorbed dose Dg in the gas is equal to the absorbed dose Dw in the wall.
Denoting the number of ions in the gas by Ng, we write

Dw = Dg = NgW

m
. (12.10)

When the wall and gas are of different atomic composition, the absorbed dose in
the wall can still be obtained from the ionization in the gas. In this case, the cavity
size and gas pressure must be small, so that secondary charged particles lose only
a small fraction of their energy in the gas. The absorbed dose then scales as the
ratio Sw/Sg of the mass stopping powers of the wall and gas:

Dw = DgSw

Sg
= NgWSw

mSg
. (12.11)

If neutrons rather than photons are incident, then in order to satisfy the Bragg–
Gray principle the wall must be at least as thick as the maximum range of any
secondary charged recoil particle that the neutrons produce in it.

As with the air-wall chamber for measuring exposure, condenser-type chambers
that satisfy the Bragg–Gray conditions can be used to measure absorbed dose. Prior
to exposure, the chamber is charged. The dose can then be inferred from the re-
duced potential difference across the instrument after it is exposed to radiation.

The determination of dose rate is usually made by measuring the current due to
ionization in a chamber that satisfies the Bragg–Gray conditions. As the following
example shows, this method is both sensitive and practical.

Example

A chamber satisfying the Bragg–Gray conditions contains 0.15 g of gas with a W value
of 33 eV ip–1. The ratio of the mass stopping power of the wall and the gas is 1.03.
What is the current when the absorbed dose rate in the wall is 10 mGy h–1?
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Solution

We apply Eq. (12.11) to the dose rate, with Sw/Sg = 1.03. From the given conditions,
Ḋw = 10 mGy h–1 = (0.010 J kg–1)/(3600 s) = 2.78 × 10–6 J kg–1 s–1. The rate of ion-
pair production in the gas is, from Eq. (12.11),

Ṅg = ḊwmSg

WSw

= 2.78 × 10–6 J kg–1 s–1 × 0.15 × 10–3 kg

33 eV ip–1 × 1.60 × 10–19 J eV–1 × 1.03
= 7.67 × 107 ip s–1. (12.12)

Since the electronic charge is 1.60×10–19 C, the current is 7.67×107 ×1.60×10–19 =
1.23 × 10–11 C s–1 = 1.23 × 10–11 A. Simple electrometer circuits can be used to mea-
sure currents smaller than 10–14 A, corresponding to dose rates much less than
10 mGy h–1 in this example. Note that Eq. (12.12) implies that the current is given
by

I = Ṅge = ḊwmeSg

WSw
. (12.13)

Expressing W = 33 J C–1 and remembering that the conversion factor from eV to J is
numerically equal to the magnitude of the electronic charge e, we write, in SI units,

I = ḊwmSg

WSw
(12.14)

= 2.78 × 10–6 J kg–1 s–1 × 1.5 × 10–4 kg
33 J C–1 × 1.03

= 1.23 × 10–11 A. (12.15)

The arithmetic is thus shortened somewhat by using Eq. (12.14). However, one must
be careful to keep units straight.

12.5
Measurement of X- and Gamma-Ray Dose

Figure 12.4 shows the cross section of a spherical chamber of graphite that encloses
CO2 gas. The chamber satisfies the Bragg–Gray conditions for photons over a wide
energy range, and so the dose DC in the carbon wall can be obtained from the
measured ionization of the CO2 by means of Eq. (12.11). Since carbon is a major
constituent of soft tissue, the wall dose approximates that in soft tissue Dt. Calcu-
lations show that, for photon energies between 0.2 MeV and 5 MeV, Dt = 1.1DC to
within 5%. Thus soft-tissue dose can be measured with an accuracy of 5% with the
carbon chamber.

Generally, the dose in low-Z wall materials will approximate that in soft tissue
over a wide range of photon energies. This fact leads to the widespread use of plas-
tics and a number of other low-Z materials for gamma-dosimeter walls. The ratio
of the absorbed dose in many materials relative to that in soft tissue has been cal-
culated. Figure 12.5 shows several important examples. For photon energies from
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Fig. 12.4 Cross section of graphite-walled CO2 chamber for measuring photon dose.

Fig. 12.5 Ratio of absorbed doses in bone, air, and carbon to that in soft tissue, Dt.

∼0.1 MeV to ∼10 MeV, the ratios for all materials of low atomic number are near
unity, because Compton scattering dominates. The curve for bone, in contrast to
the other two, rises at low energies due to the larger cross section of photoelectric
absorption in the heavier elements of bone (e.g., Ca and P).

12.6
Neutron Dosimetry

An ionization device, such as that shown in Fig. 12.4, used for measuring gamma-
ray dose will show a reading when exposed to neutrons. The response is due to
ionization produced in the gas by the charged recoil nuclei struck by neutrons
in the walls and gas. However, the amount of ionization will not be proportional
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Table 12.3 Principal Elements in Soft Tissue of Unit Density

Element Atoms cm–3

H 5.98 × 1022

O 2.45 × 1022

C 9.03 × 1021

N 1.29 × 1021

Table 12.4 Relative Response of C CO2 Chamber to Neutrons
of Energy E and Photons [Eq. (12.16)]

Neutron Energy, E (MeV) P(E)

0.1 0.109
0.5 0.149
1.0 0.149
2.0 0.145
3.0 0.151
4.0 0.247
5.0 0.168

10.0 0.341
20.0 0.487

to the absorbed dose in tissue unless (1) the walls and gas are tissue equivalent
and (2) the Bragg–Gray principle is satisfied for neutrons. As shown in Table 12.3,
soft tissue consists chiefly of hydrogen, oxygen, carbon, and nitrogen, all having
different cross sections as functions of neutron energy (cf. Fig. 9.2). The carbon
wall of the chamber in Fig. 12.4 would respond quite differently from tissue to a
field of neutrons of mixed energies, because the three other principal elements of
tissue are lacking.

The C CO2 chamber in Fig. 12.4 and similar devices can be used for neutrons
of a given energy if the chamber response has been calibrated experimentally as
a function of neutron energy. Table 12.4 shows the relative response P(E) of the
C CO2 chamber to photons or to neutrons of a given energy for a ftuence that
delivers 1 rad to soft tissue. If Dn

C(E) is the absorbed dose in the carbon wall due to
1 tissue rad of neutrons of energy E and D

γ
C is the absorbed dose in the wall due to

1 tissue rad of photons, then, approximately,

P(E) = Dn
C(E)
D

γ
C

. (12.16)

Example

A C CO2 chamber exposed to 1-MeV neutrons gives the same reading as that ob-
tained when gamma rays deliver an absorbed dose of 2 mGy to the carbon wall. What
absorbed dose would the neutrons deliver to soft tissue?
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Solution

From Table 12.4, the neutron tissue dose Dn would be given approximately by the
relation

P(E)Dn = 0.149 Dn = 2 mGy, (12.17)

or Dn = 13.4 mGy.

Tissue-equivalent gases and plastics have been developed for constructing cham-
bers to measure neutron dose directly. These materials are fabricated with the ap-
proximate relative atomic abundances shown in Table 12.3. In accordance with the
proviso mentioned after Eq. (12.11), the wall of a tissue-equivalent neutron cham-
ber must be at least as thick as the range of a proton having the maximum energy
of the neutrons to be monitored.

More often than not, gamma rays are present when neutrons are. In monitoring
mixed gamma–neutron radiation fields one generally needs to know the separate
contributions that each type of radiation makes to the absorbed dose. One needs
this information in order to assign the proper quality factor to the neutron part
to obtain the dose equivalent. To this end, two chambers can be exposed—one
C CO2 and one tissue equivalent—and doses determined by a difference method.
The response RT of the tissue-equivalent instrument provides the combined dose,
RT = Dγ + Dn. The reading RC of the C CO2 chamber can be expressed as RC =
Dγ + P(E)Dn, where P(E) is an appropriate average from Table 12.4 for the neutron
field in question. The individual doses Dγ and Dn can be inferred from RT and RC.

Example

In an unknown gamma–neutron field, a tissue-equivalent ionization chamber regis-
ters 0.082 mGy h–1 and a C CO2 chamber, 0.029 mGy h–1. What are the gamma and
neutron dose rates?

Solution

The instruments’ responses can be written in terms of the dose rates as

ṘT = Ḋγ + Ḋn = 0.082 (12.18)

and

ṘC = Ḋγ + P(E)Ḋn = 0.029. (12.19)

Since we are not given any information about the neutron energy spectrum, we must
assume some value of P(E) in order to go further. We choose P(E) ∼ 0.15, representa-
tive of neutrons in the lower MeV to keV range in Table 12.4. Subtracting both sides
of Eq. (12.19) from (12.18) gives Ḋn = (0.082 – 0.029)/(1 – 0.15) = 0.062 mGy h–1. It
follows from (12.18) that Ḋγ = 0.020 mGy h–1.

Very often, as the example illustrates, the neutron energy spectrum is not known
and the difference method may not be accurate.
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Fig. 12.6 Hurst fast-neutron proportional counter. Internal
alpha source in wall is used to provide pulses of known size for
energy calibration. (Courtesy Oak Ridge National Laboratory,
operated by Martin Marietta Energy Systems, Inc., for the
Department of Energy.)
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As mentioned in Section 10.7, the proportional counter provides a direct method
of measuring neutron dose, and it has the advantage of excellent gamma discrim-
ination. The pulse height produced by a charged recoil particle is proportional to
the energy that the particle deposits in the gas. The Hurst fast-neutron proportional
counter is shown in Fig. 12.6. To satisfy the Bragg–Gray principle, the polyethylene
walls are made thicker than the range of a 20-MeV proton. The counter gas can
be either ethylene (C2H4) or cyclopropane (C3H6), both having the same H/C = 2
ratio as the walls. A recoil proton or carbon nucleus from the wall or gas has high
LET. Unless only a small portion of its path is in the gas it will deposit much more
energy in the gas than a low-LET secondary electron produced by a gamma ray. Re-
jection of the small gamma pulses can be accomplished by electronic discrimina-
tion. Fast-neutron dose rates as low as 10–5 Gy h–1 can be measured in the presence
of gamma fields with dose rates up to 1 Gy h–1. In very intense fields signals from
multiple gamma rays can “pile up” and give pulses comparable in size to those
from neutrons.

The LET spectra of the recoil particles produced by neutrons (and hence neutron
quality factors) depend on neutron energy. Table 12.5 gives the mean quality fac-
tors (based on Table 12.1) and fluence rates for monoenergetic neutrons that give a
dose equivalent of 1 mSv in a 40-h work week. The quality factors have been com-
puted by averaging over the LET spectra of all charged recoil nuclei produced by
the neutrons. For practical applications, using Q = 3 for neutrons of energies less
than 10 keV and Q = 10 for higher energies will result in little error. Using Q = 10
for all neutrons is acceptable, but may be overly conservative. Thus, in monitoring
neutrons for radiation-protection purposes, one should generally know or estimate
the neutron energy spectrum or LET spectrum (i.e., the LET spectrum of the re-
coil particles). Measurement of LET spectra is discussed in Section 12.8. Several
methods of obtaining neutron energy spectra were described in Section 10.7. The
neutron rem meter, shown in Fig. 10.44, was discussed previously.

Figure 12.7 shows an experimental setup for exposing anthropomorphic phan-
toms, wearing various types of dosimeters, to fission neutrons. A bare reactor was
positioned above the circle, drawn on the floor, with an intervening shield placed
between it and the phantoms, located 3 m away. In this Health Physics Research
Reactor facility, the responses of dosimeters to neutrons with a known energy spec-
trum and fluence were studied.

Intermediate and fast neutrons incident on the body are subsequently moder-
ated and can be backscattered at slow or epithermal energies through the surface
they entered. Exposure to these neutrons can therefore be monitored by wearing
a device, such as a thermoluminescent dosimeter (TLD) enriched in 6Li, that is
sensitive to slow neutrons. Such a device is called an albedo-type neutron dosime-
ter. (For a medium A that contains a neutron source and an adjoining medium B
that does not, the albedo is defined in reactor physics as the fraction of neutrons
entering B that are reflected or scattered back into A.)
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Table 12.5 Mean Quality Factors Q and Fluence Rates for
Monoenergetic Neutrons that Give a Maximum
Dose-Equivalent Rate of 1 mSv in 40 h

Neutron Energy (eV) Q Fluence Rate (cm–2 s–1)

0.025 (thermal) 2 680
0.1 2 680
1.0 2 560
10.0 2 560
102 2 580
103 2 680
104 2.5 700
105 7.5 115
5 × 105 11 27
106 11 19
5 × 106 8 16
107 6.5 17
1.4 × 107 7.5 12
6 × 107 5.5 11
108 4 14
4 × 108 3.5 10

Source: From Protection Against Neutron Radiation, NCRP
Report No. 38, National Council on Radiation Protection and
Measurements, Washington, D.C. (1971). In its 1987 Report
No. 91, the NCRP recommends multiplying the above values
of Q by two (and reducing the above fluence rates by this
factor).

12.7
Dose Measurements for Charged-Particle Beams

For radiotherapy and for radiobiological experiments one needs to measure the
dose or dose rate in a beam of charged particles. This is often accomplished by
measuring the current from a thin-walled ionization chamber placed at different
depths in a water target exposed to the beam, as illustrated in Fig. 12.8. The dose
rate is proportional to the current. For monoenergetic particles of a given kind
(e.g., protons) the resulting “depth–dose” curve has the reversed shape of the mass
stopping-power curves in Fig. 5.6. The dose rate is a maximum in the region of
the Bragg peak near the end of the particles’ range. In therapeutic applications,
absorbers or adjustments in beam energy are employed so that the beam stops at
the location of a tumor or other tissue to be irradiated. In this way, the dose there (as
well as LET) is largest, while the intervening tissue is relatively spared. To further
spare healthy tissue, a tumor can be irradiated from several directions.

If the charged particles are relatively low-energy protons (�400 MeV), then es-
sentially all of their energy loss is due to electronic collisions. The curve in Fig. 12.8
will then be similar in shape to that for the mass stopping power. Higher-energy
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Fig. 12.7 Anthropomorphic phantoms, wearing a variety of
dosimeters in different positions, were exposed to neutrons
with known fluence and energy spectra at the Health Physics
Research Reactor. (Courtesy Oak Ridge National Laboratory,
operated by Martin Marietta Energy Systems, Inc., for the
Department of Energy.)

protons undergo significant nuclear reactions, which attenuate the protons and de-
posit energy by nuclear processes. The depth–dose curve is then different from the
mass stopping power. Other particles, such as charged pions, have strong nuclear
interactions at all energies, and depth–dose patterns can be quite different.

12.8
Determination of LET

To specify dose equivalent, one needs, in addition to the absorbed dose, the LET of
incident charged particles or the LET of the charged recoil particles produced by
incident neutral radiation (neutrons or gamma rays). As given in Tables 12.1 and
12.2, the required quality factors are defined in terms of the LET in water, which, for
radiation-protection purposes, is the same as the stopping power. Stopping-power
values of water for a number of charged particles are available and used in many
applications.

Radiation fields more often than not occur with a spectrum of LET values.
H. H. Rossi and coworkers developed methods for inferring LET spectra directly
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Fig. 12.8 Measurement of dose or dose rate as a function of
depth in water exposed to a beam of charged particles.

from measurements made with a proportional counter.2) A spherically shaped
counter (usually tissue equivalent) is used and a pulse-height spectrum measured
in the radiation field. If energy-loss straggling is ignored and the counter gas pres-
sure is low, so that a charged particle from the wall does not lose a large fraction of
its energy in traversing the gas, then the pulse size is equal to the product of the
LET and the chord length. The distribution of isotropic chord lengths x in a sphere
of radius R is given by the simple linear expression

P(x) dx = x

2R2 dx. (12.20)

Thus, the probability that a given chord has a length between x and x+dx is P(x) dx,
this function giving unity when integrated from x = 0 to 2R. Using analytic tech-
niques, one can, in principle, unfold the LET spectrum from the measured pulse-
height spectrum and the distribution P(x) of track lengths through the gas. How-
ever, energy-loss straggling and other factors complicate the practical application
of this method.

Precise LET determination presents a difficult technical problem. Usually, practi-
cal needs are satisfied by using estimates of the quality factor or radiation weighting
factor based on conservative assumptions.

2 Cf. Microdosimetry, ICRU Report 36,
International Commission on Radiation

Units and Measurements, Bethesda, MD
(1983).
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12.9
Dose Calculations

Absorbed dose, LET, and dose equivalent can frequently be obtained reliably by
calculations. In this section we discuss several examples.

Alpha and Low-Energy Beta Emitters Distributed in Tissue

When a radionuclide is ingested or inhaled, it can become distributed in various
parts of the body. It is then called an internal emitter. Usually a radionuclide en-
tering the body follows certain metabolic pathways and, as a chemical element,
preferentially seeks specific body organs. For example, iodine concentrates in the
thyroid; radium and strontium are bone seekers. In contrast, tritium (hydrogen)
and cesium tend to distribute themselves throughout the whole body. If an in-
ternally deposited radionuclide emits particles that have a short range, then their
energies will be absorbed in the tissue that contains them. One can then calculate
the dose rate in the tissue from the activity concentration there. Such is the case
when an alpha or low-energy beta emitter is embedded in tissue. If A denotes the
average concentration, in Bq g–1, of the radionuclide in the tissue and E denotes
the average alpha- or beta-particle energy, in MeV per disintegration, then the rate
of energy absorption per gram of tissue is AE MeV g–1 s–1. The absorbed dose rate
is

Ḋ = AE
MeV
g s

× 1.60 × 10–13 J
MeV

× 103 g
kg

= 1.60 × 10–10AE Gy s–1. (12.21)

Note that this procedure gives the average dose rate in the tissue that contains
the radionuclide. If the source is not uniformly distributed in the tissue, then the
peak dose rate will be higher than that given by Eq. (12.21). The existence of “hot
spots” for nonuniformly deposited internal emitters can complicate a meaningful
organ-dose evaluation. Nonuniform deposition can occur, for example, when in-
haled particulate matter becomes embedded in different regions of the lungs.

Example

What is the average dose rate in a 50-g sample of soft tissue that contains 1.20 ×
105 Bq of 14C?

Solution

The average energy of 14C beta particles is E = 0.0495 MeV (Appendix D). (As a rule of
thumb, when not given explicitly, the average beta-particle energy can be assumed to
be one-third the maximum energy.) The activity density is A = (1.20 × 105 s–1)/(50 g).
It follows directly from Eq. (12.21) that Ḋ = 1.90 × 10–8 Gy s–1.
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Example

If the tissue sample in the last example has unit density and is spherical in shape
and the 14C is distributed uniformly, make a rough estimate of the fraction of the
beta-particle energy that escapes from the tissue.

Solution

We compare the range of a beta particle having the average energy E = 0.0495 MeV
with the radius of the tissue sphere. The sphere radius r is found by writing 50 =
4πr3/3, which gives r = 2.29 cm. From Table 6.1, the range of the beta particle is R =
0.0042 cm. Thus a beta particle of average energy emitted no closer than 0.0042 cm
from the surface of the tissue sphere will be absorbed in the sphere. The fraction F

of the tissue volume that lies at least this close to the surface can be calculated from
the difference in the volumes of spheres with radii r and r – R. Alternatively, we can
differentiate the expression for the volume, V = 4πr3/3:

F=
dV

V
= 3 dr

r
= 3 × 0.0042

2.29
= 5.50 × 10–3. (12.22)

If we assume that one-half of the average beta-particle energy emitted in this outer
layer is absorbed in the sphere and the other half escapes, then the fraction of the
emitted beta-particle energy that escapes from the sphere is F/2 = 2.8 × 10–3, a very
small amount.

Charged-Particle Beams

Figure 12.9 represents a uniform, parallel beam of monoenergetic charged parti-
cles of a given kind (e.g., protons) normally incident on a thick tissue slab with
fluence rate ϕ̇ cm–2 s–1. To calculate the dose rate at a given depth x in the slab,
we consider a thin, disc-shaped volume element with thickness �x in the x direc-
tion and area A normal to the beam. The rate of energy deposition in the volume
element is ϕ̇A(–dE/dx)�x, where –dE/dx is the (collisional) stopping power of the
beam particles as they traverse the slab at depth x. [We ignore energy straggling
(Chap. 7).] The dose rate Ḋ is obtained by dividing by the mass ρA�x of the vol-
ume element, where ρ is the density of the tissue:

Ḋ = ϕ̇A(–dE/dx)�x

ρA�x
= ϕ̇

(
–

dE

ρ dx

)
. (12.23)

It follows that the dose per unit fluence at any depth is equal to the mass stopping
power for the particles at that depth. If, for example, the mass stopping power is
3 MeV cm2 g–1, then the dose per unit fluence can be expressed as 3 MeV g–1. This
analysis assumes that energy is deposited only by means of electronic collisions
(stopping power). As discussed in connection with Fig. 12.8, if significant nuclear
interactions occur, for example, as with high-energy protons, then accurate depth–
dose curves cannot be calculated from Eq. (12.23). One can then resort to Monte
Carlo calculations, in which the fates of individual incident and secondary particles
are handled statistically on the basis of the cross sections for the various nuclear
interactions that can occur.
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Fig. 12.9 Uniform, parallel beam of charged particles normally
incident on thick tissue slab. Fluence rate = ϕ̇ cm–2 s–1.

Point Source of Gamma Rays

We next derive a simple formula for computing the exposure rate in air from a
point gamma source of activity C that emits an average photon energy E per disin-
tegration. The rate of energy release in the form of gamma photons escaping from
the source is CE. Neglecting attenuation in air, we can write for the energy fluence
rate, or intensity, through the surface of a sphere of radius r centered about the
source �̇ = CE/(4πr2). For monoenergetic photons, it follows from Eq. (8.61) that
the absorbed dose rate in air at the distance r from the source is

Ḋ = �̇
µen

ρ
= CE

4πr2

µen

ρ
. (12.24)

Here, µen/ρ is the mass energy-absorption coefficient of air for the photons. In-
spection of Fig. 8.12 shows that this coefficient has roughly the same value for
photons with energies between about 60 keV and 2 MeV: µen/ρ ∼= 0.027 cm2 g–1 =
0.0027 m2 kg–1. Therefore, we can apply Eq. (12.24) to any mixture of photons in
this energy range, writing

Ḋ = CE

r2

0.0027
4π

= 2.15 × 10–4CE

r2 . (12.25)

With C in Bq (s–1), E in J, and r in m, Ḋ is in Gy s–1. This relationship can be brought
into a more convenient form. Expressing the activity C in Ci and the energy E in
MeV, we have

Ḋ = 2.15 × 10–4 × C × 3.7 × 1010 × E × 1.60 × 10–13

r2

= 1.27 × 10–6 CE

r2 Gy s–1. (12.26)
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Using hours as the unit of time and changing from dose rate Ḋ to exposure rate Ẋ

[Eq. (12.4)] gives

Ẋ = 1.27 × 10–6 CE

r2

Gy
s

× 3600
s
h

× 1 R
0.0088 Gy

= 0.5CE

r2 R h–1. (12.27)

This simple formula can be used to estimate the exposure rate from a point source
that emits gamma rays.

The specific gamma-ray constant, �̇, for a nuclide is defined by writing

Ẋ = �̇
C

r2 . (12.28)

This constant, which numerically gives the exposure rate per unit activity at unit
distance, is usually expressed in R m2 Ci–1 h–1. Comparison with Eq. (12.27) shows
that the specific gamma-ray constant in these units is given approximately by �̇ =
0.5E, with E in MeV.

Example

(a) Estimate the specific gamma-ray constant for 137Cs. (b) Estimate the exposure rate
at a distance of 1.7 m from a 100-mCi point source of 137Cs.

Solution

(a) The isotope emits only a 0.662-MeV gamma ray in 85% of its transformations
(Appendix D). The average energy per disintegration released as gamma radiation is
therefore 0.85 × 0.662 = 0.563 MeV. The estimated specific gamma-ray constant for
137Cs is therefore �̇ = 0.5E = 0.28 R m2 Ci–1 h–1.

(b) From Eq. (12.28), the exposure rate at a distance r = 1.7 m from a point source
of activity C = 100 mCi = 0. 1 Ci is

Ẋ = 0.28
R m2

Ci h
× 0.1 Ci

(1.7 m)2 = 9.7 × 10–3 R h–1 = 9.7 mR h–1. (12.29)

The accuracy of the approximations leading to Eq. (12.27) varies from nuclide to
nuclide. The measured specific gamma-ray constant for 137Cs, 0.32 R m2 Ci–1 h–1,
is somewhat larger than the estimate just obtained. For 60Co, which emits two
gamma photons per disintegration, with energies 1.173 MeV and 1.332 MeV, the
estimated specific gamma-ray constant is 0.5(1.173 + 1.332) = 1.3 R m2 Ci–1 h–1, in
agreement with the measured value.

In addition to gamma rays, other photons can be emitted from a radionuclide.
125I, for example, decays by electron capture, giving rise to the emission of char-
acteristic X rays (the major radiation) plus a relatively infrequent, soft (35-keV)
gamma photon. Internal bremsstrahlung from a beta particle (β– or β+) or cap-
tured electron accelerated near the nucleus can also occur, though this contribution
is often negligible. The exposure-rate constant, �̇δ , of a radionuclide is defined like
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the specific gamma-ray constant, but includes the exposure rate from all photons
emitted with energies greater than a specified value δ. In the case of 125I, the spe-
cific gamma-ray constant is 0.0042 R m2 Ci–1 h–1 and the exposure-rate constant is
0.13 R m2 Ci–1 h–1 for photons with energies greater than about 10 keV.

Neutrons

As discussed in Chapter 9, fast neutrons lose energy primarily by elastic scattering
while slow and thermal neutrons have a high probability of being captured. The two
principal capture reactions in tissue are 1H(n,γ)2H and 14N(n,p)14C. Slow neutrons
are quickly thermalized by the body. The first capture reaction releases a 2.22-MeV
gamma ray, which could deposit a fraction of its energy in escaping the body. In
contrast, the nitrogen-capture reaction releases an energy of 0.626 MeV, which is
deposited by the proton and recoil carbon nucleus in the immediate vicinity of
the capture site. The resulting dose from exposure to thermal neutrons can be
calculated, as the next example illustrates.

Example

Calculate the dose in a 150-g sample of soft tissue exposed to a fluence of 107 thermal
neutrons cm–2.

Solution

From Table 12.3, the density of nitrogen atoms in soft tissue is N = 1.29 × 1021 cm–3,
14N being over 99.6% abundant. The thermal-neutron capture cross section is σ =
1.70 × 10–24 cm2 (Section 9.7). Each capture event by nitrogen results in the depo-
sition of energy E = 0.626 MeV, which will be absorbed in the unit-density sample
(ρ = 1 g cm –3). The number of interactions per unit fluence per unit volume of the
tissue is Nσ . The dose from the fluence ϕ = 107 cm–2 is therefore

D = ϕNσE

ρ

= 107 cm–2 × 1.29 × 1021 cm–3 × 1.70 × 10–24 cm2 × 0.626 MeV
1 g cm–3

×1.6 × 10–13 J
MeV

× 1
10–3 kg g–1 = 2.20 × 10–6 Gy. (12.30)

Some additional dose would be deposited by the gamma rays produced by the
1H(n,γ)2H reaction, for which the cross section is 3.3 × 10–25 cm2. However, in a
tissue sample as small as 150 g, the contribution of this gamma-ray dose is negligi-
ble. It is not negligible in a large target, such as the whole body.

The absorbed dose from fast neutrons is due almost entirely to the energy trans-
ferred to the atomic nuclei in tissue by elastic scattering. As discussed in Sec-
tion 9.6, a fast neutron loses an average of one-half its energy in a single colli-
sion with hydrogen. For the other nuclei in soft tissue, the average energy loss is
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approximately one-half the maximum given by Eq. (9.3). These relationships facil-
itate the calculation of a “first-collision” dose from fast neutrons in soft tissue. The
first-collision dose is that delivered by neutrons that make only a single collision
in the target. The first-collision dose closely approximates the actual dose when the
mean free path of the neutrons is large compared with the dimensions of the tar-
get. A 5-MeV neutron, for example, has a macroscopic cross section in soft tissue
of 0.051 cm–1, and so its mean free path is 1/0.051 = 20 cm. Thus, in a target the
size of the body, a large fraction of 5-MeV neutrons will not make multiple col-
lisions, and the first-collision dose can be used as a basis for approximating the
actual dose. The first-collision dose is, of course, always a lower bound to the actual
dose. Moreover, fast neutrons deposit most of their energy in tissue by means of
collisions with hydrogen. Therefore, calculating the first-collision dose with tissue
hydrogen often provides a simple, lower-bound estimate of fast-neutron dose.

Example

Calculate the first-collision dose to tissue hydrogen per unit fluence of 5-MeV neu-
trons.

Solution

The density of H atoms is N = 5.98 × 1022 cm–3 (Table 12.3) and the cross section
for scattering 5-MeV neutrons is σ = 1.61 × 10–24 cm2 (Fig. 9.2). The mean energy
loss per collision, Qavg = 2.5 MeV, is one-half the incident neutron energy. The dose
per unit neutron fluence from collisions with hydrogen is therefore (tissue density
ρ = 1 g cm–3)

D = NσQavg

ρ
= 5.98 × 1022 cm–3 × 1.61 × 10–24 cm2 × 2.5 MeV

1 g cm–3

×1.6 × 10–13 J MeV–1

10–3 kg g–1

= 3.85 × 10–11 Gy cm2. (12.31)

Note that the units of “Gy per (neutron cm–2)” are Gy cm2.

Similar calculations of the first-collision doses due to collisions of 5-MeV neu-
trons with the O, C, and N nuclei in soft tissue give, respectively, contributions of
0.244×10–11, 0.079×10–11, and 0.024×10–11 Gy cm2, representing in total about an
additional 10%. Detailed analysis shows that hydrogen recoils contribute approxi-
mately 85–95% of the first-collision soft-tissue dose for neutrons with energies be-
tween 10 keV and 10 MeV. Table 12.6 shows the analysis of first-collision neutron
doses.

Detailed calculations of multiple neutron scattering and energy deposition in
slabs and in anthropomorphic phantoms, containing soft tissue, bone, and lungs,
have been carried out by Monte Carlo techniques (Section 11.13). Computer pro-
grams are available, based on experimental cross-section data and theoretical algo-
rithms, to transport individual neutrons through a target with the same statistical
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Table 12.6 Analysis of First-Collision Dose for Neutrons in Soft Tissue

Neutron First-Collision Dose per Unit Neutron Fluence for Collisions with Various
Energy Elements (10–11 Gy cm2)

(MeV) H O C N Total

0.01 0.091 0.002 0.001 0.000 0.094
0.02 0.172 0.004 0.001 0.001 0.178
0.03 0.244 0.005 0.002 0.001 0.252
0.05 0.369 0.008 0.003 0.001 0.381
0.07 0.472 0.012 0.004 0.001 0.489

0.10 0.603 0.017 0.006 0.002 0.628
0.20 0.914 0.034 0.012 0.003 0.963
0.30 1.14 0.052 0.016 0.003 1.21
0.50 1.47 0.122 0.023 0.004 1.62
0.70 1.73 0.089 0.029 0.005 1.85

1.0 2.06 0.390 0.036 0.007 2.49
2.0 2.78 0.156 0.047 0.012 3.00
3.0 3.26 0.205 0.045 0.018 3.53
5.0 3.88 0.244 0.079 0.024 4.23
7.0 4.22 0.485 0.094 0.032 4.83

10.0 4.48 0.595 0.157 0.046 5.28
14.0 4.62 1.10 0.259 0.077 6.06

Source: From “Measurement of Absorbed Dose of Neutrons
and Mixtures of Neutrons and Gamma Rays,” National Bureau

of Standards Handbook 75, Washington, D.C. (1961).

distribution of events that neutrons have in nature. Such Monte Carlo calculations
can be made under general conditions of target composition and geometry as well
as incident neutron spectra and directions of incidence. Compilations of the re-
sults for a large number of neutrons then provide dose and LET distributions as
functions of position, as well as any other desired information, to within the statis-
tical fluctuations of the compilations. Using a larger number of neutron histories
reduces the variance in the quantities calculated, but increases computer time.

Figure 12.10 shows the results of Monte Carlo calculations carried out for 5-MeV
neutrons incident normally on a 30-cm soft-tissue slab, approximating the thick-
ness of the body. (The geometry is identical to that shown for the charged particles
in Fig. 12.9.) The curve labeled ET is the total dose, Ep is the dose due to H recoil nu-
clei (protons), Eγ is the dose from gamma rays from the 1H(n,γ)2H slow-neutron
capture reaction, and EH is the dose from the heavy (O, C, N) recoil nuclei. The
total dose builds up somewhat in the first few cm of depth and then decreases as
the beam becomes degraded in energy and neutrons are absorbed. The proton and
heavy-recoil curves, Ep and EH, show a similar pattern. As the neutrons penetrate,
they are moderated and approach thermal energies. This is reflected in the rise
of the gamma-dose curve, Eγ, which has a broad maximum over the region from
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Fig. 12.10 Depth–dose curves for a broad beam of 5-MeV
neutrons incident normally on a soft-tissue slab. Ordinate gives
dose per unit fluence at different depths shown by the abscissa.
[From “Protection Against Neutron Radiation Up to 30 Million
Electron Volts,” in National Bureau of Standards Handbook 63,
p. 44, Washington, D.C. (1957).]

about 6 cm to 14 cm. Note that the total dose decreases by an order of magnitude
between the front and back of the slab.

The result of our calculation of the first-collision dose, D = 3.85×10–11 Gy cm2 =
3.85×10–9 rad cm2, due to proton recoils in the last example can be compared with
the curve for Ep in Fig. 12.10. At the slab entrance, Ep = 4.8×10–9 rad cm2 is greater
than D, which, as we pointed out, is a lower bound for the actual dose from proton
recoils. A number of neutrons are back-scattered from within the slab to add to the
first-collision dose deposited directly by the incident 5-MeV neutrons.
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12.10
Other Dosimetric Concepts and Quantities

Kerma

A quantity related to dose for indirectly ionizing radiation (photons and neutrons)
is the initial kinetic energy of all charged particles liberated by the radiation per
unit mass. This quantity, which has the dimensions of absorbed dose, is called
the kerma (Kinetic Energy Released per unit MAss). Kerma was discussed briefly
for photons in Section 8.9 in connection with the mass energy-transfer coefficient
[Eq. (8.62)]. By definition, kerma includes energy that may subsequently appear as
bremsstrahlung and it also includes Auger-electron energies. The absorbed dose
generally builds up behind a surface irradiated by a beam of neutral particles to
a depth comparable with the range of the secondary charged particles generated
(cf. Fig. 12.10). The kerma, on the other hand, decreases steadily because of the
attenuation of the primary radiation with increasing depth.

The first-collision “dose” calculated for neutrons in the last section is, more pre-
cisely stated, the first-collision “kerma.” The two are identical as long as all of the
initial kinetic energy of the recoil charged particles can be considered as being
absorbed locally at the interaction site. Specifically, kerma and absorbed dose at
a point in an irradiated target are equal when charged-particle equilibrium exists
there and bremsstrahlung losses are negligible.

It is often of interest to consider kerma or kerma rate for a specific material at
a point in free space or in another medium. The specific substance itself need not
actually be present. Given the photon or neutron fluence and energy spectra at that
point, one can calculate the kerma for an imagined small amount of the material
placed there. It is thus convenient to describe a given radiation field in terms of the
kerma in some relevant, or reference, material. For example, one can specify the
air kerma at a point in a water phantom or the tissue kerma in air.

Additional information on kerma can be found in the references listed in Sec-
tion 12.11.

Microdosimetry

Absorbed dose is an averaged quantity and, as such, does not specifically reflect the
stochastic, or statistical, nature of energy deposition by ionizing radiation in mat-
ter. Statistical aspects are especially important when one considers dose in small
regions of an irradiated target, such as cell nuclei or other subcellular components.
The subject of microdosimetry deals with these phenomena. Consider, for exam-
ple, cell nuclei having a diameter ∼5 µm. If the whole body receives a uniform
dose of 1 mGy of low-LET radiation, then 2

3 of the nuclei will have no ionizations at
all and 1

3 will receive an average dose of ∼3 mGy. If, on the other hand, the whole
body receives 1 mGy from fission neutrons, then 99.8% of the nuclei will receive



388 12 Radiation Dosimetry

no dose and 0.2% will have a dose of ∼500 mGy.3) The difference arises from the
fact that the neutron dose is deposited by recoil nuclei, which have a short range.
A proton having an energy of 500 keV has a range of 8 × 10–4 cm = 8 µm in
soft tissue (Table 5.3), compared with a range of 0.174 cm for a 500-keV electron
(Table 6.1). Both particles deposit the same energy. The proton range is comparable
to the cell-nucleus diameter; the electron travels the equivalent of ∼1740/5 = 350
nuclear diameters.

Specific Energy

When a particle or photon of radiation interacts in a small volume of tissue, one
refers to the interaction as an energy-deposition event. The energy deposited by
the incident particle and all of the secondary electrons in the volume is called the
energy imparted, ε. Because of the statistical nature of radiation interaction, the
energy imparted is a stochastic quantity. The specific energy (imparted) in a volume
of mass m is defined as

z = ε

m
. (12.32)

It has the dimensions of absorbed dose. When the volume is irradiated, it experi-
ences a number of energy-deposition events, which are characterized by the single-
event distribution in the values of z that occur. The average absorbed dose in the
volume from a number of events is the mean value of z. Studies of the distributions
in z from different radiations in different-size small volumes of tissue are made in
microdosimetry.

Similarly, one can regard an ensemble of identical small volumes throughout
an irradiated body and the distribution of specific energy in the volumes due to
any number of events. Thus, the example cited from the BEIR-III Report in the
next-to-last paragraph can be conveniently described in terms of the distribution of
specific energy z in the cell nuclei. For the low-LET radiation, 2

3 of the nuclei have
z = 0; in the other 1

3 , z varies widely with a mean value of ∼3 mGy. For the fission
neutrons, 99.8% of the nuclei have z = 0; in the other 0.2%, z varies by many orders
of magnitude with a mean value of ∼500 mGy.

The stochastic specific energy plays an important role as the microdosimetric
analogue of the conventional absorbed dose, which is a nonstochastic quantity.

Lineal Energy

The lineal energy y is defined as the ratio of the energy imparted ε from a single
event in a small volume and the mean length x̄ of isotropic chords through the
volume:

y = ε

x̄
. (12.33)

3 The Effects on Populations of Exposure to Low

Levels of Ionizing Radiation: 1980, BEIR-III
Report, p. 14, National Academy of Sciences,
Washington, D.C. (1980).
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Lineal energy, which is a stochastic quantity, has the same dimensions as LET,
which is nonstochastic (being the mean value of the linear rate of energy loss). Lin-
eal energy is the microdosimetric analogue of LET. Unlike specific energy, however,
it is defined only for single events.

A relationship between lineal energy and LET can be seen as follows. Consider
a small volume containing a chord of length x traversed by a charged particle with
LET = L. We ignore energy-loss straggling and assume that the energy lost by the
particle in the volume is absorbed there. We assume further that the chord is so
short that the LET is constant over its length. The energy imparted by the single
traversal event is ε = Lx. For isotropic irradiation of the volume by particles travers-
ing it with LET = L, the mean value of the imparted energy is ε̄ = Lx̄. Under these
conditions, it follows from the definition (12.33) of the lineal energy that its mean
value is the LET: ȳ = ε̄/x̄ = L.

For any convex body, having surface area S and volume V, traversed by isotropic
chords, the mean chord length is given quite generally by the Cauchy relation,
x̄ = 4V/S. For a sphere of radius R, it follows that x̄ = 4R/3 (Problem 60).

Proposals have been made to use lineal energy instead of LET as a basis for
defining quality factors in radiation-protection work. Whereas the measurement
of LET spectra is a difficult technical problem, distributions of lineal energy and
its frequency- and dose-mean values can be readily measured for many radiation
fields. Disadvantages of using lineal energy include the necessity of specifying a
universal size for the reference volume, usually assumed to be spherical in shape.
There does not appear to be a compelling reason for any particular choice, and the y

distributions depend upon this specification. In addition, concepts associated with
chords are probably inappropriate for application to the tortuous paths of electrons,
especially at low energies.

12.11
Suggested Reading

1 Attix, F. H., Introduction to Radiolog-

ical Physics and Radiation Dosimetry,
Wiley, New York (1986). [Clear and
rigorous treatments (and in much
greater depth) of subjects in this chap-
ter. Dosimetry fundamentals and,
especially, instrumentation and mea-
surements are described.]

2 Cember, H., Introduction to Health

Physics, 3rd Ed., McGraw-Hill, New
York (1996).

3 ICRU Report 36, Microdosimetry, In-
ternational Commission on Radiation
Units and Measurements, Bethesda,
MD (1983).

4 ICRU Report 60, Fundamental Quan-

tities and Units for Ionizing Radiation,
International Commission on Ra-
diation Units and Measurements,
Bethesda, MD (1998). [Provides de-
finitions of fundamental quantities
related to radiometry, interaction co-
efficients, dosimetry, and radioactiv-
ity. Gives standardized symbols and
units.]

5 Martin, J. E., Physics for Radiation Pro-

tection: A Handbook, 2nd Ed., Wiley,
New York (2006).

6 Rossi, H. H., and M. Zaider, Micro-

dosimetry and its Applications, Springer
Verlag, Berlin (1996).
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7 Turner, J. E., “An Introduction to Mi-
crodosimetry,” Rad. Prot. Management

9(3), 25–58 (1992).

Section 12.9 showed a sampling of approxi-
mate dose calculations that can be performed
by hand. A number of sophisticated compu-
tational systems can be found on the World

Wide Web by simply searching “radiation dose
calculations”. Valuable links to diverse areas in
the profession of health physics are available.
Computer codes can be obtained and run on
personal computers (e.g., VARSKIN for as-
sessing beta and gamma skin dose from skin
and clothing contamination). A useful site is
www.doseinfo-radar.com.

12.12
Problems

1. (a) What is the average absorbed dose in a 40-cm3 region of a
body organ (density = 0.93 g cm–3) that absorbs
3 × 105 MeV of energy from a radiation field?

(b) If the energy is deposited by ionizing particles with an LET
of 10 keV µm–1 in water, what is the dose equivalent
according to Table 12.1?

(c) Express the answers to (a) and (b) in both rads and rems as
well as Gy and Sv.

2. A portion of the body receives 0.15 mGy from radiation with a
quality factor Q = 6 and 0.22 mGy from radiation with Q = 10.
(a) What is the total dose?
(b) What is the total dose equivalent?

3. A beam of X rays produces 4 esu of charge per second in 0.08 g
of air. What is the exposure rate in (a) mR s–1 and (b) SI units?

4. If all of the ion pairs are collected in the last example, what is
the current?

5. A free-air ionization chamber operating under saturation
conditions has a sensitive volume of 12 cm3. Exposed to a beam
of X rays, it gives a reading of 5 × 10–6 mA. The temperature is
18◦C and the pressure is 756 torr. What is the exposure rate?

6. A free-air ionization chamber with a sensitive volume of
14 cm3 is exposed to gamma rays. A reading of 10–11 A is
obtained under saturation conditions when the temperature is
20◦C and the pressure is 762 torr.
(a) Calculate the exposure rate.
(b) How would the exposure rate be affected if the temperature

dropped 2◦C?
(c) Would the current change?

7. A current of 10–14 A is produced in a free-air chamber
operating under saturation conditions. The sensitive volume,
in which electronic equilibrium exists, contains 0.022 g of air.
What is the exposure rate?
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8. A free-air ionization chamber is to be constructed so that a
saturation current of 10–14 A is produced when the exposure
rate is 10 mR h–1. The temperature is 20◦C, and the pressure is
750 torr.
(a) Calculate the size of the sensitive volume needed.
(b) What would be the current in this chamber if it were

exposed to 20 mR h–1 at a temperature of 30◦C and a
pressure of 750 torr?

9. A free-air ionization chamber has a sensitive volume of
103 cm3 and operates at a temperature of 20◦C and a pressure
of 750 torr. Placed near a gamma-ray source, it registers a
current of 6.60 × 10–11 A.
(a) Calculate the exposure rate in R h–1.
(b) If the temperature changes to 15◦C and the pressure to

760 torr, what will be the current? (Source and chamber
stay in fixed positions.)

(c) What will be the exposure rate in (b)?
10. An air-wall pocket chamber contains 7.7 mg of air. Its

capacitance is 9.4 pF. With the chamber charged, how much
exposure will cause a decrease of 10 V in the potential
difference?

11. A pocket air-wall ionization chamber with a capacitance of
10–11 F contains 2.7 cm3 of air. If it can be charged to 240 V,
what is the maximum exposure that it can measure? Assume
STP.

12. A pocket dosimeter with a volume of 2.2 cm3 and capacitance
of 8 pF was fully charged at a potential difference of 200 V.
After being worn during a gamma-ray exposure, the potential
difference was found to be 192 V. Assume STP conditions.
(a) Calculate the exposure.
(b) What charging voltage would have to be applied to the

dosimeter if it is to read exposures up to 3 R?
13. An unsealed air-wall pocket chamber has a volume of 5.7 cm3

and a capacitance of 8.6 pF. The temperature is 25◦C and the
pressure is 765 torr.
(a) How much charging voltage is needed for the chamber, if it

is to measure exposures up to a maximum of 1.0 R?
(b) If the same charging voltage is used on another day, when

the temperature is 18◦C and the pressure is 765 torr, what
will be the maximum measurable exposure?

14. A pocket air-wall ionization chamber has a volume of 6.2 cm3

and a capacitance of 8.0 pF. Assume STP conditions.
(a) If the instrument is to register a range of exposures up to a

maximum of 1.0 R, what must the charging voltage be?
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(b) If everything else remained the same, what would the
range of the instrument be if the capacitance were doubled?

(c) With everything else the same as in (a), what would the
range be if the volume were doubled?

15. State the Bragg–Gray principle and the conditions for its
validity.

16. What minimum wall thickness of carbon is needed to satisfy
the Bragg–Gray principle if the chamber pictured in Fig. 12.4 is
to be used to measure absorbed dose from photons with
energies up to 5 MeV? (Assume same mass stopping powers
for carbon and water and use numerical data given in
Chapter 6.)

17. An ionization chamber that satisfies the Bragg–Gray principle
contains 0.12 g of CO2 gas (W = 33 eV ip–1). When exposed to a
beam of gamma rays, a saturation current of 4.4 × 10–10 A is
observed. What is the absorbed-dose rate in the gas?

18. An ionization chamber like that shown in Fig. 12.4 was
exposed to gamma rays, and 2.8 × 1012 ion pairs were produced
per gram of CO2 (W = 33 eV ip–1). What was the absorbed dose
in the carbon walls? The average mass stopping powers of
graphite and CO2 for the photons are, respectively, 1.648 and
1.680 MeV cm2 g–1.

19. An unsealed air ionization chamber (W = 34 eV ip–1) is to be
designed so that the saturation current is 10–11 A when the
dose rate is 10 mGy h–1. The chamber is to be operated at a
temperature of 20◦C and pressure of 750 torr. What chamber
volume is required?

20. An ionization chamber is bombarded simultaneously by a
beam of 8 × 106 helium ions per second and a beam of 1 × 108

carbon ions per second. The helium ions have an initial energy
of 5 MeV and the carbon ions, 100 keV. All ions stop in the
chamber gas. The W values for the helium and carbon ions are,
respectively, 36 eV ip–1 and 48 eV ip–1.
(a) Calculate the saturation current.
(b) If the chamber contains 0.876 g of gas, what is the dose

rate?
21. What disadvantages are there in using the C CO2 chamber to

monitor neutrons?
22. Why should a neutron dosimeter contain a substantial amount

of hydrogen?
23. In a laboratory test, a tissue-equivalent (TE) chamber and a

C CO2 chamber both show correct readings of 10 mGy in
response to a gamma-ray exposure that produces 10 mGy in
tissue. When exposed to 0.5-MeV neutrons, the TE chamber
reads 10 mGy and the C CO2 chamber shows 1.49 mGy.
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When the two chambers are used together to monitor an
unknown mixed gamma–neutron field, the TE chamber reads
0.27 mGy h–1 and the C CO2 chamber reads 0.21 mGy h–1.
What are the individual gamma and neutron dose rates?
(Assume that the neutrons have an energy of 0.5 MeV.)

24. A C CO2 chamber like that in Fig. 12.4 is calibrated to read
directly in mGy h–1 for 1-MeV photons. The chamber satisfies
the Bragg–Gray principle for neutrons as well as gamma rays.
(a) The chamber is exposed to 1-MeV neutrons and gives a

reading of 22 mGy h–1. What is the neutron dose rate for
soft tissue?

(b) A 1-MeV gamma source is added, and the reading is
increased to 84 mGy h–1. What is the gamma dose rate to
tissue?

(c) What would a tissue-equivalent chamber read in part (b)
when exposed to both the neutrons and gamma rays
together?

25. In a proportional counter such as the one shown in Fig. 12.6,
why, on the average, would pulses produced by gamma photons
be much smaller than pulses produced by fast neutrons?

26. If W = 30 eV ip–1 for a 2-MeV proton and W = 40 eV ip–1 for a
1-MeV carbon recoil nucleus in a proportional-counter gas,
what is the ratio of the pulse heights produced by these two
particles if they stop completely in the gas?

27. A beam of fast neutrons is directed toward a proportional
counter that operates with methane (CH4) gas. If the
maximum pulse height registered is 4.2 MeV, what is the
maximum energy of the neutrons?

28. An air ion chamber having a volume of 2.5 cm3 (STP) is placed
at a certain depth in a water tank, as shown in Fig. 12.8. An
electron beam incident on the tank produces a current of
0.004 µA in the chamber. What is the dose rate at that depth?

29. What is the average whole-body dose rate in a 22-g mouse that
contains 1.85 × 105 Bq of 14C distributed in its body?

30. A patient receives an injection of 1.11 × 108 Bq of 131I, 30% of
which goes to the thyroid, having a mass of 20 g. What is the
average dose rate in the organ?

31. Tritium often gets into body water following an exposure and
quickly becomes distributed uniformly throughout the body.
What uniform concentration of 3H, in Bq g–1, would give a
dose-equivalent rate of 1 mSv wk–1?

32. A 36-g mouse is to be injected with 32P (half-life = 14.3 d;
average beta energy = 0.70 MeV; no gamma [Appendix D]).
Assume that the 32P distributes itself almost instantaneously
throughout the body following injection and that none is lost
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from the body for the first few hours thereafter. What activity of
32P needs to be administered in order to give the mouse a dose
of 10 mGy in the first hour?

33. A 75-µA parallel beam of 4-MeV electrons passes normally
through the flat surface of a sample of soft tissue in the shape
of a disc. The diameter of the disc is 2 cm and its thickness is
0.5 cm. Calculate the average absorbed dose rate in the disc.

34. A soft-tissue disc with a radius of 0.5 cm and thickness of
1 mm is irradiated normally on its flat surface by a 6-µA beam
of 100-MeV protons. Calculate the average dose rate in the
sample.

35. An experiment is planned in which bean roots are to be placed
in a tank of water at a depth of 2.2 cm and irradiated by a
parallel beam of 10-MeV electrons incident on the surface of
the water. What fluence rate would be needed to expose the
roots at a dose rate of 10 Gy min–1?

36. A worker inadvertently puts his hand at right angles into a
uniform, parallel beam of 50-MeV protons with a fluence rate
of 4.6 × 1010 protons cm–2 s–1. His hand was momentarily
exposed for an estimated 0.5 s.
(a) Estimate the dose that the worker received to the skin of his

hand.
(b) If the beam covered an area of 2.7 cm2, what was the beam

current?
37. (a) With C expressed in Ci and E in MeV, show that Eq. (12.26)

implies that Ẋ = 6CE R h–1 at 1 ft, approximately.
(b) For the specific gamma-ray constant, show that

1 R cm2 mCi–1 h–1 = 0.1 R m2 Ci–1 h–1.
38. When 38S decays, a single 1.88-MeV gamma photon is emitted

in 95% of the transformations. Estimate the exposure rate at a
distance of 3 m from a point source of 38S having an activity of
2.7 × 1012 Bq.

39. What is the exposure rate at a distance of 1 ft from a 20-mCi,
unshielded point source of 60Co?

40. What is the activity of an unshielded point source of 60Co if the
exposure rate at 20 m is 6 R min–1?

41. A worker accidently strayed into a room in which a small, bare
vial containing 23 Ci of 131I was being used to expose a sample.
He remained in the room approximately 10 min, standing at a
lab bench 5 m away from the source. Estimate the dose that the
worker received.

42. A point source consists of a mixture of 4.2 Ci of 42K and 1.8 Ci
of 24Na. Estimate the exposure rate at a distance of 40 cm.
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43. A parallel beam of monoenergetic photons emerged from a
source when the shielding was removed for a short time. The
photon energy hν and the total fluence ϕ of photons are known.
(a) Write a formula from which one can calculate the absorbed

dose in air in rad from hν, expressed in MeV, and ϕ,
expressed in cm–2.

(b) Write a formula for calculating the exposure in R.
44. The thermal-neutron capture cross section for the 14N(n,p)14C

reaction is 1.70 barns. Calculate
(a) the Q value for the reaction
(b) the resulting dose in soft tissue per unit fluence of thermal

neutrons.
45. A 100-cm3 sample of water is exposed to 1500 thermal

neutrons cm–2 s–1. How many photons are emitted per second
as a result of neutron capture by hydrogen? The cross section
for the 1H(n,γ)2H reaction is 3.3 × 10–25 cm2.

46. A uniform target with a volume of 5 L is exposed to 100
thermal neutrons cm–2 s–1. It contains an unknown number of
hydrogen atoms. While exposed to the thermal neutrons, it
emits 1.11 × 104 photons s–1 as the result of thermal-neutron
capture by hydrogen (cross section = 0.33 barn). No other
radiation is emitted. What is the density of H atoms in the
target? Neglect attenuation of the neutrons and photons as they
penetrate the target.

47. (a) Calculate the average recoil energies of a hydrogen nucleus
and a carbon nucleus elastically scattered by 4-MeV
neutrons.

(b) What can one say about the relative contributions that
these two processes make to absorbed dose and dose
equivalent in soft tissue?

48. Using Table 12.6, plot the percentage of the first-collision tissue
dose that is due to elastic scattering from hydrogen for
neutrons with energies between 0.01 MeV and 14.0 MeV.

49. Calculate the first-collision dose per unit fluence for 14-MeV
neutrons based on their interactions with tissue hydrogen
alone. Compare the result with Table 12.6.

50. From Table 12.6, the total first-collision dose per unit fluence
for 14-MeV neutrons in soft tissue is 6.06 × 10–11 Gy cm2. From
Table 12.5, the average quality factor for 14-MeV neutrons
is 7.5. Use these two values to estimate the constant fluence
rate of 14-MeV neutrons that gives a first-collision dose
equivalent of 1 mSv in 40 h. How do you account for the lower
value, 12 neutrons cm–2 s–1, given in the last column of
Table 12.5?
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51. Calculate the first-collision dose per unit fluence that results
from the scattering of 10-MeV neutrons by the carbon in soft
tissue. Compare your answer with the value given in Table 12.6.

52. In Fig. 12.10, why does the ratio Ep/Eγ decrease with
increasing depth?

53. A uniform, broad beam of 3.7-MeV neutrons is incident on a
55-g sample of water. The fluence rate is 6.2 × 106 cm–2 s–1.
Calculate the rate of energy transfer to the sample by collisions
with hydrogen only. The cross section is 2.0 × 10–24 cm2.

54. A 22-g mouse is irradiated simultaneously by a beam of
thermal neutrons, having a fluence rate of 4.2 × 107 cm–2 s–1,
and a beam of 5-MeV neutrons, having a fluence rate of
9.6 × 106 cm–2 s–1.
(a) Calculate the dose rate to the mouse from the thermal

neutrons.
(b) Calculate the dose rate from the 5-MeV neutrons,

interacting with hydrogen only.
(c) Estimate the total dose rate to the mouse from all

interactions, approximating the cross sections of the heavy
elements by that of carbon (Fig. 9.2).

55. Figure 12.11 shows two examples of a single collision of a
5-MeV neutron (En = 5 MeV) with a proton in a 1-g target. In
both instances the neutron loses 2 MeV (E′

n = 3 MeV) to the

Fig. 12.11 Two examples of the “same” collision of a 5-MeV
neutron with a proton at different locations in a 1-g target.
(Problem 55.)
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proton (E′
p = 2 MeV) and escapes from the target. In Fig.

12.11(a), the recoil proton stops completely in the target. In Fig.
12.11(b), the collision occurs near the back surface and the
proton loses only 1.2 MeV in the target before escaping with an
energy E

′′
p = 0.8 MeV.

(a) What is the average kerma in the target in both instances?
(b) What is the absorbed dose in both cases?

56. What is the tissue kerma rate from the thermal neutrons in
Problem 54?

57. The calculations presented in Section 12.9 for fast neutrons are,
precisely stated, calculations of first-collision kerma, rather than
first-collision dose, as described there. Explain this distinction.
Give an example in which the neutron first-collision tissue
kerma and first-collision tissue dose would be different.

58. Calculate the specific energies for the examples in Fig. 12.11(a)
and (b).

59. Prove Eq. (12.20). (For a sphere, the distribution for isotropic
chord lengths is the same as that for parallel chords,
distributed uniformly in any direction.)

60. By using (a) the Cauchy relation and (b) Eq. (12.20), show that
the mean isotropic-chord length in a sphere of radius R is 4R/3.

61. The sensitive volume of the Hurst proportional counter
(Fig. 12.6) is a right circular cylinder, having equal height and
diameter. Show that the mean isotropic-chord length in this
cylinder is the same as that in a sphere, having the same
diameter as the cylinder.

62. Calculate the lineal energies for the examples in Fig. 12.11(a)
and (b), assuming the targets to be cubes of unit density.

63. In microdosimetry, the average number of energy-deposition
events that occur per unit dose in a specified volume in
irradiated tissue is called the event frequency. If the event
frequency for cell nuclei in an experiment is 0.37 Gy–1, what is
the probability that, for a dose of 0.30 Gy, the number of
energy-loss events in a cell nucleus is (a) 0, (b) 1, (c) 2 or more?

64. Mice are irradiated with 600-keV neutrons in an experiment. It
is hypothesized that the sensitive targets for cancer induction
are the cell nuclei, which are spherical in shape with a diameter
of 5 µm. For analysis, consider only the first-collision dose
from elastic scattering with tissue hydrogen (6.0 × 1022

atoms cm–3; cross section, 5.9 barns).
(a) Show that the average dose delivered per neutron collision

per cm3 is 4.8 × 10–11 Gy.
(b) What fluence of 600-keV neutrons is needed to deliver

0.10 Gy?
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(c) What is the average number of neutron interactions per
cell nucleus when the dose is 0.10 Gy?

(d) What is the probability that a given cell nucleus has exactly
one neutron interaction when the dose is 0.10 Gy?

(e) What is the probability that a nucleus has at least one
interaction at 0.10 Gy?

(f) At what dose is the average number of interactions per cell
nucleus equal to unity?

12.13
Answers

1. (a) 1.29 µGy
(b) 3.30 µSv
(c) 0.129 mrad,

0.330 mrem
3. (a) 64.7 mR s–1

(b) 1.67 ×
10–5 C kg–1 s–1

5. 1.34 R s–1

6. (a) 2.29 mR s–1

(b) No change
(c) Yes

9. (a) 7.52 R h–1

(b) 6.80 × 10–11 A
(c) Same as (a)

10. 47.3 mR
12. (a) 87.2 mR

(b) 275 V
16. ∼0.8 cm
17. 0.121 mGy s–1

18. 14.5 mGy
20. (a) 2.11 × 10–7 A

(b) 9.13 mGy s–1

23. 0.20 mGy h–1 (γ)
0.07 mGy h–1 (n)

27. 4.2 MeV
28. 42.1 mGy s–1

30. 49 µGy s–1

32. 8.93 × 105 Bq

33. 4.56 × 104 Gy s–1

35. 5.42 × 108 cm–2 s–1

36. (a) 45.6 Gy; (b) 20 nA
40. 4.3 × 1015 Bq
41. ∼0.30 mGy
42. 27 R h–1

45. 3.31 × 103 s–1

50. 15.3 cm–2 s–1

51. 2.46 × 10–12 Gy cm2

53. 8.43 × 107 MeV s–1

55. (a) 3.20 × 10–10 Gy
in both

(b) 3.20 × 10–10 Gy
in Fig. 12.11(a);
1.92 × 10–10 Gy
in Fig. 12.11(b)

56. 9.23 × 10–6 Gy s–1

58. 3.20 × 10–10 Gy in (a);
1.92 × 10–10 Gy in (b)

63. (a) 0.895
(b) 0.0993
(c) 0.0057

64. (a) 4.80 × 10–11 Gy
(b) 5.89 × 109 cm–2

(c) 0.137
(d) 0.119
(e) 0.128
(f) 0.733 Gy



399

13
Chemical and Biological Effects of Radiation

13.1
Time Frame for Radiation Effects

To be specific, we describe the chemical changes produced by ionizing radiation
in liquid water, which are relevant to understanding biological effects. Mammalian
cells are typically ∼70–85% water, ∼10–20% proteins, ∼10% carbohydrates, and
∼2–3% lipids.

Ionizing radiation produces abundant secondary electrons in matter. As dis-
cussed in Section 5.3, most secondary electrons are produced in water with en-
ergies in the range ∼10–70 eV. The secondaries slow down very quickly (�10–15 s)
to subexcitation energies; that is, energies below the threshold required to produce
electronic transitions (∼7.4 eV for liquid water). Various temporal stages of radia-
tion action can be identified, as we now discuss. The time scale for some important
radiation effects, summarized in Table 13.1, covers over 20 orders of magnitude.

13.2
Physical and Prechemical Chances in Irradiated Water

The initial changes produced by radiation in water are the creation of ionized
and excited molecules, H2O+ and H2O∗, and free, subexcitation electrons. These
species are produced in �10–15 s in local regions of a track. Although an energetic
charged particle may take longer to stop (Sections 5.11 and 6.6), we shall see that
portions of the same track that are separated by more than ∼0.1 µm develop inde-
pendently. Thus we say that the initial physical processes are over in �10–15 s in
local track regions.

The water begins to adjust to the sudden physical appearance of the three species
even before the molecules can more appreciably in their normal thermal agitation.
At room temperature, a water molecule can move an average distance of ∼1–2 Å,
roughly equal to its diameter (2.9 Å), in ∼10–12 s. Thus, 10–12 s after passage of a
charged particle marks the beginning of the ordinary, diffusion-controlled chem-
ical reactions that take place within and around the particle’s path. During this
prechemical stage, from ∼10–15 s to ∼10–12 s, the three initial species produced
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Table 13.1 Time Frame for Effects of Ionizing Radiation

Times Events

Physical stage Formation of H2O+, H2O∗, and subexcitation electrons,
�10–15 s e–, in local track regions (�0.1 µm)

Prechemical stage Three initial species replaced by H3O+, OH, e–
aq, H,

∼10–15 s to ∼10–12 s and H2
Chemical stage The four species H3O+, OH, e–

aq, and H diffuse and
∼10–12 s to ∼10–6 s either react with one another or become widely

separated. Intratrack reactions essentially complete by
∼10–6 s

Biological stages
�10–3 s Radical reactions with biological molecules complete
�1 s Biochemical changes
Minutes Cell division affected
Days Gastrointestinal and central nervous system changes
Weeks Lung fibrosis develops
Years Cataracts and cancer may appear; genetic effects in

offspring

by the radiation induce changes as follows. First, in about 10–14 s, an ionized wa-
ter molecule reacts with a neighboring molecule, forming a hydronium ion and a
hydroxyl radical:

H2O+ + H2O → H3O+ + OH. (13.1)

Second, an excited water molecule gets rid of its energy either by losing an elec-
tron, thus becoming an ion and proceeding according to the reaction (13.1), or by
molecular dissociation:

H2O∗ →
{

H2O+ + e–

H + OH
. (13.2)

The vibrational periods of the water molecule are ∼10–14 s, which is the time that
characterizes the dissociation process. Third, the subexcitation electrons migrate,
losing energy by vibrational and rotational excitation of water molecules, and be-
come thermalized by times ∼10–12 s. Moreover, the thermalized electrons orient
the permanent dipole moments of neighboring water molecules, forming a clus-
ter, called a hydrated electron. We denote the thermalization–hydration process
symbolically by writing

e– → e–
aq, (13.3)

where the subscript aq refers to the fact that the electron is hydrated (aqueous
solution). These changes are summarized for the prechemical stage in Table 13.1.
Of the five species formed, H2 does not react further.
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13.3
Chemical Stage

At ∼10–12 s after passage of a charged particle in water, the four chemically active
species H2O+, OH, e–

aq, and H are located near the positions of the original H2O+,
H2O∗, and e– that triggered their formation. Three of the new reactants, OH, e–

aq,
and H, are free radicals, that is, chemical species with unpaired electrons. The re-
actants begin to migrate randomly about their initial positions in thermal motion.
As their diffusion in the water proceeds, individual pairs can come close enough to
react chemically. The principal reactions that occur in the track of a charged particle
in water during this stage are the following:

OH + OH → H2O2, (13.4)

OH + e–
aq → OH–, (13.5)

OH + H → H2O, (13.6)

H3O+ + e–
aq → H + H2O, (13.7)

e–
aq + e–

aq + 2H2O → H2 + 2OH–, (13.8)

e–
aq + H + H2O → H2 + OH–, (13.9)

H + H → H2. (13.10)

With the exception of (13.7), all of these reactions remove chemically active species,
since none of the products on the right-hand sides except H will consume ad-
ditional reactants. As time passes, the reactions (13.4)–(13.10) proceed until the
remaining reactants diffuse so far away from one another that the probability for
additional reactions is small. This occurs by ∼10–6 s, and the chemical development
of the track in pure water then is essentially over.

The motion of the reactants during this diffusion-controlled chemical stage can
be viewed as a random walk, in which a reactant makes a sequence of small steps
in random directions beginning at its initial position. If the measured diffusion
constant for a species is D, then, on the average, it will move a small distance λ in
a time τ such that

λ2

6τ
= D. (13.11)

Each type of reactive species can be regarded as having a reaction radius R. Two
species that approach each other closer than the sum of the their reactive radii
have a chance to interact according to Eqs. (13.4)–(13.10). Diffusion constants and
reaction radii for the four reactants in irradiated water are shown in Table 13.2.

Example

Estimate how far a hydroxyl radical will diffuse in 10–12 s.
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Table 13.2 Diffusion Constants D and Reaction Radii R for
Reactive Species

Species D (10–5 cm2 s–1) R (Å)

OH 2 2.4
e–

aq 5 2.1
H3O+ 8 0.30
H 8 0.42

Solution

From Eq. (13.11) with τ = 10–12 s and from Table 13.2, we find

λ = (6τD)1/2 = (6 × 10–12 s × 2 × 10–5 cm2 s–1)1/2

= 1.10 × 10–8 cm = 1.10 Å. (13.12)

For comparison, the diameter of the water molecule is 2.9 Å. The answer (13.12)
is compatible with our taking the time ∼10–12 s as marking the beginning of the
chemical stage of charged-particle track development.

13.4
Examples of Calculated Charged-Particle Tracks in Water

Before discussing the biological effects of radiation we present some examples of
detailed calculations of charged-particle tracks in water. The calculations have been
made from the beginning of the physical stage through the end of the chemical
stage.

Monte Carlo computer codes have been developed for calculating the passage of
a charged particle and its secondaries in liquid water. In such computations, an
individual particle is allowed to lose energy and generate secondary electrons on
a statistical basis, as it does in nature. Where available, experimental values of the
energy-loss cross sections are used in the computations. The secondary electrons
are similarly transported and are allowed to produce other secondary electrons un-
til the energies of all secondaries reach subexcitation levels (<7.4 eV). Such calcu-
lations give in complete detail the position and identity of every reactant H2O+,
H2O∗, and subexcitation electron present along the track. These species are al-
lowed to develop according to (13.1), (13.2), and (13.3) to obtain the positions and
identities of every one of the reactive species OH, H3O+, e–

aq, and H at 10–12 s. The
computations then carry out a random-walk simulation of diffusion by letting each
reactant take a small jump in a random direction and then checking all pairs to
see which are closer than the sum of their reaction radii. Those that can react do so
and are removed from further consideration [except when H is produced by (13.7)].
The remainder are jumped again from their new positions and the procedure is re-
peated to develop the track to later times. The data in Table 13.2 and the reaction
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Fig. 13.1 Chemical development of a 4-keV
electron track in liquid water, calculated by
Monte Carlo simulation. Each dot in these
stereo views gives the location of one of the
active radiolytic species, OH, H3O+, e–

aq, or H,
at the times shown. Note structure of track
with spurs, or clusters of species, at early

times. After 10–7 s, remaining species continue
to diffuse further apart, with relatively few
additional chemical reactions. (Courtesy Oak
Ridge National Laboratory, operated by Martin
Marietta Energy Systems, Inc., for the
Department of Energy.)

schemes (13.4)–(13.10) can thus be used to carry out the chemical development of
a track.

Three examples of calculated electron tracks at 10–12 s in liquid water were shown
in Fig. 6.5. The upper left-hand panel in Fig. 13.1 presents a stereoscopic view of
another such track, for a 4-keV electron, starting at the origin in the upward direc-
tion. Each dot represents the location of one of the active radiolytic species, OH,
H3O+, e–

aq, or H, shown in Table 13.2, at 10–12 s. There are 924 species present ini-
tially. The electron stops in the upper region of the panel, where its higher linear
energy transfer (LET) is evidenced by the increased density of dots. The occurrence
of species in clusters, or spurs, along the electron’s path is seen. As discussed in
Section 6.7, this important phenomenon for the subsequent chemical action of ion-
izing radiation is a result of the particular shape and universality of the energy-loss
spectrum for charged particles (Fig. 5.3). The passage of time and the chemical
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reactions within the track are simulated by the procedures described in the last
paragraph. The track is shown at three later stages in Fig. 13.1. At 10–7 s, the num-
ber of reactive species has decreased to 403, and the original structure of the track
itself has largely disappeared. Relatively few subsequent reactions take place as the
remaining species diffuse ever more widely apart.

A 1-µm segment of the track of a 2-MeV proton, traveling from left to right
in liquid water, is shown in Fig. 13.2, calculated to 2.8 × 10–7 s. In contrast to
the 4-keV electron in the last figure, the proton track is virtually straight and its
high LET leads to a dense formation of reactants along its path. The relative re-
duction in the number of reactants and the disappearance of the details of the
original track structure by 2.8 × 10–7 s are, however, comparable. This similarity
is due to the fact that intratrack chemical reactions occur only on a local scale of
a few hundred angstroms or less, as can be inferred from Figs. 13.1 and 13.2.
Separate track segments of this size develop independently of other parts of the
track.

These descriptions are borne out by closer examination of the tracks. The mid-
dle one-third of the proton track at 10–11 s in Fig. 13.2 is reproduced on a blown-up
scale in the upper line of Fig. 13.3. The second line in this figure shows this seg-
ment at 2.8 × 10–9 s, as it develops independently of the rest of the track. On an
even more expanded scale, the third and fourth lines in Fig. 13.3 show the last
third of the track segment from the top line of the figure at 10–11 s and 2.8 × 10–9 s.
The scale 0.01 µm = 100 Å indicates that most of the chemical development of
charged-particle tracks takes place within local regions of a few hundred angstroms
or less.

Figure 7.1 showed four examples of 0.7-µm segments of the tracks of protons
and alpha particles, having the same velocities, at 10–11 s. Fast heavy ions of the
same velocity have almost the same energy-loss spectrum. Because it has two units
of charge, the linear rate of energy loss (stopping power) for an alpha particle is
four times that of a proton at the same speed (cf. Section 5.6). Thus the LET of the
alpha particles is about four times that of the protons at each energy.

13.5
Chemical Yields in Water

When performing such calculations for a track, the numbers of various chemical
species present (e.g., OH, e–

aq, H2O2, etc.) can be tabulated as functions of time.
These chemical yields are conveniently expressed in terms of G values—that is,
the number of a given species produced per 100 eV of energy loss by the original
charged particle and its secondaries, on the average, when it stops in the water.
Calculated chemical yields can be compared with experimental measurements. To
obtain adequate statistics, computations are repeated for a number of different,
independent tracks and the average G values are compiled. As seen from reactions
(13.4)–(13.10), G values for the reactant species decrease with time. For example,
hydroxyl radicals and hydrated electrons are continually used up, while G values for
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Fig. 13.2 Development of a 1-µm segment of the track of a
2-MeV proton, traveling from left to right, in liquid water.
(Courtesy Oak Ridge National Laboratory, operated by Martin
Marietta Energy Systems, Inc., for the Department of Energy.)
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Fig. 13.3 Magnified view of the middle
one-third of the track segment from Fig. 13.2 at
10–11 s and at 2.8 × 10–9 s is shown in the
upper two lines. The two lower lines show the
right-hand third of this segment at these times
under still greater magnification. The figures
illustrate how most of the chemical

development of charged-particle tracks in pure
water takes place in local regions of a few
hundred angstroms or less in a track.
(Courtesy Oak Ridge National Laboratory,
operated by Martin Marietta Energy Systems,
Inc., for the Department of Energy.)
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Table 13.3 G Values (Number per 100 eV) for Various Species in
Water at 0.28 µs for Electrons at Several Energies

Electron Energy (eV)

Species 100 200 500 750 1000 5000 10,000 20,000

OH 1.17 0.72 0.46 0.39 0.39 0.74 1.05 1.10
H3O+ 4.97 5.01 4.88 4.97 4.86 5.03 5.19 5.13
e–

aq 1.87 1.44 0.82 0.71 0.62 0.89 1.18 1.13
H 2.52 2.12 1.96 1.91 1.96 1.93 1.90 1.99
H2 0.74 0.86 0.99 0.95 0.93 0.84 0.81 0.80
H2O2 1.84 2.04 2.04 2.00 1.97 1.86 1.81 1.80
Fe3+ 17.9 15.5 12.7 12.3 12.6 12.9 13.9 14.1

the other species, such as H2O2 and H2, increase with time. As mentioned earlier,
by about 10–6 s the reactive species remaining in a track have moved so far apart
that additional reactions are unlikely. As functions of time, therefore, the G values
change little after 10–6 s.

Calculated yields for the principal species produced by electrons of various ini-
tial energies are given in Table 13.3. The G values are determined by averaging the
product yields over the entire tracks of a number of electrons at each energy. [The
last line, for Fe3+, applies to the Fricke dosimeter (Section 10.6). The measured
G value for the Fricke dosimeter for tritium beta rays (average energy 5.6 keV),
is 12.9.] The table indicates how subsequent changes induced by radiation can be
partially understood on the basis of track structure—an important objective in ra-
diation chemistry and radiation biology. One sees that the G values for the four
reactive species (the first four lines) are smallest for electrons in the energy range
750–1000 eV. In other words, the intratrack chemical reactions go most nearly to
completion for electrons at these initial energies. At lower energies, the number of
initial reactants at 10–12 s is smaller and diffusion is more favorable compared with
reaction. At higher energies, the LET is less and the reactants at 10–12 s are more
spread out than at 750–1000 eV, and thus have a smaller probability of subsequently
reacting.

Similar calculations have been carried out for the track segments of protons and
alpha particles. The results are shown in Table 13.4. As in Fig. 7.1, pairs of ions
have the same speed, and so the alpha particles have four times the LET of the
protons in each case. Several findings can be pointed out. First, for either type of
particle, the LET is smaller at the higher energies and hence the initial density of
reactants at 10–12 s is smaller. Therefore, the efficiency of the chemical development
of the track should get progressively smaller at the higher energies. This decreased
efficiency is reflected in the increasing G values for the reactant species in the first
four lines (more are left at 10–7 s) and in the decreasing G values for the reaction
products in the fifth and sixth lines (fewer are produced). Second, at a given velocity,
the reaction efficiency is considerably greater in the track of an alpha particle than
in the track of a proton. Third, comparison of Tables 13.3 and 13.4 shows some
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Table 13.4 G Values (Number per 100 eV) for Various Species at
10–7 s for Protons of Several Energies and for Alpha Particles of
the Same Velocities

Protons (MeV) Alpha Particles (MeV)Species
Type 1 2 5 10 4 8 20 40

OH 1.05 1.44 2.00 2.49 0.35 0.66 1.15 1.54
H3O+ 3.53 3.70 3.90 4.11 3.29 3.41 3.55 3.70
e–

aq 0.19 0.40 0.83 1.19 0.02 0.08 0.25 0.46
H 1.37 1.53 1.66 1.81 0.79 1.03 1.33 1.57
H2 1.22 1.13 1.02 0.93 1.41 1.32 1.19 1.10
H2O2 1.48 1.37 1.27 1.18 1.64 1.54 1.41 1.33
Fe3+ 8.69 9.97 12.01 13.86 6.07 7.06 8.72 10.31

overlap and some differences in yields between electron tracks and heavy-ion track
segments. At the highest LET, the reaction efficiency in the heavy-ion track is much
greater than that for electrons of any energy.

Electrons, protons, and alpha particles all produce the same species in local track
regions at 10–15 s: H2O+, H2O∗, and subexcitation electrons. The chemical differ-
ences that result at later times are presumably due to the different spatial patterns
of initial energy deposition that the particles have.

13.6
Biological Effects

It is generally assumed that biological effects on the cell result from both direct
and indirect action of radiation. Direct effects are produced by the initial action of
the radiation itself and indirect effects are caused by the later chemical action of
free radicals and other radiation products. An example of a direct effect is a strand
break in DNA caused by an ionization in the molecule itself. An example of an
indirect effect is a strand break that results when an OH radical attacks a DNA
sugar at a later time (between ∼10–12 s and ∼10–9 s). The difference between direct
and indirect effects is illustrated by Fig. 13.4. The dots in the helical configuration
schematically represent the location of sugars and bases on a straight segment of
DNA 200 Å in length in water. The cluster of dots mostly to the right of the helix
gives the positions of the reactants at 10–11 s and the subsequent times shown after
passage of a 5-keV electron along a line perpendicular to the page 50 Å from the
center of the axis of the helix.

In addition to any transitions produced by the initial passage of the electron or
one of its secondaries (direct effects), the reactants produced in the water can attack
the helix at later times (indirect effects). In these computations, the electron was
made to travel in a straight line. Also, unreacted radicals were assigned a fixed
probability per unit time of simply disappearing, in order to simulate scavenging
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Fig. 13.4 Direct and indirect action of
radiation. Double-helical array of dots
represents positions of bases and sugars on a
200-Å straight segment of double-stranded
DNA. The other dots show the positions of
reactants formed in neighboring water from
10–11 s to 3 × 10–8 s after passage of a 5-keV
electron perpendicular to the page in a straight
line 50 Å from the center of the helix. In
addition to any direct action (i.e., quantum

transitions) produced in the DNA by passage
of the electron, indirect action also occurs later
when the reactants diffuse to the DNA and
react with it. Reactants can also disappear by
scavenging in this example, crudely simulating
a cellular environment. See text. (Courtesy
H. A. Wright and R. N. Hamm, Oak Ridge
National Laboratory, operated by Martin
Marietta Energy Systems, Inc., for the
Department of Energy.)

in a cellular environment. Thus, reactants disappear at a much faster rate here than
in the previous examples for pure water.

Depending on the dose, kind of radiation, and observed endpoint, the biologi-
cal effects of radiation can differ widely. Some occur relatively rapidly while others
may take years to become evident. Table 13.1 includes a summary of the time scale
for some important biological effects caused by ionizing radiation. Probably by
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about 10–3 s, radicals produced by a charged-particle track in a biological system
have all reacted. Some biochemical processes are altered almost immediately, in
less than about 1 s. Cell division can be affected in a matter of minutes. In higher
organisms, the time at which cellular killing becomes expressed as a clinical syn-
drome is related to the rate of cell renewal. Following a large, acute, whole-body
dose of radiation, hematopoietic death of an individual might occur in about a
month. A higher dose could result in earlier death (1 to 2 wk) from damage to the
gastrointestinal tract. At still higher doses, in the range of 100 Gy, damage to mem-
branes and to blood vessels in the brain leads to the cerebrovascular syndrome and
death within a day or two. Other kinds of damage, such as lung fibrosis, for ex-
ample, may take several months to develop. Cataracts and cancer occur years after
exposure to radiation. Genetic effects, by definition, are first seen in the next or
subsequent generations of an exposed individual.

The biological effects of radiation can be divided into two general categories, sto-
chastic and deterministic, or nonstochastic. As the name implies, stochastic effects
are those that occur in a statistical manner. Cancer is one example. If a large popu-
lation is exposed to a significant amount of a carcinogen, such as radiation, then an
elevated incidence of cancer can be expected. Although we might be able to predict
the magnitude of the increased incidence, we cannot say which particular indi-
viduals in the population will contract the disease and which will not. Also, since
there is a certain natural incidence of cancer without specific exposure to radia-
tion, we will not be completely certain whether a given case was induced or would
have occurred without the exposure. In addition, although the expected incidence
of cancer increases with dose, the severity of the disease in a stricken individual is
not a function of dose. In contrast, deterministic effects are those that show a clear
causal relationship between dose and effect in a given individual. Usually there is a
threshold below which no effect is observed, and the severity increases with dose.
Skin reddening is an example of a deterministic effect of radiation.

Stochastic effects of radiation have been demonstrated in man and in other or-
ganisms only at relatively high doses, where the observed incidence of an effect is
not likely due to a statistical fluctuation in the normal level of occurrence. At low
doses, one cannot say with certainty what the risk is to an individual. As a practi-
cal hypothesis, one usually assumes that any amount of radiation, no matter how
small, entails some risk. However, there is no agreement among experts on just
how risk varies as a function of dose at low doses. We shall return to this subject in
Section 13.13 in discussing dose–response relationships.

We outline next some of the principal sources of data on the effects of radia-
tion on humans and then describe the effects themselves. This collective body of
information, which we only briefly survey here, represents the underlying scien-
tific basis for the radiation-protection standards, criteria, and limits that have been
developed. Additional information can be obtained from the references listed in
Section 13.15. Virtually all aspects of standards setting are under continuing evalu-
ation and review.
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13.7
Sources of Human Data

A considerable body of data exists on radiation effects on man. Risks for certain
deleterious effects are reasonably well established at high doses, well above rec-
ommended limits. Without attempting to be complete, we mention some of the
important sources of data on humans to indicate their scope and the kinds of ef-
fects encountered. For many years (into the 1950s), the genetic effects of radiation
were considered to pose the greatest danger for human populations exposed to low
levels of radiation. Today, the major concern is cancer.

The Life Span Study

The most important source of information on the effects of ionizing radiation
on humans is the continuing Life Span Study of long-term health effects in the
atomic-bomb survivors at Hiroshima and Nagasaki. The work is conducted by the
joint Japanese/United-States Radiation Effects Research Foundation1) (RERF). Its
objectives include the assessment and characterization of differences in life span
and causes of death among the atomic-bomb survivors compared with unexposed
persons. Incidence and mortality data are obtained from vital-statistics surveys,
death certificates, and other sources. The original sample for the study consisted
of about 120,000 persons from among approximately 280,000 identified at the time
of the 1950 census as having been exposed to the weapons. Included were a core
group of survivors exposed within 2 km of ground zero, other survivors exposed
out to distances where little radiation was received, and non-exposed individuals.
The sample was eventually constructed by sub-sampling to include all members of
the core group and equal-sized samples from the other two, matched by age and
sex. Various special cohorts have been formed to study particular questions.

A major task was undertaken to assign doses retrospectively to organs of each
individual survivor. Doses were based on analysis of what was known about the
weapons’ output and the location and shielding of the individual. A number of
measurements were conducted at the Nevada Test Site and elsewhere in support of
this work. By 1965, a tentative dosimetry system, T65D, was in place for estimating
individual doses. This system was substantially updated by the 1986 revision, DS86.
The basic quantities determined included the gamma and neutron contributions to
the free-in-air kerma and the shielded kerma as functions of the ground distance
from the detonations. Doses to different tissues and organs were estimated for
individual survivors.

Certain discrepancies persisted between some DS86 predictions when compared
with important markers. For example, differences were found between calculated
neutron activation products and the activity measured in materials actually ex-
posed at different distances to the bomb radiation. (Activation products include

1 Formally called the Atomic Bomb Casualty
Commission.
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152Eu and 154Eu in rock and concrete, 60Co in steel and granite, 36Cl in granite and
concrete, 63Ni in steel, and others). A number of improvements were made in all
aspects of the DS86 radiation computations for Hiroshima and Nagasaki. Calcu-
lations with newer cross-section values were made of the bomb-released radiation
and its air-over-land transport. The greatly advanced capabilities of computers per-
mitted three-dimensional calculations of the detonations and radiation transport.
Shielding by terrain and large buildings was upgraded. Differences between pre-
dicted and measured activations were resolved under the new dosimetry system,
as were other issues. The estimated yield of the Hiroshima weapon (uranium) was
revised from 15 to 16 kilotons (TNT), and the epicenter was relocated 20 m higher
than before and 15 m to the west. The 21-kiloton yield of the Nagasaki weapon
(plutonium) was confirmed with detonation close to its previously assigned site.
The new RERF dosimetry system, DS02, has effectively resolved all discrepancies
that existed with DS86. Results are now within expected uncertainties for this kind
of work. Analysis indicates that the major contribution to the error in doses deter-
mined for an individual are the uncertainty in his or her position and orientation
at the time of the explosion and the attenuation by surrounding structures. The
development of the DS02 system represents a major contribution to the Life Span
Study.

Statistically significant excess cancer deaths of the following types have appeared
among the atomic-bomb survivors: leukemia; all cancers except leukemia; and can-
cers of the stomach, colon, lung, female breast, esophagus, ovary, bladder; and
multiple myeloma. Mortality data on solid cancer and leukemia were analyzed
by using both DS86 and DS02 dose estimates. The new dosimetry system led to
only slight revisions in the effects of risk-modifying factors, such as sex, age at
exposure, and time since exposure. The risk per unit dose for solid cancers was
decreased by about 10%. Leukemia was the first cancer to be linked to radiation
exposure among the Japanese survivors. It also has the highest relative risk. The
following findings have appeared in some of the approximately 3,000 survivors ex-
posed in utero: reduction in IQ with increasing dose, higher incidence of mental
retardation among the highly exposed, and some impairment in rate of growth and
development.

Statistically significant radiation-related mortality is also seen for non-neoplastic
diseases, such as those associated with the heart, respiratory, digestive, and
hematopoietic systems. The effects of both cancer and non-cancer mortality are
reflected in a general life shortening. The median loss of life in one cohort with
estimated doses in the range 0.005 Gy to 1.0 Gy was about 2 months. With doses
of 1 Gy or more, the median was about 2.6 years.

Careful searches have been made for genetic effects in the exposed population.
Demonstration of such effects is made difficult by the background of naturally oc-
curring spontaneous mutations. Chromosome abnormalities, blood proteins, and
other factors have been studied in children born to one or both exposed parents. No
significant differences are found in still births, birth weight, sex ratio, infant mor-
tality, or major congenital abnormalities. The Japanese studies indicate, “. . . that
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at low doses the genetic risks are small compared to the baseline risks of genetic
diseases.”2)

With its enormous scope and scientific value, the studies of the Japanese atomic-
bomb survivors have certain drawbacks. The numbers of persons in the lower dose
ranges are not sufficiently large to provide direct evidence for radiation effects in
man below about 0.2 Gy. The findings nevertheless furnish important estimates of
upper limits for the risks for certain effects. In the context of radiation-protection
limits, the Japanese exposures were acute and provide no information on how re-
sponses might differ for protracted exposures over long times at low dose rates.
The exposed populations are also lacking in healthy males of military age. Addi-
tional confounding factors in the studies include the possible effects of blast and
thermal injuries and poor nutrition and medical care following the attacks on the
two cities. In addition, a number of the survivors are still alive, these persons being,
of course, the youngest at the time of the exposure. Lifetime risk estimates based
on the Japanese data thus still reflect projections of what will happen in this group.

Figure 13.5 presents an example of risk estimation for bomb survivors from the
Life Span Study. The excess risk (relative to that at zero dose) for solid cancer is
shown as a function of dose. These particular data are averaged over sex and stan-
dardized to represent survivors exposed at age 30 who have attained age 60. The
doses are grouped into ten intervals and plotted as points at the interval midpoints.
The error bars through the points approximate 95% confidence intervals. Two fitted
curves are shown as alternative mathematical representations of the risk-vs.-dose
relationship. The inset shows, for comparison, a linear-quadratic fit for leukemia,
which shows greater curvature than solid cancer.

For the purpose of establishing radiation-protection criteria for workers and the
public, assessments of risk at low doses and dose rates are of primary concern.
Experimentally, it is found that a given large dose of radiation, delivered acutely,
is generally more damaging biologically than the same dose delivered over an ex-
tended period of time (cf., e.g., Fig. 13.17). In the Life Span Study, therefore, the
application of dose and dose-rate effectiveness factors (DDREFs) are suggested in order
to reduce risks as numerically found in the bomb survivors to values deemed more
appropriate for exposure at low doses and dose rates. DDREFs for adjusting linear
risk estimates are judged to be in the range 1.1 to 2.3, with a median of 1.5 often
being applied.

For a comprehensive review and assessment of health risks from exposure to
low levels of ionizing radiation, the reader is referred to the 2006 BEIR VII Phase
2 Report (see references in Section 13.15). Virtually all sources of information on
human exposures are addressed.

Medical Radiation

Studies have been made of populations exposed to therapeutic and diagnostic ra-
diation. While often lacking the sample size and quality of dosimetry that char-

2 BEIR VII Report, p. 118 (see references,
Sect. 13.15).
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Fig. 13.5 Example from Life Span Study.
Excess relative risks of solid cancer for
Japanese atomic-bomb survivors exposed at
age 30 who attained age 60. Inset shows the fit
of a linear-quadratic model for leukemia, to
illustrate the greater degree of curvature

observed for that cancer. See text. [Reprinted
with permission from Health Risks from
Exposure to Low Levels of Ionizing Radiation:
BEIR VII Phase 2, © (2006) by the National
Academy of Sciences, courtesy of the National
Academies Press, Washington, DC.]

acterize the Life Span Study, such investigations can provide some insight into
issues outside the scope of the Japanese data—for example, protracted exposures.
The following three examples illustrate some findings from medical exposures of
humans.

First, X rays were used in the 1930s and 1940s to shrink enlarged thymus glands
in children. Treatments could deliver a substantial incidental dose to a child’s thy-
roid, one of the most sensitive tissues for cancer induction by radiation. An ab-
normally large number of benign and malignant thyroid tumors developed later in
life among individuals that underwent this procedure as children for treating the
thymus.

Second, it was also common in the 1940s and 1950s to use X rays to treat ring-
worm of the scalp (tinea capitis) in children. A dose of several Gy was adminis-
tered to the scalp to cause (temporary) epilation, so that the hair follicles could
be more effectively treated with medicines. This procedure also resulted in a sub-
stantial thyroid dose. Following the establishment of the State of Israel, ringworm
of the scalp reached epidemic proportions among immigrants coming there from
North Africa. Israeli physicians treated over 10,000 immigrating children, who later
showed about a sixfold increase in the incidence of malignant thyroid tumors, com-
pared with unirradiated controls. A survey of 2215 patients similarly treated in New
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York yielded excess numbers of thyroid adenomas, leukemia, and brain cancer, but
no excess thyroid cancer.

A third example of information obtained on radiation effects from medical expo-
sures is derived from the study of some 14,000 patients treated during the 1930s
and early 1940s in Great Britain for ankylosing spondylitis. Large doses of X rays
were given to the spine to relieve pain caused by this disease. Retrospective exam-
ination of patients’ records revealed a small, but statistically significant, increase
in leukemia as the cause of death. Doses to the active bone marrow and organs in
the treatment field were of the order of several Gy. In addition to uncertainties in
the dosimetry, the study lacks a satisfactory cohort of controls—patients having the
same disease and receiving similar treatment, but without X-ray therapy.

Radium-Dial Painters

Radioluminescent paints, made by combining radium with fluorescent materials,
were popular in the 1920s. They were used in the production of watch and clock di-
als, gun sights, and other applications. The industry was widespread. A hundred or
more firms purchased the paint, which was applied, almost exclusively by women,
to the dials with small brushes. One company reported turning out about 4,300 di-
als each day. Figure 13.6 shows a typical dial-painting studio of the time in Illinois.
Each painter had her materials on the desk top in front of her, and the finished
dials can be seen placed to the right of where she sat.

Fig. 13.6 A studio with radium dial painters, cir. 1920s. The
proximity of the painted dials at the workers’ sides and the
supply of radium paint on their desks added an external
gamma dose to the internal dose from the ingested radium.
[From R. E. Rowland, Radium in Humans, a Review of U.S.
Studies, Report ANL/ER-3, Argonne National Laboratory,
Argonne, IL (1994).]
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By the 1920s it was apparent that radiation-related diseases and fatalities were oc-
curring in the industry. The common practice of tipping brushes with the tongue
was causing the ingestion of radium, a bone-seeking element, by hundreds of work-
ers. An extensive registry of individual dial painters was subsequently compiled,
with information on exposure history. More than 1,000 individuals had their ra-
dium body content measured. Bone samples were taken after death and analyzed.
An occupational guide of 0.1 µg for the maximum permissible amount of 226Ra in
the body was later established, based on the findings of the worker studies. It was
estimated that this level corresponds to an average dose rate of 0.6 mGy wk–1 and a
dose equivalent rate of perhaps between ∼1 and ∼6 mSv wk–1. We shall return to
this baseline level in the next chapter on radiation-protection limits.

Uranium Miners

The experience with uranium miners provides another important body of informa-
tion on radiation effects in human beings. The data are particularly pertinent to
the ubiquitous exposure of persons to the naturally occurring daughters of radon.
Dating back to the Middle Ages, it was recognized that miners in some parts of
Czechoslovakia and southern Germany had abnormally large numbers of lung dis-
orders, referred to as mountain sickness (Bergkrankheit). Well into the twentieth
century, miners were exposed to high concentrations of dusts, containing ores of
arsenic, uranium, and other metals. The incidence of lung cancer was elevated—in
some locations, 50% of the miners died of this disease. Recognition of the role of
radon and its daughters was slow in coming. It has been generally accepted as the
principal causative agent for lung cancer among uranium miners for only about
the last 60 years.

In 1999 the National Research Council published its comprehensive BEIR VI
Report, Health Effects of Exposure to Radon, updating the 1988 BEIR IV Report
on radon and alpha emitters (see references in Section 13. 15). The records of
thousands of uranium miners have been examined and analyzed by many inves-
tigators in terms of lung-cancer incidence among workers exposed at various lev-
els throughout the world. Supplemented with extensive laboratory work, models
have been developed to compute doses to lung tissues per working level month
(WLM, Section 4.6) of exposure to radon daughters. Depending on the particu-
lar assumptions made and the lung tissue in question, values are in the range
0.2 to 3.0 mGy (WLM)–1.3) A cohort of eleven studies involved 60,606 relatively
highly exposed miners worldwide. The mean exposure was 164.4 WLM and the
mean duration, 5.7 y. There were 2,674 lung-cancer deaths among the exposed in-
dividuals. The data were compared with other cohorts, having successively smaller
mean exposures, more applicable to estimating risks at low doses and dose rates.
Exposures in the epidemiologic studies of miners are about an order of magni-

3 BEIR VI Report, p. 202.
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Table 13.5 Estimated Number of Lung-cancer Deaths in 1995 in
the U.S. Attributable to Indoor Residential Radon∗

Number of Deaths Attributable to Indoor Rn

Population Lung-cancer Deaths Model 1 Model 2

Total Persons 157,400 21,800 15,400
Ever Smokers 146,400 18,900 13,300
Never Smokers 11,000 2,900 2,100

Male 95,400 12,500 8,800
Ever Smokers 90,600 11,300 7,900
Never Smokers 4,800 1,200 900

Female 62,000 9,300 6,600
Ever Smokers 55,800 7,600 5,400
Never Smokers 6,200 1,700 1,200

∗ From the BEIR VI Report.

tude higher than average indoor radon-daughter exposures, although there is some
overlap.

In addition to the disparity in dose levels, other factors complicate the application
of the uranium-miner experience to an assessment of lung-cancer risk from radon
at the relatively low levels in the general population. There are differences between
inhaled particle sizes, equilibrium factors, and unattached fractions. There are dif-
ferences between the breathing rates and physiological characteristics of the male
miners and members of all ages and the two sexes in the public. Cigarette smoking
is the greatest cause of lung cancer in the world, and most uranium miners were
smokers. Synergistic effects occur with the two carcinogens, radon daughters and
cigarette smoke.

For estimation of the risk to the general public due to radon, BEIR VI focused on
that fraction of the total lung-cancer burden that could presumably be prevented if
all radon population exposures were reduced to the background levels of ambient
outside air. Compared with outdoors, indoor levels can be considerably higher. Ta-
ble 13.5 shows an analysis of lung-cancer deaths in the United States for the year
1995, based on data in the BEIR VI Report. The total number of 157,400 deaths,
given in the second column, is divided between persons who ever smoked and
those who never smoked. A further subdivision is made for males and females.
Most of the cases occurred in smokers. Under assumptions used in two preferred
risk models, which deal differently with the influence of cigarette smoking, the
number of deaths attributable to indoor residential radon daughters was estimated.
Model 1 projected 21,800 and Model 2, 15,400 deaths due to residential radon ex-
posures. Thus, the estimates of the two models in Table 13.5 imply that about 1 in
7, or 1 in 10, of all lung-cancer deaths in the U.S. are due indoor residential radon.
The BEIR Committee suggested that the number could range from 3,000 to 30,000.
As a public-health problem, this assessment clearly identifies indoor radon as the
second leading cause of lung cancer after cigarette smoking.
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Accidents

Accidents provide yet another source of information on radiation effects on man,
particularly acute effects at high doses. Several fatal accidents have happened
with critical assemblies. Serious accidents have occurred with particle accelera-
tors. A larger number of accidental or unknowingly high exposures have resulted
from handling radiation devices (X-ray machines and sealed sources) and radioiso-
topes. Other examples can be cited. In March 1954, high-level fallout from the
BRAVO nuclear weapons test reached several Bikini atolls, resulting in substan-
tial doses to some weather-station personnel and Marshallese natives, who were
then evacuated. Thyroid abnormalities, including cancer, developed subsequently.
In addition, a Japanese fishing vessel (The Lucky Dragon) received a large amount
of (visible) fallout. The twenty-three men on board suffered massive skin burns and
other damage, which could have been lessened considerably by simply rinsing the
skin.

On April 26, 2006 the world marked the 20th anniversary of the Chernobyl power-
reactor accident in Ukraine, just south of the border with Belarus. It was the most
severe accident ever in the nuclear industry. Some 50 persons died within days or
weeks, some from the consequences of radiation exposure. (By comparison, the
highest individual dose from the 1979 accident at Three Mile Island in the United
States was less than 1 mSv.4)) Enormous quantities of radioactive material were
spewed into the atmosphere over a period of days, spreading a cloud of radionu-
clides over Europe. The resulting contamination of large areas in Belarus, Ukraine,
and the Russian Federation led to the relocation of several hundred thousand indi-
viduals.

The accident occurred during a low-power test as the result of procedural vio-
lations, failure to understand the reactor’s behavior, and poor communication be-
tween the responsible parties on site. The reactor was being operated with too few
control rods, some safety systems shut off, and the emergency cooling system dis-
abled. Even at low power, excess steam pockets (voids) could form in the light-water
coolant, thus reducing neutron absorption and increasing the power output, result-
ing in more voids (positive void coefficient). Reactor control could be quickly lost,
as apparently happened.

The consequences were devastating. The acute radiation syndrome (Section 13.8)
was confirmed in more than 100 plant employees and first responders, some re-
sulting in death. Severe skin burns from beta radiation occurred. Measurements of
blood 24Na activation indicated that neutrons contributed little to individual doses.
Epidemiologic studies have been carried out and are continuing. There is a registry
of medical and dosimetric information on hundreds of thousands of individuals.
Significant data showing health effects in terms of increased incidence of leukemia
and thyroid cancer are well documented. Elevated incidence of thyroid cancer in

4 NCRP Report No. 93, Ionizing Radiation

Exposure of the Population of the United States,
p. 28, National Council on Radiation

Protection and Measurements, Bethesda, MD
(1987).
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children and adolescents is a major effect from the Chernobyl accident. Figure 13.7
shows an example of findings from one study.

Additional information on what has been learned from radiation accidents can
be found in several of the references listed in Section 13.15 and on the World Wide
Web. Experience with the medical and logistic management of radiation accidents
also has important lessons for dealing with potential terrorist attacks that might
involve radiation.5)

13.8
The Acute Radiation Syndrome

If a person receives a single, large, short-term, whole-body dose of radiation, a
number of vital tissues and organs are damaged simultaneously. Radiosensitive
cells become depleted because their reproduction is impeded. The effects and their
severity will depend on the dose and the particular conditions of the exposure. Also,
specific responses can be expected to differ from person to person. The complex of
clinical symptoms that develop in an individual plus the results of laboratory and
bioassay findings are known, collectively, as the acute radiation syndrome.

The acute radiation syndrome can be characterized by four sequential stages. In
the initial, or prodromal, period, which lasts until about 48 h after the exposure,
an individual is apt to feel tired and nauseous, with loss of appetite (anorexia) and
sweating. The remission of these symptoms marks the beginning of the second,
or latent, stage. This period, from about 48 h to 2 or 3 wk postexposure, is char-
acterized by a general feeling of well being. Then in the third, or manifest illness,
stage, which lasts until 6 or 8 wk postexposure, a number of symptoms develop
within a short time. Damage to the radiosensitive hematologic system will be ev-
ident through hemorrhaging and infection. At high doses, gastrointestinal symp-
toms will occur. Other symptoms include fever, loss of hair (epilation), lethargy,
and disturbances in perception. If the individual survives, then a fourth, or recov-
ery, stage lasts several additional weeks or months.

Depending on the dose received, the acute radiation syndrome can appear in
a mild to very severe form. Table 13.6 summarizes typical expectations for differ-
ent doses of gamma radiation, which, because of its penetrating power, gives an
approximately uniform whole-body dose.

An acute, whole-body, gamma-ray dose of about 4 Gy without treatment would
probably be fatal to about 50% of the persons exposed. This dose is known as the
LD50—that is, the dose that is lethal to 50% of a population. More specifically, it
is also sometimes called the LD50/30, indicating that the fatalities occur within 30
days.

5 See the Proceedings of the 40th Annual
Meeting of the NCRP: Advances in
Consequence Management for Radiological

Terrorism Events, Health Phys. 89, 415–588
(2005).
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Fig. 13.7 Annual number of thyroid cancer
cases among the birth-year cohorts 1968 to
1985 in Ukraine and Belarus. The total number
of observed cases is split into spontaneous
(baseline) and excess cases due to 131I
exposures after the Chernobyl accident. The
baseline number increases with calendar year,
because of aging of the cohort (i.e., the
baseline increases with age) and because of
intensified surveillance of the thyroid in the

aftermath of the accident. After P. Jacob,
T. I. Bogdanova, E. Buglova, M. Chepurniy,
Y. Demidchik, Y. Gavrilin, J. Kenigsberg, J. Kruk,
C. Schotola, S. Shinkarev, M. D. Tronko, and
S. Vavilov, “Thyroid Cancer among Ukranians
and Belarusians who were Children or
Adolescents at the Time of the Chernobyl
Accident,” J. Radiol. Ptcn. 26, 51–67 (2006).
(Courtesy Peter Jacob, GSF National Research
Center, Neuherberg, Germany.)
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Table 13.6 Acute Radiation Syndrome for Gamma Radiation

Dose (Gy) Symptoms Remarks

0–0.25 None No clinically significant effects.
0.25–1 Mostly none. A few persons may Bone marrow damaged; decrease

exhibit mild prodromal in red and white blood-cell
symptoms, such as nausea and counts and platelet count.
anorexia. Lymph nodes and spleen

injured; lymphocyte count
decreases.

1–3 Mild to severe nausea, malaise, Hematologic damage more
anorexia, infection. severe. Recovery probable,

though not assured.
3–6 Severe effects as above, plus Fatalities will occur in the range

hemorrhaging, infection, 3.5 Gy without treatment.
diarrhea, epilation, temporary
sterility.

More than 6 Above symptoms plus Death expected.
impairment of central nervous
system; incapacitation at doses
above ∼10 Gy.

13.9
Delayed Somatic Effects

As indicated in Table 13.1, some biological effects of radiation, administered either
acutely or over an extended period, may take a long time to develop and become
evident. Such changes are called delayed, or late, somatic effects. In contrast to
genetic effects, which are manifested in the offspring of an irradiated parent or
parents, late somatic effects occur in the exposed individual. Documentation of
late somatic effects due to radiation and estimations of their risks, especially at
low doses, are complicated by the fact that the same effects occur spontaneously.
The human data on which we focus in this section are supported and expanded by
extensive animal experiments.

Cancer

The risk of getting cancer from radiation depends on many factors, such as the
dose and how it is administered over time; the site and particular type of cancer;
and a person’s age, sex, and genetic background. Additional factors, such as expo-
sure to other carcinogens and promoters, are also important. Cancer causes almost
20% of all deaths in the United States. The relatively small contribution made by
low levels of radiation to this large total is not statistically evident in epidemio-
logical studies. In addition, radiogenic cancers are not distinguishable from other
cancers. As stated in the BEIR VII Report, “At doses less than 40 times the aver-
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Table 13.7 Lifetime Risk for Incidence and Mortality for All Solid
Cancers and for Leukemia from a Dose of 0.1 Gy to 100,000
Persons in a Population Similar to that of the U.S.∗

All Solid Cancers Leukemia

Male Female Male Female

Excess cases 800 1,300 100 70
Number cases without dose 45,500 36,900 830 590
Excess deaths 410 610 70 50
Number deaths without dose 22,100 17,500 710 530

∗ Adapted from BEIR VII Report (see references, Section 13.15).

age yearly background exposure (100 mSv), statistical limitations make it difficult
to evaluate cancer risk in humans.” Thus, cancer risk at low doses can at present
only be estimated by extrapolation from human data at high doses, where excess
incidence is statistically detectable.

Probably the most reliable risk estimates for cancer due to low-LET radiation are
those for leukemia and for the thyroid and breast. The minimum latent period of
about 2 y for leukemia is shorter than that for solid cancers. Excess incidence of
leukemia peaked in the Japanese survivor population around 10 y post-exposure
and decreased markedly by about 25 y. These observations are consistent with
leukemia experience from other sources, such as patients treated for ankylosing
spondylitis and for carcinoma of the uterine cervix. Solid tumors induced by radia-
tion require considerably longer to develop than leukemia. Radiogenic cancers can
occur at many sites in the body. We mentioned bone cancers in the radium-dial
painters and lung cancers in the uranium miners. The BEIR VII Report provides
extensive, detailed information on a wide variety of radiogenic cancers.

The BEIR VII Committee undertook the task of developing models for estimat-
ing risks between exposure to low doses of low-LET radiation and adverse health
effects. They derived models for both cancer incidence and cancer mortality, allow-
ing for dependence on sex, age at exposure, and time since exposure. Estimates
are presented for all solid cancers, leukemia, and a number of site-specific cancers.
Special assumptions (e.g., a DDREF) were applied when estimates in lifetime risks
for the U.S. population were made from data in the Life Span Study. As an example,
Table 13.7 gives a summary from the BEIR VII Report for lifetime risks for all solid
cancers and for leukemia. The Committee considered a linear-no-threshold model
as the most reasonable for describing solid cancers and a linear-quadratic model
for leukemia (cf., Fig. 13.5). The first line in the table shows the excess number
of cancer cases for males and females that would be expected if a population of
100,000 persons, having an age distribution similar to that of the U.S., were to re-
ceive a dose of 0.1 Gy of low-LET radiation. The number of cases in the absence
of this exposure is shown in the next line. The third and fourth lines display the
corresponding information for cancer deaths.
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Life Shortening

Numerous experiments have been carried out in which animals are given sub-
lethal doses of whole-body radiation at various levels. The animals apparently re-
cover, but are subsequently observed to die sooner than controls. This decreased
life expectancy was originally described as nonspecific radiation life shortening or
as radiation aging. More thorough studies of the effects of low doses of radiation,
particularly with careful autopsy examinations, showed that the life shortening due
to radiation in animal populations can be attributed to an excess of neoplasia rather
than a generally earlier onset of all causes of death. The preponderance of evidence
indicates that radiation life shortening at low doses is highly specific, being primar-
ily the result of an increased incidence of leukemia and cancer.

Some investigations have reported a longer average life expectancy in animals
exposed to low levels of whole-body radiation than in unexposed controls. Such
reports are offered by some as evidence of radiation hormesis—that is, the benefi-
cial effect of small doses of radiation. Radiation hormesis has also been extensively
investigated in plants, insects, algae, and other systems. As with other low-dose
studies of biological effects of radiation, one deals with relatively small effects in a
large statistical background of naturally occurring endpoints. Theoretical grounds
can be offered in support of low-level radiation hormesis—e.g., stimulation of DNA
repair mechanisms that reduce both radiation-induced and spontaneous damage.
Evidence for hormesis has been reviewed by the BEIR VII Committee and other
bodies. (See references in Section 13.15.) The BEIR VII Report summarizes its
judgement in stating, “. . . the assumption that any stimulatory hormetic effects
from low doses of ionizing radiation will have a significant health benefit to hu-
mans that exceeds potential detrimental effects from the radiation exposure is un-
warranted at this time.”

Cataracts

The biological effects discussed thus far in this section are stochastic. In contrast,
a radiogenic cataract is a deterministic effect. There is a practical threshold dose
below which cataracts are not produced; and their severity, when they occur, is re-
lated to the magnitude of the dose and the time over which it is administered.
A cataract is an opacification of the lens of the eye. The threshold for ophthalmo-
logically detectable lens opacification, as observed in patients treated with X rays to
the eye, ranges from about 2 Gy for a single exposure to more than 5 Gy for multi-
ple exposures given over several weeks. This level is also consistent with data from
Hiroshima and Nagasaki. The threshold for neutrons appears to be lower than for
gamma rays. The latent period for radiogenic cataracts is several years, depending
on the dose and its fractionation.

Among the biological effects of radiation, a unique feature of a radiogenic
cataract is that it can usually be distinguished from other cataracts. The site of
the initial detectable opacity on the posterior pole of the lens and its subsequent
developmental stages are specific to many radiation cataracts.
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13.10
Irradiation of Mammalian Embryo and Fetus

Rapidly dividing cells and tissues in which cells are continually being replaced are
among the most radiosensitive: the gonads, gastrointestinal tract, blood-forming
organs, lymphatic system, and skin. The developing embryo and fetus, in partic-
ular, are highly vulnerable to adverse radiogenic effects, which have been docu-
mented in man and in experimental animals.

The principal effects of in-utero irradiation are prenatal death, growth retarda-
tion, and congenital malformations (teratogenesis). The degree of such effects
varies markedly with the stage of development at the time of irradiation. Three
such stages can be identified: (1) preimplantation, the time between fertilization
of the egg and its implantation in the uterine lining; (2) maximum organogenesis,
the time during maximal formation of new organs; and (3) fetal, the final stage,
with growth of preformed organs and minimum organogenesis. In humans, these
periods are approximately, 0 to 9 d, 10 d to 6 wk, and 6 wk to term.

The unborn is considerably more sensitive to being killed when in the preim-
plantation stage than later. However, growth retardation and teratogenesis are not
generally found as a result of exposure during this stage. Presumably, changes be-
fore implantation that predispose the multicellular embryo to such later effects also
induce its death. The unborn is most susceptible to teratogenesis when irradiated
during the stage of maximum organogenesis. Figure 13.8 shows an example of de-
formities in a calf whose mother was given 4 Gy of whole-body gamma radiation
on the 32nd day after its conception. Calves irradiated similarly, but two additional
days after conception, showed little or no damage of this kind. Irradiation during
the fetal, or final, stage also produces the greatest degree of permanent growth
retardation.

Other types of biological damage have been seen in animals irradiated in utero

at high doses. However, many of these effects do not appear to occur to the same
degree in man, with the exception of damage to the central nervous system. The
latter provides, in fact, the most definitive data for an effect of prenatal irradia-
tion in man. The increased prevalence of mental retardation and of microcephaly
(small head size), for example, have been documented among the prenatally ex-
posed Japanese survivors.

As described in the next chapter (Section 14.6), special restrictions are recom-
mended by the ICRP and NCRP for the occupational exposure of women of child-
bearing age and, especially, pregnant women.

13.11
Genetic Effects

Mueller discovered the mutagenic property of ionizing radiation in 1927. Like a
number of chemical substances, radiation can alter the genetic information con-
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Fig. 13.8 Effects of prenatal irradiation (4 Gy,
whole-body gamma, on 32d day of gestation)
on anatomical development of a calf are seen
in severe deformities of the forelimbs at birth:
(1) bony ankylosis of the humero-radial joints
and (2) deformities of the phalanges. In
addition, the posterior surfaces of the limbs

are turned inward. Such effects are dose- and
time-specific. Other fetal calves irradiated two
days later suffered only minor damage to the
phalanges. (Courtesy G. R. Eisele and
W. W. Burr, Jr., Medical and Health Sciences
Division, Oak Ridge Associated Universities,
Oak Ridge, TN.)

tained in a germ cell or zygote (fertilized ovum). Although mutations can be pro-
duced in any cell of the body, only these can transmit the alterations to future
generations. Genetic changes may be inconsequential to an individual of a later
generation or they may pose a serious handicap.

In the adult human male, the development of mature sperm from the sper-
matogonial stem cells takes about 10 weeks. Mature sperm cells are produced con-
tinually, having passed through several distinct stages. The postspermatogonal cells
are relatively resistant to radiation, compared with the stem cells. Thus, an adult
male who receives a moderate dose of radiation will not experience an immediate
decrease in fertility. However, as his mature sperm cells are depleted, a decrease in
fertility, or even sterility, will occur. Depending on the magnitude of the dose and
how it is fractionated in time, sterility can be temporary or permanent in males.
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The 1990 BEIR V Report (see Section 13.15) states than an acute X-ray dose of
0.15 Gy to the human testes interrupts spermatozoa production to the extent that
temporary infertility results. An X-ray dose of 3 to 5 Gy, either acute of fractionated
over several weeks, can cause permanent sterility.

In the adult human female, all germ cells are present as ooctyes soon after birth.
There are no (oogonial) stem cells, and there is no cell division. The BEIR V Report
states than an acute dose of 0.65 to 1.5 Gy to the human ovary impairs fertility
temporarily. Fractionation of the dose to the ovaries over several weeks considerably
increases the tolerance to radiation. The threshold for permanent sterility in the
adult human female for X irradiation of the ovaries is in the range from 2.5 to 6 Gy
for acute exposure and is about 6 Gy for protracted exposure.

Every normal cell in the human has 46 paired chromosomes, half derived from
the father and half from the mother. Each chromosome contains genes that code
for functional characteristics or traits of an individual. The genes, which are seg-
ments of deoxyribonucleic acid (DNA), are ordered in linear fashion along a chro-
mosome. The DNA itself is a macromolecule whose structure is a linear array of
four varieties of bases, hydrogen bonded in pairs into a double-helical structure.
The particular sequence of bases in the DNA encodes the entire genetic informa-
tion for an individual. The human genome contains about 6 × 109 base pairs and
perhaps 50,000 to 100,000 genes.

Mutations occur naturally and spontaneously among living things. Various esti-
mates indicate that no more than about 5% of all natural mutations in man are as-
cribable to background radiation. Radicals produced by metabolism, random ther-
mal agitation, chemicals, and drugs, for example, contribute more.

A useful, quantitative benchmark for characterizoing radiation-induced muta-
tion rates is the doubling dose. It is defined as the amount of radiation that produces
in a generation as many mutations as arise spontaneously. For low-dose-rate, low-
LET radiation, the BEIR V Report estimated the doubling dose for mice to be about
1 Gy for various genetic endpoints. It noted that this level is not inconsistent with
what might be inferred for man from the atomic-bomb survivors. The BEIR VII
Report reviews and discusses doubling-dose estimates, which have been almost
exclusively based on both spontaneous and radiation induced rates in mice. The
Committee concludes that extrapolation of the doubling dose based on mice for
risk estimation in humans should be made with the human spontaneous rate. It
reports a revised estimate of 0.82 ± 0.29 Gy, and suggests retaining the value 1 Gy
for the doubling dose as an average rate for mutations.

Radiation-induced genetic changes can result from gene mutations and from
chromosome alterations. A gene mutation occurs when the DNA is altered, even by
a loss or substitution of a single base. The mutation is called a point mutation when
there is a change at a single gene locus. Radiation can also cause breakage and
other damage to chromosomes. Some mutations involve a deletion of a portion of a
chromosome. Broken chromosomes can rejoin in various ways, introducing errors
into the normal arrangement. Figure 13.9 shows two examples of chromosome
aberrations induced in human lymphocytes by radiation. Chromosome aberrations
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Fig. 13.9 Radiation-induced chromosome aberrations in
human lymphocytes. Left: chromosome-type dicentric (↙) and
accompanying acentric fragment (�). Right: chromosome-type
centric ring (↙). The accompanying acentric fragment is not
included in the metaphase spread. (Courtesy H. E. Luippold
and R. J. Preston, Oak Ridge National Laboratory, operated by
Martin Marietta Energy Systems, Inc., for the Department of
Energy.)

occur in somatic cells. Figure 13.10 illustrates genetic effects of radiation in the
fruit fly.

The most extensive studies of the genetic effects of radiation on mammals have
been carried out with mice by W. L. Russell and L. B. Russell. Using literally mil-
lions of mice, they investigated specific locus mutation rates under a variety of con-
ditions of dose, dose rate, and dose fractionation. When compared with the limited
amount of data available for humans, it appears that the data for genetic effects in
the mouse can be applied to man with some degree of confidence. These data play
an important part in assessing the genetic risk and impact on man associated with
the recommended radiation limits to be discussed in the next chapter. We men-
tioned earlier the doubling dose for mutations in mice, which was established by
the Russells’ work. They also measured substantial dose-rate effects on mutations
in the mouse. Protraction of a given dose over time results in fewer mutations
than when the same dose is given acutely, indicating that repair processes come
into play. Males are much more sensitive than females for the induction of genetic
damage by radiation. The latter show little, if any, increased mutation frequency
at low dose rates, even for total accumulated doses of several Gy. Also, mutagenic
effects are lowered when mating is delayed after irradiation.

Radiation does not induce any kinds of mutations that do not occur naturally.
As with other biological endpoints, genetic effects due to radiation are added to
an existing spontaneous pool, thus obscuring their quantitative assessment. An
additional complication arises, because genetic effects are expressed only in the
immediate or later offspring of the irradiated individuals.
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Fig. 13.10 Top: normal Drosophila male. Bottom: Drosophila
male with four wings resulting from one spontaneous and two
X-ray induced mutations. [Source: E. B. Lewis, California
Institute of Technology. Reprinted with permission from J.
Marx, “Genes that Control Development,” Science 213,
1485–1488 (1981). Copyright 1981 by the American Association
for the Advancement of Science.]
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13.12
Radiation Biology

Radiation biology is rapidly advancing our knowledge about the biological effects
of radiation. It is beyond the scope of this book to attempt any meaningful review
of the varied research being carried out in this exciting field. Studies are directed
at discovering and understanding fundamental mechanisms of molecular and cel-
lular responses to radiation.

The complex types of DNA damage produced by radiation can be broadly classi-
fied as single-strand breaks, double-strand breaks, and base damages. These struc-
tural changes and errors in their repair can lead to gene mutations and chromoso-
mal alterations. A great deal is understood about the molecular details of DNA
damage repair and misrepair and its relation to potential tumor induction and
other adverse health effects. How a cell operates to deter or prevent the transmis-
sion of genetic damage to its progeny is still an unfolding story. Intricate controls
exercised by molecular checkpoint genes at specific stages of the cell reproductive
cycle appear to recognize and react to the management and repair of damaged
DNA.

In order to cause genetic alterations in a cell, it has generally been assumed (or
taken for granted) that the cell nucleus must be traversed by a charged-particle
track. Research has revealed, however, that nearby cells—called bystanders—can
also sustain genetic damage, even though no tracks pass through them and hence
they presumably receive little or no radiation dose. Studies have been conducted at
very low flunece and also with micro-beams directed at individual cells in a target.
Mechanisms responsible for producing bystander effects are under investigation.
Evidence appears to indicate that mutations in bystander cells with some systems
are induced by a different mechanism than those in the directly traversed cells.

Genomic instability, which describes the increased rate of accumulation of new
genetic changes after irradiation, is observed in some of the progeny of both di-
rectly irradiated and bystander cells. The underlying mechanisms for the induc-
tion and persistence of genomic instability, which is particularly relevant to tumor
development, are poorly understood at present.

In some systems, a small dose of radiation (e.g., several mGy) triggers a cellu-
lar response that protects the cells from a large dose of the radiation given sub-
sequently. This phenomenon, which is not universal in all test systems, is called
the adaptive response. The bacterium Escherichia coli, for example, shows a definite
adaptive response to oxidative stress. Exposure to a low dose of radiation induces
cellular transcription reprogramming. A result is the increased expression of enti-
ties that inactivate reactive oxygen species and that repair oxidative DNA damage.
For a finite length of time after the initial small priming dose, the bacterial cells are
more resistant to a large dose of the radiation than they would be otherwise. Hu-
man cells do not show such an adaptive response to oxidative damage. One should
note that adaptive response is not the same as hormesis, which ascribes an overall
benefit from a small dose of radiation dose.
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As more is learned in radiation biology, greater confidence can be placed in the
assessment of risk estimates for exposure of persons to ionizing radiation, partic-
ularly at low doses. Understanding the basic molecular mechanisms of radiation
damage in cells will greatly facilitate the task. We turn next to the subject of dose–
response relationships, which underlie radiation-protection regulations in use to-
day.

13.13
Dose–Response Relationships

Biological effects of radiation can be quantitatively described in terms of dose–
response relationships, that is, the incidence or severity of a given effect, expressed
as a function of dose. These relationships are conveniently represented by plotting
a dose–response curve, such as that shown in Fig. 13.11. The ordinate gives the
observed degree of some biological effect under consideration (e.g., the incidence
of certain cancers in animals per 100,000 population per year) at the dose level
given by the abscissa. The circles show data points with error bars that represent a
specified confidence level (e.g., 90%). At zero dose, one typically has a natural, or
spontaneous, level of incidence, which is known from a large population of unex-
posed individuals. Often the numbers of individuals exposed at higher dose levels
are relatively small, and so the error bars there are large. As a result, although the
trend of increasing incidence with dose may be clearly evident, there is no unique
dose–response curve that describes the data. In the figure, a solid straight line, con-
sistent with the observations, has been drawn at high doses. The line is constructed
in such a way that it intersects the ordinate at the level of natural incidence when
a linear extension (dashed curve A) to zero dose is made. In this case, we say that
a linear dose–response curve, extrapolated down to zero dose, is used to represent
the effect.

Curves with other shapes can usually be drawn through biological dose–effect
data. An example of this kind of response is found for leukemia in the atomic-bomb
survivors, shown by the inset in Fig. 13.5. Also, extrapolations to low doses can be
made in a number of ways. Sometimes there are theoretical reasons for assuming
a particular dose dependence, particularly at low doses. The dashed curve B in
Fig. 13.11 shows a nonlinear dependence. Both curves A and B imply that there
is always some increased incidence of the effect due to radiation, no matter how
small the dose. In contrast, the extrapolation shown by the curve C implies that
there is a threshold of about 0.75 Gy for inducing the effect.

For many endpoints of carcinogenesis, mutagenesis, and other effects, dose–
response functions at low doses and low dose rates can be analyzed in the following
way, contrasting high- and low-LET radiations. With low doses of high-LET radia-
tion, the effect is presumably due to individual charged-particle tracks: their spatial
density is small, and there is a negligible overlap of different tracks. Since the den-
sity of tracks is proportional to the dose, the incidence E(D) (above controls) should
also be proportional to the dose D at low doses. This general behavior of the dose
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Fig. 13.11 Example of a dose–response curve,
showing the incidence of an effect (e.g., certain
cancers per 100,000 population per year) as a
function of dose. Circles show measured
values with associated error bars. Solid line at
high doses is drawn to extrapolate linearly

(dashed curve A) to the level of normal
incidence at zero dose. Dashed curve B shows
a nonlinear extrapolation to zero dose. Dashed
curve C corresponds to having a threshold of
about 0.75 Gy.

response at low doses for high-LET radiation is shown in Fig. 13.12 by the curve H

(which may even begin to decrease in slope at high doses).
For low-LET radiation, dose–response curves in many cases appear to bend up-

ward as the dose increases at low doses and low dose rates, as indicated by the
curve L1 in Fig. 13.12. Such behavior is consistent with a quadratic dependence of
the magnitude E(D) of the effect as a function of the dose D:

E(D) = αD + βD2. (13.13)

Here α and β are constants whose values depend on the biological effect under
study, the type of radiation, the dose rate, and other factors. This mathematical
form of response, which is commonly referred to as “linear-quadratic” (a mis-
nomer), has a theoretical basis in association with a requirement that two inter-
acting lesions are needed to produce the biological damage observed. (It dates back
to the 1930s, when it was employed to describe the dose response for some chromo-
some aberrations, which result from interactions between breaks in two separate
chromatids.) As with high-LET radiation, the effect at very low doses must be due
to individual tracks. As the dose is increased, the chance for two tracks to overlap
soon becomes appreciable at low LET. The response for two-track events should in-
crease as the square of the dose. The initial linear component of the dose–response
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Fig. 13.12 Schematic representation of dose–response function
E(D) at low doses D for high-LET (curve H) and low-LET (curve
L1) radiations. L2 is the extension of the linear beginning of L1.

function for the low-LET radiation is shown by the curve L2 in Fig. 13.12. To deal
with stochastic effects of radiation, the setting of occupational dose limits has been
done in a manner consistent with L2. This linear-nonthreshold (LNT) dose–response
model will be discussed in the next chapter.

Linear-quadratic dose–response relationships are often used to analyze and fit
various biological data. However, interpretations other than one- and two-track
events can be made to explain their shape. It can be argued, for example, that only
single-track damage occurs and that biological repair comes into play, but saturates
at high doses. Such a model predicts an upward bend in the dose–response curve
with increasing dose.

Another important kind of dose–response relationship is illustrated by the sur-
vival of cells exposed to different doses of radiation. The endpoint studied is cell
inactivation, or killing, in the sense of cellular reproductive death, or loss of a cell’s
ability to proliferate indefinitely. Large cell populations can be irradiated and then
diluted and tested for colony formation. Cell survival can be measured over three
and sometimes four orders of magnitude. It provides a clear, quantitative exam-
ple of a cause-and-effect relationship for the biological effects of radiation. We next
consider cell survival and use it as an example for dose–response modeling.

Cell inactivation is conveniently represented by plotting the natural logarithm of
the surviving fraction of irradiated cells as a function of the dose they receive. A lin-
ear semilog survival curve, such as that shown in Fig. 13.13, implies exponential
survival of the form

S

S0
= e–D/D0 . (13.14)

Here S is the number of surviving cells at dose D, S0 is the original number of cells
irradiated, and D0 is the negative reciprocal of the slope of the curve in Fig. 13.13.
Analogous to the reciprocals of λ in Eq. (4.22) and µ in Eq. (8.43), it is called the
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Fig. 13.13 Semilogarithmic plot of surviving fraction S/S0 as a
function of dose D, showing exponential survival characterized
by straight line.

mean lethal dose; D0 is therefore the average dose absorbed by each cell before it
is killed. The surviving fraction when D = D0 is, from Eq. (13.14),

S

S0
= e–1 = 0.37. (13.15)

For this reason, D0 is also called the “D-37” dose.
Exponential behavior can be accounted for by a “single-target,” “single-hit” model

of cell survival. We consider a sample of S0 identical cells and postulate that each
cell has a single target of cross section σ . We postulate further that whenever ra-
diation produces an event, or “hit,” in a cellular target, then that cell is inactivated
and does not survive. The biological target itself and the actual physical event that
is called a hit need not be specified explicitly. On the other hand, one is free to
associate the target and its size with cellular DNA or other components and a hit
with an energy-loss event in the target, such as a neutron collision or traversal by a
charged particle. When the sample of cells is exposed uniformly to radiation with
fluence ϕ, then the total number of hits in cellular targets is ϕS0σ . Dividing by the
number of cells S0 gives the average number of hits per target in the cellular pop-
ulation: k̄ = ϕσ . The distribution of the number of hits per target in the population
is Poisson (Problem 27). The probability of there being exactly k hits in the target
of a given cell is therefore Pk = k̄ke–k/k!. The probability that a given cell survives
the irradiation is given by the probability that its target has no hits: P0 = e–k̄ = e–ϕσ .
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Fig. 13.14 Semilogarithmic plot of multitarget, single-hit survival.

Thus, the single-target, single-hit model predicts exponential cell survival. Since
P0 = S/S0, we can extend Eq. (13.14) by writing

S

S0
= e–D/D0 = e–ϕσ . (13.16)

In terms of the model, the inactivation cross section gives the slope of the survival
curve on the semilog plot in Fig. 13.13.

A model that yields a survival curve with a different shape is multitarget, single-
hit. In this case, n identical targets with cross section σ are ascribed to a cell; and
all targets in a given cell must be hit at least once in order to inactivate it. As before,
we apply Poisson statistics with ϕσ = D/D0 denoting the average number of hits in
a given cell target with fluence ϕ. The probability that a given target in a cell is hit
(one or more times) is equal to one minus the probability that it has not been hit:
1 – e–D/D0 . The probability that all n targets in a cell are hit is (1 – e–D/D0 )n, in which
case the cell is inactivated. The survival probability for the cell is therefore

S

S0
= 1 – (1 – e–D/D0 )n. (13.17)

When n = 1, this equation reduces to the single-target, single-hit result. For n > 1
the survival curve has the shape shown in Fig. 13.14. There is a shoulder that begins
with zero slope at zero dose, reflecting the fact that more than one target must be
hit in a cell to inactivate it. As the dose increases, cells accumulate additional struck
targets; and so the slope steadily increases. At sufficiently high doses, surviving
cells are unlikely to have more than one remaining unhit target. Their response
then takes on the characteristics of single-target, single-hit survival, and additional
dose produces an exponential decrease with slope –1/D0 on the semilog plot. When
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D is large, e–D/D0 is small, and one can use the binomial expansion6) to write, in
place of Eq. (13.17),

S

S0

∼= 1 – (1 – ne–D/D0 ) = ne–D/D0 . (13.18)

The straight line represented by this equation on a semilog plot intercepts the or-
dinate (D = 0) at the value S/S0 = n, which is called the extrapolation number. As
shown in Fig. 13.14, the number of cellular targets n is thus obtained by extrapo-
lating the linear portion of the survival curve back to zero dose.

Many experiments with mammalian cells yield survival curves with shoulders.
However, literal interpretation of such data in terms of the elements of a multi-
target, single-hit model is not necessarily warranted. Cells in a population are not
usually identical. Some might be in different stages of the cell cycle, with differ-
ent sensitivity to radiation. Repair of initial radiation damage can also lead to the
existence of a shoulder on a survival curve.

Still other models of cell survival have been investigated. The multitarget, single-
hit model can be modified by postulating that only any m < n of the cellular targets
need to be hit in order to produce inactivation. Single-target, multihit models have
been proposed, in which more than one hit in a single cellular target is needed for
killing. In addition to these target models, other theories of cell survival are based
on different concepts.

13.14
Factors Affecting Dose Response

Relative Biological Effectiveness

Generally, dose–response curves depend on the type of radiation used and on the
biological endpoint studied. As a rule, radiation of high LET is more effective bio-
logically than radiation of low LET. Different radiations can be contrasted in terms
of their relative biological effectiveness (RBE) compared with X rays. If a dose D

of a given type of radiation produces a specific biological endpoint, then RBE is
defined as the ratio

RBE = Dx

D
, (13.19)

where Dx is the X-ray dose needed under the same conditions to produce the same
endpoint. As an example, irradiation of Tradescantia (spiderwort) produces in sta-
men hairs pink mutant events that can be counted and scored quantitatively. In
experiments with 680-keV neutrons and 250-kVp X rays, it is observed that 0.030
pink events per hair (minus control) are produced by a dose of 16.5 mGy with the

6 For small x, (1 – x)n ∼= 1 – nx.
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neutrons and 270 mGy with the X rays. It follows that the RBE for this specific
effect is 270/16.5 = 16.4.7)

Figure 13.15 shows examples of dose–response curves for irradiation of Sprague-
Dawley rats with X rays and with 430-keV neutrons.8) Groups of rats at age 60 d
were given X-ray doses of 0.28, 0.56, and 0.85 Gy and neutron doses of 0.001, 0.004,
0.016, and 0.064 Gy. The straight lines fit the measured data, indicated by the dots
in the figure. RBE values at two levels of response for each of the four effects are
shown for illustration. One sees that the RBE is different numerically for the four
effects and that it also depends on the level of the effect. Its values span the range
between 13 and 190 and beyond. As found here and in many experiments, RBE
values are largest for small levels of effect. Generally, relative biological effective-
ness is observed to depend on the radiation quality (e.g., the LET), dose rate, and
dose fractionation, as well as the type and magnitude of the biological endpoint
measured. RBE values vary markedly, depending upon these conditions.

The dependence of relative biological effectiveness on radiation quality is often
discussed in terms of the LET of the radiation, or the LET of the secondary charged
particles produced in the case of photons and neutrons. As a general rule, RBE in-
creases with increasing LET, as illustrated in Fig. 13.15, up to a point. Figure 13.16
represents schematically the RBE for cell killing as a function of the LET of charged
particles. Starting at low LET, the efficiency of killing increases with LET, evidently
because of the increasing density of ionizations, excitations, and radicals produced
in critical targets of the cell along the particle tracks. As the LET is increased further,
an optimum range around 100 to 130 keV µm–1 is reached for the most efficient
pattern of energy deposition by a particle for killing a cell. A still further increase in
LET results in the deposition of more energy than needed for killing, and the RBE
decreases. Energy is wasted in this regime of overkill at very high LET.

The most relevant values of RBE for purposes of radiation protection are those
for low doses and low dose rates. For most endpoints, the RBE increases with de-
creasing dose, as seen in Fig. 13.15, and dose rate. In the context of the linear-
quadratic dose–response model illustrated in Fig. 13.12, this increase in the RBE
ratio as defined by Eq. (13.19) is associated almost entirely with the decrease in the
slope of the curve for the low-LET reference radiation. The maximum values of the
RBE determined in this region are denoted by RBEM.9) For a given radiation and
endpoint, RBEM is thus equal to the ratio of the slope of the dose–response curve
H in Fig. 13.12 for the radiation and the slope of L2 from the linear portion of the
low-LET reference radiation (e.g., X rays). We shall return to the subject of RBEM

in the next chapter on exposure limits. Table 13.8 summarizes estimates of RBEM

for fission neutrons relative to X rays.

7 NCRP Report No. 104, p. 27 (see references,
Sect. 13.15).

8 C. J. Shellabarger, D. Chmelevsky, and A. M.
Kellerer, “Induction of Mammary Neoplasms
in the Sprague-Dawley Rat by 430 keV
Neutrons and X Rays,” J. Nat. Cancer Inst. 64,
821 (1980).

9 For stochastic effects. For deterministic
effects, the maximum is denoted by RBEm.
See ICRP Publication 58, RBE for

Deterministic Effects, Pergamon Press,
Elmsford, N.Y. (1990).
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Fig. 13.15 Examples of dose–response curves for irradiation of
Sprague-Dawley rats by X rays and 430-keV neutrons (see text).
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Fig. 13.16 Schematic representation of RBE for cell killing by
charged particles as a function of their LET.

Table 13.8 Estimated RBEM Values for Fission Neutrons and
X Rays

Endpoint Range

Cytogenic studies, human lymphocytes
in culture 34–53

Transformation 3–80
Genetic endpoints in mammalian systems 5–70
Genetic endpoints in plant systems 2–100
Life shortening, mouse 10–46
Tumor induction 16–59

Source: From NCRP Report No. 104 (see references,
Section 13.15).

Dose Rate

The dependence of dose–response relationships on dose rate has been demon-
strated for a large number of biological effects. In Section 13.11 we mentioned
the role of repair mechanisms in reducing the mutation frequency per Gy in mice
when the dose rate is lowered. Another example of dose-rate dependence is shown
in Fig. 13.17. Mice were irradiated with 60Co gamma rays at dose rates ranging
up to several tens of Gy h–1 and the LD50 determined. It was found that LD50 =
8 Gy when the dose rate was several Gy h–1 or more. At lower dose rates the LD50
increased steadily, reaching approximately 16 Gy at a rate of 0.1 Gy h–1. Evidently,
animal cells and tissues can repair enough of the damage caused by radiation at
low dose rates to survive what would be lethal doses if received in a shorter period
of time.
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Fig. 13.17 Dependence of LD50 on dose rate for mice
irradiated with 60Co gamma rays. [Based on J. F. Thomson and
W. W. Tourtellotte, Am. J. Roentg. Rad. Ther. Nucl. Med. 69, 826
(1953).]

Oxygen Enhancement Ratio

Dissolved oxygen in tissue acts as a radio-sensitizing agent. This so-called oxy-
gen effect, which is invariably observed in radiobiology, is illustrated in Fig. 13.18.
The curves show the survival of cells irradiated under identical conditions, except
that one culture contains dissolved O2 (e.g., from the air) and the other is purged
with N2. The effect of oxygen can be expressed quantitatively by means of the oxy-
gen enhancement ratio (OER), defined as the ratio of the dose required under con-
ditions of hypoxia and that under conditions in air to produce the same level of
effect. According to this definition, one would obtain the OER from Fig. 13.18 by
taking the ratio of doses at a given survival level. OER values are typically 2–3 for
X rays, gamma rays, and fast electrons; around 1.7 for fast neutrons; and close to
unity for alpha particles.

The existence of the oxygen effect provides strong evidence of the importance
of indirect action in producing biological lesions (Section 13.6). Dissolved oxygen
is most effective with low- rather than high-LET radiation, because intratrack reac-
tions compete to a lesser extent for the initial reaction product.

Chemical Modifiers

Chemicals which, like oxygen, have a strong affinity for electrons can make cells
more sensitive to radiation. A number of radiosensitizing chemicals and drugs
are known. Some sensitize hypoxic cells, but have little or no effect on normally
aerated cells. Other agents act as radioprotectors, reducing biological effectiveness.
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Fig. 13.18 Cell survival in the presence of dissolved oxygen
(O2) and after purging with nitrogen (N2).

The most notable of these are sulfhydryl compounds (e.g., cysteine and cystamine),
which scavenge free radicals. Still other chemical modifiers have little effect on cell
killing, but substantially enhance some multistep processes, such as oncogenic cell
transformation. For carcinogenesis or transformation, for example, such biological
promoters can dwarf the effects of physical factors, such as LET and dose rate, on
dose–response relationships.

Chemical radiosensitizers for use in radiation therapy are under investigation.
Some have the potential to specifically affect resistant hypoxic cells, which are com-
mon in tumors. Chemical radioprotectors have been developed for potential mili-
tary use in a nuclear war.

Dose Fractionation and Radiotherapy

The goal of treating a malignant tumor with radiation is to destroy it without dam-
aging normal tissues to an intolerable degree. By and large, normal cells and tumor
cells have comparable resistance to killing by radiation. Thus, other factors must
come into play in radiotherapy. It is found empirically that the most advantageous
results are obtained when the radiation is delivered to a patient in fractions, admin-
istered perhaps over a period of weeks, rather than all at once.

To understand how the fractionation of dose affects tumor cells more adversely
than normal ones in a patient, there are basically four factors to consider at the cel-
lular level: repair, repopulation, redistribution, and reoxygenation. Administering a
dose in fractions with adequate time between applications allows the repair of sub-
lethal damage and the repopulation of tissue cells. These processes generally occur
on different time scales and to different degrees in the normal and tumor cells. The
therapeutic protocol considers optimization of normal-tissue sparing to the detri-
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ment of the tumor cells in prescribing the total dose, the number of fractions, the
dose per fraction, and the total treatment time.

Because cells exhibit different degrees of radiosensitivity in different phases of
the cell cycle, an asynchronous cell population will become partially synchronized
by irradiation. The surviving cells will generally be those in the more resistant
phases. As the population continues to grow following exposure, the partially syn-
chronized surviving cells become redistributed over the complete cycle, includ-
ing the more sensitive phases. This process of redistribution, combined with re-
peated irradiation at intervals, tends to result in increased cell killing relative to
that achieved with a single dose.

The oxygen effect is extremely important in radiotherapy. Tumors often have
poorly developed blood vessels, intermittent blood flow, and clonogenic cells with
greatly reduced oxygen tension. They contain regions with viable cells, which are,
however, hypoxic and therefore relatively resistant to radiation (cf., Fig. 13.18). De-
livering radiation to a tumor in fractions allows reoxygenation of some hypoxic
cells to occur between doses. As an added factor, sensitization increases rapidly
with oxygen tension. The result is greater killing of tumor cells than with a com-
parable single dose. The response of the normal, oxygenated cells is unchanged by
this procedure.
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13.16
Problems

1. What initial changes are produced directly by ionizing radiation
in water (at ∼10–15 s)?
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2. What reactive species exist in pure water at times >10–12 s after
irradiation?

3. Do all of the reactive species (Problem 2) interact with one
another?

4. Estimate how far an H3O+ ion will diffuse, on the average, in
water in 5 × 10–12 s.

5. Estimate the average time it takes for an OH radical to diffuse
400 Å in water.

6. If an OH radical in water diffuses an average distance of 3.5 Å
in 10–11 s, what is its diffusion constant?

7. Estimate how close an H3O+ ion and a hydrated electron must
be to interact.

8. How far would a water molecule with thermal energy
(0.025 eV) travel in 10–12 s in a vacuum?

9. If a 20-keV electron stops in water and an average of 352
molecules of H2O2 are produced, what is the G value for H2O2

for electrons of this energy?
10. If the G value for hydrated electrons produced by 20-keV

electrons is 1.13, how many of them are produced, on the
average, when a 20-keV electron stops in water?

11. What is the G value for ionization in a gas if W = 30 eV ip–1

(Section 10.1)?
12. Use Table 13.3 to find the average number of OH radicals

produced by a 500-eV electron in water.
13. For what physical reason is the G value for H2 in Table 13.3

smaller for 20-keV electrons than for 1-keV electrons?
14. Why do the G values for the reactant species H3O+, OH, H,

and e–
aq decrease between 10–12 s and 10–6 s? Are they constant

after 10–6 s? Explain.
15. For 5-keV electrons, the G value for hydrated electrons is 8.4 at

10–12 s and 0.89 at 2.8 × 10–7 s. What fraction of the hydrated
electrons react during this period of time?

16. (a) Why are the yields for the reactive species in Table 13.4 for
protons greater than those for alpha particles of the same
speed?

(b) Why are the relative yields of H2 and H2O2 smaller?
17. A 50-cm3 sample of water is given a dose of 50 mGy from

10-keV electrons. If the yield of H2O2 is G = 1.81 per 100 eV,
how many molecules of H2O2 are produced in the sample?

18. Assume that the annual exposure of a person in the United
States to radon daughters is 0.2 WLM. Use the BEIR-IV
estimated lifetime risk of 350 excess cancer deaths per 106

person WLM to predict the annual number of such deaths in a
population of 250 million people.
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19. Distinguish between the “direct” and “indirect” effects of
radiation. Give a physical example of each.

20. Give examples of two stochastic and two deterministic
biological effects of radiation.

21. What are the major symptoms of the acute radiation syndrome?
22. Given the tenet that the most rapidly dividing cells of the body

are the most radiosensitive, show how it is reflected in the
information given in Table 13.6 for the acute radiation
syndrome.

23. What are the principal late somatic effects of radiation? Are
they stochastic or deterministic?

24. According to the BEIR V Report, an acute, whole-body,
gamma-ray dose of 0.1 Gy to 100,000 persons would be
expected to cause about 800 extra cancer deaths in addition to
the 20,000 expected naturally.
(a) If an “experiment” could be carried out to test this risk

estimate for a dose of 0.1 Gy, would a population of 10,000
individuals be sufficiently large to obtain statistically
significant results?

(b) A population of 100,000?
(c) What kind of statistical distribution describes this problem?

25. Show that D0 in Eq. (13.16) is the mean lethal dose.
26. Survival of a certain cell line exposed to a beam of helium ions

is described by the single-target, single-hit model and
Eq. (13.16). If 25% of the cells survive a fluence of
4.2 × 107 cm–2, what is the single-target area?

27. Justify the use of Poisson statistics in arriving at Eqs. (13.16)
and (13.17).

28. Why do experiments that seek to quantify dose–effect
relationships at low doses require large exposed and control
populations?

29. Cell survival in a certain set of experiments is described by the
function S/S0 = e–3.1D, where D is the dose in Gy.
(a) What is the mean lethal dose?
(b) What is the LD50?
(c) What is the difference between LD50 and mean lethal dose?

30. If 41 Gy reduces the exponential survival of cells to a level of
1%, what is the mean lethal dose?

31. For multitarget, single-hit survival with D0 = 7.5 Gy and an
extrapolation number n = 4, what fraction of cells survive a
dose of 10 Gy?

32. Repeat Problem 31 for D0 = 7.5 Gy and n = 3.
33. Repeat Problem 31 for D0 = 5.0 Gy and n = 4.
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34. What interrelationships do the extrapolation number, the
magnitude of D0, and the size of the shoulder have in a
multitarget, single-hit cell-survival model?

35. Why does survival in a multitarget, single-hit model become
exponential at high doses?

36. (a) Sketch a linear plot of the exponential survival curve from
Fig. 13.13.

(b) Sketch a linear plot for the multitarget, single-hit curve
from Fig. 13.14. What form of curve is it?

37. A multitarget, single-hit survival model requires hitting n

targets in a cell at least once each to cause inactivation. A
single-target, multihit model requires hitting a single target in
a cell n times to produce inactivation. Show that these two
models are inherently different in their response. (For example,
at high dose consider the probability that hitting a target will
contribute to the endpoint.)

38. One can describe the exponential survival fraction, S/S0, by
writing S/S0 = e–pD, where D is the number of “hits” per unit
volume (proportional to dose) and p is a constant, having the
dimensions of volume. Show how p can be interpreted as the
target size (or, more rigorously, as an upper limit to the target
size in a single-hit model).

39. The cell-survival data in Table 13.9 fit a multitarget, single-hit
survival curve. Find the slope at high doses and the
extrapolation number. Write the equation that describes the
data.

40. Cell survival is described in a certain experiment by the
single-target, single-hit response function, S/S0 = e–1.6D, where
D is in Gy. At a dose of 1 Gy, what is the probability of there
being
(a) no hits
(b) exactly two hits in a given target?

Table 13.9 Data for Problem 39

Dose (Gy) Surviving Fraction

0.10 0.993
0.25 0.933
0.50 0.729
1.00 0.329
2.00 0.0458
3.00 0.00578
4.00 0.00072
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41. A colony of identical cells (unit density) is irradiated with
neutrons, which deposit an average of 125 keV of energy in a
collision. A single neutron collision in a sensitive volume of a
cell inactivates the cell.
(a) If a dose of 0.50 Gy inactivates 11 % of the cells, what is the

average number of neutron collisions in the sensitive
volume of a cell in the colony?

(b) What is the size of the sensitive volume of a cell in µm3?
(c) What fraction of the cells are expected to be inactivated by a

dose of 2.0 Gy?
42. The survival of a certain cell line when exposed to X rays is

found experimentally to be described by the equation

S

S0
= 1 – (1 – e–0.92D)2,

where D is in Gy. Survival of the same cell line exposed to
neutrons is described by

S

S0
= e–0.92D,

with D in Gy.
(a) What is the RBE for the neutrons (relative to the X rays) for

10% survival of the cells?

Fig. 13.19 Surviving fraction of cells as a function of dose (Problem 44).
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(b) At a higher level of survival (lower dose), is the RBE larger
or smaller?

(c) Give a reason to explain your answer to (b).
43. What factors can modify dose–effect relationships?
44. Figure 13.19 shows the surviving fraction of cells as a function

of dose when exposed to either X rays or carbon ions in an
experiment. From the curves, estimate the RBE of the carbon
ions for 1% survival and for 50% survival. What appears to
happen to the RBE as one goes to lower and lower doses?

45. Explain why radiation is used in cancer therapy, even though it
kills normal cells.

46. Estimate the oxygen enhancement ratio from the cell-survival
curves in Fig. 13.18.

47. Are the curves in Fig. 13.18 more typical of results expected
with high-LET or low-LET radiation? Why?

13.17
Answers

4. 4.9 Å
5. 1.3 × 1–7 s
7. 2.4 Å
8. 5.2 Å

11. 3.3
12. 2.3
15. 0.89
17. 2.83 × 1014

18. 17,500

26. 3.3 µm2

31. 0.706
41. (a) 0.117

(b) 4.68 µm3

(c) 0.373
42. (a) 1.3

(b) Larger
44. 2.7, 5.3
46. 2.0
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14
Radiation-Protection Criteria and Exposure Limits

14.1
Objective of Radiation Protection

Man benefits greatly from the use of X rays, radioisotopes, and fissionable materi-
als in medicine, industry, research, and power generation. However, the realization
of these gains entails the routine exposure of persons to radiation in the procure-
ment and normal use of sources as well as exposures from accidents that might
occur. Since any radiation exposure presumably involves some risk to the individ-
uals involved, the levels of exposures allowed should be worth the result that is
achieved. In principle, therefore, the overall objective of radiation protection is to
balance the risks and benefits from activities that involve radiation. If the standards
are too lax, the risks may be unacceptably large; if the standards are too stringent,
the activities may be prohibitively expensive or impractical, to the overall detriment
to society.

The balancing of risks and benefits in radiation protection cannot be carried out
in an exact manner. The risks from radiation are not precisely known, particularly
at the low levels of allowed exposures, and the benefits are usually not easily mea-
surable and often involve matters that are personal value judgments. Because of
the existence of legal radiation-protection standards, in use everywhere, their ac-
ceptance rests with society as a whole rather than with particular individuals or
groups. Even if the risks from low-level radiation were established quantitatively
on a firm scientific basis, the setting of limits would still represent a social judg-
ment in deciding how great a risk to allow. The setting of highway speed limits is
an example of such a societal decision—one for which extensive quantitative data
are available at the levels of risk actually permitted and accepted.

14.2
Elements of Radiation-Protection Programs

Different uses of ionizing radiation warrant the consideration of different expo-
sure guidelines. Medical X rays, for example, are generally under the control of the
physician, who makes a medical judgment as to their being warranted. Specific
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radiation-protection standards, such as those recommended by the International
Commission on Radiological Protection (ICRP) and the National Council on Ra-
diation Protection and Measurements (NCRP), have been traditionally applied to
the “peaceful uses of atomic energy,” the theory being that these activities justify
the exposure limits being specified. In contrast, different exposure criteria might
be appropriate for military or national-defense purposes or for space exploration,
where the risks involved and the objectives are of an entirely different nature than
those for other uses of radiation.

We shall concentrate principally on the radiation-protection recommendations
of the ICRP and NCRP, which are very similar. The maximum levels of exposure
permitted are deemed acceptable in view of the benefits to mankind, as judged by
various authorities and agencies who, in the end, have the legal responsibility for
radiation safety. Since, in principle, the benefits justify the exposures, the limits ap-
ply to an individual worker or member of the public independently of any medical,
dental, or background radiation exposure he or she might receive.

Different permissible exposure criteria are usually applied to different groups of
persons. Certain levels are permitted for persons who work with radiation. These
guidelines are referred to as “occupational” or “on-site” radiation-protection stan-
dards. Other levels, often one-tenth of the allowable occupational values, apply to
members of the general public. These are referred to as “non-occupational” or “off-
site” guides. Several philosophical distinctions can be drawn in setting occupational
and nonoccupational standards. In routine operations, radiation workers are ex-
posed in ways that they and their employers have some control over. The workers
are also compensated for their jobs and are free to seek other employment. Mem-
bers of the public, in contrast, are exposed involuntarily to the gaseous and liquid
effluents that are permitted to escape from a site where radioactive materials are
handled. In addition, off-site exposures usually involve a larger number of persons
as well as individuals in special categories of concern, such as children and preg-
nant women. (Special provisions are also made for occupational radiation exposure
of women of child-bearing age.)

On a worldwide scale, the potential genetic effects of radiation have been ad-
dressed in setting radiation standards. Exposure of a large fraction of the world’s
population to even a small amount of radiation represents a genetic risk to
mankind that can be passed on indefinitely to succeeding generations. In contrast,
the somatic risks are confined to the persons actually exposed.

An essential facet of the application of maximum permissible exposure levels
to radiation-protection practices is the ALARA (as low as reasonably achievable)
philosophy. The ALARA concept gives primary importance to the principle that
exposures should always be kept as low as practicable. The maximum permissible
levels are not to be considered as “acceptable,” but, instead, they represent the levels
that should not be exceeded.

Another consideration in setting radiation-protection standards is the degree of
control or specificity that the criteria may require. The ICRP and NCRP have gen-
erally made recommendations for the limits for individual workers or members of
other groups in a certain length of time, for example, a year or three months. With-
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out requiring the specific means to achieve this end, the recommendations allow
maximum flexibility in their application. Many federal and international agencies,
however, have very specific regulations that must be met in complying with the
ICRP and NCRP limits.

14.3
The NCRP and ICRP

The National Council on Radiation Protection and Measurements is a nonprofit
corporation chartered by the U.S. Congress in 1964. One of its most important
charges is the dissemination of information and recommendations on radiation
in the public interest. It is also charged with the scientific development, evalu-
ation, and application of basic radiation concepts, measurements, and units. The
NCRP maintains close working relationships with a large number of organizations,
nationally and internationally, that are dedicated to various facets of radiation re-
search, protection, and administration. The Council has approximately 100 mem-
bers, who serve six-year terms. It has a number of scientific committees, repre-
senting virtually all areas of any significance related to radiological protection. The
committees are composed of selected experts, who draft recommendations. All rec-
ommendations are submitted to the full Council for review, comment, and approval
before publication.

The International Commission on Radiological Protection was established in
1928. It has close official relationships with a number of international organiza-
tions that include the International Commission on Radiation Units and Measure-
ments (ICRU), the International Atomic Energy Agency, and the World Health
Organization. The Commission consists of a Chairman and twelve members. It
draws upon a wide spectrum of scientific expertise from outside as well as from
its own committees and task groups. Like the NCRP, the ICRP has no legal au-
thority. Recommendations of the two bodies—one for the United States and the
other internationally—are made to provide guidance for the setting of radiation-
protection criteria, standards, practices, and limits by other (regulatory) agencies.
The NCRP and ICRP maintain a close, but independent, relationship. A number
of scientists are active in both groups. As we shall see, both the NCRP and ICRP
have adopted similar recommendations.

The development and promulgation of recommended radiation-protection cri-
teria is an active and continuing responsibility of both organizations. As more is
learned about radiation in its various aspects and about the ever changing needs
of society, the basic premises of their work remain under constant study and eval-
uation. At the time of this writing, the latest recommendations of the ICRP for
exposure limits are given in its Publication 60, issued in 1991. Those of the NCRP
are contained in its Report No. 116, issued in 1993. These two documents are very
similar, though not identical. Both introduce almost the same revised dosimetric
concepts, which replace a number of those in the dose-equivalent system then in
general use (Section 12.2). Whereas current radiation protection in the U.S. contin-
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ues to be regulated under the dose-equivalent system, the newer ICRP/NCRP dose
quantities are largely employed elsewhere throughout the world today. In practical
terms, both systems work in maintaining exposures not only well below acceptable
limits, but at low levels in keeping with the ALARA principle. We shall describe
both systems in turn (Sections 14.6 and 14.7).

At the time of this writing (2007), the ICRP has before it a major new draft state-
ment, the “2007 ICRP Recommendations.” While the numerical limits in Publi-
cation 60 continue to be indorsed as providing an appropriate level of protection
for normal operations, fundamental changes are proposed in certain concepts and
approaches to radiation protection. The 2007 Recommendations will be considered
in Section 14.8.

14.4
NCRP/ICRP Dosimetric Quantities

Equivalent Dose

The equivalent dose, HT,R, in a tissue or organ T due to radiation R, is defined as
the product of the average absorbed dose, DT,R, in T from R and a dimensionless
radiation weighting factor, wR, for each radiation:

HT,R = wRDT,R. (14.1)

The values of wR specified by the NCRP are shown in Table 14.1. (The values rec-
ommended by the ICRP are the same, except that wR = 5 for protons in the next-
to-last entry.) When the radiation consists of components with different wR, then
the equivalent dose in T is given by summing all contributions:

HT =
∑

R

wRDT,R. (14.2)

With DT,R expressed in Gy (1 Gy = 1 J kg–1), HT,R and HT are in Sv (1 Sv = 1 J kg–1).
The equivalent dose replaces the dose equivalent for a tissue or organ, defined

in Section 12.2. The two are conceptually different. Whereas dose equivalent in an
organ is defined as a point function in terms of the absorbed dose weighted by
a quality factor everywhere, equivalent dose in the organ is given simply by the
average absorbed dose weighted by the factor wR.

For radiation types and energies not included in Table 14.1, the ICRP and NCRP
give a prescription for calculating an approximate value of wR as an average quality
factor, Q. For this purpose, the quality factor Q is defined in terms of the linear
energy transfer L by means of Table 12.2, given earlier in the text. One computes
the dose–average value of Q at a depth of 10 mm in the standard tissue sphere of
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Table 14.1 Radiation Weighting Factors, wR, from NCRP
Report No. 116

Radiation wR

X and γ rays, electrons, positrons, and muons 1
Neutrons, energy <10 keV 5

10 keV to 100 keV 10
>100 keV to 2 MeV 20
>2 MeV to 20 MeV 10
>20 MeV 5

Protons, other than recoil protons and energy

>2 MeV 2
a

Alpha particles, fission fragments, and
nonrelativistic heavy nuclei 20

a ICRP Publication 60 recommends wR = 5.

diameter 30 cm specified by the ICRU.1) Specifically, at the prescribed depth, one
calculates

wR ∼= Q = 1
D

∫ ∞

0
Q(L)D(L) dL, (14.3)

where D(L) dL is the absorbed dose at linear energy transfer (LET) between L and
L + dL.

The radiation weighting factors and the relationship between Q and L are based
on the limiting RBEM (relative biological effectiveness) values, such as those in
Table 13.6, which are included in NCRP Report No. 116 and ICRP Publication 60.

Effective Dose

Since different tissues of the body respond differently to radiation, the probabil-
ity for stochastic effects that result from a given equivalent dose will generally
depend upon the particular tissue or organ irradiated. To take such differences
into account, the ICRP and NCRP have assigned dimensionless tissue weighting
factors wT, shown in Table 14.2, which add to unity when summed over all tis-
sues T. The equivalent dose HT in a given tissue, weighted by wT, gives a quantity
that is intended to correlate with the overall detriment to an individual, indepen-
dently of T. The detriment includes the different mortality and morbidity risks for
cancers, severe genetic effects, and the associated length of life lost. Table 14.2
implies, for example, that an equivalent dose of 1 mSv to the lung entails the
same overall detriment for stochastic effects as an equivalent dose to the thyroid
of (0.12/0.05) × (1 mSv) = 2.4 mSv.

1 See Section 14.9.
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Table 14.2 Tissue Weighting Factors, wT

Tissue or Organ wT

Gonads 0.20
Bone marrow (red) 0.12
Colon 0.12
Lung 0.12
Stomach 0.12
Bladder 0.05
Breast 0.05
Liver 0.05
Esophagus 0.05
Thyroid 0.05
Skin 0.01
Bone surface 0.01
Remainder* 0.05

* Note: The data refer to a reference population of equal
numbers of both sexes and a wide range of ages. In the
definition of effective dose, they apply to workers, to the whole
population, and to either sex. The wT are based on rounded
values of the organ’s contribution to the total detriment.

The risk for all stochastic effects for an irradiated individual is represented by
the effective dose, E, defined as the sum of the weighted equivalent doses over all
tissues:

E =
∑

T

wTHT. (14.4)

Like HT, E is expressed in Sv. The risk for all stochastic effects is dependent only on
the value of the effective dose, whether or not the body is irradiated uniformly. In
the case of uniform, whole-body irradiation, HT is the same throughout the body.
Then, since the tissue weighting factors sum to unity,

E =
∑

T

wTHT = HT

∑
T

wT = HT, (14.5)

the value of the equivalent dose everywhere. The effective dose replaces the earlier
effective dose equivalent. The latter quantity was defined the same way as E in
Eq. (14.4), with HT being the organ or tissue dose equivalent.

It should be understood that the procedures embodied in Eq. (14.4) have been set
up for use in radiological protection. As the note to Table 14.2 specifies, the values
of wT are simplified and rounded for a reference population of equal numbers of
males and females over a wide range of ages. As stated in NCRP Report No. 116
(p. 22), they “should not be used to obtain specific estimates of potential health
effects for a given individual.”
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Committed Equivalent Dose

When a radionuclide is taken into the body, it can become distributed in various
tissues and organs and irradiate them for some time. For the single intake of a
radionuclide at time t0, the committed equivalent dose over a subrequent time τ in
an organ or tissue T is defined as

HT(τ ) =
∫ t0+τ

t0

ḢT dt, (14.6)

where ḢT is the equivalent-dose rate in T at time t. Unless otherwise indicated, an
integration time τ = 50 y after intake is implied for occupational use and 70 y for
members of the public.2)

Committed Effective Dose

By extension, the committed effective dose E(τ ) following the intake of a radionu-
clide is the weighted sum of the committed equivalent doses in the various tis-
sues T:

E(τ ) =
∑

T

wTHT(τ ). (14.7)

As we shall see in more detail in Chapter 16, the effective half-life of a radionuclide
in a tissue is determined by its radiological half-life and its metabolic turnover
rate. For radionuclides with effective half-lives of no more than a few months, the
committed quantities, Eqs. (14.6) and (14.7), are practically realized within one year
after intake. If a radionuclide is retained in the body for a long time, then the
annual equivalent and effective doses it delivers will be considerably less than the
committed quantities.

The committed effective dose replaces the earlier committed effective dose equiv-
alent. The latter is defined like Eq. (14.7), with HT representing the committed dose
equivalent in the organ or tissue T.

Collective Quantities

The quantities just defined relate to the exposure of an individual person. The
ICRP has defined other dosimetric quantities that apply to the exposure of groups
or populations to radiation. The collective equivalent dose and the collective effective

dose are obtained by multiplying the average value of these quantities in a pop-
ulation or group by the number of persons therein. The collective quantities are
then expressed in the unit, “person-sievert,” and can be associated with the total
consequences of a given exposure of the population or group. The Commission ad-

2 According to NCRP Report No. 116. ICRP
Publication 60 (p. 9) specifies an implied

“50 y for adults and from intake to age 70 y
for children.”
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ditionally defines collective dose commitments as the integrals over infinite time
of the average individual ḢT and Ė due to a specified event, either for a critical
population group or for the world population.

Limits on Intake

NCRP Report No. 116 introduces the annual reference level of intake (ARLI). It is
defined (p. 59) as “the activity of a radionuclide that, taken into the body during a
year, would provide a committed effective dose to a person, represented by Refer-
ence Man, equal to 20 mSv. The ARLI is expressed in Becquerels (Bq).” (Reference
Man, the ICRP model for dose calculations from the intake of radionuclides, will
be described in Chapter 16.) As mentioned after Eq. (14.7), a radionuclide will be
retained with an effective half-life in the body that depends on both the radiologi-
cal half-life and the metabolic turnover rate. By definition, the committed effective
dose is delivered over the 50 y following an intake. If the radionuclide has an ef-
fective half-life that is short compared with 1 y, then an intake of 1 ARLI during a
year will result in an effective dose close to 20 mSv during that year. That is, the
effective dose in the year of the intake will be about the same as the committed ef-
fective dose. On the other hand, if the effective half-life is comparable to or longer
than 1 y, then the effective dose during the year of intake will be less than 20 mSv.
For a very long effective half-life, the effective dose each year will be considerably
less than 20 mSv, averaging (20 mSv)/(50 y) = 0.40 mSv y–1. The ARLI is keyed to a
cumulated effective dose of 20 mSv over the next 50 y after an intake. ARLI values
are computed for both inhalation and ingestion of a radionuclide. The NCRP and
ICRP specify that the annual effective dose limit (given below in Table 14.4) applies
to the sum of the effective dose from external radiation and the committed effective
dose from intakes during the year.

Theoretically, continuous intake annually at the level of the ARLI should main-
tain a worker’s exposure within the basic annual and cumulative limits given in
Table 14.4. If several radionuclides are involved or if external radiation is a factor,
then appropriate reductions among the different ARLIs are to be made to assure
compliance with the basic recommendations set forth in the table. The limitation
of annual effective dose through application of the ARLI will also protect individual
tissues against the likelihood of deterministic effects.

The same quantity, also based on a committed effective dose of 20 mSv, is called
the annual limit on intake (ALI) in ICRP Publication 60. Values of the ALI are
given in ICRP Publication 68. Prior to ICRP Publication 60 and NCRP Report No.
116, the term ALI was used by both organizations. However, it was then based
on a 50-mSv committed effective dose equivalent, rather than the 20-mSv com-
mitted effective dose, and other criteria for deterministic effects, as described in
Section 14.7.

The NCRP defines the derived reference air concentration (DRAC) as “that con-
centration of a radionuclide which, if breathed by Reference Man, inspiring 0.02 m3

per min for a working year, would result in an intake of one ARLI.” The working
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year consists of 50 wk of 40 h each, or 2000 h. Thus,

DRAC = ARLI

0.02 m3 min–1 × 60 min h–1 × 2000 h
= ARLI

2400
Bq m–3. (14.8)

The DRAC is introduced to provide a reference level for controlling airborne ra-
dionuclides to the level of the ARLI for inhalation.

Prior to NCRP Report No. 116, the derived air concentration (DAC) was used
by the NCRP and ICRP. It is defined by the same equation, (14.8), as the DRAC,
except that the ARLI is replaced by the ALI.

14.5
Risk Estimates for Radiation Protection

Risk estimates for cancer and genetic effects from radiation have been studied by
a number of organizations, which include the ICRP, NCRP, the Radiation Effects
Research Foundation, the United Nations Scientific Committee on the Effects of
Atomic Radiation (UNSCEAR), the National Radiological Protection Board of the
United Kingdom, and the National Academy of Sciences–National Research Coun-
cil in the United States. Based on these studies, the ICRP in Publication 60 and
the NCRP in Report No. 116 concluded that it is appropriate to use for the nom-
inal lifetime fatal cancer risks for low-dose and low-dose-rate exposure the values
4.0 × 10–2 Sv–1 for an adult worker population and 5.0 × 10–2 Sv–1 for a population
of all ages. The implied unit of the stated risks is “per sievert equivalent dose.”
These numbers reflect risk estimates that are lower by about a factor of 2 com-
pared with data from high doses and high dose rates. That is, a dose and dose-rate
effectiveness factor (DDREF) of about 2 was used.3)

The detriment from radiation exposure must include other deleterious effects in
addition to fatal cancer. The detriments from nonfatal cancers were estimated by
the ICRP and NCRP to be 0.8 × 10–2 Sv–1 for workers and 1.0 × 10–2 Sv–1 for the
whole population. Those for severe genetic effects were, respectively, 0.8×10–2 Sv–1

and 1.3 × 10–2 Sv–1. The total detriments (equivalent fatal cancer risks) were then
5.6 × 10–2 Sv–1 for a working population and 7.3 × 10–2 Sv–1 for a population of
all ages. A summary of these figures is given in Table 14.3. The ICRP and NCRP
referred to these quantities as “probability coefficients,” preferring to employ the
term “risk” for the abstract concept rather than a numerical value of the quantity.

The data embodied in Table 14.3 provided the foundation for the protection lim-
its recommended in ICRP Publication 60 and NCRP Report No. 116. They reflect
cancer incidence, adjusted for lethality, and heritable effects. Subsequent studies by
the ICRP have led to some revision in the totals given in the last line of Table 14.3
to values of 4.9 × 10–2 Sv–1 and 6.5 × 10–2 Sv–1, respectively, for workers and for the
general population, in place of 5.6 × 10–2 Sv–1 and 7.3 × 10–2 Sv–1. The overall es-
timated probability coefficients for workers and for the public are thus about 10%

3 Section 13.7.
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Table 14.3 Probability Coefficients for Stochastic Effects (per Sv effective dose)

Adult Workers Whole Population
Detriment (10–2 Sv–1) (10–2 Sv–1)

Fatal cancer 4.0 5.0
Nonfatal cancer 0.8 1.0
Severe genetic effects 0.8 1.3
Total 5.6 7.3

Source: ICRP Publication 60 and NCRP Report No. 116.

lower than before. According to the latest ICRP pronouncement (Section 14.8),
the Commission continues to endorse the numerical dose limits recommended in
Publication 60 as providing an appropriate level of protection.

14.6
Current Exposure Limits of the NCRP and ICRP

The exposure limits of the NCRP and ICRP embrace the following philosophy, as
stated in NCRP Report No. 116 (p. 9):

The specific objectives of radiation protection are:
(1) to prevent the occurrence of clinically

significant radiation-induced
deterministic effects by adhering to dose
limits that are below the apparent
threshold levels and

(2) to limit the risk of stochastic effects,
cancer and genetic effects, to a reasonable
level in relation to societal needs, values,
benefits gained and economic factors.

The Council goes on to include the principle of ALARA in its philosophy. It states,
further, that for radiation-protection purposes, the risk of stochastic effects is as-
sumed to be proportional to dose without threshold throughout the dose range of
relevance in routine radiation protection.

Occupational Limits

The Council states that the total lifetime detriment incurred each year from radi-
ation by a worker exposed near the limits over his or her lifetime should be no
greater than the annual risk of accidental death in a “safe” industry. The annual
rate of fatal accidents in 1991 varied from about 0.2 × 10–4 to 5 × 10–4, being lowest
for trade, manufacturing, and service industries and highest for mining and agri-
culture. The Council cites the 1980 average annual dose equivalent of 2.1 mSv for
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monitored radiation workers with measurable exposures. Using the total probabil-
ity coefficient for workers in Table 14.3, one finds for the average total detriment
incurred by a worker (2.1 × 10–3 Sv y–1) (5.6 × 10–2 Sv–1) = 1.2 × 10–4 y–1. This level
is in the range of the average annual risk for accidental death for all industries.

The following recommendation is made by the NCRP for lifetime occupational
exposure to radiation:

The Council . . . recommends that the numerical value of the
individual worker’s lifetime effective dose in tens of mSv be
limited to the value of his or her age in years (not including
medical and natural background exposure).

To control the distribution of exposure over a working career,

The Council recommends that the annual occupational
effective dose be limited to 50 mSv (not including medical
and background exposure).

It is stipulated, further, that the annual effective-dose limit is to be applied to the
sum of (1) the relevant effective doses from external radiation in the specified time
period and (2) the committed effective doses from intakes during that period.

Under a worst-case scenario, workers near the end of their careers at age 64
with an accumulated occupational effective dose of 640 mSv would not technically
have exceeded the lifetime limit just stated. Their lifetime total detriment, from
Table 14.3, would be (0.64 Sv) (5.6×10–2 Sv–1) = 3.6×10–2. The worst-case scenario
for their lifetime risk of a fatal accident in 50 y of working in industry is about (50 y)
(5 × 10–4 y–1) = 2.5 × 10–2, comparable with the estimate for radiation.

The ICRP recommends the same occupational annual effective-dose limit of
50 mSv. However, its cumulative limit is different, being simply 100 mSv in any
consecutive 5-y period. Over a 50-y working career, the ICRP lifetime limit would
be 1000 mSv, compared with 700 mSv at age 70 y for the NCRP. The NCRP recom-
mendations allow somewhat greater flexibility, but require maintaining cumulative
lifetime exposure records for an individual. Technically, the ICRP recommenda-
tions require exposure records only over 5-y periods.

For preventing deterministic effects, both the NCRP and ICRP recommend the
following annual occupational equivalent-dose limits:

150 mSv for the crystalline lens of the eye and 500 mSv for
localized areas of the skin, the hands, and feet.

The limits for deterministic effects apply irrespective of whether one or several
areas or tissues are exposed.

As mentioned at the end of Section 13.10, exposure of the embryo-fetus entails
special risks. For occupational exposures,

the NCRP recommends a monthly equivalent dose limit of
0.5 mSv to the embryo-fetus (excluding medical and natural
background radiation) once the pregnancy is known.
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The Council no longer recommends specific controls for occupationally exposed
women not known to be pregnant. However, the NCRP adopts the ICRP recom-
mendation of reducing the limits on intake of radionuclides, once pregnancy is
known. ICRP Publication 60 also recommends an equivalent-dose limit of 2 mSv
to a woman’s abdomen, once a pregnancy is declared.

Nonoccupational Limits

In Section 14.2 we mentioned briefly some of the considerations that apply to es-
tablishing exposure limits to members of the public. Historically, limits for nonoc-
cupational exposures have been one-tenth those for occupational exposures. That
practice continues. The NCRP makes the following recommendations for the ex-
posure of an individual to man-made sources (natural background and medical
exposures are not to be included):

For continuous (or frequent) exposure, it is recommended
that the annual effective dose not exceed 1 mSv . . .

Furthermore, a maximum annual effective dose limit of
5 mSv is recommended to provide for infrequent annual
exposures. . . .

For deterministic effects, the NCRP recommends an annual equivalent dose limit
of 50 mSv for the hands, feet, and skin and 15 mSv for the lens of the eye.

The recommendations in ICRP Publication 60 are somewhat different. An indi-
vidual annual effective dose limit of 1 mSv is also set for nonoccupational expo-
sures. There is a proviso that a higher annual limit may be applied, if the annual
average over 5 y does not exceed 1 mSv.

Negligible Individual Dose

In its 1987 Report No. 91, the NCRP defined a Negligible Individual Risk Level
for radiation as that level below which efforts to reduce exposure to an individual
are not warranted. This concept took cognizance of such factors as the mean and
variance of natural background exposure levels, the natural risk for the same health
effects, risks to which people are accustomed in life, and the perception of risk
levels. Also, the magnitude of the implied dose level and the difficulty of measuring
it were considered.

NCRP Report No. 116 defines a negligible individual dose (NID), without a cor-
responding risk level, as follows:

The Council . . . recommends that an annual effective dose of
0.01 mSv be considered a Negligible Individual Dose (NID)
per source or practice.

ICRP Publication 60 does not make a recommendation on the subject.
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Exposure of Individuals Under 18 Years of Age

Exposure of persons under 18 years of age might be warranted for training or edu-
cational purposes. The NCRP states that exposures then be made only under con-
ditions of “high assurance” that the annual effective dose will be maintained at less
than 1 mSv, the equivalent dose to the lens of the eye at less than 15 mSv, and that
to the hands, feet, and skin to less than 50 mSv (excluding medical and natural
background exposures). Such exposures are considered part of the “infrequent”
nonoccupational limits given earlier in the section for members of the public.

ICRP Publication 60 makes no special recommendations for persons in this cat-
egory.

The principal recommendations from NCRP Report No. 116 and ICRP Publica-
tion 60 are summarized in Table 14.4. The NCRP report gives additional guidance
for situations not discussed here, such as emergency occupational exposures and
remedial action levels for natural radiation sources.

Example

What is the effective dose to a worker who receives uniform, whole-body doses of
8.4 mGy from gamma rays and 1.2 mGy from 80-keV neutrons?

Solution

The effective dose E is computed from its definition, Eq. (14.4). For uniform, whole-
body irradiation, the equivalent dose HT is the same in every tissue and E is numeri-
cally equal to HT [Eq. (14.5)]. The latter is given by Eq. (14.2). The radiation weighting

Table 14.4 Exposure Limits from NCRP Report No. 116 and ICRP Publication 60

NCRP-116 ICRP-60

Occupational Exposure
Effective Dose

Annual 50 mSv 50 mSv
Cumulative 10 mSv × age (y) 100 mSv in 5 y

Equivalent Dose
Annual 150 mSv lens of eye; 150 mSv lens of eye;

500 mSv skin, hands, feet 500 mSv skin, hands, feet

Exposure of Public
Effective Dose

Annual 1 mSv if continuous 1 mSv; higher if needed, provided
5 mSv if infrequent 5-y annual average �1 mSv

Equivalent Dose
Annual 15 mSv lens of eye; 15 mSv lens of eye;

50 mSv skin, hands, feet 50 mSv skin, hands, feet
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factors are given in Table 14.1: wR = 1 for the gamma rays and, in this example,
wR = 10 for the neutrons. Thus, with the doses expressed in mGy, we find that

E = HT = (1 × 8.4 + 10 × 1.2) = 20 mSv. (14.9)

Example

During the year, a worker receives 14 mGy externally from uniform, whole-body
gamma radiation. In addition, he receives estimated 50-y “committed” doses of
8.0 mGy from internally deposited alpha particles in the lung and 180 mGy from
beta particles in the thyroid. (a) What is the effective dose for this worker? (b) How
much additional external, uniform, whole-body gamma dose could he receive during
the year without technically exceeding the NCRP/ICRP annual limit? (c) Instead of
the gamma dose in (b), what additional committed alpha-particle dose to the red bone
marrow would exceed the annual effective-dose limit?

Solution

(a) Using the radiation weighting factors from Table 14.1, we obtain the following
equivalent doses for the individual tissues, with the tissue weighting factors from
Table 14.2 shown on the right:

HLung = 8.0 × 20 = 160 mSv (wT = 0.12) (14.10)

HThyroid = 180 × 1 = 180 mSv (wT = 0.05) (14.11)

HWhole-body = 14 × 1 = 14 mSv (wT = 1.00). (14.12)

The effective dose is, by Eq. (14.4),

E = 160 × 0.12 + 180 × 0.05 + 14 × 1 = 42 mSv. (14.13)

(b) In order not to exceed the annual limit, any additional effective dose must be
limited to 50 – 42 = 8 mSv. Therefore, an additional uniform, whole-body gamma
dose of 8 mGy would bring the worker’s effective dose to the annual limit of 50 mSv.

(c) We need to compute the dose to the red bone marrow that results in an effective
dose of 8 mSv. The weighting factor for this tissue is, from Table 14.2, wT = 0.12.
Therefore, the committed equivalent dose to the red bone marrow is limited to HT =
(8 mSv)/0.12 = 67 mSv. Since the radiation weighting factor for alpha particles is
20 (Table 14.1), the limiting average absorbed dose to the red bone marrow is, by
Eq. (14.1), DRBM,α = 67/20 = 3.4 mGy.

Depending on a one’s exposure history, it is possible for the cumulative limit in
Table 14.4 to be the limiting factor, rather than the annual limit. The NCRP cumula-
tive limit is 10 mSv times the age of a worker in years. The ICRP cumulative limit is
100 mSv in any 5-y period. (See Problem 15.)
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Table 14.5 Exposure limits from NCRP Report No. 91

NCRP-91

Occupational Exposure
Effective Dose Equivalent

Annual 50 mSv
Cumulative 10 mSv × age (y) guidance

Dose Equivalent
Annual 150 mSv lens of eye;

500 mSv all other tissues and organs

14.7
Occupational Limits in the Dose-Equivalent System

ICRP Publication 60 (1991) and NCRP Report No. 116 (1993) appeared at a time
during which an extended and intense review of radiation-protection regulations was
being conducted by federal agencies in the United States. Prior to these two new
publications, radiation-protection practices were generally administered under the
system based on dose equivalent (Section 12.2).

Table 14.5 shows the earlier recommendations for occupational exposures given in
NCRP Report No. 91 (1987), the predecessor of Report No. 116. Compared with Ta-
ble 14.4, the effective dose equivalent in Table 14.5 was superseded in Report No. 116
by the effective dose, E. The respective numerical values for the annual and cumula-
tive limits are the same in both reports. The effective dose equivalent is defined like E

in Eq. (14.4), with HT then representing the dose equivalent instead of the equivalent
dose.4) The restrictions on effective dose and effective dose equivalent are employed
in both systems in order to limit stochastic effects of radiation. The equivalent-dose
limits for individual tissues and organs in Table 14.4 and the corresponding dose-
equivalent limits in Table 14.5 were made in order to prevent deterministic effects
from occurring.

There is a significant difference in the recommendations of Reports No. 91 and
116 for the limitation of annual intakes. Under Report No. 91 (p. 19), “The Annual
Limit on Intake (ALI) is the maximum quantity of a radionuclide that can be taken
into the body based on ICRP Reference Man . . . each year without the committed
effective dose equivalent being in excess of the annual effective dose equivalent limit
. . . or the committed dose equivalent to any tissue being in excess of the nonstochas-
tic [deterministic] limit.” In both systems, the deterministic limits apply whether an
individual tissue or organ is exposed selectively or together with other tissues and
organs. As we saw in Section 14.6, values of the ARLI in Report No. 116 are deter-
mined from an annual 50-y committed effective-dose limit of 20 mSv. The analogous
ALI in Report No. 91 are based on a limit of 50 mSv. As a result of this reduction,
there are only a few radionuclides that could approach lifetime doses of concern for

4 In addition to the conceptual differences
between these two quantities (Section 14.4),

some radiation and tissue weighting factors
were also revised in Report No. 116.
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deterministic effects under NCRP Report No. 116. Specific equivalent-dose limits are
needed only for the lens of the eye, the skin, hands, and feet, as shown in Table 14.4.
(The effective-dose limit protects the skin sufficiently against stochastic effects.)

The newer ICRP/NCRP recommendations were not fully implemented into U.S.
regulations by the federal and state reviews, which were completed in the early 1990s.
For example, the present rules of the Nuclear Regulatory Commission (NRC) and the
Department of Energy (DOE) have continued based on dose equivalent.5) The basic
limits are those shown in Table 14.5, except that there is no lifetime cumulative limit
in the federal rules. Also, the 20-mSv annual committed limit was not adopted fed-
erally, and so the 500 mSv deterministic limit for “all other tissues and organs” in
Table 14.5 is still in effect. Like all parts of the current regulations in the U.S., these
decisions followed extensive studies by various organizations, public comments, and
reviews of past operating experiences. It was judged that additional changes at the
time would result in very little reduction in annual doses, which remain well below
the limits, averaging only a few mSv or less. Application of the ALARA principle,
which was further emphasized in the revised federal regulations, has played an effec-
tive role in keeping occupational exposures low within current ICRP/NCRP recom-
mendations.

Example

In the next-to-last example, a worker received external whole-body doses of 8.4 mGy
from gamma rays and 1.2 mGy from 80-keV neutrons. (a) Calculate his total effective
dose equivalent based on NCRP Report No. 91. The values of the gamma and neutron
quality factors are, respectively, Q = 1 and Q = 13. (b) In addition to these exposures
during a year, how much additional internal beta dose (Q = 1) to the thyroid alone
could be received without technically exceeding the limits in Table 14.5? The thyroid
weighting factor is 0.03.

Solution

(a) The total effective dose equivalent is, in place of the effective dose, Eq. (14.9),

TEDE = 1 × 8.4 + 13 × 1.2 = 24 mSv. (14.14)

(b) The addition of 50 – 24 = 26 mSv would reach the stochastic limit in Table 14.5.
Given the tissue weighting factor, the thyroid dose equivalent for this contribution
would be (26 mSv)/(0.03) = 867 mSv. This amount exceeds the deterministic limit
of 500 mSv in Table 14.5. Since the thyroid already has 24 mSv from the external
radiation in Part (a), an additional dose equivalent of 500 – 24 = 476 mSv from the
beta irradiation would reach the deterministic limit for the organ. In order to comply
with Table 14.5, the maximum additional internal thyroid dose, therefore, could not
exceed 476 mGy. (The TEDE for the year is thereby limited to 24+0.03×476 = 38 mSv
by the deterministic dose limit to the thyroid.)

5 See 10 CFR Part 20 and 10 CFR Part 835
listed in Section 14.11. These laws became
effective, respectively, in 1991 for NRC and
1993 for DOE. At this writing, DOE is
considering adoption of ICRP-60 terminology

for occupational radiation exposures. See, for
example, Federal Register/Vol. 71, No.
154/Thursday, August 10, 2006/Proposed
Rules.
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The last example shows that one must pay attention to both the stochastic and the
deterministic limits in the dose-equivalent system. Neither should be exceeded, and
in specific cases one or the other can be the deciding factor.

14.8
The “2007 ICRP Recommendations”

It was mentioned at the end of Section 14.3 that, at the time of this writing (2007),
the ICRP has under consideration a draft of major revisions to its recommenda-
tions. The draft consolidates developments made in several ICRP publications sub-
sequent to the 1991 Publication 60 and also introduces new conceptual framework
and approaches to radiation protection. In this regard, however, it reaffirms the ap-
propriateness of the numerical limits in Publication 60. As noted in Section 14.5,
the total probability coefficients in Table 14.3 have also been revised to somewhat
lower values than those shown. The draft recommendations have been posted on
the ICRP Web site, where they have received extensive public comment and dis-
cussion. We summarize briefly some of the major new aspects.

Under Publication 60, the system of radiation protection is based on three fac-
tors: the justification of a practice, the optimization of protection (essentially, the ap-
plication of ALARA), and individual dose limits. The proposed system would drop
justification as part of a radiation-protection program. It would apply to practices
already declared as justified by an appropriate authority, such as a government
agency. It would also apply to natural radiation sources that are controllable. Very
low-level sources and natural sources that are not controllable are to be excluded.
Medical exposures are considered in the new recommendations.

The proposed system employs dose constraints, dose limits, and optimization.

There are three numerical dose constraints, shown in Table 14.6, which apply to an
individual person in one of three situations. It is expected that regulatory author-
ities would set limits well below these numerical constraints, which, if exceeded,
would be considered an unacceptable result. In addition to the constraints, contin-
ued use of ICRP Publication 60 limits for normal operations only is proposed. The
last entry in Table 14.6, 0.01 mSv, is the smallest constraint value that should be
used for any situation. It is associated with a trivial risk. It serves as a basis for the
new concept of exclusion levels of activity concentrations (Bq g–1) for designated
radionuclides, below which radiation protection is not needed. The concept of op-
timization is generalized to include a broader range of factors than before, such as
economic and social considerations.

Some new definitions are introduced. For example, to avoid the confusion be-
tween the terms “dose equivalent” and “equivalent dose,” the name “weighted dose”
is proposed for the latter. Changes are also made in numerical values for some
radiation- and tissue-weighting factors. An analytic function is provided for the
neutron weighting factor as a function of energy.

The Commission proposes a framework for the protection of non-human species
and the environment. Nomenclature, data sets, reference dose models for certain
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Table 14.6 Maximum dose constraints recommended for
workers and members of the public from single dominant
sources for all types of exposure situations that can be
controlled

Maximum
constraint (effective
dose, mSv in a year) Situation to which it applies

100 In emergency situations, for workers, other than for saving life or
preventing serious injury or preventing catastrophic circumstances,
and for public evacuation and relocation; and for high levels of con-
trollable existing exposures. There is neither individual nor societal
benefit from levels of individual exposure above this constraint.

20 For situations where there is direct or indirect benefit for exposed in-
dividuals, who receive information and training, and monitoring or
assessment. It applies into occupational exposure, for countermea-
sures such as sheltering, iodine prophylaxis in accidents, and for con-
trollable existing exposures such as radon, and for comforters and
carers to patients undergoing therapy with radionuclides.

1 For situations having societal benefit, but without individual direct
benefit, and there is no information, no training, and no individual
assessment for the exposed individuals in normal situations.

0.01 Minimum value of any constraint.

species, and the interpretation of effects will be developed. There is a need for uni-
fied, international standards for environmental discharges. Criteria for the man-
agement and assessment of environmental impacts of radiation practices will be
developed.

No short summary can do justice to the major undertaking of the 2007 Recom-
mendations. The reader is referred to the ICRP Web site (www.icrp.org).

14.9
ICRU Operational Quantities

In a series of reports,6) the International Commission on Radiation Units and Mea-
surements has addressed the relationship between practical radiation-protection
measurements and assessment of compliance with the limits set forth by the ICRP.
The basic organ and tissue doses specified in the limits are essentially unmea-
surable, but can be estimated from measurements made at appropriate locations
in tissue-equivalent phantoms and from calculations. Accordingly, the ICRU has
introduced several operational quantities for practical measurements under well-

6 See ICRU Report 51 listed in Section 14.11
and earlier reports of the Commission cited
in this reference.
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defined conditions with explicitly stated approximations. The measurements are
intended to give adequate approximations to quantities that can be used for limita-
tion purposes for potentially exposed persons.

The ICRU operational quantities are defined in terms of the older concept of dose
equivalent (Section 12.2) at certain locations in a tissue-equivalent sphere, having
a diameter of 30 cm. The quality factor for calculating dose equivalent is that given
in ICRP Publication 60 (Table 12.2). The ICRU sphere has unit density and a mass
composition of 76.2% oxygen, 11.1% carbon, 10.1% hydrogen, and 2.6% nitrogen.
Two quantities are defined for area monitoring that link an external radiation field
to the effective dose equivalent [see definition following Eq. (14.5)] and the dose
equivalent to the skin and to the lens of the eye. Limits for the latter organs usually
restrict exposures when only weakly penetrating radiation is present. (Radiation
can be characterized as strongly or weakly penetrating on the basis of which dose
equivalent is closer to its limiting value.) A third quantity pertains to individual
monitoring.

An external radiation field is characterized at a given point P by the particle flu-
ence and its directional and energy distributions there. Given the field at P, the
ICRU defines an “expanded” field as the uniform field that has everywhere the
properties of the actual field at P. It further defines the “expanded and aligned”
field like the expanded one, except that the fluence is unidirectional. The two quan-
tities for area monitoring are defined in terms of dose equivalents that would occur
at specific depths in the ICRU sphere if placed in these two fictitious fields:

1. The ambient dose equivalent, H*(d), at a point P in a radiation
field is the dose equivalent that would be produced by the
expanded and aligned field in the ICRU sphere at a depth d on
the radius opposing the direction of that field. For strongly
penetrating radiation, the ICRU recommends a depth
d = 10 mm and, for weakly penetrating radiation, d = 0.07 mm
for the skin and d = 3 mm for the eye. (By convention, the ICRU
specifies the depths d in mm.) Measurement of H*(d) generally
requires that the radiation field be uniform over the dimensions
of the instrument and that the instrument have isotropic
response.

2. The directional dose equivalent, H′(d,�), at P is the dose
equivalent that would be produced by the expanded field at a
depth d on a radius specified by the direction �. The same
recommendations are made for d as with H*(d). Measurement
of H′(d,�) requires that the radiation field be uniform over the
dimensions of the instrument and that the instrument have the
required directional response with respect to �.

The third operational quantity, which does not involve the ICRU
sphere, is defined for individual monitoring:
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3. The personal dose equivalent, Hp(d), is the dose equivalent in
soft tissue at a depth d below a specified point in the body. For
weakly penetrating radiation, depths d = 0.07 mm and d = 3 mm
are recommended for the skin and eye. For strongly penetrating
radiation, d = 10 mm is to be used. The personal dose equivalent
Hp(d) can be measured by a calibrated detector, worn at the
surface of the body and covered with the appropriate thickness
of tissue-equivalent material. The quantities Hp(10) and Hp(0.07)
are, respectively, associated with the regulatory assessments of
the deep and shallow dose equivalents for an individual.

14.10
Probability of Causation

As we have pointed out several times, it is difficult, if not impossible, to attribute a
given malignancy in a person to his or her past radiation history. Diseases induced
by radiation, from either natural or man-made sources, also occur spontaneously.
The concept of probability of causation has been introduced to provide an estimate
of the probability that a given cancer in a specific tissue or organ was caused by
previous exposure to a carcinogen, such as radiation. Although not a part of limits
setting, the concept is closely related to the health effects and risk estimates that
we have been discussing here.

If R denotes the excess relative risk for the cancer that results from a given radi-
ation dose, then the probability of causation P is defined as

P = R

1 + R
. (14.15)

This concept does not take other factors into account, such as uncertainties in dose
and in the models used to determine R.

In the United States, the Congress mandated the use of the probability of cau-
sation to evaluate claims of radiation injury from nuclear weapons testing, fall-
out, and uranium mining. The National Institutes of Health developed tables for
cancers in various organs of persons of both sexes who received various doses at
different ages.7)

In 1992, the National Council on Radiation Protection and Measurements is-
sued a statement on the probability of causation, discussing its usefulness and its
limitations. The statement and comments about it from a statistician and from a
physician are published in Radiation Research.8)

7 Report of the NIH Ad Hoc Working Group to

Develop Radioepidemiology Tables, NIH
Publication No. 85-2748, U.S. Government
Printing Office, Washington, D.C. (1984).

8 Rad. Res. 134, 394-397 (1993).
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14.11
Suggested Reading

The World Wide Web is an invaluable source of information on the subjects of
this chapter. The reader is referred to the entire comprehensive reports published
by the National Council on Radiation Protection and Measurements and the In-
ternational Commission on Radiological Protection. The documents cover a wide
variety of specialized topics dealing with radiation and the practice of radiation
protection from all manner of sources. Other organizations that provide publi-
cations concerned with radiation protection include the following: American Na-
tional Standards Institute (ANSI), Food and Drug Administration (FDA), Inter-
national Atomic Energy Agency (IAEA), International Commission on Radiation
Units and Measurements (ICRU), International Labor Organization (ILO), Na-
tional Academy of Sciences—National Research Council (NAS–NRC), Society of
Nuclear Medicine—Medical Internal Radiation Dose (MIRD) Committee, United
Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR), U.S.
Department of Energy (DOE), U.S. Environmental Protection Agency (EPA), and
the U.S. Nuclear Regulatory Commission (NRC). In the United States, specific legal
radiation-exposure regulations are published in the Federal Register under Title 10,
Part 20 of the Code of Federal Regulations.

Several of the works cited in Section 1.6 describe the history of the principal
organizations and the development of the radiation-protection concepts, practices,
and limits that we have today.

Other Suggested Reading
1 Clark, R. and Valentin, J., “A History

of the International Commission on
Radiological Protection,” Health Phys.

88, 717–732 (2005).
2 Health Physics Society, “Radiation

Risk in Perspective,” Position State-
ment of the Health Physics Society,
McLean, VA (Revision Aug. 2004).

3 ICRP Publication 60, 1990 Recommen-

dations of the International Commission

on Radiological Protection, Annals of
the ICRP, Vol. 21/1–3 (1991).

4 ICRU Report 51, Quantities and Units

in Radiation Protection, International
Commission on Radiation Units and
Measurements, Bethesda, MD (1993).
[Also see earlier ICRU Reports cited
in this reference.]

5 ICRU Report 66, Determination of Op-

erational Dose Equivalent Quantities for

Neutrons, J. ICRU, Vol. 1, No. 3 (2001).
6 Jones, C. G., “A Review of the His-

tory of U.S. Radiation Protection

Regulations, Recommendations, and
Standards,” Health Phys. 88, 697–716
(2005).

7 Leggett, R. W. and Eckerman, K. F.,
Dosimetric Significance of the ICRP’s

Updated Guidance and Models, 1989–

2003, and Implications for U.S. Federal

Guidance, ORNL/TM-2003/207, Oak
Ridge National Laboratory, Oak Ridge,
TN (2003).

8 NCRP, Proceedings 39th Annual
Meeting, April 9–10, 2004. “Radia-
tion Protection at the Beginning of
the 21st Century—A Look Forward,”
Health Phys. 87, 249–318 (2004).

9 NCRP Report No. 91, Recommenda-

tions on Limits for Exposure to Ionizing

Radiation, National Council on Radi-
ation Protection and Measurements,
Bethesda, MD (1987).

10 NCRP Report No. 115, Risk Estimates

for Radiation Protection, National
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Council on Radiation Protection and
Measurements, Bethesda, MD (1993).

11 NCRP Report No. 116, Limitation of

Exposure to Ionizing Radiation, Na-
tional Council on Radiation Protection
and Measurements, Bethesda, MD
(1993).

12 NCRP Report No. 126, Uncertainties

in Fatal Cancer Risk Estimates used in

Radiation Protection, National Council
on Radiation Protection and Measure-
ments, Bethesda, MD (1997).

13 NCRP Report No. 136, Evaluation of

the Linear-Nonthreshold Dose-Response

Model for Ionizing Radiation, National
Council on Radiation Protection and
Measurements, Bethesda, MD (2001).
[“In keeping with previous reviews by
the NCRP. . . , the Council concludes
that there is no conclusive evidence
on which to reject the assumption of
a linear-nonthreshold dose-response
relationship for many of the risks
attributable to low-level ionizing ra-
diation although additional data are
needed. . . .]

14.12
Problems

1. In earlier years, fluoroscopes were available in stores for
inspecting how well shoes fit. What are the benefits and risks
from this use of X rays?

2. Welds in metal structures can be inspected with gamma rays
(e.g., from 137Cs) to detect flaws not visible externally. The
production, transport, and use of such sources entails
exposures of workers and the public to some radiation. Give an
example to show how banning the use of gamma rays for this
purpose could be of greater detriment to society than the
radiation exposures it entails.

3. Discuss risks and benefits associated with the development of
nuclear power. What risk and benefit factors are there, apart
from the potential health effects of radiation?

4. Discuss the risks and benefits associated with having nuclear
submarines.

5. A proposal is made to test a new dental-hygiene procedure for
children that is said to have the potential of greatly reducing
tooth decay. Dental X rays of several thousand children would
have to be made periodically during a 5-y study in order to
perfect and evaluate the procedure. Discuss the rationale on
which a decision could be made either to implement or to
reject the proposal.

6. A gamma source is used for about an hour every day in a
laboratory room. If the source, when not in use, is kept in its
container in the room, the resulting dose equivalent to persons
working there is well within the allowable limit. Alternatively,
the source could be stored in the unoccupied basement, two
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floors below, with virtually no exposure to personnel. How
would the ALARA principle apply in this example?

7. Show that 50 mSv y–1 is equivalent to an average rate of
0.025 mSv h–1 for 40 h wk–1, 50 wk y–1.

8. A worker receives uniform, whole-body doses of 0.30 mGy
from 100-keV neutrons, 0.19 mGy from 1.5-MeV neutrons, and
4.3 mGy from gamma rays. Calculate the effective dose.

9. A worker has received a committed equivalent dose of 106 mSv
to the gonads during a year. What additional, uniform,
whole-body external gamma-ray dose could he or she receive
without technically exceeding the NCRP annual limit on
effective dose?

10. According to NCRP Report No. 116, an equivalent dose of
10 mSv to the lung gives the same effective dose as (choose one
or more):
(a) 10 mSv to the skin
(b) 1.2 mSv to the whole body
(c) 24 mSv to the liver
(d) 10 mSv to the gonads
(e) 5 mSv to the stomach.

11. (a) What equivalent dose to the thyroid represents the same
total detriment to an individual as 5 mSv to the whole
body?

(b) What equivalent dose to the lung represents the same total
detriment as 50 mSv to the thyroid?

12. A radiation worker is 31 years of age. What is his cumulative
effective-dose limit in mSv according to
(a) the NCRP?
(b) the ICRP?

13. A worker receives a lung dose of 6 mGy from alpha radiation
from an internally deposited radionuclide plus a 20-mGy
uniform, whole-body dose from external gamma radiation.
(a) What is the equivalent dose to the lung?
(b) What is the his or her effective dose?

14. A worker has a thyroid dose of 200 mGy from an internally
deposited beta emitter and a lung dose of 8 mGy from an
internal alpha emitter.
(a) What is the effective dose?
(b) What uniform, whole-body dose from thermal neutrons

would result in the same effective dose?
15. In the example at the end of Section 14.6, suppose that the

worker receives these lung, thyroid, and whole-body exposures
while 40 years of age. Furthermore, just as the worker turned
40, his cumulative effective dose was 354 mSv. In order that
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this worker’s exposure not exceed NCRP limits, what are now
the answers to parts (b) and (c) of the example?

16. Calculate the effective dose for an individual who has received
the following exposures:
1 mGy alpha to the lung
2 mGy thermal neutrons, whole body
5 mGy gamma, whole body
200 mGy beta to the thyroid.

17. The annual reference level of intake by inhalation for 32P is
1 × 107 Bq.
(a) What is the committed effective dose per unit activity for

the radionuclide?
(b) If an amount of 32P equal to the ARLI were ingested on

January 15, what would be the effective dose during that
calendar year?

18. What is the value of the DRAC for 32P from the last problem?
19. Ingestion of a certain radionuclide results in a committed

effective dose of 5.2 × 10–5 mSv Bq–1. What is the ARLI?
20. Distinguish between lifetime equivalent dose and committed

equivalent dose.
21. As a result of the single intake of 6.3 × 103 Bq of a radionuclide,

a certain organ of the body will receive a dose during the next
50 y of 0.20 mGy from beta particles and 0.15 mGy from alpha
particles. The organ has a tissue weighting factor of 0.05.
(a) Calculate the committed equivalent dose to the organ.
(b) If this organ is the only tissue irradiated, calculate the

committed effective dose.
(c) What is the ARLI for this route of intake?

22. Critique the probability of causation as a basis for attributing a
given case of malignancy to a prior exposure to radiation.

23. If the excess relative risk for a certain cancer is 0.015 at a time
20 y after receiving a dose of 25 mGy, what is the probability of
causation?

24. The BEIR-V Report estimated that about 800 extra cancer
deaths would be expected as a result of exposing a population
of 100,000 persons (of all ages) to a whole-body gamma dose of
0.1 Gy. About 20,000 deaths by cancer would be expected in the
population in the absence of radiation. How many persons
exposed to 0.1 Gy of gamma radiation would be needed in
order to observe such a level of excess cancers at the 95%
confidence limit?
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14.13
Answers

8. 11 mSv
9. 29 mGy

13. (a) 140 mSv
(b) 34 mSv

14. (a) 29 mSv
(b) 5.8 mGy

15. 4 mGy gamma,
1.7 mGy alpha

17. (a) 2 × 10–6 mSv Bq–1

(b) 20 mSv
21. (a) 3.2 mSv

(b) 0.16 mSv
(c) 8 × 105 Bq

23. 0.0148
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15
External Radiation Protection

We now describe procedures for limiting the dose received from radiation sources
outside the human body. In the next chapter we discuss protection from radionu-
clides that can enter the body.

15.1
Distance, Time, and Shielding

In principle, one’s dose in the vicinity of an external radiation source can be re-
duced by increasing the distance from the source, by minimizing the time of expo-
sure, and by the use of shielding. Distance is often employed simply and effectively.
For example, tongs are used to handle radioactive sources in order to minimize
the dose to the hands as well as the rest of the body. Limiting the duration of an
exposure significantly is not always feasible, because a certain amount of time is
usually required to perform a given task. Sometimes, though, practice runs before-
hand without the source can reduce exposure times when an actual job is carried
out.

While distance and time factors can be employed advantageously in external ra-
diation protection, shielding provides a more reliable way of limiting personnel
exposure by limiting the dose rate. In principle, shielding alone can be used to
reduce dose rates to desired levels. In practice, however, the amount of shielding
employed will depend on a balancing of practical necessities such as cost and the
benefit expected.

In this chapter we describe methods for determining appropriate shielding for
the most common kinds of external radiation: gamma rays, X rays from diagnos-
tic and therapeutic machines, beta rays with accompanying bremsstrahlung, and
neutrons.

Atoms, Radiation, and Radiation Protection. James E. Turner
Copyright © 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-40606-7
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15.2
Gamma-Ray Shielding

In Section 8.7 we discussed attenuation coefficients and described the transmis-
sion of photons through matter under conditions of “good” geometry. The relative
intensity I/I0 of monoenergetic photons transmitted without interaction through a
shield of thickness x is, from Eq. (8.43),

I = I0e–µx, (15.1)

where µ is the linear attenuation coefficient. If the incident beam is broad, as
in Fig. 8.10, then the measured intensity will be greater than that described by
Eq. (15.1) because scattered photons will also be detected. Such conditions usually
apply to the shields required for protection from gamma-ray sources. The increased
transmission of photon intensity over that measured in good geometry can be taken
into account by writing

I = BI0e–µx, (15.2)

where B is called the buildup factor (B ≥ 1). For a given shielding material, thick-
ness, photon energy, and source geometry, B can be obtained from measurements
or calculations.

Figures 15.1–15.5 show exposure buildup factors for five materials for mono-
energetic photons with energies up to 10 MeV from point isotropic sources. The

Fig. 15.1 Exposure buildup factors, B, in lead for point sources
of monoenergetic photons of energies from 0.1 MeV to 10 MeV
as functions of the number of relaxation lengths, µx.
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thickness of a shield for which the photon intensity in a narrow beam is reduced to
1/e of its original value is called the relaxation length. One relaxation length, there-
fore, is equal to 1/µ, the mean free path. The dependence of B in the figures on
shield thickness is expressed by its variation with the number of relaxation lengths,
µx. In addition to isotropic point sources, Fig. 15.6 shows an example of buildup
factors for a broad, parallel beam of monoenergetic photons normally incident on
a uranium slab.

Figures 15.1–15.6 can be used with Eq. (15.2) to calculate the shielding thickness
x necessary to reduce gamma-ray intensity from a value I0 to I. Since the expo-
nential attenuation factor e–µx and the buildup factor B both depend on x, which
is originally unknown, the appropriate thickness for a given problem usually has
to be found by making successive approximations until Eq. (15.2) is satisfied. An
initial (low) estimate of the amount of shielding needed can be obtained by solving
Eq. (15.2) for µx with assumed narrow-beam geometry, that is, with B = 1. One
can then add some additional shielding and see whether the values of B and the
exponential for the new thickness satisfy Eq. (15.2).

Two examples will illustrate gamma-ray shielding calculations.

Example

Calculate the thickness of a lead shield needed to reduce the exposure rate 1 m from a
10-Ci point source of 42K to 2.5 mR h–1. The decay scheme of the β– emitter is shown
in Fig. 15.7. The daughter 42Ca is stable.

Fig. 15.2 Exposure buildup factors, B, in water for point
sources of monoenergetic photons of energies from 0.1 MeV to
10 MeV as functions of the number of relaxation lengths, µx.
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Fig. 15.3 Exposure buildup factors, B, in concrete for point
sources of monoenergetic photons of energies from 0.1 MeV to
10 MeV as functions of the number of relaxation lengths, µx.

Fig. 15.4 Exposure buildup factors, B, in aluminum for point
sources of monoenergetic photons of energies from 0.1 MeV to
10 MeV as functions of the number of relaxation lengths, µx.
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Fig. 15.5 Exposure buildup factors, B, in uranium for point
sources of monoenergetic photons of energies from 0.1 MeV to
10 MeV as functions of the number of relaxation lengths, µx.

Fig. 15.6 Exposure buildup factors, B, in uranium for broad,
parallel beams of monoenergetic photons of energies from
0.5 MeV to 8 MeV as functions of the number of relaxation
lengths, µx.
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Fig. 15.7 Decay scheme of 42K.

Solution

With no shielding, the exposure rate at r = 1 m is given by Eq. (12.27):

Ẋ = 0.5CE = 0.5 × 10 × (0.18 × 1.52) = 1.37 R h–1. (15.3)

We make an initial estimate of the shielding required to reduce this to 2.5 mR h–1

on the basis of narrow-beam geometry. The number of relaxation lengths µx needed
would then satisfy the relation

e–µx = 2.5
1370

= 1.82 × 10–3, (15.4)

or µx = 6.31. The energy of the photons emitted by 42K is 1.52 MeV. We see from
Fig. 15.1 (point source) that for photons of this energy in lead and a thickness of
6.31 relaxation lengths, the value of the buildup factor is about 3. To keep the re-
quired reduction (15.4) the same when the buildup factor is used, the number of
relaxation lengths in the exponential must be increased. The number y of added
relaxation lengths that compensates a buildup factor of 3 is given by e–y = 1/3, or
y = ln 3 = 1.10. Added to the initial value, the estimated shield thickness becomes
6.31 + 1.10 = 7.41 relaxation lengths. Inspection of Fig. 15.1 shows that the buildup
factor has now increased to perhaps 3.5. Thus, a better guess is y = ln 3.5 = 1.25,
with an estimated shield thickness of 6.31 + 1.25 = 7.56, which we round off to 7.6
relaxation lengths. It remains to verify a final solution numerically by trial and error.
For µx = 7.6 in Fig. 15.1, we estimate that B = 3.6. The reduction factor with buildup
included is then

Be–µx = 3.6e–7.6 = 1.8 × 10–3, (15.5)

which agrees with (15.4) within our degree of precision. From Fig. 8.8, we obtain for
the mass attenuation coefficient µ/ρ = 0.051 cm2 g–1. With ρ = 11.4 g cm–3 for lead,
we have µ = 0.581 cm–1. The required thickness of lead shielding is x = 7.6/µ =
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7.6/0.581 = 13 cm. A shield of this thickness can be interposed anywhere between
the source and the point of exposure. Usually, shielding is placed close to a source to
realize the greatest solid-angle protection.

Until now we have discussed monoenergetic photons. When photons of different
energies are present, separate calculations at each energy are usually needed, since
the attenuation coefficients and buildup factors are different.

Example

A 10-Ci point source of 24Na is to be stored at the bottom of a pool of water.
The radionuclide emits two photons per disintegration with energies 2.75 MeV and
1.37 MeV in decaying by β– emission to stable 24Mg. How deep must the water be if
the exposure rate at a point 6 m directly above the source is not to exceed 20 mR h–1?
What is the exposure rate at the surface of the water right above the source?

Solution

The mass attenuation coefficients for the two photon energies can be obtained from
Fig. 8.9. Since we are dealing with water, they are numerically equal to the linear
attenuation coefficients. Thus, µ1 = 0.043 cm–1 and µ2 = 0.061 cm–1, respectively,
for the 2.75-MeV and 1.37-MeV photons. The approach we use is to consider the
harder photons first and find a depth of water that will reduce their exposure rate to a
level somewhat below 20 mR h–1, and then see what additional exposure rate results
from the softer photons. The final depth can be adjusted to make the total 20 mR h–1.
The exposure rate from 2.75-MeV photons at a distance d = 6 m with no shielding is

Ẋ2.75 = 0.5CE

d2 = 0.5 × 10 × 2.75
62 = 0.382 R h–1. (15.6)

To reduce this level to 20 mR h–1 under conditions of good geometry requires a water
depth µ1x given by

20 = 382e–µ1x, (15.7)

or µ1x = 2.95 relaxation lengths. From Fig. 15.2, one can see that the buildup factor
B1 for 2.75-MeV photons for a water shield of this thickness is about 3.4. The number
of relaxation lengths that compensate for this amount of buildup is y = ln 3.4 = 1.22.
Adding this amount to the preceding gives an estimate µ1x = 2.95 + 1.22 = 4.17. At
this depth, the buildup factor has increased to about 4.4, for which the compensating
depth added to the first estimate is y = ln 4.4 = 1.5. Therefore, we try an estimated
relaxation length of 2.95 + 1.5 = 4.5. Thus, we obtain for the shielded exposure rate
for the more energetic photons,

Ẋ2.75 = 4.4 × 382e–4.5 = 19 mR h–1. (15.8)

For the 1.37-MeV photons, the thickness of this shield in relaxation lengths is larger
by the ratio of the attenuation coefficients; that is, µ2x = 4.5 × (0.061/0.043) = 6.4.
From Fig. 15.2, the buildup factor for the 1.37-MeV photons is estimated to be, ap-
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proximately, B2 = 12. The exposure rate at 6 m for these photons without shielding
is

Ẋ1.37 = 0.5 × 10 × 1.37
62 = 0.190 R h–1. (15.9)

With the shield it is

Ẋ1.37 = 12 × 190 × e–6.4 = 3.8 mR h–1. (15.10)

The total shielded exposure rate is

Ẋ = Ẋ2.75 + Ẋ1.37 = 19 + 4 = 23 mR h–1. (15.11)

Some additional thickness is needed. One can proceed simply by incrementing the
relaxation length until the desired value of the total exposure rate is obtained. In place
of 4.5, for example, one can try µ1x = 4.7, for which B1 = 4.8, µ2x = 6.7, and B2 = 15.
One finds then that

Ẋ = Ẋ2.75 + Ẋ1.37 = 16.7 + 3.5 = 20.2 = 20 mR h–1. (15.12)

It follows that the required depth of water is x = 4.7/µ1 = 4.7/(0.043 cm–1) = 109 cm.
The exposure rate at the surface of the water is 20(600/109)2 = 610 mR h–1.

In principle, different sets of buildup factors are needed to compute different
transmitted quantities, such as dose, exposure, kerma, and energy fluence. How-
ever, values given in Figs. 15.1–15.6 specifically for exposure are not very different
from those for the others. We shall make no distinction in using the single set of
figures for all computations.1)

15.3
Shielding in X-Ray Installations

X-ray machines have three principal uses—as diagnostic, therapeutic, and non-
medical radiographic devices. An X-ray tube is usually housed in a heavy lead cas-
ing with an aperture through which the primary, or useful, beam emerges. Typi-
cally, the beam passes through metal filters (e.g., Al, Cu) to remove unwanted, less
penetrating radiation and is then collimated to reduce its width. The housing, sup-
plied by the manufacturer, must conform to certain specifications in order to limit
the leakage radiation that emerges from it during operation. For diagnostic X-ray
tubes, regulations require that manufacturers limit the leakage exposure rate at a
distance of 1 m from the target of the tube to 0.1 R h–1 when operated continuously
at its maximum rated current and potential difference.

1 Figures 15.1–15.5 are based on Table 6.5.1
from B. Schleien, L. A. Slayback, Jr., and
B. K. Birky, Handbook of Radiological Health,

3rd Ed., Williams and Wilkins (1998).

Figure 15.6 is plotted from data on p. 147,
Radiological Health Handbook, Revised Ed.,
Jan. 1970, Bureau of Radiological Health,
Rockville, MD.
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Fig. 15.8 Schematic plan view of X-ray room showing the
different radiation components considered in the design of
structural shielding to provide primary and secondary
protective barriers.

The shielding provided by the X-ray housing is referred to as source shielding.
Additional protection is obtained by the use of structural shielding in an X-ray
facility. The basic components of the radiation field considered in the design of
structural shielding are shown in Fig. 15.8. A primary protective barrier, such as
a lead-lined wall, is fixed in place in any direction in which the useful beam can
be pointed. This shield reduces the exposure rate outside the X-ray area in the di-
rection of the primary beam. Locations not in the direct path of the beam are also
exposed to photons in two ways. As illustrated in Fig. 15.8, leakage radiation es-
capes from the housing in all directions. In addition, photons are scattered from
exposed objects in the primary beam and from walls, ceilings, and other struc-
tures. Secondary protective barriers are needed to reduce exposure rates outside
the X-ray area from both leakage and scattered radiation. Sometimes existing struc-
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Table 15.1 Air-Kerma Shielding-Design Goals, P, from NCRP
Report No. 147

Controlled Areas Uncontrolled Areas

0.1 mGy wk–1 0.02 mGy wk–1

tures, such as concrete walls, provide sufficient secondary barriers; otherwise, ad-
ditional shielding, such as lead sheets, must be added to them.

Generally, structural shielding has been designed in a manner consistent with
limiting the effective dose to an individual outside the X-ray room to 1 mSv wk–1

in controlled areas and to 0.1 mSv wk–1 in uncontrolled areas. A controlled area is
one in which access and occupancy are regulated in conjunction with operation of
the facility. Persons working there have special training in radiation protection, and
radiation exposures are monitored. In contrast, individuals are free to come and go
in uncontrolled areas. These design goals adhere to the annual limits of 50 mSv and
5 mSv for occupational and nonoccupational radiation. Since many instruments
used to monitor X radiation are calibrated to measure exposure in roentgen (R), the
shielding design objectives that have traditionally been employed are expressed as
0.1 R wk–1 and 0.01 R wk–1. Numerically, an exposure of 1 R produces an absorbed
dose of 8.76 mGy in air (Sect. 12.2). Conversely, a 1-mGy absorbed dose in air is
equivalent to 0.114 R.

In 2004 the National Council on Radiation Protection and Measurements issued
Report No. 147, Structural Shielding Design for Medical X-Ray Imaging Facilities. In
this Report, the Council recommends that air kerma, K (Sect. 12.10), be the quantity
used for making X-ray shielding calculations. It specifies that an instrument read-
ing in R can be divided by 114 to obtain the air kerma in Gy. The recommended
design goal for occupational exposure is also revised. The cumulative effective-dose
limit (Table 14.4) implies an average annual limit of 10 mSv. In the design of new fa-

cilities, the Council recommends one-half this value, or 5 mSv y–1, and a weekly
design goal of P = 0.1 mGy air kerma. Using one-half also accomplishes adher-
ence to a monthly equivalent-dose limit of 0.5 mSv to a worker’s embryo or fetus.
For uncontrolled areas, the recommended design goal is P = 0.02 mGy wk–1 air
kerma, corresponding to the annual 1 mSv shown in Table 14.4. Report No. 147
“is intended for use in planning and designing new facilities and in remodeling
existing facilities.” Installations designed before publication of Report No. 147 and
meeting previous NCRP requirements need not need be reevaluated. The design
goals of the Report are summarized in Table 15.1.

Our discussion of X-ray shielding design will be directed toward the levels for in-
dividuals given in Table 15.1. In what follows we shall present a prototype example
that illustrates how elements of an X-ray shielding calculation can be performed
and put together into a final design. As will be pointed out, some important details
will be simplified and will not specifically follow NCRP Report No. 147. For the
transmission of X rays through different materials, we shall use measured data as
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traditionally given in terms of the exposure (R). Much of the information available
in the literature is presented in this form. Whatever procedures and assumptions
are used in making the shielding design, radiation surveys after installation must
be performed in order to evaluate the results.

Design of Primary Protective Barrier

The attenuation of primary X-ray beams through different thicknesses of various
shielding materials has been measured experimentally. The data have been plotted
to give empirical attenuation curves, which are used to design protective barriers.
It is found experimentally that the primary beam intensity transmitted through a
shield depends strongly on the peak operating voltage but very little on the filtra-
tion of the beam. (The effect of filters on exposure rate is small compared with
that of the thicker shields.) In addition, at fixed kVp, the exposure from transmit-
ted photons at a given distance from the X-ray machine is proportional to the time
integral of the beam current, usually expressed in milliampere-minutes (mA min).
In other words, the total exposure per mA min is virtually independent of the tube
operating current itself. These circumstances permit the presentation of X-ray at-
tenuation data for a given shielding material as a family of curves at different kVp
values. Measurements are conveniently referred to a distance of 1 m from the target
of the tube with different thicknesses of shield interposed.

Attenuation curves measured for lead and concrete at a number of peak voltages
(kVp) are shown in Figs. 15.9 and 15.10. The ordinate, Q, gives the exposure of
the attenuated radiation in R mA–1 min–1 at the reference distance of 1 m. The
abscissa gives the shield thickness. Figure 15.9 shows, for example, that behind
2 mm of lead, the exposure 1 m from the target of an X-ray machine operating at
150 kVp is 10–3 R mA–1 min–1. If the machine is operated with a beam current of
200 mA for 90 s, that is, for 200 × 1.5 = 300 mA min, then the exposure at 1 m
will be 300 × 10–3 = 0.3 R behind the 2 mm lead shield. The same exposure results
if the tube is operated at 300 mA for 60 s. The exposure at other distances can be
obtained by the inverse-square law; for example, the exposure per mA min at 2 m
is 10–3/22 = 2.5 × 10–4 R mA–1 min–1. The 2 mm of lead shielding can be located
anywhere between the X-ray tube and the point of interest.

The amount of shielding needed to provide the primary barrier for an area ad-
joining an X-ray room can be found from the attenuation curves, once the appro-
priate value of Q has been determined. In addition to the peak voltage, the value of
Q in a specific application will depend on several other circumstances:

1. The weekly design goal, P, which is one of the two values in
Table 15.1, depending on the area to be protected.

2. The workload, W, or weekly amount of use of the X-ray
machine, expressed in mA min wk–1.

3. The use factor, U, or fraction of the workload during which
the useful beam is pointed in a direction under
consideration.
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Fig. 15.9 Attenuation in lead of X rays produced with (peak)
potential differences from 50 kVp to 200 kVp. (National Bureau
of Standards Handbook 76, 1961, Washington, DC.)

4. The occupancy factor, T, which takes into account the
fraction of the time that an area outside the barrier is likely
to be occupied by a given individual. (Average weekly
exposure rates may be greater than P in areas not occupied
full time by anyone.) In the absence of more specific
information, the occupancy factors given in Table 15.2 may
be used as guides for shielding design. The allowed average
kerma rate in the area is P/T mGy wk–1.

5. The distance, d, in meters from the target of the tube to the
location under consideration. The curves in Figs. 15.9 and
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Table 15.2 Suggested Occupancy Factors, T∗

Description T

Offices, laboratories, and other work areas; children’s indoor play areas; X-ray
control room

1

Patient examination and treatment rooms 1/2
Corridors; patient rooms; staff lounges and rest rooms 1/5
Corridor door areas 1/8
Unattended waiting rooms and vending areas; storage areas; public toilets;
outdoor areas with seating

1/20

Attics; stairways; janitor closets; unattended elevators and parking lots; out-
door areas with only transient pedestrians or vehicular traffic

1/40

∗ Adapted from NCRP Report No. 147.

15.10 give the value of Q for a distance of 1 m. At other
distances, a factor of d2 enters in the evaluation of Q.

Since an air kerma of 1 mGy is equivalent to 0.114 R, the relationship between
the numerical values of the design goal P, involving the unit mGy, and the vari-
able Q, involving R, is Q = 0.114P. With these considerations, the value of Q can
be computed from the formula

Q = 0.114Pd2

WUT
. (15.13)

With P in mGy wk–1, d in m, and W in mA min wk–1, Q gives the exposure of the
transmitted radiation in R mA–1 min–1 at 1 m. For a given kVp, attenuation curves
such as those in Figs. 15.9 and 15.10 can be used to find the shield thickness that
results in the design level P.

The role of the various factors in Eq. (15.13) is straightforward. When d = 1 m,
W = 1 mA min wk–1, and the useful beam is always pointed (U = 1) in the direction
of an area of full occupancy (T = 1), then it follows that Q in R is numerically equal
to 0.114P. If U and T are not unity, then the weekly kerma in the area can be
increased to P/UT, which is reflected in a larger value of Q and hence a smaller
shield thickness. The factor d2, with d expressed in meters, adjusts Q for locations
other than 1 m. Finally, since exposure is proportional to the workload, one divides
by W in Eq. (15.13).

Example

A diagnostic X-ray machine is operated at 125 kVp and 220 mA for an average
of 90 s wk–1. Calculate the primary protective barrier thickness if lead or concrete
alone were to be used to protect an uncontrolled hallway 15 ft from the tube target
(Fig. 15.11). The useful beam is directed horizontally toward the barrier 1/3 of the
time and vertically into the ground the rest of the time.



488 15 External Radiation Protection

Fig. 15.10 Attenuation in concrete of X rays produced with
(peak) potential differences from 50 kVp to 400 kVp. (National
Bureau of Standards Handbook 76, 1961, Washington, DC.)

Solution

From Table 15.1, P = 0.02 mGy wk–1 for the hall, which is an uncontrolled area. The
distance is d = 15 ft = 4.57 m, and the workload is W = 220 mA × 1.5 min wk–1 =
330 mA min wk–1. Note that Eq. (15.13) requires these particular units. The use factor
is U = 1/3 and, from Table 15.2, the occupancy factor is T = 1/5. Equation (15.13)
gives

Q = 0.114 × 0.02 × (4.57)2

330 × 1
3 × 1

5

= 2.16 × 10–3 R mA–1 min–1 at 1 m. (15.14)
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Fig. 15.11 Schematic plan view of an X-ray facility.

From Fig. 15.9 we find that the needed thickness of lead for 125 kVp is about 1.5 mm.
From Fig. 15.10, we estimate the needed thickness of concrete to be about 5.0 in.2)

Lead is a most effective and practical material for X-ray shielding. On a weight
basis, it is considerably lighter than concrete, as the last example illustrates. The
lead thickness, expressed as the mass per unit area (density = 11.4 g cm–3), is
0.15 cm × 11.4 g cm–3 = 1.7 g cm–2. The concrete thickness (density = 2.35 g cm–3)
is 5.0 in × 2.54 cm in–1 × 2.35 g cm–3 = 30 g cm–2. The ratio of concrete-to-lead
thicknesses is 30/1.7 = 18. A concrete shield covering the same wall area as lead
would thus weigh 18 times as much. The principal physical reason for this dif-
ference is the much larger photoelectric attenuation coefficient of lead (and other
materials of high atomic number) for low-energy photons (cf. Figs. 8.8 and 8.9).
The peak X-ray energy in the last example was 125 kVp. At higher peak energies,
the difference between lead and concrete, though substantial, becomes less pro-
nounced.

A primary protective barrier can either be erected when a structure is built or it
can be provided by adding shielding to an existing structure. The attenuation of
many common building materials per g cm–2 is approximately the same as that of

2 Note. For the computation we have used the
distance d from the source to the opposite
side of the wall. NCRP Report No. 147

considers that the nearest likely approach of
the sensitive organs of a person is not less
than 0.3 m beyond the wall.
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Table 15.3 Average Densities of Commercial
Building Materials

Material Density
(g cm–3)

Barytes concrete 3.6
Brick (soft) 1.65
Brick (hard) 2.05
Earth (packed) 1.5
Granite 2.65
Lead 11.4
Lead glass 6.22
Sand plaster 1.54
Concrete 2.35
Steel 7.8
Tile 1.9

Table 15.4 Half-Value Layers for X Rays (Broad Beams) in Lead and Concrete

Peak Voltage (kVp) HVL Lead (mm) HVL Concrete (cm)

50 0.06 0.43
70 0.17 0.84

100 0.27 1.6
125 0.28 2.0
150 0.30 2.24
200 0.52 2.5
250 0.88 2.8
300 1.47 3.1
400 2.5 3.3

concrete, which has an average density of 2.35 g cm–3. Table 15.3 gives the aver-
age densities of some common commercial materials. X-ray attenuation in similar
materials can be obtained from the curves in Fig. 15.10 for concrete of equivalent
thickness. For example, the attenuation provided by 2 in. of tile (average density
1.9 g cm–3) is equivalent to that of 2(1.9/2.35) = 1.62 in. of concrete. (If the building
materials are of significantly higher atomic number than concrete, this procedure
tends to overestimate the amount of shielding needed.) Layers of lead are com-
monly used with building materials to provide protective barriers. For computing
the attenuation it is convenient to have half-value layers for both lead and concrete
at different tube operating potentials. These are given in Table 15.4. As stressed in
the last paragraph, the shielding properties of concrete and lead for X rays cannot
be accurately compared on the basis of the ratio of their densities.
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Example

If, in the previous example, an existing 3-in. sand plaster wall separates the X-ray
room and the hallway in Fig. 15.11, find the thickness of lead that must be added to
the wall to provide the primary protective barrier.

Solution

We estimated in the last example that 5.0 in of concrete would provide an adequate
primary protective barrier. The 3-in sand plaster wall (density = 1.54 g cm–3) is equiv-
alent to concrete of thickness 3(1.54/2.35) = 2.0 in. Therefore, additional shielding
equivalent to 5.0 – 2.0 = 3.0 in of concrete is needed. From Table 15.4, 1 HVL of con-
crete for 125-kVp X rays is 2.0 cm = 0.79 in, and so the additional shielding required
is 3.0/0.79 = 3.8 HVLs. Table 15.4 shows that this thickness of lead added to the sand
plaster would be 3.8 × 0.28 = 1.1 mm.

The use of half-value layers, rather than densities, to compare the shielding of
lead and concrete is also only approximate, though more accurate. As an X-ray
beam penetrates matter, the softest rays—those photons with the lowest energies—
are selectively filtered out, and the beam hardens. The magnitude of the “half-value
layer” for incident X rays of a given kVp thus tends to increase with penetration
depth. This fact is reflected in the decreasing slopes of the attenuation curves in
Fig. 15.9. Numerical values for shielding obtained by the procedures described here
when two or more materials are used can depend on the order in which the ma-
terials are considered, particularly when the shielding is thick. For instance, for
the last example we could use Table 15.4 to find the number of HVLs of concrete
alone or lead alone that would provide the needed shielding. From the value of Q

in Eq. (15.14) we found that the required thicknesses of lead and concrete were,
respectively, 1.5 mm and 5.0 in. From Table 15.4 we find that these thicknesses
represent 1.5/0.28 = 5.4 HVLs for lead and (5.0 × 2.54)/2.0 = 6.4 HVLs for con-
crete. The estimated number of HVLs needed should ideally be independent of the
shielding material, since it is intended to represent the number of factors of 2 by
which the exposure rate is to be reduced. However, for the reasons given here, the
use of half-value layers for X rays is only an approximate, but useful, concept. The
simplified procedures given here for calculating shielding are also only approxi-
mate, and conservative judgments are to be applied in their use.

Design of Secondary Protective Barrier

As illustrated in Fig. 15.8, the secondary barrier is designed to protect areas not
in the line of the useful beam from the leakage and scattered radiation. Physically,
these two components of the radiation field can be of quite different quality. There-
fore, the shielding requirements are computed separately for each and the final
barrier thickness is chosen to be adequate for their sum. Because conditions vary
greatly, no single method of calculation is always satisfactory; however, the one
presented here can be used as a guide. We assume that the leakage and scattered
radiations are isotropic. The use factor for them is then unity (U = 1).



492 15 External Radiation Protection

Leakage Radiation Limits placed on the manufacturer for the maximum allowed
leakage radiation from the housing of diagnostic and therapeutic machines are
given in terms of the exposure rate Y in R h–1 at the reference distance of 1 m from
the source. As mentioned at the beginning of this section, for instance, the limit
Y = 0.1 R h–1 applies to diagnostic machines. Given the numerical value of Y, the
secondary barrier thickness for the leakage radiation is computed as the number
of half-value layers needed to restrict the exposure of individuals in other areas to
allowed levels. When the facility is operated under constant conditions t min wk–1,
the weekly exposure to leakage radiation in R at a distance d m from the tube
with no structural shielding present does not exceed (Y/d2)(t/60) = Yt/(60d2). If P

denotes the design goal in mGy wk–1 for an area with occupancy factor T, then the
required reduction B for the leakage X-ray intensity is given by

0.114P = B
YtT

60d2 . (15.15)

(The factor 0.114 converts the number P of mGy wk–1 into R wk–1, the unit of expo-
sure employed in Y.) Solving for B and writing t = W/I, where W is the workload
in mA min wk–1 and I is the average current in mA, we obtain

B = 6.84PId2

YWT
. (15.16)

The number N of half-value layers that reduces the radiation to the factor B of its
unshielded value is given by B = 2–N, or

N = –
ln B

ln 2
= –

ln B

0.693
. (15.17)

The leakage radiation is filtered and hardened by the lead tube housing. For the
shielding estimation, we assume that its penetration is described by the half-value
layers given in Table 15.4, which depend primarily on the operating potential of the
tube. In addition to other factors, the foregoing derivation also assumes operation
of the equipment at a given value of the kVp.

Example

The X-ray machine in the last two examples is to be replaced by another diagnostic
unit, located in the same position as that shown in Fig. 15.11. The new unit will oper-
ate at 200 kVp with an average current of 20 mA and workload of 9200 mA min wk–1.
Other conditions remain the same as before. How many half-value layers of shield-
ing would be needed to protect the laboratory (a controlled area) from the leakage
radiation alone?

Solution

We use Eq. (15.16) to compute the needed reduction, B. Like Eq. (15.13), it requires
that the quantities be expressed in the standard units we have been using. Thus, with
d = 10 ft = 3.05 m, direct substitution into (15.16) gives

B = 6.84 × 0.1 × 20 × (3.05)2

0.1 × 9200 × 1
= 0.138. (15.18)
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From Eq. (15.17), the number of HVLs is

N = –
ln 0.138
0.693

= 2.9 (15.19)

for protection from the leakage radiation alone. Table 15.4 can be used to find the
corresponding thickness of lead or concrete. However, we next consider the scattered
radiation before specifying the secondary protective barrier thickness.

Scattered Radiation For the purpose of estimating shielding thickness, if the tube
operation potential is not more than 500 kVp, then the barrier penetrating capabil-
ity of the scattered X rays is considered to be the same as that of the useful beam.
(Low-energy photons lose a relatively small fraction of their energy in Compton
scattering.) Thus, we may use the attenuation curves in Figs. 15.9 and 15.10 for the
scattered radiation. Also, as already mentioned, we make the additional assump-
tion that it is isotropic.

The value of Q for the scattered radiation can be determined from a modified
form of Eq. (15.13). Measurements show that the exposure rate of scattered X rays
at a location 1 m from a scatterer and 90◦ from the primary-beam direction is
about 10–3 times as large as the incident exposure rate at the scatterer. Therefore,
to account for the smaller intensity of the scattered radiation compared with the
useful beam, Q in Eq. (15.13) is increased by a factor of 1000. For the scattered
radiation, then, we have with U = 1 the modified version of Eq. (15.13):

Q = 114Pd2

WT
. (15.20)

As before, P is in mGy wk–1, d in m, W in mA min wk–1, and Q is the exposure of
the transmitted radiation in R mA–1 min–1 at 1 m.

Example

Estimate the number of HVLs that would be needed to shield the laboratory in the
last example from the scattered radiation alone.

Solution

Applying Eq. (15.20) with P = 0.1 mGy wk–1 for the controlled area gives

Q = 114 × 0.1 × (3.05)2

9200 × 1
= 0.012 R mA–1 min–1 at 1 m. (15.21)

Using Fig. 15.9, we estimate the needed thickness of lead shielding to be about
1.6 mm. From Table 15.4, the HVL is 0.52 mm. Therefore, for the scattered radiation
alone, the number of HVLs of lead is 1.6/0.52 = 3.1. Alternatively, using Fig. 15.10
with Q = 0.012 indicates that about 5.5 in = 14 cm of concrete would be needed.
From Table 15.4, the corresponding thickness of concrete is 14/2.5 = 5.6 HVLs. As
discussed at the end of the section on the primary protective barrier, the number of
HVLs should, ideally, be independent of the material. We choose the larger, more
conservative estimate of 5.6 HVLs for shielding the scattered radiation alone.
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Having computed the number of HVLs for the leakage and scattered radiations
separately, one must select a secondary protective barrier that is adequate for both
together. In our simplified treatment, the following rule, which has been used in
the past, will be applied. If the barrier thicknesses for leakage and scattered radi-
ations are found to be within 3 HVLs of one another, then adding 1 HVL to the
larger gives a sufficient secondary barrier for both. If the two differ by more than
3 HVLs, then the thicker one alone suffices.

Example

What thickness of lead must be added to an existing 2.5-in plaster wall between the
X-ray room and the laboratory in Fig. 15.11 to provide an adequate secondary protec-
tive barrier for the facility considered in the last two examples?

Solution

We found that 2.9 HVLs would be needed for the leakage alone and 5.6 HVLs for
the scattered radiation alone. The difference in the two is 2.7 HVLs. By the rule
just cited, since this amount is less than three, we estimate the secondary barrier
as 5.6 + 1 = 6.6 HVLs. The existing wall provides some of the barrier. Its concrete-
equivalent thickness is 2.5(1.54/2.35) = 1.64 in = 4.16 cm, as found from the densi-
ties in Table 15.3. From Table 15.4, this amount represents 4.16/2.5 = 1.7 HVLs; and
so the amount of additional shielding to be added to the wall is 6.6 – 1.7 = 4.9 HVLs.
The thickness of lead (HVL = 0.52 mm) required is 4.9 × 0.52 = 2.6 mm.

NCRP Report No. 147

We have presented examples of how shielding for a diagnostic X-ray facility can be
determined. While such procedures, including various modifications, have been
commonly applied, the most up-to-date methodology is furnished in the 2004
NCRP Report No. 147 (see Sect. 15.6). We briefly mention some features of the
Report in order to supplement the discussions in our examples.

Our approach employed the revised NCRP design goals, based on air kerma (Ta-
ble 15.1), for new X-ray facilities recommended in the Report. The treatment of
workload in the Report underwent a major overhaul. We mentioned previously
that, whereas the amount of shielding is a very strong function of kVp, the trans-
mission curves at constant kVp are represented “per mA min” of use. Many facil-
ities perform multiple procedures at different kVp values and/or contain several
X-ray tubes. Determining proper workload information for the design of shield-
ing can then become complicated. Data from the literature have been assembled
in the Report from surveys that provide workload distributions per patient as func-
tions of the kVp operating potentials for a number of facility types (general ra-
diographic, fluoroscopic, chest X-ray, computed tomography, . . . ). These distribu-
tions are folded into tables and graphs used for barrier computations. The data have
also been fitted with parameters from which transmission factors and barrier thick-
nesses can be calculated numerically. Also, the angular dependence of the scattered
radiation is not assumed to be isotropic, as in our estimates. We also stressed the
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need for verification. In this regard, the Report states, “While specific recommen-
dations on shielding design methods are given in this Report, alternative methods
may prove equally satisfactory in providing radiation protection. The final assess-
ment of the adequacy of the design and construction of protective shielding can
only be based on the post-construction survey performed by a qualified expert.”

NCRP Report No. 151, Structural Shielding Design and Evaluation for Megavoltage

X- and Gamma-Ray Radiotherapy Facilities, was published in 2005. The reader is
also referred to the 2003 NCRP Report No. 145, Radiation Protection in Dentistry

(see Sect. 15.6).

15.4
Protection from Beta Radiation

Beta (including positron) emitters present two potential external radiation haz-
ards, namely, the beta rays themselves and the bremsstrahlung they produce in
the source and in adjacent materials. In addition, annihilation photons are always
present with positron sources. Beta particles can be stopped in a shield surround-
ing the source if it is thicker than their range. To minimize bremsstrahlung pro-
duction, this shield should have low atomic number [cf. Eq. (6.14)]. It, in turn,
can be enclosed in another material (preferably of high atomic number) that is
thick enough to attenuate the bremsstrahlung intensity to the desired level. For a
shielded beta emitter bremsstrahlung may be the only significant external radiation
hazard.

The bremsstrahlung shield thickness can be calculated in approximate fashion
by the following procedure. Equation (6.14) is used to estimate the radiation yield,
letting T = Tmax be the maximum beta-particle energy. This assumption overesti-
mates the actual bremsstrahlung intensity, because most of the photons have en-
ergies much lower than the upper limit Tmax. To roughly compensate, one ignores
buildup in the shielding material and uses the linear attenuation coefficient for
photons of energy Tmax to estimate the bremsstrahlung shield thickness. Since the
bremsstrahlung spectrum is hardened by passing through the shield, the exposure
rate around the source is calculated by using the air absorption coefficient for pho-
tons of energy Tmax.

Example

Design a suitable container for a 3.7 × 1011 Bq source of 32P in a 50-mL aqueous
solution, such that the exposure rate at a distance of 1.5 m will not exceed 1 mR h–1.
32P decays to the ground state of 32S by emission of beta particles with an average
energy of 0.70 MeV and a maximum energy of 1.71 MeV.

Solution

We choose a bottle made of some material, such as polyethylene (density =
0.93 g cm–3), with elements of low atomic number to hold the aqueous solution.
It should be thick enough to stop the beta particles of maximum energy. From
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Fig. 6.4, the range for Tmax = 1.71 MeV is about 0.80 g cm–2. The thickness of the
polyethylene bottle should therefore be at least 0.80/0.93 = 0.86 cm. To estimate
the bremsstrahlung yield by Eq. (6.14), we need the effective atomic number of the
medium in which the beta particles lose their energy. Most of the energy will be lost
in the water, a small part being absorbed in the container walls. The effective atomic
number for water is

Zeff = 2
18

× 1 +
16
18

× 8 = 7.22. (15.22)

The estimated fraction of the beta-particle energy that is converted into brems-
strahlung is, by Eq. (6.14) with Z = Zeff and T = Tmax,

Y ∼= 6 × 10–4 × 7.22 × 1.71
1 + 6 × 10–4 × 7.22 × 1.71

= 7.4 × 10–3. (15.23)

The rate of energy emission by the source of beta particles with an average energy of
0.70 MeV is3)

Ėβ = 3.7 × 1011 × 0.70 = 2.59 × 1011 MeV s–1. (15.24)

The rate of energy emission in the form of bremsstrahlung photons is therefore

YĖβ = 7.4 × 10–3 × 2.59 × 1011 = 1.92 × 109 MeV s–1. (15.25)

We next compute the exposure rate from the unshielded bremsstrahlung, treated as
coming from a point source at a distance of 1.5 m. Following our procedure, we use
the mass energy-absorption coefficient of air for 1.71 MeV photons, which is (from
Fig. 8.12) µen/ρ = 0.026 cm2 g–1. Since the intensity at a distance r = 1.5 m = 150 cm
is given by [Eq. (8.61)]

I = YĖβ

4πr2 = 1.92 × 109 MeV s–1

4π (150 cm)2 = 6.79 × 103 MeV cm–2 s–1, (15.26)

the dose rate in air is

Ḋ = µen

ρ
I = 0.026 cm2

g
× 6.79 × 103 MeV

cm2 s
= 177 MeV g–1 s–1. (15.27)

Converting units and remembering that 1 R = 0.0088 Gy in air (Sect. 12.2), we find
for the exposure rate

Ẋ = 177 MeV
g s

× 1.60 × 10–13 J MeV–1

10–3 kg g–1 × 1 Gy

J kg–1 × 1 R
0.0088 Gy

(15.28)

= 3.22 × 10–6 R s–1 = 11.6 mR h–1. (15.29)

Lead is a convenient material for the bremsstrahlung shield. As specified, one ignores
buildup and uses the linear attenuation coefficient for photons of energy Tmax to

3 When the average beta-particle energy is not
known, one can approximate it as one-third
the maximum beta-particle energy (Sect. 3.4).
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compute the bremsstrahlung shield thickness. Figure 8.8 gives for 1.71-MeV photons
in lead µ/ρ = 0.048 cm2 g–1, and so µ = 0.048 × 11.4 = 0.55 cm–1. The thickness x

needed to reduce the exposure rate to 1 mR h–1 is given by

1 = 11.6e–0.55x, (15.30)

or x = 4.5 cm. A lead container of this thickness could be used to hold the poly-
ethylene bottle. We have ignored any bremsstrahlung shielding that the bottle itself
affords.

15.5
Neutron Shielding

Photon shielding design is simplified by a number of factors that do not apply
to computations for neutrons. Whereas photon cross sections vary smoothly with
atomic number and energy, neutron cross sections can change irregularly from
element to element and have complicated resonance structures as functions of en-
ergy. In addition, photon cross sections are generally better known than those for
neutrons. Elaborate computer codes, using Monte Carlo and other techniques, are
available for calculating neutron interactions and transport in a variety of materi-
als. Sometimes circumstances permit useful estimations to be made by simpler
means. In this section we present only a general discussion of neutron shielding.

Basically, a neutron shield acts to moderate fast neutrons to thermal energies,
principally by elastic scattering, and then absorb them. Most effective in slowing
down neutrons are the light elements, particularly hydrogen [cf. Eq. (9.3)]. Many
hydrogenous materials, such as water and paraffin, make efficient neutron shields.
However, water shields have the disadvantage of needing maintenance; also, evap-
oration can lead to a potentially dangerous loss of shielding. Paraffin is flammable.
Concrete (ordinary or heavy aggregate) or earth is the neutron shielding material of
choice in many applications. Often temporary neutron shielding must be provided
in experimental areas around a reactor or an accelerator. Movable concrete blocks
are convenient for this purpose. One must exercise care to assure that cracks, ac-
cess ports, and ducts in such shielding do not permit the escape of neutrons. Verti-
cal cracks should be staggered. (Natural sagging of concrete blocks under the force
of gravity usually precludes the existence of horizontal cracks.) Generally, surveys
are desirable to check temporary neutron shielding before and during extensive
use.

Hydrogen captures thermal neutrons through the reaction 1H(n,γ)2H with a
cross section of 0.33 barns. Other materials, like cadmium, have a very high (n,γ)
thermal-neutron capture cross section (2450 barns) and are therefore frequently
used as neutron absorbers. Hydrogen and cadmium have the disadvantage of
emitting energetic (2.22-MeV and 9.05-MeV) capture gamma rays, which might
themselves require shielding. Other nuclides, such as 10B and 6Li, capture ther-
mal neutrons through an (n,α) reaction without emission of appreciable gamma
radiation. In addition to possible health-physics problems that may arise from cap-
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ture gamma rays, these shields can acquire induced radioactivity through neutron
capture or other reactions.

Examples of neutron attenuation in a hydrogenous material are provided by the
depth–dose curves in Chapter 12 for monoenergetic neutrons normally incident on
tissue slabs. Figure 12.10 for 5-MeV neutrons, for instance, shows that the absorbed
dose decreases by an order of magnitude over 30 cm. The energy spectrum of the
neutrons changes with the penetration depth as the original 5-MeV neutrons are
moderated. The relative number of thermal neutrons at different depths can be
seen from the dose curve labeled Eγ for the 1H(n,γ)2H thermal-neutron capture
reaction. The thermal-neutron density builds up to a maximum at about 10 cm
and thereafter falls off as the total density of neutrons decreases by absorption. In
paraffin, the half-value layer for 1-MeV neutrons is about 3.2 cm and that for 5-MeV
neutrons is about 6.9 cm.

Neutron shielding can sometimes be estimated by a simple “one-velocity” model
that employs neutron removal cross sections. Such shielding must be sufficiently
thick and the neutron source energies so distributed that only the most penetrat-
ing neutrons in a narrow energy band contribute appreciably to the dose beyond
the shield. The neutron dose can then be represented by an exponential function
of shield thickness. Conditions must also be such that the slowing-down distance
from the most penetrating energies down to 1 MeV is short. In addition, the shield
must contain enough hydrogen to assure a short average transport distance from
1 MeV down to thermal energy and the point of absorption. The removal cross sec-
tions for various elements are roughly three-quarters of the total cross sections (ex-
cept ∼0.9 for hydrogen). Most measurements of removal cross sections have been
made with fission-neutron sources and shields of such a thickness that the princi-
pal component of dose arises from source neutrons in the energy range 6–8 MeV.
Table 15.5 gives macroscopic removal cross sections, �r, and attenuation lengths,
1/�r, in some shielding and reactor materials.

Table 15.5 Macroscopic Neutron Removal Cross Sections and
Attenuation Lengths in Several Materials

Macroscopic Removal
Cross Section Attenuation Length

Material �r (cm–1) 1/�r (cm)

Water 0.103 9.7
Paraffin 0.106 9.4
Iron 0.1576 6.34
Concrete (6% H2O by weight) 0.089 11.3
Graphite (density 1.54 g cm–3) 0.0785 12.7

Source: Data in part from Protection Against Neutron Radiation,
NCRP Report No. 38, National Council on Radiation
Protection and Measurements, Washington, D.C. (1971).
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A number of approximate formulas for neutron shielding, based on removal
cross sections, have been developed for reactor cores having various shapes and
other characteristics. We will not attempt to cover them here. A simple, useful for-
mula is available, however, for radioactive neutron sources.4) Because of the small
intensities compared with fission sources, relatively thin shields are needed. There-
fore, the scattered neutrons contribute significantly to the dose outside the shield,
and their effect can be represented by a buildup factor B. The dose-equivalent rate
Ḣ outside a shield of thickness T at a distance R cm from a point source of strength
S neutrons s–1 is given by

Ḣ = BSqe–�rT

4πR2 , (15.31)

where �r is the removal cross section and q is the dose-equivalent rate per unit
neutron fluence rate (e.g., Sv h–1 per neutron cm–2 s–1) for neutrons of the source
energy. The factor q can be obtained from Table 12.5; Ḣ and q will have the same
units for dose equivalent. For Po–Be and Po–B sources with a water or paraffin
shield at least 20 cm thick, B ∼= 5.

Example

Calculate the dose-equivalent rate 1.6 m from an unshielded 3.0 × 1010 Bq 210Po–
Be source, which emits 2.05 × 106 neutrons s–1. By what factor is the rate reduced by
a 25-cm water shield? What is the dose-equivalent rate behind 50 cm of water?

Solution

In Eq. (15.31) the presence of the shield introduces the factors B exp(–�rT ). For the
unshielded source, Ḣ0 = Sq/4πR2 and S = 2.05 × 106 neutrons s–1. Table 9.2 shows
the average energy to be 4.2 MeV, for which Table 12.5 indicates that about 16 neu-
trons cm–2 s–1 give a dose-equivalent rate of 0.025 mSv h–1. Therefore we have

q = 0.025 mSv h–1

16 cm–2 s–1 = 0.00156 mSv h–1 cm2 s; (15.32)

and so

Ḣ0 = (2.05 × 106 s–1)(0.00156 mSv h–1 cm2 s)
4π (160 cm)2 = 0.0099 mSv h–1 (15.33)

for the unshielded source. With �r = 0.103 cm–1 from Table 15.5, B = 5, and T =
25 cm, the dose-equivalent rate is reduced by the factor

Be–�rT = 5e–0.103×25 = 0.38. (15.34)

The rate with 50 cm of water interposed is

Ḣ = 5 × 2.05 × 106 × 0.00156
4π (160)2 e–0.103×50 = 2.9 × 10–4 mSv h–1. (15.35)

4 Protection Against Neutron Radiation Up to
30 Million Electron Volts, Handbook 63,

National Bureau of Standards, Washington,
DC (1957).



500 15 External Radiation Protection

Note that Eq. (15.31) with B ∼= 5 applies to shields thicker than 20 cm, as was the case
here. Note also that one should generally be concerned with gamma-ray shielding
where neutrons are present. In this example, however, 210Po is a weak gamma emitter
(0.001%) and decays to stable 206Pb.
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15.7
Problems

1. Calculate the thickness of lead shielding needed to reduce
the exposure rate 2.5 m from a 5.92 × 1011 Bq point source of
137Cs to 1.0 mR h–1.

2. To what factor of its unshielded value would the exposure
rate around the source in the last problem be reduced by
20 cm of concrete shielding (Fig. 15.3) in place of lead in the
last problem?

3. A small 1.85 × 1011 Bq 42K source is placed inside an
aluminum (Fig. 15.4) pipe (on the axis) having an inside
diameter of 1 in. and an outside diameter of 2.5 in. What is
the exposure rate opposite the source at a point 6 ft away
from the center of the pipe?

4. How thick must a spherical lead container be in order to
reduce the exposure rate 1 m from a small 3.70 × 109 Bq
24Na source to 2.5 mR h–1?

5. An unshielded 1 Ci 60Co source is to be used in a room at
the spot x shown in Fig. 15.12. Calculate the thickness t of
concrete that is needed to limit the exposure rate to
10 mR h–1 outside the wall.

6. A broad, parallel beam of 500-keV photons is normally
incident on a uranium sheet (Fig. 15.6) that is 1.5 cm thick.
If the exposure rate in front of the sheet is 1.08 mR min–1,
what is it behind the sheet?

Fig. 15.12 Diagram of room to be used with an unshielded 1 Ci 60Co source (Problem 5).



502 15 External Radiation Protection

Fig. 15.13 Diagram of a room with aluminum slab and parallel
thick shield used with a 2.96 × 1011 Bq 137Cs point source
(Problem 8).

7. What thickness of lead shielding is needed around a
7.40 × 1013 Bq point source of 60Co to reduce the exposure
rate to 10 mR h–1 at a distance of 50 m?

8. The front of a 6-cm aluminum slab is located 2 m from a
2.96 × 1011 Bq 137Cs point source, as shown in Fig. 15.13.
The back of a parallel thick shield, which completely absorbs
direct radiation, is 1.7 m from the source. The shield has a
cylindrical aperture of area 1 cm2 with the source on its axis.
(a) Calculate the exposure rate at a point P 2.8 m from the

source on the cylindrical axis.
(b) What is the exposure rate at P with the thick shield

removed?
9. An 8.33 × 106 MBq point source of a radioisotope emits a

1.0-MeV gamma photon in 67% of its transformations. This
is the only gamma radiation emitted.
(a) Calculate the thickness of lead shielding needed to

reduce the exposure rate to 10.0 ± 0.5 mR h–1 at a
distance of 1.5 m.

(b) What fraction of the incident photons pass through the
shield without having an interaction?
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10. A uranium shield (Fig. 15.5) is to be placed around a point
source of 40K. Calculate the thickness of uranium needed to
reduce the exposure rate from a 3.7 × 1012 Bq source to
10 mR h–1 at a distance of 1.5 m. (Ignore the small amount
of annihilation radiation.)

11. A 5.18 × 1012 Bq point source emits a 1-MeV gamma photon
in 67% of its transformations. No other photons are emitted.
What thickness of uranium shielding is needed to reduce
the exposure rate to 2.5 mR h–1 at a point 5 m away?

12. A certain point source emits gamma photons with energies
of 1 MeV and 2 MeV. A 2-cm lead shield surrounds the
source.
(a) What is the relative number of 1-MeV photons that pass

through the shield without interacting?
(b) At a certain distance from the unshielded source, the

exposure rate due to the 1-MeV photons is 100 mR h–1

and that due to the 2-MeV photons is 60 mR h–1. What is
the total exposure rate at this distance with the shield
present?

13. The exposure rate measured at a distance of 82 cm from an
unshielded point source of 42K is 463 mR h–1.
(a) What is the source strength?
(b) The shielding effect of 1 g cm–2 of concrete compared

with 1 g cm–2 of lead for this source would be less,
comparable, or better? Why?

14. The nuclide 37S emits a 3.09-MeV photon in 90% of its
transformations. No other photons are emitted.
(a) Compute the thickness of uranium shielding needed to

reduce the exposure rate of a 3.7 × 1011 Bq point source
of this nuclide to 5 mR h–1 at a distance of 3 m.

(b) With the shield in place, what is the exposure rate due to
the uncollided photons alone?

15. A point source emits gamma photons of energies 0.5 MeV
and 1.0 MeV. The total unshielded exposure rate of
760 mR h–1 at a certain distance from the source is due to
610 mR h–1 from the 0.5-MeV photons and 150 mR h–1 from
the 1.0-MeV photons.
(a) Calculate the thickness of lead shielding required to

reduce the total exposure rate to 50 mR h–1.
(b) What fraction of the incident photons pass through this

lead shield without having an interaction?
(c) What fraction of the 50 mR h–1 is due to these uncollided

photons?
16. (a) Why are the semilogarithmic curves in Fig. 15.9

nonlinear?
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(b) Why do the slopes decrease with increasing thickness?
(c) Why, on the other hand, do the curves become

essentially linear after the initial depths?
17. (a) Why is the leakage radiation from an X-ray machine

generally more penetrating than the scattered radiation?
(b) Using the density equivalent of concrete for a material of

high atomic number tends to overestimate the amount
of shielding needed for X rays. Why?

18. A 200-kVp diagnostic X-ray machine is installed in the
position shown in Fig. 15.11. Its average weekly workload of
250 mA min is divided between 150 mA min when the
useful beam is pointed horizontally in the direction of the
hall and 100 mA min when pointed horizontally in the
direction of the unattended parking lot. The tube current is
100 mA.
(a) Determine the thickness of concrete needed for the

primary protective barrier for the hall.
(b) Determine the thickness of concrete needed for the

primary protective barrier for the parking lot.
19. If a 1 1

2 -in. plaster wall exists between the X-ray room and the
hall in the last problem (Fig. 15.11), what additional
thickness of lead will provide an adequate primary barrier
for the hall?

20. (a) If a 2 1
4 -in. concrete wall separates the X-ray room and

the unattended parking lot in Problem 18 (Fig. 15.11),
how much additional lead shielding is needed to make
the primary protective barrier?

(b) What changes, if any, should be made in the design of
this primary barrier if the parking lot has an attendant
24 h per day?

21. For the attenuation of 300-kVp X rays, 1 cm of concrete is
equivalent to what thickness of lead?

22. An 8-in. hard-brick wall of a building separates a public
sidewalk from a 200-kVp X-ray machine located inside the
building, 9 ft from the outside of the wall. The X-ray
machine, which operates at 200 mA, is used an average of
18 minutes per day, 5 days per week. It is directed
perpendicularly at this brick wall one-third of the time that it
operates. How much lead shielding must be added to the
wall to provide an adequate primary barrier?

23. The primary beam from a 250-kVp diagnostic X-ray machine
in a doctor’s office is directed perpendicularly at a wall that
separates the office from a public sidewalk just outside, 12 ft
from the X-ray machine. The wall consists of 1.0 in. of hard
brick covered by 2.67 in. of sand plaster. The machine is
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operated 45 minutes per week with a beam current of
200 mA, and the beam is always directed at this wall.
Calculate the thickness of lead that should be added to the
wall to provide a proper primary protective barrier.

24. The useful beam of a 150-kVp diagnostic X-ray machine is
directed at right angles to a soft-brick wall, which is 5.2 in.
thick. An unattended parking lot is located outside the wall,
at a distance of 9 ft from the X-ray machine. The machine
operates an average of 2.2 minutes per day, 5 days per week,
with a beam current of 100 mA. What thickness of lead
shielding must be added to the wall to provide an adequate
primary protective barrier?

25. The useful beam of a diagnostic X-ray machine is directed
70% of the time at right angles to a 10.1-in. hard-brick wall,
which is 4.0 ft away. The machine operates at 250 kVp with a
current of 200 mA for an average of 2.5 minutes per day,
5 days per week. An uncontrolled corridor is on the other
side of the wall.
(a) What thickness of lead has to be added to the wall to

make an adequate primary barrier for the X rays?
(b) With the proper shielding in place, procedures are to be

changed so that the useful beam is always directed
toward the wall. Without adding still more shielding,
what would be the maximum workload permitted, all
other factors remaining the same?

26. The useful beam of a 300-kVp X-ray machine is directed 40%
of the time normally at a hard-brick wall 8 ft away. The wall,
which is 4.0 in. thick, separates the X-ray room from an
uncontrolled hall outside. The X-ray machine is operated
with a current of 290 mA, 2 minutes per day, 5 days per
week. Calculate the thickness of lead shielding that needs to
be added to the brick wall for the primary protective barrier.

27. A hospital uses a 300-kVp X-ray machine with a current of
200 mA for an average of 40 seconds per day, 5 days per
week. The beam is always directed normally at a 4-in.
hard-brick wall 15 ft away. An elevator shaft is on the other
side of the wall. The elevator has an operator and is used for
hospital visitors. How much lead shielding must be added to
the wall to form an adequate primary protective barrier?
(Assume T = 1/5).

28. Calculations for a secondary protective barrier at the facility
described in the last problem give the following results for
the leakage and scattered radiations:

B = 0.028
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Q = 0.0060 R mA–1 min–1 at 1 m.

If the secondary barrier is to be a wall made of sand plaster,
how thick must it be?

29. A 300-kVp diagnostic X-ray machine is separated by a 3-in.
soft-brick wall from a realtor’s office, 3 ft away. The useful
beam can never be directed toward this wall. The machine
operates an average of 10 minutes per week at a current of
280 mA. For the secondary protective barrier for this wall,
calculate:
(a) The number of HVLs of concrete needed for shielding

the scattered radiation alone.
(b) The number of HVLs of concrete needed for the leakage

radiation alone.
(c) The number of HVLs of concrete to protect from both

scattered and leakage radiations.
(d) The thickness of lead that needs to be added to the wall

for an adequate secondary protective barrier.
30. A diagnostic X-ray machine operates at 300 kVp with a

current of 200 mA. It is located 2 ft from the outside of a
granite wall, which is 2.0 in. thick. The beam is never
directed toward the wall, which separates the X-ray facility
from a children’s playground outside. The machine is
operated an average of 28 minutes per day, 5 days per week.
(a) Calculate the number of HVLs of concrete that would be

needed to shield the playground from the leakage
radiation alone, if the granite wall were not there.

(b) Repeat (a) for the scattered radiation alone.
(c) What thickness of lead needs to be added to the granite

wall to provide a sufficient secondary protective barrier
to shield the playground?

31. (a) Calculate the number of half-value layers needed to
shield the laboratory from the leakage radiation in
Problem 18 (Fig. 15.11).

(b) Repeat for the scattered radiation.
(c) If a 3

4 -in. plaster wall separates the X-ray room and the
laboratory, how much additional lead shielding is needed
to make a secondary protective barrier?

32. Figure 15.14 shows a schematic plan view of an X-ray facility.
A diagnostic machine, operated at 150 kVp with a maximum
current of 120 mA, is used an average of 22.1 min d–1,
5 d wk–1. The horizontal beam is always pointed in the
direction of the sidewalk. Calculate the thickness of
additional lead shielding needed for the primary protective
barrier.
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Fig. 15.14 Schematic plan view of an X-ray facility (Problem 32).

33. (a) Calculate the thickness of additional lead shielding
needed in the last problem (Fig. 15.14) to make a
secondary protective barrier for the book store.

(b) Calculate the thickness of additional lead shielding
needed for the hallway.

34. What thickness t must the plaster wall between the X-ray
room and the laboratory have in Problem 32 (Fig. 15.14) to
provide an adequate secondary protective barrier?

35. A law firm is located in an office directly below the 2-in.
concrete floor of a dentist’s office. No other shielding
separates the two businesses. The dentist’s staff has
routinely operated a 100-kVp X-ray machine with an average



508 15 External Radiation Protection

Fig. 15.15 Small vial containing 32P in aqueous solution
enclosed in an aluminum can (Problem 37).

weekly workload of 100 mA min for the past 4 y. One of the
law partners has gone bald in the two years since the firm
moved into their present office. Should the dentist fear a law
suit? Explain.

36. A 30-mL solution containing 7.4 × 1010 Bq of 90Sr in
equilibrium with 90Y is to be put into a small glass bottle,
which will then be placed in a lead container having walls
1.5 cm thick.
(a) How thick must the walls of the glass bottle be in order

to prevent any beta rays from reaching the lead?
(b) Estimate the bremsstrahlung dose rate in air at a

distance of 1.75 m from the center of the lead container.
37. A small vial containing 7.4 × 1012 Bq of 32P in aqueous

solution is enclosed in an 8-mm aluminum can as shown in
Fig. 15.15. Calculate the thickness of lead shielding needed
to reduce the exposure rate to 2.5 mR h–1 at a distance 2 m
from the can. Treat the vial as a point source and assume
that all of the bremsstrahlung is produced by beta particles
slowing down in the water.

38. A 1.11 × 109 Bq source of 60Co is made by neutron activation
of a small piece of cobalt metal (59Co, 100% abundant).
(a) Estimate the energy fluence rate of the bremsstrahlung

from the source at a distance of 60 cm. (No shielding is
present, and all beta particles stop in the source itself.)

(b) Estimate the bremsstrahlung dose rate in air at this
distance. (This will, of course, be much smaller than the
gamma-dose rate from this source.)

39. 60Co activity can be induced by neutron activation of a
sample of natural cobalt (59Co, 100% abundant) in a reactor.
A small 370-MBq source of 60Co is made in this fashion.
Assume that all of the beta particles emitted are stopped in
the cobalt sample itself and that all photons emitted escape
from it. For a location 1 m from the source in air, estimate:
(a) The exposure rate from the 60Co gamma rays.
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(b) The exposure rate from the bremsstrahlung emitted by
the stopping beta particles.

40. A small sample of pure sulfur contains 1.96 × 1010 Bq of 35S
embedded in it.
(a) Estimate the rate of energy emission from the source in

the form of bremsstrahlung.
(b) Estimate the bremsstrahlung dose rate in air 1 m from

the source.
(c) What thickness of aluminum would reduce this dose

rate by a factor of 100?
41. An 8.51 × 1011 Bq source of 35S is contained in aqueous

solution. Assume that the beta particles are stopped by the
water and that self-absorption of bremsstrahlung in the
solution is negligible.
(a) Estimate (for bremsstrahlung shielding purposes) the

dose rate in air due to bremsstrahlung at a distance of
50 cm from the source.

(b) Estimate the fraction to which this dose rate would be
reduced by a 0.30-cm sheet of tin.

42. (a) Estimate the dose-equivalent rate at a distance of 80 cm
from a 210Po–B point source that emits 2.2 × 107

neutrons s–1 and is shielded by 30 cm of water.
(b) How thick would the water shield have to be to reduce

the dose-equivalent rate to 0.025 mSv h–1?
43. (a) What is the maximum number of neutrons s–1 that a

210Po–Be point source can emit if it is to be stored
behind 65 cm of paraffin and the dose-equivalent rate is
not to exceed 0.10 mSv h–1 at a distance of 1 m?

(b) By what factor would a 31-cm shield reduce the
dose-equivalent rate?

15.8
Answers

Interaction coefficients and attenuation curves in the text can be read only approx-
imately; therefore, answers may not agree precisely with those given here.
1. 6.4 cm
2. 0.18
4. 10.5 cm
6. 0.010 mR min–1

8. (a) 85 mR h–1

(b) 220 mR h–1

11. 5.3 cm

12. (a) 0.207
(b) 61 mR h–1

14. (a) 8.1 cm
(b) 1.6 mR h–1

18. (a) 9.0 in.
(b) 6.0 in.

19. 4.2 mm
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23. 9.6 mm
25. (a) 7.7 mm

(b) 1750 mA min wk–1

28. 42 cm
29. (a) 11

(b) 3.1
(c) 11
(d) 14 mm

31. (a) None
(b) None
(c) None

32. 2.2 mm
33. (a) 2.4 mm

(b) 0.85 mm

36. (a) 1.1 g cm–2

(b) 9.1 × 10–3 mGy h–1

38. (a) 12.1 MeV cm–2 s–1

(b) 0.21 µGy h–1

39. (a) 13 mR h–1

(b) 2.9 × 10–3 mR h–1

40. (a) 1.53 × 106 MeV s–1

(b) 5.1 × 10–11 Gy s–1

(c) 11.4 cm
42. (a) 0.09 mSv h–1

(b) 42 cm
43. (a) 1.6 × 109 s–1

(b) 27
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16
Internal Dosimetry and Radiation Protection

16.1
Objectives

In this chapter we deal with radionuclides that can enter the body via inhalation,
ingestion, wounds, or other means. As with external radiation, procedures have
been developed to assess the effective dose and equivalent dose from internal emit-
ters. Particular attention is given to determining the committed equivalent dose
to various organs and the committed effective dose that results when an individ-
ual incorporates radioactive materials. The limits for all exposures are those rec-
ommended by the International Commission on Radiological Protection (ICRP)
and the National Council on Radiation Protection and Measurements (NCRP). As
described in Chapter 14, secondary limits have also been developed by these two
organizations for the constant rate of intake of a given radionuclide that would,
by itself, result in the limiting doses for an individual. These annual limits on in-
take (AL) are derived from assumed models and conditions for calculating internal
doses. The ALI, in turn, can be used to derive air, food, and water concentrations
as exposure guides for inhalation and ingestion.

This methodology, which is applied to control exposures from internal emitters,
is the subject of the present chapter. The calculations employ various metabolic
models for “standard,” or “reference,” individuals under specific given conditions.
To this end, the 1975 Report of the Task Group on Reference Man, ICRP Publication
23 provided an extensive set of anatomical and metabolic data needed to carry out
the formalism. This document has now been superseded by the 2003 ICRP Pub-
lication 89, described in the next section. Beginning in 1979, ICRP Publication 30
(including its Supplements) have long served as the foundation for modeling the
internal translocation of chemical elements in the body for the computation of
organ doses as functions of time following an intake. The formalism includes spe-
cific models for the respiratory tract, the gastrointestinal tract, and bone. While
subsequent ICRP Publications have revised and improved a great deal of the ma-
terial in Publication 30, much of the original content is still in current use. In
this chapter we shall largely follow ICRP-30 procedures, pointing out where later
modifications have been made by the ICRP. In this way, the presentation is kept

Atoms, Radiation, and Radiation Protection. James E. Turner
Copyright © 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-40606-7



512 16 Internal Dosimetry and Radiation Protection

relatively uncomplicated with simpler models, while maintaining the general con-
ceptual framework, which is still employed. We shall be concerned primarily with
occupational exposures for the adult male, as represented by reference man, in the
numerical calculations to follow in this chapter.

16.2
ICRP Publication 89

The 1975 ICRP Publication 23 on Reference Man was superseded in 2003 by ICRP
Publication 89, Basic Anatomical and Physiological Data for Use in Radiological Pro-

tection: Reference Values. Whereas ICRP-23 concentrated on characteristics for a
standard man, ICRP-89 presents data for males and females of six different ages:
newborn, 1 y, 5 y, 10 y, 15 y, and adult. The reference values presented for vari-
ous anatomical and physiological parameters are those for Western Europeans and
North Americans, populations for which data are extensive and well documented.
Some comparisons are made with several Asian populations. While relatively few
individuals in any group will have all characteristics close to the reference values,
this concept plays an important role in internal dosimetry. It enables base-line cal-
culations of organ doses to be made for a radionuclide incorporated under a set
of very specific, well defined assumptions. The formalism furnishes the basis for
analysis in routine monitoring and bioassay programs throughout the world. When
applied to special situations, appropriate adjustments of some of the assumptions
can be made in order to obtain more realistic internal-dose estimates for a particu-
lar individual.

Table 16.1 shows reference values for the masses of some organs and tissues,
as an example of some of the extensive anatomical data presented in ICRP-89.
A number of mass reference values for the adult male in ICRP-89 are the same as
those for the 70-kg reference man in Publication 23. The total mass for the adult
male has been revised to 73 kg in ICRP-89. In addition to organ and tissue masses,
tables of reference values are provided for a number of other anatomical character-
istics. These include height, mass and total-body surface area; red blood-cell and
plasma volumes; total mass and distribution of lymphocytes in the body; structural
parameters for the eye and the skin; and other properties. Physiological reference
values are furnished for metabolic rates, respiratory volumes and capacities (also
at different levels of physical activity), daily secretion rates into different regions of
the gastrointestinal tract, blood-flow rates through various tissues, and many other
characteristics.

As described in the next section, internal-dose assessments include the irradi-
ation of one organ by sources that are located in other organs. Different source-
and target-organ masses are sometimes needed. For example, parts of the diges-
tive tract can assume either role, depending on whether they contain a radioactive
source or whether they are irradiated from a source located elsewhere. As seen in
Table 16.1, for the adult male the mass for the stomach wall (as a target organ) is
150 g and that for the stomach contents (as a source organ) is 250 g.
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Table 16.1 Reference Values for Organ and Tissue Masses (grams) from ICRP Publication 89

15 years Adult
Organ/tissue Newborn 1 year 5 years 10 years M F M F

Adipose 930 3,800 5,500 8,600 12,000 18,700 18,200 22,500

Alimentary system
Stomach
wall 7 20 50 85 120 120 150 140
Stomach
contents 40 67 83 117 200 200 250 230
Small
intestine
wall 30 85 220 370 520 520 650 600
Small
intestine
contents 56 93 117 163 280 280 350 280
Liver 130 330 570 830 1,300 1,300 1,800 1,400

Integumentary system
Skin 175 350 570 820 2,000 1,700 3,300 2,300

Muscle,
skeletal 800 1,900 5,600 11,000 24,000 17,000 29,000 17,500

Respiratory system
Lung
with blood 60 150 300 500 900 750 1,200 950
Lung
tissue only 30 80 125 210 330 290 500 420

Spleen 9.5 29 50 80 130 130 150 130
Thymus 13 30 30 40/30 35 30 25 20
Thyroid 1.3 1.8 3.4 7.9 12 12 20 17

Urogenital system
Kidneys (2) 25 70 110 180 250 240 310 275
Testes (2) 0.85 1.5 1.7 2 16 35
Ovaries (2) 0.3 0.8 2.0 3.5 6 11
Uterus 4.0 1.5 3 4 30 80

Total body 3,500 10,000 19,000 32,000 56,000 53,000 73,000 60,000

As discussed in Section 16.8, radiation-transport calculations have been carried
out to evaluate doses absorbed in one organ from radiation emitted in others. Of
historical interest is the Snyder–Fisher phantom—a mathematical model of ref-
erence man used for such computations, performed, for example by Monte Carlo
procedures (Section 11.12). The model is depicted in Fig. 16.1. Figure 16.2 is a pho-
tograph of a life-sized replica of the mathematical phantom that was fabricated and
used to measure quantities to compare with calculations. A radionuclide could be
placed in one position in the phantom to simulate a particular source organ, and
the doses then measured in other locations.
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Fig. 16.2 Life-size model built to represent Snyder–Fisher
phantom. Various chemical mixtures are used to simulate
tissue composition in each region. Source organs can be filled
with solution of desired radionuclide. (Courtesy Oak Ridge
National Laboratory, operated by Martin Marietta Energy
Systems, Inc., for the Department of Energy.)

16.3
Methodology

The principal methodology that is implemented for internal dosimetry in ICRP-30
can be described with reference to Fig. 16.3. At time t = 0 a given amount of a
specific radionuclide (e.g., unit activity) is inhaled or ingested into the body. For
inhalation, the ICRP-30 model of the respiratory system (Section 16.4) is used to
calculate the initial deposition of the radionuclide in various compartments of the
lung and its subsequent retention there as well as its transfer to the body fluids
and the gastrointestinal (GI) tract. For ingestion of the radionuclide or its transfer
from the lung (e.g., by ciliary action and swallowing), the ICRP gastrointestinal-
tract model (Section 16.6) is used to compute the transfer of the radionuclide from
the GI tract to the body fluids as well as its excretion. Thus, by either route of intake,
the radionuclide enters the body fluids, represented by compartment a in Fig. 16.3.
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Fig. 16.3 Mathematical model usually employed for transfer of
a radionuclide from the body fluids (compartment a) to various
organs and tissues and its subsequent excretion. [From data in
Annals of the ICRP, Vol. 2, No. 3/4, ICRP Publ. 30, Part I,
International Commission on Radiological Protection, Sutton,
England (1979).]

Compartment a is linked to other compartments, b, c, . . . , i, . . . , representing var-
ious tissues and organs in the body, from which the nuclide can later be excreted.
A radionuclide undergoes metabolic clearance from these compartments, as well
as radioactive decay. Unless otherwise specified, the metabolic half-life used for the
transfer compartment a is 0.25 day. Radioactive transformations that occur in this
compartment are assumed to be distributed uniformly in the 70-kg reference man.
For simplicity, excretion in the model does not involve transport through compart-
ment a, although, realistically, the body fluids are involved. For this reason, the
calculated amount of a radionuclide in compartment a at some time after inhala-
tion or ingestion cannot be used as an estimate of the amount of the radionuclide
in the body fluids at that time.

After a radionuclide leaves the transfer compartment a, the ICRP metabolic
model continues to trace its movement through the various tissues and organs
in the body, represented by compartments b, c, . . . , i, . . . , which may be intercon-
nected. Explicit metabolic parameters are given for each radionuclide, its pertinent
chemical forms, and all organs and tissues. The activity of the radionuclide in any
organ can be calculated explicitly as a function of time after intake. The equivalent-
dose rate in the organ from decay of the radionuclide it contains can be computed
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as a function of time. In addition, if the nuclide emits penetrating radiation, other
organs of the body will be irradiated from the decay in a given organ. Using a math-
ematical model for reference man (Fig. 16.1), the ICRP methodology enables one to
calculate the equivalent-dose rates in other organs from disintegrations in a given
organ as functions of time. A complete calculation thus provides the equivalent-
dose rates in every organ and tissue of the body and the effective-dose rate as
functions of time. The committed equivalent doses and the committed effective
dose resulting from the initial intake can be evaluated, and the annual reference
level of intake (ARLI) and derived reference air concentration (DRAC) determined
(Section 14.4). When the original inhaled or ingested nuclide decays into radioac-
tive daughters, contributions of the latter are included in the determination of the
ARLI and DRAC.

We now outline explicitly how the calculation of the committed effective dose for
a radionuclide in the body can be carried out by using the ICRP metabolic models
and reference man. Several concepts will be introduced now and developed further
in the sections that follow. By definition, the committed effective dose is given by
Eq. (14.7) with τ = 50 y. We write

E(50) =
∑

T

wTHT(50), (16.1)

where the wT are the tissue weighting factors (Table 14.2), the HT(50) are the com-
mitted equivalent doses, given by Eq. (14.6), and the sum extends over all organs
and tissues T of the body. As described in the last paragraph, the committed equiv-
alent dose in a given organ is a result of irradiation by sources in both the organ
itself and in other organs. For a given organ, considered as a target organ T, one
computes and adds the contributions to the committed equivalent dose from all
organs, considered as source organs S:

HT(50) =
∑

S

USĤ(T ← S). (16.2)

Here Ĥ(T ← S) denotes the equivalent dose in T (average) per disintegration, or
transformation, of the radionuclide in S. The sum extends over all source organs
and tissues S of the body, including T. The quantity US denotes the number of
transformations of the nuclide in S during the 50-y period of the committed equiv-
alent dose.

Having outlined the calculation of the committed effective dose following the
intake of a radionuclide, we turn now in the next sections to the individual elements
needed for the computations.

16.4
ICRP-30 Dosimetric Model for the Respiratory System

The ICRP-30 model for the respiratory system, shown in Fig. 16.4, is divided into
three major parts—the nasal passage (NP), the trachea and bronchial tree (TB), and
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Fig. 16.4 Compartmental model for the respiratory system.
Table gives initial deposition fractions, half-times, and removal
fractions for each compartment and class of material for
aerosol with an AMAD of 1 µm (see text). [Reprinted with
permission from Annals of the ICRP, Vol. 2, No. 3/4, ICRP
Publ. 30, Part I, p. ii (Errata), International Commission on
Radiological Protection, Sutton, England (1979). Copyright
1979 by ICRP.]

the pulmonary parenchyma (P). In addition, a pulmonary lymphatic system (L) is
included for the removal of dust from the lungs. The direct deposition of inhaled
material, which occurs in the first three regions, varies with the particle-size dis-
tribution of the material. Basic calculations are made for reference man with an
assumed log-normal distribution of particle diameters having an assumed activ-
ity median aerodynamic diameter (AMAD) of 1 µm. The fractions D of inhaled
material that are initially deposited in the three regions are then assumed to be
DNP = 0.30, DTB = 0.08, and DP = 0.25. A procedure is given for making particle-
size corrections for other values of the AMAD. The deposition fractions for other
sizes are given in Fig. 16.5. The model is thus applicable to the inhalation of ra-
dioactive aerosols, or particulates. Inhalation of a radioactive gas is treated sepa-
rately (Section 16.11).

The model of the respiratory system describes the initial deposition and subse-
quent transport of inhaled radioactive aerosols through various compartments of
the system and into the body fluids and the GI tract. It has been found that the
dose in the NP region can be neglected for most particle sizes. The target tissue as-
sumed for the lung, therefore, is that of the combined TB, P, and L regions, having
a total mass of 1000 g. The committed equivalent dose to the lung has two compo-
nents, one from the radioactive materials residing there and another from photons
emitted by materials that are cleared from the lung and transported to other sites
in the body.

ICRP Publication 30 classifies inhaled radioactive materials as D, W, or Y (days,
weeks, or years), depending on their retention time in the pulmonary region.
Class-D materials have a half-time of less than 10 d; W materials, a half-time from
10 d to 100 d; and Y, greater than 100 d. As seen in Fig. 16.4, the four major regions
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Fig. 16.5 Deposition fractions in regions of the respiratory
model for aerosols of different AMAD (see text) between
0.2 µm and 10 µm. Dashed lines show provisional extensions
of curves outside this range. [Reprinted with permission from
Annals of the ICRP, Vol. 2, No. 3/4, ICRP Publ. 30, Part I, p. i
(Errata), International Commission on Radiological Protection,
Sutton, England (1979). Copyright 1979 by ICRP.]

of the model are each subdivided into two or four compartments, each associated
with a particular pathway of clearance. For the three classes D, W, and Y, the table
in Fig. 16.4 gives the half-time T used in each compartment and the fraction F of
material that leaves it at that implied rate. Compartments, a, c, and e are associ-
ated with the uptake of material from the respiratory system into the body fluids.
Compartments b, d, f, and g are associated with the physical transport of particles
(e.g., by mucociliary action and swallowing) into the GI tract. Compartment h in
the P region provides the pathway to the lymph system L, where some material
can be further translocated via i to the body fluids or else retained indefinitely in j.
(Compartment j is used only for class-Y materials.)

Given the rate of inhalation İ(t) of a radionuclide, ten differential equations are
used to describe the activities qa(t), . . . , qj(t) in each of the ten compartments shown
in Fig. 16.4. The equation describing a, for example, can be written

dqa

dt
= İDNPFa – λaqa – λRqa, (16.3)

where DNP = 0.30; Fa and Ta are obtained directly from the values of F and T in
the table in Fig. 16.4 for class D, W, or Y; λa = 0.693/Ta; and λR is the radioactive
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decay constant. The classifications D, W, or Y for different chemical forms of a ra-
dionuclide are provided by the ICRP along with the metabolic data. Radioactive
daughters, included in the calculations, are assumed to have the same metabolic
behavior as the original parent. While Eq. (16.3) involves only a single activity, qa,
others are more complicated. For compartment d, for example, we have

dqd

dt
= İDTBFd + λfqf + λgqg – λdqd – λRqd, (16.4)

which couples the activity qd in d to those in f and g. Given a set of initial conditions,
the system of ten linear, coupled, differential equations is solved to obtain the ac-
tivities in each of the compartments a–j as functions of time. The rate of transfer of
the inhaled radionuclide into the body fluids as a function of time is then given by

BF(t) = λaqa(t) + λcqc(t) + λeqe(t) + λiqi(t). (16.5)

Similarly, the rate of transfer into the GI tract is

G(t) = λbqb(t) + λdqd(t). (16.6)

The ICRP-30 respiratory-system model thus specifies the deposition, retention,
and removal of inhaled materials in various components of the pulmonary–lymph
system. It is used to calculate the number of transformations U for the committed
equivalent dose to the lung and to calculate source terms for the body fluids and
the GI tract.

16.5
ICRP-66 Human Respiratory Tract Model

The ICRP-30 lung model has served well to calculate occupational annual limits on
intake (ALI) and to be the foundation for many applied monitoring and control pro-
grams and procedures. It has been an extremely valuable tool for the dosimetry of
inhaled radionuclides. Nevertheless, there are significant problems in lung dosime-
try that the model was not designed or equipped to handle. For example, many
radioactive compounds were found to clear from the respiratory system at rates
considerably different from those assigned. Also, the lung dose was calculated as
an average over the total lung mass, whereas it is relatively rare that the respiratory
tract is uniformly irradiated by internally deposited aerosols. Moreover, different
tissues of the lung have different radio-sensitivity. Such factors are particularly rel-
evant for inhaled radon daughters or hot particles. In addition, the ICRP-30 worker-
oriented lung model lacked the flexibility to be applied generally to members of the
public, a matter related to increasing environmental concerns.

These and other considerations, including continued research and a growing
body of new information, led the ICRP to review and address lung dosimetry anew.
Rather than developing an entirely new model, efforts were aimed at improving
and building on the ICRP-30 model to meet an expanded variety of needs. The
work resulted in the 1994 Publication 66, Human Respiratory Tract Model for Radio-

logical Protection, with the present and considerably more sophisticated ICRP lung
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model, abbreviated HRTM. The task and outcome are described in ICRP-66. “The
objective was a model that would (1) facilitate calculation of biologically meaning-
ful doses; (2) be consistent with morphological, physiological, and radiobiological
characteristics of the respiratory tract; (3) incorporate current knowledge; (4) meet
all radiation protection needs; (5) be no more sophisticated than necessary to meet
dosimetric objectives; (6) be adaptable to development of computer software for the
calculation of relevant radiation doses from knowledge of a few readily measured
exposure parameters; (7) be equally useful for assessment purposes as for calcu-
lating recommended values for limits on uptake, e.g. ALIs; (8) be applicable to all
members of the world’s population, including specific individuals; (9) allow use of
information on the deposition and clearance of specific materials; and (10) consider
the influence of smoking, air pollutants, and diseases on the inhalation, deposition,
and clearance of radioactive particles from the respiratory tract. These objectives
have been largely met within the constraints of the available data.”

Some specific major revisions in HRTM can be briefly mentioned as examples.
Figure 16.6, taken from Publication 66, shows a considerably more involved, four-
region respiratory tract than before. Figure 16.7, which is Table 1 from ICRP-66,

Fig. 16.6 Anatomical regions of the respiratory tract model in
the 1994 ICRP Publication 66. (Courtesy International
Commission on Radiological Protection.)
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conveys an idea of the detailed nature of the model. It also shows the relationship
to the N-P, T-B, and P regions from the ICRP-30 model. Clearance and absorption
compete in each compartment with time-dependent rates in the revised model.
Breathing rates, volumes, and other parameters have been revised. The default
particle-size AMAD is increased from 1 µm to 5 µm. The revised model allows
dose calculations for specific target regions containing cells that are considered
to be susceptible to cancer induction, in contrast to the mean dose furnished by
ICRP-30. The methodology can be applied to males and females, young and old.
Effects of smoking and other inhaled pollutants can be included.

16.6
ICRP-30 Dosimetric Model for the Gastrointestinal Tract

The ICRP dosimetric model for the GI tract is shown in Fig. 16.8. Each of the four
sections consists of a single compartment: the stomach (ST), small intestine (SI),
upper large intestine (ULI), and lower large intestine (LLI). There are two pathways
out of the SI. One leads to the ULI and the other to the body fluids, the only route

Fig. 16.8 Dosimetric model for the gastrointestinal system.
Table gives masses of the sections and their contents and
clearance-rate data. [Reprinted with permission from Annals of
the ICRP, Vol. 2, No. 3/4, ICRP Publ. 30, Part I, p. 33,
International Commission on Radiological Protection, Sutton,
England (1979). Copyright 1979 by ICRP.]



524 16 Internal Dosimetry and Radiation Protection

by which ingested materials are assumed to reach the body fluids. The metabolic
rate constants λB are used by the ICRP for the various chemical elements. The
fraction f1 of a stable element that reaches the body fluids after ingestion is given
by

f1 = λB

λSI + λB
. (16.7)

Values of f1 are specified in the metabolic data of the ICRP (Section 16.12).
As with the lung, each of the four compartments in Fig. 16.8 gives rise to a first-

order differential equation describing the activity changes. Given initial conditions
and the rate of intake İ(t) into compartment ST, the four equations can be solved
for the activities in each section as functions of time. Activity entering the GI tract
from the respiratory system is included in İ(t). Radioactive daughters are included
with the parent in the ICRP calculations. The table in Fig. 16.8 gives the assumed
masses of the sections and their contents and the clearance rates. The activity trans-
ferred to the body fluids as a function of time is given by λBqSI(t).

When the source organ is a section of the GI tract, the committed equivalent
dose is estimated for the mucosal layer of the walls of each section for penetrating
and nonpenetrating radiations. Other organs are also irradiated by sources in the
contents of the GI tract, and the tract is irradiated by materials located in other parts
of the body. The ICRP has compiled values of US for various ingested radionuclides
and daughters in the sections of the GI tract. It also gives data for sections of the
GI tract as target organs with the contents of these sections and other organs of the
body as source organs.

In 2007 the ICRP issued its revised dosimetric model of the GI tract, designated
HATM. Publication 100, Human Alimentary Tract Model for Radiological Protection,
treats intakes by children as well as male and female adults, with applicability to
both occupational and environmental exposures. Also, like the companion HRTM,
the HATM enables dose calculations to be made for specific target regions consid-
ered important for cancer induction.

16.7
Organ Activities as Functions of Time

The calculation of activities in various organs and tissues of the body as functions
of time after intake is exemplified by computations for the GI tract. We let İ(t)
represent the rate of activity intake (e.g., in Bq s–1) of a given radionuclide into the
stomach as a function of time t. The rate of change of the activity, qST(t), in the
stomach at any time is then given by the equation

dqST

dt
= İ(t) – λRqST – λSTqST. (16.8)

Here, λR is the radioactive decay constant of the nuclide and λST is the metabolic
rate constant given in Fig. 16.8 (λST = 24 d–1). The rate of depletion, (λR +λST)qST, is
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governed by the two processes, radioactive decay and biological removal. In general,
the effective decay constant for a radionuclide in any tissue or organ compartment
with a metabolic removal rate λM is given by writing

λEff = λR + λM. (16.9)

In terms of the radiological half-life, TR = 0.693/λR, and the metabolic half-time,
TM = 0.693/λM, it follows that the effective half-life in the compartment is given by

TEff = TRTM

TR + TM
. (16.10)

Note that TEff is smaller than both TR and TM.
We treat explicitly the introduction of a single amount of activity A0 of a radionu-

clide into the stomach at time t = 0. Then İ(t) = 0 when t > 0 in Eq. (16.8). With the
initial condition, qST(0) = A0, the equation has the solution

qST(t) = A0e–λ1t, (16.11)

where λ1 = λR + λST has been written to simplify notation. Mathematically, the re-
sult (16.11) is the same as Eq. (4.8) for radioactive decay.

The activity qSI(t) in the small intestine satisfies the rate equation (see Fig. 16.8),

dqSI

dt
= λSTqST – λ2qSI, (16.12)

where λ2 = λR + λSI + λB. The rate constants λSI and λB are defined in Fig. 16.8, and
qST is given by Eq. (16.11). The term λSTqST represents the metabolic rate of activity
transfer from the stomach into the small intestine. (Whereas the depletion rate in
a compartment is the result of radioactive decay and metabolic processes, the input
rate is governed by biological processes alone.) Writing

dqSI

dt
+ λ2qSI = λSTA0e–λ1t, (16.13)

we multiply both sides by the integrating factor eλ2t in order to solve for qSI.1)

eλ2t

(
dqSI

dt
+ λ2qSI

)
≡ d

dt
(qSIeλ2t) = λSTA0e(λ2–λ1)t. (16.14)

Integration gives

qSIeλ2t = A0λST

λ2 – λ1
e(λ2–λ1)t + c1, (16.15)

1 Equation (16.12) is mathematically equivalent
to Eq. (4.31), which was solved earlier for
serial radioactive decay. We show the use of

an integrating factor here, because it is a
convenient device for continuing to the next
compartments.
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where c1 is the constant of integration. With the initial condition, qSI(0) = 0, we
find c1 = –A0λST/(λ2 – λ1). Thus,

qSIeλ2t = A0λST

λ2 – λ1
[e(λ2–λ1)t – 1], (16.16)

or

qSI(t) = A0λST

λ2 – λ1
[e–λ1t – e–λ2t]. (16.17)

[This solution is similar to Eq. (4.40).]
For the activity in the upper large intestine,

dqULI

dt
= λSIqSI – λ3qULI, (16.18)

where λ3 = λR + λULI. Using the integrating factor eλ3t and Eq. (16.17) for qSI, we
write in place of (16.18)

eλ3t

(
dqULI

dt
+ λ3qULI

)
= A0λSIλST

λ2 – λ1
[e(λ3–λ1)t – e(λ3–λ2)t]. (16.19)

Integrating both sides yields

qULIeλ3t = A0λSIλST

λ2 – λ1

[
e(λ3–λ1)t

λ3 – λ1
–

e(λ3–λ2)t

λ3 – λ2

]
+ c2, (16.20)

where c2 is the constant of integration. With the initial condition, qULI(0) = 0, it
follows that

c2 = –
A0λSIλST

λ2 – λ1

[
1

λ3 – λ1
–

1
λ3 – λ2

]
= A0λSIλST

(λ3 – λ2)(λ3 – λ1)
. (16.21)

Substituting this value for c2 and multiplying both sides of Eq. (16.20) by e–λ3t, we
obtain

qULI(t) = A0λSIλST

[
e–λ1t

(λ2 – λ1)(λ3 – λ1)
+

e–λ2t

(λ3 – λ2)(λ1 – λ2)

+
e–λ3t

(λ3 – λ2)(λ3 – λ1)

]
. (16.22)

We could proceed in similar fashion to solve for the activity in the lower large
intestine as a function of time, but will not do so.

The general decay and growth functions, such as those described by Eqs. (16.11),
(16.17), and (16.22), are often referred to as the Bateman equations. They date from
the early days of study with the naturally occurring radioactive decay chains.2)

2 H. Bateman, Proc. Cambridge Philos. Soc. 15,
423 (1910).
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Example

(a) What is the effective half-life of 198Au in the stomach? (b) What is the effective
decay constant there?

Solution

(a) The effective half-life is given by Eq. (16.10). From Appendix D, the radiological
half-life is TR = 2.70 d. From Fig. 16.8, we find that the metabolic half-time is TST =
0.693/λST = 0.693/(24 d–1) = 0.0289 d. Equation (16.10) gives

TEff = TRTST

TR + TST
= 2.70 × 0.0289

2.70 + 0.0289
= 0.0286 d. (16.23)

(b) The effective decay constant is

λEff = 0.693
TEff

= 0.693
0.0286 d

= 24.2 d–1. (16.24)

One can also calculate λEff as the sum of the radiological and metabolic constants.
One has λR = 0.693/(2.70 d) = 0.257 d–1 and, from Fig. 16.8, λST = 24 d–1, giving
λEff = λR + λST = 24.3 d–1.

Example

For a single ingestion of 198Au at time t = 0, calculate the fractions of the initial
activity in the stomach, small intestine, and upper large intestine as functions of
time. In Eq. (16.7), f1 = 0.1.

Solution

We evaluate the rate constants for Eqs. (16.11), (16.17), and (16.22). It is convenient
to express time in days. From the last example, the radioactive decay constant is λR =
(0.257 d–1) [(1/24) d h–1] = 0.0107 h–1. With the help of Fig. 16.8 and the given value,
f1 = 0.1, we find

λB = f1λSI

1 – f1
= 0.1 × (6/24) h–1

1 – 0.1
= 0.0278 h–1. (16.25)

Thus, with time in hours,

λ1 = λR + λST = 0.0107 +
24
24

= 1.01 h–1. (16.26)

λ2 = λR + λSI + λB = 0.0107 +
6

24
+ 0.0278 = 0.289 h–1. (16.27)

λ3 = λR + λULI = 0.0107 +
1.8
24

= 0.0857 h–1. (16.28)

The fraction of the ingested activity in the stomach after t hours is, from Eq. (16.11),

qST(t)
A0

= e–λ1t = e–1.01t. (16.29)
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The fraction in the small intestine is given by Eq. (16.17), with λ2 –λ1 = 0.289–1.01 =
–0.721 h–1 and λST = 1 h–1:

qSI(t)
A0

= 1
–0.721

(e–1.01t – e–0.289t) = 1.39(e–0.289t – e–1.01t). (16.30)

Additionally, for Eq. (16.22) we need λSI = 6/24 = 0.250 h–1, λ3 – λ1 = 0.0857 – 1.01 =
–0.924 h–1, and λ3 – λ2 = 0.0857 – 0.289 = –0.203 h–1. Thus,

qULI(t)
A0

= (0.250)(1)
[

e–1.01t

(–0.721)(–0.924)
+

e–0.289t

(–0.203)(0.721)
(16.31)

+
e–0.0857t

(–0.203)(–0.924)

]

= 0.375e–1.01t – 1.71e–0.289t + 1.33e–0.0857t. (16.32)

As a check, we note that qULI(0) = –0.005, which, to within roundoff, is the required
initial condition, qULI(0) = 0.

The fractional activities, (16.29), (16.30), and (16.32), are plotted in Fig. 16.9. With
the 1-h mean metabolic residence time in the stomach, the fraction of the radio-
nuclide there drops rapidly below unity following ingestion. Equation (16.26) shows
that radioactive decay adds only 1% to the clearance rate from the stomach. The ac-
tivity in the small intestine builds up to a maximum at 1.75 h; that in the upper large
intestine reaches a maximum at 7 h. About 70% of the originally ingested activity is in
these three compartments at this time. After about 24 h, the fractional activity in the
ULI is 0.17. Very little additional activity enters the ULI then, and so qULI(t) declines
exponentially thereafter, governed principally by the third term in Eq. (16.32). The

Fig. 16.9 Fractions of activity A0, ingested at time t = 0, in the
stomach (ST), small intestine (SI), and upper large
intestine (ULI) as functions of time. See Eqs. (16.29), (16.30),
and (16.32) in the example in text.
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rate λ3 = 0.0857 h–1 = 2.06 d–1 reflects the combined effect of the biological removal
and radioactive decay.

Returning to Fig. 16.3, we next set up equations to describe the transport of ac-
tivity from the body fluids (compartment a) to a tissue compartment b and the
computation of the activity in b as a function of time. We let İ(t) represent the rate
at which a radionuclide enters the body fluids at time t after its inhalation or in-
gestion into the body. If qa(t) is the activity of the radionuclide in compartment a,
λR is its radioactive decay constant, and λa is the metabolic clearance rate of that
element from a, we then have

dqa(t)
dt

= İ(t) – λRqa(t) – λaqa(t). (16.33)

If b represents the fraction of the element that goes to compartment b when it
leaves a, then the activity qb(t) of the radionuclide in b at time t satisfies the equation

dqb(t)
dt

= bλaqa(t) – λRqb(t) – λbqb(t), (16.34)

where λb is the metabolic clearance rate from b. Similar equations describe the
activities qi(t) of the radionuclide in other tissue compartments. With given initial
conditions and specific metabolic data, the equations can be solved for the activities
qi(t) in the various organs and tissues. The 50-y integrals of the qi(t) then give the
numbers of transformations US [Eq. (16.2)] in the source organs or tissues i.

We treat a single amount of activity, A0 = qa(0), of a radionuclide introduced
instantaneously into the transfer compartment a at time t = 0 and consider a single
tissue compartment, b. Equations (16.33) and (16.34) can be written

dqa

dt
= –(λR + λa)qa (16.35)

and

dqb

dt
= bλaqa – (λR + λb)qb. (16.36)

Like Eq. (16.11), having the same initial condition, we write for the solution of
Eq. (16.35)

qa(t) = A0e–(λR+λa)t. (16.37)

Equation (16.36) is mathematically the same as Eq. (16.12) with the same initial
condition, qb(0) = 0. Analogous to Eq. (16.17), the solution to (16.36) is

qb(t) = A0bλa

λb – λa

[e–(λR+λa)t – e–(λR+λb)t]. (16.38)

The activity in b thus builds up from its initial value of zero to a maximum from
which it decreases thereafter, like the activity qSI in Fig. 16.9.

We continue in the next section with the computation of quantities needed to
determine the Ĥ(T ← S) in Eq. (16.2).
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16.8
Specific Absorbed Fraction, Specific Effective Energy, and Committed Quantities

The specific equivalent dose, Ĥ(T ← S), in a target organ T due to the radiation
emitted per transformation by a radionuclide in organ S (which can be the same
as T), appears in Eq. (16.2). For particular choices of T, S, and radiation type, one
can obtain this quantity from knowledge of the fraction of the energy emitted in S
that is absorbed in T. This absorbed fraction (AF) is designated AF(T ← S)R, where
R denotes the radiation type. Dividing the absorbed fraction by the mass MT of
the target organ gives the specific absorbed fraction, AF(T ← S)R/MT. The ICRP
has published tables of specific absorbed fractions, expressed in g–1, for use in
computing the committed quantities given by Eqs. (16.1) and (16.2).

Table 16.2 shows an example of specific absorbed fractions in a number of target
organs for photons of several energies emitted from the thyroid as source organ.
The table illustrates the effect of the decrease in the linear attenuation coefficient
(Section 8.7) with increasing photon energy over the range considered. The specific
absorbed fractions for the thyroid as target decrease with the greater probability of
escape of the higher-energy photons from the source organ. The same holds true
for the total body. In contrast, the greater penetrability of the higher-energy pho-
tons leads to an increase in the specific absorbed fractions in tissues outside the
thyroid. Since 0.010-MeV photons are so strongly absorbed, the increase is dra-
matic at 0.100 MeV.

For most organs it is assumed that the energies of all alpha and beta particles
are absorbed in the source organ. (The exceptions, which we shall not go into, are
mineral bone and the contents of the gastrointestinal tract.) Thus AF(T ← S)i = 0
unless T and S are the same when i denotes alpha or beta radiation. Then also
AF(T ← S)i = 1.

The absorbed fractions for gamma rays cannot be evaluated in a simple way.
Their values depend in a complicated fashion on the photon energy; the size, den-

Table 16.2 Specific Absorbed Fraction (g–1) of Photon Energy in
Several Target Organs and Tissues for Monoenergetic Photon
Source in Thyroid (from ICRP Publication 23)

Photon Energy (MeV)
Target 0.010 0.100 1.00

Stomach wall 2.07 E-25 1.90 E-07 4.62 E-07
Small intestines plus contents 4.58 E-35 1.97 E-08 1.38 E-07
Lungs 1.52 E-13 3.67 E-06 3.83 E-06
Ovaries 2.33 E-23 1.09 E-08 9.62 E-08
Red marrow 2.68 E-09 4.87 E-06 2.57 E-06
Testes 2.48 E-28 7.87 E-10 2.46 E-08
Thyroid 4.29 E-02 1.44 E-03 1.54 E-03
Total body 1.43 E-05 4.71 E-06 4.26 E-06
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sity, and relative positions of the source and target organs; and on the specific in-
tervening tissues. The Medical Internal Radiation Dose (MIRD) Committee of the
Society of Nuclear Medicine has made extensive calculations of the specific ab-
sorbed fractions (absorbed fraction per gram of target) for a number of source and
target organs in reference man. Monte Carlo techniques are employed in which the
transport of many individual photons through the body is carried out by computer
codes and the resulting data compiled to obtain the specific absorbed fractions. Cal-
culations have been performed both for monoenergetic photons and for the spectra
of photons emitted by a number of radionuclides.

In general, a radionuclide in S emits several kinds of radiation R, with yields YR

and average energies ER. Multiplication of YRER by the specific absorbed fraction
gives the average absorbed dose in T per transformation in S contributed by the
radiation R. Expressing the energies in MeV, the ICRP defines the specific effective
energy (SEE) imparted per gram of tissue in a target organ T from the emission of
a specified radiation R in a source organ S per transformation as follows:

SEE (T ← S)R ≡ AF (T ← S)R

MT
YRERwR MeV g–1. (16.39)

This amount of energy absorbed per gram, weighted by the factor wR, thus rep-
resents the contribution of radiation of type R emitted per transformation of a
radionuclide in S to the equivalent dose in T. To express this contribution in
sieverts, we multiply the SEE by the factor (1.60 × 10–13 J MeV–1)/(10–3 kg g–1) =
1.60 × 10–10 Sv (MeV g–1)–1. Summing over all types of radiation emitted by the
radionuclide, we obtain3)

Ĥ(T ← S) = 1.6 × 10–10
∑

R

SEE (T ← S)R Sv. (16.40)

Returning to Eq. (16.2), we multiply by the number of transformations US in 50 y
and sum over all organs S to obtain

HT(50) = 1.6 × 10–10
∑

S

US

∑
R

SEE (T ← S)R Sv (16.41)

for the committed equivalent dose in T. Finally, the committed effective dose,
Eq. (16.1), can be written

E(50) = 1.6 × 10–10
∑

T

wT

∑
S

US

∑
R

SEE (T ← S)R Sv. (16.42)

If there are several radionuclides j in the body, then one adds the individual contri-
butions given by Eq. (16.42):

E(50) = 1.6 × 10–10
∑

T

wT

∑
S

∑
j

[
US

∑
R

SEE (T ← S)R

]
j

Sv. (16.43)

3 Generally, dosimetric results are expressed
with no more than two significant figures for

internal dosimetry. The ARLI and DRAC are
given to only one significant figure.
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Example

What is the contribution of the beta radiation from 131I in the thyroid to the specific
effective energy values for various target organs? The mass of the thyroid is 20 g. What
will be the effect on the value of the SEE when the photons from 131I are included?

Solution

In this example the source organ is the thyroid and the only type of radiation R that
we are to consider initially is beta rays. Because their range is small compared with
the size of the 20-g thyroid, we assume that the beta particles are completely absorbed
in the source organ. Therefore, AF(other organs ← thyroid)131I(β–) = 0 and the corre-
sponding contributions to the SEE(other organs ← thyroid)131I(β–) = 0. (The absorbed
fractions for the other target organs are not zero for the gamma rays emitted by 131I
in the thyroid. The SEE for the gamma photons are discussed below.) It remains to
compute the SEE for the beta rays in the thyroid itself as the target organ. The various
factors that enter Eq. (16.39) are determined as follows. The thyroid mass MT = 20 g
is given. The absorbed fraction AF(thyroid ← thyroid) = 1, and wR = 1 (Table 14.1).
The yields YR and energies ER per transformation can be obtained from Appendix D.
(We assume, when not given, that the mean beta-particle energy is one-third the max-
imum.) Thus we obtain from Eq. (16.39)

SEE (thyroid ← thyroid)131I(β–) = 1
20

(0.006 × 0.269 + 0.89 × 0.192

+ 0.07 × 0.097 + 0.02 × 0.069)

= 0.009 MeV g–1 (16.44)

per transformation. Including the photons from 131I will make all of the SEE(other
organs ← thyroid) �= 0. Since most of the photon energy emitted inside the small
thyroid will escape from the organ, the specific effective energy SEE(thyroid ←
thyroid)131I(γ ) is very much smaller than that of the β–. It turns out that

SEE(thyroid ← thyroid)131I = SEE(thyroid ← thyroid)131I(β–)

+ SEE(thyroid ← thyroid)131I(γ)

= 0.010 MeV g–1 (16.45)

per transformation. As described in the next paragraph, this is the correct value as
obtained from the detailed calculations.

Complete, detailed decay-scheme data were used to calculate the specific ab-
sorbed fractions and specific effective energies used in the ICRP-30 methodology.
As an example, in place of the simple decay scheme from Appendix D that we used
for 131I in the example just given, the ICRP calculations used the complex decay
data shown in Fig. 16.10. The yields and average energies are given for five modes
of β– decay, a sixth mode (β–5) contributing less than 0.1% to

∑
YRER for the beta

particles. A total of nine gamma photons are included, along with five internal-
conversion electrons and the Kα1 and Kα2 daughter xenon X rays. For the partic-
ular example chosen here, the beta-particle contribution [Eq. (16.44)] turns out to
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Fig. 16.10 Decay-scheme data for 131I as given in ICRP
Publication 38. [Reprinted with permission from Radionuclide
Transformations, ICRP Publ. 38, p. 453, International
Commission on Radiological Protection, Sutton, England
(1983). Copyright 1983 by ICRP.]

be close to the total value [Eq. (16.45)] obtained from the detailed scheme shown
in Fig. 16.10. The close agreement results because (1) we were not far off in esti-
mating

∑
YRER from Appendix D for the beta particles plus conversion electrons

and (2) most of the photon energy escapes from the small thyroid. As is more often
the case, however, self-absorption of photons in an organ is important and simple
estimates are not reliable. When the source and target organs are different, then
the detailed Monte Carlo calculations offer the only feasible way of obtaining all of
the needed specific absorbed fractions reliably. As mentioned in connection with
Fig. 16.2, some absorbed-fraction computations have been checked experimentally.

Today, detailed decay data for more than 800 radionuclides are maintained in
computer files by the Dosimetry Research Group at the Oak Ridge National Lab-
oratory.4) The data base has been assembled over the years in conjunction with
Publications 30 and 38 and subsequent work of the ICRP and publications of the
MIRD Committee of the Society of Nuclear Medicine, mentioned earlier. An associ-
ated program, which can be run on a personal computer, calculates age-dependent

4 K. F. Eckerman, R. J. Westfall, J. C. Ryan, and
M. Cristy, Nuclear Decay Data Files of the

Dosimetry Research Group, Report

ORNL/TM-12350, Oak Ridge National
Laboratory, Oak Ridge, Tenn. (Dec., 1993).
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specific effective energies for a newborn and children of ages 1 y, 5 y, 10 y, and
15 y as well as a 58-kg adult female and the 70-kg adult reference man. The reader
is referred to Section 16.13 for additional information on decay-scheme data for
internal dosimetry.

16.9
Number of Transformations in Source Organs over 50 Y

The final step needed in the methodology for obtaining the committed quantities
is the determination of the numbers of transformations US that occur in source
organs and tissues S during the 50 y following the intake of a radionuclide. We
present some detailed calculations for a two-compartment model, consisting of the
body fluids (transfer compartment a) and a single additional compartment b.

After the intake of an initial activity A0 of a radionuclide into compartment a

at time t = 0 (with no prior activity present), Eqs. (16.37) and (16.38) describe the
time-dependent activities in a and b. We obtain the number of transformations Ua

and Ub of the nuclide in the two compartments from time t = 0 to any subsequent
time T by integrating the activities:

Ua(T) =
∫ T

0
qa(t) dt = –

A0

λR + λa

e–(λR+λa)t
∣∣∣∣
T

0
(16.46)

= A0

λR + λa

(1 – e–(λR+λa)T) (16.47)

and

Ub(T) =
∫ T

0
qb(t) dt (16.48)

= bλaA0

λb – λa

(
1 – e–(λR+λa)T

λR + λa

–
1 – e–(λR+λb)T

λR + λb

)
. (16.49)

The numbers of transformations Ua and Ub in compartments a and b for a ra-
dionuclide with decay constant λR can thus be evaluated explicitly for the commit-
ted equivalent dose (T = 50 y), given the metabolic parameters λa, λb, and b.

Example

Use the two-compartment model just described for a radionuclide having a half-life
of 0.430 d. The metabolic half-life in the body fluids (compartment a) is 0.25 d, the
fraction b = 0.22 of the nuclide goes to organ b when it leaves a, the metabolic half-life
in b is 9.8 y, the organ weighting factor for b is wT = 0.05, and the mass of b is 144 g.
Calculate the number of transformations Ua and Ub of the radionuclide in the two
compartments during the 50 y following the single entrance of 1 Bq of the radionu-
clide into compartment a at time t = 0. If the radionuclide emits only beta particles
with an average energy E = 0.255 MeV, what are the resulting committed equivalent
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doses for organ b and for a (the total body)? What is the committed effective dose?
(Neglect any doses that occur between intake and entry into compartment a).

Solution

We use Eqs. (16.47) and (16.49) to calculate Ua and Ub. From the given radioactive
and metabolic half-lives, we have the following decay rates:

λR = 0.693
0.43

= 1.6 d–1, (16.50)

λa = 0.693
0.25

= 2.8 d–1, (16.51)

λb = 0.693
9.8 × 365

= 1.9 × 10–4 d–1. (16.52)

(We shall express time in days and retain only two significant figures in the compu-
tations.) The time period is T = 50 × 365 = 1.8 × 104 d, and so the exponential terms
in Eqs. (16.47) and (16.49) are negligible compared with unity. The initial activity in
compartment a is

A0 = 1 Bq = 1 s–1 × 86,400 s d–1 = 8.6 × 104 d–1. (16.53)

Using (16.47), we find

Ua = 8.6 × 104 d–1

(1.6 + 2.8) d–1 = 2.0 × 104. (16.54)

Using Eq. (16.49) (with λb neglected compared with λR), we obtain

Ub = bλaA0

λb – λa

(
λb – λa

(λR + λa)(λR + λb)

)
(16.55)

= 0.22 × 2.8 × 8.6 × 104

(1.6 + 2.8)(1.6)
= 7.5 × 103. (16.56)

The committed equivalent dose for each tissue or organ is given by Eq. (16.41) with
the specific effective energy calculated from Eq. (16.39). As with the earlier example
(Section 16.8) involving 131I beta particles, AF = 1 when the source and target are
the same and AF = 0 otherwise. Also, wR = 1 and YE = 0.26. Transformations in
compartment a can be considered to be uniformly distributed over the whole body,
having the mass M = 70,000 g. From Eq. (16.39) we have for the whole body (WB)

SEE(WB ← WB) = 1
70,000

(0.26 × 1) = 3.7 × 10–6 MeV g–1 (16.57)

per transformation. For compartment b, having the given mass 144 g,

SEE(b ← b) = 1
140

(0.26 × 1) = 1.9 × 10–3 MeV g–1 (16.58)

per transformation. The committed equivalent doses are, by Eq. (16.41),

HWB(50) = 1.6 × 10–10UaSEE(WB ← WB) (16.59)

= 1.6 × 10–10 × 2.0 × 104 × 3.7 × 10–6 = 1.2 × 10–11 Sv (16.60)
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and

Hb(50) = 1.6 × 10–10UbSEE(b ← b) (16.61)

= 1.6 × 10–10 × 7.5 × 103 × 1.9 × 10–3 = 2.3 × 10–9 Sv. (16.62)

The last number represents the committed equivalent dose in organ b that is de-
livered by radionuclides in b after they have left a. Since organ b is also irradiated
as a part of the whole body by radionuclides in a, the total committed equivalent
dose in b is the sum of (16.62) and (16.60). The later contribution, however, is neg-
ligible. The committed effective dose [Eq. (16.42)] is the sum of (16.60) and (16.62),
weighted by the given factor wT = 0.05. Thus, E(50) = 1.2×10–11 +0.05×2.3×10–9 =
1.3 × 10–10 Sv.

In ICRP Publication 30, the committed dose equivalent per unit intake, the an-
nual limit on intake (ALI), and the derived air concentration (DAC) all refer to the
intake of a specified radionuclide alone. If the radionuclide decays into radioactive
daughters, then these are also included in the calculations of committed equivalent
dose. The computations include either specific metabolic data for the daughters or
the assumption that they follow the transport of the parent. Values of the number
of transformations US in source organs S for a radionuclide are computed together
with values U′

S, U′′
S, and so forth, for the daughter radionuclides that build up in

the body during the 50 y following intake of the parent.
With the adoption of ICRP Publication 60, the Commission instituted the use

of the committed effective dose in place of the committed effective dose equiva-
lent. These are fundamentally different quantities. The ICRP also defined the ALI
with reference to a committed effective dose of 20 mSv in place of a committed
effective dose equivalent of 50 mSv. In addition, a new set of tissue weighting fac-
tors was adopted. These changes and the 1994 ICRP-66 revision of the lung model
necessitated new calculations of the relationships between intakes and resulting
committed organ equivalent doses and individual committed effective doses. The
new information is presented in the 1995 ICRP Publication 68, Dose Coefficients for

Intakes of Radionuclides by Workers. The complete revision of the ICRP-30 protocols,
which is in progress, will take into account the newer anatomical and physiological
data (ICRP-89) and continuing development of biokinetic models. Dose coefficient

is defined in ICRP-68 as “the committed tissue equivalent dose per unit acute in-
take hT(τ ) or committed effective dose per unit acute intake e(τ ), where τ is the
time period in years over which the dose is calculated (e.g., e(50)).” The dose co-
efficient has the units Sv Bq–1. The quantity is also referred to as a dose conversion

factor (DCF). The acute intake of an amount of activity (by inhalation or ingestion)
multiplied by the DCF gives the committed effective dose. For the 50-y committed
effective dose of 20 mSv, the annual limit on intake is thus given in terms of the
dose coefficient e(50) by

ALI = 0.020 Sv
e(50) Sv Bq–1 = 0.020

e(50)
Bq. (16.63)
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Table 16.3 Effective Dose Coefficients (Sv Bq–1) for Inhalation
and Ingestion, einh(50) and eing(50), from ICRP Publication 68

Inhalation Ingestion
einh(50) einh(50) eing(50)

Nuclide Type
†

f1 (1 µm AMAD) (5 µm AMAD) f1

90Sr F 0.300 2.4 × 10–8 3.0 × 10–8 0.300 2.8 × 10–8

S 0.010 1.5 × 10–7 7.7 × 10–8 0.010 2.7 × 10–9

131I F 1.000 7.6 × 10–9 1.1 × 10–8 1.000 2.2 × 10–8

137Cs F 1.000 4.8 × 10–9 6.7 × 10–9 1.000 1.3 × 10–8

226Ra M 0.200 1.6 × 10–5 1.2 × 10–5 0.200 2.8 × 10–7+

† Rate of absorption into blood from respiratory tract: F = fast,
M = moderate, S = slow.

Table 16.3 shows a sample of dose coefficients for inhalation (1 µm and 5 µm
AMAD) and for ingestion from Publication 68. Additional data given in ICRP-68
include f1 values for inhalation and ingestion of various compounds, lung clear-
ances, and the treatment of gases and vapors. Whereas the deposition of particu-
lates in the respiratory tract is assumed to be determined by the size distribution,
the situation is different for a gas or vapor. In the latter case, the fate of the inhaled
radionuclide depends on its specific chemical form.

16.10
Dosimetric Model for Bone

A great deal of effort has been devoted to studying the intake, deposition, and re-
tention of radionuclides in the skeleton and its substructures. We shall make only
a few remarks here about bone dosimetry.

ICRP Publication 30 states,

The cells at carcinogenic risk in the skeleton have been identified as the
haematopoietic stem cells of marrow, and among the osteogenic cells,
particularly those on endosteal surfaces, and certain epithelial cells close
to bone surfaces (ICRP Publication 11). The haematopoietic stem cells in
adults are assumed to be randomly distributed predominantly throughout
the haematopoietic marrow within trabecular bone (ICRP Publication 11).
Therefore, dose equivalent to those cells is calculated as the average over
the tissue which entirely fills the cavities within trabecular bone. For the
osteogenic tissue on endosteal surfaces and epithelium on bone surfaces
the Commission recommends that dose equivalent should be calculated
as an average over tissue up to a distance of 10 µm from the relevant bone
surfaces (para. 47, ICRP Publication 26).
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The two principal target tissues for bone dosimetry are thus the active red bone
marrow and cells near the bone surfaces. Except for gamma emitters, the source
tissues in bone are cortical and trabecular bone. The ICRP gives specific details
for estimating the number of transformations in trabecular and cortical bone and
the needed absorbed fractions. Some inhaled or ingested elements are assumed
to become distributed throughout the bone volume, while others are assumed to
attach on bone surfaces. Generally, an alkaline-earth radionuclide with a radioactive
half-life greater than 15 days belongs to the former group, while the shorter lived
elements reside on the bone surfaces.

The alkaline-earth elements, which include calcium and strontium, have re-
ceived much attention in bone dosimetry. A special task group of the ICRP was
formed to study their metabolism in man. The extensive human data and expe-
rience with radium in the bone was mentioned in Section 13.7. Bone-seeking ra-
dionuclides, which also include those of strontium and plutonium, are considered
dangerous because they irradiate the sensitive cells of the marrow. They all produce
cancer in laboratory animals at sufficiently high levels of exposure.

Bone dosimetry is a continuing area of active research. In addition to its role
in radiation protection for internal emitters, it is often an important consideration
in radiation therapy. It then needs to be tailored toward the specific patient. In
some treatments, the dose to the active (red) bone marrow is the limiting factor.
ICRP Publication 89 includes extensive reference values for the human skeleton.
These are the age- and gender-dependent compilations from the 1995 ICRP Publi-
cation 70, Basic Anatomical and Physiological Data for Use in Radiological Protection:

The Skeleton. This document updated and extended the earlier data on ICRP refer-
ence man.

16.11
ICRP-30 Dosimetric Model for Submersion in a Radioactive Gas Cloud

The last important model to be described is that for submersion in a cloud of ra-
dioactive gas. In this case the organs of the body can be irradiated by gas that is
outside the body, absorbed in the body’s tissues, and contained in the lungs.

To see how these sources limit the exposure of a radiation worker, ICRP-30 treats
a cloud of infinite extent with a constant, uniform concentration C Bq m–3 of a
gaseous radionuclide. For a person submerged in the cloud, one needs to consider
(a) the equivalent-dose rate ḢE to any tissue from external radiation, (b) the rate ḢA

to the tissue from the gas absorbed internally in the body, and (c) the rate ḢL to the
lung from the gas contained in it. We discuss each of these in turn.

For irradiation from outside the body, we let s represent the equivalent-dose rate
in sieverts per hour (Sv h–1) in the air per Bq g–1 of air. The rate in the air from C

Bq m–3 is Cs/ρA, where ρA is the density of air (∼ 1300 g m–3). The equivalent-dose
rate at the body surface of a person submerged in the cloud is then given by Csk/ρA,
where k is the ratio of the mass stopping powers of tissue and air (k ∼= 1). Therefore,
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one can express the equivalent-dose rate in a small volume of tissue in the body by
writing

ḢE = CskgE

ρA
Sv h–1, (16.64)

where gE is a geometrical factor that allows for shielding by intervening tissues.
For alpha particles and low-energy beta particles, such as those of tritium, gE = 0.
These radiations cannot penetrate to the lens of the eye (at a depth of 3 mm) or to
the basal layer of the epidermis (at a depth of 70 µm). For most other beta emitters
and for low-energy photons, gE ∼= 0.5 near the body surfaces and approaches zero
with increasing depth. For high-energy photons, gE ∼= 1 throughout the body.

For irradiation from gas absorbed in the body, the ICRP considers a prolonged
exposure to the cloud, which results in equilibrium concentrations of the gas in the
air and in tissue. The concentration CT of gas in the tissue is then given by

CT = δC

ρT
Bq g–1, (16.65)

where ρT is the density of tissue (∼ 106 g m–3) and δ is the solubility of the gas
in tissue, expressed as the volume of gas in equilibrium with a unit volume of
tissue at atmospheric pressure. The solubility increases with the atomic weight of
the gas, varying in water at body temperature from ∼ 0.02 for hydrogen to ∼ 0.1
for xenon. For adipose tissue the values may be larger by a factor of 3–20. For the
equivalent-dose rate in tissue from absorbed gas, the ICRP writes

ḢA = sδCgA

ρT
Sv h–1, (16.66)

where gA is another geometric factor, depending on the size of a person and the
range of the radiation. For alpha and beta particles and low-energy photons, gA ∼= 1
for tissues deep inside the body and gA ∼= 0.5 for tissues at the surface. For energetic
photons gA � 1.

The equivalent-dose rate in the lung from the gas it contains can be written

ḢL = sCVLgL

ML
Sv h–1, (16.67)

where VL is the average volume of air in the lungs (∼ 3 × 10–3 m3), ML is the mass
of the lungs (1000 g), and gL is a geometrical factor (∼= 1 for alpha and beta particles
and low-energy photons and decreasing with increasing photon energy).

The three rates (16.64), (16.66), and (16.67) can be applied in the following way.
For tritium, ḢE = 0 for all relevant tissues of the body, because this nuclide emits
only low-energy beta particles. The ratio of the equivalent-dose rate in any tissue
from absorbed gas to the rate in the lung from the gas it contains is

ḢA

ḢL
= δgAML

VLgLρT
. (16.68)
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With gA ∼= gL ∼= 1 for tritium, substitution of values just given leads to the ratio

ḢA

ḢL

∼= δ × 1 × 1000 g
3 × 10–3 m3 × 1 × 106 g m–3 = δ

3
. (16.69)

The value of δ for tritium is ∼ 0.02 for aqueous tissues and ∼ 0.05 for adipose
tissues. It follows that the equivalent-dose rate to the lung from the gas contained
in it, which is some 60–150 times greater than the rate to any tissue from absorbed
gas, is the limiting factor for submersion in a cloud of elemental tritium. (The limit
for tritiated water, which is much smaller than that for elemental tritium, restricts
most practical cases of exposure to tritium.)

Many noble gases emit photons and energetic beta particles. Then, for tissues
near the surface of the body, gE ∼= 0.5. From Eqs. (16.64) and (16.67) one has

ḢE

ḢL
= kgEML

ρAVLgL

∼= 1 × 0.5 × 1000
1300 × 3 × 10–3 gL

� 130, (16.70)

where the inequality reflects the fact that gL ≤ 1. Thus the equivalent-dose rate to
tissues near the body surfaces is more than 130 times ḢL. From (16.64) and (16.66)
we find

ḢE

ḢA
= kgEρT

ρAδgA

∼= 1 × 0.5 × 106

1300δgA
(16.71)

∼= 400
δgA

� 400
δ

, (16.72)

since gA ≤ 1. Since δ � 2 always,

ḢE

ḢA
� 200. (16.73)

For these noble gases, the external radiation will be the limiting factor for a person
submerged in a cloud.

Conversion factors are used by the ICRP to apply the results obtained for infinite
clouds to exposure in rooms of sizes from 100 m3 to 1000 m3.

16.12
Selected ICRP-30 Metabolic Data for Reference Man

In this section we provide a small sample of metabolic data for reference man for
several radionuclides. The ICRP-30 fractions f1 for these nuclides are the same as
the current values shown in Table 16.3. Information such as this can be used with
the ICRP-30 models as presented in this chapter.
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Hydrogen

Reference-man data:
Hydrogen content of the body 7,000 g

of soft tissue 6,300 g
Daily intake of hydrogen 350 g
Water content of the body 42,000 g
Daily intake of water, including water of oxidation 3,000 g.

Water makes up about 80% of the mass of some soft tissues. As discussed in the
last section, exposure to elemental tritium is limited by the equivalent dose from
tritium in the lung. In contrast, tritiated water that is inhaled, ingested, or absorbed
through the skin is assumed to become instantaneously and uniformly distributed
throughout all the soft tissues of the body. While some tritium from tritiated water
can become organically bound in the body, the ICRP assumed a single-exponential
retention function for the body, based on tritiated water alone, with a biological
half-life of 10 d. The fraction of tritium, taken in as tritiated water at time t = 0,
retained at time t days is given by

R(t) = e–0.693t/10. (16.74)

If the body contains q Bq, then the concentration in soft tissue (mass 63,000 g) is
q/63,000 Bq g–1.

Strontium

Reference-man data:
Strontium content of the body 0.32 g

of the skeleton 0.32 g
of soft tissues 3.3 mg

Daily intake in food and fluids 1.9 mg.

Based on human and animal data, the ICRP-30 used f1 = 0.3 for soluble salts
and 0.01 for SrTiO3 as the fractional uptake of ingested strontium by the body flu-
ids [Eq. (16.7)]. For inhalation, soluble compounds were assumed to be in class D
and SrTiO3 in class Y (Section 16.4). As discussed in Section 16.10, strontium iso-
topes 90Sr, 85Sr, and 89Sr, having half-lives greater than 15 d, were assumed to be
distributed uniformly in the volume of mineral bone. In contrast, other strontium
isotopes, with shorter half-lives, were assumed to be distributed uniformly over
bone surfaces. The detailed metabolic model was used to estimate the number of
transformations in soft tissue, cortical bone, and trabecular bone during the 50 y
following the introduction of unit activity into the transfer compartment of the
body (Fig. 16.3).
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Iodine

Reference-man data:
Iodine content of the body 11.0 mg

of the thyroid 10.0 mg
Daily intake in food and fluids 0.2 mg.

Iodine is absorbed rapidly and almost completely from the gut, and so f1 = 1 was
used. All data indicate that compounds of iodine belong to inhalation class D.
When iodine enters the transfer compartment, the fraction 0.3 was assumed to
be taken up by the thyroid and the rest excreted directly. Iodine in the thyroid was
assigned a biological half-life of 120 d, leaving the gland as organic iodine. The or-
ganic iodine became distributed uniformly in the other tissues of the body with a
half-life of 12 d. One-tenth of this organic iodine was then assumed to be excreted
while the rest returned to the transfer compartment.

Cesium

Reference-man data:
Cesium content of the body 1.5 mg

of muscle 0.57 mg
of bone 0.16 mg

Daily intake in food and fluids 10.0 µg.

Cesium compounds are usually rapidly and almost completely absorbed in the GI
tract, and so f1 = 1. They were assigned to inhalation class D. A two-compartment
retention function was used for cesium:

R(t) = ae–0.693t/T1 + (1 – a)e–0.693t/T2 . (16.75)

When the element enters the transfer compartment, the fraction a = 0.1 was trans-
ferred to one tissue compartment (Fig. 16.3) and retained there with a metabolic
half-life T1 = 2 d; the remainder, 1 – a = 0.9, was transferred to another tissue com-
partment and kept there with a half-life T2 = 110 d. The cesium in both of these
compartments was assumed to be distributed uniformly throughout the body.

Radium

Reference-man data:
Radium content of the body 31.0 pg

of the skeleton 27.0 pg
Daily intake in food and fluids 2.3 pg.

Available data lead to the choices f1 = 0.2 and inhalation class W for all commonly
occurring compounds of radium. A comprehensive retention model for radium in
adults was used to calculate the numbers of transformations in soft tissue, cortical
bone, and trabecular bone for obtaining the committed doses per unit intake.



16.13 Suggested Reading 543

16.13
Suggested Reading

A great deal of information is available
through the World Wide Web on radionu-
clide decay data, specific absorbed fractions,
specific effective energies, and other impor-
tant parameters needed for internal dosimetry.
Publications of the International Commis-
sion on Radiological Protection (ICRP) and
the Medical Internal Radiation Dose (MIRD)
Committee are particularly relevant. Some are
included below.

1 Cember, H., Introduction to Health

Physics, 3rd Ed., McGraw-Hill, New
York, NY (1996). [Chapter 8 provides
an excellent coverage of radiation
safety guides. It includes an exten-
sive description of ICRP internal-
dosimetry methodology up to the
time. There is an appendix with data
on reference man and one giving spe-
cific absorbed fractions for photons
of different energies, both based on
ICRP Publication 23 on reference
man.]

2 Endo, A., Yamaguchi, Y., and Ecker-
man, K. F., Nuclear Decay Data for

Dosimetry Calculation: Revised Data

of ICRP Publication 38, JAERI 1347,
Japan Atomic Energy Research Insti-
tute, Tokai-mura, Japan (2005).

3 Endo, A., Nuclear Decay Data for

Dosimetry Calculation: Revised Data

of ICRP Publication 38—Supplement

to JAERI 1347, Japan Atomic Energy
Research Institute, Tokai-mura, Japan
(2005).

4 ICRP Publication 23, Task Group

Report on Reference Man, Pergamon
Press, Oxford, England (1975).

5 ICRP Publication 30, Limits for Intakes

of Radionuclides by Workers, Pergamon
Press, Elmsford, NY (1979). [Publica-
tion 30 appears as a series of parts and
supplements.]

6 ICRP Publication 60, 1990 Recommen-

dations of the International Commission

on Radiological Protection, Pergamon
Press, Elmsford, NY (1991).

7 ICRP Publication 66, Human Respira-

tory Tract Model for Radiological Protec-

tion, Annals of the ICRP 24, Nos. 1–3
(1994).

8 ICRP Publication 68, Dose Coefficients

for Intakes of Radionuclides by Work-

ers, Annals of the ICRP 24, No. 4
(1995). [Dose coefficients and other
data based on ICRP-60 limits and re-
vised lung model of ICRP-66. ICRP-68
replaces ICRP-61, which employed
ICRP-30 lung model.]

9 ICRP Publication 70, Basic Anatomical

and Physiological Data for Use in Radi-

ological Protection: the Skeleton, Annals
of the ICRP 25, No. 2 (1995).

10 ICRP Publication 89, Basic Anatom-

ical and Physiological Data for Use in

Radiological Protection: Reference Val-

ues, Annals of the ICRP 32, Nos. 3–4
(2003).

11 ICRP Publication 100, Human Ali-

mentary Tract Model for Radiological

Protection, Annals of the ICRP (2007).

12 MIRD Committee Pamphlets. [The
Medical Internal Radiation Dose
(MIRD) Committee of the Society
of Nuclear Medicine publishes pam-
phlets and other information, avail-
able on line. Targeted for 2006 is the
revision of the 1989 MIRD Radionu-
clide Data and Decay Scheme book.]

13 NCRP Report No. 116, Limitation of

Exposure to Ionizing Radiation, Na-
tional Council on Radiation Protection
and Measurements, Bethesda, MD
(1993).
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16.14
Problems

1. What is reference man and what is his role in internal
dosimetry?

2. The annual limit on intake for 32P by ingestion is 8 × 106 Bq.
What is the committed effective dose per unit activity of
ingested 32P?

3. The ALI for inhalation of 235U aerosols having retention times
of the order of weeks in the pulmonary region is 1 × 104 Bq.
What is the corresponding derived air concentration?

4. A single inhalation of 106 Bq of a certain radionuclide results
in a committed effective dose of 6.1 mSv.
(a) What is the ALI?
(b) What is the DAC?

5. In what ways is the limitation of the annual effective dose
different for external and internal radiation when the ALI
concept is applied?

6. As a result of the single intake of 6.3 × 103 Bq of a
radionuclide, a certain organ of the body will receive doses of
0.20 mGy from low-energy beta particles and 0.05 mGy from
alpha particles during the next 50 y. These are the only
radiations emitted, and this organ is the only one that receives
appreciable irradiation as a result of the intake. The organ has a
weighting factor, wT = 0.05.
(a) What is the committed equivalent dose to the organ?
(b) What is the committed effective dose to the individual?
(c) What is the ALI for this route of intake?

7. (a) What fraction of inhaled aerosols with an AMAD of 1 µm
is assumed to be deposited in the trachea and bronchial
tree in the ICRP-30 model of the respiratory system?

(b) What fraction is exhaled?
8. Write a differential equation, analogous to Eq. (16.3), that

describes the rate of change q̇b(i) of the activity in compartment
b of the respiratory-system model (Fig. 16.4) for a rate İ(t) of
inhalation.

9. Given the inhalation rate İ(t), write two differential equations
that describe the rates of change q̇i(t) and q̇j(t) of activity in the
lymph-node compartments of the respiratory-system model in
Fig. 16.4.

10. An activity of 1000 Bq of a class-W aerosol (AMAD = 1 µm) is
inhaled in a single intake.
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(a) According to the ICRP-30 model for the respiratory system,
what is the initial activity deposited in compartment e?

(b) If the radionuclide has a physical half-life of 32 d, what
fraction of the original activity in compartment e will still
be there after 1 wk?

11. (a) Use the data in Fig. 16.4 to find numerical values for the
following quantities for a class-Y aerosol with
AMAD = 1 µm: DTB, Fd, λf, λg, and λd.

(b) If the activity of a class-W aerosol in compartment e of the
ICRP-30 lung model is 103 Bq, what is the rate of transfer
of activity from compartment e to the body fluids?

12. Consider the inhalation of 239Pu as a class-W aerosol with an
AMAD of 1 µm.
(a) If 50 Bq of 239Pu is inhaled, how much activity is deposited

in compartment b of the ICRP-30 lung model?
(b) What fraction of 239Pu, deposited in compartment b at

time t = 0, clears out of b in the first 24 h?
13. At a certain time following inhalation of a class-W aerosol, the

activities in compartments b and d of the ICRP-30
respiratory-system model are, respectively, 7.8 × 104 Bq and
1.5 × 104 Bq. What is the rate of transfer of activity to the
gastrointestinal tract?

14. In the dosimetric model for the GI tract (Fig. 16.8), show
that λB can be estimated from f1, the fraction of a stable
element that reaches the body fluids after ingestion, by writing
λB = f1λSI/(1 – f1).

15. At a certain time following ingestion of a radionuclide, the
activity in the contents of the small intestine is 2.80 × 105 Bq. If
the fraction of the stable element that reaches the body fluids
after ingestion is 0.41, what is the rate of transfer of activity
from the small intestine to the body fluids?

16. What is the effective half-life of a radionuclide in the body-fluid
transfer compartment, if its radioactive half-life is 8 h?

17. An activity of 5 × 106 Bq of a radioisotope, having a half-life of
2 d, enters the body fluids. How much activity remains in this
compartment at the end of 4 d?

18. A worker with a burden of 131I in his thyroid was monitored in
a whole-body counter under fixed conditions of geometry and
counting time. The net number of gamma counts (background
is subtracted) measured from the thyroid was initially 1129.
The net numbers of counts at this and three subsequent times
are shown here. From these data, determine the metabolic
half-life of the iodine in the thyroid.
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Time (d) Net Counts

0 1129
7 589

14 314
21 156

19. A drug, containing 4.27 × 105 Bq of 86Y, is ingested
(f1 = 1 × 10–4) at time t = 0. After 10 h, what is the activity of
the 86Y in
(a) the stomach,
(b) the small intestine,
(c) the upper large intestine?

20. What is the rate of transfer of activity from the GI tract into the
body fluids at time t = 10 h in the last problem?

21. At what time after ingestion does the activity in the small
intestine reach a maximum in Problem 19?

22. What is the equivalent dose to the kidneys of an adult male per
transformation from a source in the lungs that emits a single
500-keV photon per transformation, if the specific effective
energy (kidney ← lung) is 5.82 × 10–9 MeV g–1?

23. What is the absorbed fraction (kidney ← lung) in the last
problem? (Mass of the kidneys is given in Table 16.1.)

24. The specific absorbed fraction for irradiation of the red bone
marrow by 200-keV photons from a source in the liver is
4.64 × 10–6 g–1. Calculate the specific effective energy for the
liver (source organ) and red marrow (target tissue) for a
gamma source in the liver that emits only a 200-keV photon in
85% of its transformations.

25. What is the committed equivalent dose to the red marrow from
the source in the liver in the last problem if 2.23 × 1015

transformations occur in the liver over a 50-y period?
26. What are the specific absorbed fractions for various target

organs for the pure beta emitter 14C in the liver
(mass = 1800 g) as source organ?

27. What are the corresponding values of the specific effective
energies in the last problem?

28. A certain radionuclide emits a 1-MeV photon in 62% of its
transformations. Use Table 16.2 to compute the equivalent
dose delivered to the lungs by these photons as a result of 106

transformations of the nuclide, located in the thyroid.
29. The specific absorbed fraction for the testes for 1-MeV photons

emitted in the thyroid is 2.46 × 10–8 g–1 (Table 16.2).
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(a) What is the specific effective energy SEE(testes ← thyroid)
for a nuclide in the thyroid that emits a 1-MeV photon
in 30% of its transformations, other radiations being
negligible?

(b) How much total energy is imparted to the testes
(Table 16.1, mass = 35 g) as a result of 109 transformations
of the nuclide in the thyroid?

30. A radionuclide in the lungs (mass = 1000 g) emits a 1-MeV
photon in 72% of its transformations. That is the only radiation
that reaches the thyroid (mass = 20 g). The absorbed fraction,
AF(thyroid ← lungs), for 1-MeV photons is 9.4 × 10–5.
(a) Calculate the SEE(thyroid ← lungs) for this nuclide.
(b) What equivalent dose does the thyroid receive from 108

transformations of the nuclide in the lungs?
31. For a 0.5-MeV photon source in the lungs, the absorbed

fraction for the liver (mass = 1800 g) is
AF(liver ← lungs) = 0.0147. A nuclide in the lungs emits a
single 0.5-MeV photon in 70% of its transformations. This is
the only radiation that reaches the lungs.
(a) Calculate SEE(liver ← lungs) for this nuclide.
(b) Calculate the equivalent dose to the liver per

transformation of the nuclide in the lungs.
32. A source organ S in the body contains a radionuclide that emits

a 0.80-MeV gamma photon in 90% and a 1.47-MeV photon
in 48% of its transformations. The corresponding absorbed
fractions for a target organ T, having a mass of 310 g, are,
respectively, AF = 4.4 × 10–6 and AF = 1.8 × 10–6. Organ T is
irradiated only by these photons.
(a) Calculate SEE(T ← S) for this case.
(b) What is the equivalent dose in T as a result of 1014

transformations of the nuclide in S?
(c) If the nuclide has a radiological half-life of 2.0 y and a

metabolic half-life of 6.0 y in S, how long does it take for
the activity in S to decrease by a factor of 10?

33. A radionuclide emits a 5.80-MeV alpha particle in 60% of its
transformations and a 5.60-MeV alpha particle followed by
a 0.20-MeV gamma photon in 40% of its transformations.
These are the only radiations emitted. A worker has a burden
of 4.1 × 106 Bq of this nuclide in his lungs.
(a) What is the equivalent-dose rate to the worker’s lungs

(mass = 1000 g) from the alpha radiation?
(b) What is the equivalent-dose rate to the spleen

(mass = 180 g) if AF(spleen ← lungs) = 1.47 × 10–3 for the
photons?
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(c) For a total of 1012 transformations of this nuclide in the
lung, how much does the resulting equivalent dose to the
spleen contribute to the worker’s effective dose? (See
Table 14.2. Spleen wT = 0.05/10 = 0.005.)

34. Show that Eq. (16.49) follows from (16.38).
35. By letting λa → ∞ in Eq. (16.49), show that the second term

represents the number of transformations that would have
occurred in compartment b, had the material been transferred
to it instantaneously. (The first term, therefore, represents the
effect on Ub of the finite residence time in compartment a.)

36. Use the two-compartment model described in Section 16.9.
An activity of 106 Bq of a radionuclide, having a half-life of
18 h, enters compartment a (body fluids). The fraction that
goes to organ b when it leaves a is 0.30, and the metabolic
half-life in b is 2 d. Calculate the number of transformations in
compartments a and b during the two days after the
radionuclide enters a.

37. Assume that the radionuclide in the last problem is an alpha or
low-energy beta emitter with a stable daughter. What fraction of
the committed equivalent dose is delivered to organ b in the 2 d
after entry of the radionuclide into a?

38. (a) Repeat Problem 36 for a radionuclide that has a radioactive
half-life of 90 y and a metabolic half-life in compartment b

of 40 y.
(b) How many transformations occur in compartments a and

b over the 50 y of the committed equivalent dose?
39. In the last problem, assume that the radionuclide emits beta

particles of average energy 49.5 keV and no other
radiation (14C). Assume, further, that compartment b is the
lung (mass = 1000 g), which is the only organ of the body that
receives appreciable radiation over 50 y.
(a) Calculate the committed equivalent dose to the lung.
(b) Calculate the committed effective dose.
(c) What is the ALI for this nuclide (for the route of intake that

occurred)?
40. Use the two-compartment dose model described in

Section 16.7. A single intake of a radionuclide, having a
physical half-life of 170 d, is made into compartment a (body
fluids, metabolic half-life = 0.25 d) at time t = 0. Six-tenths of
the activity that is transferred out of a goes into
compartment b, where the metabolic half-life is 236 d.
(a) What fraction of the initial activity is left in compartment a

at time t = 21 h?
(b) What fraction of the initial activity is located in

compartment b at t = 200 d?
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(c) If 3 × 108 disintegrations occurred in compartment b

between t = 0 and t = 200 d, how much activity was initially
taken into compartment a?

41. Use the two-compartment model described in Section 16.6 for
ingestion of a nuclide that emits a single 5.5-MeV alpha particle
per transformation and has a radioactive half-life of 8.6 d. No
other radiation is emitted. The metabolic half-life in the body
fluids (compartment a) is 0.25 d, and that in compartment b is
3.5 d. The fraction of the radionuclide that goes to b when it
leaves a is 0.80. Assume that 100% of the ingested nuclide goes
directly into the body fluids and that compartment b receives a
negligible dose as a result of the activity in a. The mass
associated with compartment b is 1800 g.
(a) Calculate the specific effective energy, SEE (b ← b).
(b) Calculate the number of transformations in

compartment b over the 50-y period following ingestion of
1 Bq of activity at time t = 0.

(c) What is the committed equivalent dose in b per Bq of
ingestion?

(d) If the organ weighting factor for b is 0.05, determine the
ALI for ingestion for this radionuclide.

42. Why is bone dosimetry of particular importance?
43. What are the target tissues for bone?
44. Why is the dosimetric model for submersion in a radioactive

gas cloud different from the model for the respiratory system?
45. Calculate the equivalent-dose rate in air in Sv h–1 due to 1 Bq

of 14C per gram of air.
46. Estimate the equivalent-dose rate at the surface of the skin of a

person immersed in air (at STP) containing 2.4 × 103 Bq m–3

of 14CO2.
47. Calculate the equivalent-dose rate in a large air volume (at STP)

that contains a uniform distribution of 2 × 103 Bq m–3 of 137Cs.
48. Why is the DRAC for tritiated water so much smaller than that

for elemental tritium?
49. (a) What activity of tritium, distributed uniformly in the soft

tissue of the body (reference man), would result in an
equivalent-dose rate of 0.05 Sv y–1?

(b) What would be the total mass of tritium in the soft tissue?
50. Estimate the time it takes for the body to expel by normal

processes 95% of the tritium ingested in a single intake of
tritiated water. Would the retention time be affected by
increasing the intake of liquids?

51. What fraction of the iodine in the total body of reference man
is in the thyroid?



550 16 Internal Dosimetry and Radiation Protection

16.15
Answers

2. 2.5 × 10–6 mSv Bq–1

4. (a) 3 × 106 Bq
(b) 1 × 103 Bq m–3

6. (a) 1.2 mSv
(b) 0.060 mSv
(c) 2 × 106 Bq

7. (a) 0.08
(b) 0.37

9. q̇i = Fiλhqh – λiqi – λRqi

q̇j = Fjλhqh – λRqj

10. (a) 37.5 Bq
(b) 0.78

11. (b) 14 Bq d–1

13. 1.9 × 105 Bq d–1

17. 19 Bq
18. ∼ 100 d
22. 9.3 × 10–19 Sv
25. 0.28 Sv
27. 2.8 × 10–5 MeV g–1 for

liver; 0 for others
28. 3.8 × 10–10 Sv
29. (a) 7.4 × 10–9 MeV g–1

(b) 260 MeV
33. (a) 6.5 Sv d–1

(b) 3.6 × 10–5 Sv d–1

(c) 5 × 10–7 Sv
36. 2.3 × 1010; 1.3 × 1010

38. (a) 3.1 × 1010

4.2 × 1010

(b) 3.1 × 1010

2.7 × 1014

39. (a) 2.1 Sv
(b) 260 mSv
(c) 8 × 104 Bq

41. (a) 0.061 MeV g–1

(b) 2.4 × 105

(c) 2.4 × 10–6 Sv
(d) 2 × 105 Bq

45. 2.9 × 10–8 Sv h–1

46. 5.4 × 10–8 Sv h–1

at surface;
2.7 × 10–8 Sv h–1

superficial layer
47. 7.3 × 10–7 Sv h–1 total;

5.0 × 10–7 Sv h–1 γ

alone (4π geometry)
50. 43 d; yes
51. 0.91
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Appendix A
Physical Constants

Planck’s constant, h = 6.6261 × 10–34 J s
� = h/2π = 1.05457 × 10–34 J s

Electron charge, e = –1.6022 × 10–19 C = –4.8033 × 10–10 esu
Velocity of light in vacuum, c = 2.997925 × 108 m s–1

Avogadro’s number, N0 = 6.0221 × 1023 mole–1

Molar volume at STP (0◦C, 760 torr) = 22.414 L
Density of air at STP (0◦C, 760 torr) = 1.293 kg m–3

= 1.293 × 10–3 g cm–3

Rydberg constant, R∞ = 1.09737 × 107 m–1

First Bohr orbit radius in hydrogen, a0 = 5.2918 × 10–11 m
Ratio proton and electron masses = 1836.15
Electron mass, m = 0.00054858 AMU = 0.51100 MeV = 9.1094 × 10–31 kg
Proton mass = 1.0073 AMU = 938.27 MeV = 1.6726 × 10–27 kg
H atom mass = 1.0078 AMU = 938.77 MeV = 1.6735 × 10–27 kg
Neutron mass = 1.0087 AMU = 939.57 MeV = 1.6749 × 10–27 kg
Alpha-particle mass = 4.0015 AMU = 3727.4 MeV = 6.6447 × 10–27 kg
Boltzmann’s constant, k = 1.3807 × 10–23 J K–1

Principal source: E. R. Cohen and
B. N. Taylor, “The Fundamental Physical
Constants,” Physics Today, 56 (No. 8),
pp. BG6-BG13, August (2003). Updated and
available online at http://www.
physicstoday.org/guide/fundcon.html

The metric (SI) system of units is
summarized in Robert A. Nelson’s “Guide for
Metric Practice,” available at
http://www.physicstoday.org/guide/metric.html
See also National Institute of Standards and
Technology, Physical Reference Data,
http://www.physics.nist.gov/cuu/Constants
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Appendix B
Units and Conversion Factors

1 cm = 104 µm = 108Å
1 in. = 2.54 cm (exactly)
1 barn = 10–24 cm2

1 L = 1 dm3 = 10–3 m3

1 dyne = 1 g cm s–2 = 10–5 kg m s–2 = 10–5 N
1 kg = 2.205 lb
1 erg = 1 dyne cm = 1 g cm2 s–2 = 1 esu2 cm–1

1 J = 1 N m = 1 kg m2 s–2 = 1.11265 × 10–10 C2 m–1

107 erg = 1 J
1 eV = 1.6022 × 10–12 erg = 1.6022 × 10–19 J
1 AMU = 931.49 MeV = 1.6605 × 10–27 kg
1 gram calorie = 4.186 J
1 W = 1 J s–1 = 1 V A
1 statvolt = 299.8 V
1 esu = 3.336 × 10–10 C
1 A = 1 C s–1

1 C = 1 V F
1 Ci = 3.7 × 1010 s–1 = 3.7 × 1010 Bq (exactly)
1 R = 2.58 × 10–4 C kg–1 air (= 1 esu cm–3 air at STP)
1 rad = 100 erg g–1 = 0.01 Gy
1 Gy = 1 J kg–1 = 100 rad
1 Sv = 100 rem
0◦C = 273 K
1 atmosphere = 760 mm Hg = 760 torr = 101.3 kPa
1 day = 86,400 s
1 yr = 365 days = 3.1536 × 107 s
1 radian = 57.30◦
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Appendix C
Some Basic Formulas of Physics (MKS and CGS Units)

Classical Mechanics

Momentum = mass × velocity, p = mv

units: kg m s–1; g cm s–1

Kinetic energy, T = 1
2 mv2 = p2/2m

units: 1 J = 1 kg m2 s–2; 1 erg = 1 g cm2 s–2

Force = mass × acceleration, F = ma

units: 1 N = 1 kg m s–2; 1 dyne = 1 g cm s–2

Work = force × distance = change in energy
units: 1 J = 1 N m = 1 kg m2 s–2; 1 erg = 1 dyne cm = 1 g cm2 s–2

Impulse = force × time = change in momentum, I = Ft = �p

units: 1 N s = 1 kg m s–1; 1 dyne s = 1 g cm s–1

Angular momentum, uniform circular motion, L = mvr

units: 1 kg m2 s–1 = 1 J s; 1 g cm2 s–1 = 1 erg s
Centripetal acceleration, uniform circular motion, a = v2/r

units: m s–2; cm s–2

Relativistic Mechanics (units same as in classical mechanics)

Relativistic quantities:
v = speed of object
c = speed of light in vacuum
β = v/c, dimensionless, 0 ≤ β < 1
γ = 1/

√
1 – β2, dimensionless, 1 ≤ γ < ∞

Rest energy, E0 = mc2, m = rest mass
Relativistic mass, m/

√
1 – β2 = γm

Total energy, ET = mc2/
√

1 – β2 = γmc2

Kinetic energy = total energy—rest energy,

T = ET – E0 = mc2(γ – 1) = mc2
(

1√
1 – β2

– 1
)

Momentum, p = γmv = mv/
√

1 – β2
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Relationship between energy and momentum,

E2
T = p2c2 + m2c4 = (mc2 + T)2

Electromagnetic Theory

Force F between two point charges, q1 and q2, at separation r (Coulomb’s law) in
vacuum,
MKS: F = k0q1q2/r2, q1, q2 in C, r in m, F in N, and k0 = 8.98755 × 109 N m2 C–2

(= 1/(4πε0) in terms of permittivity constant ε0)
CGS: F = q1q2/r2, q1, q2 in esu (statcoulombs), r in cm, and F in dynes

Potential energy of two point charges at separation r in vacuum,
MKS: PE = k0q1q2/r

CGS: PE = q1q2/r

Electric field strength (force per unit charge), F/q

units: 1 N C–1 = 1 V m–1; 1 dyne esu–1 = 1 statvolt cm–1

Change in potential energy �E of charge q moved through potential difference V,
�E = qV. With q = number of electron charges and V in volts, �E is in electron
volts (eV) of energy, by definition of the eV.

Capacitance, Q/V

units: 1 F = 1 C/V
Current, I = Q/t (charge per unit time)

units: 1 A = 1 C s–1

Power, P = VI (potential difference × current)
units: 1 W = 1 V A = 1 J s–1

Relationship between wavelength λ and frequency ν of light in vacuum (speed of
light = c), λν = c

Quantum Mechanics

de Broglie wavelength, λ = h/p = h/γmv

Photon energy, E = hν

Photon momentum, p = E/c = hν/c

Bohr quantization condition for angular momentum, L = nh̄

Bohr energy levels, E = –13.6Z2/n2 eV
Uncertainty relations, �px�x � h̄, �E�t � h̄.
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Selected Data on Nuclides
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Appendix E
Statistical Derivations

Binomial Distribution

Mean

The mean value µ of the binomial distribution is defined by Eq. (11.15):

µ ≡
N∑

n=0

nPn =
N∑

n=0

n

(
N

n

)
pnqN–n. (E.1)

To evaluate this sum, we first use the binomial expansion to write, for an arbitrary
(continuous) variable x,

(px + q)N =
N∑

n=0

(
N

n

)
pnxnqN–n =

N∑
n=0

xnPn. (E.2)

Differentiation with respect to x gives

Np(px + q)N–1 =
N∑

n=0

nxn–1Pn. (E.3)

Letting x = 1 and remembering that p + q = 1 gives

Np =
N∑

n=0

nPn ≡ µ. (E.4)

Standard Deviation

The variance is defined by Eq. (11.17):

σ 2 ≡
N∑

n=0

(n – µ)2Pn. (E.5)

Atoms, Radiation, and Radiation Protection. James E. Turner
Copyright © 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-40606-7
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This definition implies that

σ 2 =
N∑

n=0

(
n2Pn – 2µnPn + µ2Pn

)
(E.6)

=
N∑

n=0

n2Pn – 2µ

N∑
n=0

nPn + µ2
N∑

n=0

Pn. (E.7)

The first summation gives the expected value of n2, the square of the number of
disintegrations. From Eq. (E.4) it follows that the second term is –2µ2. The sum in
the last term is unity [Eq. (11.14)]. Thus, we can write in place of Eq. (E.7)

σ 2 =
N∑

n=0

n2Pn – 2µ2 + µ2 =
N∑

n=0

n2Pn – µ2. (E.8)

We have previously evaluated µ [Eq. (E.4)]; it remains to find the sum involving n2.
To this end, we differentiate both sides of Eq. (E.3) with respect to x:

N(N – 1)p2(px + q)N–2 =
N∑

n=0

n(n – 1)xn–2Pn. (E.9)

Letting x = 1 with p + q = 1, as before, implies that

N(N – 1)p2 =
N∑

n=0

n(n – 1)Pn (E.10)

=
N∑

n=0

n2Pn –
N∑

n=0

nPn =
N∑

n=0

n2Pn – µ. (E.11)

Thus,

N∑
n=0

n2Pn = N(N – 1)p2 + µ. (E.12)

Substituting this result into Eq. (E.8) and remembering that µ = Np, we find that

σ 2 = N(N – 1)p2 + Np – N2p2 = Np(1 – p) = Npq. (E.13)

The standard deviation of the binomial distribution is therefore

σ = √
Npq. (E.14)

Poisson Distribution

As stated at the beginning of Section 11.5, we consider the binomial distribution
when N � 1, N � n, and p � 1. Under these conditions, the binomial coefficient
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in Eq. (11.13) is approximated well by Eq. (11.29). Also, the last factor in Eq. (11.13)
can be written

qN–n ∼= qN = (1 – p)N. (E.15)

Using the binomial expansion for the last expression, we then have

qN–n = 1 – Np +
N(N – 1)

2!
p2 – · · · (E.16)

∼= 1 – Np +
(Np)2

2!
– · · · = e–Np. (E.17)

Substitution of Eqs. (11.29) and (E.17) into (11.13) gives

Pn = Nn

n!
pne–Np = (Np)n

n!
e–Np, (E.18)

which is the Poisson distribution, with parameter Np.

Normalization

The distribution (E.18) is normalized to unity when summed over all non-negative
integers n:

∞∑
n=0

Pn = e–Np
∞∑

n=0

(Np)n

n!
= e–NpeNp = 1. (E.19)

For the binomial distribution, Pn = 0 when n > N. As seen from Eq. (E.18), the
terms in the Poisson distribution are never exactly zero.

Mean

The mean value of n can be found from Eq. (E.18). With some manipulation of the
summing index n, we write

µ ≡ e–Np
∞∑

n=0

n(Np)n

n!
= e–Np

∞∑
n=1

n(Np)n

n!
(E.20)

= e–Np
∞∑

n=1

(Np)n

(n – 1)!
= e–NpNp

∞∑
n=1

(Np)n–1

(n – 1)!
(E.21)

= e–NpNp

∞∑
n=0

(Np)n

n!
= e–Np NpeNp = Np. (E.22)

The mean of the Poisson distribution is thus identical to that of the binomial dis-
tribution. We write in place of Eq. (E.18) the usual form

Pn = µne–µ

n!
. (E.23)
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Standard Deviation

The variance of the Poisson distribution is given by Eq. (E.8), with the Pn defined
by Eq. (E.23). As before, it remains to find the expected value of n2. Again, manip-
ulating the index of summation n, we write, using Eq. (E.23),

∞∑
n=0

n2Pn ≡ e–µ

∞∑
n=0

n2µn

n!
= e–µ

∞∑
n=1

n2µn

n!
(E.24)

= e–µµ

∞∑
n=1

nµn–1

(n – 1)!
= e–µµ

∞∑
n=0

(n + 1)µn

n!
(E.25)

= e–µµ

∞∑
n=0

(
nµn

n!
+

µn

n!

)
= µ(µ + 1) = µ2 + µ. (E.26)

Substitution of this result into Eq. (E.8) gives for the variance

σ 2 = µ2 + µ – µ2 = µ. (E.27)

We obtain the important result that the standard deviation of the Poisson distribu-
tion is equal to the square root of the mean:

σ = √
µ. (E.28)

Normal Distribution

We begin with Eq. (E.23) for the Poisson Pn and assume that µ is large. We also
assume that the Pn are appreciably different from zero only over a range of values
of n about the mean such that |n – µ| � µ. That is, the distribution of the Pn is
relatively narrow about µ; and both µ and n are large. We change variables by
writing x = n – µ. Equation (E.23) can then be written

Px = µµ+xe–µ

(µ + x)!
= µµµxe–µ

µ!(µ + 1)(µ + 2) · · · (µ + x)
, (E.29)

with |x| � µ. We can approximate the factorial term for large µ by means of the
Stirling formula,

µ! = √
2πµµµe–µ, (E.30)

giving

Px = µx

√
2πµ(µ + 1)(µ + 2) · · · (µ + x)

(E.31)

= 1
√

2πµ
(

1 +
1
µ

)(
1 +

2
µ

)
· · ·

(
1 +

x

µ

) . (E.32)
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Since, for small y, ey ∼= 1 + y, the series of factors in the denominator can be rewrit-
ten (µ is large) to give

Px = 1√
2πµe1/µe2/µ · · · ex/µ

= 1√
2πµ

e–(1+2+···+x)/µ. (E.33)

The sum of the first x positive integers, as they appear in the exponent, is x(1 +
x)/2 = (x2 + x)/2 ∼= x2/2, where x has been neglected compared with x2. Thus, we
find that

Px = 1√
2πµ

e–x2/2µ. (E.34)

This function, which is symmetric in x, represents an approximation to the Pois-
son distribution. The normal distribution is obtained when we replace the Poisson
standard deviation

√
µ by an independent parameter σ and let x be a continuous

random variable with mean value µ (not necessarily zero). We then write for the
probability density in x (–∞ < x < ∞) the normal distribution

f(x) = 1√
2πσ

e–(x–µ)2/2σ2
, (E.35)

with σ 2 > 0. It can be shown that this density function is normalized (i.e., its inte-
gral over all x is unity) and that its mean and standard deviation are, respectively,
µ and σ . The probability that the value of x lies between x and x + dx is f(x) dx.
Whereas the Poisson distribution has the single parameter µ, the normal distribu-
tion is characterized by the two independent parameters, µ and σ .

Error Propagation

We determine the standard deviation of a quantity Q(x, y) that depends on two inde-
pendent, random variables x and y. A sample of N measurements of the variables
yields pairs of values, xi and yi, with i = 1, 2, . . . , N. For the sample one can compute
the means, x̄ and ȳ; the standard deviations, σx and σy; and the values Qi = Q(xi, yi).
We assume that the scatter of the xi and yi about their means is small. We can then
write a power-series expansion for the Qi about the point (x̄, ȳ), keeping only the
first powers. Thus,

Qi = Q(xi, yi) ∼= Q(x̄, ȳ) +
∂Q

∂x
(xi – x̄) +

∂Q

∂y
(yi – ȳ), (E.36)

where the partial derivatives are evaluated at x = x̄ and y = ȳ. The mean value of Qi

is simply

Q ≡ 1
N

N∑
i=1

Qi = 1
N

N∑
i=1

Q(x̄, ȳ) = 1
N

NQ(x̄, ȳ) = Q(x̄, ȳ), (E.37)
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since the sums of the xi – x̄ and yi – ȳ over all i in Eq. (E.36) are zero, by definition
of the mean values. Thus, the mean value of Q is the value of the function Q(x, y)
calculated at x = x̄ and y = ȳ.

The variance of the Qi is given by

σ 2
Q = 1

N

N∑
i=1

(
Qi – Q

)2. (E.38)

Applying Eq. (E.36) with Q = Q(x̄, ȳ), we find that

σ 2
Q = 1

N

N∑
i=1

[
∂Q

∂x
(xi – x̄) +

∂Q

∂y
(yi – ȳ)

]2

(E.39)

=
(

∂Q

∂x

)2 1
N

N∑
i=1

(xi – x̄)2 +
(

∂Q

∂y

)2 1
N

N∑
i=1

(yi – ȳ)2

+ 2
(

∂Q

∂x

)(
∂Q

∂y

)
1
N

N∑
i=1

(xi – x̄)(yi – ȳ). (E.40)

The last term, called the covariance of x and y, vanishes for large N if the values of
x and y are uncorrelated. (The factors yi – ȳ and xi – x̄ are then just as likely to be
positive as negative, and the covariance also decreases as 1/N). We are left with the
first two terms, involving the variances of the xi and yi:

σ 2
Q =

(
∂Q

∂x

)2

σ 2
x +

(
∂Q

∂y

)2

σ 2
y . (E.41)

This is one form of the error propagation formula, which is easily generalized to a
function Q of any number of independent random variables.
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Index

a
Absorbed dose, 362 ff., 452

charged-particle beam, 376–377, 380
gamma point source, 381–383
internal α,β emitters, 379–380, 530
measurement, 368 ff.
neutron, 371 ff., 383–386
neutron depth-dose, 386
neutron first-collision, 383 ff., 387

Absorbed fraction, 528 ff.
Accelerators, 6–8, 186, 210, 223, 418, 495
Accidents, 418–419
Actinide series, 36
Activity, 83
Activity median aerodynamic diameter

(AMAD), 516, 535
Acute radiation syndrome, 419, 421 (table)
Adaptive response, 429
Adiabatic invariance, 25
26Al, 77–78
ALARA, 450, 452, 458, 464–465
Albedo, 375
Alpha particle, 61, 62 ff.

decay, 62–65
decay energetics, 62–64, 79 (table)
energy spectrum, 63–65
Geiger-Nuttall law, 64–65
hazards, 65
mass, 549
oxygen enhancement ratio (OER), 439
range, 64–65
scattering, 18, 109
stopping power, 122 (fig.), 128, 129 (fig.),

130 (fig.)
track structure, 160, 404 ff.
W value, 243–244

241Am, 110, 265

American Board of Health Physics, 10
American National Standards Institute, 336
Angular momentum, 19–20, 32
Angular velocity, 24
Annihilation photons, 76–77, 139, 493
Annual limit on intake (ALI), 456, 463, 509,

518–519, 534
Annual reference level of intake (ARLI), 456–

457, 463, 515, 529 (fn.)
Antineutrino, 65–66
Antineutron, 65 (fn.)
Antiparticle, 65
Antiproton, 65 (fn.)
Atomic Bomb Casualty Commission (ABCC),

9, 10, 411 (fn.)
Atomic mass number, 18, 55
Atomic mass unit, 59
Atomic number, 44–45, 55
Attenuation

coefficient, 115, 187–197 (figs.), 474, 528
Compton, 184–185
exponential, 187
length, 496 (table)

197Au, 226
198Au, 86, 226, 279, 525
Auger electron, 45–47, 63 (fn.), 72 (fn.), 75,

194–195, 270, 387
cascade, 46–47

Avogadro’s number, 15, 549

b
10B, 224, 287, 289
133Ba, 274
137Ba, 69, 70
137mBa, 70
Background, see Environmental radiation
Band structure, 39–41, 252 ff.

Atoms, Radiation, and Radiation Protection. James E. Turner
Copyright © 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-40606-7
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Barn (unit), 192, 215, 551
Bateman equations, 524
7Be, 96, 212
9Be, 212, 217
Becquerel, 3–4
Becquerel (unit), 83, 551
Bernoulli process, 304, 307, 311, 326
Beta particle, 65–68, see also Electron

average energy, 66, 379
bremsstrahlung, 68, 144 ff.
Cerenkov radiation, 210 (photo), 286
creation in nucleus, 31, 65
decay, 65–68
decay energetics, 65–67, 79 (table)
discovery, 4
dose calculation, 379–380, 530
energy spectrum, 66–67, 71
hazards, 68
radiation yield, 142 (table), 145 ff.
range, 142 (table), 149 (fig.), 152 ff.
pure emitters, 68
shielding, 493–495
stopping power, 122 (fig.), 139 ff.
track structure, 150 ff., 402 ff.

Betatron, 144
Bethe, 117, 120, 144
209Bi, 61, 96
210Bi, 98, 495
212Bi, 68
214Bi, 64, 98–101
Binomial distribution, 304, 307–311, 567–

568
comparison with Poisson, 313–314 (figs.)

Biological effects, 400 (table), 408 ff.
acute radiation syndrome, 419, 421

(table)
cancer, 410 ff., 421–422
cataract, 410, 423
cell survival, 410, 432–435
chemical modifiers, 439–440
chromosome, 426–427, 429, 431
delayed somatic, 421–423
deterministic, 410, 423
direct and indirect, 408–409, 439
dose rate, 438–439
dose response, 430 ff.
doubling dose, 426–427
DNA, 408–409, 423, 426, 429
embryo, 424
fertility, 425–426
fetus, 424

genetic, 410 ff., 421, 424–428, 429
human data, 411 ff.
life shortening, 423
medical radiation, 413 ff.
mutation, 426 ff., 429, 438
oxygen enhancement ratio (OER), 439 ff.
radiation biology, 429–430
RBE, 435–438, 453
stochastic, 410, 423, 453–454
teratogenesis, 424, 425 (photo)

Bohr, 17, 19 ff., 26, 116–117
Boltzmann’s constant, 254, 549
Bone dosimetry, 535–536
Bonner spheres, 290–291
Born-Oppenheimer approximation, 36
Boson, 34
87Br, 231
Bragg additivity, 123, 133
Bragg-Gray principle, 5, 293, 369, 375
Bragg peak, 121, 376, 378
Bremsstrahlung, 42, 77, 109, 144, 195, 197,

199–200, 387
shielding, 493–495

Bubble chamber, 282
Bubble neutron detector, 295
Buildup factor, 199, 474 ff. (figs.), 497
Bystander effect, 429

c
12C, 15, 59–60, 212, 217–218
14C, 68, 88–89, 96–97, 110, 225, 268, 279,

379–380, 383
42Ca, 475
Cadmium cutoff, 222
Cadmiun zinc telluride (CZT) detector, 263,

265 (photo)
Calibration

Bonner spheres, 290–291
calorimetric, 285
direct ion storage, 284
lung counter, 265–266 (photo)
phantom, 265
film, 276, 278
proportional counter, 224, 374

Calorimetry, 285
Carbon dating, 97
Cascade, electron-photon, 145
Cathode rays, 3, 17
Cauchy relation, 389
113Cd, 225
114Cd, 225
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Center-of-mass coordinates, 219–223
Cerenkov radiation, 210 (photo), 286
CERN, see European Center for Nuclear

Research
252Cf, 210
254Cf, 214
Chemical bond, 36–39
Chemical dosimeter, 279, 285
Chemical yield, 404 ff.
Chernobyl, 10, 11, 418–419
35Cl, 39, 55
36Cl, 412
37Cl, 39, 55
Cloud chamber, 4, 282
242Cm, 214
244Cm, 214
59Co, 89
60Co, 65–69, 89, 180–181, 382, 412, 438–439
Collective doses, 455–456
Committed doses, 455–456
Compton scattering, 26, 175–185, 270 ff., 491

average recoil-electron energy, 184 (table)
Compton edge, 182, 271 (fig.)
Compton wavelength, 180
cross sections, 182, ff.

Conduction band, 40, 253 ff.
Conversion factor (dose), 551
Correspondence principle, 26
Cosmic radiation, 11–12, 32
Coulomb barrier, 56 (fig.), 57, 186, 228
Counting, 308 ff., 322–327, 335–336

appropriate blank, 336
background, 322 ff., 336
dead time, 339–342
decision level, 329 ff., 335–336
efficiency, 308–309
error propagation, 321–322, 571–572
HPS N13.30-1996, 335–336
minimum detectable amount (MDA),

336
minimum detectable true activity, 331 ff.
minimum significant measured activity,

327 ff.
optimum times, 325–326
short-lived sample, 326–327
type-I error, 327 ff.
type-II error, 328, 331 ff.

Covalent bond, 38–39, 257
Covalent solid, 39
Covariance, 572
CR-39, 282–283

Criticality, 232 ff., 279
Crooke’s tube, 2–3
Cross section

Compton collision, 182 ff.
Compton energy scattering, 183 ff.
Compton energy transfer, 183 ff.
differential, 182
fission, 231 ff.
Klein-Nishina, 182
macroscopic, 115, 184, 187, 384
neutron, 215, 216 (fig.), 231, 383–386

137Cs, 68–72, 200, 251, 270–271, 338, 382
Curie (unit), 83, 551
Cutie pie, 247
CZT, see Cadmium zinc telluride detector

d
D-37 dose, 433
Dalton, 1, 15
Dead time, 339–342
de Broglie wavelength, 26, 554
Decay constant, 83, 88
Decay schemes (figs.)

26Al, 78
60Co, 67
137Cs, 70
131I, 531
42K, 478
22Na, 77
103Pd, 74
226Ra, 64, 69

Deep dose, 278, 281, 283, 467–468
Delta rays, 159, 167
Department of Energy (DOE), 10, 336, 464

DOELAP, 336
Derived air concentration (DAC), 457
Derived reference air concentration (DRAC),

456–457, 515, 529 (fn.), 534
Detectors

air-wall ion chamber, 367–368
bubble (neutron), 295
cutie pie, 247
CZT, 265
DIS, 284
electronic dosimeter, 263
film badge, 278
free-air ion chamber, 365–367
gas proportional counter, 248
GM survey meter, 251
HPGe, 264, 266, 274



578 Index

Hurst neutron proportional counter,
374–375

long counter, 290
OSL, 283
phoswich, 269
pocket ion chamber, 248
probes, 252
rem meter, 291, 375
Rossi counter, 377–378
scintillation probe, 269
sodium iodide, 273–274
TLD, 280–282
tritium monitor, 250
ZnS, 269

Deuteron, 60, 124, 210, 212, 223
Dial painters, 415–416, 422
Diffusion constant, 401–402 (table)
Dirac, 4, 32

equation, 4, 32, 65 (fn.)
Direct ion storage (DIS), 284–285
DNA, 408–409, 423, 433
Dose and dose-rate effectiveness factor

(DDREF), 413, 422, 457
Dose coefficient (DCF), 534, 535 (table)
Dose equivalent, 363–365, 377, 452, 454
Dosimetry, 361 ff.

charged particle, 376–377
exposure, 365–368
neutron, 371 ff.
photon, 370–371

Dosimetry System
DS02, 11, 412
DS86, 10, 411 ff.
T62D, 411

Drosophila, 427–428 (photo)

e
Effective dose, 453 ff.
Effective dose equivalent, 454
Effective half-life, 456
Effective threshold energy, 228, 294
Einstein, 4–5, 175
Electric dipole moment, 38, 400
Electron, see also Beta particle

Auger, 45–47, 63 (fn.), 72 (fn.), 75
attenuation coefficient, 141 ff., 143 (fig.)
bremsstrahlung, 42, 109, 139, 144 ff.
capture, 32, 72–76, 78
charge, 4, 549
charge-to-mass ratio, 4

collisional stopping power, 139 ff., 142
(table)

conduction band, 252 ff.
configuration, 34 ff., 39
conversion, 64, 69
diffraction, 26
Dirac equation, 4, 32, 65 (fn.)
discovery, 17
elastic scattering, 141 ff., 143 (fig.)
equilibrium, 198, 366, 368–369, 387
gas, 40, 254
hydrated, 141, 400 ff.
mass, 17, 549
mean free path, 141
microscope, 27
paired, 36, 38–39, 258, 401
pathlength, 152–154 (figs.)
radiation yield, 142 (table), 145 ff.
radiative stopping power, 139, 142

(table), 144–145
range, 142 (table), 147 ff., 149 (fig.)
relativistic, 27–28, 553–554
restricted stopping power, 162 (table)
shells, 34 ff., 43, 45–46
slowing-down rate, 148, 150
spin, 4, 32, 34–35, 254
stopping power, 122 (fig.), 129 (fig.), 130

(fig.), 142 (table), 143 (fig.)
subexcitation, 399 ff.
track structure, 150 ff., 402 ff.
valence, 252 ff.
W value, 243–244 (fig., table)
wavelength, 26–27
X-ray generation, 42

Electron capture, 72–75, 77–78
Auger electrons, 75
characteristic X rays, 75
decay energetics, 73–74, 79 (table)
internal conversion, 75
relation to β+ decay, 76

Electron volt (unit), 21, 551
Electronic dosimeter, 262
Energy fluence, 192
Energy loss

bremsstrahlung, 144–145
charged particle, 109, 111 ff.
electron, 139 ff.
neutron, 113
photon, 173 ff.
straggling, 164–167
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Environmental (background) radiation, 11–
12, 96–97, 265, 422, 426, 450, 459–461,
465–466

Equilibrium-equivalent decay-product con-
centration (EEDC), 99 ff.

Equivalent dose, 365, 452 ff.
Errors, 303

propagation, 321–322, 571–572
type-I, 327 ff.
type-II, 328, 331 ff.

Escape peak, 271
152Eu, 412
154Eu, 412
European Organization for Nuclear Research

(CERN), 5–6, 8
Exclusion principle, 28, 33–34, 40, 57, 254
Exposure

definition, 362
measurement, 365–367

Extrapolation number, 435

f
19F, 55
Fallout, 9
Fano factor, 338–339
56Fe, 217
Fermi distribution, 254
Fermi energy, 254, 257, 259
Fermilab, 6–8
Fermion, 34
Film, photographic, 275–279

badge, 278
calibration, 276, 278
filters, 278
neutron response, 276, 279
nuclear track, 276
photon energy response, 276

Fine structure, 21, 25, 39, 43
Fission, 230 ff., 289
Fluence, 192
Fluorescence, 267–268, 285
Fluorescence yield, 46 (fig.), 285
Flux density, 192
Four-factor formula, 233
Fricke dosimeter, 285, 407

g
G value, 404 ff., 408 (table)
Gamma ray, 63–64, 68–71

annihilation, 76–77

attenuation coefficient, 187–197 (figs.),
474

decay energetics, 63, 68, 79 (table)
discovery, 4
dose rate from point source, 381–383
energy spectrum, 63–64, 66–71, 74, 77
exposure-rate constant, 382–383
forbidden transition, 68
hazards, 71
isomeric transition, 70, 72
penetration, 71
selection rules, 68, 70
shielding, 474–480
specific gamma-ray constant, 382–383
spectroscopy, 68

Gaussian distribution, see Normal distribu-
tion

Geiger-Mueller (GM) counter, 246–247, 251–
252

quenching, 251–252
Genome, human, 426
Genomic instability, 429
Germanium, 254 ff., 271–272, 274
Glass

meta-phosphate, 279, 285
scintillator, 269, 292

“Good” scattering geometry, 188 (fig.), 474
Gray (unit), 200, 363, 452, 551

h
1H, 55, 59, 217–218, 223, 287, 383, 385, 495–

496
2H, 55, 58–59, 210, 212, 217, 223, 383, 385,

495–496
3H, 55, 68, 96–97, 210, 212, 224, 268, 287,

291
Half-life, 84–85, 88
Half-value layer, 488 (table)
3He, 212, 218, 224, 287, 289, 291–292
4He, 58, 60, 62, 210, 212, 217–218, 224, 287
Health Physics Research Reactor, 375, 377

(photo)
Health Physics Society, 9, 336
Heisenberg, 4, 28 ff.
204Hg, 55
High Flux Isotope Reactor (HFIR), 209–211

(photo)
High purity germanium (HPGe), 262, 264,

274
Homeland security, 274–275, 419 (fn.)
Hormesis, 423, 429
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Hot particle, 379, 518
Hurst neutron proportional counter, 374–375
Hydrated electron, 400 ff.
Hydrogen

atomic energy levels, 21 ff.
atomic spectrum, 22–23
Balmer series, 17, 22
Bohr radius, 21, 549
Bohr theory, 19–25, 33, 44
fine structure, 32–33
molecule, 36–39
neutron absorption, 59
reduced mass, 24–25
spectral series, 23

Hyperfine structure, 56

i
125I, 46, 382, 383
126I, 76
131I, 86, 420, 530–531, 533
ICRP, see International Commission on Ra-

diological Protection
ICRU, see International Commission on Ra-

diation Units and Measurements
Impact parameter, 117 ff.
115In, 225
116In, 214, 279
116mIn, 225
Intensity, 193
Internal conversion, 46, 63–64, 69, 71–72

coefficient, 72
energetics, 72

International Atomic Energy Agency (IAEA),
9, 451

International Commission on Radiation
Units and Measurements (ICRU), 8 ff.,
162–163, 192 (fn.), 361 ff., 451

ICRU sphere, 452–453, 467
operational quantities, 466–468

International Commission on Radiological
Protection (ICRP), 8 ff., 361 ff., 424, 436
(fn.), 450, 451 ff., 509 ff.

2007 Recommendations, 452, 465–466
exposure limits, 458 ff.
ICRP-30 GI-tract model, 513, 521–522
ICRP-30 lung model, 513, 515–518
ICRP-66 human respiratory tract model,

518–521
ICRP-89, reference values, 511 (table)
ICRP-100, human alimentary tract

model, 522

International Radiation Protection
Association (IRPA), 10

Ionization 2, 241 ff.
chamber, 241 ff., 284
continuum, 23
gases, 241–252
potential, 22
pulses, 245 ff.
semiconductors, 252–266
W value, 241–244 (fig., table)
water

Ionization continuum, 23
Ionization potential, 21
191Ir, 94–95
191mIr, 94–95
Isomer, 68
Isotone, 55
Isotope, 55
Isotope shift, 55

k
40K, 96
42K, 305, 308, 310, 314, 475, 478
Kaon, 112 (fn.), 122 (fig.)
Kerma, 198, 387 (def.)
Klein-Nishina formula, 182

l
140La, 214
147La, 231
Lanthanide series, 35
Lanthanum halide, 275
LD50, LD50/30, 419, 438–439
LET, see Linear energy transfer
6Li, 58, 224, 281, 287, 289, 291, 495
7Li, 212, 224, 281, 287
Life Span Study, 411–413, 422
Lineal energy, 388–389
Linear energy transfer, 162–163, 363–365,

375–376, 389, 403 ff., 422, 426, 452–453
chemical yield, 407–408 (tables)
determination, 377–378
dose response, 430 ff.
neutron, 345, 348
quality factor, 363–365 (tables)
spectrum, 377–378

Linear no-threshold (LNT) model, 422, 432,
458

Long counter, 290
Lung counter, 265–266 (photo)
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m
Mass stopping power, 121
Mean excitation energy, 121, 123
Mean free path, 116, 384, 475
Mean life, 86–87
Medical imaging, 72, 73 (fig.)
Medical Internal Radiation Dose (MIRD)

Committee, 469, 529, 531
Metastable state, 70
24Mg, 479
26Mg, 78
Microdosimetry, 167, 387 ff.
Minimum detectable amount (MDA), 336
Minimum detectable true activity, 331 ff.
Minimum significant measured activity,

327 ff.
98Mo, 72
99Mo, 70
Molecules, 36–39
Monte Carlo, 342–348, 511, 529, 531

charged-particle transport, 380, 402–408
chemical reactions, 402–408
neutron transport, 344–347, 384 ff., 495
photon transport, 344–347
random numbers, 345–346

Multiple Coulomb scattering, 169–170
Muon, 50, 112, 121, 132

stopping power, 122 (fig.)

n
13N, 212
14N, 89, 96, 225, 228, 279, 383
22Na, 75–77, 96
23Na, 225
24Na, 60, 85, 214, 225, 418, 479
National Council on Radiation Protection

and Measurements (NCRP), 8 ff.,
361 ff., 376, 418 (fn.), 419 (fn.), 424,
436 (fn.), 438 (fn.), 450, 451 ff., 509 ff.

exposure limits, 458 ff.
Report No. 147, 482, 492–493
X-ray shielding, 482 ff., 492–493

22Ne, 75–77
Neutrino, 65, 72–73, 75, 231–232
Neutron, 55–58, 209 ff., 286 ff.

activation, 228–230, 279, 289–290, 496
activation foils, 279, 294
bubble detector, 294
capture, 59, 215, 223
charge distribution, 215 (fn.)
classification, 214–215

cross section, 215, 216 (fig.), 231
delayed, 232, 234
detection, 286–295
discovery, 5, 209
dose equivalent, 376 (table)
effective threshold energy, 228, 294
epithermal peak, 291–292
fast, 215, 286, 289 ff., 294, 375
gamma discrimination, 286 ff., 371 ff.
interactions, 215 ff.
intermediate, 215, 286, 289 ff., 375
magnetic moment, 215 (fn.)
mass, 549
moderation, 215, 217, 230 ff., 290–291
multiplication, 232
oxygen enhancement ratio (OER), 439
prompt, 232, 234
quality factor, 376 (table)
RBE, 437 (fig.), 438 (table)
reactions, 223–228
resonance, 215, 225
scattering, 113, 215 ff., 292, 293
slow, 215, 286 ff.
sources, 209–214 (tables)
spectrum, 218, 225–226, 290 ff.
spin, 57, 215 (fn.)
thermal, 59, 214, 223 ff.
threshold detector, 294
wall effect, 287–288, 292–293

60Ni, 65–68
63Ni, 412
NIST Physical Reference Data Website, 134
Normal (Gaussian) distribution, 311, 313,

315–321, 570–571
comparison with Poisson, 316
standard normal, 316, 318–320 (table)

237Np, 96, 265
Nuclear Regulatory Commission (NRC), 10,

336, 464
NVLAP, 281, 336

Nucleon, 55
Nucleus

binding energy, 58–61
constituents, 55
Coulomb barrier, 56–57 (fig.)
discovery, 4, 18–19, 31
excited states, 57–58, 63 ff., 215–216
fission, 60, 230 ff.
force, 19, 56–57, 60, 214 (fn.)
fusion, 60
metastable states, 70, 73–75
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radius, 18–19
reactions, 58 ff., 286 ff.
shell model, 61 (fn.)
spin, 31, 55–57
structure, 55–58

Nuclide, 55

o
16O, 60
17O, 228
Occupancy factor, 485 (table)
Oklo phenomenon, 209 (fn.)
“One-over-v”, or “1/v”, law, 223
191Os, 94–95
Optically stimulated luminescence (OSL),

283
Oxygen-ion stopping power, 122 (fig.)

p
32P, 68, 115, 226, 228–229, 493
P-10 gas, 249
Pair production, 173, 185 ff., 194, 271
Particle identifier, 265–266
Pauli principle, see Exclusion principle
205Pb, 186–187
206Pb, 55, 96–98, 186–187, 498
207Pb, 96
208Pb, 96
209Pb, 96
210Pb, 98–100
214Pb, 64, 98–101
103mPd, 73–74
Periodic system, 1, 4, 33–36, 44–45
Phosphorescence, 267
Phoswich detector, 269
Photoelectric effect, 4, 173–176, 194
Photomultiplier, 267, 280
Photon, 173 ff.

absorption by electron, 176–177
annihilation, 76–77, 139, 186
attenuation coefficient, 184–185, 187–

197 (figs.), 474
bremsstrahlung, 42, 77, 109, 144
energy, 4, 26, 175–176, 554
energy-absorption coefficient, 192 ff.,

195, 381
energy-transfer coefficient, 192, ff., 194
exponential attenuation, 187–188
interaction mechanisms, 173 ff.
linear attenuation coefficient, 187 ff.
mean free path, 187 (fn.)

momentum, 26, 176, 554
photonuclear reaction, 186–187
spin, 34
uncollided, 188, 193, 199
wavelength, 26

Photonuclear reaction, 173, 186–187, 226
Pion, 112 (fn.), 132, 377

stopping power, 122 (fig.)
Plasmon, 133
Planck’s constant, 4, 19, 549
Plum pudding atomic model, 4, 17–18
210Po, 98, 212, 497–498
214Po, 18, 64, 98–101, 129–130
218Po, 64, 98–101
Pocket ionization chamber, 247–248
Poisson distribution, 311–315, 568–570

comparison with binomial, 313–314
Poisson process, 312
Positron, 65 (fn.), 75–79, 109

annihilation, 76–77, 185–186, 195 (fn.)
annihilation photons, 76–77
decay energetics, 75–78, 79 (table)
discovery, 5, 32
hazards, 77
nuclear origin, 75
pair production, 185–186
relation to electron capture, 76
stopping power, 122 (fig.)

Positronium, 186
Potential alpha-energy concentration

(PAEC), 98 ff.
Probability of causation, 468
Proportional counter, 164, 218, 224, 245 ff.,

287 ff., 293, 374–375, 378
pulse-height discrimination, 249 ff.,

374–375
energy resolution, 337–339
Hurst counter, 374–375
Rossi counter, 377–378

Proton, 55–58
energy-loss spectrum, 164 ff.
mass, 549
range, 130 (table)
recoil telescope, 293
restricted stopping power, 161 (table)
stopping power, 122 (fig.), 125 ff.,

127 (table), 129 (fig.), 130 (fig.)
slowing-down rate, 131–132 (table)
track structure, 160, 404 ff.
W value, 244 (fig., table)

238Pu, 214, 265
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239Pu, 212, 231, 265, 274, 289
241Pu, 96

q
Quality factor, 363–365, 377, 389

average, 452–453
neutron, 376 (table)

Quantum electrodynamics, 32, 185
Quantum mechanics, 4, 25, 28–32, 36, 116–

117, 120, 132, 139, 144, 173, 182, 185,
303, 554

Quantum number, 20, 22, 24 ff., 29 ff., 33–36

r
226Ra, 62–64, 68–69, 83, 88, 96, 212, 214, 416
RaA, RaB, RaC, RaC′, etc., 98 (fn.)
Rad (unit), 363, 551
Radiation Effects Research Foundation

(RERF), 10, 411, 457
Radiation weighting factor, 365,

452–453 (table)
Radical, 285, 400 ff., 408 ff., 436, 440
Radioactivity, 61 ff., 83–102

alpha decay, 62–65
background, 11–12, 96 ff.
beta decay, 65–68
binomial distribution, 304, 307–311
decay constant, 83, 88
discovery, 3–4
electron capture, 72–75
energetics, 79 (table)
environmental, 11–12, 97–102
exponential decay, 82–87, 304
gamma emission, 68–71
half-life, 84–85, 88
internal conversion, 72
mean life, 86–87
positron decay, 75–79
secular equilibrium, 89–95
serial decay, 89–95
specific activity, 88–89
transient equilibrium, 91–92, 95

Radionuclide, 61
Radiophotoluminescence, 285
Radiotherapy, 440–441, 536
Radon 10, 11–12, 62–64, 96–102, 416–417
Radon daughters, 97–102 (fig.), 518

alpha-particle range in lung, 98
attached and unattached fractions, 97,

417
EEDC, 99

equilibrium factor, 99 ff., 417
hazard, 97–99
lung-cancer deaths, 417 (table)
PAEC, 98

Raleigh scattering, 173, 197
Range, 126–131, 169

alpha particle, 128–130 (figs.)
csda, 131, 147
electron (β±), 129–130 (figs.), 142 (table),

147 ff., 149 (fig.)
extrapolated, 167–169
mean, 167–169
projected, 169
proton, 127 (table)
scaling, 126–127
straggling, 131

Rare earth elements, 35–36
Reaction radius, 401–402 (table)
Reactor, 209–211, 225, 231 ff., 375, 377, 418,

497
Reduced mass, 22 (fn.), 24–25
Reference man, 456, 463, 509 ff., 514 ff., 529,

536, 538 ff.
Relative biological effectiveness (RBE), 435 ff.
Rem (unit), 364
Rem meter, 291
Rep (unit), 363
Resonance, 37 ff.
103mRh, 73–75
Risk estimates, 457–458 (table)
219Rn, 99
220Rn, 99
222Rn, 62–64, 68, 96–99
Roentgen, 1–4, 40, 267
Roentgen (unit), 9, 362 (def.), 551
99Ru, 71
Rutherford, 4, 18, 109, 169, 269
Rydberg constant, 17, 22, 25, 549

s
32S, 225–226, 228–230, 493
Saturation activity, 229
124Sb, 214
Schroedinger, 4, 28, 31–32
Scintillator, 267–275

efficiency, 267
glass, 269, 292
impurities, 267–268
inorganic, 268 ff.
liquid, 268
lithium, 269
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organic, 268, 293
slow-neutron detection, 289
sodium iodide, 267 ff.
“W value”, 272, 338
zinc sulfide, 269

Semiclassical mechanics, 25–28, 33–34
Semiconductor, 39–40, 252–266

average energy per electron-hole pair,
262, 338

band-gap energy, 261
depletion region, 261–262
diode junction, 259–262, 292
doping, 256 ff.
electron-hole pair, 255
instruments, 262–266
intrinsic, 254, 256
n-type, 257
p-type, 259
recombination current, 260–261
thermal current, 260–261

Shallow dose, 267–268, 278, 281, 283, 467–
468

Shielding
beta, 493–495
bremsstrahlung, 146, 493–495
gamma, 474–480
neutron, 495–498
X-ray, 480–493

Sievert (unit), 364, 452, 551
Silicon, 254 ff.
Skin dose, see Shallow dose
Slowing-down rate

electron, 148, 150
heavy charged particle, 131
proton, 131–132 (table)

118Sn, 217
Snyder-Fisher phantom, 511–513 (photo)
Solids, 39–41
Spallation Neutron Source (SNS), 213

(photo), 214
Spark chamber, 282
Specific absorbed fraction, 528 ff.
Specific activity, 88–89
Specific effective energy, 528 ff.
Specific energy, 388
Specific ionization, 163
Spectrum

bremsstrahlung, 144–145
chemical elements, 16
collisional energy loss, 114 (fig.)
Compton recoil electron, 182 ff.

energy resolution, 272, 274
fine structure, 21, 25, 39
hydrogen atom, 16–17, 19–25
hyperfine structure, 56
isotopic structure, 39
molecular, 39, 56
multichannel analyzer, 262, 264 (photo)
neutron, 279, 286 ff.
pulse-height, 164–165
X-ray, 42 ff.

Spur, chemical, 151, 403
85Sr, 539
89Sr, 539
90Sr, 68, 93–94, 539
Standard deviation, 307, 567 ff.
Stopping power, 115 ff, 139 ff., 380

Bethe theory, 117, 120 ff., 132–133
Bohr calculation, 116 ff.
Bragg additivity, 123, 133
Bragg peak, 121
charged particles, 122 (fig.)
density effect, 133
electron (β±), 122 (fig.), 129 (fig.), 130

(fig.), 142 (table), 143 (fig.)
electron capture and loss, 132
mass stopping power, 121
mean excitation energy, 121, 123
proton, 122 (fig.), 125 ff., 127 (table),

129 (fig.), 130 (fig.)
radiative, 139, 141, 142 (table), 144 ff.
restricted, 159–162 (tables)
shell correction, 133
straggling, 116, 164–169
z3 effect, 132

Synchrotron radiation, 6, 144–145

t
T65D, 411
99Tc, 70–71
99mTc, 70–73
125Te, 47
232Th, 96, 99
Thermoluminescent dosimetry (TLD), 279–

282
glow curve, 280
inorganic crystal, 279
materials, 281
reader, 280
thermoluminescence, 279 ff.

Thomson scattering, 173, 176–177
Thoron, 99
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Threshold (reaction), 226–228
Tissue

composition, 372 (table)
equivalence, 368, 373, 378, 467
weighting factor, 453–454 (table)

Tolerance dose, 9
Track etching, 282
Track registration, 282–283
Transient equilibrium, 91 ff.
Triplet production, 185, 194
Tritium, 55, 210, 224, 287 ff., 379, 407, 537–

539
monitor, 249–250 (photo)

Transition metals, 35

u
232U, 214
233U, 231, 289
235U, 96, 99, 209, 226, 231, 233–235, 289
238U, 55, 96–97, 99, 209, 217, 231, 233
Uncertainty principle, 4, 29 ff., 58 (fn.)
United Nations Scientific Committee on the

Effects of Ionizing Radiation
(UNSCEAR), 9, 11–12, 457, 469

Uranium miners, 416–417, 422

v
Valence band, 252 ff.
van der Waals force, 39
Variance, 307, 567 ff.
VARSKIN, 390
Virial theorem, 21
Virus, 161

w
W value

gas, 241–244 (fig., table), 338

scintillator, 272, 338
semiconductor, 262, 338

Wall effect, 218, 287 ff.
Work function, 175
Working level (WL), 101–102
Working-level month (WLM), 101–102

x
X rays, 40, 42–45

bremsstrahlung, 42
characteristic (discrete), 43–44, 64, 69,

71, 77, 270 ff.
continuous, 42–43
diffraction, 26, 44
discovery, 1–4, 267
early damage, 8
half-value layer, 488 (table)
medical exposures, 11–12
nature of, 4, 26
oxygen enhancement ratio (OER), 439
scattering, 26
shielding, 480–493
spectrum, 42–44
tube, 42, 480, 483
wavelength, 26–27

131mXe, 86

y
90Y, 68, 93–94, 146, 148
Yield

chemical, 404 ff.
fluorescence, 46

z
z3 effect, 132
Zeeman effect, 33–34
90Zn, 93
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