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PREFACE

This book contains contributions to the 172. WE-Heraeus-Seminar “Atoms and
Molecules in Strong External Fields,” which took place April 7–11 1997 at the Physik-
zentrum Bad Honnef (Germany).

The designation “strong fields” applies to external static magnetic, and/or electric
fields that are sufficiently intense to cause alterations in the atomic or molecular struc-
ture and dynamics. The specific topics treated are the behavior and properties of atoms
in strong static fields, the fundamental aspects and electronic structure of molecules
in strong magnetic fields, the dynamics and aspects of chaos in highly excited Ryd-
berg atoms in external fields, matter in the atmosphere of astrophysical objects (white
dwarfs, neutron stars), and quantum nanostructures in strong magnetic fields. It is
obvious that the elaboration of the corresponding properties in these regimes causes
the greatest difficulties, and is incomplete even today.

Present-day technology has made it possible for many research groups to study
the behavior of matter in strong external fields, both experimentally and theoreti-
cally, where the phrase “experimentally” includes the astronomical observations. Un-
derstanding these systems requires the development of modern theories and powerful
computational techniques. Interdisciplinary collaborations will be helpful and useful
in developing more efficient methods to understand these important systems. Hence
the idea was to bring together people from different fields like atomic and molecular
physics, theoretical chemistry, astrophysics and all those colleagues interested in aspects
of few-body systems in external fields.

In combination or individually, the articles present a broad and timely review of the
recent progress and the current state of the art in the theoretical, computational, and
experimental studies of atoms and molecules in strong external fields. Astrophysical
aspects related to magnetic white dwarfs and neutron stars are discussed. The com-
putational problems in the strong field regime where the valence electrons experience
electric and magnetic forces of comparable strength are discussed, and some new and
effective methods based on discretization and finite element methods as well as novel
basis set approaches are presented.

New experiments of Rydberg states in strong external fields are reported and re-
lated theoretical and computational aspects as well as the quest of quantum chaos are
discussed. Attention is drawn to the non-separability of the center-of-mass for atomic
and molecular systems in strong magnetic fields. This non-separability gives rise to
effects important in the Rydberg as well as in the astrophysical region. But not only
atoms and molecules in strong magnetic fields are reviewed; this book is rounded off by
the discussion of quantum dots and shallow donor states in strong magnetic fields.

Due to the scientific importance of the subject we hope that the articles presented
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in this book will prove valuable to a wide scientific audience, ranging from the expe-
rienced researcher to the newcomer. The 172. WE-Heraeus-Seminar brought together
about 50 scientists from many countries. As scientific organizers, we wish to thank
them for their participation, their presentation, and their enthusiasm, which created a
very stimulating and scientifically fruitful atmosphere. We would like to express our
thanks to Jutta Hartmann and Dr. Volker Schafer from the WE-Heraeus-Stiftung for
the unbureaucratic procedure of funding, general organization and realization, and, of
course, to the founders Dr. Wilhelm Heinrich Heraeus and Else Heraeus. We thank
the Deutsche Forschungsgemeinschaft for their financial support for the East-European
participants.

Tübingen and Heidelberg W. Schweizer
P. Schmelcher
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WHITE DWARFS FOR PHYSICISTS

Detlev Koester

Institut für Astronomie und Astrophysik, Universität Kiel
D-24098 Kiel, Germany

INTRODUCTION

A small number of white dwarf stars show extremely high magnetic fields, of the
order of G. This is the only possibility to observe the behavior of the hydrogen
atom in such fields, and to compare energy shifts and transition probabilities with
the predictions of theory. These strange objects clearly deserve to be a topic at this
meeting, and observations of magnetic white dwarfs as well as theoretical interpretations
will be presented in a later talk by S. Jordan. This paper is meant as an introduction
for the non-specialist. Using extremely simplified models and avoiding astronomical
terminology as far as possible, I will attempt to describe what are white dwarfs, where
do they come from, and what are the physical conditions we find in them.

These questions are answered by the theory of stellar structure and stellar evolu-
tion, and we understand already the most important facts about stellar evolution, if
we realize the overwhelming importance of gravitational forces. The life of a star is
dominated by a battle between the gravitational attraction of matter, which attempts
to compress the stellar matter to higher and higher densities, and the pressure of the
gas, which tries to resist this compression. Since stars are losing energy from the surface
into interstellar space, an internal energy source is necessary to maintain the pressure,
at least as long as the equation of state is given by the ideal gas law, where pressure
depends on density and temperature. As we know today, these energy sources are nu-
clear fusion reactions, and a critical phase in the life of a star comes, when the nuclear
fuel is exhausted and stellar evolution reaches the final stages. According to theory
there are three different possibilities for these end-products: a black hole, which means
the ultimate victory of gravitation, a neutron star, where the pressure of degenerate
neutrons (modified by nuclear interactions) supplies the pressure independent of tem-
perature, and, finally, white dwarfs, where the pressure is supplied by the degenerate
electron gas.

EXTREMELY SIMPLIFIED OVERVIEW OF STELLAR EVOLUTION

Let us start from the beginning, the formation of stars, and a little more quanti-
tatively. We consider a spherical mass of gas, with radial coordinate r measured from
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the center, and m the mass inside a sphere of radius r, dm the mass of a shell between
r and r + dr. The gravitational force between the sphere and the overlying shell is then

with gravitational constant G. This force creates an increase of pressure, going inward
over a shell dm of

In order to integrate this equation exactly, we would have to know the distribution
of matter density inside the sphere. But on dimensional grounds as well as from
integrations with simple assumptions (e.g. a homogeneous sphere, it is clear
that the “gravitational pressure” at the center of the sphere, caused by the “weight” of
the matter in the gravitational field, has to be

where M and R are the total mass and radius of the sphere, and for the second form
we have used the fact that The constant of proportionality' in the second
expression above is 0.81 for a homogeneous sphere, 0.59 for a quadratic increase of
density inward, and always of the order of 1. In our future estimates we will just use 1.

Star formation and early evolution

We can apply this result to study the conditions for the formation of stars out of
thin interstellar matter. Considering a spherical cloud of density and temperature T,
we estimate that the cloud will start to contract under its own gravity, if at the center
the gravitational pressure is larger than the gas pressure

with the gas constant and molecular weight A simple calculation determines the
minimum mass necessary for this to occur as

which in astronomy is called the Jeans criterium for star formation. Under typical con-
ditions of the interstellar matter this corresponds
to about 22000 (solar masses). Stars are formed in larger groups (clusters) — only
when the density gets higher, smaller masses of the order of a solar mass become unsta-
ble and the fractionation of the interstellar cloud continues. It should be emphasized
again, that this description is extremely simplistic, and that in fact the star formation
is rather poorly understood, even by the experts.

What happens next, after the cloud has started to contract, decreasing the radius
and increasing the density? That depends on how the two pressures in the balance
react to increasing density

using again the equation of state for an ideal gas. In the beginning the matter is opti-
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cally thin, meaning that photons can freely escape and carry away the heat produced
by contraction and release of gravitational binding energy. The temperature remains
approximately constant, and therefore Gravitational forces increase steeper
with density and very soon dominate completely over the gas pressure. This leads to a
free-fall collapse of the cloud. The timescale for this collapse is the dynamical timescale,
which can be estimated in several different ways (for example from the time a sound
wave needs to travel the radius of the cloud R). The typical result is always

which in the case considered means a few million years.
When the density becomes high enough, photons can no longer escape freely and

a better model is the opposite extreme of adiabatic changes (no exchange of heat
with the outside world). For a monatomic gas (e.g. neutral hydrogen), we then get

This is a steeper increase than for the gravitational pressure, and the
protostar can find a new hydrostatic equilibrium, where both pressures are in complete
balance,

As the energy loss from the surface continues (called L, the luminosity, by as-
tronomers), the protostar continues to contract, transforming gravitational binding
energy into heat, but the evolution is slow and the object always remains extremely
close to mechanical equilibrium. Such a phase is called gravitational contraction. The
gravitational binding energy of a protostar or star is approximately

3



The release of this energy could supply the luminosity L of a star for a time called the
thermal or Kelvin-Helmholtz timescale

which is about years for our sun.

Evolution in the density-temperature plane

The key point to understanding the essentials of stellar evolution, and especially
the formation of white dwarfs, is the study of the behavior of the central parts in
a density-temperature diagram (Fig. 1). Using the hydrostatic equilibrium condition

we find

or

The central parts move on a straight line with slope 1/3 in the double-logarithmic
diagram, and therefore the temperature increases, until the conditions necessary for
“hydrogen burning”, the fusion of hydrogen to helium, are reached. This marks the
change from protostar to star; nuclear fusion provides so much energy that the star
changes very little for several billion years (nuclear timescale). For a star like our sun
this is the longest phase in its life.

When finally the hydrogen in the central parts is transformed to helium, the energy
generation moves farther out, to a shell around the helium core. This core again starts
gravitational contraction, until conditions for He burning are reached. For a massive
star, e.g. this pattern of nuclear burning and gravitational contraction continues
until the central parts consist of the most tightly bound element iron, and no further
energy source is available. The interior then collapses to a neutron star or black hole,
releasing so much energy in one second that we observe it as a very spectacular event,
a supernova.

What is different for less massive stars? According to our condition for gravita-
tional contraction less massive stars evolve at lower temperature and higher density.
They eventually reach regions in the diagram, where the assumption of a clas-
sical ideal gas for the equation of state is no longer valid. The matter in the interior
is completely ionized, consisting of the heavy nuclei and electrons. When the electrons
are squeezed into a smaller and smaller volume by the overall gravitational forces, they
start to feel the effect of the quantum mechanical Pauli principle. Because all low lying
states for the momenta are occupied, they are forced into higher and higher states,
increasing the pressure (= transfer of momentum) provided by the electron gas. In
the extreme case of complete degeneracy, the pressure does not depend anymore on
temperature, but only on density as

depending on whether the velocities of the electrons are non-relativistic (5/3) or rel-
ativistic (4/3). We can estimate the location of the transition region by equating
the pressure of the limiting expressions ideal gas, and completely degenerate, non-
relativistic electron gas
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The slope of this line marking the transition is obviously steeper than the slope of
the path during gravitational contraction (2/3), so sooner or later a low-mass star will
reach this region.

Once the central parts reach the region of degeneracy, this results in a profound
change of evolution. We can understand this qualitatively with a simple approximation
to the equation of state in the transition region by taking the sum of both contributions.
In the limiting cases this is correct, while in the transition region the error may be a
factor of 2, but that is good enough to understand the basic principle. The equilibrium
condition becomes

where some new symbols are constants from the exact formulation of the equation of
state, but not important for our argument here. The evolution in the           plane is
given by

The first term is the well known result for the ideal gas, with the temperature increasing
with contraction. However, when the region of electron degeneracy is reached, the
second term will gradually become more and more important, the central temperature
will go through a maximum and then start to decrease steeply upon further contraction.
This is still a gravitational contraction with some release of gravitational binding energy,
but since the star cools down internally, no new nuclear energy source will be reached
and this is a final state of evolution. Our current theory predicts that most stars,
including our own sun, will reach this stage after the He burning phase. Their interior
will then be composed of the ashes of this process, that is carbon and oxygen.

WHITE DWARFS — COOLING HIGHLY DEGENERATE CONFIGURA-
TIONS

The astronomical objects called "white dwarfs" arc identified with these theoretical
configurations, which do not reach iron in the sequence of nuclear burning phases, but
enter the regime of electron degeneracy (in most cases after the He burning) and then
quietly cool down into invisibility. Observationally they were recognized about 90 years
ago as stars with normal surface temperatures, but much lower total energy output
(luminosity). The only explanation was a small radius, of the order of 1/100 of the
solar value. In the case of binary stars, e.g. the famous example of Sirius A and its
companion Sirius B the mass was known to be about one solar mass, which meant
extremely high densities. This puzzle was only solved in 1926, after the discovery of
quantum mechanics and the degenerate electron gas.

Masses, radii, cooling times

Typical parameters of these stars arc masses around sun, with a rather
narrow distribution, although a few stars are known below 0.4 and above
Average densities are then and typical luminosities around
This luminosity ultimately comes from the change of gravitational binding energy
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leading to a cooling timescale of

years.

Even a very small change in R is sufficient to supply the luminosity of a white dwarf
for billions of years; this is another long-lived phase for low-mass stars.

The best-known fact about the physics of white dwarfs is probably the existence
of a mass-radius relation (MRR) and of a limiting mass. We can understand this
qualitatively using the same argumentation as before for the mechanical equilibrium,
but now using the equation of state for the degenerate electron gas and the form
including the radius instead of density

This leads to a relation valid for non-relativistic electrons, that is low-mass
white dwarfs. The radius decreases with increasing mass and increasing central density.
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When the electrons become relativistic, we have

and equilibrium is now possible for one single mass only, but arbitrary radius. This is,
however, not a stable equilibrium; a small perturbation would either lead to a collapse
to infinite density at radius zero, or to an expansion. In such an expansion the electrons
in the outer parts will become non-relativistic and a stable equilibrium is possible. The
single solution for the mass in the ultra-relativistic case is the critical, or Chandrasekhar
mass. It is the upper limit for white dwarf masses, and for an interior composition of
carbon or oxygen its value is

Although this MRR and the limiting mass are firmly established theoretically,
the empirical evidence is still not very convincing. The most important reasons are
that the observed white dwarfs seem to cluster around , making it difficult to
establish the relation for small and large masses, and the difficulty to measure distances
to these objects, which are necessary for the determination of masses and radii. In
recent years the European Space Agency ESA has used the satellite HIPPARCOS,
to measure accurate distances to a large number of stars, including about 20 white
dwarfs. Fig. 2 shows the results for the MRR obtained with these new data, compared
to the use of ground-based measurements only. Because the white dwarfs are very
faint, the improvement is not as obvious as for other, brighter stars. The general
agreement with the theoretical calculations is considered satisfactory, although the
observations certainly do not prove the detailed shape of the relation, nor distinguish
between different versions for slight differences in the internal structure of white dwarfs.

Observable Atmospheres

Directly observable are only the atmospheres, the outermost layers of white dwarfs,
which are accessible to photometry (measuring brightness through different filters) and
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spectroscopy. From the observed spectra we distinguish two main spectral groups of
white dwarfs. By far the largest subgroup shows only spectral lines of hy-
drogen; this is the type DA, and the surface layers consist indeed of extremely pure
hydrogen. On the other hand, in the remaining 20 %, the atmospheres are almost pure
helium and show only spectral lines of neutral or ionized helium (spectral types DB,
DO, + some smaller groups). Fig. 3 shows typical representatives of these two spectral
groups; the most apparent features are extremely broad lines (broadened by pressure
broadening) due to either hydrogen (DA) or helium (DB). These mono-elemental com-
positions are unknown in any other object in the universe; the basic explanation for
this is “gravitational separation”, an effect known since almost 50 years. In the strong
gravitational fields on the surfaces of these stars the heavy elements sink down, leaving
the lightest element present floating on top. The physical process is element diffusion,
and it seems to work efficiently in white dwarfs, because there are no other velocity
fields (due to convection, circulation, stellar winds) to disturb it.

Of the few white dwarfs with very strong magnetic fields, all objects with identified
features belong to the DA class. Whether this is a selection effect due to small numbers,
or whether helium is responsible for some objects with unidentified features, is currently
unknown, and will probably only be understood, when calculations for He in extreme
fields become available.

This concludes our journey from interstellar matter to the surfaces of magnetic
white dwarfs. White dwarfs are very interesting objects from an astronomical point
of view, since they are the most common end-product of stellar evolution, and since
they offer the opportunity to study important astrophysical processes as convection,
diffusion, pulsation, accretion. But they are also fascinating for a physicist, because
they offer conditions that cannot, or not easily be achieved in terrestrial laboratories.
We can study macroscopic effects of quantum mechanics with the equation of state,
various aspects of line broadening theories, and, finally, the effect of extremely strong
magnetic fields on atoms, which is the topic of this meeting. In the spirit of this very
elementary physical discussion 1 have given almost no references in the text; however,
for the reader interested in more of the physical or astronomical details I include below
a few review papers and the most relevant recent conference proceedings.

REFERENCES

Barstow, M.A. (ed.), 1993, White Dwarfs: Advances in Observation and Theory, Kluwer (Dordrecht)
Chanmugam, G., 1992, Magnetic fields of degenerate stats, Ann. Rev. Astr. Ap. 30:143
Koester, D., Chanmugam, G., 1990, The physics of white dwarf stars, Rep. Prog. Phys. 53:837
Koester D., Werner, K. (eds.), 1995, White Dwarfs, Lecture Notes in Physics, Vol. 443, Springer-Verlag

(Heidelberg)
Shapiro, S.L., Teukolsky, S.A., 1983, Black Holes, White Dwarfs, and Neutron Stars, Wiley & Sons

(New York)
Vauclair, G., Schmidt, H., Koester, D., Allard, N. , 1997, White dwarfs observed with the HIPPARCOS

satellite, A & A, in press

8



MAGNETIC WHITE DWARFS: OBSERVATIONS IN COSMIC
LABORATORIES

Stefan Jordan

Institut für Astronomié und Astrophysik, Universität Kiel
D-24098 Kiel, Germany

INTRODUCTION

Magnetic white dwarfs are the only known physical system in which the behaviour of
spectral lines, especially of hydrogen, in the presence of very strong magnetic fields (up
to can directly be studied. Presently, the analysis of the radiation from neutron
stars is much more complicated and less unique. As discussed in the paper by Detlev
Koester (this conference) the atmospheres of white dwarfs (i.e. the layers in which the
observed radiation originates) are often of very simple chemical composition (almost
pure hydrogen or helium); the reason is element separation due to the strong gravita-
tional accelaration of about Therefore the shifted line components of
hydrogen and helium can be observed, often without taking into account a complicated
mixture of different elements.

MAGNETIC FIELD ON STARS

Magnetic fields have been measured in many different types of stars. For obvious
reasons the first star on which magnetic fields could be detected was the sun on which
Hale (1908) observed the magnetic splitting of spectral lines in sunspots. The solar
magnetic field is quite complex and mostly concentrated in magnetic flux tubes with
field strengths of a few kG. Babcock (1947) discovered a large and variable
magnetic field on 78 Vir. With spectral type A1 p this star belongs to the peculiar A
and B main sequence stars (hot stars, burning hydrogen to helium in their center) on
which magnetic fields up to 16 kG have been found (Landstreet 1992). It was not until
1980 when Robinson et al. discovered magnetic fields of about 2000 G on limited parts

of the stellar surface of cooler main sequence stars (spectral type G and K).

MAGNETIC FIELD ON WHITE DWARFS

Blackett (1947) predicted that much stronger magnetic fields could exist in
white dwarfs if the magnetic moment of a star is proportional to its angular momentum,
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which he assumed to be conserved during the stellar evolution and the collapse. This is,
however, probably not the case since most isolated white dwarfs seem to be relatively
slow rotators e.g. Koester & Herrero 1988, Heber et al. 1997), although
a few exceptions from this rule exist (e.g. REJ 0317-853, see below). The fact that
white dwarfs are typically slow rotators is rather surprising since most of the known
white dwarfs stem from progenitors with masses which had typical rotational
velocities of if angular momentum is completely conserved during
the evolution we would expect the white dwarf remnant to have

Another possibility was proposed by Ginzburg (1964) and Woltjer (1964). They
argued that if the magnetic flux, which is proportional to , is conserved during
evolution and collapse, very strong magnetic fields can be reached in degenerate stars.
A main sequence star with a radius and a surface magnetic field of 1-
10 kG can therefore become a white dwarf with a magnetic field strength
of

The search for magnetic white dwarfs began in 1970 when Preston looked for
quadratic Zeeman shifts in the spectra of DA white dwarfs. Due to the extremely
strongly Stark broadned Balmer lines and the limited spectral resolution he was only
able to place upper limits of about 0.5 MG for the magnetic fields in several white
dwarfs.

A rather sensitive method to detect magnetic fields in white dwarfs is the mea-
surement of circular polarization. Kemp (1970) proposed that a field of
would produce detectable circular polarization due to circular dichroism, caused by
different free-free opacities for the ordinary and extraordinary mode of radiative propa-
gation. After his failure to find polarization in DA white dwarfs he applied his method
to several of the almost featureless white dwarfs (classified as DC). In ,
an object that was known for its rather shallow and unidentified “Minkowski bands”
(Minkowski 1938, Greenstein 1956, Wegner 1971), he detected circular polarization of
several percent. With the help of a magnetoemission model he derived a magnetic
field strength of 10 MG, although the circular polarization was not proportional to
the wavelength as predicted by Kemp’s model. Later his value for the magnetic field
strength turned out to be much too low (due to the fact that the free-free opacity is
not the dominating absorption process in ); his idea that the strange
spectrum of can be explained by a strong magnetic field was, however,
correct. Nevertheless, all attempts to identify the Minkowski bands with various atoms
or molecules in magnetic fields of a few MG failed.

Even for the simplest atoms, hydrogen and helium, accurate calculations for the
line components did not exist at that time for field strengths above 20-100 MG (de-
pending on the line transitions, Kemic 1974a, 1974b); only for extremely intense fields

data were available again (Garstang 1977), but none of the predicted
line positions were in agreement with the wavelengths of the features.
For this reason Angel (1979) proposed that the star must possess a field strength above
100MG (but below the intense-field regime).

For hydrogen the intermediate-field gap has been closed partly during the last
twelve years with numerical calculations of energy level shifts and transition probabil-
ities for bound-bound transitions by groups in Tübingen and Baton Rouge (Forster et
al. 1984; Rösner et al. 1984; Henry and O’Connell 1984, 1985).

Since the magnetic field on the surface of a white dwarf normally is not homo-
geneous but often better described by a magnetic dipole, the variation of the field
strengths from the pole to the equator (a factor of two in the case of a pure dipole
field) smears out most of the absorption lines; this explains why the spectral features
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on are so shallow for strong magnetic fields. However, a few of the line
components become stationary, i.e. their wavelengths go through maxima or minima
as functions of the magnetic field strength. These stationary components are visible
in the spectra of magnetic white dwarfs despite a considerable variation of the field
strengths.

It was a great confirmation for the correctness of the theoretical calculations that
indeed the unidentified features in the optical and UV spectrum of could
be attributed to stationary components of hydrogen in fields between about 150 and
500 MG (Greenstein 1984, Greenstein et al. 1985, Angel et al. 1985, Wunner et al.
1985, cf.  Fig. 1).

These identifications allowed an estimation of the approximate range of field
strengths covering the stellar surface. However, the detailed field structure could not
be inferred. This was only possible by simulating the radiative transfer through mag-
netized stellar atmospheres using the line opacities published by the groups in Baton
Rouge and Tübingen. Wickramasinghe & Ferrario (1988) have obtained a good fit
to most of the Minkowski bands by assuming a pure dipole model with a polar field
strength of 320 MG. This result was confirmed by Jordan (1988; 1989) who used more
recent atomic data and made improvements to the treatment of the bound-free opaci-
ties.

Up to now on about 50 (2%) of the 2100 known white dwarfs (McCook & Sion 1996)
magnetic fields have been detected with fields ranging from about 40 kG up to 1 GG. A
list of all currently known magnetic white dwarfs is found in Jordan (1997). Although
some selection effects may exist (e.g. shallow features are not easily recognized in faint
stars) we believe that the number statistics is consistent with the assumption that Ap
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stars are the progenitors of magnetic white dwarfs, in which the field strengths are
enhanced by magnetic flux conservation during the evolution.

The goal of magnetic white dwarf spectroscopy is to determine the field strength,
the detailed geometry of the magnetic field, and the rotational period of the star (which
is very difficult to measure in non-magnetic white dwarfs). The results provide impor-
tant constraints for the theory of the origin of magnetic white dwarfs.

MODELS FOR THE RADIATIVE TRANSFER

The spectrum and polarization of a magnetic white dwarf is the superposition of the
radiation originating from all different parts of the visible hemisphere of a white dwarf
(which may vary due to rotation). Observations of the spectra and wavelength depen-
dent polarization can be analyzed by simulating the transport of polarized radiation
through a magnetized stellar atmosphere. The methods for the calculations of synthetic
spectra and the wavelength dependent linear and circular polarization are described by
Jordan (1988, 1992). The basis is the solution of the four coupled radiative transfer
equations (Beckers 1969) for the four Stokes parameters which describe the intensity
and polarization of the radiation. With the help of the atomic data the absorption
coefficients for and and the magneto-optical parameters for Faraday
rotation and Voigt effect are calculated for a given magnetic field strength and orienta-
tion. With these values the radiative transfer equations are solved for the temperature
and pressure structure of a (currently zero-field) white dwarf model atmosphere.

For the line data of hydrogen we use the data from the Tübingen group (Forster et
al. 1984, Rösner et al. 1984, Wunner et al. 1985). For the bound-free opacities either
a simple and probably unrealistic approximation (Lamb & Sutherland 1974) with some
improvements by Jordan (1988, 1992) is used or complex energy eigenvalues and dipole
matrix elements calculated by Merani et al. (1995) were utilized in order to study the
influence of the bound-free opacities on the polarization (Jordan & Merani 1995).

The magnetic field configuration cannot be derrived from the observed flux and
polarization in a unique way by a simple inversion process, since different magnetic
geometries can in principle lead to the same observational data. The current strategy
is to assume that the global field can be described by a magnetic dipole, which does
not necessarily need to be located in the center of the star, or by a dipole+quadrupole
combination. In principle higher order multipoles could be included, but this would
increase the number of fit parameters. After the magnetic geometry has been fixed, the
stellar surface is divided into a large number (typically 1000-10 000) of surface elements
on which the radiative transfer equation are calculated. Finally, the Stokes parameters
are added up according to the projected size of the surface elements.

RESULTS OF THE ANALYSES

The main result of the analyses of magnetic white dwarfs is that many spectra and
polarization measurements can be sucessfully reproduced with our models. In order to
do so it is, however, often necessary to assume off-centered dipoles or dipole+quadrupole
configurations for the magnetic field geometry (e.g. Putney & Jordan 1995, see Fig. 2).
One important questions is, how the higher order multipoles of the magnetic field can
survive during the cooling time of a white dwarf.

Chanmugam & Gabriel (1972) and Fontaine et al. (1973) have calculated the time
scale for the decay of magnetic fields of white dwarfs. They showed that the decay
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times are with the higher modes decaying more rapidly than the fundamental.
This could lead to the assumption that the magnetic field becomes more dipolar during
evolution. However, Muslimov et al. (1995) have shown that a weak quadrupole (or
octupole, etc.) component on the surface magnetic field of a white dwarf may sur-
vive the dipole component under specific initial conditions: Particularly the evolution
of the quadrupole mode is very sensitive (via Hall effect) to the presence of internal
toroidal field. For a 0.6 solar masses white dwarf with a toroidal fossil magnetic field
of strength the dipole component declines by a factor of three in , while
the quadrupole component is practically unaffected. Without an internal toroidal field
the dipole component still declines by a factor of three but the quadrupole component
is a factor of six smaller after 10 Gyr.

This shows that the detection of higher-order multipoles provides us with informa-
tion about internal magnetization of white dwarfs and the initial conditions from the
pre-white dwarf evolution. Therefore, further investigations of the complex magnetic
fields of white dwarfs remain important.

With the exception of narrow NLTE cores sometimes present in the profiles of
some white dwarfs, the spectral lines in white dwarfs are strongly Stark broadened so
that it is difficult to measure the rotational period of these stars via Doppler broadening.
Spectropolarimatric data from magnetic white dwarfs provide a possibilty to measure
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the rotational velocity of these stars, due to the strong dependence of the absorption
coefficients on the local magnetic field. If the rotational axis is not perfectly alligned
with a symmetry axis of the field, variation of both the spectra and the polarization
should be detectable.

As an example, we have taken phase resolved spectra of the star HE 1211-1707
with an exposure time of five minutes each during one night and found that the period
of spectral variation is about 110 minutes (Jordan 1997). The fastest rotation of a
white dwarf has been measured by Barstow et al. (1995) who found that the magnetic
white dwarf REJ 0317-853 is rotating with a period of only 725 seconds.

On the other hand there are several objects like in which the ob-
served features in the spectra look constant with time, so that rotationalal periods
longer than about a hundred years can be inferred. Why these stars have lost almost
all of there angular momentum while others have not remains a mystery.

HELIUM AND CARBON IN MAGNETIC WHITE DWARFS

In some cases both hydrogen and helium are present in the atmosphere as in the case
of Feige 7 (Liebert et al. 1977, Martin & Wickramasinghe 1986). Achilleos et al.
(1992) could show that a rather complicated model with a displaced magnetic dipole

having a polar field strength of 35 MG and variable surface abundances of
H and He can reproduce the spectra observed during different rotational phases. For
such a moderate magnetic field it was, however, already necessary to extrapolate the
atomic data for He II calculated by Kemic (1974b), which exist only up to 20MG.

A mixture of hydrogen and helium is most likely also present in the spectrum of
LB 11146B, which probably possesses a polar magnetic field strength of about 670 MG
(Liebert et al. 1993, Glenn et al. 1994). However, no detailed modelling was possible
due to the lack of atomic data for helium in a strong magnetic field.

The most famous magnetic white dwarf whose spectrum and polarization is still
unexplained is GD229. Angel (1979) proposed that the absorption features in this star
are due to He I. Östreicher et al. (1987) have proposed that some of the absorption
bands may be due to stationary lines of hydrogen in a field as low as 25-26 MG, but
this idea has never been confirmed by model atmosphere analyses. Engelhardt & Bues
(1995) have tried to explain the regular almost periodical structure of the GD 229
spectrum by quasi-Landau resonances (O’Connell 1974) of hydrogen in a magnetic
field of 2.5GG, but it is not clear at the moment, whether their approximations are
valid. A strong indication that no hydrogen is present in this star comes from the fact
that no components of Lyman could be identified in the GD 229 spectrum (Schmidt
et al. 1996); since Lyman originates from transitions between rather strongly bound
states one would expect to see such an absorption even in rather strong fields.

Recently, the first approximate data of some He I line components have become
available (Thurner et al. 1993). However, none of the unknown features in the high S/N
UV and optical spectra of GD 229 taken by Schmidt et al. (1996) could be explained
by these data.

As announced at this conference, several groups are presently calculating atomic
data for He I or have data ready for publication. Ceperly et al. (this conference) have
found some agreement between the position of some spectral features with He I (calcu-
lated with Monte-Carlo calculations) and He II lines at fields between 352 and 590MG.
However, at the effective temperature of GD 229 we do not expect  He II
lines to be present in the spectrum, although at present we cannot fully exclude that
the ionization equilibrium of helium is strongly modified by the strong magnetic field:
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Firstly, the ionization energies calculated as the energy difference between the ground
state and the lowest Landau threshold differ from the zero-field situation. Secondly,
the Saha equation is modified since the motion (transverse to the magnetic field) of the
electrons in phase space is restricted by the magnetic field (see e.g. Ventura et al. 1992
for a discussion of the Saha equation for hydrogen).

In two helium rich magnetic white dwarfs with temperatures below 9000 K carbon
molecules are responsible for the absorption. Dues & Pragal (1989) have
derived a magnetic field strength of about 10-20 MG on the surface of G 99-37. Bues
(1993) found an even stronger field of about 150 MG on LP 790-29; it is, however, not
quite clear how accurate these values are in detail, since no reliable theory for the Swan
bands of exist at these strong fields.

IMPROVEMENTS NEEDED

While the flux spectrum of the prototype can be well reproduced by the
models its polarization shows still strong deviations from the predictions. This must
be due to the shortcomings of the present models.

Presently the influence of the magnetic field on the temperature and pressure
structure is neglected. A modification of the zero-field stratification is possible via
magnetic pressure terms from field configurations which are not force-free (i.e. cannot
be described by a scalar potential . Moreover, the polarization of the radiation
also slightly modifies the hydrostatic structure of the outer layers.

Another difficulty arrises from the fact that at the effective temperature of
convection is present in non-magnetic white dwarfs. Currently it is

not clear whether convection is fully suppressed or whether some of the energy is still
transported by convection depending on the field strength and the angle between the
stellar surface and the magnetic field.

As far as atomic data or molecular data are concerned there is still a strong need
for further calculations: At the temperature of is one of the major
opacity sources in the non-magnetic case. Since it is reasonable to assume that
also plays an important role in the presence of magnetic fields, a grid of absorption
coefficients for would be needed for realistic radiative transfer calculations.

Schmelcher (this conference) has presented numrical calculations for the chemical
bond and electronic structure of the and molecules. Such data are

very important for the analysis of UV spectra of white dwarfs in the range of effec-
tive temperatures between 9000 and 19000 K, where quasimolecular satellite features
are observerved due to interactions of H atoms with H and H II perturbers. In the
absence of a magnetic field absorption features occur in the wings of Lyman at 1400
and (Koester et al. 1985, Nelan & Wegner 1985, Allard et al. 1994). In a
HST spectrum of small bumps are visible at 1420 and (Allen &
Jordan 1994). Since the (non-magnetic) feature is relatively weak at 15 000 K,
we may speculate that the bump at is a shifted feature”. With the
molecular data for and in a magnetic field it would be possible to calculate the
full Lyman profile including the satellite features.

There are several papers at this conference in which the calculation of He I in
the presence of strong magnetic fields is discussed. We can hope that the spectrum
and polarization of GD 229 can be explained when enough accurate energy levels and
oscillator strengths become available.

Finally, consistently calculated molecular data for are needed in order to per-
form a reliable analysis of magnetic white dwarfs showing polarized Swan bands in
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there spectra.
The line components in magnetic white dwarfs are not only shifted by the magnetic

field but also by the electric field at the location of the absorbing atoms. The Stark
effect may be important for the line profiles at low magnetic fields , where
the electric field is not small compared to the magnetic field and for slight shifts in the
line positions of stationary line components. Moreover, line transitions forbidden by
the selection rules for dipole radiation may occur if both electric and magnetic fields
are present (see Friedrich, this conference).

Therefore, we can conclude that magnetic white dwarfs are still important and
interesting laboratories in which present day calculations of atomic data for atoms and
molecules in strong magnetic fields can be tested.
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INTRODUCTION

The wavelengths of hydrogen transitions in the strong magnetic fields of white
dwarfs are strongly dependent on the magnetic field strength. Taking into account
that the magnetic field strength varies at least by a factor of two across the surface of a
magnetic white dwarf, it, is obvious that most lines are broadened to invisibility in the
spectra. A few lines, however, exhibit maxima or minima as functions of the magnetic
field strength and thus can produce sharp absorption features. Atomic data for all
magnetic field strengths relevant for DA white dwarfs are available (Ruder et al. 1994)
and a substantial number of magnetic white dwarfs has been successfully analyzed.

One outstanding problem is the calculation of bound-free opacities of the hydrogen
atom in magnetic fields. First results for some magnetic field strengths have recently
become available (Merani et al. 1995; Seipp et al. 1996). As it is known from the
Stark broadened lines in the spectra of DA white dwarfs without magnetic fields there
are strong electric fields present caused by free electrons and ions in the stellar at-
mospheres. In addition to their influence on the wavelengths and oscillator strengths
these electric fields might be responsible for further absorption features, since some
transitions forbidden in the diamagnetic case are turned into allowed transitions.

*Visiting Astronomer, German-Spanish Astronomical Center, Calar Alto, operated by the Max-Planck-
Institut für Astronomie Heidelberg jointly with the Spanish National Commission for Astronomy
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QUANTUM MECHANICAL CALCULATIONS

Bound-bound Transitions

The non-relativistic single particle Hamiltonian of a hydrogen atom in an external
magnetic field B and electric field F (in units of reads:

For an effective numerical treatment we reduced the three-dimensional Schrödinger
equation via the discrete variable technique to a system of unidimensional differential
equations. This system of differential equations is solved by the Finite-Element method.
For details see Faßbinder & Schweizer and Schweizer et al. (this volume) and references
therein.

As expected, an additional electric field can have drastic effects on the structure of
the calculated spectra. On the other hand, it could be shown (Faßbinder & Schweizer,
1996) that for most magnetic and electric field strengths relevant for white dwarfs the
influence of the electric field component perpendicular to the magnetic field is negligible
compared to the influence of its parallel component. Therefore we can restrict ourselves
to parallel magnetic and electric fields.
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Bound-free transitions

The Hamiltonian for hydrogen in parallel magnetic and electric fields in atomic
units and spherical coordinates reads:

with the magnetic field in units of and the electric field strength F
in units of In recent years the complex coordinate method has been successfully
applied to continuum states. The complex rotated Schrödinger equation is then solved
numerically by expanding the wavefunctions over a complete basis set. Photoionization
cross-sections are obtained from the complex eigenvalues and ‘rotated’ eigenfunctions
of the Hamiltonian.

We calculated photoionization spectra at optical wavelengths in a strong magnetic
field with parallel electric fields of various strengths. The electric field modulates the
ionization spectra strongly through an onsetting resonance structure (Fig. 2), which
behaves smoothly by changing the electric field strength. The electric fields in the
atmosphere of the white dwarf are generated by free electrons and ions in the stellar
plasma and hence distributed statistically. Taking this statistical origin into account
the strong resonance features are smeared out by the electric field distribution and the
opacities can be approximated by straight lines over the relatively small wavelength
range in question.
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CALCULATION OF MODEL SPECTRA

The temperature and pressure structure for DA white dwarf atmospheres is taken
from zero magnetic field LTE models (Koester, private communication). This is a valid
approximation for magnetic field strengths below 10000 T (e.g. Wickramasinghe and
Martin, 1986). The line absorption coefficients are calculated using the new wave-
lengths and oscillator strengths for the hydrogen atom in parallel magnetic and electric
fields. Wavelengths and oscillator strengths for perpendicular electric and magnetic
fields are approximated by their values at zero electric field strength and
Schweizer, 1996). For the distribution of the electric field we use the Holtsmark proba-
bility function (Mozer and Baranger, 1960). The wavelengths and oscillator strengths
for bound-free transitions are calculated in the approximation of Lamb and Suther-
land (1974) for low magnetic field strengths. Finally the radiative transfer equations
for polarized light including magneto-optical effects are analytically solved using an
algorithm as described by Martin and Wickramasinghe (1979).

COMPARISON TO OBSERVATIONS

In Fig. 3 we show the UV-spectrum of the magnetic white dwarf PG 1658+441.
For the model spectrum we assumed a dipole geometry for the magnetic field with
a field strength of 280 T and an inclination angle of 50° as derived from model fits
to circular polarization and flux spectra in the visual spectral range (Friedrich et al.,
1996). The broadening of the line is due to electric fields in the atmosphere of the
white dwarf and is well reproduced by the model spectrum.
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In Fig. 4 we show the best fit model determined by means of a fit for one of
our phaseresolved flux and circular polarization spectra of the rotating magnetic white
dwarf KPD 0253+5052. It is an offset dipole geometry for the magnetic field with
offsets of 0.2 and 0.12 white dwarf radii along and perpendicular to the magnetic axis,
respectively, and a dipole field strength of 800 T. The inclination of the rotation axis
is 20° and the colatitude 50°. It is obvious especially from the polarization spectrum
that there are clear deviations between the radiative transfer model and observation.
They might be caused in the first place by the Holtsmark distribution, not valid for
magnetic fields, and secondly by the approximation for the bound-free opacities.

In Fig. 5 we show two prominent absorption lines at and in the spec-
trum of the highly magnetic white dwarf They are caused by stationary

and components, respectively. The lack of model atmospheres appropriate for
a magnetic field strength of about 35000 T prevents the calculation of model spectra,
but qualitatively the onset of the absorption edge about beyond the theoretical
line position calculated for the pure magnetic field (solid line) can be explained by the
influence of strong electric fields (dashed line) of the order of . The broad
red wings are due to the variation of the magnetic field strength over the surface of the
white dwarf.

CONCLUSIONS

We could show that the electric field has strong influence on both bound-bound and
bound-free transitions of the hydrogen atom. Generally the observed spectra can be well
reproduced by model spectra calculated with a radiative transfer code. But deviations
between theory and observation are obvious especially in circular polarization spectra,
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which are very sensitive to errors in the modelling. These deviations might be mainly
due to the lack of an appropriate electric field distribution. This problem will be tackled
as well as the calculation of the bound-free transitions for relevant electric and magnetic
field strengths of magnetic white dwarfs.
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INTRODUCTION

Since the discovery of huge magnetic fields in the vicinity of white dwarfs
and neutron stars much work has been done in calculating

atomic energy values and transition probabilities in the atmosphere of these compact
objects. At these field strengths the magnetic forces outweigh the Coulomb binding
forces, even for low-lying energies.
Whereas the extensive calculations for the hydrogen atom in strong magnetic fields
(Ruder et al., 1994) have resulted in a much better understanding of the spectra of
hydrogen-dominated white dwarfs, there are still magnetic white dwarfs like the GD229
with unexplained absorption spectra, for which transitions of neutral He are considered
to be important (Schmidt and Latter, 1990). Therefore the properties of the helium
atom in strong magnetic fields are of great relevance.
Only recently we succeeded for the first time to calculate bound/bound transitions in
strong magnetic fields relevant for white dwarf stars by a combination of the hyper-
spherical close coupling (Zhou and Li, 1994) and finite element methods (Braun et
al., 1993). In this contribution we present results obtained for wavelengths of selected
dipole transitions in neutral helium at field strengths of up to 1.88 105 Tesla.
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THEORY AND METHOD

We consider a system consisting of two electrons and a nucleus of charge Ze in a
homogeneous magnetic field B along the z-axis. If we use Z-scaled atomic units, i.e. as
energy unit Rydberg and as length unit , and if we neglect the finite mass
of the nucleus, the Hamiltonian reads

where and is the g-factor of the electron. However,
the finite mass of the nucleus can be taken into account if the units are appropri-
ately rescaled.
The Hamiltonian (1) is invariant under rotation around to the z-axis and inversion with
respect to the origin. Therefore the conserved quantum numbers of the Hamiltonian
are

• the z-component M of the total angular momentum,

• The parity P,

• the total spin S,

• its z-component

We describe the system by 3 internal coordinates and the 3 Eulerian angles and
that describe the orientation of the body frame with respect to the laboratory frame.
As internal coordinates, we choose the hyperradius

the hyperangle

and the angle u between and with respect to the Jacobi vectors

and

The is chosen to coincide with while is taken to lie in the plane. The
choice of Jacobi vectors instead of the radius vectors has the advantage of making the
symmetry requirements for the wave function more tractable. Since they are connected
to the radius vectors by an orthogonal transformation, the form of the diamagnetic
Hamiltonian is left unchanged.
Introducing the reduced wave function
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where stands for the Eulerian angles, expanding in terms of the eigenfunctions of the
symmetric top of definite parity (Braun, 1993) up to a maximum J-value

and projecting onto the we obtain the following system of coupled partial
differential equations for the functions of the internal coordinates.

Those functions were determined by expanding them in terms of the adiabatic eigen-
functions, leading to a system of unidimensional differential equations which was finally
solved by using the finite element method.

RESULTS WITHOUT MAGNETIC FIELD

To test the reliability our method we compared our energies against the numerically
exact results for field-free non-relativistic helium by Pekeris et al.(1971) in tables 1 and
2. The agreement is good to very good for the S-states while fair for the P-states.
Thus one can expect our wavelengths to be accurate to about 1%. Considering the
strong variation of the magnetic field within a neutron star due to the dipole field
assumed, this accuracy should be sufficient for a reliable calculation of model-spectra.
As a further, more sensitive, test of our numerical method we also checked our results
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for oscillator strengths at zero field. In table 3 we show our results for the oscillator
strengths at zero field. We also give those obtained by watanabe et al. (1992). It is
seen that the agreement is fair to good except for which is due to the
small energy difference involved. However the corresponding wavelength is very large
and thus unimportant for astrophysical applications.

WAVELENGTHS OF SELECTED DIPOLE TRANSITIONS

We have calculated the wavelengths of dipole transitions between a number of
and as well as and states for i.e. for field strengths up to
Tesla.
In figures 1 to 3 we show the wavelengths obtained for a few selected transitions between
singlet states with . It is seen that as function of the magnetic field strength,
the wavelengths vary by approximately a factor of  2. We also see that those transitions
exhibit wavelength maxima translating into stationary lines. The maxima are at
0.008 ,0.018 and 0.016 respectively corresponding to field strengths of
and Tesla. The corresponding wavelengths are 4820, 7730 and 2250 Å.
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INTRODUCTION

Despite its long history, the problem of a hydrogen atom in external magnetic
and electric fields is still of significant interest. Besides the fundamental questions
associated with this nonintegrable system, decisive stimulus came from the discovery
of huge magnetic and electric fields in compact astrophysical objects, such as white
dwarf stars (Kemp et al., 1970) with field strengths of the order of
and (Friedrich et al., 1996). At these extremely high field strengths
the Lorentz force acting on an atomic electron equals or exceeds the Coulomb binding
force even for low-lying states, and a recalculation of the atomic structure becomes
necessary. Whereas the diamagnetic hydrogen atom has been treated comprehensively
for all relevant field strengths (Wunner et al., 1989), there are still many open questions
associated with the general case of magnetic and electric fields.

It is the purpose of this work, to examine the influence of the additional electric
field on the hydrogen atom in the atmosphere of magnetic white dwarf stars. To this
end, we solved the Schrödinger equation for a hydrogen atom in strong magnetic and
electric fields and obtained accurate values for the wavelengths and oscillator strengths
of low-lying bound-bound transitions. We discuss various aspects of the influence of
the electric field on the calculated spectra, especially with respect to stationary lines,
which provide a direct connection to astrophysical observations. Our calculations cover
the whole range of magnetic and electric field strengths relevant to white dwarf stars.
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METHOD

The non-relativistic single particle Hamiltonian of a hydrogen atom in an external
magnetic field B and electric field F reads:

It has been shown and Schweizer, 1996a), that for most field strengths
relevant to white dwarf stars the influence of the electric field component perpendicular
to the magnetic field is negligible compared to the influence of its parallel component.
Therefore, we can restrict ourselves to parallel external fields. Then the Hamiltonian (1)
becomes rotational invariant and the three-dimensional Schrödinger equation reduces
to an effective two-dimensional problem.

Using a discretization method first applied to the hydrogen atom in external fields
by Melezhik (1993, 1997), the problem is transformed into a system of unidimensional
differential equations, which we solved with the finite-element method. This approach
proved to be very suitable for our purposes and Schweizer, 1996a), and
we are able to calculate accurate atomic data for all magnetic field strengths relevant
to white dwarf stars. Especially in the intermediate magnetic field range, in which
the transition from a spherical problem (dominated by the Coulomb potential) to a
cylindrical problem (dominated by the magnetic field) takes place and in which most
stationary components of the hydrogen atom have their extrema, it yields much better
results than expanding the wave functions into a set of global basis functions. The finite
proton mass is taken into account by using appropriate scaling laws (Pavlov-Verevkin
& Zhilinskii 1980).

STATIONARY HYDROGEN LINES OF WHITE DWARF STARS

In figure 1 the wavelengths of all Lyman Balmer and Balmer transitions
of the hydrogen atom in parallel magnetic and electric fields are shown as functions
of the magnetic field strength from T to T. Solid lines
correspond to transitions already present in the spectrum of the diamagnetic hydrogen
atom, dashed transitions are due to the additional electric field. Most of the transitions
are strongly dependent on the magnetic field strength and change their positions by
up to several thousand Å within one order of magnitude in B. Taking into account
that the magnetic field strength varies at least by a factor of two across the surface of
a magnetic white dwarf star, it is obvious that most lines are broadened to invisibility
in the spectra. However, for magnetic fields stronger than T some of the
transitions run through maxima or minima of the wavelength and thus can produce
sharp absorption features – the stationary components of the hydrogen atom.

On a dense mesh of electric field strengths we calculated the magnetic field strengths,
the wavelengths and the oscillator strengths of the extrema of all stationary lines of
Lyman Balmer and Balmer – the most important features in the optical and
UV region of the spectra. In order to investigate the influence of the additional electric
field on the wavelengths and the oscillator strengths, the results are compared with
the well known case of the diamagnetic hydrogen atom. Detailed tables with accurate
values for the atomic data are published in and Schweizer (1996b).

Out of the 15 Balmer transitions allowed in the diamagnetic case, five tran-
sitions exhibit stationary behaviour. Since two of them run through two extrema in
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the magnetic field range relevant to white dwarf stars, there are altogether seven sta-
tionary components. In an additional electric field one further Balmer transition

becomes dipol-allowed and stationary. In figure 2 the wavelengths of all
stationary lines of are shown for different electric field strength ranging from
F = 0 to All states are labeled according to the quantum numbers
of the field free limit. The wavelengths of the stationary components of are
already slightly shifted for an electric field strength of and the differences
compared to the diamagnetic hydrogen atom can get as large as 30 Å for an electric
field strength of There is no definite direction of the shifts detectable;
we get blue as well as red shifts. But there are clear differences between the transitions.
Whereas the influence of the electric field on the and on the
transition is almost negligible, the and the transition show a
stronger shift of the wavelength of their stationary components. Note, that this differ-
ences can be qualitatively understood. For the Balmer transition e.g.,
the magnetic quantum number m has for both states its minimum value. As m is
conserved, for states with angluar momentum and mixing is
forbidden and only inter-n-mixing is possible.

The influence of the electric field on the transition probabilities of the stationary
components of Balmer is rather small for most field strengths and most transitions.
Merely the transition between the states with field free quantum numbers and
exhibits a significant decrease in the oscillator strength for very strong electric fields.
Since the transition is forbidden in the diamagnetic case, its oscillator
strengths vanishes for F = 0. Under the influence of an additional electric field it
becomes an allowed transition and the oscillator strength of the stationary component
increases with increasing field strength. But even for an electric field strength of F =

, it amounts to only approximately ten percent of the oscillator strength of the
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weakest Balmer transition of the diamagnetic hydrogen atom.
In figure 3 the absorption-feature of the stationary line  is shown.  As

a first approximation we used the Holtsmark-distribution (Lang, 1980) for the electric
field strength. Compared to the diamagnetic case (F = 0), the absorption feature is
broadened and blue-shifted if the additional electric field is considered. A mean electric
field strength of causes a shift of approximately 5 Å, a value comparable
to observational estimates (Friedrich et al., 1994)

The atomic data obtained for the hydrogen atom in magnetic and electric fields are
a further step towards a complete understanding of the spectra of DA magnetic white
dwarf stars. In order to get a clearer evidence about the strength of the electric fields in
the atmosphere of magnetic white dwarf stars, detailed calculations of synthetic spectra
using the correct electric field distribution are necessary.

ELECTRONIC WAVEPACKET EVOLUTION

As a further application of the numerical method described in and
Schweizer (1996a), we investigated the dynamics of electronic wave packets in Rydberg
atoms. (For an overview of experimental and numerical methods describing wavepack-
ets see Alber and Zoller, 1991). In a recent paper, Naudeau et al. (1997) presented
experimental results of wavepacket dynamics of electrons bound in the non-separable
potential of cesium in a static external electric field. By selecting a particular value of
the electric field strength, they could control the structure of the recurrence spectra and
enhance the interaction of the wavepacket with the cesium core. The laser spectrum
was windowed so that only very few states around are excited, thereby min-
imizing dispersion of the wavepacket. In this section, we present a realistic numerical
treatment of the problem by simulating the time evolution of Rydberg wavepackets
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through direct solution of the time dependent Schrödinger equation on a spatial grid.
The influence of the non-hydrogenic core on the outer electron is represented by

an exponential extension to the Coulomb term (Hanssen et al., 1979):

Z is the nuclear charge and the coefficients ai are optimized numerically so as to re-
produce the field-free energy levels and hence quantum defects of the alkali atom.
For cesium (Z = 55) we obtain and (Schweizer and
Faßbinder, 1997). In order to describe the time evolution of a wavepacket, we need to
solve the time dependent Schrödinger equation. For the spatial integration we used the
same discretization technique as for the stationary problem described in Faßbinder and
Schweizer (1996a). The wave function is then represented by a set of N functions

and the Schrödinger equation reduces to a system of coupled ordinary differential equa-
tions. For the approximation of the time-development operator we used the Cayley
form

In figure 4 we show the square of the autocorrelation function
in dependence of t for two electric field strengths. The structure of the recurrence
spectrum depends strongly on the electric field strengths.  For , all odd
angular return peaks are suppressed. For this particular F the odd angular returns
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occur while the radial wavepacket is at its outer turning point and hence the overlap
with the initial wavepacket is minimized. The case of is just the opposite:
Each angular return coincides with a radial return, which maximizes the interaction
of the wavepacket with the cesium core. As a result, the return peaks diminish much
faster in intensity ( and Schweizer, 1997).
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OBSERVATIONAL MANIFESTATIONS OF NEUTRON STARS

When the thermonuclear fuel of a massive star is exhausted at the end of its
evolution, the star explodes as a supernova releasing enormous amount of energy,

erg. This explosion is accompanied by the collapse of the presupernova core which
results in formation of either a black hole or a neutron star (NS), depending on core's
mass. NSs are formed if the mass does not exceed a limit, above which
the pressure of degenerate nuclear matter (presumably neutrons) is not able to resist
gravitational forces and maintain a stable configuration. Typical masses of NSs are
expected to be in the range quite common for ordinary stars. Their radii,
however, should be incredibly small, 7 – 20 km, depending on mass and (poorly known)
equation of slate of the superdense nuclear matter.

According to various estimates, the total number of NS in our Galaxy is
Observational manifestations of NSs are quite different for isolated neutron stars (INSs)
and accreting neutron stars (ANSs) in close binaries. A substantial fraction of observed
INSs is comprised of rotation-powered radio pulsars (Taylor et al., 1993). Periods
of the radio pulses, coincide with the NS rotation periods, and the radio
waves is generated by relativistic electrons and/or positrons accelerated in the NS
magnetospheres, with typical fields G. The relativistic particles are
responsible for radiation observed from at least 5 radio pulsars (Thompson et al.,
1994). About 30 radio pulsars have been detected in X-rays (e. g., Becker & Trümper,
1997); the radiation from at least 3 of them is dominated by a thermal component
emitted from the whole NS surface, with temperatures (Ögelman
1995). A few of the X-ray radiating radio pulsars show thermal-like radiation of higher
temperatures, from an area much smaller than that of the NS surface;
this radiation is attributed to polar caps heated by the backward accretion of relativistic
particles from the pulsar magnetospheres. Finally, at least 7 radio pulsars have been
detected in the optical-UV range (Caraveo, 1997), a thermal component (i. e., the NS
surface) is seen in 3 of them.

X-ray detections of several radio-silent INSs have been reported recently (see Car-
aveo et al., 1996). Since these objects do not show any activity and are not visible
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outside the X-ray range, their radiation almost certainly originates from the NS sur-
face. Although interpretation of these observations is sometimes ambiguous, at least 4
radio-silent INSs have been found (3 of them in supernova remnants).

The most prominent types of ANSs are (accreting) X-ray pulsars and X-ray bursters
(about 30 and 40 such objects have been detected, respectively — see, e. g., Lewin et
al., 1995). X-ray pulsars are NSs with high magnetic fields, which force
the matter from the secondary companion of the binary to accrete onto the NS polar
regions. The balance between heating (due to release of the gravitational energy of
the accreting matter) and radiative cooling occurs at a temperature of much
higher than that at the polar caps of radio pulsars. X-ray bursters are believed to
have much lower magnetic fields, which are not able to canalize the
accretion. As a result, the whole NS surface is heated, but its temperature is lower,

When a substantial amount of the accreting matter is accumulated, high pres-
sure in bottom layers of the accreted envelopes makes thermonuclear burning unstable,
so that a thermonuclear explosion occurs (X-ray burst), often accompanied by ejection
of the accreted envelope. Although the X-ray radiation observed from most ANSs is
generated close to the NS surfaces, not the surface per se is observed, but rather the
hot accreting plasma.

As mentioned above, it is commonly accepted that NSs possess very high mag-
netic fields. The field magnitudes were first estimated assuming that the magnetic flux
is conserved during the evolution from ordinary stars to NSs, including the collapse.
This assumption results in typical fields depending on the field
in the (ordinary) progenitor star, According to radio pulsar models,
the field of a pulsar, with the period P and its time derivative can be estimated as

where R and I are the NS radius and moment of inertia, and
for most pulsars this estimate coincides with that predicted from the flux conservation.
An exception is so-called millisecond (recycled) pulsars — very old objects for which
the fields are much lower, Direct measurements of the magnetic fields
are possible via observations of the electron cyclotron lines in spectra of X-ray pulsars;
these lines were indeed detected in 9 X-ray pulsars, and the corresponding field values
were found in the range (Lewin et al., 1995). Much greater fields, up
to 1015 G, were predicted by some models of soft gamma repeaters (e. g., Thompson
and Duncan, 1995); these models, however, are still speculative and require more ob-
servational confirmations. Thus, the presence of very high magnetic fields in radiating
layers of many NSs has been firmly established. Since such fields cannot be achieved
in terrestrial laboratories, NSs provide the unique opportunity to test atomic physics in
extremely high magnetic fields.

This brief sketch of observational manifestations of NSs shows that surface layers
have been directly observed for about a dozen of INSs, and the number will certainly
grow in near future. Main information about the NS surface is obtained from observa-
tions in soft and medium X-rays although UV and optical observations
are also useful in some cases. Observations of NSs are potentially very important for
elucidating poorly known properties of these objects. For instance, studying thermal
history of INSs (dependence of the NS temperature on star’s age) enables one to infer
equation of state of the superdense matter and actual composition of the NS interiors
— soft equations of state and “exotic” composition (e. g., quark-gluon plasma or
meson condensate) result in accelerated cooling of NSs (e. g., Umeda et al., 1994). The
thermal history depends also on properties of nucleon superfluidity which, for instance,
may decelerate fast cooling and even lead to additional heating due to dissipation of
the energy of differential rotation between the NS crust and interior superfluid (e. g.,
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Shibazaki and Lamb, 1989). These properties are closely connected with the NS mass
and radius which affect the spectra and light curves of the NS radiation (see below)
— for instance, smaller radii are associated with softer equations of state and exotic
interior compositions. Finally, direct investigation of physical properties and chemical
composition of the NS surface layers is itself of great interest for understanding the
nature of NSs and their environment. To properly interpret current and future obser-
vations of the NS radiation, adequate models of this radiation should be constructed.

ATMOSPHERES OF ISOLATED NEUTRON STARS: AN OVERVIEW

As any real objects, NSs are not black bodies, and their thermal radiation is not
blackbody radiation. Properties of thermal radiation from a star arc determined by
thin plasma layers (atmospheres) at its surface. Since the atmospheric temperature
varies with depth, and atmospheric opacity depends on frequency of radiation, we
see layers of different temperatures at different frequencies, so that not only spectral
features (e. g., absorption spectral lines) are displayed in stellar spectra, but also the
shape of spectral continuum differs from the blackbody spectrum. NS atmospheres,
however, are very different from those of usual stars. The immense gravity makes
the atmospheres very thin, cm, and dense, up to , so
that nonideality of the atmospheric matter becomes important and leads to pressure
ionization of atomic species and smoothing spectral features. The gravity also leads to
stratification of the atmospheres — heavy elements sink down to bottom layers so that
upper layers, which determine properties of the outgoing radiation, are comprised of
the lightest element present. The huge magnetic fields make NS atmospheres essentially
anisotropic, so that absorption and emission of photons depend on the direction of the
photon wave vector. Radiation in the strongly magnetized atmospheres propagates in
two polarization (normal) modes, with quite different opacities. The electron cyclotron
energy, , greatly exceeds the thermal energy
kT, so that the transverse motion of electrons is quantized. Structure of atoms and
ions is so much distorted by the magnetic fields that spectral features associated with
the atoms have quite different energies and strengths, and ionization equilibrium of the
atmospheric plasma is shifted from that at Thus, the standard techniques widely
used for modeling stellar atmospheres (e. g., Mihalas 1978) should be considerably
modified to aplly them to the NS atmospheres.

An approach for modeling NS atmospheres with strong magnetic fields was de-
scribed in detail by Pavlov et al. (1995). It involves, as for usual stellar atmospheres,
simultaneous solving of equations of hydrostatic equilibrium, energy balance, ionizalion
equilibrium and radiative transfer, complemented by calculations of spectral opacities.
However, instead of one equation of radiative transfer for the intensity of radiation,
two (generally coupled) equations for intensities of two polarization modes are to be
solved, and reliable opacities for strongly magnetized, partially ionized, nonideal plasma
are to be used. These opacities should be obtained from quantum-mechanical calcu-
lations of bound-bound, bound-free and free-free radiative transitions (spectral lines,
photoionization and bremsstrahlung), as well as photon scattering. A first step for such
calculations is investigation of atomic structure (energy levels and wave functions) in
strong magnetic fields, the main subject of this workshop. Once the opacities are
known, one can use the atmosphere modeling codes to calculate the atmospheric struc-
ture (dependences of temperature, density, etc, on depth) and spectral intensities of
the outgoing polarization modes for given input parameters: chemical composition, ef-
fective temperature (defined as is the Stefan-Boltzmann constant,

39



and F ( v )  the local spectral flux), local magnetic field B, and gravitational acceleration
g. To obtain the total flux of radiation directly comparable with observations, the local
intensities should be further integrated over the visible NS surface, with allowance for
the gravitational redshift and bending of photon trajectories in the strong gravitational
field (the latter effect makes partly visible the back NS hemisphere).

LOW-FIELD ATMOSPHERES

As mentioned above, magnetic fields of recycled pulsars and old INSs are relatively
low, G. Although such fields are much higher than those achieved in
laboratories or observed in magnetic white dwarfs, they cannot change considerably
properties of X-ray radiation emergent from the NS surface — the corresponding elec-
tron cyclotron energies, , are much lower than X-ray energies or energies of
atomic levels involved in interaction with X-ray radiation. First models of the low-field
atmospheres were calculated by Romani (1987).  Further works (Rajagopal and Ro-
marii, 1996; Zavlin et al., 1996) used improved opacities (Iglesias and Rogers, 1996) for
pure hydrogen, helium and iron compositions. These works showed that spectra of ra-
diation emerging from light-element (hydrogen or helium) atmosphere are much harder
(less steep) than the blackbody spectra at . This means that fitting observed
spectra with the blackbody models (a widely accepted approach in X-ray astronomy)
yields “blackbody temperatures” exceeding the true effective temperatures by a factor
of 1.5 – 3, which makes great difference for the comparison with the models of NS
cooling. The low-field models have been successfully applied to interpretation of soft
X-ray observations of the nearest (d = 180 pc), low-field millisecond
pulsar J0437–4715 (Pavlov et al., 1996b; Zavlin and Pavlov, 1997a). Fitting its X-ray
spectra and light curves with the atmosphere models showed that its radiation can be
interpreted as emitted from two polar caps, with temperatures and radii

, covered with pure hydrogen. The analysis of the light curves with allowance
for bending of photon trajectories enabled Pavlov & Zavlin (1997) to constrain the
NS mass-to-radius ratio: These results demonstrate
importance of NS atmosphere models for elucidating NS properties from observational
data.

FIRST GENERATION OF MAGNETIC HYDROGEN ATMOSPHERES

First reliable models of magnetic hydrogen atmospheres have been constructed
recently (see Pavlov et al., 1995, for a review). These models are based upon simplified
opacities of strongly magnetized, partially ionized hydrogen plasma. These opacities
include free-free and bound-free transitions and Thomson scattering in strong magnetic
fields, but they do not include the bound-bound transitions, neglect effects of atomic
motion (motional Stark effect),  and use a simplified model for ionization equilibrium.
Nevertheles, the models have been useful to obtain a qualitative picture for magnetic
effects on the emergent radiation, and they are accurate enough in the case of high
effective temperatures, when the hydrogen is almost completely ionized
even in the very strong magnetic fields. The spectra of the local fluxes at the NS
surface deviate substantially from the blackbody spectrum (Shibanov et al., 1992):
they are harder (although not as much as the nonmagnetic hydrogen spectra) at high
frequencies, show photoionization edges and proton cyclotron absorption lines. The
spectra depend on B and the angle between the magnetic field and the normal to
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the NS surface, which means that the radiative flux emitted by a rotating NS is pulsed
if even the effective temperature is uniform along the NS surface. Angular distribution
of the local intensity shows a sharp peak along the magnetic field and a broader peak
at intermediate angles, the widths of the peaks depend on photon energy (Pavlov et
al., 1994). Integration of the local intensities over the NS surface (Zavlin et al., 1995a)
should take into account not only the non-uniformity of the magnetic field (e. g., dipole
geometry), but also the temperature non-uniformity — the magnetic poles are hotter
than the equator because the transverse thermal conductivity is suppressed by strong
magnetic fields (Shibanov and Yakovlev 1996). The integration should be performed
with allowance for the gravitational bending of photon trajectories (e. g., Zavlin et al.,
1995b) which, as a rule, smoothes the light curves (Shibanov et al., 1995).

The model X-ray spectra have been compared with those observed from some radio
pulsars and radio-silent INSs (Anderson et al., 1993; Meyer et al., 1994; Page et al.,
1995; Zavlin and Pavlov, 1997b). An important result of the atmosphere fits is that they
yield effective temperatures considerably lower than those obtained from the blackbody
fits, usually below the temperatures predicted by the standard NS cooling models (see
Introduction). However, in many cases both the blackbody and atmosphere models give
statistically acceptable fits because of the narrowness of the X-ray energy range and
poor spectral resolution of current X-ray detectors. Whether the hydrogen atmosphere
models indeed describe adequately the observed radiation can be understood from the
analysis of multiwavelength (optical through X-ray) observations (Pavlov et al., 1996c)
and from taking into account additional astrophysical arguments (e. g., fitting with
different models yields different values of the interstellar hydrogen column density,
nH, often known from independent observations). The most convincing case, where
the hydrogen atmosphere model not only gives an excellent fit, but also is compatible
with all other data for the object, is the INS in the supernova remnant PKS 1209–
52 (Zavlin and Pavlov, 1997b). The fits of the spectra of active radio pulsars with
the hydrogen atmosphere models, although statistically acceptable, are less convincing
because they yield the R/d ratio systematically greater than expected from independent
estimates. This could be partly explained by the low accuracy of the first generation
models at relatively low effective temperatures, but the discrepancy is too high in some
cases.  In addition, one can naturally assume that active, young radio pulsars are not
able to accrete the interstellar matter, so that their surfaces are depleted of hydrogen.
Although final conclusions cannot be made until the next generation of the hydrogen
models is developed, and observations with higher spectral resolution are carried out,
investigations of NS atmospheres consisting of heavier elements are certainly warranted.

HEAVY-ELEMENT ATMOSPHERE MODELS

A first attempt to construct magnetic heavy-element atmosphere model was pur-
sued by Miller (1992) who computed not only hydrogen, but also helium, carbon and
nitrogen models. He used approximate energy levels and cross sections calculated by
Miller and Neuhauser (1991) who employed a multiconfigurational Hartree-Fock code
developed by Neuhauser et al. (1986). This code computes the wave functions and
state energies in the “adiabatic approximation”, which assumes that the Landau num-
ber N is a “good quantum number” and considers only states with     neglecting
any admixture of states with Although this approximation is good enough for
hydrogen, at G and it becomes progressively worse with in-
creasing the effective ion charge, especially for calculating the cross sections of radiative
transitions. The models of Miller (1992) have some other flaws — e. g., they neglect
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all radiative processes except for the bound-free transitions and use photoionization
cross sections averaged over polarization, which may cause substantial errors because
the (extraordinary) mode with small absorption coefficient gives the main contribution
to the outgoing flux. Indeed, comparison of Miller’s spectra for hydrogen atmospheres
with more accurate results described above shows considerable discrepancy. Neverthe-
less, these models have demonstrated that one should expect quite different spectra
from light-element (H, He) and heavy-element atmospheres — in the latter case the
spectral continuum is much closer to the blackbody spectrum, and numerous spectral
features are seen at X-ray energies.

Since the supernova explosion has a mass cut in the iron layer, it is quite proba-
ble that surfaces of many NSs, particularly young, high-field pulsars, are comprised of
pure iron. First magnetic iron atmosphere models were presented by Rajagopal et al.
(1997). They used the same code of Neuhauser et al. (1986) to calculate the energies
and wave functions of iron ions for subsequent calculations of the ionization equilibrium
and radiative transitions for two polarization modes. The models are inevitably very
approximate: for instance, applicability of the adiabatic approximation is even more
questionable for iron than for carbon and nitrogen, the nonideality effects on the equa-
tion of state and radiative transitions (virtually neglected in this paper) are particularly
severe in iron atmospheres, etc. However, the models can be considered as a starting
pont for future work on atmosphere modeling and a baseline for comparison with the
magnetic hydrogen atmosphere models. As expected, the emergent spectra folded with
the responses of low-resolution X-ray detectors are fairly close to the blackbody spectra,
and blackbody fits of such spectra may yield “blackbody temperatures” even lower than
the effective temperatures, in sharp contrast with the hydrogen atmospheres. The spec-
tra have a wealth of spectral features observable with X-ray detectors to be launched
in near future. Although developing new, more accurate iron atmosphere models is an
extremely challenging problem, its solution would be of great importance for adequate
interpretation of the NS thermal radiation.

CURRENT WORK ON OPACITIES

One of the important issues neglected in the current atmosphere models is the mo-
tional Stark effect: the electric field induced by the center-of-mass (CM) motion breaks
the cylindrical symmetry and distorts the atomic structure (Gor’kov and Dzialoshin-
skii, 1968; Herold et al., 1981; Johnson et al., 1983). For small values of the generalized
transverse momentum of the atom, the dependence of the energy levels on can
be interpreted in terms of a mass anisotropy — the atom becomes “heavier” when it
moves across the magnetic field, the transverse mass grows with B and is higher for
more excited states (Vincke and Baye, 1988; Pavlov and Mészáros, 1993). For very
large values of the so-called decentering occurs — atomic electron is localized in a
shallow potential well far from the nucleus (Burkova et al., 1976; Baye et al., 1992). At
intermediate values of , the dependence on is complicated; in particular, neigh-
boring atomic levels approach each other showing anticrossings (Vincke et al., 1992;
Potekhin, 1994). As shown by Pavlov and Mészáros (1993), such behavior leads to
a number of spectroscopic and thermodynamic effects: additional shifts and broaden-
ing of spectral lines and photoionization edges, violation of the usual selection rules
for radiative transitions, modification of the ionization balance of strongly magnetized
plasmas. In particular, the magnetic broadening, caused by different dependences of
the atomic levels on was shown to exceed the collisional and Doppler broadenings
by orders of magnitude for conditions expected in atmospheres of strongly magnetized
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NSs.
The effect of the CM motion is especially complicated for charged ions (Baye and

Vincke, 1986; Schmelcher and Cederbaum, 1991, 1997; Bezchastnov, 1995). When the
net charge differs from zero, one cannot separate the CM and internal motion (Avron et
al., 1978), so that even in the simplest case of hydrogen-like ions an accurate solution
for the ion structure should be based on a two-particle Schrödinger equation. First
numerical solutions of such kind were obtained by Bezchastnov et al. (1997) who used a
two-particle basis set of Bezchastnov (1995) to calculate the energies and wave functions
for once-ionized helium. Since the motion of an ion as a whole is quantized, the level
energies depend on a new discrete quantum number, instead of . Although radiative
transitions have not yet been calculated, the inferred behavior of the ion structure
allows one to predict new spectroscopic effects (e. g., a fine structure of spectral lines
and photoionization edges) peculiar to charged ions.

Bound-bound transitions in strong magnetic fields have been thoroughly investi-
gated by the Tübingen group (see Ruder et al., 1994) for hydrogen and helium atoms at
rest. The oscillator strengths for moving hydrogen atoms were calculated by Potekhin
(1994) and Pavlov and Potekhin (1995) for a broad range of the transverse generalized
momenta. In the latter paper the bound-bound absorption coefficients were calculated
for a thermal, partially ionized plasma. In particular, the magnetic broadening was in-
vestigated with account for decentered states of moving atoms. Due to this broadening,
spectral lines are smeared over wide, overlapping frequency bands.

The photoionization cross sections for hydrogen atoms at rest in strong magnetic
fields were studied in the adiabatic approximation by Potekhin and Pavlov (1993).
The cross sections are highly anisotropic and polarization dependent, being strongly
reduced when the radiation is polarized perpendicular to the magnetic field. On the
other hand, the conclusion of some earlier works that the cross sections for photons
polarized perpendicular to the magnetic field vanish identically in the most important
frequency range, was show to be erroneous. Potekhin et al. (1997) extended
calculations beyond the adiabatic approximation and showed that nonadiabatic correc-
tions are substantial for . The non-adiabatic treatment of the continuum
includes coupling between closed and open channels, which leads to the autoionization
of quasi-bound energy levels associated with the electron cyclotron (Landau) excita-
tions and gives rise to Beutler-Fano resonances of the photoionization cross sections.
Effects of atomic motion on the bound-free transitions were studied by Potekhin and
Pavlov (1997). They employed exact numerical treatment of both initial and final states
of moving hydrogen atoms, taking into account the quasi-bound states as well as cou-
pling of different ionization channels. They folded the cross sections with the thermal
distribution of atoms and found that the averaged cross sections differ substantially
from those of atoms at rest, showing strong magnetic broadening of the photoioniza-
tion edges. The decentered states of the atoms give rise to a low-energy component
of the averaged cross sections which grows with increasing temperature and decreasing
density.

In the aforementioned papers the bound-bound and bound-free absorption coef-
ficients were calculated for three “basic” polarizations: linear polarization along the
magnetic field and two circular (right and left) polarizations across the magnetic field.
To apply the results for solving the radiative transfer in a magnetized atmosphere,
these coefficients are to be combined into two absorption coefficients of the (normal)
polarization modes, which requires the polarization vectors of the modes to be known
for different frequencies and directions of propagation. Although this problem has been
solved a long ago for a completely ionized plasma (Gnedin and Pavlov 1973), it is more
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complicated when bound atoms and ions are involved. Bulik and Pavlov (1996) solved
this problem by constructing the polarizability tensor of a magnetized hydrogen gas
from the basic absorption coefficients with the aid of the Kramers-Kronig relations.
They showed that the spectral features and anisotropy associated with the bound-
bound and bound-free transitions are manifested in the polarization properties of the
normal modes, which affects substantially the transfer of radiation in NS atmospheres.

An important ingredient of atmosphere models is ionization equilibrium which is
strongly affected by both the strong magnetic field (Gnedin et al., 1974) and the high
density of the plasma (e. g., Hummer and Mihalas, 1988). In the current atmosphere
models the ionization equilibrium is considered with account for magnetic effects, but
the effects of the atomic motion are neglected. Including these effects for relatively
low temperatures, when the decentered states are not populated, is simple once the
energy levels of moving atoms are calculated. At higher temperatures the magnetic and
density effects are closely connected because the partition functions diverge unless both
the summation over discrete levels and integration over the generalized momentum are
truncated to take into account that highly excited atoms are destroyed by neighboring
particles. An approximate solution of this problem was presented by Lai and Salpeter
(1995).

FUTURE  INVESTIGATIONS
Observational  Prospects

Most spectral X-ray observations of NS have been done with the use of propor-
tional counters, with quite modest energy resolution (e. g., the Positional Sensitive
Proportional Counter onboard the ROSAT X-ray observatory has only 5 independent
energy channels in the range 0.1 – 2.4 keV). This hampers the comparison of the NS
atmosphere models with observations. Fortunately, a new type of detectors, Charge
Coupling Devices (CCD), with much better energy resolution has recently become
available for X-ray spectroscopy. First X-ray observatory equipped with CCD detec-
tors, ASC A, was launched in 1993, and first X-ray spectra with moderate resolution
(mainly, of hot plasmas in supernova remnants and interstellar medium) have been ob-
tained. ASC A has detected about a dozen of INSs, but no conclusive evidence about
spectral features in their spectra has been obtained because the effective area of the
detectors is too small to collect enough quanta, and the angular resolution of ASC A
telecopes is low, arcmin, so that the images of point sources are contaminated by
the background. Several new X-ray observatories, with CCD detectors of greater effec-
tive areas and higher spectral resolution and X-ray telescopes of a much better spatial
resolution, will be launched in a few years: AXAF (1998), XMM (2000), ASTRO-E
(2001). For instance, AXAF telescopes will provide subarcsecond angular resolution,
and its CCD camera, in combination with gratings, will be able to resolve spectral
features of brighter INSs with an accuracy of a few eV in the range of 0.2 – 10 keV.
Such capabilities will yield new observational data of unprecedented quality, so that
the direct comparison of theoretical results for atoms and molecules in strong magnetic
fields will become possible, for the first time.

A promising new approach is investigation of INSs in the optical-UV range (e. g.,
Pavlov et al., 1996a). Thermally radiating INSs are extremely faint in this range,
and observing their spectra and light curves is a challenge, even with large telescopes.
However, first positive results have been obtained (e. g., Caraveo, 1997). In particular,
unusual spectral features have been reported in the spectra of Geminga (tentatively
interpreted as an ion cyclotron line — see Bignami et al., 1996) and, perhaps, PSR
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0656+14 (Pavlov et al., 1997). New instruments installed at the focal plane of the
Hubble Space Telescope in 1997 will enable us to reliably separate thermal and non-
thermal components of the INS optical-UV radiation, to study periodicities, and to
obtain more accurate photometry with narrower filters. The optical-UV observations
are particularly useful when combined with X-ray observations (Pavlov et al., 1996c).

Theoretical Problems to Be Solved

The improved capabilities of the new X-ray space observatories and optical tele-
scopes warrant more extensive and intensive theoretical investigations of the NS at-
mospheres. As discussed above, such investigations are impossible without reliable
opacities of strongly magnetized, dense plasmas of various chemical compositions, and
these opacities cannot be calculated without the corresponding atomic data. Most
urgent problems to be solved for NS atmosphere modeling are the following.

For hydrogen atmospheres, the problem which almost has not been explored is
the structure, number density, and radiative transitions of hydrogen molecules, atomic
and molecular ions and chains. Although a number of calculations of the binding
energies has been performed for these species, and crude estimates of the dissociation
equilibrium have been obtained (Lai and Salpeter, 1997), a lot of work remains to be
done to obtain detailed and reliable results. The problem of radiative transitions of
these species has not been even touched, to the best of my knowledge.

Another challenging problem, actually relevant to any NS atmospheres, is cal-
culation of the ionization equilibrium and equation of state in the dense, magnetized
plasmas. The most direct approach would be to use the so-called “physical picture”, in
which all electrons, free and bound, and nuclei are considered as individual objects, an
activity expansion of the grand canonical ensemble is used, and complicated numerical
methods are applied to calculate the composition and the state of the plasma (e. g.,
Iglesias and Rogers, 1996; Pierleoni et al., 1994). This approach is computationally
expensive, and it requires generalization for the case of strong magnetic fields. An
alternative, simpler approach employs the “chemical picture”, in which only few types
of species (atoms, ions, molecules and free electrons) are considered as individual ob-
jects, and the state of the plasma is obtained from minimization of the free energy with
respect to the densities of different species. This approach is limited by relatively low
densities, and attempts to obtain self-consistent results for arbitrary plasma density
failed even for the field-free hydrogen plasmas.

Since it is very probable that surfaces of many observable INSs are comprised of
iron, comprehensive investigations of iron ions are greatly desirable. In particular, it
would be useful to extend the multi-configurational Hartree-Fock calculations beyond
the adiabatic approximation which fails for strongly charged iron ions even at relatively
high magnetic fields. Such calculations would be very useful for further applications to
studying opacities of the iron plasma and developing iron atmosphere models.

The chemical composition of NS atmospheres is actually unknown (in fact, it is one
of the problems to be solved). Since some of the (hydrogen-depleted) supernova ejecta
may eventually accrete onto the compact core remnant, the surfaces of some NSs may
be covered by abundant elements different from hydrogen or iron. The most abundant
elements which may be expected at the NS surface are helium, carbon, nitrogen, oxygen,
etc, and it would be interesting to calculate the structure and radiative transitions of
the corresponding ions in strong magnetic fields. Perhaps, self-consistent models of
helium atmospheres should be developed first, with allowance for the effects of motion
of atoms and ions. These results could be further used as a basis for understanding
more complicated atmospheres comprised of heavier elements.
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To conclude, many challenging problems of atomic and statistical physics are as-
sociated with the NS atmospheres, and solution of these problems is urgently needed
for further progress of our understanding of physics and astrophysics of NSs.

ACKNOWLEDGEMENTS

I am greatly indebted to many colleagues who participated in joint exploration of
the NS atmospheres and related problems. I am particularly grateful to Slava Zavlin,
Yura Shibanov, Alexander Potekhin and Victor Bezchastnov for their cooperation. I
acknowledge the kind support from WE-Heraeus-Stiftung and DFG. This work was
partially supported by NASA Grant NAG5-2807.

REFERENCES

Anderson, S. B., Córdova, F. A., Pavlov, G. G., Robinson, C. R., and Thompson, R. J., 1993, ROSAT
High Resolution Imager observations of PSR 0656+14, Astrophys. J. 414:867.

Avron, J. E., Herbst, I. W., and Simon B., 1978, Separation of center of mass in homogeneous magnetic
fields, Ann. Phys. (NY) 114:431.

Baye, D., Clerbaux, N., and Vincke, M., 1992, Delocalized states of atomic hydrogen in crossed electric
and magnetic fields, Phys. Lett. A 166:135.

Baye, D., and Vincke, M., 1986, Centre-of-mass energy of hydrogenic ions in a magnetic field, J. Phys.
B 19:4051.

Becker, W., and Trümper, J., 1997, The X-ray luminosity of rotation-powered neutron stars, Astron.
Astrophys., in press.

Bezchastnov, V. G., 1995, A new basis of the Landau states for a hydrogen-like ion moving in a strong
magnetic field, J. Phys. B 28:167.

Bezchastnov, V. G., Pavlov, G. G., and Ventura, J., 1997, Discrete energy spectrum of moving
in a strong magnetic field, J. Phys. B, submitted.

Bignami, G. F., Caraveo, P. A., Mignani, R., Edelstein, J., and Bowyer, S., 1996, Multiwavelength data
suggest a cyclotron feature on the hot thermal continuum of Geminga, Astrophys. J. 456:L111.

Bulik, T., and Pavlov, G. G., 1996, Polarization modes in a strongly magnetized hydrogen gas, Astro-
phys. J. 469:373.

Burkova, L. A., Dzialoshinskii, I. E., Drukarev, G. P., and Monozon, B. S., 1976, Hydrogen-like systems
in crossed electric and magnetic fields, Zh. Exp. Teor. Fiz. (Sov. Phys. JETP) 71:526.

Caraveo, P. A., 1997, Neutron star astronomy, Adv. Space Res., in press.
Caraveo, P. A., Bignami, G. F., and Trümper, J., 1996, Radio-silent isolated neutron stars as a new

astronomical reality, Ann. Rev. Astron. Astrophys. 7:209.
Gnedin, Yu. A., and Pavlov, G. G., 1973, Transfer equations for normal waves and polarization of

radiation in an anisotropic medium, Zh. Exp. Teor. Fiz. (Sov. Phys. JETP) 65:1806.
Gnedin, Yu. A., Pavlov, G. G., and Tsygan, A. I.,  1974, Photoeffect in strong magnetic fields and

X-ray radiation of neutron stars, Zh. Exp. Teor. Fiz. (Sov. Phys. JETP) 66:421.
Gor’kov, L. P., and Dzialoshinskii,  I. E., 1967, Contribution to the theory of the Mott exiton in a

strong magnetic field, Zh. Exp. Teor. Fiz. (Sov. Phys. JETP) 53:717.
Herold, H., Ruder, H., and Wunner, G., 1981, The two-body problem in  the presence of a homogeneous

magnetic field, J. Phys. B 14:751.
Hummer, D. G., and Mihalas, D., 1988, The equation of state for stellar envelopes. I – An occupation

probability formalism for the truncation of internal partition functions, Astrophys. J. 331:794.
Iglesias, C. A., and Rogers, F. J., 1996, Updated OPAL opacities, Astrophys. J. 464:943.
Johnson, B. R., Hirschfelder, J. O., and Yang, K.-H., 1983, Interaction of atoms, molecules and ions

with constant electric and magnetic fields, Rev. Mod. Phys. 55:109.
Lai, D., and Salpeter, E. E., 1995, Motion and ionization equilibrium of hydrogen atoms in a super-

strong magnetic field, Phys. Rev. A 52:2611.
Lai, D., and Salpeter, E. E., 1997, Hydrogen phases on the surface of a strongly magnetized neutron

star, Astrophys. J., accepted
Lewin, W. H. G., van Paradijs, J., and van den Heuvel, E. P. J., 1995, “X-ray Binaries”, Cambridge

Univ. Press, Cambridge.

46



Meyer, R. D., Pavlov, G. G., and Mészáros, P., 1994, Soft X-ray spectral fits of Geminga with model
neutron star atmospheres, Astrophys. J. 433:265.

Mihalas, D., 1978, “Stellar Atmospheres”, W. H. Freeman, San Francisco.
Miller, M. C., 1992, Model atmospheres for neutron stars, Mon. Not. Roy. Aslron. Soc. 255:129.
Miller, M. C., and Neuhauser, D., 1991, Atoms in very strong magnetic fields, Mon. Not. Roy. Astron.

Soc. 253:107.
Ogelman, H., 1995, X-ray observations of cooling neutron stars, in "The Lives of the Neutron Stars,"

M. A. Alpar, Ü. and J. van Paradijs, eds., Kluwer, Dordrecht.
Page, D., Shibanov, Yu. A., and Zavlin, V. E., 1996, Temperature, distance and cooling of the Vela

pulsar, in “Rontgenstrahlung from the Universe,” Zimmermann, H. U., Trümper, J. , and Yorke,
H., eds., MPE Report 263, MPE, Garching.

Pavlov, G. G., and Mészáros, P., 1993, Finite-velocity effects on atoms in strong magnetic field and
implications for neutron star atmospheres, Astrophys. J. 416:752.

Pavlov, G. G., and Potekhin, Y. A., 1995, Bound-bound transitions in strongly magnetized hydrogen
plasma, Astrophys. J. 450:883.

Pavlov, G. G., and Zavlin, V. E., 1997, Mass-to radius ratio for the millisecond pulsar J0437–4715,
Astrophys, J., submitted.

Pavlov, G. G., Shibanov, Yu. A., Ventura, J., and Zavlin, V. E., 1994, Model atmospheres and
radiation of magnetic neutron stars: Anisotropic thermal emission, Astron. Astrophys. 289:837.

Pavlov, G. G., Shibanov, Yu. A., Zavlin, V. E., and Meyer, R. D., 1995, Neutron star atmospheres, in
“The Lives of the Neutron Stars,” M. A. Alpar, Ü. and J. van Paradijs, eds., Kluwer,
Dordrecht.

Pavlov, G. G., Stringfellow, G. S., and Córdova, F. A., 1996a, Hubble Space Telescope observations
of isolated pulsars, Astrophys. J. 467:370.

Pavlov, G. G., Zavlin, V. E., Becker, W., and Trümper, J., 1996b, Soft X-ray and EUV radiation from
polar caps of the millisecond pulsar J0437-4715, Bull. AAS 28:947.

Pavlov, G. G., Zavlin, V. E., Trümper, J., and Neuhauser, R., 1996c, Multiwavelength observations of
isolated neutron stars as a tool to probe the properties of their surfaces, Astrophys. J. 472:L33.

Pavlov, G. G., Welty, A. D., and Còrdova, F. A., 1997, Hubble Space Telescope observations of the
middle-aged pulsar , Astrophys. J., submitted.

Pierleoni, C., Bernu, B., Ceperley, D. M., and Magro, W. R., 1994, Equation of state of the hydrogen
plasma by path integral Monte Carlo simulation, Phys. Rev. Lett. 73:2145.

Potekhin, A. Y., 1994, Structure and radiative transitions of the hydrogen atom moving in a strong
magnetic field, J. Phys. B 27:1073.

Potekhin, A. Y., and Pavlov, G. G., 1993, Photoionization of the hydrogen atom in a strong magnetic
field, Astrophys. J. 407:330.

Potekhin, A. Y., and Pavlov, G. G., 1997, Photoionization of hydrogen in atmospheres of magnetic
neutron stars, Astrophys. J. 483:414.

Potekhin, A. Y., Pavlov, G. G., and Ventura, J., 1997, Ionization of the hydrogen atoms in strong
magnetic fields: Beyond the adiabatic approximation, Astron. Astrophys. 317:618.

Rajagopal, M., and Romani, R., 1996, Model atmospheres for low-field neutron stars, Astrophys. J
461:327.

Rajagopal, M., Romani, R., and Miller, M. C., 1997, Magnetized iron atmospheres for neutron stars,
Astrophys. J. 479:347.

Romani, R., 1987, Model atmospheres for cooling neutron stars, Astrophys. J. 313:718.
Ruder, H., Wunner., G., Herold, H., and Geyer, F., 1994, “Atoms in Strong Magnetic Fields," Springer,

Berlin–Heidelberg.
Schmelcher, P., and Cederbaurn, L. S., 1991, Interaction of the Landau orbitals of atomic ions in a

magnetic field wi th electronic motion, Phys. Rev. A 43:287.
Schmelcher, P., and Cederbaum, L. S., 1997, Two interacting charged particles in strong static fields:

A variety of two-body phenomena, Structure and Bonding 86:27.
Shibanov, Yu. A., and Yakovlev, D. G., 1996, On cooling of magnetized neutron stars, Astron.

Astrophys. 309:171.
Shibanov, Yu. A., Zavlin, V. E., Pavlov, G. G., and Ventura, J., 1992, Model atmospheres of magnetic

neutron stars: I. The fully ionized case, Astron. Astrophys. 266:313.
Shibanov, Yu. A., Pavlov, G. G., Zavlin, V. E., Qin, L, and Tsuruta, S., 1995, Anisotropic cooling and

atmospheric radiation of neutron stars with strong magnetic field, Ann. NY Acad. Sci., 759:291.
Shibazaki, N. , and Lamb, F. K., 1989, Neutron star evolution with internal heating, Astrophys. J.

346:808.

47



Taylor, J . H . , Manchester, R. N., and Lyne, A. G., 1993, Catalog of 558 pulsars, Astrophys. J. Suppl.
88:529.

Thompson, C., and Duncan, R. C., 1995, The soft gamma repeaters as very strongly magnetized
neutron stars. I – Radiative mechanism for outbursts, Mon. Not. Royal Astron. Soc., 275:255.

Thompson, D. J., et al. 1994, EGRET high-energy gamma-ray pulsars. I – Young spin-powered
pulsars, Astrophys. J. 436: 229.

Umeda, H.,Tsuruta, S., and Nomoto, K., 1994, Nonstandard thermal evolution of neutron stars,
Astrophys. J. 433:256.

Vincke, M., Le Dourneuf, M., and Baye, D., 1992, Hydrogen atom in crossed electric and magnetic
fields: transition from weak to strong electron-proton decentering, J. Phys. B 25:2787.

Zavlin, V. E., and Pavlov, G. G., 1997a, Soft X-rays from polar caps of the millisecond pulsar J0437–
4715, Astron. Astrophys, submitted.

Zavlin, V. E., and Pavlov, G. G., 1997b, Neutron star in the supernova remnant PKS 1209-52,
Astrophys. J., submitted

Zavlin, V. E., Pavlov, G. G., Shibanov, Yu. A., and Ventura, J., 1995a, Thermal radiation from
rotating single neutron star: Effect of the magnetic field and surface temperature distribution,
Astron. Astrophys. 297:441.

Zavlin, V. E., Shibanov, Yu. A., and Pavlov, G. G., 1995b, Effect of the neutron star gravitational
field on radiation from the hot polar spots of radio pulsars, Astron. Lett. 21:168.

Zavlin, V. E., Pavlov, G. G., and Shibanov, Yu. A., 1996, Model neutron star atmospheres with low
magnetic fields: 1. Atmospheres in radiative equilibrium, Astron. Astrophys., 315:141.

48



HYDROGEN ATOMS IN NEUTRON STAR ATMOSPHERES:
ANALYTICAL APPROXIMATIONS FOR BINDING ENERGIES

Alexander Y. Potekhin*

Ioffe Physico-Technical Institute, St.-Petersburg 194021, Russia

INTRODUCTION

Since the first observations of neutron stars thirty years ago, they have affected
many branches of physics. These extremely compact stars serve as natural physical
laboratories for probing the properties of  matter under extreme physical conditions. In
particular, more than half of them possess magnetic fields

Despite their name, neutron stars consist not only of neutrons.  They have a
crust containing ionized iron, heavier elements, and exotic neutron-rich nuclei,1 above
which lie liquid and gaseous outer envelopes, which are thought to be composed of iron
or lighter elements.2 The atmosphere, that affects the spectrum of outgoing  thermal
radiation, likely consists of hydrogen, the most abundant element in the Universe, which
might be brought to the star surface by fall-out of circumstellar medium. Neutral atoms
can provide an appreciable contribution to the atmospheric opacity.

Apart from the physics of neutron stars, quantum-mechanical calculations of strong-
ly magnetized hydrogen atoms find application also in the physics of white dwarf  stars3,4

and in the solid state physics.5 Because of this practical demand, hydrogen in strong
magnetic fields has been well studied in the past two decades.6 The peculiarity of the
problem for neutron stars is that an atom cannot be considered abstractedly from its
thermal motion. Indeed, neutron star atmospheres are hot so
that typical kinetic energies of the atoms are non-negligible in comparison with typical
binding energies. Taking the thermal motion into account is highly non-trivial, because
an atom moving across magnetic field is equivalent to an atom placed in orthogonal
electric and magnetic fields, so that the cylindrical symmetry is broken.

At where and is the electron
cyclotron frequency, the collective motion effects7,8 become especially pronounced. In
particular, so-called decentered states (with the electron localized mostly in the “mag-
netic well” aside from the Coulomb center) are likely to be populated even at the rela-
tively high densities typical of neutron star atmospheres. These exotic
states have been predicted two decades ago by Burkova et al.9 and studied recently by
other authors.10–12
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Collective-motion effects on the usual “centered” states have been first consid-
ered in frames of the theory of perturbation.8,13 Non-perturbative results covering both
centered and decentered states were subsequently presented for binding energies and
wavefunctions,14,15 oscillator strengths,15 spectral line shapes,16 and  photoionization
cross sections.17 None of these data, however, has been published in an easy-to-use
form of tables or analytical expressions.

In this contribution I propose approximate analytical expressions for the binding
energies of the hydrogen atom arbitrarily moving in a magnetic field typical of neutron
stars, . This  range is physically distinguished, since at weaker fields the
spectrum is strongly  complicated by multiple narrow anticrossings,14 while the upper
bound, corresponds to the onset of non-negligible relativistic effects.18

THEORETICAL FRAMEWORK

Motion of the hydrogen atom in a magnetic field can be conveniently described by
the pseudomomentum , where the subscript i = e or

indicates electron or proton, respectively, is the
velocity operator, the mass, the charge, and A(r) the vector potential
of the field. Gorkov and Dzyaloshinskii19 have shown that in the representation in
which all components of K have definite values, the relative motion can be described
in terms of a one-particle Hamiltonian which depends on K.

It is convenient to describe the centered states of the atom using the relative
coordinate as independent variable and the axial gauge of the vector
potential, For the decentered states, the “shifted” representation19

is more convenient. In the latter representation, the independent variable is
and the gauge is . Here,

is the relative guiding center, and
Let us assume that B is directed along the z-axis. The z-component of the pseu-

domornenturn corresponding to the motion along the field yields the familiar term
in the energy, while the transverse components produce non-trivial ef-

fects. Therefore we assume and hereafter.
If there were no Coulomb attraction, then the transverse part of the wavefunction

could be described by a Landau function where is the projection of
in the (xy)-plane . The energy of the transverse excitation is

where the zero-point and spin terms are disregarded.
A wavefunction of an atomic state can be expanded over the complete set

of the Landau functions

where or 1 indicates the conventional or shifted representation, respectively (a
generalization to arbitrary proved to be less useful15). The one-dimensional functions

are to be found numerically. The adiabatic approximation used in early works9,19

corresponds to retaining only one term in this expansion.
A bound state can be numbered15 as , where and relate

to the leading term of the expansion (2), and enumerates longitudinal energy levels
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and controls the z-parity: . For the non-moving atom at
, the states are tightly bound in the Coulomb well, while the states

are hydrogen-like, with binding energies below 1 Ryd. The states with belong to
continuum at and will not be considered here.

At small pseudomomenta K, the states remain tightly bound and cen-
tered, the mean electron-proton separation being considerably smaller than (for
the hydrogen-like states however, is close to at any K). The larger K,
the greater is the distortion of the wavefunction towards caused by the motion-
induced electric field in the co-moving reference frame, until near some transition
to the decentered state occurs, and the character of the motion totally changes. With
further increasing K, the transverse velocity decreases and tends to zero, whereas the
electron-proton separation increases and tends to , Thus, for the decentered states,
the pseudomomentum characterizes electron-proton separation rather than velocity.

At very large K the longitudinal functions become oscillator-like, corresponding
to a wide, shallow parabolic potential well.9 For a fixed this limit is reached at

where is the Bohr radius. Still at arbitrarily large K, there remain
infinite number of bound states with high values of whose longitudinal wavefunctions
are governed by the Coulomb tail of the effective one-dimensional potential.15

The decentered states of the atom at au have relatively low binding
energies and large quantum-mechanical sizes au; therefore they are expected
to be destroyed by collisions with surrounding particles in the laboratory and in the
white-dwarf atmospheres. In neutron-star atmospheres at , however, the de-
centered states may be significantly populated. This necessitates inclusion of the entire
range of K below and above in the consideration.

ANALYTICAL APPROXIMATIONS

Binding Energies of the Non-Moving Hydrogen Atom

Extensive tables of binding energies of the hydrogen atom at rest with respect
to the magnetic field have been presented by Rösner et al.20 and supplemented by
other authors.21–23 Recently, the accuracy Ryd has been achieved.24 In the
astrophysics, a lower accuracy is usually sufficient, and simple analytical estimates are
often desirable.

For this reason, we have constructed a fit to where in a
possibly widest range of For the tightly-bound states, we have

The parameters depend on s; they are listed in table 1. This fit is accurate to
within 0.1-1% at , and it also provides the correct limits at
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For the hydrogen-like states, we use the asymptotic result25

We have obtained the following fits to the quantum defect δ: for odd
where and and for even

where and More accurate values of and are given in table 2. At
errors of these approximations lie within

Binding Energies of the Moving Hydrogen Atom

For the moving hydrogen atom in a strong magnetic field, the first analytical fit
to E(K) has been published by Lai and Salpeter.26 It is rather accurate for the ground
state at but cannot be applied to excited or decentered states.

We describe the longitudinal energy (3) by the formula

The two-term structure of (6) is dictated by the necessity to describe the two physically
distinct regions of K below and above The parameter α has the meaning of the
width of the transition region near in logarithmic scale of pseudomomenta.

For the tightly-bound states, we parameterize the dependencies as follows:

where and are dimensionless fitting parameters, and
is the effective mass which is close to (but not necessarily coincident with) the

transverse effective  mass obtained by the perturbation technique. , we
put if and otherwise,
and . For the effective mass, we have

where and . For the critical

pseudomomentum, we have . The parameters and
take on the values and for

respectively. For we put and
In figure 1 the above fitting formulae are compared with our numerical results15

and with the previous approximations.26 The figure demonstrates that the present
approximations are valid at any K from 0 to infinity. Appreciable discrepancies occur
only in narrow ranges of K near anticrossings.

Now let us turn to the hydrogen-like states. Their binding energies are approxi-
mated by the same formula (6) but with slightly different expressions for and
For these states, exceeds by orders of magnitude, and the perturbation method
fails already at small rendering the notion of the effective mass practically useless
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for the fitting. Thus we consider as effectively infinite and put
. Furthermore, the transition region is not well defined, and therefore and

lose their clear meaning and become mere fitting parameters. For odd states, we have,

approximately, and For even states,

and
The function that describes the longitudinal energy at large K is now

(8)

with for odd and for even The
first and second terms in the square brackets ensure the correct asymptotic behavior.15

CONCLUDING REMARKS

The analytical approximations for binding energies presented in this contribution
depend continuously on two arguments — magnetic field strength and transverse pseu-
domomentum. They are accurate, typically, within a few parts in 100-1000. The
accuracy can be improved by almost an order of magnitude by optimizing the param-
eters in equations (6)–(8) separately at each discrete value of
Tables of such optimized parameters have been obtained and will be published else-
where, together with analytical approximations of geometrical sizes of various quantum-
mechanical states of the moving atom and oscillator strengths of radiative transitions
among them. The atomic sizes play important role in distribution of atoms over quan-
tum states in a plasma and in their contribution to the plasma absorption coefficients.
For example, a size of an atom may be used to evaluate effects of “unbounding” of
electrons caused by random charge distribution in the plasma. For non-magnetized
hydrogen plasma, an approximate treatment of these effects was revised recently;27 for
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the strong magnetic fields analogous work is under way. Eventually, the analytical
estimates of K-dependencies of the binding energies, atomic sizes, and transition rates
help to generalize previously developed models of fully ionized atmospheres of magnetic
neutron stars28 to the more realistic case of partially ionized atmospheres.
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INTRODUCTION

Propagation of radiation in a magnetized medium can be described in terms of two
normal modes (NM) with different polarizations and absorption coefficients which can
be found from the polarizability tensor. The antihermitian part of this tensor is simply
connected, in the dipole approximation, with the absorption coefficients for three
“basic” polarizations of photons: linear polarization along the magnetic field  ,,
and right and left circular polarizations transverse to the field . However, to
calculate the NM polarizations and absorption coefficients for an arbitrary direction of
propagation, both hermitian and antihermitian parts of the polarizability tensor are
needed. A convenient approach for calculating the hermitian part and the NM absorp-
tion coefficients is described in detail by Bulik and Pavlov1. Briefly, we
start from the absorption coefficients and use the Kramers-Kronig transformations
to obtain the hermitian part of the polarizability tensor. Given the full polarizabil-
ity tensor we then proceed to calculate the NM polarizations for all frequencies and
directions. Finally, we use the NM polarizations and the full polarizability tensor to
calculate the absorption coefficients for arbitrary energy and direction of propagation.

A novel feature of the calculations presented here is that we take into account
bound-bound and bound-free transitions for the left circular polarization which are
strictly forbidden by the dipole selection rules for non-excited atoms at rest and become
allowed only due to the violation of the cylindrical symmetry of the atomic structure
caused by the atomic motion. Account for these transitions is important, in spite of
their small oscillator strengths, when radiation propagates in a direction close to that of
the magnetic field. In this case, the (extraordinary) NM is left-circularly polarized, so
that the gas would be completely transparent for this mode unless the motion-induced
violation of the selection rules is taken into account. Here we consider the atomic
motion in the perturbation approach (cf. Pavlov and Mészáros2). Throughout this
paper we will follow the notations introduced by Bulik and Pavlov1.
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ABSORPTION COEFFICIENT FOR THE LEFT POLARIZATION

We consider the case of low temperatures, when all atoms are in the lowest dis-
crete state, and the absorption of the photon occurs via bound-free
(photoionization) or bound-bound transitions, . Calculation of the
coefficients for permitted transition, and , was described in detail by Bulik and
Pavlov1. The dependence of the bound-free cross section for the left polarization,
on the transverse component of the generalized momentum, was derived by Pavlov
and Mészáros2 with the perturbation approach ( see their eq. [3.18]) and con-
firmed by numerical calculations of Potekhin and Pavlov3. The non-zero cross section

arises due to the motion-induced admixture of the state to the ground state

where and are the components of the generalized momentum of the atom,
is the atomic mass, is the magnetic length,

and is the energy of transition between the ground and first excited states at
(for instance, for ). We obtain the
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absorption coefficient by averaging the cross section over the thermal distribution3:

The main bound-bound transition from the ground level for the left polarization
is that to the state and it is important to take into account, together with the
correction (1), the admixture of the ground state to the excited state:

Only these admixed states, and contribute to the matrix element for absorp-
tion of the left-polarized photons, so that the matrix element is proportional to
(unlike the bound-free transition, for which it is proportional to ), and the oscillator
strength is

In the perturbation approach, the dependence of atomic energies on can be described
in terms of the transverse mass . The transverse
mass is higher for more excited states; for instance2, and
for This means that the energy of
the transition between two discrete states decreases with increasing which leads to
the magnetic broadening of spectral lines2. For instance, the transition
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at a frequency is provided by atoms whose transverse momentum satisfies
the equation

Substituting equations (5) and (4) into the general equation for the absorption coeffi-
cient (Pavlov and Potekhin4), which includes averaging over the generalized momentum,
we obtain

where Thus, equations (2) and (6) express the absorption coefficient
in terms of the known
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RESULTS AND DISCUSSION

As an illustrative example, we consider the case when G, kT =
1 Ry, and (the density determines an additional collisional broadening of
spectral lines, see Bulik and Pavlov1). We present the basic absorption coefficients for
the three polarization modes in Figure 1. The contributions of the bound-bound and
bound-free transitions are shown separately by thin lines. The absorption coefficient

includes the bound-bound and bound-free transitions to states with de-
scribed by equations (2) and (6), and also the very strong transition

to the excited Landau level In Figure 2 we show the
hermitian and antihermitian components of the polarizability tensor obtained with the
Kramers-Kronig transformation. The motion-induced bound-bound and bound-free
transitions for alter the antihermitian part of the polarizability tensor
significantly, but they only slightly modify the hermitian part which is dominated
by the effects of permitted transitions for at negative frequencies. Polariza-
tions of the NMs are determined mainly by the dominant and (note the vertical
scales in Figure 2) and are almost not affected by the changed . For instance, the
“critical” angles, and and frequencies, Ry and

Ry, at which two NMs coincide with each other, differ from those obtained
without the motion-induced transitions1 by less than 0.2%.

We present plots of absorption coefficients as a function of frequency for a few
characteristic angles in Figure 3 (cf. Figures 6 and 7 of Bulik and Pavlov1). The NM
polarizations are almost circular for small angles; however, they become non-orthogonal
in the vicinity of the critical frequency Therefore the absorption coefficients follow
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and at energies below and they coincide around 14 Ry due to the
strong non-orthogonality of NMs in this region. The frequency dependence of the
absorption coefficients at intermediate and large angles is shown in the bottom panels
of Figure 3. A typical behavior for propagation angles is presented in
the lower left panel for . Here the modes are linearly polarized, except for the
region around For propagation near the angle the modes almost coincide in
the vicinity of and they are almost linear everywhere else. Finally, the case of
propagation at a large angle with respect to the magnetic field is presented for
Here the modes are almost linear at all frequencies, except for a narrow region of
increased ellipiticity around Ry.

The angular dependence of the absorption coefficients for a few characteristic en-
ergies is presented in Figure 4 (cf. Figure 8 of Bulik and Pavlov1). The effects of the
bound-bound and bound-free transitions for are seen in the plots for Ry and

Ry, where the low-absorption mode flattens for small angles of propagation,
contrary to the cse when the motion-induced transitions for were neglected. The
behavior of the absorption coefficients around the critical points is clearly seen in the
plots for Ry and Ry. The mode polarizations are linear and
coinciding at the the critical points, and the absorption coefficients for the two modes
also coincide there. At frequencies above the modes are linearly polarized for all
the angles except for a narrow cone of small At these frequencies the absorption co-
efficient for the ordinary (high-absorption) mode grows with the angle of propagation,
while that for the extraordinary mode first increases, when the polarization is circular,
then reaches a maximum, and finally decreases when the polarization becomes linear
with increasing

The inclusion of the motion-induced bound-bound and bound-free transitions for
α = –1 “patches a hole” in modeling atmospheres of neutron stars. With these tran-
sitions neglected, the model low-temperature atmospheres are nearly transparent for
small angles of propagation: the left-polarized radiation leaks out from very deep lay-
ers without interaction with outer layers, which limits the modeling to relatively high
temperatures. A second effect is that spectral lines should be produced for propagation
along the field in both modes, whereas only the ordinary mode would exhibit such lines
with these transitions neglected.
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The properties of atoms in strong magnetic fields are relevant to several domains
such as astrophysics, condensed matter physics, or plasma physics.1, 2

In the past, only hydrogen and helium have been studied for magnetic fields of
arbitrary strength.3 Indeed, the calculation of the electronic structure of atoms in a
regime where Coulomb and magnetic effects are of equal importance is a challenge
in many respects, including the breaking of the spherical symmetry of the atomic
wavefunctions and the influence of the magnetic field on the exchange and correlation
energy.4, 5 A non-perturbative approach is needed, in which case the problem may be
solved in two dimensions. The lack of data for light elements other than helium has
motivated recent Hartree-Fock (HF) computations for lithium and carbon.12

In order to tackle this problem, we tried different approaches. In one of these,
the quantum mechanical equations of density functional theory are solved using the
finite element method. In another approach, within the framework of the HF method,
the wavefunctions are expanded in an original basis set of numerical wavefunctions
including variational parameters.

We present these methods and preliminary results for total energies of various
configurations of atomic helium in strong magnetic fields.

KOHN-SHAM EQUATIONS AND THE FINITE ELEMENT METHOD

In current-density functional  theory (CDFT),4 the ground-state energy E of  a
many-electron system, subject to external scalar and vector potentials V(r) and A(r),
is uniquely determined as a functional of the ground-state density n(r) and of the
canonical paramagnetic current . Writing the kinetic contribution to the functional
E as the Hartree-Fock form of the kinetic energy, , enables one to reduce the
unknown part of this functional to a term representing the exchange-correlation energy,

As is the expectation value of an operator between one-electron orbitals, one
must introduce such orbitals and the eigenvalue equations with which to calculate them.
These equations are the Kohn-Sham (KS) one-electron equations.7 For CDFT, the KS
equations are4
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where the effective scalar potential is given by

and where an effective vector potential appears

For the sake of simplicity, we confined ourselves to spin-compensated systems.
Otherwise, the spin densities and their coupling with the magnetic field must be intro-
duced. The density which minimizes the total energy is generally equal to the sum of
the squares of the eigenfunctions of the N lowest states. The paramagnetic current
is obtained from the same orbitals and is related to the physical current density by

To solve the KS equations, one must resort to an approximation for the unknown
exchange-correlation energy functional . In CDFT, a local approximation (LA)
may be defined. Introducing the vorticity and provided that n(r) and

v(r) are sufficiently slowly varying, one has

Indeed, depends on only through the combination defining the vorticity
is the exchange-correlation energy per electron of a uniform electron gas in a

uniform magnetic field
The KS equations within the local approximation become usable as soon as

is given. Recently, this functional has been studied by Skudlarksi and Vignale5

within the random phase approximation (RPA). They expressed the variation of the
energy due to the magnetic field  by introducing

another variable which is related to and n. This variable is the occupation factor of
the lowest Landau subband, , whose square is proportional to the Fermi energy of
the uniform electron gas, where is the cyclotron frequency. We
used the analytical approximation derived by Perrot and Grimaldi8 to calculate as a
function of and n.

Skudlarksi and Vignale5 stressed that exhibits an approximate scaling law for

and in the range of densities characterized by , where
in units of a Bohr radius. This approximate scaling law mimics the rigorous scaling
property of the local exchange energy

Indeed, for the spin-compensated case,9 the exchange energy per electron is

Ry.
Skudlarksi and Vignale5 gave an analytical fit of (Figure 1). A noticeable

fact is that, for a large range of densities and magnetic field intensities, is
small in comparison with . Therefore, it is worthwhile to treat the contribution
from as a perturbation, at least as a first step toward a more self-consistent
solution. The domain of validity of this approximation can be obtained from figure 2
representing isovalues of the occupation factor, vs. the radius and the magnetic
field,
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Considering as a perturbation leads to a drastic simplification of the
KS equations of the CDFT. Indeed, neglecting the current dependent part of the xc
energy, the KS equations contain only a scalar exchange-correlation potential, which
only depends on the electronic density. We used the Vosko-Wilk-Nusair formula for
the correlation energy.10, 11, 12 Lastly, using the symmetric gauge where
enables one to search for real KS orbitals.

Finally, we used the finite element method to solve the resulting KS equations.
When expressed in two dimensions (using the axial symmetry around the magnetic
field direction) this allows to handle directly the breaking of spherical symmetry of the
atomic wavefunctions as the magnetic field increases.13

Numerical results for the and configurations of Helium at various
strengths of the magnetic field are compared with other calculations in the last section.
For these first results, we made an assumption which will be discussed elsewhere. It
consists in extending the local approximation to vanishing physical current j, allowing
one to identify with B.

HARTREE-FOCK EQUATIONS WITH AN ORIGINAL BASIS SET

Hartree-Fock equations  originate from the assumption of a single Slater deter-
minant form of the N-electron wavefunction which is the solution of the Schrödinger
equation (see reference 3 for instance)

with
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where and atomic Rydberg units are used.
Usually, the one-electron components of the Slater determinant are

projected on a basis of spin orbitals

with the eigenvectors of the resulting Hartree-Fock matrix.
Whereas, in conventional HF methods, the basis functions are Slater or gaussian-

type orbitals, we used an original basis set composed of radial Kohn-Sham wavefunc-
tions, , computed without magnetic field. In this way we introduced the main
part of the radial wavefunction behavior with few functions in the expansion. The
angular part of the basis functions is represented by spherical harmonics with fixed
quantum number m since the component of the orbital momentum parallel to the mag-
netic field is conserved. To reduce further the number of functions in the expansion,
we simulated the effect of the magnetic field on the anisotropy of the wavefunction
by multiplying the basis functions with an exponential factor , where a is
a variational parameter. Finally, to preserve the orthonormality of the basis set, one
must build (r) as

where each is an eigenvector of the overlap integrals matrix
However, this original basis expansion presents a shortcoming. Indeed, only a

very limited number of KS orbitals can be generated since the KS potential has a
finite range in the local density approximation (LDA). To get round this difficulty, we
artificially substituted a Coulomb potential of infinite range
for the tail of the KS potential Consequently, we got 2 parameters to minimize
the total energy. The first a is used in the HF program via the exponential factor, the
other is included in the KS program to generate the basis.
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Our procedure is as follows :
• First, considering the case without magnetic field we fix and search for

the best value of which produces the most important basis set and minimizes
the HF total energy (Figure 3).

• Second, keeping this value of we compute the optimal parameter a
corresponding to the lowest HF total energy in the presence of the magnetic
field (Figure 4).

• Finally, we check whether convergence has been reached with respect to the
number of elements in the basis set (Figure 5).

Our results arc presented in the next section.

HELIUM IN STRONG MAGNETIC FIELD

We present a comparison between our KS and HF energies together with HF results
already published for the (Table 1, Figure 6) and (Table 2, Figure 7)
configurations of Helium at various strengths of the magnetic field. Whereas total
energies differ between the KS and HF approaches, the contributions
due to the magnetic field are much closer to each other (Figures 6 and 7). Indeed,
it is well known that KS calculations in the LDA underestimate the self-exchange
energy for atomic systems.14 For  instance, the exact value of the  ground state
energy at is 5.807 Ry, whereas the HF value is 5.723 Ry and the KS value is
5.669 Ry. Moreover, the discrepancy between the KS and HF values of the
energy level at is more pronounced because we did not take the spin polar-
ization into account, leading to underestimating further the exchange energy. Work
in progress aims at implementing a local spin density approximation with a self-
interaction correction (SIC-LSD), and at studying ground states of heavier elements.
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INTRODUCTION

We report on progress achieved in variational calculations of atomic structures
of field-free atoms, from isotope shifts and hyperfine structures to radiative transi-
tion probabilities1. The role of electron correlation is investigated through the use
of the multiconfiguration Hartree-Fock approximation. We then turn to the main
topic of the meeting, ie. “Atoms and Molecules in Strong External Fields” by describ-
ing our Hartree-Fock study2 on the stability of light homonuclear diatomic molecules
and of finite hydrogen and helium molecular chains immersed in very intense mag-
netic fields relevant in the physics of neutron stars ( or

).

FIELD-FREE ATOMS

The Multiconfiguration Hartree-Fock Approximation

In atomic structure calculations of field-free atoms, the multiconfiguration Hartree-
Fock (MCHF) approximation is often used for calculating correlated wave functions and
accurate spectroscopic properties1. In the non-relativistic MCHF approach3 the wave
function for a state labeled where represents the configuration and any other
quantum numbers required to specify the state, is expanded in terms of configuration
state functions (CSFs) with the same LS term.

The configuration state functions are anti-symmetrized linear combinations of
products of spin-orbitals
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where the radial functions are represented by their numerical values at a number
of gridpoints. In the multiconfiguration self-consistent field procedure both the orbitals
and the expansion coefficients are optimized as to leave the total energy stationary.
Once a set of radial orbitals has been obtained, a configuration interaction (CI) cal-
culation can be performed. The wave function is also expanded in configuration state
functions, but only the expansion coefficients are determined by diagonalizing the
Hamiltonian matrix. For large expansions the iterative Davidson method can be used
to determine a restricted number of the lowest eigenvalues and eigenvectors4. Using
a sparse matrix representation, where only non-zero matrix elements are saved, large
expansions can be used, the limit being set by the available disk space.

A new trend in atomic structure calculations is to assess the reliability of the
theoretical calculations by “monitoring” the property as a function of the size of the
orbital active set on which the CSF space is built within a given model. The reader
is referred to previous work1 and references therein for the isotope shift and transition
probability calculations presented at the meeting. For the proceedings, we will focus
on the evaluation of the hyperfine structure parameter of the ground state of nitrogen5.
This is indeed an interesting difficult test case for which electron correlation is definitely
the key of the problem.

A Nice Example: The Hyperfine Structure of the Nitrogen Ground State

The hyperfine structure of atomic energy levels is caused by the interaction be-
tween the electrons and the electromagnetic multipole moments of the nucleus. For the

nitrogen ground state, with a total orbital angular momentum equal
to zero only the Fermi contact term contributes to the hyperfine
interaction constant which is given (in MHz) by

where

and is the electron spin g-factor. The isotope I4N has a nuclear spin
with a magnetic dipole moment In the one-configuration

Hartree-Fock approximation for which only the dominant term is kept
in the expansion (1), the Fermi contact parameter is strictly zero. In this case, the
dominating contributions to the hyperfine interaction come from the spin-polarization
of the closed 1s and 2s shells due to the Coulomb exchange interaction with the open
shells. In the MCHF method, spin-polarization is described by including CSFs of the
form and in the configuration expansion.
The spin-up/spin-down asymmetry enters into this scheme through the expansion co-
efficients and the shapes of the polarization orbitals ns. The difficulties mainly arise
from the large and cancelling spin-polarization contributions from the closed 1s and 2s
shells.

As a starting point a number of variational MCHF calculations were performed.
The configuration expansions for the MCHF calculations were obtained using the ac-
tive space method, where CSFs of a specified parity and LS symmetry are generated
by electron excitation from one or more reference configurations to an active set of or-
bitals. To describe the major correlation effects in the pair-correlation approximation,
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all single (S) and double (D) excitations were allowed from the Ilartree-Fock reference
configuration to the active set of orbitals. The orbital set was then increased in a
systematic way, allowing the convergence of the expectation values to be studied. Fol-
lowing the notation used in quantum chemistry, the active set is characterized by the
number of orbitals of a certain symmetry. The set 3s2p1d for example, contains three
s-orbitals, two p-orbitals and one d-orbital. In Table 1 the hyperfine coupling constant,
the total energy and the total number of configurations are shown as a function of
the increasing active set of orbitals. The three s-orbitals, preceeded by a slash in the
table, have been added and optimized by allowing single excitations only for describing
specifically the spin-polarization effects.

To investigate the influence of higher order correlation effects a number of config-
uration interaction calculations were performed in which CSFs generated by triple (T)
and quadruple (Q) excitations from the reference configuration to the increasing active
set were added to the largest expansion from the proceeding MCHF calculation. The
merging of CSF lists is denoted by the union symbol in the table. As seen from
the table the inclusion of CSFs generated by T excitations has a drastic effect on the
hyperfine coupling constant, which is increased by as much as 80%. The effect of the
included CSFs generated by Q excitations is in comparison very small and configura-
tions obtained by higher excitations are believed to be small and have been neglected.
The final result is in rather good agreement with experiment6.

71



MOLECULES IN VERY INTENSE MAGNETIC FIELD

For treating atoms and molecules in a uniform magnetic field, we use the following
Hamiltonian

in which is the hamiltonian of electron i in the homogenous and constant magnetic
field chosen to be oriented along the z axis. The three potential terms represent the
Coulomb interaction between the electron and nuclei labeled by latin and greek letters
respectively. We are working in the “standard” Born-Oppenheimer approximation in
which we solve the electronic Schrödinger equation for a given nuclear configuration,
and add the corresponding nuclear repulsion energy to the total electronic energy to
get the effective potential energy in which the nuclei move. This approximation is valid
if the electronic energy-level spacings are large compared to the typical energy-level
spacings associated with the nucleus motion7. We are interested in a Landau regime
where the magnetic field is dominant and is only slightly perturbed by the Coulomb
interactions. The total wave function can be approximated by a Slater determinant
built on the N spatial one-electron functions multiplied by the symmetric product of
the anti-parallel spin functions. We assume that the transverse motion, perpendicular
to the field, can be described by the transverse parameter fixed to the Larmor radius

The electrons will be confined in the ground Landau level correponding
to the lowest radial quantum numbers In this adiabatic approximation,
the motion perpendicular to the magnetic field is described by unperturbed magnetic
Landau orbitals

where . Each one-electron orbital can be factorized as

and the Coulomb interaction only affects the longitudinal wave functions
The total energy can easily be evaluated from the total wave function by averaging

the motion in the transverse plane. The Hartree-Fock equations can be derived2 by
applying the variational principle for any variation in the longitudinal one-
electron wave functions Though a numerical approach can be used for solving
the one-dimensional HF equations in atoms8 or molecules9, 7 as in the field-free case3,
we used another computational strategy.

Hartree-Fock On A Mesh

In our approach, each individual wave function is discretized on a one-dimensional
cartesian (or Fourier) mesh composed of N equidistant points

where are the values of the at the mesh points The Lagrange functions
associated with the cartesian mesh10,
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have very special properties:

The Hamiltonian matrix elements in the Lagrange basis can be evaluated using the
Gaussian quadrature formula. The Gauss formula associated with the cartesian mesh is
exact for the matrix elements of the kinetic energy operator and produces rather simple
analytical expressions10. Though regularization techniques have been proposed11, the
one- and two-electron matrix elements of the potential terms are approximated with a
cartesian mesh possibly denser than the discretization describing the individual wave
functions.

The Homonuclear Diatomic Molecules

The lowest configurations of diatomic homonuclear molecules from to have
been studied at using the Hartree-Fock-on-a-mesh procedure described above.
The main results are summarized in Table 2 in which the electronic configurations are
characterized by the sequence where v gives the number of orbitals
having a specific value. The evolution of the stability with increasing the nuclear
charge can be understood from the analysis of the molecular configurations and their
dissociation energy defined as For the three first members
of the series ( and ), the ground states correspond to configurations in which
all electrons have different values of The situation gradually changes for heavier
molecules thanks to the growing nuclear attraction. From the configuration with
two electrons becomes definitely energetically more favorable than the configu-
ration with all different The first excited orbitals become competitive for
higher Z and for , the and 4 first excited orbitals are all occupied in the
ground state. The key of the molecular stability problem in the very intense magnetic
field regime that we consider lies in the corresponding dissociation limit. The energeti-
cally most favorable partitions for the atomic dissociation products are reported in the
same table. Multiple occurrence of the same values in the molecular configuration
leads to less excited atoms as dissociation products and lowers the dissociation limit.
The dissociation energy increases monotonically with the nuclear charge for molecular
configurations containing only different values of and decreases dramatically when

orbitals become populated.
Our results for the equilibrium interatomic distance, the ground state

energy and the dissociation energy* are consistent with the values obtained by Lai and

*Note that the “dissociation energy” is defined by Lai and Salpeter7 as the difference between the
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Salpeter7 for at other magnetic field strengths and the
quantum Monte Carlo results of Ortiz et al.12 (see Table 3). The overall increase of the
atomic and molecular binding energies with increasing the magnetic field strength, the
increase of the molecular stability and the contraction of the bond length appear very
clearly from this table.

The and Finite Chains

We applied our “Hartree-Fock-on-a-mesh” approach to study the stability of hy-
drogen and helium linear chains2 al The ground state configurations are
presented in Table 4 with their total energies and equilibrium nuclear interdis-
tances. The dissociation (or atomization) energies ~ are calculated from the difference
between the equilibrium total energy and the sum of the atomic total energies ac-
cording to the most stable partition for the chains. For the hydrogen chains,

is the shortest chain in which a duplication occurs. As found for the diatomic
molecules, the nuclear charge has an efficient role in this process. For the chains
indeed, the occurrence of two already appears at

As observed by Lai et al.9, the binding energy per atom obtained by dividing the
total energy of the chain by the number of atoms stabilizes very quickly
when increasing the number of atoms. This “saturation” phenomenon is observed
for both kinds of chains. Condensation (or cohesion) energies can be evaluated
by substracting from the binding energy per atom the ground state energy of the
isolated atom with for and E[01] for Using the
multichannel density-functional method, Relovski and Ruder13 obtained condensation

molecular ground state energy and the energy of the two isolated atoms, both in the ground state,
while our definition corresponds to the depth of the energy curve.
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energies which are systematically much larger than the values obtained in the Hartree-
Fock approximation9, 2, as reported in Table 5.

For chains, our cohesion energy of 42-59 eV (depending on n) is
consistent with the 20/146 eV and 25/149 eV found respectively by Lai et al.9 and
Neuhauser et al.14 for

CONCLUSION AND PERSPECTIVES

Our Hartree-Fock-on-a-(cartesian)-mesh approach produces results which are con-
sistent with other recent work on diatomic molecules7, 12 and molecular chains9, 14. The

found in the ground state of homonuclear diatomic molecules beyond
and in molecular chains beyond or plays a crucial role in the stability (or

unstability) of molecular species in the high-field regime.

As pointed out by Lai and collaborators9, 7, configuration mixings can be important
for getting the correct dissociation limit of the ground state of Though this intrin-
sic failure of the Hartree-Fock approximation does not affect Demeur et al.’s results2,
the energies of the dissociation atomic products being obtained independently of the
molecular wave function, the one-configuration description should be improved for ob-
taining for instance the “good” potential governing the aligned vibration motion7. The
large differences found between Hartree-Fock and multichannel density-functional con-
densation energies for hydrogenic and helium chains have been attributed by Relovsky
and Ruder13 not only to the use of different physical theories, but also to restrictions on
the allowed single-particle wave functions in the Hartree-Fock scheme. The description
of electron correlation being one of our major interests in the spectroscopy of field-free
atoms as illustrated in the first part, we would like to go beyond the mean-field approx-
imation by considering the multiconfiguration approach for very intense magnetic field
situations. Interdisciplinary research is usually very rich and we will consider the new
perspectives that the success of the B-spline approach in atomic structure calculations15

might open.
Demeur et al.’s results2 have been obtained by solving the fixed-nuclei electronic

Hamiltonian, excluding mass effects. For the zero-point energies for the aligned
and transverse vibrations have been estimated to be 9.5 eV and 21 eV respectively at

which represent together 18% of the corresponding dissociation energy
173 eV (see previous footnote). In view of the relative magnitude of the electronic and
nuclear vibration excitation energies, the adiabatic physical picture of the separation of
the electronic and nuclear motion might become and it would be rather interesting
to investigate the use of the so-called “screened Born-Oppenheimer approximation”
proposed by Schmelcher et al.16.
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INTRODUCTION

The National High Magnetic Field Laboratory (NHMFL) is continuing the fine
traditions established by the Francis Bitter Magnet Laboratory at MIT in Cambridge,
Massachusetts, of providing access to high magnetic field facilities to all qualified users,
national and international, developing magnet technology for the next generation of
high field magnets, and developing an active in-house research program. In addition, the
NHMFL is committed to fostering cooperation with the private sector, and with other
national and international institutions in order to facilitate the development of new
materials and technologies critical to the continued development in magnetic, related
research and technology. The NHMFL is jointly operated by the University of Florida
(UF, Gainesville, Florida), Florida State University (FSU, Tallahassee, Florida), and
Los Alamos National Laboratory (LANL, Los Alamos, New Mexico), with user activi-
ties at each of the three locations.

The main goal of the NHMFL is to provide facilities to investigate matter under
extreme conditions of temperature, magnetic field and pressure, as well as to provide
theoretical explanations and predictions of the phenomena encountered. To this end,
the NHMFL operates continuous magnetic facilities including superconducting, hybrid
and resistive magnets, and pulsed magnets driven by capacitive and motor-generator
pulsed power supplies. Explosive flux compression magnets are also available on a lim-
ited access basis. In addition, the laboratory supports a variety of magnetic resonance
instruments and systems. Many of these facilities are capable of operating over a large
range of temperature, pressure, and sample size.
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CONTINUOUS FIELD FACILITIES

The continuous field facilities are located primarily at the NHMFL site in Talla-
hassee. The resistive and hybrid magnets are powered by state of the art 36 MW DC
power supply with ripple and noise on the order of 10 ppm. It has an overload capacity
of 40 MW for up to an hour and up to 68 MW for the order of minutes. The facility
also has a very low vibration cooling system, sixteen magnet test cells, and extensive
instrumentation.

The continuous fields magnets either extant or under development are summarized
in Table 1.

The magnets are housed in six water cooled magnet stations. The 24.5 T magnet
has 20 ppm homogeneity over a 10 mm dsv. The 45/50 T hybrid magnet is presently
under development and should be operational by the end of 1998. The magnet consists
of a 14 T, 610 mm, warm bore, cable-in-conduit, superconducting outsert, with a 20
MW, 31 T resistive insert. The magnet is designed for upgrade, in that it will accept
inserts up to 40 MW, making possible a continuous field of 55 T in a 32 mm bore. The
advanced cable-in-conduit design of the 14 T superconducting outsert is expected to
provide a prototype of high field, large bore, magnets of the future.

In addition, there are four 20 T magnets at the NHMFL equipped with dilution
refrigerators and variable temperature inserts for cryogenic work, and a new 12 T 150
mm bore, split coil, superconducting magnet operating at 4.2 K, has
recently been installed.

A facility for making measurements in high fields at low temperatures is now under
development at the Gainesville campus of NHMFL in coöperation with the Microkelvin

78



Laboratory there. This facility, known as the Ultra-High B/T facility will allow mea-
surements that simultaneously require fields of the order of 20 T and temperatures as
low as The resulting B/T ratio of will be the largest available
anywhere. Many phenomena, which result from the establishment high spin polariza-
tions or magnetizations, will become available for exploration in this facility. Examples
include nuclear magnetism, magnetokinetics, polarized quantum fluids, quantum con-
fined structures, and non-fermi liquids.

PULSED FIELD FACILITIES

The pulsed magnets are located on the Los Alamos campus of the NHMFL, as
this site has unique capabilities for the production of pulsed electrical power and sites
for flux compression experiments. The power for the long pulsed (quasi-continuous)
magnets is supplied by a motor generator that delivers an energy pulse of 600 MJ, with
capability to be upgraded to deliver a 2000 MJ pulse at a power level of 560 MW by
addition of a flywheel and proper power supply modules. The various pulsed magnets
available at the Los Alamos site are listed in Table 2.

These include 50 T and 63 T capacitive-driven magnets with 24 and 15 mm bores,
respectively. A 60 T quasi-continuous (QC) magnet is expected to be commissioned
in July, 1997. All the pulsed magnets are equipped for cryogenic operation with vari-
ous types of dilution refrigerators, 3He, variable temperature inserts and instrumenta-
tion that supports a variety of measurements such as transport, magnetization, high-
pressure, and optical studies. Presently, a new non-destructive, 100T, 20 – 50 ms pulsed
magnet is in the development stage, supported jointly by NSF and DOE.

Especially high fields are also available on a limited basis at the Los Alamos campus
using explosive flux compression techniques. This technique employs chemical explo-
sives to produce magnetic fields from T for microsecond durations in 11 – 16
mm bores. Temperatures down to 2.3 K are available in these systems. A wide range
of spectroscopic, electrical, and photographic instrumentation for fast time recording
of data are available.
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MAGNETIC RESONANCE FACILITIES

Magnetic resonance facilities are located on both the Gainesville and Tallahassee
campuses.

The NHMFL includes the Center for Interdisciplinary Magnetic Resonance (CIMAR),
where nuclear magnetic resonance (NMR), magnet resonance imaging (MRI), electron
magnetic resonance (EMR) including electron cyclotron resonance (ECR), and ion cy-
clotron resonance (ICR) mass spectroscopy are closely integrated. The extensive in-
teraction between these fields is facilitated by the broad internal and external user
program. The various facilities are located on various campuses, and the available
instruments are summarized in Table 3.

In addition to these instruments, a new 1.1 GHz (25 T), high resolution NMR
magnet is being developed. Initial work involves design and fabrication of a 140 mm cold
bore, 110 mm warm bore, high resolution 900 MHz NMR magnet using conventional
superconductor technology. Simultaneously, there is a development program of high
superconductors, along with the new magnet technology for these conductors. The 900
MHz magnet will serve as a platform for the incorporation of a high  central magnet,
which will provide an additional field of ca. 5 T, to achieve the 1.1 GHz (25 T) goal.

The magnetic resonance facilities span all three NHMFL campuses, with the con-
centration of NMR, EMR, and ICR being in Tallahassee while MRI is concentrated in
Gainesville.

The magnetic resonance imaging spectroscopy (MRI/S) facilities in Gainesville has
concentrated on whole body and small animal MRI/S using large bore instruments.  The
NHMFL has established strong ties with the UF Center for Structural Biology and the
UF College of Medicine, and will concentrate the MRI efforts at the UF Brain Institute,
scheduled to open in 1998.
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MATERIALS CHARACTERIZATION FACILITIES

There are also facilities at all three NHMFL campuses dedicated to the evaluation
and characterization of magnet components such as conductors, insulators, reinforce-
ment materials and composites in the full temperature range of magnet use; from the
cryogenic to several hundred K.

The materials characterization facility has instruments specialized for measure-
ments of mechanical, electrical, electro-mechanical, and thermal properties of materials,
including a variety of scanning and transmission electron microscopes.

USERS’ AND VISITORS’ PROGRAMS

The NHMFL supports both active user and visitor programs. The user programs,
presently implemented in the continuous field, pulsed field, CIMAR, and Ultra-High
B/T facilities are open to any active researcher through a peer reviewed proposal pro-
cess. There is no charge for magnet use, however a modest charge for consumables may
be required. There is also a program for visitors to come to the NHMFL and partic-
ipate in both experimental and theoretical programs as well as magnet development.
Under this program, funds are available for sabbaticants and for supplemental travel
for young investigators and first time users.

Further information about these programs may be obtained from the World Wide
Web at http://www.magnet.fsu.edu, or from Dr. Bruce Brandt, Director of Operations
and Instrumentation, NHMFL, 1800 E. Paul Dirac Drive, Tallahassee, FL 32310.
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INTRODUCTION

In a recent paper the existence of stable bound matter-antimatter systems in
crossed fields has been shown1. Lifetimes of the order of one year have been obtained
for positronium for certain values of the field B and the pseudomomentum K.
The study includes a semi-classical calculation, a perturbational treatment as well as an
accurate three-dimensional adaptive finite–element (FEM) treatment. In the present
contribution we wish to focus on some technical details of the adapted FEM used.

Let us start with a brief description of the problem and the numerical challenge
involved. We consider two particles with charges and equal masses

(positronium) in crossed electric and magnetic fields:
and see ref. 1 for more details. K denotes the eigenvalue of the conserved

pseudomomentum The effective Hamiltonian for the internal motion
(neglecting spin) is given in Cartesian coordinates by (in atomic units)2, 3

For the purpose of illustration let us choose and as in ref. 1.
Beside the Coulomb singularity at the potential has a local minimum at

and a barrier with a maximum at A set of Coulomb
states are localized at the origin and a set of delocalized states exist in the outer well.
An important question concerns the stability of the (excited) outer well states against
direct annihilation and against transition to the unstable Coulomb states. To give a
definite answer to this question it is indispensable to achieve an accurate approximation
of the wave function in the outer well with a typical length in the order of several
thousands and in the Coulomb regime with a typical length smaller than one A
separation of the outer well states and the Coulomb states is possible only for sufficient
large barriers between them. A hybrid expansion of the wave function in a basis set
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which includes global functions of the Coulomb type as well as appropriate outer well
harmonic functions would fail to describe the correct tunneling through the barrier and
would fail to approximate saddle states, which are neither of the Coulomb type nor
typical outer well states. An attractive opportunity would be to solve the eigenvalue
problem for the Hamiltonian (1) by a direct numerical method, for which no a priori
knowledge about the wave function is necessary. This, however is a numerical task for
several reasons.

The domain of the discretization has to be large enough to avoid an effect on the
numerical results. An appropriate choice would be

with The Coulomb states, on the other hand, are functions showing peaks
at the Coulomb singularity and a rather fine grid is needed to resolve these peaks.
The stability against direct annihilation is determined by the probability of particle
and anti-particle to be at the same space point. Thus, the approximation of the wave
function should be accurate not only in the energy norm, but it should also indicate the
correct value of the wave function locally at the two–body coalescence point. Moreover,
no exact numerical Gauss integration formula exists for the integration of the Coulomb
singularity at the origin.

ADAPTIVE FINITE ELEMENT METHOD

In this section we wish to give a brief description of the adaptive finite element
method for stationary Schrödinger equations in three dimensions 4, 5. The method is
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implemented by using the KASKADE toolbox7; a flow diagram is sketched in figure 1.
We start with an initial coarse grid and compute the FEM approximation  on this grid.
In general, this approximation will be a rough estimation for the real wave function.
Now a local error estimator, see below, indicates which of the tetrahedra have to be
refined to improve the FEM approximation. A refinement of the selected tetrahedra
leads to a new grid. Computing a new FEM approximation, error estimation and
refinement are repeated iteratively to construct a grading in the grid adapted to the
exact wave function.

The refinement of the selected tetrahedron has to be performed in such a way a
way that the numerical stability of the FEM is preserved. This can be done by a – so
called – regular (red) refinement, see figure 2. By connecting the midpoints of the edges
of a tetrahedron t,we obtain four new tetrahedra each of which corresponds
to a vertex of t, and a remaining octahedron. The splitting of the octahedron in four
tetrahedra is not unique, but depends on the selection of the  interior diagonal
edge which can be chosen in three ways. Each choice provides a regular (red) refinement
of the tetrahedron, but has to be selected properly. The transition between refined and
non–refined tetrahedra must be completed by green closures shown in figure 3.
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On each tetrahedron the wave function is approximated in terms of local polyno-
mials. To improve the FEM approximation higher order Lagrange polynomials6 up to
quintic polynomials are used. Each Lagrange polynomial gives unity at one point and
passes through N nodes on a tetrahedron. The 4, 8 and 20 nodes for linear, quadratic
and cubic Lagrange functions (respectively) are shown in figure 4. In our computations
the maximal number of basis functions on each tetrahedron is 56 for quintic polynomi-
als.

The local error estimator used to select the tetrahedra to be refined is based on
FEM expansion in these local polynomials. An exact expression for the discretization
error on the tetrahedron is given by

where denotes the FEM approximation for a given grid and Lagrange polynomi-
als of the order p.The difference between the exact wave function and the FEM
approximation in the tetrahedron i is given by The real shift parameter
is arbitrary and can be used to replace the semi-bounded operator  H by the positive
definite (elliptic) operator by setting Note,
that can be replaced by the (positive definite) operator for any physical property.
Since the exact wave function and are not known, they are replaced by the next
order FEM approximation, i.e. and

The precision required of the FEM approximation determines the number of grid
points in the final grid constructed by the self–adaptive method. High precision results
(relative precision better ) lead to dense grids and vice versa to general matrix
eigenvalue problems for very large sparse matrices. Matrices with dimensions up to

have been used in adaptive FEM calculations and in these cases obviously
iterative solvers have to be used. We implemented several iterative methods; most
commonly used is the inverse vector iteration with an conjugated gradient method
preconditioned with the successive over-relaxation method8.

NUMERICAL DETAILS AND RESULTS

The most cumbersome term in the Hamiltonian (1) is the Coulomb potential for the
particle– antiparticle attraction. The singularity at  produces a cusp of the
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wave function at the origin. This reduces the regularity of the solution and destroys the
local convergence of the solution for an increasing order of the Lagrange polynomials.
Note, that the local convergence for is a condition for the applicability of the
local error estimator. Moreover, the Coulomb term can not be exactly integrated by
the numerical integration used to evaluate the matrix elements. In order to avoid
these problems we have to isolate the Coulomb singularity in a small tetrahedron. The
initial domain (2) can be described by two tetrahedra. Starting with this very coarse
grid we successively refine only the tetrahedron containing the Coulomb singularity.
The Coulomb ground state energy converged sufficiently after 23 such refinement steps
and the resulting grid with 212 grid points is used for an further multi–level refinement
according to the local error estimator. For the outer well states a similar convergence
criterion is applied to achieve a starting grid for the automatic grid refinement. The
first 8 states of the Hamiltonian (1) have been computed for and ,
see table 1. Energy eigenvalues, expectation values for various operators and all dipole

transition moments have been computed. The list of states include Coulomb as well
as outer well states. The results are in good agreement with low order perturbation
calculations and are consistent with an isolated potential picture (at least for this choice
of parameters). The overlap between the Coulomb wave functions and the outer well
wave functions is nearly zero and the transition between these states will be negligible.
Since the wave function for the outer well states drops to zero for a direct
annihilation is also suppressed. Lifetimes of the order of one year result for the outer
well states.

CONCLUSION

The adaptive FEM turns out to be a general and powerful method for the numerical
solution of Schrödinger eigenvalue problems in three space dimensions. For standard
problems the method is competitive with standard global basis set  expansions.  In
the case of new physical problems for which no global basis sets are established, such
as the stable particle-antiparticle problem discussed above, a direct solution using the
adaptive FEM is the most reliable method. The grid can be adapted to any shape of the
wave function. Using special local error estimators the grid can be optimized according
to any physical property of one or several wave functions. Local properties can be
studied more systematically and errors can be controlled. Moreover, the adaptive FEM
is based on firm mathematical grounds. No nonlinear parameters are used and no a
priori knowledge is necessary.
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A disadvantage of the adaptive finite element method is the rather non–compact
description of the wave function. General eigenvalue problems for very large sparse
matrices have to be solved. Iterative methods have to be used and to achieve con-
vergence for the wave function is a numerical challange, in particular for the problem
discussed above. The outer well and Coulomb states have very different spectra. The
distances between the eigenvalues for both types of states differ by several orders of
magnitude. Thus, a simultaneous description of outer well as well as Coulomb states
lead to convergence problems for any iterative solver.

Finally, let us turn to the physical aspect of the result presented in ref 1. Crossed
fields provide a unique way of stabilizing simple bound matter–antimatter systems.
Stable bound matter–antimatter systems have never been proposed before and this
result may have interesting consequences in many physical fields. For laboratory field
strength the system need to be studied theoretically in detail, however, the first exper-
imental production of such systems in laboratory may soon become feasible. Of special
interest are saddle states which are neither of the Coulomb type nor outer well states.
Work in this direction is in progress and will be published elsewhere.
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INTRODUCTION

In this report we give a brief consideration of a nonperturbative method, developed
during the last few years, for the quantum dynamics of a three-dimensional atom in
strong external fields.

So far the technique has been developed for both the stationary and the time-
dependent Schrödinger equations and applied to the calculation of binding energies
and transition probabilities (bound-bound and bound-continuum transitions have been
considered). The essential elements of the approach, the method’s attractive features
and its origins are discussed in the next section. The efficiency of the method for dif-
ferent quantum mechanical problems, arising as a hydrogen-like atom interacts with
strong external fields, is demonstrated in the subsequent section by using, as an exam-
ple, a few unique results obtained with this approach. A short conclusion is given in
the last section.

PRINCIPAL ELEMENTS OF THE METHOD

We take an interest in solving the three-dimensional Schrödinger
equation for a charged particle in the Coulomb and the external (non-stationary
in general case) fields, which do not permit the use of conventional methods
of quantum mechanics such as variable separation or perturbation theory.

The key idea of the method1,2 is an expansion of seeking wave function
over the two-dimensional basis

where are the associated Legendre polynomials,
matrix inverse to defined on the grid The coordinates of the
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grid points are the nodes of the Gauss quadrature over the variables and Thus,
the problem is reduced to a system of Schrödinger-type equations with respect to the

vector of unknown coefficients in(l)

where

and are the weights of the Gauss quadrature.
In this approach the matrix of the interaction potential

is diagonal and the only non-diagonal part is the operator of the angular momentum
square.

First, the technique was developed for the stationary Schrödinger equation with
the potential describing a hydrogen
atom in external magnetic and electric fields of arbitrary mutual orientation. In
this case the problem is reduced to solving of the eigenvalue problem3

for the system of N ordinary differential equations with the matrix elements
defined by formulae(3). Note that the method of global approximation on a subspace
grid of the multidimensional wave function first applied to a hydrogen
atom in crossed fields3, belongs to the class of the methods of discrete variable (a list
of papers on the methods one can find in4) and is essentially close to “discrete variable
representation”5, “pseudospectral”6 and Lagrange-mesh methods7.

For the initial value problem (2),(3), an economical algorithm with the computa-
tional time approximately proportional to the number of unknowns N has been devel-
oped recently2. It is based on the splitting-up method suggested by G. Marchuk8 for
propagation in time

where the operators and are defined as

Thus, the problem is split-up into the boundary value problem

which may be diagonalised by the simple unitary transformation
and the system of N uncoupled algebraic equations
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with the diagonal matrix Applying the split-operator method(6),(7) to prob-
lem(2),(3) demands that the two-dimensional basis used in (1), should be or-
thogonal on the grid The total CPU time, spent for the step (5), is
a sum of the times for computation of boundary value problem (6) (in
this problem the number of the operations for diagonalization of and the
number of the remaining operations is and uncoupled algebraic equations (7)

Due to the simplicity of the diagonalisirig procedure for the operator
(which leads to the CPU time for solving problem (6),(7) is proportional to

for not very large N.
It is proven8,9 that the above scheme is unconditionally stable, saves unitarity and,

for the commuting operators and has the same order of accuracy as the
conventional Crank-Nickolson algorithm. For non-commuting operators the accuracy
becomes worse, but may be improved9 to by alternating the
sequence of the actions of the operators and (in time-evolution operator (5)) on
two neighboring time-steps

RESULTS AND DISCUSSION

With this approach a few unique results have been obtained for atoms in strong
static and alternating fields. The research includes a rather broad set of quantum prop-
erties: energy spectrum of bound states, bound-bound and bound-continuum transi-
tions.

Energy levels

First, the method was applied to low-lying energy levels of a hydrogen atom in
strong external electric and magnetic fields arbitrarily oriented to one another3. The
rearrangement of the low-lying part of the spectrum due to change in the mutual
orientation of the fields was analyzed in the nonperturbative region for the first time3.
In application to the classical problem of a hydrogen atom in a strong magnetic field the
results we obtained are in agreement with the more advanced variational calculations
for ground states and partly improve the data of the Tubingen group for low-lying
excited states10.

In the paper11 the method was extended to Rydberg states by using, as an example,
highly excited states of a Coulomb particle in a van der Waals field.

Note two attractive features that manifested themselves in these calculations3,11:
the rapid convergence over N and the simplicity of generation of the matrix of effective
potentials(3) in the system of Schrödinger-type equations (4).

Bound-Bound Transitions

The method was independently extended for bound-bound transitions in papers11,12.
Because formula (1) gives a smooth interpolation procedure over the calculated co-

efficients for the sought-for wave function the method was rather
effective in computation of the oscillator strengths for a broad class of the problems
of atomic interaction with strong external fields11–13. The oscillator strengths were
analyzed in a nonperturbative region for a hydrogen atom in a van der Waals field11.
For the systematic analysis of stationary lines of a hydrogen-like atom in arbitrary
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electric and magnetic fields ( which includes computation of wavelengths and oscillator
strengths), a computer program was created by the Tubingen group12,13 with a finite
element approximation over the radial variable R for system of equations (4) instead
of four-order finite-difference approximation used in3,11.

Bound-Continuum Transitions

Recent development of the method has been done in application to nonstationary
effects in external fields.

A good test for the approach in this kind of the problems is a classical effect
of hydrogen atom ionization by a constant electric field. In this case the interaction
Hamiltonian                                                   in (3) does not depend on time. However, it 
is well known that switching-on of the external DC field leads to propagation to the
anode of a part of the electron wave-packet, tunneling the screened Coulomb barrier.
The results presented in Fig.l for the ground and Rydberg states demonstrate the
applicability of the method to quantitative analysis of the time evolution of the states
populations and ionization of the atom. Particularly, one can see in Fig.l that the
ionization from the ground state (for F = 0.1), evaluated

by the decay rate of the norm with absorbing boundary
conditions at agrees quite well with the recent numerical calculations of the
widths of the Stark resonances in hydrogen14.

With this method, a few unique results have been obtained2 in the problem of
harmonic generation by a hydrogen atom and its excitation in a strong laser
field
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A quantitative description of the atom in an elliptically polarized field

are the amplitude and the ellipticity of the pulse, and de-
note the laser frequency and the envelope of the pulse ) required the nonperturbative
approach(6),(7) for solving time-dependent four-dimensional Schrödinger equation(2).
Most results were obtained in the attempt to solve the problem only with linearly po-
larized fields i.e. for a three-dimensional case. In these calculations only the
shape of the spectrum of the emitted harmonics and the cut-off position were
analyzed15. Recently a few experimental groups16 have begun to investigate more re-
fined effects of the polarization of the emitted radiation in an elliptically polarized laser
field. Treating of these effects has demanded development of more refined theoretical
models17. In the paper2 a quantitative analysis of the polarization properties of the
hydrogen atom’s radiation was done without additional model simplifications for an el-
liptically polarized laser field with laser intensity and
wavelengths 1064nm and 532nm. The parameters and were chosen in the region

outside the ”tunneling limit” ( the region of the validity of
the two-step model17) and the applicability region of perturbation theory.

The spectrum of the emitted radiation
direction ( the vector is rotated in the plane of the polarization ellipse of the
laser) was evaluated by the Fourier transform for the induced dipole of the atom

The calculations revealed considerable alteration of the polarization ( i.e. variation in
the ellipticity and rotation of the polarization ellipse) of some of the radiated harmonics

with respect to the laser polarization.
The rapid convergence of the method over N and the proportionality of the CPU

time to N (see Fig.2) confirmed in this computation2, indicates the possible use of the
method in more complicated problems of atom-laser interaction.
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CONCLUSION

In this report we briefly reviewed a set of quantum problems solved with the
nonperturbative approach developed for hydrogen-like atoms in strong external fields.
The high efficiency and the flexibility of the method found in these computations,
suggest the method development in application to other important problems of physics
of “atoms and molecules in strong external fields”. A natural step in this direction
is an extension of the approach to the scattering problem18 for a Coulomb particle in
an external field ( i.e. an extension to continuum-continuum transitions ). Another
problem, where the method may be fruitful, is a helium-like atom19 ( i.e. an extension
to more complicated quantum systems).

Note also an interesting application of the approach to nonperturbative analysis
of “shaking-off” reactions in muon physics1 and in other few-body problems.

I am grateful to W. Schweizer and P. Schmelcher for fruitful suggestions and dis-
cussions which considerably stimulated the writing of the present report.
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INTRODUCTION

The availability of high-speed computers has opened the door to study non-in-
tegrable quantum systems. One of the fascinating aspects of non-integrable, low-
dimensional systems is given by their relation to quantumchaology, but also to funda-
mental research in all areas of physics, e.g., in astrophysics, theoretical atomic physics
or solid stale physics.

We begin with the time-independent Schrödinger equation for a three-dimensional
one-particle system,

where the wave function in a stationary state with energy E is denoted by In this
connection the question arises in what curvilinear coordinates the Schrödinger equation
(1) can be separated. By the methods of group theory (Miller 1968) it can be shown,
that in three dimensions the Laplace-Beltrami operator can be separated in exactly
11 different curvilinear coordinates. For each of this coordinates the potential
have to fulfill certain properties, that the Schrödinger equation becomes separable.

For all orthogonal curvilinear coordinates in three dimensions the following
conditions hold:
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 with and the quantum system becomes separable, if the potential can be
written as

For separable systems the eigenvalues (separation constants) of each of the 3
unidimensional (in general n dimensional) differential equations can be used to la-
bel the eigenfunctions and hence serve as quantum numbers. Iritegrability of
a n-dimensional Hamiltonian system requires the existence of n commuting observ-
ables Each separable system is integrable, but not vice versa. Non-
integrability occurs if the number of commuting observables is smaller than the number
of degrees of freedom of the system and hence requires solving at least a two-dimensional
partial differential equation or a coupled system of unidimensional differential equa-
tions.

For non-integrable systems there are mainly two textbook methods to compute
eigensolutions. By rewriting the potential into an integrabel and into a nonin-
tegrable part with sufficiently weak, solutions can be obtained either by
pertubation theory or by solving the eigenvalue problem of the Hamiltonian matrix
calculated in a suitable basis. If becomes comparable with both methods
hardly converge and even before becomes very costly in terms of computational time.
Discretization methods are more efficient to compute eigensolutions of non-integrable
systems. Methods based on basis expansions, like pertubational or direct diagonaliza-
tion treatments, suffer from the use of the globally defined basis, which is only correct
for systems of certain symmetry. In contrast to that, a locally defined basis can be
optimized with respect to the ”true” system under consideration.

Non-integrability is rather the rule than the exception. Prominent examples are
the hydrogen atom in strong external fields under astrophysical aspects (see Friedrich
et al. and P. Faßbinder et al. this proceedings), the helium atom in strong external
fields (see Braun et al. this proceedings), but also alkali atoms in external fields in
quest of quantum chaos (Jans et al. 1993) or the hydrogen atom in front of a metal
surface (Ganesan et al. 1996).

METHODS

Recent years have seen tremendous progress in studies of the properties of atoms
in strong magnetic fields. Decisive stimulus came from the discovery of huge magnetic
fields in the vicinity of white dwarf stars and neutron stars

At these field strengths the magnetic forces acting on an atomic electron
outweigh the Coulomb binding forces, even for low-lying energy values of the hydrogen
atom. Thus atomic structure is completely changed and it is evident that pertubation
theory is no longer applicable and a recalculation of the atomic structure with more
advanced numerical methods is necessary.

BOUND STATES

The Hamiltonian for a hydrogen atom in an external uniform magnetic field along
the z-axis and an additional electric field reads as follows (atomic units and spherical
coordinates):
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Where the magnetic field axis points into the z-direction and is measured in units
of is the electric field strength measured in units
of is the relative angle between the electric field and the magnetic
field axis.

This system has the following qualitative properties: For parallel electric and
magnetic fields the magnetic quantum number m is conserved and the problem can be
reduced to a two degrees of freedom system. For perpendicular electric and magnetic
fields three non-integrable degrees of freedom remain, but z-parity is conserved; whereas
for arbitrary oriented fields no discrete symmetry is left. Hence all field free hydrogen
eigenstates are coupled, which leads to additional allowed dipol transitions compared
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to the diamagnetic system.
For an effective numerical treatment we reduced the three-dimensional Schrödinger

equation to a system of uni- or two-dimensional differential equations by discretization
of the angular momentum operator (Melezhik 1997 and references therein) with respect
to the spherical coordinate For parallel electric and magnetic fields the magnetic
quantum number m is conserved and hence this procedure results in a one-dimensional
system. These differential equations for the radial coordinate are solved by the Finite-
Element method (Faßbinder, et al. 1996a,b).

In the figure above we show graphically how we solve the resulted Hamiltonian
differential equations. The procedure on the left can be used for any two-dimensional
problem and on the right for three-dimensional non-integrable quantum systems, like
the hydrogen atom in non-parallel electric and magnetic fields. Finally we compute
eigensolutions by solving the Hamiltonian matrix with the spectrum transformed Lanc-
zos method (STLM) of Ruhe and Ericsson (1980). The advantage of this discretization
technique described above is its quick convergency which allows calculations on work-
stations. In contrast, by using Sturmian functions (Wunner et al. 1989) we failed
solving the problems mentioned above even with extremely huge basis sizes of up to
325,000, which necessitates huge computer facilities.

ATOMIC RESONANCES

Due to the external electric fields the ionization threshold of the atom is lowered
from the field-free value. In fact, all states become quasi-bound, as the electron can
ionize by tunneling through the potential states. This process becomes important
for states close to the classical ionization energy or above. Combining the complex
coordinate method with an R-matrix quantum-defect method we have obtained results
for hydrogen under astrophysical quest (Seipp et al. 1997) and for sodium atoms in
parallel fields (Seipp et al. 1996).

In the complex coordinate method the real configuration space coordinates are
transformed by a complex dilatation. The Hamiltonian of the system is thus continued
into the complex plane. This has the effect that, according to the boundaries of the rep-
resentation, complex resonances are uncovered with square-integrable wavefunctions.
This square integrability is achieved through an additional exponentially decreasing
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term

After the coordinates entering the Hamiltonian have been transformed, the Hamiltonian
is no longer Hermitian and thus can support complex eigenenergies associated with
decaying states. The spectrum of a complex-rotated Hamiltonian has the following
features:

– Its bound spectrum remains unchanged

– Continuous spectra are rotated about their thresholds into the complex plane
by an angle of

– Resonances are uncovered by the rotated continuum spectra with complex
eigenvalues and square-integrable (complex rotated) eigenfunctions.

In the Stark effect the whole real energy axis is the continuum spectrum and no
threshold exists in the unrotated Hamiltonian for the continuous spectrum to rotate
about. The Hamiltonian for the hydrogen atom in parallel electric and magnetic fields,
after the above complex transformation has been applied, becomes

using atomic units and spherical coordinates.
By this calculations we found, that the electric field has a strong influence on the

spectra of the pure magnetic field. A rich resonance structure is created by the electric
field starting from the ionization thresholds of the pure magnetic field. These resonances
behave smoothly when the electric field is changed. For astrophysical situations the
spectra appear as little modulated lines because the resonances move too quickly with
change in the electric field and hence all resonance structures are smeared out due to
the statistical origin of the electric fields in the atmosphere of white dwarf stars.

In future calculations we plan to merge the method of complex coordinate rota-
tion with the discretization procedure (Gonzalez et al. 1997) mentioned above and
to approximate alkali atoms via phenomenological (Schweizer et al. 1997) potentials.
We expect by this combination to have a powerful and quick numerical procedure to
calculate resonances under laboratory as well as astrophysical conditions.

THE HYDROGEN ATOM IN FRONT OF A METAL SURFACE

The Hamiltonian of the hydrogen atom in front of a metal surface reads in semi-

parabolic coordinates

with
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and d the distance from the metal surface. In radial coordinates the nodes of the wave
function are quadratically widened, whereas in semiparabolic coordinates the nodes
are approximately equally spaced. By expanding the Hamiltonian with respect to the
distance d, Ganesan et al. (1996) calculated Rydberg eigenstates and eigenvalues in a
Sturmian basis. Such an expansion is unnecessary by a two-dimensional finite element
procedure. To solve this problem we used (Kulla et al. 1997) two-dimensional finite
elements with quadratic and cubic form-functions. In Fig. 1 we show as an example
the 25th eigenfunction of a hydrogen atom placed in a distance of 50 Å in front of a
rnetal surface. Basis set calculations would necessitate huge Taylor-expansions in the
Hamiltonian potential leading to serious convergency problems. Hence in conclusion
discretization techniques are especially useful for computations in such extrem situa-
tions, where the hamiltonian is far from integrable limits, but the wave functions are
still not too much structured.
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INTRODUCTION

Many–body perturbation theory (MBPT) has a long tradition in studying atomic
and molecular properties. Beside of the traditional order–by–order approach, the Coup-
led–Cluster approximation in particular allows for accurate theoretical predictions for
even (nearly) neutral systems1,2. In both schemes, one may also include additional
perturbations like external fields which are treated similar to the interaction among
the electrons. Apart from nonrelativistic studies, a number of relativistic perturbation
calculations have also been caried out in recent years. These investigations include a
variety of rather different properties, for instance, electron correlation energies3, hy-
perfine structures and isotope shifts4, radiative decay rates5, g–factors6 as well as the
influence of external electric and magnetic fields7.

During the past, however, most MBPT studies concerned atoms with a simple
shell–structure only. This applies, for instance, for the rare gases and for atoms and
ions with a single electron or hole apart from closed shells otherwise. Very few com-
putations exist for atoms with two open shells or, more generally, with more than two
valence electrons and/or holes, respectively. The main limitation to extend the many–
body procedure beyond such simple shell–structures arise from the complexity of any
perturbation expansion if more than just one or two effective particles appear in the
derivation. To overcome this difficulty an efficient treatment of complex expansions is
needed. — In this contribution, we will explain the basic steps in the derivation of
atomic perturbation expansions. We will demonstrate how computer algebra (CA) can
easily be used to facilitate such derivations. The kernel of the present work is a package
of Maple procedures for the simplification of operator products in second quantization.
A few important features of this CA tool will be shown below.

BASIC FORMULAS

Atomic perturbation expansions are often expressed in terms of Feynman–Gold-
stone diagrams in Rayleigh–Schrödinger (RS) perturbation theory. In such a graphical
representation of some given atomic property, each diagram corresponds uniquely to
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a certain algebraic expression. To derive perturbation series for open–shell atoms one
may start directly from the generalized Bloch equation in intermediate normalization8

defined within a multidimensional model space This equation for the wave operator
is obtained from an (a priori) partitioning of the full Hamiltonian into

the model operator and the remaining perturbation V. The operator P projects any
state onto the model space Usually, is taken to be a sum of effective one–electron
operators whereby the interaction among the electrons is approximated by a suitable
chosen central potential The model operator must be a reasonable approximation
to the full Hamiltonian and should also have eigenvalues and eigenfunctions which are
simple to determine. For a given number of atomic states (with a definite projection
inside eq.(l) is equivalent to Schrödinger’s equation of the many–electron atom.
The model space may in general also include non–degenerate states; a detailed
account of the theory has been presented in the textbook of Lindgren and Morrison9.
By using the wave operator one can define an effective Hamiltonian

which has the same eigenvalues as the true Hamiltonian H but which is not hermitian
in intermediate normalization.

We will not further discuss the standard graphical representation of the Bloch
equation (1) in a given order and how graphical rules can be derived. The algebraic
expression for each diagram in such Feynman–Goldstone expansions immediately re-
flects the second quantization of all operators. Similar graphs can be applied in the
all–order and Coupled–Cluster (CC) approximations1, 2 where the wave operator is
partitioned into one–, two–, ..., n–particle exitations. In this paper, we will focus
our interest instead onto the computer–algebraic derivation of such expansions. Even
though we restrict our discussion below to the order–by–order scheme, our computer–
algebraic tools can be applied easily also to the CC approximation for which all basic
operators have been implemented as well.

There are three different paths to derive perturbation expansions in second quan-
tization as displayed in Figure 1. Apart from the (manual) stepwise commutation of
the creation and annihilation operators by using the well–known fermion anticommu-
tator rules different graphical methods have been developed during the past10, 9. A
modern alternative is nowadays offered by computer algebra. All three paths serve the
same purpose, i.e. the evaluation of operator products in second quantization like they
appear in the Bloch equation (1).
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Today, the main challenge in the application of RS perturbation theory for open–
shell atoms arise from the complexity of the perturbation series for any property if
higher orders and/or open shells are considered. In both cases, the number of oper-
ator terms in the perturbation expansions often increases drastically. Here, CA may
demonstrate its power in the derivation of the formulas. Our aim therefore has been to
develop a computer algebra program to facilitate these derivations.

EVALUATION OF PERTURBATION EXPANSIONS

The formal derivation of perturbation series starting from eq.(l) and the definition
of the effective Hamiltonian (2) can be summarized by three individual tasks:

• The representation and evaluation of the wave operator in second quantization
(within a given approximation scheme),

•  the evaluation of the matrix elements of and (if required)
• the derivation of perturbation expansions for properties other than energy cor-

rections. These expansions usually depend on the wave operator and on the
representation of the zero–order wave functions within the model space
(see below).

These three tasks must be carried out rather independently. Here, we will give
only a few remarks on them. A more detailed outline of these steps have been given
elsewhere9,11. In general, each of these steps results in a series of Feynman–Goldstone
diagrams* where either some operator or matrix element is written as a sum of products
of different one– and two–particle matrix elements. These sums of diagrams are the
perturbation expansions we are interested in. They can later be calculated explicitly
by using any appropriate one–particle spectrum. In most applications, some type of
Hartree–(Dirac–)Fock spectrum is used due to its simplicity and due to the property
that all one–particle excitations vanish identically. In this work, however, we will not
consider this final step of numerical computation.

To provide some deeper insight into the algebraic derivation, it is helpful to give
the operator P also a representation in second quantization

where denotes a string of creation and/or annihilation operators in normal or-
der. Such a string creates some model state out of the (closed–shell)
vacuum. is the corresponding adjoint operator string.

The wave operator from the first step can be used to evaluate the effective Hamil-
tonian as well as any other atomic property. Usually, we need not an explicit represen-
tation of in terms of diagrams but want the matrix elements of
to a certain order n, evaluated with the basis functions of the model space
¿From the diagonalization of this Hamiltonian matrix (up to order n) we namely obtain
the energy correction up to the order (n + 1) as well as the zero–order wavefunctions

Similar, we may evaluate the matrix elements of any (symmetric) one–particle operator
or two–particle operator In the study of transition

•For convenience, we use the term diagram also in the (computer–)algebraic derivation even though
operator term would be a more appropriate one.
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properties, for instance, they give rise to the effective operators and

where the indices f and i denote the corresponding wave operators for
the final and initial atomic states, respectively. By using the representation (4) for
the zero–order wave functions, all these matrix elements can eventually be reduced to
vacuum amplitudes

After normal ordering of the full operator string in (5) only those terms will survive
where all creation and annihilation operators are completely contracted.

BASIC STEPS IN THE COMPUTER–ALGEBRAIC DERIVATION

In the last section we saw that both, the wave operator as well as the matrix
elements of any effective operator can be expressed by a sum of Feynman–Goldstone
diagrams. In most practical applications, we are even interested only in vacuum am-
plitudes [see eq.(5)]. We will now explain the basic steps which have to be carried
out during any derivation. For this we use terms wich are particularly appropriate for
CA manipulations of all operators. In the next section we will then describe a pro-
gram package for the derivation of such perturbation expansions, appropriate also for
open–shell atoms.

We assume that all operators in the derivation have a valid representation in second
quantization and that all matrix elements will be calculated within some orthogonal
basis of the model space. For the study of transition properties, this implies
that both, the initial and final atomic states should have a zero–order representation
(4) within Then, the basic steps in the computer–algebraic derivation can be sum-
marized as follows:
(i) Evaluation of all operator products on the rhs of the Bloch equation (1) or in the
definition of the effective operator (5). This requires to bring all creation and an-
nihilation operators into normal order. The result is a sum of normal–ordered operator
terms.
(ii) Definition and representation of the model space The character of the model
space is specified by the number of occupied valence orbitals and the number of unoc-
cupied valence–core orbitals in (3). For two and more effective particles and/or holes
it might also be useful to couple the corresponding creation and annihilation operators
in (3) to give rise to a definite angular momentum of the model states12.
(iii) Calculation of the vacuum amplitudes on the rhs of (5). We obtain the effective
operator from step (i) and the operator strings from the definition of
the model space. In contrast to the standard graphical representation of the Feynman–
Goldstone diagrams there is no implicit summation involved in the definition of the
model functions, i.e. for the strings This step (iii) yields a (completely
contracted) sum of products of one– and two–electron matrix elements. In some cases,
it might be appropriate to combine the two steps (ii) and (iii).
(iv) Angular reduction of all operator terms. By using a standard spherical represen-
tation of the one–particle spectrum (and a closed–shell reference state ), the inte-
gration over all angular variables in the matrix elements can be performed analytically.
The values of these integrals are often called angular coefficients.

After these four steps have been carried out, only integrals which depend on either
one or two radial variables are left to be computed. The values of these radial integrals
have to be multiplied by the corresponding angular coefficients and have to be summed
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over all allowed combinations of the particle–hole indices. The computation of the
radial integrals is the most time–consuming part in practise and need to be performed
with some algorithmic language like FORTRAN. This, however, is outside of the scope
of the present work. We will now introduce the program APEX for the derivation of
general atomic perturbation expansions.

APEX — A TOOL TO DERIVE PERTURBATION EXPANSIONS

The four steps in the derivation of perturbation series can be carried out by the
help of computer algebra. To facilitate this procedure we developed the package APEX
within the environment. The derivation of perturbation expansions using CA
tools has some obvious advantages in comparison to diagrammatic methods. This
concerns in particular the treatment of phases and weight factors. Moreover, CA also
allows a syntax for the derivation which closely resembles the formal mathematical
language. Once the work of a CA tool has been establihed, it also garanties a higher
reliability compared with a manual derivation. In the interactive program mode, such
tools even provide more transparency since all individual steps of the derivation can
easily be followed.

The program APEX allows the evaluation of general operator products in second
quantization. It is entirely written for interactive work. Some of the tasks which need
often to be done during the evaluation can be seen immediately from the steps (i–iv)
above:

– Definition of primitive operators like V, F, G, ... in second quantization.
– Evaluation of adjoint operators.
– Specification of the model space occupation.
– Evaluation of normal products as well as of operator products which also include

all contracted terms.
– Classification and selection of different operator terms (diagrams).
– Transformation between different representations (orbital representation, radial–

spherical representation, concept of pair functions, etc.).
– Task–adapted printout of the results.

By contrast, many other elementary tasks in a computer algebra approach are hidden
to the user. For example, Wick’s theorem has been implemented on such a hidden level.
In our Maple program, each operator term is represented internally by means of list
structures. Different data types are known to the program. The two most important
types are opterm to represent a single diagram unit and opsum for a set of diagrams,
i.e. a full perturbation expansion or just some part of it. Simpler data types represent,
for example, the creation and annihilation operators or different one and two–particle
matrix elements. There are no other limitations on the number of operator terms
(diagrams) than those due to processing time and memory of the computer.

At present, the APEX package consists of about 140 individual procedures which
support a variety of different tasks. This includes the algebraic solution of the Bloch
equation (1) up to third and fourth order. All commands are built up at a hierarchy
of four different levels13. At the user’s level, however, about 20 of these commands
are sufficient for all of the interactive work. These commands facilitate the derivation
of rather general perturbation expansions in the orbital representation for open–shell
atoms as well as in cases of non–trivial model spaces. A detailed documentation of the
program in the style of The Maple Handbook by D. Redfern15 is also available13.

†Maple V is a widely used symbolic program and a trademark of Waterloo Maple Software, Inc.
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The results of the symbolic derivation are represented by algebraic sums which are
equivalent to the diagrammatic Feynman–Goldstone representation. A short example of
an interactive session is shown below in Figure 2 for the second– and third–order energy
corrections of a closed–shell system. The only real difference in dealing with open–shell
atoms arid/or more additional perturbations is the size of the final expansions.

We first define the perturbation operator V and assign it to the variable VHF.

Additionally, we need to define the shell–structure of the atom, i.e. the occupation of the model state
functions

The evaluation is performed stepwise for the energy corrections and the higher orders of the wave
operator To obtain the correlation correction we need up to the order (n –1).

We may print the result for by using the command

Each of these terms may easily be represented by a Feynman–Goldstone diagram. However, we
recognize that some of these diagrams are equivalent and, thus, can further be simplified.

Before we will print the final results, we directly convert the output to This is achieved by
assigning the output to an external .tex file.
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ENERGY CORRECTIONS FOR CLOSED–SHELL ATOMS

The program APEX has almost no limitations with respect to the atomic shell–
structure. For the sake of simplicity, however, in this example we restrict ourselve to
the closed–shell case. This example will illustrate the handling of the program without
that it produces a large amount of output. The application of the program can easily
be extended to the open–shell case and to the study of additional perturbations like
internal or external fields.

For a closed–shell atom we may start from a one–dimensional model space which
is identical to the (many–electron) reference state, The total energy in first
order is then obtained from the expectation value of the Hamiltonian for
the model state14

where and represent the direct and exchange matrix elements of the Coulomb
repulsion. As seen from eq.(6), the total energy is independent from the central poten-
tial for the averaged electron–electron interaction used to create the one–particle
spectrum in the computation. We may apply a Hartree–Fock potential
and, thus, obtain (in first order) the total energy

The correlation correction in second order follows from the expectation value of the
perturbation V multiplied with the first–order wave operator

In our notation, this is the perturbation expansion for the second–order correlation
energy of a closed–shell atom using a Hartree–Fock basis. Here, we will not further
consider the analogue expressions in third–order perturbation theory. Eq.(7) as well as
the third–order expressions namely can be obtained from APEX within a few steps as
shown in Figure 2. The results of the derivation (converted to are displayed in
Figure 3 which also indicates that the size of the perturbation series rapidly increases
if we extend the expansions to the next order. Only a few selected third–order terms
are shown in this Figure.

SUMMARY

Even though (relativistic) MBPT has been proven to be a powerful and efficient
method to predict a large variety of atomic properties, not so many accurate studies
for open–shell atoms could be performed in the past. Often, the size and complexity of
the corresponding perturbation expansions caused problems in any manual derivation
and forced to develop alternative paths. Such an alternative is offered by computer
algebra which, in the future, will become an even more important tool in studying
many–particle systems.
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The program APEX is a first significant step to extend the application of MBPT
towards open–shell atoms (and molecules). It might also allow that these methods
become applicable to atomic physics groups which are not specialized in this field. In
order to make more efficient use of this program, however, it has to be extended to
perform the angular reduction (see step iv above) automatically. This step will require
a close combination with known Racah algebra techniques. But our experience in
dealing with perturbation expansions for open–shell atoms so far already demonstrate
that symbolic computations allows for a very efficient treatment. In particular, it
provides a valuable alternative and supplement to established diagrammatic methods.
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INTRODUCTION

Rydberg atoms in many aspects strongly resemble the hydrogen atom and are readily
accessible for detailed investigation of e.g. the influence of external magnetic or electric
fields on the level structure. The hydrogen atom in a sufficiently strong magnetic
field B is a prototype system that classically exhibits chaotic behaviour. This is a
consequence of the diamagnetic effect, which is proportional to    and which
at low field strength is responsible for the mixing of angular momentum states (r is

the radius of the electron orbit). When diamagnetism dominates only two conserved
quantities (energy W and z-component of angular momentum l) exist for this system
with three spatial degrees of freedom, a prerequisite for chaos in classical physics. The
diamagnetic effect not only becomes important for large values of B, but also for large
values of r. As the radius r scales as (n is principal quantum number) it follows
that the diamagnetic effect grows with so that in highly-excited states it may be
studied at relatively moderate magnetic field strengths. The classically chaotic regime
in the hydrogen atom is reached when the Lorentz force exerted by the field on the
electron about equals the Coulomb force binding the electron. In the hydrogen ground
state this condition can only be fulfilled for the huge field strength of

Tesla, whereas in a Rydberg state with a field of 0.60 Tesla suffices. This,
together with the fact that the hydrogen atom is experimentally not easily accessible,
constitutes the major argument to investigate this effect also in Rydberg states of more
complex atoms. An additional point of interest then relates to the influence of an
extended atomic core, represented by a quantum defect in regular Rydberg sequences,
on the observed spectra in the presence of a magnetic field.

Similar arguments hold for the investigation of Rydberg states in the presence of
an external electric field E. Now it is the linear Stark effect, that at moderate field
strengths induces mixing of angular momentum l-states, reflected in the appearance of
angular momentum manifolds in the spectra, and at high field strengths also mixing
of n-states. Finally field ionization will occur in sufficiently strong fields. In Rydberg
states the sensitivity for electric fields is again strongly enhanced. In contrast to the

Atoms and Molecules in Strong External Fields
Edited by Schmelcher and Schweizer, Plenum Press, New York, 1998 109



magnetic field case the Hamiltonian of the hydrogen atom in an external electric field
can be fully separated and chaos in the classical problem does not occur. It is a problem
of significant interest in atomic physics to investigate Rydberg states of non-hydrogen
atoms in the presence of strong electric fields as well, in particular with respect to
core-induced effects.

In this contribution experimental results of a study of Rydberg states in the He
atom in the presence of a magnetic field as well as of Rydberg states in the Ba atom,
including autoionizing states, in the presence of an electric field will be presented and
discussed. Spectra are recorded under conditions where the classically important scaled-
energy parameter is kept constant. This allows for a Fourier transform of the experimen-
tal spectra to so-called scaled-action spectra, which reflect the closed periodic orbits
of the system. A direct comparison with semi-classical periodic-orbit theory then is
feasible, resulting in a beautiful interpretation of many of the observations.

This contribution is organized as follows. First the Hamiltonians of the hydrogen
atom in the presence of external fields and the appropriate scale transformations will
be discussed. Next the semi-classical periodic-orbit theory will be briefly summarized.
Then the He experiment in a magnetic field will be presented, followed, finally, by a
discussion of the Ba experiment in electric fields.

HAMILTONIAN OF H-ATOM IN MAGNETIC AND ELECTRIC FIELDS

The Hamiltonian of a spinless H-atom in a magnetic field B along the z-axis is:

Here is the zero–field Hamiltonian, the paramagnetic effect (Zeeman effect,
for and the diamagnetic effect with
Tesla (critical field). This Hamiltonian can be transformed using scaling
parameters

resulting in the scaled Hamiltonian

This transformation shows that the classical motion of the electron is not determined
by two independent parameters (energy W and magnetic field strength B) but only by
a single parameter (scaled energy):

This scaled energy is a measure for the onset of chaos corresponds to the
situation where Coulomb force and diamagnetic force on the electron are equal). It is
of interest to note that also the commutator scales, resulting in:

The semi-classical quantization condition for the action S along a given electron orbit
n also transforms:
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The scaled action only depends on This implies that the Fourier
transform of a spectrum recorded at constant scaled energy, which is linear in the
variable shows resonances at values of the scaled action is the
conjugated variable.

The Hamiltonian of the H-atom in an electric field E along the z-axis is:

Here is the zero-field term, the field term;
Also in this case a scale transformation is possible:

resulting in the scaled Hamiltonian

This again shows that the classical motion of the electron is governed by the single
scaled-energy parameter

The value corresponds to the saddle-point energy, related to the maximum
in the combined Coulomb and electric field potential determining the classical field
ionization limit.

The recognition that scaling transformations do exist for the H-atom in external
fields [1] now forms the basis of scaled-energy spectroscopy. Complex excitation spectra
of Rydberg atoms in strong external fields, when recorded at constant scaled energy,
show remarkable regular Fourier transforms. A limited set of resonances shows up in
the scaled-action spectra, each resonance corresponding to a classical periodic orbit.
This type of spectroscopy in the presence of a magnetic field was first applied to the
H-atom itself, using pulsed laser excitations, by Holle et al [2]. Pioneering scaled-energy
experiments in an electric field were performed by Eichmann et al [3] in Na Rydberg
states and in Kleppners group on Li Rydberg states [4].

SEMI-CLASSICAL PERIODIC-ORBIT THEORY

In semi-classical periodic-orbit theory (see [5] and references therein) it is assumed
that a frequency spectrum contains numerous sinusoidal oscillations, each related to
a classical periodic orbit. These orbits may be regular or chaotic, depending on the
parameters of the system. When an orbit is regular, it may be traversed many times.
These multiple traverses give rise to higher harmonics in the frequency spectrum and
interferences between all harmonics result in sharp resonances, corresponding to the
quantum states. For chaotic orbits, however, the probability of repeated traversals is
exponentially small. The signature of a chaotic orbit in the frequency spectrum is a
deformed sine wave.

Du and Delos [6] and Gao and Delos [7] give a physical picture explaining the
spectral features of hydrogenlike atoms in the presence of external fields using closed-
orbit theory. In their model incident electromagnetic radiation excites the electron
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close to the nucleus in an outgoing, zero-energy Coulomb wave as near the core effects
of the external field are negligible small (see Fig. 1). At large distances with

the Bohr radius) the wave is assumed to propagate semi-classically. The outgoing
wave fronts then follow classical trajectories and propagate far out in the field. As the
influence of the magnetic or electric field grows with distance some of the trajectories
will eventually curve back to the nucleus. Near the nucleus the incoming waves have to
be treated quantum mechanically again. Incoming Coulomb waves interfere with the
outgoing waves, resulting in oscillations in the absorption spectrum. These oscillations
are described by the well known Gutzwiller trace formula [5,6], involving a summation
over all closed periodic orbits and their traversals. A Fourier transform of the absorption
spectrum results in an action spectrum, where each peak corresponds to a classical orbit.
The intensity of each action peak then is determined by the stability of the orbit and
by the external parameters (excitation process and light polarization). The effect of
the core in a non-hydrogenic system may be incorporated by introducing a phase shift
in the scattered wave function as in standard quantum defect theory.

Closed periodic orbits may be found assuming that the electron leaves the core
region with a momentum directed perpendicular to the sphere with radius
and with a value determined from eq. (1) for given value of the energy W:

Then the classical Hamilton equations are integrated. A closed orbit is found when the
final momentum upon reaching the core region is again perpendicular to this sphere.
The orbit may be traversed again in the same or reversed direction after scattering on
the nucleus. The stability of the orbit follows from its sensitivity to small variations in
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the initial conditions, which becomes extreme in the high-field regime. For each closed
orbit the (scaled) classical action can be calculated by straightforward integration along
the closed trajectory and its value compared with experimental data.

Frequency spectra in the presence of external fields can also be calculated quantum
mechanically. For highly-excited states this involves the diagonalization of huge energy
matrices, for which special numerical techniques have been developed [8,9]. Such cal-
culations are also possible under conditions of constant-scaled energy, so that a direct
comparison with experimental data and Fourier transforms can be made.

HELIUM RYDBERG ATOMS IN A MAGNETIC FIELD

Scaled-energy experiments in a magnetic field were performed in helium Rydberg states
at two values of the scaled energy: Helium was excited
to 1snp Rydberg states (up to in a collimated beam of discharge-populated 2

metastable atoms with 260 nm light from a frequency-doubled CW ring dye laser
pumped by an Ar-ion laser. Atomic beam and laser beam perpendicularly intersected
(in a well-shielded interaction region) to eliminate Doppler effects to a large extend,
resulting in a residual linewidth of 25 MHz. The magnetic field was produced with
conventional current-driven coils (maximum value about 0.2 Tesla) and aligned very
carefully parallel to the atomic beam to avoid motional Stark effects. The He Rydberg
atoms were field-ionized after leaving the interaction chamber, mass selected with a
quadrupole filter and counted with an electron multiplier. The visible CW laser was
scanned continuously over 30 GHz (60 GHz at 260 nm), monitoring the change in
frequency on-line with a Fabry-Perot etalon. This calibration spectrum in turn was
used to control the current through the magnetic field coils in such a way that the
scaled energy is kept constant. In extended spectra several of these 30 GHz scans
were overlapped, using the zero-field Rydberg resonances as references. More details
of the experimental setup can be found in [10] and [11]. As an example in Fig. 2 a
recorded spectrum at is shown, where the excitation energy was varied from

and the magnetic field simultaneously from 1193 Gauss to 1002
Gauss. From this dense spectrum not much information can be extracted directly.

However, after Fourier transformation to a scaled-action spectrum a much more
insightful picture results, revealing the closed periodic orbits of the system. In Fig.
3 (upper part) such a Fourier transformation is shown for (mixed regular-
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chaotic regime). Although this scaled-action spectrum is less regular than the spectrum
recorded at [11], many resonances still can be connected to two types
of closed orbits and their traversals. The resonance at corresponds to the
fundamental, so-called vibrator orbit directed parallel to the magnetic field, whereas
there is a weak indication for the presence of the fundamental rotator orbit in the
plane perpendicular to the magnetic field at (see [2] for this classification). The
first bifurcation from the fundamental vibrator, traversed twice, appears at
and is denoted Its action is about equal to the action of the two times traversed
fundamental vibrator Higher traversals appear at , The
second bifurcation of the vibrator orbit, traversed three times, lies at
The first strong rotator orbit at corresponds to three traversals of the first
bifurcation of the fundamental orbit The number of unstable
orbits in the case of drastically increases compared to and also the
number of resonances that does not fit the classification in terms of rotator - vibrator
orbits, called exotics. Such exotic orbits may contribute to the resonances observed at
e.g. and 9.15. In the action spectrum for there is clear evidence
for electron scattering frorn vibrator into rotator orbits and vice versa. This is evidenced
e.g. by the occurence of lesonances at and 9.03, which are the sum of actions
for orbits (2.21 and 2.80), respectively (4.42 and 4.61).
The occurence of sum actions (not possible in the hydrogen atom) was for the first time
observed in the spectrum [8]. The proliferation of unstable orbits as well as
the more pronounced occurence of sum orbits results in less good agreement between
the observed and calculated (with classical closed-orbit theory) action spectrum in the
case of than in case of [11].

We also calculated a quantum mechanical scaled-energy spectrum for
applying the same computer code as in the case [8]. The Fourier transform
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of this quantum mechanically calculated spectrum is plotted in the lower part of Fig.
3. These calculations result in a much better agreement with observations, not only
for the S-values where resonances occur but also with respect to their strengths, when
compared with the closed-orbit calculations. Such quantum mechanical calculations
may also be used to determine level statistics, i.e. the distribution of nearest neighbour
separations (s). We calculated these distributions in the regular regime for
both the hydrogen and the helium atom. In hydrogen a clear Poissonian distribution

is obtained, which is shown on the left in Fig. 4. However, in
helium a Wigner type of distribution is found, as shown on
the right in Fig. 4. To get good agreement between the experimental and calculated
energy spectrum for the helium atom in a magnetic field for this case of it
was necessary to include the quantum defect of 0.0684 for the 1snp Rydberg series [8].
Then the level statistics shown in Fig. 4 results. A change from Poisson to Wigner
type of distributions as a function of the scaled-energy parameter is considered to be
a signature of the transition from a classically regular system to a chaotic system.
However, the effect calculated for the level statistics in the helium atom in the still
regular regime does not relate to this type of transition. In helium it is the core-
scattering effect (represented by the quantum defect) that is responsible for the change
in level statistics as compared to hydrogen; it is therefore referred to as core-induced
chaos [4]. The agreement between experimental and calculated energy spectrum at

is excellent. This stimulates experiments to measure the level statistics under
various circumstances. Such experiments are in progress.

BARIUM RYDBERG ATOMS IN AN ELECTRIC FIELD

Scaled-energy experiments in an electric field have been performed in three barium
Rydberg series and at two values of the scaled energy below the
field-ionization limit and one value above this limit
The 6snf  states are bound and converge to the 6s-ionization limit of the atom, whereas
the 5dnf  states belong to weakly autoionizing series converging to the
excited states of the ion. So a study of these various series in principle allows for a
comparison of differences induced by core effects. The states of interest were populated
in a one-photon excitation process with narrowband, tunable CW laser radiation from
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the and metastable states. For the excitation of states
from 6s5d UV light from an intra-cavity frequency-doubled ring dye laser operating
around 600 nm was used, whereas 5dnf states (dominantly were excited with a
CW Stilbene ring dye laser operating in the blue spectral range around 450 nm. The
laser beam perpendicularly intersected a well-collimated beam of atoms between two
capacitor plates in an excitation chamber, well shielded against stray electric fields. In
the beam metastable states were populated by running a DC-discharge between the
oven and a tungsten filament heating the oven. As in the helium case the frequency of
the laser was scanned in the presence of an electric field and continuously monitored
with a Fabry-Perot etalon. This etalon signal was used to adjust the electric field in
such a way that spectra were recorded at constant-scaled-energy value. We quote an
absolute uncertainty in the value of of about 0.06, determined by the uncertainty
in the measurement of the distance between the capacitor plates. Electrons directly
produced by autoionization were, in case of the 5dnf-series, detected using an electron
multiplier positioned above one capacitor plate which contained a grounded fine wire
mesh. In case of the 6snf states electrons were produced by field-ionizing the highly-
excited atoms downstream from the excitation chamber in a second chamber. More
details may be found in refs. [12,13].

Scaled-energy spectra were recorded for high-n Rydberg states (n=60-80) by over-
lapping several laser scans. Linewidths of 6snf states below the field-ionization limit
did have the Doppler-limited value of about 10 MHz, whereas broadening was apparent
above this limit. The linewidth of the autoionizing levels in zero field was
of the order of 30 MHz, but broadened in the field by the admixture of states with
a lower l-value with enhanced autoionization rates. Above the field-ionization limit
autoionization into the 5d-continuum resulted in broad peaks with a width of about
100 MHz. In Fig. 5 scaled-action spectra for all three Rydberg series for
are shown as obtained from a Fourier transform of the frequency spectra, whereas in
Fig. 6 similar spectra for are reproduced. The typical grouping of lines, in
particular in the spectra for and is similar to that observed in Na [3]
and Li [4] experiments and can be interpreted directly for large negative The energy
difference between levels within a Stark manifold is responsible for the overall group
structure, whereas the energy difference between adjacent Rydberg n-levels determines
the splitting within each group. This latter difference also results in the resonance at
low scaled action at about 0.44, which corresponds to the uphill / downhill orbits along
the z-axis.

Comparing the Fourier spectra in Figs. 5 and 6 the resonances in the three series
are found at nearly equal values of the scaled action, although for large scaled actions
minor differences become apparant for the higher values. This is as expected in
periodic-orbit theory, where only the motion of the excited electron far outside the core
is important. This motion is governed by classical equations, which do not involve the
state of the core. However, the heights of the resonances show significant differences,
in particular when comparing the Fourier spectrum of the 6snf series with those of the
5dnf series and at increased values. The height of a resonance is determined by the
the intensity of the recurring excitations in the oscillator strength distribution, which
directlly relate to the transition probabilities at zero-field, and by core-scattering pro-
cesses (sum orbits). The different probabilities for excitations
only partly explain the observed peak-height differences. Near and above the classical
field-ionization limit the frequency spectra for the 5dnf series show line broad-
ening, resulting in high intensities for scaled actions close to zero as is clear in the

spectrum when comparing the 5dnf results with those for 6snf (see Fig. 6). The
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number of experimental peaks, in particular at high scaled action (recurrence time)
strongly decreases with increasing value of while also the typical grouping of peaks
disappears. Above the saddle point only a limited number of closed orbits is observed.
This can also be understood within the framework of closed-orbit theory. For only
one unstable orbit, the uphill orbit parallel to the electric field, exists. For out
of this orbit new orbits bifurcate, thus proliferating the number of peaks in the action
spectrum. The downhill orbit, also parallel to the electric field axis, becomes possible
at Closed-orbit calculations were performed for all experimental conditions,
taking into account the respective quantum defects for the Rydberg electron: 0.17 for
6snf J=3, 0.07 for                       and 0.14 for                    Although in most case the
positions of the resonances could be reproduced well and can be assigned to classical
orbits, it turned out to be extremely difficult to reproduce peak heights. Surprisingly,
none of the strong peaks are due to a repetition of a parallel orbit, but many peaks are
due to recurrences of other types of orbits, and in particular in the 6snf spectra, sum
orbits strongly proliferate. This latter phenomenon makes peak-height calculations
extremely difficult. Many more orbits are calculated than experimentally observed,
whereas their theoretical intensities turn out to be of the same order of magnitude (see
Figs. 7 and 8). Four peaks in the spectrum of the -series could not be
assigned. However, they show a remarkable connection: the strongest ones at
and differ 3.01 in action, i.e. the action of the most intense experimental peak.
The other two at and are shifted 0.44 in action from the stronger
ones, which corresponds to the action of the uphill orbit. Remarkably the experimental
spectra for and are dominated by a single strong peak, at
and at respectively, and their recurrences. The corresponding orbits lie in the
plane perpendicular to the electric field! Also the majority of other peaks are oriented
in the same direction ( = 90 degrees), for which no simple explanation is available. It
was a surprise in itself that for increasing value of the number of calculated orbits
increases dramatically, in contradiction with observations. Especially for it
might be expected that only a few orbits would remain that do not lead to escape of
the Rydberg electron over the saddle point.
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INTRODUCTION

We report in this article recent experimental work1 and complementary theoretical
work2 carried out on Rydberg states of barium in crossed electric and magnetic fields.
The most interesting experimental findings were the markedly different and pho-
toabsorption spectra. In the next two sections we first give overviews of the experiment
and theory together with results from each. Before drawing conclusions and indicat-
ing possible future developments we report what understanding of the experimental
findings theoretical analysis has produced.

THE EXPERIMENT

The earliest experimental studies of the quadratic Zeeman effect were the classic
experiments of Garton and Tomkins3 on the alkaline-earth elements. However, the
agreement between theory and experiment, although broadly satisfactory as regards
structure, was far from impressive as regards intensities. This was the starting point of
our experimental investigation: it was clear to us that the experiments, first performed
in 1969, were much in need of being refined and brought up to date.

The most obvious improvement required was in the method of detection. The early
experiments were performed in photoabsorption, and the transmitted intensity was
recorded photographically. Photoabsorption suffers from many disadvantages. First,
because the method is inherently insensitive, one is led to increase the density of ab-
sorption above the optically thin regime in order to reveal fine detail in spectra. This
leads to an optical saturation effect due to opacity in the centre of strong lines. Sec-
ond, the noise increases with increasing signal. Lastly, atoms fly in all directions with
respect to the magnetic field, which leads to varying amounts of quadratic Stark field.
Photographic detection compounds the problems, since it is also subject to nonlinearity
of response.

Atoms and Molecules in Strong External Fields
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We therefore chose to work with an atomic beam, and to detect Rydberg atoms
by field ionisation downstream from the interaction region. Our first idea was to direct
the atomic beam parallel to the magnetic field, which was the geometry originally in-
troduced at Imperial College to eliminate the motional Stark effect4. However, this was
not possible with the magnet we had available. Since calculations using the standard
formulae indicated that the motional Stark field should have a small effect for elements
such as Ba or Sr, we decided to direct the direct the atomic beam perpendicular to the
magnetic field, and the laser beam parallel to it. In this configuration, the quadratic
Stark field is maximum but, by cofining the atomic beam to a narrow pencil, we hoped
to restrict it more or less to a single value.

The geometry we had been forced to adopt had one advantage with respect to 4: it
allowed us to separate the from the spectra. When we studied them separately,
we had our first surprise: the structure in the two spectra was not the same 5, 6. This
was contrary to the findings reported in the early papers, and also to the caculations on
the motional Stark effect. The early papers had, in fact, only provided spectra for one
polarisation. Fortunately, we had access to the original data of Garton and Tomkins3.
By carelully digitising it, we discovered a similar discrepancy. Eventually, we were led
to suspect that this might be due to the motional Stark field, and it is this realisation
which led us into our detailed study of the crossed field problem.

Notice that experiments on crossed fields have evolved from experiments on the
quadratic Zeeman effect, and have generally retained their original geometry. Thus,
our present experiment appears to be the only one at the moment to have the laser
beam parallel to the magnetic field, which confers the unique advantage of being able
to separate and spectra. This has turned out to be a crucial feature.

Another feature of our experiment arose from our decision to detect downstream.
It turned out that the excited atoms had to fly 55mm from the interaction region to
the point of detection. We found that we were able to gate our detector, and to set the
time ‘window’ such that only a narrow range of velocities was accepted from within the
Maxwellian distribution, thereby defining the motional Stark field rather accurately.
We were also able to insert a pair of electric field plates above and below the horizontal
atomic beam in Fig.l, and to apply an small, external electric field so as to cancel the
motional Stark field. We thus had set up a crossed field configuration.

To cancel the motional Stark field, we began by studying the shifts of prominent
spectral features in the diamagnetic spectrum as a function of applied electric field
strength. This turned out to be quadratic, and so we could determine the zero field
point by searching for the minimum shift on the parabola. To our relief, the differences
between the and spectra disappeared at zero electric field. We were now able to
use this observation in order to set the zero electric field experimentally by ‘balancing’
the two spectra until their structure (when shifted by the linear Zeeman splitting to
bring them into correspondence) became identical 7. The results thus obtained ex-
hibited much finer detail than the original spectra of 3, so that new calculations were
required for comparison, but the results yielded extremely satisfactory agreement with
experiment, both as regards the details of the structure and relative intensities of the
lines 8.

Turning now to the crossed field problem, we found it very interesting that the
and spectra should differ from each other, a feature not accessible in earlier

experiments. We therefore decided to record Stark maps of the diamagnetic spectrum
under both polarisations. Since the excitation scheme we are using is the
simplest one, the spectra we are using are ideal to explore this new situation. Also,
we have chosen an element for which the different -states of a given n are well

122



spread out in energy. We have been able to follow most of the structure from one
spectrum to the next as the electric field is varied in small steps 1, and our results show
very clearly how important it is to be able to separate the polarisations: without this
feature, the maps shown in Figs. 2-7 would have been impossible to make sense of,
because two very different patterns, with different and complex evolution, would have
been superimposed.
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THE THEORETICAL METHOD

The availability of the new Imperial College experimental data encouraged the
group in Belfast to devise a new theoretical treatment of non-hydrogenic atoms in
crossed fields as an element of the collaboration with Professor Li’s group at the Chinese
Academy of Sciences Institute of Physics Wuhan. The new method is an extension of
one previously developed for the 2-dimensional problem of non-hydrogenic atoms in
parallel electric and magnetic fields. The basic method was reported by Halley et al 9,10

(it will hence hereafter be referred to as the HDT method) and has already been used
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successfully in calculating the spectra of non-hydrogenic atoms in pure electric11, pure
magnetic9,10,12 and parallel electric and magnetic fields13 as well as the spectrum of
the H2 molecule in a magnetic field14. Since the experimental data relates to Rydberg
states and is at a comparatively low level of resolution, we realised that a
calculation to reproduce the experimental spectra would prove a useful test of the new
method without requiring computing power beyond local workstations.

Before presenting an account of our new theoretical approach, we briefly review
previous theoretical and computational work, within the quantum mechanical frame-
work, on the crossed field problem.

Perturbation theory is appropriate when the influence of laboratory external fields
is weak, most likely to be the case for low excited states. If the magnetic and electric
perturbations are very small, then first order corrections to the Coulomb energy (with
the quadratic Zeeman term dropped), are adequate. This was first established for hy-
drogen by Pauli15. As the external field strength increases, second order purturbation
theory is useful, as demonstrated for energy-level positions by Solov’ev16 and Braun
and Solov’ev17. For non-hydrogenic atoms, Penent el al18 combined first order pertur-
bation theory with the resolvent formalism to analyse an experimental spectrum they
obtained for rubidium in crossed weak fields. Marxer et al19 used a basis of discrete
Coulomb eigenfuctions from nearby manifolds to calculate the photoabsorption spectra
of hydrogen and lithium in crossed fields in a low-energy region corresponding to prin-
cipal quantum number n around 12. Main and Wunner20,21 calculated the spectrum
of hydrogen in crossed fields going even above the ionization threshold by means of
the complex co-ordinate rotation technique. Recently, Main et al 22 have calculated the
quantum mechanical photoabsorption spectrum for hydrogen at constant scaled energy
and at scaled electric field strength.

As far as we know however, there has hitherto been no effective quantum mechan-
ical method for calculating the spectra of high-lying Rydberg states of non-hydrogenic
atoms in crossed laboratory strength electric and magnetic fields. We now outline our
new method.

Beyond a certain radial distance from the nucleus the Hamiltonian for a Rydberg
electron of a multi-electron atom subject to an external magnetic field of strength B
tesla along the z–axis and an electric field of strength F V/cm perpendicular to the
magnetic field and along the x–axis can be written, in atomic units, as

where and
are the linear and quadratic Zeeman terms respectively and V(r) is the

potential (assumed radial) the electron experiences through interaction with the inner
core formed by the other electrons and the nucleus. It is clear that the only remaining
symmetry of this Hamiltonian is z - parity (reflection in the x – y plane).

The HDT method combines a variant of the R-matrix method with quantum defect
theory and also with complex coordinate rotation, if necessary. The latter allows the
calculation of spectra above an ionization threshold 9, 10. However the recent experiment
on barium investigated a bound portion of the crossed field spectrum and a calculation
over that spectral region does not require the complex coordinate rotation technique.
Nevertheless even without this technique, the variant of the R-matrix method exploited
by HDT brings about a considerable improvement in computational efficiency over
previous applications of R-matrix techniques to bound states of non-hydrogenic atoms
in external static fields. We here further exploit this aspect in order to deal with bound
states of a non-hydrogenic atom in crossed fields.
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The configuration space for the outermost electron of a nou-hydrogenic atom in
external static crossed fields of laboratory strength can be divided into an inner-region

and an outer-region For a magnetic field less than say 5 tesla and
an electric field less than say 1000 V/cm, a can be taken as about where
is the Bohr radius. Given such a value of a, then for the diamagnetic term

and the Stark term can be completely ignored in comparison
with the potentials arising from the much stronger electron-nucleus and the electron-
electron interactions. The description of this inner-region thus collapses to that of a
conventional multi-electron atom completely free of any external fields. Moreover this
size of inner-region is large enough to completely contain all but the outermost electron
which can be taken to move in a pure Coulomb potential near i.e. in Eq. (1),
near Hence quantum defect theory23, allows the wavefunction for
this electron to be written in each orbital angular momentum partial wave on the
boundary as a linear combination of regular and irregular Coulomb
functions,

where the energy dependent quantum defect parameter of the field-free atom-
controls the linear combination.

In the outer-region the diamagnetic term, the linear Zeeman term and the
Stark term cannot be ignored, but the problem reduces to that of one electron moving
under the combined influence of the Coulomb potential and the external fields. In this
region the eigenfunction at energy E satisfies,

It is convenient here to use a spherical basis set expansion of in terms of radial func-
tions for angular momentum and the magnetic quantum number m, multiplied
by spherical harmonic functions viz:

Substituting this expansion into Eq. (3) yields,

In order to make the operators on the left hand side of Eq. (5) Hermitian over just
the outer region we must follow Bloch24,  by replacing for each partial wave by

But added flexibility is obtained (and Hermiticity is preserved) if for
each a non-derivative term is also brought in. We thus arrive at,
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This is an eigenvalue equation which can be solved for (real) eigenvalues and corre-
sponding eigenfunction components . The crux of the method lies in the choice
of If, as first pointed out by we choose,

where is the solution to Eq. (5) at energy E, it turns out that an eigenvalue
of Eq. (6) is co-incident with E and that the corresponding eigenfunction components

coincide with over the range
It would seem from the form of that we actually need to solve Eq. (5) for

before such a can be constructed. But since we are considering Rydberg
states where the density of states is very high, the value of changes very slowly
from one level to the next at an a of typically 10 Bohr. In fact it can be evaluated
at some chosen energy from the Coulomb function combination in Eq. (2) and the
Lanczos algorithm used to find eigenvalues (and eigenfunctions) of Eq. (6) in the
neighbourhood of this chosen energy. Typically, about 100 of these eigenvalues will be
found to be eigenenergies of Eq. (3).

In practical calculations the of Eq. (6) are expanded on a basis of Sturmian

functions over the range giving rise to a
generalised matrix eigenvalue equation which can be solved for eigenenergies E and the
corresponding eigenvectors. For the definition of the Sturmian basis used see Clark and

The number of Sturmian functions retained (i.e. the value of as well
as the value chosen for the range parameter are both governed by the convergence
requirement of the computation. The use of this method allows us to calculate the
energy levels and oscillator strengths of barium in crossed fields.

The major difference between the new crossed field implementation of the HDT
method and previous applications is the need to handle a significant range of m values in
a given calculation (only in one previous application of the IIDT method, to diamagnetic
H2 by He et al (1995), was m not a good quantum number). This significant range in
m inevitably leads to much larger basis sets, particularly as the strength of the electric
field increases and larger ranges in m are required to gain convergence. We have ordered
the basis functions so that the label n is run over most, and the label m least, rapidly.

We have calculated the barium photoabsorption spectra using the above method
over the wavelength ranges explored experimentally and for electric field strengths up
to -90 V/cm. The results were very sensitive to the magnetic field strength and we
found best agreement between theory and experiment for a magnetic field strength of
2.86 tesla which is just within the uncertainty range of the magnetic field strength used
in the experiment1 reported1 as tesla. In Figures 8 and 9 below we display
our calculated and photoabsorption spectra over the lowest spectral range where,
to reproduce experimental conditions, we have built in a finite resolution of 3.6 GHz.
We have also reported elsewhere2 results for the higher spectral ranges.

THEORETICAL ANALYSIS OF EXPERIMENTAL RESULTS

The excellent agreement between calculation and experiment for the barium spec-
tra is highlighted in Figures 10 and 11 where we compare directly sample results from
experiment and calculation - in both and polarization - from the lowest and
highest energy spectral regions respectively.

We concentrate on Figures 2 and 3 and on Figures 8 and 9 which display respec-
tively the experimental and theoretical results for the longest wavelength and
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spectra. In both these and spectra non-hydrogenic spectral patterns develop as
the electric field increases, and these patterns are markedly different in the two cases.
We find these patterns can be understood through identifying, at low electric field
strengths, the quantum defect shifted locations of low low states. These states
effectively act as ‘seed’ states, bringing about significant oscillator strength concentra-
tions at their non-hydrogenic locations as the electric field increases. If we first consider
the spectrum at -20 V/cm and work across from longer to shorter wavelengths, the
first significant feature we encounter at about 238.69 nm is marked with an open circle.
This feature we have identified, through analysis of the corresponding wavefunction, as
a state which is predominantly The next feature to the left, marked with
a cross, has been found through the same wavefunction analysis to be predominantly

Both states are of course dipole excited by their admixture of adja-
cent Corresponding states near 238.62 nm pertaining to the next higher
n–manifold are marked with identical symbols. (It is worth noting that the hydrogenic
location of a predominantly state would instead be at about 238.64 nm
(to the left of the line marked with a star which is predominantly and
that of a predominantly state would be at about 238.66 nm, in the middle
of the fundamental n = 28 cluster.) Although contributing only minor spectral features
around 238.62 nm and 238.69 nm for an electric field of -20 V/cm, we note that as the
electric field increases, character readily mixes in more and more -through
the adjacent predominant values of m and in the states- and oscillator strength in the
lines increases. By -50 V/cm there is secondary redistribution of character
from these ‘seed’ states to others in the spectral neighbourhood and a multiline cluster
of significant oscillator strength emerges. This explains the clusters of significant lines
that emerge in Figure 4 at these wavelengths, and which are to be absent in
hydrogen. There is one further m, combination, namely adjacent to the
dipole driven combination, and which we can expect to mix strongly on
increase of electric field. At-20 V/cm, states predominantly in character
are marked with an open square at about 238.655 nm and at about 238.60 nm. In each
case, because of the d–wave quantum defect shift they lie closer to the principal line of
the fundamental cluster than is the case in hydrogen. Once again as the electric field
strength increases, the consequence is a significant concentration of oscillator strength
in the vicinity of the ‘seed’ state, to the disadvantage of states at somewhat longer
wavelengths which, for hydrogen, gained oscillator strength.

To recap, we can understand the non-hydrogenic evolution of the barium spec-
trum of Figures 2 and 8 under increasing electric field strength, to be controlled by
the low electric field locations of predominantly and

‘seed’ states.

Can the spectrum of Figures 3 and 9 be understood through similar consid-
erations? In that case the dipole driven combination is and adjacent
combinations are Thus as before let us
begin by establishing the locations of states dominated by these symmetries in a low
electric field strength spectrum. Again we choose the -20 V/cm case. Here in Figure 5,
crosses near 238.69 nm and near 238.62 nm mark the locations of states,
open squares near 238.66 nm and near 238.60 nm mark the locations of
states and open diamonds (near the open squares) the locations of states.
Once again, as in Figure 4, we see the role of these as ‘seed’ states: as the electric field
strength increases, increasing oscillator strength enters these comparatively isolated
spectral regions first through increased mixing of the ‘seed’ states with
followed by more general, but localised, redistribution.
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As we move to higher energy spectra in the two polarizations we find ‘seed’ states
play a less and less commanding role. This is because even at zero electric field, the
character of individual states is less and less dominated by a single m, l pair.

CONCLUSIONS AND FUTURE PROSPECTS

A number of important consequences have been found to ensue from the comple-
mentary nature of the laboratory measurements and theoretical calculations. The first
consequence has been an ability to determine the laboratory magnetic field strength to
a higher level of accuracy than possible in the experiment itself. A second consequence2

has been the ability to determine quantum defects for the participating partial waves
to a higher level of accuracy than previously possible through field-free measurements
alone. The third and most important consequence has been the ability to elucidate in
detail what specific electron dynamics underlie the observed (markedly non-hydrogenic)
evolution of the crossed field barium spectra under weak, but increasing, electric field
strength.

Prospects for further experiments include fixed scaled energy spectroscopy of Ry-
dberg states of the alkaline earths in crossed fields. The present work has been useful
in vindicating the accuracy of the new theoretical approach outlined above but in the
near future, given appropriate computational resources, we would wish to extend this to
handle other non-hydrogenic atoms and complement yet higher resolution experimental
work.
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INTRODUCTION

For a long time, the calculation of the energy states of an electrically charged two-
body system (hydrogen-like ion) moving in a magnetic field has remained a challenging
problem, and its full solution has not been obtained. It was addressed by many authors,
starting from the paper of Avron et al. (1978). The main difficulty of this problem
is that the center-of-mass (CM) motion across the magnetic field cannot be separated
from the relative motion, so that the problem cannot be reduced to a one-particle
Schrödinger equation. In this respect the charged two-body problem differs essentially
from the neutral case (hydrogen atom), for which significant progress has been achieved
in the investigation of the energy states with allowance for the effect of atomic motion
(see, e.g., Vincke et al., 1992; Potekhin, 1994). To overcome this difficulty, Baye (1982)
performed an approximate separation of the CM and relative motions of the charged
system. This approach was further developed to obtain CM corrections for low-lying
energy levels of hydrogenic ions in a magnetic field (Baye and Vincke, 1986). For
highly excited states, the effect of CM coupling to the internal motion on the classical
dynamics of moving ions was investigated by Schmelcher (1995).

A reliable numerical method to determine the eigenstates of a complicated quan-
tum system invokes multi-configurational Hartree-Fock (MCHF) computations (see,
e.g., Ruder et al., 1994). For the hydrogenic ion moving in a magnetic field, such a
method has not yet been employed, mainly due to the absence of appropriate Hartree-
Fock basis states. A convenient two-particle basis set was suggested by Bezchastnov,
1995 (hereafter B95). It is constructed from the Landau states of an electron and nu-
cleus and corresponds to the exact integrals of motion in the presence of the Coulomb
interaction. This set is most useful for strong magnetic fields, when

where a0 is the Bohr radius, is the magnetic length, and
G. We report here results of MCHF computations for the He+ energy

states obtained by exploiting the B95 basis states (Section 2). We also suggest a simple
perturbation treatment of the finite nucleus mass effect (Section 3). We start with

Atoms and Molecules in Strong External Fields
Edited by Schmelcher and Schweizer, Plenum Press, New York, 1998 135



a brief description of the main quantum mechanical operators related to the problem
(Section 1), and give the conclusions in Section 4.

1. BASIC OPERATORS

Let us consider the system of two particles with masses and and charges
– e and respectively, moving in a uniform magnetic field B =
(0 ,0 ,B ) . The particle longitudinal and transverse coordinates are denoted by and

and the relative coordinates are defined as and The
conventional notations, and will stand for the total and
reduced masses. We neglect the contribution of spin terms into the total two-particle
Hamiltonian and adopt the cylindrical gauge for the vector
potential. The CM motion along B is free and can easily be separated. Then our
problem reduces to searching for eigenstates of the Hamiltonian

where The commuting integrals of motion of the
Hamiltonian (1) are determined by the pseudomomentum squared, where

and by the longitudinal component of the total angular momentum (see, e.g., Avron
et al., 1978). The corresponding eigenvalues are given by
and where and It can be
shown that and it depends on two additional quantum numbers to be
introduced to describe the transverse motion of the system.

2. MCHF APPROACH

The two-particle basis wave functions introduced in B95 read

where and are the Lan-

dau functions, and the coefficients are generated by a recurrence relation
(see Eqs. (A2), (A3), and (32) of B95). The basis states describe the motion of two
non-interacting particles across B with the energy spectrum de-
termined by the Landau level numbers of the negative and positive
charges,

They are also the common eigenstates of the operators and that determine the
integrals of motion for the Hamiltonian (1). Expanding the total two-particle wave
function over the basis states, one arrives at a set of coupled differential equations for
the expansion coefficients which are functions of the relative longitudinal coordinate
(Eq. (41) of B95). We have developed a numerical code to solve these equations for the
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discrete energy states and performed the computations for the ion moving in the
magnetic field corresponding to

In Figure 1 we present the discrete energies for the nine lowest tightly-bound states
plotted against N. We exclude from all the energies the additive term of kinetic energy
of the CM motion along the magnetic field, as well as the zero-point Landau energies
for both charges, so that the zero energy in Figure 1 corresponds to the continuum
edge. The results of the multi-configurational computations are plotted by dots in
this graph and connected by smooth solid lines for convenience. Short-dash lines show
results obtained in the adiabatic (one-configurational) approximation when only one
basis state is included in the wave function expansion (these basis states correspond to

and indicated near the curves).
For low N, the discrete energies grow linearly with N. However, this oscillator-like

behavior holds only for N below some critical value (growing with the number of the
energy level), at which the neighboring levels approach each other. For higher values
of TV, the neighboring levels diverge from each other (thus exhibiting anticrossings at

and then approach smoothly the adiabatic asymptotes. This means that
with further increase of N, the Coulomb binding becomes negligible, and the binding
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energy for the ground level tends to zero, whereas excited levels approach the threshold
values, lying in the continuum. Therefore, each excited level in Figure 1
is subject to autoionization at sufficiently large N.

3. PERTURBATION APPROACH

Let us define the zero-order approximation to the Hamiltonian (1) as its infinite
nucleus mass limit, Then the zero-order states are determined
by the electron motion around a static Coulomb center. For they can be conve-
niently labeled by the electron Landau level number . . . , magnetic quantum
number and “longitudinal” quantum number (number of
nodes of the 2-dependence of the bound electron wave function) Due to
an arbitrary location of the Coulomb center ( still depends on two additional
quantum numbers should be specified in order to define the corresponding eigenfunc-
tions. The best option is to use and L that determine the integrals of motion. Then
the zero-order wave functions read

In this equation, and are the Landau functions, the first one
takes into account the integrals of common motion, and the second one describes the
transverse confinement of the electron in a given cyclotron orbit. The longitudinal part
of (5), describes the electron states bound by the one-dimensional potential
well (adiabatic approximation). We de-
note the corresponding binding energies as Using the nucleus charge scaling,

they can be easily obtained from the binding en-
ergies for the static hydrogen atom which were precisely calculated and tabulated for
different values of the magnetic field (see Ruder et al., 1994). The zero-order energies
are then given by In Figure 1, we show the zero-order en-
ergy spectrum for by the horizontal solid bars.
We have checked that the binding energies for and 2, available from Ruder
et al. (1994), are reproduced by our MCHF computations if one inputs zero for the
electron-to-nucleus mass ratio, and we have used our code in this way to compute the
energies for the states with higher m.

Now, we can treat the difference as the perturbation and estimate the
dependence of the energy on the quantum number of the collective motion.
After calculation of the first- and second-order energy corrections, we can present the
result in the following form

where is an energy shift, and is an effective transverse
mass of the ion. Neglecting the difference between and and
taking into account that we can write for these
quantities the following equations:

138



As an example, let us estimate for the ion at
G which corresponds to

From the Table A1.2 of Ruder et al. (1994) we have
13.90 and for the zero-order binding energies. Using these
three quantities, we obtain for the ground level and for
the first excited level. The perturbation energies of these levels are shown in Figure 1
by two long-dash straight lines. We see that they agree fairly well with the results of
our MCHF computations.

CONCLUSIONS

Generally, the dependences of the binding energies on N for the hydrogen-like ion
are similar to the corresponding dependences for the hydrogen atom on the square
of the (continuous) eigenvalue of the transverse generalized momentum (cf. Vincke et
al., 1992; Potekhin, 1994). Similar to the case of neutral atom, the ion’s motion across
the magnetic field changes the selection rules so that transitions forbidden in the limit
of infinite nucleus mass become permitted. Moreover, since the transverse motion of
the charged two-body system is quantized, a fine structure of the ion spectral lines and
photoionization edges should appear when the fine structure components are narrower
than the spacing between them. We expect these results to be important for modeling
of atmospheres of neutron stars with strong magnetic fields,
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INTRODUCTION

The center of mass (c.m.) problem in a magnetic field had long remained a mathe-
matically interesting but rather academic topic. The physical importance of the effects
was too small in fields accessible to experiment. Striking properties appeared to occur
in very strong fields but did not seem to take place in any realistic environment. The
situation changed in recent years. Potentially observable effects entirely due to the
c.m. are now predicted to occur even for the hydrogen atom: in crossed electric and
magnetic fields, a new family of strongly decentered states is predicted. Unexpectedly,
the very existence of such states qualitatively modifies the modelling of neutron-star
atmospheres and a correct description of c.m. effects is now an essential ingredient of
these models.

Let us first consider the c.m. problem in a chronological perspective. Although im-
portant steps were made before,1, 2 the status of the c.m. problem completely changed
in 1978. During that year, the existing mathematical knowledge on the problem was
summarized and generalized by Avron, Herbst and Simon.3 Almost simultaneously,
Virtamo and Simola published a variational calculation on the hydrogen atom in a
magnetic field showing that c.m. effects have an observable influence in very strong
fields, typical of neutron stars.4 Because they qualified the c.m. as “non separable”, dif-
ferent authors published refutations based on a correct c.m. separation where they still
concluded that c.m. effects are negligible.5, 6 The controversy was clarified by Wunner,
Ruder, and Herold.7, 8 The explanation is as follows. The total energy of the hydrogen
atom in very high fields is close to the electron cyclotron energy, proportional to the
field strength. The c.m. correction is close to the proton cyclotron energy, which is in-
deed smaller by a factor However, physical effects do not rely on total energies
but on binding energies, which are of the order of magnitude of the Rydberg unit and
increase much more slowly with the field. At some field strength, the c.m. correction
becomes comparable with the hydrogen binding energy and qualitatively affects phys-
ical properties. This remains true for other neutral atoms. Neutral systems behave as
free particles whose collective motion is however affected by their internal state.3 The
c.m. separation is then called a pseudoseparation.
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The c.m. problem for ions is very different. Ions are globally charged and undergo a
collective cyclotron motion, also depending on the internal state. In that case, an exact
separation of the c.m. motion is not possible.3 However, the existence of an approximate
constant of motion9 allows an approximate pseudoseparation up to very high fields.10

Accurate c.m. corrections were calculated for hydrogenic ions up to field strengths as
large as 109 T.11 A reinvestigation in the cases of neutral hydrogen and positronium
provided previously unnoticed instability properties12, 13 and a unified treatment of
the charged and neutral cases was discovered.14 General c.m. corrections for arbitrary
atoms and ions were proposed.15

When neutral atoms undergo a transverse motion with respect to the field direc-
tion, their properties may be affected significantly. Such effects are also obtained in
crossed electric and magnetic fields. For neutral hydrogen, a new type of states, where
the electron motion is strongly decentered from the proton location was predicted in a
gauge-independent way.16 Such effects were anticipated in a simple potential model17

but the prediction depended on a gauge choice. A potential approach18 provided similar
results independently of the gauge choice.19 The transition from the centered regime to
the decentered regime was studied in the strong field region.20, 21 This allowed taking
transverse motion into account in models of neutron-star atmospheres.22, 23

Here, we review the status of the quantum treatment of c.m. corrections for atomic
systems. Other interesting aspects (classical treatment, molecules) are discussed in
other contributions. We use the reduced field strength

where B is expressed in Teslas.

CONSTANTS OF MOTION

Single Particle

Let r and p be the coordinate and momentum of a particle with mass m and
charge q in a homogeneous magnetic field B. Its kinetic (or mechanical) momentum
reads

where A is the vector potential in an arbitrary gauge Here we shall not
need the explicit form of this vector potential.

The non-relativistic spinless Hamiltonian

possesses several constants of motion: the pseudomomentum or generalized momentum24

where, for is the guiding center, and a generalization of the parallel component
of the orbital momentum25

where is a unit vector in the field direction. The last expression is valid only for
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The operators and verify with the commutation relations

where represent x, y, z and is the antisymmetric tensor. Eqs. (6) cor-
respond to the algebra of free motion for q = 0 or of cyclotron motion for
The components of and parallel to the field are identical and commute with the
transverse components. They also commute with

We note here an important difference between the neutral and charged cases: if
all the operators belonging to the algebra (6) are constants of motion; if ,

is not a constant of motion. This property has important consequences in the c.m.
problem.

System of Particles

Let us consider an atom or ion involving a nucleus with charge and mass
and N electrons with charges and masses The Hamiltonian reads

where V is rotation and translation invariant. Because of these invariances and of Eqs.
(6), the constants of motion are the total pseudomomentum3

and the generalized parallel component of the total orbital momentum13

The components of the total pseudomomentum K satisfy

where Q is the total charge. Its transverse components commute with the parallel
component but do not commute with each other if Q differs from zero. The commutator
of with is

In the neutral case the transverse components of K and satisfy the
Euclidean algebra. The c.m. behaves as a free particle with K playing the role of a
momentum. Since all the operators appearing in (10) and (11) are then constants of
motion, a c.m. separation is possible. In the charged case the c.m. does not
behave collectively as a charged particle because a constant-of-motiori collective kinetic
momentum is not available.
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Generalized Kinetic Momentum

A c.m. kinetic-momentum operator can be defined as

where α is a real parameter and

Indeed, it satisfies with K and the commutation relations

forming with (10) and (11) an algebra similar to (6). For C reduces to K.
The commutator of with the Hamiltonian

does not vanish if Q or B is not zero. Nevertheless, it is “small” for
and C can then be considered as an approximate constant of motion.

CANONICAL TRANSFORMATIONS

Operators and form a canonical ensemble if

A canonical transformation26, 27 is a transformation

where the functions f and g are chosen in such a way that the and also form a
canonical ensemble, i.e. also satisfy (16).

Canonical transformations occur in well known situations, such as a change of
variables where the functions f do not depend on momenta,

a gauge transformation where only momenta are modified,

and the simple exchange of coordinates and momenta

which is nothing but a Fourier transform, except for a phase factor.
Of particular importance are the linear canonical transformations (LCT)
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where A is a real matrix. Relations (16) imply that A must satisfy

where I is an unit matrix. The example (20) is a LCT. A LCT is very easily
performed with simple linear algebra. When the canonical relations (16) are proved
for the new variables, LCT become simpler than changes of variables since momenta
are treated as coordinates. This simplicity replaces more complicate mathematical
manipulations, i.e. integral transforms26, 27 or unitary transformations.26, 3

In the context of magnetic fields, a slight but useful generalization of the notion
of LCT is obtained by working with the and which transform as

where M is a real matrix. Relations (6) imply that M must satisfy

as is easily verified. In order to unify the treatment of transverse and parallel com-
ponents, it is even more convenient to use only physical observables, i.e. the kinetic
momenta and coordinates transforming as

where N is a real matrix. Here, N conserves the relations

UNIFIED TREATMENT OF CM SEPARATION

In both the neutral and charged cases, we perform a LCT of type (25) in which the
generalized kinetic momentum and the total pseudomomentum respectively become the
kinetic momentum and the pseudomomentum associated with the collective motion,15

i.e.

This transformation takes its simplest form when
For arbitrary the transformed Hamiltonian can be written as the sum

For and the collective motion is described by the Hamiltonian

The internal motion is governed by the internal Hamiltonian
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where the infinite-mass Hamiltonian is given by

Both motions are linked by the coupling term

A decoupling only occurs in the neutral case when the eigenvalue of the transverse part
of the constant of motion K vanishes, i.e. when the neutral atom does

not move transversally to the field. In the charged case, is not an exact constant of
motion but the eigenstates of (29) are easy-to-use harmonic-oscillator states. Therefore,
the charged case is not more complicated than the neutral case with a transverse motion.

A variant is obtained for (where M is the total mass). The coordinate
is then the traditional c.m. coordinate and and read

and

Eq. (34) is known as the “motional Stark effect”.1, 3 The internal Hamiltonian differs
from (30) by Q times a term of order which is almost always negligible (the
exact form is given in Ref. 14).

The internal Hamiltonian can also be expressed as

where is obtained by replacing me by the electron-nucleus reduced mass in (31).
From this expression, one sees that the internal energy of an atom or ion in a magnetic

field is the sum of three terms: the eigenvalue of conveniently scaled, an exact
correction related to the constant of motion of and , and a generalization of
the well-known mass polarization term. Since the last two terms of (35) arise from the
same last term of (30), one expects them to be of comparable importance.

APPLICATIONS

Binding Energies

A first application of the formalism of the previous section is the calculation of
binding energies. The precise definition of a binding energy in a magnetic field has
been given in Ref. 15.

For an hydrogenic system with (28), (35) and (31) provide when
taking the coupling term (32) or (34) into account the binding energy (in Rydberg-
energy units)
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where the eigenvalue m of is negative. The infinite-mass binding energy is ob-
tained for by scaling energies of neutral hydrogen. The first and second terms of
(36) respectively correspond to the first and second terms of (35). The collective energy

arises from the eigenvalue of modified by the coupling effects due to For
it is a function of the eigenvalue of the transverse total pseudomomentum,

For the oscillator quantum number associated with leads to

In both cases, the effective mass takes the coupling effects into account. Small
higher-order corrections are neglected in (38). As an example, we display in Fig. 1 the
c.m. corrections on binding energies of hydrogen.13 States with become unstable
beyond some critical field, because of these c.m. corrections.

Binding energies for N-electron systems are more complicated because mass po-
larization corrections must be evaluated and because of the occurrence of three types
of dissociations:
(i) neutral atom ion electron
(ii) ion neutral atom electron
(iii) ion ion electron ( ).
A simplified expression of the binding energy reads15

where the eigenvalue m of is negative and small scaling effects are neglected. The
quantity corresponds to the difference of mass-polarization corrections for both
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atoms and must be calculated from the eigenfunctions of This term is not negli-
gible. The difference is well approximated by

where is a difference of terms from (38) and (37). The additional term appearing
in (40) corresponds to the difference of zero-point energies which depends on the dis-
sociation type (i), (ii), or (iii), as illustrated in Fig. 2. The zero-point energies reduce
the binding energies for This important c.m. effect can be observed in Fig. 3
where different states become unstable at high fields.

Decentered States

The hydrogen atom in crossed electric and magnetic fields is equivalent to the same
atom with a transverse motion in a pure magnetic field. Indeed, the electric field can
be eliminated with the Galilean LCT20 of type (25),

where is the velocity of the drift frame, in which the electric field
vanishes. In this frame, the pseudomomentum becomes

The Hamiltonian of an hydrogen atom in a pure magnetic field reads

The simple LCT of transverse components12, 16 of type (23),

is combined with the usual c.m. transformation for parallel components. The Hamil-
tonian becomes
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where is related to by (4). Eq. (44) displays an essential advantage of the trans-
formation (43): the transformed potential term only depends on the relative coordinate

and on the constant of motion For large an expansion of the potential term
in (44) up to second order in provides a triaxal harmonic-oscillator Hamiltonian

which can be solved exactly,28 independently of the choice of the vector potential. The
eigenvalues then read16

where and are oscillator quantum numbers. The corresponding eigenstates
present a strong decentering of the electron with respect to the proton, approximately
equal to Under realizable laboratory conditions ( T and
kV/cm), binding energies are very small and the decentering reaches
0.087 mm. Similar results are obtained in a gauge-independent potential model.18, 19

The observation of such states will require the understanding of the transition
between the centered and decentered regimes. This transition has only been studied
in the strong field range. An example is given for the lowest field studied until now

in Fig. 4.20 The centered states appear in the left-hand-side while decentered
states become dominant beyond ,

Electromagnetic Transitions

The momentum of the emitted photon is given by the difference between the initial
and final pseudomomenta.3 The effect of c.m. corrections on electromagnetic transi-
tions has been discussed in Ref. 29. For the dominant dipole transitions, the correction
essentially consists in taking the c.m. corrected energy differences into account, when
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the effects of transverse motion can be neglected. The situation is more complicated for
other transitions where several types of energy differences (infinite-mass and c.m. cor-
rected) occur simultaneously. When the transverse motion cannot be neglected, electric
dipole transitions have been studied by Potekhin.21

CONCLUSIONS

By their simplicity of use, linear canonical transformations provide an ideal tool
for studying the c.m. problem in a magnetic field. They simultaneously perform the
changes of variables and gauge transformations necessary in other approaches. They
allow a unified treatment of the very different neutral and charged systems. In fact,
contrary to a common expectation, the c.m. problem is not more complicated for a
charged system than for a neutral system in the general case, involving a transverse
motion.

The c.m. problem in a magnetic field is now well understood when the collective
transverse or cyclotron motion is weak. C.m. effects are not trivial but can be calculated
reliably when the infinite-mass problem can be solved with sufficient accuracy.

Interesting physical phenomena related to strongly decentered states occur in
crossed fields or, equivalently, for a large transverse motion. An important goal is
now observing them in experiments but the planning of such experiments will require
theoretical information on the preparation of such states i.e. on the transition between
centered and decentered states with increasing electric field under laboratory-feasible
magnetic fields. Additional studies of such states at higher fields, and in particular sim-
ple analytical approximations of binding energies and of the different types of transition
probabilities, will also be useful for neutron-star models.
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1. INTRODUCTION

One important advantage of studying atoms or molecules in external fields is, that
the field parameters are tunable variables, and investigation of the properties of the
atom or molecule as function of these variables provides a much richer body of infor-
mation than can be observed in the isolated specimen. Due to scaling properties, the
classical dynamics of an atom or molecule in external fields depends on some combina-
tions of field parameters in a trivial way. It is important to understand the rules behind
such scaling properties in order to avoid redundancies in measurement and analysis of
data and in order to extract genuine physical effects from the data.

The aim of this contribution is to summarize in a unified way the scaling properties
of an atom (or molecule) in an external electric or magnetic constant or time depen-
dent field, or in any superposition thereof. The results are not new, but I hope the
following presentation will be helpful in clarifying the simple structure of the scaling
rules applicable in the various situations. My starting point is the notion of mechanical
similarity for a classical system described by a homogeneous potential or a superpo-
sition of homogeneous potentials. The section on quantum mechanics shows how the
scaling properties of the corresponding classical system can be used to study quantum
properties of a given system as function of an “effective Planck’s constant” and de-
fines the semiclassical limit of the system. It also illuminates the merits of a popular
spectroscopic technique, which should most appropriately be called “scaled fields spec-
troscopy”. A final section discusses the transfer of the scaling rules developed for atoms
(or molecules), which are characterized by a Coulombic potential, to objects such as
quantum dots, which can be thought of as atoms of a sort, but not necessarily with a
Coulombic potential.

Atoms and Molecules in Strong External Fields
Edited by Schmelcher and Schweizer, Plenum Press, New York, 1998 153



2. CLASSICAL MECHANICS

2.1 Mechanical Similarity for Homogeneous Potentials

Consider a conservative system S with a finite number of degrees of freedom de-
scribed by a kinetic energy,

and a potential energy [The mass m can be different for the various degrees of
freedom, but this is irrelevant for the following.] The similarity transformation,

with the two positive constants and transforms the system S into a system S',
whose kinetic energy T' is related to the kinetic energy T in (1) by

Suppose the potential energy in the system S is given by a homogeneous function
of degree d, i.e.

multiplied by a parameter F, which gives us a handle on the potential strength,
Let the potential energy in the system be given by the same

(homogeneous) function V, multiplied by a strength parameter
Because of homogeneity (4), the potential energy is related to the potential energy
U in S by

If and only if the field strengths fulfill the relation

then the potential energies are related by the same multiplicative factor as the
kinetic energies (3). The Lagrangian in the system S' is then just a multiple of
the Lagrangian in S, and the equations of motion in both systems are the
same.1 The trajectory is a solution of the equations of motion in S if and only if
the trajectory which is related to by the similarity transformation (2), is a
solution of the equations of motion in S'. This is the property of mechanical similarity
of the systems S and S´, and the condition for mechanical similarity is, that the field
strengths obey (6). The (conserved) energie of motion along
the trajectory in S is related to the associated energy E' in S' via

The condition (6) contains two parameters and and can always be fulfilled for
any values of the field strengths F and F'. Together with the relation (7) we can, for
any field strengths F and F' and energies E and E' uniquely determine the constants
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and defining the similarity transformation (2) connecting the trajectory
with the trajectory

[It shall be taken for granted throughout, that potential strengths and energies have
the same sign in S' as in S.] From equation (8) we see e.g., that trajectories at different
energies E, E' for one and the same potential strength, are related by a
stretching factor __   in coordinate space, whereas the traversal times are
stretched by the factor

2.2 Potential Consisting of Several Homogeneous Contributions

The considerations above are readily generalized to a potential which can be writ-
ten as a sum of n homogeneous terms of degree The potential U in
the system S is now

and the potential U' in the system S' differs only through different potential strengths,

The systems S and S´ are mechanically similar, if U' is just U multiplied by
when and t' are related to and t via (2). The condition (6) must now be fulfilled
for each of the n terms independently, and the first equation (8) is replaced by the n
equations,

The relation between the total energies E and E' is again given by (7).
Equating the right-hand sides of (11) for two different terms i and j and collecting

unprimed and primed quantities on separate sides leads to the condition

If we consider an ensemble of systems S corresponding to different field strengths and
energies E (excluding changes of sign), then Eq. (12) shows that the classical dynamics
within the ensemble is invariant within mechanical similarity if

for each pair of labels i, j. For these conditions are not independent. The
parameters E, Fi are effectively subjected to independent

conditions, because and generate a two-parameter manifold of mechanically similar
systems.
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2.3 Examples: Atom in External Static Fields

The Coulomb potential describing the forces in an atom (or molecule or ion) is
homogeneous of degree and the corresponding strength parameter may be
assumed to be constant for a given specimen. This fixes the scaling parameters,

according to (7), (11). In the presence of homogeneous external fields of degree
the conditions (13) reduce to

when inserting for The conditions for mechanical
similarity are thus, that the scaled field strengths defined by

be constant. The values of these scaled field strengths determine the properties of
the classical dynamics which are invariant to within similarity transformations (2). For
each set of values of the scaled field strengths there is now a one-parameter family of
mechanically similar systems and not a two-parameter family, because the field strength

is kept fixed.
For a homogeneous external electric field the potential is homogeneous of degree

one, and is the electric field strength f. The scaled electric field strength is

and all systems with the same value of (and the same sign of E) are mechanically
similar.

A homogeneous external magnetic field is studied more conveniently by directly
subjecting the equations of motion for a charged particle in such a magnetic field to
the similarity transformation (2). The equations of motion in the systems S and S' are
seen to be equivalent if the respective magnetic field strengths and are related by

Comparing with Eq. (6) shows that this corresponds to the behaviour of a homogeneous
potential of degree two, and the square of the magnetic field strength plays the role
of “field strength” F. For an atom in a constant homogeneous
magnetic field of strength the scaled magnetic field strength is thus defined via
(16) with as

The conditions for invariant classical dynamics of an atom in an external electric
or magnetic field are conventionally stated as the condition of constant scaled energy,
which is for the electric field and for the magnetic field.2–9 The nomen-
clature evolved historically10, and has probably been a mistake from the pedagogical
point of view. This becomes clear when we consider an atom in a superposition of
homogeneous electric and magnetic fields. We are then confronted with two different
definitions of scaled energy, and usually the conditions of mechanical similarity are ex-
pressed as requiring one of these scaled energies and the ratio to be constant.
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The more natural statement of the conditions for mechanical similarity for an atom in
a superposition of electric and magnetic fields is surely that both scaled field strengths,

and be constant. This of course implies the Constance of the above mentioned
scaled energies and of the ratio which is equal to and is independent of
energy.

2.4 Time Dependent External Fields

In the presence of a time dependent external field the expression (9) for the po-
tential energy of the system S must now be generalized, e.g. to

where we have added a homogeneous potential with strength multiplied by a time
dependent function which is usually, but not necessarily, a harmonic function
(sine, cosine or exp The time function need not even be periodic, but the
parameter is included explicitly to give us a handle on the time scale. The

corresponding potential energy in the system S' is

Again we study the effect of the similarity transformation (2) on the kinetic and po-
tential energy. The systems S and S' are mechanically similar, if kinetic and potential
energies in S' differ from those in S by the same multiplicative factor. The time func-
tion is generally assumed to be bounded, so it cannot be a homogeneous function.
Hence we have no freedom to choose the parameter connecting the times t and t'; if
U´ is to be proportional to U there is no choice but to set

The time scale parameter replaces the energy of the time independent case as
additional parameter (beside the field strengths) determining the classical dynamics of
the system. Whereas Eq. (7) fixes the ratio in the time independent case, Eq. (22)
fixes the time stretching parameter in the time dependent case. This leaves one free
parameter and the conditions,

Resolving for now yields

For any pair ( i , j ) of labels this implies

in other words, mechanical similarity is given if
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The potential (20) may contain more than one time dependent contribution. As
long as the dependence of each contribution on the coordinates is homogeneous, the
results derived for the label above are easily generalized to a finite number of
time dependent terms. Note, however, that only one time scale parameter can be
accommodated, because there can be only one time stretching factor see (22). If
the potential contains e.g. a superposition of several harmonic terms with different
frequencies, then the mutual ratios of these frequencies have to be the same in all
mechanically similar systems, so that there is effectively only one parameter defining
the time scale.

2.5 Examples with Time Dependence

For an atom (or ion) in a time dependent field and external static fields
we again assume the label to describe the constant Coulomb field

of the atom, and this fixes the stretching parameter via (24),

The conditions (26) now suggest the following definition for the scaled field strengths:

With these definitions the n conditions for mechanical similarity can be expressed as
the requirement

For an atom described by a constant Coulomb field in a superposition of one
time dependent and static external fields, the classical

dynamics is determined to within mechanical similarity by the values (29) of these n
scaled field strengths.

The time dependent field is very often the oscillating electric field of microwave or
laser radiation, so is the amplitude of the oscillating field of circular frequency

and The corresponding scaled field strength which is constant under
the conditions of mechanical similarity, is

according to (28). For an external static electric field of strength f, the scaled field
strength is analogously given by For an additional magnetic field of
strength , the scaled field strength is given by

according to (28). Under the conditions of mechanical similarity, and are
constant, and so are as in the time independent case.

3. QUANTUM MECHANICS

The quantum mechanical system corresponding to the classical system S intro-
duced in Sect. 2 is described by the Schrödinger equation,
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and can be obtained by quantization via the canonical commutation relations between
the coordinates and the momenta

When the classical dynamics of the system S is related to the classical dynamics of the
system S' via the non-canonical similarity transformation (2), the coordinates transform
as and the momenta as [The latter also holds if the momentum
contains a term proportional to a vector potential describing a homogeneous magnetic
field, because the vector potential must be proportional to a product of the magnetic
field strength, transforming according to (18), and a linear function of the coordinates.]
The same quantum mechanics is thus obtained by quantization of the system S' via
the non-canonical commutation relations,

where is an effective Planck‘s constant,

If the field strengths in S are varied under the conditions of mechanical similar-
ity, then canonical quantization in the system S leads to the same quantum mechanics
as non-canonical quantization in the mechanically similar “scaled system” system S´
according to (34), with a variable effective Planck’s constant (35).

3.1 Time Independent Homogeneous Potentials

For a system with one time independent homogeneous potential of degree d,
the constants and are given by (8), and the effective Planck’s

constant in the scaled system S’ is

It is interesting to study (for fixed energy E' and field strength F'), which combination
of energy E and field strength F corresponds to the semiclassical limit, This
obviously depends in the following way on the degree d of homogeneity of the potential:

When or the semiclassical limit for a given field strength F corre-
sponds to the high energy limit However, if the degree d of homogeneity of
the potential lies between zero and –2, then the semiclassical limit of the Schrödinger
equation for a given field strength corresponds to the limit of vanishing values of the
energy E. This applies in particular to all Coulomb systems, where and it is
perhaps not surprising when remembering that the energies of the bound states of a
one-electron atom vanish in the (semiclassical) limit of large quantum numbers.

The fact that the low energy limit, corresponds to the semiclassical limit
in Coulomb systems also for scattering states, is not so widely appreciated, mainly
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because of the peculiar coincidence, that classical mechanics, quantum mechanics and
the Born approximation all give the same answer for the Rutherford scattering cross
section in three dimensions. This is not the case for the differential cross section
for scattering by a potential in two spatial dimensions. As shown by Barton,11 the
exact quantum mechanical result is

where is the Coulomb parameter and is the scattering
angle. In contrast, the classical scattering cross section in two dimensions is

which incidently is just the square root of the three-dimensional Rutherford cross sec-
tion The result of the Born approximation for Rutherford scattering in two
dimensions is11

The quantum mechanical cross section (41) differs from the classical cross section (42)
by the factor tanh which approaches unity in the low-
energy limit and approaches yielding the cross section obtained in the Born
approximation, in the high-energy limit, which is the anti-classical limit for the
Coulomb potential. The classical and quantum cross sections are illustrated in Fig. 1
together with the result of the Born approximation. It is interesting to observe that
both the classical approximation and the Born approximation always overestimate the
cross section.

The fact that the semiclassical limit corresponds to vanishing total energy for any
pure Coulomb system makes it seem natural, that classical and semiclassical meth-
ods are successful in describing electron impact ionization of one-electron atoms near
threshold.12 Note however, that substantial discrepancies between quantum and classi-
cal cross sections have been observed at small but finite total energies in model systems
of the pure Coulomb type.13

3.2 Potential Consisting of Several Time Independent Homogeneous Con-
tributions

Consider a potential U in (32) consisting of n contributions,
where is a (time independent) homogeneous potential of degree The equivalence
of the canonical Schrödinger equation for energy E and field strengths with the
non-canonical Schrödinger equation containing the modified Planck’s constant (35) is
maintained, as long as energy and field strengths are varied under the conditions of
mechanical similarity described above. This implies

The conditions of the semiclassical limit correspond in each contribution i to the limiting
behaviour (37) – (40), depending on the degree of homogeneity of the respective term.
These conditions are compatible under the conditions of mechanical similarity (12). For
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example, if the label describes the fixed Coulomb potential in an atom, then the
condition of constant scaled field strengths (16) implies

The semiclassical limit corresponds to For any further contributions
with a positive degree of homogeneity, e.g. an external electric field with or an
external magnetic field with the strengths must tend to zero as prescribed by
(45) in the semiclassical limit. Note in particular, that a fixed strength of the Coulomb
potential and a non-vanishing external electric and/or magnetic field are incompatible
with the conditions of the semiclassical limit.

3.3 Scaled Fields Spectroscopy

The energy and the strengths of the static external fields in which an atom
is placed, have conditions to fulfill for mechanical similarity to hold, e.g. that the
scaled field strengths (16) be constant. When the field strength of the Coulombic forces
describing the atom is kept fixed, there remains one continuous parameter, which can
be varied without changing the classical dynamics, except to within a similarity trans-
formation (2). This makes it possible to study the variations of the quantum system
corresponding to different values of the effective Planck’s constant without changing the
classical dynamics. Although the energy itself or any one of the external field strengths
could be chosen as the variable parameter, a prudent choice is
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which has the dimensions of an inverse action and is just the inverse of the effective
Planck’s constant

A justification for this choice can be found in modern quantization techniques
based on Gutzwiller’s trace formula or variations thereof,9,14 which generally express
the energy spectrum or the energy level density or the semiclassical propagator in terms
containing exponentials involving the actions along a multitude of trajectories,

Regarding both sides of Eq. (47) as functions of the variable defined by (46) leads to
the following form of this general equation:

where we have expressed the actions through the “scaled actions”

The scaled classical actions (49) depend only on the fixed energy , which defines
the energy at which the effective Planck’s constant assumes its physical value
and on the values of the scaled field strengths (16), which determine the classical
dynamics. In the general formula (48) these scaled actions appear as Fourier conjugates
to the variable Applying a Fourier transform to Eq. (48) will thus reveal structures
associated with classical trajectories at values of the conjugate variable corresponding
to the scaled actions of the trajectories.

For an atom in external static fields the scaling parameters and are given by
(14) and the natural variable (46) is,

The definition of the natural variable depends on which field strength we are keeping
constant, and not on which external fields (of variable strength) are present; the con-
stance of the strength of the Coulombic potential describing the atom
leads to the simple result (50), For an external magnetic field of variable

strength this corresponds to when the scaled field strength is kept con-
stant, of. (19). For an external static electric field of variable strength,

corresponds to when the scaled field strength is kept fixed, of. (17). In a
superposition of electric and magnetic fields both relations apply, which is consistent
because is constant under the conditions of mechanical similarity.

The technique of scaled fields spectroscopy is well established for the example of
atoms in external electric and magnetic fields and has been been called “scaled energy
spectroscopy”15, 16 and also “recurrence spectroscopy”,8, 17 because of the dominating
role which periodic and recurring classical orbits play in appropriately Fourier trans-
formed spectra.

A scaled field spectrum is shown in Fig. 2 for the example of a lithium atom in
a constant electric field (from Courtney et al.,16 see also Delos and Schwieters17). In
this figure, the Fourier transform of the measured photoabsorption spectrum is shown
as a function of the “scaled action”, which is the Fourier conjugate of the variable
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and the “scaled energy”, which is plus or minus the inverse square root of the scaled
electric field strength it is this quantity which determines the classical dynamics.
The curves in the plane show the dependence on scaled energy of the scaled action
of one or more traversals of the periodic straight line orbit parallel to the direction of
the electric field; on this orbit the electron oscillates between the atomic nucleus and
the classical turning point on the uphill side of the potential. The Fourier transformed
spectra for fixed scaled energies clearly tend to be peaked at values of the scaled action
variable corresponding to the scaled actions of one or more traversals of this periodic
orbit. In the example, the peaks are especially strong at scaled energies beyond certain
values (indicated as circles) at which the straight line orbit bifurcates and “gives birth”
to further periodic orbits, which are illustrated at the bottom of the figure. “Ghost
orbits” which are only realized in complex phase space prior to such points of birth,
have been the focus of considerable attention in recent years.5 The straight line orbit
is not a ghost orbit, because it is present as a real orbit prior to the bifurcation points
in Fig. 2, it is just that the “off-spring orbits” have not yet appeared. It would be
consistent to introduce the term “pregnant periodic orbit” for the straight line orbit
prior to the points of bifurcation in Fig. 2.
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3.4 Time Dependent Potentials

The Schrödinger equation (32) with the time dependent potential (20) is equivalent
to a non-canonical Schrödinger equation containing the effective Planck’s constant (35)
with the scaled potential (21) as long as the frequency parameter and the potential
strengths obey the conditions (22) and (24) for mechanical similarity. If  the label
describes the fixed Coulomb potential of an atom, the stretching
parameter α is given by (27), and the conditions for mechanical similarity reduce to
the requirement that the scaled field strengths (28) be constant.

For a concrete experiment with a one-electron atom in a time dependent field,
the initial (unperturbed) state of the atom is described by a quantum number  , and

is the classical action I of the electron on the corresponding orbit. The similarity
transformation (2) transforms actions as

according to (22) and (27), hence is the corresponding scaled quantum number
which remains constant under the conditions of mechanical similarity. Using the initial
quantum number as reference rather than the frequency parameter leads to

as an alternative definition [instead of (30)] for the scaled strengths of the time depen-
dent or static electric fields.18,19 The corresponding alternative to (31) for the scaled
strength of an external magnetic field is

With and given by (27) and (22), the effective Planck’s constant is

and the semiclassical limit corresponds to Note that a finite time scale
for the time dependent part of the potential is incompatible with the semiclassical limit
under the conditions of mechanical similarity. For fixed field strength of the Coulomb
potential describing the atom, the semiclassical limit for an atom in external time
dependent and/or time independent electric and magnetic fields corresponds to the
static limit according to (54) and to vanishing field strengths according to (28), (45).

4. NON-COULOMBIC “ATOMS”

In the rather general treatment above, the Coulomb potential of the atom or ion on
which the examples have been based, may readily be replaced by a different interaction
potential describing an artificial atom. Let’s assume our artificial atom is described by
a homogeneous potential of degree with a constant field strength, and external time
independent and time dependent fields may be present as in Sects. 2 and 3. Billiard
systems in which a particle moves freely between specularly reflecting infinitely steep
walls appear as the special case

With the assumption that the field strength is constant, Eq. (11) for the stretch-
ing factor for the time independent case becomes
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corresponding to for the harmonic potential and for billiards — the
shape and size of trajectories does not depend on energy for a given billiard potential.

Adapting Eq. (13) for leads to the following definition of scaled
field strengths:

which replaces (16); the conditions for mechanical similarity are now, that these scaled
field strengths be constant. Note that the scaled field strengths are equal to
regardless of in the billiard limit

For the special case of a harmonic potential, the scaled electric field
strength is related to the real electric field strength

while the scaled magnetic field strength is equal to the real magnetic field
strength,

and does not depend on the energy.
The factor by which actions are transformed under the similarity transfor-

mation (2) is now

and the natural variable for scaled field spectroscopy is

These results are obvious, because the natural variable, being inversely proportional to
the effective Planck’s constant, is directly proportional to the integrated energy level
density (i.e. the number of levels below a given energy) in the one-dimensional potential
with the same degree of homogeneity as the “atomic potential” whose strength is kept
constant.

For an artificial atom in a time dependent external field, the stretching factor is
given, instead of by (27), by

In the billiard limit is unity as in the time independent case. For the
“harmonic atom”, Eq. (61) only makes sense if and again The
shape and size of trajectories does not depend on the time scale in billiard systems.
In a harmonic potential of fixed strength, the energy independent period of oscillation
defines a time scale, and hence no variation in the frequency of the external field is
possible under the conditions of mechanical similarity.

Adapting Eq. (26) for leads to the following definition of scaled
field strengths:

which replaces (28); the conditions for mechanical similarity are now, that these scaled
field strengths be constant. Note that the scaled field strengths are regardless of

in the billiard limit
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The scaling rules for a harmonic “atomic potential” would apply to a one-electron
quantum dot, when the confining potential is quadratic potential of fixed strength. For
several electrons confined in a quantum dot, the electron-electron interaction potential
is Coulombic, i.e. homogeneous with degree –1, but the confining potential is in general
something different. If we regard only the electron-electron part of the potential as “the
atomic potential” whose strength is fixed and the confining potential as (one of the)
external field(s), then all the results of Sects. 2 and 3 applying to ordinary Coulombic
atoms hold without change for the quantum dot case, provided a way is found to vary
the strength of the confining field. If the confining field is quadratic with oscillator
parameter then the corresponding strength parameter and the scaled
oscillator parameter which must be constant under the conditions of mechanical
similarity, is given via (16),

In this way, the many-electron states in quantum dots, which were central topics in the
talks by Vignale20 and Maksym,21 could, with or without additional external fields, be
analyzed by the technique of scaled fields spectroscopy, if controlled variation of the
strength of the confining potential can be realized.

5. SUMMARY

When the potential energy of a mechanical system can be written as a sum of
n time independent homogeneous contributions, the classical dynamics of the system
depends not on the energy and the strengths of all n contributions, but only on
combinations of these numbers. If the strength of one of these homogeneous
contributions, which we call the “atomic potential”, is kept fixed, then this leaves
a one-parameter family of systems whose classical dynamics is invariant to within a
similarity transformation (2). The parameters determining the classical dynamics
may e.g. be chosen to be the scaled field strengths (56), corresponding to (16) when
the atomic potential is Coulombic. A homogeneous magnetic field of strength fits
into this picture like a quadratic potential with strength parameter

The quantum mechanics of mechanically similar systems with variable field strengths
is identical to the quantum mechanics of a scaled system with fixed field strengths, de-
rived via non-canonical quantization involving an effective Planck’s constant (35). The
semiclassical limit corresponds to the limit of vanishing effective Planck’s constant. For
time independent systems the inverse of the effective Planck’s constant constitutes a
convenient natural variable for recording spectra. When the strength of one “atomic
potential” is kept fixed, the natural variable is uniquely defined to within multiplication
by a constant, and it does not depend on which (variable) external fields are present.
The semiclassical limit corresponds to vanishing total energy when the atomic potential
is Coulombic. If quantum spectra are recorded under the conditions of mechanical sim-
ilarity as functions of the natural variable, then the Fourier transformed spectra reveal
structures related to prominent invariant quantities of the classical dynamics, such as
the scaled actions of recurring orbits. This is the basis of “scaled fields spectroscopy”.

For a time dependent potential the time scale of the time dependent contribution(s)
replaces the energy as one of the parameters on which the classical dynamics may
depend. If the “atomic potential” is homogeneous of degree then the parameters
determining the classical dynamics may be chosen to be the scaled field strengths (62),
which reduce to (28) when
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The considerations above apply typically to atoms (or molecules or ions), described
by a Coulombic potential of fixed strength in static or time
dependent external electric or magnetic fields. They apply also to
artificial atoms, such as quantum dots, when the “atomic potential” is homogeneous,
but not necessarily Coulombic.

ACKNOWLEDGEMENT

I am grateful to Johannes Trost for critical reading of the manuscript.

REFERENCES

1. L.D. Landau and E.M, Lifschitz, Lehrbuch der Theoretischen Physik, Bd. I, Mechanik (Akademie-
Verlag, Berlin, 1966).

2. H. Friedrich, Theoretical Atomic Physics, (Springer-Verlag, Heidelberg, 1991).
3. H. Ruder, G. Wunner, H. Herold and F. Geyer, Atoms in Strong Magnetic Fields, (Springer-

Verlag, Heidelberg, 1994).
4. W. Hogervorst, K. Karremans, A. Kips and W. Vassen, contribution to this conference.
5. J. Main and G. Wunner, contribution to this conference.
6. J. Main, in: Classical, Semiclassical and Quantum Dynamics in Atoms, ed. H. Friedrich and B.

Eckhardt, Lecture Notes in Physics, vol. 485, 247 (Springer-Verlag, Heidelberg, 1997).
7. J. Main, contribution to this conference.
8. J. Main, V.A. Mandelshtam and H.S. Taylor, Phys. Rev. Lett. 78 (1997) 4351.
9. H. Friedrich and B. Eckhardt (eds.), Classical, Semiclassical and Quantum Dynamics in Atoms,

Lecture Notes in Physics, vol. 485, (Springer-Verlag, Heidelberg, 1997).
10. D. Wintgen and H. Friedrich, Phys. Rev. A 35, 1464 (1987); H. Friedrich and D. Wintgen,

Phys. Reports 183, 37 (1989).
11. G. Barton, Am. J. Phys. 51, 420 (1983).
12. J.-M. Rost and G. Tanner, in: Classical, Semiclassical and Quantum Dynamics in Atoms, ed. H.

Friedrich and B. Eckhardt, Lecture Notes in Physics, vol. 485, 273 (Springer-Verlag, Heidelberg,
1997).

13. J. Macek and W. Ihra, Phys. Rev. A 55, 2024 (1997); W. Ihra, F. Mota-Furtado and P.F.
O’Mahony, Phys. Rev. A 55, 4263. (1997).

14. Chaos 2, No. 1 (1992), Special Focus Issue on Periodic Orbit Theory.
15. J. Main, G. Wiebusch and K.H. Welge, Comments on At. Mol. Phys. XXV, 233 (1991).
16. M. Courtney, H. Jiao, N. Spellmeyer, D. Kleppner, J. Gao and J.B. Delos, Phys. Rev. Lett.

74, 1538 (1995).
17. J.B. Delos and C. Schwieters, in: Classical, Semiclassical and Quantum Dynamics in Atoms,

ed. H. Friedrich and B. Eckhardt, Lecture Notes in Physics, vol. 485, 232 (Springer-Verlag,
Heidelberg, 1997).

18. P.M. Koch, Chaos 2, 131 (1992).
19. D. Richards, in: Classical, Semiclassical and Quantum Dynamics in Atoms, ed. H. Friedrich

and B. Eckhardt, Lecture Notes in Physics, vol. 485, 172 (Springer-Verlag, Heidelberg, 1997).
20. M. Ferconi and G. Vignale, contribution to this conference.
21. P.A. Maksym, contribution to this conference.

167



TIME INDEPENDENT AND TIME DEPENDENT STATES OF ATOMS
IN STATIC EXTERNAL FIELDS

P. F. O’Mahony,1 I. Moser,1 F. Mota-Furtado,1 and J.P. dos Santos2

1Department of Mathematics,
Royal Holloway, University of London,
Egham, Surrey TW20 OEX, United Kingdom

2Centro de Física Atómica da Universidade de Lisboa
and Departamento de Física da Universidade Nova de Lisboa,
Av. Prof. Gama Pinto 2, P-1699 Lisboa Codex, Portugal

INTRODUCTION

The dynamics of a Rydberg atom in an applied static magnetic field is of interest
because it provides an experimentally realizable prototype for studying classical and
quantum chaos. The spectrum of such an atom is also of interest in other areas of
physics for example in astrophysics when determining the magnetic field strengths
present in white dwarfs and neutron stars.

The dynamics of Rydberg atoms in external fields has been extracted from tradi-
tional stationary state spectroscopy such as the measurement of the photoabsorbtion
and the photoionization spectrum and more recently by explicitly time dependent tech-
niques using pulsed lasers to excite non-stationary Rydberg wavepackets.

We present here (a) a method to calculate the photoionization spectrum of an atom
in an arbitrary strength magnetic field but particularly for atoms in laboratory strength
fields. This allows one, for the first time, to calculate the photoionization spectrum at
arbitrarily high energies and over a very wide range of energies and field strengths. We
do this by combining an adiabatic basis set approach with R matrix propagation. This
method also allows a detailed analysis of complex resonances present in the spectrum
via the use of multichannel quantum defect theory. We will present the method and
results for photoionization of lithium in a field of 6.1 Tesla.

We also present (b) an analysis of recent Rydberg wavepacket experiments in
parallel electric and magnetic fields. These experiments give direct information in the
time domain on the most important periodic orbits in the classically regular and chaotic
regimes. The magnitude of the time autocorrelation function between states excited by
two Gaussian laser pulses is calculated for both hydrogen and rubidium atoms in parallel
electric and magnetic fields and compared with experiment. Qualitative agreement is
obtained with experiment.
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TIME INDEPENDENT STATES OF AN ATOM IN A MAGNETIC FIELD

Continuum states of atoms in a magnetic field have been of great interest since
the observation of quasi Landau modulations above the ionization threshold in the
now classic experiment of Garton and Tomkins1. These systems have an inherent
non separability arising from the competing spherical symmetry of the atom and the
cylindrical symmetry of the applied field. This competition leads to the corresponding
classical system exhibiting chaotic behaviour. Since the experiments of Garton and
Tomkins the experimental resolution has been increased by orders of magnitude using
laser spectroscopy culminating in the recent experiments by Iu et al 2 on lithium in a
field of about 6 Tesla.

Stationary states for the continuum spectrum of an atom in a magnetic field have
been calculated using complex co-ordinate techniques3, R-matrix propagation4, 5, 6 and
the diabatic-by-sector method7. Although all of these approaches have recreated the
experimental spectrum of Iu et al 2 they are limited to studying energy regions close to
the ionization threshold. We have designed a new method which combines the attractive
features of both the diabatic-by-sector method and R-matrix propagation allowing us
to extend the calculation of the photoionization cross section to energies far from the
ionization threshold8 . The multichannel quantum defect theory of Seaton9 can also be
incorporated allowing the resonances present in the spectrum to be analysed.

The Hamiltonian for hydrogen in a magnetic field (taken to be in the z direction)
in the symmetric gauge, using atomic units is

where the magnetic field B given in atomic units is with
Lz is a conserved quantity.

At low the Coulomb potential dominates while at large the magnetic field
potential is the dominant effect. Between these values a region of strong mixing occurs.
For a general atom at a particular field strength there are four regimes of interaction for
an excited electron. After excitation by a photon the electron moves initially through
the core region of the atom and emerges into a region where the Coulomb potential
dominates and the diamagentic potential is negligible. It then enters a region where
both fields are of comparable strength and finally reaches the asymptotic region where
the cylindrically symmetric magnetic field potential dominates.

The method presented here is based on the R matrix approach of O’Mahony and
Mota-Furtado4, 5, 6 in which these four regimes of interaction are treated in different
ways. A major improvement on this method is presented in which adiabatic functions
are used to represent the wavefunction in the strong mixing region. This allows for an
order of magnitude saving in computer time and memory.

The Coulomb region

Outside the atomic core the Hamiltonian for the continuum electron is given by
equation (1). At sufficiently low radii (r < a) this equation can be approximated by

the field free Hamiltonian because the potential terms resulting from the influence of
the magnetic field are negligible in comparison with the Coulomb potential. The wave-
function of a continuum electron at an energy and with an orbital angular momentum

can therefore be written in terms of the energy normalized Coulomb functions and
C,  as
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The quantum defects are used to represent the non-hydrogenic core9 and
are spherical harmonics. The quantum defects can be calculated ab initio or taken
from experiment. By calculating the wavefunction and its derivative at
the R matrix or log-derivative matrix can be constructed on the outer boundary of this
region.

The effects of a non hydrogenic core are contained in

The strong mixing region

In this region the Coulomb potential and the diamagnetic potential are of a com-
parable size. This region is defined by where the radius b is taken to be large
enough such that the Hamiltonian is separable in cylindrical coordinates. The change
in symmetry of the potential, from spherical to cylindrical, is therefore completely con-
tained within this region. The method which is used aims to obtain the R matrix at
the outer boundary of this region from the R matrix at the inner boundary
(calculated in equation (3)).

In order to calculate the R matrix at  from the R matrix at the range
is firstly split into N sectors with radii

Within each of these sectors the adiabatic Hamiltonian i.e. the full Hamiltonian
H (equation (1)) at a fixed radius is diagonalized in a basis of spherical harmonics
with the radius corresponding to a radius within that sector, i.e. for the nth sector

In a particular sector the functions generated give an
exact description of the angular solutions of the Schrödinger equation at The

functions are therefore a very good basis with which to represent the angular part
of the wavefunction in the local region around namely within the sector n. These
are produced by a diagonalization of the adiabatic Hamiltonian

in a basis set of spherical harmonics such that

In each sector the full Hamiltonian (equation (1)) plus the Bloch operator10 or sur-
face term is diagonalized in a basis set consisting of a product of Legendre polynomials

and the adiabatic functions generated for that sector The eigenfunctions
obtained from this diagonalization are therefore

The eigenvalues and the eigenvectors can be used to evaluate the quantity

on the inner and outer boundary of each sector Using these
we can construct four matrices, called sector R matrices, with i, jth elements
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given by

It can be shown11 that these matrices give a relationship between the R matrix on the
inner boundary of the nth sector and the R matrix on the outer boundary
of the nth sector such that

where are represented in the same adiabatic basis set as the sector
R matrices.

To change the basis representation of the R matrix, the matrix with elements

is constructed. This relates the R matrix in the adiabatic basis evaluated at
to the adiabatic basis evaluated at such that

where is the transpose of T.
The full R matrix can therefore be evaluated at the outer boundary of the first

sector using the sector R matrices from the first sector and
the R matrix at (evaluated from equation (3) in the Coulomb region). A frame
transformation can then be performed to change the basis representation of the R
matrix from the adiabatic basis used in the first sector to that which was used in the
second sector. The propagation technique can then be carried out to evaluate the R
matrix on the outer boundary of the second sector. By repeating this procedure through
all of the sectors the R matrix can therefore be evaluated on the outer boundary of the
region at (Although it is possible to evaluate the R matrix at each of the sector
radii, it is more practical to derive global sector R matrices. These matrices allow the
calculation of the R matrix at directly from the R matrix at and serve the
same purpose as propagating the full R matrix through each sector individually12. )

The asymptotic region

For large r the diamagnetic potential dominates and the Hamiltonian becomes
separable in cylindrical coordinates. Since the motion in is bounded, and
H becomes

where is the kinetic energy in the coordinate. The asymptotic region is therefore
chosen to conform with the cylindrical symmetry present,
where c is less than the radius . For this region the wavefunction may be written in
terms of a product of Landau states for the two dimensional oscillator and Coulomb
functions in z,
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where s and c are the energy normalized regular and irregular Coulomb functions
evaluated at an energy being the energies of the Landau states. The
unknown matrix or K matrix is determined by matching the asymptotic solutions
to the solutions obtained in the strong mixing region. The R matrix at  found by
propagation using the method described above, is matched through a two dimensional
matching procedure8 to these asymptotic solutions on an arc at Once the K
matrix is known one has the solution over all space and it is therefore straightforward
to calculate the photoionization cross section for any desired transition.

Multichannel quantum defect theory

We can treat weakly closed channels (i.e. channels with  just below zero)
using multichannel quantum defect theory9 by using Coulomb functions s and c instead
of Whittaker functions in (13). The matching procedure then produces a ‘smooth’ K
matrix , which is slowly dependent on energy as it is shorn of all resonance structure
converging to the weakly closed Landau thresholds. The open part of the physical
reactance matrix K can be recovered from the matrix by the formula9

The and c subscripts refer to the open and closed channels of and the tan form

a diagonal matrix where the v’s are related to the channel energies by
Once the physical reactance matrix has been obtained the photoionization cross
section can be calculated as before.

This way of obtaining the cross section has two major advantages. Since varies
slowly with energy compared to this allows one to calculate on a coarse energy
mesh with fairly large energy spacings. These can then be interpolated onto a finer en-
ergy mesh where the full matrix can be obtained from equation (14). This procedure
requires the propagation stage to be performed at fewer energy points ultimately speed-
ing up the calculation. The second major advantage is that the resonance structure due
to a single Landau threshold can easily be removed from the cross section. This is done
by keeping ‘open’ the relevant Landau channel in the evaluation of equation (14). By
comparing a spectrum with all resonances converging on a particular Landau threshold
removed with that of the full spectrum it is possible to determine which resonances
converge to which thresholds.

Results

The methods described in the previous sections are used to calculate the photoion-
ization spectrum of lithium in a magnetic field of 6.1143T. This corresponds to the field
strength used in the experiment of Iu et al. For this field strength the radii and

were taken to be 200 and 12000 a.u. and 64 sectors were used. The size of basis
sets for the expansion of the wavefunction (equation (6)) was 10 Legendre polynomials
and up to 40 adiabatic angular functions. The largest matrices to be diagonalized were
therefore of order 400. The number of channels required to perform the propagation
was quite small and in general varies with energy and radius. The number of channels
retained in any one sector is the number of open channels plus a few of the closed ones.
To produce the graphs shown in this section, the number of energy points at which
the propagation was conducted was 400 per Landau threshold and the total number
of energy points at which the physical reactance matrix was constructed (equation
(14)) was 10000 per Landau threshold. Note that this second process of evaluating
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equation (14) only contributes a tiny amount to the CPU time of the calculation so
an arbitrary resolution can be obtained by simply taking a greater density of energy
points.

In figure 1 the black areas on the graph correspond to Rydberg series converging
on the nearest Landau thresholds. These consist of a lot of very sharp resonances
with extremely small decay widths. In the spectrum the background ionization cross
section can be seen to rise as the energy increases. Also the resonances converging on
the nearest threshold only slightly perturb the background of resonances converging on
higher thresholds.

It is possible to conduct a detailed analysis of the resonances that are observed in
the cross section by calculating as described above8. This contains the information
about the photoionization cross section with resonances converging on several thresh-
olds removed. By only including some channels in the evaluation of equation (14) it is
therefore possible to construct the cross section with the resonances converging on the
nearest threshold, the second nearest threshold etc. removed.

These results are shown in figure 2 where the full cross section of the first Landau
threshold is shown in the top panel. The second panel shows the cross section averaged
over the resonances converging on the nearest threshold i.e. the threshold located at
the right of the graph at The next panel shows the
cross section with the resonances that are converging on the threshold at
removed. The bottom panel shows the spectrum with the resonances converging on the
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threshold at removed. Comparison of various panels of the graphs therefore
builds up an explanation of the complicated structure that is present in the full cross
section. Removal of the Rydberg series of resonances shows a cross section dominated
by relatively smooth modulations.

TIME DEPENDENT STATES IN EXTERNAL FIELDS

The frequencies or periods associated with classical periodic orbits play an impor-
tant role in interpreting the spectra of atoms in external fields. These frequencies are
in particular associated with unstable periodic orbits in the classically chaotic region of
the spectrum. Until recently experiments have identified these periodicities indirectly
by measuring the absorption spectrum over a wide energy range and then taking a
Fourier transform of this frequency domain spectrum13,14. Over the last few years,
new experiments have attempted to identify these periodicities directly in the time
domain15-21. This is done by using short pulsed lasers to create Rydberg wavepackets
whose return times to the vicinity of the nucleus or core are measured giving directly
the periods of the classical orbits. The initial Rydberg wavepacket experiments used a
pump - probe technique which experimentally produces a poor signal to noise ratio.

This drawback prompted a new method based on a phase sensitive technique22, 23.
This method uses two laser pulses separated by a short time delay The first pulse
excites a wavepacket, and the second pulse creates an identical wavepacket which can
interfere with the time evolved initial wavepacket. If the wavepacket excited by the
first pulse is far from the core of the atom when the second wavepacket is excited
there is no overlap between the two wavepackets and no interference will occur. If
however the initial wavepacket has returned to near the core, the second wavepacket
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will interfere with the first in such a way that the Rydberg population is either enhanced
or depleted. The final Rydberg population, after the pulses have interacted with the
atom, is measured by field ionization. This is a very efficient measurement process
giving a much better signal to noise ratio than the pump-probe technique.

Rydberg wavepackets in parallel electric and magnetic fields

Marmet et al16 have used the above technique to measure the magnitude of the
auto-correlation function, M , as a function of the time delay for the rubidium atom
in both magnetic and parallel electric and magnetic fields. They have also evaluated M
semi-classically. The semi-classical theory, which was carried out for hydrogen, failed
to agree with the experimental results for parallel fields and it was stated that this may
be due to the neglect of the core potentials for rubidium.

Here we present a calculation (see also Moser et al24) of M as a function of for
an atom in parallel electric and magnetic fields subject to two Gaussian laser pulses.
As in the experiment, the field strengths and energies are chosen in a regime where one
observes a transition from regular to irregular behavior in the spectrum corresponding
to a classical transition from regularity to chaos. M is evaluated via an ab initio quan-
tum mechanical calculation for both hydrogen and rubidium in parallel fields allowing
a direct examination of non-hydrogenic core effects. The peaks in M are compared
with orbits whose periods have been determined from classical calculations.

The auto-correlation function

An atom is excited from its ground state by a pair of identical laser pulses separated
by a time The first pulse, at time creates a Rydberg wavepacket represented
by which can be expanded as a superposition of eigenstates of the atom. The
coefficients of this superposition depend both on the form of the pulse and the dipole
moments characterizing transitions from the ground state to the relevant Rydberg
states. The state evolves for a time at which time a second laser pulse
excites an identical Rydberg wavepacket. The total wavefunction is therefore

The total Rydberg population is proportional to or

where denotes the phase difference between the wavepackets excited by the first
and second pulses. The quantity which can be extracted from the experiment is the
magnitude of the auto-correlation function which measures the
overlap between the initial wavepacket, and the wavepacket at some time
later. This function plays an important role in the semi-classical theory of chaos25.
Clearly M will be large whenever the overlap between the first and second wavepackets
is large. In this case the total Rydberg population has in general a rapid sinusoidal
time dependence around an average value, the amplitude of which is proportional to
M. By using an additional phase delay, M can be extracted from the experiments and
measured by field ionization of the Rydberg states19, 16.

The auto-correlation function for an atom excited by two Gaussian pulses

When the intensity of the laser pulses is low, as in the experiment of Marmet
et al16, the interaction potential between the laser field and the atom, V(t), can be
treated by time dependent perturbation theory. The total Hamiltonian for the system
is then written as
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where is the time independent Hamiltonian for the atom in the presence of the
static electric and magnetic fields. The ground state of will be denoted by and
the excited eigenstates by The potential where is the electric
dipole vector and the classical electric field due to the laser.

We take the atom, in the presence of the static fields, to be initially in its ground
state Expanding the total wavefunction in terms of the unperturbed states, the
time dependent wavefunction  is given by

where the sum is taken over all excited states and represent the time depen-
dent amplitudes of the ground and excited states with energies Note that the
sum over must contain a sum over all the relevant quantum numbers.

The time dependent electric field for the excitation scheme of two Gaussian
pulses of pulse width and angular frequency is given by

hence the time dependent potential V(t) is known. By substituting V ( t ) and the
expansion in equation (17) into the time dependent Schrödinger equation, a standard
set of equations for the time dependent Rydberg amplitudes is obtained. Using the
rotating wave approximation and neglecting depletion of the ground state26, the excited
state amplitudes as can be calculated in first order in perturbation theory.
Hence the wavefunction of the excited or Rydberg wavepacket can be represented by

The total Rydberg wavefunction can be written as the sum of the first and second
excited wavepackets

where

and the following abbreviations have been used

is proportional to the dipole integral from the ground state to the state
represents an energy window of states which can be excited and is the difference
between the laser frequency and the frequency associated with the atomic transition
from

Substituting the above expressions for the wavefunctions into the expression M
yields

The function can be calculated both semi-classically and quantum mechanically. We
have used quantum theory to evaluate it.
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Evaluation of the auto-correlation function for an atom in parallel electric
and magnetic fields

A Gaussian pulse only excites, with any significant probability, a group of quantum
states within an energy range of the order about the central excitation energy which
is given by the laser frequency To evaluate equation (23) for a given pulse width
only the energies and the dipole integrals very near to the frequency of the laser will
therefore need to be evaluated.

The Hamiltonian for hydrogen in parallel electric and magnetic fields directed
along the z-axis is

where is the magnetic field strength and f is the electric field strength in atomic
units. The linear Zeeman term has been omitted because is a conserved quantity
for this Hamiltonian and hence m the corresponding quantum number is conserved. For
hydrogen, the eigenvalues and eigenfunctions of this Hamiltonian are evaluated
for given fields by expanding the wavefunction in a basis set

i.e. in products of Sturmian functions and spherical harmonics. The fields have a
negligible effect on the ground state which is taken to be the hydrogenic ground
state. Once the states have been found the dipole integrals are readily
calculated, hence all of the quantities entering equation (23) are known.

For rubidium, the method developed by O’Mahony and Taylor27 for non-hydrogenic
atoms in fields is used. The Hamiltonian in (24) is only valid at a radius, outside
of the atomic core and hence the expansion in equation (25) is now employed over a
semi-infinite region The eigenvalues and eigenfunctions of H plus a surface
term or Bloch operator at are used to construct an R-matrix or log-derivative
matrix at This R-matrix is matched to phase shifted Coulomb functions at

and an energy search is conducted to find eigenenergies such that the total
wavefunction and its derivative are continuous over the boundary. The corresponding

eigenvectors can then be constructed. Note that it is at this stage that the finger-
print of the non-hydrogenic core is introduced via the quantum defects used to calculate
the phase shifted Coulomb functions.

RESULTS

In the experiment a rubidium atom is excited from its ground state by a pulse
sequence using linearly polarized light and in the presence of a fixed magnetic field
of B = 1.5 Tesla and a static electric field ranging from (Note

where and The
frequency of the laser is such that final Rydberg states centered around the binding
energy are excited by the pulses. For this energy range corre-
sponds classically to regular motion and quantum mechanically to the region where
the external fields are but a perturbation. However as F increases one goes over to
the strong field mixing region where the quantum spectrum becomes irregular and the
classical mechanics becomes chaotic. Equation (23) has been evaluated theoretically
for hydrogen and rubidium, for the same set of field strengths and conditions as in
the experiment. The pulse width is taken to be 4ps. The polarization of the laser
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light and the fact that is conserved means that only final states need to be
considered in the basis set expansion in (25). The condition that the Gaussian energy

window decays off to a negligible value, requires that all Rydberg states
within about of the above total energy need to be calculated. The relevant
energy levels and dipole integrals are obtained by the basis set methods described.
These quantities are used to calculate the corresponding amplitude from (23), for time
delays from 0 to 100 picoseconds. The results for rubidium are given in Figure 3 which
shows the appearance of broad peaks at certain time delays. These times correspond
to the shortest periodic orbits in the system. For specific values of the static fields, the
periods of these orbits can be determined from the classical equations of motion. Four
of these periods are indicated on the diagram by the letters A to D. The periodic orbit
designated by A is the orbit parallel to the z-axis while B is the orbit anti-parallel to
the z axis. The orbit D results from a bifurcation of the orbit B at about
This feature is also seen in the experiment of Marmet et However an additional
peak, labeled by E, is also seen in the theory at about 36ps. This peak, which is not
present in the experiment, can be identified with a particular classical periodic orbit24.
In addition the relative peak intensities that we find are quite different to those found
in the experiment.

The main differences between hydrogen and rubidium, and hence the effect of
the core, is for long time delays as has been seen previously in Fourier
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transform of the frequency domain spectra28. These differences can be viewed as due
to scattering of the wavepacket from the core for longer time delays. The discrepancies
between theory and experiment cannot be explained by the rubidium core as this has
been fully included via the R-matrix method. There are several possible explanations
for the differences. In the experimental paper16 it is mentioned that a poor signal to
noise ratio is obtained when the laser field is parallel to the magnetic field as in the
case studied here. Also any errors in the pulse shape may alter the spectrum obtained
because of the different distribution of excited Rydberg levels. It is however clear that
this phase-sensitive technique provides a very promising method to observe directly in
the time domain the frequencies of the shortest periodic orbits for classically chaotic
systems in general.

Acknowledgments

IM was supported by a postgraduate studentship from EPSRC, UK. Financial
support from the Junta Nacional de Investigacao Cientifica e Tecnologica (JNICT),
Portugal through the Praxis XXI programme and the EU Human Capital and Mobility
programme is gratefully acknowledged. PFOM would like to thank Prof. F. Parente
for his hospitality at the Centro de Física Atómica da Universidade de Lisboa where
this work was completed.

REFERENCES

1. W.R.S. Garton and F.S. Tomkins, Astrophys. J. 159, 839 (1969).
2. C. lu, G.R. Welch, M.M. Kash, D. Kleppner, D. Delande, and J.C. Gay,

Phys. Rev. Lett. 66, 145 (1991).
3. D. Delande, A. Bommier, and J.C. Gay, Phys. Rev. Lett. 66, 141 (1991).
4. P.F. O’Mahony and F. Mota-Furtado, Phys. Rev. Lett. 67, 2283 (1991).
5. P.F. O’Mahony and F. Mota-Furtado, Comm. At. Mol. Phys. nos. 4-6, 309 (1991).
6. F. Mota-Furtado, P.F. O’Mahony, and H. Marxer, Atomic Physics 13 275, 449 (1993).
7. S. Watanabe and H. Komine, Phys. Rev. Lett. 67, 3227 (1991).
8. I. Moser and P.F, O’Mahony, submitted to Phys. Rev. A (1997).
9. M.J. Seaton, Rep. Prog. Phys. 46, 167 (1983).
10. C. Bloch, Nncl. Phys. 4, 503 (1957).
11. K.L. Baluja, P.G. Burke, and L.A. Morgan, Computer Phys. Com. 27, 299 (1982).
12. E.B. Stechel, R.B. Walker, and J.C. Light, J. Chem. Phys. 69, 3518 (1978).
13. J. Main, G. Weibusch, A. Holle, and K.H. Welge, Phys. Rev. Lett. 57, 2789 (1986).
14. A.Holle, J. Main, G. Weibusch, H. Rottke, and K.H. Welge, Phys. Rev. Lett. 61, 161 (1988).
15. J.A.Yeazell, G. Raithel, L. Marmet, H. Held, and H. Walther, Phys. Rev. Lett. 70, 2884 (1993)

and references therein.
16. L. Marmet, H. Held, G. Raithel, J.A.Yeazell, and H. Walther, Phys. Rev. Lett. 72, 3779 (1994).
17. G. Raithel, H. Held, L. Marmet, and H. Walther, J. Phys. B 27, 2849 (1994).
18. J. Wals, H.H. Fielding, J.F. Christian, L.C. Snoek, W.J. van der Zande,

and H.B. van Linden van den Heuvell, Phys. Rev. Lett. 72, 3783 (1994).
19. B.Broers, J.F. Christian, and H.B. van Linden van den Heuvell, Phys. Rev. A 49, 2498 (1994).
20. H.H. Fielding, J. Wals, W.J. van der Zande, and H.B. van Linden van den Heuvell,

Phys. Rev. A 51, 611 (1995).
21. G.M. Lankhuijzen and L.D. Noordam, Phys. Rev. A 52, 2016 (1995).
22. L.D. Noordam, D.I. Duncan and, T.F. Gallagher, Phys. Rev. A 45, 4734 (1992).
23. J.F. Christian, B. Broers, J.H. Hoogenraad, W.J. Van der Zande, and L.D. Noordam,

Opt. Comm. 103, 79 (1993).
24. I. Moser, P.F. O’Mahony, F. Mota-Furtado, and J.P. dos Santos, Phys. Rev. A 55, 3724 (1997).
25. S. Tomsovic and E.J. Heller, Phys. Rev. E 47, 282 (1993) and references therein.
26. G. Alber and P. Zoller, Phys. Rep. 199, 231 (1991).
27. P.F. O’Mahony and K.T. Taylor, Phys. Rev. Lett. 57, 2931 (1986).
28. P.F. O’Mahony, Phys. Rev. Lett. 63, 2653 (1989).

180



SECULAR MOTION OF 3-D RYDBERG STATES IN A MICROWAVE
FIELD

Andreas Buchleitner

Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Stra e 1
D-85478 Garching

INTRODUCTION

The ionization of atomic Rydberg states by microwave fields allows for the exper-
imental and theoretical study of quantum transport under the condition of a highly
nonlinear interaction between the atomic degrees of freedom and the driving field. In a
classical picture, the ionization of the Rydberg electron is due to chaotic transport in
classical phase space,1 within a wide range of microwave frequencies. In a quantum de-
scription, classical chaos manifests itself in a strong mixing of the unperturbed atomic
eigenstates and the partial loss of good quantum numbers.2 Due to the large number
of atomic states involved in the chaotic ionization of highly excited Rydberg states
(principal quantum number between , the treatment of the full
quantum problem has been prohibitive until very recently.2 However, one-dimensional
quantum models2,3 of the atom turned out to recover the experimentally observed ion-
ization yields4,5 surprisingly well. As chaos is “born” for classical initial conditions
along the z-axis (parallel to the microwave field axis), it has been argued that chaotic
ionization will merely reflect the dynamics along this one-dimensional subspace of the
3-D configuration space.1, 3 In a more quantal language, initial atomic states elongated
along the polarization axis exhibit the largest oscillating dipole and do therefore most
effectively interact with the driving field.

Hence, our understanding of state of the art ionization experiments4, 5 seems rather
complete. Conversely, up to now we do not have much insight in the history of the
electron on its way through classical phase space to the continuum, or on the role of
the different degrees of freedom in the quantum mechanical excitation process.

It is the purpose of the present contribution to reveal the “backbone” of the quan-
tum mechanical ionization process as a novel structure in the exact quantum spectrum,
which will be accessible in a new generation of experiments on Rydberg states in mi-
crowave fields. Our analysis is built on the dynamical symmetry of the hydrogen
atom6 and therefore a priori not applicable for non-hydrogenic Rydberg states, e. g.,
of rubidium.7 For the sake of simplicity we focus on microwave frequencies which are
nonresonant with the unperturbed Kepler motion of the Rydberg electron. We shall

Atoms and Molecules in Strong External Fields
Edited by Schmelcher and Schweizer, Plenum Press, New York, 1998 181



see that the individual eigenstates of the atom in the field reflect the structure of clas-
sical phase space in their localization properties, their energies, and their ionization
rates. We also show that the restricted 1-D dynamics are naturally embedded in the
full dynamics of the 3-D atom and finally sketch the experimental strategy to probe
this structure. The extension to resonant driving, which directly relates to the creation
of nondispersive wave packets,8, 9, 10 is straightforward but technically a little tedious,
and will be presented elsewhere.

QUANTUM AND CLASSICAL DYNAMICS

The Hamiltonian describing the hydrogen atom in a monochromatic, linearly po-
larized microwave field of constant amplitude F and frequency reads, in the length
gauge and in atomic units:

As described in earlier work, a complex dilation of the corresponding Floquet-Hamiltoniari
allows us to obtain the energies, the ionization rates, and the associated Floquet eigen-
states of the atom dressed by the microwave photons.2 Due to the azimuthal symmetry
around the z-axis, the problem is effectively 2-D with a 5-D phase space (because of the
explicit time dependence of H). For vanishing microwave amplitude, the dressed eigen-
states are products of spherical states with Fock states of photon number K,
where we choose for the conserved magnetic quantum number. For nonresonant
microwave frequency, each energy level (n, K) has a degeneracy equal to the principal
quantum number n in the angular momentum For non-vanishing field
amplitude, the term in the Hamiltonian couples different states with the se-
lection rules , . At first order in F, there is no coupling inside the
(n, K) manifold and the degeneracy is not lifted. At second order, there are non-zero
terms which couple the state to the states , through the interme-
diate states ; these terms lift the degeneracy. A crucial point is that
the second-order term is not diagonal in l. The eigenstates of the 3-D atoms dressed by
the microwave field are consequently not states, even at lowest non-vanishing
order.

From a classical point of view, the electronic trajectories are simple Kepler el-
lipses, for For nonvanishing field amplitude, the structure of phase space is
affected by the resonances between the microwave and the Kepler frequency. At small
field, the various resonance zones are separated by regular non-resonant tori. The non-
resonant situation studied here corresponds to an electron on its Kepler orbit subject
to a microwave field oscillating at a non-commensurate frequency. Hence, the electron
cannot efficiently exchange energy with the field. At first order, it exhibits oscilla-
tions (driven by the microwave field) around its unperturbed Kepler ellipse. At second
order, the resulting trajectory is an instantaneous elliptical trajectory the parameters
(eccentricity, spatial orientation) of which slowly evolve in time. This is nothing but the
familiar secular approximation which separates the fast motion at the Kepler frequency
from the slow secular motion of the ellipse.11 During the slow motion, the unperturbed
energy is conserved, which is the classical analog of n remaining an approximate good
quantum number.

The classical secular motion can be described by an effective Hamiltonian, after
appropriate averaging over the oscillation of the microwave field.12 We start from the
expansion of (1) in the canonical action-angle coordinates n (total action), (conjugate
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angle), (angular momentum) and (conjugate angle measuring the angle between
the z axis and the major axis of the ellipse) of the hydrogen atom: 1

is the scaled angular momentum,

represents the Bessel function and the prime the derivative. At lowest nonvanishing
order in F we obtain:

where is the scaled frequency (ratio of the microwave to the Kepler frequency),
and:

Here, are evaluated for the argument is obtained by exchanging
in (5). The lower order terms of the effective Hamiltonian in F read

CLASSICAL PHASE SPACE STRUCTURE

The secular electronic motion as the temporal evolution of the conjugate variables
, generated by , can be represented by the motion of the vector on

the unit sphere.13 design the components of the Runge-Lenz vector (directed
along the major axis of the ellipse with a modulus equal to its eccentricity) along and
perpendicular to the field axis, respectively, defined by

Three fixed points, two stable and one unstable, characterize the structure of of
classical phase space within the dimension. Each of them corresponds to either
one of three distinct types of classical periodic motion. The first two ones defined by

and are stable. They correspond to the circular orbit in the plane
containing the field polarization vector, and to the straight line orbit normal to that
plane. The electronic motion is trapped within elliptic islands around these stable fixed
points. The fixed point defined by corresponds to the straight line orbit along
the field direction – the precise analog to the restricted 1-D dynamics of the atom –
and is unstable: an initial trajectory close to the field axis will diverge from it.

EXACT VS. SEMICLASSICAL ENERGY LEVELS

We can now predict the quantum spectrum of the atom dressed by the microwave
field, by WKB quantization of The semiclassical energies are defined by
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the integral being evaluated along a classical secular trajectory (fixed value of )
and p an integer ranging from 0 to The validity of this approach can be tested
by a direct comparison to the “exact” numerical quantum spectrum. Indeed, after
diagonalization of (1), one finds "multiplets" which originate from the unperturbed
energy levels. The energies of these states are plotted in Fig. l(a), for

and compared to the semiclassical prediction. The agreement
is quite good, with some quantitative disagreement for the lower part of the manifold.
For both, the semiclassical and the exact result, there are 10 eigenstates (labelled from

to 9 by increasing energy) corresponding to secular motion around the
fixed point, and 13 eigenstates (from p = 10 to 22) corresponding to motion around the

fixed point. The two series are separated by a minimum in the energy spacing,
the quantum consequence of the slowing down of the classical motion1 near the unstable
fixed point. As indicated by an arrow in Fig. l(a), it is exactly at this energy which
separates the and the –motion that we find the Floquet eigenstate originating
from in the restricted 1-D dynamics.
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LIFE TIMES OF INDIVIDUAL FLOQUET STATES

The semiclassical structure of the manifold is also reflected by the ionization rate
of the individual Floquet states, as shown in Fig. l(b). The states with pronounced

-character have extremely small ionization rates, the -states being actually
more stable than the -states. On the other hand, the states which correspond to
motion close to the unstable fixed point do exhibit the largest ionization rates. In our
semiclassical picture, we interpret this p-dependence of the widths as due to tunneling
ionization out of the regime of regular motion in the action variable n. Since
0.03 corresponds to classically near-integrable motion in the restricted 1-D dynamics,
and as chaotic ionization sets in for the ionization rates of the -states
are enhanced by tunneling through a relatively narrow potential barrier separating
regular from irregular motion (at higher classical action n), as compared to the
and Interestingly, the maximum ionization rate of the 3-D atom is not
observed for the eigenstate which comes closest to i.e. to the restricted
1-D dynamics, but slightly displaced to p-values below the separatrix. According to
our presently accumulated numerical data (for different values of and ), this
displacement towards -motion seems systematic but is not yet understood.

From Fig. 1 (b) it is now clear why experiments4 which initially prepare the
atoms in superpositions of substates of the hydrogenic multiplet of Fig. 1(a) can be
well approximated by 1-D model calculations: the onset of ionization is due to the first
eigenstates to ionize, the ones dominated by the -motion of the 3-D atom. Note,
however, that at = 0.03 the ionization rate of the corresponding eigenstate of the
1-D model is found to be two orders of magnitude smaller than the maximum ionization
rate observed in Fig. l(b). 1-D and 3-D widths acquire comparable values only in the
vicinity of the 10% ionization threshold, i. e. at when strong n-mixing
prevails.

LOCALIZATION PROPERTIES OF FLOQUET STATES

A further test of our semiclassical picture is to investigate the localization proper-
ties of the quantum eigenstates in configuration (and in phase13) space. This is done in
Fig. 2 for the 3 states with p = 2,8,20. The plots are contours of the electronic densities
averaged over one field period. As expected, the state is localized close to the
circular orbit, near the field axis, and close to the plane perpen-
dicular to the field. As a matter of fact, the states and are almost
pure eigenstates of the unperturbed hydrogen atom.6 Furthermore, “flat” electronic
densities like which do probe the Coulomb singularity are systematically
more stable against ionization than states like which make no contact with the
nucleus. Since flat eigenstates are compatible with the cylindrical symmetry imposed
by a superintense field,14 they are good candidates to exhibit similar behaviour in the
microwave as well as in the optical regime. This is consistent with classical studies15

which suggest flat electron trajectories to be quite stable against ionization at very high
field frequencies and amplitudes

OUTLOOK AND CONCLUSION

We have seen that the quasi one dimensional ionization of 3-D Rydberg states of
atomic hydrogen is embedded in a transverse structure of 5-D phase space which can
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be described by a secular approximation. In future experiments, the details of this
structure could be revealed by direct photospectroscopy16 of the Floquet spectrum9

from low lying atomic states. In such kind of experiments, the underlying phase space
geometry should be manifest in the positions and widths of the atomic resonances.
When Rydberg states of a different atomic species are used,7 the interaction of the
electron with the ionic core should destroy the multiplets and produce Floquet eigen-
states with completely different localization properties, since the described organization
of the resonances strongly relies on the degeneracy of the energy levels of the hydrogen
atom.
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SPONTANEOUS DECAY OF NONDISPERSIVE WAVE PACKETS
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For a Rydberg atom conventional microwave amplitudes of several V/cm are strong
in the sense that the exerted force is comparable to the Coulomb attraction. In this
regime of highly nonlinear coupling between the external driving and the atomic motion
nondispersive electronic wave packets can exist.

NONDISPERSIVE WAVE PACKETS

Usually the term wave packet refers to the coherent superposition of the stationary
eigenstates of a time-independent Hamiltonian forming an initially localized wave func-
tion. The generically unharmonic energy spacing of the stationary eigenstates leads to
the apparently unavoidable dispersion of these objects.1

However, it has been shown recently that in non-linear time-periodic systems wave
packets can exist that do not disperse, because they are periodic eigenstates of the time-
dependent problem.2–6 They faithfully trace a classical trajectory and maintain their
localization properties. In a more general perspective, these nondispersive wave packets
are the quantum analog of a classical nonlinear resonance in a periodically driven
Hamiltonian system.2, 3 They can be considered as direct generalizations of (stationary)
eigenstates associated with elliptic islands in the classical phase space of nonlinear,
autonomous Hamiltonian systems.7

A simple and experimentally accessible system where this classical stabilization
phenomenon can be exploited is a highly excited hydrogen atom subject to a monochro-
matic microwave field.8, 9 For driving field amplitudes comparable to the Coulomb
attraction, only the elliptic island associated with the principal nonlinear resonance
survives, embedded in the chaotic domain of classical phase space. It is due to the
resonant coupling of the microwave field to the fundamental harmonic of the atomic
Kepler motion. In a quantum calculation one finds3, 5, 6 eigenstates of the atom dressed
by the microwave field, which are perfectly localized on the elliptic island.

As a consequence of the field-induced coherent coupling of Rydberg states to the
atomic continuum, these dressed states acquire a finite lifetime.3, 5, 6 However, the width
(the inverse of the life time) of the wave packet eigenstates is extremely small (allowing
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for millions of Kepler orbits) and decreases on the average5 exponentially with increas-
ing principal quantum number n. The latter can be understood semi-classically if one
views ionization as due to the tunneling of the wave function through the classical
invariant tori isolating the elliptic island from the surrounding “chaotic sea”.

The apparently almost eternal life time3,5 of wave packet eigenstates makes them
very interesting objects in the diagnostics of complicated atomic and molecular dyna-
mics.10,11 It also encourages speculations about the observability of extremely slow
classical processes like Arnold diffusion in real quantum systems.12 However, the dis-
cussion in the literature neglected any decoherence effects so far, which originate from
the unavoidable coupling to the environment. Though, the life times predicted for the
wave packet eigenstates are comparable to the radiative life times of Rydberg states.
Hence, it is still an open question to what extent they will be observable in a laboratory
experiment.

In the following, we want to elucidate the role of spontaneous emission. For this
purpose, we introduce a novel implementation of complex scaling13 which allows for
the simultaneous description of the exact coherent coupling between the atom and the
dressing field, together with a perturbative description of the coupling to the electro-
magnetic vacuum. The resulting master equation for coherences and populations of
the dressed states provides a general framework for the incoherent coupling of decaying
states to a Markovian environment.

RADIATIVE COUPLING TO THE ENVIRONMENT

For the sake of simplicity, we restrict ourselves to Rydberg atoms confined to one
spatial dimension, driven by a linearly polarized microwave field. If we set aside for a
moment the coupling to the vacuum field, the periodically driven Rydberg electron is
described by the Hamiltonian

i.e. we treat the driving microwave as a classical field in dipole approximation, neglect
relativistic effects, assume an infinite nuclear mass, and employ atomic units. These
simplifications are perfectly justified in the Rydberg regime.

Complex scaling of (1), by the positive angle , together with the Floquet theorem,
allows us to determine the exact quasi-energies , widths , and wave functions
of the dressed states of the atom in the coherent field.14,15 These can be expressed in
terms of the discrete eigenstates (with Fourier components )
of the dilated Floquet Hamiltonian The latter is obtained from the Floquet
Hamiltonian by a non-unitary, complex scaling transformation

The associate left eigenvectors are the complex conjugate of , i. e. the
transpose of the right eigenvectors. Together with the complex eigenvalues
they provide, for the time evolution operator14 generated by

The adjoint is given by the complex conjugate expression.14 These are needed in
our treatment of the coupling of the dressed states to a reservoir,
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by a dipole interaction,

with a symbolic sum over the continuum of reservoir modes j, the associated creation
and annihilation operators and and the coupling constants

In the product basis spanned by the eigenstates of and the reservoir Fock
states, the evolution is explicitly known. This suggests to
proceed in the interaction picture, to formulate the temporal evolution of the density
operator generated by the total Hamiltonian

At this point some care has to be taken due to the finite widths of the eigen-
states of as a consequence, any square-integrable initial atomic state will leak
out to infinity on a finite time scale. Hence, its norm within any finite volume around
the nucleus is not conserved,16 what explains that for since
the expressions for and only operate on square-integrable states.13,14 Conse-
quently, since we want to formulate time dependent perturbation theory in the basis
represented by the the reduced density operator in the interaction picture,
has to be defined by explicitly employing the inverse operators of and
and respectively. Those are obtained, for through the identification

and The appropriate definition

then leads to the equation of motion for the coherent evolution of the total density
operator

Note that (5) and (6) coincide with the usual equations for vanishing widths
Now a perturbative treatment of the reservoir action on the electron, up to sec-

ond order in the coupling constants can be performed.17 We trace over the reservoir
variables, since we are only interested in the atomic degrees of free-
dom. Rotating wave and Markov approximation, together with the neglect of any
systematic degeneracy in the Floquet spectrum, yield a differential equation for
which we shall derive and discuss in detail in a separate publication. Back in the
Schrödinger picture, the matrix elements of the system’s density operator

obey the final master equation

with transition rates from Hence, populations and coherences separate
and the latter decay exponentially. These equations are valid for any initial condition

square-integrable. They completely describe the
temporal evolution of the system in the discrete set of dressed states and exactly
incorporate the coupling to the atomic continuum.

Focusing on the special case of spontaneous emission as the only source of deco-
herence, the transition rates from read
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They involve the Fourier components of the dipole matrix element,

the corresponding quasi-energy spacings,

and the response function of the reservoir at resonant frequency:

In our numerical calculations the mode densities and coupling constants in
(12) are chosen as for a typical waveguide experiment.17 Note, however, that is
virtually identical to the response function in free space for large values of which
dominate the spontaneous decay of the wave packet eigenstates.

NUMERICAL IMPLEMENTATION

In order to access the time evolution of the atomic population initially prepared
in the wave packet eigenstate, we first have to extract the eigenvalues and matrix
elements which enter in (7). This is done by the numerical diagonalization of
in a real Sturmian basis.14 For comparison to previously published results5 we define
the amplitude and the frequency of the driving field by and
yielding a fixed phase space structure. Here n indicates the principal quantum number
of the Rydberg manifold the wave packet originates from. In our 1D model we typically
obtain 200 Floquet eigenstates per Floquet zone, with about 100 Fourier components
each. With these ingredients (7) has been solved for n between 5 and 130. Initially, at

the wave packet eigenstate was assumed to carry all available atomic population.
It turns out that transitions to low lying atomic states, which remain unaffected by

the driving field, dominate the spontaneous decay of the wave packet. Asymptotically,
all population which has not been lost through direct ionization to the atomic contin-
uum is accumulated in the atomic ground state. In particular, there is no diffusion of
population in the Rydberg regime. Therefore, the radiative decay of the wave packet
can be described effectively by a rate defined as the sum over all radiative decay
rates depopulating the wave packet state.

RADIATIVE DECAY VS. COHERENT CONTINUUM COUPLING

As already mentioned above, the wave packet’s width is known to decrease
exponentially (on the average) with n, since it essentially represents a tunneling prob-
ability. In contrast, the spontaneous decay rates of unperturbed Rydberg states are
known to decrease algebraically like with a between 3 and 5, depending on the
quantum numbers of the Rydberg state.18,19 Hence, for sufficiently large values of n,
spontaneous emission must dominate the population loss out of the wave packet eigen-
state. Fig. 1 summarizes the comparison of spontaneous rates resonance widths

and total decay rates extracted from the solution of (7) for the wave
packet states over a large range of principal quantum numbers. Indeed, for n between
5 and 93 the coherent coupling to the atomic continuum is generally dominant over
the spontaneous decay, except for the occasional appearance of extremely long-lived
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wave packet states.5 In contrast, for principal quantum numbers spontaneous
emission dominates over the coherent continuum coupling and therefore makes the
non-dispersive wave packet a rigorously classical object at finite values of n. The wave
packet dynamics is now strictly confined to the atomic bound space with its analogy
in the classical phase space of bounded trajectories. It is a remarkable result that this
behavior, which one would expect in the quasi-classical limit, can already be expected
for quantum numbers accessible by experiment.

The effective spontaneous emission rate in Fig. 1 scales as like 3D Rydberg
states of low angular momentum. However, our numerical results are obtained for
1D wave packet eigenstates which have their direct 3D analog in wave packets tightly
confined to the vicinity of the polarization axis of the driving field and are essentially
composed of extremal parabolic states.6 The latter exhibit spontaneous decay rates
proportional18 to Whereas our 1D description of the atom is perfectly justified
in the Rydberg regime,20 it implies an unrealistic representation of the atomic ground
state, which acquires a permanent dipole moment. As a consequence, transitions from
an extremal parabolic state to the ground state are overestimated. To compensate for
this artifact of the 1D picture we rescale the radiative transitions to low lying states by
replacing the dominant dipole matrix element by its actual 3D value.18 The dashed line
in Fig. 1 shows the resulting estimate for the quasi 1D wave packet of the real atom.6

Since this curve only accounts for transitions within the ladder of extremal parabolic
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states, it underestimates the actual spontaneous decay rates. Therefore, we predict the
crossover from dominant continuum coupling to dominant spontaneous decay to occur
in the interval The upper limit has been obtained from an extrapolation
of the dotted and the dashed lines in Fig 1.

Note that this transition will occur at even higher values of n for wave packets
which trace classical trajectories with larger angular momentum. The low angular mo-
mentum wave packets we are considering are most sensitive to radiative decay. Hence,
the fluctuations of which are chaos-induced in the sense that they are due to the
interference of transition amplitudes associated with ionizing irregular paths originat-
ing from the principal resonance,5 remain an observable phenomenon even in the least
favorable case.

Finally, since spontaneous emission should affect any “exotic” state in the Ryd-
berg domain, our findings should be relevant also for nondispersive wave packets in
combined microwave and static magnetic fields.10 They also imply limits for the actual
observability of extremely slow classical processes such as Arnold diffusion.12
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IONIZATION OF HELIUM BY STATIC ELECTRIC FIELDS AND
SHORT PULSES
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INTRODUCTION

In this paper we present calculations of the ionization probability of Helium in
external electric fields that are comparable in strength to the Coulomb fields between
the constituents of He. We consider static fields as well as short DC- and laser pulses.

The problem is difficult, because one deals with five dimensional partial differ-
ential equations, when rotational symmetry is broken and only cylindrical symmetry
is preserved. In practice, the difficulty strongly depends on the states of He that are
investigated. For example, in higher singly excited states the correlation between the
two electrons can be neglected or corrected for, in which case the problem is effectively
reduced to two dimensions. However, the energies of the ground state and the low lying
doubly excited states contain significant contributions from correlation. Our purpose
is to fully include correlation effects in order to detect their role in ionization and to
determine the limits of validity of widely used approximations like the single active
electron model1.

Due to the high dimensionality, a purely numerical representation of the wave func-
tion leads to very large systems of equations. When one expands the wave function
with respect to total angular momentum, the resulting system of three-dimensional
differential equations grows quadratically with the maximum angular momentum in-
cluded. In an effort to obtain the most compact representation of the three-dimensional
wave function components, we use a basis set expansion in terms of functions of the
distances between the three particles. We find that a few hundred functions per angular
momentum are sufficient to accurately describe bound and doubly excited states. Thus
the numerical solution of the Schrödinger equation with strong external fields becomes
feasible.

After briefly introducing our basis set expansion we give the non-perturbative Stark
shifts and widths of the ground state and the lowest doubly excited state of Helium for
fields up to and beyond the critical field strength. As a second example we present the
results of the integration of the time dependent Schrödinger equation with a very short
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DC pulse for a range of field strengths. Finally, we show the ionization by femtosecond
medium intensity laser pulses.

REPRESENTATION OF THE HELIUM WAVE FUNCTION

We discretize the Schrödinger equation by expanding the wave function in a
Hylleraas–like explicitly correlated basis

The vectors and denote the electron coordinates relative to the nucleus and the
operator projects on the singlet states. The are the linear expansion coef-
ficients. The two-electron angular factors for total angular momentum L and

z–component are given by

The are Clebsch Gordan coefficients and are spherical harmonics. For
each several sets of exponents were used and the combination of powers

was constrained by2

Note that for each L there are only angular functions Angular correlation,
which in the usual atomic physics basis requires a large number of combinations of
single–electron angular momenta and is here contained in the inter-electron coor-
dinate To determine ionization rates and to avoid reflections in the finite range
of space that can be numerically represented we use the method of complex scaling3.

It has been demonstrated that such a basis can efficiently and accurately describe
He bound states2, 4. For our calculations we used an average of 300 expansion functions
for each L up to The discretized atomic Hamiltonian matrix contained 6 to
8 bound states for each L, out of which the lowest 3 to 4 had an accuracy in energy of

The energies and widths of the lowest bound and doubly excited states as
obtained with that basis are compared with literature values in Table 1.

IONIZATION BY A STATIC ELECTRIC FIELD

The complex scaled Schrödinger equation of the Helium atom in an external electric
field is (in atomic units)

Fig. 1 shows the energies E and ionization widths as a function of the electrical field
strength as obtained with the expansion (1). The basis set truncation errors are

5%, which includes dependence on the scaling angle as well as the limitation of
the angular momenta to Somewhat counter-intuitively, the highest angular
momenta are required to obtain good relative accuracy for the ground state ionization
rate at the lowest field strengths For the rest of the data suffices.
Interestingly, the autoionization rate of the doubly excited state is slightly suppressed
by small external fields
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IONIZATION BY A DC-PULSE

We solved the Schrödinger equation for an external field with a time depen-
dence

The pulse duration was chosen to be This time is comparable to the orbit
period of the electrons and therefore the adiabatic approximation for the ionization
yield, defined as the integral over the static rates

must be expected to fail. Fig. 2 compares the ionization yield as obtained by time-
integrating the Schrödinger equation with the adiabatic approximation. The adiabatic
approximation underestimates the actual yield by more than one order of magnitude.

IONIZATION BY A FEMTOSECOND LASER PULSE

While DC-fields as considered above are not available under laboratory conditions,
laser pulses of such and higher intensities are routinely used in experiments. Pulse
durations can be as short as a few femtoseconds. Reliable ab initio calculations for
comparison with experiments need to include both, the time dependence of the pulse
envelope and the correlation between the electrons. Our basis allows such calculations

at moderate laser intensities and which correspond to wave lengths
below

Fig. 3 shows the bound state excitation and ionization from the Helium ground
state by a 3.8 fs (157 au) laser pulse with peak intensity of (peak
field strength 0.092 au) at frequencies between 0.3 and 1.15 au (wave lengths from
152 nm to 40 nm). The two photon and single photon ionization thresholds are vis-
ible as a rapid increase of first excitation and then ionization. Beyond the threshold
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ionization decreases slowly with frequency. Bound state excitation occurs dominantly
through resonances. The large excitation peak below the two-photon threshold is due
to resonance from the ground state to the first excited S -state, the peak below the
single-photon threshold is a resonance with the lowest P-state. The dips in excitation
originate in Rabi-like oscillations. The basis set truncation error remains below 5% for
the whole range of frequencies.

CONCLUSION

The three examples presented here provide benchmark data for the ionization of
Helium by a strong electric field. All calculations could be performed on a work station.
For example, the time-integration of one point in Fig. 3 required about 40 CPU minutes
on a 500 MHz DEC-Alpha work station.

The application of the same method for magnetic fields is straight forward. A
study of the Helium bound state spectrum in moderate (by astronomical standards)
magnetic fields is currently being made.
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ADIABATIC INVARIANTS OF RYDBERG ELECTRONS IN CROSSED
FIELDS
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INTRODUCTION

Rydberg atoms in external fields constitute atomic-scale laboratories where the
quantum mechanics of strongly nonlinear systems can be tested 1 ,2. While the prob-
lem of a Rydberg atom interacting with a strong magnetic field has been fairly well
understood as a result of sustained research in the past two decades 3,4, the superfi-
cially similar scenario resulting from the addition of a perpendicular electric field - the
so-called crossed fields arrangement 5,6,7,8,9,10,11 – remains the least understood of
all Rydberg problems. This is all the more regrettable in view of the prominence of
crossed fields in diverse areas of physics ranging from excitonic systems to plasmas and

neutron stars. This problem is so complex because no continuous symmetry survives
the extensive symmetry breaking 12 induced by the two fields. The result is a wealth
of new physics which is only possible beyond two degrees of freedom, such as Arnol’d
diffusion 1,13. This absence of symmetry also allows localizing electronic wavepackets
in all spatial dimensions, and the observation of these wavepackets 14 has led to new
insights into the dynamics of the electron in the Correspondence Principle regime. It
has also been found that a velocity-dependent, Coriolis-like force in Newton’s equations
causes the ionization of the electron to exhibit chaotic scattering 15,16. All these phe-
nomena, as well as renewed interest in the motional Stark effect 17,18, make the crossed
fields problem an experimentally accessible paradigm for a wide variety of outstanding
issues in atomic and molecular physics, solid state physics 19,20, nuclear physics 21,
astrophysics 22, and celestial mechanics 23.

Raithel, Fauth and Walther 8,24,25, , a recent landmark of experiments, have
identified a class of quasi-Landau (QL) resonances in the spectra of rubidium Rydberg
atoms in crossed electric and magnetic fields. Similar to the original QL resonances
observed by Garton and Tomkins 26, this set of resonances is associated with a rather
small number of planar orbits of the crossed fields Hamiltonian which is known to
support an enormous number of mostly non-planar periodic motions 8. In view of
the large phase and parameter space of the problem (which is further enlarged by the
choice of polarization of the stimulating laser), how does the experiment achieve such
remarkable selectivity? What is special about these orbits and which systematics do
they obey? In this Letter we will answer these puzzles by uncovering some remarkable
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adiabatic structures that govern the motion of the electron under the influence of three
interactions (Coulomb, electric and magnetic fields) of comparable strength. Solving
this problem quantum mechanically is not possible with current computational facilities
— the number of states in the experimental energy range is very large and these are
very extended states. Instead, we will use classical mechanics which does give reliable
results because the experiments are performed in a regime where the Correspondence
Principle is valid.

PERTURBATION THEORY

The Hamiltonian (in atomic units) of the crossed fields problem is 9, 10

We use atomic units throughout, i.e., the magnetic field B is given in units of
T and points in the z direction whereas the electric field F

is in units of and points in the x direction. The
quantity m is the z-component of the angular momentum We set out
by obtaining the Normal Form of this Hamiltonian which reduces the problem from
three to two degrees of freedom without restricting the approximate motion to the xy-
plane where most orbits accessed by the Garching experiment 8 reside. The technically
involved derivation 27 is as follows. The regularization of the Coulomb singularity in
(1) using the four Kustaanheirno-Stiefel coordinates u and their conjugate momenta

transforms that Hamiltonian into

where

which is then analyzed using the succession of canonical transformations of the
28, 29. When enormous number of terms resulting from this treatment are expressed
in terms of the two angular momenta J and K, the Lie-algebraic generators of the

group (locally isomorphic to the symmetry group SO(4) of the Coulomb
problem30, 12),

(where A is the Runge-Lenz-Laplace vector) a compact Normal Form is obtained27. It
contains a pair of degenerate, strongly coupled asymmetric tops in these two generators:
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Key features of the dynamics emerge when Poincare Surfaces of Section (PSOS)
are displayed in terms of the canonical variables

where | is the classical analog of the principal quantum number. The
PSOS’s (Fig. 4) are dominated by two fixed points, which we will call and
(Fig. 5). is stable and robust to changes of external parameters, whereas may
become unstable. This fixed point spawns two others
signaling the onset of chaos when the fields are increased. Translating to cartesian
coordinates, one finds that represents the motion in the xy-plane which is invariant
due to parity symmetry, i. e. an electron started with remains forever in
this plane. The Garching experiments 8 showed the importance of these motions as the
most important QL oscillations could be explained by planar orbits. In contrast,
translates to non-planar orbits. The immediate contact we establish with experiment is
an indication that our choice above of the “Extended Lissajous” variables 31 (invented
and perfected by astronomers 32) are best able to bring out relevant features of this
problem.

The agreement in key aspects such as individual quantized energy levels and dy-
namical behavior (even in chaotic regions) between the predictions of the perturbation
Hamiltonian, Eq. (9), and the exact Hamiltonian is excellent in the regime of small
and and we confine our following remarks to this regime. The most pronounced
difference is that the exact Hamiltonian does allow for ionization and mixing between
n-states whereas the approximate one does not. The dimensionality of the problem can
be further reduced by averaging over the first order motion, thus smoothing out the
chaos.

ADIABATIC INVARIANTS AND THEIR ANALYSIS

A pair of rotations, one for J,

by an angle

and a corresponding one of through an simplifies the first order terms
in Hamiltonian (5) and turns the Normal Form into
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where

and

The motion of J and K, which is thus decoupled from the fast motion along Kepler
ellipses, is given to first order in the fields by the frequency

separated from the second order motion by a factor of

Here, the fast motion is the first order motion, and we average over a period
of this motion, assuming to be small. The averaged motion is governed by the

adiabatic Hamiltonian
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where

Hamiltonian (14) is equivalent to the quantal perturbative treatment 33. Using the
canonical variables can be rewritten as

where

It is now evident that is an adiabatic constant of the motion and so is in other
words, is an integrable approximation and incidentally similar to a pendulum 31.

The motion of occurs along the contour lines This means that the
system evolves according to three timescales of different orders in the fields:

1. The fastest, “zeroth order motion” is the motion conjugate to n along instanta-
neously fixed Kepler ellipses. Due to the conservation of n in the perturbative
Hamiltonians, this motion is uncoupled from

2. the intermediate evolution, linear in the fields, of the elements of the ellipses,
represented by J and K, or more specifically, by the motion conjugate to the
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3. The slowest motion, quadratic in the fields, is that of the conjugate pair

The critical points of the are given by

which gives and

which gives the non-planar orbit This orbit becomes unstable if and only if

and

The condition corresponds to the subgroup chain for
which the second-order perturbation expression for the energy is separable 34. In a
symmetric manner, becomes unstable when

and the corresponding condition corresponds to the subgroup chain
which also renders the second-order expansion separable 34. Both these

periodic orbits are stable when

CORE-VISITING ORBITS

The key to understanding the selectivity of the photoabsorption experiment is to
realize that in the semiclassical regime, photon absorption or emission by the electron
can only take place close to the nucleus 35. Therefore, one needs to investigate which
set(s) of orbits are accessible to an electron when it approaches the nucleus closely11.
When and since the angular momentum vanishes at the nucleus,

The invariant

and we will determine which values of the invariant be reached at the nucleus
and relate these to and

The values of bounded by the curves

and

and they are shown in Fig. 6. The position of is given by the upper
and lies on the dashed line given by Eq. (20). This curve is reached at only
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if and then is unstable. The demarcation between orbits based on and
those based on is given by

The left panel of Fig. 6 shows this for the parameters of the Garching experiment 8.
The periodic orbit is never accessed whereas is, and this constitutes the reason
for the preferential excitation of planar orbits based on The right panel of Fig. 6
shows the same demarcation for the parameters of Fig. 4. This time, the chaotic region
around can be accessed in addition to orbits which are, however, still accessed
preferentially. is unstable in this regime.

CONCLUSIONS

In summary, we have shown that the Hamiltonian of an electron in combined
Coulomb and crossed external electric and magnetic fields can be usefully approximated
by combining Normal Form theory and Lie algebra. Despite the enormous size of
the parameter and phase space of the original problem, the special status assigned
to some intricate periodic motions of the electron by recent experiments is connected
to adiabatic invariants through our treatment. While deviations from the Coulomb
potential require slight changes in our arguments due to finite core size, the success
of the adiabatic invariants in explaining key features of the experiment shows their
potential value for simplifying other aspects of this complex problem in the future.
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HIGHLY EXCITED CHARGED TWO-BODY SYSTEMS IN A
MAGNETIC FIELD: A PERTURBATION THEORETICAL APPROACH
TO THE CLASSICAL DYNAMICS

W. Becken and P. Schmelcher

Theoretische Chemie
Physikalisch-Chemisches Institut
INF 253
69120 Heidelberg, FRG

INTRODUCTION AND PHEMOMENA

In the presence of an external magnetic field neutral as well as charged two-body
systems possess an inherent two-body character, i.e. their center of mass (CM) and
relative motion cannot be separated but are intimately coupled 1, 2.

Very recently interesting effects due to the coupling of the CM and electronic
motions in one-electron atomic ions have been studied 3, 4, 5, 6, 7 by solving the classical
equations of motion (eqms) for electronically highly excited atomic ions. Two major
effects have been reported: the self-stabilization and self-ionization effects. For regular
motion (Coulomb interaction dominates over magnetic forces) and vanishing initial
CM velocity the highly excited ion stabilizes on a cyclotron orbit. Due to the above-
mentioned coupling the CM motion gains a finite mean kinetic energy.

Observed phenomena for are :
- oscillating flow of energy between the CM and electronic degrees of freedom

on three, by orders of magnitude different time scales
- repetition of similar patterns of the CM trajectory on the time scales

cyclotron orbit on an even larger time scale

The Hamiltonian can be decomposed into the sum of an electronic part, a CM part
describing a charged pseudoparticle in the external field and a coupling part. The effect
of the self-stabilization is shown to occur for any initial conditions in the regular regime.

CONSTANTS OF MOTION AND CANONICAL TRANSFORMATION
OF THE HAMILTONIAN

Our goal is to derive low-dimensional effective Hamiltonian equations of motion which
describe the averaged classical motion on the different time scales. Furthermore, we
will reveal approximate constants of motion.
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Our starting point is the Hamiltonian for a charged two-body system of two in-
teracting particles in a homogeneous external magnetic field with

Due to the nonvanishing magnetic field the only remaining conserved quanti-
ties of this rionintegrable Hamiltonian are the energy H, the z-component of the to-
tal angular momentum12 and the pseudomomentum

A maximal set of commuting constants of motion is
Our aim is to introduce these quantities by canonical transformations as

canonical momenta and to transform the remaining degrees of freedom to variables
which are well-suited for the perturbation theoretical approach with respect to the
magnetic field.

We therefore perform the following steps:

Step 1: Transformation from laboratory system to
variables

Step 2: Power-Zienau-Wooley transformation 2,9,15,16, leading to

where is the z-component of the relative angular momentum

is the CM
Hamiltonian for a free pseudoparticle with charge Q and mass M in a magnetic field.

contains the coupling of the CM and relative degrees of freedom. is the purely
electronic part.

Step 3: Introduction of suitable variables for the CM and the internal motion, sepa-
rately

CM motion :

relative motion: action-angle variables

where The conjugated angles belonging to are
and the conjugated angles belonging to are

Step 4: Effects of the coupling
The relative and CM motion exchange angular momentum due to the coupling

only the sum is conserved. Thus we introduce
as canonical momenta with the corresponding coordinates
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The final Hamiltonian reads

with and The arguments of the Hamiltonian are the conserved
momenta separated by a semicolon from the dynamical variables. The coordinates

are cyclic (The special case of infinite nuclear mass which corresponds to the
Hamiltonian for has in detail been investigated in ref.13).

PERTURBATION THEORETICAL CONCEPTS

We rearrange the Hamiltonian H in powers of the perturbation parameter

Physical meaning of the

- CM energy parallel to the magnetic field
- pure Kepler Hamiltonian, fast Kepler-motion of the angle time scale

- cyclotron motion of the ion with charge Q and mass M
- Zeeman term of slower motion of the angle time scale

- coupling between the CM and electronic motion

- diamagnetic electronic part of

Properties:
- H is integrable up to second order

is the only dynamical variable in
- H depends periodically on the dynamical angles
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Perturbation theoretical approach to H:
1.) Series expansion due to the explicit and implicit dependence for all relevant

quantities (Hamiltonian and variables) on

2.): Oscillatory motions on different time scales . are superimposed on each other
successive averaging of the eqms over the time scales

Problem: To reveal the effects of which are masked by those of more profound
mathematical methods have to be elaborated 15,16.

THE PERTURBATION THEORETICAL METHOD

Characteristics of the starting situation:

1. The underlying exact Hamiltonian can be represented in a series (in our case
up to fourth order) in a small parameter

2. In the lowest order only a single variable is not constant.

3. The total Hamiltonian is a periodic function of this variable.

These features are not as special as they might seem from a first glance. Indeed,
if possible one would always choose as a zeroth order Hamiltonian an integrable one
which meets in suitable action angle variables the first two of the above conditions.

A Expansion

Series for H (explicit dependence and formal solution:

The motion of the r-th order is determined by

Problem: Coupling of r-th order of to the same order in the argument of
Simplifications: Due to the property 2 of the Hamiltonian H its components
depend only on the first (r — 1) orders for all degrees of freedom except for say
(in our case Due to the property 3 the behaviour of can be averaged out.

B Averaging

Represent as a Fourier series in and perform the time integra-
tion of the eqms over one time cycle of The result is a system of difference equations
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which can, under appropriate conditions, be replaced by a system of differential equa-
tions. These equations can, up to a certain order depending on the special structure
of the given Hamiltonian H, be considered as the eqms of one effective Hamiltonian

Important property: does not depend on the averaged quantity is an
approximate constant of motion dimensional reduction introduced
by averaging

RESULTS AND DISCUSSION

We apply our method up to the order r = 4: The eqms are generated by:

The eqms (14) for r = 0,1,2 repeat the fact that the time scales belong to the
motion of respectively. But now we can obtain more information about the
higher orders by averaging. As described above, we obtain an effective Hamiltonian

, are the zeroth Fourier components of with respect to ;

Property:
is up to order r = 4 an exact constant of motion and in general an approx-

imate constant of motion are  dynamical  variables
reduction of the number of degrees of freedom from 3 to 2

Though is simpler than H, it does not yet show directly the system’s behaviour
in the orders

- Idea: Repeat the averaging procedure but now with respect to the oscillations of
the second larger time scale

- Preparation: Rescaling of time in order to meet the features 1,2,3 of
the starting situation.

- Result of the second averaging process: a second effective Hamiltonian :
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Properties:

is up to order an exact constant of motion and in general an ap-
proximate constant of motion
reduction of the number of degrees of freedom from
is integrable

is identical with the one-particle Hamiltonian
has, apart from the term containing a very similar

structure to that one-particle Hamiltonian also for

Analogously to the case the solutions of our eqms are librators or rotators. Their
time scales depend strongly on the initial conditions but possess a strict lower bound

( is a factor of order 1 measuring the failure of to be zero) which

occurs as a new third time scale additionally to and
Considering the obtained results in Cartesian coordinates by using our canonical

transformation equations and also the relation we find a fourth
time scale corresponding to a CM motion on a circular orbit with radius

and cyclotron frequency which now confirms the self-stabilization effect
rigorously. (Remark: depends on the initial relative distance due to the coupling!)
The order of magnitude of those four time scales is shown in Fig.l.

212



SUMMARY AND CONCLUSIONS

- The classical behaviour of charged two-particle systems, in particular in an ex-
ternal field B is for small B regular and can be treated by perturbation theory.

- All the constants of motion except . can be introduced as canonical
momenta.

- H can be decomposed into a sum of an electronic part, a CM part for a charged
pseudoparticle in an external field and a coupling Hamiltonian.

- The phenomena observed in the regular regime were fast Kepler-oscillations, Larmor
precession, modulation of the CM-energy and a cyclotron rotation of the CM on four
different time scales respectively.

- By averaging the eqms succesively over and we obtain two approximative con-
stants of motion and arrive at a one-dimensional integrable effective Hamilto-
nian.

- The oscillations on the time scale are described by the unaveraged Hamiltonian
eqms, the modulations on the time scale by the once averaged ones. The behaviour
on the time scale is best described by the twice averaged and integrable effective
Hamiltonian. The motion on the time scale does not have to do anything with the
averaging procedure but enters when transforming back to Cartesian coordinates.

- All the observed phenomena and in particular the self-stabilization effect can be repro-
duced by our perturbation theory.

- Up to order B2 no further phenomena are to be expected
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ANALYSIS OF QUANTUM SPECTRA BY HARMONIC INVERSION
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INTRODUCTION

Semiclassical periodic orbit (Gutzwiller, 1990) and closed orbit (Du and Delos,
1988; Bogomolny, 1989) theory have become the key for the interpretation of quantum
spectra of classically chaotic systems. The semiclassical spectra at least in low resolution
are given as the sum of a smooth background and a superposition of modulations whose
amplitudes, frequencies, and phases are solely determined by the closed or periodic
orbits of the classical system. For the interpretation of quantum spectra in terms of
classical orbits it is therefore most natural to obtain the recurrence spectrum by Fourier
transforming the energy spectrum into the time domain. Each closed or periodic orbit
should show up as a sharp at the recurrence time (period), provided, first, the
classical recurrence times do not change within the whole range of the spectrum and,
second, the Fourier integral is calculated along an infinite energy range. The first
condition can be fulfilled in systems possessing a classical scaling property in that the
classical dynamics does not change if the energy and an external scaling parameter
are simultaneously varied. An example is the hydrogen atom in crossed magnetic
and electric fields given by the Hamiltonian [in atomic units,

The classical dynamics does not depend on three parameters, the energy E and the
two field strengths and but solely on the scaled energy and the scaled
field strength Applying the method of scaled energy spectroscopy (Main et
al., 1994) the quantum spectra can be created at a constant scaled energy as a function
of the scaling parameter The scaled spectra can be Fourier transformed
along arbitrarily long ranges of to generate Fourier transform recurrence spectra of in
principle arbitrarily high resolution. By varying the scaled energy a direct comparison of
the quantum recurrence spectra with the bifurcation diagram of the underlying classical
system is possible (Main et al., 1994). However, the second condition is never fulfilled in
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practice, i.e., the length of quantum spectra is always restricted either by experimental
limitations or, in theoretical calculations, by the growing dimension of the Hamilton
matrix which has to be diagonalized numerically. The given length of a quantum
spectrum determines the resolution of the quantum recurrence spectrum due to the
uncertainty principle, when the conventional Fourier transform is used.
Only those closed or periodic orbits can be clearly identified quantum mechanically
which appear as isolated non-overlapping peaks in the quantum recurrence spectra.
This is especially not the case for orbits which undergo bifurcations at energies close
to the bifurcation point.

Here we present a method to calculate high resolution recurrence spectra from
experimental or theoretical quantum spectra of finite length thereby circumventing
the restrictions of the uncertainty principle to the resolution of finite range Fourier
transforms (Main et al., 1997a). It allows, e.g., to identify real orbits with nearly
degenerate periods and to detect complex “ghost” orbits which can be of particular
importance in the vicinity of bifurcations (  et al., 1993; Main and Wunner, 1997).

HARMONIC INVERSION OF QUANTUM SPECTRA

According to periodic orbit theory (Gutzwiller, 1990) the semiclassical density
of states can be written as the sum of a smooth background and oscillatory
modulations induced by the periodic orbits,

The amplitude and scaled action of periodic orbit k are ob-
tained from classical calculations and are in general complex quantities. The amplitude

contains the phase information determined by the Maslov index of the orbit. A
non-real action indicates a "ghost" orbit (  et al., 1993; Main and Wunner, 1997)
which exists in the complex continuation of the classical phase space. A similar formula
as Eq. (2) also holds in closed orbit theory (Du and Delos, 1988; Bogomolny, 1989) to
calculate semiclassically the photoabsorption cross section for dipole transitions from
an energetically low lying initial state. Oscillatory modulations of the cross section are
induced by closed orbits of the electron starting at and returning back to the nucleus.
(In closed orbit theory the oscillatory terms of the photoabsorption cross section are
proportional to with for the hydrogen atom in a magnetic field and

for the atom in crossed magnetic and electric fields. To obtain the functional
form of Eq. 2 we multiply the cross section

As mentioned above the low resolution nature of the Fourier transform for a short
signal does not permit one to resolve closely spaced peaks, neither does it allow to dis-
tinguish between real and ghost orbits. Instead of using the standard Fourier analysis,
to extract the amplitudes and actions we essentially fit a finite range of the quantum
spectrum by the semiclassical expression (2) with unknown and in general complex
parameters The problem of fitting a "signal" to the functional form
(2) is known as harmonic inversion with a large variety of applications in various fields
(Marple, 1987). As a numerical technique for the harmonic inversion of a signal, i.e. a
quantum spectrum, we apply the method of filter-diagonalization (Wall and Neuhauser,
1995) which allows to extract the frequencies in any given interval of interest. The
method was recently improved in that it allows to significantly reduce the required
length of the analyzed signal (Mandelshtam and Taylor, 1997a). The method has also
been applied successfully for periodic orbit quantization, i.e., to calculate individual
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eigenenergies and resonances of classically chaotic systems by analytic continuation of
Gutzwiller’s divergent periodic orbit sum (Main et al., 1997b).

Operationally, harmonic inversion is performed by setting up a small generalized
eigenvalue problem. To extract the frequencies and amplitudes in the small
interval from a given signal which is assumed to have the form

one has to carry out the following steps.
(i) Define a small grid in the interval The density
of the grid has to be bigger than the density of the frequencies in this interval. This
grid corresponds to the set of complex numbers on the unit circle.
(ii) Evaluate three complex symmetric matrices of the size with, e.g.,

using

(Note, that evaluation of requires knowledge of
(iii) Solve the small generalized eigenvalue problem:

for the eigenvalues and eigenvectors
(iv) Each value of p yields a set of frequencies and amplitudes,

The converged and  should not depend on p. This condition allows to identify
spurious or non-converged frequencies by comparing the results with different values of
p (e.g., with p = 1 and p = 2). For more details of the harmonic inversion technique
see Mandelshtam and Taylor (1997b).

The complex actions in the chosen spectral domain and amplitudes are
obtained from the resulting eigenvalues and eigenvectors of Eq. (5). Thus, the re-
currence spectrum is effectively discretized, the number of terms being the number
of eigenvalues in the spectral domain. This method is a variational one (as opposed
to the Fourier transform) and therefore has practically an infinite resolution once the
amount of information contained in the signal is greater than the total number
of unknowns The minimal length of the quantum spectra required for the
convergence of individual closed or periodic orbit parameters depends linearly on the
mean density of orbits at that period, i.e., for a given finite length of the quantum spec-
tra the region of the high resolution recurrence spectra is limited by the proliferation
of classical orbits with increasing period.

In quantum calculations the bound state spectrum is given as a sum of
In order to obtain on an evenly spaced grid the spectrum is regularized by con-
voluting it with a narrow Gaussian function having the width where
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is the scaled action of the longest orbit of interest. The quantum spectrum reads

where the are the eigenvalues of the scaling param-
eter and the weights are, e.g., the absolute value squared of transition matrix
elements for excitations from a given initial state. The unweighted density of states is
obtained with and ,

We now demonstrate on the hydrogen atom in a magnetic field and in crossed
magnetic and electric fields that physically interesting effects can be revealed in the
quantum spectra by application of the harmonic inversion technique. We do not present
the complete high resolution recurrence spectra here but concentrate on the physically
interesting parts which can not be resolved by conventional Fourier transform.

Precision check of the periodic orbit theory

As a first example we apply the method to the density of states for the hydrogen
atom in a magnetic field at scaled energy . At this energy the classical
dynamics is completely chaotic and all periodic orbits are unstable. We calculated
9715 states in the region by numerical diagonalization of the Hamiltonian
matrix in a complete basis set. For details of the quantum calculations see, e.g., Main
and Wunner (1994). The quantum density of states was analyzed both by conventional
Fourier transform and by the high resolution method (Mandelshtam and Taylor, 1997).
To get rid of unphysical sidepeaks in the conventional Fourier transform we multiply the
spectra with a Gaussian window which is chosen in accordance with the total length
of the quantum spectrum. A comparison between the Fourier transform, the high
resolution quantum recurrence spectrum, and the semiclassical recurrence spectrum is
presented in Fig. 1 around scaled action The smooth line is the absolute value
of the conventional Fourier transform. Its shape suggests the existence of at least three
periodic orbits but obviously the recurrence spectrum is not completely resolved. The
results of the high resolution spectral analysis are presented as sticks at the positions
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defined by the scaled actions with peak heights Note that the positions of the
peaks are considerably shifted with respect to the maxima of the conventional Fourier
transform. To compare the quantum recurrence spectrum with Gutzwiller’s periodic
orbit theory we calculated the classical scaled actions of the periodic orbits and their

semiclassical amplitudes with being the monodromy
matrix of orbit k. The semiclassical results are presented as dashed sticks and squares in
Fig. 1. For illustration the shapes of periodic orbits are also shown (in semiparabolical
coordinates For these three orbits the agreement between the
semiclassical and the high resolution quantum recurrence spectrum is nearly perfect,
deviations are within the stickwidths. For example, for the first peak in Fig. 1 we find

The deviation between
the classical and quantum amplitude might be related to higher order corrections
of the semiclassical trace formula. In fact, Gutzwiller’s trace formula is only the first
term of the semiclassical series and the high resolution recurrence spectra might be a
sensitive tool to identify these corrections quantitatively in quantum spectra.

Uncovering the “hidden” ghost orbits

In systems where classical orbits undergo bifurcations complex “ghost” orbits may
be important for a complete understanding of quantum spectra, as was shown for the
kicked top ( et al., 1993) and for the hydrogen atom in a magnetic field (Main
and Wunner, 1997). The contribution of a ghost orbit decreases exponentially with
the energy distance from the bifurcation point and therefore ghosts can be detected in
quantum spectra by conventional Fourier transform only if they are isolated from the
other orbits, e.g., as a prebifurcation ghost of a saddle node bifurcation ( et al.,
1993). For other types of bifurcations, e.g., for the bifurcation of the perpendicular
orbit of the hydrogen atom in a magnetic field ghost orbits are hidden behind a strong
recurrence peak of a real orbit with nearly the same classical action (Main and Wunner,
1997). Such “hidden” ghosts can now be uncovered in high resolution quantum recur-
rence spectra. The key point is that the harmonic inversion of quantum spectra supplies
complex frequencies which can be interpreted as complex actions of
ghost orbits. In Fig. 2 we have analyzed the photoabsorption spectrum of the hydrogen
atom in a magnetic field at scaled energy in the region
transitions from the initial state to final states with . The conventional
Fourier transform (smooth line) has a maximum at which is roughly twice
the period of the perpendicular orbit but does not give any hint on the existence of a
ghost orbit. The high resolution spectral analysis uncovers one real and two complex
actions which are compared to the classical actions of the perpendicular orbit
and a complex ghost (see crosses and squares in Fig. 2b respectively). For the frequency
with the largest imaginary part no classical analogue has been found but its amplitude
(see Fig. 2a) is rather small. For the two stronger contributions the agreement between
quantum and classical recurrence spectrum is remarkably good. The shapes of the real
and complex closed orbits are presented as insets in Fig. 2a (in semiparabolical coor-
dinates ). The real part of the ghost orbit (solid line) is similar to the “Pacman”

(in the notation of Main and Wuriner, 1997) which is created as a real orbit at
much higher energy This is the first observation of a hidden ghost orbit
in quantum mechanical spectra.
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Symmetry breaking in crossed fields

The hydrogen atom in a magnetic field has a cylindrical symmetry around the
magnetic-field axis, i.e., closed and periodic orbits do not depend on the azimuthal
starting angle This symmetry is broken in crossed magnetic and electric fields.
Out of a manifold of closed orbits only two closed orbits with slightly different classical
actions survive in the crossed fields (Neumann et al., 1997). As a result each recurrence
peak splits into two. We investigate the symmetry breaking in the crossed field atom
at scaled energy and scaled field strength where we calculated the
photoabsorption spectrum (transitions from the initial state to the final states
with even z-parity) up to Without electric field two recurrences occur
at for the perpendicular orbit and at for the parallel orbit. With
the weak electric field the parallel orbit is not significantly affected but the
perpendicular orbit splits into two closed orbits with slightly different classical actions

and Their shapes are presented as insets in Fig. 3. As can be
seen in the figure the two closed orbit contributions are not resolved by the conventional
Fourier transform (smooth line) but they are clearly separated by the high resolution
spectral analysis in agreement with the classical recurrence spectrum.
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CONCLUSION

We have shown that interesting physical phenomena can be revealed in high reso-
lution quantum recurrence spectra by application of the harmonic inversion technique,

thereby circumventing the restrictions imposed by the uncertainty principle of the con-
ventional Fourier transform. The method allows, e.g., to test the validity of semiclas-

sical theories, to identify hidden ghost orbits in the quantum spectra, and to observe

the symmetry breaking in the spectra of the hydrogen atom in crossed magnetic and

electric fields. The analysis has been demonstrated here on theoretically calculated
quantum spectra but can be applied to experimental spectra as well.
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ATOMS IN EXTERNAL FIELDS: GHOST ORBITS, CATASTROPHES,
AND UNIFORM SEMICLASSICAL APPROXIMATIONS
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D-44780 Bochum, Germany

INTRODUCTION

Highly excited atoms in external magnetic and electric fields are nontrivial systems
possessing a classically chaotic counterpart, with at least two nonseparable, strongly
coupled degrees of freedom. Atoms in magnetic fields have served as prototype systems
for studying – both experimentally and theoretically – the quantum manifestations of
classical chaos in real physical systems. A decisive advance for an interpretation of
structures in the photoabsorptiori cross section was achieved by the development of
closed orbit theory by Du and Delos (1988) and Bogomolny (1989). The method allows
at least in low resolution a quantitative semiclassical calculation of spectra in terms
of a few parameters of closed orbits starting at the nucleus and returning back to the
nucleus. However, some features have been observed in quantum spectra which cannot
be explained within the conventional closed orbit theory. An example is the observation
of resonances in recurrence spectra of the hydrogen atom at positions where no closed
classical orbits exist. These structures appear at energies near bifurcations of orbits,
i.e., where orbits are born or vanish. Near bifurcations closed orbit theory fails, the
semiclassical formulas diverge and arc singular exactly at the bifurcation points. The
purpose of this article is to calculate and interpret photoabsorption spectra of atoms
in external fields in terms of closed classical orbits, in particular at energies close to
bifurcations where the conventional theory fails. We discuss the classical dynamics,
bifurcations, and ghost orbits, and construct the uniform approximations for various
types of catastrophes.

CLASSICAL DYNAMICS

Search for real and “ghost” orbits

The nonrelativistic Hamiltonian for atoms in a magnetic field of strength B di-
rected along the z axis reads
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The component of the angular momentum parallel to the field axis is conserved and we
choose in all classical calculations. The potential is the Coulomb
potential in case of the hydrogen atom and is modified by a short-ranged core potential
modeling the non excited electrons of the ionic core in general Rydberg atoms (Hüpper
et al., 1995).

A special feature of the Hamiltonian of the hydrogen atom is its scaling property
with respect to the magnetic field strength. In scaled coordinates and momenta,

the classical Hamiltonian assumes the form

The classical trajectories obtained from the scaled equations of motion do not depend
on both energy and magnetic field strength but only on one parameter, the scaled
energy Note that the classical action scales as

The scaling property is lost, in general, for nonhydrogenic atoms in magnetic fields
because the size of the ionic core does not depend on the magnetic field strength.
However, for a limited range of the field strength the same scaling laws as for hydrogen
can be approximately applied to nonhydrogenic atoms as well (Hüpper et al., 1995).

The Coulomb singularity presents an obstacle to the numerical integration of the
equations of motion that follow from the Hamiltonian (2). The way out of this problem
is a transformation of with called regularization (Stiefel and
Scheifele, 1971), together with a coordinate transformation to semiparabolic coordinates

The equations of motion obtained from the regularized
Hamiltonian are free of singularities and allow efficient integration with the help of
high-order numerical algorithms.

In a semiclassical approximation to photoabsorption spectra closed orbits which
start at and return to the nucleus are of fundamental importance. Trajectories are
started at the origin r 0 with an angle between the initial velocity and the
magnetic field axis. The closed orbit search can be formulated as finding solutions

so that the trajectory started with angle at time t = 0 returns back to the
origin after period Numerically the problem is solved with the help of an
iterative Newton algorithm and the are the real closed orbits when all
parameters are defined real.

The analytic structure of the equations of motion allows a direct analytic continu-
ation of the real phase space to the complex phase space. To search for complex closed
orbits we again choose initial conditions r = 0 but complex starting i.e. the
initial momenta become complex. With these complex initial conditions Hamilton’s
equations of motion can be numerically integrated from t 0 to It may be
noted that in general all closed orbit parameters become complex, in particular the
recurrence time , the classical action S, and the monodromy matrix M, which is
defined via

are small deviations in coordinate and momentum space per-
pendicular to the direction of the orbit (Bogornolny, 1989). For classification of closed
orbits we use the same nomenclature as in Main et al. (1991) and Main et al. (1994).
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As an example we investigate here real and ghost orbits related to the period dou-
bling of the perpendicular orbit This closed-orbit bifurcations is non elementary
because various orbits with similar periods undergo two different elementary types of bi-
furcations at nearly the same energy. The structure of bifurcations and the appearance
of ghost orbits can be seen clearly in the energy dependence of the starting _ in
Fig. la. Orbits are born in a saddle node bifurcation at

Below the bifurcation energy we find an associated ghost orbit and its
complex conjugate. is real only in a very short energy
and is then involved into the next bifurcation at This
is the period doubling bifurcation of the perpendicular orbit, which exists at all

The real separates from at energies below
the bifurcation point, i.e. a real orbit vanishes with increasing energy. Consequently
associated ghost orbits are expected at energies above the bifurcation,
and indeed such “postbifurcation” ghosts have been found. Its complex starting angles
are also shown in Fig. 1a. The energy dependence of scaled actions, more precisely the

to the action of the period doubled perpendicular orbit is presented
in Fig. 1b (solid lines) and the graph for the monodromy matrix is given in
Fig. 1c. As can be seen action and monodromy matrix element of ghost orbits related
to the saddle node bifurcation of become complex at whereas these pa-
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rameters remain real for the postbifurcation ghosts at Note that only ghost
orbits with a positive imaginary part of the classical action are of physical relevance
(Main and Wunner, 1997).

Bifurcations and catastrophes

We look for the manifold of trajectories returning back to the nucleus. Introducing
rotated semiparabolic coordinates

are now parallel and perpendicular to the exactly returning orbit. For
isolated closed orbits, i.e. orbits sufficiently far from bifurcations nearby returning orbits
are approximately parallel to the However, at bifurcations the returning orbits
form catastrophes (Poston and Steward, 1978) as illustrated in Fig. 2. Fig. 2a shows a
fold catastrophe related to the saddle-node bifurcation of orbit at bifurcation energy

226



At energies the nucleus is located below the parabola type
caustic in Fig. 2a and two different real closed orbits with slightly different shapes
exist. With decreasing energy both orbits vanish exactly at the bifurcation point and
below the bifurcation energy there is no real closed orbit with similar shape.
However, in the closed orbit search extended to the complex continuation of phase
space the existence of prebifurcation ghost orbits could be revealed (Main and Wunner,
1997).

Fig. 2b presents a cusp catastrophe related to the period doubling bifurcation of
the balloon at bifurcation energy The balloon orbit itself is
already created at lower energy in a bifurcation from the parallel orbit.
A special feature of its shape is the symmetry in the initial and final angle,
It exists below and above the period doubling energy without any spectacular change
of this shape. Above the period doubling energy a new which breaks this
symmetry separates and is closed roughly after two times the period

The period doubling of the perpendicular orbit is a more complicated bifur-
cation scenario because various orbits with similar periods undergo two different ele-
mentary types of bifurcations at nearly the same energy (see Fig. 1). The returning
trajectories form a butterfly catastrophe as illustrated in Fig. 2c. The catastrophes
presented in Fig. 2 are three examples of the seven elementary catastrophes discussed
in catastrophe theory (Poston and Steward, 1978). A more detailed analysis of these
closed orbit bifurcations can be found in Main and Wunner (1997).

UNIFORM SEMICLASSICAL APPROXIMATIONS

The link between classical trajectories and photoabsorption spectra is made by
semiclassical closed-orbit theory. The theory has been originally developed indepen-
dently by Du and Delos (1988) and Bogomolny (1989) for the hydrogen atom in a
magnetic field and has become a powerful tool for the interpretation of experimental
spectra and exact quantum calculations as well. The agreement between quantum and
semiclassical results serves as a measure for our understanding of atoms in external
fields and deviations are usually an indication of new physical effects which are not
yet adequately considered in the semiclassical theory. Examples are the observation of
unidentified peaks in the recurrence spectra of hydrogenic and nonhydrogenic atoms
which are related to complex “ghost” orbits (Main and Wunner, 1997) or core-scattered
orbits (Hüpper et al., 1995). Indeed, these effects can be described and understood
within a generalized closed-orbit theory. Our main interest is to construct uniform
semiclassical approximations which are free of singularities at bifurcation points of
closed orbits where the conventional closed-orbit theory breaks down. Here, we can
not present the derivation of closed-orbit theory and its generalization to bifurcations
and catastrophes which is discussed in detail in Main and Wunner (1997). Instead we
directly present the results for the uniform semiclassical approximations and compare
them to solutions of standard closed orbit theory.

In general the semiclassical oscillator strength can be written as

is a smoothly varying continuous background, and E are the energies of the
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initial and final state, and and are the classical action and Maslov index of closed
orbit k. The angular is defined in the Appendix and and are the
initial and final angles of closed orbits starting at and returning to the nucleus. The
non-universal part of Eq. 6 is the amplitude function which depends on the
properties of the returning trajectories, i.e. the standard situation of isolated returning
orbits or uniform approximations for the various types of catastrophes. In conventional
closed orbit theory the amplitude function (in scaled variables) is given by

Note that the element of the monodromy matrix (4) is nonzero for isolated returning
orbits but vanishes at the bifurcation points of closed orbits where the conventional
serniclassical amplitude diverges. We will now discuss uniform approximations to the
amplitude function for the three examples of bifurcations and catastrophes
mentioned above, namely the fold, cusp, and butterfly catastrophe.

The fold catastrophe is related to a saddle node bifurcation. The amplitudes
around the bifurcation of orbit are presented in Fig. 3a (plotted is the

absolute value of the amplitude) at constant magnetic field strength The
dashed line shows the superposition of the two real orbits and at energies
The oscillatory structure of the amplitude is the result of the strong interference between
these two orbits. At the bifurcation energy the amplitude diverges. Note that the
amplitude at energies below the bifurcation point is zero in the standard formulation
of closed orbit theory, i.e. when only real orbits are considered. The dashed dotted line
is the extension when ghost orbit contributions are also included. We only consider
the ghost with positive imaginary part of complex action because only this ghost has
a physical meaning. The amplitude decreases exponentially in with
decreasing energy but also exhibits an unphysical divergence at the bifurcation point.
The solid line in Fig. 3a is the uniform approximation to the amplitude for which we
obtain

with the bifurcation energy and and parameters which can be determined from
classical trajectory calculations. Up to constant factors the uniform approximation to
the amplitude is an Airy function of the energy difference Both the oscillatory
structure of the amplitude at and the exponentially damped ghost orbit tail
are well reproduced but in addition the singularity at the bifurcation point is now com-
pletely removed. Note that the maximum of amplitude is not located at the bifurcation
point but is shifted to somewhat higher energy.

The cusp catastrophe is observed for example in the period doubling bifurcation
of the balloon and the uniform approximation to the amplitude is illustrated in
Fig. 3b (magnetic field strength . The non uniform amplitude is plotted as a
dashed line. Above the bifurcation energy three real orbits, the period doubled balloon,

and the bifurcated orbit, traversed in both directions are considered in Fig.
3b and the interference of these three orbits produces the oscillatory fluctuations of
the amplitude. The non uniform solution is characterized by an unphysical divergence
of the amplitude around the bifurcation energy but the singularity is removed in the
uniform approximation (solid line in Fig. 3b)
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with parameters and completely determined by classical calculations. The
energy dependence is given by a special case of Pearcey’s integral (Pearcey, 1946),

In contrast to the fold catastrophe (Fig. 3a) there is a real instead of a ghost orbit below
the bifurcation point and therefore the amplitude decreases rather than
exponentially with decreasing energy. Also the modulations of amplitudes at
are less pronounced, particularly there are no energies with vanishing amplitude, i.e.
complete destructive interference between all closed orbit contributions. Oscillations
in periodic orbit contributions related to a cusp catastrophe of returning trajectories
have been experimentally verified in Stark spectra of lithium atoms by Courtney et al.
(1995).

The butterfly catastrophe is related to a more complicated bifurcation scenario
as found e.g. around the period doubling of the perpendicular orbit. Results for

are presented in Fig. 3c. The solid line is the uniform approximation

obtained from classical calculations and

For comparison the dashed line shows the non uniform solution of standard closed or-
bit theory. The modulations of amplitudes at energies above the bifurcation point are
caused by the interference of three closed orbits, namely the period doubled perpendic-
ular orbit, and the “pacman” orbit, traversed in both directions. Ghost orbits
exist at these energies but have no physical meaning. Below the bifurcation point there
are one real orbit, and in addition a ghost orbit (and its time reversal) contributing
to the semiclassical photoabsorption spectrum. As in case of a fold catastrophe the
amplitude of the ghost orbit is exponentially damped with decreasing energy but now
the ghost is not isolated and its contribution is surpassed by that of the perpendicular
orbit, i.e. the ghost is “hidden” behind the real orbit. The first direct observation of
this hidden ghost orbit in high resolution quantum recurrence spectra is presented in
Main et al. (1997).

CONCLUSION

Highly excited atoms in external fields arc fundamental quantum systems which
possess in many cases a classically chaotic analogue. The analysis of their quantum
spectra is of fundamental importance for a deeper understanding of phenomena re-
lated to the so-called quantum chaos. The development and application of closed-orbit
theory was the decisive step for a semiclassical calculation and interpretation of pho-
toabsorption spectra. In its original version formulated by Du and Delos (1988) and
Bogomolny (1989) closed-orbit theory was able to reproduce most structures in hydro-
genie and even nonhydrogenic atoms but suffered from singularities at energies where
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orbits undergo bifurcations. Unphysical singularities at bifurcation energies of closed
orbits are now removed in uniform semiclassical approximations and the analysis of
these uniform solutions also reveals the role and physical importance of “ghost” orbits
in complex phase space.

APPENDIX

The angular functions depend on the initial state dipole
operator D, and phase shifts of the ionic core. They are linear superpositions of
spherical harmonics

with coefficients defined by the overlap integrals

where are Bessel functions. For more details see Gao and Delos (1992) and
Hüpper et al. (1995).
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QUADRATIC ZEEMAN SPLITTING OF HIGHLY EXCITED
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In this communication the quadratic Zeeman splitting of highly excited atomic
hydrogen is considered. The external magnetic field is assumed to be so weak that the
second order splitting is comparable with the fine structure of the unperturbed atom.
The Hamiltonian of the system can be written as

Here is the diamagnetic interaction; is the Pauli operator of
the relativistic corrections comprising “the mass on speed dependence”, the spin-orbit
interaction and the Darwin contact interaction; is the magnetic field in atomic units

There are three perturbations present in Eq.(l); their relative impact depends on
the field strength and the extent of the atomic excitation. We will make the following
assumptions:

• the spin and the orbital movement are uncoupled. This means that the first order
Zeeman splitting induced by the operator is much larger than the fine
structure, or

where is the fine structure constant; n is the principal quantum number of the
atomic state under consideration

• the first order (paramagnetic) Zeeman splitting is large compared with the second
order (diamagnetic) one, or
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• the diamagnetic splitting is much smaller than the energy interval between adja-
cent shells in the unperturbed atom, or

• the diamagnetic splitting is comparable with the fine structure, or

The first and the second of these assumptions guarantee that the orbital angular
momentum component is conserved. The third assumption means that mixing
between different shells of the atom can be neglected and n is a good quantum number.
Finally Eq.(2) means that the magnetic fields are weaker than those usually considered
in the theory of the second order Zeeman effect; in such fields the relativistic effects
compete with the field-induced splitting completely modifying it in some cases (see
below).

I. NUMERICAL CALCULATIONS AND SPECTRUM

Owing to the assumed hierarchy of the perturbation strengths calculation of the
splitting can be performed in two stages. The paramagnetic operator splits the level

of the non-relativistic unperturbed atom into a set of equidistant levels
with the spacing

where is the spin quantum number. These levels are still degenerate.
On the second stage we consider the lifting of this residual degeneracy. This is done by
diagonalizing the sum of the operators of the relativistic corrections and the diamagnetic
interaction in the basis set of the spin-orbitals belonging to the level (3). The respective
basis set is formed by the functions

with fixed and all possible l. Here stand for the non-relativistic radial wave
functions of atomic hydrogen and is the spin function.

It may be argued that, since there is degeneracy of the first order levels with
respect to the spin projection

mixing of states with and has to be taken into account. However, the
relativistic correction operator can change the orbital angular momentum projection m
by no more than 1; thus such mixing cannot take place in the first order by

The only non-zero diamagnetic operator matrix elements correspond to

their explicit expressions are well-knownsee, e.g. 1, Eq.(1.5). The relativistic correction op-
erator has non-zero matrix elements only for The selection rules for the
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operator are However, as was pointed out, only
the elements diagonal in m , are necessary:

Thus the perturbation theory matrix is tridiagonal and the equation for its eigenvector
has the form of a three-term recurrence relation

Its eigenvalues determine the splitting of the degenerate sublevels (3).
The typical spectrum of the problem (4) is presented in Fig. l as a function of the

parameter

Calculations for are shown. The depicted quantities are the
eigenvalues Full and dashed lines refer to the even and odd states respectively.
It is seen that the plot falls into four distinct regions denoted by Roman numbers. In
the regions II and IV the spectrum consists of  doublets which split when
the levels cross into the regions I and III. The non-relativistic limit is observed in the
left hand side of the plot corresponding to with its characteristic
division of the spectrum into the vibrational and rotational part. The limit
corresponds to the trivial Paschen-Back case when the non-diagonal elements in Eq.(4)
can be neglected and coincide with

II. SEMICLASSICAL THEORY

Interpretation of the diamagnetic splitting in the non-relativistic case has been
achieved by the classical perturbation theory and the correspondence principle3,4. We
will use the same approach. The electron in the non-relativistic classical hydrogen atom
moves along the Kepler orbit whose elements are determined by the angular momentum
L and the Runge-Lenz vector A. Owing to the magnetic field and the relativistic
effects, L and A become slowly changing functions of time. The effective Hamiltonian
determining their time dependence is one-dimensional. It can be obtained by averaging
the perturbation over a period of the classical Kepler movement. A convenient choice
for the canonical coordinate is the absolute value of the angular momentum
The conjugate momentum will then be the third Euler angle (eigenrotation) of the
frame of reference whose z and x axes are taken along the vectors L and A respectively.

The resulting classical Hamiltonian describing the evolution of the orbit of the
atomic electron with the unperturbed energy and the angular momentum projec-
tion under the influence of the second order effects can be written

The part describing the diamagnetic perturbation is well-known1, Eq.(3.6); 3,4

Here The function describes the relativistic effects
and is obtained from the operator in the semiclassical limit
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Note that the spin projection dependence vanishes in this limit.
The equation of the phase trajectory is given by the energy conservation

law,

The following symmetry property is of importance:

It will be convenient to introduce two functions of the “coordinate L” , which are in
many respects similar to the potential energy:

The extrema of these two functions with respect to L in the interval
determine the upper and lower bound of the Hamiltonian

Consequently they give bounds for the possible values of the energy correction under
the diamagnetic and relativistic perturbation:
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For reasons based on the correspondence principle the extrema (8) also bound the
spectrum of the secular problem (4). In Fig. l the values of the expressions (8) calculated
as functions of q are plotted by thin lines bounding the spectrum.

The angular momentum of the classical perturbed atom is an oscillating function
of time. The range of this oscillation depends on the energy correction and is fixed
by the inequalities following from Eqs.(5),(7)

The extrema of L (the turning points of its oscillation) are roots of the equations
in the extrema is equal to

respectively.
The dependence of on time can be either oscillation or unlimited growth cor-

responding to libration and rotation respectively. Libration takes place if the left and
the right turning points of the L oscillation belong to the same potential curve. E.g.,
suppose that L attains both its minimal and maximal values when
Then can never attain values (this would have been possible only in the
non-existing turning point in which Therefore cannot be an infinitely
growing continuous function. According to Eq.(6) the phase trajectory in this case
consists of two symmetric branches isolated from each other by the rays and

It can be proved in a similar way that when one of the turning points belongs
and another one to the movement is rotation.

The character of the movement (libration or rotation) can change at certain values
of which would mean the existence of a separatrix. Possible critical energies are
the ordinates of crossings of the curves which occur at and

However they determine separatrices only if they belong to the allowed energy correction
range (9). There can be thus two, one or no separatrices. The energies (10) are linear
functions of q. In Fig. l they are depicted by two thin crossing straight lines dividing it
into parts I...IV.

Consider now the classical movement and the spectrum of the problem for various
values of q (assuming for example).

1. Case

(the non-relativistic quadratic Zeeman effect). As seen in Fig. 2a, the total range

of is divided into two parts by the separatrix The energies in the

upper part of the spectrum correspond to rotation since the left turning point
belongs while the right one belongs to The energies lesser than
correspond to vibration in the vicinity of with two isolated
classical trajectories for each energy. This is well seen in Fig.3a where the phase
portrait of the system is shown in the polar representation for the case

The presence of two equivalent isolated phase trajectories corresponds in the
quantum mechanical approach to the energy spectrum whose lower (vibrational)
part consists of approximately degenerate pairs of levels. The levels in the upper
(rotational) part are non-degenerate. These properties of the spectrum are, of
course, well known1-4.
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2. Case

Doth of the critical energies fall now into the allowed range (9) of . dividing it
into three parts: the uppermost one corresponding to vibration in the vicinity of

the middle rotational one; the lower vibrational one with
the vibration in the vicinity of This can be inferred from the
plot of potential curves Fig.2b and the phase portrait Fig.3b. The corresponding
quantum mechanical energy levels structure reflects these properties of the clas-
sical movement. The spectrum between the critical energies consists of singlets
whereas the levels higher than and lower than are doublets.

3. Case

Only one of the separatrices remains within the range (9), namely The

classical movement is vibration around or and rotation for
higher and lower than see the plot of U (Fig.2c) and the phase portrait
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Fig.3c. The energy spectrum consists of doublets and singlets respectively and is
thus turned “upside down” compared with the nori-relativistic case.

4. Case

Both of the critical energies leave the allowed range Eq.(9) so no separatrices
exist in the movement (Fig.2d,3d). The only possible movement is rotation; the
quantum mechanical spectrum consists of locally equidistant even and odd levels
approaching to the Paschen-Back limit.

CONCLUSIONS

Using the classical mechanical perturbation approach we were able to explain the
structure of the quadratic Zeeman effect spectrum of the atomic hydrogen Rydberg
levels in weak magnetic fields in which the fine structure of the levels cannot be ne-
glected. The general structure of the spectrum turns out to be very different from the
non-rclativistic scheme. In particular the division of the states into the upper rota-
tional and the lower vibrational ones undergoes radical transformation. The role of
the relativistic effects would become more pronounced and would be more important
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in much stronger field in the interesting case of the spectra of multiply charged ions in
the magnetic fields possessing a much greater fine structure.
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1. FUNDAMENTAL ASPECTS

The general problem we are concerned with is a neutral system of two oppositely
charged particles interacting via the Coulomb potential in the presence of an external
homogeneous magnetic field and an additional electric field oriented perpendicular to
the magnetic one. The corresponding Hamiltonian takes on the following appearance:

where and E denote the charges, masses, vector potential and electric field
vector, respectively. are the Cartesian coordinates and momenta in the lab-
oratory coordinate system. In the absence of the external fields the total canonical
momentum is conserved and equals the total kinetic momentum. The resulting sym-
metry group is formed by the translations in coordinate space. In center-of-mass (CM)
and internal variables the CM motion then decouples, i.e. separates, completely from
the relative motion.

In the presence of the external fields the vector potential appears in the Hamilto-
nian (1) and the space translation symmetry is, therefore, lost. However, there exists
a generalization, i.e. the phase space translation group [1] which provides a symmetry
associated with the CM motion of the system in the presence of the external fields. The
new conserved quantity which is the corresponding generalization of the total canonical
momentum of the field-free case is the so-called pseudomomentum K [1,2]

where M and B are the total mass and magnetic field vector, respectively and the term
has been included in the pseudomomentum for convenience. is the
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drift velocity of free charged particles in crossed fields. The latter is independent of
the charge and mass of the particles [3]. Since the pseudomomentum is conserved its
components commute with the above Hamiltonian (1):

For a neutral system with vanishing total charge, the components of
K additionally commute among themselves:

For charged two-body systems, where holds, the components of K do not
commute. This gives rise to a variety of interesting phenomena which are discussed
elsewhere [4].

As a consequence of Eq. (4), the components of K can be made sharp simulta-
neously. This fact is the key ingredient for the so-called pseudoseparation of the CM
motion which introduces the pseudomomentum as a canonical momentum and thereby
eliminates the canonical CM coordinate. However, this does not mean that the CM and
internal degrees of freedom decouple, i.e. are separated. The pseudoseparation merely
uses the above exact constants of motion of the Hamiltonian in order to transform the
coupling of the collective and internal degrees of freedom to a particularly simple form.
The pseudoseparation transformation consists of a combined coordinate and unitary
gauge transformation. In the literature [1,2,5] this transformation has been performed
with the assumption of a fixed gauge for the vector potential in the Hamiltonian. How-
ever, fixing the gauge from the very beginning, i.e. already for the Hamiltonian in the
laboratory coordinate system, possesses a serious drawback: It is not possible to discern
between gauge dependent and gauge invariant terms in the transformed Hamiltonian.
A gauge invariant pseudoseparation is, therefore, desirable and has been performed
very recently [6]. As a result of this gauge independent pseudoseparation we obtain the
following transformed Hamiltonian

where

and

with the charge where and are different reduced masses.
K is now the constant vector of the pseudomomentum and {r, p} denote the canonical
pair of variables for the internal relative motion. The Hamiltonian (5) is the sum of
two terms: The kinetic energy of the relative motion and the potential

The explicite form of the kinetic energy depends on the chosen gauge via the
vector potential A. The important novelty with respect to our Hamiltonian is the
appearance of the potential term Apart from the Coulombpotential V and the
constant term an additional potential term occurs in the total potential

The latter term is gauge independent, i.e. does not contain the vector potential, and,
therefore, fully deserves the interpretation of an additional potential term for the in-
ternal motion with the kinetic energy given in Eq. (6). Apart from the constant
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the potential contains two coordinate dependent parts. The term linear in the co-
ordinates consists of two Stark terms: one which is due to the external
electric field E and a second one which is a motional Stark term with an induced
constant electric field The latter electric field is oriented perpen-
dicular to the magnetic one and arises due to the collective motion of the atom through
the homogeneous magnetic field. Besides the linear terms there exists a quadratic, i.e.
diamagnetic, term in the potential

In the following we illustrate and discuss the qualitative properties of the potential
Fig. 1 shows an intersection of the potential along the direction of the motional

electric field for the choice and a vanishing
external electric field. The Coulomb term dominates for small values of the x

coordinate. With increasing values of the coordinate x the Stark
increases and becomes comparable with the strength of the Coulomb potential. The
diamagnetic is, for our choice of the parameter values (see Sect. 2), in
this coordinate region still negligible. Due to the competition of the Coulomb and Stark
term a saddle point arises which in Fig. 1 is located at approximately
a.u. For even larger absolute values of the of the x coordinate the Coulomb potential
becomes small and the shape of the potential is more and more determined by the
diamagnetic quadratic potential term Due to the competition of the Stark
and diamagnetic terms our potential now develops a minimum which in Fig. 1 is
located at approximately The existence of both the saddle point
and the minimum depends, of course, on the values of the magnetic field strength
and the pseudomomentum. For a derivation and discussion of the conditions for their
existence we refer the reader to Sect. 2 and to the literature [6–9].

The above-discussed properties of our potential have important implications
on the dynamical behaviour of the atom. First of all, we observe that the ionization
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of the atom can take place only in the direction of the magnetic field axis: In the
direction perpendicular to the magnetic field vector the diamagnetic term
is dominating for large distances and causes a confining behaviour
of the potential Therefore, ionization is not allowed perpendicular to the magnetic
field. The second important observation is the fact that the presence of a minimum
in the potential leads to a potential well and consequently to new bound states or
trajectories inside this well. These trajectories as well as the corresponding quantum
mechanical states are extended objects in the sense that the electron and the nucleus
are far from each other. The quantum dynamics inside this well will be discussed in
Sect. 2 whereas the classical dynamics for energies beyond the saddle point energy is
the subject of investigation of Sect. 4.

Finally we emphasize that the above potential  is inseparably connected with the
finite nuclear mass. Assuming an infinite nuclear mass would simply yield  and
the above-discussed properties of the total potential  would disappear. In order to
obtain the correct qualitative behaviour and properties of the atom in a strong magnetic
field it is, therefore, necessary to treat the atom as an inseparable two-body system.

2. THE HYDROGEN ATOM IN CROSSED ELECTRIC AND
MAGNETIC FIELDS

In Sect. 1 we showed that, in addition to the Coulomb singularity, there exists an
outer potential well for the relative motion. This well is approximately an anisotropic
harmonic potential in the vicinity of its minimum. Accordingly, we can use the results
of Ref. [6] for the anisotropic harmonic potential and compare them to the numerically
calculated exact eigenstates of the hydrogen atom in the well. Before doing this let us
briefly discuss the conditions for the existence of the outer potential well [6–9].

Assuming the same orientations of the magnetic field vector and pseudomomentum
as in Fig. 1 we obtain from the condition for a potential extremum
for the y and z coordinate and an equation for the x coordinate

where In order to get both a minimum and a saddle point the cubic equation
must have three real zeros. From the form of the discriminant we obtain the following
inequality

as a necessary condition for the existence of a minimum. In the literature [7] an
explicit approximation formula has been given for the minimum coordinate:

Hence, for laboratory field strengths and pseudomomenta of
the order of 1a.u. the minimum is located at a distance of about from the
Coulomb singularity. Therefore, for states in the well the electron and proton are
separated about 100000 times as much as they are in the ground state of the hydrogen
atom without external fields, i.e. we encounter a strongly delocalized atom of almost
macroscopic size. Since the well exists only for negative values of x the separation is
fixed in a certain direction of space. As a consequence, the atom possesses a large
permanent dipole moment in contrast to the well known Rydberg states in a magnetic
field which do not exhibit a permanent dipole moment for vanishing pseudomomentum.

In the following we will investigate the quantum mechanical states in the outer
potential well [6–9] for laboratory field strengths. Many states up to a very high
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degree of excitation have been considered [6]. In order to interpret the full numerical
results for the energies and wave functions of the hydrogen atom in a magnetic field (or
alternatively crossed electric and magnetic fields) let us perform an expansion of the
Coulomb potential around the minimum of the potential well. Including only terms
up to we get the approximated potential [6]

where we used new coordinates with the origin at the minimum of the well. The
frequencies are given by

and the constant reads With this potential the
Hamiltonian of the hydrogen atom takes on the form of the Hamiltonian of a charged
particle in a magnetic field with anisotropic harmonic interaction. Therefore, we can
use the analytical results of Ref. [5] as an approximation for the low-lying energies and
wave functions of the hydrogen atom in the well. The approximate energies are given

by

with the frequencies

The quantum numbers and apply to the eigenstates of the Hamiltonian with
the harmonic potential only. However, we will use them as labels for the states
of the hydrogen atom, too. For all calculated cases will be much larger than
therefore will always be zero for the hundreds of states considered here. An increase
of the value of the label will correspond to an increase of the extension of the wave
function in the x– and y–directions, and an increase of the value of the label will
correspond to an increase of the extension of the wave function in the z–direction.

In a second step, in order to determine the influence of the anharmonicity in the
exact potential we will expand the up to higher powers of the components of r
and treat them as small perturbations to the harmonic approximation of the Hamilto-
nian by means of first order perturbation theory. These perturbative calculations offer
insight into the effects of the anharmonic parts of the potential onto the energies and
the form of the wave functions. For details we refer the reader to Ref. [6].

In the following we discuss the results of these numerical calculations of the exact
eigenenergies and wave functions and compare them to the corresponding quantities
obtained by the harmonic approximation as well as the perturbation theoretical calcu-
lation.

Our choice of the parameter values is and The energy of
the ground state in the potential well is a.u. The binding energy
of the ground state is where is the threshold
energy, i.e. the lowest energy of the ionized system. Even though the binding energies
of the states in the well are relatively weak they should be stable as long as collisional
interaction is prevented. The energy gap between the ground and first excited state
corresponds to a frequency of the order of magnitude of a few tens of
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In the following we consider the deviation of the exact energies from those of the
harmonic approximation as a function of the level number. In Fig. 2 we have plotted
the energy difference between the harmonic approximation and the exact energies of
the hydrogen atom in units of We see that the difference grows stepwise while
neighboring states show very different deviations from the harmonic approximation.
To explain these features let us look at the energy level number 162. We see that the
difference between exact and approximated energies for this level is much larger than
for the levels below 162. Level 162 has the quantum numbers and
i.e. the quantum number appears for the first time. Looking at higher levels
there are maxima of energy differences every 5th level above 162 up to level
237. For these levels (162,167, etc.) the quantum number and
Between two levels with there are levels with and apparently the energy
difference for these is smaller. That is, the difference between harmonic and exact
energies is mostly determined by the quantum number Hence, the anharmonicity
of the exact potential is most pronounced in z-direction. This can also be seen in
perturbation theory for higher terms of the expansion of the Coulomb potential where
the major contributions to the energy corrections are due to those terms containing
high powers of z.

Next let us turn to the wave functions of the hydrogen atom in the well. For the
states with either the expectation values of the and coordinate
are zero. For the wave function is centered near the minimum of the well.
With increasing quantum number the center of the wave function is shifted towards
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negative values of the x coordinate. This is due to the increasing extension of the wave
function in the z–coordinate which makes these states ”feel” the potential in regions
of larger z where the minimum of the well is shifted to negative x-values. We also
observe that the extension of the wave functions in x and y is the same for states with
the same and that the extension in z is the same for states with the same

This shows that excitations in the plane perpendicular to the magnetic field are
almost independent from those in z-direction. Furthermore, in general the extension
of the wave functions in the x-y-plane is much smaller than parallel to the field. Note
that the extension of the wave functions in the x-y-plane is also much smaller than it
would be in the same potential without the presence of a magnetic field. Apparently,
the form of the wave function is substantially determined by the field-dependent kinetic
energy.

Looking at the form of the wave functions we restrict ourselves to intersections in
the plane perpendicular to the magnetic field. In Fig. 3 we have plotted the square of
the absolute value of the wave functions of two states that are highly excited in the plane
perpendicular to the magnetic field. The ground state and less highly excited states are
not shown since they do not exhibit major differences to the harmonic approximation.
Shown are results in the harmonic approximation, this approximation plus corrections
from first order perturbation theory for higher terms of the and the
numerical results for the exact wave functions. We see that the harmonic approximation
leads to a wave function whose intensity is evenly distributed over an elliptic ring
surrounding the minimum of the well. In contrast, due to corrections from anharmonic
terms, the intensity of the wavefunctions of the hydrogen atom for states which are
highly excited in the plane perpendicular to the magnetic field is largely reduced close
to the x–axis both in the perturbation calculation and the exact results. Apparently
this deviation from the wave functions of the harmonic approximation is due to the
anharmonicity of the potential. In the perturbation calculation we included only a few
terms of the That is why the decrease of intensity of the wave functions
appears on the level of perturbation theory for even smaller values of the label than
in the exact calculation.

Let us conclude with two remarks. First we would like to draw the reader’s at-
tention to the fact that the fundamental aspects discussed in Sect. 1 are valid for
any neutral two-body system in a magnetic field. The existence of the outer potential
well is a universal property of such systems provided that the pseudomomentum or
alternatively the external electric field are sufficiently large. Hereby neutral particle
hole systems, i.e. excitons, occuring for example in semiconductor bulk systems, are of
particular interest. Since the Coulomb potential is screened by the ionic background
and since the effective masses of the particle and hole are of comparable order of mag-
nitude, laboratory fields are strong already for the ground state of the exciton. The
extension of the bound states in the outer potential well is then of the same order of
magnitude as the extension of the well-known states localized in the well due to the
Coulomb singularity (see Ref. [10]).

Our second remark concerns the experimental observability of the above-discussed
delocalized bound states of the hydrogen atom in crossed electric and magnetic fields.
Direct state-to-state transitions for bound states in the outer well should in principle be
observable in the radio-frequency regime. A second, probably more promising, approach
to experimental verification of the existence of states in the well is the measurement of
their dipole moment. There have been experiments that indicate the existence of atoms
with very large dipole moments in magnetic fields [11,12] for energies above the saddle
point energy. In Ref. [11] results of experiments with Rydberg atoms in magnetic fields
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were published. Their rough estimate for the dipole moment of
these atoms is Debye. This value of the dipole moment is roughly of the order
of magnitude to be expected.

3. CLASSICAL DIFFUSION OF THE CENTER OF MASS

The subject of investigation of the present section is the classical interaction of
the CM and internal motion for neutral two-body systems and in particular for the
hydrogen atom in a strong homogeneous magnetic field [13, 14]. For the present we
concentrate on the case of a vanishing pseudomomentum K (the case will be
discussed in Sect. 4). The relevant Hamiltonian is then given by Eq. (5) for

The component of the internal angular momentum parallel to the magnetic field is
a conserved quantity for our case of a vanishing electric field and pseudomomentum

In spite of the fact that there appear no CM degrees of freedom in the
Hamiltonian (15) the CM motion is by no means separated from the internal motion.
This can be seen by establishing the equations of motion belonging to the Hamiltonian
(5) and finally putting As a result, one obtains the following equation of motion
for the CM

where R is the CM coordinate vector. The motional Stark in Eq.
(5), therefore, intimately couples the CM and internal motion. The CM velocity (see
Eq. (16)) is determined by the components of the relative coordinate perpendicular
to the magnetic field. It is important to notice that the second quadratic term of
the Hamiltonian represents the kinetic energy of the CM according to Eq. (16),
i.e. we have Since the dynamics of the cyclic CM coordinate
is determined by the internal motion, the natural question arises how the transition
from regularity to chaos in the internal motion reflects itself in the behaviour of the CM
[13, 14]. The phase space of the internal motion is restricted to the energy shell whereas
the phase space of the CM motion is, at least in principle, unbounded. Therefore, one
may ask whether or not the phase space is filled out by the CM motion depending on
the regularity or irregularity of the internal motion.

In the absence of a magnetic field, i.e. for the pseudomomentum coincides
with the total canonical and kinetic momentum. In field-free space therefore,
means a vanishing CM velocity and the CM stands still. Let us begin our investigation
of the CM motion in the presence of a magnetic field with the case of regular internal
motion where the Coulomb potential dominates the dynamics. Fig. 4 shows a typical
trajectory of the CM in the coordinate plane perpendicular to the magnetic field. Since
the internal motion is quasiperiodic, the velocity as well as the coordinate of the CM
are both also quasiperiodic. Only a bounded part of phase space is, therefore, filled
out by the trajectory of the CM. The confinement of the CM trajectories to a circular
bounded part of the phase space is a general feature of the deep regular regime. For a
complete classification of the phase space in the regular regime accessible by low order
classical perturbation theory we refer the reader to the literature (Ref. [14] contains a
classification of the possibilities of the CM motion according to the classification of the
internal motion given in Ref. [15]).
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Fig. 4 also shows a typical center of mass trajectory for the case of a fully chaotic
internal phase space. The eyecatching new feature is that the motion is no more re-
stricted to some bounded volume of phase space. The trajectory of the CM motion
of the hydrogen atom in the plane perpendicular to the magnetic field now closely
resembles the random motion of a Brownian particle. In fact, the underlying equa-
tion of motion (16) for the CM motion is a Langevin-type equation without friction.
The corresponding stochastic Langevin force is replaced by our intrinsic chaotic force

A main characteristic of the random Brownian motion is the diffusion
law, i.e. the linear dependence of the travelled mean-square distance on time. The
mean square distance as a function of time for ensembles of trajectories for the
hydrogen atom in the fully chaotic regime was investigated in Refs. [13, 14]. Within
statistical accuracy the dependence was shown to be linear. The mean square distance

of the CM after the time t, therefore, obeys the following diffusion equation

is the corresponding diffusion constant. Our intrinsic chaotic force, which is
the kicker of the CM motion, possesses, therefore, the property of randomness in the
sense that it provides the well-known diffusion law.

As mentioned above, the energy of the CM motion is contained in a very implicite
way in the total Hamiltonian (15). In the chaotic regime we have to distinguish carefully
between the velocity distribution of the CM and the corresponding diffusion constant
resulting from the linear diffusion law. For a typical laboratory magnetic field strength

and a binding energy of which is easily
accessible experimentally, we arrive at a typical mean CM velocity of

The corresponding diffusion constant is of the order of magnitude of We
emphasize that these are results for a vanishing pseudomomentum  which in the
case of the presence of a magnetic field obviously does not mean that the CM velocity
is equal to zero. Only in the field-free case implies that the CM stands still.
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Other important examples which exhibit both confinement and diffusion in the
classical dynamics of their cyclic collective coordinates are the positronium [16] and
the excitonic atom [10]. Because of the comparable masses of the two particles in both
cases the mean CM velocity as well as the diffusion constant are orders of magnitude
larger than the corresponding values of the hydrogen atom.

For laboratory field strengths the chaotic regime corresponds to highly excited
Rydberg states for which the quantum of action is a multiple of the elementary quantum
of action We, therefore, expect that an approach via classical dynamics is justified
and gives some limited insight into the actual physical properties of the atom and,
of course, is of interest by its own value. However, it is a priori not evident whether
the above observed diffusion of the CM in the chaotic regime survives quantization
or whether quantum interference effects will destroy the diffusion, i.e. localize the
atom. In addition the effect of quantum localization might depend on the system
under consideration (hydrogen atom, positronium, excitons).

4. INTERMITTENT DYNAMICS: A TYPICAL THRESHOLD
PHENOMENON FOR FINITE PSEUDOMOMENTUM

In the present section we investigate the classical dynamics of a highly excited
neutral two-body system and in particular of the hydrogen atom for a nonvanishing
pseudomomentum K [17]. We will consider energies which are close to the ionization
threshold and above the energy of the saddle point. The latter has been established
in Sects. 1 and 2 within the context of our discussion of the potential picture for a
neutral two-body system (see also Fig. 1). In Sect. 2 we derived an inequality for the
absolute value of the pseudomomentum which has to be fulfilled in order to obtain an
outer potential well. In the following we assume the existence of the outer potential
well, i.e. we consider sufficiently large values of the pseudomomentum or the external

electric field.
Let us begin our investigation of the classical dynamics by establishing the equa-

tions of motion belonging to the Hamiltonian (5)

In contrast to the case of a vanishing pseudomomentum, which has been discussed in
the previous section, the pseudomomentum now appears in both the equation for the
CM (18) and the internal equation of motion (20). Apart from the purely translational

the CM motion is again completely determined by the internal coordinate
r.

The typical new phenomenon for the trajectories of the highly excited hydrogen
atom with nonvanishing pseudomomentum is their intermittent behaviour. In-
termittency means that the trajectory alternately shows both quasiregular and chaotic
phases. Fig. 5 shows for a typical trajectory the projection of the internal motion
on a plane perpendicular to the magnetic field axis. One immediately realizes that
there exist two alternating types of motion. During one phase of motion the electron
and the nucleus are close together in the x,y plane and this shows up through the
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black bubble on the very rhs of Fig. 5. During this phase of motion the Coulomb and
diamagnetic interactions are of comparable order of magnitude and the trajectory is,
therefore, chaotic (see Refs. [18, 19] for a determination of local Ljapunov exponents).
During the other regular looking phase the electron and the nucleus move far apart
from each other. The relative motion in the x,y plane then approximately takes place
on a circle with a large radius. Here the Coulomb energy provides only a small pertur-
bation to the dominating magnetic interaction. The radius of the approximate circular
large amplitude motion is given by

i.e. it is completely determined by the field strength and in particular the value of the
pseudomomentum. On the other hand, we obtain a completely different interpretation
of the pseudomomentum if the electron and the nucleus are very close together. In
the latter case the Coulomb dominates the magnetic interaction and hence the pseu-
domomentum is approximately the linear kinetic momentum of the translational CM
motion.

Fig. 6 shows the CM motion for the trajectory whose internal motion is given in
Fig. 5. It consists of alternating phases of purely translational and circular motions.
As already mentioned, the electron and the nucleus are strongly bound, i.e. close
together, during the time interval of chaotic internal motion. This is precisely the time
period during which the CM performs an almost purely translational motion. The time
periods of quasiregular circular internal motion correspond to the periods of circular
CM motion. Intermittency, therefore, shows up in the CM motion by alternating phases
of more or less straightlined and circular motion.
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The sudden extension of phase space with increasing energy is a phenomenon which
can be easily understood in the context of the potential picture discussed in Sects. 1 and
2. For energies below the saddle point energy the internal motion is confined either
to the singular Coulomb well or to the outer potential well. For energies above the
saddle point energy a sudden extension of the available coordinate space takes place
and intermittency as a typical phenomenon occurs. The phases of strongly bound
motion are located above the Coulomb well in the coordinate space whereas the large
amplitude motion covers the upper part of the outer potential well.

If we consider the motion of the electron and the nucleus in a plane perpendicular
to the magnetic field in the laboratory coordinate system we encounter an amazing
phenomenon. During the quasiregular phases of motion the electron is localized in
a small range of coordinate space whereas the nucleus performs the large amplitude
motion on the circle shown in Fig. 5. At first glance this statement seems to contradict
the traditional physical picture in which the light electron moves around the heavy
nucleus. However, since the Coulomb energy provides only a small perturbation to the
magnetic interaction during the quasiregular phase of motion, we expect the nucleus
and the electron to perform their individual cyclotron motion which are more or less
perturbed by the Coulomb interaction. The radius of the cyclotron motion of the
nucleus is much larger than that of the electron due to its bigger mass. The strong
localization of the electron and the large amplitude motion of the nucleus is, therefore, a
characteristic feature for the case of a strongly dominating magnetic field. The electron
performs a large amplitude in the direction parallel to the magnetic field.

For a detailed understanding of this phenomenon as well as the dynamical origin
of the intermittent behaviour of the trajectories we refer the reader to the literature [17].
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SEMICLASSICAL THEORY OF MULTIELECTRON ATOMS AND THE
MOLECULAR ION IN INTENSE EXTERNAL FIELDS

N. H. March

Oxford University
Oxford
England

1. INTRODUCTION

The problem of atoms and molecules in intense external fields is, by now, embracing
and interdisciplinary area of considerable importance. One, very academic, reason for
this is the occurrence in white dwarfs, and in neutron stars, of very intense magnetic
fields. Background to these areas is reviewed in some recent works 1-3 and will not
therefore be elaborated further here. From a very practical standpoint, the advent
of lasers, with associated intense electric fields, has greatly added to the urgency for
understanding the non-linear response of atoms and molecules to such fields.

In the present study, we shall focus attention almost entirely on semiclassical
approaches to treating atoms in such intense external fields. This way of tackling the
problem has a long history, following the original Thomas-Fermi (TF) statistical method
for treating the electronic structure of atoms in zero external fields. Some of the earliest
references on the intense magnetic field problem in multielectron atoms are set out, for
instance, in the paper by March and Tomishima 4, in which the scaling properties of
the total ground-state energy E(Z, N, B) of positive atomic ions with atomic number
Z, number of electrons in magnetic fields B which are extremely strong, are
discussed. A more extensive treatment which delineates important regimes of magnetic
field strength has been given much later by Lieb and coworkers 5 and will be referred
to again below. This general area will be approached here, in section 2 below, starting
again from the TF statistical theory. Because relativistic effects can play a significant
role in intense magnetic fields, we shall present the theory first in relativistic form, but
still place some emphasis on results in the non-relativistic limit. Since modern density
functional theory has, as one of its prime aims, the construction of a differential equation
from which to determine the ground-state electron density, some stress will be placed in
the present account on such differential equations, both relativistic and non-relativistic,
in the TF theory of multielectron atoms in intense magnetic fields B.

Following this discussion of strong B fields, section 4 will be concerned with static
uniform electric fields E of arbitrary strength. Throughout the article, we shall focus
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on one-electron theory, described by a Hamiltonian H having the general form

where however in writing eq.(l) we have restricted ourselves for the moment, for sim-
plicity, to the non-relativistic limit. In eq.(l) A represents the vector potential, defined
by

which of course leaves open the choice of gauge. V(r) represents the self-consistent
potential energy in the atom or molecule under consideration, plus, when dealing with
static uniform electric fields a term of the form

corresponding to a uniform static field of strength E along the z-axis. Whereas in
section 2, which is concerned purely with B fields, all attention will be focussed on the
ground-state electron density in section 3 the main tool employed will be the
Slater sum, denoted by and defined by

where are the one-electron eigenfunctions and eigenvalues generated by
the one-electron Hamiltonian H in eq.(l).

With this brief Introduction, let us turn to the problem of atoms in intense mag-
netic fields, using semiclassical TF theory.

2. RELATIVISTIC THOMAS-FERMI THEORY FOR MULTIELECTRON
ATOMS IN INTENSE MAGNETIC FIELDS

The present writer 6, in considering the role of the virial, has conveniently sum-
marized fully local relativistic Density Functional Theory (DFT). The Euler equation
of the corresponding variational problem posed by minimizing the ground state energy
with respect to the electron density n, subject to the normalization condition

is an equation for the chemical potential This quantity plays the role of the Lagrange
multiplier introduced to lake care of the normalization requirement (5) as the density
is varied. However, it is central to the theory to stress that the chemical potential
is the same at every point in the inhomogeneous electronic charge cloud in the atom
or molecule under consideration. In the extreme high field regime of TF theory, this
equation for reads 7

This equation relates ground-state electron density n(r, B) to the potential energy V (r),
which has to be determined self-consistently by relating n(r,B) to V(r) via Poisson’s
equation of electrostatics.
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2.1 Kinetic Energy

Let us note immediately that the uon-relativistic (nr) kinetic energy per unit vol-
ume is readily extracted from eq.(5) as

where m0 in the above eqs.(6,7) denotes the electron rest mass. It has been convenient
in writing eq.(6) to subtract the energy associated with this mass. Returning to
eq.(7) and noting that the total kinetic energy is given by

one can evidently write the non-relativistic chemical potential equation in the form

2.2 Self-Consistency

For the fully relativistic eq.(6), one can take the Laplacian acting on (equal
to zero since is constant) to find

with the Poisson equation

representing the requirement of self consistency. After some manipulation, involving

multiplying both sides of eq.(10) by one is lead to the differential
equation for the self-consistent ground-state density n as

We should add that eq.(12) is valid everywhere except at positions of nuclei, where
there are delta functions representing the positively charged nuclei. Another way of
viewing eq.(12) is to regard it as relating n(r,B) directly to the ’reduced’ Laplacian

and the square of the so-called local wave number 8 (see also below).

2.3 Non-Relativistic Limit

The non-relativistic limit of eq.(12) can, of course, be taken directly. But perhaps
the simplest procedure to obtain this limit is to return to eq.(9) and to form directly

(equal to zero). The result

follows. Using eq.(11) in eq.(13), one readily obtains the desired differential equation
for the self-consistent ground-state density n(r, B) in the non-relativistic limit as
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where in eq.(14) it has proved convenient to introduce the classical magnetic length
defined by

Eq.(14) is then evidently of dimensions This eq.(14) makes, more simply,
for the non-relativistic limit of eq.(12), the point stressed above that n(r,B) is related

to at the same point r. ’Local’ density is thereby expressed in terms
of density gradients quite precisely in this simplest form of DFT. The work of Hill et
al. 9, in which the potential was the tool employed, gave numerical solutions for
atoms with different applied field strengths B. These solutions are readily translated
into solutions of the density eq.(12) for the atomic electron density n(r, B).

Having dealt at some length with the semiclassical theory of the ground-state
electron density in atoms and molecules in intense magnetic fields, let us consider

briefly in a magnetic field.

3. MOLECULAR ION IN MAGNETIC FIELD: CURRENT DENSITY
THEORY

Following the above semiclassical treatment of multielectron atoms, we shall quite
briefly discuss the use of current density theory to treat the molecular ion in a
magnetic field, following largely the work of Amovilli and March 10. These authors
considered only the case of magnetic field pointing along the internuclear axis in
but in a recent study of current density theory, Holas and March 11 have shown that
their final result is, in fact, quite general. However, for simplicity let us set out the
case considered by Amovilli and March 10. Then, brief reference will be made to the
need to transcend oft-used hydrodynamic-like treatments 11, as clearly pointed out to
the present writer by Dr. A. Holas.

Amovilli and March introduce the current density j in the usual way as

One then obtains for the ground state energy, say :

with V simply accounting for potential energy. Her R denotes the internuclear sep-
aration, and evidently eq.(17) applies at any point r. For stationary wave functions,
and hence time-independent electron density n(r,R,B), it follows from the equation
of continuity that

Hence one obtains the desired result for the ground-slate energy in terms of electron
density n and current density j as

which is the result of Amovilli and March 10: see also Holas and March 11.
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One might note here that sometimes one writes a quantum fluid dynamics associ-
ated with the single-particle Schrödinger equation. This is done, for example, in March
and Deb 12. One is then led to an Euler-type equation of motion such as given, for
example, in eq.(10.3) of the book by the present writer. Contact can then be estab-
lished with the work of Amovilli and March, and it turns out that the comparison is
only correct in detail if one neglects the gradient of the current density j. Then the
hydrodynamic result is recovered from the exact treatment of Amovilli and March 10.
Further discussion of this point is taken up by Holas and March 11.

Let us turn to the problem of such systems in strong static uniform electric fields
of arbitrary strength E, but now in zero magnetic field. Hence the appropriate (now
non-relativistic) Hamiltonian is obtained by putting in eq.(l) and incorporating
the potential energy term in eq.(2) into the scalar potential energy V(r).

4. ATOMS AND MOLECULES IN STATIC UNIFORM ELECTRIC FIELDS
OF ARBITRARY STRENGTH

As mentioned in the Introduction, the main tool to be utilized in the discussion
of atoms and molecules in static uniform electric fields of arbitrary strength E is the
Slater sum defined in eq.(4). What is important for the semiclassical approach to be
developed below is that this sum, say can be obtained analytically for free
electrons in such an electric field E. The result, as given, for example, by Janriussis 13

and by Harris and Cina 14 takes the form

Below, we shall also appeal to the off-diagonal generalization of eq.(4) to yield the

so-called canonical (or Bloch) density matrix

which reduces to eq.(4) when one takes the diagonal element Haris and Cina
19, for instance, give generalizing eq.(20) as

In eq.(22), C00 is the Bloch density matrix for free electrons in zero field, which was
first calculated by Sondheimer and Wilson 15 as

It is also worthy of note at this point that Fallieros and Friar 16 have generalized
the above result (22) to a time-dependent applied field with angular frequency

Taking the double Fourier transform and using the Feynman
propagator instead of the Bloch matrix they obtain
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where, as tends to zero, the ‘phase’ tends to

with Taking the double Fourier transform of this limit recovers the static
field result (22) when i . t is replaced by

We construct a semiclassical approach to the Slater sum by ’switching
on’ an atomic or molecular potential to the free electron form (20) above.

4.1 Semiclassical ’Switching On’ of Potential Energy V(r) to

This is the point to make use of the Slater sum for free electrons in a
uniform electric field of arbitrary strength to ’switch on’ a suitable atomic or molecular
potential V(r). We then write the ’semiclassical’ approximation to the
Slater sum as

where our task is to construct the effective potential
This we shall proceed to do via the integral form of the Bloch equation satisfied

by the canonical matrix C of eq.(21). On the diagonal, this integral equation reads

Since we are not able presently to solve for we shall construct U in eq.(26)
approximately by forcing agreement to first-order only in V. Thus, one can then write
eq.(27) to yield P to first-order, with value say, as

But the off-diagonal form of is known from eq.(22). We now expand eq.(26) to read

and making comparison with eq.(28) yields then

In the ’fully semiclassical’ limit where V (r1) is so slowly varying in space that one can
replace it by V (r) and hence bring this outside the integral we find
independent of and

However, the present proposal is to retain the form (26) but with

where U1 is to be obtained from eq.(3). Evidently this restores and field E depen-
dence to though naturally only in an approximate manner motivated by
semiclassical theory.

Inserting eq.(30) for into eq.(26) with U replaced by this approximation
provides a way of incorporating an atomic or molecular potential V (r) into the theory.
Should a convergence factor be required in using eq.(30), a weak B field can be switched
on perpendicular to E.
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4.2 Proposed Use of Self-Consistent Thomas-Fermi Potential for Atoms

In the spirit of this approach, it would clearly be of interest to evaluate from
eq.(3) with the self-consistent Thomas-Fermi potential for neutral atoms, defined by 11

where the ’shielding function’ satisfies

with boundary conditions tends to zero at infinity. Both and x are here
dimensionless variables, with the independent variable x related to the radial distance
from the atomic nucleus by

for an atom having atomic number Z. However no numerical calculations of U1 in
eq.(30) with V (r) given by eqs.(32,33) are available at the time of writing.

5. SUMMARY AND FUTURE DIRECTIONS

For multielectron atoms in intense magnetic fields, semiclassical theory has been
used to set up explicit differential equations determining the ground-state electronic
density. Eq.(12) is the result for the relativistic Thomas-Fermi theory, which reduces
to the much simpler form (14) in the non-relativistic limit.

The case of atoms and molecules in static uniform electric fields has also been
considered in semiclassical theory. It would seem well worthwhile in future studies in
this area to utilize eq.(26) for the Slater sum in conjunction with the approximation
to the effective potential U denoted by in eq.(31). For atoms, the potential V(r)
appearing in this latter equation could be chosen as the Thomas-Fermi atom potential
in eq.(33). Time-dependent generalizations based on eq.(24) as starting point are also
of obvious interest for future work in the semiclassical treatment of atoms in laser fields.
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APPENDIX: ATOMS AND MOLECULES IN SUPER- AND HYPER-
STRONG MAGNETIC FIELDS

In suitable units, the Thomas-Fermi theory presented in the text is valid when
is very small, even though both B and Z are large. In the opposite limit, when
is greater than a certain critical value depending on the ratio N being the total
number of electrons, Johnsen and Yngvason 19 derive the functional

where denotes, following these workers, the super-strong field regime. Atoms in
this regime have the form of a thin cylinder with its axis in the direction of the
magnetic field. The radius is of order

Lieb et al 6 have earlier discussed the hyperstrong regime in which the cylinder
collapses to a needle. Then the functional (A.1) takes the simpler form, with HS
denoting hyperstrong,

where denotes the density amplitude. Lehmann and March 20 have related this
equation to the differential equation for the density amplitude, now fully quantal, and
involving the so-called Pauli potential. Introducing

one can solve the Euler equation corresponding to the energy functional (A.2) to find
5,19

and

where t a n h

Not only can one now bind 2Z electrons in an atom of atomic number Z but, as Lieb et
al 5 stress, the binding energy of the last Z electrons is of the same order of magnitude
as the first Z electrons bound in a neutral atom. The chemistry in the field of neutron
stars turns out also to be very different from terrestrial chemistry, as two identical
heavy atoms now bind with a binding energy of the homonuclear molecule of the same
order as the energy of the isolated atoms. For further details, reference can be made to
the article by Freeman and March 21. We note in closing this Appendix the very recent
work of Jones et al 22, who study atoms in strong magnetic fields by the Hartree-Fock
formalism.

262



REFERENCES

1. Atoms in Intense Laser Fields: Ed. M. Gavrila (Academic: San Diego, 1992).
2. Atoms and Molecules in Intense Fields: Structure and Bonding, Vol. 86, Eds. L.S. Cederbaum,

K.C. Kulander and N.H. March (1997).
3. J.Yngavson, Lett.Math.Phys. 31, 127 (1994)
4. N.H. March and Y. Tomishima, Phys.Rev.D19, 449 (1979)
5. E.H. Lieb, J.P. Solovej and J.Yngvason, Phys.Rev.Lett.69, 749 (1992)
6. N.H. March, Phys.Rev.A48, 4778 (1993)
7. M.S. Vallarta and N. Rosen, Phys.Rev.41, 708 (1932)
8. A. Nagy and N.H. March, Mol.Phys., in press (1997)
9. C. Amovilli and N.H. March, Chem.Phys.146, 207 (1990)
10. S.H. Hill, P.J. Grout and N.H. March, J.Phys.B18, 4665 (1985)
11. A. Holas and N.H. March, to be published
12. N.H. March and B.M. Deb, The Single Particle Density in Physics and Chemistry, Eds. Academic

London (1987); see also N.H. March, Electron Density Theory of Atoms and Molecules, Academic
New York (1992)

13. A.D. Jannussis, Phys.Stat.Solidi 36, K17 (1969)
14. R.A. Harris and J. Cina, J.Chem.Phys.79, 1381 (1983)
15. E.H. Sondheimer and A.H. Wilson, Proc.Roy.Soc.A210, 173 (1951)
16. S. Fallieros and J.L. Friar, American J. Phys. 50, 1001 (1982)
17. N.H. March and J.C. Stoddart, Rep.Prog.Phys.31, 533 (1968)
18. K.C. Kulander, F.H. Mies and K.J. Schafer, Phys.Rev.A53, 2562 (1996)
19. Johnsen and J.Yngvason, Phys.Rev. to appear (1996)
20. H. Lehmann and N.H. March, Pure and Appl.Chem.67, 457 (1995)
21. G.R. Freeman and N.H. March, J.Phys.Chem.100, 4331 (1996)
22. M.D. Jones, G. Ortiz and D.M. Ceperley, Phys.Rev.A54, 219 (1996)

263



ON THE GROUND STATE OF THE HYDROGEN MOLECULE IN A
STRONG MAGNETIC FIELD

P. Schmelcher and T. Detmer

Theoretische Chemie
Universität Heidelberg
Im Neuenheimer Feld 253
D-69120 Heidelberg
Federal Republic of Germany

INTRODUCTION

The area of molecules in strong magnetic fields became during the past ten years
a subject of increasing interest. This was on the o.h.s. motivated by the astrophysical
discovery of huge field strengths in the vicinity of white dwarfs and neutron stars and on
the o.h.s. by the possibility of studying strong field effects for highly excited Rydberg

systems in laboratory fields.
Most of the existing investigations however deal with the ion (see Refs.[l-4] and

references therein). In strong magnetic fields we encounter a variety of interesting new
molecular phenomena. For the ground state of the ion an increase of the electron
density between the nuclear charges leads to a contraction of the bond length. At the
same time we observe an increase in the dissociation energy with increasing magnetic
field strength. Moreover lor the ion a class of states with purely repulsive potential
energy curves (PECs) in field free space was shown to exhibit well-pronounced potential
energy minima in a sufficiently strong magnetic field 2,3. The topology of the electronic
potential surfaces changes strongly with varying field strength. For intermediate field
strengths it was shown, that the lowest-lying electronic states possess their global equi-
librium configurations at positions corresponding to high symmetry, i.e. or

However, for some excited states a global symmetry lowering occurs leading
to global equilibrium configurations at

Only little is known concerning the electronic structure of the hydrogen molecule in
a strong magnetic field 5-11. Most of the investigations deal with the hydrogen molecule
in superstrong fields . For intermediate field strengths there exist only two
studies of qualitative character which investigate the PEC of the lowest1 state 6,7. A
detailed knowledge of the electronic structure of the hydrogen molecule is of particular
relevance in astrophysics since it might lead to a better understanding of the spectra
of white dwarfs and neutron stars. Hereby the ground state of the hydrogen molecule
is of particular interest.

Atoms and Molecules in Strong External Fields
Edited by Schmelcher and Schweizer, Plenum Press, New York, 1998 265



In the present investigation (see in particular also Ref.[12]) we perform a first
step to elucidate the electronic ground state properties of the hydrogen molecule in a
strong magnetic field. Particular emphasis is put on the intermediate regime which is of
relevance to the physics of white dwarfs. We investigate the electronic structure of the
lowest states of the manifold, i.e. the lowest singlet and triplet states for a magnetic
quantum number equal to zero. We therefore focus on the case of parallel internuclear
and magnetic field axis. This configuration is distinct by its higher symmetry compared
to the case of an arbitrary angle between the internuclear and magnetic field axis.
Due to the efficiency of our method we are able to investigate in detail the electronic
structure in the complete range of field strengths up to

THEORETICAL FRAMEWORK

We start with the total nonrelativistic molecular Hamiltonian in Cartesian coor-
dinates. It is well known that the total pseudomomentum is a constant of motion
13,14. For a neutral system like the hydrogen molecule the components of the pseu-
domomentum additionally commute with each other. Therefore, the Hamiltonian can
be simplified by performing a so-called pseudoseparation of the center of mass motion
13,15,16. Due to this pseudoseparation the center of mass coordinate and the conserved
pseudomomentum arc introduced as a pair of canonical conjugated variables. As a
result, the center of mass coordinate does not appear in the transformed Hamiltonian.
After applying this transformation, the exact Hamiltonian can be further simplified by
a series of unitary transformations. For details of these transformations we refer the
reader to the literature 15,16.

In order to separate the electronic and nuclear motion an adiabatic approximation
has to be performed which means that we have to apply the Born-Oppenheimer ap-
proximation in the presence of a magnetic field. The validity of the Born-Oppenheimer
approximation in the presence of a magnetic field has been studied in detail in refs 15-17

including all corrections due to the finite nuclear masses. In a first order approximation
we choose the electronic Hamiltonian as the fixed nuclei Hamiltonian, i.e., we assume
infinitely heavy masses for the nuclei. The origin of our coordinate system coincides
with the midpoint of the internuclear axis of the hydrogen molecule and the protons
are located on the z-axis. The magnetic field is chosen parallel to the z-axis of our
coordinate system and we use the symmetric gauge for the vector potential. Finally
our electronic Hamiltonian takes on the following appearance:

The symbols and denote the position vectors, the canonical conjugated
momenta and the angular momenta of the two electrons, respectively. B and R are the
vectors of the magnetic field and internuclear distance, respectively and R denotes the
absolute value of R With S we denote the vector of the total electronic spin. Since

we deal with states, the sum equals to zero. Throughout the paper we will

use atomic units.

The Hamiltonian (1) commutes with the following operators:

a) The parity operator P due to the charge symmetry of the molecule . The cor-
responding eigenfunctions are labeled with the subscript g for gerade or u for ungerade
parity.
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b) The projection of the electronic angular momentum onto the internuclear
axis.

c) The square of the total electronic spin. The electronic functions are labeled
with a left superscript describing the multiplicity of the state.

d) The projection of the total electronic spin on the internuclear axis. For the
singlet states the only possibility is For triplet states we are only interested in

In the absence of a magnetic field we encounter an additional symmetry namely
the reflections with respect to the electronic coordinates at the plane. The
eigenfunctions possess the corresponding eigenvalues . This symmetry does not hold
in the presence of a magnetic field! Therefore, the resulting symmetry groups for the
hydrogen molecule are in the case of field free space and in the presence of
a magnetic field 18.

In order to solve the fixed-nuclei electronic Schrödinger equation belonging to
the Hamiltonian (1) we expand the electronic eigenfunctions in terms of molecular
configurations. First of all we note that the total electronic wave function can be
written as a product of its spatial part and its spin part X, i-e. we have
For the spatial part of the wave function we use the LCAO-MO-ansatz, i.e. we
decompose with respect to molecular orbital configurations of which respect
the corresponding symmetries (see above) and the Pauli principle, i.e.

The molecular orbital configurations of are products of the corresponding one-
electron molecular orbitals and The molecular orbitals are built from
atomic orbitals centered at each nucleus. A key ingredient of this procedure is a basis
set of nonorthogonal optimized non-spherical Cartesian Gaussian atomic orbitals which
has been established previously 3,19. For a more detailed description of the construction
of the molecular electronic wave function we refer the reader to Ref.[12]. In order to
determine the molecular electronic wave function of we use the variation principle.

That means we minimize the variational integral by varying the coefficients c i j

The resulting generalized eigenvalue problem reads as follows:

In the present investigation for parallel internuclear axis and magnetic field axis, the
Hamiltonian matrix is real and symmetric and the overlap matrix is real, sym-
metric and positiv definite. The vector c contains the expansion coefficients. The
matrix elements of the Hamiltonian matrix and the overlap matrix are certain linear
combinations of matrix elements with respect to the optimized non-spherical Gaussian
atomic orbitals. The latter matrix elements have already been calculated in Ref.[19].
However, the formulae for the electron-nucleus and in particular the electron-electron
matrix elements given in Ref.[19] turned out to be not sufficiently efficient for numerical
calculations with large basis sets. Both, the numerical stability as well as the efficient
and fast computation of the matrix elements required a new approach to the integral
evaluation within our basis set of atomic orbitals. In the new computational scheme the
matrix elements are evaluated by a combination of a special quadrature method and
a subsequent numerical integration. For each PEC about 300 points were calculated
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on an average. For each magnetic field strength we developed a basis set of atomic
orbitals particularly adapted for minimising the total energy. For further details of the
computational procedure we refer the reader to Ref.[12].

RESULTS AND DISCUSSION

The state

Let us begin our investigation by considering the lowest state of the hydrogen
molecule which is the ground state in field free space. This state has been extensively
studied in field free space in the adiabatic approximation, both theoretically as well as
experimentally. For the literature on theoretical investigations up to 1960 we refer the
reader to the bibliography in Ref.[20]. Recently, several theoretical investigations have
been performed to improve the overall energy values for the state. Kolos 21 as well
as Wolniewicz 22 improved the electronic energy calculated in the Born-Oppenheimer
approximation several times. As a reference in the case of field free space we use the
energy values obtained by Wolniewicz in 1995 22.

In field free space the energy curve of the state shows only one minimum at the
equilibrium distance of 1.4 au with a total energy of . In the dissociation
limit we have two II atoms in their ground states, i.e. Therefore,
in the separated atom limit the total energy approaches –1.0 au which corresponds to
the energy of two H atoms in the ground state. In the united atom limit we have
a helium atom in the state. For that reason the total energy without the
nucleus-nucleus repulsion approaches an energy value of 2.90372 au with decreasing
internuclear distance which is the ground state energy of the helium atom.

For the total energy at the equilibrium distance in the field free space we obtained
a total energy of which yields a dissociation energy of This
corresponds to a relative accuracy in the total energy of about compared to
the bench mark result in Ref.[22], This accuracy in the total energy even increases
with increasing internuclear distance. For and we yield an error of

respectively.
In contrast to the numerous investigations concerning the behavior and structure

of the hydrogen molecule in field free space only a few studies deal with the hydrogen
molecule in strong magnetic fields 5-11,23. Most of them deal with the hydrogen molecule
in superstrong magnetic fields larger than or even (in atomic units this
corresponds to and respectively).

First of all we mention that our computational method is by no means restricted
to a special range of the magnetic field strength. We were therefore able to study the
development of the total energy with respect to the field strength ranging from field
free space up to a very strong field! Before entering into the discussion of our results
let us introduce our notation for the united and separated atom limit in the presence
of a magnetic field. Throughout the paper we will denote the atomic hydrogen states
in the dissociation limit with where ma denotes the atomic magnetic quantum
number and the atornic-z parity, respectively. The united atom limit is described by

Here is the multiplicity, is the projection of the electronic angular
momentum onto the axis of the magnetic field and is the z-parity. Now we are in the
position to discuss the structure of the electronic PEC for the state in the presence
of a magnetic field.

Figure 1 shows the energy curves of the state of the hydrogen molecule for
different field strengths. In order to display electronic energies for varying magnetic
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field strengths in the same viewgraph the total energy is substracted by the energy in
the dissociation limit, i.e. we show the quantity For

the state the dissociation channel is which means that the
energy in the dissociation limit corresponds to the energy of two hydrogen atoms in the
lowest electronic state with positive z-parity. The appropriate electronic state in the
united atom limit is the helium state for any field strengths up to

In the following we discuss the changes in the dissociation energy and equilibrium
distance with increasing strength of the magnetic field. The overall behavior we ob-
serve is a monotonously increasing total energy as well as dissociation energy and a
monotonously decreasing equilibrium internuclear distance. The decrease in the equi-
librium internuclear distance originates from the simoultaneous decrease of the electron
cloud perpendicular and parallel to the magnetic field. Figure 1 illustrates the particu-
larly drastical growth in the dissociation energy for magnetic field strengths
At the same time the potential well becomes more and more pronounced, i.e. its width
decreases strongly. Furthermore the asymptotic behavior of the PEC for large values of
R changes with the magnetic field strength. With increasing value of B the dissociation
limit is reached at much smaller values of the internuclear distance, i.e the onset of the
asymptotic behavior can be observed for much smaller internuclear distances. Further-
more transition states appear in the PEC for magnetic field strengths For the
position of the maximum we observe a strong decrease with increasing field strength.
Simultaneously the height of the maximum with respect to the dissociation energy ,
i.e. increases from at to at

We emphasize that the state is not the ground state of the hydrogen molecule
in a magnetic field of arbitrary strength! In superstrong magnetic fields with
it is well known that the state represents the ground state of the hydrogen molecule
5,9. The ground state for magnetic field strengths in the intermediate regime has not
been investigated up to now. For sufficiently weak magnetic fields the ground state
has to be the state. However, we will show in the following that for magnetic field
strengths larger or equal than 0.2 au the total energy of the state is lower than
the total energy of the state! This means that for the state is the
ground state of the hydrogen molecule. The “crossing field strength” of this lowest
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state with the state, which is the ground state in superstrong magnetic fields, is
not known so far.

Finally let us investigate the question whether vibrational levels exist in the PEC
discussed above. This question is of great importance to the existence of bound states.
In the presence of a magnetic field the determination of vibrational levels is a much more
complicated task than in field free space. First we note that the Born-Oppenheimer ap-
proximation known from field free space is not valid in a magnetic field. In the presence
of a magnetic; field the nuclear charges are partially screened by the electrons against
the external field. In order to correctly describe the partial screening of the nuclear
charges the diagonal term of the nonadiabatic coupling elements has to be included in
the nuclear equation of motion. This leads to a new kind of adiabatic approximation,
the partially screened Born-Oppenheirner approximation 15,16,24. Furthermore the nu-
clear equation of motion explicitely depends not only on the internuclear distance but
also on the angle between the internuclear axis and the magnetic field axis. The facts
discussed above clearly show that the nuclear dynamics is in general very complex.
Within the present framework of the parallel configuration we can therefore provide
only estimations for the energy levels of the vibrational ground states. Nethertheless
this allows us to decide whether or not we encounter physically bound states with re-
spect to the vibrational mode R. A lower bound of the vibrational energy within our
approximation is given by the lowest vibrational state in the corresponding PEC using
the field free kinetic energy The corresponding nuclear equation of motion in field
free space for the given electronic PEC was solved with the help of a discrete variable
representation 25. The upper bound for the energy of the lowest vibrational state in the
presence of a magnetic field was obtained by simply adding the Landau energy of the
nuclear motion to the value of the energy obtained for the corresponding vibrational
level in field free space. In this way we obtained upper as well as lower bounds for the
vibrational levels. These estimations of the vibrational levels were performed for each
PEC shown in Figure 1.

For the PEC of the state the procedure described above yields many, i.e.
of the order of magnitude of a few dozens, of vibrational levels for the entire regime

of field strengths. This means that the state is a bound state with
respect to the internuclear distance R for this wide range of field strengths.

The state

In field free space the electronic PEC of the state is repulsive, i.e. does
not exhibit a well pronounced potential well. The united atom limit of this state is the

helium state and the dissociation channel is The, to our
knowledge, most accurate results were obtained using Hylleraas-type expansions 26,27,
explicitly correlated Cartesian Gaussian basis functions 28 or elliptical basis functions
29

As a reference for our calculations we used the data given in Ref.[29] for internuclear
distances smaller than and Refs.[26,27] for For we obtained
an overall relative accuracy of For larger values of the internuclear distance
this accuracy further increases and we obtain a relative accuracy of at least
Our accurate results, in particular for the state in field free space demonstrate
the usefulness of our basis set of non-spherical nonorthogonal Cartesian Gaussian basis
functions. The PEC for the state for different magnetic field strengths is presented
in Fig.2.

Despite the fact that the PEC of the state is predominantly repulsive it ex-
hibits a very shallow van-der-Waals minimum around Due to the dissociation
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of the state into we encounter a dipole-dipole interaction of in-
duced dipol moments for large internuclear distances which is proportional to For
the van-der-Waals minimum we obtained a dissociation energy of at
an internuclear distance of 7.9 au.

In the following we discuss the development of the PEC for the  state depending
on the magnetic field strength. First, we focus on the global structure which is shown
in Fig.2. In the presence of a magnetic field the separated atom limit is given by

i.e. the molecule dissociates into two hydrogen atoms in
their ground states with positive z-parity. The corresponding united atom state in the
presence of a magnetic field is the helium state. First of all we mention that the
onset of the asymptotic behavior with respect to the dissociation occurs for increasingly
smaller internuclear distances with increasing magnetic field strength. A closer look
at the two states reveals that for magnetic field strengths larger than 0.2 au
the state is lower in energy than the state! Therefore, the crossing between
these two states happens between the two field strengths 0.1 and 0.2 au. In Fig.3 and
Fig.4 we illustrate the crossing of these two states. In Fig.3, which shows the total
energy of the and states at a magnetic field strength of we can
see the state being higher in the total energy as the state. Figure 4 shows the
same states at a magnetic field strength of In this figure we observe the
draslical decrease in the total energy of the state. The crossing of these two states
has an important concequence for the stability of molecular hydrogen in astrophysics.
Beyond the ground state of the hydrogen molecule is the state which
is an unbound electronic state at least for the parallel configuration. It is a challenging
task to clarify whether this is true for any angle of the internuclear axis with respect to
the magnetic field axis. In principle it is possible that a potential well might develop
if the internuclear and magnetic field axis does not coincide. The investigation of such
configurations is an important task in the future. In addition we mention that beyond

the global ground state of is the state 5,9.

In the following we investigate the development of the van-der-Waals minimum
depending on the magnetic field strength which is of particular interest for the deter-
mination of the global ground state of the hydrogen molecule in a magnetic field.
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In field free space the van-der-Waals potential is given by a law proportional due
to the dipole-dipole interaction of induced dipoles in first order perturbation theory.
In the presence of a magnetic field we have to pay attention to another interaction
between atoms in s states. In first order perturbation theory two atoms in a magnetic
field interact like two permanent quadrupoles. Therefore the leading expression in first
order perturbation theory is proportional to The development of the van-der-Waals
minimum with increasing magnetic field strength is as follows. The dissociation energy
increases by if we increase the field strength from zero to 0.2 au. At the
same time we observe a monotonous decrease of the internuclear distance corresponding
to the minimum from 7.9 to 7.7 au. We observe that the shape of the energy curve for

differs only sligthly from that in field free space. For magnetic field strengths
larger than the dissociation energy decreases drastically with increasing
magnetic field strength down to for Simultaneously the
energy curve changes its shape. The gradient of the energy with respect to internuclear
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distances becomes larger and a more and more shallow minimum can be
observed. For magnetic field strengths larger than 1.0 au no minimum is observed!
The gradient of the energy with respect to the internuclear distance increases further
with increasing magnetic field strength changing the appearance of the PEC to an
increasingly flatter curve. No vibrational levels were found for any field strength.

Finally we draw the readers attention to the fact that the calculations concerning
the position and dissociation energy of the van-der-Waals minimum are close to the
convergence limit of our calculations. The disappearance of the van-der-Waals min-
imum within our calculations reflects to our opinion a real physical effect but needs
further investigations for a definite clarification. In order to answer the question about
the lowest bound state of the hydrogen molecule in the superstrong regime of field
strengths a detailed and very accurate investigation of the electronic
state has to be performed.

SUMMARY AND CONCLUSIONS

In the present paper we investigated the electronic structure of the hydrogen
molecule in a magnetic field. We hereby focused on the case of parallel internuclear
axis and magnetic field axis for a magnetic quantum number equal to zero. The key
ingredient for our CI calculations is a basis set of nonorthogonal non-spherical Gaus-
sian atomic orbitals which was established previously. Our results for the PECs in
field free space showed a high accuracy compared to the existing data in the literature.
The non-sherical atomic orbitals may therefore be very useful for precision calculations
concerning molecules in field free space.

First we investigated the lowest state which is the ground state of the hy-
drogen molecule in field free space. In the presence of a magnetic field we observed a
monotonous increase in the total energy. At the same time the equilibrium distance

decreases and the dissociation energy (chemical binding energy) increases rapidly. The
few existing data concerning the total energy of the state in the presence of a mag-
netic field were significantly improved by our calculations. By calculating lower and
upper bounds for the lowest vibrational energy the PEC of the state was shown to
contain many vibrational levels for any magnetic field strength up to 100 au.

Next we investigated the lowest state of the hydrogen molecule which is known
to be repulsive in field free space and possesses only a very shallow van-der-Waals
minimum at The repulsive character of the PEC of the state remains
for arbitrary field strengths up to Due to the Spin-Zeeman shift in
a magnetic field a crossing occurs between the and state in the range

Therefore the lowest state of the hydrogen molecule in the presence of a
magnetic field is the state for and the stale for In

superstrong magnetic fields the ground state is the state. The
determination of the crossing of the state is a task which is left to a
future investigation. Furthermore the nonexistence of a strongly bound ground state
of the hydrogen molecule has to be confirmed by investigations concerning arbitrary
angles between the internuclear axis and magnetic field axis. After considering these
general properties of the state we investigated the development of the van-der-
Waals minimum depending on the field strength. For the van-der-Waals minimum we
observe a monotonous decrease in the equilibrium internuclear distance with increasing
field strength. First the dissociation energy increases with increasing field strength
and for the dissociation energy drastically decreases. For no
minimum has been found. No vibrational levels exist for any field strength up to 1 au.
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The existence of a minimum which supports a vibrational frequency for the lowest
electronic state of the hydrogen molecule for intermediate magnetic field strengths is of
particular interest to astrophysics in order to determine whether hydrogen molecules
exist in the vicinity of white dwarfs. According to our investigations for the
ground state of the hydrogen molecule is not strongly bound and exhibits only a weak
minimum due to the van-der-Waals interaction. However, in superstrong magnetic
fields the ground state is strongly bound again. Finally we emphasize that for drawing
definite conclusions about the existence or nonexistence of the van-der-Waals minimum
the case of nonparallel internuclear axis and magnetic field axis has to be investigated.
The determination of the corresponding potential energy surfaces is a complicated task
which is left to future investigations.
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INTRODUCTION

The electronic structure of the hydrogen molecule in field-free space has been
extensively studied, both theoretically and experimentally. Very accurate theoretical
potential energy curves (PECs) have been calculated not only within the scheme of
the Born-Oppenheimer approximation, but also including nonadiabatic and relativistic

corrections. Contrary to these large number of investigations little is known concerning
the electronic structure of the hydrogen molecule in the presence of a strong magnetic
field. For intermediate field strengths there exist only two studies of almost qualitative
character which investigate the PEC of the lowest state [1,2]. A few investigations
were performed in the high field limit [3–7], where the magnetic forces dominate over
the Coulomb forces and therefore several approximations can be performed. Many
interesting phenomena can be observed concerning the electronic structure and behavior
of a hydrogen molecule in the presence of a magnetic field. The work of Turbiner [2]
indicates a decrease of the internuclear equilibrium distance and a simultaneous increase
of the dissociation energy with increasing magnetic field strength for the stale.
Ortiz and coworkers [6] showed that in sufficiently strong fields the

state is the global ground state for a molecule oriented parallel to the magnetic
field.

The structure and properties of molecular systems in the presence of a magnetic
field are of great importance for molecular physics, solid-state physics and astrophysics.
In particular we mention the discovery of huge magnetic fields in the vicinity of white
dwarfs and neutron stars [8–10]. A detailed knowledge of the electronic structure of the
hydrogen molecule might lead to a better understanding of the spectra of such objects.
Hereby not only the ground state but also excited states are of interest. In this article
we focus on some excited states of the hydrogen molecule for the parallel configuration,
namely the lowest state.

Within the present investigation we obtained accurate Born-Oppenheimer energies
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for the lowest and state. The position of the maxima and minima of the PECs
were determined with an accuracy of 0.01 a.u. in the internuclear distance and the
overall accuracy of our results is estimated to be better than For detailed data
concerning the PECs of these two states we refer the reader to the literature [11].

In the following we briefly present some theoretical aspects and then discuss the
electronic structure of the lowest and state depending on the magnetic field
strength.

THEORETICAL ASPECTS

Our starting point is the fixed nuclei Hamiltonian within the scheme of the Born-
Oppenheimer approximation in the presence of a magnetic field [11–13]. The origin
of our coordinate system coincides with the midpoint of the internuclear axis of the
hydrogen molecule and the protons are located on the z axis. The magnetic field is
chosen parallel to the z axis of our coordinate system and we use the symmetric gauge
for the vector potential. Therefore, the molecular Hamiltonian reads as follows:

We hereby neclect relativistic effects like, e.g., the spin-orbit coupling and the gy-
romagnetic factor of the electron was chosen to be 2. The symbols and denote the
position vectors and the canonical conjugated momenta of the electrons, respectively.
B and R are the vectors of the magnetic field and internuclear distance, respectively
and R denotes the magnitude of R. With S we denote the vector of the total electronic

spin. Since we deal to zero and does not occur

in the above Hamiltonian.
In order to solve the fixed-nuclei electronic Schrödinger equation belonging to

the Hamiltonian (1) we expand the electronic eigenfunctions in terms of molecular
configurations. First of all we note that the total electronic wave function can be
written as a product of its spatial part and its spin part i.e. we have
For the spatial part of the wave function we use the LCAO-MO-ansatz, i.e. we
decompose with respect to molecular orbital configurations of which respect the
corresponding symmetries and the Pauli principle. The molecular orbital configurations
of are products of the corresponding one-electron molecular orbitals which are
built up by atomic orbitals centered at each nucleus. A key ingredient of this procedure
is a basis set of nonorthogonal optimized nonspherical Gaussian atomic orbitals which
has been established previously [14, 15]. For the case of a molecule parallel to the
magnetic field, these basis functions read as follows:

The symbols and z denote the cylindrical one particle coordinates. The
parameter m, k, and l depend on the subspace of the H-atom, for which the atomic
basis functions have been optimized, and are variational parameters. For a detailed
description of the construction of the molecular electronic wave function we refer the
reader to Ref. [11].

In order to determine the molecular electronic wave function of we use the
variation principle, which leads to a generalized eigenvalue problem:
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In the present investigation for parallel internuclear and magnetic field axes, the Hamil-
tonian matrix H is real and symmetric and the overlap matrix is real, symmetric and
positiv definite. The vector c contains the expansion coefficients. The matrix elements
of the Hamiltonian matrix and the overlap matrix are certain linear combinations of
matrix elements with respect to the optimized nonspherical Gaussian atomic orbitals.
For the numerical solution of the eigenvalue problem (3) we used the standard NAG
library.

THE STATE

The electronic PEC for the state of the hydrogen molecule in field-free space
has been calculated with high accuracy by Kolos and Wolniewicz [16,17]. The PEC
for this state in field-free space possesses a minimum at an internuclear distance of

A detailed analysis of the wave function [16] shows the predominantly
ionic character of the wave function for This ionic character has also
been confirmed by the analysis of the corresponding rotation-vibration spectrum of the
hydrogen molecule [18]. Since possesses only one weakly bound state in field-free
space, one expects the ionic character of the hydrogen molecule in the state to de-
crease with increasing internuclear distance. For large internuclear distances the wave
function can be described as a mixture of and configurations where
the configuration predominates for very large internuclear distances. There-
fore, the dissociation channel is given by The corresponding
state in the united atom limit is the electronic  helium state.

In the presence of a magnetic field we observe a monotonous increase in the total
energy with increasing magnetic field strength. At the same time the dissociation
energy increases monotonously (of. Fig. 1). The value of the equilibrium internuclear
distance exhibits a minor increase from 2.42 a.u. in field-free space to 2.53 a.u. for

. However, for . we observe a drastic decrease in the equilibrium
internuclear distance with increasing magnetic field strength. For and 100 a.u.
the corresponding values are and 0.490 a.u., respectively. Figure 1 shows
the well becoming more and more pronounced with increasing magnetic field strength
while the onset of the asymptotic convergence behaviour is shifted to larger internuclear
distances with increasing field strength.

Another important property of the state in a magnetic field is the change
of the dissociation channel in sufficiently strong fields. As described above, the wave
function in field-free space exhibits a partially ionic character for certain internuclear
distances. The dissociation into is not possible due to the nonexistence of
strongly bound electronic states of In a magnetic field, however, it is known that
a negatively charged atomic ion possesses infinitely many bound states in a non-zero
constant magnetic field [19,20]. This means we encounter an infinite number of bound
states of in the presence of a magnetic field even though has only one bound
state in field-free space. With increasing field strength the binding energy of the
ion increases monotonously and becomes more and more strongly bound. A critical
field strength exists, for which the total energy of the ground state of and the total
energy of , which is the dissociation limit for weaker field strengths, are
equal.

The above considerations help us to understand the asymptotic behavior in the
dissociation limit of the state as well as the shape of the PEC: For magnetic field
strengths the molecular state dissociates into Since
the total energy of is larger than the energy of and since no cross-
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ings are allowed between electronic states of the same symmetry, an avoided crossing
between the ground state and the first excited state in the subspace occurs in this
regime of field strengths. With increasing magnetic field strength the
position of the avoided crossing is shifted to increasingly larger internuclear distances
(for and the position of the crossing is at and 81.47 a.u.,
respectively). Between and 20.0 a.u. the dissociation channel changes from

to where the subscribt s denotes a singlet state. Due
to the change in the dissociation channel the onset of the asymptotic behavior of the
PEC is shifted to increasingly larger internuclear distances. This leads to a strongly
changing shape of the PEC which can be seen in Fig. 1.

As a further result we obtain the binding energy for for magnetic field strengths
of and 100.0 a.u. The resulting total binding energies with respect to both
electrons are 3.637999 a.u. and 4.561968 a.u., respectively. The best available data for
the ionization energy of the in a strong magnetic field are given
in Refs. [21,22]. Compared to the value given in [21] for our result of
4.561968 a.u. is more than one per cent lower in energy.

Finally let us comment on the existence of vibrational levels within the above
PECs, which determines the existence of physically bound states. The determination
of vibrational levels in the presence of a magnetic field is a more complicated task than
in field-free space. The nuclear charges are partially screened against the magnetic
field and this screening depends not only on the internuclear distance but also on the
angle between the molecule and the magnetic field [12,13,23]. Within the present
investigation of parallel internuclear and magnetic field axes, we can provide only lower
and upper bounds for the vibrational energies. Hereby we can estimate whether a
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physically bound state may exist in the corresponding PEC. For the state we
found that the number of levels increases with increasing field strength. This suggests
that the state is a physically bound state in the entire range of field strengths

THE STATE

Very accurate Born-Oppenheimer energies for the lowest state of the
molecule are given in Ref. [24]. Our CI calculation yields 0.737124 a.u. for the to-
tal energy at the equilibrium distance of The relative accuracy compared
to the result in Ref. [24] amounts to We emphasize that this high precision
of our data is obtained for arbitrary internuclear distances. The dissociation channel for
the state in field-free space is and the corresponding united
atom state is the helium state.

In the presence of a magnetic field the state dissociates into
The corresponding united atom state is the helium state. Due to the spin-Zeeman
shift the total energy monotonously decreases with increasing magnetic field strength.
For magnetic field strengths below 0.5 a.u. we observe a monotonous decrease in the
dissociation energy with increasing magnetic field strength from 0.112124 a.u. to
0.062317 a.u. for and 0.5 a.u., respectively. At the same time the equilib-
rium internuclear distance decreases slightly from 1.87 to 1.81 a.u.. For magnetic field
strengths larger as 0.5 a.u. we observe a drastical increase in the dissociation energy and
a simultaneous decrease in the equilibrium internuclear distance. The development of
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the electronic PEC for internuclear distances smaller than 4.0 a.u. is illustrated in Fig.
2. In Fig. 2 we can observe that the well of the PEC becomes increasingly more shallow
for increasing field strengths in the range With further increasing
magnetic field strength the opposite behavior can be observed and the potential well
becomes more and more pronounced and deeper.

A closer look at the PEC reveals that for magnetic field strengths between 0.05
and 50.0 a.u. the state develops a second minimum which has no counterpart in
field-free space. However, this minimum is very shallow and the maximum dissociation
energy amounts to only at a magnetic field strength of 1.0 a.u. The
corresponding PECs are shown in Fig. 3. In this figure we observe a hump of the
state at This hump also occurs for higher magnetic field strengths but is
shifted to smaller internuclear distances and, therefore cannot be seen in Fig. 3. For
the location of the maximum we observe an overall decrease in the internuclear distance
with increasing magnetic field strength. Both, the maximum and second minimum of
the PEC appear at the same magnetic field strength of 0.05 a.u.. However, the second
minimum vanishes for magnetic field strengths larger than 50.0 a.u. whereas the hump
remains in the PEC.

At the end of this section let us answer the question on whether vibrational levels
may exist in the PEC of the For the first minimum we found in the order of
ten vibrational levels. The number of levels slightly decreases from to 0.5 a.u.
with decreasing depth of the well. For larger field strengths (5.0, 10.0, and 100.0 a.u.)
the number of levels slightly increases. For the second, i.e., outer, minimum we found
about five vibrational levels for the field strengths 0.05, 0.2, and 1.0 a.u., respectively.
For field strengths the lower bound of the vibrational energy lies inside the
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potential well whereas the upper bound is above the well. Here the detailed dynamical
behavior decides on the existence of vibrational levels, and no conclusions can be drawn
from our estimations.

SUMMARY

In the present article we investigated the electronic structure of some excited states
of the manifold of the hydrogen molecule in the presence of a magnetic field. We
hereby focused on the case of a parallel internuclear and magnetic-field axes. The key
ingredient for our CI calculations is a basis set of nonorthogonal nonspherical Gaussian
atomic orbitals which was established previously. Our results for the PECs in field-free
space show a high accuracy compared to the existing data in the literature.

First we investigated the lowest state. With increasing magnetic field we
observed a minor increase in the equilibrium internulear distance in the range
0.2 a.u. followed by a monotonous decrease with further increasing field strength. The
dissociation and the total energy increases monotonously with increasing magnetic-field
strength. Many vibrational levels were found for the PEC of the state in the entire
regime The number of levels hereby increases with increasing field
strength. An important feature of the state is the change in the dissociation channel
with increasing magnetic-field strength. In field-free space we have

in the separated atom limit. The wave function possesses a predominantly ionic
character for large values of the internuclear distance. However, in field-free space
the dissociation of the lowest state is not possible due to the
nonexistence of strongly bound states for the in field-free space. In contrast
to this strongly bound states of exist in the presence of a magnetic field. Therefore
a dissociation into is possible and we observe a change in the dissociation
channel for magnetic-field strengths between
we have For field strengths slightly larger than 10.0 a.u. the
dissociation limit is given by As a result of our calculations we
therefore obtained the dissociation energy for and 100.0 a.u.. Our
result of 4.561968 a.u. for the ionization energy of at shows an
improvement of more than 1 % compared to the best value given in the literature.

For the state we encounter a monotonous decrease in the total energy which
is proportional to the field strength, and which arises due to the spin-Zeeman shift in
the presence of a magnetic field. In the range the dissociation en-
ergy decreases approximately by a factor of two compared to the dissociation energy in
field-free space. Simultaneously the equilibrium internuclear distance decreases slightly
from 1.87 to 1.81 a.u.. With further increasing magnetic-field strength we observe a
drastical increase in the dissociation energy and a simultaneous decrease of the inter-
nuclear equilibrium distance. A more detailed investigation of the PEC for the
state shows a second minimum for magnetic-field strengths between 0.05 and 50.0 a.u.
which has no counterpart in field-free space. However, this additional minimum is very
shallow. Vibrational levels were found to exist within the first well of the PEC for the
entire range of field strengths from to 100 a.u.. For the second minimum for field
strengths the existence of vibrational levels depends on the detailed dynam-
ical behavior and cannot be decided within the present approach. For a
few vibrational levels exist.
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ABSTRACT

Self-consistant field calculations using a Hamiltonian containing an external mag-
netic field and a basis of gauge origin independent atomic functions have been used to
calculate some of the lower magnetic hyperpolarizabilities of Comparison
with other calculations gives good agreement.

INTRODUCTION

The study of the effect of large magnetic fields on the physical and electronic
properties of molecules has traditionally been confined to the low field regime,
i.e. to those field strengths generally found in the laboratory. Recently, however, there
has been a flurry of activity in the calculation of the properties of atoms and molecules
in strong fields, as these are the fields extant
on the surfaces of white dwarf and neutron stars.1 Futher, there has been growing
interest in the geometrical and electronic properties of molecules in high fields

the upper limit of semicontinuous or pulsed fields, either presently or
soon available in specialized laboratories, such as the National High Magnetic Field
Laboratory (NHMFL) in Tallahassee, Florida.

The most noteworthy of the theoretical studies on molecules in this regime is re-
ported in a series of papers from the Heidelberg group2-7 and reviewed by them.8 Their
work indicates that changes in the electronic (electron density and spin distributions)
and geometric (minimum energy bond lengths and angles, potential surfaces) struc-
ture of molecules and clusters might be expected in intense applied fields. These are
of interest not only in their own right, but are important input information for other
studies. For example, changes in the electronic structure of molecules leads inevitably
to spectroscopic changes. Some evidence of this has been found in simple systems such
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as the Zeeman split t ing in the H atom9, 10 and the molecule.11 A more complete
spectroscopy of molecules and clusters in intense magnetic fields could yield informa-
tion about the fundamental electronic and geometric structures involved. In addition,
certain practical corollaries might emerge. Knowledge of the spectroscopy of simple
molecules (e.g. carbon monoxide) as a function of field strength could also give an
independent measurement of field strengths in situations where direct measurements of
the magnetic field is not practical (e.g. in space or near rotating neutron stars).

In this contribution, we wish to concentrate on one aspect of the spectroscopy of
molecules in high applied external fields: that portion of nonlinear optical response
due to magnetic fields alone. The field of nonlinear optical effects is rich (vide infra
), and deals with the effects of applied external electric, magnetic, and mixed fields
on spectroscopic properties. The effects of electric fields are well documented (cf. e.g.
Ref. 12) but there has been little investigation of those due to magnetic or mixed fields.
We consider here the effects of static magnetic fields on

FORMALISM

Nonlinear Optical Properties

Consider the change of energy of a molecule when it is subjected to a static,
uniform magnetic field B and/or electric field E . The lowering of the total energy due
to the presence of the field(s) is usually expanded as:12

where the tensorial componenets of the fields are indicated by Greek subscripts. In this
preliminary work, we concern ourselves only with that part of eq. 1 which deals purely
with the applied magnetic field. In this case,

Here, is the magnetic dipole function, is the magnetizability, and
etc. are the higher hypermagnetizabilities. Previously, the hypermagnetizabilities have
not been of concern, as they are thought to be small and laboratory fields have not been
large enough to measure them. With the high fields presently, or soon to be, available
at the NHMFL, this is, hopefully, no longer the case.
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The Hamiltonian

We restrict our considerations to fields less than where relativistic effects
are negligible. Consider a set of N charged particles having masses charges
and total nuclear charge Z. Thus is the total mass of the system and

is the total charge on the system. The nonrelativistic Hamiltonian for this
system of particles in an external magnetic field B with the scalar potential can be
written

The eigenfunctions of this Hamiltonian are, of course, functions of the coordinates of
all particles; nuclei and electrons. Here

is the mechanical momentum of the particle. We use the symmetric gauge, so that
the vector potential is connected to the field via

We now introduce the pseudomomentum of the particle

and the total pseudomomentum

Following Schmelcher et al. [8] (sec also Ref. 13), one finds that for a neutral diatomic
molecule, the Hamiltonian can be written in the Born-Oppenheimer approximation as

Gauge Origin Independent Atomic Functions

In order to use the many years of accumulated experience in calculation of molec-
ular electronic structure, we would like to use Gaussian atomic basis functions. One
encounters a problem, however, as the effect of the magnetic field on the electronic
Hamiltonian is to alter the kinetic energy of the electron. This change in kinetic en-
ergy needs to be accounted for in the Gaussian atomic basis functions themselves. We
achieve this end through the use of an exponential factor13 which is introduced in order
to aviod the gauge problem normally encountered in electronic structure calculations in
high external magnetic fields.2, 4 Thus, we work in a basis of gauge origin independent
atomic functions (GIAF’s). These GIAF’s are composed of the commonly chosen nor-
malized Gaussian basis functions, multiplied by gauge origin independence factors
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Here is the GIAF, B is the magnetic field, R is the location of the nucleus on
which the GIAF is centered, is the position of electron is a Gaussian
atomic function. The effect of the exponential introduced into the GIAF is to boost
the momentum of the electron to the mechanical momentum of the electron in the
magnetic field.

The calculation of one and two electron integrals in the GIAF basis is not as
common as the calculation of such integrals in the atomic Gaussian basis. For this
reason, we choose to calculate these integrals in the Gaussian basis and then transform
them to the GIAF basis. The overlap matrix is calculated in both Gaussian and GIAF
bases.

We arrive at the transformation between integrals expressed in the Gaussian and
the GIAF bases by beginning with the completeness relations as expressed in both the
Gaussian and the GIAF bases

Using the convention that a superscript denotes the basis in which a matrix for the
operator is written

we obtain the transformation matrices B and C

where

takes one from the GIAF basis to the Gaussian basis and

takes one in the opposite direction. For the purposes of the calculations reported here,
we shall employ restricted Hartree-Fock theory. Extensions to correlated treatments
of molecules are straight forward. As any implementation of this scheme will involve
finite bases while eq. 12 presumes a complete basis, one must be aware of basis set
effects.

We note that the two-electron integrals of conventional Hartree-Fock theory involve
the four index quantities

Transforming these two-electron integrals into the GIAF basis would require a four
index transformation of the type shown above. However, the quantity that appears in
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the Fock matrix itself is a sum of products of two-electron integrals and density matrix
elements

where F is the Fock matrix, is the one-electron hamiltonian, P is the density
matrix and G is the two-electron piece of the Fock matrix. G is itself a two index
quantity, so that we transform the density matrix into the Gaussian basis and the
two-electron piece of the Fock matrix is constructed in the Gaussian basis. The Fock
matrix thus constructed in the Gaussian basis is then transformed into the GIAF basis.
Hence, we replace one four-index transformation by two two-index transformations.

Calculational Details

In the calculations reported here, we have used bases consisting of segmented
contracted Gaussian functions rich in tight functions. Such bases have previously been
shown to give good results for molecular properties with magnetic field dependencies,

such as NMR chemical shifts14 and spin-spin coupling constants.15

For hydrogen, an (8s) contracted to primitive set,16 augmented with a (3p)
set of polarization functions17 was used. The large basis allows us to reproduce previous
results to at least microhartree accuracy. The iterative Hartree-Fock procedure is based
on an energy convergence criterion which, for these pilot calculations, was set to a
microhartree. It is clear that this criterion serves as a limit to the accuracy of these
calculations rather than any insufficiency in the basis.

Results and Discussion

Calculations were carried out on the ground state of at a variety of external
magnetic fields in the range au, 18 with the molecular bond axis parallel
to the field direction. In each case the minimum energy geometry was determined. As
expected, and in agreement with similar calculations,19, 20 the equilibrium bond length
decreases and the total energy rises.

The relative change in minimum energy with respect to the
field free case as a function of applied field for in the parallel configuration is plotted
in Fig. 1. The rise is attributable to the increase in kinetic energy of the electrons in
the field. If this curve is fit to eq. 2, the various response strengths can be determined.

Using a simple least squares fit to a fourth order polynomial of the form of eq.
2, the diagonal components of the moment tensors along the field direction can be
calculated. The results are presented in Table 1, where they are compared to a similar
SCF calculation of Cybulski and Bishop (CB). 21
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As can be seen, the agreement is good: the magnetic dipole moment is vanishingly
small, as it should be, and the agreement of the magnetizability with that calculated
by CB is within a percent. To the best of our knowledge, the third and fourth order
moments have not been previously reported. In this case, the third order contribution
to the energy is indeed small, but the fourth order term appears large enough so that
it might be measured at high field.
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INTRODUCTION

The central question in the subject of atoms and molecules in strong external fields
concerns the influence of external electromagnetic fields on the electronic properties of
an atom or a molecule. Electric and magnetic fields can be considered to be “strong”
if their action results in sizable modifications of the electronic structure, i.e. if the
interaction strength of the electrons with those fields is comparable to their structural
binding forces in the atom.
Donor impurities in III-V  semiconductors like GaAs appear ideal subjects for such
studies. The Coulomb interaction that causes an electron to be bound to the positively
charged donor nucleus is very small as the result of the large dielectric constant of the
semiconductor and the small “effective” mass of the electron. Consequently, magnetic
(and electric) fields of moderate strength, and which are thus relatively easy to realize
in the laboratory, do have a profound influence on the electron wave functions. In many
aspects, the system is closely related to the hydrogen atom. This
“mimicked hydrogen atom” can be studied under the condition that the interaction with
the external magnetic field is comparable to, or even outweighs, the nucleus-electron
Coulomb interaction. Such a situation is very interesting, as it is similar to that of
genuine hydrogen atoms in the extreme intense magnetic fields present in
the atmospheres of white dwarf and neutron stars. The donor can thus serve as a perfect
experimental testing ground for theoretical models on properties of the hydrogen atom
under these extreme conditions.
In this paper, we will present the results of magneto-optical experiments on donors
in GaAs and compare the data with predictions from recent theoretical work on the
hydrogen atom. Our emphasis will be on the many “Lyman” transitions observed
involving Landau-like states. We will discuss the deviations from the ideal model
system due to band non-parabolicity, electron-phonon interactions and the presence
of ionized impurities. The possibilities of using this shallow donor system to study
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the influence of strong electric fields on electron states of the hydrogen atom will be
illustrated also, and some preliminary experimental results given.

DONOR IN A MAGNETIC FIELD

The properties of electrons in a conduction band minimum of a semiconductor are
usually treated within an effective mass approximation: the influence of the crystal
potential is described in terms of an effective electron mass the true electron
mass. In GaAs, the electron bound to a positively charged donor is characterized by
an effective mass which, together with the large value of the relative
dielectric constant results in a strongly reduced Coulomb interaction. The
radius of the electron orbit therefore is a factor larger than that of the
Bohr orbit of the H-atom. Hence in first order the electron does not feel the details of
the donor chemical binding, but only the Coulomb interaction with its nucleus. It is
thus a hydrogen-like centre. The mimicked hydrogen atom and the genuine one differ
only in the magnitudes of their electric- and magnetic interactions; these are compared
in Table 1. The influence of the magnetic field on the electron states is determined by
the ratio of the electric- and magnetic interactions Whereas for the
H-atom is reached at a field of for the donor electron a field of only 6.57T
is needed; this is easily achievable in the laboratory. Because of the small value of the
Rydberg constant, the optical transitions for the donor occur in the 30 to 300 (far
infrared) region of the optical spectrum.
The Schrödinger equation describing the electron bound to a donor nucleus, subject to
a magnetic field parallel to the z-axis, is given by

Here is the Laplace operator, is the z-component of the angular momentum,
and is the cyclotron frequency. To obtain formally the complete set of
solutions for finite magnetic field, one needs to expand the wavefunctions in Landau
states

Inserting eq.(2) in eq.(l) yields the matrix equation:

Here N is the Landau level index and m the z component of the angular momentum.
The first term contains the effect of the magnetic field and the last term the attractive
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potential of the donor. Eq.(3) has two sets of solutions; the first set contains the free
electron states, characterized by the set of quantum numbers with the
z component of momentum and . The free electron states form a continuum
above each Landau level N, with energies
The second set represents the bound states. For these states N is not a good quan-
tum number because the matrix elements mix Landau states with different
N and equal m. Fortunately, for the contribution of only one Landau level is
found to dominate, thus enabling the bound states to be characterized by an unam-
biguous label N and by the good quantum numbers m and v (where v is the number of
nodes of the wavefunction along the 2-axis). For these bound states the total energy is

with the Coulomb binding energy.
Landau level N is the ionization threshold. For every N an infinite number of bound
states exists with and The overall parity
of a state is
The binding energy as a function of and can be estimated without actually
solving the above eigenvalue equation. For Landau states, the expectation value of
can be shown to equal So, with increasing field the average radius
of these orbits in the xy-plane will decrease, leading to an increase of the Coulomb
binding. At fixed field the average radius will be larger for a larger N and/or a smaller
m; consequently the Coulomb binding will be smaller. A similar argument holds for v:
if the number of nodes of the wavefunction along the 2-axis is large, the average 2-axis
distance between electron and nucleus is large, and thus the Coulomb interaction is
small. In addition, the presence of the lz term in the Hamiltonian (eq.(l)) leads to the
equality

Fig. 1 shows the order of the bound states for according to numerical
calculations (see below); apart from some small deviations this order is consistent with
the considerations given above2.
It must be noted that the Coulomb potential of Eq.(3) mixes states with
equal m. Inspection of Fig. 1 shows that a state with and can
mix with free electron states with equal m and equal energy. An electron in such a
bound state can thus perform a (very fast) radiationless - energy conserving - transition
towards a continuum state. These states are therefore called autoionizing-, metastable-
or Landau-like states 1. Apart from a lifetime broadening, a transition to such a state
will also show the asymmetric “Fano resonance” shape 3. For all  states and states
with such a transition is not possible, because no free electron states with
the same m at equal energy exist. Only these states extrapolate for to the well
known zero field hydrogen states. In Fig. 1, the zero field quantum numbers (n,l,m)
are also given for the “hydrogen-like” states.

FAR-INFRARED MAGNETO-SPECTROSCOPY

In general, magneto-spectroscopy experiments are carried out at liquid Helium
temperature to ensure that the electron is bound to the donor. A molec-
ular gas laser, optically pumped by a tunable laser, is often used as a source of
monochromatic far-infrared radiation. Although not continuously wavelength tunable,
these lasers can easily be made to operate at a large number of different wavelengths
in the range. As the energies of the electron states depend strongly
on the magnetic field, an optical spectrum can be measured by scanning the magnetic
field at a fixed laser wavelength. Experiments are performed typically on thick

293



epitaxial layers grown on semi-insulating GaAs substrates; donor concentrations have
to be below in order to have “isolated” centres.

When an electron is optically excited, the donor can subsequently be ionized easily
through emission (or absorption) of an acoustic phonon. In that way, some of the
excited electrons end up in the conduction band and the optical absorption can be
measured simply by monitoring the photo-induced conductivity of the sample. In
Fig. 2 the results of a field scan at and is shown (lower
trace). As only the ls0 ground state is populated, all transitions shown belong to the
“Lyman series”. To emphasize the oscillatory behaviour of the photoconductivity at
the low field (or high energy-) side of the spectrum, a spectrum at

is shown also. Making use of the selection rules for electric dipole transitions and
the parity of the states, the final states of the transitions have been identified. From
field scans at a different wavelengths the transition energy versus field curves as shown
in Fig. 3 have been obtained 4,5.  Figs. 2 and 3 summarise the essential features of the
optical spectrum of the donor in GaAs (and consequently also of the hydrogen atom in
very large magnetic fields) for energies up to

The spectrum (for transitions to states above the level) is dominated by a
repeating sequence of 4 transitions. Between Landau levels N and the main
features of the spectrum consist of the transitions to the states (N , 1,0),
(N ,0 , l ) , and (N, 1,2), with the (N,1,0) transition having the largest intensity. To-
wards higher N the intensities decrease. For essentially the same pattern can be
recognized, but, due to the overall higher intensities some additional, weaker transitions
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are visible too. The lines through the experimental points in Fig. 3 drawn as a guide
to the eye can not be distinguished on that scale from the theoretical fits (see below)
for energies below
The transitions towards Landau-like states clearly show the asymmetric shape (dip
at the low field side), characteristic for Fano-resonances3 . The transitions to the
hydrogen-like (1,1,0) and (1,1,2) states have a notably smaller linewidth than all
other transitions, and therefore reveal a fine structure, which is obscured in the other
transitions.

INTERACTION OF DONOR ELECTRON WITH HOST

In order to compare experimental data with predictions for the hydrogen model,
the influence of the GaAs host on the donor spectrum has to be examined. A de-
tailed inspection of the experimental data shows the presence of small as well as large
deviations from the behaviour expected for the genuine hydrogen atom.

Finestructure at Transitions

The first reason for the fine structure observed on the transitions to the (1,1,0)
and (1,1,2) states, clearly seen in the 70.5 spectrum in Fig.2, is the presence of
chemically different donor species in the sample. The details of the chemical bond of the
donor influence to a small extend the binding of the electron in an s-orbit and lead to a
finestructure at transitions out of the ls0 state. The magnitude of this so-called central
cell shift for increases slightly with increasing field due to contraction
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of the electron wavefunction 6. Both transitions show a two-fold structure originating
from the presence of Si and S donors in the sample. The additional splitting of the
(1,1,0) transition is due to the presence of the electron spin. In general the electron spin
causes all electron states to have an equal two- fold splitting, which is not observable
in electric dipole transitions. However, due to mixing of energy bands in GaAs, this
splitting becomes energy dependent, and therefore becomes observable as a two-fold,
magnetic field dependent, splitting of all transitions7.

Ionized Impurities

Besides donors, a finite concentration of acceptors is also present in a sample.
At low temperatures, these acceptors capture electrons from neutral donors, thereby
creating Na negatively charged acceptors and as many positively charged donors. These
ionized impurities create electric field gradients at the neutral donor sites, which cause
mixing of donor states with different quantum numbers m and v, resulting in the
observation of “forbidden” transitions. Moreover, it leads to an inhomogeneous line
broadening 8. If radiation across the band gap of the semiconductor host is applied,
the ionized impurities are neutralised and the above mentioned effects are suppressed.
The two spectra in Fig. 2 clearly show the influence of this effect. The lower trace is
from a sample with and measured with band gap
radiation. The upper trace has been taken without bandgap radiation in a sample with
higher impurity concentrations. Here the (1,1,2) and (1,1,0) transitions (the latter
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not shown) are broadened, thus obscuring the fine structure. Apart from the allowed
transitions, forbidden transitions to the (1,1,1), and states are also
visible in the upper trace.

Non-Parabolicity of the Conduction Band

The conduction band in the point of GaAs is not perfectly parabolic: this leads
to an increase of the value of with energy. As a result the experimental transition
energies are somewhat lower than expected for constant For the data in Fig. 2
these deviations are not more than a few for the highest transition energies and
can easily be calculated 4.

Electron-Phonon Interaction

As GaAs is a polar semiconductor, the electrons interact with the optical phonons.
This leads to a change in the energy of the electron state (N, m, v) given by 9 :

where is the wavefunction of the unperturbed state of energy with no
LO-phonons, and is the wave function of an unperturbed electronic state of
energy with one LO-phonon with wave vector and energy

(phonon replicated state). is the electron-phonon interaction hamiltonian.
Whereas for energies far below this interaction merely leads to a slight increase
of the effective mass, with similar effects as mentioned above, at higher energies dras-
tic effects are observed. As soon as the energy difference between states and

reaches the LO-phonon energy, will resonantly increase, resulting in
an anticrossing between states and Cheng et al. 9 measured in
GaAs the behaviour of the transition. The upper part of Fig. 3 shows
the results of a similar experiment, but now on the transitions to the (3,1,0) and
(4,1,0) metastable states 10,11 Data on the transition to the (2,2,0) state is also given
12. The two-photon excitation technique employed by the latter authors enabled also
the observation of transitions in the energy region between the LO- phonon and the
TO-phonon at 270 (Reststrahlen band) where GaAs is completely opaque. The
observed anti-crossing behaviour of these transitions has been described properly on
the basis of Eq. 4, using wavefunctions obtained from variational calculations.

Electron Dynamics

An essential difference between donors and hydrogen atoms is found in the dy-
namics of excited electrons. As the donor excitation energies are small, the probability
of relaxation of excited electrons through spontaneous emission is very low. There-
fore, electrons excited into bound states return to the groundstate, mainly through
non-radiative processes. Experiments on optical saturation 13 and time resolved pho-
toconductivity 14,15 show that electrons excited into hydrogen-like (resp. metastable)
states decay on typically a hundred (resp. ten) picosecond time scale into the conduc-
tion band through acoustic phonon emission (resp. autoionisation). After 10-100 ns
the electrons are then captured by ionized donors, and decay subsequently in about
100 ns to the groundstate under acoustic phonon emission.
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COMPARISON WITH THE HYDROGENIC MODEL

Many authors have used a variety of numerical techniques to obtain accurate data
on energies of hydrogen-like states in finite magnetic field. A comprehensive set of
calculations on field dependent energies of many states has been given by Rösner et
al. 16. Among others, Friedrich et al.17 obtained results on energies and - lifetime
determined - linewidths of some low lying metastable states, that agree very well with
experiments on GaAs 18. Recently Barmby et al. 5 used a variational method to derive
accurate data on energies of a large number of those metastable- as well as hydrogenic
states that are observed experimentally in GaAs. For the z dependent part of the
electron wavefunctions the following functions for v — 0,1,2 are used:

with the N and m dependent variational parameters. In Fig. 4 the experimental
ionization energies E(N,m, v) of some states, corrected for the above mentioned devi-
ations, are seen to compare very well with the results of these variational calculations.
Very recently, Barmby et al. 19 used a finite difference approach to obtain analyti-
cal electron wavefunctions, allowing for mixing between different Landau levels (see
Eq.(2)). Also those results on transition energies agree very well with experiment.

DONOR IN AN ELECTRIC FIELD

Apart from intense magnetic fields, also (random) electric fields up to
are present in the atmospheres of white dwarfs and neutron stars. Is it possible to use
the donor system also to study experimentally the influence of electric fields on the
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optical spectrum? The essential quantity that determines that influence is the ratio
of the electric potential across a Bohr orbit and the Rydberg constant. Using the
quantities given in Table 1, it is easily shown that a field of will have about
the same impact on a H-atom as a field of has on a donor. The latter field
is equal to across 20 nm, the diameter of the donor Bohr orbit.
Random electric fields of that amplitude are present in GaAs. In a sample with an
impurity concentration of the mean inter- impurity distance is about 140
nm. A donor at such a distance from an ionized impurity experiences a potential of

over 20 nm! The effects of such random fields on the shape of some donor
transitions has been studied by Larsen 8.
In a preliminary experiment we inspected the influence of intense external electric fields
on the shape of the donor spectrum. A planar log-periodic Thz antenna on top of an
epitaxial GaAs sample was used together with a Si hyperhemispherical lens to collimate
0.5 W pulses of radiation. Even assuming an antenna efficiency of only 1%,
this would result in an optical intensity of about at the antenna apex,
which is equivalent to a Thz field of about 6 mV over 20 nm. The dc bias current, used
to detect the induced photoconductivity, created dc fields as high as 0.5 mV over 20
nm.
In Fig. 5 the influence of the intensity of the optical and dc field on the induced
photoconductivity is illustrated. Trace 1 shows a normal field scan at relatively low
intensity of the optical and bias fields. Apart from transitions to donor states, also
at the cyclotron transition (CR) between the and the Landau
levels is observed. Trace 2 is taken at low bias voltage, but large optical intensity.
The photoconductivity has strongly increased and, due to severe saturation, only the
prominent transitions - (1,1,0) and C.R.- are visible, but very broad and with a dip
in the centre of the transitions. With increasing bias voltage (trace 3) the spectral
features reappear, be it with an “inverse” photoconductive response. With maximum
bias voltage and optical intensity the resonant photoconductive response even becomes
negative; the conductance is smaller with than without optical excitation (trace 4).
Probably deformation of electron states, as well as the specific response of the “hot”
electrons in the semiconductor host are responsible for these complicated effects. It
is clear that these high electric fields strongly influence the donor spectrum. Further
experimental and theoretical work has to be done to understand the physical processes
underlying these effects.

SUMMARY

The spectrum of an electron bound to a donor in GaAs has been shown to behave
as a very good hydrogenic center. Its far-infrared magneto-optical spectrum provides
much experimental information, not otherwise available, to verify theoretical models
of the hydrogen atom in very intense magnetic fields. Deviations from the theoretical
predictions are observed, and can be related to the interaction with the semiconductor
host. Preliminary experiments show that also the influence of additional intense dc-
and optical electric fields on the properties of the H-atom can be studied using this
model system.
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INTRODUCTION

Quantum dots are semiconductor nanostructures that can confine very small num-
bers of electrons. Depending on the method of fabrication, typical dot dimensions
are in the range 10-100nm and electron numbers range from one to several hundred.
Most dots are fabricated by applying an electrostatic confining force to electrons in the
plane of a quasi-two dimensional system and this review is particularly concerned with
these dots. The aim is to focus on the properties of quantum states of interacting elec-
trons with particular emphasis on the strong magnetic field limit. In addition, a brief
discussion of dot fabrication is given to make this review self-contained and motivate
the theoretical model used to study the quantum states. More general reviews of dot
physics and technology can be found in the literature 1, 2, 3, 4, 5, 6.

ELECTROSTATIC CONFINEMENT

Dot Technology

Generally speaking, dots can be made in several ways. The most common method
is to constrain the motion of electrons in a quasi-two dimensional system by applying
a confining force in the plane of the system. Early work used both mesa-etching 7

and electrostatics 8 to produce confinement but electrostatic confinement has been
most widely used. Very recent work, however, has used a combination of mesa-etching
and electrostatic confinement to produce very high quality dots 9. The possibility
of confinement by localised magnetic fields has also been discussed 10,11. Another
approach to dot fabrication is to use a technique called self-organised growth which
enables dots to be grown directly on a semiconductor substrate. This leads to dots as
small as l0nm which have potential applications to semiconductor lasers 12.

A typical electrostatically confined system is shown in figure 1. The quasi-two
dimensional electronic system in this case occurs at a GaAs-AlGaAs heterojunction,
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although similar structures can also be made from GaAs-AlGaAs quantum wells. Elec-
trons are introduced into the system from donors (indicated by in figure 1) in the
AlGaAs and would normally form a quasi-two dimensional sheet at the GaAs-AlGaAs
interface. This occurs because the AlGaAs has a larger band gap than the GaAs
so electrons released from donors in the AlGaAs transfer to lower energy states in
the conduction band of the GaAs. These electrons are confined at the interface by a
combination of the potential that results from the conduction band offset and the elec-

trostatic potential that results from the electron transfer 13. In a typical heterojunction
the electron motion in the perpendicular direction is confined to within about 10nm
of the interface so the electron system is effectively two dimensional. The quantum
dot structure has additional components that are used to confine electrons in the lat-
eral direction. These are a conducting bottom contact, either a heavily doped region
or a delta-doped layer, and a modulated top electrode. In the dot region the gate is
separated from the heterojunction by an insulating cap. When a negative voltage is
applied to the gate the regions directly underneath it can be fully depleted of elec-
trons, leaving a small number of electrons trapped underneath the cap. The scale of
the lateral confinement depends on the length scale of the electrostatic potential at
the heterojunction and is typically 50-100nm, which is smaller than the cap dimension.
Typical single electron energies are around 2-4meV and the number of electrons in the
dot ranges from zero upwards. The transport and optical properties of electrostatically
confined structures have been studied extensively over the last few years and a number
of authors have provided convincing evidence that single electrons can be confined in
these structures 9, 14, 15, 16, 17.

Theoretical Model

Real quantum dot systems are rather complicated so it is convenient to use a
simplified model that contains the key physics. This model has been used by most
authors and is believed to give a good semi-quantitative description of electrostatically
confined systems. The model is based on three simplifying assumptions. The first is
that the electron motion is exactly two dimensional. Physically, this is quite reasonable
because the length scale of the confinement in the direction perpendicular to the plane of
the dot is about an order of magnitude smaller than the length scale of the confinement
in the plane of the dot. The second assumption is the form of the confining potential.
Typical gate voltages are around – IV. Thus the electrons are confined by a deep
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potential well whose depth is of order leV. The ground state wave function is large only
near the minimum of this potential so a good first approximation is that the potential
has the parabolic form associated with any minimum. Further, typical devices have a
circular or square cap. In the first case the potential is circularly symmetric and in the
second case circular symmetry is a good approximation because the dot region is much
smaller than the square cap. The confining potential is therefore taken to be
in all cases, where is the effective mass and is the confinement energy. The
third simplifying assumption is about the form of the electron-electron interaction. It is
normally assumed that a pure Coulomb interaction is appropriate although this is only
a first approximation because both the dot structure and the surrounding electrodes
contain carriers that can screen the interaction of the electrons inside the dot.

There is strong evidence that the theoretical model gives a good semi-quantitative
description of dot behaviour. Experiments on far infra-red (FIR) absorption of dots
in a perpendicular magnetic field have shown that the absorption spectrum is largely
independent of the number of electrons 7, 8, 15. According to the 2D parabolic model
this is exactly what should be observed because in a 2D parabolic potential the centre
of mass motion and the relative motion of the electrons decouple 18, 19. Because it has
a long wavelength the FIR radiation couples only to the centre of mass of the system
so the absorption spectrum is sensitive only to the energy levels of the centre of mass.
But these levels depend only on the charge to mass ratio which is independent of the
number of electrons. Real absorption spectra are indeed largely independent of electron
number but do have some residual features which indicate that the corrections to the
2D parabolic confinement model are not entirely negligible 20, 21. There is also evidence
that the assumption of a Coulomb interaction gives a good semi-quantitative description
of dot physics. The effects of screening have been shown to be sufficiently large to have
a measurable effect on electron energies 22 but modifications of the interaction potential
do not change the qualitative form of the physics. This has been confirmed in recent
work where the detailed forms of the confinement and interaction potentials in a real
device were calculated 23, 24.

The model Hamiltonian for an N-electron electrostatic dot in a perpendicular
magnetic field B has the form

where the first term is the one electron term, the second term is the Coulomb interaction
term and the last term is the Zeeman energy. is the effective g-factor and is the
dielectric constant. It is convenient to use the circular gauge so the magnetic vector
potential is,

QUANTUM STATES

Single Electron States

The eigenstates of non-interacting electrons with 2D parabolic confinement are
well known. They were first investigated by Fock 25 and Darwin 26 in the context of
diamagnetism and in the quantum dot literature they are generally called the Fock-
Darwin states. They have the form

303



with energies given by

(excluding the Zeeman energy). Here l and n respectively are angular momentum and
radial quantum numbers, the are associated Laguerre polynomials,

is the cyclotron frequency, The size of a Fock-Darwin
state depends on the length parameter, and on the quantum numbers n and l. A
convenient measure of the size is the mean square radius

Clearly the radius is proportional to and because of the relation between and
this means that the system size decreases with magnetic field. In addition, Eq. 4 shows
that the size increases with angular momentum. The dependence of the system size on
magnetic field and angular momentum is responsible for much of dot physics.

The Fock-Darwin energies are shown in figure 2. This gives the magnetic field
dependence of the lowest few levels for a GaAs dot with
At zero field the levels are equally spaced and as the field increases a complicated series
of crossings occurs. In the high field regime the levels coalesce into the free electron
Landau levels, that is levels with constant Landau quantum number
There is however significant broadening even at 10T. The broadening illustrates the
effect of the angular momentum on the system size. For example, the states in the
zeroth Landau level have and The lowest state has and l increases
for the higher energy states in the Landau level. Physically, this is because states with
larger l have a larger size so electrons in these states experience a larger potential.

Interacting Electron States

Most calculations of quantum states of interacting electrons have been done by
numerically diagonalizing the Hamiltonian 19, 27. Typically, a Slater determinant basis
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is constructed from Fock-Darwin states and the QR algorithm or the Lanczos method

is used to find the states of the interacting system. Accurate calculations are possible
for up to about 6 electrons throughout the magnetic field range. More electrons can
be treated in the strong magnetic field limit, where a single Landau level gives an
accurate description. Current density functional theory offers a promising alternative
for treating even larger systems 28. The magnetic field dependence of the ground state
is of particular interest and is relevant to various measurable properties of dots.

Figure 3 (upper frame) shows the ground state energy as a function of magnetic
field for 3 spin polarised interacting electrons in a GaAs dot

with The solid line gives the total ground state energy
while the remaining lines give one electron, Coulomb and Zeernan components which
were obtained by taking the ground state expectation value of the corresponding terms
in Eq. 1. While the total energy is smooth, the one electron and Coulomb compo-
nents change discontinuously and the discontinuities are accompanied by changes in
the dot radius and total orbital angular momentum (lower frame). These changes are
a consequence of the changing size of the wave function. The increasing field reduces
the system size and hence increases the Coulomb energy. Because the length scale
increases with angular momentum (Eq. 4) the system is able to decrease its Coulomb
energy by increasing the total angular momentum quantum number, J. However this
only happens at certain critical magnetic fields where the decrease in Coulomb energy
can compensate for the increase of one electron energy that results from an increase in
J. The cycle repeats with increasing B and this leads to oscillations in the Coulomb
energy and abrupt increases of one electron energy and J value as in figure 3.

The abrupt changes in the orbital angular momentum are accompanied by abrupt
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changes in the system size. The system size in figure 3 was determined by calculating
the radius of the circle that contains 95% of the charge, that is, is defined by

where is the electron density 29. Abrupt increases in
clearly co-incide with a transition to a new ground state (figure 3, lower frame).

The increase of angular momentum with magnetic field is essentially a classical effect
and the transition fields can be determined quite accurately by considering the clas-
sical motion of interacting electrons in circular orbits 6, 30. In this approach the field
dependence of the total angular momentum is obtained by minimising the classical
energy and then imposing the constraint that the total angular angular momentum is
an integer multiple of to approximate the transition- fields.

The magnetic field dependence of the ground state energy in figure 3 is typical for
electrostatic quantum dots containing small numbers of electrons. Extensive numerical
studies have shown that angular momentum transitions always occur and in addition
there are transitions in the total spin 31, 32. These transitions generally cause oscillations
in observable properties of dots such as the electronic heat capacity 19, magnetisation
31, 32 and many others – a comprehensive list can be found in a review by Maksym 6.
There is evidence that some of the transitions have been observed 16.

One of the most interesting aspects of the ground state is that only certain values
of the total angular momentum are selected. For example, the angular momentum
of the interacting ground state of 3 spin polarised electrons is always a multiple of
3 but for 4 spin polarised electrons the total angular momentum is where k
is an integer, while for 4 electrons with total spin zero the total angular momentum
is a multiple of 2. Clearly the preferred angular momentum depends on the electron
number and total spin and the actual values that occur are known as the magic angular
momentum numbers. The origin of the selection rules for the magic angular momenta
is particularly interesting.

Origin of Magic Numbers

The earliest approach to explaining the origin of magic numbers was an argument
based on exchange energy 31. In the spin polarised case the Slater determinant that
has the lowest exchange energy in the zeroth Landau level is one where all the electrons
are adjacent in angular momentum space. This configuration can only occur at certain
values of the total angular momentum and it turns out that they are the magic ones.
For example, in the 3-electron case one way of making the l values adjacent is to choose

which gives one of the magic numbers for the 3-electron system. The
argument is similar to Hund’s first rule in that the state of lowest total energy is the one
where exchange effects are the largest. Numerical calculations show that configurations
of adjacent electrons tend to occur in the ground state with high probability.

Subsequent approaches, based on symmetry, have given a much more detailed
picture. It is reasonable to suppose that the ground state is localised near the minimum
of the potential and in the quantum dot the form of the minimum is determined by
the balance of the confining and repulsive forces. In classical mechanics, this leads to
minima with well defined symmetry. For example, the minimum energy configuration
of 3 classical point charges is an equilateral triangle, or a rotating equilateral triangle
if the system has non-zero angular momentum. In quantum mechanics the electron
wave function has to be anti-symmetric and this together with the requirement that
the correlation is compatible with the symmetry of the classical minimum leads to
the magic numbers. In early work on the 3-electron spin polarised system this was
demonstrated by constructing a system of co-ordinates in which cyclic permutations
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and rotations are equivalent. Using these co-ordinates it is possible to show 33 that
anti-symmetric ground states can only have maxima with 3-fold symmetry when the
total angular momentum is multiple of 3. An alternative and simpler argument is to
show that if an anti-symmetric wave function is non-zero when the electron positions
have 3-fold symmetry it must have one of the magic angular momenta 34, 35, 36 and this
argument can be generalised to more than 3 electrons and arbitrary spins 30, 34, 36, 37.

The link between magic numbers and symmetry has been verified by computing
the pair correlation function 30, 33, 35, 36. For spin polarised electrons this is defined as
the ground state expectation value:

The vector is fixed while r is varied so the resulting function of r is proportional to
the probability of finding an electron at r given that there is one at As can be seen
in figure 4, this function is highly sensitive to angular correlations. The figure shows
pair correlation functions, in the strong field limit, for ground states of 2 through to 7
spin polarised interacting electrons. The magnitude of has been chosen to coincide
with the classical orbit radius and in each frame is indicated by the black spot.
In the case of 3 electrons the spot and the two peaks opposite it form the corners of
an equilateral triangle. For other electron numbers other forms of symmetry occur,
with ring-like symmetry for up to 5 electrons and a ring with a central peak for 6 and
7 electrons. In each case the symmetry coincides with the symmetry of the classical
minimum energy configuration 38. The idea that the magic numbers are connected with
symmetry is also consistent with the argument based on exchange energy. The pair
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correlation function provides the link between the two approaches for it can be shown
30 that the pair correlation functions for Slater determinants composed of adjacent
orbitals have ring or centred-ring symmetry as in figure 4.

In addition to the approaches based on exchange energy and symmetry the magic
numbers have also been interpreted in terms of composite fermions 39. A composite
fermion consists of a magnetic flux tube bound to an electron and magic numbers are
identified by considering how composite fermion Landau levels are occupied. This leads
to an approximate wave function that is to used approximate the total energy. The
magic numbers correspond to compact occupation of the composite fermion Landau
levels. For the composite fermion approach gives the same magic numbers as
the approaches based on symmetry and agrees well with other approaches for larger
numbers of electrons, although some discrepancies have been reported 36. The good
agreement of the composite fermion and symmetry approaches suggests that there may
be a link between them however this is still an open question.

THE STRONG MAGNETIC FIELD LIMIT

In the limit of very strong magnetic fields the peaks in the pair correlation function
become very sharp. This suggests that the wave function is strongly localised about
the classical minimum and that a harmonic expansion of the Hamiltonian should give
a good approximation to the ground state. Physically, the system can be pictured as
an ’electron molecule’ that rotates and vibrates inside the quantum dot and sometimes

the term Wigner molecule is used. The equilibrium configuration of the molecule is
determined by the form of the classical minimum and the lowest order approximation
to the wave function is obtained by expanding the Hamiltonian about this minimum.
Actually, however, there are N! minima, each corresponding to a different permuta-
tion of the electrons and the main assumption of the theory based on a harmonic
approximation is that quantum tunnelling between the minima can be neglected. This
is reasonable when states are so strongly localised that the overlap between different
minima is very small.

The classical minimum rotates and it is necessary to transform to a moving frame
to develop a theory based on a harmonic expansion. The appropriate frame 30 is the
Eckardt frame that is normally used for the study of molecular vibrations. This has the
unique feature that the Coriolis coupling between rotational and vibrational motion is
minimised. However in a strong magnetic field Coriolis coupling is not negligible and
must be treated exactly to obtain accurate results. With this exception the theory is
very similar to the theory of molecular vibrations.

Approximate electron states are obtained by antisymmetrizing states obtained
from the harmonic expansion of the Eckardt frame Hamiltonian 30. Each of these
states is a product of the form

where the is the centre of mass state, is a state of angular momentum
relative to the centre of mass, is a vibrational state and

is a spin state. Here is the relative angular momentum quantum number,
is an Euler angle, is a vibrational quantum number associated with the normal

mode and is the z-component of the total spin. The result of antisymmetrizing
this state is cither zero or an antisymmetric state, and because is symmetric under
all permutations the result of the antisymmetrization is determined by the remaining
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factors. Only certain combinations of the quantum numbers and lead to
antisymmetric states. The lowest energy states occur when for all i and in
this case non-zero states are obtained from Eq. 6 only when is one of the magic
numbers. The allowed combinations of quantum numbers are found from group theory
and this gives magic angular momenta which agree exactly with the results of the
previous section. An example of the quantitative accuracy of the theory is given in
figure 5. The upper frame shows a comparison of approximate and exact results for
the ground state energies, together with a minimum energy defined as the sum of the
classical energy and the quantum zero-point energy. The lower frame gives the lowest
excitation energy relative to the centre of mass. In each case there is good agreement
in the large angular momentum region which occurs in strong magnetic fields.

The approximate treatment in the strong field limit can be extended to systems
with larger numbers of electrons 30, 40. For up to 5 electrons the accuracy is similar to
that shown in figure 5 but some new features occur in the 6-electron system. In this
case there are competing 3-fold and 5-fold classical minima. The 5-fold minimum has
the lowest energy and most ground states have 5-fold pair correlation functions. The
first new feature is that although there are no 6-fold classical minima there are excited
quantum states with 6-fold pair correlation functions. It turns out that quantum mixing
of states localised on two degenerate 3-fold minima leads to the 6-fold correlation40. The
second new feature is that the selection rules allow both 6-fold and 5-fold correlation
at the J values 15, 45, 75... Because the J value is a measure of the size of the system
it is related to the filling factor 13, v, via the relation 41, The
filling factors corresponding to 15, 45, 75... are 1, 1/3, 1/5..., that is odd denominator
fractions where the fractional quantum Hall effect occurs. The pair correlation function
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at these J values does not have the ordered structure illustrated in figure 3; instead the
quantum state is ’liquid-like’ 30. The ’liquid-like’ nature of these 6-electron states is a
consequence of mixing of states localised on the competing classical minima and the
fact that they only occur at odd denominator fractions is a consequence the selection
rule that associates particular symmetries with particular J values. Competing minima
generally occur in large systems and it is an open question whether quantum mixing
restricted by selection rules generally leads to ’liquid-like’ states at odd denominator
filling factors 44

.

CONCLUSION

Interacting electrons in quantum dots in a magnetic field exhibit very rich be-
haviour. As the field increases a series of transitions occurs in which the orbital angular
momentum and spin of the ground state change in a way characteristic of the number of
electrons. In the very strong field limit ’molecular’ states occur which are well described
by a harmonic expansion of the Hamiltonian. In addition ’liquid-like’ states occur in a
6-electron dot at odd denominator filling factors. Dot technology is advancing rapidly
and there are hints that novel systems, such as double dots 42, 43 exhibit equally rich
behaviour.
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INTRODUCTION

Two-dimensional quantum dot systems, at high magnetic fields, have been recently
studied by various authors [1–3]. The basic features of the system have been described

in the previous talk by Peter Maksym. Electrons in a semiconductor layer are confined
to a circular region by a smooth, essentially parabolic potential extending over a region
of typically 10 – 100 Bohr radii of the host semiconductor (1 Bohr radius for
GaAs). The number of electrons in the dot is controlled by varying a “gate voltage”.
The energy scale of excitations is typically of the order of a few me V’s, corresponding
to wavelengths in the infrared range. Such a system has been dubbed an “artificial
atom” in the literature - bringing us close to the subject of this workshop.

In contrast to what happens in real atoms, electromagnetic absorption spectroscopy
is of limited value in quantum dots. The reason is that a uniform electromagnetic field
couples only to the center of mass of the system which responds like a quantum har-
monic oscillator of frequency determined by the curvature of the parabolic potential
[4]. Hence, infrared absorption is “blind” to excitations of the internal degrees of free-
dom, when a purely parabolic potential is assumed, as mentioned earlier in the paper.

All we know about the internal structure of quantum dots comes from two types
of spectroscopy known as, “single electron capacitance spectroscopy” (SECS) [5] and
“single electron tunneling spectroscopy” (SETS) [6]. In the first technique one measures
the differential capacitance between the quantum dot and a reference electrode as a
function of gate voltage In the second technique one measures the differential
conductance between the quantum dot and an electrode, as a function of In both
cases, the basic spectroscopic principle is that the differential capacitance /conductance
is almost always zero, except when the gate voltage has such a value that the state with
N electrons on the dot has the same Gibbs free energy where
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E(N) is the ground-state energy and is the chemical potential) as the state with
electrons on the dot. Only when this happens, charge can tunnel back and forth

between the electrode and the dot, and one observes a sharp peak in the differential
capacitance or conductance. Thus, the resonance condition is

where is a numerical factor relating the gate voltage to the chemical potential. This
gives us a sequence of peaks as the occupation number N of the dot is varied from 1
to infinity. It is easy to verify that the occupation of the dot increases sequentially in
steps of 1, with increasing if and only if the ground-state energy E(N) is a convex
function of N. In the simplest model (known as “constant interaction model” )

where C is the classical capacitance of the dot, taken to be independent of
N. This model predicts a series of peaks at equally spaced values of A slightly more
careful calculation, taking into account the size dependence of the capacitance leads to
the conclusion that and for large N [7,8]: thus the spacing
between the peaks tends to decrease with increasing N, but very slowly.

On top of this smooth, classical behavior, quantum mechanics introduces irreg-
ularities in the distribution of the peaks, caused by changes in the symmetry of the
ground-state as a function of N. It is through a careful study of these irregularities,
that one learns about the internal structure of quantum dots. For example, recent ex-
periments by Tarucha et al. [9] have revealed the existence of pronounced oscillations in
the spacing between peaks as a function of N for few-electron dots. These oscillations
have been interpreted as a manifestation of a shell structure for an atom held together
by a parabolic, rather than coulombic, potential.

The study of quantum mechanical effects is greatly facilitated by the application
of a magnetic field. Following the evolution of a given capacitance or conductance peak
as a function of magnetic field B one eliminates the classical background (which is
independent of B) and focusses on the symmetry of the quantum mechanical ground-
state. We can identify at least 4 classes of irregularities which appear with increasing
magnetic field:

(1) At low magnetic field one can observe [9] a crossover from a zero-field regime,
in which the atomic-like shells are filled according the usual Hund’s rules, to a Zeeman
dominated regime in which parallel spin occupation of adjacent shells is favored.

(2) With increasing magnetic field one sees a complicated pattern of oscillations
(in the voltage of a given peak vs. B) which can be understood in terms of crossings of
single-electron Fock-Darwin [10] levels with different symmetry. A particularly strong
feature is observed at a value of B such that all the electrons fall in the lowest Fock-
Darwin band: this is the band of levels which, in the limit evolves into the
lowest Landau level (LLL) of the uniform electron gas.

(3) At still higher B one sees a series of oscillations related to spin flip transitions
[11]: the system is gradually evolving from a spin-unpolarized (or weakly spin-polarized
state) to a fully spin polarized state within the lowest Fock-Darwin band. This final
state is known as the “maximum density droplet” and is characterized by
a compact occupation of states with (canonical) angular momenta 0,1...N – 1 within
the lowest Fock-Darwin band.

(4) Finally, at the largest attainable magnetic fields, one observes a breaking up
of the maximum density droplet, which becomes electrostatically unstable, due to the
reduced radii of the Fock-Darwin orbitals. The “edge reconstructed” [12–14] state that
arises from the optimization of the electrostatic energy, has a larger angular momen-
tum, which continues to increase with increasing magnetic field. This phenomenon is
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the large-N analogue of the transitions between states with increasing magic angular
momentum values, described by Maksym in the previous talk.

THEORETICAL APPROACHES

The challenge to theory has been and remains to produce a coherent understanding
of such a wealth of experimental data. Various theoretical methods have been employed
to this end. Exact diagonalizations of the quantum dot Hamiltonian

(Here is the frequency of the external parabolic potential, is the external vector
potential, k the dielectric constant, the electron effective mass, the Bohr magne-
ton, the effective g-factor for the Zeeman splitting, and the spin component along
the axis perpendicular to the plane of the electrons) have been pioneered by Maksym
and Chakraborty [15], Hawrylak et al. [16], and Yang et al. [7]. This highly accurate
approach is unfortunately only feasible for dots containing a relatively small number of
electrons due to the exponentially growing dimension of the Hilbert space.
Classical Monte Carlo calculations have been carried out by Bolton et al.[17] Mean field
approximations have also been applied with considerable qualitative success. We refer,
in particular to the Hartree-Fock calculations by de Chamon el al. [13] and Palacios
et al. [18], and the composite Fermion mean field theories by Jain [19], Brey [20],
and Chklovskii [21]. These theories neglect the correlations between their constituent
particles (electrons and composite Fermions respectively).

DENSITY FUNCTIONAL THEORY

Finally, the density functional theory (DFT), originally developed by Hohenberg,
Kohn and Sham [22] has proved to be a valuable tool for studying quantum dots with
large N [23–26]. This approach is based on the assumption that it is possible to ob-
tain the ground-state density of an interacting inhomogeneous electron system from
the ground-state wave function of a noninteracting system (the “Kohn-Sham” system)
subjected to an appropriate effective potential. Although there are some special cases
(see [25], for example) in which this assumption is known to fail, the DFT is never-
theless widely used in condensed matter physics, and a finite temperature ensemble
generalization is available to cope with the potentially troublesome case of degener-
ate, or quasi-degenerate ground-states. A serious limitation of DFT is the lack of an
exact knowledge of the exchange-correlation (xc) part of the effective Kohn-Sham po-
tential - a complicated, nonlocal functional of the density. Usually, one resorts to the
so-called local density approximation in which the xc potential is written as

is the exchange correlation energy density of a uniform
electron gas of density n. This is, in general, an uncontrolled approximation, and a
major limitation on the numerical accuracy of DFT-based results.
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RESULTS

In the rest of this talk we present and discuss the results obtained for the ground-
state properties of quantum dots using density and current-density functional theory
(CDFT), the latter being an extension of DFT designed to explicitely take into account
the coupling of orbital currents to an external magnetic field. The main results have
been published in ref. [24], and we refer the reader to this paper for details. Basically,
it is found that the DFT and CDFT approaches produce (with minor differences be-
tween each other) ground-state energies that are typically within few percents of the
exact ones, obtained by exact diagonalization for and quantum dots.
More importantly, the symmetries of the ground state, that is, the quantum numbers
of orbital angular momentum and spin, as functions of magnetic field, are qualitatively
reproduced by DFT. However, the values of the magnetic field at which transitions be-
tween ground-states of different symmetry occur (for example single-triplet transitions
in the case) are generally overestimated by a fraction of a Tesla in DFT. These
results arc encouraging, in view of the fact that the and cases present
a most severe test of the LDA, being very far from the uniform electron gas limit on
which the LDA is based. We have also performed calculations of addition energies

as a function of B for larger values of N within DFT: the results
exhibit numerous cusps associated with crossings between ground-states of different
symmetry. A detailed matching of the calculated curve to the experimental data has
not been possible yet.

THE MAXIMUM DENSITY DROPLET

A question of considerable theoretical interest is that of the stability of the so-called
maximum density droplet (MDD) in quantum dots. In the limit of high magnetic field,
this state can be written as a Slater determinant of lowest Landau level orbitals with
angular momenta 0,1...N – 1, where N is the number of electrons. [12] In the limit
of this coincides with the incompressible state of the quantum Hall effect at
filling factor Because, within the LLL, the MDD is the only TV-electron state
of angular momentum (and there is none with lower angular momentum)
it follows that it must be an exact eigenstate of the Hamiltonian (2), if the small
Coulomb coupling between different Landau levels is neglected.

The question is whether this exact eigenstate (or rather its continuation to finite
magnetic field) can actually be the ground-state of the quantum dot, in some range of
magnetic fields. The basic physics is simple: if the magnetic field is too large, the MDD
cannot be the ground state, because the compact arrangement of the electrons costs too
much electrostatic energy: the electrostatic stress is released through a rearrangement
of the electrons leading to a state of higher angular momentum. If, on the other hand,
the magnetic field is too weak, the confinement energy will cause the external electrons
in the MDD to be transferred to the center of the quantum dot, even though, in so
doing, a higher Landau level becomes populated at the center of the dot. The conclusion
of these arguments is that there will exist, at most, a “window” of magnetic fields in
which the MDD is stable. The “window” shrinks with increasing electron number TV
and it closes up completely at a critical value of N of the order of 100.

We have investigated this question within DFT and refer the reader to the original
paper [27] for details. The main conclusion is that the region of stability of the MDD
in the   plane, including the slopes dN/dB of the left and right boundaries are in
fairly good agreement with the experiments of Klein et al. [28,29], and appear to be
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better than the corresponding Hartree-Fock results, which do not include correlations.
The critical value of N above which the MDD cannot be stable turns out to be
The following points are worth mentioning:

(i) The width, in magnetic field, of the region in which the MDD is stable, (typi-
cally 1 Tesla) depends crucially on the exchange-correlation energy: it is, in fact, the
exchange correlation energy, that, determines the difference between the slopes (dN/dB)
of the left and right boundaries of the phase diagram.

(ii) Mixing of different Landau levels is quantitatively important: we would find
if only the lowest Landau level were included.

(iii) For the quantum dot undergoes “edge reconstruction”, namely the
changes on the structure of the dot occur only at the edge of the system. For large N
the edge structure is controlled by classical electrostatics.

(iv) DFT is in better agreement than Hartree-Fock with the results of exact diago-
nalizations. In particular, when the “edge reconstruction” takes place, the DFT density
profile is more compact than the Hartree-Fock one, (i.e., the reconstruction affects a
smaller region around the original edge), and closer to the “exact” result.

CONCLUSIONS

To summarize the main content of this talk:
(1) We have reviewed the papers demonstrating a broad applicability of DFT to

the calculation of ground-state properties and level crossings in quantum dot “atoms”
in magnetic field.

(2) A specific problem – the calculation of the region of stability of the maximum
density droplet – has been studied. The results are in qualitative agreement with
experiment.
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INTRODUCTION

The problem of a Coulomb particle in the presence of external electric and mag-
netic fields has a common interdisciplinary character in physics. In particular, the
fundamental phenomena of semiconductors and the properties of semiconductor de-
vices are much affected by the presence of impurities formed by an electron (or hole)
captured by the Coulomb field of the charged impurity ion. During the last decade,
much attention has concentrated on the problem of an impurity that is confined within
a single quantum well (QW) structure formed, for example, by the narrow-energy- gap
semiconductor GaAs sandwiched between wide-gap GaA1As material.

In parallel with numerical calculations, analytical methods of studying impurity
problems are of much interest because they enable the basic physics of the problem
to be kept clearly in view. In this paper, an analytical approach to the problem of
an impurity electron (hole) confined within a single quantum well (QW) subject to
electric and strong magnetic fields is developed. The dependencies of the electron
energies upon the magnitudes of the electric and magnetic fields, the width of the QW
and the position of the impurity within the well are derived explicitly. The effect of
inversion and the resonance tunnelling caused by an electric field directed parallel to the
magnetic field is investigated. The results are then extended to the case of a confined
Molt magneto-exciton.

GENERAL THEORY

The z-axis is chosen to lie perpendicular to heteroplanes of the QW and along the
direction of both the uniform magnetic field B and electric field E (parallel to B). The
effect of the magnetic field is taken to be much greater than that of the Coulomb field
of the impurity, and of the electric field. The Q W is treated as an infinite square well of
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width d, and the centre of the well is taken to be the point The other parameters
relevant to the calculation are the impurity Bohr radius , where
is the dielectric constant and and e are the effective mass and charge of the carrier
respectively), the magnetic length and the distance b of the impurity
centre from the mid-point of the In the strong magnetic field limit
(for which ) the wave function of the electron at a position r(p, z) can be
written in the form where the function describes the transverse
motion of the electron in the plane. This has an associated energy of . When
the electric field is also directed along the negative z direction, the longitudinal function
f(z) satisfies the equation

wi th the boundary conditions and with

Also, , where is the total energy of the impurity electron.
In order to simplify the calculations, we consider only the ground transverse state

(although the results obtained below will be valid qualitatively for any transverse state).
The relevant transverse function and energy then have the forms

where is the effective Bohr magneton for the electron. For the wide QW (for which
the energy states for which considered below have a quasi-Coulomb

character.

AN IMPURITY ELECTRON IN A QW IN THE PRESENCE OF A STRONG
MAGNETIC FIELD B (with )1, 2

The schematic form of the one-dimensional quasi-Coulomb potential given by equa-
tion (2) is depicted in Fig 1. In the absence of the electric field and when the impurity
centre is situated at the centre of the QW (or at any position in a bulk semiconductor),
the electron states have a definite parity. Although the states do not strictly have a
well-defined parity for arbitrary impurity positions, a classification into two groups of
quasi-even and quasi-odd states can still be made. The energies of the electron states
can be written in the form

where is the impurity Rydberg constant and where
and are the quantum numbers corresponding to

quasi-even (g) and quasi-odd (u) levels respectively. To simplify the explicit expressions
for the energy levels, we assume that the effect of the strong magnetic field on the one-
dimensional Coulomb states is larger than the confinement effect of the QW itself. The
Hasegawa-Howard approach3 is used; this is based on matching solutions to Eq.(l)
in the regions In the logarithmic approximation (for which

the ground level has
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where C is the Euler constant and where

and where is the psi function (the logarithmic derivative of the gamma function).
Thus the impurity levels consist of a non-degenerate ground level and excited
levels having a doublet structure consisting of quasi-even and quasi-odd
components. The energy level pattern is depicted in Fig 1.

It follows from Eqns. (4)-(9) that as the magnetic field increases in magnitude, the
energy decreases. Also, the energy increases both as the width d of the QW
decreases and as the impurity centre shifts from the mid-point (that is b increases).
These dependencies coincide with the results obtained numerically by a variational
approach4’ 5 and the method of direct integration6.

MOTT EXCITON IN A QW IN THE PRESENCE OF A STRONG MAG-
NETIC FIELD B ( )7

We develop an analytical approach to the problem of a Wannier-Mott exciton in
a QW in the presence of a strong magnetic field that is directed perpendicular to the
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layers of the Q W. The important approximation to be made is that the hole mass is
much greater than the electron mass Note that this approximation is clearly valid
for the majority of III-V group semiconductors.

The potential energy of the exciton V is defined by the right hand part of the
expression (2) by replacing the co-ordinate z by the co-ordinate of the electron and
the parameter b by the co-ordinate of the hole In general, an analytical expression
for the exciton wave function can not be found as the exciton potential V
depends upon the relative co-ordinate whereas the boundary conditions
at are stated in terms of the separate hole and electron co-
ordinates. This difficulty can be resolved using an adiabatic approach based on the
extreme difference in electron and hole masses. In this approximation, the exciton
wave function can be written in the form

where f is the wave function of the electron about the fixed hole position and is
a quantum number. The wave function satisfies the equation

with the boundary conditions
In Eq. (11), is the energy of the longitudinal motion of the exciton. The potential

energy of the hole can be obtained from the expressions (4)-(9) by replacing
b by On using numerical calculations at the last stage of solving equation (11),
we find that the exciton energy decreases both by increasing the magnetic field and
widening the QW. The energy of the ground exciton states as function of the scaled
magnetic field is depicted in Fig. 2 for different widths of QW.

AN IMPURITY ELECTRON IN A QW IN THE PRESENCE OF PAR-
ALLEL ELECTRIC E AND STRONG MAGNETIC B FIELDS
The inversion effect of the electric field8, 9

In the case of the electric field directed parallel to the magnetic field, the combined
potential acting on the impurity electron has the form depicted in Fig. 3. If the impurity
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centre is displaced from the mid-point of the an inversion effect arises.
The energy levels change as the direction of the electric field changes.

In the case of a weak electric field, when both the Coulomb field of the impurity
centre and the external electric field E are considered to be perturbations to the states
of the electron in the QW, the expression for the inversion shift of the ground energy
level can be given in the simple form8

where The dependence of the dimensionless inversion shift of the
ground impurity level upon the dimensionless displacement of the impurity centre is
depicted in Fig. 4. Estimates of the suitable values for the parameters for the GaAs QW

for the well of width and displacement
b/d = 0.25 are made. For a strong magnetic field and a weak
electric field the inversion shift of the ground level may be deduced from
Eq. (12) and gives . For the case of a strong electric field
numerical calculations using the same parameters as above but with the displacement

an inversion shift is obtained9.
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The coherent resonance tunnelling10

We consider now the case in which the impurity is positioned at the left hand
boundary of the QW. The schematic form of the combined potential is
depicted in Fig. 5. Such a system may be treated as if it were a resonance structure.
This is because the combined potential has a shape similar to that of a double quantum
well (DQ W). One of the wells is formed by the quasi-Coulornb one-dimensional impurity
potential and the QW boundary close to which the impurity is located, and the other
well is made up from the electric field potential and the other boundary of the QW.
In the zeroth approximation, on neglecting the tunnelling of the electron through the
barrier separating the effective wells, the system of the energy levels is the sum of two
independent series of energies. The first series is formed by the ‘electric’

associated with right hand well. The second series
are the quasi-Coulomb levels shifted towards low energies by the electric field E. Under
the condition the relevant quasi- Coulomb and ‘electric’ levels appear to
be in resonance.

In the next approximation, the inter-well interaction is taken into account. As
a result, the resonance energy levels associated with the different wells are found to
anticross. The gap between the resonance levels defines the tunnelling time and results
in an oscillatory behaviour of the spatial distribution of the wave function. This in
turn defines the frequency of radiation emitted by such a structure. On equating
the expressions for the and the levels, the scaled
resonance electric fields has the form

is the electric field E scaled relative to the impurity
electric field and for example. The resonance
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fields define the cases in which the quasi-Coulomb level and ‘electric’ level
are in resonance. The relevant resonance gap is defined by

In the above expression, the parameters are defined by

and where

where and are the Airy functions. The above analytical expressions are valid for
the weak electric fields such that

It is clear from Eqns. (14) - (16) that the resonance gap increases as the
resonance field increases. Also, from the expression (13), the dependence of the
resonance field on the ‘electric’ (k) and quasi-Coulornb (n) indexes and on the
width of the QW d is obtained. For a fixed index for the quasi-Coulomb level n,
the resonance field increases as a function of the index of the ‘electric’ level k.
Meanwhile, for a fixed index the resonance field decreases with increasing index
n. The wider the QW, the smaller the resonance field

Taking values for the parameters for the GaAs QW applicable to the case of a
strong magnetic field and a weak electric field
0.066), the resonance splitting of the ground quasi-Coulomb and ‘electric’ levels

is obtained from Eqs. (14)-(16) such that
This gap corresponds to the frequency 0.31THz of the emitted radiation. For the value
of the electric field the penetration through the potential barrier is relatively weak.
When this value for E11 is exceeded, the penetration increases and the above approach

becomes inappropriate. However, clearly in the presence of a stronger electric field
the effect of the resonance splitting still holds.
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INDEX

Anticrossing, 50, 137, 196
Atomic perturbation expansion, 106
Atomic resonances, 92, 98
Atoms

closed shell, 107
crossed field see field
non-Coulombic, 164

Autocorrelation function, 35, 176
Averaging method, 210

Balmer transition, 8, 11, 24, 32ff
Barium Rydberg states, 115, 123ff
Bifurcation, 114, 160, 169, 219, 225
Binding energy, 147
Bloch equation, 102
Bloch operator, 128, 171
Born approximation, 160
Born-Oppenheimer approximation, 72, 75,

267, 275, 285
Brownian motion, 251

Catastrophe, 226
Cayley-operator, 34
Center-of-mass, 141ff, 241, 249, 266
Cesium, 34
Chain finite, 74
Chandrasekhar mass, 7
Chaos, 95, 109, 114, 169, 178, 181, 230,

249
Classical diffusion, 249
Coherent resonance tunnelling, 319
Complex coordinate method, 97, 126, 194
Computer algebra, 103
Confinement energy, 303
Constant of motion, approximate, 208ff
Coupled-cluster approximation, 102
Coulomb wave, 112
Crank-Nickolson algorithm, 91
Current-density functional, 61, 258, 317

Cyclotron energy, 39, 40, 141
Cyclotron frequency, 62, 212, 292, 304
Cyclotron lines, 38, 40, 43
Cyclotron motion, 142, 207, 253
Cyclotron transition, 299
Cylindrical gauge, 136
Cylindrical symmetry, 32, 42, 49, 170

Darwin states, 303
Darwin interaction, 233
Decoherence effect, 188
Density functional theory, 313ff

relativistic, 256
non-relativistic limit, 257

Diamagnetic perturbation, 235
Diamagnetic splitting, 233ff
Diamagnetic term, 32, 97, 110, 127, 170,

209, 233, 242
Diatomic molecule, 73, 285
Diffusion, center of mass, 249
Discrete variable, 31, 90, 95
Distribution

Poisson, 115
Wigner, 115

Donor impurities, 291
Donor

magnetic field in, 292
electric field in, 298

Dot technology, 301
Dynamic

classical, 153, 182, 199, 207, 223, 249
intermittent, 251
quantum, 36, 89, 97, 182

Effective potential, 72, 260
Electromagnetic transition, 149
Electron-phonon interaction, 297

Fano resonance, 43, 293, 295
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Faraday configuration, 294
Fields

crossed electric and magnetic, 32, 83,
121, 141, 199, 215, 220, 244
parallel electric and magnetic, 20, 32,
98, 178, 319

Fine structure, 138, 233, 295, 297
Finite elements, 26ff, 32, 61ff, 83ff, 98

adaptive, 86
Feynman-Goldstone  expansion,101ff
Fourier spectrum, 114, 117, 163, 175, 215
Floquet state, 184, 190
Fock-Darwin states, 305, 314

GaAs, donor states of, 291, 302
Garton-Tomkins resonance, 121, 170, 199
Gauge transformation, 142, 243
Ghost orbit, 163, 173, 216, 223ff
Gutzwiller trace formula, 112, 162

Harmonic approximation, 246
Harmonic inversion, 216
Hartree-Fock method, 63, 69, 72, 135
Helium autoionization, 194
Helium ion, 139
Helium ionization, 193ff
Helium, strong magnetic fields in, 26ff, 65
Helium Rydberg states, 113
HIPPARCOS space mission, 7
Holtsmark distribution, 22, 34
Homogeneous potentials, 159
Hydrogen atom

crossed fields in, 244
external fields in, 31ff, 110, 92, 98, 19ff
metal surface in front of, 101
Lie-algebra, 200
perturbation theory, 200
relativistic, 233ff
relativistic semiclassical theory, 235
strong magnetic fields in, 1, 9, 19, 31,
49, 95, 141, 147, 233

Hydrogen ion, strong magnetic fields in,
15, 43, 135ff, 149, 278

Hydrogen gas, strong magnetic fields in,
55ff

Hydrogen molecule, 265, 275 ff, 283ff
ground state, 268
molecular orbital, 267
van der Waals minimum, 271

Hydrogen molecule ion, 4, 255ff, 265, 277

Hyperangle, 26
Hyperfine structure constants, 71
Hypermagnetizabilities, 283ff
Hyperradius, 26
Hyperspherical close coupling, 26

Impurity well, 319ff
Intermittent dynamics, 251
Invariants, adiabatic, 199
Ionized impurities, 296

Jacobi vector, 26
Jeans criterion, 2

Kepler frequency, 182
Kepler orbit, 204
Kohn-Sham equation, 61, 315
Kustaanheimo-Stiefel coordinates, 200

Landau channels, 173
Landau energy, 137
Landau function, 136
Landau levels, 72, 136, 292, 304, 306, 308,

317
Landau quantum number, 304
Landau resonance, 14
Landau states, 43, 135, 170, 172, 291, 293
Landau threshold, 173
Laplace-Beltrami operator, 95
Level statistic, 115
Lithium, 174
Lyman transition, 14, 20, 32, 294

Magnetic field facilities, 77ff
Magnetic hydrogen atmosphere, 40
Magnetic white dwarf, 9ff
Maple, 102, 105
Matter-antimatter systems, 83ff
Mechanical similarity, 154
Metal surface, 97, 99
Microwave field, 158, 181ff, 188
Minkowski band, 10
Model potential, 35
Mott exciton, 321
Molecular orbital configuration, 266
Multi-configuration-Hartree-Fock, 69, 135ff
Multichannel quantum defect, 173

Neutron star, 37ff
atmosphere, 39ff, 49
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Nitrogen, 70
Non-coulombic atoms, 164
Nonintegrability, 95
Normal modes, strong magnetic fields in,

55ff

Orbit, see Periodic orbit, Ghost orbit,
Kepler orbit

Particle, strong magnetic fields, 3, 142
Pauli operator, 233
Periodic orbit, 112, 162, 169, 175, 200, 204,

215, 223
Periodic orbit theory, 111, 215, 223
Polarization spectra, magnetic white dwarf

of, 12
Power-Zienau-Wooley transformation, 208
Pseudomomentum, 50, 142, 241, 266, 285
Pulsar, 37ff

Quantum chaos, 96, 169, 229, see also Chaos
Quantum defect theory, 173, 127
Quantum dots, 165, 301ff, 313ff

magic numbers, 306
maximum density droplet, 316

Quantum Hall effect, 310, 317
Quantum well, 319
Quasi-Landau modulation, 170
Quasi-Landau resonance, 199

Radiative coupling, 188
Radiative transfer, 12
Radio pulsar, 43
Reactance matrix, 173
Recurrence spectrum, 7, 173
Relativistic effects, 233ff, 256ff
Resonance, 97, 114, 115, 169, 174, 182,

191, 314, 322
R-Matrix, 169, 127

Schneider method, 129
Rubidium, 178
Runge-Lenz vector, 183, 200
Rutherford scattering, 160
Rydberg electrons

adiabatic invariants of, 199ff
crossed field in, 199, see also Fields

Rydberg states, 169, 199
microwave field in, 181ff
wave packet of, 34, 169, 175

Scaled energy, 110, 127, 156, 215, 224
Scaling laws, 153ff
Self-adaptive, 83ff
Semiconductors, 291
Semiclassical theory, mulitelectron atoms

of, 255ff
Shallow donor states, 291ff
Similarity transformation, 154, 224
Spectroscopy, scaled field, 111, 162
Stark effect

linear, 109
quadratic, 122
motional, 42, 113, 122, 146, 199, 242,
249

Stark resonance, 92
Stark wave packet, 35
State

decentered, 49, 148
dressed, 189

Stationary lines, 11, 24, 32, 91
Stellar evolution, 1ff
Symmetric gauge, 170

Thomas-Fermi potential, 261
Thomas-Fermi theory, relativistic, 256
Transformation, canonical, 144
Two-body systems, 241ff
Two-particle, basis, 135

Uniform semiclassical approximation, 227

Van der Waals field, 91, 97, 271
Voigt configuration, 294

Wannier-Mott exciton, 321
Wave packet, nondispersive, 187
Wave packet evolution, 34, 90, 175, 187;

see also Rydberg wave packet
White dwarf, 1ff, 9ff, 19ff; see also

Stationary lines
carbon, 14
cooling times, 5
density-mass, 4
helium, 14, 25

Zeeman effect, 110
linear, 123, 127, 178
quadratic, 10, 121, 127, 233

Zeeman energy, 303
Zeeman shift, 273, 279

335



Zeeman splitting, 315
Z-parity, 97, 268
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