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Preface

It is now 85 years since Sir Joseph Larmor first proposed that electromagnetic induction might
be the origin of the Sun’s magnetic field (Larmor 1919). Today this so-called dynamo effect is
believed to generate the magnetic fields of not only the Sun and other stars, but also the Earth
and other planets, and even entire galaxies. Indeed, most of the objects in the Universe have
associated magnetic fields, and most of these are believed to be due to dynamo action. Quite
an impressive record for a paper that is only two pages long, and was written before galaxies
other than the Milky Way were even known!

However, despite this impressive list of objects to which Larmor’s idea has now been
applied, in no case can we say that we fully understand all the details. Enormous progress
has undoubtedly been made, particularly with the huge increase in computational resources
available in recent decades, but considerable progress remains to be made before we can say
that we understand the magnetic fields even just of the Sun or the Earth, let alone some of the
more exotic objects to which dynamo theory has been applied.

Our goal in writing this book was therefore to present an overview of these various ap-
plications of dynamo theory, and in each case discuss what is known so far, but also what is
still unknown. We specifically include both geophysical and astrophysical applications. There
is an unfortunate tendency in the literature to regard stellar and planetary magnetic fields as
somehow quite distinct. How this state of affairs came about is not clear, although it is most
likely simply due to the fact that geophysics and astrophysics are traditionally separate depart-
ments. Regardless of its cause, it is certainly regrettable. We believe the two have enough in
common that researchers in either field would benefit from a certain familiarity with the other
area as well. It is our hope therefore that this book will not only be of interest to workers in
both fields, but that they will find new ideas on the ‘other side of the fence’ to stimulate further
developments on their side (and maybe thereby help tear down the fence entirely).

Much of the final writing was done in the 2nd half of 2003. Without the technical support
of Mrs. A. Trettin and M. Schultz from the Astrophysical Institute Potsdam it would not have
been possible to finish the work in time. We gratefully acknowledge their kind and constant
help. Many thanks also go to Axel Brandenburg, Detlef Elstner, and Manfred Schüssler –
to name only three of the vast dynamo community – for their indispensable suggestions and
never-ending discussions.

Potsdam and Glasgow, 2004



1 Introduction

Magnetism is one of the most pervasive features of the Universe, with planets, stars and entire
galaxies all having associated magnetic fields. All of these fields are generated by the motion
of electrically conducting fluids, via the so-called dynamo effect. The basics of this effect are
almost trivial to explain: moving an electrical conductor through a magnetic field induces an
emf (Faraday’s law), which generates electric currents (Ohm’s law), which have associated
magnetic fields (Ampere’s law). The hope is then that with the right combination of flows
and fields the induced field will reinforce the original field, leading to (exponential) field
amplification.

Of course, the details are rather more complicated than that. The basic physical principles
may date back to the 19th century, but it was not until the middle of the 20th century that
Backus (1958) and Herzenberg (1958) rigorously proved that this process can actually work,
that is, that it is possible to find ‘the right combination of flows and fields.’ And even then
their flows were carefully chosen to make the problem mathematically tractable, rather than
physically realistic. For most of these magnetized objects mentioned above it is thus only now,
at the start of the 21st century, that we are beginning to unravel the details of how their fields
are generated.

The purpose of this book is to examine some of this work. We will not discuss the basics of
dynamo theory as such; for that we refer to the books by Roberts (1967), Moffatt (1978) and
Krause & Rädler (1980), which are still highly relevant today. Instead, we wish to focus on
some of the details specific to each particular application, and explore some of the similarities
and differences.

For example, what is the mechanism that drives the fluid flow in the first place, and hence
ultimately supplies the energy for the field? In planets and stars it turns out to be convection,
whereas in accretion disks it is the differential rotation in the underlying Keplerian motion. In
galaxies it could be either the differential rotation, or supernova-induced turbulence, or some
combination of the two.

Next, what is the mechanism that ultimately equilibrates the field, and at what amplitude?
The basic physics is again quite straightforward; what equilibrates the field is the Lorentz force
in the momentum equation, which alters the flow, at least just enough to stop it amplifying the
field any further. But again, the details are considerably more complicated, and again differ
widely between different objects.

Another interesting question to ask concerns the nature of the initial field. In particular,
do we need to worry about this at all, or can we always count on some more or less arbitrarily
small stray field to start this dynamo process off? And yet again, the answer is very different
for different objects. For planets we do not need to consider the initial field, since both the
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2 1 Introduction

advective and diffusive timescales are so short compared with the age that any memory of
the precise initial conditions is lost very quickly. In contrast, in stars the advective timescale
is still short, but the diffusive timescale is long, so so-called fossil fields may play a role in
certain aspects of stellar magnetism. And finally, in galaxies even the advective timescale is
relatively long compared with the age, so there we do need to consider the initial field.

Accretion disks provide another interesting twist to this question of whether we need to
consider the initial condition. The issue here is not whether the dynamo acts on a timescale
short or long compared with the age, but whether it can act at all if the field is too weak. In
particular, this Keplerian differential rotation by itself cannot act as a dynamo, so something
must be perturbing it. It is believed that this perturbation is due to the Lorentz force itself,
via the so-called magnetorotational instability. In other words, the dynamo can only operate
at finite field strengths, but cannot amplify an infinitesimal seed field. One must therefore
consider whether sufficiently strong seed fields are available in these systems.

Accretion disks also illustrate the effect that an object’s magnetic field may have on its
entire structure and evolution. As we saw above, the magnetic field always affects the flow,
and hence the internal structure, in some way, but in accretion disks the effect is particularly
dramatic. It turns out that the transport of angular momentum outward – which of course
determines the rate at which mass moves inward – is dominated by the Lorentz force. Some-
thing as fundamental as the collapse of a gas cloud into a proto-stellar disk and ultimately into
a star is thus magnetically controlled. That is, magnetism is not only pervasive throughout
the Universe, it is also a crucial ingredient in forming stars, the most common objects found
within it.

We hope therefore that this book will be of interest not just to geophysicists and astrophysi-
cists, but to general physicists as well. The general outline is as follows: Chapter 2 presents
the theory of planetary dynamos. Chapters 3 and 4 deal with stellar dynamos. We consider
only those aspects of stellar hydrodynamics and magnetohydrodynamics that are relevant to
the basic dynamo process; see for example Mestel (1999) for other aspects such as magnetic
braking. Chapter 5 discusses this magnetorotational instability in Keplerian disks. Chapter 6
considers galaxies, in which the magnetorotational instability may also play a role. Chap-
ter 7, concerning neutron stars, is slightly different from the others. In particular, whereas the
other chapters deal with the origin of the particular body’s magnetic field, in Chapt. 7 we take
the neutron star’s initial field as given, and consider the details of its subsequent decay. We
consider only the field in the neutron star itself though; see Mestel (1999) for the physics of
pulsar magnetospheres. Lastly, Chapt. 8 discusses the magnetorotational instability in cylin-
drical Couette flow. This geometry is not only particularly amenable to theoretical analysis, it
is also the basis of a planned experiment. However, we also point out some of the difficulties
one would have to overcome in any real cylinder, which would necessarily be bounded in z.

Where relevant, individual chapters of course refer to one another, to point out the various
similarities and differences. However, most chapters can also be read more or less indepen-
dently of the others. Most chapters also present both numerical as well as analytic/asymptotic
results, and as much as possible we try to connect the two, showing how they mutually sup-
port each other. Finally, we discuss fields occurring on lengthscales from kilometers to mega-
parsecs, and ranging from 10−20 to 1015 G – truly the magnetic Universe.



2 Earth and Planets

2.1 Observational Overview

We begin with a brief overview of the field as it is today, as well as how it has varied in the
past. See also Merrill, McElhinny & McFadden (1998) or Dormy, Valet & Courtillot (2000)
for considerably more detailed accounts of the observational data, or Hollerbach (2003) for a
discussion of the theoretical origin of some of the timescales on which the field varies.

Figure 2.1 shows the Earth’s magnetic field as it exists today. The two most prominent
features, are (i) that it is predominantly dipolar, and (ii) that this dipole is quite closely aligned
with the rotation axis, with a tilt of only 11◦. We would expect a successful geodynamo theory
to be able to explain both of these features, as well as others, of course, such as why the field
has the particular amplitude that it does.

Turning to the dipole dominance first, we begin by noting that much of this is an artifact
of where we have chosen to observe the field, namely at the surface of the Earth. As we
will see later, the field is actually created deep within the Earth, in the molten iron core,
with the overlying mantle playing no direct role. Because the mantle (consisting of rock) is
largely insulating, we can project the field back down to the core-mantle boundary (CMB). All
components of the field are amplified when we do this, but the nondipole components are also
amplified relative to the dipole, since they drop off faster with increasing radius, and hence
increase faster when projected back inward again. Figure 2.1 also shows the resulting field at
the CMB, which we note is indeed considerably less dipole dominated.

Figure 2.2 shows the corresponding power spectra, both at the surface and the CMB. The
enhancement of the higher harmonics at the CMB is clearly visible. The other important point
to note is that whereas the surface spectrum has been plotted to spherical harmonic degree
l = 25, only the modes up to l = 12 have been projected inward to obtain the CMB spectrum.
The reason for this is the sharp break observed in the surface spectrum at l ≈ 13, with the
power dropping off quite steeply up to there, but not at all thereafter. The generally accepted
interpretation of this phenomenon is that this power in the l > 12 modes is due to crustal
magnetism. These modes cannot therefore be projected back down to the CMB to obtain the
spectrum there. Figure 2.1 (bottom) is thus not the true field at the CMB, but merely a filtered
version of it, with all of the smallest scales having been filtered out. That is, the true field
could very well exhibit highly localized features like sunspots, but this crustal contamination
prevents us from ever observing them.

Turning next to the alignment of the dipole with the rotation axis, the probability that two
vectors chosen at random would be aligned to within 11◦ or better is less than 2%. It seems
more plausible therefore that this degree of alignment is not a coincidence, but instead reflects
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4 2 Earth and Planets

Figure 2.1: The radial component of the Earth’s field at the surface (top), and projected down to the
core-mantle boundary (bottom). Courtesy A. Jackson.

some controlling influence of rotation on the geodynamo. And indeed, we will see below that
rotation exerts powerful constraints on the field (although it is not immediately obvious why
this influence should lead to an alignment of the field with the rotation axis).

2.1.1 Reversals

Figure 2.1 shows the field as it is today. The field is not static, however, varying instead
on timescales as short as minutes or even seconds, and as long as tens or even hundreds of
millions of years. Of all of these variations, the most dramatic are reversals, in which the entire
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Figure 2.2: Power spectra of the Earth’s
field at the surface (solid) and the core-
mantle boundary (dashed).

field switches polarity. See, for example, Gubbins (1994) or Merrill & McFadden (1999) for
reviews devoted specifically to reversals.

Figure 2.3 shows the reversal record for the past 40 million years. The field is seen to
reverse on the average every few hundred thousand years, but with considerable variation
about that average. These relatively infrequent and irregular reversals of the Earth’s field are
thus very different from the comparatively regular, and much faster solar cycle.

Unlike the interval between reversals, the time it takes for the reversal itself seems to be a
relatively constant 5–10 thousand years. During the reversal, the field is weaker, and consid-
erably more complicated and less dipolar than in Fig. 2.1. Between reversals, however, it is
generally similar to today’s field, in terms of both field strength, dipole-dominated structure,
and alignment with the rotation axis. This last point, of course, provides additional evidence
that this alignment is not due to chance, but instead reflects the powerful influence of rotation.

Finally, the average interval between reversals itself varies on timescales of tens and hun-
dreds of millions of years. For example, there were no reversals at all between 83 and 121
million years ago. Because these timescales are so much longer than any of the timescales
‘naturally’ present in the core, it is generally believed that this very long-term behavior is

Figure 2.3: The reversal sequence for the past 40 million years. Courtesy A. Witt.
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of external origin. In particular, the timescale of mantle convection is precisely tens to hun-
dreds of millions of years (e.g. Schubert, Turcotte & Olson 2001), so the thermal boundary
conditions that the mantle imposes on the core will also evolve on these timescales. See,
for example, Glatzmaier et al. (1999) for a series of numerical simulations in which different
thermal boundary conditions did indeed lead to different reversal rates.

2.1.2 Other Time-Variability

As noted above, reversals are only the most dramatic variation in time found in the field. Be-
tween reversals the field varies as well, again with a broad range of timescales and amplitudes.
Most familiar is the so-called secular variation, in which some of the nondipolar features fluc-
tuate on timescales of decades to centuries. See for example Bloxham, Gubbins & Jackson
(1989) or Jackson, Jonkers & Walker (2000) for summaries of the secular variation observed
in the historical record. Intermediate between secular variation and reversals are also excur-
sions, in which the field varies by considerably more than the usual secular variation, but does
not actually reverse either. Excursions are around ten times more numerous than reversals, but
of similar duration.

At the other extreme, the shortest timescales that can be observed within the core are
geomagnetic jerks, in which the usual secular variation changes abruptly – and over the whole
Earth – within a single year. Around three or four such events have been recorded in the
past century (LeHuy et al. 1998). Note also that these events may well occur even faster than
the one-year timescale on which they are recorded at the surface; the mantle is not a perfect
insulator, and its weak conductivity effectively screens out any variations in the core occurring
on timescales faster than a year. (For this reason also the variations in the field occurring on
timescales as short as minutes or seconds must be of external origin, i.e. magnetospheric or
ionospheric.)

2.2 Basic Equations and Parameters

The Earth’s interior consists of a series of concentric spherical shells nested rather like the
layers of an onion. The most fundamental division is that between the core and the mantle. The
core, consisting mostly of iron, extends from the center out to a radius of 3480 km; the mantle,
consisting of rock, extends from there essentially to the Earth’s surface at R = 6370 km. In
fact, the top 30 km or so are sufficiently different in their material properties (brittle rather than
plastic, due to the much lower pressures and temperatures) that they are further distinguished
from the mantle, and referred to as the crust. However, as important as the distinction between
crust and mantle may be for phenomena such as plate tectonics, volcanism, earthquakes, etc.
(e.g. Schubert, Turcotte & Olson 2001), the fact that both consist largely of rock, which is
a very poor electrical conductor, immediately suggests that we must seek the origin of the
Earth’s magnetic field elsewhere, namely in the core. From the point of view of geodynamo
theory, the mantle and crust are merely 3000 km of ‘inconvenience’ blocking what we would
really like to observe (see Sect. 2.9.1 though).

Turning to the core then, it is further divided into a solid inner core of radius Rin =
1220 km, and a fluid outer core of radius Rout = 3480 km. The inner core was first detected
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seismically in 1936. See for example Gubbins (1997) for a review devoted specifically to
the inner core. Further seismic studies show it to be sufficiently rigid to sustain shear waves
(although it may actually be a so-called mushy layer right to the center, see, for example,
Fearn, Loper & Roberts 1981). In contrast, the outer core is as fluid as water, with a viscosity
of around 10−2 cm2/s (Poirier 1994, De Wijs et al. 1998).

Further seismic (and other) studies also indicate that the density of the outer core increases
from around 9.9 g/cm3 at Rout to 12.2 g/cm3 at Rin, at which point there is an abrupt jump
to 12.8 g/cm3 in the inner core. This value for the inner core is consistent with the density
of around 90% pure iron (at the corresponding pressures and temperatures). The 5% jump
across the inner core boundary cannot be explained purely by the phase transition from solid
to liquid though; the outer core must contain perhaps 15–20% lighter impurities (with S, Si
and O being the most likely candidates, e.g. Alfè et al. 2002).

With this basic structure of the core in place, we can begin to understand the dynamics
that ultimately lead to the emergence of the Earth’s magnetic field. As the Earth slowly cooles
over billions of years, the core gradually solidifies, that is, the inner core grows. (The reason it
solidifies from the center, even though it is hottest there, is due to the influence of the pressure
on the melting temperature.) As it freezes, most of the impurities get rejected back into the
fluid (just as freezing salt water will reject most of the salt, leaving relatively fresh water in the
ice). As Braginsky (1963) was the first to point out, there are then two sources of buoyancy at
the inner core boundary, namely that due to these light impurities being rejected back into the
fluid, and that due to the release of latent heat from the freezing process itself. Additionally,
of course, there is the usual source of (negative) buoyancy at the outer core boundary, namely
that due to the fluid there losing heat to the mantle and hence becoming denser. It is these
various sources of buoyancy that drive the convection that ultimately generates the magnetic
field.

Incidentally, note also that we can extrapolate this cooling process backward to estimate
when the inner core first formed. Buffett et al. (1992, 1996) considered detailed models of the
thermal evolution of the core, and concluded that the inner core started to solidify around two
billion years ago, and also that at present thermal and compositional effects are of comparable
importance in powering the geodynamo. The precise age of the inner core continues to be de-
bated though; recent estimates vary between one and three billion years (Labrosse & Macouin
2003 and Gubbins et al. 2003, respectively). It is quite interesting then that there is paleo-
magnetic evidence for the existence of a field as long ago as 3.5 billion years (McElhinny &
Senanayake 1980). That is, there was most likely a dynamo even before the inner core formed,
and hence before these various buoyancy sources at the inner core boundary became available.

2.2.1 Anelastic and Boussinesq Equations

Having discussed in qualitative terms the dynamics that lead to core convection and ultimately
a magnetic field, our next task is to write down the specific equations. The most detailed anal-
ysis of these equations, and the various approximations one can make, is by Braginsky &
Roberts (1995); here we merely summarize some of their findings. Linearizing the thermo-
dynamics about an adiabatic reference state with density ρa, the momentum equation they
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ultimately end up with is

Du

Dt
+ 2Ω × u = −∇P + C ga +

1
µ0ρa

(∇× B) × B + ν∆u. (2.1)

The so-called co-density C is given by C = −αSS −αξξ, where S and ξ are the entropy and
composition perturbations, respectively, and

αS = −1
ρ

∂ρ

∂S
, αξ = −1

ρ

∂ρ

∂ξ
(2.2)

determine how variations in S and ξ translate into relative density variations (this means of
course that we also need a suitable equation of state ρ = ρ(P, S, ξ) to determine these coeffi-
cients). One other point worth stating explicitly is that the gravity ga appearing in Eq. (2.1) is
that due to the adiabatic reference state only (hence the subscript); Braginsky & Roberts show
that the self-gravity induced by the convective density perturbations themselves can be incor-
porated into the reduced pressure P . This is obviously a considerable simplification, as ga is
then known (varying roughly as −r), rather than having to be solved for at every timestep of
the other equations.

The continuity equation associated with Eq. (2.1) is ∇·(ρau) = 0, that is, rather than con-
sidering the fully compressible continuity equation we have made the anelastic approximation,
and thereby filtered out sound waves1. The timescale for sound waves to traverse the entire
core is around ten minutes, which is so much faster than any of the other dynamics we will be
interested in that filtering them out completely is a reasonable approximation. (Note that this
is very different from many astrophysical situations, where the Alfvén speed is often compa-
rable with or even greater than the sound speed.) Finally, with the usual advection-diffusion
equations for S and ξ, and of course the induction equation for B, we have a complete set of
equations that we should be able to timestep for S, ξ, u and B.

As we will see in the remainder of this chapter, making actual progress with these equa-
tions is a formidable undertaking, primarily because some of the nondimensional parameters
take on such extreme values. Many models therefore simplify these equations further still, in
a variety of ways. For example, even though we saw that compositional and thermal sources
of buoyancy are both important, most models neglect compositional effects, and consider
thermal convection only. Given how different thermal and compositional convection can be
(e.g. Worster 2000), this probably does affect at least the details of the solutions; neglect-
ing compositional effects certainly cannot be rigorously justified. The only ‘justification’ one
can offer is that we cannot even get the details of thermal convection right, so there is little
point in worrying about the precise differences between thermal and compositional convec-
tion. For example, the compositional diffusivity is several orders of magnitude smaller than
the thermal (e.g. Roberts & Glatzmaier 2000), but even the thermal diffusivity is orders of
magnitude smaller than anything that any numerical model can cope with. So if both have
to be increased to artificially large values, much of the difference between the two effects is
also likely to disappear (although there are other differences as well, such as very different
boundary conditions).

Another common simplification is to make the Boussinesq approximation, in which den-
sity variations are neglected everywhere except in the buoyancy term itself. That is, we replace

1 see Lantz & Fan (1999) for a recent discussion of the anelastic approximation



2.2 Basic Equations and Parameters 9

the adiabatic density profile ρa by a constant, ρ0. The Boussinesq approximation also can-
not be rigorously justified (once again, see Braginsky & Roberts 1995). In particular, the
variations in ρa that are being neglected are orders of magnitude greater than the convective
density perturbations that are being included (very much unlike laboratory convection). How-
ever, given that the density contrast across the outer core is only ∼ 20% (as we saw above),
it seems likely that Boussinesq and anelastic results also will not differ by too much. There
certainly do not appear to be any fundamental differences between the two.

We are therefore left with

Du

Dt
+ 2Ω × u = −∇P − αT g +

1
µ0ρ0

(∇× B) × B + ν∆u,

∂B

∂t
= ∇× (u × B) + η∆B,

(
∂

∂t
+ u · ∇

)
T = χ∆T, (2.3)

with ∇ · u = 0 and ∇ · B as the simplest set of equations still ‘reasonably’ consistent with
the original physics. (Note that when we neglect compositional effects, the entropy S can be
replaced by the temperature T , with α then being the usual coefficient of thermal expansion.)
These are the equations we will focus on, although in Sect. 2.4.7 we will return briefly to the
original anelastic equation.

2.2.2 Nondimensionalization

Having settled on the equations, the next point we want to consider is how to nondimensional-
ize them, and what that might already tell us about the dynamics (that is, which terms are small
or large, etc.). For a lengthscale, the obvious choice is the outer core radius Rout = 3480 km
(many numerical models actually take Rout − Rin, but such minor details need not concern
us here). The timescale is not quite so obvious, but a natural choice is the magnetic diffusive
timescale R2

out/η. Using the value η ≈ 2 · 104 cm2/s appropriate for molten iron (Poirier
1994), this comes out to around 200,000 yr. (Incidentally, we see therefore that the range of
timescales observed in the field varies from much shorter to much longer than this diffusive
timescale.)

The fluid flow is then scaled by length/time = η/Rout = O(10−6) m/s, so the advective
and diffusive terms in the induction equation are (formally) comparable. Note though that
the actual magnitude of the flow can only emerge from a full solution of the problem, and
may turn out to be different from this value. Indeed, if the time evolution of the field at the
core-mantle boundary is used to estimate the flow, one obtains magnitudes on the order of
10−4 − 10−3 m/s (Bloxham & Jackson 1991). That is, we would expect u to equilibrate at
102−3 rather than order 1. This value of a few hundred is then also the magnetic Reynolds
number Rm = uRout/η in the core.

The magnetic field is scaled by (Ωρ0µ0η)1/2 ≈ 10 G, which ensures that the Coriolis and
Lorentz forces in the momentum equation are formally comparable. This is believed to be the
appropriate balance at which the field equilibrates, for reasons that will become clear later. It
also compares rather well with the ∼ 3-G field observed at the CMB (particularly when we
remember that the field deep within the core is likely to be at least somewhat stronger than
right at the boundary). But once again, the actual magnitude of the field can only emerge from
the complete solution. And as before with the magnitude of u giving us Rm, the magnitude
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of B (squared in this case) gives us the Elsasser number

Λ =
B2

Ωρ0µ0η
. (2.4)

We see therefore that Λ is 0.1 to perhaps 1 in the core.
Finally, the natural scale for the temperature is simply the temperature difference δT across

the core. However, there is one very considerable difficulty with this, namely estimating what
δT actually is. In particular, the dynamically relevant temperature difference is only what is
left over after the adiabatic temperature difference has been subtracted out. This ends up being
virtually everything though: of the more than 1000 K difference across the core, the super-
adiabatic δT that actually drives convection amounts to a small fraction of 1 K. In other words,
δT cannot be estimated by taking the known temperature difference and subtracting out the
adiabat; the errors would overwhelm the signal. Instead, δT can only be inferred indirectly by
energetic/thermodynamic considerations.

With these scalings, the nondimensionalized Boussinesq equations become

Ro
Du

Dt
+ 2êz × u = −∇P + q R̂a T r + (∇× B) × B + E∆u,

∂B

∂t
= ∇× (u × B) + ∆B,

(
∂

∂t
+ u · ∇

)
T = q∆T. (2.5)

The nondimensional parameters appearing in these equations are, first, the (modified)
Rayleigh number

R̂a =
g0αδTRout

Ωχ
, (2.6)

where g0 = |g(Rout)| (and by replacing g by −r in Eq. (2.5)1 we are assuming for simplicity
that gravity varies linearly with r). Note that this Rayleigh number measures the buoyancy
force against the Coriolis force, rather than against the viscous force, as in classical Rayleigh–
Benard convection. And once again, we remember that because of these uncertainties in δT ,
it is not clear just how large R̂a is in the core. See, however, Gubbins (2001) for the latest
estimates, and also Kono & Roberts (2001) for how R̂a should even be defined when both
thermal and compositional effects are important.

Next we have the Rossby number

Ro =
η

ΩR2
out

, (2.7)

measuring the ratio of the rotational timescale Ω−1 (=1/2π day) to the diffusive timescale
R2

out/η (=200,000 yr, as we saw above). That is, Ro = O(10−9). The Ekman number E
(measuring viscous to Coriolis forces) and the Roberts number q

E =
ν

ΩR2
out

, q =
χ

η
, (2.8)

(the latter measuring the ratio of thermal to magnetic duffusivity) come out to be O(10−15)
and O(10−6), resp.

It is the extreme smallness of these three parameters that then makes the geodynamo equa-
tions so difficult. For example, if the advective term is at least as important as the diffusive
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term in Eq. (2.5)2 (as we saw it is, and indeed must be to have any chance of achieving dy-
namo action), then in Eq. (2.5)3 the advective term will dominate the diffusive term by many
orders of magnitude, leading to extremely small lengthscales in T , which will certainly cause
numerical difficulties, if nothing else. See also Christensen, Olson & Glatzmaier (1999) for
further difficulties associated with the smallness of q.

These difficulties associated with q are usually ‘solved’ by invoking turbulent diffusivities,
in which case all three diffusivities νT, ηT and χT will most likely be comparable, yielding
qT = O(1) – which is indeed the range used in virtually all numerical models. However,
one has not really solved the problem thereby, merely deferred it to a proper investigation of
this small-scale turbulence. See, for example, Braginsky & Meytlis (1990), St. Pierre (1996),
Davidson & Siso-Nadal (2002) and Buffett (2003) for models that begin to explore the precise
nature of such rotating MHD turbulence.

And finally, even if an appeal to turbulent diffusivities solves (or rather ignores) the diffi-
culties associated with q, those associated with Ro and E remain. In particular, ηT (and hence
also νT) cannot be increased much beyond 100 m2/s, otherwise the field would simply decay
faster than it can be sustained. This means though that even RoT and ET are at most 10−7 –
which is still several orders of magnitude smaller than most numerical models can cope with.
Much of the remainder of this chapter will be devoted to discovering just why small Ro and
E should pose such problems.

But first, there is one more general feature of Eqs. (2.5) worth mentioning, namely the
associated energy equation. If we add the dot products of Eq. (2.5)1 with u and Eq. (2.5)2
with B, after a little algebra we obtain the global energy balance

∂

∂t

1
2

∫ (|B|2 + Ro |u|2) dV

= q R̂a
∫

urTr dV −
∫ (|∇×B|2 + E|∇×u|2) dV. (2.9)

The point we wish to focus on here is not so much the right-hand side (that is, how the energy
changes), but rather the left, what the energy is in the first place. In particular, we recognize
that if our nondimensionalization is correct, so that u and B do indeed equilibrate at roughly
O(1) values, then the magnetic energy will be several orders of magnitude greater than the
kinetic. And because Ro is so small, this remains true even if u equilibrates at O(103), as
we saw above that it does. This is in sharp contrast to most astrophysical systems, where the
magnetic energy is typically orders of magnitude smaller, or at best reaches equipartition.

Of course, if we included the energy stored in the Earth’s rotation, we would be back in
the astrophysically more familiar situation where the kinetic energy dominates by far. The
rotational energy is not available though, since angular momentum must be conserved, so
only deviations from solid-body rotation could be converted into magnetic (or other) forms of
energy. And here again we see an enormous difference between the Earth and the Sun, for
example; whereas in the Sun the differential rotation is a significant fraction of the overall
rotation (∼28%), in the Earth it is almost infinitesimal (< 0.01%).
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2.3 Magnetoconvection

Rotating, magnetic convection is a complicated process. Following Chandrasekhar (1961), let
us therefore begin with classical Rayleigh–Benard convection, and first consider how rotation
and magnetism separately alter the dynamics. Then we will explore how they act together,
and finally what implications that might have for planetary dynamos, where the magnetic field
is created by the convection itself, rather than being externally imposed.

Consider an infinite plane layer, heated from below and cooled from above. Additionally,
there is an overall rotation Ωêz , and an externally imposed magnetic field B0êz . Linearizing
about this basic state, the perturbation equations become

∂u

∂t
+ 2E−1êz × u = −∇P + ∆u + Ra Pr−1 T êz + Ha2 Pm−1 (∇× b) × êz

∂b

∂t
= ∇× (u × êz) + Pm−1∆b,

∂T

∂t
− u · êz = Pr−1∆T, (2.10)

where length has been nondimensionalized by the layer thickness d, time by d2/ν, u by ν/d,
b by the imposed field B0, and T by the imposed temperature difference δT . The nondimen-
sional parameters are then the usual two Prandtl numbers Pr = ν/χ and Pm = ν/η, the
Rayleigh number

Ra =
gαδTd3

νχ
, (2.11)

measuring the thermal forcing, the (inverse) Ekman number

E−1 =
Ωd2

ν
, (2.12)

measuring the rotation, and finally the Hartmann number

Ha =
B0d√
µ0ρνη

, (2.13)

measuring the imposed magnetic field. Note also that the details of the nondimensionaliza-
tion here – and hence the nondimensional parameters that arise – are different from those
in Sect. 2.2.2. The reason for this is that here we want to start with classical Rayleigh–
Benard convection, and only then add in rotation and magnetism, and study their effects. We
must therefore also start with the classical nondimensionalization, so, for example, the usual
Rayleigh number measuring buoyancy against viscosity, rather than against the Coriolis force,
as in Eq. (2.6). Later on we will ‘translate’ the insight gained here into the geophysically more
relevant parameters introduced in Sect. 2.2.2.
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Figure 2.4: The influence of rotation without magnetism. Left: Rac as a function of E−1. Right: kc as
a function of E−1. The dashed lines have slopes 4/3 and 1/3, respectively, and indicate the scalings in
the asymptotic limit.

Taking all quantities in Eq. (2.10) proportional to exp(σt + ikxx + ikyy), we end up with
the five equations

σT = uz + Pr−1∆T,

σ∆uz = −2E−1ω′
z + ∇4uz − Ra Pr−1 k2T + Ha2 Pm−1 ∆b′z,

σωz = 2E−1u′
z + ∆ωz + Ha2 Pm−1j′z,

σbz = u′
z + Pm−1∆bz,

σjz = ω′
z + Pm−1∆jz, (2.14)

where uz and bz are the z-components of u and b, ωz and jz the z-components of ∇×u and
∇× b, the primes denote differentiation with respect to z, and k2 = k2

x + k2
y . Together with

the boundary conditions

T = 0, uz = u′
z = 0, ωz = 0, bz = ±b′z/k, jz = 0, (2.15)

at z = ±d/2, corresponding to rigid boundaries and electrically insulating exteriors, this
system forms a well-defined eigenvalue problem that can be solved (numerically) for σ for any
set of values for k, Ra, E−1 and Ha. Just as in Rayleigh–Benard convection, we are interested
in the particular values Rac (and corresponding kc) for which we first obtain exponentially
growing solutions, that is, modes with �(σ) > 0. In the absence of rotation and magnetism,
this critical Rayleigh number for the onset of convection is 1708, with associated wave number
kc = 3.12. We would like to discover then what effect nonzero E−1 and Ha have on this
value, that is, whether rotation and magnetism help or hinder the onset of convection, and
most importantly, how they interact with one another.
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Figure 2.5: The influence of magnetism without rotation. Left: Rac as a function of Ha. Right: kc as
a function of Ha. The dashed lines have slopes 2 and 1/3, respectively, and indicate the scalings in the
asymptotic limit.

2.3.1 Rotation or Magnetism Alone

Figure 2.4 (left) shows Rac as a function of E−1, when Ha = 0. We note that it increases
monotonically, ultimately scaling as E−4/3 in the rapidly rotating limit. Rotation therefore
suppresses convection. To see why, we turn to Eq. (2.14)3, and note that for increasingly
rapid rotation it becomes increasingly difficult to balance the term 2E−1u′

z against any of the
others: the magnetic term is out, because we are taking Ha = 0 here; the inertial term is
also out, because these modes turn out to be steady, so σ = 0. If it were not for the viscous
term, we would therefore have u′

z = 0 – which is of course just the familiar Taylor–Proudman
theorem. Together with the boundary conditions, this would imply uz = 0 though, elimi-
nating the possibility of convective overturning. For convection to occur we must therefore
break this Taylor–Proudman result, and as we just saw, the only way to achieve that is to bal-
ance the Coriolis term 2E−1u′

z against the viscous term ∆ωz . This in turn implies that the
convection must occur on very short horizontal lengthscales, since only then can the viscous
term compete with this very large factor E−1 in the Coriolis term. Indeed, we see in Fig. 2.4
(right) that kc also increases monotonically, ultimately scaling as E−1/3. Convection on ever
shorter horizontal lengthscales is increasingly inefficient though, thereby explaining why Rac

increases.

Figure 2.5 shows Rac and kc as functions of Ha, when E−1 = 0. Both again increase
monotonically, with Rac scaling as Ha2 in the strongly magnetic limit, and kc scaling as
Ha1/3. The reason why Rac increases is therefore just as before, because the convection is
again being forced to occur on ever shorter horizontal lengthscales. This in turn is also easy to
understand; the magnetic field tends to suppress all motion perpendicular to it, forcing the flow
into tall, thin convection cells. More mathematically, the difficulty this time is in balancing
the term Ha2 Pm−1 ∆b′z in Eq. (2.14)2. If b′z were zero though, Eq. (2.14)4 would again yield
the unacceptable result u′

z = 0.
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Figure 2.6: The effect of rotation and magnetism together. Left: Rac as a function of Ha. Right: kc as
a function of Ha. The dashed and solid lines denote the two different modes of convection discussed in
the text. The dotted lines will be discussed in Sect. 2.3.4.

2.3.2 Rotation and Magnetism Together

We see therefore that acting alone, rotation and magnetism each suppress convection. When
both act together though, the results could well be quite different. In particular, we note that
then we can balance the Coriolis term 2E−1u′

z against the magnetic term Ha2 Pm−1j′z in
Eq. (2.14)3, and similarly in Eq. (2.14)2. That is, the mechanisms that forced the convection
to adopt very short horizontal lengthscales in either of the previous two cases do not apply
here. If convection can occur with kc = O(1) though, Rac should also be much less than in
either of the previous two cases.

Figure 2.6 shows Rac and kc as functions of Ha, when E−1 = 104, and validates this
argument. We see that initially (the dashed line) increasing Ha has almost no effect, with
the rapid rotation continuing to suppress the convection. However, once Ha reaches a critical
value, a transition takes place to a completely different mode of convection (the solid line),
which occurs with kc = O(1), and correspondingly much lower Rac, exactly as suggested
above. Doing the asymptotic analysis (Chandrasekhar 1961), one finds that this transition
takes place when Ha = O(E−1/3). And once on this second branch, the minimum occurs
when Ha = O(E−1/2), at which point Rac is also O(E−1) (so the Coriolis, buoyancy and
magnetic terms in Eq. (2.14)2 are all comparable).

To summarize then, we have seen that while rotation and magnetism separately suppress
convection, adding a magnetic field to a rotating system can facilitate convection again, re-
ducing Rac from O(E−4/3) for Ha < O(E−1/3) down to O(E−1) for Ha = O(E−1/2). In
the next section we will then (i) translate these results back into the geophysically more rel-
evant parameters, and (ii) try to understand what implications they might have for planetary
dynamos.
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2.3.3 Weak versus Strong Fields

Doing the translation first, we note that the Ekman number is the same here and in Sect. 2.2.2,
whereas the Rayleigh numbers are related by R̂a = E Ra. The Hartmann number is similarly
related to the Elsasser number by Λ = E Ha2. We therefore have that R̂ac = O(E−1/3) for
Λ < O(E1/3), and R̂ac = O(1) for Λ = O(1) (having these last two quantities independent of
E is, of course, what makes the nondimensionalization in Sect. 2.2.2 particularly convenient).

To assess what these results might imply for the geodynamo, we must consider the differ-
ences between our idealized Rayleigh–Benard problem and the real Earth. Most obviously, in
the Earth we have a spherical shell rather than an infinite plane layer. This certainly makes
the analysis considerably more complicated, and indeed adds various subtleties not present
before. However, the main results are unchanged. Roberts (1968) and Busse (1970) consid-
ered rotating, nonmagnetic convection in spherical shells, and found that just as in the plane
layer, it does not occur until R̂a = O(E−1/3). See also Jones, Soward & Mussa (2000) for the
final(?) word on this problem. Similarly, Eltayeb & Kumar (1977), Fearn (1979) and Jones,
Mussa & Worland (2003) considered rotating, magnetic convection, and found that there too
the main results are as above.

Far more fundamental than this geometrical difference is the origin of the magnetic field;
in this idealized problem it is externally imposed, whereas in the real Earth it is internally
generated. That is, in the analysis above we could adjust Ha at will, but in the Earth we cannot
adjust Λ; the amplitude of the field can only emerge as part of the full solution. Needless to
say, this makes the problem considerably more difficult. Nevertheless, let us at least speculate
about some of the implications that these results might have for internally generated rather
than externally imposed fields.

In particular, imagine taking the Earth’s core, and gradually increasing the Rayleigh num-
ber from zero. What sort of a sequence of bifurcations would we obtain? For R̂a = 0 we
would clearly have u = 0, and hence also B = 0. The initial onset of convection therefore
would be nonmagnetic, and would thus occur when R̂a = O(E−1/3). Increasing R̂a further,
the convection would presumably become more and more vigorous, until eventually a second
critical value is reached where the flow acts as a dynamo. Immediately beyond this value, the
field would most likely equilibrate as some very small value, but increasing R̂a further still,
both u and hence also B would presumably equilibrate at ever larger values.

In slowly rotating systems, this would presumably be all there is to it; the greater R̂a is,
the greater u and eventually B are, and that is it. If the system is rotating sufficiently rapidly
though, the above analysis suggests that something quite dramatic could happen. Roberts
(1978) conjectured that once the field exceeds Λ = O(E1/3), it would begin to facilitate the
convection. A more vigorous flow would then yield a stronger field, which would further
increase the flow, and so on. The resulting runaway growth would cease only when the field
reaches Λ = O(1), and the whole pattern of convection has switched from O(E1/3) to O(1)
lengthscales. Then once the system has switched to this new mode of convection, according
to the results above it should also be possible to reduce R̂a back down to some O(1) value,
and still maintain both the flow as well as the field. That is, the magnetic field facilitates
convection to such an extent that one can have not only convection, but dynamo action, at
a Rayleigh number lower than that for the initial onset of nonmagnetic convection. Indeed,
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Figure 2.7: The sequence of bifurcations dis-
cussed in the text. The initial onset of nonmag-
netic convection is denoted by cRac, the onset
of the weak-field regime by cRaw. The runaway
growth occurs at cRar. Once on the strong field
branch, one can reduce cRa back down to cRas

and still maintain both convection and dynamo
action.

Malkus (1959) suggests that the Earth generates its field precisely in order to facilitate the
convection, and that the Λ = O(1) amplitude of the field is precisely that amplitude that most
facilitates it.

As plausible as the above scenario might be, is there any compelling evidence that it is
actually true, and if so, how small must the Ekman number be before distinct weak and strong-
field regimes exist? Childress & Soward (1972), Soward (1974) and Fautrelle & Childress
(1982) considered the infinite plane layer version of this problem, and concluded that there
is indeed a point beyond which the weak-field regime ceases to exist. They were not able to
prove the existence of a strong-field regime though, since the multiscale asymptotic methods
that work for the weak-field do not work for the strong field. St. Pierre (1993) solved this
problem numerically, and demonstrated that a strong-field regime does exist, and is subcritical,
at E = 10−5. To date though no one has proven the existence of a subcritical, strong-field
dynamo in the proper spherical shell geometry. Establishing that such solutions exist, and how
small E must be before they exist, is one of the major issues facing geodynamo theory today.

Assuming that subcritical strong-field solutions do exist, what might be the geophysical
implications? As we will see in the next section, the strong-field regime is particularly delicate,
with small variations in B capable of inducing very large variations in u, which in turn act
back on B, and so on. That is, where the weak-field regime was vulnerable to this runaway
growth, the strong-field regime could suffer from runaway collapse. Where such a collapse
would lead to depends on how large R̂a is. If it is larger than where the runaway growth of the
weak-field regime occurs, then even if one occasionally collapsed to the weak-field regime,
one would just bounce right back. See for example Zhang & Gubbins (2000), who suggest
that excursions may be caused by such temporary transitions.

If, however, R̂a is less than the initial onset of nonmagnetic convection, the system could
undergo a so-called dynamo catastrophe, in which both the dynamo and the convection sud-
denly switch off completely. If that happened, there would be no way of ‘bouncing back’; the
field would be gone forever (unless one could somehow increase the Rayleigh number again).
Gubbins (2001) suggests that R̂a is sufficiently large that this cannot happen in the Earth. It
could conceivably have happened in other planets though, or could also happen in the Earth at
some point in the future, when the core has cooled further, and R̂a is smaller. The possibility
of such a dynamo catastrophe is certainly a major concern in numerical simulations, where
R̂a cannot be too large, to avoid excessively fine structures appearing in the solution.
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2.3.4 Oscillatory Convection Modes

Perceptive readers will notice that we have not mentioned either of the two Prandtl numbers
Pr or Pm in any of the above discussion. The reason for this is that all of the convection
modes considered so far turn out to be steady, so right at Rac we have not only �(σ) = 0,
but �(σ) = 0 as well. If σ = 0 though, Eq. (2.14) can be rescaled to eliminate Pr and Pm
entirely; simply define T̃ = Pr−1T , b̃z = Pm−1bz and j̃z = Pm−1jz . All of the Rac curves
considered so far are therefore valid for any Prandtl numbers. However, it turns out that for
sufficiently small Pr and/or Pm (and both are indeed small for liquid iron, with Pr around
0.1, and Pm ≈ 10−6), oscillatory modes set in at lower Rayleigh numbers than these steady
modes. The dotted line in Fig. 2.6 (left) shows Rac for one of these oscillatory modes. We see
that now convection sets in so far below the previous results that the destabilizing influence
of the magnetic field has disappeared completely; Rac is a monotonically increasing function
of Ha, with the only other effect being to switch from oscillatory to steady convection once
Λ = O(1).

It might appear then that the existence of these oscillatory convection modes completely
invalidates our entire previous discussion of weak versus strong-field regimes, since that was
based specifically on the destabilizing influence of the field once Λ > O(E1/3). One must re-
member though that what ultimately matters is not just the initial onset of convection, but also
how vigorous and efficient it is. These oscillatory modes turn out not to be very efficient, pre-
cisely because they oscillate far too rapidly (on the rotational timescale, as they must if inertia
is to break the Taylor–Proudman theorem). See, for example, Zhang (1994) for an asymptotic
analysis of these modes in a sphere, or Tilgner & Busse (1997) for numerical solutions demon-
strating that the efficiency is indeed low in the weakly supercritical regime, and only increases
in the much more strongly supercritical regime. See also Nakagawa (1959) and Aurnou &
Olson (2001) for laboratory experiments in rotating magnetoconvection, using mercury and
gallium, respectively. All of the phenomena discussed in this section were observed in one or
other of these experiments, including transitions from less efficient oscillatory convection in
the weakly supercritical regime to more efficient steady convection in the strongly supercriti-
cal regime. It seems likely, therefore, that the existence of these oscillatory convection modes
will complicate, but not completely disrupt our weak versus strong-field bifurcation diagram
in Fig. 2.7.

Finally, we should mention the work of Busse (2002b), who considered the onset of (non-
magnetic) convection in rapidly rotating systems, when both thermal and compositional buoy-
ancy sources are included. These, of course, have very different diffusivities, hence different
Prandtl numbers. Busse showed that in this case one can again obtain convection modes with
lower Rac than if the Prandtl numbers were the same. The geophysical significance of these
modes is not yet known though.

2.4 Taylor’s Constraint

In the previous section we discovered that not all convectively driven dynamos are alike;
unless the rotation is sufficiently rapid to obtain distinct weak and strong-field regimes, a
given model is not even qualitatively in the right parameter range. In this section (and the
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next as well) we will see why increasingly rapid rotation is unfortunately also increasingly
difficult.

2.4.1 Taylor’s Original Analysis

We begin with the Navier-Stokes equation (2.5)1. Taylor (1963) then argued that since Ro
and E are so small, one should be able to set them identically to zero, thereby obtaining the
so-called magnetostrophic balance

2êz × u = −∇P + FB + (∇× B) × B. (2.16)

Taking the curl, and using also ∇ · u = 0, we get

−2
∂

∂z
u = ∇× [

FB + (∇× B) × B
]
, (2.17)

so one might suppose that the solution is simply u = U t + UM, where the thermal and
magnetic winds are given by

U t = −1
2

∫
∇× FB dz, UM = −1

2

∫
∇× [

(∇× B) × B
]
dz, (2.18)

and we are temporarily ignoring the issue of constants of integration, and the boundary con-
ditions used to determine them.

This analysis turns out to be oversimplified though; in general Eq. (2.16) simply has no
solution at all. To see why, consider its φ-component

2us = −1
s

∂P

∂φ
+

[
(∇× B) × B

]
φ
, (2.19)

where the subscripts denote the indicated components, and (z, s, φ) are cylindrical coordi-
nates. The first point to note is that by considering the φ-component we have eliminated the
purely radial buoyancy force FB . We next eliminate the pressure gradient by integrating over
the so-called geostrophic contours C(s) consisting of cylinders parallel to the axis of rotation
(see Fig. 2.8 below). These contours are axisymmetric, so integrating ∂P/∂φ once around in
φ yields zero.

At this stage we are therefore left with∫
C(s)

2us dS =
∫

C(s)

[
(∇× B) × B

]
φ

dS. (2.20)

Now, what is
∫

us dS? Physically, it is just the net flow through the cylinder C(s). And since
we are taking the fluid to be incompressible, that net flow must vanish; the fluid cannot pile
up either inside or outside C(s). We are therefore left with just∫

C(s)

[
(∇× B) × B

]
φ

dS = 0, (2.21)

stating that the integrated Lorentz torque must vanish, and on each such cylinder C(s), if
Eq. (2.16) is to have a solution at all.

Furthermore, even if Eq. (2.21) is satisfied, so that Eq. (2.16) has a solution, there is the
additional complication that the solution is then not unique, since one can add to it an arbitrary
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geostrophic flow Ug(s) êφ (physically this amounts to each cylinder C(s) undergoing solid-
body rotation). To see why, we need only note that Ug trivially satisfies the Navier-Stokes
equation (2.17), ∇ · u = 0, and also the no normal flow boundary condition (having dropped
the viscous term, we can of course no longer impose no slip, but only no normal flow).

We see therefore that Eq. (2.16) either has no solution, or else an infinite number of so-
lutions, depending on whether or not Taylor’s constraint (2.21) is satisfied. In fact, the two
problems of satisfying Eq. (2.21) and determining Ug are linked, as Taylor also showed. In
particular, suppose the field satisfies Taylor’s constraint at some initial time t0. As the field
then evolves (according to the induction equation), how do we ensure that it will continue to
satisfy Eq. (2.21)? Clearly, what we need is not only Eq. (2.21), but also its time derivative

d
dt

∫
C(s)

[
(∇× B) × B

]
φ

dS = 0. (2.22)

This turns out to determine Ug in the following way: First replace Eq. (2.22) by∫
C(s)

[(∇× ∂B

∂t

) × B +
(∇× B

) × ∂B

∂t

]
φ

dS = 0. (2.23)

Then we simply remember that the induction equation gives us

∂B

∂t
= ∇× (

(U t + UM + Ug(s) êφ) × B
)

+ ∆B, (2.24)

where U t and UM are known (according to Eq. (2.18)), and only Ug is unknown. Inserting
Eq. (2.24) into Eq. (2.23) therefore gives us an equation in which the only unknown is Ug.
Just counting the derivatives on Ug, we can already see that the general form of this equation
will be

A2(s)
d2

ds2
Ug + A1(s)

d
ds

Ug + A0(s) Ug = B(s), (2.25)

where the coefficients An(s) and B(s) involve integrals over the geostrophic contours C(s) of
various combinations of the known quantities B, U t and UM. Subject to suitable boundary
conditions at s = 0 and 1 (we will consider various complications introduced by the inner
core and its associated tangent cylinder later), one might then hope to invert Eq. (2.25) for Ug.

Taylor’s original idea therefore was that the field would exactly satisfy Eq. (2.21), and
would evolve according to Eq. (2.24), with the geostrophic flow determined at each instant by
Eq. (2.25), thereby ensuring that Eq. (2.21) continues to be satisfied. However, as elegant as
this prescription undoubtedly is, no one has ever succeeded in following it. There are a num-
ber of reasons for this. One difficulty concerns the distinction between weak- and strong-field
regimes introduced in the previous section. If we now set E = 0, the weak-field regime dis-
appears off to R̂a → ∞. The remaining strong-field regime is therefore especially vulnerable
to the dynamo catastrophe mentioned before. In the next section we will also consider further
difficulties that result when one attempts to set E = 0, and that may also play a role in this
lack of success in following Taylor’s prescription.
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Figure 2.8: The shells used in the deriva-
tion of the torque balance Eq. (2.31). In
the limit ds → 0 these shells become
the geostrophic contours C(s). Note also
the absence of an inner core; we will con-
sider it and its associated tangent cylinder
in Sect. 2.6.

2.4.2 Relaxation of Ro = E = 0

Let us return to the original Navier-Stokes equation, and consider how Taylor’s development
is modified if we do not attempt to set Ro and E identically equal to zero. After all, Tay-
lor’s constraint only arose because we made that rather drastic step, so relaxing it will also
relax Taylor’s constraint in some way. So what we want to consider here is precisely how
Taylor’s constraint is modified, and whether this new prescription can be more successfully
implemented.

Returning to the geostrophic contours C(s), it is convenient at this stage to consider a shell
of finite thickness ds, as indicated in Fig. 2.8. Later we will simply let ds → 0. So, let us
consider the torque balance on such a shell when we restore inertia and viscosity. As always,
the general balance is just

I
dΩ

dt
= Γ, (2.26)

where Ω is the shell’s angular velocity, I its moment of inertia, and Γ the sum of all the
torques acting on it. More specifically then, Ω = Ug/s, where Ug is the same geostrophic
flow as before (we are interested in the torque balance on the whole shell, after all, so only
the z-independent part of its rotation is relevant here). The moment of inertia is similarly
straightforward, yielding I = Ro 4π (1 − s2)1/2 s3 ds. The torque balance (2.26) therefore
becomes

Ro 4π (1 − s2)1/2 s2 ds
dUg

dt
= Γ. (2.27)

Next, what is Γ , that is, what are the various torques acting on this shell? The magnetic
torque is of course much the same as before, namely just

ΓM =
∫ [

(∇× B) × B
]
φ

s dV, (2.28)

where the extra factor of s comes about because we are now explicitly considering the torque
rather than the φ-component of the force, and the dV rather than dS reflects the finite thickness
of the shell ds, and hence a volume rather than surface integral.
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So finally, the only other contribution we need to include is the viscous torque. Because E
is so small, we will not consider viscosity in the interior, but only in the top and bottom Ekman
boundary layers. In these layers, the viscous drag per unit area is then E(−Ug)/δ, where δ is
the thickness of the layer, and (−Ug) the jump in the zonal flow across it, from zero at r = 1
to Ug at r = 1−δ. The viscous torque is thus (−E Ug/δ)s dA, where dA is the area indicated
in Fig. 2.8, and is related by

dA = 2 · 2πs
ds

(1 − s2)1/2
(2.29)

to the infinitesimal thickness ds of the shell. Finally, we just apply the standard result
(e.g. Greenspan 1968) that the thickness of the Ekman layer on a spherical boundary is
δ = E1/2/(1 − s2)1/4 to obtain

Γν = −E1/2 4πs2 ds

(1 − s2)1/4
Ug. (2.30)

Putting it all together, and letting ds → 0, our torque balance thus becomes

Ro 4π (1 − s2)1/2 s2 ∂Ug

∂t

=
∫

C(s)

[
(∇× B) × B

]
φ

s dS − E1/2 4πs2

(1 − s2)1/4
Ug. (2.31)

This therefore is the generalization of Taylor’s constraint to include inertial and viscous ef-
fects. In terms of the physics, we see that the two versions are very similar; both are simply
torque balances applied to the geostrophic contours C(s). From a mathematical point of view,
however, the two are very different; whereas Taylor’s original constraint is a solvability con-
dition that must be satisfied exactly, in Eq. (2.31) the magnetic torque must be small (because
Ro and E1/2 are small) but not necessarily identically zero. Furthermore, whereas in Taylor’s
prescription the geostrophic flow is determined in this very roundabout manner, Eq. (2.25),
in this new prescription it is determined directly by Eq. (2.31) itself. For example, if we set
Ro = 0 again (which is indeed the most commonly implemented version of Eq. (2.31), and
hence the one we will focus attention on), we have simply

Ug = E−1/2 (1 − s2)1/4

4πs

∫
C(s)

[
(∇× B) × B

]
φ

dS. (2.32)

2.4.3 Taylor States versus Ekman States

Given how different these two prescriptions, Eqs. (2.32) and (2.25) are, depending on whether
one does or does not include viscosity, it seems appropriate to begin by showing that the
viscous version can nevertheless recover Taylor’s inviscid solutions. We expand B as

B = B0 + E1/2B1 + EB2 + . . . , (2.33)
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where B0 must satisfy Taylor’s constraint, Eq. (2.21), identically (we will see in a moment
how this is enforced precisely by Taylor’s original prescription). According to Eq. (2.32), the
geostrophic flow is then given by

Ug = (U01 + U10) + E1/2(U02 + U11 + U20) + . . . , (2.34)

where

Uij =
(1 − s2)1/4

4πs

∫
C(s)

[
(∇× Bi) × Bj

]
φ

dS. (2.35)

Similarly, the magnetic wind, Eq. (2.18), becomes

UM = U00 + E1/2(U01 + U10) + . . . , (2.36)

where

U ij = −1
2

∫
∇× [

(∇× Bi) × Bj

]
dz. (2.37)

Explicitly separated out order by order, the induction equation therefore becomes

∂

∂t
B0 = ∆B0 + ∇× (U t × B0)+

+∇× (U00 × B0) + ∇× [
(U01 + U10)êφ × B0

]
,

∂

∂t
B1 = ∆B1 + ∇× (U t × B1)+

+∇× (U00 × B1) + ∇× [
(U01 + U10) × B0

]
+

+∇× [
(U01 + U10)êφ × B1

]
+ ∇× [

(U02 + U11 + U20)êφ × B0

]
, (2.38)

and so on at ever higher order.
Now, how might one solve this system? Noting that B1 is not yet determined in

Eq. (2.38)1, the combination (U01 + U10) is unknown, so we may relabel it as some new
quantity Û1, say, to obtain

∂

∂t
B0 = ∆B0 + ∇× (U t × B0) + ∇× (U00 × B0) + ∇× (Û1êφ × B0). (2.39)

In solving this equation, we choose Û1 such that B0 continues to satisfy Taylor’s constraint
(2.21). This solution for B0 is thus precisely Taylor’s original prescription.

Next, we note that B2 is not yet determined in Eq. (2.38)2, so the combination (U02 +
U11 + U20) is unknown, so we relabel it as some new quantity Û2. In solving Eq. (2.38)2 for
B1, then choosing Û2 such that B0 and B1 together also satisfy U01 + U10 = Û1, where
we remember that Û1 has indeed already been determined at the previous order. Continuing
in this fashion, we can (in principle at least) solve this system of equations to arbitrary order.
And as we just saw, the first step, solving for B0, is precisely Taylor’s original prescription.
We see therefore that the viscous version of Taylor’s constraint (2.32) does indeed allow us to
recover Taylor’s solutions, and also obtain the higher-order viscous corrections.
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The real significance of Eq. (2.32), however, is that it is more general than Taylor’s pre-
scription, and allows other solutions as well. In particular, we can also expand B as

B = E1/4B0 + E3/4B1 + E5/4B2 + . . . , (2.40)

where now B0 does not necessarily satisfy Taylor’s constraint. As a result, the geostrophic
flow is now given by

Ug = U00 + E1/2(U01 + U10) + E(U02 + U11 + U20) + . . . , (2.41)

and the magnetic wind by

UM = E1/2U00 + E(U01 + U10) + . . . , (2.42)

where Uij and U ij are defined as before. Again separated out order by order, the induction
equation now becomes

∂

∂t
B0 = ∆B0 + ∇× (U t × B0) + ∇× (U00êφ × B0),

∂

∂t
B1 = ∆B1 + ∇× (U t × B1) + ∇× (U00êφ × B1)+

+∇× [
(U01 + U10)êφ × B0

]
+ ∇× (U00 × B0). (2.43)

We see therefore that these states, known as Ekman states, are very different from the previous
Taylor states. Not only are the leading-order amplitudes different, O(E1/4) versus O(1), the
dynamical balances are also different. In the Ekman state B0 is equilibrated by the geostrophic
flow U00, with the magnetic wind U00 only entering at second order. In contrast, in the Taylor
state B0 is equilibrated by the magnetic wind U00, with the geostrophic flow Û1 merely
enforcing Taylor’s constraint (which we note is homogeneous, and hence does not determine
the amplitude of B).

As different as they are, Ekman and Taylor states still do not exhaust the possibilities
present in Eq. (2.32). Hollerbach (1997) showed that there is also an intermediate state for
which

B = E1/8B0 + E3/8B1 + E5/8B2 + . . . . (2.44)

This state is nongeneric, however, and so will not be considered further here. Finally, if
one allows for boundary layers scalings different from the E1/2 Ekman layers implicit in
Eq. (2.32), one can obtain yet further solutions, such as Braginsky’s model-Z (e.g. Braginsky
& Roberts 1987). These are again nongeneric though, and so will also not be considered
further.

2.4.4 From Ekman States to Taylor States

Given this plethora of possible solutions, how can we know which one applies in any given
situation? The answer is not to impose any of the above scalings (as following Taylor’s pre-
scription would do). Instead, apply Eq. (2.32) directly, and allow the solutions themselves to
sort out which particular scaling to follow.
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To see in detail how this works, let us start with the mean-field induction equation

∂B

∂t
= ∆B + ∇× (αB) + ∇× (u × B), (2.45)

where u = UM + Ugêφ, with UM and Ug given by Eqs. (2.18) and (2.32). (By excluding
the thermal wind U t here, we are restricting attention to α2-dynamos. We will consider
αΩ-dynamos below.) Now imagine gradually increasing the amplitude of α. Eventually one
will reach the kinematic eigenvalue αc, beyond which the linearized equation would yield
exponentially growing rather than decaying solutions. The question then is, what equilibrates
these solutions in the supercritical regime, and at what amplitude? This is turn will decide
whether we have an Ekman state, a Taylor state, or something else.

What equilibrates the solutions is, of course, the nonlinear feedback via u. For O(1)
supercriticality one would therefore expect the solutions to equilibrate when u = O(1). So
how large must B be before u = O(1)? In particular, we saw above that the Ekman state
and the Taylor state have very different scalings for B, but both have Ug = O(1). So which
one is it to be? The key point to note is that because this linear, kinematic eigensolution
has no knowledge of Taylor’s constraint, in general it will not satisfy it. According to the
above analysis, this means that initially at least, just beyond αc, the solution can only be an
Ekman state, in which the geostrophic flow equilibrates the solution, with the magnetic wind
having no effect at leading order. We begin therefore by considering this equilibration via the
geostrophic flow.

If B, and thus also u, are axisymmetric, we can decompose them as

B = Bt + Bp = Bêφ + ∇× (Aêφ),

u = ut + up = vêφ + ∇× (ψêφ), (2.46)

where Ug contributes to v only, but UM to both v and ψ. Incidentally, note also that be-
cause Taylor’s constraint is inherently axisymmetric, mean-field models are ideally suited for
studying it. Separated out into these poloidal and toroidal components, the induction equation
becomes

∂A

∂t
= D2A + αB + êφ · (up × Bp),

∂B

∂t
= D2B + êφ · ∇ × (αBp) + êφ · ∇ × (ut × Bp + up × Bt), (2.47)

where D2 = ∆ − 1/s2. After a little algebra, Eq. (2.32) similarly yields

Ug = −E−1/2 (1 − s2)1/4

2s2

d
ds

[
s2T

]
, (2.48)

where the Taylor integral

T =

+zT∫
−zT

B
∂A

∂z
dz, (2.49)

and zT = (1− s2)1/2. Since we are assuming that initially at least the solution is equilibrated
entirely by the geostrophic flow, the precise form of UM is not important here.
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So, can this geostrophic flow equilibrate the field (and if so, how could we ever get any-
thing other than an Ekman state)? To answer these questions, we need to work out the effect
of Ug on the field. According to (2.47), the only effect of Ug is on the toroidal field, via the
term êφ · ∇ × (ut × Bp). After a little algebra, this yields

∂B

∂t
= −s

d
ds

(
Ug

s

)
∂A

∂z
=⇒ 1

2
∂

∂t
B2 = −s

d
ds

(
Ug

s

)
B

∂A

∂z
. (2.50)

Inserting (2.48) for Ug and integrating over the sphere, after a little more algebra one finally
obtains the result

1
2

∂

∂t

∫
B2 dV = −E−1/2π

1∫
0

(1 − s2)1/4

s3

( d
ds

(
s2T

))2

ds. (2.51)

The effect of the geostrophic flow on the magnetic energy is thus negative definite, vanishing
only when T = 0. That is, as long as Taylor’s constraint is not satisfied, Ug will indeed
equilibrate the field – and of course at the O(E1/4) Ekman state scaling.

Now let us consider what might happen as we further increase the amplitude of α. Malkus
& Proctor (1975) conjectured that the solutions – which now do know about Taylor’s con-
straint, because they are being equilibrated by Ug, which involves T – might evolve in such
a way that they tend to satisfy it more and more closely. The reason one might expect such
behavior is essentially a ‘competition’ between different field structures satisfying Taylor’s
constraint more or less closely. According to Eq. (2.51), those structures that come closest to
satisfying T = 0 will be least affected by the geostrophic flow, and can therefore grow the
most before ultimately being equilibrated. They should therefore win out over structures more
affected by Ug. In the increasingly supercritical regime, as more and more structure becomes
available, it is then indeed plausible that the field might tend to satisfy Taylor’s constraint
more and more closely.

Malkus & Proctor therefore conjectured that one would eventually reach a second crit-
ical value αT where Taylor’s constraint is satisfied exactly. Once that occurs though, the
geostrophic flow is no longer capable of equilibrating the field. It thus grows beyond the
O(E1/4) Ekman scaling, until it reaches the O(1) Taylor scaling, at which point the mag-
netic wind equilibrates it. Figure 2.9 (left) shows this hypothesized transition from the Ekman
regime to the Taylor regime.

Turning to the results then, the first model to demonstrate the existence of this second
critical value αT was the plane-layer model of Soward & Jones (1983). They only included
Ug though, not UM, so were only able to show that there exists an αT beyond which Ug alone
is no longer capable of equilibrating the field, but not whether UM will then equilibrate it,
and at what amplitude. The first model to include both Ug and UM, and hence obtain the full
transition from the Ekman regime to the Taylor regime, was by Hollerbach & Ierley (1991),
working in a full sphere, as presented here.

Incidentally, Taylor’s constraint is, in general, quite different – and indeed far more com-
plicated – in a plane layer than in a sphere. The geostrophic flow is then two-dimensional,
rather than merely one-dimensional as in a sphere. That is, in a sphere Ug only has one com-
ponent (φ), and only depends on one coordinate (s). In contrast, in a plane layer any flow of
the form ∇× [Φ(x, y) êz] satisfies all three of the requirements we demanded of Ug (namely
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Figure 2.9: Left: The transition from the Ekman state to the Taylor state originally conjectured by
Malkus & Proctor (1975). Right: An alternative transition, as found by Soward & Jones (1983) or
Hollerbach & Ierley (1991).

that it be independent of z, have zero divergence, and satisfy the no normal flow boundary
conditions). This planar Ug therefore has both x and y components, and also depends on both
x and y. Not surprisingly, the associated solvability condition, namely Taylor’s constraint, is
then also considerably more complicated. As valuable as they undoubtedly are, plane-layer
dynamos such as those of St. Pierre (1993) or Jones & Roberts (2000) are thus also poten-
tially quite different from the spherical dynamos we are really interested in. In the mean-field
model of Soward & Jones, however, this distinction does not arise, since they constrained their
solutions to be independent of y. Their geostrophic flow, and hence also Taylor’s constraint,
is thus much the same as in a sphere after all.

Another interesting feature discovered by both Soward & Jones and Hollerbach & Ierley
is shown in Fig. 2.9 (right). In particular, we note that the Taylor state that exists for α > αT

is disconnected from the Ekman state that exists for α > αc, very much unlike the original
conjecture of Malkus & Proctor. Which half of Fig. 2.9 the bifurcation diagram looks like
depends on the detailed spatial structure of α. Almost all choices of α do seem to yield some
type of transition from the Ekman to the Taylor regime though.

At this point it is perhaps also worth comparing and contrasting this distinction be-
tween Ekman and Taylor states here with that between the weak and strong-field regimes in
Sect. 2.3.3; the bifurcation diagrams in Figs. 2.9 and 2.7 do after all look rather similar. Nev-
ertheless, the issues involved are quite different, and should not be confused. In particular, the
distinction between weak and strong fields came about because of the effect of the field on
the pattern of convection, which is completely neglected in mean-field models. And similarly,
we did not mention Taylor’s constraint at all in our discussion of weak versus strong fields.
As tempting as it may be, we cannot therefore necessarily identify the weak-field regime with
an Ekman state, and the strong-field regime with a Taylor state. So which of these various
regimes is truly relevant to the real geodynamo then?

Let us begin with the distinction between Ekman and Taylor states discussed here. The
crucial point to note is that mean-field theory is in a sense inconsistent, in taking the same
(more or less arbitrarily prescribed) spatial structure for α, when we know, precisely from our
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discussion of weak versus strong fields, that really the pattern of convection, and hence its
parameterisation into α, would be quite different in the two regimes. That is, even if these
two states do exist in the real geodynamo, the bifurcation sequence cannot be as presented in
Fig. 2.9. These mean-field models are thus simplified models that allow us to explore some of
the other dynamics not previously captured by the distinction between weak and strong-field
regimes (which we believe to be the real bifurcation sequence).

So what precisely does this distinction between Ekman and Taylor states tell us about
the weak versus strong-field regimes? Well, in the strong-field regime B is order one, so
presumably it must be in a Taylor state. In contrast, in the weak-field regime the Lorentz force
is less than the viscous force, so B need not satisfy Taylor’s constraint (which after all arises
only if we neglect the viscous force compared with the Lorentz force). So in this sense we can
perhaps say that ‘weak field equals Ekman state’ and ‘strong field equals Taylor state’ after
all, so long as we also remember that the considerations that led us to distinguish weak from
strong, and Ekman from Taylor, are very different, as just discussed.

2.4.5 Torsional Oscillations

Although we speak of Taylor’s constraint as being satisfied in the Taylor regime, and not
satisfied in the Ekman regime, it is not quite correct to say that the former is characterized
by T = 0, and the latter by T 
= 0. In fact, T = O(E1/2) in both regimes. The difference
is how this comes about. In the Ekman regime it is trivially accomplished by the O(E1/4)
scaling of the field itself; the Taylor integral, being quadratic in B, then obviously scales as
E1/2. In the Taylor regime it is rather less trivially accomplished by having sufficient internal
cancellation that the integral scales as E1/2 even though the field scales as O(1). (To see why
this cancellation occurs to precisely O(E1/2), simply insert the expansion (2.33) into Taylor’s
constraint (2.21) and use the fact that B0 by itself satisfies Eq. (2.21) identically.)

The need for this increasingly high degree of internal cancellation in the integrated Lorentz
torque then demonstrates just how delicate the Taylor state is. Imagine a solution evolv-
ing along in time in such a way that this cancellation suddenly breaks down. According to
Eq. (2.51), if the cancellation breaks down so completely that T = O(1) rather than O(E1/2),
that will induce an unsustainably large drain on the magnetic energy. The field must therefore
evolve back toward the proper Taylor state balance – and on an extremely rapid timescale – or
else it will necessarily collapse to an Ekman state. Remembering the above identification that
‘Ekman state equals weak-field regime’, we see therefore how a breakdown of Taylor’s con-
straint could trigger this dynamo catastrophe discussed in Sect. 2.3.3; according to Eq. (2.32),
only a very subtle change in B is required to induce an enormous geostrophic flow, which
then reacts back on B to produce further changes, and all too quickly the whole dynamo
could shut off.

As noted above, the alternative (and considerably more desirable) possibility is that the
field simply evolves back toward a Taylor state on a very rapid timescale. Formally, this
timescale could be as fast as O(E1/2), since Ug could be as large as O(E−1/2), so the
timescale on which such a flow would advect everything else is O(E1/2). In fact, Taylor’s
constraint should never break down so completely that T = O(1) (according to Eq. (2.51)
T = O(E1/4) is the most that is energetically sustainable), so in practice Ug will not be quite
as large, and hence its advective timescale not quite as fast.
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Nevertheless, we see that even if it does not lead to a dynamo catastrophe, any breakdown
of Taylor’s constraint will necessarily lead to the emergence of rather short timescales. Indeed,
these timescales are sufficiently short that we probably should not neglect inertia after all, as
we did in Eq. (2.32), but instead return to the more general Eq. (2.31). We recognize then
that another possibility for dealing with breakdowns of Taylor’s constraint is that Ug remains
O(1), but instead oscillates on O(Ro) timescales – which once again are extremely short
though. Either way then, any breakdown of Taylor’s constraint will indeed induce very short
timescales in the dynamics associated with the geostrophic flow.

Flows of this type, in which the integrated Lorentz torque is balanced by inertia, with the
result that each individual shell C(s) oscillates in essentially solid-body rotation, are known
as torsional oscillations, and have been observed in the core (Zatman & Bloxham 1997, 1999).
Indeed, Bloxham, Zatman & Dumberry (2002) show that the geomagnetic jerks mentioned in
Sect. 2.1.2 are probably caused by torsional oscillations, which would certainly explain the
very short timescale of these events. As noted above, the timescale of these events in the core
may well be even shorter than the one-year timescale at which they are observed at the surface;
in terms of the dynamics of torsional oscillations we now understand how such events could
indeed occur on timescales considerably shorter than a year. On this view then, the Earth’s
field is always close to a Taylor state, but small deviations are continually exciting torsional
oscillations, of various periods and amplitudes, and occasionally a somewhat larger deviation
from Taylor’s constraint causes a jerk, on a timescale of a year or even less.

2.4.6 αΩ-Dynamos

This idea of the field evolving along in time, satisfying Taylor’s constraint more or less closely,
also leads quite naturally to a discussion of Taylor’s constraint in αΩ-dynamos. In particular,
the α2-dynamos we considered above are typically steady. At any given amplitude of α, they
are therefore unambiguously in one state or the other. In contrast, αΩ-dynamos in spheres or
shells are usually oscillatory. This leads to the unpleasant possibility that they could be in dif-
ferent states at different parts of the cycle, making any overall classification almost impossible.
This is precisely what was found by Barenghi & Jones (1991) and also Hollerbach, Barenghi
& Jones (1992). Both found clear evidence for the existence of this second critical value αT,
beyond which the geostrophic flow alone is no longer capable of equilibrating the solutions.
Including the magnetic wind then did equilibrate the solutions again, and at more or less the
O(1) amplitude one would expect for a Taylor state. The details of the temporal evolution,
however, continued to depend on E, suggesting that the solution is indeed oscillating between
the Taylor and Ekman states. Similarly, Hollerbach (1997) suggested that excursions might
be caused by the field temporarily dropping from a Taylor state to this O(E1/8) intermediate
state mentioned above. See also Zhang & Gubbins (2000), who suggest a particular mecha-
nism as to why it might temporarily switch from a Taylor state to something else. Given that
the Earth’s field does evolve in time, and how easily Taylor’s constraint can break down, the
idea that it occasionally (if only temporarily, to avoid the dynamo catastrophe) switches from
one state to another certainly seems more plausible than that it should remain in a Taylor state
forever.
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2.4.7 Taylor’s Constraint in the Anelastic Approximation

The last point to note regarding Taylor’s constraint is whether it must be modified if we make
the anelastic rather than the Boussinesq approximation. In particular, if we think back to
Eq. (2.16), we note that ∇ · u = 0 was an essential ingredient in the derivation of Taylor’s
constraint and all the subsequent analysis. If we therefore make the anelastic approximation
∇ · (ρau) = 0 instead, to what extent is this analysis still valid? The equivalent of Eq. (2.19)
is then

2ρaus = −1
s

∂P

∂φ
+

[
(∇× B) × B

]
φ
, (2.52)

and ∇ · (ρau) = 0 now yields
∫

ρaus dS = 0. We see therefore that we obtain exactly the
same result, Eq. (2.21), as before. All of the dynamics associated with Taylor’s constraint are
thus the same in the anelastic as in the Boussinesq approximation (although to our knowledge
no one has ever developed a model along the lines of Soward & Jones (1983) or Hollerbach
& Ierley (1991) using the anelastic approximation).

2.5 Hydromagnetic Waves

In the previous section we saw some of the difficulties that result from the extreme smallness
of inertia and viscosity in the momentum equation. This smallness turns out to generate not
only the global difficulties associated with Taylor’s constraint, but local difficulties associated
with wave motions as well. To see how these come about, it is perhaps convenient to revert to
the dimensional equations

∂B

∂t
= ∇× (u × B) + η∆B,

Du

Dt
+ 2Ω × u = −∇P + ν∆u +

1
µ0ρ0

(∇× B) × B, (2.53)

where we are neglecting the buoyancy force for convenience. Even without the coupling to
T these equations already turn out to generate a surprising variety of wave motions. This,
incidentally, is also the reason for considering the dimensional rather than nondimensional
equations; since the resulting waves occur on a broad range of timescales, it is best not to bias
the analysis by nondimensionalizing on any one particular timescale.

Linearizing these equations about the basic state B = B0, u = 0, and looking for per-
turbations proportional to exp[i(k · r−ωt)], after a certain amount of algebra one obtains the
dispersion relation

(ω + iηk2)(ω − ωC + iνk2) = ω2
A, (2.54)

where

ωA = ± k · B0√
ρ0µ0

, ωC = ±2
k · Ω

k
(2.55)

are the dispersion relations of pure Alfvén waves (in magnetic but nonrotating systems) and
inertial oscillations (in rotating but nonmagnetic systems), respectively. What we would like
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to discover therefore is whether these waves still exist when both magnetism and rotation are
important – or alternatively what other waves may exist in that case.

We begin by noting that ωC and ωA already define two very different timescales. The
timescale associated with inertial oscillations is, of course, just the daily rotational timescale.
In contrast, if we take ∼ 50 G as a typical field strength in the core, the timescale for Alfvén
waves to cross the core comes out on the order of decades. That is, ωA � ωC – unless of
course k and Ω are almost perpendicular, in which case ωC can be arbitrarily small. As we
shall see, this considerably extends the range of timescales one can obtain from Eq. (2.54).

We can solve Eq. (2.54) easily enough, yielding

ω =
1
2

[
ωC − i(η + ν)k2 ±

√(
ωC + i(η − ν)k2

)2 + 4ω2
A

]
. (2.56)

In order to make sense of this result, we need to simplify it further. To do this, we note that
the viscous and magnetic diffusive timescales are far longer than this Alfvén timescale even.
Neglecting quantities quadratic in the diffusive terms, we therefore have

ω ≈ 1
2

[
ωC − i(η + ν)k2 ±

√
ω2

C + 4ω2
A + 2iωC(η − ν)k2

]
. (2.57)

Next, we saw that in general ωC � ωA, so we can Taylor-expand the square root as

ω ≈ 1
2

[
ωC − i(η + ν)k2 ± ωC

(
1 + 2

ω2
A

ω2
C

+
i(η − ν)k2

ωC

)]
(2.58)

to obtain

ω+ = ωC

(
1 +

ω2
A

ω2
C

)
− iνk2, ω− = −ω2

A

ωC
− iηk2. (2.59)

Remembering that ωC is a completely nonmagnetic inertial oscillation, we recognize that ω+

is an inertial oscillation that has been modified slightly by the presence of the magnetic field.
The modification is indeed only slight though, since ωA/ωC � 1. And not surprisingly then,
this essentially nonmagnetic mode is damped by viscosity rather than magnetic diffusivity.

The second mode, ω−, is very different, and has no analog in either rotating, nonmagnetic
or nonrotating, magnetic systems. Inserting the above values that the inertial timescale is one
day, and the Alfvén timescale a few years, we find that the timescale associated with this
mode is around 104 to 105 years, that is, the same as the magnetic diffusive timescale, which
incidentally is also the damping mechanism of this mode. Note also how both ωC and ωA

combine to yield this timescale, emphasizing once again that both rotation and magnetism are
fundamental to the existence of these so-called slow magnetohydrodynamic waves.

So far we have seen that Eq. (2.54) supports these two types of waves ω± on these two very
different timescales of a day and ∼ 105 years. We recall though that these two were derived
on the assumption that ωC � ωA, which need not be the case if k is almost perpendicular to
Ω. To see what happens in this case, let us return to Eq. (2.57) and simply insert ωC = 0,
yielding

ω = ±ωA − i(η + ν)k2/2. (2.60)

That is, even though rotation is ordinarily an important ingredient in the dynamics of the core,
if k · Ω = 0 we recover classical Alfvén waves just as in a nonrotating system. We see there-
fore that our original dispersion relation, Eq. (2.54), supports at least three timescales, namely
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the decadal Alfvén timescale in addition to the above two. In fact, since the solutions of
Eq. (2.54) must depend continuously on ωC, we realize that as |ωC| varies from 0 to its maxi-
mum value 2Ω, we will necessarily obtain everything in between as well. That is, Eq. (2.54)
supports waves covering the entire range of timescales from ∼105 years to 1 day.

The existence of these very short timescales is extremely undesirable from a numerical
point of view, since the timestep will then also have to be very small, so an enormous number
of them will be needed to cover even one magnetic diffusion time. One would therefore like to
filter out some of these short timescales. The obvious thing to try is to neglect inertia, which
is known to eliminate inertial oscillations in nonmagnetic systems anyway. The dispersion
relation one then obtains is (ω+iηk2)(−ωC +iνk2) = ω2

A, so now there is the single solution

ω = − ω2
A

ωC − iνk2
− iηk2. (2.61)

Comparing this result with the previous ones, it looks like we have indeed eliminated the
inertial oscillations Eq. (2.59)1, and even the Alfvén waves Eq. (2.60), with only the equivalent
of the slow waves Eq. (2.59)2 remaining. Unfortunately, this is an illusion. While Eq. (2.61)
and Eq. (2.59)2 may look almost identical, there is also one very important difference between
them. In particular, while Eq. (2.59)2 is only valid for ωC > ωA, and can therefore never yield
timescales shorter than decadal, Eq. (2.61) is valid for all ωC, and can therefore yield almost
arbitrarily short timescales (particularly if one attempts to neglect viscosity as well). That
is, we may have succeeded in reducing the number of allowed waves, but if anything the
timescale problem is even worse. This inability to filter out any of the short timescales was
first pointed out by Walker, Barenghi & Jones (1998). See also Chapt. 10 of Moffatt (1978)
for a discussion of waves in the core.

2.6 The Inner Core

We have already noted above how the existence of the inner core is crucial to the dynamo,
in terms of allowing this compositional convection to take place. In this section we want to
consider various other aspects of the inner core, and some of its effects on the flow and field
in the outer core. The most important point to note here is the existence of the so-called
tangent cylinder, the cylinder parallel to the axis of rotation and just touching the inner core.
That is, in terms of these geostrophic contours C(s) introduced in the context of Taylor’s
constraint, the tangent cylinder, denoted by C, is simply the particular cylinder C(Rin). With
this identification C = C(Rin), we can also immediately see at least one reason why this
tangent cylinder is important: the contours over which Taylor’s constraint is integrated change
abruptly across C, with one single integral outside C but two separate integrals above and
below the inner core inside C. The significance of this for the geodynamo is not immediately
obvious, but Jault (1996) has suggested that it might then be more difficult to satisfy Taylor’s
constraint inside C, since this cancellation discussed above must now occur separately in the
two integrals. And, of course, the torque balance Eq. (2.31) must be similarly modified, not
only to take into account things like the viscous torque in the Ekman layers on the inner core,
but more fundamentally that inside C there are now also two separate geostrophic flows above
and below the inner core.
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2.6.1 Stewartson Layers on C
The importance of the tangent cylinder is not confined to Taylor’s constraint, however, but
arises in nonmagnetic problems as well. For example, suppose we take a rapidly rotating
spherical shell, and additionally impose a slight differential rotation on the inner sphere. (We
will see below that such a differential rotation of the inner core may indeed exist in the Earth.)
The tangent cylinder then divides the flow into two distinct regions, with fluid outside C co-
rotating with the outer sphere, but fluid inside C rotating at a rate roughly intermediate between
the inner and outer spheres. The reason the flow adjusts itself in this peculiar fashion is due
to the Taylor–Proudman theorem, stating that in rapidly rotating systems the flow will tend to
align itself such that ∂u/∂z ≈ 0. With this result, this abrupt change across C follows quite
naturally: For fluid columns outside C the boundary conditions are Ω = Ωout at both ends,
so having Ω = Ωout everywhere along the column will indeed satisfy both the boundary
conditions and the Taylor–Proudman theorem. In contrast, for fluid columns inside C the
boundary conditions are still Ω = Ωout at one end, but Ω = Ωin at the other. It is therefore
not possible to satisfy the Taylor–Proudman theorem everywhere along the column. Instead,
it is satisfied in the interior by having Ω ≈ (Ωin + Ωout)/2 (in fact, the precise weightings
used in this average vary with s), with all of the required z-dependence concentrated in the
Ekman layers at the boundaries.

The detailed structure of the shear layer that resolves the resulting jump in angular velocity
across C was deduced by Stewartson (1966), and shown to consist of an inner thickness E1/3

right on C, and outer thicknesses E2/7 just inside C and E1/4 just outside. The Stewartson
layer was also reproduced numerically by Hollerbach (1994a) down to E = 10−5, and by
Dormy, Cardin & Jault (1998) down to E = 10−7. Even these values are not small enough
to clearly distinguish all the different scalings, but the results are certainly consistent with
Stewartson’s asymptotics. Figure 2.10 shows the solution at E = 10−3, 10−4 and 10−5.

Having obtained this basic Stewartson layer, the next question to ask is what effect a
magnetic field would have on it. Given the stiffness imparted by the magnetic tension, it seems
likely that the Lorentz force would suppress the shear (at least if the field has a component
perpendicular to the layer). Both Hollerbach (1994a) and Dormy, Cardin & Jault (1998) also
considered this magnetic problem, and showed that this is indeed the case; imposing an order
one (as measured by the Elsasser number) dipole field almost completely suppresses the layer
again, with all the adjustment then occurring in the inner and outer Ekman layers (actually
called Ekman-Hartmann layers in this rotating and magnetic problem). Kleeorin et al. (1997)
considered the asymptotics of this problem, and showed that the suppression of the Stewartson
layer begins when the Elsasser number is as small as E1/3. In particular, there is almost
certainly no Stewartson layer in the Earth’s core after all, even if the inner core should turn
out to be differentially rotating.

2.6.2 Nonaxisymmetric Shear Layers on C
Both Taylor’s constraint as well as the Stewartson layer are axisymmetric phenomena. It turns
out that there are nonaxisymmetric structures associated with C as well, which if anything are
even more severe. To see how these arise, we return to the magnetostrophic balance Eq. (2.16)

2êz × u = −∇P + F , (2.62)
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Figure 2.10: The angular velocity in the Stewartson layer problem. From left to right E = 10−3, 10−4

and 10−5.

where F now denotes both the buoyancy and Lorentz forces. As before, the solution ought to
be just

u = −1
2

z∫
∇× F dz′ + û(s, φ). (2.63)

Now, however, let us consider in detail how (or whether) this constant of integration û(s, φ)
can be determined, and whether the resulting solutions make sense.

We begin by noting that since Eq. (2.63) is linear in u, we can restrict attention to single
exp(imφ) azimuthal modes at a time. There is then a considerable difference between axi-
symmetric (m = 0) versus nonaxisymmetric (m 
= 0) solutions. In particular, we will see
in a moment how the no normal flow boundary conditions (again, the only conditions we can
impose in the absence of viscosity) determine the z and s components of û. The incompress-
ibility condition ∇ · u = 0 then yields

1
s

∂

∂s

(
sûs

)
+

im
s

ûφ =
1
2
∇ ·

z∫
∇× F dz′. (2.64)

So if m = 0, ûφ continues to be undetermined, and we have instead the constraint

1
s

∂

∂s

(
sûs

)
=

1
2
∇ ·

z∫
∇× F dz′. (2.65)

That is, F must be such that ûs, which we remember has already been determined by the
boundary conditions, also just happens to satisfy Eq. (2.65). If it does not there is no solution
at all, whereas if it does, there are infinitely many solutions, since ûφ is still arbitrary. We
recognize that this is precisely the situation we encountered before with regard to Taylor’s
constraint, and indeed Eq. (2.65) is Taylor’s constraint, just expressed in a less intuitive form.

In contrast, for m 
= 0 Eq. (2.64) determines ûφ, and there is also no constraint for ûs to
satisfy. That is, for nonaxisymmetric modes this approach Eq. (2.63) seems to work, yielding
a unique solution for any F . The difficulty that can then lead to shear layers on C is that these
solutions do not necessarily make sense. To see why, let us consider in more detail how the
boundary conditions determine ûz and ûs. At the outer boundary no normal flow yields

zuz + sus = 0 at z =
√

R2
out − s2, (2.66)
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Figure 2.11: Contours of us in one of these nonaxisymmetric shear layers on C. From left to right
E = 10−4, 10−5 and 10−6. (Hollerbach 1994b).

and this applies for all s ≤ Rout. Similarly, at the inner boundary we have

zuz + sus = 0 at z =
√

R2
in − s2, (2.67)

but this only applies for s ≤ Rin. For Rin ≤ s ≤ Rout, we take instead the symmetry
condition

uz = 0 at z = 0, (2.68)

appropriate for solutions having uz antisymmetric and us and uφ symmetric about the equator.
(See, for example, Gubbins & Zhang (1993) for a discussion of the symmetry classes into
which the geodynamo equations and solutions can be split.)

We see therefore that both inside and outside C we have two conditions on two different
linear combinations of uz and us, so we can indeed solve them for ûz and ûs. The reason this
procedure nevertheless goes wrong is that the conditions (2.67,2.68 ) do not join smoothly at
s = Rin, where Eq. (2.67) becomes us = 0 rather than uz = 0. If the boundary conditions
being imposed change discontinuously across C though, one must expect that the resulting val-
ues for ûz and ûs will too, and according to Eq. (2.63) these discontinuities will be transmitted
undiminished along the entire tangent cylinder. That is, Eq. (2.63) may indeed have a unique
solution, but all three components of that solution, including us, are, in general, discontinuous
across C. (In contrast, in the Stewartson layer problem only uφ is discontinuous in the E → 0
limit.) The existence of this discontinuity in the inviscid solution was first pointed out by
Hollerbach & Proctor (1993). Figure 2.11 shows how the inclusion of viscosity smooths out
the discontinuity.

Hollerbach & Proctor went on to show that this discontinuity could be avoided if F sat-
isfies a certain integral constraint on C. In particular, the discontinuity will be eliminated if
uz and us both happen to be zero at s = Rin, z = 0, since then Eqs. (2.67,2.68) will match
smoothly after all. At s = Rin we must therefore have that

uz = −1
2

z∫
0

(∇× F )z dz′, us = −1
2

z∫
0

(∇× F )s dz′. (2.69)
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We also still need to satisfy the outer boundary condition (2.66) though, yielding the constraint

zT

zT∫
0

(∇× F )z dz′ + Rin

zT∫
0

(∇× F )s dz′ = 0, (2.70)

where zT = (R2
out−R2

in)1/2. That is, if F satisfies Eq. (2.70) the inviscid solutions will match
smoothly across C, eliminating the need for the viscous shear layer that otherwise resolves the
discontinuity (as in Fig. 2.11).

Finally, as before in the Stewartson layer problem, one might suspect that a sufficiently
strong magnetic field would tend to suppress these shear layers as well. That this is indeed
the case was verified numerically by Hollerbach (1994b), and asymptotically by Soward &
Hollerbach (2000). However, unlike in the Stewartson layer problem, this time there is also
a price to be paid, namely that F must adjust itself to satisfy this constraint (2.70). Whether
this constraint has an impact on the dynamics of the field comparable with Taylor’s constraint
is not known though. (Also very much unlike Taylor’s constraint, Eq. (2.70) does not appear
to have any simple physical interpretation.)

2.6.3 Finite Conductivity of the Inner Core

We note that the existence of the tangent cylinder is a purely geometrical consequence of
working in a spherical shell, when the Taylor–Proudman theorem dictates that cylindrical co-
ordinates are really more natural. Insofar as these dynamics associated with C are concerned,
the precise material properties of the inner core are thus irrelevant; it must merely exist. Many
early geodynamo models therefore took the inner core to be either insulating or perfectly con-
ducting, which in both cases means that one need not solve for the magnetic field in it, but
can simply impose appropriate boundary conditions on the field in the outer core. As we saw
above though, the composition of the inner core is only slightly different from that of the
outer core, so really its conductivity should also be comparable with that of the outer core.
As soon as one introduces a finitely conducting inner core, one must also solve for the field
in it. In the process one introduces a new timescale, namely the magnetic diffusive timescale
R2

in/η =24,000 yr. There are two important points to note then: (i) this timescale is much
longer than some of the advective timescales found in the outer core, and (ii) since the inner
core is solid (at least on these timescales), the field in the inner core can change only on this
diffusive timescale. That is, whereas the field in the outer core can change on timescales as
short as a year or even shorter (as we saw with geomagnetic jerks), the field in the inner core
can only change on timescales of thousands of years. Since the field must be continuous across
the inner core boundary, this suggests that the inner core could have a stabilizing influence,
damping out some of the most rapid fluctuations in the outer core. This potentially stabiliz-
ing role of the inner core was first noted by Hollerbach & Jones (1993), who suggested that
without it the field would reverse far more frequently than it does. See also Gubbins (1999),
who suggested that the distinction between reversals and mere excursions is precisely whether
a given fluctuation in the outer core lasts long enough to reverse the field in the inner core as
well.

That this stabilizing mechanism can indeed work was verified by the numerical model of
Glatzmaier & Roberts (1995), who found that the field was much more stable with a finitely
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conducting inner core than with an insulating one. However, one should be careful not to
ascribe too much influence to the inner core. For example, Wicht (2002) finds a regime in
which it has little influence. In particular, at only 4% of the volume of the total core, it cannot
possibly ‘control’ the outer core. That is, if the outer core is sufficiently ‘determined’ to
achieve a reversal, it will do so, and there is nothing the inner core can do to stop it. Or, of
course, if the field in the outer core is stable anyway, then obviously the inner core has no
effect either. If, however, there are substantial short-term fluctuations in the outer core that
come close to achieving reversals, then the inner core may have a considerable effect, as found
by Glatzmaier & Roberts. Whether the real Earth is more like the Glatzmaier-Roberts model,
or more like that of Wicht, is an open question.

2.6.4 Rotation of the Inner Core

The last point we wish to address is whether the inner core rotates relative to the mantle. Let
us begin by simply estimating how quickly one might expect it to rotate. In particular, it has
been known since the 18th century that some of the nondipolar parts of the field tend to drift
westward at rates of around 0.1–0.2◦ per year. If we interpret this as due to advection of the
field (e.g. Jault, Gire & LeMouel 1988), this gives us an estimate of the differential rotation
just beneath the core-mantle boundary. Extrapolating from there all the way down to the inner
core boundary is, of course, quite a leap, but certainly suggests that we could expect the inner
core to rotate at least that fast, and perhaps considerably faster.

And indeed, the numerical model of Glatzmaier & Roberts (1996) yielded inner core ro-
tation rates of around 2–3◦ per year (eastward though, so slightly faster than the mantle). In
∼30 yr therefore, the inner core will have rotated a substantial fraction of one complete rev-
olution. This observation motivated various seismologists to re-examine old data sets to see
whether such a rotation could be found. The first results were in excellent agreement with the
Glatzmaier-Roberts prediction, with Song & Richards (1996) getting 1◦/yr, and Su, Dziewon-
sky & Jeanloz (1996) even 3◦/yr. Subsequent analyses, however, (using different data sets
and methods), have yielded ever lower rates, with Creager (1997) getting at most 0.3◦/yr and
Vidale, Dodge & Earle (2000) 0.15◦/yr. Finally, Laske & Masters (1999) and Souriau, Garcia
& Poupinet (2003) find that the rate is at most 0.2◦/yr, but could also be zero.

Given this observation above that the westward drift at the CMB is already as much as
0.2◦/yr, it is really quite astonishing that the rotation rate of the inner core should be at most
that much. One possible explanation was provided by Buffett (1996, 1997), who suggested
that gravitational anomalies in the mantle could first of all induce corresponding anomalies
in the inner core, and then lock it into a fixed longitude with respect to the mantle. In this
scenario there could therefore be a considerable differential rotation somewhere in the middle
of the core, but right at the inner core boundary this additional coupling brings it to zero
again. Following this suggestion, Buffett & Glatzmaier (2000) incorporated this effect into a
numerical model, and found that it was indeed sufficient to almost completely suppress the
previously observed rotation. See also Aurnou & Olson (2000) for a particularly illuminating
analytical model illustrating the competing effects of the gravitational and electromagnetic
torques on the inner core, with the electromagnetic torque trying to overcome this gravitational
locking effect (and occasionally succeeding). Incidentally, note also that the inner core’s
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finite conductivity plays an important role here as well, since without it there could be no
electromagnetic torque on the inner core (e.g. Gubbins 1981).

Finally, we note very briefly that for seismologists to be able to say anything at all about
the inner core’s rotation rate, it must have some type of structure that allows one to define
longitude. That is, it cannot be perfectly axisymmetric, let alone radially symmetric. Dis-
cussing the possible origins of the lack of axisymmetry would take us too far from our main
topic here, but there are a number of obvious reasons why the inner core should lack radial
symmetry. For example, it is quite likely that it will grow by different rates in the polar and
equatorial regions (since the details of the convection are likely to be different). Since it must
maintain hydrostatic equilibrium though, this implies a slow readjustment via viscous creep.
The electromagnetic stresses acting on the inner core are also likely to depend on latitude, and
could also induce viscous creep. See, for example, Karato (1993, 1999), Bergman (1997), or
Buffett & Wenk (2001) for discussions of some of these effects, and the seismic anisotropy
they induce in the inner core.

2.7 Numerical Simulations

We have already mentioned several numerical simulations in previous sections. In this sec-
tion we want to discuss some more of them, and consider what we have learned, but also
what the limitations still are. See also Dormy, Valet & Courtillot (2000) or Jones (2000) for
very thorough discussions, or Busse (2002a), Glatzmaier (2002), and Kono & Roberts (2002)
for recent reviews by some of the leading computationalists themselves. See also Glatzmaier
(1984), Kuang & Bloxham (1999), Tilgner (1999) or Hollerbach (2000) for detailed descrip-
tions of some of the numerical algorithms used, and Christensen et al. (2001) for a numerical
benchmark between various codes. Note in particular that none of these simulations make
use of any of the asymptotic expansions of the momentum equations that we have seen in the
context of Taylor’s constraint, for example. As successful as these expansions were in that
context, no one has ever succeeded in extending them from a full sphere to a spherical shell,
and from mean-field to fully three-dimensional models. Instead, the momentum equation is
solved directly, and the Rossby and Ekman numbers are simply reduced as far as possible. As
we have seen though over and over again, reducing these parameters (particularly E) is enor-
mously difficult, and most models are limited to the range E ≥ 10−6 or so. Indeed, achieving
even that often requires the use of so-called hyperviscosities, in which the Ekman number is
increased with spherical harmonic degree l. That is, E = O(10−6) applies only to the lowest
modes; the highest ones are damped several orders of magnitude more strongly. Using hyper-
viscosities is known to distort the dynamics in important ways (Zhang & Jones 1997; Grote,
Busse & Tilgner 2000a), but without it one would be forced to damp all modes more strongly.

The first to achieve E = O(10−6) (with hyperviscosities) were Glatzmaier & Roberts
(1995). As noted above, one of their findings was that a finitely conducting inner core seemed
to stabilize the field. Even so, their field was probably still not stable enough, reversing after
only one or two magnetic diffusive timescales. They were unfortunately not able to run long
enough to obtain reversal statistics, which would have allowed a better comparison with the
real reversal record. Longer runs, long enough to obtain multiple reversals, were done by
Glatzmaier et al. (1999), who studied the influence of the thermal boundary conditions im-



2.7 Numerical Simulations 39

posed at the core-mantle boundary, and found that in this way the mantle could indeed control
the overall reversal frequency. However, even these runs were not done for the hundreds of
diffusive timescales that one would really like. At these values of E integrating for even one
diffusive timescale is quite a challenge.

Another particularly interesting set of runs was done by Roberts & Glatzmaier (2001),
who looked at the effect of varying inner core sizes. Rather surprisingly, they found that
a larger inner core tended to yield a less stable field, so exactly the opposite of what one
might have expected if the inner core is supposedly stabilizing the field. A similar result had
previously also been found by Morrison & Fearn (2000), although their model was not fully
three-dimensional. The resolution to this particular paradox is presumably that changing the
inner core also changes the size of the region inside the tangent cylinder, and that the behavior
of the field inside and outside C are often very different. So in these two models the dynamics
inside C presumably favor less stable fields, and this outweighs the potentially stabilizing role
of the inner core itself. This is not necessarily the case though; Sakuraba & Kono (1999) and
Bloxham (2000a) also consider different inner core sizes, and find that it has relatively little
effect.

Following Glatzmaier & Roberts, the next to achieve E = O(10−6) (again with hyper-
viscosities) were Kuang & Bloxham (1997, 1999), see also Kuang (1999). One interesting
aspect of this work is the effect that viscous coupling can have. In particular, in the real
Earth inertial effects should be more important that viscous effects (E being several orders of
magnitude smaller than Ro). In the numerical models, however, reducing Ro is much easier
than reducing E (indeed, one can set Ro ≡ 0). Kuang & Bloxham therefore argued that one
should apply stress-free rather than no-slip boundary conditions, to minimize the effect of the
artificially large viscosity. They found that this has a surprisingly large effect, with stress-
free conditions tending to concentrate the field outside C, but no-slip conditions tending to
concentrate it inside C.

As noted above, Bloxham (2000a) subsequently used this model to explore the effect of
different inner core sizes. Like Glatzmaier et al. (1999), he also considered the influence of
different thermal boundary conditions. However, unlike their study of the resulting rever-
sal statistics, he focused on the much simpler question of whether the field continues to be
dominated by an axial dipole, with all other harmonics averaging to zero on timescales of
a few thousand years. As simple as it sounds, this is quite an important issue, as this so-
called geocentric axial dipole hypothesis is widely used in interpreting paleomagnetic data
(for example, in reconstructing plate tectonic motions). He then found that imposing different
inhomogeneities at the core-mantle boundary could indeed lead to different field structures.
Bloxham (2000b, 2002) further considered the influence of variations in heat flux at the CMB,
this time with a view to understanding aspects of the present-day field. In particular, he found
that some type of inhomogeneities were needed to match the amplitude of the secular varia-
tion, and may also play a role in other features, such as the existence of persistent flux bundles.
See also Kono, Sakuraba & Ishida (2000), and Christensen & Olson (2003).

Finally, the last set of simulations we want to discuss are those of Grote, Busse & Tilgner
(1999, 2000b), see also Busse (2000, 2002a). Unlike some of the previously mentioned re-
sults, the emphasis here was less on trying to reproduce the real Earth as closely as possi-
ble, but rather on exploring more general properties of the field generation process, such as
whether dipolar fields are always preferred over quadrupolar fields. (See, for example, Gub-
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bins & Zhang (1993) for a discussion of the various symmetries allowed by the geodynamo
equations.) Busse et al. then found that there are indeed regions in parameter space where the
field is quadrupolar rather than dipolar. Something as basic as the strong dipole dominance
of the Earth’s field is thus not fully understood. Perhaps even more fascinating, they also
found examples of so-called ‘hemispherical’ dynamos, in which the dipole and quadrupole
components interact in such a way that the field is almost completely confined to just one
hemisphere. These solutions presumably do not apply to the Earth, but again, it is not entirely
clear why not.

To summarize then, numerical geodynamo modeling has progressed to the point where
surprisingly realistic models exist, models that reproduce not only the dominant axial dipole,
but also secondary features like the secular variation. On the other hand, in a slightly different
region in parameter space one can also find solutions radically different from the present-day
Earth. And given that most of the relevant parameters are still many orders of magnitude
removed from real Earth values, it is far too soon to say that the geodynamo problem has been
solved. Indeed, even at Ekman numbers as small as 10−6, it is not clear that something as
basic as the distinction between weak and strong fields has been reached; certainly none of
these models has conclusively demonstrated it.

2.8 Magnetic Instabilities

All of the models discussed in the previous section equilibrate at order one Elsasser numbers,
as we would expect based on the discussion in Sect. 2.3.3 (although once again, none of
them exhibit a clear distinction between weak and strong-field regimes). It is nevertheless
of interest to consider the detailed mechanism whereby the field equilibrates (in a sense, the
specific numerical constant multiplying the basic order-one scaling). Magnetic instabilities
are one possible equilibration mechanism. See also the review by Fearn (1998).

Suppose we take the momentum and induction equations (but for simplicity neglect the
temperature equation), and linearize them about some large-scale field B,

Ro
∂u

∂t
+ 2êz × u = −∇P + (∇× B) × b + (∇× b) × B + E∆u,

∂b

∂t
= ∇× (u × B) + ∆b. (2.71)

The idea behind magnetic instabilities is to ask how large must B become (for some given
spatial structure) before this system will spawn some type of (typically small-scale) instability.
Now, in this linearized system these instabilities would simply grow indefinitely, without any
feedback on B. In the nonlinear regime though, one would have a continual transfer of energy
from the large-scale field B to the smaller-scale b. The suggestion then is that it is this
energy drain that equilibrates the large-scale field. That is, we might expect the amplitude that
emerges from the full system of equations to be close to the critical amplitude that emerges
from these linearized equations. And because these linearized equations are so much simpler
than the original set, one can explore the full range of possibilities in far more detail. For
example, if B is taken to be axisymmetric (as it invariably is, and as befits a ‘large-scale’ field),
the different nonaxisymmetric instability modes decouple, thereby reducing the problem from
3D to 2D. As a result of simplifications like this, the Ekman numbers that can be achieved in
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magnetic instability studies are typically far smaller than in the full simulations, and the true
asymptotic limit can often be reached.

The earliest work on magnetic instabilities was by Malkus (1967) and Acheson (1972),
who considered ideal instabilities of fields of the form B = B(s)êφ, and by Fearn (1984),
who considered resistive instabilities. More general – and more realistic – fields of the form
B = B(s, z)êφ were considered by Fearn & Proctor (1983), Fearn & Weiglhofer (1991), and
Zhang & Fearn (1993), for example. These results suggest that the large-scale field within
the core cannot be much greater than 50 G – in reasonable agreement, incidentally, with the
results of the full simulations.

There are a number of directions in which one can extend these basic studies. For example,
Fearn et al. (1997) included a large-scale differential rotation of the form U = u(s)êφ (that
is, like the geostrophic flow that B itself would induce), and found that it could be either
stabilizing or destabilizing. We note then that not only B, but b also induces a geostrophic
flow. This flow induced by the instability itself is one of the mechanisms that ultimately
equilibrate it, so the fact that its effect can be either stabilizing or destabilizing may be quite
important, since this determines whether the bifurcation is supercritical or subcritical. Indeed,
Hutcheson & Fearn (1996) have suggested that subcritical magnetic instabilities may cause the
entire field to switch to a completely different state. That is, events like reversals or excursions,
for example, may be triggered by magnetic instabilities.

Finally, one might ask why we did not consider magnetic instabilities in Sect. 2.3. That
is, how can we be sure that the modes we obtained there really are convective rather than
magnetic instabilities? The energy equation associated with Eq. (2.71) is

∂

∂t

1
2

∫ (|b|2 + Ro |u|2)dV

=
∫

u · (J × b) dV −
∫ (|∇×b|2 + E|∇×u|2)dV, (2.72)

where J = ∇ × B. That is, magnetic instabilities are really instabilities of the J rather
than the field B – and so the potential fields considered in Sect. 2.3 cannot exhibit magnetic
instabilities at any field strength.

It is nevertheless of interest to ask what might happen if we include the temperature equa-
tion in our system (2.71) after all, thereby yielding a system that allows both convective and
magnetic instabilities. This problem was considered by Zhang (1995), who showed that one
can have a smooth transition from one type of instability to another. In particular, he showed
that unlike the solid line in Fig. 2.6 (left), where R̂ac decreases up to some O(1) Elsasser num-
ber, and increases again thereafter, if B is not a potential field, so that magnetic instabilities
may occur, R̂ac simply decreases monotonically, and eventually even becomes negative. The
physical interpretation of this phenomenon is that in the region where R̂ac > 0, the instability
is primarily convective, and is therefore driving the dynamo. In contrast, in the region where
R̂ac < 0, the instability is primarily magnetic, and is therefore dissipating the field again. On
this view we would thus expect the field to equilibrate at precisely that Elsasser number where
R̂ac = 0. Note though that one obtains a smooth transition from convective to magnetic in-
stabilities only for q = O(1); see Fearn & Proctor (1983) or Zhang & Jones (1996) for the
behavior at small q. Nevertheless, the overall conclusion remains that if the field is too strong,
magnetic instabilities will most likely dissipate it again.
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2.9 Other Planets

The Earth is not the only planet in the solar system to have a magnetic field; most of the
planets (and larger moons) either have a field, or at least show evidence of having had one
in the past. We conclude therefore with a tour through the solar system, noting which bodies
have magnetic fields and which do not, and whether we can understand these results in terms
of the same theoretical framework presented here. See also Connerney (1993), Russell (1993),
Ness (1994), and Stevenson (2003) for summaries of the observational data.

Starting closest to home, the Moon has no large-scale field at present. It does have weak
small-scale fields, of order 10−4 G. It appears also that rocks between 3.2 and 3.9 Gyr old are
particularly strongly magnetized (Runcorn 1994). One suggestion therefore is that the Moon
did have a dynamo back then, but that it switched off some 3 Gyr ago. See, for example,
Stegman et al. (2003) for the most recent lunar dynamo model. As to why it switched off,
there is a ready explanation for that too; since the Moon is so much smaller than the Earth,
its thermal evolution is also much quicker, so its core almost completely solidified long ago,
thereby necessarily switching off any dynamo that may have existed before. (In another few
billion years, the Earth’s core too will freeze completely, and the geodynamo will also switch
off.)

2.9.1 Mercury, Venus and Mars

Turning next to Mercury, things already get considerably more interesting. Although Mercury
was only visited once, by Mariner 10 in 1974/75, that was sufficient to establish that it has a
global field, with a dipole moment of 2 − 5 · 1019 A m2. Or, extrapolating back down to the
surface, we obtain field strengths of around 3·10−3 G. Of course, what we are really interested
in is not the field strength as such, but rather the Elsasser number. Extrapolating not just down
to the surface, but on down to the core (whose radius can be estimated by other means) poses
no problems. Mercury’s rotation rate is also known, namely one revolution every 59 days. The
density ρ and magnetic diffusivity η are not known, but are unlikely to be radically different
from the corresponding values for the Earth. Inserting the numbers, we therefore end up with
an Elsasser number of around 10−4.

What to make of this value then? It seems too small to correspond to the strong-field
regime, but could well be in the weak-field regime. We note in particular that the Ekman
number for Mercury is around 10−12 (assuming again the same viscosity as in the Earth’s
core), so Λ ≈ E1/3 could fit the weak-field regime quite nicely. However, the difficulty then is
to understand why the Earth managed the transition from the weak to the strong-field regime,
but Mercury did not. In particular, one cannot simply postulate that R̂a is less in Mercury,
since that is more likely to shut the dynamo off entirely (via this dynamo catastrophe) than to
switch it to the weak-field regime. Another possibility is that the growth of an inner core has
progressed much further in Mercury than in the Earth – it is considerably smaller, after all,
hence ought to evolve faster. And as we saw above, the relative size of the inner core can have
a significant influence on the field, in a number of important ways. We conclude therefore that
Mercury’s field could conceivably be explained by our theoretical framework here, but there
are certainly a lot of details that still need pinning down.
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Moving out, we next encounter Venus, which was visited by numerous probes, both Soviet
and American. The most recent was Pioneer Venus, which orbited the planet between 1978
and 1992. It found no evidence of an internally generated magnetic field; any field that does
exist could have a dipole moment of at most 4 · 1018 Am2. Again converted to an Elsasser
number, this yields Λ < 10−7. This is so much smaller than the weak-field regime even
that we conclude that Venus does indeed not have a dynamo at all. Note also that while
Venus might be slowly rotating in comparison with the Earth (requiring 243 days/revolution),
in terms of an Ekman number it is still rotating extremely rapidly, with E ≈ 10−12. The
distinction between weak and strong-field regimes should therefore apply to it just as much as
to the Earth or Mercury.

So, why does Venus not have a dynamo? In particular, in terms of size it is the planet
most similar to the Earth, with a radius of 6050 km versus 6370, and an estimated core radius
of ∼ 3000 km versus 3480. Why should the Earth therefore not only have a dynamo, but a
strong field dynamo, whereas Venus has none at all? One suggestion, by Stevenson (1983),
is that Venus has not yet nucleated an inner core, and that thermal convection by itself is not
sufficient to drive a dynamo in this case. The reason why Venus might not yet have an inner
core, even though it is slightly smaller than the Earth, and hence ought to evolve quicker, is –
paradoxically – precisely because it is smaller. In particular, its smaller size means the central
pressure is also less, and the effect of this on the freezing temperature could be sufficient that
its core is still fluid all the way through.

Another point to bear in mind is that the pattern of mantle convection is very different in
Venus than in the Earth. Unlike the Earth, Venus has no plate tectonics; instead, the entire
surface is effectively one single plate (e.g. Schubert, Turcotte & Olson, 2001). This rigid lid
then acts as an insulating blanket covering the convection below, with the result that even
though Venus is smaller than the Earth, it may actually cool slower (which would also be
consistent with it not having an inner core yet). We realize therefore that (i) there is not
necessarily a one-to-one relationship between a planet’s size and the rate at which it cools,
and (ii) in order to understand a planet’s core one must ultimately understand its mantle as
well. That is, up to now we have viewed the mantle merely as an obstacle that prevents us
from seeing the core we are really interested in. We realize now though that the rate at which
the core cools, and hence the vigor of its convection, is ultimately controlled by processes in
the mantle.

Just like Venus, Mars also has no large-scale field, with the results from the Mars Global
Surveyor probe placing an upper bound of 2 ·1018 A m2 on the dipole moment (corresponding
to Λ < 10−8). Like the Moon though, it has small-scale fields, indeed surprisingly strong
ones, occasionally even comparable with the Earth’s surface field. See also Acuña et al. (2001)
for summaries of the data from the MGS mission. We conclude therefore that Mars also had a
dynamo once, but that it switched off just like the Moon’s did (and the reason the small-scale
fields left over today are so much stronger than on the Moon has more to do with the details
of the minerals that got magnetized than the underlying dynamo).

The only difficulty with this explanation is that Mars is bigger than Mercury (although
their cores are believed to be comparable), so it ought to evolve slower, so why has it already
switched off whereas Mercury has not? One suggestion, by Nimmo & Stevenson (2000), again
illustrates the role that the mantle may play in ultimately controlling the core. In particular,
they suggest that the pattern of mantle convection in Mars switched from Earth-like plate
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tectonics to a Venus-like rigid lid. Because this is so much less efficient at removing heat, the
mantle temporarily stops cooling (indeed, it may even heat up slightly, due to the radioactive
trace elements contained in it), so the core stops cooling too, causing the dynamo to switch
off. See also Schubert, Russell & Moore (2000) and Stevenson (2001) for elaborations on this
idea, including details of when this is believed to have happened.

As plausible as it may be, this idea raises even more questions than it answers. For one,
what about Venus? Did it too once have plate tectonics, and hence perhaps a dynamo? Un-
fortunately, Venus is above the Curie temperature even at the surface, so any evidence of such
an ancient dynamo is lost forever. Next, what about Mercury? It has no plate tectonics either,
so why does it have a dynamo whereas Venus and Mars do not? One possibility might be
that when eventually the core does start cooling again, it cools sufficiently quickly that the
dynamo switches back on. And because Mercury is smallest, one might expect this process to
happen first in it. So might Venus and/or Mars have dynamos at some point in the future? In
the case of Mars, its dynamo has been switched off for so long that it seems rather unlikely
that it would suddenly switch back on again, but Venus is certainly a strong candidate for a
future dynamo.

To summarize our tour of the terrestrial planets then, we conclude that while none of them
obviously contradicts our theoretical framework of strong versus weak versus no dynamo,
there is far more to understanding their magnetism than just this framework. In particular, we
recognize that ultimately one cannot understand a planet’s magnetism without understanding
its entire thermal evolution, and that this evolution is not necessarily a one-way process, with
the mantle and core always cooling, and smaller planets always cooling faster than larger ones.

2.9.2 Jupiter’s Moons

Jupiter and its moons have been extensively studied, most recently by the Galileo mission,
which found evidence of internally generated magnetic fields in Ganymede and possibly Io,
but not in Europa and Callisto. See also Showman & Malhotra (1999) and Russell (2000) for
summaries of the Galileo results, and their most likely interpretations.

Considering Ganymede first, its dipole moment is around 1020 A m2, so slightly larger
than Mercury’s. Given that Ganymede is also slightly larger than Mercury, this is perhaps
not too surprising. However, its core is believed to be considerably smaller than Mercury’s
(by a factor of perhaps 2 in radius). The field within the core must therefore be considerably
stronger than in Mercury. The result is that Ganymede’s Elsasser number is around 0.1, so
strong rather than weak.

Turning next to Io, its dipole moment too is slightly larger than Mercury’s, which is some-
what surprising, considering that in size it is closer to the Moon. So why has it not long since
solidified all the way through? The answer is that while Jupiter and its moons may look like a
miniature solar system, there are also important differences. In particular, Jupiter’s moons are
in much tighter orbits than Mercury even, and even allowing for the fact that Jupiter is much
smaller than the Sun. This means that tidal effects are far more important in the Jovian system
than in the solar system. That is, unlike the Moon and the planets, the Galilean satellites (and
especially Io, the innermost one) do not just gradually cool, but are instead continuously being
reheated by tidal friction. Indeed, far from being cold and dead like the Moon, Io is the most
volcanically active body in the solar system.
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However, before concluding that this extra source of heat has generated a true dynamo,
there is an additional complication we need to point out, again caused by the fact that Io orbits
so close to Jupiter. In particular, whereas the background solar magnetic field is very small in
comparison with the Earth’s field, the background Jovian field is almost comparable with Io’s
field. It is thus conceivable that Io is not really acting as a dynamo at all, but is merely am-
plifying this externally imposed field through magnetoconvection. See, for example, Sarson
et al. (1997) for some numerical calculations exploring this issue, and Walker & Hollerbach
(1999) for a study of how the adjustment to Taylor’s constraint is modified in the presence of
a background field.

Finally, what about Europa and Callisto? They may not have internally generated fields,
but both do show a so-called induction response, caused by moving a conductor through a
magnetic field. The field they are moving through is clear, of course, namely this same back-
ground field as in Io, but what is the conductor? Perhaps somewhat surprisingly, it is believed
not to be a metallic core. Callisto is believed not to have a core at all, and Europa’s is too
small (the response is such that the conductor must be quite close to the surface). Instead, in
both cases the conductor is believed to be an ocean, a layer of salty water covering the entire
moon (and covered by ice of course, as the surface temperatures are well below 0◦C). See, for
example, Kivelson et al. (2000).

2.9.3 Jupiter and Saturn

As noted above, Jupiter not only has a magnetic field, this field is strong enough to make
itself felt as far out as Io at least. The origin of this field is believed to be a convection-driven
dynamo, just as in the Earth. Unlike the bodies considered up to now though, the electrically
conducting fluid in this case is not molten iron, but rather metallic hydrogen. Fortunately, the
conductivity can still be estimated, and indeed comes out to be rather similar to that of molten
iron (Nellis 2000). We can therefore again convert the observed dipole moment to an Elsasser
number, which comes out at around 1. Jupiter is therefore also in the strong-field regime.

There are, nevertheless, also a number of differences between Jupiter and the terrestrial
planets, besides just this difference between molten iron versus metallic hydrogen. First,
whereas the density contrast across the Earth’s outer core was no more than 20%, in Jupiter
it varies by perhaps a factor of 4 across the metallic-hydrogen zone. In modelling Jupiter
one should therefore use the anelastic rather than the Boussinesq approximation. Secondly,
the core-mantle boundary in the Earth represents a very abrupt change in terms of both the
mechanical as well as the electromagnetic properties, going from fluid to solid, and from con-
ducting to almost completely insulating. In contrast, in Jupiter there is a much more gradual
transition from metallic to molecular hydrogen, and, of course, no rigid boundary anywhere.
What effect this might have on the details of the dynamo is not known, but should probably
be taken into account as well if one really wished to model Jupiter’s magnetic field.

Saturn was last visited by Voyager 2 in 1981, so we have less data on it than on Jupiter.
Nevertheless, it too has a magnetic field, again believed to originate in a zone of metallic
hydrogen. And again, it is a strong-field dynamo, with an Elsasser number of around 0.1. One
particularly interesting feature about Saturn’s field is how astonishingly closely it is aligned
with the rotation axis. As we saw above, the Earth’s field is aligned to within 11◦, which
we agreed is already too close to be just chance. (Mercury, Jupiter, Ganymede and Io are
similarly closely aligned, making chance alignment even less plausible.) In contrast, Saturn’s
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field is aligned to within 0.1◦. Indeed, the entire field, not just the dipole, appears to be almost
completely axisymmetric. We know from Cowling’s theorem that it cannot be axisymmetric
in the region where it is actually being generated. So why is the external field so strongly
axisymmetric? Stevenson (1982) suggests it has to do with the fact that the metallic hydrogen
region is buried so deep within the planet (because Saturn is considerably less massive than
Jupiter, one must go much deeper to reach the metallization pressure). He then suggests that
differential rotation in the overlying, weakly conducting layers wipes out the nonaxisymmetric
components of the field. However, Love (2000) shows by way of some sample calculations
that differential rotation need not have this effect.

2.9.4 Uranus and Neptune

Uranus and Neptune were each visited only once, by Voyager 2 in 1986 and 1989, respectively.
Both have magnetic fields, with dipole moments of order 1024 A m2 for both. Unlike all the
other planets, their fields are not aligned with their rotation axes, being tilted by 59◦ and 47◦,
respectively. Also, whereas for all the other planets the dipole is rather closely centered on
the planet, for these two it is offset by 0.33 and 0.55 planetary radii, respectively. See, for
example, Holme & Bloxham (1996), who show that these results are indeed robust, and not
just artifacts of the sparseness of the data.

What to make of these very unexpected results? If only one planet had been anomalous,
one would be tempted to say it just happens to be in the middle of a reversal, but two planets
reversing at exactly the same time seems rather implausible. It seems more likely therefore
that they are indeed operating in a fundamentally different mode than all the other planets.
For example, we saw above that in certain regions of parameter space quadrupolar or even
hemispherical dynamos may be preferred (Grote, Busse & Tilgner 1999, 2000b; see also
Grote & Busse 2000), which could certainly explain these very large offsets.

And leaving aside their peculiar spatial structure, are these fields weak or strong? To an-
swer this we again need to know the magnetic diffusivity (and density) of the conducting fluid.
What is that though? In particular, Uranus and Neptune are both too small for metallic hydro-
gen to form, and any iron cores that might exist deep within are certainly far too small. So
what is the conducting fluid? As implausible as it may seem at first, the answer (the only re-
maining possibility) is a mixture of water, ammonia, methane, and various other constituents,
the diffusivity of which has been estimated at around 100 m2/s (Nellis et al. 1997). (For com-
parison, we remember that η ≈ 2 m2/s for molten iron, and O(10) for metallic hydrogen.)
The resulting Elsasser numbers are then perhaps O(10−4) (although extrapolating the fields
of Uranus and Neptune back down into this conducting region is more uncertain than before,
because they are less strongly dipole dominated). We conclude therefore that Uranus and
Neptune are probably in the weak-field regime.

However, given all these various uncertainties, and how different they are from all the
other planets, we cannot really say that we understand either of them. Indeed, that more or less
sums up our overview of planetary dynamos in general: none of them obviously contradicts
the general theoretical framework laid out in the rest of this chapter (for example, none of them
has an Elsasser number greater than one), and here and there we can even make reasonably
plausible arguments as to why a given planet does or does not have a field, but we cannot say
that we definitely understand any of them, not even the Earth.



3 Differential Rotation Theory

The majority of stellar-activity phenomena are magnetic in origin. Differential rotation, merid-
ional flow and stellar winds, however, can also be understood in the context of mean-field
hydrodynamics in stellar convection zones. In stellar convection zones the Schwarzschild
criterion (dS/dr < 0), where S is the specific entropy, is fulfilled. Their temperature strati-
fication is so steep that possible velocity fluctuations grow exponentially and the entire zone
becomes turbulent. Due to the density stratification the turbulence fields are themselves strat-
ified with the radial direction as the preferred direction. If such a turbulence field is subject
to an overall rotation the stellar convection zone must lead to the formation of large-scale
structure. Wasiutynski (1946), Biermann (1951) and Kippenhahn (1963) were the first to find
that differential rotation and meridional flow might be direct consequences of the existence of
rotating anisotropic turbulence. Details of the long history of this concept are presented by
Rüdiger (1989, Chapt. 2).

We should keep in mind that the convection zones in stars of different mass are very
different. In Fig. 3.1 the Sun is shown with its outer convection zone with about 30% extension
in radius (only a few % in mass) together with two sorts of cooler stars and two sorts of
warmer main sequence (MS) stars. The outer convection zones in cooler stars become deeper
and deeper until for M stars the convection zone reaches down to the center. On the other
hand, for A stars the outer convection zone starts to become very thin, but an inner zone
becomes convectively unstable. This inner convection zone for B stars reaches considerable
dimensions.

It thus becomes clear that the level of stellar activity should differ strongly from spectral
type to spectral type. There is, however, the striking fact that the linear depth of the outer
convection zones, at 200,000 km, does not vary too much along the MS. We shall see later
how important the total thickness of a convection zone is, for e.g., the formation of differential
surface rotation or the cycletime of an oscillating dynamo.

3.1 The Solar Rotation

Differential rotation is explained here as turbulence-induced with only a small magnetic con-
tribution. It is certainly unrealistic to expect a solution of the complicated problem of the solar
dynamo without an understanding of the mean-field hydrodynamics. There is indeed no hope
for the stellar dynamo concept if the internal stellar rotation law cannot be predicted or ob-
served (by asteroseismology). Fortunately, the helioseismological inversions yield a detailed
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Figure 3.1: The locations of convection
zones (dS/dr < 0) and radiation zones
(dS/dr > 0) in MS stars of various spec-
tral types. The radii are not to scale. Cour-
tesy P. Charbonneau.

portrait of the internal solar rotation (see Fig. 3.2). The main empirical features of the solar
differential rotation law are

• an equatorial acceleration of about 30% at the surface,
• a strong polar subrotation and weak equatorial superrotation,
• a reduced equator-pole difference in Ω at the lower convection-zone boundary,
• a rigid and slow rotation of the radiative core at least down to 0.2 R� (Couvidat, Garcı́a

& Turck-Chièze 2003)1,
• a clear negative Ω-gradient in the outermost (supergranulation) layer2

(see also Fig. 3.3). A characteristic Taylor–Proudman structure in the equatorial region and a
characteristic disk-like structure in the polar region are indicated by these results (Fig. 3.4). In
midlatitudes the isolines are almost radial (on average). So the Ω-isolines are far from the
Taylor–Proudman geometry that normally results for fast rotation. This fact was called the
‘Taylor number puzzle’ and forms the main challenge for theoretical explanation.

1 an increase of about 15% at higher latitudes below x = 0.4 is reported by Li & Wilson (1998)

2 young spots are rotating faster by about 4% than the solar surface plasma
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Figure 3.2: Left: The solar rotation law in the convection zone as determined by helioseismology
(National Solar Observatory). Right: The rotation profile (3.8) with ω0(x) = 1 and ω2(0.7) = 0,
ω2(1) = −0.04 is rather close to the observations. Note that the observations suggest dω0/dr >∼ 0. See
Paternò (1991).

It might easily be true that the overall surface rotation during the times of the Maunder
minimum differed (slightly) from its present-day profile. Ribes & Nesme-Ribes (1993) found
a rotation rate slower by about 2% at the equator and by about 6% at midlatitudes than at the
present time. The differential rotation was thus stronger than today. The more magnetic the
Sun, the faster and more rigidly its surface rotates (Fig. 3.5).

Figure 3.3: The schematic structure
of the Sun with respect to the rotation
regimes. The tachocline is the tran-
sition region between the regime of
strong latitudinal differential rotation
in the convection zone and the rigid
rotation of the radiative interior. The
unit of the vertical axes is 1Mm =
1000 km.
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Figure 3.4: Isolines of the angular velocity in the outer part of the Sun after Gilman & Howe (2003).
Note that no informations exist for the polar regions. The isolines are radial only in the higher midlati-
tudes.

Figure 3.5: The rotation law in the Maunder minimum (left) and at its end (right). The equatorial
acceleration is stronger than in modern times but the equatorial rotation is slower (Ribes & Nesme-Ribes
1993). Balthasar, Vázquez & Wöhl (1986) could not find similar results for a regular minimum.



3.1 The Solar Rotation 51

3.1.1 Torsional Oscillations

Schrijver & Zwaan (2000), Stix (2002) and Thompson et al. (2003) presented detailed his-
torical and data-based overviews of all phenomena concerning the temporal variations of the
solar rotation law. Besides the small equatorial minimum of the rotation profile, the torsional
oscillations are of particular importance. At any epoch, some latitudinal bands at the surface
are rotating faster and some are rotating slower than the average. At a fixed latitude there is
an oscillation of fast and slow rotation with an 11-year period (see Fig. 3.6). The entire cycle
is repeated approximately every 22 years. The whole pattern migrates at about 2 m/s toward
the equator. Two fast and two slow belts exist in each hemisphere. The most rapidly rotating
zone is always on the equatorial side of the activity belt. The amplitude of the linear velocity
is about 6 m/s.

Figure 3.6: Torsional oscillations derived from Doppler shift measurements. The flow pattern drifts in
22 yr from pole to equator, but at a given location the oscillation time is only 11 yr (Howard & LaBonte
1980, 1983).

Howe, Komm & Hill (2002) showed by helioseismological inversions that the migrating
bands do not exist only at the surface, but extend downward to 60,000 km, i.e. 30% of the
convection zone (Fig. 3.7, left).

An important question in the dynamo theory framework is the possible existence of a polar
branch migrating poleward. Using data between 1996 and 2001 Schou (2001) and Vorontsov
et al. (2002) report the existence of such a zonal band during the rising phase of cycle 23.
According to Vorontsov et al. the high-latitude acceleration around 60◦ seems to reach deep
into the solar convection zone. This is also true for a decelerating flow between both the
reported accelerating flows.

For the bottom of the convection zone Howe et al. (2001) reported another oscillatory
phenomenon. At the equator and up to latitudes of 60◦ there is a rather coherent oscillation
of the rotation rate with a 1.3-year ‘period’ (between 1995 and 2000, see Fig. 3.7, right). The
same value has been found in sunspot data by Krivova & Solanki (2002). Ternullo (2004)
reports the equatorward drift of the sunspot zone as a “sequence of alternating high speed
equatorward phases and stationary or even retrograde (poleward) ones”. The length of the
sequences is about 400–500 days. Also the quasi-two-year oscillations of the surface value of
the poloidal magnetic field reported by Benevolenskaya (1995) may have a very similar origin.
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Figure 3.7: Left: Deviations from the mean rotation profile as a function of date and latitudes close to
the solar surface. Bands of faster (red) and slower (blue) rotation migrate toward the equator in 11 years.
Note the existence of a separate branch at midlatitudes. Right: The 1.3-year fluctuation deep in the
convection zone (x = 0.72) of the angular velocity at the equator (top) and at midlatitudes (bottom).
Data from GONG and MDI. Courtesy R. Howe.

3.1.2 Meridional Flow

By analyzing the statistics of sunspot groups observed at Greenwich, Tuominen (1941, 1961)
found that there is a mean equatorward motion at low latitudes and a poleward motion at
higher latitudes. The order of magnitude, however, was not more than a few m/s. Ward
(1973) favored a mean meridional velocity of less than 1 m/s. In a recent paper Vršnak et
al. (2003) present a similar result. According to Fig. 3.8 the equatorward motion (of order
5 m/s) is restricted to latitudes less than 10◦, while the poleward motion only reaches up to
40◦. According to this result a new, third cell has been found in the area north of the butterfly
diagram where the flow goes toward the equator. If correct, this finding will have enormous
consequences for the theory of solar dynamo.

An important step forward was the helioseismological finding of Braun & Fan (1998) of
a poleward meridional flow of order 10 m/s. The situation, however, becomes more compli-
cated still for the meridional flows derived by Haber et al. (2002). The flow in the surface
layers is given for −45◦ for 1997–2001, with an amplitude of about 20–30 m/s. The northern
hemisphere is similar, but only for 1997. In 1999–2001 the poleward flow only exists in the
outermost layer. Beneath this surface layer the flow in the northern hemisphere is toward the
equator. If this is true then we have to accept a much higher degree of randomness even for
the large-scale flows. A more smooth behavior of the meridional flow in the supergranulation
layer has been derived by Zhao & Kosovichev (2004, see Fig. 3.9).

The question whether there is an equatorward backflow deep in the convection zone has
been considered by Hathaway et al. (2003). From the sunspot data since 1874 they found
an anticorrelation between the drift rate of the center of the butterfly diagram and the cycle
length. The faster the drift of the butterfly diagram the shorter are the cycles (Fig. 3.10). With
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Figure 3.8: The meridional flow at the solar surface vs. the solar latitude. It consists of three cells. The
middle cell flows poleward while the smaller ones are directed toward the equator. For details about the
other given flow profiles see Vršnak et al. (2003). The dotted vertical line marks the mean latitude of the
sunspots in the considered period.

such statistics an amplitude of 1.2 m/s for the meridional backflow velocity at the bottom of
the convection zone toward the equator has been derived.

3.1.3 Ward’s Correlation

We turn next to the correlation between longitudinal and latitudinal fluctuations, i.e. Qθφ =
〈u′

θu
′
φ〉. The latter is also known as the ‘horizontal Reynolds stress’. In order to introduce a

suitable normalization we have to keep in mind that Qθφ

• vanishes unless the star rotates, hence it must vanish for Ω → 0,
• is an axial expression that changes sign if Ω → −Ω, hence it must be odd in Ω,
• must vanish at the equator if, as we assume, the turbulence pattern has equatorial sym-

metry,
• must vanish at the poles if the mean quantities are assumed to be axisymmetric.

It thus seems reasonable to introduce a function w(θ) defined by

Qθφ = νTΩ� cos θ sin2 θ w(θ). (3.1)

The product νTΩ� is the scalar quantity with the correct dimensions. Ward (1965) was the
first to present clear evidence for a positive correlation, namely

Qθφ � 2 · 107 cm2/s2. (3.2)

He considered the proper motion of sunspot groups, the faster of which tend to move toward
the equator. This result indicates that even at the surface of the Sun there must be more
than a simple Boussinesq stress-strain relation, Qθφ = −νT sin θ∂Ω/∂θ. Gilman & Howard
(1984) extracted the positions of individual spots and groups of spots from a 62-year period
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Figure 3.9: The helioseismological results of Zhao & Kosovichev (2004) for the meridional flow in the
solar surface layer between 1996 (bottom) and 2002 (top) for both the hemispheres. The flow is always
polewards but it appears to exist in the surface (∼supergranulation) layer only.

and obtained a cross-correlation with the same sign and of similar magnitude as Ward. The
result has also been confirmed by Balthasar, Vázquez & Wöhl (1986). However, for small
solitary spots, which should especially be almost passive tracers, the result is considerably
less (see also Ribes 1986). For old sunspots Nesme-Ribes et al. (1993) even find a (rather
small) negative horizontal Reynolds stress.

A recent statistical analysis of bright coronal points by Vršnak et al. (2003) leads to clearer
results. The order of the correlation is 107 cm2/s2, and indeed, it becomes very small at the
equator (Fig. 3.11). The main contribution to the positive correlation comes from the youngest
structures. If the whole sample of observations is averaged the total cross-correlation is very
small. For comparison, Fig. 3.11 also shows the results of Ward and Gilman & Howard.
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Figure 3.10: The anticorre-
lation of the drift velocity
of the centroid of the but-
terfly diagram and the cycle
length (in months) for a 128-
year dataset from Hathaway
et al. (2003).

Figure 3.11: The horizontal cross-correlation (3.1) is never negative. Left: Nesme-Ribes et al. (1993),
note the zero-result for the Meudon data. The vertical axis is the latitude. Right: Results of Vršnak et
al. (2003) in comparison to those of Ward (1965) and Gilman & Howard (1984). Change the sign at the
horizontal axis for comparison with (3.1), note that the latitude is now the horizontal axis.

3.1.4 Stellar Observations

In the search for stellar surface differential rotation, chromospheric activity has been moni-
tored for more than two decades. Surprisingly enough, there is not yet a very clear picture.
For example, the rotation pattern of the solar-type star HD 114710 might easily be reversed
compared with that of the Sun – under the assumption that the spot migration is toward the
equator (Donahue & Baliunas 1992). The same is true for the single K1V star HD 10476
(Donahue 1996). Oláh, Jurcsik & Strassmeier (2003) also report an antisolar rotation law for
the spectroscopic binary UZ Lib with δΩ � −0.003 day−1. The clear majority of rotation
laws, however, lead to the characteristic equatorial acceleration known from the Sun. In order
to compare the various observational results a relation δΩlat/Ω ∝ Ω−n′

or

δΩlat ∝ Ωn′′
(3.3)
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Table 3.1: The available exponents in the relation (3.3) from different datasets.

Hall Henry et al. Donahue et al. Reiners/Schmitt Messina/Guinan

n′ 0.85 0.76 0.30 0.34 0.42
n′′ = 1 − n′ 0.15 0.24 0.70 0.66 0.58

with n′′ = 1 − n′ is introduced. For positive values n′ of order unity the equator-pole differ-
ence δΩ basically does not depend on the global rotation rate Ω. Note that the shearing action
leading to the toroidal fields in the dynamo theory depends on δΩ rather than on δΩ/Ω.

Photometry and also CaII observations led to the first findings regarding the coefficient n′

(Table 3.1). The bulk of the data is summarized by Hall (1991). Henry et al. (1995), Donahue,
Saar & Baliunas (1996), Messina & Guinan (2003) and Reiners & Schmitt (2003a). According
to these observations the equator-pole difference of the rotation rate increases (slightly) with
the rotation rate or – which amounts to the same – decreases with the rotation period3. On
the other hand, the single stars with well-known rotational characteristics show more or less
the same equator-pole difference for slow and fast rotation (Fig. 3.12). Recent observations
of AB Dor (Donati & CollierCameron 1997) and PZ Tel (Barnes et al. 2000) seem to confirm
this surprising result, where in all cases the value 0.06 day−1 is approached. As described
by CollierCameron (2002) these findings resulted from the tracking of starspots over several
stellar rotations by Doppler imaging to find frequency differences for features at different
latitudes. The Doppler-imaging technique for rotating stars and all the available Doppler
images of cool stars have been reviewed by Strassmeier (2002).

The rotation laws are not permanent in time. A weak (strong) time dependence of the
equator-pole difference of the surface rotation rate of AB Dor (LQ Hya) has been reported by
Donati, CollierCameron & Petit (2003) on time scales of a few years. Such time scales are
not incompatible with the possible photometry-cycle of 7 years listed by Saar & Brandenburg
(1999) for LQ Hya4 but Donati et al. (2003) do not find any clear indication for a magnetic-
cycle shorter than (say) 20 years.

Many of the stars with observed antisolar rotation laws are RS CVn binaries. There are,
however, also well-established examples of RS CVn stars with solar-type rotation laws, e.g.
RS CVn itself (Rodonò, Lanza & Catalano 1995) and λ And (Henry et al. 1995). See also
the very detailed review of all the current data by Strassmeier (2004). At first sight one would
expect that obviously the function H (Eq. (3.21) below) might also have negative values, yet
we never encounter this situation. On the other hand, if the meridional flow is very strong,
then the solution (3.11) appears with Ω = const. along the streamlines of the meridional flow.
An antisolar rotation low is then the immediate consequence (as s(pole) < s(equator), see
Rüdiger 1989).

3 for rapidly rotating F-stars the differential rotation appears to become less (Reiners & Schmitt 2003b)

4 for AB Dor a cycletime of 5.3 years has been announced by Amado et al. (2001)
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Figure 3.12: δΩlat (in day−1) vs. the rotation period (in days). Only for a few young, rapidly rotating
stars do we have detailed information about the rotation law at the surface. AB Dor, PZ Tel and LQ Hya
are K0 dwarfs, LQ Lup= RXJ1508.6-4423 is a post-TTS (Donati et al. 2000). For LQ Hya a very strong
temporal variation of the equator-pole difference has been seen by Donati et al. (2003).

3.2 Angular Momentum Transport in Convection Zones

The theory of nonuniform rotation is mainly the theory of angular momentum conservation.
Including meridional flow, Reynolds stress and Lorentz force it reads

∂

∂t
(ρs2Ω) + ∇ ·

{
ρs2Ωum + ρs〈u′

φu′〉 − s

µ0

(
B̄φB̄ + 〈B′

φB′〉)} = 0, (3.4)

where Ω is the angular velocity and s = r sin θ the distance to the axis, B̄ and ū are the
ensemble averages of the magnetic field and fluid velocity, and B′ and u′ are their fluctuating
parts. This equation has often been used to analyze the effect of the meridional flow um. The
Lorentz force is ignored and the Reynolds stress is parameterized by the Boussinesq relation

Qij ≡ 〈u′
i(x, t)u′

j(x, t)〉 = · · · − νT(ūi,j + ūj,i). (3.5)

The coefficient νT is called the eddy viscosity. Its determination, for conditions in which the
large-scale flow and a magnetic field are influential, is one of the key problems of turbulence
theory. The resulting equation describes the angular momentum transport in accordance with

∇ ·
(

ρs2Ωum − ρs2νT∇Ω

)
= 0. (3.6)

If ∇· (ρum) = 0 a stream function A with ρum = ∇× (Aêφ/s) can be introduced (êφ being
the unit vector in the φ-direction). Since then um · ∇A = 0, the streamlines are A = const.
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In spherical coordinates the components of the meridional flow are

um
r =

1
x2 sin θρ

∂A

∂θ
, um

θ = − 1
x sin θρ

∂A

∂x
, (3.7)

where x = r/R is the fractional radius. Since the radial drift does not cross the boundaries of
the convection zone at x = 1 and x = xin (say), we have A(xin) = A(1) = 0. The stream
function may be given by the Legendre function expansion A =

∑
An(x)P 1

n sin θ with n
even. For the angular velocity the series expansion

Ω = Ω�
∑

n=1,3,...

ωn−1(x)
P 1

n

sin θ
� Ω�

(
ω0(x) +

3ω2(x)
2

(
5 cos2 θ − 1

)
+ . . .

)
(3.8)

is used, so that at leading order the surface equator-pole difference is

δΩlat

Ω�
=

Ωeq − Ωpole

Ω�
� −15

2
ω2(1). (3.9)

From Eq. (3.6) one obtains a simple differential equation for ω2 and A2 resulting in the relation

Ωeq − Ωpole ∼
1∫

xin

ξ3A2(ξ)dξ, (3.10)

where xin = rin/R, with rin the inner radius of the convection zone (see Rüdiger 1989). The
equator is thus accelerated if A2 > 0, and decelerated if A2 < 0. Positive A2 describes a
meridional flow pattern with clockwise streaming, as seen in the first quadrant of the merid-
ional cross section of the convection zone in Fig. 3.13. Equation (3.10) gives the most basic
and most elementary discovery of the early theory (starting with Zöllner 1881). It shows how
a meridional flow as shown in Fig. 3.13 can produce a rotation law with accelerated equator.
Kippenhahn (1963) demonstrated how a radial rotation law with positive dΩ/dr leads to a
clockwise meridional flow of the given geometry. Obviously the flow gains energy at AB
from the centrifugal force. The net energy is positive (and the flow can be maintained) if the
outer rotation rate exceeds the inner rotation rate. However, as shown by Köhler (1970), the
resulting isolines of the angular velocity always end up being nearly parallel to the rotation
axis (Taylor–Proudman theorem).

For very rapid flow the rotation law is more complex. Viscosity is then unable to balance
the Coriolis force, and the angular velocity must adjust itself to satisfy

ρum · ∇(s2Ω) = 0. (3.11)

This relation requires the angular momentum to be constant on streamlines, i.e. s2Ω = f(A).
Characteristic of this limit are therefore large values of Ω near the polar axis! The appear-
ance of such a polar vortex is independent of the sense of the meridional circulation (Köhler
1969). It is, however, true that for counterclockwise flow patterns (the bottom drift is toward
the equator) the polar acceleration (‘vortex’) requires much lower Reynolds numbers of the
meridional flow rather than clockwise flows. In the case given in Sect. 5.2 in Rüdiger (1989)
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Figure 3.13: The simplest form of merid-
ional circulation in the convection zone.
The flow gains energy along A to B from
the centrifugal force and loses energy from
B to A. A clockwise flow can thus exist for
positive dΩ/dr.

only surface drifts of 2 m/s were enough for the generation of polar acceleration. The main
condition for this phenomenon (see Sect. 3.1.4) is that the meridional flow is prescribed from
some reasons and is not the result of the internal mean-field hydrodynamics.

There is another important property of the Reynolds equation,

ρ
Du

Dt
= −∇P̄ −∇ · ρQ − ρ∇ψ (3.12)

with ψ as the gravitational potential. This gives for the stationary solution the relation

D(um) = s
dΩ2

dz
+

1
ρ̄2

(∇P̄ ×∇ρ̄)φ, (3.13)

in which the left-hand side represents the damping of meridional flow by eddy viscosity5. Two
sources of flow obviously exist: differential rotation and deformation. The flow resulting from
nonparallel ∇P and ∇ρ is called the ‘barocline’ or the thermal wind.

When Eq. (3.13) is written in dimensionless units, the first term on the RHS acquires the
Taylor number

Ta =
(

2ΩR2

νT

)2

. (3.14)

If this number is very large Eqs. (3.11) and (3.13) are simultaneously satisfied by

um = 0 , Ω = Ω(s). (3.15)

Cylindrical isorotation contours are thus the immediate consequence of large Coriolis force
and centrifugal forces6. The Taylor number for the Sun, Ta ∼ 107, is large enough to predict
the Ω-contours as cylindrical. Several simulations also led to this result (Kippenhahn 1963,
Köhler 1970, Gilman 1977, Brandenburg et al. 1991, Miesch et al. 2000, Brun & Toomre
2002). The helioseismic observations, however, revealed that such isorotation contours only

5 D is a simple but longwinded operator of 3rd order
6 the relation leading to the Taylor–Proudman theorem for ∇ · u = 0 is ∇× (Ω × u) ≡ −Ωdu/dz = 0
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exist in the equatorial region (Fig. 3.4). We call the problem of resolving this striking contra-
diction the ‘Taylor number puzzle’.

If only the contribution to the angular momentum balance due to turbulence is considered,
Eq. (3.6) changes to

∂

∂xi
(ρ̄sQiφ) = 0. (3.16)

The one-point correlation tensor Qij may be divided into several parts, i.e.

Qij = · · · + Qν
ij + QΛ

ij (3.17)

with Qν as the diffusive part Qν
ij = −Nijklūk,l, where the viscosity tensor N provides the

proportionality factors in the stress-strain relation. The remaining part, QΛ, does not include
any spatial derivatives. It represents any nondiffusive transport of angular momentum by the
turbulence (the ‘Λ-effect’). Equations (3.16) and (3.17) imply that the differential rotation is
maintained by a balance between the damping and driving by the turbulent flow.

According to Eq. (3.16) the turbulence-generated contribution to the angular momentum
transport is described by the components Qrφ and Qθφ of the one-point correlation tensor.
This tensor is a symmetric one by definition. Its cross-correlations Qrφ and Qθφ can only
exist if the turbulence rotates. In this case one can formulate

QΛ
ij = ΛijkΩk (3.18)

with the Λ-tensor symmetric in i and j. The latter property excludes relations such as Λijk ∝
εijk though the Λ-tensor must contain the ε-tensor in order to be a pseudotensor. However, if
an additional preferred direction g exists it is indeed possible to construct a tensor, i.e.

Λijk = A(εikpgj + εjkpgi)gp (3.19)

that fulfills all the required conditions. The tensor is symmetric in i and j, it is a pseudotensor
and it is even in the vector g, i.e. it is invariant against the transformation g → −g. Another
possibility is Λijk = B(g · Ω)(εikpΩj + εjkpΩi)gp that again is invariant for g → −g but
is of second order in Ω so that it does not exist for slow rotation. The tensors describe the
interaction of a global rotation and anisotropic turbulence. One finds for the off-diagonal
components of Qij the expressions

QΛ
rφ ≡ ΛV Ω sin θ = (A + BΩ2 cos2 θ) sin θ,

QΛ
θφ ≡ ΛHΩ cos θ = −BΩ2 sin2 θ cos θ. (3.20)

If they are normalized with the eddy viscosity then

QΛ
rφ = νTΩV sin θ = νTΩ(V (0) + V (1) sin2 θ + . . . ) sin θ,

QΛ
θφ = νTΩH cos θ = νTΩ(H(1) + H(2) sin2 θ + . . . ) sin2 θ cos θ. (3.21)

The first treatments (Wasiutynski 1946, Biermann 1951, Kippenhahn 1963, Busse 1970) were
restricted to the case of slow rotation. Only the radial Λ-effect survives in this limit while
QΛ

θφ = 0. The Sun is not, however, a slow rotator. The Coriolis number, Ω∗ = 2τcorrΩ, is
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larger than unity for the solar convection (Durney & Latour 1978). The same is true for all
single, cool MS stars.

When the rotation is not slow, a horizontal flux QΛ
θφ also exists. Pidatella et al. (1986)

developed models to compare the efficiency of meridional flow and Reynolds stresses in gen-
erating the differential rotation. They found the Λ-effect is a more powerful generator. Many
other indications confirm this finding (Durney & Spruit 1979, Kitchatinov 1986, Rüdiger &
Tuominen 1990, Canuto, Minotti & Schilling 1994).

For slow rotation the zonal components of the one-point correlation tensor are simply

Qrφ = −νTr sin θ
∂Ω

∂r
+ νTV (0) sin θΩ, Qθφ = −νT sin θ

∂Ω

∂θ
. (3.22)

Insertion of (3.22) into Eq. (3.16) leads to the differential equation

1
νT

∂

∂x

{
ρx3

(
νTx

∂Ω

∂x
− νTV (0)Ω

)}
= − 1

sin3 θ

∂

∂θ

(
sin3 θ

∂Ω

∂θ

)
(3.23)

which must be solved with the stress-free boundary conditions Qrφ = 0 at x = xin, 1. Under
the conditions that νT, ρ and V (0) do not depend on latitude one can show that the resulting
rotation law also does not depend on latitude. The general solution of Eq. (3.23) reads

Ω = Ω�exp

x∫
1

V (0)(x′)
dx′

x′ . (3.24)

This solution satisfies the stress-free condition not only at the outer boundary but everywhere
in the solar convection zone. The angular momentum transport vanishes everywhere, but
the sign of its nondiffusive part determines the sign of the radial gradient of Ω. Positive
V (0) generate an angular velocity that increases outward (‘superrotation’) and negative V (0)

generate one that increases inward (‘subrotation’). Indeed, it seems that the latter situation
is realized in the upper layers of the solar convection zone, since observational evidence has
indicated that just beneath the surface the radial gradient is

d log Ω

d log x
� −1.4. (3.25)

The observations can be explained by the existence of a negative V (0) of order unity.
Provided the functions V and H are given, one can use them to compute the rotation

law with the eddy viscosity as a free parameter that can be fixed by comparison with the
observations. The observed slope (3.25) only varies slightly with latitude (Fig. 3.2, left). In
terms of the series development (3.8) we have ω′

0 � −1.4. In fact, the boundary condition
Qrφ = 0 for x = 1 is already enough to find the eddy viscosity, i.e.

ν̃
dω0

dx

∣∣∣∣
1

= V0, ν̃
dω2

dx

∣∣∣∣
1

= V2, (3.26)

where Vn are now the components of the function V expanded in terms of orthogonal polyno-
mials, i.e. V0 � V (0) + 0.8V (1) + 0.069V (2) and V2 � V (1) (see Rüdiger 1989).
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If the coefficients V (l) are known (from numerical simulations) we obtain ν̃ = V0/ω′
0 if

the eddy viscosity is written as νT = ν̃u2
T/Ω�, with the rms turbulence intensity

uT =
√
〈u′2〉. (3.27)

In Rüdiger, Küker & Chan (2003) the simulations of Chan (2001) are used as the data source
for the angular momentum transport. The expressions are normalized in the sense Qrφ ∝
V u2

T and Qθφ ∝ Hu2
T, so that V and H also denote the correlation coefficients. From the

simulations the coefficients (3.21)1 for V become V (0) = −0.3, V (1) = 0.19, V (2) =
0.02, so that V0 = −0.15, and the observed negative gradient of the angular velocity in the
supergranulation layer can be explained with ν̃ = 0.11. With uT � 200 m/s a relatively large
eddy viscosity of about νT � 1013 cm2/s is found.

Regarding the series expansion (3.8) we find a striking peculiarity of the function ω0. The
solar rotation law can be well described by the simple properties

ω0(xin) � ω0(1), ω2(xin) = ω4(xin) = · · · � 0. (3.28)

For the angular momentum expression we find

J = R2

∫
ρx2 sin2 θΩ(x, θ)dx = 4πR2Ω�

1∫
xin

ρx4ω0(x)dx � 4πR2Ω�

1∫
xin

ρx4dx,

while the higher-order terms in Eq. (3.8) do not contribute. The property (3.28) can thus be
reformulated so that the angular momentum of the convection zone should be the same as if it
rotated rigidly with the interior.

The radial rotation law ω0 is also exceptional insofar as conservation of angular momen-
tum allows a radial integration, with the result

dω0

dx
=

(
V (0) +

4
5
V (1)

)
ω0

x
− 6A2

5ρx2νTR
. (3.29)

Obviously, the Λ-effect does not produce radial differential rotation if V (0) + 0.8V (1) � 0,
i.e. if V (0) and V (1) have opposite signs. Meridional flows toward the equator at the bottom
of the convection zone and toward the pole at the surface have negative A2. In this case the
meridional circulation produces a positive dω0/dx at midlatitudes, which seems to be visible
in Fig. 3.2. Here the meridional flow fulfills the restrictions of the Taylor–Proudman theorem,
which for small viscosity requires the Ω-isolines to be parallel to the rotation axis.

Equation (3.16) without meridional flow and magnetic field can be solved analytically. It
takes the form

∂

∂x

(
x4 ∂Ω

∂x

)
+

x2

sin3 θ

∂

∂θ

(
sin3 θ

∂Ω

∂θ

)
=

∂

∂x
(x3V Ω) +

x2

sin3 θ

∂

∂θ
(H cos θ sin2 θΩ). (3.30)

This equation is highly nonlinear in Ω because V and H depend on Ω. For slow rotation,
however, the functions V and H lose their Ω-dependence. In this case the leading term on the
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RHS of Eq. (3.30) contains combinations such as V (Ω�)Ω�, which provide the inhomoge-
neous part of a differential equation for Ω. Its solution yields the expression

Ω(1, θ)
Ω�

� C +
1
2

∑
l=1

(
dV (l) +

H(l)

l

)
sin2l θ (3.31)

for the surface rotation law, if the convection zone is sufficiently shallow (d = 1 − xin 	 1).
If Ω� denotes the true value of the angular velocity on the polar axis, C is unity. The overall
differential rotation is then given by

δΩlat = Ωeq(1)−Ωpole(1) � 1
2

∑
l=1

(
dV (l) +

H(l)

l

)
Ω� � 1

2

(
dV (1) + H(1)

)
Ω�.

(3.32)

The absence of the density gradient here suggests that it does not have a strong influence on
the rotation profile. One can formally produce the observed equatorial acceleration from just
a single positive mode provided only that l ≥ 1.

A similar procedure applied to the radial differences of the rotation coefficients leads to

Ω(1) − Ω(xin) � d Ω�
∑
l=0

V (l) sin2l θ � d Ω�V (θ). (3.33)

This difference vanishes for d → 0, which, on the other hand, according to (3.32) is not true
for the difference in the latitudinal rotation rate. The main surprise of the helioseismological
results, i.e. that the radial gradients are much smaller than the latitudinal gradients, can now
be translated by these equations. Let us write out Eq. (3.33) for both the pole and the equator,
i.e.

ωpole(1) − ωpole(xin) � d · V (0) � d · Vpole,

ωeq(1) − ωeq(xin) � d · Veq. (3.34)

Hence, the rather flat rotation profile beneath the solar equator can be explained with small
V at the equator, while the strong subrotation along the rotation axis indicates large negative
values of V for θ = 0◦ and 180◦. The following conclusions are therefore suggested

(i) equatorial acceleration requires the sum (3.32) to be positive. Positive V (l) and/or posi-
tive (‘equatorward’) H(l) are thus necessary for equatorial acceleration,

(ii) the radial differences of Ω at a given latitude θ reflect the value of V (θ). From the
observations, Vpole must be negative and Veq must be zero or slightly positive.

3.2.1 The Taylor Number Puzzle

Consider a rotating turbulent shell with stress-free boundaries. The correlation time of the
turbulence may be so short that only the term V (0) exists of the Λ-effect so that Eq. (3.22)
holds. Then in the hydrodynamic equation (3.12) the velocity vector is normalized with νT/R,
so that apart from the normalized V (0) only the Taylor number Ta occurs. The solution of this
problem is given by Brandenburg et al. (1991) for V (0) = 1 and various Ta. As shown in Fig. 1
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Ta Ωeq/Ω0 δΩpole/Ωeq Re

102 1.1 0.3 ∼ 0
104 1.2 0.2 1.3
106 1.3 0.03 5.2
108 1.3 0.01 16

Table 3.2: Internal rotation law characteristics for a
model with fixed Λ-effect but increasing Taylor num-
ber. The isolines of angular velocity become more and
more cylindrical. Re = umR/ν denotes the Reynolds
number of the meridional flow. From Brandenburg et
al. (1991).

of Brandenburg et al., for increasing Ta the Ω-isolines become more and more cylindrical,
with ∂Ω/∂r > 0 at the equator and ∂Ω/∂r � 0 at the pole. The numbers are given in
Table 3.2. Independent of the Taylor number we always have the same superrotation of the
equator. However, for increasing Ta the Ω-difference at the pole strongly decreases. One finds
equatorial acceleration and polar deceleration. The Reynolds number of the (equatorward)
meridional flow increases, but much slower than the Taylor number does. This means that for
smaller and smaller eddy viscosity the meridional flow vanishes. When the isolines of Ω lie
on cylinders the centrifugal force can always be expressed as the gradient of a potential, so
that it can be balanced by the pressure gradient alone, without any circulation. As shown in
Table 3.2 the Reynolds number of the flow apparently scales as Ta0.25, hence um ∝ √

ν. For
small viscosity the meridional drift vanishes just as it does for very large viscosities7.

Spherical 3D models by Gilman (1977), in which differential rotation is automatically
generated by Reynolds stresses from the large-scale thermal convection, show cylindrical Ω
contours in lower latitudes. Equatorial acceleration occurs only if the Rayleigh number is not
too large, otherwise the profile at lower latitudes is reversed. The Taylor number in Gilman’s
models corresponds to our definition to 6 · 107. The meridional circulation in this model is
always poleward; in lower latitudes the results for the angular velocity are in approximate
agreement with ours.

The Taylor–Proudman structure of the flow pattern for high Taylor number is unavoid-
able for rapidly rotating, incompressible convection. This finding also holds for the more
complicated structure of the Λ-effect (‘Taylor number puzzle’). It is only the anisotropy of
the convective heat transport that prevents the realization of the Taylor–Proudman state. The
anisotropy produces a latitudinal temperature variation, with warm poles and cool equator.
The resulting circulation opposes the meridional flow driven by the centrifugal force (Kitchati-
nov & Rüdiger 1995).

3.2.2 The Λ-Effect

Correctly defining the correlation tensor Qij through which the turbulent motions influence
the mean flow is of primary importance in mean-field hydrodynamics. Only anisotropic and/or
inhomogeneous turbulence under the influence of rotation can produce a Λ-effect. Both effects
are included in the linearized equation of motion,

∂m

∂t
+ ∇P ′ −∇π′ + 2 Ω × m = f ′. (3.35)

7 Köhler (1970) finds a maximum of the meridional flow velocity for Ta � 3 · 107
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Here m = ρu′ is the fluctuating momentum density, f ′ is the random body force driving the
turbulence, P ′ is the fluctuating pressure and π′ the viscous stress tensor

π′
ij = ρνt(u′

i,j + u′
j,i) + ρµt∇ · u′ · δij . (3.36)

The scalar coefficients νt and µt are due to the action of the small-scale background turbulence
due to the action of smaller-scaled instabilities. They are assumed to be independent of the
angular velocity. This implies that the background turbulence is short-lived enough to be
insensitive to the Coriolis forces.

We assume the fluid to be anelastic, ∇ · m = 0. Rewriting π′ in terms of m one obtains
π′

ij = νt (mj,i + mi,j − Gimj − Gjmi) − µt(G · m)δij with

G = ∇ log ρ. (3.37)

All our derivations belong to the quasilinear approximation in which the linearized equations
for fluctuating fields are applied to derive the second-order correlations of these fields. We
assume the spatial scales of the fluctuating fields to be small compared to that of the mean
fields.

It is convenient to use Fourier transforms, which are introduced according to

m(x, t) =
∫

m̂(k, ω)ei(k·x−ωt) dk dω . (3.38)

The pressure will be eliminated with the condition ∇ · m = 0. The quantities G and Gij ≡
∂2 log ρ/∂xi∂xj must be considered as spatially uniform.

As usual now the ‘original turbulence’ m̂(0) is introduced, which is defined as which that
the force f ′ would produce in a nonrotating fluid. Then

m̂i(k, ω) =
[
Dij − iν (G · k)

−iω + νtk2
Dip (Dpj − δpj)

]
m̂

(0)
j (k, ω), (3.39)

where

Dij =
(

δij +
(2k◦ · Ω)
−iω + νtk2

εijpk
◦
p

) / (
1 +

(2k◦ · Ω)2

(−iω + νtk2)2

)
(3.40)

and k◦ = k/k is a unit vector. The next step in the calculation produces the expression for
m̂ valid to the second order in the scale-ratio. However, we shall not write out the rather
complicated results (see Kitchatinov & Rüdiger 1993). In Sect. 4.2.2 the complete tensor is
given up to the first order in the scale-ratio.

Equation (3.39) expresses the momentum density in terms of the nonrotating turbulence.
It remains to define m̂(0). This is based on the application of the double-Fourier method of
Roberts & Soward (1975) to handle the large-scale inhomogeneity in space, i.e.

〈m(0)
i (x, t)m(0)

j (x + ξ, t + τ )〉 =
∫

M̂
(0)
ij (k, κ, ω)eiκ·xei((κ/2+k)ξ−ωτ) dk dκ dω

with

M̂
(0)
ij =

Ê(k, ω, κ)
16πk2

[
δij −

(
1 +

κ2

4k2

)
k◦

i k◦
j +

1
2k2

(κikj − κjki) +
κiκj

4k2

]
, (3.41)
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where k and κ are the wave vectors for the small and large scales (Kitchatinov 1987). The
original turbulence will be assumed to be statistically steady but not homogeneous. If only the
linear terms in κ are considered in Eq. (3.41), then the random field is locally isotropic, i.e.
〈m(0)

i (x, t)m(0)
j (x, t)〉 = 〈m(0)2〉δij/3, but the gradient of 〈m(0)2〉 does not vanish.

Again the quantity Ê(k, ω, κ) is the Fourier transform of the local spectrum E(k, ω, x),
i.e.

E(k, ω, x) =
∫

eiκ·xÊ(k, ω, κ) dκ , 〈m(0)2〉 =

∞∫
0

∞∫
−∞

E(k, ω, x)dk dω. (3.42)

For homogeneous turbulence it is simply Ê = m2δ(κ). Due to the inhomogeneities of both
the turbulence intensity and density the turbulence field

〈u′2
⊥〉 − 〈u′2

‖ 〉 �
1

8ρ2

d2

dz2

(
�2corru

2
Tρ2

)
(3.43)

is anisotropic on large scales, where ⊥ and ‖ are the horizontal and the vertical direction,
and �corr is the correlation length of the turbulent motions. As long as uT�corr ≈ const.,
the density profile ρ(z) determines the sign of (3.43). One can compute it with a standard
convection zone model. It is positive in the upper part of the convection zone, hence the
turbulence proves to be horizontal there but this effect is small. In the bottom layers the
behavior of the turbulence is strictly of the vertical type (Fig. 3.14).

Figure 3.14: The normalized
anisotropy excess (3.43) of the
turbulence model (3.41) taken in
a solar convection zone model
by Stix (1989). Note that the
horizontal velocity component
dominates in the upper part while
the vertical velocity component
dominates in the lower part.

The influence of rotation is known to enable inhomogeneous and/or anisotropic turbulence
to transport angular momentum even for rigid rotation. The angular momentum fluxes are
proportional to that part of the velocity correlation tensor that is an odd function of the angular
velocity but even in κ. Application of the turbulence model (3.41) provides expressions of the
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form

V (0) =

∞∫
0

∞∫
−∞

(
S(I1 − I2) + S1I3

) dk dω

ω2 + ν2k4
,

V (1) = H(1) =

∞∫
0

∞∫
−∞

(
S I2 + S1I4

) dk dω

ω2 + ν2k4
, (3.44)

depending on stratification characteristics such as S = rρ−2 ∂/∂r(r−1 ∂E/∂r). The kernels
In are rather complicated nonlinear functions of the angular velocity. In the slow-rotation
limit they simplify to expressions like I1 = (1/30)(ν2k4 +5ω2)/(ν2k4 +ω2) and I2 = I3 =
In = 0.

In the slow-rotation limit only V (0) exists, so that the Λ-effect transports the angular mo-
mentum only along the radius. In slowly rotating stars one therefore expects the radial profile
of the angular velocity to be much steeper than the latitudinal profile.

For rapid rotation only

I2 =
π

32Ω

(
ω2 + ν2k4

)2

ν3k6
(3.45)

survives, while the other kernels are small. For these rapid rotators, if only I2 is finite the
expressions (3.44) lead to V (1) = H(1) = −V (0), so that

QΛ
rφ = −νtΩH(1) cos2 θ sin θ, QΛ

θφ = νtΩH(1) sin2 θ cos θ (3.46)

results. The rotation laws given in Figs. 3.15 and 3.16 are obtained with Eq. (3.46) for H(1) =
1. There is generally a flat rotation law beneath the equator and a clear subrotation beneath
the poles8. Figures 3.15 and 3.16 are for stress-free upper boundary conditions, but they differ
in the lower boundary condition. For the stress-free models the difference between thick and
thin convection zones is very small, but it is not small if at the lower boundary the angular
velocity is fixed. For the rigid-free models one has δΩlat/Ω ∝ d ·V (1), while for the free-free
models δΩlat/Ω ∝ H(1), the latter being independent of the shell thickness d.

The expressions are still difficult to handle in models because they include a spectral func-
tion that is not yet known for stellar objects. We adopt the simplest representation for this
function, which can be understood as a transition to the well-known ‘τ -approximation’, i.e.

E = 2ρ2u2
T δ (k − 1/�corr) δ(ω) , ν =

�2corr
τcorr

, (3.47)

where τcorr is the convective turnover time τcorr � �corr/u′. By this procedure, the part
∂u/∂t−ν∆u in the Navier-Stokes equation is approximately replaced by u/τcorr (see Orszag
1970, Durney & Spruit 1979, Vainshtein & Kitchatinov 1983). This yields

V (0) = − r

ρ2

∂

∂r

(
1
r

∂

∂r
τ2
corru

2
Tρ2I2

)
, (3.48)

8 the results differ slightly from our above estimates in Eqs. (3.32) and (3.34) as the latter only hold for very weak
differential rotation (first such solutions by Küker et al. (1993))
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Figure 3.15: Ω(x) as solution of Eq. (3.30) for the Λ-effect Eq. (3.46) valid for rapid rotation. Both
boundaries are stress-free. Left: Thick convection zone (d = 0.3). Right: Thin convection zone (d =
0.1, see also DeRosa & Toomre 2001). The equator is given by the solid line, the poles by the dot-dashed
line. Dotted line 30◦, dashed 60◦ solar latitude.

and

V (1) = H(1) =
r

ρ2

∂

∂r

(
1
r

∂

∂r

(
τ2
corru

2
Tρ2I2

))
, (3.49)

with I2 = π/16Ω∗ in the rapid-rotation case, i.e. for

Ω∗ = 2τcorrΩ > 1. (3.50)

The Coriolis number depends on the depth much less than the density does.

0.7 0.8 0.9 1.0
 FRACTIONAL RADIUS

0.60

0.70

0.80

0.90

1.00

1.10

R
O

T
A

T
IO

N
 R

A
T

E

0.90 0.95 1.00
 FRACTIONAL RADIUS

0.60

0.70

0.80

0.90

1.00

1.10

R
O

T
A

T
IO

N
 R

A
T

E

Figure 3.16: The same as Fig. 3.15 but with rigid lower boundary condition, and only the surface stress-
free.
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The general expressions for V and H in the τ -approximation can be simplified further
by neglecting the contributions of all inhomogeneities except the density stratification. This
yields for all Ω∗

V (0) =
τ2
corr〈u′2〉

H2
ρ

[I0(Ω∗) + I1(Ω∗)
]
, V (1) = H(1) = −τ2

corr〈u′2〉
H2

ρ

I1(Ω∗), (3.51)

where Hρ = −dr/d log ρ is the density scale height. Only two functions of the Coriolis
number are still involved, i.e.

I0 =
1

2Ω∗4

(
9 − 2Ω∗2

1 + Ω∗2 − Ω∗2 + 9
Ω∗ tan−1 Ω∗

)
,

I1 = − 1
2Ω∗4

(
45 + Ω∗2 − 4Ω∗2

1 + Ω∗2 +
Ω∗4 − 12Ω∗2 − 45

Ω∗ tan−1 Ω∗
)

. (3.52)

The limits are I0 = 4/15 − 16Ω∗2/35, I1 = 16Ω∗2/105 for slow rotation, and I0 =
O(Ω∗−3), I1 = −π/4Ω∗ for rapid rotation. The latter relation again leads to the result
V (1) = H(1) = −V (0) with negative V (0). The function H(1) is thus positive and V =
V (0) cos2 θ. For fast rotation V is thus negative and vanishes at the equator. From Eq. (3.34)
the radial rotation law at the equator must therefore be very flat compared with that along the
polar axis.

In Fig. 3.17 the main results for the Λ-effect are shown. There are drastic differences for
slow and fast rotation. For slow rotation we find positive V (0) and very small V (1) and H(1).
According to Eqs. (3.51) and (3.52)

V (0) � 4
15

τ2
corr〈u′2〉

H2
p

� 4
15

�2corr
H2

p

� 4
15

(αMLT

Γ

)2

, (3.53)

where the (mixing length) αMLT comes from �corr � αMLTHp. Here �corr is the mixing
length, Hp the pressure scale height and Γ the ratio of specific heats. We assume that αMLT =
Γ = 5/3.

The positivity of V (0) can be understood in the following way. One finds for slow rotation
and for anisotropic one-mode turbulence models with the characteristic wave number K that

ΛV =
2τcorr

K2

(
(K2

θ + K2
φ)〈u′2

φ 〉 − (K2
r + K2

θ )〈u′2
r 〉

)
, (3.54)

ΛH =
2τcorr

K2

(
(K2

r + K2
φ)(〈u′2

φ 〉 − 〈u′2
r 〉) + (K2

φ − K2
r )〈u′2

r 〉
)

, (3.55)

which gives the rotationally generated Λ-effect for any mode of the original stochastic field.
We must, in consequence, distinguish between two contributions, i.e. anisotropy in the inten-
sities and/or anisotropy in the wave number vector components. If the latter are nearly equal
the horizontal motions provide outward angular momentum transport and the radial motions
provide inward transport, i.e.

ΛV ∝ τcorr

(
〈u′2

φ 〉 − 〈u′2
r 〉

)
. (3.56)
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Obviously, in the regime of slow rotation vertical motions lead to dΩ/dr < 0, while horizon-
tal motions lead to dΩ/dr > 0. Rigid rotation results if both turbulent intensities are nearly
equal.

Concerning the latitudinal transport ΛH one finds

ΛH =
τcorr

K2

(
(K2

r + K2
φ)〈u′2

φ 〉 − (K2
φ + K2

θ )〈u′2
θ 〉)

)
� 2τcorr

(〈u′2
φ 〉 − 〈u′2

θ 〉
)

(3.57)

the latter relation for turbulence fields with isotropic wave numbers. This quantity vanishes
if the turbulence field is only anisotropic with respect to the vertical direction – which is the
normal case (see Fig. 3.19, left). The horizontal Λ-effect, therefore, only exists for rapid
rotation. It is positive in all the numerical simulations, as the rotation prefers u′

φ rather than
u′

θ (see Fig. 3.19, right).
The positive H (Fig. 3.17) agrees well with the observations of the horizontal random

motions of the large sunspot groups (see Sect. 3.1.3). From Eq. (3.46) we find that QΛ
rφ is then

a negative function vanishing at the poles and the equator, and QΛ
θφ is a positive function of

the same amplitude also vanishing at the poles and the equator.
Pulkkinen et al. (1993) find the function V negative and “increasing in magnitude between

the equator and 55◦ latitude”. Indeed, there is a distinct minimum at the equator (see their
Fig. 10). According to their Fig. 7 Qθφ is positive in the northern hemisphere, vanishing
at the poles and the equator. The results of Rieutord et al. (1994) are similar with respect
to the horizontal stress, but the function V ended up rather small and fluctuating in latitude.
Very clear findings are reported by Chan (2001), with negative V, positive H, and V almost
vanishing at the equator (Fig. 3.18).

Note that the pronounced changes in the functions occur at Coriolis numbers of order
unity. For this reason Ω∗ is a convenient parameter to distinguish between the slow and fast
rotation regimes. The Sun is in effect a rapid rotator with Ω∗ � 6 (Durney & Latour 1978,
Durney & Spruit 1979).

Figure 3.17: The functions V (θ) (left) and H(θ) (right) after Eqs. (3.51) and (3.52) for various basic
rotation rates.

Rotating convection has also been studied with NIRVANA (see Sect. 3.5.1) for a fully
compressible viscous gas obeying the ideal gas equation. The model considers a local Carte-
sian box placed tangentially on a rotating sphere, and involves a 3-layer planar polytrophic
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Figure 3.18: V (θ) (left) and H(θ) (right) from the simulations of Chan (2001) are very close to the
results of the quasilinear theory for rapid rotation (see Fig. 3.17).

stratification. The middle layer of extent d is convectively unstable, whereas both the other
layers are stable and serve to brake overshooting motions (see Hurlburt, Toomre & Massa-
guer 1986). The nonmagnetic hydrostatic 3-layer polytrophic state is realized by piecewise
constant conductivity coefficients κst, κc and κsb, where the subscripts denote ‘stable top’,
‘convective’ and ‘stable bottom’. With d = 1,

κ(z) =




κst 0 < z < −1/4
κc −1/4 < z < −5/4
κsb −5/4 < z < −2.

(3.58)

Density and pressure, as well as the boundary conditions, are described by Ziegler (2002). We
are here only interested in the results for the Λ-effect that arises from the anisotropies in the
original velocity field. In Fig. 3.19 the turbulence intensities in the rotating box are given in
comparison to the nonrotating one. The results clearly indicate that everywhere in the rotating
box 〈u′2

φ 〉 dominates 〈u′2
θ 〉. On the other hand, the horizontal turbulence intensity 〈u′2

φ 〉 also
dominates the vertical turbulence intensity 〈u′2

r 〉, but only at the top and bottom of the box.
In the bulk of the box the vertical intensity 〈u′2

r 〉 dominates, but this effect is not too strong
under the influence of the rotation9. Rüdiger, Tschäpe & Kitchatinov (2002) have shown
with the quasilinear approximation that (at the equator) there is indeed a strong tendency of
‘return-to-isotropy’. In the relation

〈u′2
r 〉 − 〈u′2

φ 〉 = A(Ω∗)
(
〈u(0)2

r 〉 − 〈u(0)2
φ 〉

)
(3.59)

the ‘transformation’ factor A(Ω∗) sinks with increasing Ω∗ and even changes its sign at a
certain Ω∗. A rotating turbulence, therefore, proves to be much more isotropic than the same
but without rotation (also Canuto, Minotti & Schilling 1994, Chan 2001). Figure 3.19 confirms
these considerations.

In Fig. 3.20 (left) the behavior of the function V (r, θ) is given. It is always negative for
rapid rotation, and it always vanishes at the equator. The maximal (negative) amplitude is in

9 this behavior is also well described by our turbulence model (3.41), see Fig. 3.14
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the bulk of the convection zone, where also 〈u′2
r 〉 maximally dominates 〈u′2

φ 〉, see Eq. (3.56).
The function H(θ) is never negative (Fig. 3.20, right). According to Eq. (3.56) this very clear
result reflects the dominance of the azimuthal fluctuations (see Fig. 3.19, right). Note the weak
dependence of H on the radius. The results confirm the analytical quasilinear computations
for the Λ-effect surprisingly well. The question is whether the reported behavior persists for
higher Ta. In particular, the vanishing of V at the equator is relevant here. It leads directly to
the weak differential rotation observed beneath the solar equator. At first sight, the results of
the global hydrodynamical simulation of turbulent convection under the influence of rotation
by Miesch et al. (2000, their Fig. 9) and Brun & Toomre (2002) seem to indicate a positive V
that peaks at the equator and vanishes at the poles (see Brun 2003, his Fig. 2).

Figure 3.19: Ratios of the turbulence intensity within the box. Solid: 〈u′2
r 〉/〈u′2

φ 〉, dashed: 〈u′2
θ 〉/〈u′2

φ 〉.
Left: Without rotation; the vertical velocity dominates the horizontal velocity, there is no anisotropy in
the horizontal plane. Right: With rotation (Ta = 106) at the equator; the vertical velocity dominates in
the lower half but not in the upper. The azimuthal velocity always dominates the latitudinal one. The
convection zone surface is at z = −0.25 and the bottom at −1.25.

3.2.3 The Eddy Viscosity Tensor

In general, the viscosity term in Eq. (3.5) must be replaced by the tensorial expression

Qij = · · · − Nijklūk,l, (3.60)

with N as the viscosity tensor. It is also strongly influenced by the rotation. For isotropic
turbulence (except the rotational influence) its structure is given by

Nijkl = ν1(δikδjl + δjkδil) + ν2

(
δil

ΩjΩk

Ω2
+ δjl

ΩiΩk

Ω2
+ δik

ΩjΩl

Ω2
+

+ δjk
ΩiΩl

Ω2
+ δkl

ΩiΩj

Ω2

)
+ ν3δijδkl + ν4δij

ΩkΩl

Ω2
+ ν5

ΩiΩjΩkΩl

Ω4
, (3.61)
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Figure 3.20: V (θ) (left) and H(θ) (right) for Ta = 106, from the simulations of Egorov, Rüdiger &
Ziegler (2004). Note that V is negative but vanishes at the equator, and H is positive but vanishes at the
poles.

where νn = ν0Φn(Ω∗), with ν0 = 4/15 τcorru
2
T. Here ν0 is the isotropic shear viscosity

for the nonrotating fluid. The viscosity quenching functions Φn(Ω∗) are known (Kitchatinov,
Pipin & Rüdiger 1994). Only Φ1(0) = Φ3(0) = 1; the remaining functions parameterize the
viscosity anisotropy due to the rotation, and must vanish for Ω∗ = 0.

In its full generality we only give the tensor for the nonrotating case, i.e. Nijkl =
νT (δikδjl + δjkδil) + µTδijδkl, with

νT =
4
15

∫
ν3k6Q̂ll(k, ω)
(ω2 + ν2k4)2

dk dω,

µT =
4
15

∫
νk2(ν2k4 + 5ω2)Q̂ll(k, ω)

(ω2 + ν2k4)2
dk dω. (3.62)

The spectral function Q̂ll is the positive-definite tensorial trace of the simplest spectral tensor

Q̂ij = q(k, ω)(k2δij − kikj) (3.63)

for homogeneous and isotropic turbulence fields. Both expressions are equal in the τ -
approximation but they are not equal for ν → 0:

νT =
µT

6
=

2π

15

∫
Q̂ll(k, 0) dk (3.64)

(see Stix et al. 1993). Here we have a good example of the consequences of various ap-
proximations. The τ -approximation is not identical with the inviscid limit or (later on) the
high-conductivity limit, η → 0.
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Figure 3.21: The rotational quenching of the most important viscosity coefficients (left) and the
thermal conductivity coefficients defined in Eq. (3.79) (right). The τ -approximation is used, it is
ν1 = ν0Φ1(Ω

∗), ν2 = ν0Φ2(Ω
∗) and µT = ν0Φ3(Ω

∗).

Only two viscosity coefficients contribute to the flux of the angular momentum, i.e.

Qν
rφ = −ν1r sin θ

∂Ω

∂r
− ν2 sin θ cos θ

(
r cos θ

∂Ω

∂r
− sin θ

∂Ω

∂θ

)
,

Qν
θφ = −ν1 sin θ

∂Ω

∂θ
− ν2 sin2 θ

(
sin θ

∂Ω

∂θ
− r cos θ

∂Ω

∂r

)
. (3.65)

Note the presence in the radial flux of a latitudinal gradient in the angular velocity; in the
latitudinal flux there is a radial gradient of Ω. This is the result of the anisotropy introduced
by rotation (Kitchatinov 1986, Durney 1989). The rotational quenching effect for three coeffi-
cients is given in Fig. 3.21 (left). One finds that the rotational quenching of the eddy viscosity
ν1 is rather strong, while the Ω-quenching of µT is much smaller. This observation should be
important for all effects where ∇ · u �= 0, e.g. for the p-mode excitation in turbulent convec-
tion zones (see Stix et al. 1993). The ν2-coefficient is zero for Ω → 0, and it remains small
for larger Ω∗. The ν2-effect does not seem to be an important effect. It is thus almost always
neglected in theories of differential rotation.

3.2.4 Mean-Field Thermodynamics

Almost always differential rotation leads to meridional circulations. Its centrifugal force is
not conservative (except if Ω = Ω(s)), so that a meridional flow must develop. According to
Eq. (3.6) this flow then modifies the rotation law. From the early model of Köhler (1970) to
the formulations of Glatzmaier (1985), Gilman & Miller (1986), Brandenburg et al. (1990),
Miesch et al. (2000) and Brun & Toomre (2002) the inclusion of a meridional flow always led
to the Taylor number puzzle: cylindrical isorotation contours are found, independently of the
Λ-effect applied. The isolines of Ω in the solar convection zone, however, are not cylindrical
(Fig. 3.4).

Only thermodynamics can solve the paradox. This involves the second term on the RHS of
Eq. (3.13), which contains a large dimensionless factor. It is the working hypothesis that this
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term cancels the Taylor–Proudman state (Gilman 1986, Durney 1987). This is not the case
when the turbulent viscosity and thermal conductivity are parameterized by scalars (Glatz-
maier 1985, Gilman & Miller 1986). Only the anisotropy of the thermal conductivity produces
a promising effect (Kitchatinov, Pipin & Rüdiger 1994).

Using the ideal gas law we find from Eq. (3.13) that ∇ρ × ∇P = −ρT−1∇∆T × ∇P ,
where ∇∆T is the superadiabatic temperature gradient. This term is proportional to the de-
viation of the stratification from adiabaticity. The relative magnitude of this deviation is only
10−4. The superadiabatic gradient can therefore be simplified by linearization, i.e. the supera-
diabatic part of the pressure gradient can be neglected. With ∇P = ρg we then find that a
relation of the form

êiεijk
∂

∂xj

1
ρ

∂

∂xl

(
ρNklfn

∂um
f

∂xn

)
= r sin θ

∂Ω2

∂z
− g

T

∂∆T

∂θ
(3.66)

represents the generation of the meridional flow due to the eddy viscosity (ê is the east-
ward unit vector). Equatorial acceleration implies negative cos θ∂Ω2/∂z. The two terms
in Eq. (3.66) can thus balance each other if cos θ∂∆T/∂θ negative. One needs, therefore, a
‘hot pole’ to solve the Taylor number puzzle (see Stix 1989).

The proper determination of the energy transport through a convective/turbulent medium
is certainly the key problem of stellar hydrodynamics. Its complexity has been described in
reviews by several authors (e.g. Gough 1976, Zahn 1979, Choudhuri 1998, Mestel 1999). Pio-
neering concepts such as nonlocality (Spiegel 1963, Maeder 1975, Ulrich 1976), the anelastic
approximation (Latour et al., starting in 1976, see Lantz & Fan 1999), or that of Roxburgh
(1978) or Canuto (1998) have led to interesting results.

The basic points can be taken from the fundamental entropy equation

ρT
dS

dt
= εV −∇ · F D, (3.67)

where the RHS represents the heat gained due to friction εV = 1
2ρν(ui,k+uk,i)2 and diffusion

F D = −ρCpχD∇T. Here χD is the sum of the thermal conductivities of molecular and
radiative origins. From the thermodynamic relation ρTdS = ρdH − dP (where H is the
enthalpy) we readily obtain

∂(ρU)
∂t

+ ∇ · (ρUu + F D) = −P ∇ · u + εV , (3.68)

with the internal energy U = H − P/ρ. From the Navier-Stokes equation one deduces an
expression for u · ∇P , which, together with Eq. (3.68), yields

∂
(
ρU + 1

2ρu2
)

∂t
+ ∇ ·

(
ρuH + F D + F V +

1
2
ρu2u

)
= ρu · geff , (3.69)

with the friction term FV being given by FV
j = −ρνui(ui,j + uj,i), and where geff =

g + Ω2s is the effective gravity, which differs from g by the centrifugal acceleration. If this
equation is applied to the steady flow of an ideal gas, using H = CpT with a constant Cp, and
microscopic viscosity and conductivity are neglected, one obtains

∇ ·
(

ρCpuT + F D +
1
2
ρu2u

)
= ρu · geff . (3.70)
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Frictional heating as a source of convection is excluded here. We shall also neglect radiative
diffusion and mechanical energy flux, but the flow is allowed to be turbulent, the immediate
consequence being

∇ ·
(

ρ̄〈u′T ′〉 + 〈ρ′T ′〉ū + 〈ρ′T ′u′〉
)

= (ρ̄ū + 〈ρ′u′〉) ·
(

geff

Cp
−∇T

)
. (3.71)

The final bracket represents the superadiabatic rate, which will here be denoted by

β =
geff

Cp
−∇T. (3.72)

Several different notations for this gradient excess may be found in the literature, e.g.

β = ∇T ad −∇T = ∆∇T =
T

Hp
(∇−∇ad) = − T

Cp
∇S, (3.73)

where Hp is the pressure scale height, with S, for an ideal gas, given by S = Cv log(Pρ−Γ ).
Since the entropy decreases outward in a convectively unstable layer, the vertical component
of β is positive, but this vertical component is rather small. When evaluated using the values
appropriate to the Sun, the adiabatic temperature gradient is of the order of 10−4 K/cm. The
magnitude of the temperature excess is much smaller, namely about 2 · 10−10 K/cm. If in
unstable layers the vector β points outward, then the actual radial temperature profile must be
steeper than the adiabatic. That is also the essence of the Schwarzschild criterion.

Neglecting the viscous heating terms in the energy transport equation, we finally obtain

∇ · (F conv + F rad) = Cpρum · β, (3.74)

where F conv = ρCp〈u′T ′〉 and F rad = −Cpρχrad∇T are the convective and radiative heat
fluxes, and χrad = 16σT 3/3κρ2Cp.

If gravity is the only preferred direction, the eddy-heat transport will be radial. As the
eddy-heat flux must vanish in an adiabatically stratified medium we write

〈u′T ′〉 = −χT

(
∇T − g

Cp

)
= −χT

Cp
T∇S = χTβ. (3.75)

The eddy-heat diffusivity χT should be of order �corruT. Wasiutynski (1946) introduced a
tensorial conductivity, i.e.

F conv
i = ρCp〈u′

iT
′〉 = ρCpχijβj , (3.76)

or in component form

F conv
r = ρCp(χrrβr + χrθβθ), F conv

θ = ρCp(χθrβr + χθθβθ). (3.77)

If rotation is involved, the eddy conductivity tensor may contain the following elementary
tensors

δij , g
◦
i g
◦
j , ( g

◦ · Ω)2δij , ( g
◦ · Ω)2 g

◦
i g
◦
j , ( g

◦ · Ω)( g
◦
iΩj + g

◦
jΩi), ΩiΩj , (3.78)
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all of which are polar combinations, symmetric in i and j. The tensor χij is not necessarily
symmetric, however, so that other terms may also appear, even linear in Ω. Therefore, like
the α-effect and the V (0)-effect, there are first-order effects even for F conv

φ . One can show
that F conv

φ is closely related to the Λ-effect: F conv
φ ∝ Ω∗V sin θ. It is thus positive for slow

rotation and negative for rapid rotation.
Let us here concentrate on the expression

χij = χTδij + χ‖
ΩiΩj

Ω2
, (3.79)

with χT = χ0Φ(Ω∗) and χ‖ = χ0Φ‖(Ω∗), where χ0 = τcorru
2
T/3 is the isotropic thermal

conductivity for a nonrotating fluid. The functions Φ and Φ‖ are positive, and represent the
effects of rotation; Φ(0) = 1 and Φ‖(0) = 0. Explicit expressions in the τ -approximation are
given by Kitchatinov, Pipin & Rüdiger (1994), see Fig. 3.21 (right).

As a result of the χ‖-term in Eq. (3.79), the radial thermal conductivity is larger at the poles
than at the equator; a poleward latitudinal component in the convective heat flux Eq. (3.76)
results. A hot pole can therefore indeed be expected to resolve the Taylor number puzzle
(see Miesch et al. 2000, their Fig. 13). Belvedere, Paternò & Stix (1980) with their latitude-
dependent heat transport, i.e. χT as a function of (gΩ)2, developed a similar concept. Fig-
ure 3.22 presents for the northern hemisphere the correlation 〈u′

θT
′〉 which vanishes at the

pole and the equator and which is negative so that indeed the heat flows towards the poles.
Only this effect in the very last analysis is responsible for the existence of the solar surface
rotation law.

Figure 3.22: The latitudinal
heat transport 〈u′

θT
′〉 vanishes

at the pole and the equator
and is negative at the midlat-
itudes 30◦ (dashed) and 60◦

(dotted) of the northern hemi-
sphere. Courtesy P. Egorov.

3.3 Differential Rotation and Meridional Circulation for
Solar-Type Stars

In order to compute the differential rotation of a solar-type star the stratifications of pres-
sure, density and temperature are needed as input parameters. The entropy gradient not only
determines the baroclinic term in the equation for the meridional flow, but also the convec-
tion velocity uT that according to the standard mixing-length theory of stellar convection, is
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Figure 3.23: The rotation and meridional flow patterns for the Sun at an age of 4.62 Gyr, with
αMLT = 5/3, for rotation periods 56 days, 28 days, 14 days and 7 days (from left to right). Top:
The normalized rotation rate at the equator (solid lines), 45◦ latitude (dotted), and the poles (dashed).
Middle: Contour plots of the rotation rate. Bottom: Contours of the stream function. Dash-dotted lines
denote counterclockwise circulation. From Küker & Stix (2001).

determined by the stratifications of pressure and entropy through the relation

u2
T = −�2corrg

4Cp

dS

dr
, (3.80)
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where the mixing length �corr = αMLTHp is determined by the pressure scale height. The
eddy viscosity and heat conductivity coefficients then read

νT = −τcorrgα2
MLTH2

p

15Cp

dS

dr
, χT = −τcorrgα2

MLTH2
p

12Cp

dS

dr
. (3.81)

Note that for a given pressure stratification the convective turnover time τcorr is a function
of the entropy gradient as well. The convective heat transport is thus a nonlinear function
of dS/dr. Since both the viscosity coefficient and the convective turnover time (and hence
the Coriolis number) depend on the entropy gradient, rotationally inhibited heat transport will
affect the transport of momentum as well.

Figure 3.23 shows the rotation law and meridional flow pattern resulting for the Sun for
rotation periods ranging from 56 days to 7 days (Küker & Stix 2001). The stratifications
of density, temperature, and luminosity were taken from the solar model by Ahrens, Stix &
Thorn (1992). The model does not include an atmosphere. It ends 35,000 km below the
photosphere, and the lower boundary is located at the bottom of the convection zone. Con-
vective overshooting at the boundaries is also not considered. In the uppermost layers of the
convection zone and atmosphere the gas density is a rapidly decreasing function of radius.
No significant stress can therefore be maintained on the convection zone by the surrounding
medium. Magnetic torques exerted by the magnetic field, though essential for the solar an-
gular momentum evolution, can be neglected as well since the timescale for the spin-down of
the solar rotation is Gyr while that of internal angular momentum transport by Reynolds stress
is years. The microscopic viscosity is about ten orders of magnitude smaller than the eddy
viscosity in the convection zone. The stress on the lower boundary of the convection zone
is therefore negligible in the problem of solar differential rotation. Both the upper and lower
boundaries are thus required to be stress-free. For a solar-type star the total heat flux through
the boundaries is required to maintain the total luminosity, i.e.

F tot
r = L(r)/4πr2. (3.82)

With the above boundary conditions, Fr and hence the gradient of the entropy does not vary
with latitude on the boundaries. The entropy itself does vary though.

Figure 3.24: The horizontal shear as
a function of the (average) rotation
rate for an F star, a solar-type star,
and a K5 star, as predicted by the-
ory. The F star by M. Küker (2004), G
& K stars by Kitchatinov & Rüdiger
(1999).
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The first column in Fig. 3.23 shows the rotation and flow patterns for a slowly rotating
Sun, with a rotation period of 56 days. A value of 33 per cent is found for the normalized
horizontal shear δΩlat/Ω�, and the meridional flow shows one cell per hemisphere, toward
the equator at the surface and toward the pole at the bottom of the convection zone. The
maximum flow velocity is 9.2 m/s at the surface and 0.3 m/s at the bottom of the convection
zone. In the τrot = 28 d case (second column), the equator rotates about 20 per cent faster than
the poles at the top of the convection zone. The meridional flow pattern consists of two cells
per hemisphere, with the flow directed toward the equator at both the bottom and the top of the
convection zone and poleward at intermediate depths. The maximum speed of the horizontal
motion is 5.4 m/s at the surface and 2 m/s at the bottom of the convection zone. These results
are in good agreement with those of the fully-compressible nonlinear simulations of Miesch
et al. (2000). For a convection zone rotating with a period of 14 days the normalized pole-
equator difference decreases to 10 per cent. There are still two flow cells per hemisphere, but
the outer cell is restricted to a very shallow surface layer. The surface flow is still poleward
with an amplitude of 3.8 m/s. At the bottom of the convection zone the flow reaches a speed
of 2.8 m/s. Decreasing the rotation period to 7 days (last column) leads to a further reduction
of δΩlat/Ω� to less than five per cent. The meridional flow is now directed poleward at the
top and equatorward at the bottom of the convection zone, with flow speeds of 2.7 m/s at the
top and 3.6 m/s at the bottom of the convection zone. For the model of the present Sun, the
total latitudinal shear δΩlat is roughly the same for the rotation periods of 28 days, 14 days
and 7 days, but decreases for slow rotation as the result for τrot = 56 d shows. At the bottom
of the convection zone the meridional flow drifts to the equator, except for the very old Sun
with a 56-day rotation period.

In Fig. 3.24 the dependence of the latitudinal differential rotation on the average rotation
period is shown for the same model of a solar-type star as in Fig. 3.23, a MS star with 1.2
solar masses (spectral type F8 results by Küker 2004), and a model of a K5 dwarf with 0.7
solar masses. In Fig. 3.12 the rhombs indicate the observed rotational shear for the K0 stars
AB Dor, PZ Tel, and for the Sun. Theory and observations both suggest that the surface shear
does not depend very strongly on the rotation rate. For the stellar types considered the theory
instead predicts a strong dependence on the spectral type, with the most luminous star showing
the strongest shear. The dependence of the differential rotation on the properties of the star
has, however, not been systematically studied yet. As a function of the rotation period the
differential rotation of the F-type star shows a maximum at a period of about one week. The
differential rotation of the solar-type star is roughly constant for periods between 10 and 30
days, with a maximum at about two weeks. The K dwarf shows a monotonic increase of the
shear with the rotation period in the interval shown, reaching a maximum at a period longer
than 30 days.

Figure 3.25 shows the speed of the meridional flow at the top and bottom of the convection
zone, as a function of the rotation period for the stars of Fig. 3.24. For the K dwarf the surface
flow is always directed toward the poles. In the case of the G2 star the surface flow is toward
the pole for fast rotation and toward the equator for slow rotation, while for the F stars it is
always toward the equator. All stellar models show an increase of the values with increasing
rotation rate.

Figure 3.25 (right) shows the flow at the bottom of the convection zone. For a single-cell
flow it would always have the opposite direction of the surface flow. The plot shows, however,
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Figure 3.25: The meridional flow speed at the top (left) and bottom (right) of the convection zone for
the same models as in Fig. 3.24. Negative values mean that the flow is directed toward the equator.

that in the case of rapid rotation the flow is directed toward the equator for all three stars.
In all cases the values are larger for slow rotation, i.e. decrease with increasing rotation rate
(or increase with increasing rotation period), but only the flow speed of the F8 star reaches
positive values. Due to the density stratification the bottom flow is usually slower than the
surface flow.

Figures 3.23–3.25 cover a limited range of rotation rates. We know, however, the rotation
pattern in the limiting cases of very slow and very fast rotation. In the case of very fast rotation
the baroclinic term in the equation of motion becomes negligible and the Taylor–Proudman
theorem applies. As the boundary conditions require that the vertical stress vanishes on both
boundaries, the rotation must be rigid. In the opposite limit of very slow rotation the horizontal
Λ-effect vanishes and the turbulent heat transport becomes isotropic. Since the Taylor number
is small the radial Λ-effect is the only effect that generates any shear, and the resulting rotation
law shows (positive) radial shear only. As a function of the rotation rate the latitudinal shear
must therefore have a maximum value at intermediate rotation rates, as the curves representing
the G2 and F8 stars in Fig. 3.24 indeed show.

3.4 Kinetic Helicity and the DIV-CURL-Correlation

Let us ask whether the rotational influence on the turbulence can already be directly observed
at the solar surface. Granulation and mesogranulation are the main candidates due to their
nonmagnetic character. We shall show that the horizontal motions alone suffice to estimate
the rotational influence.

Finite kinetic helicity 〈u′ · ∇ × u′〉 indicates basic rotation. Here that part of the helicity
is considered that results from the vertical components of velocity and vorticity, i.e.

Hkin =
〈

w

(
∂v

∂x
− ∂u

∂y

)〉
, (3.83)



82 3 Differential Rotation Theory

where the turbulence pattern u′ = (u, v, w) is taken in a Cartesian coordinate system, where
x points east, y north, and z points radially outward. In a stratified convection zone rising
material expands and rotates because of the action of the Coriolis force. On the northern
hemisphere the results are left-handed helical motions, i.e. Hkin < 0 (see Fig. 3.26, left, also
Miesch et al. 2000, their Fig. 22). Expansion results in clockwise rotation and vice versa.
Instead of Eq. (3.83) we consider now the DIV-CURL-correlation

C =
〈(

∂u

∂x
+

∂v

∂y

) (
∂v

∂x
− ∂u

∂y

)〉
(3.84)

(Wang et al. 1995).

Figure 3.26: Left: During the solar cycles the magnetic polarity of the spots changes but not the helicity.
Hale (1927) found that the dominant orientation of the cyclones around sunspots only changes for both
hemispheres. Right: The correlation of the radial component of curl and the horizontal divergence for
supergranulation. The solid line gives the cos θ-profile. From Duvall & Gizon (2000).

The anelastic approximation, ∇ · ρu = 0, is adopted hence

C ≈
〈

w

Hm

(
∂v

∂x
− ∂u

∂y

)〉
=

Hkin

Hm
, (3.85)

where Hm = −∂z/∂ log |ρw| is the scale height for the vertical momentum fluctuations. We
assume Hm > 0, i.e. the vertical momentum fluctuations decrease with height (see Simon &
Weiss 1997). Close to the bottom of the cells, however, Hm becomes negative. We see that in
the top of the cells a positive horizontal divergence corresponds to an updraft (w > 0) and a
negative horizontal divergence corresponds to a downdraft (w < 0).

Like the helicity Hkin, so also is C a pseudoscalar, and its sign depends on the coordinate
system. The only pseudoscalar that can be constructed in anisotropic turbulence with the
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radial anisotropy direction g
◦ is the scalar product g

◦ ·Ω. A nonvanishing helicity proxy C, of
course, can only exist for rotating turbulence.

As the typical mesogranulation pattern only lives for a few hours, Ω∗ is estimated to be
of order of 0.1. Hence, the correlation effect C should be very small. Brandt et al. (1988) and
Simon et al. (1994) present the first results of an overall inspection of horizontal flow patterns
on mesoscales. The maximum velocities are ∼ 750 m/s and the maximum vertical vorticity
is about 2 · 10−4 s−1 (see also Simon et al. 1988). There are indications for a negative (posi-
tive) correlation C on the northern (southern) hemisphere (Wang et al. 1995). The correlation
presented by Duvall & Gizon (2000) seems to be well-established (Fig. 3.26, right).

Figure 3.27: The helicity Hkin (left) and the DIV-CURL correlation C (right) after time-averaging vs.
latitude and depth. The convection zone surface is at z = −0.25 and the bottom at −1.25. From Egorov,
Rüdiger & Ziegler (2004).

The desired expression can generally be written as the z-component of the axial vector
C = 〈∇ · ũ ∇ × u′〉, with ũ = u′ − ( g

◦ · u′) g
◦ as the horizontal component of the random

flow field. With the random momentum field m = ρu′ and with G = ∇ log ρ it follows that

C = − 1
ρ2

〈( g
◦ · ∇)( g

◦ · m)(∇× m + m × G)〉. (3.86)

With the Fourier transform (3.38) one obtains

ρ2 Ci = εijn g
◦
f g

◦
m∫

k′
jkm〈m̂f (k, ω)m̂n(k′, ω′)〉ei(k+k′)·x−(ω+ω′)t dk dk′ dω dω′ (3.87)

for the components of C. To first order in Ω the vector C has only the component (3.84).
It remains to compute the tensor Mij . In a stratified turbulent medium the spectral tensor

in Eq. (3.87) is (3.41). Only the influence of the basic rotation on the turbulence produces
a finite effect, see Eq. (4.29). The results must be introduced into Eq. (3.87), which after
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massive manipulations with the τ -approximation Eq. (3.47) leads to

C = − 8
35

α2
MLT

γ2

Ω

τcorr
cos θ (3.88)

for the radial component of the vector C, if only the density stratification is taken into account.
The resulting expression proves to be negative in the northern hemisphere, is proportional to
Ω cos θ, and is of order 10−10 s−2 (Rüdiger, Brandenburg & Pipin 1999).

Using NIRVANA (see Sect. 3.5.1) numerical simulations for the relationship between the
correlation C and the kinetic helicity Hkin have been carried out (Fig. 3.27). In accordance
with the analytical results both the correlation C and the helicity Hkin are negative in the
northern hemisphere and positive in the southern. We find a very clear distribution for the
helicity. In the northern hemisphere it is negative at the top of the convection zone and positive
but smaller at the bottom. The helicity distribution given in Fig. 3.27 can be understood with
the estimate Hkin ∝ d(uTρ)/dz, very similar to the α-effect formulations in Sect. 4.2.2.
Obviously, the resulting helicity is dominated by the stratification of the turbulence intensity
rather than the density stratification.

As also shown in Fig. 3.27, the correlation C forms an interesting proxy for the helicity. It
is also negative at the top of the convection zone (in the northern hemisphere) but it does not
vanish at z = 0 where the helicity vanishes. All in all, the quasilinear SOCA-theory10 and
numerical simulations always lead to the same result concerning the correlation (3.84). The
DIV-CURL-correlation at the solar surface should be observed carefully in the future. With his
numerical modeling of the turbulence in the solar tachocline Miesch (2003) with a randomly
driven turbulence in the rotating and (stably) stratified medium also obtains negative (posi-
tive) values for C at the northern (southern) hemisphere. Egorov, Rüdiger & Ziegler (2004)
correctly reproduced the DIV-CURL correlation for supergranulation observed by Duvall &
Gizon (2000) for a Ta = 103 which corresponds to the Coriolis number of <∼0.20.

3.5 Overshoot Region and the Tachocline

Overshooting regions are the natural envelopes of stellar convection zones. In convectively
unstable shells of late-type stars penetrative convection is believed to enable the downward
transport of poloidal magnetic field into the overshoot region. Whereas the existence of shear
flows at the base of the convection zone in the Sun has indeed been deduced from helioseis-
mology (Gough & Toomre 1991, Thompson et al. 1996), our knowledge about the magnetic-
field pumping must come from simulations. Any estimates of the pumping effect therefore
require one to study penetrative convection and its dependence on important parameters like
the rotation rate and magnetic field strength.

The mixing-length theory has often been used to describe transport phenomena. If ro-
tational effects and magnetic fields come into play such parameterizations meet their limits.
Direct numerical simulation of convective penetration is the only alternative to estimate pen-
etration depths. Such calculations have been performed by several authors in 2D (Cattaneo,
Hurlburt & Toomre 1990, Xie & Toomre 1993, Hurlburt et al. 1994) and, more recently, in
3D (Stein & Nordlund 1989, Singh, Roxburgh & Chan 1998, Saikia et al. 2000, Ziegler &
Rüdiger 2003).

10 SOCA=Second Order Correlation Approximation
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3.5.1 The NIRVANA Code

NIRVANA is a public code for astrophysical gas dynamics developed by Ziegler (1998). It
numerically integrates the nonrelativistic MHD equations in 2D or 3D. NIRVANA assumes
local thermodynamic equilibrium with constant heat capacities. Radiation transport is not
treated but diffusive processes can be included. The equations

ρ

(
∂u

∂t
+ (u∇)u

)
= −∇P + ∇·π + Frot +

1
µ0

(∇×B)×B + ρg,

∂ρU

∂t
= −∇ · (ρUu) − P∇·u + εV + ∇ · (ρCpχD∇T ) +

η

µ0
|∇×B|2,

∂ρ

∂t
= −∇ · (ρu),

∂B

∂t
= ∇×(u×B − η∇×B) (3.89)

are solved with πij = ρν(ui,j + uj,i) as the viscous stress tensor. NIRVANA allows simula-
tions in a rotating frame of reference in which case the centrifugal and Coriolis force terms,

Frot = −2ρΩ×u − ρΩ×(Ω×x), (3.90)

appears in the momentum equation. χ denotes the thermal conductivity. The thermodynamic
variables are related by an ideal gas law P = (R/µ) · ρT , with µ the mean molecular weight
of the gas.

NIRVANA is based on the ZEUS code by Stone & Norman (1992a,b), Stone, Mihalas
& Norman (1992) and Clarke, Norman & Fiedler (1994). Momentum and total energy are
not exactly conserved, which, without modification of the basic scheme, would lead to an
incorrect treatment of shocks. This problem is handled by the technique of artificial viscosity,
which modifies the momentum and energy equations by adding a stress term and/or a viscous
heating term. The purpose of artificial viscosity is to provide the correct jump relations and
shock velocities when the flow becomes supersonic. Artificial viscosity must, therefore, be
sensitive only to compression. The viscosity tensor formulation of Tscharnuter & Winkler
(1979) is applied.

The code makes use of the staggered-grid formalism. The MHD variables are defined
at different locations in a cell, which permits a compact space discretization of second-order
accuracy. Scalar variables and diagonal elements of tensors are defined in the cell center,
vector components on the cell faces and off-diagonal elements of tensors at the cell edges.

NIRVANA is a time-explicit Eulerian grid code. The maximum numerical time step that
can be used by an explicit code to advance the solution in time is controlled by the Courant-
Friedrich-Lewy condition. This states that during a timestep information cannot be transported
along distances larger than the dimension of a cell to ensure numerical stability.

The hydrodynamic advection part of the equations is solved with finite-volume techniques
using the reconstruction scheme of van Leer (1977) with flux limiter. Magnetic field transport
described by the induction equation is solved in a similar fashion. The transport ansatz of
Evans & Hawley (1988) is used to maintain ∇·B = 0 to within machine precision. To ensure
a (numerically) stable propagation of magnetic shear waves the method of characteristics is
applied as an intermediate step to estimate the electric field after a half-time step to be used
then in the finite-volume updating scheme (Stone & Norman 1992a,b).
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3.5.2 Penetration into the Stable Layer

Figure 3.28: The magnetohydrodynamics of the overshoot phenomenon for rotating convection (Nord-
lund et al. 1992). Both the maxima of magnetic fields (yellow) and vorticity (gray) are given. The lower
part of the box is convectively stable. The magnetic tubes are oriented horizontally there. Note the
existence of rotation-induced twisted (left-handed) structures. Ω∗ � 3, penetration depth ∼ 0.1 Hp.
Courtesy A. Brandenburg.

Rotating and stratified convection has been numerically tested for dynamo action by Gilman &
Miller (1981), Glatzmaier (1985) and Meneguzzi & Pouquet (1989). With a grid of 633 points
the fully compressible code by Stein & Nordlund (1989) simulated rotating convection with
a Taylor number of 105 and a magnetic Prandtl number between 0.2 and 20 (Brandenburg
& Tuominen 1991, Nordlund et al. 1992). In the simulations the ‘downdraft’ phenomenon
has been observed as characteristic for stratified MHD turbulence (Fig. 3.28, see Nordlund
& Stein 1989, also Grossmann-Doerth, Schüssler & Steiner 1998). Energy saturation only
resulted for magnetic Prandtl numbers exceeding unity. Although it is widely believed that the
magnetic buoyancy quickly transports the magnetic flux upward, the opposite was observed
in the simulations. The field is transported downward (see Dorch & Nordlund 2001).



3.5 Overshoot Region and the Tachocline 87

Overshoot and penetration are also important for the tachocline problem. NIRVANA
is used to study penetrative convection for a fully compressible, viscous gas threaded by a
toroidal magnetic field with a profile with maximum magnetic field at the stable/unstable in-
terface at z = zin. The problem is characterized by the Rayleigh number Ra, the Prandtl
numbers Pr and Pm, the Taylor number Ta and the plasma β∗ = 2µ0P/B2 taken at zin. The
magnetic boundary conditions in z are ∂Bx/∂z = ∂By/∂z = 0, and Bz is then obtained
from ∇ · B = 0.

Figure 3.29: Magnetoconvection for the extreme models M1 (weak field, no rotation, left) and the model
M4 (strong field, rapid rotation, right). Top: Velocity uz as grayscale along the walls and beneath the
box. Bottom: Magnetic energy isocontours. Note the trend to two-dimensionality along the azimuth due
to the strong horizontal magnetic field and the basic differences between flow and field.

A series of runs was made for fixed Ra = 3 · 105, Pr = 0.1 and Pm = 1. A summary of
the simulations is given in Table 3.3. The differences for weak and strong-field magnetocon-
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Table 3.3: The influence of rotation and magnetic field in the simulations. The last column gives the
downward directed pumping velocity of the mean magnetic field discussed in Sect. 4.2.1.

model Ta Ω∗ β uT(zin) � γ

M1 0 0 5000 26.2 0.44 −7.1
M2 0 0 5 18.9 0.17 −6.8
M3 6 · 105 4.2 5000 19.0 0.28 −2.3
M4 6 · 105 9.1 5 6.5 0.05 −1.0

vection are given in Fig. 3.29, presenting snapshots of the velocity field and magnetic energy
distribution for the (extreme) models M1 and M4. In the weak-field case the convection es-
sentially shows the magnetic field treated as a passive ingredient advected with the flow. Such
convection is dominated by narrow regions of strong, downward-directed plumes embedded
in broader regions of upflowing material. This spatial asymmetry between narrow downflow
regions and broader upflow regions is a typical feature of compressible convection in stratified
media observed in all numerical simulations (also Cattaneo, Hughes & Weiss 1991, Branden-
burg et al. 1996, Weiss et al. 1996, Brummell, Hurlburt & Toomre 1996, Steiner et al. 1998).
The flow is highly time-dependent, occasionally generating fast plumes that are able to pene-
trate deep into the stable zone. The turbulent nature of convection also manifests itself in the
topology of the magnetic field. Magnetic flux accumulates in small-scale structures distributed
over the whole computational domain.

When the magnetic field strength is increased, the structure of the convection evolves to-
ward two-dimensionality along the azimuthal direction. For strong magnetic fields the convec-
tive motions occur in the form of cylindrical rolls aligned in the φ-direction. The turbulence
intensity uT is substantially reduced to only 30% of that of weak-field convection.

Figure 3.30: Penetration depth � as a function of
Ta and β. The dashed line gives the nonmagnetic
case. � = 0.1 corresponds to an overshoot layer of
3300 km. From Ziegler & Rüdiger (2003).

When the gas enters the stable layer it suffers ‘negative buoyancy’ and is finally stopped,
transferring energy to the stable layer. The extent of penetration is estimated with the help of
the averaged vertical kinetic energy flux 〈Fkin〉, where Fkin = ρu2uz and the brackets denote
time and horizontal averaging. 〈Fkin〉 is negative throughout the convection zone. At some
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depth 〈Fkin〉 becomes zero, providing a measure for the degree of convective penetration.
The resulting � is depicted in Fig. 3.30 as a function of the parameters. Without rotation
and without magnetic field we find � = 0.44 (see Table 3.3). In the absence of magnetic
fields � is reduced with increasing Ta. The penetration depth for Ta = 6 · 105 is � =
0.27, indicating rotational quenching. For strong-field convection, however, the extent of
penetration is significantly reduced. The penetration depth is smallest for model M4, where
both rotational and magnetic quenching yield the very small value � = 0.05.

We are particularly interested in the depth of the penetration zone that, according to the
results of helioseismology, only covers 10% of the pressure scale height at the bottom of the
convection zone (Montero et al. 1994, Basu & Antia 1994, Christensen-Dalsgaard, Monteiro
& Thompson 1995). Our result is that the depth of the overshoot region depends strongly on
the rotation and the magnetic field. In our model the (dimensionless) pressure scale height at
the stable/unstable interface is Hp = |dz/d log P | = 0.55. From the simulations we find the
extreme values � = 0.8Hp for model M1 and � = 0.09Hp for M4. The latter is in agreement
with observations, suggesting in this way that a strong magnetic field is present in the rotating
tachocline. Using a nonlocal formulation Stix (1989) finds for the nonrotating and nonmag-
netic layer a pressure scale height of 60,000 km and an overshooting of about 10,000 km, i.e.
16% of the pressure scale height. The latter number is also in accordance with van Ballegooi-
jen (1982). From 2D hydrodynamic simulations Freytag, Ludwig & Steffen (1996) derived
a nonuniform diffusion coefficient describing the mixing properties of the overshooting. The
diffusion coefficient decays exponentially at a depth of only 3500 km, which is enough to ex-
plain the solar Li decay. A more detailed discussion of the overshooting approach of the solar
Li problem is given by Schlattl & Weiss (1999). The diffusion processes for lithium and beryl-
lium during the MS evolution have been discussed by Piau, Randich & Palla (2003) basing
on new data for open clusters older than 0.6 Gyr. Quite another approach for the Li problem
is given by Rüdiger & Pipin (2001) who constructed the eddy diffusivity tensor for rotating
anisotropic turbulence and solved the mean-field diffusion equation for such turbulence below
the convection zone (see Fig. 3.31).

3.5.3 A Magnetic Theory of the Solar Tachocline

The transition from differential rotation in the solar convection zone to rigid rotation in the
solar interior is rather sharp. The thickness of the transition layer is certainly smaller than
(say) ten per cent of the solar radius, i.e. smaller than 70,000 km. From helioseismological
data Charbonneau, Dikpati & Gilman (1999) derived a thickness of only 28,000 km for the
tachocline (4% of solar radius), without any indication of a variation of this value between
the equator and 60◦. Following Spiegel & Zahn (1992) we use the term tachocline for this
transition layer. The shape of the tachocline has been reported as prolate, i.e. its radius is least
(by 14,000 km) at the equator (see also Gough & Kosovichev 1995). Basu & Antia (2001)
report an extremely thin transition layer of about 10,000 km at the equator, and growing to the
poles. The dissipation time of such a layer with ν � 10 cm2/s is about 2–3 Gyr. After the
solar lifetime of 4.6 Gyr a delta-like tachocline would be spread to the value of 50,000 km. A
theory is thus necessary to explain the present-day extreme sharpness of the tachocline.

The screening of given differences in the angular velocity in the convective zone is very
ineffective (Stix 1981). Velocity differences produced at the base of the convection zone are
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still visible at the surface. They should also be ‘visible’ deep in the solar interior. The latter,
however, is not found by helioseismology.

Figure 3.31: The
temporal evolution
of the location
of the bottom of
the convection
zone (Ri) and the
location R0 where
the Li burns. The
solar model used is
by Stix & Skaley
(1990).

Moreover, the convection zone changed its thickness over the course of the Sun’s evolu-
tion, and the Sun also decreased its rotation rate by one order of magnitude over its MS life
due to continuous loss of the angular momentum to the solar wind (Stauffer & Soderblom
1991, Stȩpień 1991, see Mestel 1999 for full details). The spin-down of the solar-type stars
is accompanied by Li depletion and Ca-activity decay (Skumanich 1972). Today the core ro-
tates roughly with the same angular velocity as the surface. This implies a highly effective
angular momentum exchange between core and convection zone that cannot be provided by
the microscopic viscosity. That would require a (turbulent) viscosity of >∼ 105 cm2/s (Rüdiger
& Kitchatinov 1996) that is far beyond the maximum value of 103 cm2/s for the turbulent dif-
fusion coefficient imposed by the observed Li abundance (Baglin, Morel & Schatzman 1985,
Spruit 1987). Spiegel & Zahn suggested an explanation of the problem by introducing a strong
anisotropy of the turbulent viscosity produced by horizontal mixing of the radiative interior
(see Michaud & Zahn 1998, Brun, Turck-Chièze & Zahn 1999). In Canuto’s (1998) theory
the tachocline is so thick that its upper half is within the convection zone itself. If this is true,
a much more complicated discussion of Reynolds stress and turbulent heat conductivity must
be applied.

However, a weak internal magnetic field may also solve the problem (Spruit 1987, Mestel
& Weiss 1987). A weak poloidal field may well survive in the radiative interior against the
Ohmic decay. The differential rotation then winds up a toroidal field. The resulting angular
momentum transport by the Maxwell stress suppresses the differential rotation. An internal
magnetic field was found to produce a very efficient coupling of the solar convection zone
and the radiative interior (Charbonneau & MacGregor 1993). One can also demonstrate that
it is equally robust in explaining the geometry of the solar tachocline (Rüdiger & Kitchatinov
1997) .
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The surface rotation law is taken as the rotation law Ω(θ) at the bottom of the convection
zone, rin. The axisymmetric magnetic field is represented by
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where A = const. are the poloidal field lines, assumed to be given. The toroidal field B and
the internal rotation law are provided by the equations
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The meridional flow is neglected. The typical circulation time for the baroclinic or Eddington–
Sweet flow is about 1012 yr (Spruit 1987), much longer than the solar age, but we do not know
the amplitude of the Lorentz force-induced meridional flow.

The boundary conditions are ∂Ω/∂θ = B = 0 at r = 0 and B = 0 at r = rin. We assume
the internal poloidal field is located completely within the radiative interior. We do not assume
any turbulence in the radiative zone, and adopt the microscopic diffusivities,

η = 1013 T−3/2, νmicro = 1.2 · 10−16 T 5/2

ρ
, νrad = 2.5 · 10−25 T 4

κρ
(3.93)

(all in cm2/s), with ν = νmicro + νrad, where νmicro and νrad are the molecular and radiative
viscosities (Spitzer 1978, Parker 1979). The diffusivities are specified according to the solar
model of Stix & Skaley (1990), see also Fig. 3.32.

The magnetic field is considered as a dipole concentrated in the radiative interior, i.e.

A = B0
r2

2

(
1 − r

rb

)2

sin2 θ, (3.94)

where B0 is the field amplitude.
Without the magnetic field the ‘diffusive tachocline’ is much too thick. However, as B0

grows the tachocline becomes increasingly concentrated toward the top boundary, and be-
comes very thin for B0 � 0.1 mG (see Fig. 3.33). The toroidal field amplitude remains nearly
constant as B0 changes. It does not exceed a value of about 200 G. Gough & McIntyre (1998)
estimate a field strength of only 1 G. There is no chance, however, to observe such small fields.
Goode & Dziembowski (1993) argue for 1000 kG as an upper limit for toroidal magnetic fields
while Basu (1997) and Antia (2002) provide 300 kG for this value. It by far even exceeds the
expected amplitudes for a dynamo-induced field at the base of the convection zone of (say)
<∼ 10 kG.

The polar cap is an essential feature of the present model, i.e. the tachocline thickness
at the poles is systematically larger than at lower latitudes (‘Ferraro’s law, see MacGregor
& Charbonneau 1999). This effect seems indeed to exist in the helioseismological data (see
Antia, Basu & Chitre 1998).
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Figure 3.32: Radial profiles of the
magnetic field diffusivity η (solid) and
viscosity ν (dashed) after Eq. (3.93) in
cm2/s, see also Fricke (1969).

Figure 3.33: The angular velocity (left) and toroidal field isolines (right). Different line styles mean
different signs of the toroidal field. The poloidal field strength is 10−4 G. The corresponding value of
the maximum toroidal field is 209 G. From Rüdiger & Kitchatinov (1997).

The presented model ignores any meridional flow that should exist in the shear layer. For
small viscosity the flow is only small if the geometry of the lines Ω = const. is cylindrical.
This is obviously not the case. A well-developed meridional flow, however, will always mod-
ify the rotation law to fulfill the Taylor–Proudman theorem, i.e. Ω = Ω(z). With other words,
the solution of the tachocline problem consists in the search for the possibility to avoid both
the constraints of Ferraro’s law and the Taylor–Proudman theorem (Gough & McIntyre 1998,
Garaud 2002). On the other hand, the resulting meridional flow should be slow enough and/or
highly concentrated to the overshoot region to avoid the conflict with the Li observations.

The possibility of turbulence is another open question. The thin overshoot layer at the top
of the tachocline is certainly turbulent, with a corresponding magnetic Prandtl number slightly
smaller than unity (see Yousef, Brandenburg & Rüdiger 2003). The presented model also
ignores the existence of internal instabilities within the tachocline. The tachocline of Spiegel
& Zahn is turbulent with dominating horizontal intensities due to the negative buoyancy in the



3.5 Overshoot Region and the Tachocline 93

Figure 3.34: Illustration of
an azimuthal Parker-type in-
stability of the toroidal field
with m = 4. From
Schüssler (1996).

stable shear. Such turbulence, however, would produce a Λ-effect, so that new Ω-gradients
will be maintained against the viscosity (see below).

The situation is probably even more complicated. Watson (1981) showed that the latitu-
dinal shear between equator and pole is hydrodynamically stable (according to the Rayleigh
criterion) only if it does not exceed 29%, which is remarkably close to the true value. In-
deed, the stability of the shear could be the key to understanding the solar tachocline (see
Dziembowski & Kosovichev 1987, Charbonneau, Dikpati & Gilman 1999 or Garaud 2001 for
inviscid hydrodynamic instability studies).

Gilman & Fox (1997), working within the ideal MHD regime, include a toroidal magnetic
field of free amplitude but without any radial dependence. The result is that a globally unstable
magnetic mode with m = 1 appears. More recently also higher modes (m < 7) are reported
as unstable (Dikpati & Gilman 2000). Similar results for nonaxisymmetric disturbances have
been found earlier, within the thin flux tube approximation, by Schüssler et al. (1994), Cali-
gari, Moreno-Insertis & Schüssler (1995), Caligari, Schüssler & Moreno-Insertis (1998) and
for pre-MS and giant stars by Granzer (2002), see Fig. 3.34. If the strong toroidal fields are
to be be kept in the tachocline, then the gas pressure and the centrifugal force must compen-
sate the Lorentz force, so that consequences for the stellar structure and even for the shape of
the star are unavoidable (Rempel, Schüssler & Tóth 2000). The main assumption is that the
systematical empirical data for sunspot groups, i.e. orientation, tilt angle and proper motions,
require toroidal field amplitudes of 105 G at the bottom of the convection zone. The equiparti-
tion value there or in the overshoot region under the convection zone is only 104 G (Schüssler
1996). The calculations show that the 105 G are strong enough to trigger an undulatory insta-
bility of Parker-type of the global toroidal flux-tube system in the tachocline. The magnetic
tachocline theory presented above is too simple in order to include these instabilities. It must
be extended to include axisymmetry and temperature stratifications.

With 3D box simulations of a thermally stably stratified but rotating flow Brandenburg &
Schmitt (1998) have also attacked the interaction of toroidal magnetic fields, Coriolis force
and (negative) buoyancy. The resulting magnetic-buoyancy instability under the influence of
rotation yields an α-tensor that will be discussed in Chapt. 4.

With his hydrodynamical simulations Miesch (2003) probed the concept of Spiegel &
Zahn (1992) that in the tachocline with its anisotropic viscosity the latitudinal differential
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rotation is reduced to zero over (say) 2–9% of the solar radius. Additionally, in his code
the action of driven turbulence and/or the resulting meridional flow is included. The shear
between equator and pole, ∂Ω/∂θ, proved to be stable and did not lead to an instability. The
turbulence, therefore, could only arise from artificially introduced random forcing.

If a rotation law is imposed on the layer with a finite equator-pole difference then it will
be influenced by the meridional circulation, the forced turbulence in the density stratified
layer and the sub-grid viscosities. It is known, however, that anisotropic viscosity in spherical
coordinates with a dominating horizontal component does not suppress nonuniform radial
rotation but generates a local superrotation (Wasiutynski 1946, Biermann 1951, Kippenhahn
1963). A latitudinal dependence of Ω, on the other hand, is smoothed by such anisotropic
turbulence. This can be found exactly in the multitude of Miesch’s results. That it is not
possible to dissipate radial differential rotation with 2D horizontal turbulence is an old result
(see Rüdiger 1977, McIntyre 1994). An important finding, however, is the nonexistence of
hydrodynamic shear instabilities. Whether this is also true in the MHD-regime is still an open
question.



4 The Stellar Dynamo

4.1 The Solar-Stellar Connection

Schwabe’s 11-year sunspot cycle, Carrington’s differential rotation (of the solar surface) and
Spörer’s law (of the equatorward migration of sunspots during the cycle, see Fig. 4.1) are the
basic properties of the solar activity that must be explained by the dynamo theory. The param-
eters of the turbulence in the solar convection zone do not provide us with simple explanations
of the 11-year timescale. It might be understood, however, as a diffusion time scale across the
convection zone (L � 200,000 km) if the magnetic diffusivity was ηT � 1012 cm2/s. The
diffusion time is reduced to 1 yr for the frequently used value of 1013 cm2/s, and grows to
100 yr for the value 1011 cm2/s (known from the observed rate of sunspot decay).

Figure 4.1: The butterfly diagram of sunspot statistics. Note in particular that the spots only exist very
close to the equator; only a few spots appear at latitudes higher than (say) 33◦. There is a high symmetry
of the phenomenon with respect to the equator but both cycle amplitude and length are obvious functions
of time. Courtesy D. Hathaway.

Solar dynamo theory is reviewed here in the special context of the cycletime problem. A
notable number of interesting phenomena have been investigated in the search for the solution
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Figure 4.2: Cycle periods in years vs. rotation times in days, compiled from Saar & Brandenburg (1999)
and Oláh, Kolláth & Strassmeier (2000). From Rüdiger & Arlt (2003).

of this problem: flux-tube dynamics, magnetic quenching, parity breaking and even chaos.
Nevertheless, even the simplest observation – the solar cycle period of 11 yr – is hard to
explain (see DeLuca & Gilman 1991, Stix 1991, Gilman 1992, Levy 1992, Schmitt 1993,
Brandenburg 1994a, Weiss 1994, Rüdiger & Arlt 1996, Ossendrijver 2003). How can we
understand the existence of the large ratio of the mean cycle period and the correlation time
of the turbulence? The basic ‘observations’ are

• there is a factor of about 300 between the solar cycletime and the Sun’s rotation period,
• this finding is confirmed by stellar observations (see Fig. 4.2),
• the convective turnover time near the base of the convection zone is very similar to the

solar rotation period.

The problem of the large observed ratio of cycle and correlation times, τcyc/τcorr
>∼ 102, con-

stitutes the primary concern of dynamo models. In a thick convection shell this number re-
flects the square of the ratio of the stellar radius to the correlation length, so that numbers of
the order 100 are easily possible. For the thin boundary layer dynamo, however, the problem
becomes more dramatic and is in need of an extra hypothesis.

4.1.1 The Phase Relation

Only the antisymmetric part of the poloidal component of the solar magnetic field oscillates
and reverses its sign in the 11-year cycle (Stenflo & Vogel 1986). The magnetic reversal
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Figure 4.3: The anticorrelation of the radial magnetic field (solid: positive, dashed: negative) and the
toroidal magnetic field (the negative polarity is marked with the cycle number). From Schlichenmaier &
Stix (1995).

happens at the poles during the maximum of the sunspot activity. As the latter is located
rather close to the equator one can be sure that the solar activity phenomenon is a global one.

Stix (1976) pointed out that at the solar surface a fundamental phase relation between the
components of the global magnetic field can be observed. If the observed signs of the toroidal
magnetic fields and the poloidal magnetic fields are correlated, a distinct antiphase relation

B̄r · B̄φ < 0 (4.1)

appears in each cycle (Fig. 4.3). Here the sign of the toroidal magnetic field has been derived
from the magnetic signature of the sunspots, which is conserved during the whole cycle. This
relation forms a basic ‘phase dilemma’. If a poloidal field component is sheared by a radial
differential rotation then a correlation B̄r ·B̄φ < 0 results only for dΩ/dr < 0 (which is true
in all disk dynamos). However, helioseismology leads to dΩ/dr > 0 below the domain of the
butterfly. The observed antiphase relation B̄r ·B̄φ < 0 is thus a very strong argument against
the idea that the Sun is a simple αΩ-dynamo. All αΩ-dynamos with the observed dΩ/dr > 0
(in the butterfly region) lead to positive B̄r ·B̄φ – in contrast to the observations.

4.1.2 The Nonlinear Cycle

A linear theory is only concerned with the mean value of the oscillation frequency. The
activity period of the Sun, however, varies strikingly about its average from one cycle to
another (Fig. 4.4). Only a nonlinear theory will be able to explain the nonsinusoidal (chaotic
or not) character of the activity cycle (Fig. 4.5). The variability of the cycle period can be
expressed by the ‘quality’, ωcyc/δωcyc, which is as low as 5 for the Sun (Wittmann 1978,
Hoyng 1993).

The period of the solar cycle and its amplitude are far from constant. The most prominent
activity drop was the Maunder minimum between 1670 and 1715 (see Spörer 1887). Measure-
ments of 14C abundances in sediments and long-lived trees provide much longer time series
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Figure 4.4: The time series of the sunspot numbers indicate a highly nonlinear behavior. From 1670–
1715 a grand minimum (‘Maunder minimum’, see Eddy 1976) is seen.

than sunspot datasets. Schwarz (1994), Voss, Kurths & Schwarz (1996) and Voss et al. (1997)
found a secular periodicity of 80–90 yr as well as a long-duration period of about 210 yr. The
measurements of atmospheric 14C abundances by Hood & Jirikowic (1990) suggested a peri-
odicity of 2400 yr, which is also associated with a long-term variation of solar activity. The
variety of frequencies found in solar activity may even indicate chaotic behavior, as discussed
by Kurths et al. (1993, 1997), Rozelot (1995) and Knobloch & Landsberg (1996).
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Figure 4.5: Left: The distribution of the solar cycle length does not approach a Dirac function, the
‘quality’ of the cycle only gives values of about 5. Right: The wavelet spectrum of the sunspot number
time series shows two peaks for both 10 yr and 100 yr. From Frick et al. (1997).
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The short-term cycle period appears to decrease at the end of a grand minimum according
to a wavelet analysis of sunspot data by Frick et al. (1997). There is even empirical evidence
that the magnetic cycles persisted through the solar Maunder minimum, as first found by
Wittmann (1978, old sunspot data) and more recently by Beer, Tobias & Weiss (1998, Be data
in ice cores, Fig. 4.6).

Charbonneau (2001) reports the ‘odd-even effect’ of the cycle amplitudes. Since
Schwabe’s times (but not before) the odd-numbered cycles are stronger than their neighboring
even-numbered cycles (his Fig. 1 or our Fig. 4.8) or – which is the same – the sunspot number
of the complete 22-year cycle does not fluctuate too much from cycle to cycle.

4.1.3 Parity

The latitudinal distribution of the few sunspots observed during the end of the Maunder mini-
mum was highly asymmetric (Spörer 1887, Ribes & Nesme-Ribes 1993, Sokoloff & Nesme-
Ribes 1994). Short-term deviations from the north-south symmetry in regular solar activity are
readily observable (Verma 1993), yet a 30-year period of asymmetry in sunspot positions as
seen during the Maunder minimum remains a unique property of grand minima and should be
associated with a parity change of the internal magnetic fields. All spots except two or three
in this period appeared on the southern hemisphere (Spörer 1887). The first cycle after the
minimum, with maximum in 1706, existed almost exclusively in one hemisphere (Knobloch,
Tobias & Weiss 1998). Pulkkinen et al. (1999) studied the north-south asymmetry on the ba-
sis of a sunspot data set ranging from 1853 to 1996. They introduced a quantity for the mean
latitude of sunspots taken as spatial averages over the hemispheres. The sum of both values
defines a magnetic equator by mean latitudes. As shown in Fig. 4.7 (left) these calculations
lead to a systematic long-term activity variation with a distinct north-south asymmetry. The
period of this variation is about 90 yr.

Figure 4.6: The variation of 10Be in ice cores
does not show any phase discontinuity of the
cycle during the Maunder minimum (Beer,
Tobias & Weiss 1998).

An interesting question concerns a possible systematic north-south asymmetry of the cycle
length. Indeed, there are theories explaining the existence of grand minima with the simul-
taneous oscillation of modes with equatorial symmetry and antisymmetry. If this is true then
systematic differences of the cycle length in the two hemispheres must appear. One has to
check the sunspot data for the cycletimes in both hemispheres. Pelt et al. (2000) have con-
sidered the solar cycle as a traveling wave (see their Fig. 5) and define a mean cycletime in
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Figure 4.7: Left: The variation of the magnetic equator according to Pulkkinen et al. (1999). Right:
The length of the sunspot maxima, with data separated for the northern and the southern (thin line)
hemisphere. Also given is the average length (bold line). Courtesy J. Pelt.

this manner with an optimum of 10.84 yr. The length of the individual cycles around their
maximum is given in Fig. 4.7 (right). Note the crossovers between 14 and 15 and at cycle
number 21. Between the two crossovers the northern cycles were always longer than the
southern ones.

Both cycle lengths and amplitudes in the dataset of Hathaway et al. (2003) are given in
Fig. 4.8. There is no clear (anti-)correlation visible between cycle length and cycle amplitude
as it is described by Hoyng (1993) and Ossendrijver, Hoyng & Schmitt (1996). As noted
by Otmianowska-Mazur et al. (1997), the correlation coefficient, 0.39 in this case, is indeed
rather small. Solanki et al. (2002) with 0.35 find a very similar value.

Figure 4.8: Cycle length (left) and cycle amplitudes (right) for 11 cycles separated for northern (green)
and southern (blue) hemispheres. The data are the same as used in Fig. 3.10. Courtesy D. Hathaway.
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4.1.4 Dynamo-related Stellar Observations

The activity cycle of the Sun is not exceptional: The observation of chromospheric Ca-
emission of solar-type stars yields activity periods between 3 and 30 yr (Noyes, Weiss &
Vaughan 1984, Baliunas & Vaughan 1985, Saar & Baliunas 1992, Baliunas et al. 1995). Up
to 15% of the solar-type stars, however, do not show any significant activity. This suggests
that even the existence of the grand minima is a typical property of cool MS stars like the Sun
(Saar 1998). From ROSAT X-ray data Hempelmann, Schmitt & Stȩpień (1996) find that up
to 70% of the stars with a constant level of activity exhibit a rather low level of coronal X-ray
emission. HD 142373 with its X-ray luminosity of only log FX = 3.8 is a typical candidate.
Saar (1998) studied UV and X emission for a sample of the ‘flat activity’ stars. Their Ca
emission seems to reach a temperature-dependent basal value. Their coronal fluxes, however,
are lower than those of the cyclic stars. The same is true for the emission of the transition
region. We conclude that during a grand minimum the magnetic field is weaker than usual not
only in the activity belts, but overall.

On the other hand, Hempelmann et al. (2003) have shown by comparison of CaII data from
Baliunas et al. (1995) with ROSAT X-ray data for 61 Cyg A and B that their chromospheric
periodic activity (A: 7.3 yr, B: 11.7 yr) is consistently followed by a coronal activity evolution
with much higher amplitude. Unlike chromospheric activity, the X-ray data do not show any
basal value of nonmagnetic origin, so that X-ray observations seem to be a proper tool to
observe magnetic-induced stellar activity as suggested by Linsky (1994).

The cycle statistics are not yet very clear. Saar & Brandenburg (1999) report that for the
relation

ωcyc ∝ Ωn (4.2)

the full data set leads to the very small value n � −0.09. The value discussed by Noyes,
Weiss & Vaughan (1984) was n = 1.28. Baliunas et al. (1996) find n � 0.47 for young
stars and n � 1.97 for old stars, and Lanza & Rodonò (1999) derive a value of n � 0.36
for RS CVn systems. Saar & Brandenburg (2001) report values of 1.15, 0.8 and 0.4 for their
groupings ‘inactive’, ‘active’ and ‘superactive’. The steepest relation (4.2) with n ≈ 2–2.5 is
by Ossendrijver (1997) for slowly rotating stars with well-defined periods. All the reported
exponents except the smallest are positive.

The situation can be seen in Fig. 4.2, where the data of Saar & Brandenburg (1999) and
Oláh, Kolláth & Strassmeier (2000) have been used. Only the slow-rotating ‘inactive’ stars of
Saar & Brandenburg (1999) form an own branch, while there is no rule for fast-rotating stars.
We take from this plot a value of (say) n � 0.7. The overall finding, however, seems to be that
the rotation itself does not seem the only determinant of the cycletime. The dependence of the
cycle period on the rotation period is also rather weak. Below we shall demonstrate that such
a weak dependence is characteristic of the influence of the meridional flow on the cycletime.

EK Dra is – as a member of the Pleiades group – a very young version of the Sun with
its rapid rotation (2.7 d). Flares, and X-ray and microwave emission are already observed.
Doppler tomography revealed the existence of a nearly polar spot (Fig. 4.9, Strassmeier &
Rice 1998). The main question is whether such a young sun already exhibits cyclic activity or
not, and if yes whether the cycletime is long or short. The EK Dra light curve indeed suggests
a secular dimming since 1975 (Fröhlich et al. 2002). This is not exceptional: in Fig. 4.10 a
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Figure 4.9: Comparison of a young sun (Doppler image of EK Dra, right) and our present-day Sun (left).
Note the different positions and sizes of the spots. The rotation period of EK Dra is 2.7 d. Courtesy K. G.
Strassmeier.

similar long-term analysis is given for the K0 giant HK Lac. There is also a secular dimming,
from 1990 on followed by an impressive rise of the brightness.

Figure 4.10: Light curve of HK Lac (τrot = 24 d) derived from 540 blue plates of the Sonneberg Sky
Patrol archive. The dots are photoelectric data. The 10-year variation is statistically significant. Note the
grand minimum of 1990. Courtesy H.-E. Fröhlich.

Generally, the rotational brightness modulation of many active stars indicates the existence
of large cool starspots with sizes differing strongly from the solar case. An impressive example
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is given in Fig. 4.11, detected by Strassmeier (1999). As we shall show, for many solar-type
dynamo models the toroidal field belts are formed in the polar regions, so that the existence
of polar spots does not constitute a surprise. The question is rather why the spots observed
at the solar surface are located so close to the equator. On the other hand, Schüssler (1996)
argues that the different latitude distribution of the spots is due to the difference of the Sun and
the active stars. The latter are fast-rotating giants or subgiants in RS CVn systems or T Tauri
systems with deep convection zones. Schüssler suggests the existence of different types of
dynamos in the different types of stars (see Fig. 4.12). His main point, however, is to look for
different stability regimes of magnetic flux tubes in these stars (see Caligari, Moreno-Insertis
& Schüssler 1995).

The basic question whether the starspots are magnetic or not has been discussed in detail
by Solanki (2002). There are many arguments in favor of a magnetic character of the starspots
but the direct measurement of the magnetic field of individual spots proves to be difficult.

Figure 4.11: The largest starspot ever observed belongs to the K0III RS CVn star HD 12545. The
Sun (left corner, with spot!) is given for a direct comparison. Note the temperature scale on the right.
Courtesy K. G. Strassmeier.
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Figure 4.12: Pole-on
representation of the
magnetic field of AB
Dor. Note the dominance
of the nonaxisymmetric
magnetic field compo-
nent. Rotation period of
AB Dor is 0.5 d. From
Jardine et al. (2002).

4.1.5 The Flip-Flop Phenomenon

Photometry and surface imaging can be used to obtain the spot distribution at stellar sur-
faces. The light curves, however, only contain the longitudinal brightness informations. If this
method is applied to active RS CVn variables then the existence of permanent active longi-
tudes is found. Sometimes there is a sudden change of the active longitude to the opposite side
of the star. This ‘flip-flop’ phenomenon appears to be the most innovative observational find-
ing in the present-day stellar-magnetism research (see Tuominen, Berdyugina & Korpi 2002).
It is a change of the spot position by 180◦ in longitude in a rather short time interval. Mathe-
matically speaking, it is the simultaneous existence of an oscillating axisymmetric mode and a
stationary nonaxisymmetric mode. Originally it was discovered in the light curve of FK Com
(Jetsu et al. 1991, cycletime 3.2 yr, see Fig. 4.13) but now there is already a (small) sample
of stars known, including also the single dwarf star LQ Hya (cycletime 2.6 yr, Table 4.1).
Korhonen et al. (2001) have shown, with surface images before and after the flip-flop, that the
spot groups at opposite longitudes do indeed change their strength rather than drift across the
surface (Fig. 4.14).

Photometrically monitored active longitude structures are known to exist over many years
(e.g. Henry et al. 1995). There is a long-standing discussion about the existence of active
longitudes in the solar activity. Recently, Mordvinov & Willson (2003) found patterns of
radiative excesses and deficits in the total solar irradiance reflecting the existence of long-
lived magnetic-active longitudes. The pattern with radiative excess proved to be concentrated
around two active longitudes separated by 180◦. Moreover, Berdyugina & Usoskin (2003),
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Table 4.1: List of stars with active longitudes and flip-flop phenomenon (Berdyugina, Korhonen &
Tuominen 2001).

Sp M/M� R/R� Ω/Ω� remarks

II Peg K2 IV 0.8 3.4 3.8 RS CVn
IM Peg K3 III 1.5 13.3 0.95 RS CVn
El Eri G5 IV > 1.4 > 3.4 13.3 RS CVn
σ Gem K2 III ∼ 2 ∼ 13 RS CVn
HR 7275 K2 IV ∼ 1 > 8 0.90 RS CVn
FK Com G5 III ∼ 1 ∼ 10 10.8 single?
LQ Hya K2 V ∼ 0.8 ∼ 0.8 16.3 single, young

with sunspot group data for 120 yr, find the active longitude drifting with the rotation at
the place of the mean latitude of the sunspots. The most dramatic finding, however, is the
alternating dominance of the two active longitudes, oscillating with periods of 3.8 yr (north)
and 3.65 yr (south). The flip-flop phenomenon seems, therefore, also to exist in the Sun.
Flip-flop frequency and main cycle frequency have here rather different values.

Figure 4.13: The flip-flop phenomen of FK Com
demonstrated with the phases of large spots (filled
circles) and small spots (open circles). There are
two active longitudes with about 180◦ separation
(solid lines). Courtesy I. Tuominen.

4.1.6 More Cyclicities

Coronal Solar Cycle

The transition layer between chromosphere and corona itself as well as the solar corona are
subject to the magnetic-activity cycle. The cyclic variation of the 10-cm radio flux is shown in
Fig. 4.15, and also the X-ray images of the coronal gas reflect the basic solar cycle. The X-ray
corona basically exists in the activity maximum apart from a few coronal bright points that are
also present in the minimum. The high degree of inhomogeneity of the coronal temperature
distribution seems to exclude heating sources such as compression-heat produced by acoustic
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Figure 4.14: FK Com light-curves and spot maps for 1990–1993 from Korhonen, Berdyugina & Tuomi-
nen (2002). Within two years the minimum at phase 0.5 developes to a maximum. The activity suddenly
changes by 180◦.

waves. It is the magnetic field1 that obviously heats the corona and determines its geometrical
structure (see Solanki et al. 2003, Rosner 2003).

Solar p-Mode Oscillations

The enormous progress in measuring the solar p-mode frequencies, up to an accuracy of 10−5,
forms new restrictions on the theoretical models. It has been established that the computed fre-
quencies for the solar p-mode oscillations systematically exceed the observed values (Brown
1984, Zhugzhda & Stix 1994, Gabriel & Carlier 1997, Rosenthal 1998, see Fig. 4.15). The
observed frequencies are therefore considered as redshifted. The theoretical frequency values
are too high and an extra effect is necessary to lower them (Christensen-Dalsgaard & Thomp-
son 1997). As shown in Fig. 4.15, the details of the phenomenon are more complicated. The
redshift only exists for high frequencies. For frequencies smaller than 2.5–2.6 mHz there is a
transition to blueshift with a maximum of a few µHz (see also Guzik & Swenson 1997). Two
opposite effects seem to influence the eigenmodes and dominate in different domains of the
frequency diagram.

There are indications that the corrections must be searched for in the outer layers of the
Sun. First, the difference increases with increasing radial order n. The higher the radial
order n, the closer to the surface the upper turning point of the waves lies. Because the
frequencies depend very sensitively on the location of this reflection point, this is a first hint
that the solar model has to be improved in this outer region. Moreover it can be found that

1 E. Priest (1999): “YOHKOH has revealed a whole new MHD world”



4.1 The Solar-Stellar Connection 107

the difference between the observed and the calculated frequencies increases with increasing
harmonic degree l, i.e. the more the waves are confined in the outer ‘convective’ part of the
Sun. Specifically, the difference is as low as a few µHz for low degree modes (l < 10) and
increases up to the order of a few tens of µHz for high degrees (l > 100) (Guzik & Swenson
1997).
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Figure 4.15: The frequency shift of low degree modes over the cycle 22 (black). For comparison also
other solar cycle indicators are plotted (Ri: sunspot number; F10: radio flux; Kpmi: Kit Peak magnetic
index; Mpsi: magnetic plage strength; Irra: irradiance from SOHO). Courtesy P.L. Pallé.

Therefore, turbulence has become one of the explanations for the p-mode frequency shifts
(Stein, Nordlund & Kuhn 1988, Murawski & Roberts 1993, Rosenthal 1998, Böhmer &
Rüdiger 1998, Stix & Zhugzhda 2004). The turbulent pressure modifies the pressure in the
convective region, and this modification is largest in the outermost part of the Sun where the
convection cells have the highest velocities.

The lineshift phenomenon varies over the cycle, as observed by Régulo et al. (1994) and
Jiménez-Reyes et al. (1998). The redshift disappears in the activity minimum and is largest
in the maximum epoch (see Libbrecht & Woddard 1990). In the maximum a strong magnetic
suppression of the turbulent pressure may produce the frequency redshift of the low-l p-modes.
Its time evolution can be followed in Fig. 4.15.

Climate Research

Satellite observations have shown that the total irradiance from solar minimum to solar maxi-
mum increases by about 0.1% (Fig. 4.16), resulting in a temperature change of ∼ 0.2◦C (Lean
1994).
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Figure 4.16: The variation of solar irradiance over the activity cycle. At the solar activity minimum the
solar radiation production is also minimum – with consequences for the irradiance during the Maunder
minimum. Courtesy C. Fröhlich.

Besides this 11-year timescale there is also a timescale of centuries in the solar radiation
output, which might be even more interesting. Lean (1994) and Hoyt, Schatten & Nesme-
Ribes (1994) focused the general interest of climate research on the long-term reconstructions
of solar variability. Isotopes in ice cores and tree rings provide much longer time series of data
related to the solar activity. During the grand minima the solar luminosity decreases by (say)
0.2%, so that by this effect the temperature reduction is about 0.3–0.5◦C (see Weiss 1997). A
time series of temperature in central England was investigated by Baliunas et al. (1997), who
indeed found a cooling by 0.3◦C during the Maunder minimum (Fig. 4.17).

Figure 4.17: A wavelet reconstruction of
a temperature record in central England
by Baliunas et al. (1997). The peak-to-
peak variation of the mean temperature
profile is 0.8◦C. Courtesy P. Frick

Solanki & Fligge (1998, 1999) reconstructed the solar irradiance over decades and cen-
turies in great detail for a comparison with terrestrial temperature records. Indeed, a fluctu-
ation of 0.2% in the irradiance led to a temperature increase of 0.5◦C (with ∼ 10 yr delay,
Fig. 4.18).
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Figure 4.18: The temporal variation of total solar irradiance and terrestrial temperature for the past
100 years. The solid line represents irradiance reconstructions from the activity. Until 1980 the Earth’s
temperature follows the solar activity-dominated forcing. After 1980 the global warming exceeds that
by the solar forcing (Solanki & Fligge 1998).

RS CVn Activity Cycles

The RS CVn systems as defined by Hall (1976) are characterized by solar-like activity that has
also been observed in X-rays, UV, optical and radio spectral domains (Linsky 1988, Rodonò
1992, Guinan & Giménez 1992, Strassmeier et al. 1993).

On the other hand, the eclipse times of the (detached) close binary systems2 of (say) 4–5
days orbital period varies by about 10 s with the timescale of an activity cycle (Fig. 4.19). The
modulation timescale for RS CVn binaries goes from a few to several decades, with a median
value of around 50 yr. The normalized amplitude of the modulation is of order 10−5 (Hall
1989, 1990) and its period Pmod is twice the spot-cycle length (Lanza & Rodonò 2004).

The possibility that a time-variable angular momentum loss, due to magnetic activity, may
be responsible for alternate orbital period changes was proposed by DeCampli & Baliunas
(1979). They concluded that this explanation was implausible because of the large mass loss
required and also because of the long timescale needed to couple the variation of the stellar
rotation to the orbital motion through tidal effects. The characteristic timescale for spin-orbit
coupling in RS CVn binaries turns out to be of the order of 103 yr, i.e., about two orders of
magnitude longer than the periods of the observed short-term modulations (Zahn 1989).

Matese & Whitmire (1983) proposed a mechanism on the basis of a cyclic change of
the gravitational quadrupole moment of active stars. Linsky (1999) reports the direct and
indirect indications for observable magnetic fields at the surface of the stars. The orbital
period modulation has then been viewed as due to the magnetic stress in an oscillating dynamo
(Lanza, Rodonò & Rosner 1998, Rüdiger et al. 2002).

2 with a mass-donating late-type component
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Figure 4.19: Data for close
binary systems: period
modulation (a few seconds
per rotation over dozens
of years), orbital period
and modulation cycletimes
Pmod. Data from Lanza &
Rodonò (1999).

Lanza & Rodonò (1999) for the orbital modulation of close binaries due to a modulation
of the quadrupole moment3 J2 find

δP

P
= −3

(
R

a

)2

δJ2, (4.3)

where a is the semi-major axis of the orbit. Note that the orbital period decreases when the
quadrupole moment increases and the star becomes more oblate (J2 increases). The typical
value a � 4R holds for RS CVn stars. If the potential series of Legendre polynomials,
ψ = ψ0 + ψ2P2 + . . . , is introduced one finds

δP

P
=

3
16

R

GM
δψ2(R) � 4 × 10−16δψ2(R), (4.4)

with ψ2 in c.g.s. units. Positive (negative) ψ2(R) describe prolate (oblate) spheroids (see
Ulrich & Hawkins 1981).

In order to obtain an effect of δP/P � 10−5 we thus have to find the magnetic field
amplitude that produces a potential modulation of δψ2 � 2.5 × 1010 c.g.s. It is shown by
Rüdiger et al. (2002) that an oscillating α2-dynamo (an exotic case) needs an amplitude of
more than 100 kG to produce such an O(10−5) effect. As stressed by Lanza, Rodonò &
Rosner (1998) the detailed theory of the RS CVn period modulation may easily lead to a
better understanding of even the geometry of the stellar dynamo.

Following Applegate (1992), one can also argue that small magnetic-induced changes of
the rotation law lead to small changes of the centrifugal force leading to small quadrupole
moments. As is known from the theory of the solar torsional oscillations, one then addition-
ally has to solve the time-dependent equation for the angular momentum (Schüssler 1981,
Yoshimura 1981).

3 of the gravitation potential of the active component
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Not surprisingly, also for another class of almost fully convective stars solar-type activity
cycles are reported (Ak, Ozkan & Mattei 2001). Cyclical variations may exist in dwarf novae
due to possible activity cycles (∼ 10 yr) of the late-type companions. For SS Cyg with data
known over 100 yr a cycletime was found of about 7.2 yr (see also Hempelmann & Kurths
1990).

4.2 The α-Tensor

Kinematic dynamo theory in turbulent media utilizes only one equation to advance the large-
scale magnetic field in time, i.e. the mean-field induction equation

∂B̄

∂t
= ∇× (

ū × B̄ + E)
. (4.5)

Often only a differential rotation represents the mean flow ū; any meridional flow shall be
introduced later. The turbulent electromotive force (EMF),

E = 〈u′ × B′〉, (4.6)

simultaneously contains induction, αij , and dissipation, ηijk, which are the coefficient tensors
in the series expansion

Ei = αijB̄j + ηijkB̄j,k + . . . . (4.7)

Both tensors are pseudotensors. While for ηijk an elementary isotropic pseudotensor exists
(‘εijk’), the same is not true for αij . The simplest possibility appears for inhomogeneous
turbulence characterized by only one preferred direction g, say. The product εijkgk provides
an antisymmetric contribution to αij that, however, only plays the role of a magnetic transport4

along g. More interesting is the symmetric part of αij . As it must also be a pseudotensor, it
can only exist in connection with global rotation. An odd number of Ω’s is, therefore, required
for the α-tensor that is only possible with an odd number of g. The α-effect can thus only
exist in stratified and rotating turbulences (Parker 1955, Steenbeck, Krause & Rädler 1966).
The first formula reflecting this situation,

α = cα
�2corr Ω

Hρ
cos θ, (4.8)

was given by Steenbeck & Krause (1966) and Krause (1967) with Hρ the density scale height.
Evidently, α is a complicated effect where the effective value might really be very small;
the unknown factor cα in (4.8) may be smaller than unity. The strength of this effect was
estimated in many numerical and analytical studies, for both convectively unstable and stable
stratifications. The magnitudes of the α-effects do not reach the given estimate in many cases,
i.e. the dimensionless factor cα seems really to be much smaller than unity.

In the framework of the Second Order Correlation Approximation (SOCA) the sign of the
mean kinetic helicity

Hkin = 〈u′ · ∇ × u′〉 (4.9)

4 compare this expression with ū× B̄ in Eq. (4.5)
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is related to the sign of the α-effect. For isotropic α-effect negative kinetic helicity leads to
positive α and vice versa, i.e.

α � − τcorrHkin (4.10)

(Krause & Rädler 1980). The situation is more complicated if the tensor character of the α-
effect is taken into account, but in this case also the important azimuthal component of the
α-tensor, αφφ, is positive in the northern hemisphere.

The α-tensor is not isotropic, and not even symmetric by definition. By comparison with
the mean-field EMF ū × B̄ in Eq. (4.5) one finds that the antisymmetric parts of the α-
tensor form advection terms. Let us thus split the α-tensor in the two parts αij = αS

ij + αA
ij ,

with αS
ij = αS

ji and αA
ij = −αA

ij . Then we can write αA
ij = εijkγk, where γ denotes the

advection velocity. In spherical coordinates (r, θ, φ) the radial advection can be written as
γr = αφθ = −αθφ, i.e.

αA =


 0 0 0

0 0 −γr

0 γr 0


 . (4.11)

Cylindrical coordinates are considered later in Eq. (4.41). The determination of both the
symmetric and the antisymmetric part of the α-tensor is the essence of the present section.

4.2.1 The Magnetic-Field Advection

The mean magnetic field can here be considered as uniform. For simplicity we restrict the
calculations to the first-order terms in the scale ratio �corr/L, with L being a typical spatial
scale of mean fields. In this section the rotation rate is assumed to be zero.

Working with Fourier transforms we derive from the linearized induction equation

∂B′

∂t
− η∆B′ = ∇×

(
m′ × B̄

ρ(x)

)
(4.12)

the relation

(−iω+ηk2)B̂(k, ω) = ikj

∫
ρ̂−1(q)

{
B̄jm̂(k − q, ω) − m̂j(k − q, ω)B̄

}
dq, (4.13)

where the divergence-free momentum density m = ρu′ has been used instead of the random
velocity u′. Equation (4.12) is written without Hall effect; its inclusion, of course, would lead
to much more complicated expressions, which are not yet discussed in detail (Helmis 1968,
Mininni, Gómez & Mahajan 2002). The Fourier transforms again are defined in accordance
with Eq. (3.38). After multiplication and averaging Eq. (4.13) directly leads to

ρ2αij = −εipe

∫
ikj

−iω + ηk2
〈m̂p(k, ω)m̂e(k′, ω′)〉dkdk′dωdω′+

+εipeGf

∫
∂

∂kf

(
kj

−iω + ηk2

)
M0

pe(k, ω)dkdω + εipjGf

∫
M0

fp(k, ω)
−iω + ηk2

dk dω.

M̂0 is the homogeneous part of the spectral tensor for the momentum fluctuations.



4.2 The α-Tensor 113

We must now turn to the momentum equation

ρ

(
∂u

∂t
+ (u∇)u

)
= −∇P + ∇·π +

1
µ0

(∇×B)×B + f . (4.14)

For Ω = 0 the Fourier transform of its linearized form reads(
− iω + νk2 + iν(G · k)

)
m̂ − i

µ0
(k · B̄)B̂ = f̂

s
, (4.15)

where f s is the solenoidal part of the fluctuating force f ′ driving the turbulence: f̂ s
i = (δij −

kikj/k2)f̂j . Density fluctuations as the source of buoyancy have been neglected here.
Note the derivation of E as linear in the scale ratio �corr/L. This is why G from Eq. (3.37)

is considered as constant; allowance for spatial variations of G would involve higher orders
of �corr/L. The magnetic field fluctuations can be replaced in Eq. (4.15) by using Eq. (4.13).
This yields(

−iω + νk +
(k · VA)2

(−iω + ηk2
+ iνG · k

)
m̂−

−Gj
(k · VA)2

−iω + ηk2

∂m̂

∂kj
− i(k · VA)VA

−iω + ηk2
(G · m̂) = f̂

s
, (4.16)

with VA = B̄/
√

µ0ρ as the Alfvén velocity. Equation (4.16) must be solved with the scale

ratio �corr/L as a small parameter. At lowest order one finds that m̂ = m̂(0)/N , with

N = 1 +
(k · VA)2

(−iω + νk2)(−iω + ηk2)
, (4.17)

in which m̂(0) = f̂
s
/(−iω + νk2) is thought of as the momentum density for an ‘original’

turbulence existing without any magnetic field.
In the next step all the first-order terms in the scale ratio are collected, i.e.

m̂ =
{

1 − iν(G · k)
N(−iω + νk2)

}
m̂(0)

N
+

i(k · VA)(G · m̂(0))
(−iω + νk2)(−iω + ηk2)

VA

N2
+

+
i(k · VA)2Gj

(−iω + νk2)(−iω + ηk2)
1
N

∂

∂kj

m̂(0)

N
. (4.18)

With this relation the spectral tensor for the momentum density can be expressed in terms of
the ‘original’ spectral tensor (3.41) through a linear relation. After such reductions we find
E = γ × B̄ with

γ = Udia + Ubuo, (4.19)

where5

Udia = −∇
∫

Kdia(k, ω, B̄)
ηk2Q̂ll

ω2 + η2k4
dk dω (4.20)

5 the notation of the spectral tensor (3.63) is used with the transformation E = 8πk2ρ2Q̂ll
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and

Ubuo = G

∫
Kbuo(k, ω, B̄)

ηk2Q̂ll

ω2 + η2k4
dk dω. (4.21)

The effective velocities Udia and Ubuo are consequences of the nonuniformity of the turbu-
lence intensity and density where the former is attributed to the so-called diamagnetic pump-
ing. The velocities (4.20) and (4.21) depend on the magnetic field through the kernels Kdia and
Kbuo, which are given by Kitchatinov & Rüdiger (1992). We are here particularly interested
in the discussion of the limiting cases of weak and strong magnetic fields.

For B̄ = 0 the known linear expression for the velocity of the diamagnetic pumping is
reproduced

Udia = −1
2
∇ηT, (4.22)

with

ηT =
1
3

∫
ηk2Q̂ll

ω2 + η2k4
dk dω (4.23)

as the linear turbulent magnetic diffusivity.
Series expansion of Kbuo in terms of the magnetic field yields

Ubuo = −G
2B̄2

15µ0ρ

∫
ηk4(νηk4 − ω2)Q̂ll

(ω2 + ν2k4)(ω2 + η2k4)2
dk dω (4.24)

as the weak-field representation of the transport velocity. As the integral in this expression
is almost always positive, the turbulent buoyancy is directed toward the lower density, i.e.
upward, amplifying the usual buoyancy. This is an unexpected result. For sufficiently weak
magnetic fields mean-field buoyancy and flux-tube buoyancy are acting in parallel, both trans-
porting the magnetic flux upward.

In the strong-field limit, the turbulence approaches two-dimensionality. The diamagnetic
pumping is weak in this case and the density effect dominates. It is suppressed by the mag-
netic field as Kbuo � B̄−1. The positivity of this expression indicates that the transport is
now downward, in contrast to the above result for weak fields. The variation of Ubuo with
1/B̄ is quite similar to that of the turbulence intensity 〈u′2〉 in the strong-field approach (see
Eq. (6.43)).

Let us generally write

Udia = −Φdia(Ω, B̄) ∇ηT, Ubuo = Φbuo(Ω, B̄)ηT∇ log ρ. (4.25)

The function Φdia depends on the rotation and the magnetic field; it is always positive and
does not vanish for vanishing rotation and vanishing magnetic field. It is thus clear that in the
overshoot region the transport is always downward. Φbuo also depends on the angular velocity
of the basic rotation and on the magnetic field, but for nonrotating fluids it vanishes for van-
ishing magnetic field. The effect only arises due to the interaction of the density stratification
and the magnetic field, so its sign is not quite obvious.
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Figure 4.20: Magnetic quenching of the
diamagnetic effect according to Kitchati-
nov (1991) and Kitchatinov & Rüdiger
(1992). Φdia is always positive, but Φbuo

changes sign around β = B̄/Beq � 2.

For strong magnetic fields the functions Φdia and Φbuo both approach zero. Even in
the frame of quasilinear theories only approximations are known for the Φ’s. Within the
τ -approximation (introduced in MHD by Pouquet, Frisch & Leorat 1976) both of the quench-
ing functions are known for rotation or for magnetism, i.e. Φdia(0, B̄) and Φdia(Ω, 0). Only
the magnetic quenching functions are given in Fig. 4.20. The function Φbuo vanishes for van-
ishing B̄, which means that the density stratification only produces a turbulent advection in
magnetized turbulence. Note that the function Φbuo has no definite sign: it is positive for very
strong magnetic fields but negative for weak fields.

We have to ask whether situations exist where the upward-directed turbulence buoyancy
dominates the downward-directed turbulence diamagnetism. From Fig. 4.20 it is obvious that
at the bottom of a convection zone (where dηT/dr > 0) the diamagnetic advection is always
downward. This is also true for the overshoot region below the convection zone. The mag-
netic quenching of this effect, however, is very strong. In the bulk of the convection zone
the turbulence intensity is nearly uniform so that the downward advection should be smaller
than in the overshoot regime. On the other hand, if the magnetic field is strong, the downward
advection in the convection zone should be changed to a magnetic-dominated upward advec-
tion. The reason for this is that the density stratification d log ρ/dr is much stronger than in
the overshoot region, so that the turbulent buoyancy can dominate the turbulent diamagnetism
if the magnetic field is strong enough. One finds this result in the behavior of the solid line
Φbuo(β) in Fig. 4.20. For magnetic fields smaller than β � 2 the function Φbuo(β) is negative,
representing an upward-directed (buoyancy) effect. It does not appear in the overshoot region
as the quantity |ρ−1d log ρ/dr| is much smaller there than in the convection zone.

In summary, the mean field transport in the stable layer should be downward and domi-
nated by turbulent diamagnetism (Udia), whereas in the convection zone for (not too) strong
magnetic fields the transport is upward, and dominated by the turbulent buoyancy (Ubuo).
The magnetoconvection simulations by Ziegler & Rüdiger (2003) confirm these results. The
last column in Table 3.3 gives the radial component of the advection vector γ in the overshoot
region. The simulations always lead to a downward pumping of the magnetic field (see Dorch
& Nordlund 2001, Thomas et al. 2002, see Fig. 4.21). That the transport of magnetic fields
at the bottom of the convection zone is always downward was first found by Brandenburg et
al. (1996).
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Figure 4.21: Downward magnetic flux pumping in the solar granulation layer. The original field is of the
form of a toroidal thin slab (left) above the stable layer that ends at z = 1 (dotted line). It is transported
downwards and then it diffuses into the stable layer with z > 1 (right). Thomas et al. (2002).

4.2.2 The Highly Anisotropic α-Effect

Now we have to include the influence of the basic rotation. Equation (4.15) is replaced by(
− iω + νk2 + iν(G · k)

)
m̂ + 2(k◦ · Ω)(k◦ × m̂) − i

µ0
(k · B̄)B̂ = f̂

s
(4.26)

(k◦ = k/k). If the Lorentz force is neglected in Eq. (4.26), we obtain

Dij =
(

δij +
2(k◦ · Ω)

−iω + νk2 + iν(G · k)
εijpk

◦
p

)/ (
1 +

4(k◦ · Ω)2

(−iω + νk2 + iν(G · k))2

)
for the tensor D, from the definition, Eq. (3.40). If, on the other hand, the influence of rotation
and the mean magnetic field on the turbulence is considered, D changes to

Dmag
ij =

1
N

(
δij + 2

(k◦ · Ω)
(−iω + νk2)N

εijpk
◦
p

)
, (4.27)

with N given by Eq. (4.17). Equation (4.27) only holds for slow rotation and density strat-
ification neglected. With Eq. (4.27) the spectral tensor for the momentum density can be
expressed in terms of the spectral tensor (3.41) for the background turbulence after processing
the transformation

〈m̂i(k, ω)m̂j(k′, ω′)〉 = Din(k, ω)Djp(k′, ω′)〈m̂(0)
n (k, ω)m̂(0)

p (k′, ω′)〉, (4.28)

where all the effects that magnetic fields or rotation produce are involved in the tensor D.
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We proceed with the consideration of the kinematic α-effect where the feedback of the
magnetic field on the turbulence is neglected. The α-effect is both odd in Ω and in G. In the
language of the spectral formulation this mean that the corresponding spectral tensor is odd in
Ω and in κ. As an example the spectral tensor

M̂ij = M̂
(0)
ij +

ρ2Q̂ll

2

[
2νkεijp

ω2 + ν2k4

(
(κΩ)k◦

p + (k◦Ω)κp

)
+

+
2(k◦Ω)κpk

◦
m

k

(
εjmpk

◦
i

iω + νk2
− εimpk

◦
j

−iω + νk2

)
+

4(k◦Ω)εijpk
◦
p

(ω2 + ν2k4)2
×

×
(
− 2ν3k5(k◦κ) + iω(ω2 + ν2k4) + iν(ω2 − ν2k4)(Gk)

)]
, (4.29)

is given following from Eqs. (3.39) and (3.40). It directly leads to the expressions for the
kinetic helicity and the α-effect for slow rotation. Already its structure demonstrates that the
quasilinear approach can be handled – but not with ease.

The ‘nonmagnetic’ representation (4.27) for the tensor D is used valid for arbitrary rota-
tion rate Ω. The resulting α-tensor splits into two parts that separately involve the effects of
the inhomogeneities of turbulence intensity and density, i.e. α = αρ + αu. Both tensors have
the same structure, which is given here only for the density stratification, i.e.

αρ
ij = −(G ·Ω)

(
αρ

1δij +αρ
4

ΩiΩj

Ω2

)−αρ
2(GiΩj +GiΩi)+αρ

3(GiΩj −GiΩi), (4.30)

with

αρ
n =

∫
νηk4Q̂ll

(ω2 + ν2k4)(ω2 + η2k4)
Aρ

n(Ω, k, ω)dk dω, (4.31)

for n = 1, 2, 4 and

αρ
3 =

∫
ω2Q̂ll

(ω2 + ν2k4)(ω2 + η2k4)
Bu

3 (Ω, k, ω)dk dω. (4.32)

Detailed calculations of the α-tensor (4.30) on the basis of different turbulence models are
also presented by Moffatt (1978), Roberts & Soward (1975) and Wälder, Deinzer & Stix
(1980). The dependence on the angular velocity enters the relations through the kernels A
and B, which are rather complicated expressions (Rüdiger & Kitchatinov 1993). Only special
realizations shall be discussed here.

In cylindrical coordinates (s, φ, z) the symmetric part of the α-tensor is

αS ∼

 −α1 cos θ 0 −α2 sin θ

0 −α1 cos θ 0
−α2 sin θ 0 −(α1 + 2α2 + α4) cos θ


 , (4.33)

while in spherical coordinates (r, θ, φ) we have the structure

αS ∼

 αrr αrθ 0

αθr αθθ 0
0 0 αφφ


 , (4.34)
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with αrr = −(α1 + 2α2 + α4 cos2 θ) cos θ, αrθ = αθr = (α2 + α4 cos2 θ) sin θ, αθθ =
−(α1 + α4 sin2 θ) cos θ and αφφ = −α1 cos θ.

The combination of the inhomogeneities of the turbulence intensity and the density into a
common gradient, ∇ log(ρuT), was believed to appear for the entire α-effect (Krause 1967).
In general, however, this is not exactly true and the relative contribution of the two basic
inhomogeneities depends on the angular velocity. We introduce a weight factor, S, which
characterizes the relative contribution of the density stratification such as in

αφφ = −αu
1Ω∇ log(ρSuT), (4.35)

where S also depends (slightly) on the angular velocity.

Slow Rotation

Explicit representations of the αu for the slow-rotation case are given in Rüdiger (1978) and
we do not reproduce them here. We concentrate upon the contribution of the density stratifi-
cation, i.e.

αρ
1 =

4
15

∫
νηk4(3ν2k4 + 5ω2)Q̂ll

(ω2 + ν2k4)2(ω2 + η2k4)
dk dω,

αρ
2 = − 8

15

∫
ν3ηk8Q̂ll

(ω2 + ν2k4)2(ω2 + η2k4)
dk dω, (4.36)

and αρ
4 = 0. Note the opposite signs of αρ

1 and αρ
2, to which we shall return below.

The α-effect also exists in the high-conductivity limit. The relations provide for η → 0

αρ
1 =

32π2

5ν

∞∫
0

k2 q(k, 0, x) dk, αρ
2 = −64π2

15ν

∞∫
0

k2 q(k, 0, x) dk, (4.37)

which remains finite for finite viscosity. The same is not true, however, for the expression
describing the magnetic quenching of the α-effect (see below).

From here the value S = 1.5 can be found for the weight factor. The difference from unity
is not large. Therefore, the importance of the two inhomogeneities for the α-effect depends
mainly upon the gradients themselves. The τ -approximation leads to

αrr = α̂

(
U +

G

4

)
Ω, αφφ = αθθ = −α̂

(
U +

3G

2

)
Ω. (4.38)

While in the northern hemisphere the most important component αφφ becomes positive (if
density stratification dominates), the component αrr becomes negative. In contrast to the
standard formulations, the α2-components in Eq. (4.30) are dominant, as confirmed by nu-
merical simulations. Our quasilinear theory of the α-effect provides α̂ = (8/15)τ2

corru
2
T. The

small value S = 0.25 for the radial α-component in Eq. (4.38) is also a surprise.
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Rapid Rotation

For rapid rotation α1 = −α4 and α2 = α3 = 0. One then finds the rather simple relation

αij = −α̂
(G + U) · Ω

Ω

(
δij − ΩiΩj

Ω2

)
, (4.39)

with

α̂ =
πη

4ν2

∫
(ω2 + ν2k4)Q̂ll

k2(ω2 + η2k4)
dk dω. (4.40)

Both basic inhomogeneities combine into a common gradient in Eq. (4.39), leading to S = 1
as the weight factor. Since the U dominates the G in the bottom layers of the convection
zone – and in the overshoot region below the convection zone – one expects that the α-effect
becomes negative in these layers (Fig. 4.22, right).

The α-effect for inhomogeneous intensity is known to become two-dimensional for rapid
rotation (Moffatt 1970, Rüdiger 1978, see Busse & Miin 1979). We notice from Eq. (4.39) that
this remains valid with density stratification included. The α-effect vanishes in the z-direction
in cylindrical coordinates, i.e.

α = cα


 −3π

8 cos θ 3π
8Ω∗ cos θ 0

− 3π
8Ω∗ cos θ −3π

8 cos θ 0
0 − 3π

8Ω∗ sin θ 0


 u2

Tτcorr
d log(uTρ)

dr
. (4.41)

Note that

• all components with index z disappear,
• the remaining diagonal terms do not vanish for rapid rotation,
• the α-terms are negative in the northern hemisphere if the turbulence intensity increases

outward (as in the overshoot region),
• the advection terms vanish for rapid rotation6.

In Fig. 4.22 (left) the rotational behavior of the α-tensor components αφφ and αzz is given
taken from the expressions by Rüdiger & Kitchatinov (1993, in τ -approximation). Note that
indeed there is no rotational Ω-quenching of αφφ. Contrary to this the αzz linearly grows for
small Ω∗ but after its maximum around Ω∗ � 1 it is strongly reduced by the rotation.

The Sign of the α-Effect

In Fig. 4.23 the results of box calculations are given for increasing influence of the density
stratification. A toroidal magnetic field has been applied to a convectively unstable tempera-
ture profile. The mean vertical density profile can be prescribed as very smooth (left) or rather
steep (right). The resulting numbers are averaged over the horizontal plane (and in time).
The turbulent EMF is normalized with B̄yuT, the latitude is 45◦ and the Taylor number is
about 107.

6 αφs = −αsφ is also called the escape velocity Vesc
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Figure 4.22: Left: The influence of the rotation on αφφ (solid) and αzz (dashed). No Ω-quenching
of the αφφ exists. The weight-factor S (dotted) approaches unity for fast rotation. Right: The depth-
dependence of the α-effect in the solar convection zone with cα = 1. Note the different contributions
due to the density gradient and turbulence intensity distribution. The α-effect becomes negative only at
the bottom of the convection zone.

Without density stratification the α-effect proves to be a boundary phenomenon (Soward
1974). It is zero in the middle of the box and it reflects the vertical profile of the turbulence
intensity, α ∝ −duT/dz, see Eq. (4.35). At the end of Sect. 4.4.1 we note that oscillatory
α2-dynamos are possible for profiles as shown in Fig. 4.23 (left).

Figure 4.23 also demonstrates the influence of the density stratification upon the α-effect.
As the density decreases in the vertical direction, dρ/dz is negative, and the resulting α-
effect becomes more and more positive (Fig. 4.23, right). Negative values only survive at the
bottom of the box. Also, the temporal fluctuations of the α-effect are reduced by the density
stratification. Note that the density ratio in the solar convection zone between x = 0.7 and
x = 0.9 is about 15, only in comparison with the surface values does one obtain numbers of
order 103 (see Stix 2002).

The simulations reveal the resulting α-effect to be rather small. Only a small fraction of
the turbulence intensity actually results in a toroidal α-effect. The unknown parameter cα in
Eq. (4.41) appears to be of order 10−2.

Krivodubskij & Schultz (1993) (with the inclusion of the depth-dependence of the Coriolis
number Ω∗ and using a mixing-length model of the solar convection zone) derived a profile
of the α-effect with a magnitude of 100 m/s, positive in the convection zone and negative in
the overshoot layer (Fig. 4.22, right).

Ossendrijver, Stix & Brandenburg (2001) and Ossendrijver et al. (2002) present simula-
tions for all the components of the α-tensor in spherical coordinates. Also, these simulations
were done in a Cartesian box including a convectively stable overshoot layer. All simulations
concern the southern (!) hemisphere, and the angle between the vertical (radial) direction and
the axis of rotation was varied between the south pole and the equator. The radial dependence
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Figure 4.23: The αφφ normalized with uT in boxes at 45◦ north from z = 0 (bottom) to z = 1 (top)
for low Mach number of order 10−2. Left: No density stratification (like in the Earth core). Right:
ρbottom/ρtop � 33 as in the supergranulation layer. Without density stratification the crossover in the
middle of the box is very characteristic (see Soward 1974). The stronger the density stratification the
more the positive sign dominates. Ta = 107, T � 104 K. Compare with the helicity profiles in Fig. 3.27
(left). Courtesy A. Giesecke.

of αθθ and αφφ has a typical shape, namely a negative sign in the bulk of the convection
zone, and a positive sign in the thin overshooting layer. The amplitudes of αθθ and αφφ for
various latitudes follow the commonly assumed cos θ-function. The α-effect, therefore, does
not vanish at the poles. For weak rotation the component αrr has a larger amplitude than the
other two diagonal components, and it has the opposite sign. If the rotation increases αrr

becomes small and strongly fluctuating, unlike αθθ and αφφ. This is the rotational quenching
of the vertical α-effect reported by Ossendrijver, Stix & Brandenburg (2001). In the overshoot
region αφφ becomes positive (at the south pole, see Fig. 4.24).

It has been argued that the short rise times of flux tubes in the convection zone prevent the
formation of the α-effect (Spiegel & Weiss 1980, Schüssler 1987, Stix 1991). Indeed, the rise
times may be much longer in the overshoot region (Ferriz-Mas & Schüssler 1993, 1995, van
Ballegooijen 1998). Note, however, the agreement of the results of the surprising numerical
simulations with those of the SOCA calculations. Sign and latitudinal dependence are very
similar in both approaches. For the amplitudes of the αφφ we have to compare the 100 m/s
obtained by Krivodubskij & Schultz (Fig. 4.22, right) with the result α/uT � 0.05–0.1 of
the box simulations (see Figs. 4.23, 4.24 and 4.26, also Brandenburg 1994b) leading to 10
m/s, (say). It must be stressed, however, that the basic parameters used in the simulations
(Rayleigh number, Taylor number, Prandtl numbers) are still far from the values of reality. It
seems that the presented nonlinear simulations more reflect the quasilinear SOCA rather than
the turbulent convection but it is certainly too early for further speculations.

It is this uncertainty that led Blackman & Field (2000), Brandenburg (2001) and Blackman
& Brandenburg (2002) to more dynamical formulations of the α-effect problem. It is not the
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Figure 4.24: The α-tensor components αφφ (left) and αrr (right) as a function of depth, for a box
at the south pole measured in units of 0.01

√
dg. The domain consists of a cooling layer (z < 0),

a convectively unstable layer (0 < z < 1) and a stably stratified layer with overshooting convection
(z > 1). Ω∗ = 2.4. The component αφφ does not vanish at the pole. From Ossendrijver, Stix &
Brandenburg (2001).

place here, however, for a discussion of this development which recently has been reported in
detail by Brandenburg & Subramanian (2004).

4.2.3 The Magnetic Quenching of the α-Effect

The influence of the magnetic fields on the α-effect is now considered. For simplicity the rota-
tion has to be assumed to be slow. We shall also restrict consideration to the τ -approximation,
while some more general expressions can be found in the original paper by Rüdiger &
Kitchatinov (1993). This approximation yields for the nondiffusive part of the mean EMF
the expression

E = −τ2
corru

2
T

(
8
15

Ψ(β) (UΩ) B̄ + Ψ1(β)

(
ΩB̄

) (
UB̄

)
B̄2

B̄−

−4
5
Ψ2(β)

(
ΩB̄

)
U − 4

5
Ψ3(β)

(
UB̄

)
Ω

)
. (4.42)

Here β = B̄/Beq is the field strength7 normalized with the equipartition value

Beq =
√

µ0ρ uT; (4.43)

the numerical factors were introduced to normalize the quenching functions Ψ, Ψ2, Ψ3 to unity
at β = 0 (the function Ψ1 vanishes at the origin). It is

Ψ =
15

32β4

(
1 − 4β2

3(1 + β2)2
− 1 − β2

β
tan−1 β

)
. (4.44)

For weak fields it scales as Ψ ∼ 1 − (12/7)β2, and for strong fields it goes to zero as
15π/64β3. This cubic quenching was found by Moffatt (1972), Rüdiger (1974) and Gilbert

7 do not confuse with the plasma beta that is named below β∗
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& Sulem (1990) but it is missing in the relations of Rogachevskii & Kleeorin (2001). The
remaining functions are

Ψ1 =
1

4β4

(
3β8 + 8β6 − 36β4 − 40β2 − 15

3(1 + β2)3
+

5 + β4

β
tan−1 β

)
,

Ψ2 =
5

16β4

(
3β4 − 8β2 − 3

3(1 + β2)2
+

1 + β2

β
tan−1 β

)
,

Ψ3 =
5

16β4

(
(β2 − 1)(3β4 + 8β2 + 3)

3(1 + β2)2
+

1 + β4

β
tan−1 β

)
. (4.45)

For weak fields the series expansions start with Ψ1 = (40/21)β2, Ψ2 = 1 − (13/7)β2 and
Ψ3 = 1 − (25/21)β2. For strong fields it is Ψ1 � π/8β, Ψ2 � 5π/32β and Ψ2 varies as β−3.

It is possible to rearrange the given expressions. The four terms can be written as a scalar
α-effect and an advection vector V mag with three components, i.e.

E = α(B̄)B̄ + V mag × B̄. (4.46)

The α-term follows as

α = −τ2
corru

2
T

(
8
15

Ψ(UΩ) + (Ψ1 − 4
5
Ψ2 − 4

5
Ψ3)

(ΩB̄)(UB̄)
B̄2

)
, (4.47)

which obviously depends on the direction of B̄. This dependence is in fact rather strong. The
α-effect for fields parallel to U is called α‖, and α⊥ is used for the perpendicular case. One
obtains

α‖ = −Ω∗ηTU cos θΨ‖(β), α⊥ = −Ω∗ηTU cos θΨ⊥(β), (4.48)

where ηT = τcorru
2
T is the magnetic eddy diffusivity for the nonmagnetic case, and θ is the

angle between the vectors U and Ω. The functions Ψ‖ and Ψ⊥ are linear combinations of the
quenching functions in Eq. (4.42). They are plotted in Fig. 4.25 together with the standard
quenching function 1/(1 + β2) that is often used by dynamo modelers.

Figure 4.25: Magnetic quench-
ing of the vertical (by a poloidal
field) and horizontal (by a
toroidal field) α-effect. The
dotted line represents the heuris-
tic function 1/(1 + β2), which
underestimates the magnetic
quenching in the quasilinear
approximation.

We note that strong magnetic fields suppress the α-effect more strongly than β−2. For the
strong-field case one finds at leading order in β

α‖ = O(β−5), α⊥ = −Ω∗ηTU cos θ
3π

16β3
. (4.49)
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The α-effect is not only anisotropic but is even anisotropically quenched. The vertical α-effect
hardly exists for β > 1. The remaining α-effect (for toroidal fields) is suppressed as β−3.

The magnetic quenching of αφφ can be observed in the simulations plotted in Fig. 4.26
for density-stratified (ρbottom/ρtop � 11, the solar value) and rotating (Ta = 107) turbulent
convection. The magnetic field in both simulations differs by a factor of 5. This is also true
for the maximum of the αφφ. Here, obviously, the quenching law is linear.

Figure 4.26: The same as in Fig. 4.23 but for ρbottom/ρtop � 11 and for weak (left) and strong (right)
magnetic field and in units of m/s. Courtesy A. Giesecke.

It may be noted that the effective velocity V mag is much less quenched by the strong
magnetic fields than the α-effect,

V mag =
3
8

πτcorrηT

β

(
UB̄

)
B̄2

(
Ω × B̄

)
. (4.50)

This velocity may wind up a toroidal field from a poloidal one, just like a differential rotation
would, even if the rotation is uniform.

Ossendrijver, Stix & Brandenburg (2001) also studied the magnetic quenching of the α-
effect by numerical simulations of magnetoconvection. According to their results the α-effect
is suppressed stronger than (say) β−3. This calls into question whether the equilibration value
of B̄2 is really the turbulent value µ0ρu2

T. Another possibility would be µ0ρη/τcorr, with η
as the microscopic magnetic diffusivity. In the high-conductivity limit this value is extremely
small, so that the magnetic quenching of α is much more effective than in the above standard
case (Cattaneo & Vainshtein 1991, Vainshtein & Cattaneo 1992). One always has u2

Tτcorr(�
ηT) 
 η. Formally we can write in this case α ∝ η/B̄2 or α ∝ 1/(RmB̄2) with the (large)
microscopic magnetic Reynolds number Rm = τcorru

2
T/η.

In discussing this question it may help to consider SOCA-expressions for the α-effect
in the high-conductivity limit, η → 0. Consider the α-effect for a homogeneous, isotropic
but helical turbulence. Its spectral tensor contains an antisymmetric part, namely Q̂ij =
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· · · − iεijkkkQ2(k, ω), which leads to an α-effect with the structure α = α0 − ΓB̄2, with

α0 =
2
3
η

∫
k4Q2 dk dω

ω2 + η2k4
, Γ =

4
5

η

µρ

∫
k6(νηk4 − ω2)Q2 dkdω

(ω2 + ν2k4)(ω2 + η2k4)2
(4.51)

(Rüdiger 1974). With the τ -approximation (3.47) also for η one finds α0 ∝ uT and Γ ∝
(µ0ρuT)−1, so that α � uT for weak fields, whereas for strong fields results8

α ∝ u3
T

B̄2/µ0ρ
. (4.52)

The situation changes completely in the high-conductivity limit. The α0-expression remains
almost unchanged. One finds that in this case (as usual ν → �2corr/τcorr) the result for Γ is
Γ ∝ η−1, which is never small for high conductivity. This result does not depend on the
special form of Q2, as for η → 0 there are Dirac delta-functions in (4.51)9. For strong fields
one obtains

α ∝ 1
Rm

u3
T

B̄2/µ0ρ
, (4.53)

which differs from Eq. (4.52) by the very small factor Rm−1 (∼ 10−3 for stars). Equa-
tion (4.53) indicates an extremely strong quenching. A more detailed discussion of such
‘catastrophic quenching’ is given by Blackman & Brandenburg (2002) and Brandenburg &
Subramanian (2004).

From the original expressions of Rüdiger (1974) or with Eq. (4.44) one finds that for strong
magnetic fields the cubic quenching α ∝ (

√
η/B̄)3 yields an even better approximation.

4.2.4 Weak-Compressible Turbulence

Turbulence in a rotating and density-stratified fluid possesses a negative (positive) kinetic
helicity, Eq. (4.9), in the northern (southern) hemisphere (see Miesch et al. 2000, their Fig. 22).
In this case the helicity is always associated with an α-effect of opposite sign, i.e. α ∝ −Hkin.
The standard sign of the α-effect in rotating, density-stratified fluids with forced turbulence is
thus positive (negative) for the northern (southern) hemisphere.

However, this antiphase relation between the α-effect and the kinetic helicity vanishes
for magnetic-dominated compressible turbulence models including buoyancy. In this case
it is the current helicity that starts to play the dominant role for the α-effect. In particular
the buoyancy turns out to be very important for the generation of α and angular momentum
transport (Brandenburg & Schmitt 1998).

We present results here for a compressible turbulence field driven by a (given) Lorentz
force in a rotating convection zone. The numerical findings of Brandenburg & Schmitt (1998)
are confirmed that in the northern (southern) hemisphere the α-effect and the kinetic helicity
are positive (negative) and the current helicity is there negative (positive). For the purely
hydrodynamic constellation in Sect. 3.4 the kinetic helicity had the opposite sign.

8 the quenching of the α-effect has been reformulated here as α = α0/(1 + (Γ/α0)B̄2)

9 see Rüdiger (1989, p. 267) for details
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Consider compressible turbulence in a medium with uniform density. Then, in the inertial
system, the momentum equation for rigid rotation is

∂u′

∂t
+ Ω × u′ + sΩ(êφ · ∇)u′ =

−1
ρ̄
∇

(
P ′ +

B(0) · B̄
µ0

)
+

ρ′

ρ̄
g +

1
µ0ρ̄

(B̄ · ∇)B(0) + ν∆u′. (4.54)

We take the fluctuating magnetic field B(0) (and also the mean magnetic field B̄) to be known.
The correlations of the random magnetic fluctuations B(0) may describe a homogeneous and
isotropic field of magnetic fluctuations.

Mass conservation requires that the density fluctuations ρ′ satisfy the continuity equation
∂ρ′/∂t + ρ̄ ∇ · u′ = 0. Notice that the mean density has been assumed as homogeneous in
space and that the density fluctuations vary in time. We do not adopt the anelastic approxima-
tion. The acoustic term ∂ρ′/∂t is necessary in order to get the presented results. The details
of the overall procedure are given by Pipin (2003).

For the energy equation the polytrope relation P ′ = c2
acρ

′ is adopted, where cac is the
isothermal sound speed. One can now find the correlation tensor of the turbulence driven by
the Lorentz force in Eq. (4.54). The total angular momentum transport with Maxwell stress
included is given by

Trφ = 〈u′
ru

′
φ〉 −

1
µ0ρ̄

〈B′
rB

′
φ〉. (4.55)

By definition, all off-diagonal correlations of the given fluctuation B(0) are zero, but this is
not true for the magnetic fluctuation B′, resulting from the interaction of the mean magnetic
field and the flow field due to Eq. (4.54). According to the induction equation in its linearized
form,

∂B′

∂t
+ sΩ(êφ · ∇)B′ − η∆B′ = ∇× (u′ × B̄), (4.56)

the influence of global rotation only concerns the nonaxisymmetric field components.
The resulting magnetic fluctuations can be used to compute the current helicity

Hcurr = 〈J ′ · B′〉, (4.57)

which has the same kind of equatorial (anti-)symmetry as the dynamo-α. For homogeneous
global magnetic fields, the dynamo-α is related to the turbulent EMF according to E = 〈u′ ×
B′〉 � α ◦ B̄ so that αijB̄iB̄j = E · B̄. Rädler & Seehafer (1990) read this equation as
αφφ = E · B̄/B̄2

φ, where αφφ is the dominant component of the α-tensor. We are particularly
interested in checking the antiphase relation,

αφφHcurr < 0, (4.58)

between the α-effect and current helicity (Keinigs 1983, Rädler & Seehafer 1990), resulting
from 〈E′ ·B′〉 = 0 with E as the electrical field, which may generally hold for homogeneous



4.2 The α-Tensor 127

and stationary turbulence (Seehafer 1996). An increasing number of contributions present ob-
servations of the current helicity at the solar surface, all showing that it is negative (positive)
in the northern (southern) hemisphere (Hale 1927, Seehafer 1990, Rust & Kumar 1994, Abra-
menko, Wang & Yurchishin 1996, Bao & Zhang 1998, Pevtsov, Canfield & Latushko 2001,
Kleeorin et al. 2003). Convincing observations are shown in Fig. 4.27, note (i) the equatorial
antisymmetry and (ii) the temporal constancy of the phenomenon. If Eq. (4.58) is correct then
there is a strong empirical evidence that the α-effect is positive (negative) in the northern
(southern) hemisphere of the solar convection zone.

Figure 4.27: The current helicity (from magnetic-field geometries of sunspots) in cycle 22 (left) and
cycle 23 (right) is negative (positive) in the northern (southern) hemisphere. Courtesy A. Pevtsov.

The Current Helicity

The (massive) algebra of the equations resulting from a Fourier transformation is described
by Pipin (2003). Here only the characteristic expressions within the τ -approximation are
discussed. The correlation length of the magnetic field fluctuations is denoted by �corr. For
the current helicity, Eq. (4.57), we find

Hcurr =
2
5

τ3
corr

�2corr

B̄2
φ

µ0

〈B(0)2〉
µ0ρ̄c2

ac

(g · Ω), (4.59)

with g as the inward directed gravity. The current helicity is thus negative (positive) in the
northern (southern) hemisphere. This is exactly the numerical result of Brandenburg (2000)
for the current helicity of the magnetic field fluctuations, and it also agrees with the observa-
tions.

Turning next to the α-effect, only the most important component, αφφ, will be given, i.e.

αφφ = −1
5

τ2
corr

c2
ac

〈B(0)2〉
µ0ρ̄

(g · Ω). (4.60)

For rigid rotation the α-effect proves to be positive in the northern hemisphere and negative in
the southern hemisphere. Again our result agrees with the numerical simulations. The current
helicity and α-effect have opposite signs, their ratio being

αφφB̄2
φ

Hcurr
= −µ0

2
�2corr
τcorr

. (4.61)
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For the kinetic helicity the model yields

Hkin = − 8
15

τ3
corr

�2corr

B̄2
φ

µ0ρ̄

〈B(0)2〉
µ0ρ̄c2

ac

(g · Ω) , (4.62)

which is positive (negative) in the northern (southern) hemisphere. If a rising eddy can ex-
pand in a density-reduced surrounding then a negative value of the kinetic helicity is expected.
The magnetic-buoyancy model, however, leads to another result. Upward flow results from
negative density fluctuation and downward flow results from positive density fluctuation. The
fluctuating flow is thus compressed when flowing upward, and expands when flowing down-
ward. Thus, for magnetically driven turbulence with density fluctuations there is no minus sign
between the α-effect and kinetic helicity (as in Keinigs’ relation), but nevertheless the minus
sign is present in the relation between the α-effect and current helicity – and the α-effect is
again positive.

We have shown that the simplest turbulence model, including magnetic buoyancy under
the action of a slow global rotation, but without density stratification and shear, exactly fulfills
the rules found by Brandenburg & Schmitt (1998) in a numerical simulation for the physical
representation of the solar tachocline. For the northern hemisphere we find the dynamo-α and
the kinetic helicity being positive and the current helicity being negative.

There is also a minus sign between the α-effect (northern hemisphere) and the angular
momentum transport (the ‘viscosity-α’) suggested by Brandenburg (1998) with a shear flow
simulation. Our model yields this negative sign also for the case of turbulence subject to rigid
rotation (see Eq. (4.63)). However, the main power of such an antiphase relation between the
α-effect and angular momentum transport will be developed in a theory of accretion disks,
where a positive angular momentum transport is needed, so that Brandenburg’s law would
yield a negative α-effect on the upper disk plane – with strong implications to the accretion-
disk dynamo and jet theory (see Sect. 5.9).

It is not yet clear whether the observations of surface values of the current helicity reflect
the helicity of the fluctuating fields or the helicity of the large-scale fields. The high level of
noise in the observations seems to indicate a fluctuating-field origin of the phenomenon (see
Fisher et al. 1999). In any case, from Eq. (4.61) we should expect also a highly noisy α-effect.
In Table 4.2 our results are summarized for both of the discussed turbulence models. In all
cases the signs of the (antisymmetric) scalars are given for the northern hemisphere.

Table 4.2: The signs of turbulence quantities for the northern hemisphere for kinetic- and magnetic-
driven turbulence models. From Rüdiger & Pipin (2000).

kinetic-driven magnetic-driven total observ.

Hkin negative positive ≈ 0
C negative negative negative <∼ 0
Hcurr negative negative negative negative
α-effect positive positive positive
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If the real turbulence model can be considered as a mixture of both the approximations
then we expect

• a rather small kinetic helicity Hkin � 0,
• a negative current helicity Hcurr < 0,
• a positive α-effect.

Observations and simulations fully seem to comply with these formulations.

Angular Momentum Transport

The angular momentum transport is described by the off-diagonal elements of the correla-
tion tensor that do not vanish for rigid rotation. Our turbulence model provides the negative
expression

ΛV = − 18
105

τ3
corrg

2

c2
ac

B̄2

µ0ρ̄

〈B(0)2〉
µ0ρ̄c2

ac

(4.63)

for the Reynolds stress in the rigidly rotating plasma. Note that ΛV is even in g. For the
magnetic-induced angular momentum transport 〈B′

rB
′
φ〉 = 0 is obtained. Now replace g �

c2
ac/Hp, �corr = αMLTHp, where Hp is the vertical pressure scale, i.e.

ΛV = − 18
105

α2
MLT

τ3
corr

�2corr
V 2

A

〈B(0)2〉
µ0ρ̄

, (4.64)

with the Alfvén velocity VA associated with the dominant toroidal field component B̄φ. Ac-
cording to the results presented in Fig. 3.15 (right) negative values in Eq. (4.64) lead to rotation
laws decreasing outward, i.e. ∂Ω/∂r < 0. Indeed, such a regime (of slow rotation) holds in
the subsurface supergranulation layers (Fig. 3.2, left).

4.3 Magnetic-Diffusivity Tensor and η-Quenching

Like the eddy viscosity tensor, the magnetic diffusivity tensor ηijk defined by Eq. (4.7) also
depends on the influence of global rotation and large-scale magnetic fields (Roberts & Soward
1975).

4.3.1 The Eddy Diffusivity Tensor

The magnetic field diffusivity tensor ηijk for a rotating fluid reads

ηijk = εijm

(
ηTδkm + η‖

ΩkΩm

Ω2

)
+ (a− b)δikΩj − b δijΩk +

c

Ω2
ΩiΩjΩk. (4.65)

This equation includes all the contributions to the mean EMF proportional to the spatial
derivatives of the mean magnetic field. An important complication is that not all of these
terms describe an effective field dissipation. Only the ηT- and η‖-terms in Eq. (4.65)
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represent the anisotropic diffusion. The middle terms in Eq. (4.65) can be written as
(a − 2b)δikΩj + b(δikΩj − δijΩk). Here the last term forms the Ω × J -effect of Rädler
(1969), while the first one can be written as a gradient (for rigid rotation), the curl of which
disappears. Hence a is not important and b is the coefficient of the Ω×J-effect that, however,
vanishes in the frame of the τ -approximation. We shall meet this situation many times later:
not all contributions to the diffusivity tensors actually describe dissipative processes (as also,
for example, the Hall effect).

The coefficients in Eq. (4.65) are the spectral integrals

ηT =

∞∫
0

∞∫
0

ηtk
2E(k, ω)

ω2 + η2
t k4

K(k, ω, Ω) dk dω,

η‖ =

∞∫
0

∞∫
0

ηtk
2E(k, ω)

ω2 + η2
t k4

K‖(k, ω, Ω) dk dω,

b =

∞∫
0

∞∫
0

η2
t k4ω2E(k, ω)

(ω2 + η2
t k4)2(ω2 + ν2

t k4)
Kb(k, ω, Ω) dk dω,

c =

∞∫
0

∞∫
0

η2
t k4ω2E(k, ω)

(ω2 + η2
t k

4)2(ω2 + ν2
t k4)

Kc(k, ω, Ω) dk dω, (4.66)

where the kernels K depend on the angular velocity (Kitchatinov, Pipin & Rüdiger 1994). The
general expressions for the kernels are so complex that simplifications are necessary. In the
slow-rotation limit (Ω → 0), η‖ = 0, while K tends to 1/3, reproducing the isotropic diffusion
coefficient. The other kernels are Kb = 16/15 and Kc = 0, in agreement with Roberts &
Soward (1975). For rapid rotation we have

K = K‖ =
π(ω2 + ν2

t k4)
16Ωνtk2

. (4.67)

The η‖-parameter is the additional diffusion coefficient along the rotation axis, i.e. the effec-
tive diffusivity for this direction is ηT + η‖, while normal to the rotation axis the diffusivity is
ηT. The result of curling of the EMF with Eq. (4.65) is

∇× E = ηT∆B + η‖
∂2B

∂z2
, (4.68)

so that obviously the dissipation is enhanced in the direction of Ω (Rüdiger, Elstner & Stepin-
ski 1995). Equation (4.67) shows that in the rapid-rotation limit the diffusion along the rotation
axis is stronger, by as much as a factor of 2. This diffusivity anisotropy is due to the rotation-
induced anisotropy of the turbulence. The other kernels in Eq. (4.66) in this rapid-rotation
limit are small, i.e. Kb and Kc scale as Ω−3.

Now the τ -approximation (3.47) is introduced. One of its advantages is that the resulting
simplifications are strong enough to formulate the results for arbitrary rotational velocities.
Another is that the rotation rate dependencies are expressed in terms of the simple parameter
Coriolis number Ω∗.
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Figure 4.28: The quenching functions in the η-tensor for (left) the influence of rotation and (right) the
influence of magnetic field.

Application of Eq. (3.47) to Eq. (4.66) results in b = c = 0, and

ηT = η0φ(Ω∗), η‖ = η0φ‖(Ω∗), (4.69)

where

η0 = cητcorru
2
T, (4.70)

with cη = 1/3 (as the standard value) is the magnetic diffusivity for a nonrotating fluid10. The
quenching functions φ(Ω∗) and φ‖(Ω∗) are

φ =
3

4Ω∗2

(
1 +

Ω∗2 − 1
Ω∗ tan−1 Ω∗

)
, φ‖ =

3
4Ω∗2

(
−3 +

Ω∗2 + 3
Ω∗ tan−1 Ω∗

)
,

with φ(0) = 1 and φ‖(0) = 0 (see Fig. 4.28, left).
For slow rotation and weak magnetic field the eddy diffusivity tensor takes the simple and

well-known form ηijk = ηTεijk, so that E = −ηT∇× B̄. The eddy diffusivity, however, is
only a simple tensor without the magnetic feedback. For strong magnetic fields the ηT-tensor
becomes much more complex, having the form

ηijk = ηT(B̄) εijk + η̂(B̄) εilkB̄jB̄l + . . . . (4.71)

Its most convenient representation concerns the turbulent EMF

E = .... − ηT(B̄)∇× B̄ + Umag × B̄, (4.72)

with the ‘magnetic velocity’

Umag = η̂(B) ∇ log B̄2 + ηz(B̄)
J̄ × B̄

B̄2
. (4.73)

10 Reighard & Brown (2001) present an experimental realization, in liquid sodium, of the turbulence-induced con-
ductivity reduction expressed by Eq. (4.70)
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Here a similar computation to that which led to Eq. (4.68) provides the finding that again the
magnetic dissipation in field direction is enhanced (Kim 1997). For a magnetic field in the
z-direction one finds

Ey = (ηT + ηz − 2η̂)
dB̄

dx
, (4.74)

expressing a reduction of the dissipation in the orthogonal direction.
Within the τ -approximation one finds the quenching expressions ηT = η0ϕ(β), η̂ =

η0ϕ̂(β) and ηz = η0ϕz(β) with

ϕ =
3

2β2

{
− 1

1 + β2
+

1
β

tan−1 β

}
, ϕ̂ =

3
8β2

{
− 5β2 + 3

(1 + β2)2
+

3
β

tan−1 β

}
,

ϕz =
3

8β2

{
1 +

2
1 + β2

+
β2 − 3

β
tan−1 β

}
(4.75)

(Fig. 4.28, right). Here ϕ � 1 − 6β2/5, ϕ̂ � 3β2/5 and ϕz � 2β2/5 are valid for weak
magnetic fields. The η-quenching starts to become important for magnetic fields of this order.
Again, as for the α-effect, ϕ � 3π/4β3 yields a cubic quenching for the eddy diffusivity,
but (again) Rogachevskii & Kleeorin (2001) present a weaker quenching, O(β−1). So far the
above η-quenching expressions have been applied to the theory of sunspot decay, to stellar
activity cycles as well as the decay of (hypothetical) strong initial galactic magnetic fields.

We are confronted with the situation that in the mean-field theory both the inputs (α, ηT)
are strongly influenced by magnetic deformation and suppression. This must be a delicate
situation. For example, one cannot imagine that an α2-dynamo could exist if the dissipation
(ηT) is more strongly quenched by the resulting magnetic field than the induction (α). Tobias
(1996) has shown with a special dynamo model11 how complex the solution is. The dynamo
only works normally in the regime close to the critical dynamo number. If, however, the
dynamo is far in the nonlinear regime (β 
 1), the quenching becomes more and more
effective, so that details of the quenching functions become important. This is true in particular
if the shear is fixed, so that for an αΩ-dynamo the dynamo number D = CαCΩ grows with
growing magnetic field. This might also be the background for the existence of weak- and
strong-field solutions and the hysteresis between them found by Tobias (1996). So far, there
is no spherical dynamo model for which the interplay between α-quenching and η-quenching
has been studied in detail.

Finally, the same considerations started with Eq. (4.51) can be undertaken concerning the
η-quenching. The corresponding series is ηT = η0 − Γ ∗B̄2, with

η0 =
η

3

∫
k2Q̂lldkdω

ω2 + η2k4
, Γ ∗ =

2
5

η

µ0ρ

∫
k4(νηk4 − ω2)Q̂lldkdω

(ω2 + ν2k4)(ω2 + η2k4)2
(4.76)

(Kitchatinov, Pipin & Rüdiger 1994). Once again, in the high-conductivity limit η0 remains
finite, but yields Γ ∗ ∝ 1/η, describing a ‘catastrophic’ quenching. Such extremely strong
quenching has been reported for 2D turbulence by Cattaneo & Vainshtein (1991) and Parker
(1992). With their numerical simulations of magnetoconvection under the influence of an in-
homogeneous large-scale magnetic field Nordlund, Galsgaard & Stein (1994) find a significant
η-quenching only for 2D turbulence subject to strong fields (in the plane of the motion).

11 interface dynamo: shear exists below an interface and α-effect exists above it
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4.3.2 Sunspot Decay

One of the few examples where magnetic η-quenching can be observed is in the decay of
sunspots. Observational studies of sunspots have a long history (see Solanki 2003), which
makes them an excellent test sample for predictions of the mean-field theory. We are here
mainly concerned with the time-evolution of large, long-lived spots. Figure 4.29 displays the
basic observational finding that when a big recurrent spot decays, the rate of decline of the
spot’s area is almost constant in time (Bray & Loughhead 1964, Zwaan 1992, Skumanich et
al. 1994). Martı́nez Pillet, Moreno-Insertis & Vázquez (1993) obtained a decay rate of

Ȧ = −2 · 1012 cm2/s. (4.77)

The magnetic field in the umbra of a decaying spot is also known to be almost time independ-
ent. This implies a linear law Φ̇ � const. for the decrease of the spot’s magnetic flux

Φ =
∫

B̄z dA. (4.78)

Following Stix (1989), a linear decay of the flux can be reproduced by the solution of a 1D
diffusion equation with constant eddy diffusivity. Krause & Rüdiger (1975) noticed, however,
that the solution is not consistent with the linear decline of the spot area.

Figure 4.29: Temporal decay of the spot area of recurrent spots. The examples show linear (left) and
slightly nonlinear (right) decay laws after Martı́nez Pillet, Moreno-Insertis & Vázquez (1993).

Here we can demonstrate that the diffusive decay law can be improved considerably by
including the magnetic eddy diffusion quenching. The nonlinear diffusion model by Rüdiger
& Kitchatinov (2000a) reproduces linear decay laws for both spot flux and area.

Our 2D model solves two diffusion equations for magnetic field and entropy

∂B̄

∂t
= ∇× (

Umag × B̄ − ηT∇× B̄
)
, ρT̄

∂S̄

∂t
= −∇F conv, (4.79)

with

F conv
i = −ρT̄χij

∂S̄

∂xj
(4.80)
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in a horizontal slab with axial symmetry. In this equation, the effective velocity (4.73) ac-
counts for the anisotropy of the nonlinear diffusion. We started from an initial state of highly
concentrated purely vertical magnetic field and an entropy distribution that is the steady so-
lution of the heat transport equation (4.79) for the nonmagnetic case. The simulated ‘spot’
is defined as the circular area where the luminosity is reduced below 75% of its undisturbed
value. Though there was no spot at the beginning, it develops, however, shortly after and it
starts decaying after a while.

A typical example of the results is shown in Fig. 4.30. The main finding is that the decrease
of both the spot area and magnetic flux with time is rather linear, which results from the
nonlinear effect of magnetic quenching of the eddy diffusivities. These results are in very
good agreement with the empirical arguments of Martı́nez Pillet (2002). By rescaling the
eddy diffusivity by a factor of 10 to ηT � 5 ·1011 cm2/s the decay time can easily be adjusted.
A much stronger magnetic quenching of the diffusivity also leads to longer lifetimes of the
spots: Large-scale patterns with much weaker magnetic fields decay with a magnetic diffusion
coefficient of 6 · 1012 cm2/s (Sheeley 1992, Schrijver & Zwaan 2000).

After a detailed statistical study of sunspot data, Petrovay & van Driel-Gesztelyi (1997)
stress that Ȧ is slightly time dependent rather than constant, so that the decay law becomes
slightly parabolic. Certainly, the character of the decay law depends on the order of the
quenching law. With the cubic quenching used in our model the decay law of the sunspots
remains linear. If it is not linear in reality then the real quenching must be (i) of much higher
order (Petrovay & Moreno-Insertis 1997) or (ii) it must be stronger in the sense of Eq. (4.76).

Figure 4.30: Time evolution of the spot area (left) and the magnetic flux (right) in the nonlinear diffusion
model of Rüdiger & Kitchatinov (2000a). An example with Φ = 1022 Mx is shown. By rescaling of the
eddy diffusivity the decay time changes.

The model can be further improved by taking the fluid motion into account. The barocline
and magnetic forces are not in balance, leading to a meridional circulation. This flow was
found to be important for the MHD-equilibrium in the sunspots (Kitchatinov & Mazur 2000).
It was possible to reproduce the near-constancy of the field strength within the spot umbra
with the meridional flow. The flow is convergent on the top, changing to a downdraft near
the edge of the simulated spot. It helps to stabilize the highly concentrated flux against the
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magnetic pressure. Such flow patterns are indeed observed with local helioseismology of solar
active regions (Duvall et al. 1996, Kosovichev 2002). The vertical extent of the cool sunspot
proved to be only 5,000 km (Kosovichev 2002).

Sunspots can also be used to probe the properties of the magneto-acoustic-gravity
(‘MAG’) waves traveling along the magnetic field under the influence of density stratification,
radiation and compressibility. For the simplest case of an isothermal unstratified medium the
equations are as simple as given in Sect. 2.5 for the hydromagnetic waves under the influence
of rotation. Now the continuity equation changes from ∇ · u = 0 to ∂ log ρ/∂t + ∇ · u = 0,
which leads to the dispersion relation

ω± =
1
2

(
k2V 2

A + ω2
ac ±

√
(k2V 2

A + ω2
ac)

2 − 4ω2
Aω2

ac

)
, (4.81)

besides the particular Alfvén solution ω2
0 = ω2

A ≡ (k · VA)2. The complication in sunspots is
that they consist of regions with dominating magnetic field (top) or dominating gas pressure
(bottom). The three MAG-modes, therefore, couple and mix in the layer where the magnetic
Mach number approaches unity. Rosenthal et al. (2002) and Bogdan et al. (2003) have sim-
ulated the wave propagation in stratified magnetized atmospheres for an oscillation that is
convectively driven with 42 mHz (∼ 24 s) subject to a magnetic field of 5000 G. The field is
mainly vertical over a horizontal domain of 2000 km and the adiabatic sound speed is 8.5 km/s.
The wave propagation is computed with a 2D compressible MHD code.

The oscillations can also be observed. There are three bands observed of oscillation pe-
riods with peaks at 2’–3’, 5’ and >∼ 20’. Recent reviews are by Bogdan (2000) and Staude
(2002). The 3’ oscillations are mainly observed in the chromosphere above the umbra. At
photospheric levels the flow amplitudes are much lower ( <∼ 50 m/s) and they are not always
discovered. The amplitudes become larger with increasing height z. Recent observations have
shown that significant signals of magnetic field oscillations exist but they are limited to much
smaller regions inside the spots than the velocity oscillations that cover much larger parts of a
sunspot (Fig. 4.31).

It is unclear at present whether the oscillations are eigenoscillations of the sunspot itself
and/or a passive response to forcing by convection or ‘normal’ magnetic-deformed p-mode
oscillations.

4.4 Mean-Field Stellar Dynamo Models

We shall now apply the findings about the parameterizations of the turbulence-induced EMF
(4.7) to Eq. (4.5). The resulting dynamo equation can be written in the form

∂B̄

∂t
= ∇×

(
ū × B̄ + α ◦ B̄ −√

ηT∇× (√
ηTB̄

) )
, (4.82)

which includes the diagonal elements of the α-effect and the diamagnetism due to nonuniform
turbulence, Eq. (4.22). Note that after differentiation the factor

√
ηT exactly produces the

advection expression −1/2 · ∇ηT. If there are strong gradients of turbulence intensity, this
pumping term will dominate the transport of the mean magnetic fields. The tensorial nature
of η is ignored here, as its structure is not known to have any dramatic consequences for the
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Figure 4.31: Map of oscillatory power of the magnetic field strength in the 3’ period range. Dark and
white indicate increasing power. The white lines indicate the boundary between umbra and penumbra.
From Staude (2002).

dynamo theory. However, Kitchatinov (2002) found a moderate influence of the diffusion
anisotropy on the resulting butterfly diagram.

Only the exact balance of the inducing and dissipating processes allows the dynamo to
work. In order to demonstrate the variety of the solutions of the linear dynamo equation
(4.82) with η = const. and ∇ · B̄ = 0, it is applied to the simplest case of a 1D dynamo in
Cartesian coordinates (Parker 1971). We put u = (0, uy(x), 0) and B = (Bx(z), By(z), 0),
duy/dx describing a differential rotation such as ∂Ω/∂r. One finds

∂B̄x

∂t
= −α

∂B̄z

∂z
+ ηT

∂2B̄x

∂z2
,

∂B̄y

∂t
= α

∂B̄x

∂z
+ B̄x

duy

dx
+ η

∂2B̄y

∂z2
, (4.83)

which might be solved with B ∝ ei(kz−ωt) so that a dispersion relation( − iω + ηk2
)2 = α2k2 + iαk

duy

dx
(4.84)
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results. Without the shear term −iω = ±αk − ηk2, so that all modes with k ≤ |α|/η are
dynamo-unstable. The maximum growth rate is α2/2η for k = α/2η. The pattern of this
‘α2-dynamo’ is stationary. If, on the other hand, the α2-term in Eq. (4.84) is neglected, one
finds −iω = (1 + i)

√
αkuy,x/2 − ηk2, which indicates marginal instability for modes with

k = (αuy,x/2η2)1/3, traveling with a frequency ωcyc = (α2u2
y,x/4η)1/3 which runs with

Ω4/3 if both α-effect and shear are linear Ω (Tuominen, Rüdiger & Brandenburg 1988). The
maximum linear growth rate 0.30(α2u2

y,x/η)1/3 is of the same order of magnitude. This
oscillating dynamo is called the ‘αΩ-dynamo’. The transition between the regimes of α2-
dynamos and αΩ-dynamos is rather complicated, and will be discussed below for a spherical
model (see Fig. 4.38, right).

4.4.1 The α2-Dynamo

The model consists of a turbulent fluid in a spherical shell of inner radius xin and outer radius
1. The induction equation is (4.82). A magnetic field is generated in the shell by the α-
effect (Steenbeck & Krause 1966, Roberts 1972). The turbulent magnetic diffusivity η0 is
constant in the shell. For x > 1 there is assumed to be a conductor with large magnetic
diffusivity ηout, and for x < xin a conductor with high electrical conductivity, i.e. with small
magnetic diffusivity ηin. Here we are interested in the structure of the solution of an α2-
dynamo. However, there is no case known in which the α-tensor has a simple structure. The
general structure of the α-tensor is given by Eq. (4.30). It is reduced to its first term in almost
all models of α-effect dynamos.

In the models investigated the critical eigenvalues for dipolar and quadrupolar fields are
always rather close together12. However, only the inclusion of all the remaining symmetric
parts of the α-tensor reveals the variety of the solutions of the α2-dynamo. In any case a
dimensionless value

Cα =
|α1| · R

ηT
(4.85)

can be defined as the ‘dynamo number’. The material within the inner boundary may be
considered as a perfect conductor. The numerical outer boundary of the sphere is fixed at 1.5
stellar radii, where the standard conditions for a pseudovacuum are used. Between x = 1 and
x = 1.5 the value for the magnetic diffusivity is increased by a factor 100 in order to mimic
vacuum boundary conditions at the stellar surface. In the inner perfect-conducting part the
magnetic diffusivity is reduced by a factor of 10−8.

The following models are computed with a grid-point method rather than with the standard
method of spectral development (see Sect. 6.5 for details). The regularity conditions of the
magnetic field and its derivatives on the rotation axis form an essential point in this concept.
They are almost trivial for the axisymmetric solutions (Bθ = Bφ = ∂Br/∂θ = 0). For the
modes with m = 1 they read Br = ∂Bθ/∂θ = ∂Bφ/∂θ = 0, while for all higher m all the
magnetic field components must vanish at the axis13.

12 for perfectly conducting boundaries Proctor (1977) even showed that they are identical

13 these conditions are automatically fulfilled by the Legendre polynomials in the spectral codes
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The Symmetric Part of the α-Tensor

There are also studies in the literature where the natural antisymmetry of the α-effect with
respect to the equator has been neglected (Rädler & Bräuer 1987, Schubert & Zhang 2000,
Stefani & Gerbeth 2003). The realization of such models can be imagined in technical instal-
lations like the Karlsruhe dynamo experiment, with a fixed helicity and a uniform flow field
in the vertical (z) direction (Stieglitz & Müller 2001, Fig. 4.32), so that αzz = 0 is obvious
(Rädler et al. 2002). In order to demonstrate the differences between isotropic and anisotropic
α-tensors also in the case of a homogeneous α-effect (i.e. cos θ ignored), the following calcu-
lations are presented for the cases (i) αzz = αφφ and (ii) αzz = 0. While the first case seems
to be very academic the second one fits the situation in the dynamo experiment mentioned.

Figure 4.32: The interior of the Karlsruhe dynamo experiment. The sodium flows in the pipes with
prescribed helicity in the z-direction (perpendicular to the paper plane) that leads to αzz = 0. Courtesy
Forschungszentrum Karlsruhe GmbH.

Any mode has its own dynamo number, the mode with the lowest dynamo number is the
preferred stable mode (Krause & Meinel 1988). In Fig. 4.33 the resulting minimum numbers
Cα and the associated latitudinal mode numbers are given for various inner shell radii xin. The
dipole mode only dominates for the thick α-layers (see Krause & Rädler 1980, p. 177). For
xin

>∼ 0.5, however, the quadrupoles are favored, while even higher modes appear for thinner
and thinner layers. All the solutions are steady. We do not find any oscillatory α2-dynamo
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Figure 4.33: The simplest dy-
namo model (α = const.) The
lowest critical dynamo numbers
Cα for models with various
xin. The curve is marked with
the latitudinal mode number
for which the dynamo number
is minimum. All solutions are
steady, oscillating modes are
located above this line (Rüdiger,
Elstner & Ossendrijver 2003).

unless its α-amplitude Cα is not the lowest one. Oscillatory modes with low n do exist, but
their Cα are not the lowest ones.

More important are the solutions with homogeneous but anisotropic α-tensor. The α-
tensor may not have any zz-component, i.e. αzz = 0 in cylindrical coordinates. Now a
rotation axis is clearly defined so that it makes sense to ask for the axisymmetry of the so-
lutions. Table 4.3 gives both the results for uniform α-effect and the results if the α-effect
is α ∼ cos θ. The notation is the standard one, i.e. Am (Sm) denotes a solution with anti-
symmetry (symmetry) with respect to the equator and with the azimuthal quantum number m
(Fig. 4.34). It was indeed important to include the nonaxisymmetric modes, as they always
possess the lowest Cα. The axisymmetric solutions (mostly oscillating) that have been found
by Busse & Miin (1979), Weisshaar (1982) and Olson & Hagee (1990) are probably not stable.

There are no basic differences for α ∼ const. and α ∼ cos θ in Table 4.3. The dominance
of the modes with m = 1 for anisotropic α-effect has been discussed by Rüdiger (1980),

Table 4.3: Marginal dynamo numbers Cα for axisymmetric and nonaxisymmetric magnetic field modes
for anisotropic (αzz = 0) but uniform α-effect (left, see Karlsruhe dynamo experiment) and for α ∝
cos θ (right). The minimum values are marked in bold and oscillating solutions are marked with ∼.

α = const. α ∝ cos θ

xin A0 S0 A1 S1 A0 S0 A1 S1

0.25 9.06 8.40 6.72 6.72 15.0 (∼) 14.9 (∼) 10.6 9.97
0.50 10.8 (∼) 10.6 (∼) 9.50 9.50 15.7 (∼) 15.5 (∼) 11.8 11.7
0.75 17.3 (∼) 17.3 (∼) 16.2 16.2 21.6 (∼) 21.58 (∼) 18.4 18.4
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Figure 4.34: Left: The S1 mode as it is standard for the resulting magnetic geometry in the theory of the
α2-dynamo. Right: The A1 mode.

Rädler et al. (1990)14 and by Rüdiger & Elstner (1994). In light of these calculations it is thus
not a surprise that the Karlsruhe dynamo experiment provides the nonaxisymmetric mode with
m = 1.

Now the models with equatorial antisymmetry of the α-effect (with cos θ, as induced by
the global rotation) are developed in more detail. Different α-profiles in latitude are used in
order to simulate a possible concentration of the α-effect to the equator. The latitudinal profile
is fixed such that α ∝ sin2λ θ cos θ, where λ is a free parameter describing the latitudinal
profile of the α-effect. For λ > 0 the α-effect at the poles vanishes15. For increasing values of
λ the α-effect is more and more concentrated at lower latitudes. Dynamo models with λ > 0
seem to be of academic interest only, but it is necessary to know that only for such models do
oscillatory solutions appear with the lowest dynamo numbers. The results are summarized in
Tabs. 4.4 and 4.5.

Table 4.4 gives the results for isotropic α-effect with αzz = αφφ. For the standard case
with λ = 0 the axisymmetric dipole A0 is the preferred mode. This result, however, strongly
depends on the latitudinal profile of the α-effect. Already for λ = 1 the preferred mode is
nonaxisymmetric and for λ ≥ 2 we always find A1 as the preferred mode. Oscillatory modes
also appear, but they never have the lowest dynamo numbers.

For a strongly anisotropic α-tensor (αzz = 0) we have an even clearer situation. The
solutions with the lowest Cα are always nonaxisymmetric (see Table 4.4). Oscillating ax-
isymmetric solutions occur for the same α-anisotropy, but only for very thin convection zones
with xin = 0.8 and λ > 0 (Table 4.5). For such a model with vanishing α-effect in the polar
regions we find that the mode with the lowest Cα yields oscillating axisymmetric magnetic

14 another sort of anisotropy has been considered, see their Eq. (24)

15 which has never been used so far in numerical simulations
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Table 4.4: Dynamo numbers Cα for both isotropic α-effect (αzz = αφφ) and for anisotropic α-effect
(αzz = 0). The bottom of the convection zone is at xin = 0.5. The boldface numbers mark the lowest
value of the dynamo number.

αzz = αφφ αzz = 0

λ A0 S0 A1 S1 A0 S0 A1 S1

0 9.41 9.42 9.75 9.76 15.7 (∼) 15.5 (∼) 11.8 11.7
1 28.8 (∼) 28.7 (∼) 26.7 26.7 35.0 (∼) 33.8 (∼) 32.7 31.3
2 41.1 (∼) 41.2 (∼) 38.8 39.2 51.7 (∼) 49.1 (∼) 49.3 47.0
3 51.9 (∼) 52.0 (∼) 49.8 50.3 66.6 (∼) 63.3 (∼) 64.3 61.4

Table 4.5: The same as in Table 4.4 but for thin shells (xin = 0.8) and αzz = 0.

λ A0 S0 A1 S1

0 26.3 (∼) 26.3 (∼) 23.2 23.2
1 63.0 (∼) 62.9 (∼) 63.0 62.9
2 89.8 (∼) 89.4 (∼) 90.2 89.9
3 112.9 (∼) 111.8 (∼) 113.4 112.7

fields. After Rüdiger, Elstner & Ossendrijver (2003) such a cyclic behavior seems to be a
rather exceptional case, as it only appears if three conditions are simultaneously fulfilled, i.e.

• the α-tensor must be highly anisotropic,
• the α-effect must be concentrated to the equator and
• the convection zone must be thin.

The Antisymmetric Part of the α-Tensor

The α3-component in the tensor formulation (4.30) formally acts as a (differential) rotation
– so that, if α3 is strong enough – all α2-dynamos can operate as (pseudo) αΩ-dynamos,
and could thus be oscillatory. We shall denote this ‘virtual’ angular velocity by ΩT, where
ΩT = −α3/x. The ratio α3/α1 will determine the ability of the α2-dynamo to operate in
an oscillating regime. It transforms poloidal magnetic fields to toroidal magnetic fields with
a phase relation depending on the sign of ∂ΩT/∂r. With the notation in Ossendrijver et
al. (2002) α3 = −γφ/ sin θ, i.e. α3 = −γφ(equator) is found. This quantity is given in
Fig. 4.35. The influence of this effect for real turbulence fields is still an open question.

Stefani–Gerbeth Effect

If in a turbulent shell the α-effect changes its sign radially then it can happen that the resulting
α2-dynamo oscillates even for the simplest case of uniform α. This surprising phenomenon
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Figure 4.35: The azimuthal
advection rate ΩT as a func-
tion of depth (Ossendrijver
et al. 2002, their Fig. 4).
The tensor quantity γφ at the
equator equals xΩT.

only exists for some rather limited α-profiles (Fig. 4.36, see Stefani & Gerbeth 2003). This
bistability behavior also exists for more realistic α-values, e.g. also including the cos θ. One
can also ask whether for a given α-profile with changing signs a radial profile for ηT exists
leading to oscillating solutions. The answer is yes. For example, for α ∝ sin(2πx) cos θ the
solution oscillates if the ratio of the inner and the outer (uniform) ηT is chosen as between 0.7
and 0.8.

Figure 4.36: Possible radial
α-profiles for which Stefani
& Gerbeth (2003) find that
even the simplest α2-dynamo
oscillates. Here the α-effect
does not vanish for r = 0.

In the light of Fig. 4.23 (left), with its clear separation of positive and negative α-effect in
the shell without density stratification, the Stefani–Gerbeth effect may be of interest for the
reversal theory of the geodynamo. For a rather consistent model given in Krause & Rädler
(1980), however, working with a distributed turbulence intensity (their Fig. 16.1), the oscilla-
tions did not appear.

4.4.2 The αΩ-Dynamo for Slow Rotation

We now turn to the solution of the induction equation with differential rotation included.
Roberts (1972) discussed the excitation conditions of distributed αΩ-shell dynamos. The α-
effect was located in an outer shell, the dynamo was embedded in vacuum and the differential
rotation dΩ/dx was considered as uniform throughout the shell. For positive dynamo number
(αnorth ·dΩ/dx) dipoles are excited slightly easier than quadrupoles for thin convection zones,
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but for deep zones the quadrupoles clearly dominate (Table 4.6). At xin = 0.65 both the values
are equal (see Proctor 1977).

Table 4.6: The dynamo numbers for dipolar (A) to equatorially quadrupolar (S) solutions for αΩ-shell
dynamos with dΩ/dr > 0. At xin = 0.65 both eigenvalues are equal. From Roberts (1972).

α > 0 α < 0

xin dipole quadrupole dipole quadrupole

0 87 76 74 95
0.4 90 84 82 88
0.65 136 136 133 133
0.75 200 203 200 197

Roberts & Stix (1972) computed α2Ω-dynamos with a rotation law close to the solar
rotation law. The results are given in their Figs. 3 and 4. Without latitudinal differential
rotation but with positive (negative) ∂Ω/∂x

∣∣
eq

the solution with quadrupolar (dipolar) parity
has a lower eigenvalue than the solution with the dipolar (quadrupolar) symmetry – similar
to the Steenbeck-Krause (1969) model with the α-effect being unchanged. The conclusion
arises that the solar dynamo should work with Ω increasing with depth (which has not been
confirmed later by helioseismology). The inclusion of the latitudinal shear produces still
higher dynamo numbers, and the difference between quadrupolar and dipolar parity always
grows.

Köhler (1973) started to consider only the excitation of modes with prescribed dipolar par-
ity. For α-effect positive in the northern hemisphere he found for positive ∂Ω/∂x a poleward
drift of the toroidal magnetic field belts, in opposition to the observations, a situation that later
has been called the ‘dynamo dilemma’ (Parker 1987).

Moss & Brooke (2000), in order to produce the observed equatorward migration of the
toroidal fields, worked with the solar rotation law and with negative northern α-effect in the
bulk of the convection zone. The dipolar solutions are only slightly easier to excite than the
quadrupolar ones (dipole: Cα = −3.20, quadrupole Cα = −3.25). The parity problem does
not seem to exist for negative α-effect (see also Fig. 3 in Roberts & Stix 1972). The situation,
however, changes for positive northern α-effect (Roberts & Stix 1972, Fig. 4; Moss 1999). In
this case one is confronted for the solar dynamo with an enormous parity problem. The basic
solution in this case is of quadrupolar symmetry (see Dikpati & Gilman 2001).

For axisymmetry the mean flow and magnetic field in spherical coordinates are given by

ū = (0, 0, r sin θ Ω) , B̄ =
(

1
r2 sin θ

∂A

∂θ
,− 1

r sin θ

∂A

∂r
, B

)
, (4.86)

with A as the stream function of the poloidal field16 and B as the toroidal field. Their evolution

16 A = const. are the field lines



144 4 The Stellar Dynamo

is described by
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These equations are solved with a finite-difference scheme for the radial dependence and a
polynomial expansion for the angular dependence. The expansions

A = e−iωt
∑

j

aj(x) P 1
j (cos θ) sin θ, B = e−iωt

∑
k

bk(x) P 1
k (cos θ) (4.88)

are used, where ω is the real (for marginal stability) eigenvalue, j is odd and k is even for
equatorially antisymmetric modes, and vice versa for equatorially symmetric modes. Vacuum
boundary conditions at x = 1 yield

dan

dx
+ nan = bn = 0, (4.89)

whereas at x = xin we take

x
dbn

dx
+ bn = an = 0 (4.90)

corresponding to perfectly conducting boundary conditions17. Then the dimensionless turbu-
lence numbers are

CΩ =
V (0)Ω�R2

ηT
, Cα =

αR

ηT
, Cω =

ωR2

ηT
. (4.91)

Here CΩ is the normalized radial shear, which is positive for superrotation (∂Ω/∂x > 0) and
negative for subrotation (∂Ω/∂x < 0). For oscillatory solutions Cω is the normalized cycle
frequency. We always consider CΩ as given and compute for marginal instability (ω real) the
resulting eigenvalues Cα and Cω.

Let the latitudinal dependence of the rotation law be neglected. This is allowed for slowly
rotating dynamos, with Ω∗ so small that the radial Λ-effect only exists with V (1) = H(1) = 0.
The radial rotation law simply results from xdΩ/dx = V (0)Ω, which might be approached
by the linear rotation law Ω � (1 + V (0)x)Ω�. Figure 4.37 gives the results for a thick
(xin = 0.1) and a thin (xin = 0.8) outer convection zone that – in the αΩ-regime – might
be compared with the results in Table 4.6 by Roberts. Again, thick shells with superrotation
excite oscillating quadrupolar solutions, while for thin shells dipoles and quadrupoles are ex-
cited approximately equally easily. Hence, the distributed dynamo models with weak or strong
superrotation below the equatorial region can not explain the dominant dipolar geometry of
the solar magnetic field. Moreover, the dynamo computations for positive CΩ always lead to
positive values of B̄r · B̄φ in contrast to the observations. The cycletime statistics (Fig. 4.2)

17 provided α(xin) = 0
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also do not confirm the strong differences in Cω for thin and thick convection zones, which
are summarized in Fig. 4.38 (left). For simple shell dynamos

τcyc � 0.26
DR

ηT
� 10 yr

ηT/ (1012 cm2/s)
(4.92)

results, the latter with solar values adopted.

Figure 4.37: The excitation conditions for α2Ω-dynamos for a thick (left) and a thin (right) outer
convection zone. Stationary solutions are represented by solid lines, oscillatory solutions by dashed
lines. Dipolar symmetry: A, quadrupolar symmetry: S.

Figure 4.38: Left: The cycletime for oscillating outer-shell αΩ-dynamos with increasing shell thickness
and with ηT = 1.4 · 1012 cm2/s. Note the linear growth with the shell depth. Right: The transition of
stationary dipolar solutions to oscillatory dipolar solutions close to the bifurcation point F. Courtesy A.
Bonanno.

Note that in Fig. 4.37 there is no continuous transition between stationary and oscillatory
solutions. Surprisingly, when at small CΩ the first oscillatory solution appears, it needs a
stronger α-effect than the stationary α2-dynamos do (Charbonneau & MacGregor 2001). Only
for rather strong CΩ does the necessary Cα become smaller than for the α2-dynamos.

The question arises how the transition between the two dynamo regimes happens in detail.
In Fig. 4.38 (right) details are presented. There is a jump in the lowest Cα between stationary
and oscillatory fields. The oscillating solution bifurcates from a second branch of the α2-
dynamos rather than from the lowest one. The α2-dynamo only possesses growing modes
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between the first and the second solid line. There are no growing modes between the second
solid line and the dashed line. A simultaneous excitation of stationary and oscillating modes
in the linear regime is therefore excluded. A stable flip-flop phenomenon (here for the poles)
cannot exist.

4.4.3 Meridional Flow Influence

The influence of a meridional flow on the dynamo might also be important. Roberts & Stix
(1972) found that a (slow) meridional flow of either sense inhibits the dynamo action (their
Fig. 6). For clockwise flow (toward the pole at the bottom of the convection zone) the oscilla-
tion frequency grows for growing drift amplitude, i.e. cycletime and drift amplitude become
anticorrelated. These authors also already used the meridional flow to obtain corrections to
the form of the butterfly diagram.

Figure 4.39 shows the influence of a slow meridional flow on the excitation and cycle
period of a nonlinear dynamo, which works with superrotation and a negative surface α-effect.
The butterfly diagrams are given with and without the meridional flow. For positive bottom
flow (counterclockwise flow) the cycle period and flow amplitude are positively correlated.
The faster the flow the longer the cycle – in opposition to the observations (Fig. 3.10). Note
that the dynamo does not survive if the flow is too fast.

4.5 The Solar Dynamo

A final, properly working mean-field model of the solar dynamo does not yet exist. For its
construction we would certainly need more information about the dynamics within the con-
vection zone, and also about the solar-stellar connections (internal rotation, cycle statistics).
In the following we present the two main models. The interior rotation law of the Sun, which
is known from helioseismology (except in the polar region), is always used in the calculations.
The first model works with a negative α-effect, which is assumed to exist in the (thin) solar
overshoot region. Here the positive α-values that are expected in the bulk of the convection
zone are simply neglected. The second model works with the meridional flow that results from
the mean-field models presented in Sect. 3.3. The overall problems with the solar dynamo are
discussed in considerable detail by Ossendrijver (2003). Here only the two basic concepts are
presented.

4.5.1 The Overshoot Dynamo

The spatial location of the dynamo action is still unknown, until helioseismology can reveal
the exact position of the magnetic toroidal belts beneath the solar surface (see Dziembowski
& Goode 1991, Antia, Basu & Chitre 1998). There are arguments in favor of locating it deep
within or below the convection zone, namely

• Hale’s law of sunspot parities can only be fulfilled with strong toroidal magnetic field
belts (105 G, see Moreno-Insertis 1983, Choudhuri 1989, 1990, Fan, Fisher & DeLuca
1993, Caligari, Moreno-Insertis & Schüssler 1995).
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• The dynamo field strength approaches the equipartition value Beq =
(
µ0ρu2

T

)1/2
. Using

mixing-length theory arguments ρu3
T � const., hence Beq gradually increases inward.

At the bottom of the convection zone it is of order 10 kG.
• The radial gradient of Ω is maximal below the convection zone.

High field amplitudes might thus be generated only in the layer between the convection zone
and the radiative interior (van Ballegooijen 1982). On the other hand, if there is some form
of turbulence in this layer, it would be hard to understand the present-day Li concentration
in the solar convection zone. Lithium burning starts only 40,000 km below the bottom of the
convection zone. Any turbulence in this domain would lead to a rapid and complete depletion
of the Li in the convection zone.

Figure 4.39: A nonlinear dynamo with prescribed superrotation and with ∂Ω/∂θ = 0, negative αφφ

and meridional flow of low magnetic Reynolds number (ηT = 1012 cm2/s). Positive bottom drift means
counterclockwise flow and vice versa. Top: Cycle period in years (solid) and magnetic energy (dashed).
Bottom: Butterfly diagrams for clockwise flow and counterclockwise flow. From Rüdiger & Arlt (2003).
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The negativity of α in the overshoot region (Fig. 4.22, right) can only be relevant for the
dynamo if the bulk of the convection zone is free from positive α. It has been argued that the
short rise-times of the flux tubes in the convection zone prevent the formation of the α-effect
(Spiegel & Weiss 1980, Schüssler 1987, Stix 1991). The rise-times may be much longer in
the overshoot region (Ferriz-Mas & Schüssler 1995, van Ballegooijen 1998).

There is a serious shortcoming in the concept of overshoot dynamos as the characteristic
scales of the mean magnetic fields cannot exceed the scales of the turbulence. The validity of
the local formulations of the mean-field electrodynamics is not ensured for such thin layers.
Nevertheless, a number of quantitative models exist (Choudhuri 1990, Belvedere, Lanzafame
& Proctor 1991, Markiel & Thomas 1999). For a demonstration of the abilities of such a
model Rüdiger & Brandenburg (1995) worked under the assumptions that

• α exists only in the overshoot region, ηT also in the convection zone,
• a possible vanishing of the α-effect in the polar regions is parameterized with α ∼ (1 −

αu cos2 θ) cos θ,
• the correlation time is about 106 s so that Ω∗ � 5 results,
• the tensors α and ηT are computed for a velocity profile by Stix (1991).

The main results from the model are that

• for αu � 0 the magnetic activity is concentrated near the poles, for αu � 1 it moves to
the equator (Figs. 4.40 and 4.41),

• for too thin α-layers there are too many toroidal magnetic belts in each hemisphere
(Fig. 4.41).

Figure 4.40: Butterfly diagram for an overshoot dynamo for negative αφφ in a (thick) layer of 70 Mm.
Left: αu = 0, α-effect maximum at the poles. Only polar spots can be expected. Right: αu = 1,
α-effect vanishing at the poles. A polar branch migrating polewards and an equatorial branch migrating
equatorwards result.

The linear solutions have the correct cycle period, which has just the same sensitivity to the
overshoot depth as the shell dynamo, i.e. τcyc ∼ D for τcyc in years and D in Mm (D �
15–35 Mm). Its increase with D is in agreement with the linear relation for spherical shell
dynamos (see Fig. 4.38). For too thin boundary layers the cycletime becomes too short.
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Note that the overshoot dynamo with the standard cos θ-profile of the α-effect only pro-
duces strong toroidal magnetic belts in the polar region (Fig. 4.40, left). Such spot geometry
does indeed exist for rapidly rotating stars (see Figs. 4.9 and 4.11). No simulation so far has
provided a vanishing α-effect at the poles (see Ossendrijver, Stix & Brandenburg 2001).

Figure 4.41: The magnetic field geometry for the nonlinear overshoot dynamo in a layer of only 35 Mm
with buoyancy. An obvious problem of the dynamo is the large number of toroidal field belts.

4.5.2 The Advection-Dominated Dynamo

Already Spörer (1894, refering to Wolf) speculated that the equatorward drift of the sunspots
(‘Spörer’s law’) might be due to the action of a meridional flow toward the equator. Indeed, the
meridional flow um also influences the mean-field dynamo. This influence can be expected to
be small if its characteristic timescale τdrift exceeds the cycletime τcyc. The equations for the
fields with meridional flow included are
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(4.93)

with um = (ūr, ūθ, 0). The dynamo problem is studied for dynamos with small eddy diffusiv-
ities so that the diffusion time exceeds the advection time and the meridional flow advects the
toroidal magnetic field belts (Wang, Sheeley & Nash 199118, Nordlund, Galsgaard & Stein
1994, Durney 1995, Choudhuri, Schüssler & Dikpati 1995). Models exist with positive α-
effect mainly at the top of the convection zone, and also with positive α-effect mainly at the

18 an extremely anisotropic eddy diffusivity is used
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bottom of the convection zone. Distinct differences in the parity characteristics of the two
models appear (Dikpati & Gilman 2001).

The meridional flow only has a strong impact in the mean-field dynamo for low eddy dif-
fusivity. For ηT = 1011cm2/s (known from the sunspot decay rate) the magnetic Reynolds
number Rm = umR/ηT reaches values of the order of 103 for flows of 10 m/s, and strong
modifications of magnetic field geometry and cycle period can be expected. This possibility
has been the subject of intense numerical investigations (Dikpati & Charbonneau 1999, Dik-
pati & Gilman 2001, Küker, Rüdiger & Schultz 2001, Nandy & Choudhuri 2002), where it
has been shown that solutions with high magnetic Reynolds number yield the correct cycle
period, butterfly diagrams and magnetic phase relations with a positive α-effect in the north-
ern hemisphere. Quadrupolar field configurations are more easily excited than dipolar ones,
however, if there is no α-effect below (say) x = 0.8. Dipolar solutions only dominate if the
α-effect is concentrated at the bottom layer of the convection zone (Bonanno et al. 2002).

With the following models we shall demonstrate the situation. The αφφ is assumed never
to change its sign at a certain radius, or even in the overshoot layer. Below the convection
zone the magnetic diffusivity is 10 times smaller than within the convection zone. The known
rotation law Ω = Ω(r, θ) within the convection zone is always used in the calculations.

α-Effect in the Entire Convection Zone

Let a (positive) α-effect exist throughout the whole convection zone. In Table 4.7 the results
are given. The drift amplitude at the bottom of the convection zone varies between 2 m/s and
6 m/s and the dipole-solution only for slow flow occurs with the lowest α-effect amplitude.
With the small values of eddy diffusivity the cycle period becomes much too long compared
with the solar value. Figure 4.42 shows the magnetic geometry of the dynamo with 6 m/s
drift amplitude. The toroidal field belts are concentrated at the bottom of the convection zone.
They migrate toward the equator, but the maximal field strengths occur in the polar region. B̄r

and B̄φ are mainly out of phase.

Figure 4.42: α-effect in the entire convection zone: Butterfly diagram (left) and field phase relation
(right) of a dynamo with critical turbulence α0 = 2.5 cm/s, ηT = 1011 cm2/s, um = 6 m/s. Black
means negative B̄r · B̄φ.
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Table 4.7: Critical α-values and cycle periods for models with α-effect in the entire convection zone and
ηT = 1011 cm2/s. Bold is used for the solution with the smallest α-amplitude. The dipolar symmetry is
denoted by A, the quadrupolar symmetry is denoted by S.

um [m/s] αA [cm/s] τA
cyc [yr] αS [cm/s] τS

cyc [yr]

2 0.90 ∞ 1.28 131
3 1.83 82 1.70 83
6 2.46 51 2.17 54

α-Effect at the Top

Models with the α-effect located only at the top of the convection zone are now considered.
The results of the simulations confirm the basic features of the advection-dominated dynamo,
namely that for a flow of a few m/s and for low diffusivity the butterfly diagram shows the
correct equatorward migration of the toroidal field and the phase relation of the magnetic
fields is mostly negative.

The results are summarized in Table 4.8. As far as the parity selection is concerned,
variations of the ratio ηT/ηc are not significant. For slow flow the solutions are of quadrupolar

Table 4.8: α-effect at the top (thin layer): Critical α-values and cycle periods for various values of the
flow with ηT = 1011 cm2/s.

um [m/s] αA [cm/s] τA
cyc [yr] αS [cm/s] τS

cyc [yr]

2 7.11 ∞ 5.11 ∞
3 7.24 253 7.93 ∞
5 9.88 176 6.59 137

symmetry and even stationary. Only for intermediate values of the flow dipole solutions have
a smaller critical α-value. For fast flow quadrupolar fields are again more easily excited and
the cycletimes remain much too long (Dikpati & Charbonneau 1999, Dikpati & Gilman 2001).

α-Effect at the Bottom

The situation is changed if the α-effect is located at the bottom of the convection zone. We
have worked with a thin α-layer where the α-effect only exists between 0.7 and 0.8. This
constellation is rather close to the ‘interface dynamo’ by Parker (1993, in Cartesian geometry)
and by Charbonneau & MacGregor (1997, in spherical geometry). Figure 4.43 presents an
example. Once again, the toroidal field is concentrated at the bottom of the convection zone,
but the highest field amplitudes occur in the polar regions. The diagram for B̄r · B̄φ shows
dominance of the negative sign.

For the models with a thin α-layer at the bottom of the convection zone the solution with
the dipolar symmetry always possesses the lowest α-value. There is thus no parity problem
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Figure 4.43: The same as in Fig. 4.42 but for the α-effect at the bottom (α = 4 cm/s, ηT = 1011 cm2/s,
um = 3 m/s). Cycle period is 74 yr. The α-effect is located between 0.7 and 0.75. From Bonanno et
al. (2002).

if the α-layer is located at the base of the convection zone. However, we find from Fig. 4.44
that for small ηT the cycletime is too large, but it is reduced by increasing the amplitude of
the meridional flow at the bottom of the convection zone. Even in this case though the dipole
solutions do not perfectly match the 11-year cycle period of the Sun. The overall result for
such models is that the dipolar solutions are always more easily excited, the butterfly diagram
shows the right characteristics, and the observed anticorrelation of B̄r and B̄φ is also realized.

For too slow flow, however, the cyclic behavior of the dynamo disappears so that only
meridional flows with amplitudes exceeding 3 m/s are here relevant. On the other hand, from
Fig. 4.44 (left) one can take the finding that ωcyc grows with growing meridional flow (at the
bottom). Hence, with the relation um ∝ Ω taken from Fig. 3.25 (right), one finds a weak
dependence (4.2) with about n � 0.30, rather than a dependence on Ω∗ (see Fig. 4.44 (right)
and Messina & Guinan 2003, their Fig. 5).

Two Cells

It is very tempting to construct an advection-dominated dynamo with a two-cell flow system
where at the bottom the polar cell flows poleward and the equatorial cell flows equatorward
(see Fig. 3.8). In Fig. (4.45) one example is given with a resulting dipolar magnetic field of
the correct cycle period of 22.6 yr. Without flow the butterfly diagram given at the top of the
figure is of the type presented by Köhler (1973). The polar cell of the used circulation pattern
is slightly smaller than the equatorial cell. The differences of the flow-dominated dynamo
model to the flow-free model are obvious. Systematic studies for such dynamos remain to be
done.

4.6 Dynamos with Random α

All the averages in the foregoing equations are imagined as taken over an ‘ensemble’, i.e.
over a great number of identical examples. The other possibility to explain the temporal
irregularities is to consider the characteristic turbulence values as a time series. The idea is
that the averaging procedure concerns only a periodic spatial coordinate, e.g. the azimuthal
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Figure 4.44: α-effect at the bottom. Left: The cycle periods for the dipolar modes from the various
models of Dikpati & Charbonneau, Küker et al. and Bonanno et al. There is a clear anticorrelation of
the drift velocity and the cycletime (see Hathaway et al. 2003). Right: The cycletimes grow slowly with
the rotation periods if the models of Fig. 3.25 (right) are included. This result corresponds to small
exponents n in Eq. (4.2).

angle φ (Braginsky 1964, Hoyng 1993). In other words, when expanding in Fourier series such
as eimφ the mode m = 0 is considered as the mean value. If the timescale of this mode does
not vary significantly during the correlation time, local formulations such as Eq. (4.95) below
are reasonable. Nevertheless, the turbulence intensity, the α-effect and the eddy diffusivity
become time-dependent quantities (Hoyng 1988, Choudhuri 1992, Moss et al. 1992, Hoyng
1993, Hoyng, Schmitt & Teuben 1994, Vishniac & Brandenburg 1997, Otmianowska-Mazur
et al. 1997, Mininni & Gómez 2002).

The turbulent EMF for a given position forms a time series with the correlation time τcorr

as a characteristic scale. The peak-to-peak variations in the time series should depend on the
number of cells. They remain finite if the number of cells is restricted. For an infinite number
of turbulence cells the peak-to-peak variation in the time series goes to zero.

The tensors constituting the local mean-field EMF must be calculated from one and the
same turbulence field. We define a helical turbulence and compute simultaneously the EMF
coefficients. We restrict ourselves to the high-conductivity limit. Then the SOCA yields

E =

∞∫
0

〈
u′(x, t) ×∇×

(
u′(x, t − τ ) × B̄(x, t)

)〉
dτ, (4.94)

which for short correlation times can be written in the form of Eq. (4.7). For a simple dynamo
only the components Ex and Ey are relevant19. In components it reads

Ex = αxxB̄x + ηT
∂B̄y

∂z
, Ey = αyyB̄y − ηT

∂B̄x

∂z
, (4.95)

19 it would be tempting to apply Eq. (4.94) as it stands
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Figure 4.45: Butterfly diagram of a dynamo without meridional flow (top) and with a two-cell flow
(bottom) with α in the entire convection zone (a dipole!) with maximally 5.4 m/s flow amplitude.
Courtesy A. Bonanno.

with ηT as an eddy diffusivity. From Eq. (4.94) one finds

αxx =

∞∫
0

〈
u′

y(t)
∂u′

z(t − τ )
∂x

− u′
z(t)

∂u′
y(t − τ )
∂x

〉
dτ,

αyy =

∞∫
0

〈
u′

z(t)
∂u′

x(t − τ )
∂y

− u′
x(t)

∂u′
z(t − τ )
∂y

〉
dτ, (4.96)

and

ηT =

∞∫
0

〈u′
z(t) u′

z(t − τ )〉 dτ (4.97)

(Krause & Rädler 1980). While the α-effect comes from helicity formations, the magnetic
diffusivity ηT is a much simpler integral over a two-point correlation.



4.6 Dynamos with Random α 155

4.6.1 A Turbulence Model

The time evolution of the dynamo coefficients is considered. The x-axis is parallel to the solar
radius and the z-axis is directed to the south pole. The parcel is permanently perturbed by
vortices of maximum helicity (Otmianowska-Mazur, Urbanik & Terech 1992). All vortices
are oriented like right-handed screws. The initial state is a number N of moving turbulent cells
with random inclinations and positions in the xy-plane. After a specified period of time, a
fraction of them is replaced by new ones with random positions, inclination, and with lifetime
starting from zero.

Table 4.9: Input and output for the turbulence models A and D. N is the eddy population of the equator.
Time, velocity and diffusivity result after multiplication with 2.5 · 104 s, 105 cm/s and 2.5 · 1014 cm2/s.

�corr τcorr N ηT SηT αxx Sαxx
αyy Sαyy

A 1 10 200 0.191 0.45 −0.046 1.03 −0.077 0.72
D 8 80 25 1.793 1.27 −0.015 8.94 −0.017 6.62

The vortex radius �corr as well as the decay time τcorr are varied for the cases given in
Table 4.9 in normalized units.

The simulations deliver time series of the turbulence intensity, the eddy diffusivity, the
α-coefficients and a standard deviation S from their time averages.

The results for a model A with N = 200, which is the sample of shortest scales of indi-
vidual vortices, are given in Fig. 4.46. The diffusion coefficient ηT possesses positive values
during most of the time. The ratio SηT is rather small, only 0.45. In contrast to ηT, the co-
efficient αyy is negative for most of the time, although positive values are also present for
short periods. The α-sign results from the assumed right-handed helicity of the vortices. The
fluctuations of the α-effect dominate the fluctuations of the eddy diffusivity.

Model D uses much larger correlation lengths and times. The resulting fluctuations of ηT

and α-coefficients are much higher than in the case A. The ratios S also increase. The fluctua-
tions of α are much higher for larger eddies with longer lifetimes. The fluctuations in the time
series become more and more dominant with decreasing number of eddies. The fluctuations
of both the eddy diffusivity as well as the α-effect are much higher than the averages. The
α-effect fluctuations exceed those of the eddy diffusivity in all our models. The latter proves
to be more stable than the α-effect against dilution of the turbulence (Fig. 4.46, right).

4.6.2 Dynamo Models with Fluctuating α-Effect

Choudhuri (1992) presented a plane-wave dynamo in the linear regime. The fluctuations did
not exceed the 10% level. In the αΩ-regime the oscillations are hardly influenced; the opposite
is true for the α2-dynamo. In the latter regime the solution suffers dramatic and chaotic
changes even for rather weak disturbances.

We present here a nonlinear plane 1D α2Ω-model. It is not an overshoot dynamo (see
Ossendrijver, Hoyng & Schmitt 1996). The plane has infinite extent in the radial and the
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Figure 4.46: Time series for eddy diffusivity ηT (top) and the α-tensor component αyy (bottom) for
turbulence model A (left) and D (right). There is a characteristic difference in the behavior of eddy
diffusivity and α-effect.

azimuthal direction; the boundaries are in the z-direction. We assume that the fields depend
on z only.

The α-tensor has only one component, vanishing at the equator and also at the poles. The
magnetic feedback is considered to be conventional α-quenching. The diffusivity is fluctuat-
ing but spatially uniform. The equations are given in Sect. 6.4.1 together with the boundary
conditions.

Our dynamo numbers are Cα = 5 and CΩ = 200. The turbulence models A and D are
applied, flow patterns with small (A) and with very large (D) eddies are used.

A magnetic dipole field oscillating with a fixed period (Fig. 4.47, top) is produced by a
model without any EMF-fluctuations. The period corresponds to an activity cycle of 8 yr in
physical units. The turbulence model A also produces an oscillating dipole, but with a more
complicated temporal behavior (Fig. 4.47). It is not a single oscillation; the power spectrum
forms a broad line with substructures. The ‘quality’ Q = ωcyc/∆ωcyc of this line (with ∆ωcyc

as its half-width) close to the observed quality of the solar cycle (Fig. 4.5) is produced here by
a turbulence model with about 100 eddies along the equator. Variations of the cycle amplitude
and the parity also exist.
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Figure 4.47: Dynamo-induced magnetic toroidal field amplitudes for the turbulence models A (middle)
and D (bottom). Left: Time series. Right: Power spectra. The time unit is 2.7 yr. Top: a reference model
without any EMF fluctuations. From Otmianowska-Mazur et al. (1997).

The turbulence field D leads to a highly irregular temporal behavior in the magnetic quan-
tities. Its power spectrum peaks at several periods. The shape of the spectrum, however, no
longer suggests any oscillations. The power of the lower frequencies is strongly increased;
the high-frequency power decreases as ω

−5/3
cyc , like a Kolmogorov spectrum, indicating the

existence of chaos.
Implications for the temporal evolution of the solar rotation law (‘fluctuating Λ-effect’)

should be another output of such a cell number statistics. The consequences for the rotation
law form an independent test of the theory. For only ‘occasional’ turbulence a nontrivial time
series for the turbulence EMF-coefficients, the magnetic field, the turbulent angular momen-
tum transport and the differential rotation are unavoidable consequences.
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Figure 4.48: Time series of the magnetic amplitude at the north pole of a spherical model. Sometimes
the α-fluctuations lead to subcritical conditions and the dynamo collapses. The recreated field is of
opposite polarity. Courtesy R. Arlt.

With a 3D spherical dynamo model Arlt (2004) has probed the influence of strong α-
fluctuations in a shell-dynamo located between x = 0.5 and the surface. The boundary con-
ditions are those for vacuum outside the shell. The α-tensor is perturbed in space and time by
smooth ‘blobs’ of one diffusion time duration and a rather large size. The α-tensor has been
assumed as (slightly) anisotropic between the vertical and azimuthal components. The time
series of the polar magnetic amplitude is shown in Fig. 4.48. During the reversals (which here
are consequences of temporarily subcritical conditions) a nonaxisymmetric magnetic mode
appears. The latter dominates at times of reversals or excursions. In this model the existence
of reversals in the geodynamo is considered as an indication of an only slightly supercritical
α-effect with slightly anisotropic components. If the lifetime of the fluctuations is reduced
even just by a factor of 2 the reversals disappear.

4.7 Nonlinear Dynamo Models

A dynamo is an instability of the solution B = 0 if a threshold value Ccrit of the dynamo
number is reached. If the dynamo number exceeds this critical value then the magnetic field
grows exponentially, until it saturates through its feedback on the original flow field. This
feedback is due to the Lorentz force, as the magnetic field is accompanied by electrical cur-
rents. The question arises whether these currents can be observed by their influence on the
structure of the stellar atmosphere, with consequences for the spectral lines (Stȩpieǹ 1978,
Landstreet 1987). The electrical currents that occur during the decay of a primordial field
have already been computed by Wrubel (1952) and more recently by Moss (2003).

Krause & Meinel (1988) and Schmitt & Schüssler (1989) initiated consideration of the
stability of dynamo-generated magnetic fields. According to Krause & Meinel for simple α2-
dynamos “the only stable nonlinear steady solution is that which bifurcates from the trivial
solution at the marginal dynamo number of the most easily excitable linear mode”. A simple
example is described for a 1D α2-dynamo with a global α-quenching α ∝ Ψ(E) with E =
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Figure 4.49: Stability maps for simple nonlinear dynamo models. Broken lines indicate unstable solu-
tion branches. Subcritical solutions may also occur (right). Meinel (1991).

∫
B̄2dx. The dynamo equations are those of Eq. (4.83) with the same boundary conditions but

written in the dimensionless quantities ζ and τ . The solutions are written as
∑

Bn(ζ) exp ωnτ
with the results

Bn = sin nπζ e−iCαζ/2, ωn =
C2

α

4
− n2π2. (4.98)

The mode Bn grows for ωn > 0, i.e. Cα > 2nπ. The solution B = 0 is not stable for Cα >
2π. For the solutions the necessary stability conditions are (i) dΨ/dE < 0 and (ii) n = 1.
Only the first mode can be nonlinearly stable for monotonically decreasing Ψ (Fig. 4.49, left).
If Ψ has a local maximum20 then subcritical excitation can occur, but the solutions close to
the bifurcation point are unstable (Fig. 4.49, right). This, in short, is the general outline of the
paper by Krause & Meinel (1988), which has been confirmed by many subsequent calculations
with various concepts for the nonlinear back-reaction. Some of them are presented in the
following.

Of course, at a certain finite distance from the bifurcation point the stability of a solution
may change, and further bifurcations can occur. It may also happen that such solutions are
hardly in close connection to the kinematic modes. However, for the extrapolation of the
kinematic modes into the nonlinear regime only the fundamental mode (i.e. the ‘lowest’ mode)
is interesting. This mode is defined in the sense that is given in Fig. 4.49 as the solid line. This
mode is already marginal if all the higher modes are still decaying (Meinel 1991).

4.7.1 Malkus-Proctor Mechanism

Malkus & Proctor (1975) analytically considered the nonlinear saturation of an α2-dynamo
(with uniform α-effect) by a Lorentz force-induced large-scale flow (‘macro-quenching’). The
resulting flow consists of differential rotation and a meridional flow crossing the equator. The

20 which is not excluded, as shown by Rüdiger (1974)
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latter might be a consequence of the fact that in models with α = const. no real equator
is defined. The large-scale flows induced by the global magnetic fields play a key role in
almost all studies of the solar torsional oscillations (starting with Schüssler 1979, 1981 and
Yoshimura 1981). A detailed discussion of this theory is difficult because of the lack of a
properly working model of the solar dynamo. However, it is commonly assumed that torsional
oscillations arise from the feedback of the cyclic magnetic field on the mean flow.

Another open question with the Malkus-Proctor concept is the influence of the turbulence-
induced Maxwell stresses. Even the sign of the total Lorentz force in the momentum equation,
i.e. 〈J〉×〈B〉+〈J ′×B′〉, is not known (Rüdiger et al. 1986). The SOCA-expressions for the
turbulent Maxwell stress (4.55) by Rüdiger & Kitchatinov (1990) even weaken the Reynolds
stress components for reasonable turbulence models. The remaining magnetic pressure is not
relevant for the excitation of torsional oscillations.

Moss et al. (1995) studied the Lorentz force feedback in spherical α2Ω-dynamo models
where the differential rotation is maintained by the (radial) Λ-effect with positive V (0). The
resulting differential rotation produces meridional flow and induces magnetic fields. The re-
sulting magnetic field feeds back to the meridional flow and the differential rotation. The
situation is more complicated still as the combination of differential rotation and meridional
flow can itself act as a kinematic dynamo, where according to Cowling’s theorem nonaxisym-
metric magnetic fields must play a role (see Dudley & James 1989). No wonder that the
complete system provides complex solutions. The general result of Moss et al. (1995) is that
for small Taylor number Ta (i.e. low angular momentum) the nonaxisymmetric mode S1 is the
only stable one while for larger Ta the axisymmetric solution A0 dominates. For Ta > 104

the system reaches the αΩ-regime and the dynamos start to oscillate.
For negative V (0) and moderate Ta there is a tendency that after an extremely long com-

putation time the final state is again S1. For higher Ta Barker (1993) finds an axisymmetric
solution with quadrupolar symmetry.

The reason for the exclusive stability of the S1 modes in the α2-regime is not entirely clear.
The resulting Ω-isocontours are disk-like with dΩ/dz > 0. As pointed out by Rädler (1986a),
a weak differential rotation may lead to stable nonaxisymmetric fields even for an isotropic
α-effect. In the presented calculations, however, the nonaxisymmetry of the magnetic fields
exists for both signs of V (0), so that it seems to be rather robust against the modification of
the rotation law.

4.7.2 α-Quenching

Another nonlinear approach is based on the idea that the induced large-scale magnetic field
suppresses the turbulence, so that in particular the α-effect is quenched. If this quenching
happens locally with B̄2 then one finds for α2-dynamos that the induced magnetic field energy
follows the law B̄2 ∝ C−Ccrit where Ccrit is the threshold value of the dynamo. In Fig. 4.50
(left) the magnetic energy of the induced polar field is given for outer-shell dynamos (xin =
0.5) for the α-quenching law

α ∝ 1
1 +

(
B̄/Beq

)p , (4.99)
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Figure 4.50: Left: The influence of the magnetic quenching law on the amplitude of the polar field
strength in a spherical α2-dynamo embedded in vacuum for supercritical dynamo number Cα. Right:
The magnetic energy for p = 2 for growing Cα. The energy of the dipolar mode always (slightly)
exceeds the energy of the quadrupolar mode.

for various p. One finds that B̄ ∝ (
C−Ccrit

)1/p
Beq. Brandenburg, Tuominen & Moss (1989)

have probed the stability of α2-dynamos with a time-dependent code. Their main question
concerned the role of the growth rates, which are very similar for dipolar and quadrupolar
solutions (see Fig. 4.50, right). It has been shown that the only stable solution is that with
the smallest threshold dynamo number. The problem remained, however, that depending on
the initial conditions for spherical models both dipolar and quadrupolar solutions are stable.
This (‘watershed’) phenomenon can be observed with the temporal evolution of the magnetic
fields. Depending on the excess of the dynamo number one finds only dipoles as the resulting
stable solution or – for higher Cα – also the possibility of stable quadrupoles. This would
be in contradiction to the concept of Krause & Meinel (1988) that only the first bifurcation
should be stable. However, Rädler et al. (1990) showed that if one allows for nonaxisymmetric
solutions, the final solution is always the axisymmetric dipole – but the time after which this
final solution is reached may be very long (∼ 50 (!) diffusive times).

For cyclic dynamos with differential rotation both the 2D (Brandenburg, Tuominen &
Moss 1989) and 3D (Rädler et al. 1990) codes provided the same results. The model is defined
by a linear radial rotation law with a fixed normalized surface rotation rate and a radially
uniform α-effect. For slightly supercritical Cα a cyclic dipolar solution is stable. If, however,
the α-effect is increased then both the solutions symmetric and antisymmetric with respect
to the equator become unstable. The system starts to oscillate with a longer period between
the even and the odd parity (Fig. 4.51, left). Figure 4.51 (right) also shows the geometry of
the toroidal magnetic field, i.e. the butterfly diagram. One observes a long-term oscillation
of equatorial symmetry and antisymmetry. The cycletimes at the northern and the southern
hemisphere systematically differ by a rather small amount, which changes its sign after a
longer period. Similar models have been proposed as one of the mechanisms that can explain
the existence of grand minima like the Maunder minimum (see Brandenburg, Tuominen &
Moss 1989) but the ratio of the beat period and the basic cycle period seems to be too high.
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Figure 4.51: Left: Both the odd (P = −1) and even (P = 1) parity solutions are unstable in the α2Ω-
dynamo model of Brandenburg, Tuominen & Moss (1989) for Cα = 0.9, oscillating with a period about
10 times longer than the basic cycle. Right: The butterfly diagram for the same model.

4.7.3 Magnetic Saturation by Turbulent Pumping

In a seminal paper Noyes, Weiss & Vaughan (1984) formulated the question of how the cy-
cle periods of αΩ-dynamos depend on the nonlinear quenching mechanism. For pure α-
quenching with α ∝ 1/(1 + B̄2) the resulting cycle period does not depend on the actual
value of the dynamo number D. This is now a well-established effect (Fig. 4.52, Jennings
& Weiss 1991, Rüdiger & Arlt 1996, Tobias 1998). For spherical nonlinear models the so-
lution changes slightly. Brandenburg, Tuominen & Moss (1989), Moss, Tuominen & Bran-
denburg (1990) and Rüdiger et al. (1994) find a small increase of ωcyc for increasing Ω.
Tobias (1998) reports a stronger increase in a Cartesian model. This is surprising, as a rela-
tion ωcyc ∝ √Dcrit exists for the linear αΩ-dynamos. This is only valid for the initial onset
though. Noyes et al. also consider the influence of an η-antiquenching, i.e. ηT ∝ (1 + B̄2),
which is assumed as an enhancement of the losses due to magnetic buoyancy. The resulting
consequences are ωcyc ∝ √D, so that there is a clear positive correlation of cycle frequency
and dynamo number (see Tobias 1998, his Fig. 3).

Very similar results have been found by Schmitt & Schüssler (1989) with a 1D model
(along the latitude). They started to consider nonlinear dynamo saturation by a loss of toroidal
flux due to magnetic buoyancy described by a loss term in the equation of the toroidal field,
such as suggested by Leighton (1969). The flux loss scales as B̄2, which has to exceed some
threshold value that serves as the scale of the magnetic field. A summary of the results is
given in Fig. 4.52. Once again the cycle frequency does not depend on the dynamo number
for simple α-quenching, but it grows approximately as

√D for the model with flux loss.

In the 2D models of Moss, Tuominen & Brandenburg (1990) the magnetic-buoyancy effect
is included as a radial velocity scaling as |B̄| or B̄2. The turbulent advection effects are part of
the α-tensor, which can be written as a large-scale velocity, which for slow rotation is reduced
to a radial mean flow. If the variation of the cycle period with Cα is considered, these authors
also found a relation ωcyc ∝

√D (their Table 2).
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Figure 4.52: Nonlinear dynamo by Schmitt & Schüssler (1989). Left: Field amplitude vs. dynamo
number. Right: Cycletime vs. dynamo number. Note that for α-quenching the cycletime does not
depend on the dynamo number.

4.7.4 η-Quenching

One finds a finite value for n in Eq. (4.2) if the magnetic feedback is considered to act not
only on the α-effect, but also on the eddy diffusivity tensor. What we assume here is that
the magnetic field always suppresses and deforms the turbulence field and that this has con-
sequences for both the α-effect and the eddy diffusivity. Such a SOCA-theory is given by
Roberts & Soward (1975), Kitchatinov, Pipin & Rüdiger (1994); applications are summarized
by Rüdiger & Arlt (2003).

The turbulent-diffusivity quenching concept was already described by Noyes, Weiss &
Vaughan (1984). Tobias (1998), with his 2D global model in Cartesian coordinates finds
the strongest scaling of the cycletimes with the dynamo number with increasing effect of η-
quenching (‘subcritical excitation’). The results for the Malkus-Proctor effect alone yield the
weakest influences.

4.8 Λ-Quenching and Maunder Minimum

The explanation of grand minima in the magnetic activity cycle has been approached in two
ways. The first approach considers the stochastic character of the turbulence, and studies
its consequences for the variations with time of the α-effect and all related phenomena (see
Sect. 4.6). The alternative concept includes the magnetic feedback on the internal solar rota-
tion (Weiss, Cattaneo & Jones 1984, Jennings & Weiss 1991). Kitchatinov, Rüdiger & Küker
(1994) and Tobias (1996, 1997) even introduced the conservation law of angular momentum
in the convection zone including magnetic feedback in order to simulate the intermittency of
the dynamo cycle and to explain the existence of grand minima (see Beer, Tobias & Weiss
1998).

A theory of differential rotation based on the Λ-effect is coupled with the induction equa-
tion in a spherical 2D mean-field model. The mean-field equations for the convection zone
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Figure 4.53: The time de-
pendence of the dynamo for
the large-scale Lorentz force
feedback only (Pm = 0.1,
Λ = 1). Top: Toroidal
magnetic field (left) and
magnetic energy (right).
Bottom: Cycletime (left) and
magnetic parity (right).

include the effects of diffusion, α-effect, toroidal field production by differential rotation and
the Lorentz force. The conservation law of angular momentum is

ρr sin θ
∂Ω

∂t
= − 1

r3

∂

∂r

(
r3ρ Qrφ

) − 1
r sin2 θ

∂
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(
sin2 θρ Qθφ

)
+

+
1
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(
1
r

∂A

∂θ

∂(Br)
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− 1
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∂A

∂r

∂(B sin θ)
∂θ

)
(4.100)

(see Eq. (3.92)2). The computational domain is a spherical outer shell down to x = 0.5.
The convection zone extends from x = 0.7 to x = 1. The α-effect exists only in the lower
part between 0.7 and 0.8, while turbulent diffusion of the magnetic field, eddy viscosity and
the Λ-effect are present in the entire convection zone. Below x = 0.7 both the magnetic
diffusivity and the viscosity are two orders of magnitude smaller than in the convection zone.
The boundaries are assumed to be stress-free.

The model is described by the magnetic Reynolds numbers of the differential rotation
and the α-effect, the magnetic Prandtl number, the Elsasser number21 Λ, and the Λ-effect
amplitude V (0). In the α-effect the factor sin2 θ has been used to concentrate the magnetic
activity at low latitudes. The dynamo works with Cα = −10 and CΩ = 105. V (0) (= 0.37)
is positive in order to produce the required superrotation. With the standard eddy diffusivity
expression the Elsasser number reads Λ = 2/cηΩ∗ and is thus set to unity here.

Figures 4.53 and 4.54 demonstrate the action of different effects and show the variation of
the toroidal magnetic field at a fixed point (x = 0.75, θ = 30◦), the total magnetic energy, the
variation of the cycle period and the parity

P =
ES − EA

ES + EA
(4.101)

derived from the decomposition of the magnetic energy into symmetric and antisymmetric
components. EA and ES are the energy of the even and odd field components. All times are
given in units of a diffusion time R2/ηT.

21 Λ (see Eq. (2.4)) and Λ should not be confused here
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Figure 4.54: The same as
in Fig. 4.53 but for strong
Λ-quenching (λ = 25). Top:
Toroidal magnetic field (left)
and magnetic energy (right).
Bottom: Cycletime (left) and
magnetic parity (right). Note
the strong variations of the
parity. From Küker, Arlt &
Rüdiger (1999).

If the large-scale Lorentz force is the only feedback on the rotation, the chaotic time series
given in Fig. 4.53 may be compared with the results in Tobias (1996). A quasiperiodic behav-
ior is shown with activity interruptions like grand minima. This model, however, neglects the
feedback of strong magnetic fields on the α-effect and the differential rotation. The variations
of the parity are rather strong. Deep energy minima seem to be connected with quadrupolar
equator symmetry (see Knobloch, Tobias & Weiss 1998).

The same model but with a local standard α-quenching turns into the well-known simple
solution with only one period and with odd parity (not shown). Similar to the suppression of
dynamo action, a quenching of the Λ-effect is now introduced according to

V (0) ∝ 1
1 + λ(B̄/Beq)2

. (4.102)

If λ is near unity, the maximum field strength and total magnetic energy decrease slightly but
the periodic behavior remains the same, i.e. the effect of the Λ-quenching is too small to alter
the differential rotation significantly. However, an increase of λ leads to grand minima – an
example for λ = 25 is given in Fig. 4.54. Minima in cycle period occur shortly after a grand
activity minimum, in agreement with the analysis of sunspot data by Frick et al. (1997). The
amplitude of the period fluctuations is much lower than in the Malkus-Proctor model but is
still stronger than that observed.

Spectra of long time series of the toroidal magnetic field are given in Fig. 4.55 for both the
Malkus-Proctor model and the model with the strong Λ-quenching. The long-term variations
of the field will be represented by a set of close frequencies whose difference is the frequency
of the grand minima. The Malkus-Proctor model shows a number of lines close to the main
cycle frequency. The shape of the spectrum indicates that the magnetic field appears rather
irregularly. The spectrum of the model with all feedback terms and strong Λ-quenching shows
a similar behavior. The average frequency of the grand minima is represented by the distance
between the two highest peaks. Here, grand minima occur at a reasonable rate between 10
and 20 cycletimes. The cycle period varies by a factor of 3 or 4. The northern and southern
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Figure 4.55: Left: Power spectrum of the magnetic-field amplitude variations for the Malkus-Proctor
model of Fig. 4.53. The frequency is given in arbitrary units. Right: The same but for the model with
strong Λ-quenching. The highest peaks are the basic cycle frequency.

hemispheres differ in their temporal behavior. This is a general characteristic of mixed-mode
dynamo explanations of grand minima.

The magnetic Prandtl number of the model is Pm = 0.1, and it is noteworthy that grand
minima do not appear for Pm = 1. The magnetic Prandtl number directs the intermittency of
the activity cycle. Values smaller than unity are required for the existence of grand minima,
but the occurrence of grand minima becomes more and more exceptional again for very small
values of Pm (Knobloch, Tobias & Weiss 1998, Küker, Arlt & Rüdiger 1999, Pipin 1999).
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5.1 Star Formation

5.1.1 Molecular Clouds

Giant molecular clouds are the prime sites of star formation. Most stars in our galaxy were
formed by gravitational instability in cold, self-gravitating, high-density clumps within such
clouds. Their masses range from 105 to 106.5 M�, with a median of 3.3 · 105 M�, and
characteristic radius of 20 pc.

A molecular cloud is far from being homogeneous. Maps of molecular species like NH3 or
CS or H2CO, which trace high-density regions, reveal a nested filamentary structure connected
with magnetic fields. As part of this filamentary network dense clumps of up to 3000 M�
are observed, reminiscent of the structures considered by Chandrasekhar & Fermi (1953),
who studied the stability of an infinite cylinder of an incompressible, self-gravitating fluid
supported by an aligned magnetic field. Modern computing facilities allow one to follow the
emergence and (hydrodynamic) evolution of a whole network of such filaments subject to
self-gravity from a prescribed initial turbulent velocity field (see Klessen, Heitsch & MacLow
2000).

The clouds are supported against self-gravity and the external pressure of the intercloud
medium by both turbulent motions and magnetic fields. The contribution of thermal pressure
and the rotational support are mostly negligible. These tiny cores, comprising a few solar
masses only, give rise to the formation of single stars, binaries or multiple stellar systems
(Fig. 5.1). The lifetime of such a clump therefore depends on the rate of leakage of magnetic
fields and/or the decay of turbulence.

Stars are born in groups and clusters. The overall star formation efficiency seems to be
low. Only a few per cent of the mass of a molecular cloud ends up in stars. In order to
generate stars the collapsing portions of a molecular cloud must be able to fragment (even
in the presence of a magnetic field). From low-mass star forming regions like the Taurus
cloud it is known that star formation happens only in clumps exceeding some critical surface
density. This observation makes the low efficiency plausible for dark clouds. In regions like
the Orion Nebula Cluster, with many high-mass and low-mass stars being formed, a feedback
mechanism may be at work. Previously formed stars (especially OB) energize the remaining
cloud by radiation, winds, jets, and even supernova (SN) explosions, and may prevent the
surrounding molecular gas from collapsing.

Unlike turbulent motions, the large-scale magnetic fields are rather long-lived. They may
play a crucial role in supporting molecular clouds as a whole, and also their high-density
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Figure 5.1: A protostellar double core with a large-scale magnetic field of ∼ 16 µG amplitude and a
direction perpendicular to the ‘equatorial’ plane. From Henning et al. (2001).

Table 5.1: Turbulence and magnetic fields in molecular clouds (Crutcher 1999). The last column gives
the mass-to-flow ratio normalized by its critical value (5.1).

Cloud B [µG] uT [km/s] T [K] R [pc] µ/µcrit

W3 OH 3100 1.5 100 0.02 0.8
DR 21 OH1 710 2.3 50 0.05 2.8
Sgr B2 480 15 70 22 2.6
M17 SW 450 4.0 50 1.0 1.4
W3 (main) 400 3 60 0.12 2.0
S106 400 1.6 30 0.07 0.8
DR 21 OH2 360 2.3 50 0.05 2.8

substructures. Measurements of the Zeeman splitting of the 18-cm OH lines, tracing the dense
parts of the molecular gas, reveal large-scale ordered magnetic fields of about 30 µG in starless
clouds. Such fields, on scales of 0.1–10 pc, are dynamically important, as the magnetic energy
is at least comparable with the potential energy of the clump (Crutcher 1999).
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The virial theorem yields a critical mass above which a clump of gas cannot be supported
against gravitational collapse by magnetic forces alone (Strittmatter 1966, Tscharnuter 1985).
The critical mass-to-flux ratio µ = M/Φ (where Φ = πR2B is the magnetic flux) is given by

µcrit =
cΦ√
G

. (5.1)

The correction factor cΦ measures the deviation from the virial-theorem analysis for a uniform
sphere. The marginal value for gravitational collapse is cΦ = 0.13 (Mouschovias & Spitzer
1976). This value emerged from a sequence of numerical equilibrium models with evolution
being driven by ambipolar diffusion of an initially dominant magnetic field (Mouschovias
1976a,b).

Ambipolar Diffusion

There are two possible outcomes with respect to the mass-to-magnetic-flux ratio. If this ratio
exceeds (5.1), magnetic support alone can neither prevent the onset of collapse nor stop it at
a later stage. For a frozen-in field the ratio does not change during the collapse. Dorfi (1982)
demonstrated, with numerical simulations, how a magnetic field of 3 µG solves the angular
momentum problem for ‘supercritical’ molecular clouds (M = 104 M�, T = 100 K, ρ =
10 cm−3, Ω = 10−15 s−1). The gas flows along the field lines, forming a disk-like structure
(see Galli & Shu 1993). Most of the material has left after the free-fall time (explaining the
low star formation rate), and the remaining magnetic field is small, but can constitute a fossil
field for the newly formed star (Moss 2003a).

On the other hand, a magnetically subcritical cloud core is also able to become unstable,
namely by ambipolar diffusion (Mestel & Spitzer 1956, Mouschovias 1976a,b, see Hujeirat
et al. 2000). In a low-temperature, high-density core the ionization is extremely low, and the
collisional coupling between ions and neutrals is only weak. The ions are attached to the
magnetic field, but the neutrals can slip through it. The resulting induction equation

∂B

∂t
= ∇×

(
u × B + βad(B · ∇ × B)B − (

η + βadB2
)∇× B

)
(5.2)

is highly nonlinear. One finds that (i) the magnetic dissipation is increased, and (ii) some kind
of α-effect occurs, with α proportional to the current helicity.

Results of the temporal evolution of a collapsing cylindrical filament are given in Fig. 5.2.
The magnetic field B‖ is in the z-direction (along the filament), and depends only on s, so that
Eq. (5.2) becomes
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(
∂B‖
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)2

+
∂2B‖
∂s2

)
(5.3)

where βad ∝ 1/(ρnρi) is the diffusion coefficient with the densities of neutrals and ions (Shu
1992). The density and the radial inflow follow simply from the conservation of mass and
momentum. The lines in the figure represent consecutive timesteps. Due to the collapse the
density and the magnetic field grow everywhere, but the ambipolar-diffusion transports the
magnetic field radially outward, so that its growth in the core is strongly reduced (Fig. 5.2).
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Figure 5.2: Density and magnetic field (B‖) in an infinite cylindrical filament during the collapse. Initial
configurations are given as dashed. By the collapse both the density and magnetic field grow, but due to
ambipolar diffusion the magnetic field only grows slowly. Courtesy H.-E. Fröhlich.

It has been shown by Kim & Diamond (2002) that for the simultaneous existence of turbu-
lence and ambipolar diffusion the turbulent decay of the field dominates; there is no enhance-
ment of the decay rate of a large-scale magnetic field by the ambipolar diffusion.

The main effect of ambipolar diffusion is a prolongation of the collapse timescale by a
factor of 10 compared with the free-fall time (Basu & Mouschovias 1994, Mouschovias 1996,
Basu 1997). The ambipolar diffusion scenario, however, lacks observational support. Most
clouds with known magnetic field amplitude are magnetically supercritical (Crutcher 1999).
Very strong magnetic fields are rare (see Table 5.1).

According to Boss (1998) there is also an important extra effect due to ambipolar diffu-
sion in rotating magnetized molecular clouds. The local magnetic field amplitude under the
influence of ambipolar diffusion is simply modeled by

VA ∝ 1 − t

tad
, (5.4)

with tad as ∼ 10 times the free-fall time. The resulting collapse differs strongly for slow and
fast cloud rotation. Rapidly rotating clouds fragmented into binary protostars, while slowly
rotating ones only formed bars or single protostars (Boss 2001). The importance of the gas’s
thermal physics for the resulting instability pattern was demonstrated by Durisen (2001), by
means of nonlinear simulations adopting various versions of the equation of state and the
important cooling processes.

MHD Turbulence

Besides being supported by magnetic fields, molecular clouds are partially supported by su-
personic motions, as indicated by the observed line widths, but also by the relatively modest
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flattening of molecular cores (Klessen 2003). The thermal line broadening is negligible com-
pared with the turbulent one. A typical Mach number is 5. High speeds are observed even
in starless clouds without any internal source for turbulence. The turbulence could also be
maintained by galactic shear motion or the concerted action of SN explosions, but it is not
easy to see how the mechanical energy could then cascade down into small-scale high-density
clumps.

Magnetic field measurements show the velocities to be roughly Alfvénic. The suggestion
that MHD waves are responsible for the observed nonthermal line broadening opens up the
possibility that the accompanying wave pressure could stabilize the cloud. Numerical simula-
tions of MHD turbulence hint at a fast decay, with a timescale comparable with the free-fall
time (Mac Low 1999, Ostriker, Stone & Gammie 2001). This strong damping suggests con-
sideration of the loss of turbulent support rather than the loss of magnetic field by ambipolar
diffusion as the primary cause of the collapse (Nakano 1998).

5.1.2 The Angular Momentum Problem

A very clear formulation of the stellar angular momentum problem is by Spitzer (1978). If
a molecular cloud core of 1 M� and 1 lyr radius were to collapse to a solar-type star of 1
R� while conserving its angular momentum, the rotation rate would increase by 14 orders of
magnitude. If the molecular cloud were to rotate with the (low) angular velocity of a galaxy
(10−15 s−1) the stellar rotation period would be 1 s. Stars, therefore, cannot be formed while
conserving angular momentum. Table 5.2 gives values for the specific angular momentum
R2Ω for the structures related to the star formation process. During the star formation the
specific angular momentum is reduced by more than 4 orders of magnitude. The numbers
also demonstrate the significant role that Jupiter appears to play in our own solar system. The
difference in specific angular momentum of the molecular cloud core and that of Jupiter’s
orbit is only one order of magnitude.

The simplest way to get rid of the angular momentum is by viscous dissipation (v. Weiz-
säcker 1943). The general diffusion equation that governs the evolution of the distribution of
the column density

Σ(s) =

∞∫
−∞

ρ dz (5.5)

in a thin Keplerian disk is
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(5.6)

(v. Weizsäcker 1948, Lüst 1952, see Pringle 1981), which results from conservation of mass
and angular momentum after elimination of the radial (accretion) flow. Disks are considered
here because of the observational fact that many young stars are surrounded by circumstellar
disks (Fig. 5.3). The characteristic diffusion time in this equation is τdiff � R2/ν, so that a
viscosity of more than 1020 cm2/s is necessary to dissipate a ring of radius 1 lyr in (say) 106

years. Only turbulence can provide such enormous viscosities.
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Figure 5.3: The A star β Pic with its circumstellar debris disk. The dust visible in the near infrared is
due to the collisions of remaining planetesimals. The distance of the inner edge of the disk to the center
is 24 AU. Credit J.-L. Beuzit, ESO.

Following Shakura & Sunyaev (1973) the eddy viscosity is often written with the sound
speed cac as a characteristic velocity and the half-thickness H of the disk as a characteristic
lengthscale, so that

νT = αSS cac H, (5.7)

from which the positive cross-correlation

Qsφ = 1.5 αSS c2
ac (5.8)



5.1 Star Formation 173

Table 5.2: Characteristic values of specific angular momentum (Bodenheimer 1995). The Jupiter value
concerns its orbit.

MC [1 pc] MC core [0.1 pc] disk TTau star Sun Jupiter

R2Ω [cm2/s] 1023 1021 5 · 1020 5 · 1017 1015 1020

results for thin Kepler disks1. Obviously, for subsonic turbulence the viscosity-α must not
exceed unity.

Note also that νT = βs2Ω has been used instead of Eq. (5.7). It is interesting to see how
different the disk structure is in the two cases (Duschl, Strittmatter & Biermann 2000, Huré,
Richard & Zahn 2001). With the β-viscosity the Reynolds stress becomes Qsφ � 1.5βu2

φ ∝
s−1, which is completely decoupled from the resulting disk structure.

Estimates of the required viscosity-α lead to values of order 10−3 to 1, which must be
explained by the theory. The key problem of star formation is thus the explanation of the
source of the turbulence. Some of the disks are convectively unstable. Simulations of this
effect, however, often lead to negative αSS. Ruden, Papaloizou & Lin (1988) started to study
axisymmetric perturbations of a thin, convectively unstable but inviscid Keplerian disk. The
nonaxisymmetric case is considered by Ryu & Goodman (1992), where negative correlations
Qsφ are obtained for convection in Keplerian disks. Cabot & Pollack (1992) also provide
detailed computations for Qsφ. For large rotation rates it becomes negative near the walls. In
this model one finds anisotropic turbulence with 〈u′2

s 〉 > 〈u′2
φ 〉.

Kley, Papaloizou & Lin (1993), with their 2D simulations of convection in a medium
with a rather large eddy viscosity, also obtain a flow system appearing to yield an inward
transport of angular momentum (see Goldman & Wandel 1995). If the ‘correlation’ tensor
of the convection is computed with a time-averaging procedure using Kley’s 2D hydrocode, a
distinct anisotropy between the turbulence intensities in radial and azimuthal direction is found
(Rüdiger, Tschäpe & Kitchatinov 2002). The radial rms velocity dominates the azimuthal one.
As a consequence a radial Λ-effect appears and is negative (‘inward transport’). It even seems
to dominate the positive contribution of the eddy viscosity representing outward transport
of angular momentum. The negative angular momentum transport can be explained by the
dominance of the radial turbulence intensity, see Eq. (3.56).

Negative values for Qsφ also appear in the 3D simulations of an inviscid fluid by Stone
& Balbus (1996), probing the role of vertical convective motions in providing angular mo-
mentum transport in a Keplerian disk. Igumenshchev, Abramowicz & Narayan (2000) present
3D hydrodynamic simulations of convective advection-dominated accretion flows. They also
report a strong tendency of the eddies toward axisymmetry, and an inward transport of angular
momentum (see their Fig. 4).

One can ask whether an example is known that leads to the opposite type of anisotropy, i.e.
for turbulence with dominant azimuthal intensity, and hence positive Qsφ. This is indeed the
case for a Keplerian flow modulated with finite disturbances of a given wave number k. Ac-

1 HΩ � cac is used resulting from the vertical hydrostatic disk equilibrium
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cording to Dubrulle (1993) this hydrodynamic flow is unstable if the normalized amplitude of
the flow disturbance exceeds ks. The resulting fluctuations are clearly azimuthally dominated,
and the resulting angular momentum flux is outward (Rüdiger & Drecker 2001). However, if
the imposed disturbance is switched off then after a few rotations the finite-amplitude distur-
bance also decays (see Fig. 5.4).

In the linear regime Keplerian flows are stable. The theory of this basic stability is given
in the next section, where modifications are also discussed resulting from additional (vertical)
stratifications of entropy and/or density.

5.1.3 Turbulence and Planet Formation

Turbulence rapidly dissipates large-scale concentration differences like those of chemicals
and/or solid dust. On the other hand, its vortices may temporarily amplify the density, which
is of interest for the dust growth in protoplanetary disks (Klahr & Henning 1997, Hodgson &
Brandenburg 1998). A rapid growth of dust particles is the basis of the planetesimal theory
of the planet formation (Lissauer 1993). Without turbulence the process of dust growth is far
too slow (Kempf, Pfalzner & Henning 1999, >∼ 106 yr). Due to the electrical properties of the
solids the electromagnetic forces in the disk are also of importance (Poppe, Blum & Henning
2000).

On the other hand, if the turbulence is too intense it would disturb the agglomeration of
the dust particles (Völk et al. 1980, Dubrulle, Morfill & Sterzik 1995). The gravitational
instability is also inhibited by turbulent mixing. However, Youdin & Shu (2002) demonstrate
that the turbulence due to vertical shear between the gas and the thinner dust subdisk (pressure
differences!) can be suppressed if the column density ratio of the dust and the gas is increased
by a factor <∼10 compared with the standard value. If correct then the dust disk may indeed
become supercritical with respect to the Jeans instability, and form planetesimals in the very
short orbital timescale ( <∼ 103 yr), without any need for the (slow) dust growth (Boss 1998, see
Sect. 6.7). The timescale is clearly also short enough to overcome the rapid inward migration
of the solids due to the natural friction with the gas particles. With a column density of 7.5
g/cm2 for the dust disk, according to Eq. (6.21) the critical wavelength is 1000–10,000 km,
which can also serve as an upper bound for the size of the planetesimals (Goldreich & Ward
1973).

5.2 Stability of Differential Rotation in Hydrodynamics

According to the Rayleigh criterion

dj2

ds
> 0, (5.9)

with j = s2Ω being the angular momentum per unit mass, Keplerian disks are hydrodynam-
ically stable configurations. However, if the disk plasma has a sufficiently high conductivity
they are unstable under the influence of a (weak) magnetic field (Balbus & Hawley 1991,
Hawley & Balbus 1991, Balbus 1995, Brandenburg et al. 1995). Linear studies of global
configurations of disks threaded by magnetic fields were also carried out. Curry, Pudritz &
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Sutherland (1994), Curry & Pudritz (1995) and Terquem & Papaloizou (1996) investigated
the stability for vertical and azimuthal fields threading an inviscid and perfectly conducting
global disk, basically considered in its midplane. They found that the actual initial field ge-
ometry does not depend strongly on field topology, as was also suggested by the numerical
simulations of Hawley & Balbus (1991). The growth rates of the unstable modes are of the
same order (see below) as the local growth rates, and the same is true for the largest allowed
magnetic field strength. Kitchatinov & Mazur (1997) and Rüdiger et al. (1999) particularly
addressed the angular momentum transport in their linear studies for thin accretion disks of
real plasma. The first nonlinear global approach in 3D numerical simulations was by Armitage
(1998), who omitted the density stratification in favor of a large radial extent of the disk. A
global approach with stratification was then presented by Hawley (2000) and Arlt & Rüdiger
(2001), who followed the evolution of a thick torus under the influence of an external magnetic
field threading parts of the computational domain.

All local shearing-box numerical simulations to date have shown that Keplerian disks2 are
hydrodynamically stable to infinitesimal and finite-amplitude disturbances (Balbus, Hawley
& Stone 1996). This raises the question whether other nonmagnetic influences exist, which in
combination with the basic negative shear allow instabilities in the linear regime. We recall
three recent suggestions. Urpin & Brandenburg (1998) and Arlt & Urpin (2004) consider
the destabilizing action of a dependence of Ω on z, which may more than compensate the
stabilization due to Eq. (5.9).

There is also the suggestion of Klahr & Bodenheimer (2003) that the negative radial en-
tropy stratification in thin Kepler disks may act in a destabilizing manner. With the standard
α-description of accretion disks, however, one finds the positive value ∂S/∂s � Cv/2s, indi-
cating stability.

Molemaker, McWilliams & Yavneh (2001) point out that a vertical density stratification in
the Taylor–Couette flow may have a similar destabilizing effect as a global vertical magnetic
field for a plasma. The sufficient condition that a (nonaxisymmetric) disturbance will be
unstable is the same as for an unstratified ideal MHD Taylor–Couette flow in the presence of
a vertical magnetic field, i.e.

dΩ

ds
< 0. (5.10)

If this were also be true for nonmagnetic disks with vertical density stratifications, they would
be hydrodynamically unstable, so that turbulence can develop, transporting the angular mo-
mentum inward or outward. In the following a stability analysis is presented, within the
short-wave approximation and for inviscid media, which in particular considers the constel-
lation of radial shear plus vertical stratification. How restrictive these approximations are
is still an open question. Note that the Solberg–Høiland conditions for dynamic stability of
constellations with vertical stratification take the form

1
s3

∂j2

∂s
− 1

Cpρ
∇P · ∇S > 0,

∂P

∂z

(
∂j2

∂s

∂S

∂z
− ∂j2

∂z

∂S

∂s

)
< 0 (5.11)

2 without vertical gradients of the angular velocity
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(Tassoul 1978). Here S is the specific entropy. For ∂P/∂z < 0 (as is usual for accretion
disks) the latter relation turns into

∂j2

∂s

∂S

∂z
>

∂j2

∂z

∂S

∂s
, (5.12)

which for Keplerian disks with Ω ∝ s−1.5 leads to the usual Schwarzschild criterion,

∂S/∂z > 0 (5.13)

for stability. Equation (5.11)1 becomes

1
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ρCp
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∂S

∂s
> 0, (5.14)

which for ∂S/∂z > 0 and ∂S/∂s > 0 provides stability. It was adopted that −gz = g =
Ω2z > 0. If, on the other hand, the standard stratifications of accretion disks are j = j(s) and
S = S(z) with dj2/ds > 0 then the Solberg–Høiland criterion for stability reduces to

1 +
z

Cp

dS

dz
> 0,

dS

dz
> 0 (5.15)

(in the upper hemisphere). According to Eq. (5.11) dS/dz > 0 is evidently a sufficient con-
dition for stability of Keplerian disks even for the combined action of vertical density stratifi-
cation and differential (Kepler) rotation. This same result was previously derived by Livio &
Shaviv (1977), Abramowicz et al. (1984) and Elstner, Rüdiger & Tschäpe (1989). Obviously,
in the framework of ideal hydrodynamics the traditional Schwarzschild criterion dS/dz > 0
ensures stability for all Keplerian disks. If the disk can be considered as isothermal in the
vertical direction then it follows that dS/dz > 0 for typical density stratifications. With
dS/dz > 0 the condition (5.12) for a rotation law Ω = Ω(z) yields stability for negative
dΩ/dz, so that only strong positive dΩ/dz might provide instability.

5.2.1 Combined Stability Conditions

In order to probe the central Eqs. (5.11) a local stability analysis of the equations of ideal
hydrodynamics in cylindrical coordinates (s, φ, z) is necessary. Self-gravitation phenomena
are excluded, but sound waves are allowed to exist. The three components of the momentum
equation for axisymmetry are

∂us

∂t
+ us

∂us

∂s
+ uz

∂us

∂z
− u2

φ

s
= −1

ρ

∂P

∂s
+ gs,

∂uφ

∂t
+ us

∂uφ

∂s
+ uz

∂uφ

∂z
+

uφus

s
= 0,

∂uz

∂t
+ us

∂uz

∂s
+ uz

∂uz

∂z
= −1

ρ

∂P

∂z
+ gz. (5.16)

Mass conservation and the energy equation yield

∂ρ

∂t
+

∂

∂s
(ρus) +

ρus

s
+

∂

∂z
(ρuz) = 0,

∂S

∂t
+ us

∂S

∂s
+ uz

∂S

∂z
= 0. (5.17)
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The unperturbed state is ū = (0, sΩ, 0), ρ̄ = ρ̄(s, z), P̄ = P̄ (s, z), S̄ = S̄(s, z), gs =
gs(s, z) and gz = gz(s, z) with

gs =
1
ρ̄

∂P̄

∂s
− sΩ2, gz =

1
ρ̄

∂P̄

∂z
. (5.18)

Finally, dS = Cvd log(P/ρΓ ) with Γ = Cp/Cv = 5/3. The perturbations u′, ρ′, P ′ and S′

to the basic state are assumed to be small, so that the linearized system

∂u′
s

∂t
− 2Ωu′

φ +
1
ρ̄

∂P ′

∂s
− ρ′

ρ̄2

∂P̄

∂s
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∂u′
z

∂t
+

1
ρ̄

∂P ′

∂z
− ρ′

ρ̄2

∂P̄

∂z
= 0,

∂u′
φ

∂t
+

1
s

∂(s2Ω)
∂s

u′
s + s

∂Ω

∂z
u′

z = 0,

∂S′

∂t
+ u′

s

∂S̄

∂s
+ u′

z

∂S̄

∂z
= 0,

1
ρ̄

∂ρ′

∂t
+

∂u′
s

∂s
+

u′
s

s
+

∂u′
z

∂z
+

∂ log ρ̄

∂s
u′

s +
∂ log ρ̄

∂z
u′

z = 0 (5.19)

results. The coefficients in the equations are assumed constant. The short-wave approximation
|kss| > 1 is now applied (see Meinel 1983), so all perturbations can be expressed by the
Fourier modes exp(γt + ikx), yielding

γus − 2Ωuφ + iks
P

ρ̄
− ρ

ρ̄2

∂P̄

∂s
= 0,

γuφ +
1
s

∂(s2Ω)
∂s

us + s
∂Ω

∂z
uz = 0,

γuz + ikz
P

ρ̄
− ρ

ρ̄2

∂P̄

∂z
= 0,

γ
ρ

ρ̄
+

∂ log ρ̄

∂s
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∂ log ρ̄

∂z
uz + iksus + ikzuz = 0,

γ

(
P

P̄
− Γ

ρ

ρ̄

)
+

1
Cv

(
∂S̄

∂s
us +

∂S̄

∂z
uz

)
= 0, (5.20)

after dropping the dashes. The determinant of the homogeneous system must vanish, yielding
the dispersion relation

γ4 + 2Eγ2 + F = 0, (5.21)

where

E =
1
2

(
(k2

s + k2
z)c2
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1
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∂P̄
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)
, (5.22)

and

F =
(

ks

ρ̄

∂P̄
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. (5.23)
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The epicyclic frequency κ and the adiabatic sound speed cac are

κ2 =
1
s3

∂j2

∂s
, c2

ac = Γ
P̄

ρ̄
. (5.24)

The roots of the dispersion relation are simply γ2 = −E±√
E2 − F . According to Eq. (5.22)

the coefficient E is real. The flow is thus always unstable for negative E and complex F .
Positive E and real F are, therefore, the necessary conditions for stability. According to
Eq. (5.23), F is real if and only if

1
ρ̄2

(
∂P̄

∂z

∂ρ̄

∂s
− ∂P̄

∂s

∂ρ̄

∂z

)
− s

∂Ω2

∂z
= 0. (5.25)

Inserting Eq. (5.25) into Eq. (5.18) we find

∂gs

∂z
=

∂gz

∂s
(5.26)

as the immediate consequence (Rüdiger, Arlt & Shalybkov 2002). Any conservative force is a
solution of Eq. (5.26) and indicates stability. If – as it is in accretion disks – gravity balances
the pressure and centrifugal forces, then Eq. (5.25) is automatically fulfilled. Note that from
the Poincaré theorem for rotating media with potential force and Ω = Ω(s) both the density
and the pressure can be written as functions of a generalized potential, so that Eq. (5.25) is
always fulfilled.

The magnetic field, however, is not conservative and can never fulfill Eq. (5.26). This is the
basic explanation for the existence of the magnetorotational instability (MRI), which is driven
by (weak) magnetic fields. With conservative forces fulfilling (5.26) the only possibility for
any instability like that of Molemaker, McWilliams & Yavneh (2001) is that the short-wave
approximation cannot be applied.

5.2.2 Sufficient Condition for Stability

Now the necessary condition (5.25) is assumed to be fulfilled. The flow is stable if both roots
of the dispersion relation for γ2 are real and negative. The sufficient conditions for stability
are therefore E > 0 and E2 > F > 0. Inserting Eq. (5.25) into Eq. (5.23) we find F to be
positive3 if

k2
s

k2
z

N2
z +

ks

kz

2
Cpρ̄

∂P̄

∂z

∂S

∂s
+ N2

s + κ2 > 0, (5.27)

where

N2
s = − 1

Cpρ̄

∂P̄

∂s

∂S

∂s
, N2

z = − 1
Cpρ̄

∂P̄

∂z

∂S

∂z
(5.28)

are components of the Brunt–Väisälä frequency. Equation (5.27) is a quadratic expression
in ks/kz . It is positive if (i) the expression is positive for some value ks/kz and (ii) the
expression has no real roots, i.e. the discriminant is negative. The first condition is fulfilled if

N2
s + N2

z + κ2 > 0. (5.29)

3 in the short-wave approximation
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This is the Schwarzschild criterion for stability in the presence of rotation. The second condi-
tion leads to

∂P̄

∂z

(
κ2 ∂S

∂z
− s

∂Ω2

∂z

∂S

∂s

)
< 0. (5.30)

These equations are exactly equivalent to the Solberg–Høiland conditions (5.11). The
Schwarzschild criterion ensures that E > 0, and the short-wave approximation ensures that
F < E2, so these relations do not yield any additional conditions4.

Without density stratification the sufficient stability condition (5.11)1 for a rotating flow is

κ2 >
1

ρ̄2c2
ac

((
∂P̄

∂s

)2

+
(

∂P̄

∂z

)2
)

. (5.31)

This is the classical Rayleigh criterion (5.9) for stability generalized to the compressible case.
Note that it is much more restrictive than the standard formulation (5.9).

5.2.3 Numerical Simulations

The main shortcoming of the linear stability analysis is the short-wave assumption. Without
this assumption, Fourier modes are no longer solutions of the linearized equations. Numerical
simulations were therefore undertaken to probe the stability of density-stratified Keplerian
disks subject to finite but adiabatic disturbances.

The setup for 3D simulations applies a global, cylindrical computational domain with
dimensionless radii 4 to 6, and a vertical extent of 2 density-scale heights on average. The
ZEUS-3D code was used for the integration of the hydrodynamics with the adiabatic energy
equation (5.17)2. The source of gravitation is that of a point mass in the center. The initial
configuration is isothermal with a sound speed cac of 7% of the Kepler velocity.

The conditions for the vertical boundaries are stress-free, i.e. the vertical derivatives of us

and uφ vanish. No matter can exit the computational domain in the vertical direction. The
radial boundaries are also closed for the flow, and the radial derivative of uz vanishes.

The initial conditions also involve nonaxisymmetric velocity perturbations of the form
uz = A sin mφ. Figure 5.4 (left) shows the evolution of the kinetic energies. A decay of the
fluid pattern is observed for both m = 1 and m = 200 in the initial perturbation. Figure 5.4
(right) shows the evolution of αSS according to Eq. (5.8) during 50 rotation periods (at the
inner disk radius). A clear relaxation of the flow is seen. The fluctuations in the vertical
direction reach ±14% of the Kepler velocity. Those in the radial direction even reach ±27%.
They are not small, and a nonlinear instability should appear, if one exists at all.

An average decay time in Fig. 5.4 is about 10 orbital periods. In terms of the Reynolds
number Re � 1500 is achieved near the inner edge of the annulus.

5.2.4 Vertical Shear

Our dispersion relation is of fourth order, unlike the dispersion relation of second order one
obtains in the Boussinesq approximation (Goldreich & Schubert 1967), and unlike the disper-
sion relation of fifth order found in nonideal hydrodynamics (Abramowicz et al. 1990). In this

4 the conditions (5.11) can also be obtained in the Boussinesq approximation (Goldreich & Schubert 1967)
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Figure 5.4: Left: Kinetic energies in the vertical and radial components of the flow after an initial
perturbation with m = 1. The solid line is the energy of the radial direction, the dashed line that of
the z-direction. Right: The αSS in its temporal evolution after the disturbance. Times are given as orbit
numbers of the inner boundary of the computational domain.

way we obtain a new necessary condition for stability, which requires the external force to be
conservative, i.e. to possess a potential (see Eq. (5.26)).

When the angular velocity only depends on the vertical coordinate the conditions (5.11)
transform to

∂P

∂z

∂S

∂s

∂Ω2

∂z
> 0 (5.32)

as the sufficient condition for stability, which can be fulfilled with dΩ/dz < 0 for positive
∂S/∂s. This exactly is also the constellation of the solar tachocline!

In accretion disks there is always a positive z-gradient of angular velocity. Arlt & Urpin
(2004) have thus numerically simulated the stability of such accretion disks with the ZEUS-
3D code. A vertical dependence of the angular velocity destabilizes the disk and leads to the
generation of velocity fluctuations enhancing the angular momentum transport. The transport,
however, appears to be negative. It remains an open question whether the closed radial bound-
ary conditions may affect the direction of transport. The instability emerges for rather large
radial wave numbers. The growth time is a few tens of orbital revolutions.

Another ingredient is the nonadiabaticity. Earlier simulations with nonaxisymmetric initial
perturbations in an adiabatic disk did not show the onset of an instability, even though the disk
possessed a small vertical shear. It is interesting to note that in the Boussinesq approximation
for nonideal fluids, the Solberg–Høiland criterion changes to the Goldreich–Schubert–Fricke
criterion (see Fricke & Smith 1971, Urpin & Brandenburg 1998), which no longer allows the
existence of a vertical shear for stability, i.e. only dΩ/dz = 0 is stable.
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5.3 Stability of Differential Rotation in Hydromagnetics

The system is now assumed to be in a hydrostatic equilibrium in accordance with

∇P

ρ
= g∗ +

1
µ0ρ

(∇× B̄) × B̄, (5.33)

with g∗ = g+Ω2s and g the gravity. The magnetic field B̄ is assumed to be weak in the sense
that its Alfvén speed VA is small compared to the sound speed. The Lorentz force is small
compared with the pressure force, so that the structure is mainly determined by the balance
between g, centrifugal force and pressure, i.e. ∇P/ρ = g∗. The magnetic pressure does not
contribute to the zero-order stratification. The large-scale magnetic field is assumed to be uni-
form. The instability theory of stratified media under the influence of toroidal magnetic fields
has been presented by Terquem & Papaloizou (1996) and Papaloizou & Terquem (1997). It is
not considered here. For the strong field amplitude the Parker (magnetic buoyancy) instability
for a local toroidal flux tube appears, while for weak nonaxisymmetric fields the shear of the
differential rotation becomes unstable (see below).

With g = −∇ψ one finds the condition (5.26) fulfilled. The induction equation with Hall
effect included reads

∂B

∂t
= ∇×

(
u × B − η∇× B − β(∇× B) × B

)
, (5.34)

where β represents the Hall effect5.
Again axisymmetric short-wave perturbations are considered with the modal expansion

exp(γt+ik ·x), where k = (ks, 0, kz), and with viscosity neglected. The linearized momen-
tum equation in the Boussinesq approximation then becomes

γu′ + 2Ω × u′ + êφs(u′ · ∇)Ω =

− ikP ′

ρ̄
− T ′

T̄
g∗ − i

µ0ρ̄

(
(B̄ · B′)k − (k · B̄)B′

)
, (5.35)

with k · u′ = 0. Here êφ is the unit vector in the azimuthal direction. It is assumed that the
density perturbation in the buoyancy force is determined by the temperature perturbation, and
the linearized adiabatic equation (3.67) turns into

γT ′ + u′ · T̄

Cp
∇S = 0. (5.36)

The linearized induction equation (5.34) reads

(γ + ηk2)B′ = i(k · B̄)u′ + s(B′ · ∇Ω)êφ + β(k · B̄)(k × B′), (5.37)

with k · B′ = 0. From these equations with the modal expansion one obtains the dispersion
relation

γ5 + a4γ
4 + a3γ

3 + a2γ
2 + a1γ + a0 = 0, (5.38)

5 here and in chapters 7 and 8 β means the Hall coefficient (not confuse with β = B/Beq after (4.43))
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with a0 = ηk2ω2
Aω2

g and with

a1 =
(
ωH(ωH + ωsh) + η2k4

)
(ω2

g + ω2
rot)+

+ω2
A

(
ω2

g + ω2
A + ωHωsh + ωC(2ωH + ωsh)

)
,

a2 = 2ηk2(ω2
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A + ω2
rot),

a3 = ωH(ωH + ωsh) + 2ω2
A + ω2

g + ω2
rot + η2k4, (5.39)

and a4 = 2ηk2, where

ω2
rot = ω2

C + ωCωsh, ω2
g = −∇S

Cp
·
(

g∗ − (k · g∗)
k

k2

)
, (5.40)

the definitions (2.55) and

ωsh =
s

k

(
kz

∂Ω

∂s
− ks

∂Ω

∂z

)
, ωH = βk(k · B̄) (5.41)

have been used (see Fricke 1969). For ωC only the positive sign is considered. ωg is the
frequency of buoyancy waves6, ωA is the Alfvén frequency, ω2

rot represents the effects of the
differential rotation, and ωH and ωsh are the characteristic frequencies of the Hall and the
shear-driven processes. For pure Kepler flow we have ωrot = kzΩ/k.

5.3.1 Ideal MHD

For very high electrical conductivity and for ωH = 0 we have a0 = a2 = a4 = 0, a1 =
ω2

A(ω2
g + ω2

A + ωCωsh), and a3 = ω2
g + ω2

rot + 2ω2
A. Then Eq. (5.38) can be rewritten as

(γ2 + ω2
A)2 + A1(γ2 + ω2

A) + A2 = 0 (5.42)

with

A1 = ω2
g + ω2

rot, A2 = −ω2
Cω2

A. (5.43)

The solutions of this equation have the form

γ2 = −1
2
(ω2

g + ω2
rot + 2ω2

A) ± 1
2

√
(ω2

g + ω2
rot)2 + 4ω2

Cω2
A. (5.44)

Negative (positive) γ2 indicates stability (instability) of the flow. The flow is therefore unstable
if ω2

g + ω2
rot + 2ω2

A < 0. Since ω2
A is always positive the necessary condition for instability is

ω2
g + ω2

rot < 0. This is again the same condition as given above for the hydrodynamic case.
The flow is also unstable if ω2

g + ω2
rot + 2ω2

A > 0 but if

(ω2
g + ω2

rot)
2 + 4ω2

Cω2
A > (ω2

g + ω2
rot + 2ω2

A)2. (5.45)

Hence,

ω2
A < ω2

C − ω2
g − ω2

rot (5.46)

6 it is ω2
g > 0 for convectively stable layers, see Eq. (5.13)
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holds for instability so that

ω2
g + ω2

rot < ω2
C (5.47)

is necessary for instability. This condition differs from the same condition without magnetic
field only by its RHS. This analysis leads to a new ‘MHD Høiland criteria’ instead of (5.11)
where the gradients of the angular momentum j = s2Ω are replaced by the gradients of the
angular velocity Ω, i.e.

s
∂Ω2

∂s
− 1

Cpρ
∇P · ∇S > 0,

∂P

∂z

(
∂Ω2

∂s

∂S

∂z
− ∂Ω2

∂z

∂S

∂s

)
< 0. (5.48)

The sufficient condition for instability, Eq. (5.46), for Ω = Ω(s) then reads

k2
z

k2

dΩ2

d log s
< −ω2

A − ω2
g . (5.49)

The instability only exists for sufficiently steep subrotation or, in other words, for weak fields
and not too stably stratified layers. In its simplest form, for a Kepler flow without buoyancy,
the condition is reduced to the relation

k <
√

3
Ω

VA
, (5.50)

with the Alfvén velocity VA = B̄/
√

µ0ρ (Velikhov 1959, Fricke 1969, Balbus 1991). The
critical wave number thus depends on the magnetic field, being inversely proportional to the
field strength. The maximal possible magnetic field amplitude follows from VA � ΩD with
D as the characteristic size of the considered domain.

5.3.2 Baroclinic Instability

Equation (5.38) describes five low-frequency modes. The condition for instability (at least
one of its roots has a positive real part) is equivalent to one of the four conditions7

a0 < 0, A1 < 0, A2 < 0, A3 < 0, (5.51)

with

A1 = a3a4 − a2, A2 = a2(a3a4 − a2) − a4(a1a4 − a0),

A3 = (a1a4 − a0)
(
a2(a3a4 − a2) − a4(a1a4 − a0)

) − a0

(
a3a4 − a2

)2
. (5.52)

Since ω2
A > 0, the condition (5.51)1 is equivalent to ω2

g < 0, or with Eq. (5.40)2

g∗z
∂S

∂z
ξ2 −

(
g∗z

∂S

∂s
+ g∗s

∂S

∂z

)
ξ + g∗s

∂S

∂s
> 0, (5.53)

with ξ = ks/kz . It is easy to see that Eq. (5.53) has two real roots for ξ, so that negative parts
of the curve always exist for special wave numbers, independent of the signs of g∗ and ∇S
(Urpin & Brandenburg 1998). This (unavoidable) instability is called the barocline instability;
interestingly enough only 1D configurations can be stable in this regime.

7 since ηk2 is positive definite the fifth condition (a4 < 0) will never apply
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5.4 Stability of Differential Rotation with Strong Hall
Effect

A detailed analysis of MHD modes in accretion disks demonstrates a wider variety of instabili-
ties than MRI (see Keppens, Casse & Goedbloed 2002). The situation is particularly uncertain
in cold and dense protostellar disks, where the electrical conductivity is small because of the
low ionization degree. The magnetic field therefore cannot be considered as frozen into the
gas (Gammie 1996). The behavior of the magnetic shear instability with nonvanishing Ohmic
dissipation has been considered in both the linear (Jin 1996) and nonlinear (Sano, Inutsuka &
Miyama 1998) regimes. However, as was pointed out by Wardle (1999), poorly conducting
protostellar disks can be strongly magnetized if electrons are the main charge carriers. If the
field is sufficiently strong then the main contribution to the magnetic-dissipation tensor is pro-
vided by the Hall effect. This component drastically changes the geometry of the magnetic
field. The linear stability analysis by Wardle (1999) shows that the Hall effect can provide
an additional influence upon a shear flow depending on the direction of the magnetic field. A
more general consideration of the magnetic shear instability in the presence of Hall currents
is by Balbus & Terquem (2001), with the result that the Hall effect qualitatively changes the
stability properties of rotating plasma.

The magnetization of the electron gas is characterized by the product of the electron gy-
rofrequency ωB = eB/mec and the relaxation time τ of electrons (see Frank-Kamenezki
1967, Spitzer 1978). In protostellar disks, τ is determined by the scattering of electrons on
neutrals, so τ = 1/n〈σv〉, where 〈σv〉 is the average product of the cross-section and velocity,
and n is the number density of neutrals. Using the estimate of 〈σv〉 by Draine, Roberge &
Dalgarno (1983) for electron-neutral collisions, the magnetization parameter ae of electrons
can be represented by

ae ≡ ωBτ = 2.1 · 1016 B

n
√

T
, (5.54)

with B in Gauss, all others in c.g.s. (Shalybkov & Urpin 1995). If this parameter exceeds
unity (see Fig. 5.5) then the Hall effect dominates. The Hall-originated magnetic diffusivity is
given by aeη = βB with β = c/4πene, where η is the microscopic magnetic diffusivity and
ne is the number density of electrons. The magnetic diffusivity is η = 234

√
T/f in cm2/s,

where f = ne/n is the ionization fraction, which is only of order 10−12 in cold protoplanetary
disks.

5.4.1 Criteria of Instability of Protostellar Disks

Now following Urpin & Rüdiger (2004) we discuss Eq. (5.38) in more detail with the insta-
bility conditions (5.51). Note that the condition A2 < 0 does not provide new results.

The Condition A1< 0

This becomes ω2
A + ω2

H + ωHωsh + η2k4 < 0, or, substituting frequencies,

βs(k · B̄)
(

kz
∂Ω

∂s
− ks

∂Ω

∂z

)
< −ω2

A − β2k2(k · B̄)2 − η2k4. (5.55)
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Figure 5.5: The condition
ae = ωBτ = 1, where the
lines are marked with the
values of the number density
n14 = 10−14n. For magnetic
fields above the lines the Hall
effect dominates the Ohmic
dissipation. From Urpin &
Rüdiger (2004).

There is no instability without shear. The condition (5.55) describes an instability due to the
combined influence of shear and Hall effect. This instability differs from the MRI because the
only term that can provide a destabilizing influence is on the LHS of Eq. (5.55), and this term
vanishes for β → 0. For any dependence of Ω on s and z, and for any direction of B̄, wave
vectors exist satisfying

(k · B̄)
(

kz
∂Ω

∂s
− ks

∂Ω

∂z

)
< 0, (5.56)

so that the LHS of Eq. (5.55) becomes negative. Therefore, any form of differential rotation8

can be unstable for sufficiently strong Hall effect (Balbus & Terquem 2001).
If the Hall parameter is large, ae 
 1, then ηk2 is negligible in Eq. (5.55). Assuming that

the gas is weakly ionized, then for very small f in a large fraction of the disk volume, the Hall
term can also dominate the Alfvén term, |ωH| > |ωA|. The necessary condition for instability
is then simply

|ωsh| > |ωH|. (5.57)

The shear must (slightly) dominate the Hall term. The sign of ωsh plays no crucial role in the
condition, so that the instability can appear for any ∇Ω if Eq. (5.57) is fulfilled. Assuming
|∂Ω/∂s| ∼ Ω/s this condition can be represented by

B̄ <
Ω

βk2
� 10−3

(
τrot

yr

)−1
ne

100

(
λ

1011 cm

)2

G, (5.58)

where τrot is the rotation period. However, the condition for dominating Hall effect (ae > 1)
requires rather strong magnetic fields, so that it is not easy to find a consistent parameter range
for a ‘shear-Hall instability’. One finds for T = 100 K and f = 10−12 the condition(

λ

AU

)2

> 0.003
(

τrot

yr

)
, (5.59)

8 but not any amplitude
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so that the disturbances must have long wavelengths in protostellar disks. Global models must
therefore be considered to assess the importance of the Hall effect in protostellar disks.

The Condition A3< 0

The criterion A3 < 0 yields for ωH > ηk2 (or, which is the same, ωBτ > 1) and Ω > ωH the
relation

ωH(ωH + ωsh)
(

(1 + q)(ω2
g + ω2

rot) − qω2
A

)
+ ω4

A+

+ω2
A

(
ωsh(ωC + ωH) + 2ωCωH

)
+ qω2

A

(
1
2
ω2

g + ω2
rot

)
< 0, (5.60)

with

q =
1
2

ω2
g

(ωC − ωH)2 + η2k4
. (5.61)

With the (realistic) condition Ω > ωA >
√

ωHΩ then from Eq. (5.60)

ωshωC + q

(
ω2

g

2
+ ω2

C + ωshωC

)
< 0 (5.62)

arises. In a convectively stable disk with ω2
g > 0 an instability thus only appears if

2ωCωsh < −ω2
g . (5.63)

For ωg ∼ Ω this condition is more restrictive than the criterion (5.50) for MRI. The ‘negative’
buoyancy of the stable vertical stratification requires stronger shear than without gravity. The
Hall frequency no longer appears in this relation.

5.4.2 Growth Rates

A general analysis of the roots of Eq. (5.38) is very complicated. Simple expressions can be
obtained, however, for some cases of astrophysical interest. For small ηk2 only the four roots
of

γ4 + c2γ
2 + c0 = 0 (5.64)

exist, with c0 = ω2
A

(
ω2

g + ωCωsh

)
+ωH(ωH +ωsh)(ω2

g +ω2
rot) and c2 � ω2

g +ω2
rot. Without

a magnetic field c0 vanishes, so that γ2 = −c2 solves (5.64), leading to γ2 � −ω2
C/4 for

nonmagnetic Kepler flow, i.e. stability.
The general solution of Eq. (5.64) is given by γ2 = −(c2 ± √

c2
2 − 4c0)/2. If Ω >

max(ωH, ωA) then c2
2 > 4c0 and

γ2
1,2 ≈ −c0

c2
. (5.65)

One of the modes γ1,2 is unstable if c2 > 0 and c0 < 0. The remaining modes describe
convection and are stable in convectively stable disks. There are two possibilities:
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i) For
√

ωHΩ > ωA we have for the magnetically driven modes γ2
1,2 � −ωH(ωH + ωsh).

If the condition (5.57) is fulfilled then one of these modes is unstable. Since ωsh ∼ Ω it is

γ

Ω
∼

√
ωH

Ω
(5.66)

for the Hall-driven modes.
ii) If

√
ωHΩ < ωA then γ2

1,2 � −ω2
A(ω2

g + ωCωsh)/(ω2
g + ω2

rot). This is the dispersion
equation for magnetic shear-driven modes (Balbus 1995, Urpin 1996) in the limit ωg > ωA.
One of these modes is unstable for small ω2

g . For ωg = 0 one finds

γ �
√

3 ωA. (5.67)

The growth rate is of order ωA, which with Eq. (5.50) leads to γ � Ω, which is a very fast
growth rate.

The critical wavelength can easily be calculated with the instability conditions. For B = 1
G, n = 1014 and τrot = 1 yr they are ∼0.1 AU (Urpin & Rüdiger 2004).

5.5 Global Models

The existence of the MRI in global models is now considered. Spherical geometry allows a
completely global formulation also of the magnetic part of the system9. The instability needs a
negative shear ∂Ω/∂s. Such a decrease may well be present in stellar radiative cores with their
extremely small microscopic viscosities, because of the loss of angular momentum through
the surface by stellar winds or by the outward transport of angular momentum by radiation
(Kippenhahn 1958). We do not assume axial symmetry and include finite diffusivities, but
neglect the effects of compressibility and stratification (see Stone et al. 1996, Balbus 1995,
Spruit 1999).

We shall find that the boundaries impose an upper limit Bmax on the magnetic field ampli-
tude. The instability is present only for fields smaller than Bmax, which grows with the rota-
tion rate. The finite diffusivities also impose a lower limit Bmin, which approaches a constant
value for sufficiently rapid rotation. Close to Bmin the axisymmetric modes are preferred,
while close to Bmax the nonaxisymmetric modes are more unstable, at least for stress-free
boundaries. The symmetries relative to the equatorial plane can also be distinguished. The
modes with equatorially antisymmetric flow and symmetric magnetic field (‘quadrupoles’)
always prove to be preferred.

5.5.1 A Spherical Model with Shear

A rotating sphere of conducting fluid with radius R is considered by Kitchatinov & Rüdiger
(1997). Its angular velocity only varies with s. Outside the sphere is vacuum. A uniform
magnetic field B0 is imposed parallel to the rotation axis. Such a field satisfies the steady in-
duction equation inside the sphere, Maxwell’s equations outside, and the continuity condition

9 see Priklonsky et al. (2000) for the problems with magnetized disks
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on the boundary. Let the rotation law be prescribed by

Ω(s) = Ω0

(
1 +

(
s

s0

)2q
)−1/2

, (5.68)

with s0 = R/2 and q as a free parameter (Donner & Brandenburg 1990). According to the
Rayleigh criterion the rotation law for q = 1 is clearly subcritical. The case q = 2 is close
to the critical state but is still subcritical. The majority of our results belongs to q = 2. With
q = 3 there is an (outer) region in the sphere where the Rayleigh criterion is violated. Hence,
for sufficiently low viscosity the rotational state with q = 3 is expected to be unstable even in
the nonmagnetic case.

We start with the MHD equations for incompressible fluids, linearized around the refer-
ence state with ū and B0, i.e.

∂u′

∂t
+ (u′ · ∇) ū + (ū · ∇) u′ =

1
ρ
J ′ × B0 − 1

ρ
∇P ′ + ν∆u′,

∂B′

∂t
= ∇× (

u′ × B0 + ū × B′) + η∆B′, (5.69)

with ∇ · u′ = ∇ · B′ = 0. The pressure can be eliminated by curling Eq. (5.69)1, hence

∂ω

∂t
= ∇× (

ū × ω + u′ × ω̄ + J ′ × B0/ρ
)

+ ν∆ω, (5.70)

where ω = ∇ × u′ and J ′ = ∇ × B′/µ0 are the vorticity and current density, and ω̄ =
êzs

−1d
(
s2Ω

)
/ds is the vorticity due to the basic rotation. A natural normalization is used so

that normalized equations result. The dimensionless parameters that finally define the model
are

CΩ =
Ω0R

2

η
, Ha =

B0R√
µ0ρνη

, Pm =
ν

η
, (5.71)

i.e. the magnetic Reynolds number of the rotation, the Hartmann number and the magnetic
Prandtl number.

Both the vector fields in the present problem are divergence-free. They can thus be ex-
pressed in terms of the scalar potentials

u′ = x ×∇
(w

x

)
+ ∇×

(
x ×∇

(
Ψ

x

))
,

B′ = x ×∇
(

B

x

)
+ ∇×

(
x ×∇

(
A

x

))
, (5.72)

defining the toroidal and poloidal parts of the fields. The resulting relations include the op-
erator that has the spherical Legendre functions as eigenfunctions. This makes expansions
in spherical harmonics convenient, e.g. A =

∑
Anm(x, t)eimφP

|m|
n (cos θ). The vacuum

boundary conditions for the magnetic field are now easy to formulate in terms of the ampli-
tudes of the expansions, i.e. ∂Anm/∂x + nAnm/x = Bnm = 0. Krause & Rädler (1980,
their Chapt. 13) presented all the necessary details of these formulations.
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For stress-free surfaces it is required that the zonal cross-components of the Reynolds
stress tensor (Maxwell tensor not included!) vanish, i.e.

∂

∂x

(wnm

x2

)
= 0, ωnm +

2
x

∂Ψnm

∂x
= 0. (5.73)

The radial velocity must also be zero at the surface, hence Ψnm = 0.
In the linear theory the axisymmetric modes and nonaxisymmetric modes can be consid-

ered separately. For each value of m the equation system splits into two independent subsys-
tems governing the modes with different types of equatorial symmetry. Note that the symme-
try notation relates to the magnetic field. The symmetry of the flow is opposite. The S-modes
combine symmetric magnetic fields with antisymmetric flow, and vice versa for the A-modes.

Figure 5.6 presents the geometry of the model and the resulting stability map for the ax-
isymmetric magnetic A-modes. The same for the S-modes is given in Fig. 5.7 (left).
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Figure 5.6: Left: The model of Kitchatinov & Rüdiger (1997) for a sphere in differential rotation
embedded in vacuum and subject to a homogeneous vertical magnetic field. Right: The resulting neutral
stability lines for the modes with (magnetic) dipolar symmetry and for Pm = 1.

The curves for symmetric and antisymmetric modes are similar, but the A-modes are ex-
cited at (slightly) higher rotation rates. The equatorially symmetric (magnetic) modes are thus
preferred. Only the lines for q = 3 cross the CΩ-axis. The neutral stability lines here represent
the magnetic modification of the hydrodynamic instability. A weak magnetic field leads to a
subcritical excitation. The critical rotation rate becomes smaller. The system becomes stable,
however, for sufficiently large Hartmann number.

The curves for q = 1 and q = 2 represent the MRI. The two lines are similar; with less
shear (q = 1) the instability requires higher CΩ . For sufficiently high but fixed rotation rate a
finite interval exists, Bmin < B0 < Bmax, where the rotation law is unstable. The instability
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Figure 5.7: The influence of rotation laws with q = 1, 2, 3 (left, for Pm = 1) and magnetic Prandtl
number (right, for q = 2) on the excitation of the (magnetic) quadrupolar modes.

only exists for fields that are neither too strong nor too weak. If the magnetic Reynolds number
CΩ is too small then the system is stable for all magnetic fields.

The local stability analysis of ideal fluids, Eq. (5.50), predicts that only excitations with
wavelengths larger than the critical value λmin are unstable, i.e.

λ > λmin � 2π
VA

Ω0
. (5.74)

In the global formulation, however, the critical wavelengths, Eq. (5.74), are limited by the size
of the system, hence VA,max � RΩ0/2π defines the maximum field amplitude. This relation
agrees well with the estimate of Bmax by Papaloizou & Szuszkiewicz (1992) and Curry &
Pudritz (1995) for thick disks.

Figure 5.7 (right) illustrates the dependence on the magnetic Prandtl number. The reason
for the change of the slope of the right-hand branches in the plot is obvious. One easily finds
the relation CΩ/Ha � 2π

√
Pm, resulting in

B0√
µ0ρ

=
Ω0R

2π
(5.75)

for the maximum field. The behavior of the left-hand branches in Fig. 5.7 (right) in depen-
dence on the magnetic Prandtl number is also interesting. One finds Hamin ∝ Pm−0.5, so
that

B0√
µ0ρ

� 4η

R
(5.76)

for the minimum field amplitude, which reflects the influence of the magnetic dissipation.
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Nonaxisymmetric Modes

Figure 5.8 presents the results for the nonaxisymmetric modes with m = 1 and m = 2. The
slopes of the right-hand branches of the neutral stability lines for m �= 0 are smaller than for
the axisymmetric solution. For sufficiently fast rotation and sufficiently strong magnetic fields
the excitation of nonaxisymmetric modes is therefore preferred. In Fig. 5.8 the crossover of
the m = 1 modes can be observed. The smaller slopes of the right-hand branches of the lines
for m = 2 suggest that these modes may eventually dominate for sufficiently large CΩ and
Ha10.

Figure 5.8: Neutral stability for S-modes (left) and A-modes (right). Nonaxisymmetric modes are
dominating only for higher magnetic fields. Pm = 1, q = 2.

The existence of a region in parameter space where nonaxisymmetric excitations are pre-
ferred is very promising for a dynamo effect by the shear instability. After Cowling’s theorem
self-excitation of magnetic fields only exists for nonaxisymmetric magnetic fields. Note that
with an azimuthal background field only nonaxisymmetric modes of the magnetic shear insta-
bility are excited (Ogilvie & Pringle 1996).

For a nonlinear analysis the parameters Ha = 50 and CΩ = 714 are used (Drecker,
Hollerbach & Rüdiger 1998). With such simulations we proceed to the turbulent behavior of
the model. The averaging scheme for the correlation tensor, consisting of both the Maxwell
and the Reynolds parts, uses an integration over the horizontal coordinates and keeps the
radial dependence. The eddy viscosity becomes positive throughout the whole shell. The
eddy viscosity is mainly due to the influence of the Maxwell stress tensor.

In many turbulence models it is assumed that αSS is constant. For rigid boundary condi-
tions11 we find in Fig. 5.9 (left) that there exists a region 0.3 < s < 0.7 where this parameter
has the constant value αSS � 3 · 10−3. For stress-free boundary conditions the values are one
order of magnitude smaller. It changes its sign above s = 0.8.

10 for rigid boundary conditions the axisymmetric modes always have the lowest CΩ

11 rigid boundaries have been considered by Drecker, Hollerbach & Rüdiger (1998), with the striking result that in
this case the axisymmetric modes are always preferred
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Figure 5.9: Nonlinear results. Left: αSS for stress-free (solid) and rigid (dotted) boundary conditions.
For stress-free boundary conditions the values are much smaller. Right: αSS vs. the differential param-
eter q for rigid boundaries. From Drecker, Hollerbach & Rüdiger (1998).

Next the influence of the parameter q on the eddy viscosity is considered. Abramowicz,
Brandenburg & Lasota (1996) calculated αSS in accretion disks and found that it becomes
infinite for q = 2. We have varied the value of q in the range from 1 to 3.5. The corresponding
nonlinear solutions appeared to be axisymmetric and also antisymmetric with respect to the
equator. Figure 5.9 (right) seems to reveal a linear relation between the maximum of αSS and
q until a critical point q ≈ 2 where hydrodynamical instability sets in. Beyond that point the
values for αSS grow rapidly, but remain finite.

5.5.2 A Global Disk Model

A similar computation exists for disk geometry with the boundary conditions for thin disks

B =
∂A

∂z
= 0 (5.77)

by Kitchatinov & Mazur (1997). Note that Bs ∝ ∂A/∂z. This is a simplification, but to match
a magnetic field to a vacuum field in cylindrical geometry is not easy. Priklonsky et al. (2000)
have shown that Eq. (5.77) holds exactly for extremely thin disks, while for thick disks it must
be replaced by a nonlocal relation resulting from the form A ∼ exp(−λk|z|)J1(kr) with k as
an arbitrary wave number (see their Eqs. (10) and (11)). Rädler & Wiedemann (1990) have
already used similar equations.

The rotation law is Eq. (5.68) with s0 = 5H . The eigensolutions for B are formed from
the functions sin nπz and cos(n − 0.5)πz, and with similar expressions for the potential A.
The neutral stability lines for Pm = 1 are similar to those for the sphere, but it appears easier
to excite the MRI in disks rather than in spheres. Note that the definition CΩ = Ω0H

2/η has
been used for disks.

The stability lines for quadrupolar symmetry are given in Fig. 5.10 (left). In opposition to
the spherical case the modes with the lowest magnetic Reynolds number are always axisym-
metric. Figure 5.10 (right) shows an example of a magnetically induced subcritical excitation
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of the instability in the case where a hydrodynamic instability also exists. The rotation law
with q = 2.1 (slightly) violates the Rayleigh stability criterion Eq. (5.9). The marginal line
crosses the vertical axis at CΩ = 66. The subcritical excitation works as long as the mag-
netic field is still weak. For larger Ha (not shown) the magnetic field starts to suppress the
instability12 and CΩ → ∞ for Ha → ∞.

The two branches in Fig. 5.10 (left), for given CΩ , differ strongly in the geometry of the
resulting magnetic pattern. The pitch angle varies from 0◦ (left branch) to 90◦ (right). In both
the extreme cases the magnetic angular transport BsBφ therefore vanishes, and we expect its
maximum somewhere between the two branches. It indeed exists and provides an outward
transport of angular momentum by the Maxwell stress.

A similar model was considered by Rüdiger et al. (1999), but with variations of the mag-
netic Prandtl number. The simulations yielded a relation

CΩ

Ha
∝

√
Pm (5.78)

for the strong-field branch of the stability lines, which along this line leads to the relation
(5.75) with ΩH � cac for the strongest vertical field for which the MRI is possible. For
protostellar disks with T � 103 K and ρ � 10−10 g/cm3 this maximal magnetic field strength
� 10 G. The remnant magnetization of meteorites suggests the existence of magnetic fields of
1–10 G in the disk (Levy & Sonett 1978, see Birk, Wiechen & Lesch 2002).

Concerning the angular momentum transport also the Reynolds stress and the Maxwell
stress proved to be positive and of the same order. The same holds for both the kinetic and
magnetic energy.

Figure 5.10: Left: The stability map for the slab model for axisymmetric magnetic quadrupoles excited
for Kepler rotation (solid), q = 1 (dotted) and q = 2 (dashed). Right: The model shows hydrodynamical
instability, i.e. for Ha = 0, already for q > 2. Pm = 1. From Kitchatinov & Mazur (1997).

12 see Chapt. 8 for quite a similar behavior in magnetic Taylor–Couette flow experiments
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5.6 MRI of Differential Stellar Rotation

5.6.1 T Tauri Stars (TTS)

Doppler imaging of the weak-line T Tauri star V 410 Tau shows cool spots at low latitudes as
well as in the polar regions (Joncour, Bertout & Ménard 1994, Hatzes 1995, Rice & Strass-
meier 1996 13). The spots are very large compared to sunspots (� 0.1R) and their distribution
on the stellar surface is nonaxisymmetric. The rotation law derived from the evolution of the
spot distribution is almost rigid. While the average rotation period is 1.87 days, the rotation
rate at the equator exceeds that of the polar caps by maximally 0.2◦/day (Rice & Strassmeier
1996). Johns-Krull (1996) found from high-resolution spectra of a sample of TTS that the
rotation law of these stars is either rigid-body or antisolar. As the same spectral feature that
indicates antisolar rotation is also caused by the presence of cool spots in the polar region of
the star it is concluded that the rotation is most likely rigid. The findings of Rice & Strassmeier
and Johns-Krull indicate rigid or a weak differential rotation for TTS as predicted by Küker
& Rüdiger (1997). After Küker & Stix (2001) for a TTS with 1 M� the total horizontal shear,
δΩlat = Ωeq − Ωpole, is similar to the solar value.

Guenther et al. (1999) determined the photospheric field strengths for a sample of TTS,
containing both classical and weak-line TTS, by means of the Zeeman effect. Field strengths
up to 4.3 kG and filling factors of about 0.5 were found. Johns-Krull et al. (1999) derived
a value of 2.6 ± 0.3 kG for the magnetic field of BP Tau. The large filling factors indicate
the field is not dipolar. Also at the solar surface the magnetic activity is the result of the
dynamics of closed field structures. As, on the other hand, the field is dominated by the
dipole component at large distances from the star, coupling forces between the star and the
surrounding gas are probably weaker than measurements of the surface field strength suggest.

The finding of a period of 5.4 yr in the light curve of V410 Tau by Stelzer et al. (2003)
seems to rule out a purely nonaxisymmetric field for this star. As the differential rotation is
very weak and the spot pattern stable, the field-generating dynamo is probably a more complex
mechanism than a simple αΩ-dynamo or α2-dynamo.

A comprehensive study of X-ray emitting pre-MS stars in the Orion Nebula Cluster by
Feigelson et al. (2003) provided an anticorrelation between Coriolis number Ω∗ and X-ray
luminosity for these stars, i.e. the fastest rotators show the lowest activity (‘supersaturated’).
This behavior is also known from the most rapidly rotating MS stars, while for slowly rotating
MS stars the X-ray luminosity and Ω∗ are correlated (Hempelmann, Schmitt & Stȩpień 1996).
One could believe that the dynamo process in the TTS is completely different from that in MS
stars.

The X-ray activity of WTTS is significantly higher than that of CTTS. This has been shown
for Taurus (which is one of the best studied star formation regions) with the ROSAT All Sky
Service by Neuhäuser et al. (1995) and König, Neuhäuser & Stelzer (2001). The WTTS are
rotating faster than the CTTS which are magnetically coupled to (the outer and slower parts)
of their accretion disks (Fig. 5.13).

13 Rice & Strassmeier (1996) also found hot spots
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5.6.2 The Ap-Star Magnetism

Schüssler (1975) considered the dynamo regime during the transition from the fully convective
Hayashi phase of a pre-MS star to its mostly radiative MS state for (rigidly rotating) A stars.
The ratio of the magnetic eddy diffusivity to the microscopic one was 103. The dynamo-built
magnetic field survives the fast (1 Myr) development but it changes its geometry. No new
computations are known for this interesting problem in order to approach the more realistic
value of (say) 107−8 for the diffusivity ratio and including nonaxisymmetric field modes.

The magnetic variations seen in Ap stars are indeed incompatible with a simple dipolar
magnetic geometry (Fig. 5.11). In many Ap stars a significant quadrupolar component is indi-
cated (Oetken 1979, see Rüdiger & Scholz 1988). Spectral variability indicates a nonuniform
distribution of certain chemical elements over the stellar surface.

Figure 5.11: The rather
regular magnetic field of 53
Cam. Rotation period is 8
d. From Hill et al. (1998).

Compared to the Sun, A stars are rapidly rotating. If stratified turbulence is present in
the interior its α-tensor becomes highly anisotropic. As a consequence the corresponding
α2-dynamo yields a highly nonaxisymmetric solution with a slowly drifting S1-mode. This
solution survives a rather strong differential rotation surprisingly well, as well as the nonlin-
ear magnetic quenching of the α-effect (Rüdiger & Elstner 1994, Moss & Brandenburg 1995).
Recent empirical results by Landstreet & Mathys (2000) confirm the concept of the oblique
rotator by Krause & Oetken (1976). Almost all Ap stars with longer rotation periods have
a small obliquity between the magnetic axis and the rotation axis, while for the more rapid
rotators the two axes form a much bigger angle (Fig. 5.12, left). The slower rotators also have
the stronger magnetic fields (Hubrig, North & Mathys 2000). The stars with the axes parallel
lost much more angular momentum than the stars with the axes perpendicular, which is ex-
plained by Stȩpień & Landstreet (2002) by the strong effect of magnetic wind-induced angular
momentum transport in the pre-MS phase of these stars. For the TTS Lamm (2003) found the
opposite behavior (Fig. 5.12, right). The faster the rotation the smaller is the rotation-induced
photometric variation. Obviously, two very different mechanisms are at work here.

On the other hand, the observational results show a high degree of randomness. Field
geometry and amplitude differ from star to star. There is only one rather strict rule: the Ap
stars are slow rotators and slow rotators are Ap stars (Abt & Willmarth 2000). Stȩpień (2000)
suggested to compare the situation in the A star group with that of the T Tauri stars. Among
them there is also a subgroup (CTTS) with slow rotation that are systems with accretion disks
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Figure 5.12: Two different kinds of Ω-dependencies for rotational modulations. Left: The magnetic
obliquity of Ap star magnetic fields is maximal for large Ω (Landstreet & Mathys 2000). Right: The
amplitude of the rotation-induced photometric variations of TTS is maximal for small Ω. Courtesy M.
Lamm.

(Fig. 5.13). Magnetic star-disk interaction might easily spin-down the central object which
finally becomes the Ap star.

There is, however, the puzzling observation that magnetic fields only appear in A stars that
long ago left the ZAMS, more precisely after about 30% of their MS-lifetime (Hubrig, North
& Mathys 2000). If it is true that the slow rotators become magnetic after some time then the
rotation distribution of young and old A stars (without Ap!) should differ strongly. If, on the
other hand, the rotation is suddenly reduced with the occurrence of the magnetic fields, then
the rotational distribution of young and old A stars (with Ap!) should be different. However,
Hubrig, North & Medici (2000) do not find significant differences for either of these statistics,

Figure 5.13: Rota-
tion period differ-
ences for TTS with
(CTTS) and without
(WTTS) accretion
disks. (Bouvier et
al. 1993).
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possibly because the number of candidates of known age is too small. The question remains
why slowly rotating A stars should become magnetic. The possibility that is favored here is
the formation of a differential rotation within the extended radiative stellar envelope. Such a
rotation law becomes unstable under the influence of a (weak) magnetic field (see Spruit 1999,
for a detailed discussion).

Figure 5.6 (left) presents the model for the global MHD instability. The model is un-
stratified, but its outer part is differentially rotating with Ω ∝ s−q. The innermost sphere is
considered as vacuum in order to simulate the very high magnetic diffusivity of convective
cores. The entire sphere is embedded in vacuum, and is initially threaded by a large-scale
magnetic field in the axial direction. The resulting stability diagram is similar to those of
Fig. 5.7. For a given Reynolds number of the rotation there are two limiting magnetic field
amplitudes between which the rotation law is not stable. Excitation of fluctuating flows and
fields are the immediate consequence. Only nonlinear simulations can provide the spectrum
of both quantities. An initial field is necessary to start the instability, but if after a while the
external field is no longer necessary then one can speak of an MHD shear-flow dynamo.

Figure 5.14: Magnetic field structure from a direct spherical dynamo simulation shown at x = 0.65
(left) and at the surface (right). Arrows are the horizontal projections of the magnetic field; gray levels
depict the strength of the radial component. Large-scale structures in the interior do not penetrate the
surface. Courtesy R. Arlt.

Figure 5.14 shows a snapshot of the nonlinear simulation of a model like that shown in
Fig. 5.6 but with a convective (∼ vacuum) core. The resulting Fourier spectrum of the az-
imuthal magnetic components runs as m−5/2 and it also includes global modes up to m = 0
(see Drecker, Rüdiger & Hollerbach 2000). The dominance of the kinetic energy is only due
to the axisymmetric components but at small scales the magnetic modes dominate.
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5.6.3 Decay of Differential Rotation

Considered as an initial value problem the rotation law within the radiative stellar envelope
decays after some time. A similar model as in Fig. 5.6 (left) is considered to find the decay
time. The simulations of Arlt, Hollerbach & Rüdiger (2003) are fully global and nonlinear
but the (negative) buoyancy is not included. This makes the configuration different from the
linear analysis by Balbus & Hawley (1994) which was linear but included buoyancy.

The inner radius of the spherical shell is at xin = 0.2. The time-dependent, incompressible
equations in the inertial system are solved using the potentials as in Eq. (5.72). The initial
condition for the velocity represents a rotation profile in which the angular velocity decreases
outward according to Eq. (5.68), with the magnetic Reynolds number CΩ = R2Ω0/η as its
amplitude. Initially q = 2, which is hydrodynamically stable.

First, the evolution of the rotation flow without magnetic fields is probed. The stress-
free boundary conditions are not compatible with the initial azimuthal velocity profile Ω(s).
The rotation profile will thus lead to meridional circulations, which equalize the differential
rotation on the viscous timescale. A model with Rm = 50,000 gradually decays and reaches
q = 1 after 200 rotation periods.

The values of CΩ , Pm and B0 are the free parameters of the model. Stellar gases possess
magnetic Prandtl numbers of Pm � 0.01. The timescales for the diffusive processes in veloc-
ity and magnetic fields differ greatly and are thus hard to cover by one simulation, so that it
makes sense to find the scaling with Pm.

The Fourier spectra for the magnetic fields (Fig. 5.15, left) show satisfying power contrast
all through the simulation. The angular momentum transport is a result of stresses from both
velocity and magnetic field fluctuations. The averages 〈u′

su
′
φ〉 and 〈B′

rB
′
φ〉 taken in the equa-

torial plane show a clear dominance of magnetic stresses over kinetic stresses, occasionally
by a factor 10.

The decay time of the differential rotation is measured by the time that the system needs
to approach a q = 1 profile (say). The decay of q with time is given by the solid line in
Fig. 5.15 (right). A short transition period can be seen. At the end of the computation the
system oscillates around an equilibrium state with q = 0 where magnetic and kinetic energies
decay exponentially.

The rotation profile seems to decay on the rotational timescale. This is far too fast for
stars with radiative envelopes. The reason is that there are physical quantities that cannot be
matched in the simulation. The diffusive timescale is many orders of magnitudes longer than
the rotational timescale. The magnetic Reynolds number in stellar radiative zones is about
1013. Our highest value is 50,000. The dependence of the decay time τdec (given in rotation
times) on the magnetic Reynolds number and magnetic Prandtl number is shown in Fig. 5.16.
No significant dependence of the decay times on Pm has been found.

With a series of computations with various CΩ the decay time may be rescaled with

τdec

τrot
� CΩ

2000
� Pm

2000
Re (5.79)

to stellar conditions. With Pm = 10−2 we see that the differential-rotation decay as a con-
sequence of MRI is 105 times faster than the viscous decay scaling with Re. Equation (5.79)
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Figure 5.15: Left: Longitudinal Fourier spectra of the azimuthal magnetic field energy for the model
with CΩ =10,000 and Pm = 1 at t = 0.001 (dotted), 0.003 (solid), and 0.010 (dashed). Right:
Development of the steepness q of the rotation profile for a model with density stratification. The dashed
line is for B = 0.

leads to a decay time of 3 · 108 yr. This is of the order of the lifetime of an A star. The
extrapolation, of course, involves considerable uncertainty.

5.7 Circulation-Driven Stellar Dynamos

According to Cowling’s theorem a dynamo mechanism cannot generate stationary axisymmet-
ric magnetic fields. It does not exclude, however, that nonaxisymmetric fields are generated
by axisymmetric velocity fields. The existence of dynamo solutions from axisymmetric flows
has often been studied before. Dudley & James (1989) presented a detailed compilation of
such dynamo solutions. All their flows are a combination of a meridional circulation with

Figure 5.16: Decay time
of differential rotation
versus magnetic Reynolds
number. The decay time is
measured in rotation times.
Solid: Pm = 1, dashed:
Pm = 10. An asterisk
indicates the decay time
for the only computation
with Pm = 0.1. From
Arlt, Hollerbach & Rüdiger
(2003).
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differential rotation. Dynamo action was confirmed for most of these flow patterns but only
for certain parameters.

A key question is whether a meridional circulation alone is able to operate a dynamo
without differential rotation. Gailitis (1970) announced the existence of such solutions. This
configuration was adopted to a stellar dynamo model by Moss (1990). He worked with the
meridional circulation in the radiative envelopes of stars of early spectral types predicted
by Eddington and Sweet (see Tassoul 1978). Moss reported dynamo action for magnetic
Reynolds numbers (of the meridional flow) larger than about 30, translating into a circulation
velocity of only 10−6 cm/s.

We also start with the problem to excite a dynamo from axisymmetric flows without differ-
ential rotation. In a second step, differential rotation is added to extend the models of Dudley
& James (1989), and in a third step, a consistent flow pattern for a radiative star is constructed.

Figure 5.17: Left: The meridional flow pattern used by Gailitis (1994). Note that uθ does not vanish
at the surface. Right: The evolution of two initial magnetic fields at Rm =10,000. The decay of the
m = 0 mode is shown as a test for possible numerical artifacts. The runs on m = 1 with different spatial
resolutions are here indistinguishable (dashed line). From Arlt, Hollerbach & Rüdiger (2003).

5.7.1 The Gailitis Dynamo

The computational domain is a spherical shell embedded in vacuum with an inner boundary at
xin = 0.05. A velocity field is prescribed adopted from Gailitis (1994) that does not penetrate
the boundary at xin = 0.05 (Fig. 5.17, left). The basic difference from the Gailitis model
is the vacuum exterior. The feeling is that any finite diffusivity in the exterior would imply
infinite shear at x = 1, leading to unpredictable results.

The nondimensional induction equation is integrated in time, where the magnetic
Reynolds number Rm = u0R/η. Figure 5.17 (right) shows two time series of a measure
for the magnetic energy. We first integrated the evolution of an axisymmetric (m = 0) mode
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for which it is clear that no dynamo can exist. Solid and dotted lines show the m = 0 series
for two different spatial resolutions. No numerical artifacts exist.

The dashed line represents the runs for m = 1 with the same resolutions. The models
shown there employed a configuration with odd l; we have also made the same experiment
with the opposite symmetry with identical results. The orientation of the circulation was also
reversed, and again led to decay of the m = 1 mode. We did not find any dynamo action up
to magnetic Reynolds numbers of 10,000 for this and the reversed circulation.

5.7.2 Meridional Circulation plus Shear

With shear the chance is strongly enhanced to find dynamo action in axisymmetric flows. Our
models combine a differential rotation and a meridional circulation that are symmetric with
respect to the equator, i.e.

u = ∇× (Eêr) + ε∇× (∇× F êr), (5.80)

with a circulation amplitude ε and the potentials E = x sin(πx) P1(cos θ) for the differential
rotation and F = x2 sin(πx) P2(cos θ) for the meridional flow. For ε = 0.13 Dudley & James
(1989) find a critical magnetic Reynolds number of about 95. A second flow uses E = F =
x2 sin(πx) P2(cos θ) for which Dudley & James obtain Rmcrit � 54 when ε = 0.14. If
the meridional circulation is reversed, no dynamo action is found for the first flow. Such a
reversed circulation, however, exists in the radiative envelopes of hot MS stars. The reversed
circulation of the second example does show dynamo action with a critical magnetic Reynolds
number of Rmcrit = 474. Such strong flows were not considered by Dudley & James.

However, we do not find any dynamo for ε > 0.20. Dynamos only exist for sufficiently
strong differential rotation. These findings thus provide further evidence that dynamo excita-
tion from axisymmetric circulation without differential rotation can hardly be expected (Arlt,
Hollerbach & Rüdiger 2003).

Following Kippenhahn (1954), we assume that the radiation of Ap stars transports angular
momentum, forming a radial gradient of Ω. Such a gradient must lead to a meridional circu-
lation. We ask whether this axisymmetric flow is able to work as a dynamo. For simplicity
we assume a homogeneous sphere with no density gradients. The hydrodynamic solutions
for the meridional circulation are obtained with a few thousand timesteps. No high spectral
truncations are required since smooth large-scale flows emerge. The velocity field is plotted
in Fig. 5.18. The flow resembles the first flow taken from Dudley & James (1989), but with
reversed circulation, ε < 0. No dynamo action of the circulation pattern could be found. Re-
calling the onset of dynamo action in the flow of Dudley & James, we (artificially) reverse the
meridional flow excited by the differential rotation. Now the model has turned into a configu-
ration that is very similar to Eq. (25) of Dudley & James, but still no dynamo action is found
for the m = 1 mode.

5.8 MRI in Kepler Disks

The early models of rotating turbulence of Gough (1978), Hathaway & Somerville (1983),
Durney & Spruit (1979) and Gailitis & Rüdiger (1982) all led to negative Λ-effect in the
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Figure 5.18: Velocity field
(right) generated from
a background differen-
tial rotation (left) with
Re = 10, 000. The pattern
is used as the flow for a
possible kinematic dynamo.
Subrotation (dΩ/dr < 0)
is connected with coun-
terclockwise flow (see
Fig. 3.13).

Reynolds stress relation, i.e. αSS < 0 in the general expression (5.8) for the radial transport of
angular momentum. With their linear normal mode analysis for a thin, differentially rotating
disk Ryu & Goodman (1992) found the angular momentum flux to be nonzero only for non-
axisymmetric modes and to be predominantly inward. The nonlinear numerical simulations
by Ruden, Papaloizou & Lin (1988), Cabot & Pollack (1992), Kley, Papaloizou & Lin (1993)
and Stone & Balbus (1996) also yielded negative values for the cross-correlation Qsφ. The
quasilinear model with Lorentz force-driven turbulence in Sect. 4.2.4 with magnetic buoy-
ancy included also leads to negative Reynolds stress under the influence of a global but rigid
rotation (see Balbus, Hawley & Stone 1996).

On the other hand, Brandenburg (1998) argues that in magnetic-dominated shear flows the
two α’s should have opposite signs14, i.e. αSS · αdyn < 0. Positive αSS thus require negative
αdyn, with consequences for the dynamo-excited large-scale magnetic fields. Positive αdyn

leads to magnetic fields with quadrupolar symmetry with respect to the equator, while nega-
tive values lead to dipolar symmetry. Only in the latter case does the field geometry favor the
generation of jets according to the Blandford & Payne (1982) mechanism. As jets are com-
monly associated with accretion disks (see Livio 1997 for a detailed discussion) dynamos with
negative αdyn will play a particular role in the MHD theory of accretion disks (see also Bran-
denburg & Donner 1997). We shall demonstrate that the idea of the simultaneous existence of
positive αSS and negative αdyn may indeed work for the case of Keplerian disks.

5.8.1 The Shearing Box Model

To study the nonlinear evolution of the MRI in a differentially rotating disk we make use of
the shearing box formalism. The MHD equations are solved with NIRVANA in a corotating
Cartesian frame of reference (Ziegler & Rüdiger 2000). The governing ideal fluid equations
for this local ansatz are

ρ

(
∂u

∂t
+ (u∇)u

)
= −∇P + J × B − 2ρΩêz × u + 2ρΩ2qx − ρΩ2z (5.81)

14 in order to avoid confusion, the α-effect of the dynamo theory – which is antisymmetric with respect to the equator
– is represented in the following by its characteristic value from the upper disk plane, αdyn = αφφ[north]
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and the remaining equations like in Eq. (3.89) with ρ = ν = χ = 0. Here q =
−d log Ω/d log s is a measure of the local shear rate; q = 1.5 for a Keplerian disk. The
term −ρΩ2z represents the vertical gravitational force of the central object in the thin disk
approximation. The 2ρqΩ2x force term results from the radial expansion of the effective
(gravitational+centrifugal) potential in the corotating reference frame. The remaining equa-
tions are given in Eq. (3.89) with ν = η = χ = 0. In the adiabatic models the gas pressure is
P = (Γ − 1)e with Γ = 5/3.

All simulations start with a configuration that is an exact stationary solution of the hydro-
dynamic equations. The initial magnetic field is purely vertical, but varies sinusoidally in the
x-direction. The plasma β∗ parameter decreases with z ranging from β∗ = 100 at the disk
midplane to a value of β∗ = 1.9 at z = ±2.

The same set of parameters is used by Brandenburg et al. (1995) and Stone et al. (1996),
but the codes are completely different. The standard resolution is 32 × 64 × 64. Figure 5.19
shows the time evolution of the volume-averaged cross-components of the Reynolds and
Maxwell stress tensors. The stresses are scaled to the horizontally averaged midplane pressure
P̄ (t), which is a function of time in the adiabatic model. The instability grows rapidly at first.
Turbulence starts to develop then around orbit 3, and persists up to the latest simulated time.
The flow shows a highly irregular behavior.

Figure 5.19: Time evolution of the volume-averaged Reynolds stress (top) and Maxwell stress (bottom).
The stresses are scaled to the midplane pressure P̄ (t). The magnetic stress generally dominates.

At the end, the magnetic energy has been amplified by a factor of roughly 16 relative to
its initial value. Most of the energy is stored in the azimuthal component (〈B2

y〉/〈B2
z〉 = 46).
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Buoyancy effects due to the density stratification seem to play no essential role. This is in
agreement with the findings of Brandenburg et al. (1995) and Stone et al. (1996).

The Reynolds stress and Maxwell stress〈
ρu′

xu′
y − B′

xB′
y

µ0

〉
= αSSP̄ (t) (5.82)

are of considerable interest because of their relation to the viscosity-α. For the time-averaged
values (denoted by an overbar) of the volume-averaged stresses one finds

〈ρu′
xu′

y〉
P̄ (t)

= 0.003, −〈BxBy〉
µ0P̄ (t)

= 0.012. (5.83)

The total value is 0.015. Hawley, Gammie & Balbus (1995), Brandenburg et al. (1995) and
also Stone et al. (1996) quote similar values for the mean stresses (see also Abramowicz,
Brandenburg & Lasota 1996). Matsumoto & Tajima (1995) and Torkelsson et al. (1996) even
report such rather high values as αSS � 0.1 for special cases discussed in the papers. These
results clearly confirm former statements that angular momentum transport is dominated by
correlations in the fluctuating magnetic field rather than the velocity field.

To explore the time evolution of the vertical disk structure, Fig. 5.20 presents (t, z)-images
of αSS. The stress varies drastically in the vertical direction. At later times, the vertical disk
structure can be represented by a weakly magnetic core surrounded by a strongly magnetic
corona. Most of the magnetic energy is confined to the outer region. The stress peaks in the
corona, and the outward angular momentum transport occurs primarily away from the disk
midplane.

Figure 5.20: The horizontally averaged total stress in the t-z-plane. Red (blue) stands for positive
(negative) angular momentum flow. In the equatorial plane sometimes the transport is inward.

One can even observe the appearance of a magnetic field of the same sign over a rather
long time. We take averages over the entire box, and also in the upper and lower disk planes
separately. Concerning the azimuthal field we have Ey = αyyB̄y neglecting higher derivatives.
The main issue is the equatorial antisymmetry, which is realized exactly (Fig. 5.21). The α-
effect proves to be small and highly noisy, but it exists. It is negative in the upper disk plane
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and positive in the lower (see Brandenburg et al. 1995). This is opposite to the expected
situation in a stellar convection zone. One can explain this fundamental difference by the
action of the shear in Kepler disks (Rüdiger & Pipin 2000). The same difference occurs in
the simulations by Brandenburg et al. (1995), where the Maxwell stress also dominates the
Reynolds stress (by about a factor 5). The dynamo-α is negative in the upper disk plane and
positive in the lower. Local simulations including diffusivity by Fleming, Stone & Hawley
(2000) proved the onset of instability even for low conductivity. The angular momentum
transport is strongly reduced for Rm <∼ 104 though. As shown by Ziegler & Rüdiger (2001)
the magnetic Reynolds number has a significant influence on the magnetic energy level of the
resulting fluctuations. It is reduced for small Rm. The α-effect remains negative (positive) in
the upper (lower) disk hemisphere. It vanishes completely for weak shears, i.e. for q <∼ 0.6.

Figure 5.21: Snapshots of the correlation between the turbulent azimuthal EMF and the mean toroidal
magnetic field. Left: Upper disk plane. Right: Lower disk plane. From Ziegler & Rüdiger (2000).

5.8.2 A Global Disk Dynamo?

Hawley (2000) followed the evolution of a thick torus under the influence of an external ver-
tical magnetic field. The global MRI indeed developed eddy viscosity. Arlt & Rüdiger (2001)
applied the ZEUS-3D code to a disk with uniform sound speed and finite eddy diffusivity. The
initial field has vanishing total flux through the upper and lower (stress-free) surfaces, and the
magnetic boundaries are pseudovacuum. The mass loss at the inner boundary is compensated
for a slow infall at the outer boundary.

The resulting flow and density patterns are highly nonaxisymmetric (Fig. 5.22). After
saturation of the turbulence the temporal behavior of αSS changes into an oscillatory behavior.
The Reynolds stress alone is then negative throughout the whole simulation. The time series
of the angular momentum transport in the high-η model are shown in Fig. 5.23 (left). For
high conductivity the resulting αSS is much smaller15. We find the total angular momentum
transport is outward, dominated by the Maxwell stresses.

15 for an ideal fluid Steinacker & Papaloizou (2002) obtain αSS
<∼ 0.04
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Figure 5.22: Density fluctuations after 19 orbits in horizontal slices parallel to the midplane (middle
panel). The magnetic field applied is vertical but of vanishing flux. The disk is isotherm and density
stratified. (Arlt & Rüdiger 2001).

Since the stress is dominated by the Maxwell stresses we also ask about the ratio of the
flow and the field energies. The temporal evolutions of these two quantities clearly differ
between the low- and high-η models. In Fig. 5.23 (right) magnetic dominance is found for the
case of low electrical conductivity (‘high-η’), i.e. for cold disks.

The amplification of the total magnetic energy by a factor of 103 from the initial magnetic
field perturbation may indicate dynamo action in the disk. The time-averages of Eφ and B̄φ

for both hemispheres are thus plotted in Fig. 5.24, but only with their resulting signs. The
quantities are averaged in the azimuthal direction and plotted in the meridional plane. For

Figure 5.23: High-η model. Left: Angular momentum transport by Reynolds (dashed) and Maxwell
(dotted) stresses. The total stress is the solid line, the Reynolds stress as negative. Right: Temporal
evolution of kinetic (solid) and magnetic (dashed) energies. The magnetic energy dominates. From Arlt
& Rüdiger (2001).
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Figure 5.24: Time-average toroidal magnetic field (left) and the azimuthal EMF (right). White areas
denote negative signs.

the upper hemisphere both quantities have the same sign, which is not true for the lower
hemisphere. The dominance of negative EMF indicates a positive (negative) αdyn in the upper
(lower) hemisphere.

This result is opposite to the findings of the box simulations. The temporal development
of the parity of the toroidal magnetic fields for the high-η model indeed shows a tendency to
leave the initial dipolar perturbation. However, with only 160 revolutions the simulation was
not long enough for a definitive statement.

5.9 Accretion-Disk Dynamo and Jet-Launching Theory

5.9.1 Accretion-Disk Dynamo Models

In several papers, starting with Tout & Pringle (1992), magnetic disk dynamos have been
constructed that produce magnetic fields leading to a Maxwell stress αSS = −B̄sB̄φ/µ0ρc2

ac

of the desired (positive) sign and order. While Tout & Pringle combined the Parker instability
with MRI, Ma & Biermann (1998) also included the α-effect, following Stepinski & Levy
(1991) that τcorr � τrot. Though it would be tempting to follow this concept for dynamo-
driven accretion disks, we turn to another question: How important is the result that the α-
effect due to MRI seems to be negative? Is it true that there are strong consequences for the
jet-launching theory?

A mean-field disk-dynamo with positive α-effect (in the upper disk plane) always gener-
ates a stationary magnetic field with quadrupolar equatorial symmetry (Fig. 5.25, right). The
field is confined to the disk with the maximum value at the midplane of the disk, close to the
inner edge. After their first formulation by Pudritz (1981) such findings were later confirmed
several times. The dynamo with negative α-effect, as due to the MRI in accretion disks, always
generates a stationary magnetic field with dipolar equatorial symmetry (Deinzer, Grosser &



208 5 The Magnetorotational Instability (MRI)

Schmitt 1993, v. Rekowski, Rüdiger & Elstner 2000, Bardou et al. 2001)16. The field is pre-
dominantly toroidal, and its maximum value is now outside of the disk, depending on the ratio
ε = σdisk/σhalo. The greater ε the smaller is the toroidal field in the halo. Increasing ε to
infinity leads to the solution for vacuum where the toroidal component in the halo vanishes.
Simulating the vacuum case by setting the pseudovacuum condition directly at the surface of
the disk, one gets the chaotic oscillating mode of quadrupolar type predicted by Campbell
(1997).

Figure 5.25: The poloidal field lines for negative αφφ[north] as realized in accretion disks (left, dipolar
symmetry) and for positive αφφ[north] (right, quadrupolar symmetry). The colors represent sign and
amplitude of the toroidal field that dominates in the central part. From v. Rekowski, Rüdiger & Elstner
(2000).

The conductivity of the halo is still unknown and certainly not zero. Note that the ge-
ometry of the disk is also important for the symmetry of the dynamo-generated field. An
overestimation of the disk height leads to solutions with even parity, as found by Torkelsson
& Brandenburg (1994).

The numerical calculation shows that for the model with negative dynamo-α the resulting
poloidal component outside the disk is of the same order as within the disk. Figure 5.25 (left)
shows the poloidal field structure with prescribed Keplerian velocity in the disk as well as in
the halo. Due to the differential rotation, the toroidal field does not vanish in the disk halo, but
it does gradually decrease to zero in the vertical direction.

The influence of vertical outflows on disk dynamos has been investigated by Bardou et
al. (2001). The outflow can be imagined as due to a wind or due to turbulent pumping (see

16 the dipoles found by Stepinski & Levy (1988) for thick torus geometry and positive α-effect, however, are oscilla-
tory
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Sect. 4.2.1). The influence of the vertical outflow differs for negative αφφ (dipoles) and posi-
tive αφφ (quadrupoles). While the growth rates of the quadrupoles are amplified, the growth
rates of the dipoles are reduced. The dipole excitation is even stopped for magnetic Reynolds
numbers of the vertical wind of order unity. As the next step in this direction v. Rekowski et
al. (2003) presented an axisymmetric model of an accretion disk dynamo that for sufficiently
strong magnetic field production drives an outflow system with a fast axial flow in the resulting
wind system.

5.9.2 Jet-Launching

A radio emission along the double jet structure of the T Tau system was observed by Ray et
al. (1997). The emission shows strong circular polarization, indicating the existence of a large-
scale ordered magnetic field (∼ 1 G). The idea is suggested that such systems are typically
formed as a triplet of a star, a disk and a jet – linked together by a large-scale magnetic field
(Fig. 5.26). The magnetic field can arise from an accretion disk dynamo or from the central
object. The latter often have their own magnetic fields, ranging from 103 G for protostars to
1012 G for neutron stars.

Figure 5.26: Left: HH 30 as a prototype of a young star with a dark disk and a gaseous jet. The central
star is hidden but its light is reflected by the disk. Note the jet perpendicular to the disk (Burrows et
al. 1996). Credit: NASA. Right: The star-disk-jet connection of a magnetized accretion disk system.
Courtesy M. Čemeljić.

Ménard & Duchêne (2003) demonstrated that the geometric constellation in the HH 30
system (Fig. 5.26) is not exceptional. Comparing the magnetic field orientation in Taurus with
the orientation of those TTS with disks (CTTS) they found that the orientation of the CTTS
with jets and without jets strongly differs. The disk plane of CTTS with known jet is often
perpendicular to the magnetic field direction. This is not true, however, for CTTS without jet.
If an accretion disk has a poloidal field and a hot corona it can launch a magnetically driven
wind or jet. Once driven by thermal pressure gradients, mass is accelerated centrifugally along
the magnetic field lines, assuming that the matter along the field line rotates with the angular
velocity of the footpoint. As long as the kinetic energy density of the outflowing material is
small compared to the poloidal magnetic energy density the field line will be only slightly
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distorted by the flow. This situation changes at the Alfvén points. If the flow reaches the
Alfvén velocity the field line will be dragged outward with the flow collimating the jet.

For a Keplerian disk the effective potential ψ at a point on a field line, corotating with the
footpoint s0, is

ψ = −GM∗
s0

[
s0

(s2 + z2)1/2
+

1
2

(
s

s0

)2
]

. (5.84)

Blandford & Payne (1982) and Campbell (1997) showed that there is a characteristic angle of
launching cold winds or jets. If the inclination angle between the vertical and the field line
at the disk surface is greater than 30◦, the equilibrium at s = s0 is unstable. If the angle is
smaller than 30◦ a potential barrier exists so that the equilibrium is stable.

Ogilvie & Livio (1998) showed that a certain potential difference must be overcome even
for an angle greater than 30◦ if the magnetic field is strong enough to influence the rotation
law. The potential difference is minimized for an angle of 38◦. They proposed that there has
to be an additional source of energy to launch an outflow from a magnetized disk.

In principle, an inclination of the poloidal field can be the result of the action of an accre-
tion flow to a field originally aligned with the rotation axis. This ‘dragging’ effect has been
considered by Lubow, Papaloizou & Pringle (1994) and Reyes-Ruiz & Stepinski (1996). A
considerable inclination results only for low dissipation, i.e. for unrealistically high magnetic
Prandtl number. This problem has been attacked by Shalybkov & Rüdiger (2000) by recon-
sidering the vertical structure of the accretion disk under the influence of a B̄z-field, which by
the shearing at the disk surface always acquires an azimuthal field component as well. Such a
field configuration automatically leads to the generation of a radial inclination. The resulting
inclination angles depend only weakly on the magnetic Prandtl number if the latter is not too
small.

Figure 5.27: Left: The inclination of the poloidal field to the vertical for Pm = 1 and various ε from
1–100 (only small differences). Right: In the bulk of the disk the dynamo yields very small µ. The
horizontal line marks the limit µ = 1.3. Pm = 1, αSS = 0.01. (v. Rekowski, Rüdiger & Elstner 2000).

On the other hand, the accretion-disk dynamo with negative α-effect shows no dependence
of the inclination angle on the ratio ε of the magnetic diffusivities between halo and disk.
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There exists a broad region where the inclination angle is large enough (≈ 45◦) such that
a magnetically driven wind or jet is possible (see Campbell, Papaloizou & Agapitou 1998,
v. Rekowski, Rüdiger & Elstner 2000, Fig. 5.27, left).

Spruit, Foglizzo & Stehle (1997), however, argue that the toroidal fields are too unstable
to contribute much to collimation. If the toroidal field is the only collimation mechanism the
jet would be decollimated. They propose that the collimation mechanism of a jet is due to
the magnetic pressure of a poloidal field anchored in the disk, where the radial profile is of
great importance. The criterion that Bp ∝ s−µ with µ ≤ 1.3 is sufficient for collimation. It
is indeed possible to generate with accretion disk dynamos such large-scale fields of dipolar
polarity with a radial profile of the poloidal field with µ ≤ 1.3 (Fig. 5.27, right).

Such fields cannot be produced by a dipolar magnetic field of the central object; only
an accretion disk dynamo can be the source of such fields. In Fig. 5.28 examples are given
of how strong the influence of the exponent µ is. The models are started with a force-free
magnetosphere. Initially the magnetosphere is at rest, and the disk rotates Keplerian. There is
a density jump of factor 100 between the disk and the halo. The steep profile (µ = 1.2) is not
collimating, but the rather flat one (µ = 0.5) is.

Figure 5.28: Isodensity lines (top) and magnetic field lines (bottom) for jet simulations. Left: Initial
configuration. Middle: µ = 0.5 in confirmation of Spruit, Foglizzo & Stehle (1997). Right: µ = 1.2.
Collimation only occurs for µ = 0.5. Courtesy C. Fendt.
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5.9.3 Accretion-Disk Outflows

A stellar dipole surrounded by an accretion disk could also be a model for a variety of astro-
physical sources (CTTS, cataclysmic variables or high-mass X-ray binaries). The evolution of
such a stellar dipole in interaction with a diffusive accretion disk has been numerically inves-
tigated by Hayashi, Shibata & Matsumoto (1996), Miller & Stone (1997) and Goodson, Böhm
& Wingley (1999). The crucial point in these models is to consider a proper disk model taking
into account viscous effects for the dynamics. Otherwise, a breakdown of the simulation after
only a couple of rotational periods happens. On the other hand, simulations by Romanova
et al. (2002) modeling the time-dependent accretion process along the magnetic field lines
between star and disk have found a stationary flow within the accretion funnel.

Time-dependent simulations lasting only a short time period depend strongly on the initial
conditions, so that simulations of stellar magnetospheres over many rotational periods are nec-
essary. Therefore another approach might be reasonable, i.e. to consider the accretion disk as a
boundary condition for the mass injection. As the disk structure itself is not treated, such simu-
lations may last over thousands of Keplerian periods. These simulations have been performed
using the ZEUS-3D code17 with the axisymmetry option for solving the time-dependent ideal
MHD equations (Fendt & Elstner 2000). The model also takes into account the effect of an
entropy jump between disk and corona, i.e the corona is warmer than the disk. The basic
model setup represents a central star and a Keplerian disk separated by a gap. The initial
field distribution is chosen as a current-free stellar magnetic dipole, deformed by the effect
of field-dragging in the disk. The poloidal field is therefore inclined toward the disk surface.
The initial disk toroidal magnetic field is also force-free, i.e. Bφ ∝ s−1, but the stationary
solution of the induction equation leads to toroidal fields that are not force-free18 so that the
outflow can produce significant gradients of the toroidal field collimating the centrifugal wind
(Sakurai 1985, Pudritz & Norman 1986, Pelletier & Pudritz 1992).

As a general behavior, the initial dipolar magnetic field structure disappears on spatial
scales larger than the inner disk radius and a two component wind structure (a disk wind
and a stellar wind) evolves. For certain parameters one finds a quasistationary final state of
a spherically radial mass outflow. This two-component outflow obtained in the simulations
shows almost no evidence of collimation. In the example presented by Fendt & Elstner (2000)
of an initially dipolar magnetosphere, the final spherically radial outflow encloses a neutral
line with poloidal and toroidal magnetic field reversal. The toroidal field reversal implies a
reversal of the electric current, and thus only a weak net poloidal current. This is in agreement
with the analysis of Heyvaerts & Norman (1989), who showed that only outflows carrying a
net poloidal current will collimate to jets of cylindrical shape.

The TTS phase is the final stage in the star formation process. During this phase the
star is fully convective (see Sect. 5.6.2). Magnetic activity has been observed with fields of
∼ 1 kG (Guenther & Emerson 1996, Guenther et al. 1999, Johns-Krull et al. 1999). The
accretion rates found for CTTS range from 10−9 to 10−7 M�/yr (Valenti, Basri & Johns
1993, Gullbring, Barwig & Schmitt 1997). Figure 5.30 shows the evolution of the magnetic

17 Krause & Camenzind (2001) have presented the systematic study of the convergence behavior of both hydrody-
namic and magnetohydrodynamic jet simulations with various codes

18 the corona is nonrotating initially
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field and the gas flow in the inner region of a CTTS. The initial setup consists of a Keplerian
accretion disk threaded by a purely dipolar stellar magnetic field. The outer parts of the disk
rotate slower than the star, the inner parts faster. The rotational shear along the field line
will generate a toroidal field; the Lorentz force is thus directed outward for radii greater than
the corotation radius. When the toroidal field has become strong enough the gas in the halo
is pushed outward and the magnetic field is stretched in the radial direction. The field lines
connecting the polar caps of the star with the outer parts of the disk in the initial state break
up, and only the inner parts of the disk remain connected to the star. Far away from the star
the field is essentially radial, pointing away from the star at high latitudes and toward the star
at low latitudes. Finally an outflow is launched from the disk. The mass loss rate is typically
of the order of 10% of the accretion rate but varies strongly with time.

Figure 5.29 shows the magnetic torque for field amplitudes of 100 G and 1 kG as functions
of time. The poloidal field energy increases as the field is stretched in the radial direction and
saturates when the final field configuration is reached. The magnetic torque is negative in the
initial phase, which means that the angular momentum flux is directed toward the star, i.e.
the star is spun up. The torque is strongly reduced once the field energy saturates, and varies
strongly on a shorter timescale because of reconnection. It sometimes even becomes negative
but the sign remains positive on average. By the magnetic field, obviously, the stellar rotation
is decelerated.
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Figure 5.29: The magnetic torque for 100 G (left) and 1 kG (right) within the corotation radius vs. time.
For 100 G the magnetic field appears to be saturated, which is not true for the strong-field case.

5.9.4 Disk-Dynamo Interaction

As we can see from Fig. 5.29, the magnetic torque appears to be highly fluctuating. This fact
could be important for the behavior of the rotation of the central object. Nelson et al. (1997)
report that many (but not all) X-ray pulsars oscillate dramatically between periods of spin-up
and spin-down. The periods between torque reversals reach from 10 days to 10 yr. Vela X-1
is one of the sources and showed phases of 6 yr with acceleration and 10 yr with deceleration.
In the UV line spectrum of the companion of Vela X-1 one can find wind characteristics, so
that the phenomenon is discussed in the context of accretion of a stellar wind supplied by the
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Figure 5.30: A solar-mass CTTS with a disk with Ṁ = 10−7 M�/yr. The colors indicate different
density. The white lines denote (poloidal) field lines. Left: The initial configuration with the disk
threaded by a stellar magnetic field. The field strength on the stellar surface is 1 kG at the poles. Right:
The final field configuration. The arrows indicate the gas motion. From Küker, Henning & Rüdiger
(2003).

companion. As, however, the resulting torque of the accreted mass remains very small (Anzer,
Börner & Monaghan 1987) there must be some extra mechanism to explain its long-lasting
fluctuations (Anzer & Börner 1992).

Torkelsson (1998) reports the X-ray pulsars are the best laboratories to study the angu-
lar momentum exchange between a magnetic central star and a magnetized accretion disk.
He considers the magnetic torque Bs · Bφ as a combination of the time-independent stellar
field and the dynamo-induced accretion disk-field that may fluctuate or even oscillate with a
timescale of about 0.5 d (also Ma & Biermann 1998).



6 The Galactic Dynamo

Five per cent of the galactic baryonic mass is interstellar gas and dust, organized in a clumpy
cloud structure dominated by cold molecular clouds of only 10 K. In the neighborhood of stars
warm clouds of 104 K also exist. The kinetic energy without rotation of the turbulent ISM is
about 1054−55 erg, corresponding to the energy of 5000 SN explosions. The characteristic tur-
bulent velocity uT approaches 10 km/s with correlation lengths of 100 pc. The corresponding
eddy viscosity1 of about 1026 cm2/s would destroy any coherent structure of a size of order
kpc after only 0.7 Gyr. To maintain a global magnetic structure for a longer time a special
excitation mechanism must exist.

The large-scale magnetic fields of spiral galaxies, but also flocculent galaxies (Fig. 6.1),
must be maintained by the inducing action of the partly ionized interstellar gas. Although
the maximal field strength does not exceed (say) 10 µG, because of their huge dimensions
galaxies are the supermagnets in the Universe. The magnetic flux πR2B of a galaxy exceeds
the total flux of all (say) 1011 stars by many orders of magnitude. Apart from the impressive
numbers characterizing galactic magnetism, galaxies are also a very interesting realization of
a dynamo machine as they are rather transparent, providing detailed information about the
internal flow structures.

6.1 Magnetic Fields of Galaxies

The interpretation of radio-polarization data of spiral galaxies reveals the existence of large-
scale magnetic fields with very special properties. Their explanation is of considerable interest
because galaxies are astrophysical configurations with observable internal flow systems. In
particular, there is a problem of understanding the relation between the considered flow field
and the associated α-effect. The observed butterfly diagram of the solar activity seems to
indicate a very small α compared with the action of differential rotation in the solar convection
zone. On the other hand, the observed large-scale structure of the known galactic magnetic
fields requires only small differential rotation, or in other words, a rather large α-effect. The
key properties of the galactic large-scale magnetic field pattern are

• field amplitude is <∼ 10 µG,
• field lines have pitch angles up to 35◦,
• some field geometries exhibit a bisymmetric spiral structure (M 81) or a distinct vertical

orientation (NGC 4631, NGC 5775),
• the magnetic fields already exist in very young galaxies.

1 the microscopic value of ∼ 1018 cm2/s is extremely high
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Figure 6.1: NGC 4414 is a flocculent galaxy with large-scale magnetic field but without strong density
waves. Note the large pitch angles existing almost everywhere. From Soida et al. (2002).

These topics are now presented in more detail. See also the review papers by Wielebinski &
Krause (1993), Beck et al. (1996) and Kulsrud (1999), particularly for the details of special
galaxies. Krause & Beck (1998) also discuss the empirical background to explore the symme-
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Figure 6.2: The magnetic geometry of the edge-on galaxy NGC 5775 indicates even (quadrupolar)
symmetry with respect to the equator. Courtesy M. Urbanik & M. Soida.

try of the magnetic field with respect to the galactic midplane. For many cases a quadrupolar
symmetry of the magnetic fields is derived as dominating together with symmetry with respect
to the rotation axis (Fig. 6.2). In four of five cases the magnetic field lines are directed toward
the center of the spiral galaxies. The orientation of the magnetic field does not seem to be
random. In this connection Krause & Beck (1998) mention an interesting difference of dipo-
lar and quadrupolar field symmetry. If the galactic magnetic fields had dipolar symmetry, the
magnetic field amplitudes averaged over the whole sky must be zero. This is not true, how-
ever, for quadrupoles with a fixed magnetic orientation in the galactic plane but, of course, for
random or oscillating orientations.
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Table 6.1: Average energy densities in 1012 erg/cm3 in the inner disk of NGC 6946 (Beck 2002).

Warm medium Magnetic field Cosmic ray Turbulence Gas rotation

1 13 13 10 5000

6.1.1 Field Strength

The observed magnetic field energy is of the order of the energy of the interstellar turbulence.
The equipartition field strength

Beq =
√

µ0ρ uT, (6.1)

with density of order 10−24 g/cm3 and the turbulence velocity of about 10 km/s is 3.5 µG. As
the observed values are indeed of this order a turbulent origin of the induced fields has been
suggested. The theory here meets the discussion about the ηT-quenching. This is based on the
philosophy that the magnetic feedback on the turbulence completely quenches any diffusion
even with field strengths much below its equipartition value. The coincidence between ob-
served fields and their theoretical equipartition value, however, strongly favors the canonical
eddy diffusivity concept with quenching in a way as described above for various turbulence
models.

The numbers of the energy budgets are known for NGC 6946. The neutral-gas turbulence
and the magnetic fields are roughly in energy equipartition (Table 6.1), but both dominate the
thermal energy of the gas. In the outermost parts of the galaxy the magnetic field may even
dominate the basic rotation, so that even the rotation profile may be influenced by the Lorentz
force (Battaner & Florido 1995).

6.1.2 Pitch Angles

The pitch angles p = tan−1(B̄s/B̄φ) reflect the ratio of the radial and the toroidal magnetic
field strengths. Dynamos of αΩ-type are characterized by very small pitch angles, e.g. ∼
0.05◦ for the Sun. For galaxies pitch angles of 10–40◦ are reported (Fig. 6.3). The pitch angles
mostly decrease outward (Beck 1993). Such observed values indicate that the differential
rotation in galaxies does not play a dominant role in the induction equation. Frozen-in fields
as a consequence of a small magnetic diffusivity are wound up by any differential rotation up
to very small pitch angles. Only for relatively large diffusivities can one thus expect to explain
the observed large pitch angles. In NGC 4414 pitch angles up to 45◦ have been found.

Of special interest is the case of NGC 6946, possessing pitch angles between 20◦ and 30◦.
NGC 6946 is a standard example insofar as there is no companion, no strong density wave and
no active nucleus. The large-scale magnetic fields are concentrated between the optical spiral
arms (Fig. 6.4) but the azimuthal field orientation is of the axisymmetric ASS type (Beck
& Hoernes 1996). The turbulent component of the magnetic field in the spiral arm reaches
15 µG, while a regular field of 10 µG is located in the interarm region.

The large pitch angles are the most characteristic property of the galactic fields. Obvi-
ously, the galactic dynamo differs strongly from the solar/stellar αΩ-dynamo. They cannot
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Figure 6.3: Pitch angle
statistics for various galaxies
(Beck 1993).

be interpreted as oscillating stellar αΩ-dynamos that are made stationary by some extra effect
like turbulent pumping (see Brandenburg, Moss & Tuominen 1992, Ferrière & Schmitt 2000).

Figure 6.4: The galaxy NGC 6946 with its magnetic spiral arms between the gaseous spiral arms. The
optical spiral arms are not shown. Courtesy R. Beck.
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6.1.3 Axisymmetry

NGC 6946 has a nonaxisymmetric field geometry, but the magnetic polarity does not reverse
along the azimuth (‘ASS’). For at least one case (M 81) there is a clear bisymmetric azimuthal
structure with polarity reversals, so that in one magnetic arm the field spirals into the center
and in the other it spirals outward (Fig. 6.5). It is not easy to explain such an asymmetry
(called BSS) with a mean-field dynamo theory. Rüdiger, Elstner & Schultz (1993) present
models with anisotropic α-effect and large rigid-rotation core (compared to the vertical thick-
ness of the galaxy) which indeed produces BSS magnetism. So far there is still no nonlinear
confirmation of this result, due to the complexity of the 3D dynamo codes (see Moss, Tuomi-
nen & Brandenburg 1991, Panesar & Nelson 1992, Moss & Brandenburg 1995).

Figure 6.5: M 81, the magnetically bisymmetric spiral (BSS) standard example. Courtesy M. Krause &
M. Dumke.

Almost no azimuthal structure exists for the flocculent galaxy NGC 4414 (see Fig. 6.1). It
is hard to imagine its large-scale magnetism as a result of the inducing action of the galactic
differential rotation starting with an external uniform magnetic field. An external uniform
magnetic field not parallel with the rotation axis subject to a differential rotation will always
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produce a BSS-type field. An ASS-type field can only be produced from an initially even-
m field with radial components in the equatorial plane, e.g. quadrupoles of type S0. The
existence of such a rather artificial seed field is unlikely though, so that NGC 4414 seems to
require the existence of a large-scale galactic dynamo (Beck 1996).

6.1.4 Two Exceptions: Magnetic Torus and Vertical Halo Fields

Radio observations of M 31 revealed a 20-kpc-sized torus of magnetic fields (Fig. 6.6) with
fields aligned in one single direction (Beck 1982), which has been interpreted by Deinzer,
Grosser & Schmitt (1993) as a clear indication for a torus-dynamo. M 31 has a low star-
formation rate and no spiral structure. As cold gas and young stars are also restricted to the
torus, one might speculate whether the magnetic field determines the star formation activity
in M 31 (Beck 2000). No other case of a such toroidal field structure, however, has yet been
found (see Moss et al. 1998 for details).

Figure 6.6: M 31, the Andromeda nebula, with its distinct torus structure. Courtesy R. Beck, E.M.
Berkhuijsen & P. Hoernes.

Another exciting exception is also NGC 4631, which provides both evidence for an outflow
from its disk into the halo and fields of considerable strength perpendicular to its midplane. In
the halos of a few edge-on galaxies synchrotron emission has been detected. Among them is
NGC 4631, a galaxy exhibiting a huge synchrotron halo extending to 10 kpc off the midplane.
Based on multifrequency radio observations of the polarized emission with the VLA, Hummel,
Beck & Dahlem (1991) and Golla & Hummel (1993) derived the magnetic field orientation in
the halo above the central region of NGC 4631 as radially outgoing from the central region.
In Fig. 6.7 a map is shown of the radio emission of NGC 4631 as obtained with the Effelsberg
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NGC4631  3.6cm  Total Intensity + B−Vectors (Effelsberg)

Figure 6.7: NGC 4631 shows very clear and distinct vertical magnetic halo field components. Also
given is the rotation law of this galaxy with the rigidly rotating core and the outer V � const. domain.
Courtesy M. Dumke.

100-m telescope, including the magnetic field orientation. It shows the complete large-scale
emission. It thus also shows the field orientation in and above the outer disk, wherever the
degrees of polarization were high enough. Meanwhile, the number of known galaxies with
vertical magnetic field structure is growing (Tüllmann et al. 2000).

Figure 6.7 also shows the velocity diagram derived along the major axis of NGC 4631
by Golla & Wielebinski (1994). It shows rigid rotation in the central region and differential
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Figure 6.8: Contours
enclosing 90%, 75%,
and 50% of the galactic
HI layer (Lockman
1984, his Fig. 3).

rotation with a constant rotation velocity of ∼ 140 km/s in the outer regions. The comparison
suggests a connection between the rotation of the galaxy and its magnetic field orientation in
the halo. The magnetic fields are perpendicular to the galactic plane only above the central
rigidly rotating region.

Evidence for outflow from the central region of NGC 4631 has been found from the studies
of Hummel & Dettmar (1990), Rand, Kulkarni & Hester (1992) and Golla & Hummel (1994).
This outflow must be related to the enhanced star forming activity of the central region. Star-
formation induced outflow has its origin in individual star forming regions in the disk.

Brandenburg et al. (1993) mentioned that the simplest possibility to produce vertical field
components in a galaxy might be the inclusion of a galactic wind as a component of the mean
flow. They find some modification of the field configuration. The strength of the off-disk
fields, however, remains low. The reason is the following: a vertical wind induces a vertical
magnetic field proportional to (B∇)w, with w as the wind velocity. Only the s-dependence
of the wind, w = w(s), can thus create (axisymmetric) Bz-components of any significant
strength. The induction of wind with an extra azimuthal profile (i.e. real spikes) would be
much more effective (Elstner et al. 1995).

6.1.5 The Disk Geometry

There is strong evidence for substantial amounts of highly turbulent gas at heights above 1 kpc
(Münch & Zirin 1961, Lockman 1984, Reynolds 1989). Inclusion of this halo gas has changed
the traditional view of a very thin gas layer. Despite its low density this high-velocity compo-
nent (Anantharamaiah, Radhakrishnan & Shaver 1984) is energetically important because it
contains a significant fraction of the whole kinetic energy in the interstellar medium (Kulkarni
& Fich 1985). The question arises as to how this corotating halo gas will influence a disk
dynamo.

The gas as a whole has a nearly constant scale height of 230 pc. In a strict sense this
holds for HI only. In the inner part of the galaxy, the interstellar medium consists mostly of
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molecular gas concentrated in a very thin layer (but see Dame & Thaddeus 1994, Malhotra
1994). If the gas is considered the thickness decreases toward the center. More than 13% of
HI emissions are from gas that lies mostly above 500 pc from the plane. In Fig. 6.8 the heights
are marked below which 50%, 75%, and 90% of the gas are enclosed. Note that the Lockman
layer is absent to 3 kpc distance to the center. The thickness of the HI layer is low there, below
only 100 pc.

6.2 Nonlinear Winding and the Seed Field Problem

We start with computations of the induction equation without α-effect. The fields are thus
considered as decaying, but with an unknown decay rate. While the galactic differential ro-
tation always amplifies the magnetic fields, the interstellar turbulence will destroy them. The
latter, however, is nonlinearly quenched by the magnetic field itself, and its EMF possesses a
complex tensorial structure.

6.2.1 Uniform Initial Field

We consider galaxies to be differentially rotating turbulent disks embedded in a plasma of
given conductivity. In the simplest case, the ‘plasma’ is vacuum and the conductivity therefore
vanishes. The half-thickness of the galaxy is H . The rotation law is known: beyond a rigidly
rotating core with s = s0 the angular velocity is inversely proportional to s, i.e. Eq. (5.68) is
applied with q = 1. The velocity of the outer part is uniform, V = s0Ω0. We assume this
velocity as V = 100 km/s in the models. The dimensionless ratio s̃0 = s0/H determines
the geometry of the problem. Thin disks have large values of s̃0 and vice versa. In the
computations s̃0 = 4 is used (see Table 6.2). The real radial size of the galaxy plays very little
role in the computations.

In order to simulate the spiral arms the profiles

Q = 1 +
ε − 1

2

(
1 + cos

(
2(φ − Ωpt) + 2 log

( s

R0
cot pp

)))
(6.2)

by Otmianowska-Mazur & Chiba (1995) are adopted, varying with values between 1 and ε.
This is used for the density and turbulence intensity. Ωp is the angular pattern speed of the
m = 2 spiral. Its pitch angle pp is taken as 40◦. The turbulence velocity is 10 km/s, and the
density contrast may be strong, e.g. ε = 5.

Only a vertical magnetic field is allowed to penetrate the boundary. This pseudovacuum
boundary replaces the global vacuum boundary condition by a local one. The evolution of the
mean magnetic field B̄ is governed by Eq. (4.5) with

Ei = εijkγjB̄k + ηijkB̄j,k, (6.3)

and γ = Udia + Ubuo. The microscopic diffusivity is neglected, and the α-effect is ignored.
The advection velocity γ plays the role of a large-scale mean flow and the η-tensor represents
the eddy diffusivity. Via magnetic feedback all of them are influenced (‘quenched’) by the
induced magnetic field.

For slow rotation and weak magnetic field the eddy diffusivity tensor takes the simple and
well-known form ηijk = ηTεijk. As described in Sect. 4.3 the ηT-tensor for strong fields
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Table 6.2: The galaxy models of Elstner, Meinel & Beck (1992).

Galaxy Vmax s0 Ω0 s0/H CΩ

(km/s) (kpc) (km/s/kpc)

M 31 230 8 30 8 30
M 33 120 4 30 4 30
M 51 220 1.2 180 1.2 180
M 81 240 4 60 4 60
IC 342 180 6 30 6 30
NGC 6946 280 8 30 8 30
NGC 891 230 3 80 3 80

Figure 6.9: Time evolution of the magnetic field with cη = 0.03. Left: After 0.07 Gyr. Middle: After
0.14 Gyr. Right: After 0.21 Gyr. Light gray means large density. From Rohde, Elstner & Rüdiger
(1998).

becomes much more complex. The reference value η0 of eddy diffusivity is Eq. (4.70) with
the standard value cη � 0.3 (see Parker 1979, also Ruzmaikin, Shukurov & Sokoloff 1988).
The true cη is unknown. The standard value is used here, but we also discuss values one order
of magnitude greater or smaller. The correlation time is always fixed as 30 Myr.

The initial field is considered as being nonaxisymmetric with equatorial symmetry (i.e.
S1). It fulfills the pseudovacuum boundary condition. The result of Otmianowska-Mazur &
Chiba (1995) is a lifetime of 200 Myr, similar to Parker’s (1979) estimate. It is thus doubtful
whether a nonaxisymmetric seed field could still give an observable field after 1 Gyr (see
Parker 1992, Moss et al. 1993, Camenzind & Lesch 1994). It remains to check whether the
nonlinear ηT-effect will change this situation. If the answer is no then we have to explain the
existence of galactic magnetic fields with a dynamo mechanism.

In Fig. 6.9 the temporal evolution of the magnetic field geometry is given for various times
and for cη = 0.03. The field geometry in Fig. 6.9 is S1, i.e. of BSS-type. It fulfills the relation
B̄sB̄φ < 0, i.e. the Maxwell stress transports the angular momentum outward.

In early epochs we find the magnetic fields concentrated between the gaseous spirals,
close to the observations. Rather quickly, however, the magnetic arms are wound up by the
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Figure 6.10: Time evolution of the magnetic energy for small (solid) and large (dashed) initial field
amplitude with cη = 0.03 (left) and cη = 3 (right).

differential rotation. The magnetic pitch angles become smaller and smaller so that in the final
states the (still existing) magnetic spirals change their form, remaining between the gaseous
spirals only in the outer part of the galaxy.

The initially nonaxisymmetric configuration develops into ring-like structures (Moss &
Brandenburg 1992). These are formed by magnetic fields of opposite polarity, hence the
magnetic dissipation is continually reducing the field. At first the central part of the galaxy
becomes field-free. Figure 6.10 demonstrates the decay of the magnetic energy. There is no
amplification at all – not even at early times (see Weiss 1966, Moffatt 1978, Spencer 1994).
The differences for weak and strong seed fields are surprisingly small. The maximal decay
time (for very small diffusivity, cη = 0.03) is about 300 Myr, for the standard diffusivity value
(cη = 0.3) it is 100 Myr and for cη = 3 one obtains only 25 Myr. There are no decay times
exceeding 1 Gyr. The decay of the pitch angles is even faster. No influence of ambipolar
diffusion was observed in the simulations.

The magnetic decay is thus rather fast. Observations of µG fields in galaxies of high
redshift show that there must be some dynamo mechanism, and the dynamo must be satu-
rated after only 1–3 Gyr (Kim et al. 1990, Wolfe, Lanzetta & Oren 1992, Kronberg, Perry
& Zukowski 1992, Oren & Wolfe 1995). Based on the observation of Faraday rotation of
high redshift objects (z > 2) by Athreya et al. (1998) and Carilli & Taylor (2002), Lesch &
Hanasz (2003) even discuss magnetic field generation (to a few µG) in intervals of a few 100
Myr. If correct, such a situation must be considered as a big challenge to the standard dynamo
concept.

6.2.2 Seed Field Amplitude and Geometry

The exponential growth of magnetic fields in the dynamo theory is not too effective. Imagine
that four or five rotation periods of about (say) 100 Myr form the minimum growth time. Then
after 2.5 Gyr we have an amplification of only two orders of magnitude, i.e. from 10−8 G to
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10−6 G. Obviously, the (kinematic) dynamo theory runs into trouble unless there are seed
fields stronger than 10−8 G at the formation of the (young) galaxy (see Beck et al. 1996)2.

There is another critical argument concerning the seed fields. In order to form a quadrupo-
lar geometry of the dynamo-induced fields the seed field must already have a (small)
quadrupolar component. However, a battery effect, caused by the early collapse of the ma-
terial to the galactic midplane, cannot generate such an initial field. The battery effect forms
electrical currents with equatorial symmetry, so that the corresponding magnetic fields are al-
ways antisymmetric with respect to the galactic midplane (Krause & Beck 1998). As even the
smallest magnetic field that is basic for any dynamo theory must be explained (Widrow 2002),
we have no explanation for a quadrupolar seed field – not even of the smallest amplitude.
There is no clear route from the formation of a single galaxy to the present-day large-scale,
dynamo-generated quadrupolar magnetic fields of a few µG amplitude. The typical seed field
strength in the early Universe is given as 10−18 G (Hanasz & Lesch 1997).

Poezd, Shukurov & Sokoloff (1993) and Beck et al. (1994) suggest considering small-scale
dynamo action to produce the necessary seed fields. Such dynamos too need seed fields, but
they can be small. The turnover time of such fluctuations with l � 100 pc and u′ � 10 km/s
reaches only 10 Myr. The magnetic amplitude for balancing kinetic and magnetic energy is
about 3 µG. Beck et al. (1996) finally favor a value of 10−8 G as the mean-field component of
such a fluctuating field. Its dipolar part will decay and its quadrupolar part (if it exists) will be
amplified. On the other hand, Deiss et al. (1997) and Thierbach, Klein & Wielebinski (2003)
report a few µG magnetic field strength in the intracluster medium of Coma. Even higher field
amplitudes are given for the intergalactic medium for two radio source samples by Kronberg
et al. (2001) and Carilli & Taylor (2002).

Ruzmaikin, Shukurov & Sokoloff (1988) also discuss the possibility of magnetic field
amplification by a collapsing protogalactic cloud. If the marginal field has an amplitude of
10−10 G then the compressed field might easily have an amplitude of 10−7 G. The geometry
of such fields remains antisymmetric with respect to the equator though, so they cannot serve
as a seed field for quadrupoles.

The solution of this problem might only result from the MRI. As shown in Sect. 6.10 the
instability that results from the interaction of a vertical magnetic field (antisymmetric with
respect to the galactic midplane) and the rotation law Ω ∝ s−1 leads to the excitation of
quadrupolar magnetic field geometry.

The minimum field for such a mechanism could be more important as the absolute mini-
mum seed field necessary for dynamo action. The results for the smallest possible magnetic
field in Fig. 6.33 (left) is given by Eq. (6.48). The Lundquist number Ha∗ is a magnetic
Reynolds number with the Alfvén velocity VA as the velocity. With the galactic microscopic
diffusivity of η � 107 cm2/s the resulting minimum field for the MRI is only ∼ 10−25 G –
much smaller than the above-mentioned 10−18 G.

2 after 10 Gyr the amplification is by (only) 8 orders of magnitude
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6.3 Interstellar Turbulence

The galactic dynamo operates in a completely different geometry from the spherical stellar
dynamo. The vertical stratification differs strongly from the radial one, and the observed
shear is in accordance with dΩ/ds � −qΩ/s (with q � 1.03, see Ziegler 1996). The vertical
half-thickness H of the disk is used to normalize the α-effect and the shear, i.e.

Cα =
αH

ηT
, CΩ = −ΩH2

ηT
. (6.4)

If the standard expression (4.8) is used together with the estimate ηT � cη
2corr/τcorr one finds

Cα � 1
cη

τcorrΩ, |CΩ| � 1
cη

τcorrΩ

(
H


corr

)2

, (6.5)

so that

Cα|CΩ| � (τcorrΩ)2

c2
η

(
H


corr

)2

,
Cα

|CΩ| �
(


corr
H

)2

(6.6)

results. The latter relation directs the pitch angle between the radial and the azimuthal com-
ponent of the magnetic field (see Fig. 6.14, right). The observed large pitch angles can only
be understood with Cα � |CΩ|, i.e. with large correlation length, 
corr � H . This finding,
however, immediately leads to Cα|CΩ| ∝ (τcorrΩ)2/c2

η, which for cη ≈ 1 only exceeds any
threshold value of order unity if τcorr

>∼ τrot/2π � 40 Myr. Turbulent patterns with shorter
correlation (turnover) times cannot work as a turbulent dynamo for galaxies. This argument
is based on the assumption that cη � 1. For smaller eddy diffusivity, of course, it is easier to
make the dynamo operate.

6.3.1 The Advection Problem

There is another problem for the galactic dynamo theory. As we shall demonstrate, disk
dynamos are highly sensitive to the amplitude of the vertical advection effect γ, which in
cylindrical coordinates is simply γz = αφs. It is not created by the basic rotation. If the rota-
tion, therefore, is too slow, the α-effect becomes too low compared with the own diamagnetic
pumping and cannot work. This happens already for |γ̂| � 10 with γ̂ from γ̂ = αφs/αφφ

(Schultz, Elstner & Rüdiger 1994). The longer the correlation time the smaller the value of
γ̂. Many of the α-effect computations on the basis of SN explosions lead to γ̂-values ex-
ceeding 10, e.g. Ferrière (1992a, γ̂ � 50) and Ziegler, Yorke & Kaisig (1996, γ̂ � 30).
If the phenomenon of networked SN (‘superbubbles’, see Fig. 6.11) is used as the source
of interstellar turbulence (with an increase of the correlation time from 2 Myr to 16 Myr),
Ferrière (1996) reaches α-amplitudes of 400 m/s and γ̂ � 15. It is hard to imagine how such
a dynamo may operate3. The cause of this complication for galactic dynamos is the slow
galactic rotation compared with the correlation time of the interstellar turbulence. The typi-
cal values τcorr � 10 Myr and Ω = 10−15 s−1 lead to Ω∗ � 0.5 (Parker 1979). With the

3 γ̂ is reduced to about 8 if 3000 SN simultaneously explode instead of only 300 (Ferrière 1998)
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SOCA-expressions for intensity-stratified turbulence

αss = αφφ = − 4
15

τ2
corrΩ

du2
T

dz
, αzz =

8
15

τ2
corrΩ

du2
T

dz
,

αsφ = −αφs =
1
6
τcorr

du2
T

dz
, (6.7)

with the density stratification neglected, one obtains quite small values for the advection effect,
such as

γ̂ � 1.25/Ω∗ � 2.5. (6.8)

With the given numbers for both correlation time and rotation rate, and for a half-thickness of
the galactic disk of about 100 pc, the resulting α-effect is of order 1 km/s, in extreme contrast
to the values of about 50 m/s for isolated SN explosions (see Sect. 6.9.2).

It is challenging to ask whether the sφ-component of the α-tensor must be antisymmetric
as is formulated in Eq. (6.7). The answer differs for stars and galaxies. For the latter the
density gradient G and the rotation axis Ω are parallel, which is not true for stars. In general
one can construct for sufficiently weak fields the pseudotensor

αij = γ0εijkGk + γ1εipkGpΩkΩj + γ2εjpkGpΩkΩi+
+γ3εipkGkΩpΩj + γ4εjpkGkΩpΩi (6.9)

for the advection terms. However, if G ‖ Ω all terms vanish except the first, which is anti-
symmetric. There is no symmetric part of αsφ.

The argument does not hold for stars with G as the radial direction (Ossendrijver et
al. 2002, their Fig. 6) and it also does not hold if shear is involved. In her evaluations of
SN-explosions under the influence of the galactic differential rotation Ferrière (1998), how-
ever, did not find any symmetric part of the sφ-component of the α-tensor even if shear is
involved.

6.3.2 Hydrostatic Equilibrium and Interstellar Turbulence

Rotating turbulence does not produce any α-effect if the turbulence is not stratified. A ho-
mogeneous rotating field of isotropic SN explosions produces eddy diffusivity but does not
produce any α-effect. Mean-field dynamo theory is thus the theory of density and/or intensity
stratifications. There is strong observational evidence for substantial amounts of highly turbu-
lent gas in heights above 1 kpc (see Sect. 6.1.5). This suggests using the equation of vertical
hydrostatic equilibrium to derive the anisotropies in the turbulence field (Fröhlich & Schultz
1996). The main questions for this concept concern the sign of the α-effect and the resulting
amplitude.

For the density stratification the empirical HI distribution from Dickey & Lockman (1990)
has been taken. The extended ionised gas, which is the source of the diffuse Hα emission
at high latitudes, has been described by an exponential with a scale height 1500 pc and a
midplane density of 0.025 cm−3 (Reynolds 1989). This normalised gas density profile, which
is appropriate to describe the gas in the solar neighborhood, is assumed to be valid also in
other parts of the galaxy. For smaller radial distances the same shape of the density profile
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Figure 6.11: Superbubble N70 in the Large Magellanic Cloud, with a diameter of 100 pc blown by
stellar winds and SN explosions. Courtesy FORS Team, ESO.

has been taken, but the vertical scale height is scaled down linearly in such a manner that it
diminishes at s = 0.

The turbulence pressure occurs in the equation for the vertical momentum, dPtot/dz =
−ρ kz , with

Ptot = ρ〈u′2
z 〉 +

B̄2
x + B̄2

y − B̄2
z

2µ0
+ PCR. (6.10)

Only the intensity of the vertical turbulence contributes. The pressure due to cosmic rays is
PCR (Parker 1992). Self-gravitation only plays a minor role. Equation (6.10) for prescribed
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Figure 6.12: Left: Turbulent intensity in the vertical direction. Right: Magnetic equipartition field.
cτ = 1.

turbulence and magnetic field gives the density profile ρ = ρ(z). On the other hand, if the
density can be considered as given, the vertical profile 〈u′2

z 〉 results from Eq. (6.10).
The kz-force is essentially due to a self-gravitating isothermal sheet of stars with constant

half-thickness z0 = 600 pc. For z-values exceeding the thickness of the stellar disk the
contribution of the more spherical components (bulge, spheroid, and dark matter halo) of the
galaxy becomes important, i.e.

kz(s, z) =
2u2

T

z0
tanh

(
z

z0

)
+ ε(s)

z

z0
, (6.11)

with u2
T being the vertical turbulence intensity of the old disk stars4. For its radial variation

u2
T = (20 km/s)2 exp((s� − s)/0.44 s�) with s� = 8.5 kpc. The separation of the disk

potential into a vertical and a radial component is only reasonable in the thin-disk approxima-
tion.

In order to calculate unquenched α- and η-coefficients via Eqs. (6.7) and (6.10) one has
to specify the correlation time τcorr for the interstellar turbulence. The approach τcorr �
cτH(s)/uT is used, where H(s) is the scale height of the gas and uT the midplane velocity.
The mixing-time factor cτ is now the only free parameter; its role is very similar to the role of
the mixing-length-α in convection theory.

The results of Fröhlich & Schultz for cτ = 1 are given in Figs. 6.12 and 6.13. The main
result is that the turbulence intensity increases with the height z. This is due to the exponential
tail of the vertical density profile.

The resulting α-effect and eddy diffusivity are rather high. Characteristic are values of
10 km/s for αφφ and 1027 cm2/s for ηT, so that for a vertical scale of 1 kpc the dynamo
number, Eq. (6.4)1, takes values of about unity. With cη = 1 the eddy diffusivity might

4 ε gives the contribution of the dark matter halo
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Figure 6.13: The α-effect at
s = 8 kpc after Fröhlich & Schultz
(1996). The standard case (full
line) lies generally within the filled
region.

be overestimated. Such values are also quite characteristic for several completely different
models of rotating stratified turbulence in the interstellar medium (see Hanasz & Lesch 1997).
Note that the α-effect should not exceed the value of the turbulence intensity, so that already
with this idea one finds Cα

<∼ H/
corr, which should always (slightly) exceed unity. All the
computations, however, lead to positive values of αφφ in opposition to the negative values
resulting from MRI. No bridges seem to exist between the presented results for interstellar
turbulence and the alternative models of SN-driven interstellar turbulence (Sect. 6.9.2) and for
MRI (Sect. 6.10).

6.4 From Spheres to Disks

A galaxy might be modeled by an axisymmetric disk-like structure with axisymmetric func-
tions α, ηT and ū. While ηT and ū are taken as symmetric with respect to the galactic plane,
the components of the α-tensor are antisymmetric. On the other hand, the eigensolutions of
the linear induction equation in a domain with such symmetries are either symmetric (S) or an-
tisymmetric (A) with respect to the galactic midplane, and depend on the azimuth φ according
to eimφ. The field modes are again denoted by Am or Sm.

The mathematics of thin but finite disks is complicated. The research has been started
considering oblate spheroids embedded in vacuum in order to find clean models for the neces-
sary match of the outer to the internal magnetic fields (Stix 1975, White 1978, Soward 1978).
The magnetic modes considered were axisymmetric, and the resulting magnetic geometry
proved to be symmetric with respect to the galactic midplane (‘quadrupoles’). Stix (1975) in
the spherical limit for his oblate spheroidal coordinates confirmed the result that oscillating
dipoles then occur (Roberts 1972). If the spheroid, however, becomes more and more oblate
the mode with the lowest dynamo number (only αΩ-dynamos were considered) is a steady
quadrupole. Obviously, the geometry of the dynamo massively influences the geometry of
the induced magnetic field. The oscillating dipole (which for spheres has the lowest dynamo
number) for ellipsoids with (say) 1 kpc and 15 kpc for the two half-axes needs a dynamo
number that exceeds the lowest one (for the steady quadrupole) by a factor of 50.

There is another surprise considering nonaxisymmetric magnetic modes. The flat geom-
etry seems to suppress nonaxisymmetric modes. For artifical models with α = const. (no
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αzz/αφφ S0 A0 S1 A1

0.1 6.0 4.1 5.9 4.1
1 3.2 4.1 3.2 4.1
10 1.1 1.4 1.1 1.4

Table 6.3: Marginal values Cα for eigenmodes
for α2-disk dynamos with H/Rmax = 0.1 sur-
rounded by a perfect conductor. The minimum val-
ues are given in bold.

difference between above and below the equator) for spheres the eigenvalue Cα naturally
does not differ for m = 0 and m = 1. For oblate ellipsoids, however, the m = 0 solution is
always preferred and this is more so the lower the conductivity of the outer space (Krause et
al. 1990). It is only the symmetry breaking that leads to this result.

However, if the disk is embedded in a perfect conductor then the differences between
m = 0 and m = 1 disappear. For a finite disk without differential rotation but with equa-
torially antisymmetric α-effect embedded in a perfect conductor Meinel, Elstner & Rüdiger
(1990) find the results given in Table 6.3. The standard solution for isotropic α-effect is of
S0-type. With differential rotation and for isotropic α-effect the lowest Cα for dipoles and
quadrupoles become equal5. Only for αzz small compared with αφφ are the nonaxisymmet-
ric solutions preferred. The differential rotation, however, generally disturbs the excitation of
nonaxisymmetric modes (Rädler 1986b) and this is also the case for the galactic dynamo. A
characteristic result is given by Rüdiger, Elstner & Schultz (1993): Only if the rigidly rotating
core extends to a radius of about 16 H for αzz = 0 does the nonaxisymmetry start to survive
the smoothing action of differential rotation (which is then restricted to the outer parts of the
galaxy).

6.4.1 1D Dynamo Waves

The dynamo equations are studied in a 1D approximation (Parker 1971). The integration
region extends only in the z-direction, where the remaining radial and azimuthal components
of the magnetic field depend on z only, so that from the divergence condition one has Bz =
const. Normalizing time with the diffusion time H2/ηT and vertical distances with H yields

∂A

∂t
= Cαα̂(z) Ψ(B)B +

∂2A

∂z2
,

∂B

∂t
= −Cα

∂

∂z

(
α̂(z) Ψ(B)

∂A

∂z

)
− CΩ

∂A

∂z
+

∂2B

∂z2
. (6.12)

A (pseudo)vacuum surrounds the disk. Priklonsky et al. (2000) also include the radial deriva-
tions in Eqs. (6.12) and the corresponding nonlocal boundary conditions (see Sect. 5.5.2).

The α depends on the magnetic field as well as on the location in the object, expressed
simply by α̂(z) = − sin 2πz. The lower and upper boundaries are located at z = 0 and
z = 1. The galactic rotation laws lead to negative CΩ , it is |CΩ| = Ω0H

2/ηT. The boundary
conditions are Eq. (5.77). Positive Cα means positive (negative) α-effect above (below) the
disk midplane.

5 Proctor (1977) and Krause et al. (1990) find for the same model embedded in vacuum that the A0 mode is preferred
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Figure 6.14: Left: The growth rates if the time is measured in rotation times for the 1D disk dynamo. In
the blue area the magnetic field decays. Right: The pitch angles for the 1D disk dynamo depend mainly
on the ratio CΩ/Cα. The pitch angles are large only if Cα dominates CΩ .

The α-quenching by magnetic fields has often been expressed by functions such as 1/(1+
(B/Bmax)2), with a cutoff field strength Bmax related to the energy of velocity fluctuations
or the gas pressure. Here the magnetic quenching of the α-effect is modeled by Ψ according
to the quenching function (4.44).

The solutions of the system (6.12) are represented in Fig. 6.14. For negative shear in
Fig. 6.14 (left) the growth rates are given. By definition the marginal stability has a zero
growth rate. For strong CΩ the well-known eigenvalue D = CαCΩ = −2.08 for steady and
marginal quadrupoles is found. For small CΩ , however, the quadrupole with the lowest eigen-
value oscillates. We can speak in this (disk!) approximation about an α2-dynamo producing
oscillating quadrupoles. For negative α-effect (not shown) all the solutions with negative CΩ

lead to oscillating quadrupoles. In the αΩ-regime the dynamo number D is 44.1.
Also the growth times are interesting for discussion. They can be taken from Fig. 6.14

(left) given in rotation periods6. It is infinity at the marginal line but reaches values of a few
rotation periods close to the line of neutral stability. For galaxies this time is not much smaller
than 1 Gyr. As is also shown by Fig. 6.14 (left) for highly supercritical dynamos the growth
times are formally smaller than the rotation period. Also the radial distribution of the initial
magnetic fields, however, plays an important role and the diffusion time can become rather
long. Here only nonlinear calculations provide the temporal development of the model.

For Cα < |CΩ| the pitch angles are much too low for galaxies. In order to produce
large pitch angles one has to fulfill a relation such as CΩ

<∼ 0.5Cα leaving the αΩ-regime so
that the oscillating solutions appear. In consequence, the galactic dynamo can not be an αΩ-
dynamo; it exists close to the limit where the α2-regime prevails. Obviously, despite their slow
rotation galaxies seem to develop a rather high α-effect. If they really exist in the (narrow?)
transition region between the αΩ and the α2-regime then it should not be surprising that each
galaxy seems to have rather individual magnetic properties. The condition CΩ � Cα leads to
α � ΩH , which is of the order of 10 km/s.

6 note that CΩ = 2πτdiff/τrot
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6.4.2 Oscillatory vs. Steady Solutions

The question arises from Fig. 6.14 how the dynamo regime changes from stationary to oscil-
latory solutions. For dominant CΩ the steady S0-mode is expected to be realized. Decreasing
CΩ , however, it is not obvious which dynamo regime prevails. If, additionally, the α-tensor is
anisotropic, nonaxisymmetric modes could dominate for small CΩ .

Table 6.4: Time regimes for the ‘toy model’ with D = 5000. The last line concerns dynamos with
artificially isotropic α-effect. Stationary is ‘stat’, oscillatory is ‘osc’. From Elstner, Rüdiger & Schultz
(1996).

CΩ 5000 625 500 50 5
Cα 1 8 10 100 1000
time-regime stat trans osc osc osc
isotropic α-tensor stat stat stat stat osc

This question can be attacked with a very simple galactic dynamo model. The only radial
dependence may result from the rotation law. The applied vertical profiles are very simple,
i.e. αφφ = α0Ω(s) sin 2πz, but αφφ = 0 for z > 0.5, and the eddy diffusivity of the halo
is 100 times the disk value. Additionally, the α-tensor is anisotropic, αzz = −2αφφ, and the
rotation law is given by Eq. (5.68). In Table 6.4 one finds the numerical results. For increasing
Cα – or decreasing influence of differential rotation – the solution becomes indeed oscillatory.
For isotropic α-effect this is only true for the smallest given CΩ , which is the same result
as presented in Fig. 6.14 for thin slab dynamos. It is opposite to the behavior of spherical
dynamos, where α2-dynamos are known to oscillate only for anisotropic α. It should thus be
possible to find oscillatory solutions for galactic fields. Brandenburg et al. (1993) have found
the same kind of oscillating solutions for anisotropic α-effect (see their Table 3)7.

Figure 6.15: The torus dynamo
embedded in vacuum for neg-
ative shear and both signs of
the α-effect. Solutions with
quadrupolar (dipolar) symmetry
are given as solid (dashed)
lines. Oscillating solutions are
marked with ∗. The dominance
of quadrupoles for positive
α-effect changes to a dominance
of dipoles for negative α-effect
(Deinzer 1993).

7 the oscillations of the magnetic field in the models of Brandenburg, Moss & Tuominen (1992, see their Table 5)
and Ferrière & Schmitt (2000, see their Table 1) probably belong to the class of oscillating solutions of spherical
αΩ-dynamos with too small pitch angles
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A clear formulation of the kinematic dynamo problem has been presented by Deinzer
(1993) and Deinzer, Grosser & Schmitt (1993) with their torus dynamo motivated by the
geometrical torus-like structure of M 31 (Fig. 6.6). Outside the torus is vacuum, the boundary
conditions are satisfied in full generality for axisymmetric solutions (Grosser 1988). The
dynamo discussed by Deinzer, Grosser & Schmitt is of the αΩ-type with isotropic α-effect.
The rotation law is linear. Deinzer (1993) gives the results for an α2Ω-dynamo that can be
interpreted with CΩ < 0 and both signs of Cα (Fig. 6.15). The main result is that the α2-
dynamo with the lowest Cα has a dipolar geometry and does not oscillate – in contrast to
the disk solution. For moderate shear there is a stationary quadrupole for positive Cα and a
stationary dipole for negative Cα. For very high CΩ , i.e. in the true αΩ-regime, the torus
dynamo always yields quadrupolar solutions, which are stationary for positive α-effect and
oscillatory for negative α-effect.

6.5 Linear 3D Models

Consider now the complete dynamo equation (4.5) in cylindrical geometry and for axisym-
metric disks. The α-tensor is basically antisymmetric with respect to the galactic midplane.
This allows us to treat the B-modes of Sm- and Am-type in the form

B̄ = 
{
Bm(s, z, t) eimφ

}
, m = 0, 1, 2, . . . , (6.13)

where Bm are the complex axisymmetric field modes. The time evolution of the components
of Bm in cylindrical coordinates is determined by
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and
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The equations have to be completed by the correct number of boundary conditions, for which
a local formulation for a galaxy embedded in vacuum has not yet been presented. In the
ellipsoid-model of Stix (1975), and for the torus geometry used by Deinzer, Grosser & Schmitt
(1993), the nonlocal vacuum condition could be exactly formulated as a local condition, but
only for m = 0. Stepinski & Levy (1988) and Elstner, Meinel & Rüdiger (1990) therefore
introduced the simulation concept ‘without sharp boundaries’, where the disk is embedded



6.5 Linear 3D Models 237

in a huge galactic halo where approximate boundary conditions such as pseudovacuum or
perfectly conducting are applied.

We approximate the spatial operators in the induction equation by discrete difference op-
erators, and follow the temporal evolution by means of Euler’s formula

B(t + δt) = B(t) + δt · CURL((u × B + E). (6.16)

CURL denotes the difference scheme for vectors defined on a grid in the cylindrical region
0 ≤ s ≤ Rmax and 0 ≤ z ≤ H . This simple explicit algorithm is numerically stable because
of the dissipation term.

In order to satisfy the divergence relation ∇ · B = 0 a difference operator CURL is con-
structed, yielding for any discrete vector field c the relation DIV CURL c ≡ 0, for some finite
difference approximation DIV of the divergence operator. This is almost trivial in Cartesian
coordinates, and is also possible for curvilinear coordinates (Evans & Hawley 1988).

Conditions for Bm ensuring regularity of the magnetic field and its derivatives on the axis
s = 0 are also needed. These conditions can be expressed as boundary conditions for s = 0,
but they depend on m for s = 0 in the following way: Bs = Bφ = ∂Bz/∂s = 0 for m = 0,
Bz = ∂Bφ/∂s = 0 for m = 1, and Bs = Bφ = Bz = 0 in all other cases.

The code by Elstner, Meinel & Rüdiger allows one to model a galaxy of arbitrary (ax-
isymmetric) geometrical shape. Such a model is defined by profiles of the angular velocity
Ω(s, z), the turbulent magnetic diffusivity ηT(s, z) and the α-effect αij(s, z). All functions
are assumed to be axisymmetric. Because of the spiral structure of galaxies the assumption of
axisymmetry of Ω, η and α is certainly not satisfied very well. This assumption seems to be
justified though for galaxies showing an irregular flocculent spiral structure (Fig. 6.1). Often
the simplified galactic rotation law

Ω =
{

Ω0 for s < s0

Ω0s0/s for s > s0

}
(6.17)

is adopted instead of the smoother Brandt profile (5.68). Inside the turnover radius s0 we
have rigid rotation, and outside s0 the flat rotation curve is realized. We assume αφφ =
α0f(z)Ω(s), with f(z) = ±2−(z/H)2 for z >

< 0 and with positive α0. For the radial variation
of α we only consider the radial profile (6.17). As the magnetic field turbulence increases
in the halo, we assume ηT ∝ 2(z/3H)2 and neglect any s-dependence. The half-thickness of
this profile is assumed to be three times larger than H . For the equatorial magnetic diffusivity
3 · 1026 cm2/s is used. H has been assumed as 1 kpc.

Table 6.5: Critical Cα for a series of model calculations (Elstner, Meinel & Beck 1992). The minimum
Ccrit

α are given in bold. They always belong to the S0-solution.

s̃0 |CΩ| S0 A0 S1 A1 s̃0 |CΩ| S0 A0 S1 A1

2 200 0.09 3.3 2.5 2.2 5 10 0.64 3.8 3.2 3.7
5 50 0.13 3.9 2.7 3.7 5 1 3.7 3.7 3.8 3.7
2 10 1.6 4.3 4.3 4.3 5 5 1.2 3.7 3.3 3.7

For a given galaxy model the marginal values Ccrit
α as well as the corresponding field

structure is computed by Elstner, Meinel & Beck (1992). Table 6.5 shows their results. The
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prediction of kinematic dynamo theory is a magnetic field configuration of the symmetry type
that has the smallest Ccrit

α . The final state, however, can only be determined from nonlinear
simulations, where the backreaction of the field on the motions is fully taken into account.

In this linear regime the results in Table 6.5 always lead to magnetic fields of S0-type.
Donner & Brandenburg (1990) obtained similar results. In no case is a preference for a non-
axisymmetric S1 or A1 field obtained. Without special extras the galactic disk dynamo can
only maintain axisymmetric magnetic fields. If the disk is embedded in vacuum then the pre-
ferred mode is S0, but if the halo has the same conductivity as the disk then the dynamo region
changes to a solar-like one, and an oscillating dipole appears (see also Brandenburg, Moss &
Tuominen 1992, their Table 5).

6.6 The Nonlinear Galactic Dynamo with Uniform Density

Let us now suppose that turbulence in galaxies is driven by a field of random SN explosions
under the influence of global rotation. The turbulence intensity then has its maximum in the
equatorial midplane. There would also be a strong correlation with the star formation rate
and its time dependence during the galactic evolution (see Ko & Parker 1989, Ko 1993, Beck
et al. 1996). Beck & Golla (1988) reported the observational background for this concept:
For several spiral galaxies the radio continuum emission is correlated with their far-infrared
emission. Our code allows the unified derivation of the complete turbulent EMF on the basis
of a given turbulence field. The expansion (6.3) becomes fully tractable, and the internal
rotation law in galaxies is well-known of course.

6.6.1 The Model

The α-effect only occurs in a stratified medium under the combined influence of turbulence
and global rotation. Both density and intensity stratification of the turbulence field form the
known α-sources. Unlike stellar convection zones, galactic disks are self-gravitating layers,
hence their density stratification is weak.

The numerical simulations of SN explosions show that the influence of density stratifica-
tion is extremely small. Our turbulence model is based on the anelastic approximation and also
on the τ -approximation. The resulting expressions for uniform density are given by Eqs. (6.7),
multiplied by the function (4.44) for the magnetic quenching. The main shortcoming of this
approach consists in the fact that the equipartition value of the halo fields is overestimated.
Our halo fields will thus simulate (magnetic) disks that are too thick.

Dynamo models including the back-reaction of the magnetic field on the turbulence and/or
the mean flow yield magnetic field strengths depending on the feedback mechanism. Instabil-
ities due to effects such as the Parker mechanism are ignored here. It is the equipartition value
Beq =

√
µ0ρ umidplane that appears in the quenching functions, in the form of β = B/Beq.

The rotation law can be approximated by Eq. (6.17). We assume V = 100 km/s as the
linear velocity for almost all of our models. For the eddy diffusivity we work with the scalar
expression (4.70), which should be sufficiently accurate for slow rotation. Both turbulent and
microscopic contributions have to be included in the magnetic diffusivity, so that

η = ηT + ηmicro, (6.18)
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Figure 6.16: Left: The marginal state for slow rotation. Below V � 21.5 km/s no dynamo is possible.
The dotted curve represents a dynamo without advection terms. Right: Artificial amplification by the
factor γ∗ of the turbulent vertical advection quenches the dynamo action. The same effect appears for
large ‘inverse winds’ with negative γ∗. umidplane = 15 km/s, uhalo = 8 km/s. (Rüdiger, Elstner &
Schultz 1993).

with ηmicro = 1/µ0σ and σ the microscopic conductivity. In the bulk of the galaxy, for
z < 0.5H , the first term will always dominate. If, for greater vertical distances, z > 0.5H ,
the gas becomes neutral the second term dominates there. We shall consider two extreme
cases, (i) ηmicro → ∞ (vacuum) and (ii) ηmicro = 0 (hot plasma).

The dynamo only lives from the vertical stratification of the turbulence intensity. At the
galactic midplane the turbulence velocity is umidplane, and at the outer boundary, z = 0.5H ,
it is uhalo, with uhalo < umidplane. Typical values for the observable midplane values
are ≥ 10 km/s. In the model the upward decrease of the turbulence intensity enables the
dynamo to operate. The critical eigenvalue is already reached for very small gradients
(umidplane � 5 km/s).

Characteristic of our approach is the inclusion of the advection term Udia simultaneously
with the α-effect. It transports magnetic field to regions of lower turbulence intensity. If, in
the galactic halo smaller velocities are present then the field is carried into the halo. If not, it
is carried to the midplane (Brandenburg et al. 1993).

Only the global rotation produces an α-effect. The advection velocity Udia does not
vanish for vanishing rotation. The galactic dynamo thus possesses a minimum rotation rate
for which dynamo generation is possible. In Fig. 6.16 (left) the dynamo regime is shown for
the marginal case. The turbulence field with umidplane = 15 km/s and uhalo = 8 km/s as well
as the transition radius s0 = 2H are prescribed. The dynamo dies off for V ≤ 21.5 km/s. Note
here in particular that NGC 4449 with V � 30 km/s possesses regular fields with ∼ 14 µG
amplitudes (Chyży et al. 2000).

According to Eq. (6.7) the diagonal and off-diagonal elements of the α-tensor are of the
same order of magnitude. One may ask how long the dynamo tolerates an extremely high
advection velocity. Therefore, we write

αφs = γ∗ αφφ/Ω∗, (6.19)
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Figure 6.17: The maximum magnetic
field in equipartition units vs. the geometry
number s̃0. The electrodynamical halo prop-
erties are varied (see text). V = 100 km/s,
umidplane = 15 km/s, uhalo = 3 km/s.
Variation of the correlation time gives no
significant effect. (Schultz, Elstner & Rüdiger
1994).

and vary the free parameter γ∗. For γ∗ > 1 the vertical turbulent transport is amplified while
for negative γ∗ the field is advected to the galactic midplane. Figure 6.16 (right) shows the
result. The maximum magnetic field is given for diverse amplification factors γ∗. Already for
γ∗ > 8 the dynamo breaks down. There is thus not too much freedom in the choice of the
value of αφs. For strong equatorward turbulent winds the dynamo cannot operate either.

6.6.2 The Influences of Geometry and Turbulence Field

The dynamo regime may be studied in two ways. First the turbulent flow field is assumed
to be given and the ‘geometry’ is varied. Only two parameters describe the geometry, i.e.
s̃0 = s0/H and ηmicro. With the latter quantity we model the electrical properties of the halo.
Vacuum is simulated if the value of ηmicro exceeds the turbulent term (model A). In the case
of turbulent ‘warm’ plasma (model B) the opposite is true. For a very hot plasma (C) the total
halo dissipation is relatively small, simulating a nearly perfect conductor.

All these cases are considered in Fig. 6.17, which shows the maximum field strength cre-
ated by the dynamo. The influence of the variations is small. Except for model C the midplane
equipartition value Beq is comparable with the induced magnetic fields. Dynamos with ha-
los of very high conductivity (model C) create magnetic fields considerably stronger than the
equipartition value in the disk.

Figure 6.18 exhibits the geometry of the dynamo-created magnetic fields. The greater the
halo conductivity, the more distinct magnetic halo belts we obtain, whereas for vacuum-like
boundary conditions (model A) they disappear completely. As no such belts are observed in
real galaxies, the observations clearly favor this latter case. Highly intensive turbulent motions
in the galactic halo lead to the same phenomenon. The characteristic properties of such models
are

• the fields are confined to the galactic disk,
• the fields have a ring-like structure,
• the ring is attached at the turnover radius s0,
• the pitch angles are rather small.

We now turn to the influence of special turbulence intensity profiles on the induced magnetism.
The z-profile of the turbulent intensity, uT, is characterized by two numbers: uT = umidplane

at the midplane and uT = uhalo in the halo. There is a smooth transition between the two
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Figure 6.18: Characteristic toroidal field configurations for s̃0 = 2 (left) and s̃0 = 6 (right) for a
vacuum halo (top, model A) and a hot halo (bottom, model C). Eddy lifetime 10 Myr, other parameters
as in Fig. 6.17. Note that the maximal toroidal fields always occur close to s̃0.

Figure 6.19: The pitch angles for diverse correlation times τcorr (10 Myr (solid), 25 Myr (dashed) and
50 Myr (dotted) and two different turnover radii in kpc (marked by vertical lines). The velocities are
umidplane = 15 km/s and uhalo = 3 km/s. Note the absolute pitch angles outside the core increasing
outward.

values. The α-effect exists only in this transition region. The α-effect also grows if, e.g., the
midplane value increases, for a given halo velocity.
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The pitch angle represents the ratio of radial to azimuthal component of the magnetic field.
It vanishes if the field is purely azimuthal. Fields with globally large pitch angles form the
observed patterns of the well-developed galaxies, so that we have to conclude that the α-effect
is strong enough compared with the differential rotation to create considerable radial magnetic
field components. The ratio of the two induction effects is given by Eq. (6.6)2, i.e.

Cα

|CΩ| ∝ Ω∗2 Ma2
T, (6.20)

with the turbulent Mach number MaT = uT/cac and with HΩ � cac, which is true not only
for accretion disks but also for selfgravitating galaxies for Q <∼ 1 and H = cac/

√
Gρ. Obvi-

ously, for supersonic turbulence or longer correlation times the differential rotation no longer
dominates. We thus expect larger pitch angles for longer correlation times. Figure 6.19 shows
the results. Only for rather long correlation times do the pitch angles reach values that are
compatible with observations. For large radii the pitch angles are independent of the chosen
s̃0. Generally, the pitch angles increase slightly going outward – contrary to observations,
however. The observed radial decay of the pitch angles (Fig. 6.3) can only be explained with
a radial decay of the turbulence.

6.7 Density Wave Theory and Swing Excitation

Most large disk galaxies are spiral systems that look very impressive if observed pole-on. They
consist of bright oblate core domains with tangentially attached spiral arms (Fig. 6.4). The
spirals are transient structures in a mixture of stars and molecular clouds. The density wave
theory explains how the spirals are formed rotating around the galactic center and coexisting
with the differential galactic rotation. It is the profile of the mass distribution that determines
the resulting gravity-supported structures as rings or spirals.

6.7.1 Density Wave Theory

Studies of the general structure of self-gravitating cool disks are strongly stimulated by de-
tections of exosolar planets. The idea to consider the solar system as the relic of a global
instability is not new in the context of the density wave theory. Such a concept has its roots
in the fascinating order of the Titius–Bode law, suggesting a global formation process rather
than a local one. Modes with a wave number

kcrit =
1
π

Mc

Σ0s3
(6.21)

become unstable in thin Keplerian disks if the Toomre parameter

Q =
cacΩ

π G Σ0
(6.22)

falls below unity (Toomre 1964, Safronov 1969, Goldreich & Ward 1973). Mc is the central
mass and Σ0 is the surface density of the disk. Numerical simulations with a large number of
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mass points (Cassen et al. 1981, Sellwood 1985, Mayer et al. 2003, Klessen 2003, Lufkin et
al. 2004) generally confirm the stability criterion Q > 1.

Significant progress has also been made in explaining the spiral structure of galaxies with
the density wave theory. The instability of global modes has been analyzed with considerable
success (Meinel 1983, Binney & Tremaine 1987). Sellwood (1985) has shown how a global
spiral instability occurred for galaxies with minimum Q = 1 but not for Q = 1.5.

It is an open question though whether axisymmetric or nonaxisymmetric modes are more
unstable. Are rings or spirals excited once the cooling of the disk brings it to an unstable state?
We also mention the suggestion by Morfill, Spruit & Levy (1993) that the existence of ring-
like structures may help to overcome the main difficulty of the standard-accretion disk theory,
i.e. the disagreement between the theoretically predicted and observed radial temperature
profiles (Horne 1993, Beckwith 1994).

6.7.2 The Short-Wave Approximation

Small disturbances in an infinitesimally thin inviscid disk in nonuniform rotation are con-
sidered. We start with the linear relation between the pressure and density perturbations,
P ′ = c2

acρ
′, valid for isothermal as well as for isentropic disks. The linearized equations

for the radial (u′) and azimuthal (v′) velocity disturbances, and also mass conservation, then
become

∂u′

∂t
+ Ω

∂u′

∂φ
− 2 Ω v′ +

∂ψ′

∂s
+

∂

∂s

c2
acΣ

′

Σ0
= 0,

∂v′

∂t
+ Ω

∂v′

∂φ
+

κ2

2Ω
u′ +

1
s

∂ψ′

∂φ
+

c2
ac

Σ0s

∂Σ′

∂φ
= 0,

∂Σ′

∂t
+ Ω

∂Σ′

∂φ
+

1
s

∂(u′sΣ0)
∂s

+
Σ0

s

∂v′

∂φ
= 0 (6.23)

with κ being the epicyclic frequency (5.24)1, which equals
√

2Ω for rotation laws with sΩ =
const. The gravity potential ψ and the density fluctuations are related by the Poisson equation
for an infinitely thin disk, ∆ψ′ = 4πGΣ′δ(z). The modes with different azimuthal wave
numbers m can be considered independently. The Toomre (1964) solution

ψ′ = −2πG

∞∫
0

S(k)Jm(ks)eimφ−|kz|dk, Σ′ =

∞∫
0

kS(k)Jm(ks)dk eimφ (6.24)

for the Poisson equation then applies, where S(k) is the density spectrum in the Fourier–
Bessel transform. The existence of the general solution of the Poisson equation demonstrates
the convenience of the Fourier–Bessel transform. For a delta-like spectral function (only one
mode in k) one can deduce from Eq. (6.24) that ψ′ = −2πGΣ′/k, with the wave number k
in the Fourier ansatz exp(i(ks − ωt)). The immediate consequence for ring structures is(

1 − kc2
ac

2πGΣ0

)
d2ψ′

ds2
+ · · · = −k

(
κ2 − ω2

)
ψ′

2πGΣ0
, (6.25)

resulting in the dispersion relation ω2 = κ2+c2
ack

2−2πGΣ0k for the oscillation frequency ω.
It is here only given in the short-wave approximation, i.e. ks > 1. Instability is indicated for
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Figure 6.20: Dispersion rela-
tion for the Jeans instability in
thin disks for various values
of the Toomre parameter. For
given Q all wave numbers
between the intersections of
a curve and the x-axis are
unstable.

positive �(ω), which happens for Q = cacκ/πGΣ0 ≤ 1 starting at a wave number of kcrit =
πGΣ0/c2

ac. A reasonable value for Σ0 for the galactic surface density is ≈ 75 M�/pc2 so
that for cac � 10 km/s the unstable wavelength is of order kpc. It is characteristic of the Jeans
instability in thin disks that it only exists for wave numbers not too small and not too large
(see Fig. 6.20).

From the above system of equations with ωD = ω − mΩ we find the relations

u′ = i
ωD

(
dψ′

ds + c2
ac

Σ0

dΣ′
ds

) − 2mΩ
s

(
ψ′ + c2

ac
Σ0

Σ′)
κ2 − ω2

D

,

v′ =
κ2

2Ω

(
dψ′

ds + c2
ac

Σ0

dΣ′
ds

) − mωD
s

(
ψ′ + c2

ac
Σ0

Σ′)
κ2 − ω2

D

, (6.26)

so that for m < ks

u′

v′
� 2iωDΩ

κ2
� iωD

Ω
, (6.27)

and a phase lag of π/2 exists between u′ and v′, e.g.

u′ ∝ −ωD

Ω
cos(ks + mφ − ωt), v′ ∝ sin(ks + mφ − ωt) (6.28)

(Rohlfs 1977, Binney & Tremaine 1987). For trailing spirals the phase relation must ensure
ds/dφ < 0, so that k > 0 is required. The pattern velocity Ωp = ω/m must then be positive.

6.7.3 Swing Excitation in Magnetic Spirals

Density waves in galaxies form time-dependent mean motions that may also influence the
dynamo mechanism. For a dynamo interacting with the galactic density waves Chiba & Tosa
(1990) and Hanasz, Lesch & Krause (1991) suggested resonant solutions very close to the
resonance phenomenon for the pendulum as described by Landau & Lifschitz (1969).
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Dynamo Waves

We start with the dynamo equation applied to the simplest case of Parker’s (1971) 1D dynamo
in the Cartesian geometry with B = (Bx(z), By(z), 0) and u = (ux(x), uy(x), 0), where y
denotes the azimuthal direction. All the eddy quantities are taken to be spatially uniform. The
shear ∂uy/∂x describes an extra differential rotation, whereas the shear ∂ux/∂x represents a
meridional flow in the radial direction. With uniform shears the magnetic field can be written
as B = B̂e−ikz. With B̂x = −∂A/∂z and B̂y = B the dynamo equations become

Ȧ + A = CB, Ḃ + B = CA + iDA − EB, (6.29)

where

C =
α

ηk
, D =

1
ηk2

∂uy

∂x
, E =

1
ηk2

∂ux

∂x
. (6.30)

For a pure αΩ-dynamo and without meridional flow (E = 0) the resulting dispersion relation
yields marginal modes with oscillation frequency ω = 1 for CD = 2. The pure α2-dynamo
(D = 0, E = 0) starts at C = 1, but does not oscillate. As the shear D in galaxies is negative,
also C in this model must be negative in order to ensure CD = 2.

We shall study the influence of oscillating shear flows on an oscillating αΩ-dynamo at the
marginal state, i.e.,

CD = 2 + d sin γt, E = e cos γt, (6.31)

where d/C and e are the (positive) amplitudes of the shear flows oscillating with frequency γ.
Note the phase lag between the oscillations of d and e. The dynamo equation then becomes

Ä + (2 + e cos γt)Ȧ + (1 + e cos γt − i(2 + d sin γt))A = 0, (6.32)

which differs from the traditional Mathieu equation due to the complex coefficient of A. In
contrast to the pendulum equation, the flow-free version of Eq. (6.32) has only one nonde-
caying solution, i.e. A = eit (Schmitt & Rüdiger 1992). The interaction of this mode with
the sin- and cos-terms of the time-dependent shear in Eq. (6.31) leads to the excitation of the
neighboring modes, ei(1±γ)t, which themselves excite their outer neighbors, ei(1±2γ)t, and
feedback to their common inner neighbor, i.e. to eit. Hence, we have to write

A =
∑

n=0,±1,...

a2n+1(t)ei(1+nγ)t. (6.33)

The classical resonance frequency is γ = 2. Insertion of Eq. (6.33) into Eq. (6.32) together
with the usual ansatz a2n+1 ∼ eσt provides an algebraic system of equations whose determi-
nant must vanish to determine the eigenvalue σ. For 
(σ) > 0 we have ‘swing excitation’.

The solutions for various excitation frequencies γ are given in Fig. 6.21. The general
result is that for a given amplitude d the absolute amplitude |e| must exceed characteristic
values |ecrit| in order to fulfill the constraints for swing excitation. i.e. e > ecrit,1(d) or
e < ecrit,2(d). These critical values are defined by 
(σ) = 0. Resonance is found primarily
in the region de > 0. The axis d = 0 lies completely in the region of resonance. Except for
large γ the axis e = 0 lies in the region of decay. Hence, the oscillation of the shear e produces
resonance, while the oscillation of the shear d disturbs this effect. Whether excitation exists
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Figure 6.21:
Stability/resonance-diagram
for varying shear amplitudes d
and e, and three different excita-
tion frequencies γ. (Schmitt &
Rüdiger 1992).

depends on the relation between d and e. The classical resonance frequency γ = 2 does not
play any particular role.

According to Eq. (6.31) the azimuthal stream and the radial stream are 90◦ out of phase.
We thus find that the product de must have the same sign as C. With C negative (see above),
galactic density waves are located in the second or fourth quadrant of Fig. 6.21, so that res-
onant behavior would require large amplitudes of the meridional shear. These findings are
confirmed by Moss (1996) with a 2D code operating in the sφ-space and modulating the spi-
ral flow pattern as given below in Eq. (6.34).

3D Dynamo Model with Density Waves

After Rohde, Rüdiger & Elstner (1999) we now consider a spiral galaxy embedded in a plasma
of given conductivity. Let the half-thickness of the galaxy be H = 1.5 kpc, and its radius
15 kpc. The differential rotation is described by a Brandt-type law with q = 1 and s0 = 3 kpc.
The generation of magnetic field in the model is described by the dynamo numbers with (say)
|CΩ | = 41.85 and Cα = 4.65. The value of Cα is high enough that nonaxisymmetric field
modes are also excited. Their possible swing with the flow pattern drift can therefore be
considered, although the axisymmetric field mode is the preferred one.

The galactic spiral arms are given by the expressions

us = χu0 cos
(

mp(φ − Ωpt) + K
s

Rmax

)
f(s),

uφ = u0 sin
(

mp(φ − Ωpt) + K
s

Rmax

)
f(s), (6.34)

with mp = 1, 2 for a one-armed spiral and a two-armed spiral and χ negative. The frequency
Ωp gives the drift velocity of the spiral flow pattern, K its radial wave number8. Trailing
spirals are obtained with a positive radial wave number K. In a trailing spiral the regions with
inward-directed radial velocities are associated with enhanced density in the spiral arms. The
velocity u0 may be of order 10 km/s. The azimuthal flow of the outer (inner) edge of the spiral
arm is positive (negative) in φ-direction. The computations are done with χ = −1.

8 f(s) is introduced in order to suppress the flow pattern at maximal radius and at s = 0
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m Ccrit
α γ [Gyr−1] ω [Gyr−1]

0 0.2 3.58 −
1 2.5 2.14 13.6
2 3.6 1.24 13.0

Table 6.6: Critical dynamo numbers Ccrit
α ,

growth rates γ of magnetic energy, and drift
velocities ωm of the magnetic field modes
m = 0, 1, 2 in a model with axisymmetric flow
pattern (Rohde, Rüdiger & Elstner 1999).

Figure 6.22: Two-armed spiral galaxy. Left: Normalized magnetic energies ε0, ε1 and ε2 for magnetic
field modes m = 0, 1, 2. The contribution of mode m = 2 is maximal for Ωp ≈ 2ωm. Right: Growth
rate of the magnetic m = 1 mode for an m = 2 azimuthal modulation of the α-effect. The growth rate
for axisymmetric α is given by the dashed line (Moss 1997).

In all the simulations a combination of field modes m =0–5 is taken as the seed field. The
ratio between the energy Em of mode m and the total magnetic energy is

εm =
Em

Etotal
=

Em

E0 + E1 + . . .
. (6.35)

The dynamo numbers used are supercritical for several magnetic field modes. The linear
analysis gives the growth rates γ of the magnetic field energy. The magnetic field for modes
with m > 0 exhibits a characteristic drift velocity ωm in the azimuthal direction. For m = 1
and m = 2 the drift velocities are almost equal (see Table 6.6). Swing excitation can be
simulated by tuning the pattern speed Ωp of the large-scale velocity field (6.34).

A two-armed nonaxisymmetric velocity pattern with K = 2π has been considered. The
final solution is no longer a single mode. The solution can be described as a mixture of several
modes, but in a two-armed spiral galaxy only the even modes contribute. For the magnetic
field mode with m = 2 a (weak) resonance behavior is found: In the model with pattern speed
Ωp = 26 Gyr−1 the energy of the magnetic m = 2 mode reaches its maximal value (Fig. 6.22,
left).

It is quite another story to modulate the α-effect in the azimuthal direction with (say)
m = 2, i.e.

α ∝ 1 + α̂ cos(2φ − ωst − Ks),

which is a leading spiral (Moss 1997). Now a clear resonant behavior of the m = 1 mode is
found (Fig. 6.22, right). There is a clear and broad resonant peak centered at ωs = 2ω0, where
ω0 is the drift rate of the (here artifically excited) magnetic m = 1 mode9.

9 Bigazzi & Ruzmaikin (2004) even use a nonaxisymmetric α-effect in a solar dynamo to find ‘preferred longitudes’
for the magnetic fields
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6.7.4 Nonlocal Density Wave Theory in Kepler Disks

The velocity components, u′ and v′ do not match transformations like Eq. (6.24). It is ap-
propriate to describe the flow in terms of scalar potentials for the momentum disturbances,
i.e.

Σ0u
′ =

∂Φ

∂s
+

1
s

∂V

∂φ
, Σ0v

′ =
1
s

∂Φ

∂φ
− ∂V

∂s
(6.36)

(Rüdiger & Kitchatinov 2000b). Then the potentials Φ and V define the divergence and vor-
ticity of the flow by

∇ · (Σ0u
′) = D2Φ, (∇× (Σ0u

′))z = −D2V, (6.37)

where u′ is the 2D velocity vector and D2 is the 2D Laplace operator
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. (6.38)

With these relations the system (6.23) can be reformulated in terms of the flow potentials. It
then reads
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where n(x) = −d log Σ0/d log s is the radial slope of the surface density profile. The density
profile used decreases as 1/s within the disk and falls more steeply beyond s = R (see Boss
1998 for a detailed discussion). With the Fourier mode ansatz in the azimuthal coordinate
φ all the perturbations become proportional to exp(i(ωt + mφ)). The basic dimensionless
parameters of the normalized equation system are then the Mach number and fractional disk
mass f,

Ma =
RΩ0

cac
, f =

πΣ0G

RΩ2
0

� πR2Σ0

Mc
(6.40)

with the central mass Mc. Ma and f can be combined into the global Toomre parameter (6.22),
Q = 1/(fMa).

If the Fourier–Bessel expansions (6.24) are applied to the flow potentials Φ and V , a
system of integral equations results that must be solved numerically. This was done for Kepler
disks with a sharp edge at s = R, where the minimum of the local Toomre number also
occurs. The resulting instability diagram for m ≤ 2 is given in Fig. 6.23. One can mimic
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Figure 6.23: The marginal stability
lines for rings (m = 0) and low-m
spirals for various disk masses. The
axisymmetry switches at f � 0.16.
For the massive disks on the right
the nonaxisymmetric instabilities
appear somewhat before the ring-
like ones. (Rüdiger & Kitchatinov
2000b).

the cooling process by an upward movement in the plot. Note that the axisymmetric (ring-
like) patterns only dominate up to disk masses of about 16%. For more massive disks the
instability produces nonaxisymmetric spirals as displayed in Fig. 6.24. The stability diagram
shows the one-armed spirals as the most easily excited nonaxisymmetric structures. This may
be a special property of Keplerian disks. They possess a central mass concentration that acts
as the second ‘arm’.

The equations for global spirals possess a remarkable symmetry. If the functions Φ, V
and Σ′ constitute a solution of Eqs. (6.39) with eigenvalue ω = mΩp− iγ, then −Φ∗, V ∗ and
Σ′∗ (where the asterisks denote the complex conjugate) is also a solution, with corresponding
eigenvalue ω∗ = mΩp + iγ. This means that any stable solution in the form of a trailing

Figure 6.24: Decaying (left) and growing (right) two-arm spirals for f = 0.3. Only the positive density
disturbances are shown. The dashed circle is the disk edge s = R. The background rotation is counter-
clockwise. Note the high number of local density maxima, which also occur in the SPH code simulations
given in Fig. 6.25.
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spiral has a leading counterpart with exactly the same pattern speed Ωp. This result is known
as the antispiral theorem (Lynden-Bell & Ostriker 1967) for tightly-wound spiral waves. The
equivalence of leading and trailing spirals does not hold, however, for unstable disturbances.
If a leading spiral grows exponentially then a trailing one decays, and vice versa. The theorem
does not show, however, whether the leading or the trailing patterns are growing. The nu-
merical solutions always show excitation of trailing spirals similar to that shown in Fig. 6.24
(right), while the leading ones decay or have zero growth rates.

Figure 6.25: Planet formation in a disk of 20 AU, T � 50 K, and a mass ratio f � 0.1 (Mayer et
al. 2003). For the minimum solar nebula the mass ratio f is 0.01. Courtesy T. Quinn.

The next natural steps are the inclusion of the vertical stratification and the magnetic
fields. Nakamura & Hanawa (1997) considered the gravitational instability in a very thin
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disk threaded by a vertical magnetic field that also in the disk has only a (nonhomogeneous)
Bz-component. It is known that the Lorentz force

J × B = − 1
2µ0

∇B2 +
1
µ0

(B∇)B (6.41)

for such a field is generally not zero, but it is a gradient since (B∇)B = 0 (Krause & Rüdiger
1975, Boss 2001). No MRI can thus develop, which is also true for the current-free fields
that Nakamura & Hanawa postulate outside the disk. They consider the nonlinear evolution
of a nonaxisymmetric finite isothermal perturbation during the protostellar collapse and find
an instability (only) for m = 2 (their Fig. 2). Without rotation the instability produces bars
during the protostellar collapse, while with rotation an elongated S-shape appears. The bars
themselves are unstable and finally fragment (Burkert & Bodenheimer 1993).

6.8 Mean-Field Dynamos with Strong Halo Turbulence

Rohde & Elstner (1998) used models with strong halo (‘high-z’) turbulence to construct non-
linear dynamos including the vertical magnetohydrostatic equilibrium of Eq. (6.10) in order to
derive the turbulence parameters. All the coefficient functions in the turbulent EMF are con-
sistently computed from the same turbulence model, which includes both density stratification
and turbulence intensity stratification.

In the equation of the vertical equilibrium there is also the turbulent pressure, which itself
is influenced by the induced magnetic fields. The back-reaction of the generated magnetic
field on the turbulence pressure is involved in a general theory of the magnetic influence on
the Reynolds stress (Moffatt 1966, Rüdiger 1974, Rädler 1974, Roberts & Soward 1975). For
isotropic turbulence it can be summarized in the general formulation

Qij = 〈u2
0〉

(
ψ(β)δij + ψ1(β)

B̄iB̄j

B̄2

)
, (6.42)

with

ψ =
1

8β2

(
β2 − 1
β2 + 1

+
β2 + 1

β
tan−1 β

)
, ψ1 =

1
8β2

(
β2 + 3
β2 + 1

+
β2 − 3

β
tan−1 β

)
.

For the vertical intensity one has 〈u′2
z 〉 = 〈u2

0〉
(
ψ + ψ1B̄

2
z/B̄2

)
. This effect must be included

in the simulations when the vertical stratification alone may yield the turbulence-induced mag-
netic feedback. This is done in the nonlinear axisymmetric dynamo model of Rüdiger &
Schultz (1997).

For strong fields the functions ψ and ψ1 vary as 1/β, so that for a vertically imposed
magnetic field

〈u′2
‖ 〉 � 2〈u′2

⊥〉 �
u2

T

8β
(6.43)

results. The turbulent velocity parallel to the magnetic field then exceeds the perpendicular
component by a factor of 2. The magnetic quenching of all the turbulence intensities scales as
1/β. In Fig. 10 of Ossendrijver, Stix & Brandenburg (2001) the quenching of the turbulence
intensities for a vertical magnetic field with β = 1 is indeed of this order. With the original
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quenching expressions in Rüdiger (1974) one can show that in the high-conductivity limit no
such catastrophic quenching exists for the turbulence intensity as it might exist for the α-effect
and the magnetic eddy diffusivity (see Sect. 4.3.1).

6.8.1 Nonlinear 2D Dynamo Model with Magnetic Supported Vertical
Stratification

If only the density stratification produces the α-tensor, it takes the form

αij = −α
(ρ)
ij

d log ρ

dz
u2

T τcorr, (6.44)

with

α
(ρ)
ij = cα


 2

5Ω∗ψ̃ −Ubuo 0
Ubuo 2

5Ω∗ψ̃ 0
0 0 −4

5Ω∗ψ̃z,


 , (6.45)

where ψ̃ =
(
Ψ + (15/8)Ψ1B̄

2
z/B̄2

)
and ψ̃z =

(
Ψz − (15/16)Ψ1B̄

2
z/B̄2

)
. The α-quenching

functions as well as the magnetic-advection velocity are taken from Eqs. (4.25) and (4.42),
with Ψz = −Ψ/2 + 3Ψ2/4 + 3Ψ3/4.

The turnover radius s0 is fixed to 2 kpc. The turbulence is assumed to be homogeneous in
space, so 〈u2

0〉 = const. and τcorr = const., so only these two free parameters remain in the
model. All other terms in the turbulent EMF are computed, the density profile included.

No Turbulence-Quenching

Dobler, Poezd & Shukurov (1996) formulated the question whether the 2D disk-dynamo
model also saturates without any turbulence-quenching mechanism. The idea is to check
whether the system is able to adjust itself without any magnetic influence upon the microscale.
We find that the magnetic field flattens the vertical density profile so that the α-effect is re-
duced, and indeed a balance finally arises. The main question concerns the magnitude of the
induced magnetic field. The equipartition value no longer occurs in the equations. The results
of the calculations are given in Table 6.7. Only quadrupolar fields are excited. Stable solu-
tions were not found for all parameters. For high turbulence intensities the magnetic fields are
oscillatory.

Table 6.7: Characteristic magnetic fields for dynamo models with density profiles derived from the
vertical stratification. Turbulence-quenching is completely ignored. cα = 0.1.

τcorr [Myr] uT = 10 km/s uT = 20 km/s

10 27 µG 17 µG
20 unstable 15 µG

The fields are stronger (by a factor of 5) if α-quenching is absent. Hence, a system without
microquenching appears to provide magnetic fields that are too strong. Nevertheless, by ad-
justing its structure the system is able to limit the magnetic field growth. The resulting density
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profiles, however, are extremely flat and far from realistic (Fig. 6.26). For strong fields it is
thus not reasonable to ignore the magnetic influence upon the structure and evolution of the
considered object.

Full Magnetic Feedback

The complete system is highly nonlinear. The magnetic influence in Eq. (6.10) is now two-
fold: magnetic pressure and magnetic quenching of the turbulence pressure. The only fixed
quantity remains the eddy diffusivity.

The results are presented in Table 6.8. All the various models produce nearly the same
amplitude of the magnetic field of <∼ 10 µG. Figure 6.26 shows that the galactic disk becomes
flatter as a result of the dynamo action. The models prove to be rather insensitive to variation
of the free parameter cα. Increasing this number from 0.1 to 1 increases the amplitude of
the field only by a factor of 2 or 3. For cα = 1 the computed magnetic amplitudes agree
with the observations (Table 6.8). The outer domain with s > s0 is always in an almost
stationary regime. In order to find the influence of the vertical stratification on the dynamo
model it is necessary to compare the numbers of Table 6.8 with numbers for a model with
pure α-quenching (same table, last two columns). They are quite characteristic of traditional
dynamo models. The strength of the α-effect compared with the differential rotation grows
both with the turbulence intensity and the correlation time. For correlation times of 20 Myr
or more there are always oscillating parts in the magnetic field distributions. The equatorial
parity remains quadrupolar.

Table 6.8: Magnetic fields in µG for dynamo models with extra magnetic influence on the turbulence
pressure. In the last two columns values are given for a reference model with local α-quenching as the
only nonlinearity. cα = 1, ∼ indicates oscillating modes.

τcorr [Myr] uT = 10 km/s uT = 20 km/s uT = 10 km/s uT = 20 km/s

10 7.1 9.4 13 17
20 7.0(∼) 8.8(∼) 13 16(∼)

The results of the simulations are rather clear. The maximal amplitudes of the magnetic
fields are, with ≤ 10 µG, close to the observations. The fields are stationary for short correla-
tion times (≤ 10 Myr), and they have a time-dependent character for longer correlation times.
It is also no problem to produce the observed magnetic amplitudes in timescales < 2 Gyr with
only a few basic assumptions.

6.8.2 Nonlinear 3D Dynamo Models for Spiral Galaxies

Baryshnikova et al. (1987), Mestel & Subramanian (1991), Panesar & Nelson (1992), Moss
(1996) and Hanasz & Lesch (1997) considered the question whether the dynamo theory
for galaxies can also provide nonaxisymmetric magnetic modes (BSS). Baryshnikova et al.
worked with an axisymmetric flow field, while Mestel & Subramanian took the α-effect, but
not the eddy diffusivity, to depend on azimuth. In the first case the answer is clear: With an
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Figure 6.26: The vertical density stratification from Eq. (6.10) without (solid) and with (dashed) mag-
netic field (gray). Turbulence intensity 10 km/s, correlation time 10 Myr. Left: No magnetic influence
on the turbulence. Right: Full magnetic feedback.

isotropic α-effect the axisymmetric magnetic field is always the mode with the lowest dynamo
number. With anisotropic α-effect one can find S1 modes preferred, but only if the rigidly ro-
tating inner core of the galaxy is unrealistically large, or the disk is very thin (Rüdiger, Elstner
& Schultz 1993, their Fig. 3).

Studies of the consequences of azimuth-dependent turbulent EMF are much more chal-
lenging, as the various m-modes are then coupling. Two sorts of solutions exist, i.e. a series
of the even m-modes and a series of the odd m-modes. In the model of Rohde & Elstner
(1998) the radius of the galaxy Rmax = 7.5 kpc, the rigidly rotating core extends out to 2 kpc,
and V = 100 km/s. In order to take into account the influence of the spiral arms in density and
diffusivity the spiral profile in Eq. (6.2) is used for the density as well as for the turbulence
intensity. Ωp is the angular pattern speed of the m = 2 spiral, and is set to 13 Gyr−1 in all
calculations. The pitch angle of the gaseous spirals is taken as 25◦.

With the given density stratification we take Eq. (6.10) to calculate the turbulence inten-
sity. The midplane turbulent velocity is 10 km/s. The resulting vertical profile of the turbulent
velocity is characterized by a saturation of the high-z velocities of about 40 km/s. The correla-
tion time is now considered as a free parameter, which is shown to control the dynamo regime.
A mixed seed field is used, having P = 0.5 (see Eq. (4.101)) and ε0 = 0.5 (see Eq. (6.35)).

The dynamo models with small correlation times (τcorr = 30 Myr) lead to steady S0 so-
lutions (Fig. 6.27). The growth time of the magnetic instability is about 1.5 to 2 Gyr. The
magnetic pitch angle varies from 10◦ between the spiral arms to 30◦ within them. The field
strength shows a strong concentration between the arms, in agreement with Hanasz & Lesch
(1997), but in contrast to the results of Panesar & Nelson (1992), where the field lines con-
centrate within the spiral arms. In the latter model only the density is assumed to be nonax-
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Figure 6.27: Magnetic field geometry for models with nonaxisymmetric α-effect. Left: τcorr = 30 Myr
(after 3.3 Gyr). Right: τcorr = 100 Myr (after 2.0 Gyr). The optical spiral arms are shown in light gray.

isymmetric, which by the nonlinear quenching automatically leads to nonaxisymmetry of the
α-effect. The diffusivity dissipates the field more intensively in the spiral arms. For larger
correlation times (50 Myr, not shown) the solutions are much more complicated: The mag-
netic field in the inner part of the galaxy now has a nonaxisymmetric structure (the α-effect
is anisotropic), drifting with a period of about 4 Gyr. In the outer parts a steady S0 field is
excited. The magnetic pitch angle varies between 60◦ in the spirals and 20◦ between them.

For very large correlation time (100 Myr) the type of dynamo changes completely. This
model leads to an S1 dynamo solution, where the magnetic field is clearly concentrated within
the spiral arms (Fig. 6.27). The solution is oscillatory, and the magnetic pitch angle thus varies
in time. The growth time in this model is extremely short. This very striking behavior is due
to the strong α-effect, which works mostly in the spiral arms where the turbulent velocity is
assumed to be large.

The dynamo model shows a great variety of solutions, even though it depends on only one
free parameter. For short correlation times axisymmetric and steady solutions are found, of
even parity (‘quadrupoles’) and concentrating the magnetic field between the spiral arms. For
longer correlation times the field becomes nonaxisymmetric and oscillatory, still with even
parity, but with the fields concentrated within the spiral arms. In both cases the pitch angles
are so large that they could never be produced by a simple αΩ-dynamo.

6.9 New Simulations: Macroscale and Microscale

Dynamo theory is the search for self-excitation of magnetic fields for a given flow system,
which often in astrophysics is a combination of large-scale and small-scale flow fields. For
spiral galaxies the global flow system is controlled by the density wave theory. In order to
understand the large-scale magnetic features of galactic fields one needs a detailed knowledge
of the global flow system. The use of the analytical density wave theory that originally was
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developed for stellar disks only, has obvious strong defects. As it is a linear theory, the ampli-
tude of the velocity field remains undetermined. On the other hand, all information about the
vertical structures and vertical shears is lost; within the short-wave approximation the same
holds for the azimuthal structures. A promising step toward better understanding is thus to use
nonlinear, high-resolution numerical simulations. There are two possibilities. In the first the
hydrodynamic flow ū is derived with N -body simulations, and a code to solve the dynamo
equation is then added. However, the resolution is not sufficient to obtain the small-scale mo-
tions, so that the turbulent EMF in the induction equation must still be parameterized in the
traditional way, Eq. (4.7). The other possibility consists in the numerical simulation of the
microscale, i.e. the theory of the interstellar matter under the influence of the basic rotation.
Here we present the results regarding the α-effect in turbulence driven by SN explosions or
networked explosions of many SN, also called a superbubble (SB, Fig. 6.11). The consequent
question whether an ensemble of SN explosions is able to drive a dynamo is still open (see
Korpi et al. 1999b).

6.9.1 Particle-Hydrodynamics for the Macroscale

Moss, Rautiainen & Salo (1999) and Elstner et al. (2000) simulated the large-scale flows of
the interstellar gas with N -body codes. The galactic disk consists of collisionless stars and
gaseous clouds moving in the gravitational potential of the stellar population. The whole
system is embedded in an extra potential of the bulge and the dark matter halo (Otmianowska-
Mazur et al. 1997). Collisions between clouds are highly inelastic and are accompanied by
energy dissipation (‘sticky particles’). The large-scale motions of the molecular gas are rota-
tion, bar shocks and density-wave flows. The nonlinear feedback of the magnetic field upon
the gas, however, is assumed to damp only the α-effect and the turbulent diffusion. The global
galactic flow pattern itself remains unaffected by any magnetic feedback. The input parame-
ters are those of Table 6.9. A total of 38,000 stellar particles and 19,000 gaseous clouds were
used. The dynamo equation (4.5) is numerically solved with the flow field ū from the particle
code. From the α-tensor only the diagonal components are used. The distribution of the α-
coefficient in z is approximated by a sine-profile. The α-components αss and αφφ are taken
as 10 km/s and αzz = −20 km/s. The α-effect is magnetically quenched as in Eq. (4.44).

Table 6.9: Input parameters for the spiral galaxy model of Elstner et al. (2000).

dark-halo disk gas bulge

mass [1010 M�] 9.6 6.0 0.8 6.0
scale length [kpc] 15.0 6.0 12.0 1.6

The magnetic diffusivity is assumed to be due to turbulent motions in the interstellar gas.
If cloud collisions dominate, the turbulent diffusion is determined by the velocity dispersion
uT of the gas clouds, of order 10 km/s. With the standard cloud lifetime of 10 Myr this leads
to a turbulent diffusion coefficient of about 5 · 1026 cm2/s. The enhancement of the small-
scale turbulent motions in spiral arms is included by scaling the turbulent diffusivity with the
density of the gas, which can be directly obtained from the simulation, and which leads to a



6.9 New Simulations: Macroscale and Microscale 257

Figure 6.28: Time
evolution (in Gyr) of the
magnetic energy for the
density-wave model, the
reference model without
spirals (dotted) and an
artificial density-wave
model without α-effect
(dashed).

factor of 800 (!) for the peak-to-peak variation. In this way the model simulates the effects of
density waves and the enhanced turbulent diffusion in spiral arms.

Figure 6.28 illustrates the time evolution of the total magnetic energy normalized to its
initial value, compared with a reference model (without spirals) and a simulation without any
α-effect. Without α-effect the magnetic energy decreases during the whole simulation time
of several galactic rotations. The complete 3D large-scale flow system without α-effect does
not provide magnetic field amplification! With α-effect, however, field amplification exists
with or without density waves. The density waves thus have relatively little influence on the
dynamo action. Note that the amplification of the magnetic field after several rotation periods
(∼1 Gyr) only amounts to a factor of 10.

In Fig. 6.29 (top) the magnetic field vectors and the gas density in the galactic plane after
t = 0.4 Gyr are shown. The initial field was axisymmetric. The reference model without spi-
rals represents the well-known S0 solution with a small pitch angle. If, on the other hand, the
dissipation varies with the azimuth-dependent density, the magnetic field becomes enhanced
between the optical arms. An increased turbulent diffusion in the star-forming spiral arms
apparently advects the magnetic field into the interarm region. This is the main result of the
calculations.

The magnetic field configuration one galactic rotation later is also shown (Fig. 6.29, bot-
tom). With the density wave magnetic spiral arms again develop, but now within the gas arms.
The magnetic arms become even longer than for t = 0.4 Gyr, extending to the outer disk
where the gaseous arms are no longer visible. The high arm/interarm contrast of the field
amplitude in the model nearly disappears. In all the models the magnetic arms drift into the
interarm areas. The drift is slow though. There is not yet any indication of resonance between
the magnetic drift and the density wave. Due to the radial outflow in the arms the pitch an-
gle remains large, independent of the value of the eddy diffusivity (Otmianowska-Mazur et
al. 2002).
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Figure 6.29: Left: Magnetic field vectors in the galactic plane overlaid upon the grayplot of the gas
density after 0.4 Gyr (top) and after 0.65 Gyr (bottom). Right: The same for the reference model without
spirals. From Elstner et al. (2000).

6.9.2 MHD for the Microscale

Ziegler (1996) numerically simulated SN explosions in the galactic disk (Fig. 6.30) and also
calculated all components of the α-tensor for a random ensemble of explosions. Only iso-
lated explosions under the influence of the galactic differential rotation have been simulated.
From the time-dependent 3D MHD simulations the turbulent EMF is calculated and then av-
eraged over an empirical SN distribution function to derive the α-tensor for a whole sample
of explosions.
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Figure 6.30: SN explosions under the influence of vertical magnetic fields at two different timesteps.
Top: Weak magnetic field (2.5 µG). Bottom: Strong magnetic field (10 µG). From Ziegler (1996).

An empirical SN rate per unit volume, Φ(x), is introduced (see Kaisig, Rüdiger & Yorke
1993), implying that the evolution of every remnant is independent of the others. The spatial
distribution of SN shows a strong dependence on z, but varies only slowly with radius. Φ is
thus assumed to be a function of z alone. The total EMF is then

E(z, t) =

τcorr∫
0

z0∫
−z0

∫
A′

Φ(z′ − z)E∗(x′, t′) dz′ dt′ dA′, (6.46)

where the third integral is to be taken over areas given by z′ = const. That is, E is simply the
convolution of the EMF of one basic explosion and the distribution function of the SN. Since
E∗ is known from the simulations, the integrals can be evaluated. In all runs the interstellar
medium is regarded as isothermal, with a uniform density of 10−24 g/cm3 and a temperature
of 5000 K, and the explosive energy release is 1051 erg. The uniform initial magnetic field is
parallel to the coordinate axes. Figure 6.31 shows the results. The α-effect is weak and highly
anisotropic. The results of only a few meters per second generally confirm the early analytical
findings of Ferrière (1992a,b). The exact values of the amplitudes depend strongly on the
scale height of the SN distribution. They vanish for very large scale heights. In the upper disk
layer the αφφ is positive and the αzz is negative. The off-diagonal component αsφ exceeds the
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Figure 6.31: The α-
effect on the upper disk
plane for an ensemble
of isolated SN explo-
sions which are verti-
cally distributed with a
scale height of 90 pc:
αφφ (5 m/s), αzz(−2
m/s), the advection ve-
locity goes upwards and
reaches 200 m/s (Ziegler
1996).

diagonal elements by two orders of magnitude (Fig. 6.31). However, the pitch angle statistics
requires a strong α-effect, and such a large escape velocity suppresses the dynamo action.

Ferrière (1996) suggested consideration of ensembles of 100–1000 SN explosions in clus-
ters of OB stars10. The filling factor of the forcing is then reduced to values of (say) 0.2–0.4,
but the correlation time is increased by a factor of 10 (see Eq. (6.8) for the consequences).

Korpi (1999) provides a detailed discussion of the filling factors of the warm (104 K) and
hot (106 K) component of the ISM. However, the main consequence for the α-effect compu-
tation is the increase of the correlation time to 30 Myr. This important aspect is confirmed
by the simulations of the interstellar turbulence with a local 3D MHD code including shear,
SN heating and radiative cooling. The dynamics of the SN-regulated ISM is used to find the
α-effect of the interstellar turbulence. The basic difference from former calculations is that
the SN-created superstructures can interact in the model. A greatly enhanced α-effect of sev-
eral km/s is the consequence (Fig. 6.32). The nonlocal character of the SN-driven turbulence
seems indeed to resolve the contradiction between the strong α-effect in Sect. 6.3.2 and the
weak α-effect that results from isolated SN-explosions.

Figure 6.30 shows two explosions under the influence of magnetic fields up to 10 µG. The
shape of the explosions is strongly influenced by the magnetic field, and, as the field is frozen
into the flow pattern, the components of the magnetic field are also strongly modified. The
flows perpendicular to the magnetic field are damped.

MHD simulations of SN explosions also allow one to study the quenching of α. Ziegler
(1996) derived the quenched coefficients αφφ, αzz and αφs from the magnetically influenced
flow pattern, and the magnetic fields of a single SN explosion and a vertically stratified en-
semble of SN explosions. The stronger the field the smaller the α-effect. The αφφ-component
is much more strongly quenched in comparison to αφs. For strong fields αφφ scales as B̄−3,
while the quenching of the advection velocity only scales as B̄−2. For both cases the best fit
resulted for Beq � 4.5 µG. While the dependence B̄−3 is known from quasilinear (SOCA)
calculations (Moffatt 1972, Rüdiger 1974, Gilbert & Sulem 1990), the weak feedback of the
magnetic field onto the advection velocity αφs is a surprise. It leads to the puzzling situa-
tion that under the influence of a mean magnetic field of order of the equipartition value the
diamagnetic advection term basically dominates the α-effect, so that the dynamo may easily

10 Korpi et al. (1999) mainly consider N = 50
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Figure 6.32: The αφφ for an ensemble of coherent SN explosions. Left: upper disk plane. Right: lower
disk plane. The α-effect is the slope of the averaged lines. It is positive (negative) on the upper (lower)
disk plane. Courtesy M. Korpi.

disappear. Perhaps here as well though the situation changes if more coherent structures are
taken into account.

6.10 MRI in Galaxies

The question arises whether the MRI also exists in galaxies, with their differential rotation
given by Eq. (5.68) and their aspect ratio s0/H � 5. See in Fig. 5.10 (left) the line with
q = 1. The maximal amplitude of the vertical magnetic field is given on the right-hand branch
in Fig. 5.10 (left), and according to Eq. (5.78) yields B � √

µ0ρ cac, with cac � ΩH . With
the characteristic values Ω = 10−15 s−1 and ρ = 10−24 g/cm3 one finds

B <∼ 1 µG
H

100 pc
. (6.47)

Sellwood & Balbus (1999) concluded from this that up to amplitudes of a few µG galaxies
might be MRI-unstable. If so, the existence of interstellar turbulence can be explained with-
out any stellar activity or SN explosions – in other words, stellar winds and SN explosions
merely perturb the MRI. This idea agrees with the observations of the HI disk in NGC 1058,
with its uniform distribution of interstellar turbulence without any star formation activity. In
NGC 4414 (Fig. 6.1) one also finds ordered, large-scale magnetic fields without strong star
formation activity.

A linear, global MRI model may clarify the situation. This is presented in Sect. 5.5.2
as the disk model of Kitchatinov & Mazur (1997) for q = 1, but now the magnetic Prandtl
number must be much larger than unity due to the high values of the microscopic viscosity
in galaxies (ν ∼ 1018 cm2/s, η ∼ 107 cm2/s, see Kulsrud & Anderson 1992). The neutral
stability lines for Pm <∼ 104 are given in Fig. 6.33 (left). As the real value of Pm for galaxies
is much higher still, the results of the computations can only be used as the basis for a scaling
procedure. From the computations Kitchatinov & Rüdiger (2004) find that

• the strong-field branch leads to Ω0H/VA � 2.4,
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Figure 6.33: Left: Stability map for a galactic rotation law under the influence of a vertical magnetic
field with the Hartman number Ha and for high magnetic Prandtl numbers. Right: The growth rates in
units of the rotation time of the rigidly rotating core. (Kitchatinov & Rüdiger 2004).

• for large Pm the minima in Fig. 6.33 (left) converge to Ω0H
2/
√

νη � 8 (galactic rotation
is fast enough to fulfill this necessary condition),

• the minima for quadrupolar parity are smaller than for dipolar parity.

For the minimum magnetic field for which MRI is possible at all, Fig. 6.33 (left) leads to the
condition

Ha∗ =
√

Pm Ha = 1.7 (6.48)

for the Lundquist number Ha∗ = VAH/η, also for large Pm. According to these results, and
with the given microscopic viscosities, the minimum magnetic field for which the MRI starts
is

Bmin � 10−25G. (6.49)

Sigl, Olinto & Jedamzik (1997) estimate the primordial magnetic field as up to 10−20G on
a (comoving) scale of 10 Mpc. Much higher magnetic amplitudes for cosmological fields
are reported by Widrow (2002). Banerjee & Jedamzik (2003) present numerical models for
the magnetic field evolution from the cosmic past to the present. They favor the surprisingly
large cluster fields as of primordial origin. So far we do not finally know whether large-scale
cosmological magnetic fields existed.

In Fig. 6.33 (right) the growth rates for Rm = 1000
√

Pm are given in units of the rotation
time. Between the left- and right-hand branches the growth time always, for all magnetic
Prandtl numbers, equals the rotation time. For a rotation time of 70 Myr the amplification
factor after 1 Gyr is thus 106. That is, in 1 Gyr the MRI can amplify a seed field of 10−12 G
to 1 µG. Note though that if τrot � 90 Myr then after (say) 500 Myr the amplification factor
is only 100.

Nonlinear simulations of Dziourkevitch, Elstner & Rüdiger (2004) indeed indicate the
occurrence of flow and field fluctuations due to MRI for runs with uniform density. The values



6.10 MRI in Galaxies 263

Figure 6.34: Left: The turbulent intensity uT has a minimum at the disk midplane. The same holds
for uz (dashed). Right: Fourier spectrum of the magnetic field components (Bz solid, Bφ dashed, Bs

dotted).

are given in Table 6.10. The initial field varies by a factor of 4. The typical wavelength λ of
the disturbance and the resulting turbulence intensity uT also grow with the magnetic field,
but not by the same factor. It appears to be no problem to produce the observed values – also
for the turbulence intensity of a few km/s. For too high initial vertical field (e.g. Bz > 7 µG)
the disk proves to be stable.

Bz [µG] λ [pc] uT [km/s] BT [µG]

0.11 130 2.3 1.0
0.44 400 17 4.3

Table 6.10: Two models with uniform den-
sity (ρ = 5 · 10−25 g/cm3) and identical
rotation laws.

The Fourier spectrum of the magnetic fluctuations is given in Fig. 6.34, which leads to
the critical wavelengths in Table 6.10. The slope of the spectrum is much steeper than a
Kolmogorov spectrum.

The model is then improved with the density stratification of Dickey & Lockman (1990)
with a higher equatorial density of 10−24 g/cm3. The initial vertical field for all models is
0.32 µG. The magnetic energy is found to grow with the timescale τ . The results of two
model runs are given in Table 6.11. The turbulence intensity uT is of order 4 km/s, and the
characteristic amplitude of the magnetic fluctuations is 1 µG. The instability is very fast; its
growth time (for magnetic energy) is only 20–40 Myr. The last two columns of Table 6.11
reveal the instability to be magnetically dominated. The magnetic energy exceeds the kinetic
energy by a factor of 4, and the Maxwell stress exceeds the Reynolds stress by a factor of 50–
100. The angular momentum transport is thus dominated by the magnetic-field fluctuations.
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Figure 6.35: Density fluc-
tuations (maximum dark,
minimum white) and mag-
netic field vectors. Averaged
over the entire disk the pitch
angle is about 30◦. The
turnover to differential rota-
tion is at 2 kpc. Courtesy N.
Dziourkevitch.

Table 6.11: The same as in Table 6.10, but for density-stratified models with different rotation laws. The
last column gives the ratio of Maxwell to Reynolds stresses B0 = 0.32 µG, see Dziourkevitch, Elstner
& Rüdiger (2004).

s0 [kpc] V [km/s] uT [km/s] BT [µG] τ [Myr] Emag/Ekin MS/RS

2.3 172 5.8 1.4 43 3.8 120
2.0 200 7.8 2.0 30 3.5 452

Figure 6.35 shows the density fluctuations and the magnetic field vectors. In the ring-
like cells the Maxwell stress B′

s · B′
φ is always negative, so that the angular momentum is

transported outwards. The averaged pitch angle is about −30◦.



7 Neutron Star Magnetism

7.1 Introduction

When a sufficiently massive star explodes in a SN at the end of its lifetime, the outermost
layers are blown off into space (where the turbulence they produce in the interstellar medium
may play a role in generating the galactic magnetic field, as discussed in Chapt. 6). In contrast,
the core collapses to form a neutron star, in which some 1.3–1.4 solar masses are compacted
into an object no more than 20 km across (Shapiro & Teukolsky 1983). Neutron stars are thus
the densest objects known (excluding of course black holes, for which density is not properly
defined at all).

Besides having the greatest densities, neutron stars also have the strongest magnetic fields,
with field strengths of around 108−9 G for millisecond pulsars, 1011−13 G for ‘classical’ radio
and X-ray pulsars, and perhaps as much as 1014−15 G for the so-called magnetars. See for
example Lyne (2000), Thompson (2000) or Reisenegger (2001) for recent reviews of some of
the observational data.

Another interesting feature of these objects is the correlation between field strength and
age, with magnetars and classical pulsars relatively young, 103−7 yr old, but millisecond
pulsars much older, 108−10 yr old. The most plausible explanation for this is that all neutron
stars start out with relatively strong fields, which then gradually decay away. This in turn
raises two questions, namely (i) what is the origin of these very strong initial fields, and (ii)
what is the mechanism responsible for the subsequent decay.

Regarding the origin of these fields, Thompson & Duncan (1993) and Bonanno, Rezzolla
& Urpin (2003) consider the possibility of dynamo action, either in the very early stages of
the neutron star itself, or else in the late stages of the precursor. Another possibility is the so-
called thermoelectric effect (Blandford, Applegate & Hernquist 1983, Wiebicke & Geppert
1996), whereby temperature gradients (which are enormous in the first few thousand years of
the neutron star’s life) act as a battery, generating substantial fields. We note though that even
fields as large as 1015 G do not require any dynamo or battery effects, but may have been
amplified by nothing more exotic than simple compression of the precursor’s magnetic field.
In particular, Reisenegger (2001) points out that the most strongly magnetized neutron stars,
White dwarfs (WDs) and MS stars all have astonishingly similar magnetic fluxes Φ = πR2B,
despite the fact that R varies by five orders of magnitude, and B by ten.

We will therefore not consider the origin of these fields further, but turn instead to our
second question, namely what causes them to decay with age. There are again a number of
possibilities. One suggestion is that accretion of mass from a binary companion is somehow
responsible. What motivates this suggestion is the additional observation that the field strength
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is correlated not only with age, but also with whether or not the neutron star has a compan-
ion. In particular, most weakly magnetic neutron stars have companions, whereas very few
strongly magnetic ones do (e.g. Bhattacharya 1995). Furthermore, there are indeed a variety
of mechanisms whereby accretion could plausibly cause field decay; see for example Blondin
& Freese (1986), Romani (1990), or Urpin & Geppert (1995).

There is (at least) one difficulty with this field decay via accretion hypothesis though,
namely why do all millisecond pulsars end up with field strengths in the relatively narrow
range 108−9 G? That is, if this process is so efficient that it can reduce the field by some four
to five orders of magnitude, why should it suddenly – and consistently – stop once the field
reaches 108−9 G? We are motivated therefore to look for alternative mechanisms, and ideally
mechanisms that naturally switch off once the field strength drops below a certain level.

The most plausible alternative, first proposed by Jones (1988), is the Hall effect, in which
the magnetic field influences itself through a quadratic nonlinearity. As a result, the timescale
on which it acts is inversely proportional to the field strength; Jones suggests it is given by

τ ∼ 107

B12
yr, (7.1)

where B12 is the field strength in units of 1012 G. See also Goldreich & Reisenegger (1992),
who obtain a similar estimate. With this timescale, the observed correlation between field
strength and age follows quite naturally: 1015 G fields would decay on 104-yr timescales,
which is sufficiently short that there should indeed be very few such magnetars, whereas 1012

G fields would decay on 107-yr timescales, long enough for many more pulsars to be found in
this evolutionary phase. And finally, once the field strength drops below 109 G the timescale
becomes 1010 yr, at which point Ohmic decay becomes the dominant effect. We see therefore
that this mechanism of field decay via Hall drift fits the observations rather well, potentially
explaining not only the relative scarcity of magnetars, but also why the fields of millisecond
pulsars do not continue to decay at the very rapid rates found earlier.

As elegant as it is, there is also one slight difficulty with this theory, namely that the Hall
effect conserves magnetic energy (as we will see below), and so by itself cannot cause any
field decay at all. Goldreich & Reisenegger (1992) suggested instead that it would induce a
cascade of magnetic energy to ever shorter lengthscales, at which point Ohmic decay would
take over.

7.2 Equations

As derived by Goldreich & Reisenegger (see also Sect. 5.4), the equation governing the evo-
lution of a magnetic field under the influence of Hall drift and Ohmic decay is Eq. (5.34) with
β = c/4πnee. Dimensional analysis then yields

B0

τ
∼ c

4πnee

B2
0

L2
=⇒ τ ∼ 4πneeL

2

cB0
(7.2)

as the natural timescale τ associated with Hall drift, where B0 is a typical field strength, and
L a typical lengthscale. This estimate, Eq. (7.1), thus amounts to nothing more complicated
than inserting particular numbers into this result obtained purely by dimensional analysis.
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Note though that the number density ne varies by several orders of magnitude over the depth
of the crust. It is therefore misleading to talk about a single Hall timescale; there is rather a
range of timescales, perhaps 105−9/B12 yr. In Sect. 7.4 we will also see some less obvious
consequences of variations in ne.

Nondimensionalizing the field by B0, length by the star’s radius R, and time by the par-
ticular Hall timescale 4πne(R)eR2/cB0, the governing equation becomes

∂B

∂t
= −∇× (

f(x)(∇× B) × B
)

+ RB
−1 ∆B, (7.3)

where

f(x) =
ne(R)
ne(x)

(7.4)

encapsulates the density profile, and

RB =
σB0

ne(R)ec
(7.5)

is the Hall parameter. One useful physical interpretation to associate with RB is the ratio of
the Ohmic timescale 4πσR2/c2 to this Hall timescale τ . Based on the values given above,
that the Ohmic timescale is 1010 yr, whereas the Hall timescale is ∼ 107−8 yr for a young
pulsar, we conclude therefore that the limit we are interested in is RB � 1 (which turns out
to be numerically very difficult). Finally, we note that we have taken the conductivity σ to be
constant in Eq. (7.3). In real neutron stars this too varies, by perhaps two or three orders of
magnitude over the depth of the crust. Because the Ohmic term in general is smaller than the
Hall term though, one might expect that neglecting variations in σ would have relatively little
effect.

We note that this Hall equation (7.3) bears certain similarities to the vorticity equation of
ordinary fluid dynamics,

∂Ω

∂t
= ∇× (

u × Ω
)

+ Re−1 ∆Ω, (7.6)

where u and Ω = ∇ × u are the velocity and vorticity, respectively, and Re the Reynolds
number. It is on the basis of these similarities that Goldreich & Reisenegger suggested that the
Hall effect would initiate a cascade to ever shorter lengthscales, analogous to the Kolmogorov
cascade in ordinary fluid turbulence. By applying arguments from turbulence theory, they
went on to suggest that the power spectrum of Hall turbulence should fall off as k−2, where k
is the wave number, and that the dissipation scale should be reached when k = O(RB).

However, there is also one crucial difference between Eq. (7.3) and Eq. (7.6). In particular,
in Eq. (7.6) the nonlinear term contains only first derivatives of Ω, whereas in Eq. (7.3) the
nonlinear term contains second derivatives of B. As a result, in Eq. (7.6) one can always be
certain that if one just goes to sufficiently short lengthscales, the diffusive term will eventually
dominate the advective term, regardless of how large Re is. In contrast, in Eq. (7.3) one can go
to arbitrarily short lengthscales, and still not be certain that the diffusive term will dominate
the Hall term, because they both scale quadratically with the wave number. This means that
the whole notion of a definite dissipation scale is much less clear in Eq. (7.3) than in Eq. (7.6).
And indeed, we will find that, in general, there does not seem to be a definite dissipation scale
associated with Eq. (7.3).
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Ultimately we would like to consider fully 3D solutions of Eq. (7.3). In ordinary fluid
turbulence it is known, for example, that two-dimensional results are very different from three-
dimensional ones. If this analogy between Eqs. (7.3) and (7.6) has any basis at all, one might
therefore expect the same to be true here. Unfortunately, Eq. (7.3) is such a difficult equation
to solve – precisely because of this feature that the nonlinear term has just as many derivatives
as the linear term – that even 2D solutions are quite challenging. We will therefore consider
only axisymmetric solutions here.

For such axisymmetric fields, we can decompose B into toroidal and poloidal components

B = Bt + Bp = Bêφ + ∇× (Aêφ), (7.7)

yielding

∂A

∂t
= −êφ · f[

(∇× Bt) × Bp

]
+ RB

−1∆′A, (7.8)

and
∂B

∂t
= −êφ · ∇ × f

[
(∇× Bp) × Bp + (∇× Bt) × Bt

]
+ RB

−1∆′B, (7.9)

where ∆′ = ∆ − 1/(r sin θ)2. There are then certain consequences one can deduce just from
the general structure of these equations. First, if one starts out with a purely toroidal field,
it will remain so, whereas if one starts out with a purely poloidal field, it will immediately
induce a toroidal component as well, and once both components are present each will act back
on the other. One might suppose therefore that considering purely toroidal solutions would
be a sensible further simplification. However, doing so loses an essential part of the physics:
while the term

−êφ · ∇ × f [(∇× Bt) × Bt] (7.10)

may look like it also contains two derivatives of B, if one works through the algebra one finds
that all the second derivative terms exactly cancel. This property that the Hall term has just as
many derivatives as the Ohmic term is therefore associated entirely with the poloidal field.

It is of interest also to consider some of the symmetries associated with Eqs. (7.8) and
(7.9). For example, the original equation (7.3) is clearly not invariant under B → −B. If
one considers Eqs. (7.8) and (7.9) though, one finds easily enough that it is only the sign of
B that matters; since A appears as purely odd powers in Eq. (7.8) and as purely even powers
in Eq. (7.9), its sign does not matter. Another symmetry worth mentioning is the equatorial
symmetry, particularly as this is somewhat different from that usually encountered in stellar
dynamos. One finds that solutions exist having A either symmetric or antisymmetric, but with
B antisymmetric in both cases. In contrast, in stellar dynamo models the parity of B would
also change, always being the opposite of A’s (as in Chapt. 4). We can see easily enough
though that this cannot be the case here, by noting this same property of Eqs. (7.8) and (7.9)
already used above, that A enters as odd powers in Eq. (7.8), and as even powers in Eq. (7.9).
Therefore, if either pure parity is allowed for A at all, the opposite one must also be allowed,
but with B having the same parity in both cases.

Turning next to the boundary conditions associated with Eqs. (7.8) and (7.9), at x = 1 we
have simply( d

dx
+

l + 1
x

)
A = 0, B = 0 at x = 1, (7.11)
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matching the poloidal field to an external potential field, and the toroidal field to zero. Note
also how the condition on A involves the spherical harmonic degree l; since the numerical
solution (Hollerbach 2000) involves spherical harmonics anyway, this causes no problems.

The boundary conditions at xin, the inner edge of the crust, are not quite so straightfor-
ward, and depend on what assumptions we make about the core, about which little is known
for certain. See for example Shapiro & Teukolsky (1983) for a discussion of various con-
jectures regarding the internal structure of neutron stars. However, one common assumption
(e.g. Bhattacharya & Datta 1996) is that it is superconducting, in which case the magnetic
field will be expelled from it. The boundary conditions are then that the normal component of
the magnetic field and the tangential components of the associated electric field must vanish,
which yield

A = 0,
f

x sin θ

∂

∂θ

(
B sin θ

)
B + RB

−1 1
x

∂

∂x

(
Bx

)
= 0 at x = xin, (7.12)

respectively. At this point we realize also that stratified and unstratified calculations will
require different inner boundary conditions on B. In particular, if we include density strat-
ification f(xin) is so small as to be essentially zero (indeed, the particular functional form
we will implement in Sect. 7.4 has it identically zero), yielding the much simpler condition
∂(xB)/∂x = 0. In contrast, without stratification f(xin) = 1, yielding a very complicated,
nonlinear boundary condition. We simplify this by noting that in the relevant RB � 1 limit
the second term ought to be negligible (assuming ∂B/∂x does not increase with RB, that is,
assuming that no boundary layers develop), in which case we are left with just B = 0.

Finally, we noted above that the Hall effect conserves magnetic energy. To obtain this
result, simply take the dot product of Eq. (7.3) with B, and apply various vector identities,
yielding ultimately

∂

∂t

B2

2
= −∇ · [f(J × B) × B + RB

−1 (J × B)
] − RB

−1 J2, (7.13)

where here the dimensionless current J = ∇× B. When integrated over the crust therefore,
the Hall term will contribute only surface integrals at xin and 1, whereas the diffusive term
will contribute both surface integrals and a negative-definite volume integral. The surface
integrals at xin turn out to vanish, for both the stratified and unstratified boundary conditions
(and even though the unstratified B = 0 boundary condition is only an approximation). The
surface integrals at x = 1 do not vanish, but instead turn out to be precisely what one needs to
take into account the energy contained in the external field. The final result is that

∂

∂t

1
2

∫
B2 dV = −RB

−1

∫
J2 dV, (7.14)

where the integral on the left extends over x > xin, and the one on the right over xin ≤ x ≤ 1.
This is thus the desired energy balance, stating that the total magnetic energy decreases as a
result of Ohmic decay only, with Hall drift rearranging the field, and hence also the energy, but
neither creating nor destroying it. And once again, the hypothesis put forward by Goldreich
& Reisenegger (1992) is that the Hall effect will induce sufficiently fine structures in the field
that it decays on the O(1) Hall timescale, rather than the O(RB) Ohmic timescale.
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7.3 Without Stratification

In this section we briefly summarize the results obtained by Hollerbach & Rüdiger (2002) in
the absence of stratification. In the next section we will then see some of the interesting and
unexpected effects that stratification can have. The procedure we adopt to test this Goldreich-
Reisenegger hypothesis is to start with some large-scale field and study the nature of the
subsequent decay. In particular, consider the lowest order free-decay modes, l = 1 for A and
l = 2 for B (to take advantage of this equatorial symmetry noted above). Our initial conditions
will then consist of fields of the form Bp + aBt, where the poloidal mode is normalized such
that Br(1, 0) = 1, and the toroidal such that Bmax = 1. See also Figs. 7.3 and 7.4 below.

We start with the simplest possible initial condition, namely a = 0, so just the poloidal
mode by itself. Figure 7.1 shows how the first three harmonics b1, b3 and b5 of the external
field then evolve in time, where these bl are defined by

Br(1, θ, t) =
∑

l

bl(t) Pl(cos θ). (7.15)

That is, b1 is nothing more than the coefficient of our l = 1 initial condition, etc. And indeed,
we note how b1 starts out at 1, and then slowly decays. It does not decay monotonically, but
never deviates very much from the exp(−49RB

−1 t) rate that Ohmic decay alone would have
yielded. For these runs at least, the Hall effect has not significantly enhanced the decay rate
(see Shalybkov & Urpin 1997).

Figure 7.2 shows what happens when we include some toroidal field in our initial con-
dition, so a �= 0 (and we remember that the sign of the toroidal field matters, so we have
to consider positive/negative a separately). There are two reasons for including a toroidal
component in the initial condition. First, all three of the above-mentioned mechanisms for
generating the initial condition in the first place (a dynamo, the thermoelectric effect, simple
compression of a pre-existing field) are likely to yield a considerable toroidal component, al-
most certainly at least as strong as the poloidal part. Secondly, if we return to Eq. (7.8), we
note that without a toroidal field the poloidal field would not be affected at all. A stronger
toroidal field might therefore be expected to have a greater effect. Indeed, seen in this light it
is hardly surprising that Hall drift had relatively little effect in Fig. 7.1: the maximum induced
toroidal field turns out to be no more than 0.25, so the poloidal field cannot be affected very
much.

We see in Fig. 7.2 that increasing |a| does indeed lead to increasingly large amplitudes for
b3. Otherwise we obtain much the same evolution, in particular the same rapid oscillation on
the Hall timescale, and still the same slow decay on the Ohmic timescale. Another interesting
point to note is that taking a positive or negative has relatively little effect after all; it merely
determines where in the oscillation cycle the system starts off. Figures 7.3 and 7.4 show the
full structure of the field through one of these oscillations.

Based on these results, one might expect that the solutions would exist for arbitrarily large
a (and RB), and that eventually b3 would even exceed b1 for part of the cycle. Perhaps such
solutions do exist, but we were unable to obtain them numerically. Figure 7.5 shows why;
as a is increased the spectra get flatter and flatter, until eventually the numerical resolution
fails. Increasing RB instead of a has a similar effect. The other very interesting point to note
about these spectra is that there is indeed no evidence of a dissipative cutoff. We conclude



7.4 With Stratification 271

Figure 7.1: The harmonics b1, b3 and b5 as functions of time, for the four indicated values of RB. The
solid line starting at 1 is b1, with the dashed line being the exp(−49RB

−1 t) decay rate of Ohmic decay
alone. The next largest solid line is b3, and the smallest b5.

this section then by noting that the Hall effect does seem to generate something much like
a cascade to short lengthscales, but that – in the absence of stratification at least – this does
not appear to be sufficient to enhance the decay rate significantly beyond what Ohmic decay
acting alone would have yielded.

7.4 With Stratification

From the way that this (inverse) density profile f(x) enters into Eq. (7.3), it seems clear that
including stratification will affect the Hall term in some way. The first to consider this effect
were Vainshtein, Chitre & Olinto (2000), who suggested that instead of these oscillations
found in the unstratified case, there would be a persistent motion of the field toward either the
equator or the pole (depending on the sign of B), and that it would then decay much faster
than if Ohmic decay alone were acting.

In order to understand this argument – but also some of its limitations – it is helpful to
begin by recalling the more familiar induction equation

∂B

∂t
= ∇× (u × B) + Rm−1 ∆B. (7.16)
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Figure 7.2: As in Fig. 7.1, the solid line starting at 1 is b1 as a function of time. The solid line starting
at 0 is b3. The dotted line starting at ±1 is the toroidal field at x = 0.875, θ = π/4, divided by |a|. We
see therefore that increasing a simply scales up the toroidal field, but otherwise has virtually no effect
on it, only on b3.

Comparing this with Eq. (7.3), we note that we can interpret Eq. (7.3) as if a flow u =
−f(x)∇ × B were advecting the field. A toroidal field B then corresponds to a meridional
circulation having streamfunction Ψ = f(x)Bx sin θ. Figure 7.6 shows B and Ψ first with-
out and then with stratification. Without stratification B and Ψ are identical except for this
geometrical factor x sin θ. This ‘flow’ therefore has almost no effect, since it is mostly just
advecting B around its own isolines. In contrast, with stratification B and Ψ are very different,
and we see that depending on the sign of B (and hence Ψ ) the flow will indeed be directed
toward either the equator or the pole in the bulk of the interior.

The difficulty with this argument is that it only applies to toroidal fields – and indeed
Vainshtein et al. did not allow for poloidal fields, which would have made their equations ana-
lytically intractable. If we do include poloidal fields though, the ‘flow’ we obtain corresponds
to a differential rotation, which already makes the interpretation much more difficult, particu-
larly with regard to the role that f might play. We therefore want to consider to what extent
this Vainshtein et al. mechanism continues to operate when both toroidal and poloidal fields
are present. See also Hollerbach & Rüdiger (2004), where these results are presented in more
detail.
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Figure 7.3: The structure of the poloidal field for a = 3, RB = 25, and t = 0.005, 0.01, . . . , 0.06.
The solution at t = 0.005 also illustrates the free-decay-mode initial condition, as the field has not yet
changed very much from t = 0 .

Figure 7.4: The same as in Fig. 7.3 but for the toroidal field.

Even though we are ultimately interested in mixed fields, we begin by considering purely
toroidal fields, to verify that we can reproduce the basic mechanism. Figure 7.7 shows the
results, which we see are indeed in perfect agreement with the Vainshtein et al. prediction; if B
is negative/positive in the northern/southern hemispheres, the evolution is toward the equator,
whereas if the signs are reversed it is toward the poles. In both cases very fine structures,
scaling as O(RB

−1), are then formed, in which the field reconnects sufficiently rapidly that
the energy decays on the O(1) Hall timescale rather than the O(RB) Ohmic timescale.

Figure 7.8 shows what happens when we start off with a purely poloidal initial condition.
As noted above, this will immediately induce a toroidal field as well, which turns out to be
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Figure 7.5: Power spectra of the solutions for RB = 25 and a = 1, 2 and 3, and averaged over t = 0 to
0.1 (long enough to average over roughly two of these cycles, but short enough to avoid the subsequent
decay).

negative/positive in the northern/southern hemispheres. According to Fig. 7.7, the evolution
should therefore be toward the equator. We see that this is indeed the case, but unlike in
Fig. 7.7, this time it never reaches the equator; once the poloidal field has been ‘compressed’
by a certain amount, it resists further advection of either field component. The toroidal field
still sets up a current sheet (although not quite as fine as before), but because it is away from
the equator it does not bring together fields of opposite sign, and hence does not lead to rapid
dissipation.

That is, for a purely toroidal initial condition we obtain exactly the rapid dissipation
predicted by Vainshtein et al., but for a purely poloidal initial condition we do not. To as-
sess which is more relevant to real neutron stars, we again consider initial conditions con-
taining both toroidal and poloidal fields. Figure 7.9 shows the results for the initial condi-
tion −Bt + 0.3Bp. We see that initially the poloidal field again manages to prevent the

B B

Unstratified Stratified

Figure 7.6: Left: B and Ψ = Bx sin θ without stratification. Right: B and Ψ = f(x)Bx sin θ with
stratification, where f(x) = ((x − xin)/(1 − xin))2. Note also the different inner boundary conditions
with and without stratification.
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Figure 7.7: The upper row shows how negative B advects itself toward the equator, the lower row how
positive B advects itself toward the pole. As in all these results, the solutions are antisymmetric about
the equator. RB = 200, and from left to right t = 0 (that is, the initial condition itself), 0.25, 0.5, 0.75
and 1.

Figure 7.8: The upper row shows the poloidal field, the lower the toroidal. RB = 200, and from left to
right t = 0.05, 0.1, 0.2, 0.4 and 0.8.

toroidal field from reaching the equator. Eventually, however, the toroidal field overwhelms
the poloidal – we note, for example, how the poloidal field has been almost completely anni-
hilated by t = 1 – and thereafter does manage to establish a current sheet on the equator. Not
surprisingly, the subsequent evolution is then much like the purely toroidal case, with the en-
ergy decaying on the Hall timescale. For values larger than 0.3 though, the toroidal field never
manages to overwhelm the poloidal, and the evolution is as in Fig. 7.8 rather than Fig. 7.7
(upper row).
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Figure 7.9: The upper row shows the poloidal field, the lower the toroidal. RB = 200, and from left to
right t = 0.05, 0.25, 0.5, 0.75 and 1.

Next, Fig. 7.10 shows the results for the initial condition Bt + 0.05Bp. Because the
poloidal field is so weak, the negative toroidal field induced by Bp is overwhelmed by the
positive contribution from Bt itself. We would expect the evolution to be toward the pole
therefore, as in Fig. 7.7 (lower row). And indeed, that is exactly what happens, except that
it never reaches the pole. As the poloidal field gets compressed into the polar regions, its
effect becomes enhanced, to the point where it is able to induce a small region of negative
B, which then blocks any further migration toward the pole. And as before, the details of
these fine structures are sufficiently altered that they are no longer as effective in dissipating
the field, with the result that the decay is again on the Ohmic rather than the Hall timescale.
We see therefore that even a very weak poloidal field can already be sufficient to disrupt this
Vainshtein et al. fast dissipation mechanism.

Finally, as interesting as this contrast between fast versus slow dissipation is, that between
Figs. 7.9 and 7.10 is perhaps even more remarkable. In particular, this most basic feature, that
the sign of the toroidal field in the two hemispheres dictates whether the migration (of both
field components) is toward the poles or the equator, could be quite important, for the follow-
ing reason: The strength of a pulsar’s signal is determined at least in part by how narrowly
focused its beam is, which in turn is determined by the structure of the magnetic field. So if
the field is concentrated at the poles, rather than dispersed around the equator, the signal is
also likely to be stronger. How visible a pulsar is may therefore be affected by something as
seemingly unrelated as the orientation of its internal toroidal field.

7.5 Magnetic-Dominated Heat Transport

In the preceding sections we considered the evolution of the magnetic field alone, without
regard to temperature. The two are in fact coupled though, through a variety of mechanisms
(and even after the temperature gradients are too small for the thermoelectric effect to be sig-
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Figure 7.10: The upper row shows the poloidal field, the lower the toroidal. RB = 200, and from left
to right t = 0.05, 0.25, 0.5, 0.75 and 1. The figure differs from Fig. 7.9 by the initial condition.

nificant). For example, the field will obviously affect T via Ohmic heating, particularly in
these current sheets that we saw above. Similarly, T will affect B through the temperature-
dependence of the conductivity σ. (This is in fact one of the mechanisms whereby accretion
could also cause field decay: the infalling matter heats up the surface, which reduces σ, caus-
ing the field to decay faster.)

In addition to these general theoretical considerations, there is also observational evidence
suggesting a link between B and T . X-ray emissions (0.1–10 keV) indicate an inhomoge-
neous temperature distribution on the surfaces of some neutron stars (Becker & Pavlov 2001).
The hot spots are located at the polar caps, and are quite concentrated ( <∼ 1 km), strongly
suggesting a link with the field (Geppert et al. 2003). The particular mechanism proposed
is the influence of the field on the heat flux (Schaaf 1990, Potekhin & Yakovlev 2001, Heyl
& Hernquist 2001). In particular, both heat and magnetic flux are transported mainly by the
electrons, so sufficiently strong magnetic fields will organize the heat flux preferentially along
the field lines. If the field has a generally dipolar structure, the poles will then indeed be more
strongly coupled to the hot interior than the equatorial regions.

To test whether this mechanism is sufficient, we write Fi = −ρCpχijT,j , with

χij = χ1δij + χ2BiBj , (7.17)

(compare with Eq. (3.79)). Obviously, χ1 represents the heat flux perpendicular to the field,
which we agreed should be quenched for sufficiently strong fields, so we take χ1 = χ0/(1 +
a2B2). If we similarly take χ2 = a2χ0/(1+a2B2), then the heat flux along the field remains
finite even for B → ∞. From Eq. (5.54) we have aB = ωBτ , given in Fig. 7.11 (left) as
1–1000 for 1012 G at different stages in the neutron star’s life.

For some given spatial structure of the field (see Fig. 7.11 as an example) and an appropri-
ate boundary condition for the temperature (Fr = σT 4) the heat equation can then be solved
numerically. Figure 7.11 (right) gives the results for a core temperature 106 K. We find that
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the poles are indeed always warmer than the equator. Within the crust the temperature dif-
ference between pole and equator exceeds 100%, but at the surface this value is reduced to
26%. This particular value obviously only holds for this particular field structure, but it does
already illustrate that this magnetically channeled heat flux, Eq. (7.17), can indeed have a
significant effect. It would be of considerable interest then to repeat this calculation for more
complicated field structures, such as some of those computed in the previous sections. And, of
course, ultimately one might want to include some of the other mechanisms mentioned above,
and consider the self-consistently coupled evolution of B and T together.
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Figure 7.11: Left: The magnetization parameter ae = ωBτ for various temperatures as a function of the
density. Right: Field lines and temperature distribution in the crust for a magnetic field of 3 · 1012 G.
(Geppert, Küker & Page 2004).

7.6 White Dwarfs

Five per cent of the total white dwarf population possess magnetic fields from 105 to 109 G.
Remarkably, their mean mass of 0.9 M� exceeds the mass of the nonmagnetic WDs. No other
correlation with stellar parameters is known, not even with the rotation period (which is only
known for the magnetic WDs). The shortest periods are 10 min, but much larger values are
also observed. See the reviews by Wickramasinghe & Ferrario (2000) or Schmidt (2001).

Under flux conservation the contraction of a star of 1 R� to the WD size of only 104 km
provides an amplification factor for the magnetic field of 104, so that 1 kG is amplified to 107

G. It is thus possible that the magnetic WDs are remnants of the magnetic Ap stars (Angel,
Borra & Landstreet 1981, also Moss 2003b).
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Indeed, Wickramasinghe (2001) argues that the magnetic field geometry of magnetic WDs
is as complicated as it is for Ap stars. Muslimov, van Horn & Wood (1995) discuss the
magnetic field decay of WDs under application of realistic conductivity values. Typically the
Ohmic dissipation reduces the magnetic amplitudes of a poloidal dipolar field after 1 Gyr by
a factor of (say) 2, while the higher modes decay faster (MWD = 1 M�, their Figs. 1 and 2).
The decay of the toroidal field is very similar.

However, for strong fields, of order 109 G, the magnetic evolution is also influenced by
the Hall effect. A relation

RB 	 (0.05 − 0.7)
B

109 G
(7.18)

is suggested. Hence, the consequences of the Hall effect are only important for magnetic
fields of order B > 109 G. Muslimov, van Horn & Wood (1995) only consider three magnetic
modes, which from the experience of Shalybkov & Urpin (1997) is almost certainly too low.
The reader is referred to the corresponding results of Sect. 7.3. The ‘helicoidal’ oscillations
that are characteristic for the magnetic decay under the influence of the Hall effect cannot
appear if the number of neighboring modes is too small.



8 The Magnetic Taylor–Couette Flow

8.1 History
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Figure 8.1: Left: Taylor (1923) vortices at the onset of the hydrodynamic instability. Note that the
aspect ratio of the vortices is close to unity (from Koschmieder 1993). Right: Cylinder geometry of the
magnetic Taylor–Couette flow.

The Taylor–Couette flow between concentric rotating cylinders (Fig. 8.1) is a classical prob-
lem of hydrodynamic stability (Couette 1890, Taylor 1923). For viscous flows in the absence
of any transverse pressure gradient the most general form of the rotation law in the container
is

Ω(s) = a +
b

s2
, (8.1)

where a and b are two constants related to the angular velocities Ωin and Ωout with which the
inner and the outer cylinders rotate. With Rin and Rout (Rout > Rin) being the radii of the
two cylinders, one finds the coefficients a and b

a =
µ̂ − η̂2

1 − η̂2
Ωin, b =

1 − µ̂

1 − η̂2
ΩinR2

in, (8.2)
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Figure 8.2: Chandrasekhar’s (1961) results for small gap and small Pm. Left: The influence of the
magnetic field (here Q is the Hartmann number) on the critical Taylor number. The magnetic field
suppresses the instability. Right: The same for the wave number. The magnetic field expands the flow
pattern in the vertical direction. Boundary conditions: (a) conducting walls, (b) insulating walls.

where µ̂ = Ωout/Ωin and η̂ = Rin/Rout. According to the Rayleigh criterion (5.9) the ideal
flow is stable whenever the specific angular momentum increases outwards,

µ̂ > η̂2. (8.3)

Viscosity, however, has a stabilizing effect, so that a flow with µ̂ < η̂2 becomes unstable only
if the Reynolds number of the inner rotation exceeds some critical value, or in other words, if
the inner cylinder rotates sufficiently rapidly.

If the fluid is electrically conducting and an axial magnetic field is applied then the critical
value grows with growing amplitude of the magnetic field. Figure 8.2 shows the results of
Chandrasekhar (1961) together with the experimental results of Donnelly & Ozima (1960),
working with mercury. The Reynolds numbers of these first MHD Taylor–Couette experi-
ments are also given in Fig. 8.16. These basic data were obtained for very narrow gaps and
very small magnetic Prandtl numbers. Theory and observation are in nearly perfect agreement,
but there is no indication of any magnetic-induced instability such as MRI. Ji, Goodman &
Kageyama (2001) supposed that this absence of MRI is due to the use of the small magnetic
Prandtl number limit. The magnetic Prandtl number is really very small under laboratory con-
ditions (Table 8.1). For future dynamo experiments based on MHD Taylor–Couette flows the
role of the material parameters must be known in detail. With the small-gap approximation
but with Pm as a free parameter Kurzweg (1963) found that for weak magnetic fields and
sufficiently large magnetic Prandtl number the critical Taylor number becomes smaller than
in the hydrodynamic case (Fig. 8.3). If the field is not too strong it can play a destabilizing
role and can lead to MRI via the Lorentz force. For the ideal magnetic Taylor–Couette flow
this was first discovered by Velikhov (1959). In the MHD regime the Rayleigh criterion for
stability, Eq. (8.3), changes to

µ̂ > 1, (8.4)



8.1 History 283

Figure 8.3: The variation of the critical Taylor number as a function of the magnetic Prandtl number for
strong (left) and weak (right) axial magnetic field in the small-gap approximation. For weak magnetic
fields and large magnetic Prandtl number the excitation is subcritical. For B = 0 is Tacrit = 1750. After
Kurzweg (1963).

i.e. only flows with superrotation are stable in the MHD regime (Velikhov, his Fig. 1). He
found a growth rate along the Rayleigh line (i.e. a = 0) of 2Ωinη̂ and a critical (‘dangerous’)
wave number of k ≤ 2Ωinη̂/VA, with VA the Alfvén velocity of the given axial field. He
also suggested the stabilizing effect of an applied toroidal field decreasing outwards1. These
results were derived via a dispersion relation of second order for ω2 with the Fourier frequency
ω that is only negative (indicating instability) if its absolute term is negative. This is only true
if VA is smaller than the shear −s2dΩ/ds multiplied with some positive factor, i.e. it is a
weak-field instability. Chandrasekhar (1960) confirmed these results.

The hydrodynamic Taylor–Couette flow is stable if its angular momentum increases with
radius, but the hydromagnetic Taylor–Couette flow is only stable if the angular velocity itself
increases with radius. This remains true also for nonideal fluids. The MRI decreases the
critical Reynolds number for weak magnetic field strengths for hydrodynamically unstable
flow (Fig. 8.4) and it destabilizes the hydrodynamically stable flow for η̂2 < µ̂ < 1. The MRI
depends only on the amplitude of the external magnetic field and not on its direction. It exists
in hydrodynamically unstable situations (µ̂ < η̂2) only if Pm is not very small, as first shown
by Kurzweg (1963, Fig. 8.3).

As we shall demonstrate here, the critical Reynolds numbers vary as 1/Pm for hydrody-
namically stable flows (η̂2 < µ̂ < 1), so that it is the magnetic Reynolds number Rm that
controls the instability (see Fig. 8.7). According to the numbers given in Table 8.1 the mag-
netic diffusivity is at least 1000 cm2/s (similar to the solar plasma, see Fig. 3.32); it is therefore
not easy to reach magnetic Reynolds numbers of the required O(10). This is the main reason
why the MRI has never been observed experimentally in the laboratory.

1 azimuthal fields were later considered in detail by Knobloch (1992) and Pringle (1996)
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If the Hall effect is included in the induction equation then the new situation appears that
the Taylor–Couette flow becomes unstable for any ratio of the angular velocities of the inner
and the outer cylinder. This new instability, however, does not exist for both signs of the axial
magnetic field B0. For positive shear dΩ/ds the Hall instability exists for negative Hartmann
number and for negative shear it exists for positive Hartmann number. For negative shear, of
course, the Hall instability combines with the MRI.

Table 8.1: Parameters of the fluids suitable for MHD experiments taken from Chandrasekhar (1961) and
Noguchi et al. (2002).

ρ [g/cm3] ν [cm2/s] η [cm2/s] Pm

Mercury 5.4 1.1·10−3 7600 1.4·10−7

Gallium 6.0 3.2·10−3 2060 1.5·10−6

Sodium 0.92 7.1·10−3 810 0.88·10−5

8.2 The Equations

A viscous electrically conducting incompressible fluid between two rotating infinite cylinders
in the presence of a uniform axial magnetic field B0 admits the basic solution Bz = B0,
uφ = as + b/s, and all other vector components vanishing. We are interested in the stability
of this solution. By developing the disturbances u′ and B′ into normal modes, the solutions
of the linearized MHD equations are considered in the form

u′ = u(s)ei(ωt+kz+mφ), B′ = B(s)ei(ωt+kz+mφ). (8.5)

The equations have been derived by Chandrasekhar (1961) and Roberts (1964). Here a differ-
ent Ohm’s law is used and also different normalizations.

The general form of the induction equation with Hall effect is Eq. (5.34). The electric field
for which the induction equation results is

E =
J

σ
− u × B + β(∇× B) × B. (8.6)

The Navier-Stokes equation is used in its standard form, Eq. (4.14). H =
√

Rin(Rout − Rin)
is used as the unit of length, η/H as the unit of the perturbed velocity, ν/H2 as the unit of
frequencies, B0 as the unit of the magnetic field fluctuations, H−1 as the unit of the wave
number and Ωin as the unit of Ω. The dimensionless numbers of the problem are the magnetic
Prandtl number, the Hartmann number and the Reynolds number, i.e.

Pm =
ν

η
, Ha =

B0H√
µ0ρνη

, Re =
ΩinH2

ν
. (8.7)

We only consider marginal stability, i.e. �(ω) = 0. Using the same symbols for normalized
quantities as before, the equations can be written as a system of 10 equations of first order,



8.2 The Equations 285

given by Goodman & Ji (2002) and Rüdiger & Shalybkov (2004b). Here only the relations
representing the induction equation including the Hall effect are given, i.e.

dBs

ds
= −Bs

s
− i

m

s
Bφ − ikBz ,

dBz

ds
= i

(
m2

ks2
+ k

)
Bs − Pm

k
(ω + m Re Ω)Bs + us − m

ks
X−

−iRB
m

s
Bz + iRB k Bφ (8.8)

and

dX

ds
=

(
m2

s2
+ k2

)
Bφ + iPm(ω + m Re Ω)Bφ − 2i

m

s2
Bs − ikuφ+

+2Pm · Re
b

s2
Bs + RB

m2

s2
Bs − R2

B

km

s
Bz + R2

Bk2Bφ +

+iRB(ω + mRe Ω) Pm Bs − iRB kus + iRB
m

s
X, (8.9)

with X = dBφ/ds + Bφ/s and the Hall parameter (7.5), i.e.

RB =
βB0

η
. (8.10)

For electrons we have RB = ae = ωBτ after Eq. (5.54). The influence of the Hall effect
is indicated by the RB-terms. The ratio β0 = RB/Ha∗ with the Lundquist number after
Eq. (6.48) does not depend on the magnetic field; it is

β0 =
√

µ0ρ

H
β (8.11)

a normalized Hall effect parameter. An appropriate set of 10 boundary conditions is needed
to solve this system of equations. It is easy to see that the Hall effect leaves the boundary
conditions unchanged, i.e. the no-slip conditions for the velocity us = uφ = uz = 0, and for
the conducting walls dBφ/ds + Bφ/s = Bs = 0. The boundary conditions are valid at both
Rin and Rout

2. For insulating walls the magnetic boundary conditions are different at Rin and
Rout, i.e. for s = Rin

Bs + i
Bz

Im(ks)

( m

ks
Im(ks) + Im+1(ks)

)
= 0, (8.12)

and for s = Rout

Bs + i
Bz

Km(ks)

( m

ks
Km(ks) − Km+1(ks)

)
= 0, (8.13)

where Im and Km are the modified Bessel functions. The condition for the toroidal field is
one and the same at both locations, namely ksBφ = mBz .

2 note that in this case Bφ ∝ 1/s forms a free solution of the system
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The homogeneous set of linear equations with the boundary conditions determines the
eigenvalue problem for given Pm. The real part, �(ω), of ω describes a drift of the pattern
along the azimuth. �(ω) is the second quantity that is fixed by the complex eigenequation.
For a fixed Hartmann number, a fixed Prandtl number and a given vertical wave number we
find the eigenvalue Re of the equation system. They are always minimal for a certain wave
number that by itself defines the marginally unstable mode. The corresponding value is the
desired Reynolds number which does not belong to a prescribed wave number.

8.3 Results without Hall Effect

In this section RB = 0 is used in Eqs. (8.8) and (8.9).

8.3.1 Subcritical Excitation for Large Pm

Figure 8.4 shows the stability lines for axisymmetric modes for containers with both conduct-
ing and insulating walls with resting outer cylinder, for fluids of various magnetic Prandtl
number. Only the vicinity of the classical hydrodynamic solution with Re = 68 is shown.
There is a strong difference of the bifurcation lines for Pm >∼ 1 and Pm < 1. For fluids with
low electrical conductivity the magnetic field only suppresses the instability, so that all the
critical Reynolds numbers exceed the value 68, and higher the stronger the magnetic field is.

For sufficiently small magnetic Prandtl number the stability lines hardly differ, which is
the situation previously considered by Chandrasekhar (1961) without regard for the MRI.
The opposite is true for Pm >∼ 1. In Fig. 8.4 for materials with high electrical conductivity
the resulting critical Reynolds numbers are smaller than Re = 68. The magnetic field with
small Hartmann numbers enhance the instability rather than suppress it. This effect becomes
more effective for increasing Pm, but it vanishes for stronger magnetic fields. Obviously,
the MRI only exists for weak magnetic fields and high enough electrical conductivity and/or
microscopic viscosity (when the fields can be considered as frozen in and/or enough viscosity
prevents the action of the Taylor–Proudman theorem).

In order to find a minimum due to the MRI the magnetic Prandtl number must exceed some
critical value, Pmmin, for hydrodynamically unstable flow (µ̂ < η̂2). The critical magnetic
Prandtl numbers lie in the narrow interval 0.25–1.75 for all µ̂ and η̂. Thus, if the electrical
conductivity is as small as it is for liquid metals then the MRI cannot be observed by corre-
sponding experiments with hydrodynamically unstable flows (Rüdiger & Shalybkov 2002).

8.3.2 The Rayleigh Line (a = 0) and Beyond

There is a universal scaling with Pm for the special case for µ̂ = η̂2, i.e. with a = 0 in the
basic flow profile of Eq. (8.1). Then the terms with ∂(s2Ω)/∂s vanish in the equations and for
m = ω = 0 one finds that the quantities us, uz, Bs and Bz scale as Pm−1/2, while uφ, Bφ, k
and Ha scale as Pm0. The Reynolds number for the axisymmetric modes then scales as

Re ∝ Pm−1/2. (8.14)

This scaling does not depend on the boundary conditions, as these also comply with these
relations for m = 0. The result (8.14) has also been found numerically for vacuum boundary
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Figure 8.4: Marginal stability lines for axisymmetric modes with resting outer cylinder of conducting
material (left) and vacuum (right). The shaded areas denote subcritical excitations of unstable axisym-
metric modes by the external magnetic field. It only appears for Pm >∼ 1 (Rüdiger, Schultz & Shalybkov
2003).

conditions by Willis & Barenghi (2002). However, for a > 0 Rüdiger & Shalybkov (2002)
found the much steeper scaling Re ∝ Pm−1 (see Fig. 8.7), resulting in the surprisingly simple
relation

Rm =
ΩinRin(Rout − Rin)

η
∝ const. (8.15)

for the magnetic Reynolds number Rm, and Ha ∝ Pm−1/2, resulting in

Ha∗ =
B0

√
Rin(Rout − Rin)√

µ0ρη
∝ const. (8.16)

for the Lundquist number Ha∗. For small magnetic Prandtl numbers the exact value of the
microscopic viscosity is not relevant for the excitation of the instability. In consequence,
however, the corresponding Reynolds numbers for the MRI seem to differ by 2 orders of mag-
nitude, i.e. 104 and 106. Experiments with µ̂ = η̂2 thus seem to look much more promising
than experiments with µ̂ > η̂2.

However, this possibility cannot be utilized. The critical Reynolds number for µ̂ = η̂2 and
Pm = 1 as a function of η̂ has the overall minimum 54.4 for η̂ = 0.27, so that according to
Eq. (8.14) one expects the value 1.7·104 for the Reynolds number for Pm = 10−5. Figure 8.5
shows the behavior of this result in the vicinity of µ̂ = η̂2. There is a vertical jump from 104

to 106 in an extremely small interval of the abscissa. This sharp transition does not exist for
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Pm = 1; it only exists for very small values of Pm. For this case the coexistence of both
hydrodynamic and hydromagnetic instability is also presented in Fig. 8.5.

Figure 8.5: Critical Reynolds numbers for the Taylor–Couette flow versus µ̂ for η̂ = 0.27 and Pm = 1
(left) and Pm = 10−5 (right). From all η̂, η̂ = 0.27 yields the lowest minimum. The curve for the
hydrodynamic instability (Ha = 0) is dashed and the hydromagnetic curve (Ha > 0) is solid. The
dotted lines denote the location of a = 0.

The jump profile for Pm = 10−5 in Fig. 8.5 (right) makes it clear that experiments with
µ̂ = η̂2 are not possible. Even the smallest deviation from the condition µ̂ = η̂2 drastically
changes the excitation condition. For µ̂ smaller than η̂2 (negative deviations) the hydrody-
namic instability sets in and for µ̂ (slightly) exceeding η̂2 (positive deviations) the Reynolds
number suddenly jumps by two orders of magnitudes.

Another situation occurs if the outer cylinder rotates so fast that the rotation law no longer
fulfills the Rayleigh criterion and a solution for Ha = 0 cannot exist. The nonmagnetic eigen-
value along the vertical axis moves to infinity but a minimum remains. Figure 8.6 presents the
results for Pm = 1 and Pm = 10−5. There are always minima of Re for certain Hartmann
numbers (also Goodman & Ji 2002). The minima and the critical Hartmann numbers increase
for decreasing magnetic Prandtl numbers. For η̂ = 0.5 and µ̂ = 0.33 the critical Reynolds
numbers together with the critical Hartmann numbers are plotted in Fig. 8.7. Table 8.2 gives
the exact coordinates of the absolute minima for experiments with rotating outer cylinder,
for Pm = 10−5. They are characterized by magnetic Reynolds numbers of order 10, very
similar to the values of the existing dynamo experiments (Stieglitz & Müller 2001, Gailitis et
al. 2001).

For liquid sodium in a container with insulating walls we find the critical numbers

fin = 64
Re/106

(Rout/10cm)2
Hz, B =

2.2 Ha
Rout/10cm

G, (8.17)

with fin as the real frequency of the inner cylinder and B as the necessary external field.
A container with an outer radius of 22 cm (and an inner radius of 11 cm) filled with liquid
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Figure 8.6: Marginal stability lines for axisymmetric modes in containers with rotating outer cylinder
of conducting material for Pm = 1 (left) and Pm = 10−5 (right). η̂ = 0.5, µ̂ = 0.33.

Table 8.2: Coordinates of the absolute minima in Fig. 8.6 for rotating outer cylinder with µ̂ = 0.33,
η̂ = 0.5 and Pm = 10−5 .

conducting walls insulating walls

Reynolds number 2.13 · 106 1.42 · 106

mag. Reynolds number 21 14
Hartmann number 1100 1400
Lundquist number 3.47 4.42

sodium, therefore, requires a rotation of about 19 Hz in order to find the MRI. Following
Eq. (8.17) and the values of Table 8.2 the required magnetic field is about 1400 G.

Figure 8.7: The critical Reynolds
numbers vs. magnetic Prandtl num-
bers marked with those Hartmann
numbers where the Reynolds number
is minimum. η̂ = 0.5, µ̂ = 0.33.
From Rüdiger & Shalybkov (2002).



290 8 The Magnetic Taylor–Couette Flow

The results for containers with conducting walls are also given in Table 8.2. Note that the
minimal Reynolds numbers are higher than for insulating cylinder walls. The influence of the
boundary conditions is not small.

8.3.3 Excitation of Nonaxisymmetric or Oscillatory Modes

After the Cowling theorem only nonaxisymmetric magnetic fields can be maintained by a
dynamo process. With respect to future dynamo experiments it is thus important to know the
excitation conditions of nonaxisymmetric modes. We start with the results for containers with
insulating walls and outer cylinders at rest and for Pm = 10−5 (Fig. 8.8, left). There are
linear instabilities even without magnetic fields. For Ha = 0 solutions for m = 0 (Re = 68),
m = 1 (Re = 75) and m = 2 (Re = 127) are known. The axisymmetric mode possesses the
lowest Reynolds number. This is also true in the MHD regime: we do not find any crossover
of the instability lines for axisymmetric and nonaxisymmetric modes. The same is true for
containers with rotating outer cylinder (Fig. 8.8, right). For growing µ̂ the Reynolds number
for the hydrodynamic solution moves upwards, vanishing to infinity for µ̂ ≥ η̂2 = 0.25 (in
this case). The MRI, however, is hardly influenced. It is represented by characteristic minima,
in our case for µ̂ = 0.33 at Hartmann numbers of order 103 and Reynolds numbers of order
106 (see Table 8.2).

Figure 8.8: Insulating walls (vacuum): Stability lines for axisymmetric (m = 0, solid lines) and nonax-
isymmetric instability modes with m = 1 (dashed). Left: Resting outer cylinder. Right: Rotating outer
cylinder (µ̂ = 0.33). Pm = 10−5, η̂ = 0.5 .

The main difference between the two sorts of boundary conditions is the existence of
crossovers of the instability lines for m = 0 and m = 1 in the case of conducting walls
(Fig. 8.9). For both resting and rotating outer cylinders Hartmann numbers exist above which
the nonaxisymmetric mode possesses a lower Reynolds number than the axisymmetric mode.
The occurrence of nonaxisymmetric solutions as the preferred modes is a rather general phe-
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Figure 8.9: The same as in Fig. 8.8 but for conducting walls. For stronger magnetic fields the m = 1
mode is preferred.

nomenon for containers with conducting walls, which can become important for the design of
future dynamo experiments.

Not only are stationary solutions possible; the instability can also occur in the form of
oscillatory solutions (‘overstability’). In the case of rotating convection between two layers
heated from below the onset of instability in the form of oscillating solutions even possesses
the lowest eigenvalues for certain Prandtl numbers (see Sect. 2.3.4). We find a very similar
behavior for the MHD Taylor–Couette flow between conducting cylinders for resting outer
cylinder (Fig. 8.10). It is a pair of waves traveling in positive and negative z-direction. Note
that the cylinder considered here has no bound in the vertical direction. If the cylinder is finite,
however, the possibility exists that traveling waves might be combined into standing waves.

8.3.4 Wave Number and Drift Frequencies

The unstable magnetic Taylor–Couette flow forms Taylor vortices. With our normalizations
the vertical extent δz of a Taylor vortex is given by the expression

δz

Rout − Rin
=

π

k

√
η̂

1 − η̂
. (8.18)

The dimensionless vertical wave numbers k associated with the critical Reynolds numbers are
given in Fig. 8.11. In the case of hydrodynamically unstable flows we have δz � Rout − Rin

for small magnetic fields (Ha � 0), independently of gap size and boundary conditions. The
cell therefore has the same vertical extent as it has in radius (see Koschmieder 1993).

As all our results demonstrate, the influence of strong magnetic fields on turbulence con-
sists of suppression and deformation. The deformation consists in a prolongation of the cell
structure in the vertical direction, so that δz is expected to become larger and larger (the wave
number becomes smaller and smaller) for increasing magnetic field. This is true for Pm � 1,
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Figure 8.10: The same as in Fig. 8.9 (left) but with
the inclusion of oscillating axisymmetric modes
(overstability) appearing here for lower Reynolds
numbers than the stationary modes do.

but for smaller Pm the vertical cell size has a minimum for an intermediate value of the mag-
netic field.

The cell size is minimum for the critical Reynolds number for all calculated examples of
hydrodynamically stable flows with a conducting boundary. This is not true, however, for
containers with insulating walls, for which the cell size grows with increasing magnetic field.
For experiments with the critical Reynolds numbers the vertical cell size is generally 2–3 times
larger than the radial one. The smaller the magnetic Prandtl number the longer are the cells in
the vertical direction.

The influence of boundary conditions on the cell size disappears, of course, for sufficiently
wide gaps. For the small and medium gaps, however, one finds the cells vertically more
elongated for containers with insulating walls (Fig. 8.11).

For nonaxisymmetric modes the drift velocity �(ω) is always positive, i.e. the pattern
drifts in the direction of the rotation (eastward). It is given by φ̇ = (�(ω)Ωin)/(mRe) so that
for m = 1 the drift period in units of the rotation period changes as Re/�(ω). A typical value
for this ratio is 2.

8.4 Results with Hall Effect

Equations (8.8) and (8.9) are now considered with β0 = 1. The linearized induction equation
(5.37) with Hall effect is invariant against the transformation B0 → −B0, u0 → −u0, so that
the simultaneous change of the signs of dΩ/ds and B0 leads to the same instability. After the
splitting of the induction equation into poloidal and toroidal components one finds the scheme

Btor −−→
Hall

B′
pol

shear−−−→
Hall

B′
tor, (8.19)

hence the shear must also be changed if the Hall effect is changed. If this is true then it
is impossible to find a magnetohydrodynamic instability with Hall effect but without shear.
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Figure 8.11: The stability line for η̂ = 0.5, µ̂ = 0.33 and Pm = 10−5. There is no hydrodynamic
instability. The line is marked with those wave numbers for which the Reynolds number is minimum.
Left: Conducting walls. Right: Insulating walls. In both cases the variation of the wave numbers with
the magnetic field differs.

In our scenario the shear is necessary for the existence of an instability, which can never be
provided by the Hall effect alone as the shear is the energy source of the instability. The
computations confirm these expectations.

The magnetic field needed for the Hall effect to become important is rather high. For both
positive and negative shear the smallest value of Re occurs for RB ∼ 1. The corresponding
value of the magnetic field is B0 � η/β. With the Hall coefficient (µ0β in our notation)
of 10−10 m3/C for liquid metals and the magnetic diffusivity for sodium (see Table 8.1)
one obtains 107 G as the critical magnetic fields for Taylor–Couette experiments (Rüdiger &
Shalybkov 2004b).

8.4.1 Hall Effect with Positive Shear

The following instability only exists with Hall effect. It destabilizes flows with µ̂ > 1 (i.e.
with positive shear dΩ/ds), for which no other instability is known. Figure 8.12 illustrates
the instability for both conducting and nonconducting boundary conditions for a container
with a medium gap. The flow is unstable, but only for negative Hartmann number, i.e. if the
angular velocity and magnetic field have opposite directions3. The fact that the Hall effect
destabilizes flows with angular velocity increasing outwards was already noted by Wardle
(1999) and Balbus & Terquem (2001) (see Sect. 5.4).

For µ̂ � 1 the angular velocity profile hardly depends on the inner angular velocity, Ωin.
In this case, the Reynolds number of the outer rotation, Reout, is the real parameter of the

3 for negative Hall resistivity the orientation is opposite
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Figure 8.12: The line of marginal stability for magnetic Taylor–Couette flow with Hall effect (β0 = 1)
for η̂ = 0.5, Pm = 1, and positive dΩ/ds: µ̂ = 2 (solid line), 1.5 (dashed line) and 1.2 (dotted line).
Boundary conditions for conducting cylinder walls (left) and insulating (right).

problem, with Reout = µ̂Re = ΩoutH
2/ν. We have indeed numerically confirmed a Re

∝ 1/µ̂ behavior for large µ̂. The value of Reout corresponding to minimal Re (which is for
Hartmann number of order unity) is about 20. For vacuum boundary conditions and not too
small magnetic fields there is only a rather weak dependence of the critical Reynolds number
on the Hartmann number (see Fig. 8.12).

In Fig. 8.13 the lines for both axisymmetric and nonaxisymmetric modes are given for
both sorts of boundary conditions. A crossover of the lines (again) only exists for conducting
cylinder walls. At the minimum the mode m = 0 dominates, but for stronger magnetic fields
the mode with m = 1 dominates.

8.4.2 Hall Effect with Negative Shear

The Hall effect also modifies the critical Reynolds numbers for magnetohydrodynamically
unstable flows (µ̂ < 1), resulting in a rather complex situation illustrated with Fig. 8.14. The
dashed line is the MRI without Hall effect. The combination of MRI and Hall instability
is given as the solid line. A deep minimum of the Reynolds number is produced for weak
magnetic fields – much deeper than the MRI minimum resulting without Hall effect. On the
other hand, for increasing Hartmann numbers the solid line has a very weak slope, so that
the magnetic field dependence of the combined instability is rather weak, as already shown
by Wardle (1999, see his Fig. 1c). And once again, the Hall effect is only important for one
orientation of the magnetic field.
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Figure 8.13: The same as in Fig. 8.12 but only for µ̂ = 2 and for m = 0 (solid) and m = 1 (dashed).
Note the crossover of the lines again for conducting boundary conditions (left). Right: No crossover
exists for insulating boundary conditions.

Figure 8.14: The same as in Fig. 8.12 but for
resting outer cylinder. β0 = 0 (dashed line) and
β0 = 1 (solid line). The dotted line is for β0 = 1,
but for u = 0 (velocity fluctuations neglected, i.e.
kinematic case). The minimum of the dashed line
indicates the Lorentz-force-induced MRI.

8.4.3 A Hall-Driven Disk-Dynamo?

The MRI is now widely accepted as the reason for turbulence in hot accretion disks. However,
there may be difficulties in weakly ionized protoplanetary disks but the Hall effect has been
considered as the source of instability in such disks (Wardle 1999, Balbus & Terquem 2001,
Sano & Stone 2002a,b). In protoplanetary disks the critical magnetic field amplitude at R = 1
AU is about 0.1 G (Sano & Stone 2002a). Such high values can hardly be imagined as due to a
magnetized central object. Polar field strengths of order ∼ 105 G at the surface of a (windless)
protosun are needed in order to produce 0.1 G at a distance of 1 AU.
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Magnetic fields with amplitudes of (say) 1 G at 1 AU should be generated by the action
of a (turbulent) dynamo. In this case, however, the microscopic conductivities cannot be
used to estimate the values of the plasma parameters. The turbulent magnetic diffusivity may
increase, for example, by several orders of magnitude and the turbulent magnetic Prandtl
number approaches unity (see Yousef, Brandenburg & Rüdiger 2003, for the case of forced
turbulence). Consideration of the effect of turbulence on the Hall diffusivity (Helmis 1968,
Mininni, Gómez & Mahajan 2002) shall become important in the future.

Let us demonstrate the influence of the Hall effect on the disk stability with a simple
1D kinematic model. The half-thickness of the disk is H in the z-direction and a vertical
magnetic field Bz is given and will be unchanged by the special geometry. With time in units
of diffusion time and length in units of H the induction equation simply reads

∂Bx

∂t
=

∂2Bx

∂z2
+ RB

∂2By

∂z2
,

∂By

∂t
=

∂2By

∂z2
+ RmBx − RB

∂2Bx

∂z2
, (8.20)

with

Rm = ∂uy/∂x · H2/η. (8.21)

The radial and azimuthal magnetic fields are confined to the disk by the boundary conditions
Bx(±1) = By(±1) = 0. The solution fulfilling the boundary conditions is then

bx,y =
∑

n=1,3,5,...

an
x,y cos

(πn

2
z
)

eγnt +
∑

n=2,4,6,...

bn
x,y sin

(πn

2
z
)

eγnt, (8.22)

with

γn = −n2π2

4
±

√
−n2π2

4
RB

(
n2π2

4
RB + Rm

)
, (8.23)

where the coefficients an and bn are defined by the initial conditions. One finds that an
instability exists if

|Rm| ≥ π2

4
1 + R2

B

|RB| , (8.24)

with the minimum |Rm| = π2/2 at |RB| = 1 (Rüdiger & Shalybkov 2004a).
The critical shear |Rm| is the same for very small as for very large RB. The growth rates,

however, differ significantly for the two branches of the stability map (Fig. 8.15, left). One
may estimate the growth rate γ as γ ∼ |Rm|/(2τdiff) for |RB| � 1 and γ ∼ |RmRB|/(2τdiff)
for |RB| � 1, where |RB| = ωBτ . An unstable solution, therefore, develops rapidly with the
rotation scale only for a strongly magnetized plasma (ωBτ � 1). Again the sign of the
magnetic field is important for the shear-Hall instability. This means that the direction of the
vertical magnetic field Bz should be opposite to the angular velocity Ω for positive β.

As no findings about the nonaxisymmetric modes are possible with the presented model
we cannot ask whether it works as a dynamo. In order to find their role in the interplay of
shear, dissipation and Hall effect the model of Kitchatinov & Mazur (1997) has been used
with a Keplerian rotation law. The aspect ratio is s̃0 = 5. The results without Lorentz force
(i.e. only the induction equation is considered no MRI exists) are given in Fig. 8.15 (right). For
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Figure 8.15: Left: Above the line of marginal stability after Eq. (8.24) the shear flow becomes unstable
influenced by the Hall effect. Right: Induction equation (5.34) with Hall effect for the disk model of
Kitchatinov & Mazur (1997) for m = 0 (solid) and m = 1 (dashed).

the axisymmetric mode the characteristic minimum at |RB| = 1 again occurs for Rm � 10.
A minimum also exists for m = 1 but it lies higher. No difference exists for the axisymmetric
and nonaxisymmetric solution at the strong-field branch of the instability map, but for the
weak-field branch this is not true. There is obviously a threshold value of the Hall number for
the excitation of modes with m = 1.

8.5 Endplate effects

We note that all of the previous discussion assumes a cylinder of infinite extent in z. Any actual
laboratory apparatus would necessarily involve a finite cylinder though, so before concluding
that an MRI experiment could be built, we must consider the effects of the endplates, which
for solid plates turn out to be substantial. The difficulty is caused by the fact that both the inner
and outer cylinders must be rotated, and extremely rapidly, as discussed above. As a result,
the Taylor–Proudman theorem applies, stating that the flow will be almost independent of z.
That implies though that if the endplates are rigidly rotating (with either Ωin or Ωout), then the
angular velocity throughout the interior will be the same. That is, instead of the desired profile
a + b/s2, one will have essentially solid-body rotation almost everywhere, with the entire
difference between Ωin and Ωout accommodated in a so-called Stewartson layer, situated on
whichever cylinder is rotating differently from the endplates.

More quantitatively, the relevant parameter is the Ekman number E = Re−1 (so based on
the above Reynolds numbers we would need to achieve E ≤ O(10−6) to have any chance of
observing the MRI. There are then two aspects where E enters. First, the Taylor–Proudman
theorem makes itself felt an O(E−1/2) distance in z. That is, if one wanted to make a cylinder
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so long that the fluid in the middle no longer feels the effects of the end-plates, at E =
O(10−6) it would have to be some 1000 times as long as it is wide.

Since that is clearly not feasible, we conclude that the profile will not be the desired a +
b/s2, but instead this essentially solid-body interior plus a Stewartson layer at one or the other
end. The second point where E enters is therefore in the thickness of this layer; Stewartson
(1957) showed that the angular velocity adjusts over an O(E1/4) distance. Instead of the
desired smooth profile, essentially all of the adjustment would therefore occur over a very
small fraction, on the order of 1/30, of the gap width.

The narrowness of this layer indicates also how difficult it would be to overcome this
problem by splitting the endplates into several rings, and rotating each ring at some rate in-
termediate between Ωin and Ωout. Unless one had at least 10 rings or so, one would still not
end up with a smooth profile, but rather with a step profile, with individual Stewartson layers
separating the different rings. We conclude therefore that there are still considerable technical
difficulties to be overcome before the MRI can be obtained in a real cylinder in the lab.

8.6 Water Experiments

It has been shown that for hydrodynamically stable Taylor–Couette flows the MRI should be
visible for liquid sodium for Reynolds numbers of order 106. For an experimental realization
of this effect it is important to know up to what Reynolds number hydrodynamically linearly
stable Taylor–Couette flows are also nonlinearly stable. According to Eq. (8.3) the flow should
be maximally stable for resting inner cylinder, i.e. µ̂ → ∞. Richard & Zahn (1999) focused
attention on the experimental results of Wendt (1933), who found nonlinear instability for this
case for Reynolds numbers of order 105. However, later experiments demonstrated that the
results of Wendt were due to imperfections in the container, and the flow remained laminar
for the same order of the Reynolds number (Schultz-Grunow 1959). In Fig. 8.16 the known
hydrodynamical (‘water’) experiments are reported with resting inner cylinder. The numerical
details are given in Table 8.3. Nevertheless, the possibility of finite-amplitude instabilities of
hydrodynamically linearly stable rotation laws should remain in the astrophysical discussion
(Richard & Zahn 1999, Richard 2003, Hersant, Dubrulle & Huré 2004).

Table 8.3: Details of the experiments reported in Fig. 8.16.

Rout [cm] ∆R [cm] ν [10−2 cm2/s] η̂ Re

Wendt 14.7 4.7 H2O 0.68 42 100
Schultz-Grunow 2.5 0.2 0.65 0.92 40 100
Taylor 4.05 0.85 0.79 34 300
Richard et al. 5.0 1.5 H2O 0.7 35 000
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Figure 8.16: The existing water experiments with resting inner cylinder do not exceed Reynolds num-
bers of order 105. Only the rotation law of Schultz-Grunow (1959) proved to be stable. The experiments
of Taylor (1923), Donnelly & Ozima (1960, MHD), Richard et al. (2001) and Egbers & Pfister (2000)
are given for comparison.

8.7 Taylor–Couette Flow as Kinematic Dynamo

Taylor vortices and the rotation law (8.1) form a flow pattern that can be probed for its ability to
work as a kinematic dynamo. Similar patterns were tested by Dudley & James (1989), with the
result that for certain combinations of circulation and shear a kinematic dynamo can indeed
operate. Laure, Chossat & Daviaud (2000) and Willis & Barenghi (2002) have considered
this problem, which might be relevant for technical experiments. Here we only refer to the
case of a vertically unbounded container considered by Willis & Barenghi. Only for infinite
containers can the vacuum boundary conditions be exactly formulated. The dynamo-excited
fields are small-scaled in the sense that their size is determined by the cell structure of the flow
(two flow-cells exactly form a single field-cell).

The standard case with µ̂ = 0 and η̂ = 0.5 is not encouraging. Growing magnetic modes
with m = 1 are observed only for Pm ≥ 1.5, and only for a minimum Reynolds number of
the inner rotation of 109, which leads to a (rather high) magnetic Reynolds number of about
163. No solution exists for smaller Pm. A slightly different situation holds for µ̂ � 0.19. Here
Willis & Barenghi find that Rm does not vary for a wide range of Pm. For their minimum Pm
of 0.06 a kinematic dynamo works but only for Rm ≥ 230. If, on the other hand, experiments
with Re � 106 for liquid sodium are possible then the resulting magnetic Reynolds number
is of order 10, so that the kinematic dynamo is still far away. Also for randomly forced
turbulence small-scale dynamos seem to exist only for not too small magnetic Prandtl numbers
(Schekochihin et al. 2004).
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Alfè D, Gillan MJ, Vocadlo L, et al., 2002, Phil. Trans. Royal Society London A 360, 1227
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Belvedere G, Paternò L, Stix M, 1980, Geophysical Astrophysical Fluid Dyn. 14, 209
Belvedere G, Lanzafame G, Proctor MRE, 1991, Nature 350, 481
Benevolenskaya EE, 1995, Solar Physics 161, 1



9 Bibliography 303

Berdyugina SV, Korhonen H, Tuominen I, 2001, in Magnetic Fields Across the Hertzsprung-
Russell Diagram, G. Mathys et al. (Eds.), ASP, p. 243

Berdyugina SV, Usoskin IG, 2003, Astronomy & Astrophysics 405, 1121
Bergman MI, 1997, Nature 389, 60
Bhattacharya D, 1995, J. Astrophysics & Astronomy 16, 217
Bhattacharya D, Datta B, 1996, Month. Not. Roy. Astr. Soc. 282, 1059
Biermann L, 1951, Z. Astrophysik 28, 304
Bigazzi A, Ruzmaikin A, 2004, The Astrophysical Journal 604, 944
Binney J, Tremaine S, 1987, Galactic Dynamics, Princeton University Press
Birk GT, Wiechen H, Lesch H, 2002, Astronomy & Astrophysics 393, 685
Blackman EG, Field GB, 2000, The Astrophysical Journal 534, 984
Blackman EG, Brandenburg A, 2002, The Astrophysical Journal 579, 359
Blandford RD, Payne DG, 1982, Month. Not. Roy. Astr. Soc. 199, 883
Blandford RD, Applegate JH, Hernquist L, 1983, Month. Not. Roy. Astr. Soc. 204, 1025
Blondin JM, Freese K, 1986, Nature 323, 786
Bloxham J, Gubbins D, Jackson A, 1989, Phil. Trans. Royal Society London A 329, 417
Bloxham J, Jackson A, 1991, Rev. Geophysics 29, 97
Bloxham J, 2000a, Nature 405, 63
Bloxham J, 2000b, Phil. Trans. Royal Society London A 358, 1171
Bloxham J, 2002, Geophysical Research Letters 29, art. no. 1854
Bloxham J, Zatman S, Dumberry M, 2002, Nature 420, 65
Bodenheimer P, 1995, Ann. Rev. Astronomy Astrophysics 33, 199
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Brandenburg A, Nordlund Å, Stein RF, Torkelsson U, 1995, The Astrophysical Journal 446,
741
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Drecker A, Hollerbach R, Rüdiger G, 1998, Month. Not. Roy. Astr. Soc. 298, 1030
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Kitchatinov LL, Rüdiger G, Küker M, 1994, Astronomy & Astrophysics 292, 125
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Pidatella RM, Stix M, Belvedere G, Paternò L, 1986, Astronomy & Astrophysics 156, 22
Pipin VV, 1999, Astronomy & Astrophysics 346, 295
Pipin VV, 2003, Geophysical Astrophysical Fluid Dyn. 97, 25
Poezd A, Shukurov A, Sokoloff DD, 1993, Month. Not. Roy. Astr. Soc. 264, 285
Poirier JP, 1994, CR Acad. Sci. II A 318, 341
Poppe T, Blum J, Henning T, 2000, The Astrophysical Journal 533, 472
Potekhin AY, Yakovlev DG, 2001, Astronomy & Astrophysics 374, 213
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Rädler KH, Bräuer HJ, 1987, Astronomische Nachrichten 308, 101
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Rüdiger G, 1980, Geophysical Astrophysical Fluid Dyn. 16, 239
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Rüdiger G, Kitchatinov LL, Küker M, Schultz M, 1994, Geophysical Astrophysical Fluid

Dyn. 78, 247
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Rüdiger G, Kitchatinov LL, 1996, The Astrophysical Journal 466, 1078
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Λ-effect 60, 64, 163
Λ-tensor 60
Ω × J -effect 130
Ω-quenching 119
α-effect 111, 117, 125
α-quenching 158, 160
α-tensor 112
αΩ-shell dynamo 142, 143
α2-dynamo 110, 137
β-viscosity 173
η-quenching 133
τ -approximation 67, 73, 115, 125, 130
14C abundances 97
10-cm radio flux 105
2D turbulence 132
53 Cam. 195
61 Cyg A 101

AB Dor 56
accretion disks 180, 184
accretion rates 212
active longitude 104
activity cycle 163
advection velocity 239
advection-dominated dynamo 149
age of the inner core 7
agglomeration 174
Alfvén points 210
Alfvén speed 8
Alfvén velocity 113
Alfvén waves 30, 31
ambipolar diffusion 169, 226
Andromeda nebula 221
anelastic approximation 8, 45, 82
anelastic equations 7
angular momentum 11, 62, 173
angular momentum loss 109

angular momentum transport in convection
zones 57

anticorrelation 152
antiphase relation 97
antispiral theorem 250
Ap stars 195
ASS 218
asteroseismology 47

barocline 59
battery effect 227
Be data 99
bifurcation 159
bisymmetric spiral structure 215
boundary conditions 144
Boussinesq approximation 8, 45, 180
Boussinesq equations 7, 10
BP Tau 194
Brandenburg’s law 128
Brandt profile 237
bright coronal points 54
Brunt–Väisälä frequency 178
BSS 220
bulge 231, 256
butterfly diagram 55, 95, 150

Ca-emission 101
CaII observations 56
Cartesian box 70, 120
cataclysmic variables 212
catastrophic quenching 125
centrifugal force 58, 64
chaos 96, 157
chromosphere 105, 135
climate research 108
clockwise streaming 58
CMB see core-mantle boundary
collapse 171



328 Index

collimation 211
Coma 227
compositional buoyancy 18
compositional convection 8
compositional effects 9, 10
compressible convection 88
conducting walls 289
conservative forces 178
convection zone 47, 53, 120
core convection 7
core-mantle boundary 3, 9, 37, 39, 45
Coriolis force 9, 10, 12, 85
Coriolis number 60
corona 105, 212
corotation radius 213
correlation tensor 129
cosmic rays 230
cosmological fields 262
counterclockwise flow patterns 58
Cowling’s theorem 46, 160, 191
cross-correlation 54, 55, 172
crossover 191
CTTS 194, 209
cubic quenching 132
current helicity 125
current sheet 274
current sheets 277
cycle amplitude 100
cycle length 99
cycle period 148

dark matter halo 256
density spectrum 243
density stratification 269
density wave theory 242
diamagnetic advection 260
diamagnetic pumping 114, 228
diamagnetism 135
differential rotation 11, 33, 37, 41, 46, 201,

272
diffusion anisotropy 136
dispersion relation 135
DIV-CURL correlation 83
Doppler imaging 56, 194
Doppler tomography 101
double-Fourier method 65
downdraft 86
dragging 210
drift velocity 247

dust 174
dust growth 174
dust subdisk 174
dynamo catastrophe 17, 20, 28, 42
dynamo number 137

Earth’s temperature 109
eclipse times 109
Eddington–Sweet 91
eddy viscosity 57, 62, 191
eddy-heat flux 76
eddy-heat transport 76
Effelsberg 100-m telescope 222
eigenmodes 106
EK Dra 101
Ekman layer 24, 33
Ekman number 10, 12, 38, 40, 43
Ekman regime 26
Ekman state 22, 24, 26–28
electromotive force 111, 153
electron gas 184
ellipsoid-model 236
Elsasser number 10, 16, 33, 41–43, 45, 46,

164
EMF see electromotive force
energy equation 11, 41
energy equipartition 218
energy release 259
enthalpy 75
entropy 75, 133, 175, 212
equator-pole difference 48
equatorial acceleration 48
equipartition field strength 218
equipartition value 147, 252
excursions 6, 17, 36, 41

Faraday rotation 226
filling factors 194, 260
finite conductivity of the inner core 36, 37
finitely conducting inner core 38
FK Com 104
flat activity 101
flip-flop 104
flocculent galaxy 215, 220
flux limiter 85
flux loss 162
flux tubes 148
flux-tube dynamics 96
Fourier modes 179
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Fourier spectrum 198, 263
Fourier transforms 65
Fourier–Bessel transform 243
frequency redshift 107

Gailitis model 200
galactic disk 258
galactic rotation 233
galactic rotation law 237
galactic wind 223
geomagnetic jerks 6, 29, 36
geostrophic contours 19–21, 32
geostrophic flow 20, 23–26, 28, 41
giants 103
global warming 109
Goldreich–Schubert–Fricke criterion 180
grand minimum 98
granulation 116
gravitational instability 174, 250
gravitational potential 59
growth rate 187, 250, 296

Hale’s law 146
Hall effect 112, 184, 269, 271, 279, 284, 292
Hall parameter 267, 285
Hartmann number 12, 16, 188, 284
HD 10476 55
HD 114710 55
heat flux 277
helicity 81

proxy 83
helioseismology 89
hemispherical dynamos 46
HH 30 209
high redshift objects 226
high-conductivity limit 124, 132
HK Lac 102
horizontal Reynolds stress 53
horizontal turbulence 94
hot spots 194
hyperviscosities 38

ice cores 108
ideal MHD 182
inertial oscillations 30, 32
inner core 6, 32
insulating walls 289
interarm region 257
interface dynamo 132, 151

intergalactic medium 227
interstellar gas 215
interstellar medium 259
interstellar turbulence 218, 232, 261
intracluster medium 227
inviscid limit 73
isotropic turbulence 72

Jeans instability 174
jet launching 207
Jupiter 171

Karlsruhe dynamo 138
Keplerian disk 171
Keplerian flows 174
kinetic energy 11
kinetic helicity 111, 125, 128
Kolmogorov cascade 267
Kolmogorov spectrum 157

laboratory 283
Large Magellanic Cloud 230
latitudinal shear 93
Li depletion 90
Li problem 89
liquid metal 286
local spectrum 66
Lorentz force 9, 28, 34, 57, 93, 158, 251
Lorentz torque 19, 28, 29
LQ Hya 57, 104
LQ Lup 57
Lundquist number 227, 262, 287

M 31 221, 236
M 81 220
MAG-modes 135
magnetars 265
magnetic buoyancy 86, 128, 162, 181
magnetic diffusivity 218
magnetic diffusivity tensor 129
magnetic energy 11, 26, 269
magnetic field 103
magnetic flux 215
magnetic polarity 82
magnetic Prandtl number 92, 188, 190, 261,

282
magnetic reversal 96
magnetic Reynolds number 9
magnetic shear instability 184
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magnetic torque 213
magnetic wind 19, 23–25
magnetoconvection 12, 45, 88, 124
magnetohydrostatic equilibrium 251
magnetorotational instability 178

in galaxies 261
magnetosphere 211
magnetostrophic balance 19, 33
Malkus-Proctor concept 160
mantle convection 6, 43
mass-to-flux ratio 169
Mathieu equation 245
Maunder minimum 50, 98, 108, 161
Maxwell stress 90, 204, 263
Maxwell tensor 189
mercury 282
meridional circulation 134, 200
meridional flow 52, 56, 80, 92, 101, 146, 149
mesogranulation 83
metallic hydrogen 45, 46
meteorites 193
MHD Høiland criteria 183
MHD Taylor–Couette experiments 282
MHD Taylor–Couette flow 175
microscale 252
microscopic diffusivities 91
microscopic viscosity 75
minimum solar nebula 250
mixing length 69, 79
modal expansion 181
molecular clouds 167, 215
momentum density 65
MRI see magnetorotational instability

N -body simulations 256
Navier-Stokes equation 67, 75
negative buoyancy 88, 186
networked explosions 256
NGC 4414 216
NGC 4631 215, 221
NGC 5775 215
NGC 6946 218
NIRVANA 85, 202
nonaxisymmetric magnetic modes 253
nonaxisymmetry of the α-effect 255
nonlocal relation 192
nonrotating turbulence 65
north-south asymmetry 99
northern cycles 100

oblate spheroids 232
oblique rotator 195
odd-even effect 99
Ohmic decay 90
one-armed spiral 246
one-point correlation tensor 60
Orion Nebula 194
Orion Nebula Cluster 167
overshoot dynamo 149
overshoot region 84, 114, 115, 121, 148
overstability 291

p-mode 74, 106
parity 164, 268

breaking 96
selection 151

Parker instability 207
pendulum 244
penetration depth 89
penetrative convection 87
perfect conductor 240
period modulation 109, 110
phase dilemma 97
pitch angles 218, 228, 234
plane-wave dynamo 155
planet formation 174
planetesimals 174
plumes 88
Poincaré theorem 178
Poisson equation 243
polar acceleration 59
polar branch 51
polar cap 91, 194
polar cell 152
polar spot 101
polar vortex 58
polytrope 126
Prandtl numbers 12, 18
primordial field 158
primordial origin 262
protogalactic cloud 227
protoplanetary disks 174, 295
protostars 170
protostellar disks 184
pseudoscalar 82
pseudotensors 111
pseudovacuum 137
pulsar 265, 276
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pumping effect 84
pumping velocity 88
PZ Tel 56

quadrupole moment 110
quality 97, 156
quasilinear approximation 65

radiative cooling 260
radiative envelopes 198
radiative interior 90
radio-polarization data 215
random α 152
Rayleigh criterion 174, 179, 282
Rayleigh line 283
Rayleigh number 10, 12, 87
Rayleigh–Benard convection 10, 12
Rayleigh–Benard problem 16
reflection point 106
relaxation time 184
remnant magnetization 193
resonant behavior 247
reversals 4, 5, 36, 38, 41, 158, 212
Reynolds equation 59
Reynolds number 64, 188
Reynolds stress 57, 61, 204, 263
Roberts number 10
ROSAT 194
ROSAT X-ray 101
Rossby number 10, 38
rotation of the inner core 37
rotational quenching 74
RS CVn binaries 56
RS CVn systems 101, 109
runaway collapse 17
runaway growth 16, 17

scale-ratio 65
Schwarzschild criterion 47, 76, 176
second-order correlation 65

approximation 111
secular variation 6
seed fields 227
self-gravity 167
shear-Hall instability 296
short-wave approximation 177
slab dynamos 235
slow magnetohydrodynamic waves 31
SN explosions 228, 258

SN-regulated ISM 260
SOCA see second-order correlation approxi-

mation
solar convection zone 95
solar dynamo 146
solar irradiance 104, 108
solar wind 90
solar-type star 79
Solberg–Høiland conditions 175
Solberg–Høiland criterion 176
sound speed 8, 126
sound waves 176
spectral tensor 117
SPH code 249
spherical harmonics 188
spin-down 90
spin-orbit coupling 109
spiral arm 218
spiral galaxy 246
spiral structure 243
spot umbra 134
SS Cyg 111
stability map 296
star formation 167, 212
star forming regions 223
star-disk interaction 196
starspots 102
Stefani–Gerbeth effect 141
stellar population 256
stellar radiative cores 187
stellar winds 47, 187, 261
Stewartson layer 33, 35
stream function 57
streamlines 57, 58
stress-strain relation 60
strong-field regime 16–18, 27, 42, 43, 45
subrotation 61
sunspot 3

decay 95, 133
groups 53, 93

superadiabatic temperature 75
superbubble 228, 256
supergranulation 48
superrotation 61
supersonic turbulence 242
swing excitation 245
synchrotron emission 221

T Tauri star V 410 Tau 194



332 Index

T Tauri systems 103
tachocline 89, 180
tangent cylinder 32, 35, 36, 39
Taurus cloud 167
Taylor constraint 18, 20, 21, 23–27, 29, 32,

34, 36, 45
Taylor number 59

puzzle 48, 60, 63, 75
Taylor regime 26
Taylor state 22, 24, 27, 28
Taylor vortex 291
Taylor–Couette flow 281
Taylor–Proudman structure 48
Taylor–Proudman theorem 14, 18, 33, 36, 58,

59
temperature excess 76
terrestrial temperature 109
thermal wind 19, 25, 59
thermodynamics 74
thermoelectric effect 265, 270, 276
tidal effects 44, 109
time series 152
Titius–Bode law 242
Toomre parameter 242
torsional oscillations 28, 51, 110, 160
torus 175
torus dynamo 236
trailing spirals 244, 250
transition region 101
tree rings 108
triplet 209
turbulence 11, 267
turbulence intensity 62
turbulence pressure 230, 253
turbulent buoyancy 114
turbulent magnetic Prandtl number 296

turbulent mixing 174
turnover radius 237
turnover time 79
two-armed spiral 246

undulatory instability 93
UZ Lib 55

Vela X-1 213
vertical shear 174, 180
virial theorem 169
viscosity quenching 73
viscosity tensor 60, 85
viscosity-α 128, 173
vorticity 188

Ward’s correlation 53
water experiments 298
weak-field regime 16–18, 27, 42, 43, 46
weight factor 118
white dwarfs 278
winds 210
WTTS 194

X-ray corona 105
X-ray emission 101
X-ray pulsars 213

YOHKOH 106
young galaxies 215

ZAMS 196
Zeeman effect 194
Zeeman splitting 168
ZEUS code 85
ZEUS-3D code 179
zonal components 61
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