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Preface

This book deals with topics in atomic and molecular structure and
dynamics that are important to astronomy. Indeed, the topics selected
are of central interest to the field of astronomy, many having been ini-
tiated by the needs of understanding worlds other than ours. Except
for some lunar surface material returned by the Apollo missions, and
material naturally delivered to us by cosmic rays, comets, and mete-
ors, our only access to the other worlds of our astronomical Universe is
through our observations of electromagnetic radiation from them. (Very
recently, neutrinos from the Sun and supernovae have also been studied,
and there are hopes for observations of gravitational waves in the next
decades.)

Overwhelmingly, therefore, our knowledge of the astronomical world is
derived from the emission, absorption, and scattering of electromagnetic
radiation from atoms and molecules. We “touch” and discern the mate-
rial content of these distant objects only through such absorptions and
emissions. As a result, there is a strong coupling between the subjects
of astronomy and atomic and molecular physics. Indeed, a major theme
for this book is that at several times, both in the beginnings of these sub-
jects and continuing today, atomic and molecular problems have been
directly stimulated, even initiated, by the needs of astronomy. In turn,
of course, they have proved vital to astronomy. It seemed appropriate,
therefore, to compile a primer on atomic and molecular physics within
this context of astronomy. The focus is on the basic physics of atoms and
molecules with a sample of their astronomical applications. This book
is designed as a possible textbook for a course in atomic physics for
students in astronomy programs, either at the senior undergraduate or
first-year graduate school level in U.S. universities, or their equivalents.
The only preparation presumed is of knowledge of quantum physics at
the level of a one semester- or year-long undergraduate course. Each

ix



x ASTRONOMY-INSPIRED ATOMIC AND MOLECULAR PHYSICS

chapter ends with problems suited for homework assignments. They are
of two types, some to work out derivations only sketched in the text,
and others to illustrate applications of results.

Chapter 1 considers the early beginnings of a modern, scientific study
of the astronomical Universe, when spectra from the Sun and other stars
provided the first handle on the nature of matter on them. The devel-
opment of quantum physics in the first three decades of the twentieth
century went hand in hand with the understanding of atomic structure
and of the coupling of atoms to the electromagnetic field. This chapter
will consider energy levels, particularly discrete, in hydrogen as well as
in heavier atoms and positive ions, and techniques for calculating them
and of the transitions between them that correspond to spectral observa-
tions. Such transition energies, and their Doppler shifts, already provide
vital information both on individual objects and the large scale struc-
ture of the Universe. Chapter 2 turns to intensities and polarizations of
spectra, important for the study of stellar atmospheres, introducing also
loosely bound atomic systems such as negative ions which have a major
role. External field effects on spectra, particularly of magnetic fields,
are the subject of Chapter 3, illuminating both the almost ubiquitous
occurrence of these fields in the Universe and the role of their study
in developing general mathematical techniques of perturbation analysis
which transcend atomic physics to cover all physics. Chapter 4 consid-
ers more recent studies of very strong fields, associated with magnetic
white dwarfs and neutron stars, and the impetus they provide to under-
standing atoms under very strong perturbations that can even alter their
basic structure. The role of electron correlations, already important in
ground state properties of negative ions, but central to multiple excita-
tions of atoms, is taken up in Chapter 5, inspired by the astronomically
important phenomenon of dielectronic recombination for the capture of
electrons by positive ions. This chapter also considers the effect of elec-
tric and magnetic fields on this phenomenon, of importance both in the
laboratory and in astrophysical plasmas. Chapter 6 deals with molecular
s t ruc ture and spectra, particularly of simple diatomic molecules, which
serve to introduce the basic elements of molecular physics. The final
Chapter 7 extends to larger molecules and to the variety of molecular
interactions that have been studied in recent years for interstellar clouds
and for the early stages of stellar formation. This chapter also deals
with maser emission seen from a variety of astrophysical objects.

References have been placed within square brackets in the text and
listed in order at the end of the book. These references are not intended
to assign credit, and original contributions are not always cited. Rather,
they have been used as pointers to the literature for specific items or



xi

for more detailed consultation and, therefore, are heavily weighted to
review articles and textbooks. Most of our knowledge and understanding
come from such sources and this is an appropriate place to indicate my
indebtedness. Much of the quantum mechanics I have learnt is from
L. D. Landau and E. M. Lifshitz, Quantum Mechanics: Non-relativistic
theory (Pergamon, Oxford, 1977). I have learnt most of what I know
of molecular physics from two books: J. I. Steinfeld, An Introduction
to Molecular Spectra (M.I.T. Press, Cambridge, MA, 1974), and I. N.
Levine, Molecular Spectroscopy (John Wiley, New York, 1975). This is
reflected in Chapters 6 and 7.

I also owe immensely to my many teachers, starting with my high
school science teacher, the late Mr. G. C. Gupta of Dehra Dun, India.
The selection of topics in this book reflect for the most part areas that
have been of research interest to me over the years. Most of what I have
learnt about atomic physics and research I owe to the late Professor Ugo
Fano of The University of Chicago and Professor Larry Spruch of New
York University. Their influence pervades the content and style through-
out this book. Regular visits to, and discussions with colleagues at the
Raman Research Institute (Bangalore, India) have contributed to my
interests in astronomy-related matters. Indeed, the initial suggestion to
write this book came from Professor V. Radhakrishnan of this institute.

The writing of this book was done during a period of sabbatical leave
from Louisiana State University. I am grateful for its support and to
my hosts and their institutions: Professors Jürgen Hinze and Farhad
Faisal (University of Bielefeld, Germany) and Professor Stephen Buck-
man (Australian National University). I also acknowledge support from
the Alexander von Humboldt Stiftung. For the typing of the manuscript,
I am grateful to Ms. Ophelia Dudley and Ms. Monika Lee, and for the
figures to Ms. Luz Barona and Mr. Enrique Hurtado, all of Louisiana
State University.



Chapter 1

ATOMIC STRUCTURE

1. Beginnings

Although the scientific study of astronomy dates back to the work
of Galileo and Newton, the nature of astronomical bodies remained un-
known till the middle of the nineteenth century. The same year 1859,
which saw other major advances such as Karl Marx’s “A Critique of
Political Economy,” Maxwell’s discussion of the velocity distribution in
the kinetic theory of gases, and Charles Darwin’s “On the Origin of
Species” is a significant date for astrophysics. Gustav Kirchhoff made
the connection between the lines seen by Fraunhofer in the spectrum of
the Sun with his own laboratory “flame spectroscopic” observations of
absorption spectra to conclude that matter on the Sun is made of the
same stuff as matter here on Earth. This was an important step, particu-
larly away from historical beliefs that the heavens are composed of a fifth
element, called quintessence. (This word is now again being attached by
some cosmologists to a certain kind of conjectured unseen matter in the
Universe.) This supposedly unique and perfect element, from which the
word quintessential is derived, was thought to be different from the four
(earth, air, water, and fire) that make up our Earth.

The recognition that stars and other objects in the Universe are con-
stituted of the same elements and atoms as in the laboratory opened
the doors to modern astronomy and to the study of the material con-
stituency of the heavens. As Helmholtz put it, “It had in fact most
extraordinary consequences of the most palpable kind, and has become
of the highest importance for all branches of natural science. It has ex-
cited the admiration and stimulated the fancy of men as hardly any other
discovery has done, because it has permitted an insight into worlds that

1



2 ASTRONOMY-INSPIRED ATOMIC AND MOLECULAR PHYSICS

seemed forever veiled to us.” (F. Cajori: A History of Physics (MacMil-
lan, N.Y., 1899), p. 160). Spectroscopy gave a handle on these distant
worlds that were not in direct reach. Already, in his first observations,
Kirchhoff made a model for Fraunhofer’s dark lines as due to light from
extremely hot deeper layers passing through a cooler atmosphere, giving
absorption lines at the same corresponding positions where he observed
emission lines from sodium and potassium in his flames. He also noted
the absence of lithium.

The study of spectra in German and other European laboratories
in the second half of the nineteenth century, inspired in large part by
astronomy, paved also the way to fundamental advances in quantum
physics and the understanding of atomic structure. On the one hand,
continuous emission spectra, such as of a black body, led to Planck’s
revolutionary replacement of the Rayleigh-Jeans and Wien’s distribu-
tions by his quantum distribution as a better fit to the laboratory data
of his colleagues like Lummer and Pringsheim. Planck, a student of
Kirchhoff, was following his teacher who, also in 1859, had established
the theorems of radiation absorption and emission. On the other hand,
line spectra seen in emission and absorption to be characteristic of the
different elements were organized into simple series by Angstrom, Ryd-
berg and others, setting the stage for Balmer’s crucial analysis of them
which in turn set the stage for Bohr and the development of quantum
physics. It is interesting that the Bunsen burner played an important
role in making it possible to observe such emission spectra. The first
public laboratory (Magnus had an earlier private laboratory in Berlin)
devoted specifically to physics was established in 1846 at the University
of Heidelberg in Germany for Bunsen and Kirchhoff; laboratories for
chemistry existed before at Giessen since 1824, and also at the Rennse-
laer Polytechnic Institute (1824) and in Scotland (1831).

Balmer, himself not a, spectroscopist but rather a Swiss high school
(Gymnasium) teacher, observed (1885) purely empirically that line spec-
tra in a series such as in Angstrom’s study of hydrogen conformed to a
simple expression, their frequencies being given by

with The constant Ry, named since for Rydberg,
has the value and
is today one of the most precisely measured fundamental constants of
nature [1]: and the frequency
in hydrogen is 2,466,061,413,187,103 (46) Hz.
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Theoretical understanding of the Balmer formula (1.1), and specifi-
cally of the role of the integers contained in it, emerged in part from
Bohr’s (1913) model of the hydrogen atom as consisting of quantized
orbits of the electron around the nucleus with specific integral values
of the angular momentum in units of and later fully through the
quantum mechanics of Heisenberg and Schrödinger. Bound states of
this three-dimensional system are characterized by three quantum num-
bers, and with the principal quantum number,

or denoting the orbital angular mo-
mentum and the azimuthal (or magnetic) projec-

tion of angular momentum on a quantization axis, usually referred to as
the The energy of such a stationary bound state depends only
on

with the Bohr radius
and the reduced mass of the electron. Throughout,

we take to be the charge of an electron, with esu.
“Atomic units (a.u.)” set

The states differing in and but sharing the same value are
“degenerate” in energy. Transitions between stationary states of dif-
ferent principal quantum numbers correspond to the specific energies
emitted as electromagnetic radiation as in (1.1), each providing a se-
ries. Each series terminates at a highest frequency value known as the
band edge. The “Balmer series”, with lying as it does in an
accessible visible region of the spectrum

was naturally the first observed. Others
of prominence in astronomy are (Paschen, observed in 1908) and

(Brackett) in the infrared, and
in the ultraviolet range.

2. The Hydrogen Atom
2.1 Eigenstates in the spherical representation

The energies in (1.2), together with a continuous spectrum,
are the eigenvalues of the time-independent Schrödinger equation,

with the one-electron Hamiltonian
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Here is the reduced mass of (electron+nucleus):
and where we have generalized (1.2) to an arbitrary
charge Z for the nucleus which proves convenient for handling other
hydrogen-like positive ions and atoms heavier than hydrogen. The spher-
ical symmetry of the Coulomb potential is reflected in the labels used
in (1.3), the operators of orbital angular momentum and projection

forming, together with H, a complete set of mutually commuting
operators. Together with (1.3), we also have

All three operators being even under space reflection, the
states are also eigenstates of parity . With three being the max-
imal set for characterizing a three-dimensional system, parity is not an
independent fourth label. Indeed, the parity eigenvalue is

The corresponding eigenfunctions or wave functions in the coordinate
representation,

are factorized in the coordinates as

where are the standard spherical harmonics (themselves fac-
torized in their and dependence) and the radial wave func-
tions, solutions of the radial equation

The radial functions are composed of three factors apart from a nor-
malization constant
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reflecting, respectively, behavior near the origin, at intermediate and
at asymptotic distances. The intermediate factor is a polynomial in
with nodes, where is the “radial quantum number”. Fig.
1.1 provides a representative sketch. For the corresponding functions in
the continuous spectrum, in (1.9) is replaced by where the
wave number is defined in the usual manner as and the
factor is no longer a polynomial, but a confluent hypergeometric
function,

Useful scaling relations that follow from these solutions are that radial
distances in an state scale as energies as and the
amplitude of the function at the origin (all functions van-
ishing there), as The velocity of the electron is given
by Some of the most useful expectation values of in such
states, for s an integer, are
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The first of these reflects the virial relation for a Coulomb potential,
the second enters in the study of electric field

(“Stark”) effects (Section 3.2.3), the third in the study of diamagnetic
effects on atoms (Section 4.2), and the last two in the evaluation of
relativistic corrections (Sections 3.3.1 and 3.3.2).

2.2 High symmetry of the hydrogen atom,
separation in parabolic coordinates

Degeneracy of stationary states is always a pointer to symmetries of
the Hamiltonian. The evident spherical symmetry of (1.4) means, of
course, that no direction in space is distinguished and all states differing
only in their quantum numbers have the same energy. This is also
evident in (1.8) in that does not occur in the radial eigenvalue problem.
In general, however, the energy eigenvalues of this equation may have
been expected to depend on both and That they do not depend on

is unique to a few spherical symmetric potentials such as the Coulomb
and isotropic harmonic oscillator The special status of
these potentials was already known in classical and celestial mechanics,
even as far back as Laplace’s elaborations on Newtonian mechanics for
gravitationally bound systems.

In quantum physics, the degeneracy implies the existence of other op-
erators that also commute with the Hamiltonian, and of other coordinate
systems in which the Schrödinger equation separates. The operator is
the one associated with a vector investigated by Laplace, and now called
the Laplace-Runge-Lenz vector in the context of the hydrogen atom,

In classical mechanics, this vector has magnitude equal to the eccen-
tr ici ty of the Kepler orbit and points in the direction of the semi-major
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axis from the force center. Further, L and A are orthogonal: L.A =
0. Together with H and forms a triad of mutually commuting
operators, an alternative to the set considered above. The
Hamiltonian can be written as

Correspondingly, therefore, an alternative set of eigenstates
also describes the hydrogen atom:

Unlike L, an axial vector, A is polar so that is odd under parity.
Therefore, unlike the states these states do not have
well-defined parity but are “mixed”. The is, therefore, dis-
tinguished for them which makes this set natural for describing problems
in which a direction in space is singled out, as when an electric field is
applied to the hydrogen atom (Section 3.2.3).

The corresponding coordinates in which the Schrödinger equation sep-
arates are the parabolic coordinates which single out such a
in their very definition: and We have now,
instead of (1.7),

where and are polynomials with and nodes, respectively.
The spherical and the parabolic descriptions provide alternative bases

for describing the states of the hydrogen atom. As in any such situation
of alternative bases at the same energy for a quantum system, a unitary
transformation links the two sets. Its realization is most immediate from
the linear combinations of the two vectors L and A,

In terms of them, the parabolic description stems from the set
whereas the spherical is given by It can also be
shown through commutators of their components, that and behave
like two independent angular momenta, each of magnitude
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so that the unitary transformation coincides with that of adding two
angular momenta:

the brackets being, therefore, the Clebsch-Gordan (or Wigner) coeffi-
cients of such an addition. With being common to both represen-
tations, states of the same and that differ only in one quantum
number, or (or ), are superposed in transforming from one rep-
resentation to the other.

In particular, for and the parabolic states are

In coordinate space, the first of these involves               , the second
so that the wave functions are concentrated at positive and

negative respectively. Such plots of spherical and parabolic functions
or probability densities as in Fig. 1.2, or elsewhere [2] for higher are
instruct ive in visualizing the nature of these states. Note finally that the
existence of two vector operators, L and A, both of whom commute with
H , signifies that this Coulomb Hamiltonian is invariant not only with re-
spect to rotations in the familiar three-dimensional space of coordinates
but also with respect to rotations in a four-dimensional space wherein
six independent rotations (or planes) or possible. For this reason, the
Coulomb problem is said to have the higher symmetry of the orthogo-
nal group in four-dimensions, not just, under which, of course, it
shares with any spherically-symmetric potential. The four dimensions
can be interpreted as those of momentum space, with the momentum p
and energy constituting the four coordinates, and the Schrödinger equa-
tion for the hydrogen atom in momentum space separating in spherical
polar coordinates.

3. The Two-electron Atom
In going beyond hydrogen to other atoms, an additional quantum

principle becomes important. Identical particles in quantum physics
have to be described by wave functions that are totally antisymmet-
ric (symmetric) under the interchange of any pair of them if they are
fermions (bosons), that is, if their intrinsic spins are half-odd integers



Atomic Structure 9

(integers). For the electrons in an atom, this “Pauli exclusion principle”
about antisymmetric functions acts as a constraint on the states that
successive electrons can occupy. Elsewhere, for systems with a large
number of electrons, this same constraint, acting almost like a dynami-
cal force, the “electron degeneracy pressure”, underlies basic character-
istics of conduction in metals and semi-conductors, and the structure
and stability of white dwarf stars.

3.1 The ground state of helium
The two-electron atom, helium, illustrates the effect of the Pauli prin-

ciple. Interestingly, this element named for Helios, the Sun, was first
identified in solar spectra in 1868 by Pierre Janssen and Joseph Lock-
yer, 27 years before its observation on Earth. In its ground state, both
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electrons can occupy the lowest hydrogenic “orbital”, thereby being
symmetric under exchange of their spatial coordinates and if and
only if they are antisymmetric under the interchange of their spin labels.
This occurs in only one way, the total spin function being a “singlet”
with denoted in an obvious notation by

The spatial wave function, symmetric under interchange, can be writ-
ten in a variety of ways. No exact solution is known, the Hamiltonian

with being not separable in any coordinate system.
We have again left the nuclear charge Z unspecified so that these con-
siderations apply equally to helium and all its isoelectronic two-electron
family.

Were the last electron-electron repulsion term in (1.17) to be absent,
the exact ground state wave function would be simply the product of
two hydrogenic functions in and Since the inter-electron repulsion
in atoms is generally weaker than the attractive electron-nucleus terms
(roughly 10% as will be seen below and in Section 1.4.3), this serves as a
clue to one line of approach for the ground and low-lying states of helium.
The ground state, in particular, yields immediately to the “Rayleigh-
Ritz” variational principle which is based on the fact that this is the
state of lowest energy. Therefore, any normalized two-electron “trial
function”, will give an energy expectation value,
that will necessarily lie above the exact ground state energy. Further,
the difference will be second order in the “error”, the amount by which

differs from the exact ground state wave function. The strategy then
is to pick a trial function with open constants, evaluate the energy ex-
pectation value, and then vary the resulting energy with respect to those
open parameters to achieve a minimum value. In this manner, the best
possible function within that class of trial functions is obtained as an
approximation to the exact ground state.

The simplest choice, a product of two hydrogenic functions with
an effective charge as a variational parameter,

is already instructive. N is a normalization constant, determined in
terms of so as to satisfy Upon evaluating the
expectation value of H in (1.17) with such a function, elementary inte-
grations lead to
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the three terms being, respectively, the kinetic, electron-nucleus, and
electron-electron energies. This expression reaches a minimum at

with value

This compares favorably (lying above, as expected) with the “exact” [3]
non-relativistic helium ground state energy of –5.8074487540682391966.
The effective charge seen by each electron is smaller than the nuclear
charge Z by which can be interpreted as the partial screening of
the nuclear field provided by the other electron. The corresponding
wave function in (1.18) is, therefore, a reasonable first approximation
although, as usual in such variational applications, it will fare poorer,
containing “first-order errors” when used for any other physical quantity
than the energy for which it has been variationally tailored.

Indeed, with particles 1 and 2 completely independent, the wave func-
tion in (1.18) is grossly deficient in one regard because it contains no
correlation at all between the two electrons. As will become important
in Section 2.4.1, this is a particular failing for describing helium’s isoelec-
tronic partner, the negative ion (with Z = 1), where such electronic
correlation is already crucially important in the ground state. As can
be seen from (1.20) with Z = 1, the obtained is less negative than
–1 Ry, which is the energy of at infinity, so that we
cannot even conclude that a bound negative ion exists.

Further terms with more variational parameters can be included in
(1.18). In particular, an explicit dependence on introduces electron
“correlations”. Such trial wave functions,

with as many as a thousand parameters C have been used by Hyller-
aas, Pekeris, Kinoshita. and others to get the “essentially exact” ground
state for He with the numerical value for the energy quoted below (1.20).
These calculations are carried out to many more figures than experi-
mentally available results on the helium atom which include, of course,
relativistic contributions. This is because one of the purposes of the
very accurate non-relativistic computations is to assess these additional
relativistic terms, including quantum electrodynamic corrections, and
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test our theoretical ability to calculate them. Along with the cited
ground state energy of –5.81 Ry, these calculations provide expecta-
tion values for other quantities. Thus which means
that the electron-nucleus terms in (1.17) provide –13.5 Ry; the kinetic
energy terms, by virtue of the virial theorem, give +5.81 Ry, so that
the electron-electron repulsion gives 1.88 Ry. Note that this is approxi-
mately ( – 1/7) of the electron-nucleus energy (see Section 1.4.3). Also,
one finds for the angle between the two electrons,
reflecting a slight angular correlation that tends to keep the electrons
apart.

3.2 Excited states
Turning next to excited states in helium, the lowest of these has one

electron placed in the first excited hydrogenic orbitals or In hy-
drogen, these states are degenerate but no longer so in helium, that
degeneracy which is characteristic of the pure Coulomb attraction inval-
idated by the electron-electron repulsion term. With the two electrons
distinguished now in the quantum number ( and 2), the Pauli
principle no longer restricts to a single state. Both singlet and triplet
combinations of the spins of the two electrons are allowed, unlike in the
ground state where the triplet was forbidden. The principle is still in op-
eration, however, in requiring overall antisymmetry of the wave function
under interchange of the two electrons. Since singlet (triplet) is antisym-
metric (symmetric) under interchange of spin labels, it must go with the
multiplicative spatial wave function which is symmetric (antisymmetric)
under the interchange Therefore, we have

and a similar set for the and states. We have used here a
standard spectroscopic notation for multi-electron states, the total spin
S and total orbital angular momentum L of the electrons denoted as

The 2 in front is used in helium for describing the quantum
number of the outer electron in such singly-excited states.

In evaluating the expectation value of H in (1.17) with the wave func-
tions (1.22), the spins play no further role, the non-relativistic Hamilto-
nian containing no spin dependence (spin-orbit and such weak relativistic
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corrections to H are handled through perturbation theory – see Section
3.3). With the individual orbitals assumed orthonormalized, we have

where (and also ) is a “one-electron energy”,
The electron-electron interaction gives rise to a pair of “two-electron”
terms, respectively referred to as “direct” and “exchange”, the latter
carrying the ± signs of singlet/triplet contained in (1.22). The direct
term, common to both, has an obvious classical interpretation as the
electrostatic repulsion of the two charge densities of and and is
clearly positive. The exchange term, arising from the Pauli principle,
depends explicitly on the wave functions of the orbitals and is of purely
quantum character, having no classical counterpart (although Section
1.4.3 will give an approximate description in terms of densities). The
orbitals and being purely real, the complex conjugates in (1.22) are
redundant but have been retained so as to be applicable to other orbitals

that may carry complex elements through their dependence.
Although originating in spin and the attendant Pauli principle, the

exchange term depends on non-relativistic elements alone, namely, on
the wave functions involved. Through a Fourier identity,

the integral itself in the exchange contribution is non-negative (the inte-
grand is explicitly so, involving a product of a function and its complex
conjugate and other squared factors). Thereby it follows that triplet
states lie lower in energy than their singlet counterparts, as shown in
Fig. 1.3. This same argument is at the heart of the fundamental mech-
anism for ferromagnetism called the “Heisenberg exchange interaction”,
as a result of which a state of aligned spins lies lower in energy. Note that
whereas one-electron terms are of the order of 1 Ry, exchange splittings
are about an order of magnitude smaller.

Higher, singly-excited states in He, can be treated in a similar
fashion, with an in place of the orbital in (1.22). For
each (S, L), these will form a “Rydberg” series in converging finally, as

to the single ionization limit of which, being hydrogenic
with Z = 2, lies at –4 Ry. Such a series of singly-excited states is
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similar to the Bohr spectrum for hydrogen in that the outer electron,
particularly with increasing sees a core of charge but with one
important difference. Their energies below the –4 Ry of the
state fit the modified expression,

rather than the Bohr (1.2), with a positive constant between 0 and
1. Fitting spectroscopic data in He to this formula gives, for instance,

These constants are called quantum defects
(correspondingly, is an “effective quantum number”) and
represent the somewhat stronger binding the outer electron experiences
than in the hydrogen atom due to its excursions into and within the orbit
of the inner electron where it sees a stronger nuclear attraction. As
expected from the first factor in the radial functions in (1.9), the higher
the the lower is the probability for being in the small- core region
and, therefore, the smaller the quantum defect In most atoms, for
orbitals with is essentially zero. In Li, we have

and
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Although the quantal origins of the quantum defect were recognized
later, an expression such as (1.25) was used much earlier as a purely
empirical organization of spectral levels in atoms other than hydrogen,
so that this formula is often referred to as the Bohr-Rydberg formula for
atomic energy levels. The differing roles of and are significant. The
dominant variation, from one level to the next, is controlled by the
form characteristic of the Coulomb field which the outer electron sees
over most of its motion at larger The which are only very weakly
dependent on energy or (indeed, sensibly constant once past the first
few initial values of ), reflect dependences on the region where
strong potentials prevail so that changes in the asymptotic (or total)
energy are dwarfed into insignificance. Since these considerations apply
not only in helium but in any many-electron atom for singly-excited
states where one electron moves out further and further from the rest of
the core, the Bohr-Rydberg expression and its interpretation in terms of
the differing roles of and apply to all atoms.

These differing roles of and regions form the basis
of a powerful method of analysis called quantum defect theory. Not
restricted to Coulomb fields alone, any combination of a long and short
range potential, the former common to many systems whereas the latter
may be specific to each system, can be analyzed analogously. The long
range part is sensitive to small changes in energy and is best treated
analytically, whereas the short range has stronger potentials so that the
scale of variation is set by larger energies. Numerical handling of each
specific system can then be confined to the short range and carried out
over a coarse grid [4].

Finally, with reference to Fig. 1.3, all the singlet levels (which include
the ground state) constitute a separate family from the triplets, because
operators that do not explicitly involve coupling of spin and orbit cannot
connect a state of one group to any state of the other, singlets and triplets
being orthogonal. The non-relativistic Hamiltonian itself in (1.17), cou-
plings of the electrons to the electromagnetic field which are involved in
photoabsorption and emission, etc., fail to connect the two families so
that they behave almost like two different species, called orthohelium
(S = 1) and parahelium (S = 0). This feature remains true in other
light atoms as well besides helium, also in molecules (see Section 6.2.7).
Only in heavier atoms, where the relativistic corrections become more
important and the attendant spin-orbit interactions that couple S and
L become appreciable, are such “inter-combination” transitions between
states of different S seen, the notable example being the spectrum of Hg,
its familiar blue lines arising from
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3.3 Configuration interaction
The two-electron Hamiltonian in (1.17) being non-separable in

and the corresponding one-particle quantum numbers, and
do not have exact validity. Thus, descriptions of the ground

state as or an excited state as are, necessarily, approx-
imate. Of course, again as a result of the weakness of the electron-
electron potential that is responsible for the non-separability when com-
pared with other terms in the Hamiltonian, the approximation of using
such “single configurations” for describing atomic states is quite good
and reasonable as a starting point. Nevertheless, in principle, the only
exactly conserved quantities and, therefore, good quantum numbers are
those like parity, S, and L, which belong to the combined two-electron
system and whose operators commute with H. In principle, any state
of helium, of say symmetry, is a linear combination of the various
independent-particle configurations compatible with this symmetry:

The
set includes not only the bound configurations but also the correspond-
ing ones in the continuum because it is only such a full set of all product
hydrogenic orbitals that provides a complete basis for writing the two
particle wave function Note also the inclusions of configurations
in which neither electron is in These are called “doubly-excited”
configurations.

This picture provides an alternative view and, at the same time, an
alternative calculational procedure for the states of the helium atom.
Going under the name of the “configuration interaction (CI) method”,
one writes as a superposition of some finite number of configu-
rations, the coefficients of superposition and even possibly of parameters
in the individual orbitals left as open variational parameters. Upon eval-
uating with such a choice, the variational principle can again
be exploited to determine the ground state by minimizing the energy
with respect to the variational parameters. The final result will be a
superposition with dominant but some mix of other configurations
as an approximation to the exact (and unknown) helium ground state
two-electron wave function. In this approach, it is the admix of other
configurations that describes correlations between the electrons. Thus,
so long as no configurations are in the mix, there is no angular cor-
relation between the two electrons, with the directions and totally
uncorrelated. It is the occurrence of (though, of course, with

to maintain the overall L = 0) configurations that leads to a non-
trivial dependence on that is, on the angle between
the two radius vectors. It is only by superposing different values that
any structure in the conjugate variable can be realized. Similarly,
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the superposition of different and configurations leads to radial
correlation between the relative distances and of the two electrons
from the nucleus.

The configuration interaction approach also has the merit of providing
simultaneously excited states of the same (S, L) symmetry along with
the ground state. Thus, if N such configurations are chosen and the
coefficients of their superposition varied, this is tantamount to setting
up an energy-matrix formed out of matrix elements of H between
them. The N eigenvalues of this matrix provide upper bounds succes-
sively on the energies of the lowest N states of that ( S , L ) symmetry.
This is a matrix version of the Rayleigh-Ritz variational principle to
which is sometimes attached other names such as Hylleraas, Undheim,
and MacDonald. Thus, within the space, the lowest eigenvalues will
always lie above the exact ground state, the next higher one above
etc. As additional variational parameters in the one-electron orbitals
or additional configurations are added, the variational principle guaran-
tees continued improvement in each of the bounds. Of course, the lower
eigenvalues provide a better description of the corresponding states than
the higher ones which may be very poor, sometimes lying far above the
exact energy of the state they purport to describe.

4. Heavier Atoms

4.1 Configurations and states

The methods of the previous section for helium extend readily to
other many-electron atoms and ions. We will consider successively more
sophisticated treatments, starting with the simplest semi-empirical ones.
The first step in describing the ground or low-lying states is to select the
dominant configuration and determine the total quantum numbers of
the angular momenta of the electrons. The Pauli principle provides the
starting point for determining the configuration. Since each electron has
to be distinguished in at least one of the four labels, and

for its spin projection, successive filling of the lowest orbitals
determines the filled shells, etc.

For the higher orbitals with an empirical rule due to Madelung,
that the shells fill according to the value of and that, for the same

the higher is occupied first, needs to be applied. This departure
from the “hydrogenic ordering” is made plausible by the feature seen,
for instance, in (1.10), that electrons in such states have smaller radial
extent and lie below the “surface” of the atom. This is first manifest in
the transition elements where, once and shells are filled,
with 18 electrons in the noble gas Ar, the next two electrons fill rather
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than The dominant ground state configuration of
Ca(20) is, therefore, After this, the is occupied
and then the (same the taking precedence). The shell
being “subsurface”, the entire set of transition elements from Sc(21)
through Cu(29) share the common chemistry of the outer electron
and occupy a single position in The Periodic Table. There are slight
“glitches”, again because of another feature, that a completely closed
or even half-closed (thus or ) shell is more strongly bound. As a
result, instead of the the may be more favored, similarly

rather than This also means that such close, competing
configurations may be strongly mixed in the ground and low-lying states
of such atoms. The same features occur later in The Periodic Table for
the or and the shells, all having this “sub-surface” quality as
seen, for instance, in the values of and in (1.10).

With the configuration decided, the spectroscopic state follows by an-
gular momentum addition, together with the Pauli principle. Any filled
shell can occur in only one un ique way, each electron allotted to one each
of the available That there is only one state means S = 0
and L = 0, namely, Thus, as far as angular momenta are concerned,
a filled shell has the same quantum numbers as vacuum. As elsewhere in
field theories or in semi-conductor energy bands, a useful corollary is to
regard an “almost-filled” configuration as “holes” in the vacuum which
again, for angular momentum considerations, can be handled as
particles. In this manner, the overall S and L quantum numbers follow
from all the partially filled shells in the configuration.

An example of the first row in The Periodic Table beyond helium will
illustrate the essentials. Li has the configuration in the ground
state, that one last electron giving the labels Next, Be is
and, with both shells filled, is The next electron in B goes into
to give The carbon atom has the configuration
There are now two electrons (apart from closed shells) whose angu-
lar momenta have to be added. First, the rules for such addition alone
allow S = 0, 1 and L = 0, 1, 2. But, the two electrons being identi-
cal in and the Pauli principle constrains the possibilities just as in
the discussion for helium in Section 1.3. As before, the singlet (triplet)
being antisymmetric (symmetric) in interchange of spin coordinates, it
has to accompany symmetry (antisymmetry) under spatial interchange.
For the case of two particles, and only for two, this is determined by
whether L is even (odd). Thus, the only allowed states are and

the other combinations of and being forbidden for a pair
of identical fermions. A check is provided by the total number of states
which is exactly the number of antisym-
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metric elements, the binomial coefficient for a configuration

with its basic states. Two non-identical electrons, as in
an excited configuration of carbon, would have all
states, but the antisymmetry requirement of the Pauli principle cuts the
number by more than half when the two electrons have the same
A simple statement of this rule for a pair of particles is that
S + L must be even, whatever the

The next question of which of the three states lies lowest in energy,
and is thereby the ground state of the carbon atom, is determined by the
so-called Hund’s rules. The first of these three rules says that, for the
same reasons discussed in Section 1.3 for the exchange energy in helium,
the highest allowed S is the most bound. Thus gives the labels for
carbon’s ground state. In this example, there is no need to go further
but, when several alternative L values share the highest S, Hund’s second
rule points to the largest L for the strongest binding. Finally, Hund’s
third rule fixes the total angular momentum J obtained from S + L = J.
Thus, of the three J values (together called a “term”) in carbon’s
the lowest J, namely zero, has the lowest energy. Spin-orbit interactions
(Section 3.3.2) cause “fine-structure” splittings, raising slightly the J =
1 and 2 states. For later purposes below, this rule is exactly reversed in
the case of holes rather than electrons, when the highest J constitutes
the ground state. The gain in binding energy with S also lies behind the
earlier observation that half-filled shell configurations are favored over
neighbouring configurations.

The next atom, nitrogen, has a third electron, its ground state
configuration being The three electrons determine the state
labels. The addition of three spins allows (in two ways) and Of
these, by Hund’s first rule, the or quartet will have the lowest energy.
Simple addition of orbital angular momenta, 1 + 1 + 1, gives rise to many
possibilities for L so that it is more convenient now to consider the Pauli
principle first, and in the following version. Since has as one state
all three spins aligned, whether or this means the three electrons
share a common and They have perforce to be distinguished in
the fourth label by having each in and –1, the three allowed
values for This can be accomplished in only one way so
that the total L must be zero. Therefore, nitrogen’s ground state is

the J subscript uniquely fixed in this case as The total number

of antisymmetric configurations for three electrons is

Besides the four-fold degenerate ground state, the others are the
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six-fold and the ten-fold These are low-lying excitations of the
ground configuration’s multiplet structure.

Oxygen follows, with configuration Here, the view of it as
two in a filled reduces the problem to the one already
discussed for carbon with as the ground state. Hund’s third rule,
now applicable for this case of holes, fixes the ground state as The
next atom, fluorine has one so that is its ground
state. The row ends with neon and a filled

Finally, a fourth label besides {S, L, J} is also included in specifying
the spectroscopic state, the total parity of the system which is also a
good quantum number, the parity opertor commuting with the atomic
Hamiltonian. Being a multiplicative quantum number, this is simply
the product of the parities of each electron; in particular, only the
unfilled shells contribute and, for the above examples of the first row,
we have

The parity label, e(ven) or o(dd), is an independent fourth label, having
nothing to do with the coupling of angular momenta to give {S, L, J}
but fixed entirely by the configuration itself. Because the parity of a
single electron’s wave function is given by a common misconception is
to carry this over to many-electron states but, as seen in the above list,
any particular L can have either even or odd parity.

The labels L and S are meaningful in light atoms and at low excitation
when relativistic effects such as spin-orbit coupling (Section 3.3.2) are
weak. The coupling of all electronic orbital angular momenta to L, and
spins to S, is referred to as LS-coupling or Russell-Saunders coupling.
It arose from the work of the Harvard astronomer Henry Norton Russell
and his spectroscopy colleague Saunders; Russell’s name is also attached
to the famous Hertzsprung-Russell diagram of stellar luminosities and
temperatures.

4.2 Simple screening pictures
With the configuration and state specified, the simplest description

of the energy and wave function of an atom’s ground state is given
by a product of the orbital functions, with hydrogenic wave functions
(1.7) and (1.9) serving as the first choice. The influence of the other
electrons can be accounted for by an average screening they provide.
As in the picture provided by (1.18) for helium, each electron can
be regarded as reducing the nuclear charge Z by approximately 0.3 for
the other. A set of empirical rules of this kind, called Slater screening
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constants, have been developed for each orbital. With shells arranged in
the sequence these rules are that
for any of these shells, the amount of screening due to each of the other
electrons is [5]

0.35 if in same shell except 0.3 for 0.85 for each and of less

by 1 and 1 for more inner 1 from all inner orbits for all and
(1.26)

The above values are fixed by a classical electrostatic picture, that
electronic charge distribution interior to any electron of interest pro-
vides an “inner screening” tantamount to that charge residing at the
center, that is, at the nucleus. Likewise, all the exterior orbitals provide
an “outer screening” which is a constant potential (there being no
electrostatic force inside a shell of charge). In the Schrödinger equation,
this just shifts the energy without affecting the wave function. The other
aspect of core penetration by an outer electron, as discussed in Section
1.3.2, can also be incorporated by replacing in the radial wave func-
tion for any by an “effective quantum number” Once
again, one simple empirical set of numbers is and 4.2
for

Together, such a model of screening (inner and outer) and core pene-
tration leads to a description of the energy for any orbital

and a corresponding wave function which, for example, in B would be
again with each factor involving

its own and Although a relatively simple approximation based
on classical physics and ignoring antisymmetrization and attendant ex-
change effects, such a screening model is a fairly good initial description
of any atom.

Antisymmetrization is the next quantum feature that can be built
in. Beyond two electrons, the factorization into orbital and spin wave
functions as in (1.22) no longer holds but these expressions point to the
required extension. By specifying both orbital and spin labels for each
orbital, each of the four terms in (1.22) can be cast in the form of 2 × 2
determinants. Thus, the singlet state in (1.22) can be written as



22 ASTRONOMY-INSPIRED ATOMIC AND MOLECULAR PHYSICS

where the 1 and 2 within parentheses stand for the combined orbital
and spin coordinates of the two electrons. The middle member of the
triplet state in (1.22) differs from (1.28) only in a change in sign from
minus to plus, while the other two members of the triplet have a single
determinant. This structure points to a convenient rendering of antisym-
metrization through so-called “Slater determinants”. For the example
above of boron, we have a determinant,

The factor in front is for normalization, each individual orbital as-
sumed normalized. Evaluating with such determinantal wave
functions leads naturally to the exchange terms. The determinantal
form naturally and explicitly exhibits alternative renderings of the Pauli
principle. Thus, if the same orbital occurs more than once, such a deter-
minant vanishes by virtue of having two identical rows. Also, interchange
of the coordinates of any two electrons means interchanging two columns
which leads to a change in sign of the wave function.

4.3 The Thomas-Fermi self-consistent field model
A universal model for atoms, due to Thomas and Fermi, pre-dates the

Schrödinger equation and stands separate from developments in terms
of wave functions, but is worth considering for a variety of reasons [6].
First, it provides a simple picture in terms of a single equation and poten-
tial capable of describing any atom, together with reasonably accurate
scaling relations of atomic properties as a function of Z. Although it
does not have shell structure, it provides a good accounting across The
Periodic Table when averaged over shell structure. And, in more recent
times, it has been proved to be mathematically exact as an asymptotic
theory when (admittedly, an academic limit for a non-relativistic
atomic description). And, most importantly, the model is the natural
precursor of “density functional” calculations that are now widespread
in atomic, molecular, and condensed matter calculations in physics and
in quantum chemistry. It shares with density functional theories the
virtue that instead of a 3N-coordinate complex wave function for an
N-electron atom, it deals with a 3-dimensional real electron density
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distribution. Indeed, this provides the computational and conceptual
attraction that has led to the widespread use of the density functional
method [7].

As we saw with the helium Hamiltonian (1.17), the kinetic energy and
the exchange part of the electron-electron interaction are the ones that
require wave functions explicitly in their evaluation, while the electron-
nucleus and direct electron-electron energies require only a one-electron
charge or number density. This is true for any atom, so that these latter
pieces can be written immediately as

with the one-electron number density, normalized according to

N being the number of electrons. We will let N be a new parameter,
possibly different from Z, so as to handle positive ions and neutral atoms
equally.

Setting aside for a moment the exchange part of the electron-electron
interaction as generally an order of magnitude smaller than the other
terms, the question that remains, and which was addressed by Thomas
and Fermi, is how to write the kinetic energy as a functional of
[6]. The clue is to consider the electrons in an atom as constituting
a free electron gas. For a uniform electron gas, the density can be
related to the Fermi momentum by a straightforward argument of
quantum physics, that every element of phase space volume of size
can accommodate only two electrons (more generally, any fermions of

with spins and Therefore, we have

This relationship is now applied locally, at any point in the atom,
to provide a connection between the local density and the Fermi
momentum that represents the highest momentum state occupied.
Next, an average “kinetic energy density” at any is taken as

and thus related through (1.32) to the local density,
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The total kinetic energy is then given by

The above key relationship permits one to write the energy of an
atom as a functional of that is as a function of which is itself
a function of

with dependent on fundamental constants
alone. The index 5/3, called the non-relativistic adiabatic index, is ac-
cording to the above derivation (1+ 2/dimension), dependent only on the
dimensionality of space. It occurs elsewhere in physics; specifically, just
the above term in (1.35), together with its counterpart for a relativis-
tically degenerate electron gas which has an index 4/3, is responsible
for holding a white dwarf stable against gravitational collapse till the
“Chandrasekhar limiting mass” is exceeded [8].

With the ground state energy in (1.36) a functional of the best
density follows from the variational principle

the a Lagrange constant to reflect the constraint (1.31). It is called
the chemical potential and vanishes for a neutral atom. The second and
third terms represent, of course, the electrostatic potential at a point
due to the nucleus and the electronic charge distribution. Using Pois-
son’s equation, operating by on (1.37) converts it into an equivalent
differential equation,

Eqs. (1.37) and (1.38) constitute alternative forms of the Thomas-
Fermi equation. Note they are nonlinear. The latter, in particular,
can be solved once and for all as a universal that describes any
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atom or positive ion. Fig. 1.4 gives the corresponding “universal atomic
potential” provided by the Thomas-Fermi model, defined through

with a dimensionless distance,

The energy E in (1.36) in the Thomas-Fermi model for a Z-electron
atom is given by –1.537 Ry. The characteristic scaling with Z
follows straightforwardly from (1.31) and (1.36), together with a corre-
sponding relation that distances scale as As shown in
Fig. 1.5 for a comparison with experimental data, although the model
does not contain local variations reflecting shell structure, the result in
(1.39) is a fairly good approximation across The Periodic Table. Of
course, since it rests on the concept of a local electron density, regions of
the atom such as or where there are too few electrons for a
density to be meaningful cannot be expected to be adequately described.
It has been proved that this result, both in the 7/3 power and in the
numerical coefficient in front in E, is asymptotically exact for the real
non-relativistic quantum-mechanical Hamiltonian for a Z-electron atom
[6]. For these reasons, and for the simple scaling results it provides for
many atomic properties, the Thomas-Fermi model remains useful even
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in these days of more sophisticated quantum-mechanical treatments. It
is also a consequence of the model that the electron-electron term in
(1.36) turns out to be –1/7 of the electron-nucleus energy, as observed
earlier (Section 1.3.1) for helium.

The characteristic Z-scalings above have their origins in a simple
model one can construct based only on the Bohr expression (1.2) and the
Pauli principle’s restriction of electrons for each shell. For simplic-
ity, if we consider a Z-electron atom with all shells from to some

filled, and ignore completely the electron-electron interaction, the
energy is easily written down,
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At the same time,

which for large Z and can be approximated by an integral to give
This gives in (1.40) the result Further, it

shows that the expansion parameter for further correction terms beyond
the leading is Indeed, an expression of the form

gives a very good fit to the entire set of data in Fig. 1.5.
The exchange part of the electron-electron energy which is intrinsically

quantum in nature can also be approximated by an expression in terms
of the density An algebraic expression can be derived based on
using plane waves to describe the electron gas, as one expects from
the assumption of a uniform density, but here we give a plausibility
argument which contains the essential physics. Exchange, associated
with the Pauli exclusion principle, arises from the fact that once an
electron is present at some point another identical one with the same
spin projection is excluded. Therefore, each electron can be considered
to dig a “Fermi” hole in the background density which can be modeled as
a sphere of radius such that The absence of negative
charge in this sphere can be achieved by superposing a positive charge
distribution uniformly over the sphere to cancel the electronic As a
result, the electron at the center gains an attractive energy of interaction
with this positive charge of The total exchange energy
is, therefore,

Such a term, also a functional in density, can be readily incorporated into
(1.36) and gives what is called the Thomas-Fermi-Dirac model. From the
scaling relations noted earlier, it follows that the exchange
energy being relatively of lower order than the three terms in (1.36), all
with a dependence.

Modern density-functional theories for many electron systems, whether
in atoms, in quantum chemistry, or in condensed matter, employ much
more sophisticated functional dependences on than those in (1.36)
and (1.42) for the kinetic and exchange energies. A theorem due to Kohn
and Hohenberg proves the existence of an energy functional that is ex-
act for the quantum-mechanical system without specifying the form of
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that functional. Undoubtedly, it will have some very complicated non-
local dependence on but all calculational schemes, starting with the
work of Kohn and Sham, seek increasingly better local density function-
als to provide successively better approximations to the exact ground
state energy [7].

4.4 Exact treatments: Hartree-Fock and
configuration interaction

Although, already as in the case of helium, an exact closed form solu-
tion of a many-electron Hamiltonian is not possible, schemes are avail-
able that are, in principle, capable of reaching iteratively any desired
accuracy. One method is the immediate generalization of Section 1.3.3’s
configuration interaction method for helium. Thus, a properly anti-
symmetrized determinantal wave function as in (1.29) is constructed for
each of the dominant configurations that may be expected to describe
the low-lying spectrum of an atom, the orbitals themselves of suitable
form with open variational parameters. The Hamiltonian matrix be-
tween these configurations is solved for its lowest eigenvalues, and the
variational parameters determined so as to get the lowest energy value
possible. Corresponding superpositions of the configuration wave func-
tions will then describe the ground and lowest lying excited states of the
atom for any symmetry.

An alternative approach, which gives a set of integro-differential equa-
tions to be solved for the orbitals, is called the Hartree-Fock method.
Again, several Slater determinants can be used for higher accuracy but,
to illustrate the method, consider again one such as in (1.29) for boron.
When for the atomic Hamiltonian is evaluated with such a function,
the expression for the energy consists of one-electron and two-electron
“direct” and “exchange” energies just as in the example in (1.23). At this
stage, regarding the N orbital functions for the N-electron atom/ion
as unknown, formal variation of E with respect to each of them is set
equal to zero to give a set of coupled equations for the N orbitals. These
equations have the form
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with Besides the one-electron kinetic, electron-nucleus,
and direct electron-electron energies, the exchange interaction couples
the set of equations for making them integro-differential.

In principle, any approach to solving such coupled integro-differential
equations may be used but, most often, the practical one is to con-
vert it again to a variational scheme by assuming appropriate forms
for the orbitals and varying open parameters so as to achieve a mini-
mum energy. Such a procedure constitutes a self-consistent-field (SCF)
method, each electron moving in the field of the nucleus and of all the
others. The orbitals are obtained through a self-consistent solution, with
the field determining and being in turn determined by the orbital func-
tions. Multi-configuration Hartree-Fock (MCHF) or multi-configuration
SCF, or relativistic counterparts such as multi-configuration Dirac-Fock
(MCDF, using the Dirac Hamiltonian in place of the Schrödinger) are
among the most accurate techniques for atomic structure and properties
[9].

The exchange term in (1.43) both couples the equations for different
and makes the equations non-local (the value of at depending

on at all ). A variant that replaces this term by a simpler, local,
uncoupled term, even if approximate, has therefore enormous attraction
and is called the Hartree-Fock-Slater method. In one such scheme, an
approximation as in (1.42) based on the density, is
used. With such a system, for every atom across The Periodic Table , a
simple potential corresponding orbital energies and functions

have been tabulated [10]. Fig. 1.6 gives a sketch of providing
at a glance much information on the self-consistent potential seen by an
electron in any atom at various distances from the nucleus [11].

This is a slightly more complicated, but also a better, approximation
than the Thomas-Fermi potential in Fig. 1.4. In particular, shell struc-
ture is clearly reflected in the potential surface itself, including variations
seen as sub-surface and shells fill, as discussed in Section 1.4.1. Also
for large at the edge of the atom which plays the dominant role in or-
dinary chemistry, abrupt drops in the potential occur at the noble gases,
reflecting their stronger binding and chemical inertness compared to the
alkali atoms that lie next. On the other hand, somewhat more in the
interior of the atom at similar drops occur for instance
in Cu, Ag, or Au, reflecting the inertness of these noble metals in their
metallic state.
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5. Line Spectra and Their Uses
5.1 Atomic spectra in astronomy

The previous sections have detailed the calculation of the ground and
low-lying bound states of atoms and positive ions to varying levels of ac-
curacy through methods of varying sophistication. Transitions between
these levels, whether in absorption or emission, give rise to observed
line spectra. Since they are unique to each atom and to specific states,
they convey a wealth of information on the systems with which they are
associated. The first formation of atoms, according to The Big Bang
model of the origin of our Universe, occurred roughly 300,000 years af-
ter that primordial explosion, when the Universe had cooled sufficiently
to about 3000 K to permit nuclei and electrons to combine. This so-
called “recombination era” separates the epoch in which the Universe
was opaque because of scattering of photons by the free electrons abun-
dantly present from the one when these electrons were mostly locked up
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in bound atomic states making the Universe transparent to light. This
is as far back as we can “see”.

The various series in hydrogen, Lyman, Balmer, and Paschen, have
already been discussed in Section 1.2.1. Similar sequences are character-
istic of except that all frequencies are quadrupled or wavelengths
reduced by a factor of 4 because Z = 2. (The slight difference in reduced
mass alters this ratio to 4.0016). In neutral He (He I in astronomical
terminology whereas is He II), as in Fig. 1.3, the main transition
from the ground to is at a photon energy of 21.2 eV or wave-
length 58.4 nm, a far ultraviolet line. The 164.1 nm
He II line has been seen by the IUE (International Ultraviolet Explorer)
satellite, along with other ultraviolet lines, such as 124.3 nm from N V

and 133.5 nm from C II The helium abun-
dance is a key parameter of cosmological theories, and observation of

transitions at 447.1 and 587.6 nm and the at
667.8 nm provides such data.

Extensive tables on all atoms and for various stages of ionization, as
derived either by calculation or laboratory measurement, provide the
line spectra for other elements and are central to the analysis of the
observed spectrum of any object. Besides identifying the species in-
volved, the presence of a characteristic line also provides information on
the local conditions such as the temperature of the medium. A bright
emission line signifies a tenuous gas at a sufficient temperature for the
excited state involved to be sufficiently populated. A dark, absorption
line similarly denotes an intervening gas containing that element which is
being excited by background illumination. The crucial result from ther-
modynamics and statistical mechanics for a stage of either excitation
or ionization is the Boltzmann population factor, exp Thus,
for instance, the relative amount of atoms that have lost electrons or

as given by the Boltzmann-Saha ionization formula is

where the are degeneracy factors and the and other constant
factors in front come from phase space. The controlling exponential
factor here involves the ionization potential (I.P.) to remove the
th electron. Excitation and ionization energies, and how they compare
with the local temperature, therefore determine what spectral lines are
observed. Recall that and, as a rule of thumb, that
appreciable population of a state can be expected when the Boltzmann
exponent drops below 10.
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The very classification of stars according to spectral types O, B, A,
F, G, K, M, N, etc., follows from this. These are arranged in decreasing
order of their surface temperatures. In the hottest, stars of type O with
temperatures of about 50,000 K, any hydrogen is completely ionized so
that no emission lines from it are seen, only lines of ionized He, O, and
N. Stars of type B with 15,000 K show lines of neutral He, whereas
lines of H are at their maximum in A stars (9000 K). Because the first
excitation in H at 10.2 eV is comparatively high, in cooler stars like F
(7600 K), H lines decline but those from metals like (I.P. of
eV), with lower ionization and excitation energies, get more prominent.
Such lines of are at their maximum and very prominent in G stars
like our Sun (6000 K). This tendency of increased metal lines continues
with cooler temperatures, along with the appearance of bands due to
molecules, like cyanogen in K stars and TiO in M stars, which have even
lower excitation energies (Section 6.2.1).

The two competing trends, sufficient temperature to excite but not
so high as to ionize completely the species, is nicely illustrated by the
example of excited prominent in Sirius at 448.1 nm. The excitation
here starts being appreciable only around 6000 K, rises and peaks at
10,000 K after which it declines as all the is further ionized.

In solar spectra, in the chromosphere which is considerably hotter
than the surface or photosphere (5000 K), lines of He, Ne, Si, C,

and along with strong Lyman lines of H, indicate temperatures
of The corona is even hotter (perhaps due to acoustic and magnet
hydrodynamic heating), approximately with the result that H
and He are completely stripped and not seen, whereas Fe, Ni, and Ca
up to even 9–12 times ionized are displayed in its spectrum. Such high
temperatures and stages of ionization were so unexpected that for a time
the 530.3 nm green line was even attributed to a new element
dubbed coronium! The transition region from chromosphere to corona
is only about 100 km thick and rich in ultraviolet and x-ray lines. X-ray
surveys also show lines from highly ionized C, O, and Fe in a local hot
bubble around the solar system.

Other astronomical objects besides stars are also of interest. Thus,
in the spectra of swift meteors, lines of H and are prominent and
examples are known with Fe, Mn, Si, Al, Mg, and Na. The frictional
temperatures generated on these objects by their atmospheric entry also
leads to lines of nitrogen and oxygen from the heated air. Ariel and
OSO8 satellites have seen iron x-ray lines at 6.9 keV, the transition
in This suggests temperatures in excess of for gas between
galaxies in clusters and that the iron abundance is substantially the
same as solar. Other low density plasmas are diffuse nebulae
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the ionized region of the interstellar medium near hot stars
with all hydrogen ionized by the wavelengths shorter than 91.2

nm, and planetary nebulae formed by mass ejection from
stars with masses less than and ionized by the star’s radiation.

Spectra from light elements and the light they throw on their relative
abundances play an important role in cosmological models. The reso-
nance doublet of Li at 670.7 nm is easily accessible but even in cool stars,
lithium’s low ionization potential means it is mostly present as (Li
II). Its resonant line is at 19.9 nm. The resonant line of Be at 234.86
nm is also inaccessible to ground-based telescopes. B and also have
resonant lines in the ultraviolet, at 249.77 and 136.25 nm. The former
has been observed in rocket observations to give the solar abundance
of boron whereas Hubble Space Telescope observations of interstellar
gas provide information on the interstellar medium
Spectra of Ba, Fe, and Eu play an important role in understanding the
so-called s- and r- processes in stars for the nucleosynthesis of heavy el-
ements through slow and rapid neutron capture, respectively. Thorium
is formed only in the r-process and the 401.9 nm of Th II is a key for
cosmochronology in estimating the age of a galaxy. Simultaneous ob-
servation of near-ultraviolet spectral lines from Th II and 238U II in old
stars have recently provided an age of for the Universe.

Transitions in an entirely different region of the spectrum, at much
longer wavelengths than the above in the visible and near-visible regions,
are also seen. Thus an atomic transition involving two neighbouring
values with gives rise to “radio-recombination lines”, the corre-
sponding wavelength of or a few GHz in frequency, lying in the
radio region. The line of H at 5009 MHz is seen in many
nebular spectra and has been used for mapping H II regions. Transitions

correspond to frequencies GHz and are
labeled for Transitions around lie in
the mm-wavelength and those around in the meter wavelength
range. Today’s radio telescopes cover the entire range. At such high
it does not matter much which atom is involved, the difference between
(1.2) and (1.25) being small but, of course, in the astronomical context,
these lines are generally from H, the most commonly occurring element.
And, spectroscopic precision allows distinguishing from H, He, or
C, all having been seen in Orion.

The scaling of the radius of such orbits necessarily implies that
these lines arise in regions of very low density so that the average sep-
aration between atoms exceeds their individual size (in a nebula of

the ratio of these two lengths for is about 1000), permit-
ting them to exist without being destroyed by collisions as they would
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be in the laboratory. Even values larger than 600 have been recorded,
the 26.131 MHz transition from the supernova remnant in Cass A being
possibly in C. The intensities and widths of the observed lines pro-
vide information on the temperature, density, and local motions of the
sources, whether H II regions, planetary nebulae, or the ionized gas in
galactic nuclei.

The radio region and H are again involved in what is perhaps one of
the most important lines of astronomy, the 21 cm line that is central to
radioastronomy. The transition involved is not electronic but indeed is
from regions of such low temperatures (as, for example, interstellar and
inter-galactic) that all H atoms are in their ground state But, the

spin in combination with the of the proton (therefore, very
different in hydrogen and deuterium), leads to a pair of hyperfine levels,
with F = 1 and 0, with a separation of 1420 MHz or the corresponding
21 cm in wavelength.

5.2 Doppler shifts of spectral lines

In combination with the well-known shift in frequencies of emission
or absorption when a source is in relative motion with respect to the
observer, atomic spectral lines provide even further and vital astronom-
ical information. For our purposes, the Doppler shifts are very simply
rendered as the velocities with which most astronomical
objects move being generally much smaller than the speed of light. Shifts
of 0.1 nm out of 400 nm correspond to velocities of 75 km/s. Spectro-
scopic precision that permits very small to be measured makes
these Doppler shifts very useful in astronomy. As a first application,
the same solar spectral lines are seen to be shifted in different amounts
depending on whether the telescope is focused on the eastern or western
edges of the solar disk. This is a direct indication of the Sun’s rotation,
the edge approaching us having lines shifted to the violet and at the
other edge to the red. In this manner, we determine a 25-day rotation
period at the Sun’s equator, increasing towards polar latitudes, evidence
of differential rotation. A similar application to two objects orbiting one
another serves to identify binary stars and their orbits and, even when
not resolved, the effects of an extrasolar planet’s tug on its parent star.
More subtly, natural acoustic modes of oscillation of the Sun that are
driven by turbulent convection in the outer layers are manifest as oscilla-
tions of the visible surface layers and observed through Doppler shifts. A
whole field of helioseismology that has developed is now being extended
to more distant stars.
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Disks of most other stars are not resolved but the Doppler shift gives
evidence of their radial velocities with respect to us. Typical such ve-
locities are a few ten km/s. Radial velocities of stars in galaxies are a
vital marker of the mass distribution, Kepler’s laws providing an imme-
diate estimate of the mass interior to that radius where the velocity is
measured. Much of the evidence for the amount of matter in the Uni-
verse, and the related speculations about “missing mass”, rest on these
measurements.

Doppler shifts are also seen from planets. Thus, the infrared spectrum
of at is prominent near Jupiter’s poles in both northern
and southern aurora, together with Doppler shifts that indicate fast-
moving local winds. The motion of large interstellar clouds also shows
up through Doppler shifts, as also oscillations and pulsations of certain
sources. Thus, for instance, in a nova outburst, dark lines displaced
towards the violet are seen during the initial brightening, indicating ab-
sorption in gases approaching us. Once maximum brightness is reached,
broad undisplaced emission lines are seen as the expanding shell become
transparent allowing emission from all parts to come through. With
some from parts approaching and some from others receding from us,
the blend of both red and blue shifted lines shows up as a broad line,
centered at the undisplaced wavelength. Different layers cause differ-
ent shifts, the inner ones with higher velocities catching up with the
outer ones ejected earlier. As the nova’s brightness decreases, the broad
emission lines become stronger and sets of absorption lines appear, each
displaced more and more to the violet; Doppler velocities as large as
3000 km/s are seen.

One particular application of pulsations as seen through Doppler shifts
plays a crucial role in astronomy for measuring distances. The group of
“Cepheid variables” show oscillations with periodicities that correlate
with their luminosities. The nature of the physical processes involved
in the oscillating emission from these objects is clearly the reason for
this correlation but the fact of its existence for this class of stars proves
extremely important. From the observation of the period, the physical
models provide their intrinsic luminosity which can be combined with
their observed luminosity to provide a distance to these objects. Serving
thus as “standard candles”, Cepheids in various galaxies provide the
basic step in the astronomical distance scale, once we go past nearby
objects whose parallax can be measured to give a direct geometrical
distance. Evidence for the “Hubble flow” in our Universe is derived in
this way [12].

Red-shifts due to this flow, out to even larger distances, are also mea-
sured through spectra. Spectacular examples are provided by quasars,
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the first ones discovered having and 0.16. This ratio is
known as the parameter. The red-shifts may even exceed the
unshifted so that the Lyman series in H may appear in the visible. In-
deed, it was astonishing at the time of the first identification of quasars
that there could be such large red-shifts and, by implication from the
Hubble flow, that these must be extremely distant objects. A quasi-
stellar object (QSO) with shifts from 121.567 to 463.103
nm and one with shifts from 102.572 to 390.829 nm.
The largest values of observed are about 6 for galaxies and even larger
for quasars. Note in this connection that the recombination era (Section
1.5.1) corresponds to

Both emission and absorption lines are seen from QSOs, and of var-
ious species: C II, Si II, Fe II, N V, O VI, etc. Velocities range
from to thousands of Certain objects display a very
large number of Lyman absorption lines towards shorter wavelengths of
the emission line. Referred to as “the forest”, these speak to
intervening gas clouds of varying velocities. Roughly half the QSOs,
mostly those with emission have absorption Lyman discontinu-
ities within of the emission Lyman limit.

These discontinuities in H and its D isotope have a crucial role in de-
termining the primordial deuterium abundance of the Universe, a key pa-
rameter of cosmological theories. Deuterium is a very sensitive measure
of the baryon density, has indeed been called a “baryometer” because its
abundance drops sharply with increasing baryon density. It is also fragile
and always destroyed in stars so that it is best measured in clouds where
star formation has not yet occurred. High red-shift clouds
towards distant QSOs are, therefore, prime candidates for determining
deuterium abundance, Fig. 1.7 providing an example, and giving values

[13]. Much higher spectral resolution is possible
with 21 cm studies and several QSOs have been so measured. Typical
neutral hydrogen column densities of forest regions are
and sizes of the emission regions are larger than An upper
limit to cloud size, that they be stable against gravitational collapse, is
about Cloud temperatures are around VLBI (Very Long
Baseline Interferometry) 21 cm measurements of 3C286 give a cloud size
of 250 pc. Very large Doppler shifts, are also seen in the 21 cm
transition which is then observed by meter-wave telescopes.

Excitation of fine-structure levels is increasingly becoming a temper-
ature indicator of the early Universe. Thus, the ground state of
carbon’s fine structure level of J = 2 lies 38.9 K above the J = 1 level
which itself lies 23.6 K above the J = 0. Absorption from dense, neutral,
highly shielded gas clouds in front of a quasar with have been
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used recently to estimate the temperature of the cosmic background ra-
diation at that epoch. Given today’s value of 2.7 K for this temperature,
the expectation of 2.7 is compatible with the observations.

Problems

1.1

1.2

1.3

Compute the wavelengths of the first four lines and the band edge
for the Paschen and Brackett series in the hydrogen atom.

A muon binds to a proton to form muonic-hydrogen.
What is the binding energy of the ground state? What is the wave-
length of the resonance transition?

Calculate the expectation value of the operator for the two
parabolic states of hydrogen in (1.16).
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1.4

1.5

1.6

In analogy to (1.16), but for construct the parabolic states of
hydrogen with in terms of the spherical states. Thereby, set
up the transformation matrix in (1.15) for this case and verify that
it is unitary.

Carry out the explicit integrations involved to arrive at (1.19).

Consider the “Bethe trial function” given by (1.18) with an additional
factor Use the Rayleigh-Ritz variational principle with
such a trial function, and the variational parameters, to get a
variational estimate of the ground state energy of the He isoelectronic
sequence. Note particularly the numerical values for and
He(Z = 2). Integrals are conveniently carried out in terms of

and as

1.7

1.8

Carry out the procedure sketched in the text to establish (1.23).

A section of tables of energy levels [14] in helium reads as follows for
and states measured in above the ground state.

From this data, extract the quantum defects and in (1.25).

1.9

1.10

For the two-particle Hamiltonian, use the Rayleigh-Ritz principle
with a trial and
vary with respect to the functions and to get the Hartree-Fock
equations defining them.

Use as trial functions for the ground and first excited states of He
the hydrogenic form in (1.18) and (1.22) with hydrogenic wave func-
tions and the same as a variational parameter. Carry out such a
two-configuration interaction calculation to get variational estimates
for these two states. Compare the improvement for the ground state
over using (1.18) alone with the improvement obtained in Problem 6.
Contrast also the relative amount of work involved in the two com-
putations.
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1.11

1.12

1.13

1.14

1.15

1.16

1.17

1.18

1.19

For configurations of two electrons, establish explicitly the L + S
= even rule for the states allowed by the Pauli principle.

For two non-identical identify the possible states.

How many states are allowed for the configurations (i) and (ii)

Applying the Madelung and Hund’s rules, give the ground state con-
figuration and its labels for the atoms (i) Ni, (ii) Cu, (iii) Zn,
and (iv) a superheavy element Z=110.

Adapt the phase space derivation in the text to derive the counterpart
Thomas-Fermi expression to (1.36) that is valid in a one-dimensional
world. Note that the adiabatic index takes the value 3.

(i) Use the Thomas-Fermi expressions (1.36) or (1.37) to establish
the scaling with Z of the energy and radius of an atom.

(ii) With the results of Problem 15, establish similar scaling relations
for “one-dimensional atoms”.

Following the procedure sketched in the text, use the expression
(1.42) for the exchange energy to derive the Thomas-Fermi-Dirac
equation.

Use the 25-day rotational period of the Sun to estimate the spread
of the line as observed from the opposite limbs of the

Equator.

From Fig. 1.7, estimate the red-shift of this object.



Chapter 2

COUPLING OF ATOMS TO RADIATION

1. Introduction

Atomic energy levels are observed through the electromagnetic ra-
diation, emitted or absorbed, when the atom or ion changes from one
level to another. Besides the transition energies, which themselves carry
a wealth of information as we have seen in Chapter 1, other important
astronomical knowledge is contained in the intensities, widths and polar-
izations of these transitions. We will now take up their study, and of the
underlying atomic physics. It is clear already at the outset, even without
any further detailed examination, that the structure of atoms controls
even how far out telescopes can see in a wavelength range. Thus, the
ionization potential of H being 13.6 eV, corresponding to a wavelength
91.2 nm, ultraviolet radiation of smaller than this will be absorbed by
intervening H between the source and our ultraviolet telescopes (which
already have to be in orbit so as to avoid atmospheric absorption). Given
an average interstellar density of and taking the geometri-
cal cross-section of an atom, approximately as the continuum
absorption cross-section of H (which we will see is a good estimate), the
attenuation factor over a distance of 10 pc is
300 which means that any initial intensity will be too feeble for obser-
vation here on Earth. Therefore, our observations in the far ultraviolet
are limited to distances smaller than this, except in certain directions
where the density along the line of sight is much less, in
which case we can see out to about 100 pc.

When electromagnetic radiation passes through a medium contain-
ing atoms, energy balance governs its transport. Denoting by the
intensity or flux of radiation in a wavelength interval pass-

41
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ing through an element of area and in a solid angle the amount
of energy is, correspondingly, If the medium has
an absorptivity (or opacity) then in a distance an amount of
energy is absorbed. On the other hand, with the
emissivity, an amount is added so that the classical
energy-balance relationship is given by

or, alternatively, upon defining we have

where is called the source function. These are the radiation
transport equations given by Kirchhoff in the mid-nineteenth century.
With no incident intensity, a hot gas will emit

(called “optically thin”) whereas if (optically thick),
independent of In complete thermal equilibrium, is the

black-body distribution. With the advent of quantum physics, these
quantities such as and could be calculated from first principles,
the former in terms of atomic structure and the latter in terms of the
modes of the electromagnetic field. Most astrophysical settings, e.g.
the chromosphere, planetary nebulae, or clouds in interstellar space,
are not in thermodynamic equilibrium, so that one needs all the atomic
excitation and de-excitation processes to understand radiation transport.
When in (2.1), the intensity is attenuated according to

the mean free path of a photon given by In
stellar interiors, this may be less than 1 mm.

2. Photoabsorption and Photoemission
With considerations similar to those leading to (2.1) and (2.2), if

and are the number of atoms in a lower and an upper energy level,
respectively, the rate equation can be written as

where is the energy density of the radiation field (energy per unit
volume per unit frequency interval). The first term on the right-hand
side represents the spontaneous decay down to which depletes the num-
ber in the level and the third term the enhancement in because of
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absorption by the atoms in The coefficients A and B were introduced
by Einstein, along with the middle, non-classical term in (2.3) repre-
senting a “stimulated emission” from level to due to the radiation
present. Through considerations of detailed balance and thermodynamic
equilibrium, which requires

Einstein also related the coefficients according to

and to the Planck black-body distribution.
The absorption  coefficient with dimensions (length/mass), is con-

veniently replaced by a dimensionless absorption “oscillator strength”

The coefficients B, regarded in classical physics as parameters char-
acterizing the coupling of matter to radiation, were given a microscopic
grounding with the advent of quantum mechanics. The oscillator strength
depends on the transition energy difference between atomic levels and

through the factor and, as we will see, on a transition matrix ele-
ment involving the corresponding wave functions which enters through

At the same time, a closely allied concept from scattering theory,
namely a cross-section for photoabsorption or photoemission involving
the levels and coincides with the oscillator strength except for simple
multiplicative factors. Oscillator strengths for a large number of atoms
and ions, along with collisional cross-sections for atoms and ions with
each other and with electrons, are key inputs to computing the opacity
of stars. As one example, it has been observed that questions in the
theory of pulsating stars (Cepheids) can be resolved if heavy element
opacities were increased by a factor of two or three over what was be-
lieved. This has given rise to a major “Opacity Project” now under way
for compiling reliable atomic and molecular data [15].

2.1 The Oscillator strength
Except in modern intense lasers, electric and magnetic field strengths

in most electromagnetic waves of interest to physics and astronomy are
weak compared to the internal fields in an atom. Recall that for hydro-
gen in the ground state, the electric field is, approximately, 13.6 V/(0.053
nm), and the magnetic field, that due to an electron in a Bohr orbit, is

The coupling to the radiation
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field has, therefore, only a slight “perturbative” effect on the atom. Fur-
ther, in non-relativistic physics, the magnetic field of radiation is far less
important than the coupling of its electric field to the electronic charge,

For many-electron atoms, r is replaced by The central quantum-
rnechanical result of such a time-dependent perturbation on a system
with a Hamiltonian is that it causes transitions from an initial state

to a final state at a rate (transition probability per unit time)
given by the Fermi-Wentzel “golden rule”,

With the electric field of a standing wave of polarization frequency
and wave vector k, given by

with and we have plus a con-
jugate term. Dividing P in (2.8) by the incident intensity removes the
dependence on to give the cross-section for photoionization from the
initial state to a final continuum state for the ejected electron as

where the factor (1/3) has been added to average over directions.
Alternatively, one can consider the polarization induced in the atom’s

electronic charge distribution by the interaction (2.7). Choosing as
the and dropping k.r as small (“dipole approximation” to
be discussed further below, atomic size being much smaller than the
wavelength of the radiation), this perturbative interaction mixes into
the initial wavefunction a small superposition of other
states:

Inserting into the Schrödinger equation

and using the orthonormality of the set of eigenstates of gives
to first order in the coefficients



Coupling of Atoms to Radiation 45

Solving for and from (2.11) evaluating the induced dipole moment
again to first order in gives

with A phenomenological damping term in has
been added to describe the decay of excited states

The ratio of the induced dipole moment to the imposed electric
field, called the polarizability, is therefore,

with defined as

The expression (2.14) for the induced dipole response is of the same
form as that of a classical, charged harmonic oscillator with normal mode
frequencies and damping constants The numerator in (2.15) de-
notes a phenomenological strength of the coupling of each normal mode
to the driving electric field, so that the (dimensionless) is the “oscilla-
tor strength”, now given explicitly in this quantum derivation in terms
of the transition energy and a squared matrix element of the dipole
operator between the states. Restoring the vector r and arbitrary
polarization direction, and also the factor, an alternative ren-
dering of (2.16), again with a (1/3) factor introduced for three equivalent
directions, is

While (2.17) represents the strength of absorption or emission between
two discrete states and it takes the form of the corresponding dif-
ferential element, (df/dE)dE, when one considers photoionization from
the initial state into the continuum of atomic states (E, E + dE) once
the photon energy exceeds the ionization potential,
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Whereas the discrete oscillator strength in (2.17) is dimensionless, with
the corresponding wave functions of discrete states and normalized
per unit volume, the left-hand side of (2.18) has dimensions of inverse
energy, this dimensional element being carried on the right-hand side by
the continuum normalization per unit energy of the state so that

has dimensions of
Comparing (2.10) and (2.18), the photoionization cross-section and

continuum oscillator strength differ only in a multiplicative factor in-
volving fundamental constants,

The constant factor has dimensions of (energy × area) and the value
The oscillator

strength in (2.16) for both discrete and continuum states in the hydrogen
atom can be evaluated analytically using the wave functions from chapter
1, with the results shown in Fig. 2.1. By laying out the discrete
for absorption from the ground state in the form of histogram blocks,
this figure illustrates the continuity of the oscillator strength distribution
across the ionization threshold. On the other hand, monitoring only the
ionization continuum as in Fig. 2.2 for helium, the photoionization cross-
section shows up as a characteristic “edge”, with an onset at threshold
(for photons of wavelength 91.2 nm in H and 50.4 nm in He) and a drop-
off towards higher photon energies (shorter wavelengths). Whereas the
Lyman edge and Lyman continuum lie in the far ultraviolet, analogous
ones from H atoms in provide the Balmer ( shorter than 364.8
nm), Paschen and other continua.

2.2 Alternative forms of the dipole
matrix element

The expressions for the oscillator strength in the previous section were
derived starting with the coupling of the electrons to the electric field as

However, the actual evaluation of the atomic matrix ele-
ment in (2.16) can be carried out in a variety of ways with the recognition
that with any atomic Hamiltonian we have
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This is a valid identity even in a many-electron atom, s = 1 , 2 , . . . N ,
for the exact Hamiltonian as for example, in (1.17), or in any approxi-
mation scheme that involves only local potentials. Only when non-local
potentials are involved, as in the Hartree-Fock approximation (1.43) with
its exchange terms introducing non-locality, will (2.20) be invalid, such
terms being equivalent to momentum-dependent potentials that also will
contribute non-zero commutators to the right-hand side of (2.20).

Inserting and onto the identity (2.20) from either side gives a
relationship
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Therefore, (2.16) can be rewritten in terms of a matrix element of as

Because of their form, the alternative matrix elements on the left- and
right-hand sides of (2.21) are referred to as “length” and “velocity”
forms, respectively. Clearly, the process can be continued through other
commutators, thus to develop yet other alterna-
tives such as an “acceleration” form, etc. All these are
exactly equivalent as long as one has exact wave functions of but
the equivalence breaks down when only approximate solutions are avail-
able. Since, as we have seen in Chapter 1, we are restricted to such
approximate solutions for any atom other than hydrogen, the calculated
oscillator strengths may differ depending on the form used. With the
transitions operators etc. weighting different regimes of the
radial distance differently, the length emphasizing larger while the oth-
ers emphasize smaller where velocities and accelerations are larger, one
or the other may be preferred if we know where the approximate wave
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functions are more reliable. Indeed, these alternative forms were actu-
ally introduced into atomic physics in the context of the astrophysical
problem of absorption by the negative ion (Section 2.4.2) as a way
of assessing the reliability of different approximate trial wave functions
for this delicately bound system. Note, however, from the earlier remark
that the alternatives coincide so long as local potentials are involved that
such an agreement among the different forms is not in itself a guarantee
that we are close to an exact description. Generally, with most approx-
imations being based on the energy variational principle, the velocity
form which weights the same regions that contribute most to the energy
is most reliable, although there are cases when the length form is more
accurate.

Among these equivalent forms, the one between length and velocity
which allows, as an alternative to (2.17), the expression

is interesting for another reason. An alternative general procedure for
coupling electric charges to an electromagnetic field is by “minimal cou-
pling”, wherein p in is replaced by From the kinetic
energy operator, we obtain then the atom-field coupling as p.A.
For the electric field in (2.9), the corresponding vector potential is

and leads directly to (2.23) as the expression for the oscillator
strength.

2.3 Selection rules
Symmetries of the states and and of the operator involved in

the transition matrix element in (2.17) or (2.23) constrain transitions be-
tween states. As already noted, because of the relative size of atoms and
the wavelength of the radiation involved, k.r is small compared to unity
so that the dominant transitions, usually called “allowed”, arise from
the operators r or p as in (2.16) and (2.21). More precisely, they should
be termed electric-dipole allowed and denoted E1, the unity representing
the vector or dipole character. All other transitions are called “forbid-
den” although, as we will now see, they can also occur in some situations
but, arising as they do from the expansion are
relatively weaker in their intensity by successive powers of For
allowed E1 transitions, estimating from (2.16), and
using (2.5) and (2.6), the Einstein A coefficient for spontaneous emission
is, approximately,
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For the allowed transitions, since r and p are vector operators, the
matrix element being a number which should be unchanged under ro-
tations and reflections of coordinates, the product of the states must
transform as a vector as well. This means that and must be of
opposite parity and that their angular momenta must add to unity:

Equivalently, this means must be 0 or 1 and both and
cannot simultaneously be zero. These provide the “selection rules”

for such transitions, which take their name, electric dipole (E1), from
the operator The selection rule applies properly to the total angular
momentum of the system. But, since the operators involve spatial and
not spin variables, in the absence of appreciable spin-orbit coupling (as in
smaller atoms), the rule may be regarded as applying to orbital angular
momentum alone so that and Thus, the
first absorption from the ground state in H (called the “resonance
transition”) is to the (not ) and in He from to
However, in a heavy atom, this particular form may be violated even
while (2.24) remains sacrosanct, the blue line in Hg which arises from

providing a standard example, spin-orbit coupling mediating
this El transition.

Selection rules regarding the M quantum numbers are straightfor-
ward, accompanying those for L and J. Thereby These
values carry the information on the polarization of the E1 radiation,

representing linear and ±1 left/right-circular polarizations.
For this purpose, rather than the Cartesian vector r or p, one considers
the “spherical tensors”, and respectively, which have az-
imuthal angular dependence 1 and Together, this set of three
transforms like a vector under rotations of the coordinate axes.

For states and that do not conform to (2.24), E1 transitions are
ruled out, necessitating consideration of the next term in the expansion
of the matrix element in (2.23),

Once again, the overall matrix element having to remain invariant, the
product of the states must have the same transformation under rotations
and reflections as the operator in between. The parity rule is immediate,
that the two states must have the same parity since the operator is even.
For the rotational behavior, we need to disentangle operators pertain-
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ing to the radiation from those pertaining to the atom which alone are
relevant for evaluation between the atomic states and Construct-
ing combinations of (2.25) that are symmetric and antisymmetric under
interchange of r and p,

the second term is recognized as with
the orbital angular momentum of the electron.

Since also behaves as a vector under rotation, (2.24) again applies
as a selection rule; however, as already noted, since is an axial vec-
tor, unlike the polar r or p, this time the states must not differ in
parity. Such transitions are called magnetic dipole (M1) because the
operator involved is the magnetic moment (of the transition).
It couples to the magnetic field,  of the radiation. The
excited state of He decays in this fashion to the ground state.
Since a spin change is involved, necessitating a spin-flip that can only
come through weak spin-orbit interactions, the decay is very weak and
the state “metastable”. Interestingly, when studied in a heavier iso-
electronic analog to He, the enhanced spin-orbit couplings dramatically
lower the lifetime. Thus the decay rate in He increases,
to in scaling roughly as Such M1 transitions from
He-like (NeIX), (MgXI), and (FeXXV) are seen in
the solar spectrum. Relativistic effects are important for such highly
stripped ions, also in the calculation of oscillator strengths. The requi-
site wave functions can be obtained through perturbation theory as in
Section 3.3.2.

The excited state in H provides an even more dramatic illustra-
tion. This transition satisfies the M1 selection rule
(2.24) but, in terms of orbital angular momentum alone, is an instance
of which is forbidden. So, a spin interaction is again in-
volved which, as in He, makes it weak but now is further compounded
by the fact that the spatial part, which is just the overlap of and
wave functions, vanishes in the non-relativistic description. Only with
relativistic solutions of the Dirac equation for the H atom is a very tiny
matrix element realized for this transition, making the lifetime of the

state about two days, thirteen orders or magnitude larger than an
allowed rate as, for instance, of its energy-degenerate partner state.
Indeed, for the state, a competing process wins out, namely the next
order of coupling beyond (2.7) between atom and electromagnetic field,
which is generally weaker in amount by the fine-structure constant,
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involving two interactions with the field. Such “two-photon transitions”,
which amount to two E1 steps from down to through an interme-
diate virtual state with the emission of two photons that together carry
away the 10.2 eV of energy, give a lifetime of (l/7)s to the state. As in
the case of He, M1 transitions increase rapidly with Z so that for Z > 45
in H-like ions, the Ml transition dominates over two-photon decay. The
Ml lifetime in is In contrast, the two-photon rate of
He is very small,

The first term in (2.26) which is symmetric under the r and p in-
terchange is also of comparable strength to M1, and also requires the
parity of the two states to be the same, but under rotations behaves
like a tensor of rank 2. As a result, these transitions are called electric
quadrupole (E2) and obey the selection rule

Equivalently, must now be 0, 1, or 2, and both and cannot
simultaneously be 0 or 1/2. In Section 1.4.1, alternative states
of the ground state configuration of oxygen and nitrogen were discussed.
Transitions between them, such as (630 nm) and
(297.2 nm) in O I, and (520 nm) and (346.6 nm)
in N I are such quadrupolar emission lines seen in auroral light (630 nm
forms the “auroral red”), electrons in the upper atmosphere collisionally
exciting the upper states. The decay rates are, approximately,

Another example, the Ne line seen from
planetary nebulae, provides the Ne/H ratio in such systems
Such nebulae are a relatively short-lived phase in a star’s evo-
lution from a red giant to a white dwarf as it ejects shells of matter.
Forbidden transitions which are strongly suppressed at higher density
such as in laboratory plasmas are often seen in these lower density sit-
uations. This is because each excitation is followed by collisional de-
excitation at high densities but by emission when densities are low. As
a result, in the latter case, the radiation transition probability does not
enter, only the excitation rate by collisions with electrons (typical num-
ber densities ), so that forbidden lines can be as strong or
stronger than the allowed ones. This is also the mechanism for cooling
such a low density plasma, collisional excitation being followed by emis-
sion of radiation. If there are two excited states, 2 and 3, above the
ground state 1, then in the ratio of the and intensities, the
number density of electrons cancels out and the ratio is proportional to

Such ratios are, therefore, good diagnostics of the
temperature of such plasmas. Lines in
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(500.7 nm), (495.9 nm), and (436.3 nm) seen in
planetary nebulae provide a good example, ratios of their intensities be-
ing very sensitive to the temperature. Interestingly, these narrow emis-
sion lines have been observed for over a hundred years and for a time,
before they were identified by Bowen (1927) as arising from oxygen ions,
were even thought to indicate a new element nebulium!

Each higher term in the expansion of the exponential in (2.23) brings
down an additional (k.r) factor. Upon rearrangement, a pair of electric
and magnetic multipoles. M2 and E3, M3 and E4, etc., occur at each
higher order in Selection rules follow in similar manner, each order
alternating as far as the parity change is concerned between and
and the multipole index n fixing the analog of (2.27) as

2.4 Moments and sum rules
The distribution of oscillator strength (we again return to E1 transi-

tions) across the spectrum, as in Fig. 2.1, provides the response of an
atom to electromagnetic radiation. Laboratory measurements and cal-
culations of varying degree of accuracy are available for most atoms and
ions of interest. As with any distribution, its various moments provide
more limited but nevertheless useful information. A few of the lower mo-
ments, and associated sum rules, are also interestingly related to other
gross physical properties of the atom.

The lowest moment, denoted by is simply the area under the curve
in Fig. 2.1,

where such integrals will be understood to include sums over the dis-
crete part of the spectrum. The oscillator strength having been defined
so as to express how much in proportion the atomic electrons couple to
that particular frequency range, clearly the total in (2.28) will represent
the total number N of oscillators/electrons available so that we have a
“sum rule” named for Thomas, Reiche, and Kuhn,

A “quantum-mechanical proof” of this follows from a further commuta-
tion step in (2.20), namely,
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Sandwiching both sides between and and inserting a complete set
in between through the closure relation reduces the left-hand
side to from which (2.29) follows. In the development
of quantum mechanics, the reverse procedure, namely that the total inte-
grated oscillator strength must equal the total number of electrons, what-
ever the microscopic mechanics governing atoms and radiation, played
a crucial role in Heisenberg’s formulation of the basic commutation re-
lationship between and

Next, the moments, are especially inter-
esting. For using the form (2.22), the factors involving energy or

cancel and the sum over collapses through closure to give
Through the virial theorem, this moment is simply

For the form (2.16) similarly reduces to an expectation
value in the state

For a spherically-symmetric state is therefore simply related to
the expectation value of which is also a measure of the diamagnetic
susceptibility of the atom (Section 3.2.1). For the ground-state of H,
using (1.10) we have From (2.15), it follows
that is simply related through constant factors to the static

electric polarizability of the state

In H, as with the oscillator strength itself, all these moments can be
evaluated analytically in closed form. In other atoms, with only approx-
imate wave functions available, these moments and their connections
to other measurable quantities serve as checks on the wave functions.
Table 2.1 gives a sample of results. Among other general features of
photoabsorption and photoionization, of the two values al-
lowed by the E1 selection rules, it turns out that the matrix elements
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are an order of magnitude larger for This is plausible on the
grounds that absorption of energy by the atom should be accompanied
by a gain in angular momentum. Although not a selection rule in that
there is no underlying symmetry, only an empirical observation of the
dynamics, such “propensity rules” are often useful guidelines. Similarly,
at high energy in the continuum, falls off as as follows
from matrix elements of hydrogen which all atoms closely approximate
in this limit. Note, as a consequence, that for the oscillator strength
distribution from the ground state, higher moments beyond are not
defined. Also, because of configuration mixing, the lowest values of
compatible with parity, namely 0 or 1, always govern the high energy
behavior.

3. Charged-particle Collisions

Although collision of charged particles with atoms differs from the
interaction of atoms with electromagnetic radiation (particularly so at
low collisional energies), there are close similarities between the two and
certain complementary aspects that make it natural to study them in
this chapter. When a charged particle passes by an atom with high ve-
locity, its dominant effect is that of the pulse of electromagnetic fields
that the atom experiences. The effect is of illuminating the atom with
a broad-band electromagnetic spectrum so that the atomic response is
described by an analog of the (optical) oscillator strength. There are
some differences, notably in the selection rules so that certain transi-
tions not seen in photon impact can be excited by charged particles,
but it is this “generalized oscillator strength” that we will study in this
section. Encounters between atoms and charged particles, whether ions
or electrons, are of course important in a variety of astronomical con-
texts wherein such a mix. of entities is present. As a result, collisional
cross-section data are very important in astrophysics [16].

3.1 The Generalized Oscillator strength

A fast collision also shares with the earlier study of radiation inter-
action with atoms the feature that it is perturbative, in this instance
because of the short time of interaction. The charged projectile may,
therefore, be considered to be changed only in its momentum, that is,
in its speed and direction of its trajectory, while the atom may be left
either in its initial state or, with small probability, excited to a state,
either discrete or in the continuum (in which case, an atomic electron is
ejected). More sophisticated treatment of the distortion of the projec-
tile is possible but, at this simplest level, it will be treated as a plane
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wave both before and after the collision. This constitutes the well-known
“Born approximation” of scattering thory.

Representing the incident charged particle of charge and reduced
mass M with respect to the atom by a plane wave,
the initial state of the atom by and similarly the projectile’s final
state after scattering by and the atom’s by
energy conservation requires

The normalization “per unit p” chosen for the plane waves means that
the incident flux is The differential scattering cross-
section for the projectile of final momentum into a solid angle
is again given by times a transition matrix element squared as
in (2.8), multiplied by the scattered particle velocity to give the
scattered flux, and divided by the incident flux:

The Coulomb interaction of the projectile with the atom is

the first term the interaction with the nucleus of the atom (chosen as
the origin of coordinates) and the second the projectile-electron inter-
actions, r and the corresponding distances from the atomic nucleus
to the projectile and the s-th electron, respectively. Carrying out the
integration over r first which gives the Fourier transform of the Coulomb
potentials with respect to the “momentum transfer”
from projectile to target, we have

where we have defined



Coupling of Atoms to Radiation 57

called a “form factor”. Also elsewhere in physics, such form factors are
of importance because they capsule the form of the system’s response.

In (2.34), the projectile-nucleus interaction, which involves no elec-
tronic coordinates, is diagonal in the atomic states and can only lead to
elastic scattering. Indeed, this term with the squared prefactor in paren-
thesis is precisely the Rutherford scattering cross-section of a charge
off another charge The second term, from projectile-electron interac-
tions, is the only one that can lead to inelastic scattering with excitation
of the atom from to Thus the inelasticity is expressed entirely
as a factor dependent on projectile alone, namely the Rutherford factor
multiplied by and a form factor that depends on the atomic re-
sponse through the single parameter of the momentum transferred to it,
and on atomic properties through the wave functions and

Although the Rutherford factor is singular, note how the unity in
the expansion of the exponential in (2.36) precisely cancels in (2.35)
the nuclear term for elastic scattering, rendering that cross-section finite
as one would expect for scattering from a neutral atom. For inelastic
scattering, the form factor gets no contribution from the unity in the
exponential but only from the next terms in its expansion. The first of
these and, therefore, the one dominant for small momentum transfer,
is precisely the dipole matrix element of optical transitions. Indeed,
defining therefore

as a, “generalized oscillator strength”, it reduces precisely to the optical
oscillator strength in (2.16) for (See Fig. 2.3). As before, for

a discrete state, this generalized oscillator strength is dimensionless
whereas when it is a continuum state, normalized per unit energy, the os-
cillator strength is a differential quantity with dimensions of
A sum rule similar to (2.29),

obtains for the same reason that the total number of oscillators is the
number Z of electrons, whatever the value of

A given momentum transfer to the atom does not transfer a
fixed energy to the atom but varied transitions with en-
ergy are possible, reflecting atomic dynamics. The simple
energy-momentum balance is realized only at large momentum transfer,
reflected in the generalized oscillator strength peaking at that specific
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energy In the opposite limit of low momentum transfer where we
have already observed that it reduces to the optical oscillator strength,
there are still differences from the absorption of radiation. First, the
limit is never exactly reached in inelastic scattering because
of the need to satisfy (2.32). Also, the selection rules for the operator
in (2.36) are different from those for (2.16) so that optically forbidden
transitions are excited by charged particle impact. As an example in He,
at 35 eV incident energy, the generalized oscillator strengths for

are in the ratio 1: 0.18: 0.12, whereas the optical oscillator
strengths are (an E2 transition): (a spin-flip excitation).
The excitation, involving a spin-flip, happens only extremely weakly
through spin-orbit couplings in photoabsorption whereas under electron
or impact, an exchange of spin between the incident and one atomic
electron can take place more readily: Fig. 2.4.
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3.2 Total cross-section
The total cross-section for exciting the atom from to is given by

integrating over the scattering angles of the projectile. In general, when
is the ground state, azimuthal symmetry prevails either because the

ground state of most atoms is spherically symmetric or, even when not,
because atoms are randomly oriented. In such cases, F in (2.36) is a
function only of the magnitude and not vector direction of Writing

and thereby
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where is the incident velocity of the projectile, the integral is conve-
niently performed over Its kinematically allowed limits follow from

and the energy conservation relation
(2.32). Here, the behavior of the limit proves decisive. For op-
tically allowed transitions, wherein this approaches a constant the
total cross-section increases logarithmically with the incident energy
of the projectile,

where is a numerical constant. For optically forbidden transitions,
where the middle factor in squared parenthesis in (2.39) vanishes at both
small and large the integral over this variable becomes a constant

and we get

Knowledge of these cross-sections, when coupled with observed exci-
tation or de-excitation rates due to collisions with electrons in planetary
nebulae or other low density plasmas, provides the number density of
electrons present.

4. The Negative Ion of Hydrogen
Energy from the interior of a star has to be radiatively transferred

through the outer layers of stellar atmospheres before we finally observe
it. Continuum absorption by atoms and ions in these layers is, therefore,
central to our understanding of the opacity of stellar atmospheres [17].
As we have already seen, for H atoms in the ground state or even in

this continuous absorption lies in the ultraviolet. This is also
true for most atoms in the ground state, the ionization potentials always
exceeding 5 or 6 eV. For positive ions, these energies are even larger.
Only for atoms that are more highly excited, of which there are generally
fewer, is the visible range of the spectrum involved. Discrete excitation
of ground state atoms is similar, the first excitation energies being at
least 3–4 eV even if not as large as the 10.2 eV in H. Therefore, for most
of the visible spectrum, with photon energies less than 3 eV, atoms and
positive ions do not contribute much to stellar opacities and we have to
look elsewhere for species that can play a role. It was Wildt who first
suggested that the weakly bound negative ion of H would be a significant
contributor to stellar opacities for stars such as our Sun.
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With both hydrogen and low energy electrons abundantly present in
such stellar atmospheres, one would expect to be formed through
their attachment. Subsequent photodetachment, the analogous process
to photoionization when dealing with negative ions, serves to absorb low
energy photons. This possibility spurred the investigation of (and
other negative ions) in atomic physics. Studies showed a binding energy
(alternatively, “electron affinity” of H) of 0.75 eV and that indeed
is the dominant contributor to opacities in A-G stars. Other negative
ions, such as with a binding energy of 1.25 eV, also prove important,
particularly in H-deficient stars, but given hydrogen’s dominance in the
Universe, is the most important negative ion for stellar opacities.

4.1 The ground state of
is a member of the isoelectronic series of He but differs from all

others of the sequence in not having a dominant Coulomb attraction by
the nucleus for both electrons. The interaction between the electrons
is, therefore, more important from the start, even in the ground state.
Whereas perturbation and variational methods with simple uncorrelated
trial functions such as the one in (1.18) give a reasonably good descrip-
tion of He, they fail even to predict binding for as already noted
below (1.20). See also Problem 1.6. The minimum energy in (1.20) for
Z = 1 lies at –(121/128) Ry which is a poor upper bound considering
that placing an electron infinitely far from the hydrogen atom in the
ground state already gives –1 Ry. It was, therefore, not possible to con-
clude that energy is to be gained by attaching an electron to H till a 1929
calculation by Bethe (Problem 1.6) using a 3-parameter wave function
of the form in (1.21),

with explicit electron correlation through the term in Soon after, a
6-parameter function by Hylleraas improved the estimated binding en-
ergy and, subsequently, just as in He, elaborate variational calculations
with many parameters in (1.21) have provided very accurate values for
this binding energy of, approximately, 0.75 eV. High resolution laser
photodetachment of has provided the best experimental values of

for the electron affinity of H (F = 0, where F is
the sum of the electron’s and the nuclear spin ) and

for the deuterium isotope D
An alternative trial function, while not as accurate as (2.42), suffices

already to predict binding and is, therefore, instructive. This “Chan-
drasekhar function” generalizes (1.18) to introduce two different effective
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charges, and for the otherwise equivalent electrons. The ground
state being antisymmetric in spin interchange, is required by the
Pauli principle to be spatially symmetric so that we take

with N a normalization constant. An energy minimum which lies below
–1 Ry is attained for and Although no explicit in-
clusion of electronic correlation through dependencies on is included,
(2.43) is nevertheless correlated by virtue of the Pauli principle. This
function has a “radial in-out” correlation, the very different values of

and having the effect that when one electron is “in” close to the
nucleus, the other is kept “out”. Alternatively, that is larger than the
nuclear charge of unity may be interpreted as saying that the presence
of the other, “outer”, electron forces the inner one “to see” more of the
nuclear attraction than it would were it to be by itself as in the hydrogen
atom. At the same time, the outer electron itself acquires a non-zero
sufficient to bind it as well.

The much more elaborate variational functions also support this fun-
damental picture which is very important for our understanding of
that radial correlations are crucial, far more so than angular correlations
between the electrons, and that the two electrons are on different foot-
ings, one very loosely attached at a much larger distance
than the other. This suggests a useful “one-electron model” for
wherein this electron may be regarded as weakly bound in a short-range
attractive potential. There are close similarities to other weakly bound
quantum systems such as the deuteron in nuclear physics. An extreme
model for such systems is to consider an attraction of “zero range” or,
indeed, as a delta-function potential well, with a single parameter, the
binding energy characterizing the wave function of the outer electron as

where The complete two-electron
wave function can then be written as

where represents exchange of coordinates 1 and 2, is the ground
state of H, and N a normalization constant with numerical value 0.31552.

The zero-range model also incorporates another feature of borne
out by more elaborate calculation: apart from the bound state
this system has no singly-excited bound spectrum. This is not implau-
sible considering that, even in the ground state, the second electron is
barely bound (0.75 eV hydrogen’s 13.6 eV) but a mathematical proof
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has emerged only relatively recently, demonstrating how different is
from its higher isoelectronic analogs. But the fact of only one bound
state is compatible with the similar fact for an attractive delta-function
potential. Careful laser photodetachment studies have also ruled out
any singly-excited states, the only excited states of being, therefore,
those involving both electrons. Such doubly-excited states, which are
unstable against decay through electron emission, will be considered in
Section 5.2.2.

4.2 Photodetachment of

With a binding energy of 0.75 eV, any photons of energy larger than
that can be absorbed in photodetaching Here, another

feature that distinguishes negative ions from neutral atoms or positive
ions also proves decisive. Unlike in Figs. 2.1 or 2.2, with photoionization
cross-sections starting at a finite value at threshold and then decreasing
for higher photon energies, the shape of a photodetachment cross-section
is very different, rising from zero at threshold to a maximum and later
falling off towards higher energies: Fig. 2.5. In both photoionization
of H and photodetachment of an initial electron departs as a

because of (electric) dipole selection rules. The low-energy elec-
trons just above threshold experience the angular momentum barrier

which acts to suppress their escape in the case of
but not in H because of the overwhelming influence of the attractive
Coulomb potential which is of longer range than angular momentum.
Photoionization cross-sections are, therefore, both finite and indepen-
dent of near threshold whereas photodetachment is suppressed, even
more strongly so for larger Indeed, the “Wigner threshold law” that

where E is the excess energy above threshold, is an ex-
pression of this suppression [18]. The contrast between negative ions
and neutral atoms can also be seen below threshold. Unlike in Fig. 2.1
for neutral atoms, there are no discrete line strengths in a negative ion
which has no bound excited states.

The shape of the photodetachment cross-section in Fig. 2.5 makes
this ion important for opacity in the visible range, the major part of
the peak lying in this region of the spectrum. It had long been known
that the opacity for many stars with surface temperatures less than

increased by about a factor of two from 400 to 900 nm, then
decreased to a minimum at 1600 nm, a shape exactly mirrored by

absorption. This species itself accounts, therefore, for the continuum
absorption coefficient in the solar atmosphere from 400 to 2500 nm.
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Fig. 2.6 provides the results both from the simple wave function in (2.44)
and more elaborate many-parameter variational solutions [19].

It was in the context of these opacity calculations, and in the real-
ization that different approximate functions of may be inaccurate at
larger distances, that the alternative “velocity” and “acceleration” forms
to the “length” in (2.16) were developed and introduced into atomic
physics, as discussed in Section 2.2.2.

4.3 Radiative capture
The process inverse to photodetachment or photoionization is the cap-

ture of electrons by neutral atoms or positive ions with the binding
energy released through the photon that is emitted. An immediate es-
timate shows that such captures occur with low probability because the
collision time for an electron of a few eV with an atom is approximately

which is the time of traversal over the size of an atom. Radiative
rates being (recall that allowed transitions have lifetimes of
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s), the probability of radiation during a collision is very small,
The same result can be seen through cross-sections, the two processes of
radiative capture and photodetachment being related through detailed
balance, differing only in kinematic prefactors but otherwise sharing the
same transition matrix elements:

where and are statistical weights of the negative ion and neutral
atom. With the photon energy comparable to the electron kinetic en-
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ergy the difference lies in the factor so that, cross-sections
for photodetachment being those for radiative capture are

Most captures, therefore, take place through the mediation of a third
body, such three-body collisional capture dominating for densities ex-
ceeding Capture of an electron by a positive ion to form an
excited Rydberg state, particularly of high principal quantum number
is also very unlikely. Such an electron being almost free, as is the initial
electron in the continuum, the transition is forbidden by the rule that
a free electron cannot spontaneously emit or absorb a photon, both en-
ergy and momentum balance not being possible because of the photon’s
zero mass. Such a capture, important in many astronomical contexts,
proceeds through doubly-excited states in a process called dielectronic
recombination (Section 5.4).

Problems

2.1

2.2

Compute the oscillator strength for the transition in the
hydrogen atom, using both the expressions in (2.16) and (2.22). Thus,
verify (2.21) explicitly.

The equation of motion determining the dipole moment of a classical
normal mode r is

with and the frequency and damping constant of the mode.
Show that the total induced moment is

with

Therefore, derive an expression for the real and imaginary parts of
the dielectric constant

Determine a lower bound on the static dipole polarizability of the
ground state of the hydrogen atom, taking into account the main
transition to the state.

2.3
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2.4

2.5

2.6

2.7

2.8

2.9

2.10

2.11

What are the normalization factors for plane waves in three dimen-
sions, using (a) normalization in a box of volume V, (b) normalization
per unit momentum, and (c) normalization per unit energy.

Identify the multipole transition for the following in hydrogen: (i)
(ii) (iii) (iv)

Prove the Thomas-Reiche-Kuhn sum rule (2.29) by the procedure
indicated in the text.

Evaluate for the hydrogen atom.

Establish (2.35), following the steps indicated in the text.

Prove the sum rule (2.38) for the generalized oscillator strength.

Using and as axes for a two-dimensional plot, construct contours
of the normalized Chandrasekhar wave function in (2.43).

The potential seen by an electron incident on a hydrogen atom in its
ground state is Calculate the form
factor for elastic scattering in the Born approximation and verify that
it depends only the magnitude of the momentum transfer.



Chapter 3

ATOMS IN WEAK, STATIC FIELDS

1. Introduction

Chapter 2 has considered the effect of weak electromagnetic fields on
atoms, such time-dependent fields causing transitions between different
states. Static, or time-independent, fields, on the other hand, cannot
cause transitions but are of interest for their effects on the energy levels
and wave functions of atoms. The combined atomic Hamiltonian and
coupling to the field are still characterized by stationary states which are,
however, different from the stationary states of the atom in the absence
of the external field. It is these changes in the structure of the atom that
will be the subject of our study in this and the next chapter. We will
first consider in this chapter weak fields whose effects are perturbative,
leading to small corrections in the energies and wave functions (and,
as a result, on other atomic properties). As in the previous chapter,
most static fields in laboratory or astronomical contexts are indeed weak
relative to the internal electric and magnetic fields in an atom so that
the perturbation theory and its applications we study here are widely
relevant. More recently, however, very strong external fields (mostly
magnetic) have been discovered on some stellar objects which lead to
drastic changes in the atomic structure studied in Chapter 1 and this
will be the subject of the next chapter.

At the outset, it is clear that atoms experience weak electric and
magnetic fields in a variety of situations. The Earth’s magnetic field

Gauss), and similar fields on other planets and on the Sun and on
other stars Gauss), and fields pervading interstellar regions in
galaxies Gauss), have important observable consequences. We
hear less of static electric fields, our Universe having free electric charges

69
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but seeming not to have their counterpart magnetic monopoles. With
charges free to flow, they “short out” incipient electric fields, never per-
mitting them to build up appreciably whereas no such mechanism con-
strains the existence of magnetic fields. (Indeed, galactic magnetic fields
are used to set limits on the magnetic monopole density.) In local envi-
ronments, however, the electric fields due to electrons and ions alter the
structure of atoms in their neighborhood. We will study perturbations
due to both electric and magnetic fields and also “internal” weak fields
inside an atom that arise from relativistic and other corrections which
we have ignored so far in concentrating on the dominant non-relativistic
description of atoms.

2. External Electric and Magnetic Fields
2.1 Coupling to external fields

As in Section 2.2.1 with a time-dependent electric field, the basic
interaction of an atom’s electrons with a static, electric field is

Also, as before in Chapter 2, the internal field in an atom being of the
order of a few volts over a few nm, even an external field of
is weak in comparison. The atomic unit of electric field is

Therefore, we expect the additional interaction to be
a small perturbation to the atomic Hamiltonian Such a perturbative
effect is called the Stark effect.

The option of minimal coupling, with the replacement of p by p +
(eA/c), where A is the vector potential, is not used with a static electric
field because A then is necessarily time-dependent and we want to con-
sider in this chapter stationary states in a time-independent description.
However, for a static magnetic field B, the procedure is indeed through
the corresponding vector potential related to A through
As usual in such a description, alternative gauge choices for A are avail-
able, all of which lead to the same physics. Some of these other gauges
will be considered in Section 4.1.1 for strong magnetic fields but, in this
chapter, we make use of which leads to the Hamiltonian

with V the atomic potential and s = 1, 2, . . . N for an N-electron atom.
The Hamiltonian H differs from the atomic by the interaction terms
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The first term, linear in magnetic field strength, is where the
magnetic moment This is the
paramagnetic or “linear Zeeman” interaction. The quadratic term is
the diamagnetic or “quadratic Zeeman” interaction and is proportional
to the area of the orbit of the electron. Again, as with electric fields,
for most magnetic field strengths of interest in physics and astronomy,
except those of the order of T or greater, both terms in (3.3) lead
to small, perturbative corrections to energy levels and wave functions
of stationary states. The atomic unit of magnetic field is

T. Further, the diamagnetic term is generally even smaller
than the paramagnetic and becomes appreciable only for excited states
with high the scaling as

2.2 Time-independent perturbation theory
The Stark and Zeeman effects played a crucial role in the early de-

velopment of quantum-mechanical perturbation theory by Schrödinger
and others, and have since been used throughout all branches of physics.
Spectroscopists had observed that spectral lines were broadened or split
by externally imposed electric and magnetic fields. An astronomical
connection was Zeeman’s observations in 1896 that lines from sunspots
were broader than from the rest of the disk. The actual connection of
this observation to the magnetic fields of sunspots was made in 1908
by Hale. The linear Zeeman effect also played a crucial role in eluci-
dating the azimuthal quantum number in quantum physics (hence,
also called the magnetic quantum number). The perturbation-theoretic
treatment was, of course, not born in quantum mechanics, was already
familiar in classical physics and mathematics, but its specific form in the
context of quantum-mechanical Hamiltonians and effects on stationary
states is due to Schrödinger, who adapted Rayleigh’s classical perturba-
tion theory for this purpose.

The key result is that for every state with energy and wave
function of the unperturbed Hamiltonian there is a correspond-
ing state of which can be expanded in terms of the basis
provided by the complete set of states of
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with the superscripts indicating successively smaller, or higher order,
corrections. The order of smallness is in terms of some parameter con-
tained in the field strengths and B providing such parameters in
our current context. Any can be expanded as In-
serting this expansion, along with (3.4) into the Schrödinger equation,

multiplying from the left by the unperturbed and
equating terms of the same order of smallness on both sides of the equa-
tion gives an algebraic set which can be solved for and The
first couple of terms are familiar,

The algebraic set that the Schrödinger equation reduces to gives all
and the coefficients determined through the supple-
mentary requirement that in (3.4) be normalized to unity just as are

or the states
In the case of degeneracy, when two states of share the same en-

ergy, or even for near-degeneracy, the denominators in (3.6) and (3.7)
make such “perturbative corrections” meaningless. In this situation,
within this subset of degenerate or near-degenerate states, is diago-
nalized exactly as in a finite-matrix diagonalization, only the states
not part of the subset being treated through the perturbative formulae
(3.6) and (3.7).

A useful diagrammatic prescription can be developed for the pertur-
bation series. Representing the interaction by a dashed “interaction
line” terminating in a cross, and the state of interest by a downward-
going line and any other state by an upward-going line, the matrix
elements that occur in (3.5) – (3.7) and their counterparts in higher or-
der are all expressible in terms of the four basic ones in Fig. 3.1. In the
diagram representing any there will be r such interaction lines, all
connected together, a final two closed so as to leave no open lines repre-
senting states. Thus, (3.5) is represented by Fig. 3.2, which is essentially
the same as in Fig. 3.1 but the two closed into a loop. Fig. 3.3
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represents the second-order energy in (3.7). To connect the diagram into
the algebraic expression, we read from bottom to top, building up the
expression from right to left by writing the corresponding matrix ele-
ment from Fig. 3.1 for each interaction encountered. A horizontal slice
between each interaction and the next intersects one downward and one
upward line and is interpreted as a corresponding in the de-
nominator. The downward line is always kept at the extreme left and
so these energy denominators always start with A summation over
all upward lines is understood, as also that With this set of
rules, Fig. 3.3 is translated into (3.7). One more rule enters in describing
terms beyond the second order, a sign attached to the algebraic
expression, where h is the number of downward lines (stands for “hole”
in the terminology of many-body perturbation theory in atomic, con-
densed matter and nuclear physics where similar diagrams are employed
[20]) and the number of “loops”. Thus for both Figs. 3.2 and 3.3, this
sign is positive, there being onedownward and one loop.

As an application, Fig. 3.4 provides the next, third-order, diagrams.
Note there are now two; in general, there are (r–1)! diagrams at the
r-th order. Following the above rules, the algebraic rendering of the two
diagrams in Fig. 3.4 gives the two terms in the expression for
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At the r-th order, therefore, we draw r interaction lines stacked verti-
cally and connect them with downward and upward lines in all possible
distinct ways to get closed diagrams with a “continuous circulation of
the arrows”. An alternative, iterative view is also useful, each order
related to the one below by the consideration that an extra interaction
line is “inserted” in all possible distinct ways onto the diagrams. Thus,
in the passage from Fig. 3.3 for second- to Fig. 3.4 for third-order, there
are two places for such an insertion, either on the or the
Clearly, in the next step from Fig. 3.4, one can write the six diagrams
of by the three possible insertions on each of the two diagrams.

Most applications of perturbation theory do not go beyond the second
order, although the Stark effect has been computed in recent times even



Atoms in Weak, Static Fields 75

to orders beyond one hundred [21] and so also the diamagnetic Zeeman
effect to very high order (Section 4.3.2). In certain contexts, one also
sums to very high order the contribution of a subset of diagrams that
are deemed as dominant. An example is provided by the diagrams in
Fig. 3.3, Fig. 3.4(a), and higher members of the sequence, each with an
additional interaction line inserted always on the upward lines. Further-
more, among this sequence, if one restricts all intermediate sums in
expressions such as the first term in (3.7) to which is
reasonable for interactions whose diagonal matrix elements are much
larger than the off-diagonal, then as can be seen from (3.7) and (3.8),
successive members of this sequence differ by a multiplicative factor

As a result, the infinite sequence of such terms can be summed readily:
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an expression very similar to (3.7) except for the replacement in the
denominator of zeroth-order energies by those corrected to first order.
The counterpart of such an approximate summation of the perturbation
series to infinite order in many-body perturbation theory goes under
the name of the Random Phase Approximation [20] (the off-diagonal
elements considered vanishingly small by virtue of the random
phases of the states, leaving behind only the diagonal entries.)

2.3 The Stark effect
With the perturbation as in (3.1), the electric field strength

serving as the small parameter, the oddness under parity of this operator
makes the first-order energy correction in (3.5) vanish for any states of
well-defined parity. Since, as we saw in Chapter 1, most atomic states
are indeed eigenstates of parity, this means that the first-order or linear
Stark effect is generally zero. Only excited states of hydrogen (or very
high singly-excited states of any atom), which have degenerate manifolds
of states of both odd and even and therefore of parity, exhibit the
linear Stark effect. The interaction (3.1) has to be diagonalized within
this manifold to get energy corrections of first order in Equivalently,
the parabolic states of Section 1.2.2 are precisely the products of such
a diagonalization and provide the eigenstates of the linear Stark effect.
Specifically for the two states (1.16) which have no well-defined
parity provide through (3.5) the first-order correction to the energy

More generally, for any the correction is

Comparison with (1.12) shows that it is the value of in the parabolic
states that determines the linear Stark correction according to the pre-
scription

A linear response to an external electric field being characteristic of an
electric dipole the energy being correspondingly the
linear Stark effect may be alternatively interpreted as the corresponding
atomic state having a dipole moment, of value in the case of

Such a dipole exerts a potential for an electron in the
vicinity and is responsible for dipole-bound doubly-excited states of the
negative ion (Section 5.2.2).

For all other atoms, as also for the ground state of hydrogen, the first-
order correction (3.5) vanishes and we have to proceed to the second-
order (3.7) to see the first non-trivial response to an external electric
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field. This correction being proportional to this response is termed
the quadratic Stark effect. The matrix elements involved in (3.7) are
of between the state of interest and other states appearing as
intermediate states in the summation. Clearly these are states opposite
in parity to that of Indeed, the matrix elements being the same as
those in (2.16) which appear in a different context, the same rules single
out for the intermediate states only those that satisfy an analogous
selection rule to (2.24). For the ground state of hydrogen, these are all
the states with azimuthal quantum number This still leaves
an infinite sum over all        in (3.7):

The above result has been cast in a standard fashion that exhibits
immediately that the second-order energy is negative (as always for the
ground state for any perturbation), each term in the sum explicitly posi-
tive, and that it depends on a single parameter which is evaluated in
terms of zeroth-order atomic eigenstates and energies. This parameter,
with dimensions of volume, is the static dipole polarizability ((2.15) with

) of the atom (more precisely, of its ground state). The factors of
2 included in the definition stem from the alternative interpretation as
an induced effect, the atom’s ground state itself having no permanent
electric dipole moment (being spherically symmetric) but the external
field inducing a polarization of the electron distribution which then
couples back to (hence, according to Lenz’s law, always a negative
energy).

Explicit evaluation of still requires an infinite sum even when
the matrix elements can be computed analytically, as they can be with
hydrogenic eigenstates. Note the “sum” includes integration over the
continuum wave functions. However, with little effort, upper and lower
bounds on its value can be set straightforwardly. Thus, since every term
is positive, retaining only a few lowest, such as just say, gives
a lower bound to In hydrogen, a simple calculation (Problem 2.3)
gives On the other hand, replacing in the denominator
of (3.13) by for which the energy denominator has its lowest value
gives an upper bound, the numerator and sum then collapsing under
closure (for this purpose, the sum has first to be extended from to all

states of hydrogen which is readily done, all these others having zero
matrix elements anyway, before closure over the complete set of states
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of hydrogen can be applied) to leave behind a single matrix element
And this number is easily computed, being

because of the ground state’s spherical symmetry, and
from (1.10). Thus The exact value of for hydrogen is

a value that itself can be obtained without too much difficulty by
converting the infinite summation into solving instead an inhomogeneous
Schrödinger equation.

The calculation of the second-order Stark energy for any other atom
besides hydrogen is, of course, more tedious and difficult but the form
of the correction is still as in (3.13). As discussed in Chapter 1, atomic
states are characterized by other conserved quantum numbers such as
S, L, J, and M of angular momentum, and the coefficient will, in
general, depend on them. The dependence on M can be anticipated
to involve only even powers because of general considerations of time
reversal. Under this reversal, the coupling (3.1) to an electric field is
unchanged whereas a state of some M is mapped into its analog with
–M . Such states have, therefore, to remain degenerate in any electric
field. This is called the Kramers degeneracy and is removed only by an
external magnetic field as we will see in Section 3.2.4; magnetic fields
break time-reversal invariance, depending as they do on electric currents
which carry a time sense unlike electric charges and fields.

2.4 The Zeeman effect
As exhibited in (3.2), an external magnetic field B couples both lin-

early and quadratically to the electrons in an atom. The first has been
observed and studied since the days of the earliest spectroscopists like
Zeeman, and his name is now attached to both as linear and quadratic
Zeeman effects. In terms of the atomic unit of magnetic field,
T, even a 1 Tesla field that is otherwise hefty in most laboratory and
astrophysical contexts is puny in comparison. As an estimate, for low
lying atomic states of radial extent of approximately and angular mo-
mentum eV and
eV for a 1 T field. While the former is accessible, the quadratic term
lies far out of reach of ordinary spectroscopic precision. However, being
quadratic both in B and the radius of the orbit, it grows rapidly when
these quantities are larger, becoming very important for highly excited
states or in the very high fields of magnetic white dwarf and neutron
stars. In such contexts, not only can the quadratic term overwhelm
the linear but even cease to being a small perturbation. Such “non-
perturbative” effects are of considerable interest and will be the study of
Chapter 4 but in this section we restrict ourselves to the linear Zeeman
effect.
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The perturbative Hamiltonian, involves only the
angular momentum of the electron and is independent of the radial as-
pects or the principal quantum number Hence, unlike the quadratic
coupling which does depend on radius and the linear Zeeman effect
is common to all members of a Rydberg series of atomic states. At this
point, we need to incorporate also the electron’s spin s, because the mag-
netic moment due to spin also couples to B at the same level, indeed as

B.s. Spin is intrinsically a relativistic phenomenon, arising first
in the description of the electron through the Dirac equation. Other
relativistic perturbations due to it, such as spin-orbit coupling, will be
considered in Section 3.3 but here we treat only its magnetic moment. A
second aspect, also relativistic and naturally incorporated into the Dirac
equation, is that spin couples to a magnetic field with an additional fac-
tor of 2 relative to orbital angular momenta. In all, the perturbation
is

or equivalently, in a many-electron atomic state

Choosing the direction of the magnetic field as the of quanti-
zation, the interaction in (3.14) involves only the azimuthal projections
of angular momenta so that the first-order correction to the energy as
given by (3.5) is easily evaluated. The choice in (3.14) between the

or representation of the atomic states depends on the rel-
ative magnitudes of the linear Zeeman and spin-orbit splitting energies.
In light atoms or excited states of heavy atoms, spin-orbit energies are
smaller, particularly for reasonable field strengths B, and the
representation is appropriate. In such situations, the first-order energy
correction follows immediately from (3.14):

This result, sometimes called the Paschen-Back effect, lifts the degen-
eracy of the manifold of (2L + 1)(2S + 1) states which in the
absence of the magnetic field have the same energy. Note that even
though we are dealing with a degenerate manifold, we do not formally
need degenerate perturbation theory but can apply (3.5) to each indi-
vidual state because the first interaction in (3.14) is diagonal
in this basis. The degeneracy is not completely lifted; for example, if



80 ASTRONOMY-INSPIRED ATOMIC AND MOLECULAR PHYSICS

then the states and have the same
perturbed energy (3.15).

In heavier atoms or weaker magnetic fields, if the spin-orbit energy
is relatively larger than the magnetic, the appropriate states are char-
acterized by or more completely by and the second of
(3.14) is the operator of choice to evaluate (3.5). For this purpose, the
operator S is itself cast first in terms of J for such a manifold through
the identity

both S.J and being diagonal in this basis. Indeed, upon squaring
L = J – S , we have

so that (3.14) in (3.5) gives the linear Zeeman energy

with

The “Landé ” in (3.18) reduces to unity for pure orbital angular
momentum (S = 0, J = L) and the Dirac value of 2 for pure spin
(L = 0, J = S), generally taking values in between these two limits.
The degeneracy is completely lifted, the (2J + 1) degenerate
states in the absence of B getting individually distinct energies (3.17).

For in (3.17) is a triplet of energies as in the first ob-
servations by Zeeman. Observation of spectral lines involves, of course,
differences in energy of initial and final states, needing consideration
of the splitting according to (3.17) of both, together with the electric-
dipole selection rules, as in Section 2.2.3. Fig. 3.5 gives
an example. Observed perpendicular to the magnetic field, three spec-
tral lines are seen, all linearly polarized, whereas for observations along
the field, the line at the undisplaced energy is missing, the other two
symmetrically on either side seen as left and right circularly polarized.
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In such a case, where a triplet of lines is seen in a magnetic field,
one says we have the normal Zeeman effect, contrasting with the term
“anomalous Zeeman effect” when the multiplicity is different. These
terms are historical, before azimuthal quantum numbers were used, and
are now rightly fading, all unified by the single expression (3.17) and
differing only in the values of S, L, and J. Indeed, it was in the un-
derstanding of the Zeeman effect that the azimuthal quantum num-
bers were introduced and their role appreciated in quantum physics.
In frequency units the term representing the Zeeman splitting,

has the value (B / Gauss) or equivalently

Solar magnetic fields in sunspots, and fields on many G, K, and M
stars have values typically 1–3 kGauss so that unresolved Zeeman split-
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tings are seen as broadening of spectral lines, the Zeeman widths being
comparable to widths due to other causes. Often one compares widths of
two lines of different Zeeman sensitivities to make this identification, a
canonical example being lines of Fe I, the one at 617.33 nm and width 5
nm being sensitive while the one at 624.07 nm and width 4 nm relatively
insensitive to the Zeeman perturbation.

3. Internal Perturbations in an Atom
Our treatment so far has been non-relativistic, which is adequate

for most purposes of laboratory and astrophysical study of atoms and
molecules. However, in this section, we will consider some of the basic
relativistic corrections arising from the motion of the electrons. Recall
from Section 1.2.1 that the velocity in the first Bohr orbit is (Z / 137)c,
so that inner shell electrons in a heavy atom may be expected to have
appreciable relativistic corrections. However, in so far as these are still
small in comparison with the basic non-relativistic energy, perturbation
theory applies and we will, in this section, so consider some of the dom-
inant relativistic perturbations of atomic energy levels.

3.1 Relativistic mass correction
The kinetic energy is the obvious place to start, the non-relativistic

expression being an approximation to the energy-momentum
relation of Special Relativity, Dirac showed
the proper way, through spinors, to handle the square-root operator
and thereby the complete relativistic treatment of the electron. In this
section, however, in the spirit of perturbation theory, we will only view
the next term beyond the non-relativistic kinetic energy in the binomial
expansion of the square-root, namely,

Direct evaluation of the first-order energy correction (3.5) with such
an operator is fraught with difficulty because of the high degree of sin-
gularity of a fourth-order derivative but again, in the spirit of pertur-
bation theory, we rewrite (3.19) in terms of non-relativistic operators as

Subsequent evalua-
tion of (3.5) is straightforward through the expectation values listed in
(1.10) for hydrogenic states to give
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The negative sign of the energy correction, as already in the operator in
(3.19), and its implication of weakening the binding of all energy levels,
is physically plausible because the relativistic effect increases the mass
and thereby raises the kinetic energy. The correction depends on both

and again as expected, any dependence on other than such
as the here destroying The scaling with Z as the
fourth power is shared with other relativistic effects to be studied below
and signifies the growing importance of these effects in heavier atoms.
Aside from these Z and dependences, the order of magnitude of the
correction is

3.2 Spin-orbit coupling
The coupling between the magnetic moments arising from the spin

and the orbital motions of the electron also gets naturally incorporated
into the Dirac equation and can then be exhibited by a non-relativistic
expansion but we consider here a simpler argument from non-relativistic
physics that suffices. As in Section 3.2.4, the spin magnetic moment has
energy (note the Dirac of 2) but the magnetic field
now is not external but that due to the orbital motion of the bound
electron itself. This is given by a standard expression of classical elec-
trodynamics

The spin-orbit perturbation is thereby (the so-called Thomas factor pro-
vides an additional factor of ),

With evaluated from as
and the expectation value of from (1.10),

we obtain for the spin-orbit correction. There is, of course, no con-
tribution for states which have no orbital angular momentum but an-
other relativistic correction, called the Darwin term, affects only the
states by precisely the same amount as given formally by the above. In
all, upon adding to the mass correction in (3.20), we have the relativistic
contribution
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Note that this correction depends only on and so that the energy
levels still retain some degeneracy (for example, and states with

a result also true for exact solutions of the relativistic Dirac
equation. Only field theoretic (QED) terms such as the Lamb shift
remove this degeneracy finally.

The occurrence of highly stripped ions of elements such as iron in a
variety of astrophysical objects makes relativistic calculations important
in precision work. As examples, Ne-like (Fe XVII) produces the
brightest x-rays from the solar corona and chromosphere and the 530.3
nm green coronal line from (Fe XIII) is one of the most intense
seen. Oscillator strengths for El transitions in (Ar XV) and

(Fe XXIII) are enhanced by 6 and 18% respectively, as a result
of the mass and Darwin relativistic perturbations. The

in Be-like ions has a rapid increase in rate from 86 in to
2000 in in and in , the scaling with a
power characteristic of relativistic effects. M1 decays provide another
instance of relativistic effects, the state’s decay in He-like ions from

(C V) through (0 VIII), (Ne IX), (Mg XI) to
(Fe XXV) seen in the solar spectrum providing an example, the last
mentioned with a 5 ns lifetime.

3.3 Other corrections
The two sub-sections above have considered the dominant relativistic

corrections to atomic energy levels and, as noted, are included exactly
at the level of the Dirac equation. Corrections that arise beyond this
level, from field theoretic effects of quantum electrodynamics, such as
the Lamb shift and vacuum polarization, are of little relevance to as-
tronomy. In today’s high precision laboratory spectroscopy, however,
they have been of considerable interest, much effort being expended
on both experimental and theoretical studies in one- and two-electron
atoms of high Z [22]. Apart from taking this note of them because of
their importance, particularly for verifying quantum electrodynamics to
increasingly high accuracy, they lie beyond the scope of this book.

We end this section and chapter with one more correction which, while
not relativistic in origin, shares some of the same features and enters at
the same numerical level and therefore goes hand-in-hand with the study
of relativistic perturbations. This is the effect of the finite size of the
nucleus, that it is not a point charge but rather an extended distribution,
whether in a proton or a heavier nucleus. Details of how the positive
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charge Ze is distributed over the radius of a nucleus (Z, A)
continue to be explored in nuclear physics but, as an illustration of
perturbative effects on atomic energies, we consider two simple models,
one in which all the charge resides on the shell at radius and another in
which it is uniformly distributed over the volume contained within In
either case, it is only for that the Coulomb potential energy of the
electron is the that we have considered in the non-relativistic
Hamiltonian. For however, the potential is in the
first model and in the second model. Therefore,
the perturbation Hamiltonian which is confined to is the
difference of these values from The nuclear radius being
very small on the atomic scale, only or
states are affected by these perturbations since, according to (1.9), only
their wave functions are finite near the nucleus. Further, over the range

(1.9) reduces essentially to the normalization factor so that
the matrix element in (3.5) is easily evaluated. We have finally

the constant taking on values 4/3 and 4/5 for the first and second
models, respectively. For hydrogen in the ground state, the correction
(3.24) is, approximately, Note the scaling with Z as the
fourth power as in previous sub-sections considered above, the
reflecting the squared normalization of that was noted in
Section 1.2.1.

Problems

3.1

3.2

3.3

3.4

Evaluate the ground state energy shift in the hydrogen atom due to
the second term in (3.3) for a 100 T field.

Which states are mixed into the ground state in first
order due to this diamagnetic perturbation?

Derive (3.5) – (3.7) including the value for

Starting with write down the diagrams describing the fourth-
order perturbation and translate them into algebraic expres-
sions.

Calculate the contribution to in (3.13) for the hydrogen
atom.
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3.5

3.6

3.7

3.8

3.9

3.10

Establish as stated in Section 3.2.3 that the exact for hydrogen
can be calculated by solving an inhomogeneous Schrödinger equation,

and then computing the matrix element

Calculate the linear Zeeman splittings of the states of the first
excited state of the sodium atom in a 0.1 T magnetic field.

Establish (3.20) as per the procedure sketched in the text.

Estimate the spin-orbit splitting of the state of the hydrogen atom.
In a 0.1 T magnetic field, what are the Zeeman splittings of these
states?

Derive the form of the perturbing potential due to the finite size of the
nucleus, assuming a uniform distribution of charge over the spherical
volume. Calculate the resulting energy correction to the ground state
of the hydrogen atom.

A beam of nitrogen atoms in the ground state splits into four compo-
nents in a Stern-Gerlach magnetic field, and the magnetic moment is
measured to be erg/Gauss. Calculate the gyromagnetic
ratio. Is the magnetic moment due to orbital or spin currents?



Chapter 4

ATOMS IN STRONG MAGNETIC FIELDS

1. Introduction

In Chapter 3, we considered the effect of weak fields, internal or exter-
nal, on atomic structure. The zero field structure served as the starting
point for a perturbation analysis, guiding our intuition regarding the
effect of the added fields. In recent decades, strong and ultrastrong
magnetic fields have been observed on astronomical objects, and strong
field effects seen also with laboratory magnetic fields imposed on highly
excited states. We turn to their study in this chapter, dealing with situ-
ations wherein the forces due to the external magnetic field are at least
equivalent to, if not dominant over, the internal Coulomb forces in the
atom. Qualitatively new phenomena and structures have been observed,
calling for a change in our intuition based on laboratory atoms. Such a
change of ground is provided by considering in place of motion around a
nucleus the motion of a free electron in a magnetic field. This is where
we will begin. Note first, as has already been discussed in Chapter
1, that the situation with electric fields is different because no matter
what the field strength, the combined Coulomb and linear electric poten-
tial separates in parabolic coordinates, permitting at least in principle a
complete solution. It is because the Coulomb plus diamagnetic potential
does not so separate in any system of coordinates that strong magnetic
fields pose a greater challenge. Just as perturbation theory discussed
in the previous chapter proved relevant beyond atomic physics in all of
physics, so too are the strong field phenomena discussed in this chapter
likely to have broader and general applicability.

87
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1.1 Free electrons in a magnetic field
The motion of a free charged particle in a uniform magnetic field

is well-known classically and quantum mechanically. In the former, the
charges may be regarded as “beads on a wire”, free to slide along the field
lines (there being no force in this direction) but confined to “cyclotron
orbits” in their transverse motion by the forces. In the
quantum treatment, we introduce, as in Section 3.2.1, the magnetic field
through the vector potential A and minimal coupling to get the kinetic
energy

For a given field, say B along the different choices of A are
possible, subject only to Thus, one choice is

leading to the Schrödinger equation

With no explicit dependence of H on and and are constants
of the motion and the solution is of the form

with

where primes denote derivatives with respect to and we have defined
the cyclotron frequency

and
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The one-dimensional motion in in (4.5), the only non-trivial part of
the solution, is of a simple harmonic oscillator centered at and with
frequency The motion is quantized, so that the energy eigenvalues
are

with wave functions

where are the Hermite Polynomials.
Note that enters into (4.4) and (4.7) but not into the eigenvalues

in (4.8). Therefore, each level with fixed and is infinitely degener-
ate. An understanding of this degeneracy is provided by looking at the
classical picture of electrons circling around a field line. The center of
this circle has coordinates With the field B pervading
all space, field lines thread through the entire and the elec-
tron’s motion can be slid from one line to another without energy cost,
accounting for the infinite degeneracy. For any finite region of space,
however, the degeneracy is limited and we will return to this in Section
4.3.4.

An alternative, more symmetric choice for A is

which leads to

Harmonic oscillator potentials now arise in both and

while the linear terms involve
These coincide with (3.3) for the choice to which this
symmetric gauge is equivalent.
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This symmetric, “cylindrical” gauge, with (4.11) separating in cylin-
drical coordinates, is the one of choice in most studies of atoms in mag-
netic fields. In these coordinates we have as solutions of (4.11),

with

The resulting eigenvalues are

with normalized eigenfunctions

where

is the cyclotron radius and a confluent hypergeometric function. For
a 1 T field,  and

Although differing in the quantum labels, and re-
spectively, and seemingly different in appearance, the eigenvalues in (4.8)
and (4.15) coincide as they should. The counterpart of the “hidden”
infinite degeneracy in in (4.8) is realized in (4.15) as an infinite de-
generacy of Such an equivalence of the final results is
a manifestation of the gauge invariance of quantum mechanics with elec-
tromagnetic potentials. The two vector potentials differ by
and a corresponding unitary transformation, connects
the alternative wave functions in (4.4) and (4.13).
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The set of equally spaced levels in (4.8) or (4.15), with spacing
constitutes the “Landau spectrum” for an electron in a uniform magnetic
field. We have ignored spin so far but, as in Section 3.2.4, its main
contribution through the magnetic moment’s coupling to B is easily
incorporated by adding to (4.3) or (4.11), and a corresponding

to the energy in (4.8) or (4.15). For spin antiparallel to B, this
contribution exactly cancels the zero-point energy in (4.8) and (4.15),
making the ground state energy exactly zero. Every other energy level
has a degenerate pair with spin quantum numbers opposite. Such a
spectrum is said to be “supersymmetric”, the result here hinging on the

being exactly 2. Indeed, solutions of the Dirac equation for an
electron in a magnetic field, which provide the fully relativistic quantum-
mechanical treatment, also give the same energy spectrum [23].

Given the Landau level structure, free electrons in a magnetic field
can absorb or emit radiation of frequency or its harmonics in making
transitions between different Landau levels. This is cyclotron radiation,
one of the probes for strong magnetic fields in astrophysics [24]. De-
tection of 53 keV x-ray lines from HZ Her, corresponding to a field of

was a pointer to the strongest magnetic fields ever observed,
this one on a pulsar. If the electrons become relativistic, as in some
astrophysical sources or in our accelerators, this radiation of frequency

in their rest frame appears as high frequency “synchrotron light” to
an outside observer.

2. Excited States in a Magnetic Field

2.1 Basic Hamiltonian and spectrum

We turn now to the hydrogen atom in a magnetic field in a regime
where perturbation theory fails. First, Section 4.2 will consider the sit-
uation when neither Coulomb nor magnetic field dominates but both
are on par, leading to novel structures and dynamics. Such a situation
obtains for highly-excited Rydberg states in a magnetic field of labora-
tory strength, typically a few Tesla in most experiments to date. The
Coulomb-Rydberg structure of the atom is subverted, replaced by a spec-
trum characteristic of the “strong mixing” of both fields. Section 4.3 will
deal with extremely strong magnetic fields which modify atomic struc-
ture down to the very low and ground states, such fields only obtained in
some astrophysical contexts (magnetic white dwarfs and neutron stars)
or in some solid state analogs of the hydrogen atom (excitons and inver-
sion layers). The regime when both fields are of equal importance is the
most difficult and interesting one, calling for non-standard techniques
for its analysis. Although the motion of an electron in either field alone
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is well understood (Sections 1.2 and 4.1), their simultaneous presence
leads to a non-separable problem of great complexity.

Even the separation of the center of mass motion for the nucleus and
electrons is not as straightforward as in the case of B = 0. With 1
denoting the electron and 2 the proton, the equations of motion are

where over-dots represent and the particular form of the force
between 1 and 2 is not of interest for this argument. Adding the two
equations above, and defining as usual
and we have

so that

is a conserved quantity. Note already that this conclusion rests on equal
and opposite charges for 1 and 2, as in a neutral atom. Quantum me-
chanically, the corresponding operator,

commutes with the Hamiltonian of the hydrogen atom in a magnetic
field:

where, as before, we choose The two-particle Schrödinger
equation, has a solution of the form

with
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As usual, p and are the linear and angular momentum, respectively,
of a particle of reduced mass

The first term in (4.23) is the center of mass kinetic energy. The sec-
ond term represents a residual coupling between the motions in and
r, interpreted as a motional Stark (electric) field seen in the reduced
particle’s motion by virtue of the velocity of the center
of mass in the B field. Only by neglecting this term can the motion
in r be considered separate, the justification resting on being large.
We will indeed do so, although this additional electric field may some-
times be large (as on pulsars where B is large) and have conspicuous
effects, making every problem of an atom in B also one with a simulta-
neous perpendicular electric field. The fourth term in (4.23) indicates
yet another subtlety in the separation of the center of mass, the
causing a small correction to the linear Zeeman term. Once again, it
is only upon dropping it that we have the linear and quadratic Zeeman
terms as considered in Chapter 3 for the motion in r [25]. With these
approximations, we have finally

The superposition of the B-independent terms, which are cylindrically
symmetric, with the Coulomb term, which has spherical symmetry, ren-
ders (4.24) non-separable in any coordinate system. We will consider
in Section 4.2.2 a partial separability upon restricting to a manifold of
fixed but it is the non-separability that makes for the complexity of the
problem of an atom in a magnetic field and for some of the fascinating
phenomena exhibited by this otherwise seemingly simple system. The
linear Zeeman term is easily treated, being diagonal in Indeed, the
entire Hamiltonian in (4.24) being azimuthally symmetric, the motion
in can be trivially separated. Parity is also a good quantum number
of this Hamiltonian. The non-trivial part, therefore, lies in the last two
terms in H which entangle two coordinates and may be viewed in the
alternative forms:
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When the diamagnetic and Coulomb terms are comparable, pertur-
bation theory as in Chapter 3 fails and we face the full complexity of
a non-separable quantum mechanical problem. They have comparable
influence when

where T is the unit of magnetic field
defined previously. With in Coulomb systems, we have equiv-
alently

with a numerical constant of the order of unity, as an index of where
strong mixing effects set in. For a reasonable laboratory field strength
of 4.7 T, this is, approximately, 45. It is only for quantum num-
bers around this value or larger that we can expect to see very non-
perturbative effects on a Rydberg spectrum. The high resolutions and
low pressures required to access such a spectral region kept such phe-
nomena from being observed until recent decades.

Fig. 4.1 shows the spectrum of hydrogen in two-photon absorption
from the ground state in a magnetic field of 6 T [26]. The experiment
used two photons because lasers are not easily available to go directly
from the ground state to such a region of the spectrum with a single
photon. Beyond the energy corresponding to (4.27) and extending past
the zero-field ionization energy of 13.6 eV, the spectrum is clearly domi-
nated by equally-spaced, broad resonances. The spacing depends on the

value of the final state, and 2 being dominated by a spacing
of while by Fig. 4.2(a) is an analogous spec-
trum, this time in ordinary single-photon spectroscopy of Sr [27], again
showing a pattern of equally-spaced resonances with a spacing of
Historically, the Sr spectrum and similar spectra in other atoms were
observed almost fifteen years before Fig. 4.1 in hydrogen because of ex-
perimental difficulties in working with atomic hydrogen. However, that
all atoms display the same phenomenon of equally-spaced resonances in
a magnetic field in the vicinity of the ionization threshold indicates in-
volvement of electronic motion at large distances, the potential in such a



Atoms in Strong Magnetic Fields 95

region being the same in all atoms as given in (4.25). The presence of a
core region in non-hydrogenic atoms where the Rydberg electron expe-
riences short-range interactions does not disrupt the basic phenomenon.
The influence of the core can be taken into account through standard
zero-field quantum defects (Section 4.2.5), these being unaffected by the
diamagnetic potential which is entirely negligible at such small
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Although at first sight reminiscent of the equally-spaced Landau lev-

differs from indicates that the magnetic field does not dominate this
phenomenon. Indeed, the primary spacing of points to an interplay
between the Coulomb and diamagnetic potentials as per the following
simple scaling argument. The total energy E of, approximately, zero
may be considered as the sum of Coulomb and diamagnetic energies:

The Coulomb energy is, of course, the Bohr whereas the
diamagnetic energy, depending on is proportional to That the
two are equal and opposite in (4.28) leads to the condition (4.27), and

els in (4.8) and (4.15), that the resonance spacing depends on and
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to conform with it, we write The spacing
between successive states can then be written as

Using (4.27) to eliminate we get

the arising from Coulomb and diamagnetic contributions in the ratio
1:2.

The above argument does not fix the value of although one can
plausibly argue for so that with magnetic field alone, (4.29) and
(4.30) would give the expected Landau spacing, but it
suffices to show that the resonances near the ionization limit
are associated with strong mixing of both Coulomb and diamagnetic
fields on a roughly equal footing. Neither field may itself be strong
and, indeed, for any value of B, however small, there will always be a
region around E = 0 with an given by (4.27) where such an equally-
spaced resonance spectrum will be seen. Ordinary perturbation theory
fails, neither field being weaker than the other but, remarkably, the
experimental evidence as in Figs. 4.1 and 4.2 is that this region also has
a characteristic spectrum of its own, different from either the Rydberg
or the Landau spectrum, when one or the other field dominates. Other
examples are now known, including that of a strong mixing of Coulomb
and electric fields, showing that such strong-mixing phenomena are quite
general in physics.

2.2 Degenerate perturbation theory in
an

The basic problem is that for the Hamiltonian in (4.24), the only con-
served quantum numbers are and parity, and the Schrödinger equation
is non-separable in the two coordinates in (4.25). Were we to start with
the hydrogenic states as a basis, the diamagnetic interaction
mixes all states of and with the same and parity. For values of

smaller than that given by (4.27), when the diamagnetic energy is
smaller than the spacing between successive Rydberg levels, the prob-
lem is at least immediately tractable as a mixing of all the degenerate

states of a given by the diamagnetic interaction. We consider
this region first as an application of degenerate perturbation
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theory with a finite number of states. Since is restricted to the values
that is, at most to states of the same parity

(either all odd or even), one needs to diagonalize
among this set.

The structure causes non-zero matrix elements between hydro-
genic states of just two types, ones diagonal in and the others connect-
ing states with Together with the radial matrix elements of

from (1.10) between the hydrogenic wave functions (1.9), we have

The resulting finite, tri-diagonal matrix can be diagonalized for any to
yield eigenvalues and eigenvectors, displayed in Figs. 4.3 and 4.4. In units
of the eigenvalues range from 0 to 5/4, these being the limiting
values as In between, the value 1/4 marks a point of inflection
which separates two classes of eigenstates. The eigenvalues between 0
to 1/4 rise linearly with an index N that labels the states, whereas the
1/4 to 5/4 region shows a N(N + 1) dependence. As a result, they are
dubbed vibrator and rotor states, respectively. The former occur mostly
for small values of and are absent for large

Plots of eigenvectors in Fig. 4.4 also point to differences between the
two classes of states, the vibrators having dominant concentration of
probability at and 180°, that is, longitudinal to the magnetic field
direction, whereas the rotors concentrate at or perpendicular
to B. Each eigenvector acquires a certain amount of character.
Therefore, in photoexcitation from a ground state with as shown
in Fig. 4.2, each of these eigenvectors is seen as a spectral line, with
intensity proportional to the squared amplitude of in the
region of such a figure.

An analytical treatment of the diagonalization casts further light on
the nature of diamagnetic interaction in an The matrix
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elements in (4.31) display the radial and angular contributions explic-
itly. The latter, given by factors on the right, converge rapidly to their
limiting values of and for particularly for small
Replacement of the angular factors by these values for all is, therefore,
a good approximation. The radial factors, on the other hand, reduce to

in both and for whereas for
while is smaller by one power of With these reductions, eigenval-
ues and eigenvalues of the tri-diagonal matrix, which are
determined by the linear algebraic system
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can be transformed [28] into an equivalent differential equation in
regarded as a continuous variable with range (0, 1):

This is the equation for prolate spheroidal functions, with features
combining those of both Legendre and Hermite differential equations.
For large the eigenvalues are given by
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that is, equally spaced with spacing just as observed for the
vibrator states in Fig. 4.3. The lowest eigenvector is given by

Note a characteristic shape of an initial rise at small due to the sta-
tistical weight factor but a Gaussian fall-off at large due
to the second factor which reflects the oscillator-like potential in in
(4.33). Such a mix of values due to the diamagnetic term implies a
corresponding distribution of the wave function in the conjugate space,

a Gaussian distribution peaked at and 180° as in Fig. 4.4 (top).
The highest eigenvalues and eigenvectors follow from a closely related

analysis of a “conjugate” equation to (4.32) obtained by

This conjugation transformation (a local gauge transformation in which
every alternate coefficient is multiplied by minus one) has the effect of
switching the signs of relative to and and gives instead of
(4.33),

again a prolate spheroidal equation, differing from (4.33) only in some of
the coefficients. The values of now descend from in equal oscillator-
like steps:
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The index K is related to N by Thus, the rotor states of
Fig. 4.3, which are rotor-like when viewed from are also vibrator-
like when seen from the opposite limit of descending in equal
steps with twice the spacing of the low states in (4.34). The two classes
of states are simply related by the conjugation transformation (4.37).

The highest eigenvector is given by

with an obvious resemblance to (4.35), differing from it by alternating
minus signs introduced through the factor. Once again, the corre-
sponding distribution in is

and coincides with Fig. 4.4 (middle), this time peaked at with
a Gaussian width proportional to The highest states are seen,
therefore, to gain in diamagnetic energy by peaking, or being localized,
perpendicular to B in the region of strongest diamagnetic potential.
The lowest states by contrast localize parallel to B and gain the least
diamagnetic energy. The conjugation operation takes the
off-diagonal changing sign whereas the diagonal remain unchanged
according to our earlier observation that for all

Because of the fall-off at high as shown in (4.35) and (4.40), both
the lowest and highest eigenstates show a mix of values from 0 to a
maximum that is proportional to The very high values in the

those between and are not appreciably present in
the vibrator and rotor states. Only a few states around the “separatrix”
eigenvalue of contain such high angular momenta. Many of these
features of the diamagnetic interaction in a Coulomb such
as characteristic localized states seem to be generic, common to strong
mixing of degenerate manifolds by a second field.

The above analysis of an within the basis of spherical
states could be carried out alternatively in the parabolic basis
of Section 1.2.2. With the diamagnetic operator equal to
in parabolic coordinates, the only non-zero matrix elements are
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where inside the square bracket in the first equation, the second term
repeats the first with and interchanged. Once again, we have
a tridiagonal matrix whose eigenvalues and eigenvectors reduce to the
same results as before.

The parabolic analysis has the further advantage of relating to the
group-theoretic symmetries discussed in Section 1.2.2. Thus, in addition
to the action of the operators already recorded there, that is,

Therefore, from the matrix elements in (4.42), we have a representation
of the diamagnetic operator within an

we have for
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or alternatively, using (1.14),

where we have defined [29]

Therefore, upon restricting to an the combined Coulomb
and diamagnetic Hamiltonian permits simultaneous diagonalization of
the operators A similar conclusion follows also from aver-
aging the classical equations of motion of L and A in the Coulomb +
magnetic field over one Kepler period, this averaging being the counter-
part of the quantum treatment of a fixed Eigenvalues of
label, therefore, the eigenvectors that were denoted above by N and K.
Since ranges from 0 to according to Section 1.2.2,
ranges from when A is along the to
when A lies in the Correspondingly, from (4.46), the eigenval-
ues of range from 0 to 5/4 as discussed, negative values of

corresponding to vibrator and positive to rotor states. Fig. 4.5 shows
that, geometrically, the tip of A is confined to move on the hyperboloid
defined by (4.47). the two classes of states resulting when A and, there-
fore, the Keplerian ellipse (recall that the Laplace-Runge-Lenz vector is
along the semimajor axis of this ellipse) lies primarily along or perpen-
dicular to B. The highest eigenvalues of diamagnetism with the lowest
K in (4.39) have the highest and most confinement to the plane per-
pendicular to B. The value with energy proportional to is
a sharp “separatrix” between the two classes of motion. For large
the vibrator states with are almost absent, L being more nearly
parallel to the so that the vector A perpendicular to it is perforce
more in the

The set is an alternative to the sets and
of Section 1.2.2 for the field-free hydrogen atom. While

those represented exact symmetries of the Coulomb problem, the spher-
ical and parabolic, respectively, the triad is not an exact
symmetry of the Coulomb + diamagnetic Hamiltonian, only approxi-
mate so long as one restricts to at a fixed   An equivalent
statement is that this symmetry pertains only for degenerate perturba-
tion to order but not to higher order in powers of which would
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introduce other states as intermediates in expressions such as (3.7).
The structure of in (4.47) also does not permit as compact a transfor-
mation of one basis to another as the field-free Coulomb problem enjoys
in (1.15). However, a further approximation of taking instead the triad

permits such a transformation. Particularly for the
rotor states, where is small, this further approximation has merit.
In this picture, the set behaves like an angular mo-
mentum, with invariants and and
the eigenvectors provides a good description of the rotor states.
This is essentially with K in (4.39). Observing that
is these eigenvectors are related to the
parabolic states by a Clebsch-Gordan coefficient analogous to
(1.15),

It had been noted at the end of Section 1.2.2 that the Schrödinger
equation for the pure Coulomb potential separates also in momentum
space in spherical coordinates. The description of combined Coulomb
and diamagnetic potentials corresponds to the momentum space equa-
tion separating in elliptic cylindrical coordinates [29]. This is again a
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partial separability of the potential in (4.25), to order Of course,
for the field-free hydrogen atom, it provides yet another system of co-
ordinates in which the Schrödinger equation separates besides the two
considered in Chapter 1.

2.3 Large-scale numerical calculations
The previous section considered the diamagnetic mixing of degenerate

states in an this expected to be the most imme-
diate because of their degeneracy. Since, as usual, selection rules for
matrix elements of any operator pertain to angular momentum quan-
tum numbers but not there are counterpart matrix elements to those
in (4.31) which connect one in general to any other, including those
in the continuum. Since the different states are not degenerate, these
mixings are reduced by the energy denominators in perturbation equa-
tions such as (3.7). But, with either increasing B or increasing these

by the diamagnetic interaction are also important. Given the
infinite pile-up of Rydberg states at the ionization limit, any practical
calculation will involve the truncation of the full set of states but,
with today’s computers, calculations with very large bases are feasible.
At one level, such a calculation is essentially a numerical experiment,
constituting the theorists’ test of quantum mechanics and their ability
to compute energies and oscillator strengths at a level comparable to the
precision with which experimental colleagues can measure them.

Although the problem of diagonalizing the Hamiltonian in (4.24) in
some basis is straightforward in principle, ingenuity in the choice of
basis and the numerical techniques used can maximize the quality of the
results. We consider here four procedures that have been used. The
first works with the spherical states. The angular matrix elements
are exactly as in (4.31) but radial matrix elements of with
are complicated. Analytical expressions and recurrence relations are
available but are often more unwieldy than a direct numerical calculation
with hydrogenic radial functions. Fig. 4.6 for and even parity
and included 110 states [30]. A second procedure uses a variant
spherical basis with a more flexible orthonormal set of radial functions
than the hydrogenic (1.9). Basis sets of up to 6400 have been employed,
with the radial functions chosen as generalized Laguerre functions with
a fixed exponent. Matrix elements can then be expressed in closed,
analytical form and the bounded Hamiltonian matrix diagonalized by
efficient algorithms. Fig. 4.7 shows hundreds of lines for energies

(corresponding to large close to the ionization
limit), comparing energies and intensities with a precision experiment
on the spectrum of deuterium [31].
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The third procedure, closely akin to the second mentioned above, has
used a “Sturmian” basis of radial functions as in (1.9) but with in
place of with fixed. For a given these form an orthonormal
set but with a weight of in the radial integration. Whereas with

they would coincide with hydrogenic functions, when is
fixed, each Sturmian function is an infinite expansion over the hydrogenic
functions, discrete and continuum. The off-diagonal matrix elements of

are confined to an enormous simplification. This makes
the Hamiltonian matrix tri-diagonal in and penta-diagonal in A
price is paid, the additional weight factor in the orthogonality of
the Sturmian functions leading to a “generalized eigenvalue” problem,

the matrix S being itself tri-diagonal. Efficient numeri-
cal techniques handle such problems [32]. A fourth procedure that also
shares a banded Hamiltonian works with “semi-parabolic” coordinates,

and In terms of these, the Coulomb Schrödinger equa-
tion is converted to harmonic-oscillator form with potentials quadratic in

and The diamagnetic potential takes the form
This structure makes immediately clear through oscillator selection rules
that any state is linked only to others with
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thus accounting for a banded Hamiltonian matrix. Very large
matrices can then be handled so that calculations can reach E values
very close to threshold. The most extensive numerical results and tables
on atoms in magnetic fields are to be found in a book [33] and in recent
research publications [34] and references therein.
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Results obtained by any of the above methods and presented in Figs.
4.6–7 reproduce at low those of Section 4.2.2 for diagonalization in a
fixed The clusters from each are distinct in this
region. In the distribution of oscillator strength from the ground state,
most is to the highest state of each cluster when is even. This
is the K = 0 highest rotor state with wave function concentrated per-
pendicular to B. For odd, however, the oscillator strength is
distributed more uniformly over the cluster. Isolating like members of
each cluster, one sees a constant spacing of as the ionization poten-
tial is approached, corresponding to resonances seen in the experiments
of Figs. 4.1 and 4.2.

Another prominent feature are the sharp avoided crossings in Figs.
4.6–7. Even when clusters of eigenvalues from each interpenetrate,
they retain their identity, particularly so when a K = 0 state from some

crosses the from This can be attributed to their dif-
ferent localizations, perpendicular and parallel to the field, respectively.
While degenerate in energy, the wave functions have negligible overlap
as a result of these different localizations. This is again an important
generic feature that is encountered in several very non-perturbative prob-
lems, including those of electron correlation to be discussed in Chapter
5.

As one penetrates more into the regime and approaches
E = 0, the mixing becomes stronger, even of different K, although the
rotor states remain unmixed longer than the vibrators. Electron trajec-
tories calculated for the corresponding classical equations of electronic
motion in the combined Coulomb and diamagnetic potential (4.25) dis-
play an analogous effect, becoming chaotic a little short of E = 0. A
rough correspondence between the two results is provided by the dis-
tribution of spacing between the quantum eigenvalues: Fig. 4.8. This
distribution changes from an initially Poisson distribution to a Wigner
one (primarily distinguished by the feature that vanishingly small spac-
ings are absent) as we approach E = 0. All this has been of much
interest in recent studies of chaos and a general rule that associates
Poissonian (Wigner) statistics for the spacing distribution for integrable
(non-integrable) systems [35]. As long as quasi-separability holds, van-
ishing spacings occur and Poisson distributions are seen. However, any
experiment with a finite resolution sees a regular pattern of oscillations
as in Figs. 4.1 and 4.2. This is borne out in Fig. 4.1 where an averaging
over a small energy bin reproduces the experimentally observed regular
oscillations, the peaks of these oscillations sometimes embracing a whole
set of quantum levels.
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2.4 Quasi-classical JWKB analysis
In recent years, the fascination with chaos in classical mechanics and

whether it is realized in a counterpart quantum system has led to many
studies of the Coulomb plus diamagnetic problem as a possible example.
There has been extensive work on classical trajectory calculations, clas-
sical perturbation theory, and various semi-classical quantization pro-
cedures applied to such trajectories [36]. This is understandable given
that we are dealing with large quantum numbers and, therefore, quasi-
classical conditions. Hamilton’s equations of motion for the potential
in (4.25) are integrated at fixed energy E for trajectories starting at

from near the nucleus with some angle to the Often
the semi-parabolic coordinates mentioned in Section 4.2.3 have proven
convenient for these calculations which seek to identify “closed orbits”
wherein the trajectory closes back onto the origin after “reflection” from
the rising potential encountered at values of and when
Recurrence times corresponding to a return after a single or multiple
reflection are measured in units of the cyclotron period with

given in (4.6).
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A prominent recurrence, with occurs for a tra-
jectory that propagates along the and is reflected. Clearly, this
corresponds to the resonances of Figs. 4.1 and 4.2 and is
associated with motion localized perpendicular to B. Other recurrences
have similarly been associated with other spacings seen in experiments
such as Fig. 4.1. Whether through such computations of classical tra-
jectories or equivalent integrations of the time-dependent Schrödinger
equation for an initial wave packet, the phenomenon of regularly spaced
oscillations may be viewed as constructive interference between the out-
going trajectories or wave fronts from the origin and incoming ones fol-
lowing reflection from

In this section, we use a JWKB (Jeffreys-Wentzel-Kramers-Brillouin)
analysis which has features similar to such classical calculations but is
simpler and more straightforward because specific classical trajectories,
whether stable or not, need not be computed and we need not deal with
the extreme sensitivity to initial conditions that integration of classical
equations of motion entail. The two-variable potential in (4.25) is plotted
in Fig. 4.2(c), the equipotentials being spherical at small whereas the
rising diamagnetic potential leads to a barrier as increases. For
the equipotentials are open along the (field direction), denoting
that at positive energies the electron can escape along (and only along)
this axis. The electron has motion simultaneously in and the former
“transverse” motion always bounded because of the diamagnetic barrier.

At large distances, say when the longitudinal distance is large, the
transverse motion is simply the Landau one of a free electron considered
in Section 4.1.1, the Coulomb term being negligible. This motion is
quantized with spacing At however, the potential takes
the “wine glass” form (Fig. 4.9) of (4.25) when

Applying the JWKB quantization condition to this motion,

with the turning point: gives the bound state eigenvalues
for this motion. Note that, as with any such Bohr-Sommerfeld quanti-
zation, there is no implication that there is an actual classical motion
or trajectory along the at this energy. As sketched in Fig. 4.2(b),
the eigenvalues in the of (4.49) evolve from a Rydberg-like spacing
at low energies to a final Landau set with equal spacing through
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an intermediate set that lies around E = 0 and is equally spaced with
This is also confirmed by formally differentiating (4.50) to get

the integral performed analytically for E = 0 to yield

This JWKB picture, while fully quantum-mechanical, has the virtue
of providing straightforwardly the three characteristic signatures of the
problem of an atom in a magnetic field; see Fig. 4.2(b). The one at
small E (and, correspondingly, small distances) of Coulomb Rydberg
levels, and the opposite at high E when the electron is essentially free
of Coulomb binding and has the Landau level structure of free electrons
in a magnetic field, were to be expected. But, perhaps surprisingly,
a third region near zero energy, the strong mixing region wherein both
fields contribute roughly equally (and opposite in sign), also has a simple
structure, namely, equal spacing with Again, this seems a generic
result for many instance of superposed fields, equally spaced structures
having also been seen for an atom in an electric field near the zero-field
ionization limit.
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The JWKB picture is, however, not complete, nothing having been
said about the electron’s longitudinal motion in Clearly, for E > 0,
this motion leads to electron escape so that the states discussed are not
strictly bound but resonances, the width reflecting this escape probabil-
ity. The two motions are, of course, coupled internally by the Hamil-
tonian itself through the Coulomb term. Thus, in the picture where an
electron is somehow initially excited into a rotor state with motion dom-
inantly along the it will sometimes scatter through the Coulomb
potential when near the origin where this potential is strongest, and es-
cape to infinity along the The narrowness of the resonances points
to the motion along the being quasi-stable and is again clearly
because the coupling between and motions through the Coulomb
potential is restricted to a small range of the electron’s motion, making
it effectively weak. This kind of bounded motion in one coordinate, free
motion in another, leading to quasi-band resonances, is a real space coun-
terpart of the more familiar process of autoionization described similarly
in terms of state space; see Section 5.3.3.

Local expansion of the potential in (4.25) around the that is,
gives

The first two terms give the effects already described, the last is seen to
be harmonic in but with negative sign. This reflects the barrier or
a “ridge” along the motion along it unstable since the potential
falls away from it. Nevertheless, that rotor states exist with localization
along this region of highest potential, and that quasi-bound states last
sufficiently long to appear as observable resonances, is again seen to be a
generic feature of such problems. A counterpart involving two electrons
will be considered in Section 5.3.4. The quasi-bound states arise from
motion mostly at large distances and, therefore, as discussed in Section
4.2.5 below, occur in all atoms, not just hydrogen. The value of is
also largely irrelevant because angular momentum contributions are of
short range compared to the Coulomb and diamagnetic terms. How
intense a resonance is in photoabsorption can, however, depend on
because of symmetry considerations. Thus, in the two photon absorption
experiment of Fig. 4.1, for the symmetry of the final state is

which has a node at and the or states
are absent. (Again, a counterpart two-electron result occurs in Section
5.3.2.) On the other hand, these states are dominantly present for both

and 2.
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2.5 Rydberg diamagnetism in other atoms

As already clear from the previous sub-sections of Section 4.2, the
equally-spaced resonances seen around the ionization limit and other
aspects of the diamagnetic interaction are phenomena, the
dependence in this interaction making for appreciable effects only at
large distances. As indeed seen in other atoms as in Fig. 4.2, these
phenomena are largely common to all atoms, the potential at large in
any neutral atom given by (4.25). In an atom other than hydrogen, the
Rydberg electron does of course see departures from the pure Coulomb
field during its excursion into the core region. Here the diamagnetic term
is entirely negligible and the departures from the Coulomb potential
due to other electrons may be treated as in the field-free atom. Indeed,
detailed calculations along these lines are now available, the
region treated through quantum defects or one of the other calculational
methods for complex atoms discussed in Chapter 1 and then matched to
hydrogenic treatment of the region as described in previous sub-
sections above. Since the region according to these discussions
is the seat of coupling, widths and intensities of the resonances vary
from atom to atom while energy aspects such as resonance positions are
largely independent and as in hydrogen. Fig. 4.10 is an example of the
detailed calculations now possible and their precision in comparison with
experiment [37].

3. Strong Field Effects on Low-lying States

3.1 Introduction

As per the previous section, laboratory strength magnetic fields signif-
icantly influence only the states and, even there, have comparable
influence to the atom’s internal Coulomb field rather than dominate over
it. We now turn to a study when the magnetic field is indeed dominant,
distorting even the states down to the ground state. Such a situa-
tion occurs only for and, therefore, in astrophysical phenomena,
although some of these effects may be simulated in condensed matter
analogs of atoms even with laboratory fields. The dielectric constant
and effective mass in these analogs can effectively weaken the Coulomb
binding, enhancing the effect of the magnetic field. Historically, some of
these effects were indeed observed first in excitons but we will discuss
the hydrogen atom and other neutral atoms in this section. A simple
scaling where is the dielectric constant, and use of the ef-
fective mass for will carry over the results to the condensed matter
systems (Section 1.2 of [33]).
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3.2 Hydrogen in an ultrastrong magnetic field
We will begin with a field which will be

termed “ultrastrong” in that the magnetic field is the dominant partner.
The discovery of pulsars in the late 1960s and the postulated mechanism
for their energy source, of a rapidly rotating neutron star with a magnetic
field of about prompted of course the investigation of atomic
structure in such magnetic fields [24],[38]. Atoms and ions are clearly
present in the plasma surrounding such objects and atomic structure also
underlies the material in the crust that such neutron stars are supposed
to have (in that respect, resembling more a planet than a gaseous star).
Therefore, it is natural to ask what atoms look like in such strong fields.
Although atomic transitions have not been observed from neutron stars,
perhaps because the limited amount of material involved around such
small objects means intensities too feeble for observation at this time,
we have noted in Section 4.1.1 that cyclotron emission from the Landau
levels of the underlying magnetic field, that is, from free electrons, has
given direct evidence of such field strengths.

With one field dominant, we can revert, unlike in Section 4.2, to more
standard approximation methods. However, we cannot quite use per-
turbation theory as in Chapter 3 because no matter how strong the
magnetic field, as we have seen in Section 4.1.1, it has no influence
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on the electron’s The Coulomb interaction is alone active in
this direction so that we cannot regard it as perturbative compared to
the magnetic field. Therefore, the approximation method we employ is
not perturbation theory but an adiabatic separation of transverse and
longitudinal motions, the magnetic field controlling the former and the
Coulomb the latter. For the transverse motion, considered more ener-
getic, the Coulomb field can be neglected to a first approximation. Such
adiabatic methods have long been used in quantum physics, particularly
for separating nuclear (slow) motion from electronic (fast) motion in
molecules as we will see in Chapter 6, and have also figured in electron
correlation studies as in Chapter 5.

The extreme adiabatic approximation is to write the wave function
for hydrogen in factorized form

where is the Landau function in (4.16) with The
energy of this lowest Landau state is zero once the spin is included, the
spin aligning antiparallel to the field in such a strong B, and thereby
its magnetic-moment coupling to B canceling exactly the of the
Landau state. Since the next Landau state or spin excitation lies
above, and this energy dwarfs any longitudinal Coulomb energies (for
a pulsar field of the assumption in (4.53)
that we can restrict to the ground state of the transverse motion is an
adequate approximation. Effectively, the transverse degrees of freedom
of the electron are frozen out and we have a pseudo one-dimensional
Coulomb problem for hydrogen in such an ultrastrong field. The picture
then, starting with the magnetic field, is that the electron orbits a field
line with cyclotron radius With a proton placed at some point on the
field line, as the electron moves out in it is held back by the Coulomb
attraction. The atom is, therefore, a cylindrical object as will be borne
out by our analysis, and quite different from the spherically symmetric
shape of the field free hydrogen atom in its ground state.

This one-dimensional longitudinal motion, with wave function
is in a potential obtained from by integrating over and with
the wave function,
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One-dimensional motion in this potential results upon substituting (4.53)
into (4.24), using (4.14) for the terms in multiplying by and
integrating over In this manner, even though (4.24) is non-separable,
the form of the solution in (4.53) induces an adiabatic separability of
and as an approximation.

The potential in (4.54) is an even parity, attractive one-dimensional
well. We can readily obtain the eigenvalue spectrum numerically in this

but it is instructive to simplify it through standard inequalities to
render it as

where is a positive constant.
The spectrum of is, therefore, closely approximated by that of

the “cut-off one-dimensional Coulomb” potential, whose singu-
larity at is cut-off by a small additive constant involving This
cut-off is at a value small compared to the Bohr radius
for With as the approximation becomes
exact in the limit of asymptotically large magnetic field, although ad-
mittedly this limit is academic, our non-relativistic treatment breaking
down before that. This is an appropriate point to discuss the validity of
a non-relativistic treatment of ultra-strong magnetic fields. As long as

remains smaller than which is true for the numbers mentioned
above (10 keV 0.5 MeV), relativistic corrections are small and can, if
needed, be estimated through perturbation theory as in Section 3.3. It is
fortunate that neutron star magnetic fields lie in such a regime, relativ-
ity becoming non-perturbative only when or
T.

The spectrum of the cut-off Coulomb potential, is well-
known. The non-degenerate ground state of even parity has a very large
binding energy,

This expression is readily understood. As in any Coulomb problem,
is the basic dimensional unit of energy. A one-dimensional

Coulomb potential has a logarithmic enhancement of this value,
being logarithmically singular upon integration over The potential
in (4.55) is not actually singular because of the cut-off which, therefore,
occurs in the argument of the logarithm, the ratio of Bohr radius to
cyclotron radius expressing the departure from one-dimensionality of
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hydrogen in an ultrastrong field. For the system is indeed
essentially one-dimensional, the transverse extent of small on the scale
of a0  But, for                  the three-dimensionality of the Coulomb potential
becomes relevant and there is no singularity, not being singular
upon integration over the three-dimensional volume element

For fields typical of pulsars, the term in (4.56) is,
approximately, ten. The ground state of hydrogen in such an ultrastrong
field has therefore an energy of–150 eV. The wave function is node-
less, peaked at and of extent, approximately,

The electron orbit can be pictured as roughly cylindrical with
transverse cyclotron radius of and oscillating back and forth
in over an extent of It might seem paradoxical that with the
magnetic field dominant in the ultrastrong regime, the Coulomb bind-
ing energy should actually be larger than the field-free 13.6 eV, or the
atom as a whole much smaller than in size. The explanation lies
in the magnetic field’s role in converting a three-dimensional Coulomb
problem into a pseudo one-dimensional one. The field squeezes the elec-
tron’s transverse motion to distances of the order of thereby making
the electron experience more of the proton’s Coulomb attraction than
it would otherwise when it has an extent of about Thereby, the
electron gets bound more strongly than in zero field, its also
becoming smaller than although not as small as its extent. Note
an interesting analogy to the similar role played by the outer electron
in in forcing the inner electron to be more strongly bound to the
proton than it would be on its own in the H atom (Section 2.4.1).

Excited states of the potential in (4.55) come in pairs, of even and
odd parity. They have vanishing wave function density at so
that the cut-off is essentially irrelevant, the potential being well approx-
imated by for them. The eigenvalues are just the Bohr energies

The full energy spectrum of hydrogen in
an ultra-strong magnetic field consists, therefore, of a non-degenerate
deeply bound ground state with energy (4.56) and wave function
concentrated around and degenerate pairs of odd and even parity
states with Bohr energies and successively more nodes in For
realistic values these are not exactly degenerate but slightly
separated in energy.

This entire pattern for and is repeated for other values
of still with because all are degenerate in the
Landau spectrum. Upon choosing
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the counterpart one-dimensional potentials to (4.54),

are well approximated by

with

since is sharply peaked at Such a potential (4.58) has the
same spectrum as discussed in the previous paragraph, with replaced
by Fig. 4.11 provides a sketch. Similar Coulomb energy levels are
built on other excited Landau levels of non-zero and positive these
themselves apart. All these levels are not strictly bound, since they
overlap with continuum states on the lowest Landau level so that they
can decay into such states. This is the phenomenon of autoionization
(Sections 5.2.2 and 5.3.3).

Quantitative sophistication can be added to the above basic picture of
the ultrastrong-field spectrum by using a more general form for in a
Rayleigh-Ritz variational calculation. Typical choices involve Gaussian
or exponential fall-off in the latter (termed LE) becoming exact for
asymptotically large B as already noted. Yet another interesting trial
function is a mixed product of spherical and cylindrical dependences,

with N a normalization constant and a variational parameter. This
set of functions has the interesting structure that with increasing B, as

becomes more sharply peaked at the function becomes of
LE form with results as discussed. In the opposite limit, as and

reduces to so that (4.60) coincides with
the exact zero-field hydrogenic states with Therefore,
the form (4.60) gives the exact spectrum in both limits and interpolates
smoothly and continuously between them. Remarkably, the Rayleigh-
Ritz calculation with (4.60) can be carried out in closed analytical form
to give
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where U is an irregular confluent hypergeometric function, expressible
in terms of exponential integrals.

The ground and low-lying states of hydrogen have also been calculated
by even more elaborate numerical calculations. In one, a generalized
form of (4.60),

is substituted into the Schrödinger equation (4.24), multiplied from the
left by and integrated over and In the cou-
pled linear differential equations that follow for diagonal matrix
elements occur as adiabatic potential wells which
converge to Landau levels. Eigenvalues and wave functions in these
wells reproduce the results of an adiabatic approximation, but retain-
ing off-diagonal matrix elements that couple the various gives more
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acurale results while being more complicated. On the other hand, for
or an expansion in spherical functions,

is more suitable. Now, substitution in (4.24), multiplication by and
integrating over and gives coupled equations for The matrix
elements involved of the diamagnetic interaction are as in (4.31). Results
of elaborate numerical calculations of such coupled equations are given
in [33], an example being given in Fig. 4.12.

Yet another method has been to apply perturbation theory as in Sec-
tion 3.2.2 to very high order with the diamagnetic interaction. The
ground state energy is thus expanded in powers of
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the coefficients having been computed up to with over 20-
digit accuracy [39]. The perturbation series is divergent, not surprisingly
given the logarithmic dependence we have already seen in (4.56) for
B very large. There are, however, resummation techniques for such
divergent series which then lead to accurate values of for all values
of B. The leading term at asymptotically large B coincides with (4.56).

With energy levels and wave functions for low-lying states in
hand, radiative transitions between them can be computed as in Section
2.2.1. The dipole matrix elements

with          representing linear and circular polarization, and
lead to oscillator strengths

and transition probabilities

in the spectrum of hydrogen in ultrastrong magnetic fields. Extensive
tables have been presented. Fig. 4.13 gives an example for transitions
involving the lowest levels with switch in oscillator strengths
from low to high fields occurs in a rather narrow range of magnetic field
strength, At very high values of B, the dominant tran-

Such a dominance of transitions, that is, of linear polar-
ization, is a consequence of the elongated probability distributions along

Radiative transitions in an ultrastrong field are very anisotropic and
polarized. Rydberg series of sharp resonances are seen below the
and 2 thresholds for photoionization of the ground state of hydrogen.

3.3 Complex atoms in ultrastrong fields
Just as the Bohr energy levels serve as the basis for atomic structure

of heavier atoms in The Periodic Table at zero magnetic field, the hydro-
genie states discussed in the previous section serve for an understanding
of complex atoms in an ultrastrong magnetic field. First, for hydrogenic
ions of nuclear charge Z, the energy obeys the scaling relation

sitions with almost unit oscillator strength are diagonal in      and



Atoms in Strong Magnetic Fields 123

as follows from inspection of the Hamiltonian in (4.24). The scaling
of Bohr energy values is a special case of this more general relationship.

The deeply bound ground state energy for a hydrogenic ion follows
from (4.56) and (4.68) as
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The effective critical field for ultrastrong effects also scales as so that
marks the field strength at which the magnetic field dominates the

ion’s Coulomb potential.
Considering next a two-electron atom such as He, each electron is

confined to the lowest Landau state with and –1. The
resulting Coulomb binding, which is the sum of (4.69) with and

may be expected to lie lower than the alternative of placing
both electrons into at the expense of putting one in the first
excited state of to satisfy the Pauli principle. The ground
state of He is expected, therefore, to have M = –1 (and also
both electron spins aligned antiparallel to the magnetic field).

A detailed calculation bears out the expectation of the previous para-
graph. The lowest singlet state with M = 0 and even parity, and the
lowest triplet and singlet states with M = – 1 and odd parity, are de-
scribed by wave functions constructed to satisfy the Pauli
principle

With Gaussian forms for the longitudinal wave functions in
(4.70), and treating the as varia-
tional parameters, a Rayleigh-Ritz variational calculation gives the en-
ergies for low-lying states of together with the energies of H plus
electron at infinity (but with the same spin orientation). The binding
energy is the difference between the two corresponding curves. As antic-
ipated, has a triplet ground state in an ultrastrong field unlike the
singlet at B = 0.

Alternatively, by substituting (4.70) into the Schrödinger equation
and solving Hartree-Fock equations for numerical calculations give
the results in Fig. 4.14. Even more elaborate calculations with more
general basis functions and states up to have been carried out
for the He spectrum in fields of T that are relevant to white
dwarfs [33], [40].
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Variational calculations have been extended to even larger Z-electron
atoms [41]. To gain the maximum binding energy, all Z electrons are
placed in the deep levels (4.69), the Pauli principle satisfied by distin-
guishing each in the quantum number: 0, – 1,–2 , . . .(Z – 1). In order
for the Z-th electron to experience also an ultrastrong field, in
(4.59) must also be small compared to so that

Pulsar fields, while larger than fail to satisfy the above for atoms
such as iron with Z > 20. We will return to this in Section 4.3.4 but
for smaller Z values, Hartree calculations with using



126 ASTRONOMY-INSPIRED ATOMIC AND MOLECULAR PHYSICS

functions in (4.57) and the choice of exponential functions for have
been carried out.

The binding energy of the last electron, always of interest and partic-
ularly so for the ionic composition of the magnetosphere and radiation
absorption/emission in the vicinity of neutron stars, turns out to the
roughly constant in Z, after an initial drop at low Z: 185 eV for He
and 161 eV for Li and thereafter constant at 160 eV for
T. An estimate that includes the effects of antisymmetrization gives the
ionization potential as These values are larger
than for laboratory atoms and also show no non-monotonic dependences
so that shell structure and The Periodic Table are absent for atoms in
ultrastrong magnetic fields.

3.4 Complex atoms in very strong,
but not ultrastrong, fields

As noted above in (4.71), the condition that all electrons occupy the
nodeless, deeply bound state with logarithmically enhanced binding en-
ergy (4.69), is not met for most atoms even in a pulsar’s magnetic field.
In such a situation, the choice of satisfying the Pauli principle with

and for all electrons, with only different, ( 0 , – 1 , – 2 , . . . ,
is ruled out and some electrons have to be accommodated into
while sharing the same lower values of Note that higher values of

and positive are still excluded in determining the ground states
of atoms because of the attendant large cost in magnetic energy, such
higher quantum numbers lying multiples of above the lowest Landau
energy. By the same taken, all electron spins are still aligned antiparallel
to the magnetic field, the parallel requiring an additional energy
of

Under these conditions, which may be dubbled “very strong” but not
“ultrastrong”, atomic structure is again different from either the labo-
ratory situation or the one discussed in Section 4.3.3. The occurrence of
higher values means the presence of nodes in the longitudinal
and thereby a meaningful momentum This suggests as an immedi-
ate, even if simplified, model for complex atoms in very strong magnetic
fields a statistical or Thomas-Fermi model (Section 1.4.3) adapted for
this situation. For free electrons in a magnetic field, the energy in (4.8)
is independent of In a volume whose transverse dimensions are
and the number of possible values of in an interval
is All such values have to be retained for which the orbit cen-
ter in (4.7) lies within that is Hence, the number
of states in such a volume of size and is
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Given a number density we have then an occupancy of values
up to some maximum Fermi momentum according to the relation

With all transverse motion confined to the lowest Landau level and
thereby contributing zero energy (recall again that the lon-
gitudinal kinetic energy density is similarly

where

is a characteristic length made up out of the Bohr radius and the cy-
clotron radius. This kinetic energy density is drastically different from
that in (1.35) for the Thomas-Fermi model for atoms in zero magnetic
field. The exponent 3, in particular, in (4.74), which is the adiabatic in-
dex, is characteristic of the pseudo one-dimensional electron gas as per
the remark following (1.36).

The total energy of the atom, the counterpart of (1.36) which is valid
for B = 0, now takes the form

Minimization with respect to gives

where
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and a Lagrange multiplier arising from the condition
the number of electrons. For neutral atoms, N = Z, again

Any anisotropic parts of in (4.76) only serve to increase the en-
ergy, so that the ground state must have a spherically symmetric electron
number density. This may, at first sight, be surprising given the presence
of the strong magnetic field but can be understood on the basis of the
picture in Fig. 4.15. Even though individual electrons are in cylindri-
cal volumes of transverse dimension as discussed earlier, they arrange
themselves as shown into a sphere of radius R so as to minimize the
electron-electron repulsion while maximizing the attraction due to the
nucleus.

Recognizing (4.78) as the Coulomb potential due to the nucleus and
electronic charge distribution, Poisson’s equation gives
the Thomas-Fermi differential equation

where is a scaled distance
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and Numerical solution of the above differ-
ential equation or, alternatively, variational estimates from (4.76) give
for the ground state energy of an N-electron atom with nuclear charge
Z under such very strong field conditions,

and for its radius

where B is in units of       and The atoms are
smaller and more tightly bound than their laboratory counterparts and
the scaling of E and R with Z also different from the results in Section
1.4.3.

The above results may be expected to be valid when (4.81) lies lower
than the corresponding (1.36). Combining also with (4.71), we have

as the value of B for which such a Thomas-Fermi model applies. As
before, a simplified treatment of exchange can also be made to extend
to a Thomas-Fermi-Dirac model for very strong magnetic fields, the
exchange energy taking the form

It is useful to have an effective charge at this stage which can serve as a
variational parameter for the energy expression which will be developed.
Once the electrons have filled the values a new
shell with the next Coulomb energy, has to be opened.

Proceeding beyond the statistical Thomas-Fermi model to incorporate
shell structure, much as in Section 1.4.3, the key result is the one given in
(4.59) for the radius of each of the Landau levels with
The electrons in an atom may be considered to fill these values of
up to a maximum such that its equals that is,

T
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For simplicity, considering the total number N of electrons to be so large
that shells are completely filled, we have

Expressions for the energy also parallel those for laboratory atoms
(Section 1.4.3). The virial theorem for this pseudo one-dimensional prob-
lem of strong magnetic fields is so that we have for such
an atom,

The electron-nuclear potential energy is

and the electron-electron (direct) energy

where is the larger of Ignoring the exchange contribution
for simplicity and as having a lower Z-dependence (although it could
be incorporated through (4.84)), the total energy is the sum of (4.87)
– (4.89). Upon minimization with respect to the results in (4.81)
are again recovered. In addition, however, (4.85) and (4.86) provide a
shell structure, with the former providing a characteristic filling factor,
the counterpart of for field-free laboratory atoms. The more rapid
increase in accounts for the smaller size of atoms in very strong fields.
Thus, for when all electrons can be accom-
modated into even for The shell structure, The
Periodic Table, and chemistry are very different, therefore, for atoms in
very strong fields from that in the laboratory.

The discussion in this and the previous subsection of complex atoms in
very strong or ultrastrong magnetic fields represents two limiting cases.
For any set of values of Z, N, and some of the electrons (the
inner ones) will be in the very strong field regime while others (the outer
ones) are in the ultrastrong domain. Both cases are, therefore, involved.
Yet another complication is that once a few electrons are in elongated,
cylindrical orbits, their resulting large quadrupole moments become im-
portant, leading to strong attraction between neighbouring atoms. This
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can result in long-chain molecules becoming the dominant entity, rather
than individual atoms. Detailed quantitative calculations become dif-
ficult and, notwithstanding much effort, the situation remains unclear
[41]. There is some interest in the question because of the nature of the
outer crust of neutron stars and whether the presence of such material
will permit the stripping of ions and atoms into the magnetosphere by
the strong electric fields present on such objects. There are, however,
many detailed numerical calculations of small molecules such as and
H2 in strong magnetic fields [42].

4. Strong Magnetic Fields in Astronomy
Magnetic white dwarfs have surface fields of For ex-

ample, the spectrum of the hot white dwarf Feige 7 (L795-7) shows
well-resolved narrow Zeeman lines corresponding to a magnetic field of
1,800 T. The narrowness of these lines indicates a fairly uniform field
strength over the entire surface. In GD90, which has a hydrogen atmo-
sphere, the line appears as a classic triplet at 479.3, 485.7, and 491.8
nm corresponding to a 500 T field. The is seen as a broad absorp-
tion centered at 433 nm, the triplet obscured by the quadratic Zeeman
effect’s many components. Another star, BPM 25114, is seen in the
southern skies and its spectrum fitted to model atmosphere calculations
and a magnetic field of

The origin of such fields on white dwarfs may lie in flux conservation
in the core during the collapse of a star, the high conductivity of a
carbon-burning core preserving the value of These simple scalings
when a star collapses suggest fields up to for white dwarfs and
T for collapse to the smaller radius of a neutron star. An alternative is
that they have originated from Ap stars known to have fields of 0.03–3
T, with similar flux conservation during their collapse. Magnetic stars
are modeled as oblique rotators, with the dipolar magnetic field inclined
to the rotation axis.

Rotating magnetic white dwarfs which are accreting matter from a
companion have proved particularly interesting. Her has a 71 s
rotation period and is the remnant of a 1934 nova. It is part of an
eclipsing binary system with orbital period 4.6 hours. Matter being
accreted onto the white dwarf is speeding up the rotation and a field of
100 T has been deduced, strong enough to channel the accretion flow
onto the poles. Direct spectral evidence has not been seen from this
object, possibly swamped by emission from the surrounding accretion
disk, but in AM Her, polarized cyclotron and x-ray emission from such
accreted material has been seen. The very strong polarization, both
circular and linear, argues for a field strength above the channeling
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of the accretion flow by such a field accounting for the x-ray emission
at 5 nm. Grw + 70 ° 247 is the brightest and one of the most strongly
polarized of the magnetic white dwarfs, peaks in the circular polarization
at 1.3 and 0.45 attributed to first and third cyclotron harmonics of
a field in excess of The strongest field known is about on
PG1031 + 234, deduced from its spectrum and polarization.

Fields of which are far from being perturbative pose the prob-
lems discussed earlier in Section 4.2.3 but elaborate numerical calcula-
tions now provide reliable energies for low-lying states. Interestingly,
the transition wavelength as a function of
field strength reaches a stationary value around the zero field
value of 121.6 nm reaching a maximum of 134.3 nm before decreasing
again. This stationarity, so that the wavelength is relatively insensitive
to variations in B about that value, made possible the identification of
a line at 134.7 nm observed by the International Ultraviolet Explorer
(IUE) satellite from Grw + 70 ° 247. This was a happy coincidence be-
cause variations in B across the surface tend otherwise to smear out the
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transition. Other stationary transitions have since been used to identify
the magnetic fields of various white dwarfs, an example shown in Fig.
4.16 [43].

Neutron stars have even stronger magnetic fields, of the order of
T in radio pulsars and somewhat smaller in binary pulsars
[24], [38]. X-ray binaries also contain neutron stars and are divided into
low and high mass types, depending on the mass of the non-degenerate
companion star. Most high mass binaries have magnetic fields larger
than and accrete from an O or B type star. Their ages are less than

years whereas low mass binaries are much older, years. Their
fields range up to Gamma ray burst sources show lines in the 20
to 70 keV range, again indicators of cyclotron emission between Landau
levels in fields of These objects are presumed to be neutron stars
with rotation periods larger than a few seconds.

Problems

4.1 Solve the problem of an electron in a constant magnetic field B =
(0, 0, B) in the gauge

Identify the gauge transformation connecting these solutions to the
two considered in the text.

4.2

4.3

4.4

What gauge transformation links the solutions (4.4) and (4.13)?

What is the cyclotron radius and Landau level spacing for electrons
in a magnetic field of

Estimate the motional Stark field in (4.23) on a neutron star with
magnetic field  if the hydrogen atoms have translational
velocities of

4.5 Sketch equipotential contours of the combined Coulomb and diamag-
netic fields in (4.25).

Determine the classical turning points for B = 6 T, and and
90° for electrons of energy 0.01 eV.

4.6 In analogy with (4.28–30), determine the energy level spacing around
zero energy for combined Coulomb and electric (linear Stark) fields.

4.7 a) Convert the difference equation (4.32) to the differential equation
(4.33) according to the procedure sketched in the text.

Show that the local gauge transformation (4.37) leads to the differ-
ential equation (4.38).
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4.8

4.9

4.10

4.11

Expand the Gaussian distribution, in terms of Leg-
endre polynomials as and determine the coefficients

of the expansion.

From (4.42–44), verify that (4.45) and (4.46) reproduce the desired
matrix elements.

Recast the Schrödinger equation in (4.24) in terms of the
semi-parabolic coordinates and

Show that (4.51) gives the spacing around zero energy.

4.12 Set up the JWKB formulae analogous to (4.50) and (4.51) for the
Coulomb + linear Stark potential and determine near zero
energy. Use the parabolic coordinates and motion in the former
being bounded.

4.13

4.15

For applications in solids with dielectric constant and an effective
mass for the electrons, obtain an expression for

4.14 Combining (4.84) with (4.76), derive the Thomas-Fermi-Dirac equa-
tion for atoms in strong magnetic fields.

With the energy given by (4.87–89), and approximating sums by
integrals, minimize to find and the ground state energy of atoms.



1. Introduction

Chapter 5

ELECTRON  CORRELATIONS

In this chapter, we will study significant effects and phenomena arising
from the interactions among electrons in a many-electron atom. Previ-
ous chapters have considered the electron-electron interaction only in its
average influence through the mutual screening and the subsequent av-
erage self-consistent field experienced by any one of the electrons. Such
a description is generally adequate for most phenomena involving only
one active electron at a time although we saw in Chapter 2 that for neg-
ative ions, a more careful investigation is necessary even in describing
their ground state binding energy. However, the correlations between
electrons play a more important role once we deal with dynamics that
involve more than one electron at a time. Thus, when two electrons
are excited simultaneously from the ground state into “doubly-excited
states”, these correlations are central to the basic structure and decay
(through a process called “autoionization”) of these states. These same
states also play a dominant role in the capture of electrons by atoms
and positive ions through a process called “dielectronic recombination”
which is important in both laboratory and astrophysical plasmas. Af-
ter a discussion in Section 5.2 of the structure and properties of doubly
excited states, Section 5.3 deals with some of the pictures that have
been developed to understand them. The process of dielectronic recom-
bination and its applications in astrophysics, together with the effects of
external electric and magnetic fields, will be the subject of Section 5.4.

135
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2. Electron Correlations

2.1 Qualitative picture

The potential in an N-electron atom consists of the pairwise Coulomb
interactions between all the (N + 1) particles, the N electrons and the
nucleus. Self-consistent field methods, such as the Thomas-Fermi or
Hartree and Hartree-Fock models discussed in Sections 1.4.3 and 1.4.4,
average the electron-electron interaction terms so that each electron can
then be regarded as experiencing a potential due to the nucleus and its
(N–1) other electron partners. All residual effects due to the electron-
electron repulsion terms are then termed the effects of correlation. The
configuration interaction calculations discussed in Sections 1.3.3 and
1.4.4, where several alternative independent-electron configurations are
superposed in describing the atomic state, embrace these correlations
through the matrix elements of the potential between these configura-
tions. Generally, these effects are small, amounting only to a small
“correlation energy” as compared to the dominant energy contribution
of the principal configuration. Similarly, effects on the wave function
also tend to be small so long as one is considering matrix elements of
one-electron operators such as those governing photoabsorption. Some-
times, however, particularly with increasing excitation or even in the
low-lying states of atoms with several open shells, many configurations
are significantly mixed, reflecting stronger electron correlation effects.
This is especially so when one turns to multiple excitation when several
electrons are simultaneously excited from the ground state.

The N -electron system has many (3N ) degrees of freedom but, in the
ground state, most of these degrees of freedom may be considered as
locked together and effectively frozen. Exciting one electron unfreezes
some degrees of freedom but so long as there is only one excited elec-
tron, the number of these active degrees of freedom remains limited, no
matter how high the excitation, whether to the bound or continuous
part of the spectrum. On the other hand, the simultaneous excitation of
two electrons unfreezes more, and qualitatively new, degrees of freedom.
This is what lends interest to the study of such doubly-excited states,
illuminating atomic dynamics not otherwise accessible under single exci-
tation. Of course, exciting more than two electrons brings into play even
more degrees of freedom so that the study of triply- or higher multiply-
excited states is also of interest. Detailed studies of triply-excited states
are only now becoming feasible but in the last three decades, doubly-
excited states have been extensively studied and have provided many
insights into electron correlation effects. The enormous complexity of
the problem and the richness of the phenomena resulting from the ad-
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dition of one electron to the exactly-solved hydrogen atom parallels the
similar complexity and richness studied in Chapter 4 resulting from the
addition of a constant magnetic field.

2.2 The spectrum of He and
Essential aspects of doubly-excited states are conveniently studied in

the simplest two-electron systems, namely the helium atom and the neg-
ative ion of hydrogen. Consider, for simplicity, the states with total
spin, total orbital angular momentum and total angular momentum zero,
and even parity, although an exactly similar description applies to any
other state. Fig. 5.1 is a schematic of the spectrum of He
and the individual levels being labeled with independent electron
configuration labels (N, For the L = 0 states under current
discussion, and are equal, Whereas ( S , L , J , ) of the
combined two electrons are good quantum numbers, their correspond-
ing operators commuting with the two-electron Hamiltonian H(1,2),
this is not true of because their corresponding operators do
not commute with the electron-electron interaction contained in
H(1,2). The independent electron labels are, therefore, only partially
meaningful, any physical eigenstate involving superpositions of different

configurations. This is a reflection of electron correlations.
This is especially so for the states shown in Fig. 5.1 around the excited
state thresholds of and H(N ) with Thus, even the lowest
of these, labeled being very close in energy to (the two would be
exactly degenerate in a hydrogenic picture with the electron-electron in-
teraction switched off) , can be expected to be strongly admixed with it.
This situation gets even more extreme with increasing N when more and
more states of different lie close together and get strongly
admixed. For all these doubly-excited states, so termed because both
N and are larger than unity, configuration interaction and electron
correlation effects are important right from the start.

Another perspective on the spectrum in Fig. 5.1 is provided by view-
ing the lowest singly-excited states of He shown in Fig. 5.1, as
a single family of states built on This includes also the
continuum states above that threshold at 24.6 eV (all energies mea-
sured from the ground state of He) . As shown in Fig. 5.1, He and
differ substantially in this part of the spectrum, the latter having no
singly-excited states at all. Turning next to N = 2, a similar family of
states can be envisaged as built on or H with N = 2. For
this family, one electron stays always as while its partner ranges from

through to The N = 2 level of the one-electron atoms
and H is doubly degenerate, so that there exists also a second family of

).
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states of the same symmetry. At the same time, for any energy
domain in this region, there is also a singly-excited continuum
state that is degenerate with and Physical eigenstates of the
complete H(1,2) are therefore superpositions of the doubly-excited con-
figurations and the underlying singly-excited continuum, the two mixed
by the electron-electron interaction. Therefore, they are neither purely
bound nor pure continuum states, as are the states of the hydrogen atom
or the singly-excited states of He below 24.6 eV. Instead, they are quasi-
bound “resonance” states. Were He or to be placed in or
in time the atom would fall apart, one electron dropping down to and
the other picking up (via the interaction) the energy released to
be ionized as an electron. Since this happens through a piece of the
internal Hamiltonian itself, the phenomenon is called “autoionization”.
It is very similar to the phenomenon called the Auger effect wherein a
vacancy in an inner shell of an atom is filled by one of the outer elec-

ASTRONOMY-INSPIRED ATOMIC AND MOLECULAR PHYSICS
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trons, the energy liberated again begin taken up in the ejection of one
of the other outer electrons.

Singly-excited states also decay to lower-lying states through radiation
emission and thus have finite (radiative) lifetimes. However, at least in
principle, upon ignoring the coupling to the radiation field, they can be
regarded as bound, just as is the ground state. But doubly-excited states
are different in that even with the coupling to the electromagnetic field
switched off, they are not strictly bound by virtue of terms contained in
H ( 1 , 2) itself. This is true for all the doubly-excited states of He and
shown in Fig. 5.1, including the sets built on higher states of and
H ( N ) with N > 2. In every case, there is always at least one underlying
continuum in which they are embedded. However, in some heavy atoms,
the energy of the doubly-excited state may lie below the first ionization
threshold and such states do not autoionize. That is, in such atoms it
takes less energy to excite simultaneously two electrons than to ionize
the atom. Notable examples occur in the alkaline earths, beginning with
calcium where states lie below the             continuum at 6.1 eV.

Fig. 5.1 also makes clear the close similarity between He and as
regards the doubly-excited part of the spectrum. The two systems dif-
fer drastically with respect to singly-excited states, having none at
all while He has multiply infinite series of Rydberg states for an elec-
tron in the Coulomb field of But, as regards doubly-excited
states, both involve two electrons in the field of a positive charge, the
two ions and differing only in the value of that charge (and, in
the slightly different effective masses). Multiple series of doubly-excited
states occur, therefore, in both systems. The states can be grouped
broadly into two classes, depending on whether the two electrons are
on par in their excitation or are very different. For the former, which
are called “ridge” states, the term to be discussed in Section 5.3.4, He
and are completely analogous as isoelectronic partners, a pair of elec-
trons quasi-bound to a positive charge Z (equal to 2 and 1, respectively).
When the electrons are disparate in their excitation, one closer to the
nucleus than the other, the states are named “valley” states and here
the two systems are somewhat different. Such states can be pictured as
in Fig. 5.1, grouped into families associated with single-electron energy
levels of the inner electron. In He, these are the thresholds
and the second, “outer”, electron is then bound by the Coulomb poten-
tial into states In on the other hand, each level
attracts the outer electron not with a Coulomb but rather the dipole

potential discussed in Section 3.2.3. Such an attractive dipole po-
tential also supports an infinite sequence of states for the outer electron
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but with a characteristic spacing different from a Coulomb field, the
spacing between successive levels diminishing exponentially in

Just as with radiative decay (Section 2.2.3), selection rules govern the
process of autoionization decay of doubly-excited states. These follow
from the nature of the interaction governing this decay, namely, the
electron-electron interaction This operator is of even parity and
commutes with and so that the selection rules that follow
are that none of these quantum numbers changes in an autoionization.
In particular, that the parity and J of initial and final states are equal
is an absolute selection rule. The values of S and L may, however,
change, particularly in heavier atoms where spin-orbit and spin-spin
interactions may combine with to cause the decay. In He and

the and states shown in Fig. 5.1 can decay only to the
continuum. On the other hand, or states such as

or (usually admixed together), decay to the continuum
which has the same symmetries. These “allowed” autoionization decays
have lifetimes typically that is, the rates are much larger
than typical allowed radiative decays. In general, all states with

have allowed autoionization to the continua. On the
other hand, a doubly-excited state with parity such as is
forbidden by parity conservation to decay into In this case, decay
is possible into the continuum but requires the mediation of
spin-orbit or other interactions which are weak in He and (but not
in isoelectronic analogs of higher Z). The state is an example,
similar J and parity available only in the and continua, so that
a change in L is necessary. In such situations, autoionization can become
so unfavorable that radiative decay will dominate, as for instance in He,

In since there are no singly-excited bound
states available, the decay has to be into which means that
both a photon and an electron are simultaneously ejected. The rate of
this process is close to the value for the

transition in hydrogen. This suggests a mainly spectator
role for the second electron which is “shaken-off” into the continuum.
With the state in lying 0.01 eV below the state of H, it
may contribute significantly to the solar continuum as a broad peak on
the long wavelength side of the transition.

Doubly-excited states in other, heavier atoms afford similar examples.
A very interesting one is in In the ground state of He, unlike in
hydrogen, there is no binding for an extra electron so that does
not exist as a stable species with possible configuration However,
a doubly-excited state forms a long-lived species, lying 631

below (One could regard this equally as an inner-shell
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excitation of one electron to or as a double excitation, with
excited to and one to The choice between them is a matter
of terminology, these single electron descriptions not rigorously valid
anyway). The underlying continuum is perforce a doublet:
A spin-flip is involved in the autoionizatioii decay which makes it weak
already for and but the does not have even that option.
It has to decay to the continuum. The high orbital angular
momentum value of 3 for the ejected electron further disfavors such a
decay; recall that the wave function for is suppressed at small
by the centrifugal barrier. In all. the state of has an

autoionization lifetime of Thus beams of such states that
live long enough to traverse several meters in the laboratory can be, and
are, made and studied, even though is not a stable species.

2.3 Experimental observation

As with singly-excited states in atoms, doubly-excited states can be
formed under various impact: photon, electron, and heavy charged par-
ticles. The first laboratory experiments were of electron collisions with
He in the energy range close to the 20.4 eV for the first excitation thresh-
old of He Electrons of kinetic energy just below this threshold
formed temporary negative ion states of which, under au-
toionization, decayed back to the ground state of He. They, therefore,
appeared as resonances in the elastic cross-section of electrons from He.
Higher states decay into both the elastic and excited continuum channels
and may be observed thus, an example given in Fig. 5.2 [44], and even
triply-excited states have been observed [45] (Fig. 5.3). In photoabsorp-
tion from the ground state of He, selection rules restrict the excitation
to symmetry so that, in the first experiments of this kind, doubly-
excited states of this symmetry just below the threshold
at 65.4 eV (see Fig. 5.1) were seen. Photons of such energy first be-
came available in the 1960s with synchrotrons and Fig. 5.4 presents
the photoabsorption spectrum from the first such observation. Today,
as shown in Fig. 5.5, current generation synchrotrons provide an even
richer spectrum of such doubly-excited states in He and in other atoms
[46]. Triply-excited states have also been seen in synchrotron excitation
[47] (Fig. 5.6).

Instead of single-photon excitation with synchrotron light, multiple
photon absorption from visible lasers can also be used for double excita-
tion [48]. An example is provided in Fig. 5.7. Doubly-excited states of

seen in photodetachment of this negative ion by laser photons that
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were Doppler shifted into the 10–14 eV energy range, are shown in Fig.
5.8 [49].

Doubly-excited states are also formed in the collision of protons, or
heavier positively-charged particles, with atoms (Fig. 2.4). And, their
formation as intermediates in the process of electron-ion recombination
through the process called dielectronic recombination is important in
planetary and stellar atmospheres. This will be discussed in Section 5.4.

3. Hyperspherical Coordinates
There is a variety of methods for viewing electron correlations, that

in terms of configuration interaction between configurations built up of
single electron orbitals being one of them. As in Section 5.2 above or
earlier in Section 1.3.3, stronger correlations are manifest in the super-
position of a larger number of such configurations. As an example, a
tight angular correlation between two electrons in a state is only
realized by superposing a large number of values from zero to some
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large number. The uncertainty relation between the value and the con-
jugate angle, in this case the angle between the two electronic radii
vectors and requires such a large superposition in order that the
wave function be confined to a narrow range of As can be seen from
Fig. 5.1, high doubly-excited states, with large N and lying close to the
double ionization threshold where states with such large values of are
available and lie close together (even degenerate), can be expected to
display such tight correlations. Similar remarks apply to radial correla-
tions between the two electrons to be discussed further below, involving
mixing of large numbers of (N, ) configurations.

An alternative to the description in terms of independent electrons
is to develop a basis which has inherently a two-electron description
from the start, such as functions sharply confined in With the two-
electron Schrödinger equation non-separable in any coordinate system,
there is no single, natural or unique basis, or set of quantum labels. The
choice between different bases is dictated by ease of handling for compu-
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tation or accuracy, or for developing physical pictures of the structure
of these doubly-excited states. A complete set in any basis provides
the functions in terms of which the full two-electron wave function can
be expanded. Different bases are suitable over different energy ranges.
We will consider here one description that is particularly suited for de-
veloping qualitative pictures of electron correlations and doubly-excited
states, pictures analogous to those available in the hydrogen atom for
single electron states.

From the start, even in the coordinates used, we move away from
the independent electron and to coordinates that involve the pair.
Instead of viewing two electrons moving in three-dimensions, the six co-
ordinates are taken to be those of a configuration point in six-dimensions.
Such a set is called the hyperspherical coordinates [4],[50]. The angle

already defined,

is one of them and has a range (0, ). Two others, a radial coordinate
and a pseudo-angle are deined as
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is a radial distance of the six-dimensional hypersphere, and with
range relates to radial correlations just as does to angles.
Thus, restriction to small relative ratio of electronic distances from the
nucleus corresponds to restriction to or whereas a func-
tion restricted to both electrons essentially on par in their radial dis-
tances is constrained to Besides these three “pair” coordinates

three others called Euler angles provide the orientation in
space of the plane containing the nucleus and the two electrons. These
pair hyperspherical coordinates provide an alternative to the indepen-
dent electron set with the advantage that a description in terms
of them focuses on the full three-body system of He or down even
to the very coordinates used. In particular, is an index of the overall
size of the system, playing a role analogous to for the hydrogen atom,
while and are convenient tracers of radial and angular correlation,
respectively.

The potential in the system is a function of independent
of the Euler angles:
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where

represents an effective Coulomb charge in the six-dimensional hyperspace
with anisotropic dependence on the angles and Fig. 5.9 provides
a sketch for Z = 2. At every this two-dimensional potential surface
is the backdrop for the motion of the configuration point of the
system.

Writing also the kinetic energy operator, in hyper-
spherical coordinates, one has
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where

is called the “grand angular momentum” because of its obvious similar-
ity to and generalization of the angular momentum in the hydrogen
atom. The set of five angular coordinates includes and the
three Euler angles. Note that besides and which are the usual
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angular momentum operators of the two electrons (scaled by trigono-
metric factors in ), includes second derivatives with respect to the
pseudo-angle

The two-electron Schrödinger equation thereby takes the following
form in hyperspherical coordinates:

This is again non-separable because of the different dependences on
of the angular kinetic energy and the Coulomb potential.

3.1 Coulomb potential and hyperspherical
harmonics in six dimensions

The two-electron Schrödinger equation is not separable either in the
independent-electron coordinates or in the hyperspherical co-
ordinates Had the and dependent terms in (5.7) shared
the same dependence on or had the coefficient been in-
dependent of angles, then the problem would have separated in hy-
perspherical coordinates. Indeed, in the latter case, (5.7) would have
been a six-dimensional Coulomb problem of fixed nuclear charge C, a
higher-dimensional analog of the three-dimensional system of the hy-
drogen atom. Its eigenvalue spectrum would have bound states with
energies

and a continuum of positive energies. The “principal” quantum number
associated with the hyperradius is the analog of for the hydrogen

atom in (1.2), and the dimensional element (for the Coulomb potential
in any dimension D, this element is

Each state is highly degenerate, encompassing the various eigen-
states in of the grand angular momentum whose eigenvalues and
eigenfunctions are

with
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taking values and given by

In the above, is a radial correlation quantum number associated
with the coordinate the a hypergeometric function which, for the
case of integer of interest, becomes a Gegenbauer polynomial, and Y
is a coupled two-particle angular harmonic with

The Y’s here are standard spherical harmonics and the coupling intro-
duces the standard Clebsch-Gordan coefficients, the summation running
over all values compatible with The 4 in the eigenvalue
in (5.9) is again the six-dimensional value of the general dimensional el-
ement (D–2) for hyperspherical harmonics.

With the coordinate symmetric under interchange of the electronic
labels 1 and 2, the antisymmetrization required by the Pauli principle is
entirely in terms of the angular and spin variables. Since this interchange
takes to the required functions are

with S = 0,1 the total spin of the two electrons.
With in (5.7) replaced by the radial Coulomb equation

that remains is exactly analogous to that of the hydrogen atom in (1.8).
Its eigenvalues have already been noted in (5.8) and the eigenfunctions
are Laguerre polynomials in just as in (1.9). The full wave functions of
such a six-dimensional Coulomb potential are then products of these ra-
dial functions and the angular functions (5.13). They provide a complete
basis set for the two-electron problem (continuum functions have to be
included as well) which has an effective charge that is angular
dependent. Such a pair basis set of six-dimensional Coulomb functions
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is thereby an alternative to the basis set of products of independent-
electron functions used in more conventional configuration interaction
methods. Under differing circumstances, one or the other alternative
may be preferred, the test being whether convergence and accuracy is
achieved with fewer terms in the expansion.

3.2 Adiabatic hyperspherical method
We consider next yet another alternative approximation method for

solving the non-separable equation when written in the form (5.7). This
method has antecedents elsewhere in physics, an example to be consid-
ered later in Section 6.2.3 for molecular systems. The term adiabatic is
applied to them generically, this word having the meaning of “slow” and
applied whenever dependence on one physical parameter is slow com-
pared to the rest. In such a situation, the slow variable is considered
frozen while the motion of the faster variables is first solved. These so-
lutions then determine the motion in the slow coordinate. This provides
a natural, hierarchical way to proceed whenever an adiabatic variable is
identified.

In the present context, the variable has been identified as measur-
ing the overall size of the two-electron system, while the angles and

contained in are measures of correlation between the electrons
in energy and angle. Arguing, therefore, for the greater importance of
these correlations in doubly-excited states, one can consider an adiabatic
separation between and First freezing as a fixed parameter, the
angular part of the Schrödinger equation (5.7) is solved, that is, eigen-
values and eigenfunctions obtained of the operator

the eigenvalues and eigenfunctions at this stage depending para-
metrically on The index includes definitely the conserved quantum
numbers L and M but also any other labels that arise at this stage. Ex-
pansion in suitable basis functions or direct numerical solution in several
variables may be used for this solution, one natural choice being to use
the hyperspherical harmonics in (5.9). Eigenfunctions of (5.14) will in-
volve superpositions of several pairs, this being a reflection of
angular correlation. These eigenfunctions provide a basis for
expansion of the full two-electron wave function in (5.7),
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Inserting (5.15) into (5.7) and using (5.14) leads to coupled differential
equations for the radial functions,

where includes matrix elements of and between
and They stem from the dependence on of the

reflecting the non-separability of from
The set (5.16) of coupled equations is exact if the infinity of basis

states and is retained but, in practice of course, one has to trun-
cate the set, thereby introducing the approximation called the adiabatic
hyperspherical approximation. The extreme consists of dropping all the
coupling terms so that each hyperspherical channel stands decou-
pled as a single radial equation with a potential well Fig. 5.10
provides a sketch of such potentials for states in He and Fig. 5.11 for

states in below the N = 2 single ionization thresholds. The form
of these potentials can be understood from (5.14) by inspection. The
steep repulsive barrier, at small is followed by an
attractive well formed by the superposition of the attractive Coulomb

arid the repulsive potentials. At large all the terms in (5.14)
vanish so that goes asymptotically to zero, the double ionization
energy. For applications, however, to states lying below successive single
ionization thresholds, one attaches

at large to the appropriate behavior in these cases. This can
be achieved either by simply connecting to the asymptotic forms beyond
a certain value of or by supplementing the basis so as to include not
just hyperspherical harmonics but also some single-electron functions in
which one electron is confined to the state N. These asymptotic forms
consist of the hydrogenic ionization threshold value plus dominantly the
Coulomb potential between and the electron, that is or the
dipole potential between and the outer electron. As seen in
Section 3.2.3, this dipole potential has an attractive piece

Note that two potential wells converge to N = 2 in symmetry and
three in symmetry (Figs. 5.10 and 5.11). In independent electron
configurations (see Fig. 5.1), these are, respectively, and for

and and for The adiabatic potential wells
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represent alternative superpositions of these configurations. Thus, each
represents a particular mix of radial and angular correlation between

the two electrons. Correspondingly, in coordinate space, the correlations
restrict the electronic distributions in and to specific values. The
deeper wells, for instance, have the electrons further apart,
thereby lowering their mutual repulsion. This trend becomes sharper
with increasing N.

The labels + and – on two of the potential wells in Fig. 5.11
signify that these are constituted mainly of with a very little
admix of whereas the third and most repulsive well is dominantly
of character. The almost equal mix of and with plus
and minus combinations in amplitudes is plausible, these configurations
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being essentially identical and degenerate in the absence of the electron-
electron interaction and, therefore, strongly admixed by it. At large
the degenerate electric dipole of H ( N = 2) being attractive in one and
repulsive in two of the channels, the – well approaches threshold from
below (the value of for it is 3.71 ) whereas the other two wells do
so from above. The + and – also have significance for radial correlation
between the electrons, these states being, respectively, symmetric and
antisymmetric under the purely radial interchange,

Bound and continuum state eigenvalues and eigenfunctions calculated
by solving the radial Schrödinger equation in these wells describe two-
electron states associated with the N = 2 threshold. Thus, in
the – well with a sufficiently attractive dipole potential at large sup-
ports an infinite series of bound states below the H(N = 2) threshold,
two of them having been experimentally observed. Since a dipole poten-
tial’s eigenvalues are exponentially dependent on higher levels rapidly
lie so close to the threshold as to be experimentally unresolvable. Fur-
ther, the exact degeneracy between and leading to this
dipole being lifted by the Lamb shift, the number of states is limited
to a finite value in any case, the dipole model valid only so long as the
binding energy of is larger than this Lamb shift. As seen from Fig.
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5.11, the + well on the other hand, being repulsive at large can sup-
port only a finite number of states held inside the inner well and indeed
only one such is known, lying slightly above the threshold, the electron
temporarily held within the outer barrier of the potential but tunneling
out through it. The well in Fig. 5.11 supports no bound states at
all.

All the eigenvalues discussed here, whether for + or –, are also, of
course, not strictly bound since they can autoionize to the single-electron
continuum states They are “quasi-bound” states or “resonances”.
The same considerations apply to higher values of N, the number of
potential wells correspondingly larger. In every case, there is one well
which has an asymptotic attractive dipole potential, capable of binding
a sequence of autoionizing resonances below that threshold with a char-
acteristic exponential dependence on of their binding energies. Such
states have been observed experimentally and successfully accounted for
by adiabatic hyperspherical calculations for (see Fig. 5.8).

The case of He is different in that in a figure analogous to Fig. 5.11,
all three potential wells have asymptotically an attractive Coulomb tail
due to the + e interaction. The degenerate dipole potential in this
case is overshadowed by this Coulomb potential. All three wells support
infinite sequences of Rydberg states, labeled by Because
of their very different correlation patterns, excitation mechanisms may
be very different for the different Indeed, as shown in Fig. 5.4, only
one Rydberg series was seen in the first observations, that marked +.
This is because photoabsorption from the ground state is governed by
matrix elements of the dipole operator r (see (2.16)) from the He
state to these states. This ground state being confined to small
radial distances, only those states with significant overlap with them
acquire appreciable optical oscillator strength. States in the highest
channel have little such wave function amplitude at small because
of the large angular momentum barrier (see Fig. 5.11, He being little
different from in this range of ). The and being very
similar in their radial functions, the – combination reduces the small

wave function drastically, so that this state too is unfavored in its
excitation oscillator strength. Only the + states, which have significant
overlap with the ground state, are thereby seen. This observation of only
a single Rydberg series in the first experiments (Fig. 5.4) was, therefore,
a dramatic early indicator of the effects of electron correlation. There
is a close analogy to other phenomena in physics, such as in the decay
of the system of elementary particles, where mixing of nearly
degenerate states in + and – combinations has a dramatic realization in
their observed properties. The other two series in He(N = 2) were later
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seen in synchrotron experiments (Fig. 5.5), weaker by many orders of
magnitudes than the + in their oscillator strengths.

For reasons that parallel + states having stronger optical excitation
oscillator strength, they have stronger autoionization decays as well. The
underlying continuum for this decay is with one electron’s wave
function confined to small distances. Its overlap, therefore, is stronger
with the wave function of the + state than the others. Thereby, matrix
elements of the operator which determine the decay amplitude are
much larger for the + state then the other two. Correspondingly, the
+ states have broader decay widths than the – and by many
orders of magnitude. The same common physics, stemming from their
structure, that makes them easier to excite from the ground state also
makes easier their autoionization decay to the ground state continuum.

3.3 Description of resonances
The doubly-excited states in He and as discussed above in Section

5.3.2, are superpositions of bound and continuum state character and are
resonances of these three-body systems. They are conveniently classified
into two classes, called “shape” and “Feshbach” resonances, depending
on whether their decay with one electron escaping to infinity proceeds
primarily through quantum tunneling of that electron through a poten-
tial barrier (hence dependent on the shape of that barrier) or because
of the aspect of a bound state being embedded in a continuum. The

resonances of provide examples of both, the resonance
in the + channel being a shape resonance whereas the dipole sequence
of – states are Feshbach resonances. As in this example, Feshbach res-
onances always lie below the continuum threshold with which they are
associated (H(N = 2) in this case) and are sharp whereas shape reso-
nances typically lie just above that threshold and are broad [51] (Fig.
5.12).

The circumstance of a discrete state embedded in a continuum is gen-
eral, existing throughout physics, with important examples in condensed
matter, nuclear, and particle physics as well. If the discrete state with
energy mixes with a continuum of energy-normalized states with
energies of a Hamiltonian H, we have
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With the energy-normalization choice made for continuum wave func-
tions, has dimensions of

The physical eigenstate is given by the superposition

where both coefficients and will in general depend on E. Applying
the Hamiltonian operator to (5.18) and projecting on and we
have, respectively,

In solving (5.19) for in terms of division by which can become
singular requires identification of a principal part and a delta-function
contribution from the singularity:
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where is determined through appropriate boundary conditions. In-
serting (5.20) into (5.19) gives

Continuum states have wave functions with the asymptotic form
where and is a background phase shift.

With this form, we have from (5.20)

with

reflecting an additional phase shift because of the configuration interac-
tion with the discrete state From (5.21) and (5.23), as E traverses
the value

changes sign and thereby varies by The smaller is the
that multiplies in (5.21), the sharper is this variation for values of
E around The discrete state embedded in the continuum, there-
fore, appears as a resonance, the asymptotic phase shift varying by
in an energy interval about the energy value which is shifted
from by the second term in (5.24), again because of the configura-
tion interaction. This variation in the phase shift translates into sharp
variations in scattering cross-sections in this energy range.

The coefficients and can be evaluated as

If such an embedded discrete state is excited from say the ground
state of the system by photoabsorption, the dipole matrix element
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that determines the oscillator strength, similarly varies sharply
around Indeed

with

and

Eq. (5.26) expresses the modified photoabsorption cross-section rela-
tive to that of the pure continuum because of the presence of the embed-
ded discrete state. In terms of the “reduced energy” measured from
the “resonance position” in dimensionless units, (called the
half-width of the resonance), this modified form has a characteristic
shape as shown in Fig. 5.13 for a range of values of the “profile index”

The three parameters together characterize the gen-
eral shape of a Feshbach resonance which arises from a discrete state
embedded in a continuum. The resonances in He and in Figs. 5.4
and 5.12 are of this form. Note, in particular, from (5.26) that the cross-
section has a point of zero at reflecting a complete destructive
interference between the alternative pathways, one through and the
other through When is large, (5.26) reduces to a “Lorentzian”

shape, This applies to the situation when the background
continuum is itself weakly excited, in the denominator of
(5.28) being small. Such a situation is called a Breit-Wigner resonance.
Resonances in nuclear and particle physics are often of this shape but
doubly-excited resonances in atoms display a much wider range of val-
ues, including the situation q = 0 wherein the cross-section dips at the
resonance center Apart from these extreme values of when
the resonance profile is a symmetric hump or dip, the profile is generally
asymmetric, showing both constructive and destructive interference be-
tween the two paths (directly to the continuum and via the embedded
discrete state) over the energy span of the resonance.
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The numerator of (5.28) expresses the dipole excitation to the dis-
crete state, both directly and through the principal part contribution of
neighboring continuum states. The denominator, on the other hand, is
the excitation amplitude through the degenerate continuum state with
energy E. The profile index therefore, expresses the ratio of these
two contributions. The resonance width is given by this
degenerate coupling matrix element Through the
usual energy-time uncertainty relationship, may be interpreted as
the autoionization lifetime of the quasi-bound state.
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3.4 High-lying doubly-excited states and double
ionization

The adiabatic hyperspherical method has been very successful in de-
scribing energies, widths, and profiles of doubly-excited states converging
to single ionization thresholds with in He and It can also be
adapted to the study of such two-electron states in more complex atoms,
the nucleus and the rest of the electrons in the atom then constituting a
more complex structured core than the bare nucleus of He and [4].
But, as is clear from Fig. 5.1, since successive single ionization thresholds
N themselves form a Rydberg series that piles up on the double ioniza-
tion threshold, the potential wells as in Figs. 5.10 and 5.11 that
converge to these single thresholds overlap as N gets large. Inevitably,
the coupling matrix elements in (5.16) can no longer be ignored and
this entire set of coupled equations have to be solved as a single system,
a hopeless task particularly close to the double ionization limit, both the
number of thresholds N and the number of wells for each N becoming
explosively large.

The handling of very high doubly-excited states close to the double
ionization limit poses, therefore, the same challenge to the hyperspheri-
cal method as it does to conventional configuration interaction with bases
formed out of products of independent electron functions. A pointer to
how to proceed in the case of a dominant family of high doubly-excited
states is provided, however, by the low-lying states. As noted for the +
states with N = 2, the wave function shows a concentration in the region
around which represents a saddle point of the poten-
tial surface in Fig. 5.9. The same feature is seen in similar adiabatic
hyperspherical calculations with N > 2. Indeed, one explanation for the
relatively long lifetime of these states lies in this concentration or “local-
ization” of their wave functions into a sub-region of the full domain of

and whereas singly-excited states, including the continuum states
built on single ionization thresholds, have their wave function mostly
in the deep valleys of Fig. 5.9 around and As a result, the
overlap between the wave functions is small and along with it the matrix
element of between them which governs the autoionization decay
is also small, thus suppressing the decay.

Companion states of double ionization just above threshold, when two
slow electrons escape to infinity from a positive charge, also point to the
importance of the saddle region of Fig. 5.9. Both theoretical analysis
and direct evidence from a variety of experiments show that in all such
situations, the double escape conforms to the saddle configuration [4].
Thus, the electrons escape in opposite directions from the nucleus, the
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value of confined more and more tightly to as the energy E above
threshold approaches to zero.

The above cues suggest an alternative basis for two-electron states
within the hyperspherical approach, which may be termed a “pair ba-
sis” and concerns itself throughout with the pair hyperspherical coordi-
nates and corresponding quantum numbers, referring only to the double
(again pair) ionization threshold with no involvement of single ionization
thresholds and the one-electron quantum number N. With the saddle re-
gion singled out for special emphasis, one expands the Schrödinger equa-
tion (5.7) around the saddle point, retaining terms up to quadratic pow-
ers of and With such an expansion, the potential in
(5.3) and (5.4) is that of a harmonic oscillator in the and an inverted
oscillator in the coordinate, the multiplicative squared frequency in
both cases being proportional to and involving the nuclear charge
Z. The Schrödinger equation now separates partially to terms of order

in terms of the variables
Thus, a corresponding basis set of functions can be constructed, with
quantum numbers corresponding to these three coordinates: a principal
quantum number conjugate to a quantum number v conjugate to

and a continuous index for the motion which has a purely con-
tinuous spectrum. In terms of these, the two-electron states of Fig. 5.1
are viewed in an alternative grouping to that set as shown in
Fig. 5.14. With all reference to independent electrons removed, this is a
description consistently throughout of a pair of electrons as an entity at-
tached to the nucleus, quasi-bound states below and double escape states
above the double-ionization threshold. Such a correlated pair basis is an
extreme alternative to the independent-electron one, particularly well
suited to describing two-electron states whose wave functions are con-
centrated in the saddle region of the potential surface. These have been
called “ridge” states.

The two-electron Schrödinger equation illustrates well general features
of a genuinely non-separable problem, one in which there is no set of co-
ordinates in terms of which the partial differential equation separates.
Unlike in the one-electron hydrogen atom where quantum numbers can
be unambiguously assigned to each coordinate, there is no such possi-
bility now, only alternative sets based on various quasi-separabilities,
each suited to a specific context. Thus, independent-electron labeling,
adiabatic hyperspherical, or the pair description, all provide alternative
views of two-electron states. In each case, a complete set of states pro-
vides of course a full description, any state of the two-electron atom
expressible in terms of an infinite expansion over the basis states. Dif-
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ferent ranges of the spectrum and different types of states (ridge or
valley) find one or the other alternatives more economical, requiring
fewer terms in the corresponding expansion for an accurate description.
Even in the separable hydrogen atom, there is no unique set of quan-
tum numbers or corresponding basis, both the spherical and parabolic
descriptions/separations of Sections 1.2.1 and 1.2.2, for instance, being
equally valid and complete. Once again, the context decides which one
is more suitable. Non-separable problems carry this one step further,
an exact description only possible, in principle, as an expansion, and all
practical calculations requiring truncation of such an expansion. This
truncation is usually done in state space, a finite number of configuration
states retained while integrations are carried out over all of geometric co-
ordinate space. The expansion described around the saddle presents an
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alternative, the coordinate space truncated to the saddle region but then
the Schrödinger equation solved exactly as a quasi-separable problem.

4. Dielectronic Recombination
The integrated oscillator strength for photoabsorption from the ground

to doubly-excited states of atoms is never more than about 1% so that
their direct role in stellar opacities has not been observed. Instead, one
of the important roles for doubly-excited states is as intermediates in the
capture of electrons by positive ions in astrophysical and laboratory plas-
mas. As noted in Section 2.4.3, direct capture accompanied by radiation
emission, a process called radiative recombination (RR), is unfavored in
many situations. Thus, consider capture of an electron of some low ki-
netic energy E by into a Rydberg state with
the energy released, being radiated as a photon. Although
energetically possible, such a direct capture is highly suppressed, par-
ticularly for high the process being akin to a free electron (both the
continuum and high Rydberg electron being essentially free) radiating
a photon which is forbidden by kinematics (the photon being massless,
both energy and momentum cannot be simultaneously conserved in such
a process). On the other hand, if the energy E is such that it is close
to a doubly-excited state of Li, the electron can be captured
temporarily into such a state. Subsequently, this state can undergo an
autoionization decay back to in which case no
capture results, or the electron may radiatively decay back to 1s so
that the system ends up as plus radiated photon. Fig. 5.15
is a schematic rendering of such a process. Clearly, the relative rates
for autoionization and radiative decay play a crucial role. That such a
process may be astrophysically important was first suggested by Sayers
in 1939 and named “dielectronic recombination” (DR) by Massey and
Bates in 1942, the name emphasizing the role played by a pair of elec-
trons, the incident one and an electron in the ion [52]. Starting from the
work of Burgess and Seaton, DR has come to be recognized as of major
importance in a variety of astrophysical situations.

The formation and alternative decays of the intermediate doubly-
excited state can be pictured in general as

With the rate coefficient for capture into X** and the rate for
DR, we have as balance equations
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where and are the autoionization and radiative decay widths, so
that

The initial capture being the inverse process of autoionization, is
itself proportional to besides temperature-dependent factors of the
Boltzmann-Saha formula (1.44) so that

or equivalently, in  terms of cross-sections for        and  capture, 
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where the g’s are statistical weights of the X** and X* states, and
E(X**) is the energy of the X** state relative to With typical
autoionization lifetimes much smaller than radiative ones

so that the last factor in (5.32) reduces essentially
to However, with increasing since decreases as whereas

remains essentially constant and equal to the decay rate in the ion,
the outer electron playing an inconsequential role as a spectator,

becomes proportional to and thereby drops off rapidly with
Similarly, for DR with highly charged ions, where increases with Z
while is essentially independent of the nuclear charge, only a few low
values of contribute appreciably.

Since many and values of contribute, the total DR rate
can be appreciable. The radiated photon frequency lies
close to the value in the ion, so that these transitions show
up as DR “satellites” of that ionic transition. With increasing they
merge into the ionic value, the screening effect of that outer Rydberg
electron becoming negligible. This is why DR is important and must
be accounted for if that ionic transition is used as a diagnostic (say for
temperature) in a laboratory or astrophysical context.

DR is generally important at higher temperatures, typically dominat-
ing over RR for It is, therefore, the dominant recombination
process in the solar corona and in solar flares

However, it can contribute even at lower temperatures, only the
low-lying X** being relevant because of the exponential factor in (5.32).
Thus, in nebulae, the recombination in e plays a big role, lines
at 229.7 nm from being seen in IUE (Inter-
national Ultraviolet Explorer) spectra. Typical values for a nebular
temperature of K are about

The effect of external fields, including even relatively weak electric
fields, on DR has only recently been appreciated [52], [53], following dra-
matic enhancements seen in laboratory experiments involving and

Thus, the DR process,
is strongly enhanced by even a few V/cm electric fields.

This is again a consequence of the dependence of on and Be-
sides the fall-off as decreases rapidly with as well. This is
because of decreasing overlap of the corresponding wave functions in the
matrix element of that is involved. As a result, in summing over

and for the total DR rate, ordinarily only a small subset of
contribute. However, an external electric field, because of the linear

Stark mixing in the degenerate can access this much larger
“reservoir” of at any Enhancements of several-fold have been
measured. The enhancement is less important for DR in highly-charged
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ions because, as noted above, only low values of contribute in those
cases, being smaller than only for them, and these do not have
the reservoir of values to be exploited.

Magnetic fields seem to have less of an effect but recent studies in-
dicate that “crossed” electric and magnetic fields, with the two fields
perpendicular, can lead to substantial enhancements of DR [53]. In such
a situation, both and cease to be good quantum numbers so that not
only the reservoir of values but also those in can be accessed. This
subject is likely to be very important in the coming years both because
of its application to laboratory and astrophysical plasmas and because
of fundamental questions posed. As seen in Chapter 4, the study of high
Rydberg states in a magnetic field is already non-trivial. It is even more
so for crossed fields when even the azimuthal symmetry no longer holds
and the Schrödinger equation is non-separable not just in two but in all
three dimensions or Combine this with electron cor-
relations in high doubly-excited states, a problem also of great subtlety
as seen in this chapter, and it is clear that the resulting subject of two-
electron states in external fields, particularly of perpendicular geometry,
will be of great interest and importance in atomic physics in the future.

Problems

5.1

5.2

5.3

5.4

5.5

Consider the singly-excited states of krypton upon photoabsorption
from the ground state. Enumerate the channels and provide the
angular momentum quantum numbers that label them.

An intense beam of laser light, tunable around 353 nm, illuminates
in the ground state such that three-photon absorption is possible.

Which doubly-excited states may be excited in this case?

Expand the sharply-peaked distribution of two electrons
at a mutual angle in terms of Legendre
polynomials and determine the expansion coefficients.

Consider a Gaussian angular distribution, exp
with a constant, and make an expansion similar to the one in
Problem 5.3. Sketch the distribution of the coefficients as a function
of and note the reciprocal relationship to the angular distribution
in

Make the transformation to hyperspherical coordinates to verify ex-
plicitly the Schrödinger equation in (5.7).
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5.6

5.7

5.8

5.9

5.10

Following the procedure in the text, derive (5.16).

Enumerate the number of adiabatic potential wells for states of
He that converge to the N = 4 threshold of He.

Carry out the steps indicated in the text to verify Eqs. (5.19)–(5.28).

Fit the Feshbach resonance shown in Fig. 5.12 to the form (5.26)
and determine and

Expand the Schrödinger equation in (5.7) for states around the
saddle point retaining terms up to quadratic in

and Show that the resulting equation admits a

partial separability in the variables

with wave functions of the form
with and constants.



Chapter 6

DIATOMIC MOLECULES

1. Introduction

Just as in terrestrial physics, molecules are abundant in a variety of
astronomical contexts. Indeed, since molecular bands are more easily
seen than atomic lines at low resolution, they are even used in the gross
classification of stars, e.g. the intensity of TiO bands defines the subdivi-
sions of M-type stars. Both small, inorganic molecules and large organic
ones occur and often have important roles in stellar atmospheres and in
large interstellar gas clouds besides in planetary atmospheres as on our
Earth. Some of the extremes in density and temperature encountered
in astronomical objects compared to those in our laboratories on Earth
make some exotic molecules unusually important. The primordial black-
body radiation from The Big Bang was first seen in rotational transitions
of the CN molecule although not recognized as such at that time. And,
as regards the commonest element in the Universe, it is estimated that
about half of hydrogen in the interstellar medium is present in the form
of molecular In this and the next chapter, we take up, therefore, the
study of molecular physics, first considering diatomic molecules such as

NO, CO, etc., and then, in the next chapter, polyatomic
molecules. The list of molecules seen in radio and mm wavelengths from
the interstellar medium is large and constantly growing. Chemical mod-
eling, therefore, requires reaction rates and cross-sections, sometimes
of over a hundred species and a thousand reactions in studying dense
interstellar clouds.

We begin in Section 6.2 with a study of the basic quantum physics
of molecular binding and of molecular spectroscopy. The role of the
nuclear degrees of freedom, which have been unimportant so far in pre-
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vious chapters that dealt with single atoms, and of their interplay with
the electronic degrees of freedom, is the central object of study. Vibra-
tions and rotations of the inter-nuclear axis, and electronic structure,
will be discussed first for the simplest one-electron diatomic molecular
ion, and then extended to neutral species such as Section 6.3
will deal with spectroscopic transitions involving these various types of
excitations, and Section 6.4 will present a sample of transitions and col-
lisions of interest in astrophysics.

2. Structure of Diatomic Molecules

2.1 Basic mechanism and nomenclature
of covalent bonds

Two atoms can bind to form a diatomic molecule both through ionic
and non-ionic bonds. The former admits a simple, classical picture
wherein one or more electrons from atom A shift to atom B and the
resulting positive and negative ions are held together by the electro-
static Coulomb attraction. The classic example is a molecule such as

where the extra electron outside a closed shell in the alkali atom
Na can migrate to fill the hole in the outer shell of the halogen with

and forming an ionic bond. Most molecules of astrophysical
interest involve, however, non-ionic or “covalent” bonding, with the elec-
trons responsible for binding being shared between the two partners A
and B. This is a purely quantum-mechanical effect, having its basic ori-
gins in the mixing of degenerate states, such a mixing leading to extra
binding energy.

The simplest species, a system consisting of (p + p + e), serves as
an illustration. Consider first a situation with all three particles infinitely
far apart as defining the zero of the energy. Next, let the electron bind
to either of the protons, forming say the hydrogen atom in its ground
state. This state, which lies at –13.6 eV, is doubly-degenerate depending
on which of the two protons A and B is bound to the electron, the other
one at infinite distance away. The degenerate states and can be
described as and with wave functions exp                   and

respectively, and the distances to the electron from
the nuclei, and the separation between the protons denoted as with

If the protons are now moved closer together to some finite,
large value of the two states are coupled together, the electronic
wave function centered on one proton now overlapping the other proton
as well. The resulting eigenstates of such degenerate mixing are the
symmetric and antisymmetric superpositions of the individual states,
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the labels and borrowed from the German gerade and ungerade and
denoting even-ness and odd-ness, respectively, with respect to inversion
through the center of the molecule (which lies midway between the two
protons). In common with any such degenerate mixing of two states
in quantum physics, the corresponding eigenvalues lie below and above,
respectively, the energy –13.6 eV in the absence of this mixing. There
is necessarily a gain in binding, therefore, for the gerade state which
persists even upon adding the repulsive Coulomb energy between the
two protons. As shown in Fig. 6.1, the two eigenvalues split, the one
always less bound than –13.6 eV as decreases but the attaining
a deeper minimum before it too starts to rise, as the repulsion between
the protons overwhelms the gain in binding from the electronic wave
function. Note that the latter is limited to –54.4 eV which would be
the energy of one electron in the “united atom” limit of both protons
coinciding and presenting a nuclear charge of 2 for the atomic electron.
As shown, the minimum energy of –16.3 eV is not as small and is attained
for The shared electron cloud serves to bind and H with
an additional 2.7 eV of binding energy.

Fig. 6.1 exemplifies the basic analysis of electronic energies in molec-
ular systems, applicable even beyond diatomic species, tracing the elec-
tronic binding from the “separated atom” limit of to the
united atom limit of that is, from to in the
current example. The orbital angular momentum of the electron is
a good quantum number only in the two limits but not at any finite

the two-center nature of the molecule breaking spherical symme-
try. Cylindrical symmetry prevails throughout, however, the molecule
being cylindrically symmetric about the inter-nuclear axis. Thus, al-
though the electronic is not a good quantum number, the curves in
Fig. 6.1 can be labeled by its projection (called ) on the internuclear
axis. For the electron in the example, the projection is, of course,
zero and so the two states in (6.1) are labeled and An asterisk is
attached to non-bonding states. Diatomic molecular nomenclature for

the projection of electronic angular momentum on the internuclear
axis, uses the Greek letter counterparts of for

respectively. The sign being irrelevant, equals and
each state is always doubly degenerate in energy.

Cylindrical symmetry about the internuclear axis applies to all di-
atomic molecules (and also linear polyatomic molecules), whether homo-
nuclear (A and B identical) or heteronuclear (A and B different), whereas
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the and labels of symmetry with respect to inversion are only rele-
vant for the former. When A and B are different, the separated atom
limits and in the corresponding Fig. 6.1 differ in energy,
these asymptotic states no longer degenerate.

The discussion accompanying Fig. 6.1 for the ground state of hydro-
gen, and defining the lowest “molecular orbitals”

and extends to higher excited states. An exactly similar di-
agram for and defines the next orbitals
and the angular momentum projection on the internuclear axis
being again zero. On the other hand, the and separated atom
configurations give rise to and each doubly degenerate. Just
as the states of the hydrogen atom provide labels for the many electron
configuration of a higher atom, the basic molecular orbitals defined for

provide similar labels for more complex molecules. The spin of each
electron introduces again another double degeneracy and, with consid-
eration of the Pauli principle that every electron has to have its own
distinct labels, the molecular orbitals and overall state labels of total
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spin and total projection on the internuclear axis can be assigned
exactly analogously to atoms (Section 1.4.1).

2.2 Molecular orbitals and states of simple
diatomic molecules

The next simplest molecule ground-state configuration
has both electrons assigned with opposite spin orientation to the lowest,
bonding orbital with total spin to satisfy the Pauli principle. With

the state is Note the use of capital Greek letters for the
combined electronic system. The additional label shown as a + arises for

terms in diatomic molecules (homonuclear and heteronuclear) because
of reflection symmetry in any plane going through the internuclear axis.
States even ( + ) or odd (–) with respect to this reflection have slightly
different energy, the former lying lower. terms have a two-fold
degeneracy of the two different signs of in the same Since
linear combinations still have the same energy, the +/– superscripts
are usually not shown although, as considered later, the phenomenon
of wherein the interaction of electronic orbital angular
momentum with the rotational angular momentum of the nuclei lifts
the degeneracy, makes the +/– labels relevant also for

The ground state of a molecule is designated with a prefix X so that
the full description of in its ground state is With two elec-
trons providing additional binding relative to separated atoms, is
more bound than having a total binding energy of 4.7 eV (not quite
double the 2.7 eV of because of the electron-electron repulsion), and
an equilibrium separation of 0.7Å, smaller than in Fig. 6.2
sketches the potential energy curves for and its ions [54]. Excited
terms are prefixed with when they have the same multiplicity
as the ground term, otherwise Thus, the first excited state
in obtained by placing one electron in the bonding and one in the
non-bonding orbitals of Fig. 6.1, is This is an un-
stable state appearing as a continuum above Within the realm
of states, four electrons completely fill the above two orbitals,

to give a completely-filled state with all quantum
numbers zero. This is the unstable state of

Paralleling the discussion in Section 1.4.1 for two atomic electrons,
consider the 36 states in a molecular description of two such electrons in
a heteronuclear diatomic molecule. First, consider the states formed out
of that is, when the values of both electrons are either +1 or –1.
The 16 states involved are shown in the top two rows of Table 6.1 in the
notation where is the total projection of electronic
angular momentum. Each state is doubly degenerate whereas
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= 0 is non-degenerate. The remaining 20 states due to and
configurations are shown in the other three rows of the table.

The above enumeration of states of electrons applies to the simple
diatomic molecules such as CH and NH. With the label no longer
applicable, the seven electrons in CH occupy the orbitals

and the resulting state is In NH, with eight electrons,
we have Because the electrons are equivalent, only a subset of
the top two rows of Table 6.1 are in conformity with the Pauli principle,
namely the six states and As in atoms, the highest
spin leads to most binding (Section 1.4.1) so that the ground state of
NH is with and as excited states.
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Since    (and other )states are doubly degenerate, together with
the spin degeneracy, four electrons form a closed shell such as
with total quantum numbers zero: Three electrons, are
thereby equivalent in their enumeration of states to a “hole”, exactly
analogous to the discussion in atoms. Thus OH with nine electrons has
the same ground state as CH discussed above. The molecule with
sixteen electrons, has orbitals

The quantum numbers of the state are, therefore, of two
equivalent electrons as in the previous paragraph with the additional

labels for this homonuclear case: is the ground state,
and excited states lying roughly 1 eV and 1.6 eV respectively,
above the ground state. Infrared emission at from this
state is seen in the airglow of the Earth’s atmosphere and also from
Venus. An excited state of with a rearrangement of the last two
molecular orbitals as is also like a The
state of this configuration is responsible for strong ultraviolet absorption
(Schumann-Runge bands) to it from the ground state, important in the
upper atmosphere and in other contexts. The NO atom with one electron
less than in has a single electron in the last orbital and a      ground
state. The same applies to On the other hand, with an extra
electron (bound by 0.44 eV) in is also a state. It is an important
species in the Earth’s atmosphere.
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2.3 The Born-Oppenheimer approximation
Because the quantum mechanics of electronic motion is responsible for

binding and, further, from the hierarchy that the internal binding within
atoms is larger than the binding between atoms in a molecule, it was
natural to begin this chapter as we did. We have viewed molecules and
molecular orbitals as built up from atomic states, starting at large
and tracing their evolution as the nuclei are moved closer together. But,
of course, we could view the whole assembly of nuclei and electrons in a
molecule as a single quantum system and solve the Schrödinger equation
for the full Hamiltonian to find the eigenvalues and eigenfunctions. For
a one-electron diatomic molecule, we have (Fig. 6.3).

where to keep the discussion general, masses and and charges
and have been assigned to the nuclei. This two-center Hamiltonian
and the resulting Schrödinger equation for stationary states separates in
a system of coordinates called elliptic coordinates. However, since there
is no simple extension to more electrons or to the case of more than
two nuclei, and because there is a natural approximation in terms of the
very different motions of the heavy nuclei and the light electrons, the
separation of in elliptic coordinates has not generally been exploited.

Instead, an “adiabatic” approximation is widely used, as has already
been implicit in Sections 6.2.1 and 6.2.2. Given the large difference
in mass between the electronic and the nuclear and the
motion of the latter is regarded as slow relative to the electronic motion.
Therefore, one solves first the electronic motion in (6.2) (that is, the
third, fourth and fifth terms) while regarding the nuclei as held fixed at
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A and B. For each position of A and B, in particular their separation
the eigenvalues and eigenfunctions of the electronic motion will

depend parametrically on The total wave function of the system
is then approximated as a product of this electronic wave function and
a wave function for the nuclear motion involving the coordinate
This point of view applies to the more general situation of several nuclei
and several electrons in which case (6.2) is replaced by

giving a genuinely non-separable (and complicated) Hamiltonian. One
writes the full wave function as

with

and

with { } denoting the collective set of coordinates.
The approximation in (6.4) and (6.5) lies in that when (6.4) is substi-

tuted into the action of the terms on is
neglected. The semi-colon in denotes this imbalance in the roles of
electronic and nuclear coordinates in Although as clear from (6.4),
both are involved, the dependence on the nuclear is regarded as
“parametric” so that derivatives (both and ) are considered small
and neglected. The physical justification arises, of course, from the great



ASTRONOMY-INSPIRED ATOMIC AND MOLECULAR PHYSICS178

disparity between the variation in electronic and nuclear coordinates as
a result of the different masses attached to the derivative terms. The
ratio which is typically represents the relative error in
energy so that, with the error involved is a few

One can, of course, just as in the related discussion of an adia-
batic method in Section 5.3.2, go beyond the adiabatic approximation
by expanding the full in (6.4) in terms of a complete set of eigenfunc-
tions and thereby obtain coupled equations for a set instead
of the single (6.4). But, the enormous complexity of the procedure is
not justified in most applications to date so that the above scheme due
to Born and Oppenheimer is standard throughout molecular physics.
For accurate numerical calculations, however, just as in atoms (Section
1.4.4), configuration interaction schemes superpose several molecular or-
bital configurations in describing A major difference from atoms is
that instead of radial functions that decay exponentially in molec-
ular calculations employ Gaussian functions centered on each nucleus.
Many-center integrals are then more easily carried out, a Gaussian at
one easily expressible in terms of a translated function at [55].

The electronic motion provides through (6.4) eigenvalues that depend
on the positions of the nuclei. In a diatomic molecule, this dependence is
only on the relative separation (Fig. 6.3). Along with the Coulomb
repulsion between the nuclei, also dependent only on the last two
terms in (6.4) provide a potential, for the motion of the nuclei.
With two bodies, A and B, the center of mass motion can be separated,
providing the standard translation of this motion with no bearing on the
physics internal to the molecule. This leaves behind the motion in the
internal, relative coordinate whose kinetic energy carries a reduced
mass

From now on, we will denote as and drop the subscript “nucl”
on

With as a three-dimensional coordinate for the motion of the
nuclei in a diatomic molecule, we have the Schrödinger equation of mo-
tion
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2.4 Rotations and vibrations of the internuclear
axis

The Schrödinger equation (6.7) is separable in radial and angular
as in Fig. 6.4), coordinates describing, respectively, “vibra-

tional” and “rotational” motion of the internuclear axis. The shape of
the potential wells as in Figs. 6.1 and 6.2 for most bound molecular
states shows that to a good approximation, at least for low-lying states
in each well, the rotations and vibrations can be taken as relative to
the “equilibrium separation” marking the minimum of the potential.
The rotations, therefore, are of a free rigid rotor

with

we have left in (6.7)

with

B called the rotational constant, and J = 0, 1, 2 , . . . the rotational angu-
lar momentum in units. Each value of is (2J + 1)-fold degenerate
with M = – J, – J + 1, . . . , J. A useful conversion is

Expanding about

with

and
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and

With approximately 1Å, most diatomic molecules have B of the order
of a few (or ). as the lightest diatomic
molecule has a somewhat larger value, but even
that is very small compared to the other energies in (6.14). In

equals –31.9 eV, the 2 × (–13.6) eV of each H atom plus the
additional 4.7 eV of molecular binding discussed in Section 6.2.1.

The vibrational Schrödinger equation in (6.12) describes the motion
of a one-dimensional harmonic oscillator of spring constant in the
variable once a trivial factor of is removed to eliminate
the linear derivative in

In this picture, vibrations of the molecule about the equilibrium position
are described as simple harmonic vibrations, the potential wells being
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sensibly approximated by parabolic harmonic oscillator wells according
to (6.10). Corrections for larger departures of from reflecting that
the wells in Figs. 6.1 and 6.2 are no longer parabolic at such larger
will be considered in Section 6.2.5.

The solutions of (6.15) are well-known,

with and

with and where are the Hermite Polynomials. In
so that the three terms (electronic, vibrational and

rotational) in (6.14) are of decreasing order in energy in steps of roughly
two orders of magnitude.

The description developed in this section gives a good first picture of
the motion associated with the nuclear degrees of freedom in a diatomic
molecule. Rotations in space of the internuclear axis and thereby of the
molecule, and vibrations about the equilibrium distance, are described
by the discrete spectra of a rotor and a harmonic oscillator, respectively,
with their characteristic spacings given in (6.9) and (6.16). Together
with potential wells for increasing electronic excitation, the rich spec-
trum of even the simplest molecule is evident from a figure such as Fig.
6.2. Table 6.2 gives a sample of the parameters defining rotational and
vibrational spectra. Note that isotopic partners such as HD, and

share the same electronic values of and but differences in
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lead to different rotational and vibrational constants. Of special impor-
tance in astronomy is that higher J and states are easily excited for
the temperatures of interest. To a first approximation, the Boltzmann
factor and statistical weight of each level gives the relative population
of these states as

and

2.5 Anharmonicities and rotation-vibration
coupling

It is clear from a glance at any molecular potential well (Fig. 6.2 or
see schematic in Fig. 6.5) that the parabolic approximation around
becomes increasingly inadequate with increasing vibrational quantum
number This can be handled at first by retaining higher, “anhar-
monic”, terms in the expansion (6.10), treating them as perturbations.
Thus, perturbation theory (Section 3.2.2) based on taking the harmonic
oscillator wave functions (6.17) as the unperturbed functions can esti-
mate energy and other corrections. Qualitatively, the widening of the
well from the initial parabola fitted to the minimum is like a lowering
of the spring constant so that higher vibrational levels lie closer than
the equal spacing. Perturbation theory itself fails, however, once the
energies approach the region where any electronic potential well flattens
as it approaches some constant value of a separated atom limit. Indeed,
above this limit the molecule has a vibrational continuum and dissoci-
ates into A+B, all of which lies completely out of reach of a harmonic
oscillator model with a purely discrete spectrum stretching to infinite
energy [56].

One alternative is to use potential functions that can be solved exactly
and which approximate well the shapes of molecular potential wells. The
Morse function,

is an example, with D and a adjusted to fit a well as in Fig. 6.2 or 6.5.
The Schrödinger equation for this potential admits exact solutions with
eigenvalues
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where and are functions of D and a. The above
is indeed the form of the first anharmonic correction. Other more com-
plicated models have also been used and also a numerical method called
the Rydberg-Klein-Rees (RKR) method. Using the JWKB quantization
formula for energy levels in a potential  several empirically known
vibrational levels of a molecule are used as input and the formula in-
verted to get a numerical  which can then be used for generating
other vibrational levels and the continuum.

Turning to rotational energies and wave functions, the description in
(6.9) is again only a first approximation. The use of in B in (6.9)
is reasonable for rotational states of the lowest vibrational levels whose
wave functions are more tightly confined around Otherwise,
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can be expanded beyond the leading term to take into account this
effect of vibrations on rotational levels, again treating the next terms in
the expansion as perturbations. A reverse effect, of rotations on vibra-
tions, goes under the name “centrifugal distortion.” Here, with increas-
ing rotational quantum number J, the treatment of the internuclear axis
as in rigid rotation has to be modified to account for the centrifugal fly-
ing apart of A and B which stretches the axis and increases thereby
altering the vibrational spectrum. Besides centrifugal effects, Coriolis-
like effects are also seen. With non-zero J, vibrations of a molecule in the
presence of rotation lead to Coriolis coupling between the two motions.

2.6 Parity of molecular states

The parity of a molecular state, that is, its behavior under reflection of
all coordinates and is of interest just as for atomic states, par-
ticularly for considering spectroscopic transitions in Section 6.3. With

in (6.4) a product the total parity is the product of the
parities of each of these three factors. The vibrational depending
only on the scalar is always even. With reference to Fig. 6.4, the
inversion of coordinates amounts to the usual and
the parity of is from the standard transformation of spherical
harmonics. Even–J rotational states are even and odd ones odd under
parity. For the parity of we need to consider space-fixed axes {X, Y,
Z} and molecular body-fixed axes {x, y, z} carefully, the latter defined
with z along the axis from A to B. Since the electronic wave function
is described with the coordinate r of the electron measured from the
center of mass of A and B, we have to take into account the interchange
of A and B and the resulting upon inversion. Thus inversion
of all coordinates of electrons and nuclei can be achieved in two steps
as follows. See Fig. 6.6. First, a 180° rotation about the y-axis and
next a reflection of the electrons in the xz-plane results in all A, B, and
electrons inverted as required for the parity transformation. Therefore,
the parity of is simply the effect of the reflection in the xz-plane
which we defined as the +/– label of Section 6.2.2. Thus, in all, has
parity and for + and – states respectively. Note that the

labels defined for homonuclear molecules was the behavior of the
electronic wave function under inversion in the molecular center or in
body-fixed axes whereas the current consideration is for inversion with
respect to the space-fixed axes.
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2.7 Effect of nuclear spin
The complete wave function of the molecule includes besides the

wave functions of the spins of the electrons and nuclei. For heteronu-
clear molecules, the Pauli principle applies only to the identical electrons
and we have already seen the enumeration of states upon combining
and electronic spin. For homonuclear diatomic molecules with identical
nuclei A and B, identical down to the isotope, the overall wave function
has to be symmetric or antisymmetric under A-B interchange as well,
depending on whether the nuclei are bosons or fermions, respectively.
If the spin is I, the degenerate states of combined spin break
into (2I + 1)(I + 1) symmetric and I(2I + 1) antisymmetric states un-
der interchange of the spin coordinates of A and B (for example, for

three symmetric and one antisymmetric, that is, triplet and sin-
glet, states). For I an integer, the former must have symmetric and
the latter antisymmetric under interchange of nuclei, whereas for I a
half-integer just the opposite, that is, the (2 I + 1)(I + 1) are associated
with antisymmetric and I(2I + 1) with symmetric

The behavior of under interchange of nuclei reduces again to that
of and being unaffected because is left unchanged by this
interchange. The interchange of A and B is exactly the same operation
as parity for so that as before, we pick up a factor from the
rotational wave function under the interchange. For interchange of
nuclei affects the electronic coordinates because they are defined with
respect to the body-fixed axes. Therefore, interchange of nuclear coordi-
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nates can be achieved by inverting all coordinates of nuclei and electrons
in space-fixed axes which is the parity transformation and then inverting
only the electrons in space-fixed coordinates. The first as we have seen
gives ± for the +/– states. The second, of inversion of electronic coordi-
nates in space-fixed axes, is equal to inversion of them in molecule-fixed
axes, the nuclei being unaffected in this step so that the molecule-fixed
axes remain unchanged. This inversion gives ± for as we have seen.
Therefore, are symmetric and
antisymmetric under nuclear interchange.

In all, therefore, for homonuclear diatomic molecules with fermionic
nuclei, we have (I + 1)(2I + 1) nuclear symmetric states with J =
0, 2, 4, ... for and  J = 1, 3, 5, . . . for states, and
I (2 I+1) nuclear antisymmetric states with J = 0, 2, 4, . . . for
and J = 1, 3, 5 , . . . for The J and states combine oppo-
sitely for bosonic nuclei, that is (I + 1)(2I+ 1) nuclear symmetric states
with J = 0, 2, 4, . . . for and J = 1, 3, 5 , . . . , for
and I(2I + 1) nuclear antisymmetric states with J = 0, 2, 4, . . . for

and J = 1, 3, 5 , . . . for For any I and any elec-
tronic state, one has either the odd or even J values with relative statis-
tical weights I(I + 1). The most dramatic effect of this Pauli principle
requirement is for I = 0, applicable to diatomic molecules with spin-
less nuclei such as has only a single symmetric nuclear state
(also with total spin 0) and it must have J = 0 , 2 , 4 , . . . for
and J = 1, 3, 5, . . . for Thus, any electronic state of such a
molecule has half its rotational levels forbidden. The ground state of

has only even J! By contrast, also with nuclear spin zero but
ground state, can only have odd J values. The above argument

applies to the isotope but, as soon as we consider the nuclei
are no longer identical and all J’s occur in the same ground electronic
state. The same is true upon replacing by This dramatic
effect of the Pauli principle led in fact to the identification of the and
the rare isotopes. It was also used in the first determination of the
spin of the proton where even and odd rotational levels of alternate
in the intensity ratio 1/3 arising from I(I + 1) with

The example of with total spin I = 0 or 1, and the attendant
effect on molecular states, leads to the two spin states behaving as al-
most distinct species. The nuclear wave function of states symmetric
or antisymmetric under nuclear interchange are mutually orthogonal.
Thus, there can be no non-zero matrix elements between them for any
operator that depends only on electronic coordinates. Radiative or non-
radiative transitions under collisions lead only to changes in J of steps
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of 2. Therefore, when is cooled to very low temperature, all the
molecules with odd J will eventually settle down to the J = 1 level of
the lowest electronic and vibrational state, and all those in even J to the
J = 0 level. Interactions between nuclei and electrons can couple these
states but, being very weak, it can take many months for this to happen.
The two behave as two separate species, called ortho and para hydrogen,
respectively. The former, with has triplet (I = 1) nuclear
spin, the latter with has singlet (I = 0) nuclear spin. A small
paramagnetic impurity can catalyse the J = 1 molecules to drop down
to J = 0, leaving behind pure If it is then warmed, only even J
levels will be seen, again for months in the absence of any catalyst that
can flip one of the nuclear spins to pass from singlet to triplet. Ordinary

is usually a 3:1 mix of ortho and para forms.

3. Molecular Spectra
As in the case of atoms, interaction of a molecule with the electromag-

netic field leads to emission or absorption of radiation as the molecule
changes from one state to another. The same considerations of oscilla-
tor strengths and selection rules as in Sections 2.2.1 and 2.2.3 apply but
now, in addition to transitions involving electronic energy levels, there
are also those between rotational or vibrational states and combinations
of all three. Given the energies involved, rotational transitions generally
lie in far infrared or microwave wavelengths and vibrational ones in the
near infrared. Again, as in Section 2.2.3, the dominant transitions are
electric dipole (E1) in character and we will focus primarily on them,
although higher multipole and magnetic transitions can also be treated
in parallel to those in atoms.

3.1 Rotational spectra
The electric dipole coupling to radiation is given by – d. with d

the dipole moment and the electric field. The matrix element involved
between two rotational levels vanishes unless selection
rules are satisfied. The dipole moment being a vector, we have as before
for atomic transitions but now in terms of the nuclear angular momen-
tum that J, J', and unity form an angular momentum triad, and initial
and final states have opposite parity so that

Such jumps to the nearest neighboring levels in a rotor spectrum (6.9)
involve, therefore, transition frequencies Given the small
rotational energy spacings, typically in any electronic and vibrational
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state, several rotational levels are thermally populated, with higher J’s
having the relative population given in (6.18). Thus a pure rotation
spectrum often consists of equally spaced lines, 2B apart, with an inten-
sity variation according to (6.18). The relative intensities grow initially
because of the statistical factor (2J + 1) but fall at high J due to the
Boltzmann term. At an intermediate the “rota-
tional band” has peak intensity (Fig. 6.7). With B values for
light diatomic and for heavy molecules, the rotational bands
lie in the far infrared or microwave range, respectively. In the
value of 2B is 115 GHz. Equivalently, is

The transition at 2.6 mm is observed in many
directions in the sky.

The above presumes that the molecule has a permanent electric dipole
moment. For homonuclear diatomic molecules in a specific electronic
state, there can be no permanent electric dipole moment, the electronic
distribution being symmetrical about the center of the molecule. Recall
that in such a molecule there is a symmetry with respect to inversion
in the center so that vanishes, exactly analogous to atoms having no
permanent moment because of parity conservation. In such molecules,
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therefore, rotational spectra necessarily involve simultaneous changes in
the electronic state.

3.2 Vibrational spectra
Considering next purely vibrational transitions within the same elec-

tronic states, the relevant matrix element is . Again, in a
homonuclear molecule, within any single electronic state, the dipole mo-
ment vanishes for any internuclear separation the electronic distribu-
tion always having well-defined symmetry, or with respect to the
center. In a heteronuclear molecule, however, a non-zero moment can
arise and, as with any consideration of vibration, we expand around
the equilibrium value

The first non-trivial off-diagonal matrix element between states and
is, therefore, For harmonic-oscillator wave functions

(6.17), such a matrix element is non-zero only when

providing the selection rule for vibrational transitions. Higher terms in
the expansion (6.23) can give rise to weaker absorptions/emissions with

etc.
A vibrational transition in conformity with (6.24) gives rise to a spec-

troscopic line of frequency with given in (6.16). Typical values
lie in the infrared region of the spectrum. The intensity
of the line depends on the square of the derivative in (6.23)
so that what is relevant is not the permanent moment itself but its
derivatives. The CO molecule is an example, being only

but with a large first derivative so that it
has a strong infrared absorption around Unlike in the case of
rotations, vibrational spacings being large compared to typical thermal
energies, the population of higher levels according to (6.19) is generally
small, although at higher temperatures or for molecules with in the
lower end of the range (about absorptions
and higher analogs can be seen alongside the transition. These
higher bands are called “hot bands”.

Typically, one sees combined vibrational and rotational spectra. Fig.
6.8 gives an illustration, transitions with several simulta-
neous changes in J grouping as shown, those with forming the
so-called P branch and the others with the branch. Because
of the intensity variation due to rotational level populations according
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to (6.18), a characteristic dip in the center, which would correspond to
of the pure vibrational with no change in J, is

seen. This is the situation for electronic states but in states with
one can also see transitions with giving rise to an intermediate

“ branch” in the spectrum. An example occurs in NO whose ground
electronic state is

Vibration-rotation spectra are useful for measuring isotopic composi-
tion. As seen in Table 6.2, different isotopes have different values of
and B so that the spectral lines will be at slightly different frequencies.
Fig. 6.9 gives an illustration in the two isotopes with masses 35
and 37 splitting each line in a spectrum such as in Fig. 6.8. The high
resolution attainable in spectroscopy allows observation of such split-
tings and, from the relative intensities, determines the relative isotopic
composition. Related illustration of the role of in quantities such
as or the zero-point energy of the resulting vibrational level was
provided by the differences in the dissociation energies of HD, and

The ground electronic state potential well is the same for each
of this isotopic family but the level in it lies at different positions,
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highest in and lowest in Correspondingly, the energy required to
dissociate the molecule, that is, the energy relative to the common
energy is highest for and lowest for
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3.3 Raman spectra
As discussed in the above subsections, vibration-rotation spectra are

available only for heteronuclear diatomic molecules. This leaves out
homonuclear molecules, where a simultaneous electronic transition is
necessary. Since such transitions often lie in the ultraviolet, superposed
vibrational and rotational transitions occur as small shifts that are ob-
scured or buried in the wings, an unsatisfactory state of affairs for their
study, particularly given the importance of molecules like and

Therefore, the phenomenon of the Raman effect, wherein rotational
and vibrational levels can be studied in light scattering even in homonu-
clear molecules, is of major importance to molecular physics, including
applications in astronomy. In the Raman effect, instead of absorption
or emission, one looks at the inelastic scattering of light. During the
scattering, if the molecule makes a transition between vibrational or ro-
tational levels, this is reflected in the frequency shifts of the scattered
light. These shifts can be of either sign. Lines where the scattered pho-
ton is of lower frequency than the incident are called Stokes lines, the
molecule making an associated transition from a lower to a higher level,
while the opposite happens in the anti-Stokes lines with scattered fre-
quency larger than incident. These two sets of lines appear on either
side of the elastically scattered light which is referred to as Rayleigh
scattering.

A permanent dipole moment is not necessary, an induced moment
due to the polarizability of the electron cloud sufficient to cause inelastic
scattering. Just as in atoms, all electron distributions, including those
in homonuclear molecules, are polarizable by an electric field For
vibrational transitions, one can again expand the polarizability
around its value at

Just as in the discussion after (6.23), the first term in the expansion leads
to the intensity of these scattered components proportional to
the square of For rotational Raman transitions, the induced
effect can be viewed as a change of the molecule’s to an intermediate
state and then a second scattering in which the intermediate state
goes to the final

Given the selection rules (6.22) for each of these matrix elements, we
have J' = J or J ± 2 for the Raman transition. Thus, in the rotational



the matrix element reduces to

only the first term contributing between two different electronic states
and only when the states conform to E1 selection rules as in Section 2.2.3.
That is, parity must change in the transition (therefore, in homonuclear
diatomic molecules, only transitions are allowed) and the angular
momentum must change by one unit . For such allowed transitions with
non-zero

Molecular transitions involving changes in the electronic state have
most features common with similar ones in atoms, now with the added
element of the different dependences on of the electronic potential
wells for the initial and final state. Electric dipole transitions being
dominant, they will be our focus, the transition operator involved being

3.4 Electronic spectra
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Raman effect, lines (Stokes and anti-Stokes) appear on either side of
the central elastic value (Rayleigh line) with twice the separation of an
ordinary rotational absorption/emission spectrum. In place of the P,
and branches of that spectrum, the Raman bands are termed O,
and S.

Such rotational and vibratiorial Raman spectra are exhibited by all
molecules, in particular, both homonuclear and heteronuclear diatomic
species. For the former, there is the additional effect discussed in Sec-
tion 6.2.7 that the Pauli principle applied to nuclei leads to alternating
weights and, therefore, alternating intensities of odd and even J val-
ues. Fig. 6.10 gives an illustrative example in The rule
and the skipping of all even J values (recall from Section 6.2.7 that

has only odd J) makes the separation between successive peaks
8B. As in the data shown here, modern Raman spectroscopy is carried
out with intense lasers to enhance the count rate, although the initial
observation by Raman and Krishnan of this phenomenon was done with
much weaker conventional light sources requiring long integration times
to obtain a spectrum.
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The parametric dependence on of the electronic wave functions leads
to an -dependent evaluated between the nuclear wave functions
and, to a first approximation, upon taking out of the integral an average
value of we are left with an overlap of the initial and final nuclear
wave functions.

As shown in Fig. 6.11, between any two electronic states, an overlap
between the nuclear wave functions picks out groups of final vibrational
states for any given initial one, the vibrational wave functions being
non-negligible only over a small range of (the classically allowed re-
gion for the eigenfunctions in the potential well). Thus, an electronic
transition is accompanied by several possible vibrational (and rotational)
transitions giving rise to a “band spectrum”. With the electric dipole
selection rules already accounted for from the electronic wave functions,
no other constraints are necessary on changes in and J apart from
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the consideration of overlap, the squared overlap a measure of the corre-
sponding intensities. In particular, transitions are allowed, not
otherwise seen in pure rotational spectra (Section 6.3.1). The squared
overlap, is called the Franck-Condon factor. The approxima-
tion involved in (6.29) expresses an attendant “Franck-Condon princi-
ple” which, in conformity with the Born-Oppenheimer scheme, rests on
the big disparity in the time scales of electronic and nuclear motion.
These characteristic times being approximately and re-
spectively, the nuclei are essentially frozen so that does not change
during an electronic transition. This leads to the “vertical transitions”
depicted in Fig. 6.11. Note that, as in the example shown, it can hap-
pen that the vibrational transition is not seen, only transitions
involving changes in the vibrational quantum number. One consequence
of this is shown in Fig. 6.12. When is illuminated (“pumped”) with
the 514.5 nm line of Ar, a high vibrational level, is populated.
The resulting “population inversion” relative to vibrational levels from
9 to 56 on the ground electronic state can give rise to stimulated laser
radiation.
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If the upper states that are reached lie above the dissociation limit
(as in the left band of Fig. 6.11), the molecule may dissociate during
the photoabsorption. Measuring the translational kinetic energy of the
photofragments can provide information on the molecular potentials.
“Direct photodissociation” is illustrated in Fig. 6.13(a). Since motion
along is faster than the time for spontaneous radiation back to the
lower electronic potential well, such absorptions lead to molecular disso-
ciation. The ion, important in interstellar gas clouds, provides an
example. At low photon energies around 4 eV (300 nm), absorption from
the ground to the excited has Franck-Condon factors favoring
bound vibrational levels, and dissociation (to and H) cross-sections
are only about They have been experimentally measured in
the laboratory. The reverse radiative association,
is also important in interstellar clouds. But, at higher energies around
12–13 eV, the purely repulsive excited state leads to dissociation
cross-sections larger by three orders of magnitude. Corresponding rates
are instead of for the state. This disso-
ciation leads to and excited C atoms. Absorption of 127–175 nm
ultraviolet radiation by from the ground state to the excited
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leads similarly to the Schumann-Runge bands, dissociation to the
continuum now leading to excited which leads to the 630 nm red
line of aurorae. Absorption to other excited states such as of 160–
240 nm radiation leads on the other hand to important for the
subsequent collisional formation of ozone.

“Indirect” photodissociation processes proceed through an initial ab-
sorption to bound vibrational levels of an excited electronic state as
shown in Fig. 6.13(b)-(d) which are classified, respectively, as predisso-
ciation, coupled-states dissociation, and spontaneous radiative dissocia-
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tion. In predissociation, a third state of different symmetry crosses the
excited electronic state and non-adiabatic couplings lead to its popula-
tion, and thereby the break-up of the molecule. Examples occur in CO
and Fig. 6.13(c) differs in that the third state is of the same sym-
metry so that the coupling is stronger. CH and OH provide examples.
A series of resonances superposed on a continuum background may be
seen. In spontaneous radiative dissociation, shown in Fig. 6.13(d), emis-
sion of radiation from bound levels of an excited electronic state into a
lower repulsive state, or perhaps the vibrational continuum of the ground
state, leads to dissociation. The radiation emitted is seen as a series of
peaks. Dissociation of in the interstellar medium takes place primar-
ily through this process. In laboratory electrical discharges in the
same mechanism operates with electron impact excitation playing the
role of photoabsorption. The emitted spectrum extends from the visible
to the extreme ultraviolet. Substantial kinetic energies, as much as 1
eV, are also involved in the dissociated H atoms. Solar radiation has its
peak intensity at 500 nm, intensity at 150 nm being five orders of mag-
nitude weaker. On the other hand, the interstellar radiation field has
substantial intensity throughout the ultraviolet down to 91.2 nm. As a
result, while only the lowest-lying channels are effective in dissociation
of cometary and planetary molecules, higher channels dominate for the
same molecules in interstellar space. All photodissociation calculations
are very sensitive to the molecular potentials.

Rotational fine structure can be seen under higher resolution on each
vibrational transition. As in pure rotational spectra, the same designa-
tion of P, and branches is used, whether in absorption or emission,
according to whether the lines lie lower in frequency, at the frequency,
or higher than the pure vibrational transition with With non-

electronic states, the interplay between electronic angular momentum
and the angular momentum of the internuclear axis complicates analysis
of the rotational structure. Different coupling schemes between the two
angular momenta, called Hund’s coupling cases, need to be considered.
One manifestation of the interaction, that is, of the coupling between
the magnetic moments due to the two angular momenta, is to split each

state, giving rise to and pairs of closely lying lines
with separations less than In Hund’s case (a), the electronic or-
bital and spin momentum are coupled strongly to the internuclear axis,
so that and are good quantum numbers. In Hund’s case (b), the
spin uncouples from the internuclear axis so that is not defined. All

states and states belong to case (b).
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3.5 External field effects on molecular spectra
The Zeeman and Stark effects of static magnetic and electric fields,

respectively, in molecules are analogous to those in atoms. In particular,
for a molecule with nuclear spin zero, the only magnetic moment to
couple to an external magnetic field B arises from molecular rotation
and leads to changes in energy given by first-order perturbation theory,

where is the Because of the nuclear masses involved, the
energy change is generally very small.

The Stark effect can be more important in molecules than in atoms
because the former can have permanent electric dipole moments. Thus,
polar molecules such as can show the linear Stark effect whereas
atoms with the exception of excited states of hydrogen do not (Section
3.2.3). For such a molecule with we have

States with or hornonuclear diatomic molecules display only a
quadratic Stark effect just as in atoms.

The Zeeman effect also leads to magneto-optic rotation and circular
dichroism. In the first, the plane of polarization of light is changed un-
der transmission through a molecular gas whereas in dichroism, the gas
exhibits different refractive indices for left and right circularly polarized
light. Both arise because the Zeeman effect changes the (right
circularly polarized) and (left circularly polarized) transition
frequencies. As a result, because of dispersion, the corresponding refrac-
tive indices are slightly different. Magnetic circular dichroism is used
in spectroscopy to untangle complex spectra, particularly those of large
molecules.

3.6 Collisional processes
Molecules can also be excited or de-excited by collisions with electrons,

ions, or neutral species. If is the number density of such projectiles and
their velocity, then the rate of any transition is given by

where is the cross-section for the process. In general, the product is
averaged over the distribution (often thermal) of collisional velocities.
Such processes are critically important in astrophysical clouds, the most
important being rotational excitation through low energy collisions with

and H. Unlike radiative processes, collisions are not subject to strict
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selection rules although “propensity rules” govern which transitions are
more probable.

For the low kinetic energies that prevail in interstellar clouds, scatter-
ing cross-sections can be obtained either through a complete scattering
analysis or often through some simpler approximation schemes (Section
2.3). Thus, if the interaction between projectile and molecule is weak,
the Born approximation is used. This is an instance of first-order per-
turbation theory, the transition matrix element evaluated by integrating
the interaction multiplied by the initial and final state wave functions of
the projectile and target:

where plane waves describe the incident and scattered projectile with
coordinate r, and represents collectively all the other coordinates. The
cross-section for projectile scattering into a solid angle element is

with M the reduced mass of (projectile + target).
The interaction in the case of collisions with electrons and

positive ions is the Coulomb potential between the projectile and the
electrons and nuclei in the molecule. On the other hand, in the collision
between two neutral systems A and B that themselves carry electron
clouds, one can trace the interaction from separated to united atom
limits much as in Section 6.2.1 and follow along such a potential curve
the evolution in of the system from infinity to the distance of closest
approach of A and B. At large the most dominant term in the po-
tential is the van der Waals potential proportional to where

and are the electronic polarizabilities of the two molecules. This
expresses the interaction between the electric dipole moments induced
in each molecule by the other. In the analysis of cold collisions, other
terms involving powers and are superposed on the dominant

these often obtained semi-empirically by fitting to experimental
data.

4. Astrophysical Applications
Whereas absorption and emission by atoms and positive ions has been

studied since the beginnings of astrophysics in the 1860s, the study of
molecular species is more recent. Given the dominant abundance of hy-
drogen in the universe, although it could always have been expected that
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its molecular form of would be a major species, the lack of an electric
dipole moment of this symmetric molecule makes its direct observation
difficult. The first molecular observations in 1937 were, therefore, of
CH and later also CN. The high abundance of sometimes
comparable to CH in many molecular clouds, is a puzzle given more
loss mechanisms through collisions such as and

This suggests additional sources for its for-
mation, possibly from shock-heated or otherwise excited through

Both CH and are detected through
narrow absorption lines in the spectra of several stars (Fig. 6.14), CH
also in the ground state doublet transition of 9 cm in the radio region.
For the former lines shown in Fig. 6.14, the Franck-Condon factors are
such that only is observed. These species are widespread in
the galaxy and found towards H II regions and in optically dark nebu-
lae. Semiclassical rate coefficients for their formation through radiative
association in cold clouds (100 K) are approximately for

and for CH
is also seen as a weak maser (Section 7.3) in Orion clouds with column
densities of CH and are also seen in comets.

It is estimated that something like 4% of interstellar hydrogen is in
the form of the molecular form dominant in the interior of dense
clouds where the molecules are shielded from ultraviolet radiation of
wavelengths shorter than 91.2 nm. These wavelengths are absorbed by
atomic hydrogen, producing H I regions on the outside of such clouds.
But wavelengths between 91.2 and 101.7 nm can be absorbed into dis-
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crete vibrational levels of excited electronic states of followed by emis-
sion into the vibrational continuum of the ground electronic state. This
is the dominant destruction mechanism of (Section 6.3.4). Rocket
flights of the early 1970s were needed to see such absorption bands of

around 100 nm. Up to eight Franck-Condon transitions are seen in
the 110 nm absorption The infrared rotational spectrum
of is not seen but weak quadrupole rotation-vibration bands occur.
Thus, from the object NGC 7027, the transitions between
0.9 and have been observed. Only ortho hydrogen (odd J val-
ues) is seen, indicating temperatures greater than several hundred K. A
spectacular example from a superluminous galaxy NGC 6240 is shown
in Fig. 6.15. Another indirect evidence is the observation of CO in radio
wavelengths (the transition is at 115 GHz or 2.6 mm),
these emissions due to excitation of rotational levels in collisions with

thereby allowing the density in such dark clouds to be inferred.
Interstellar clouds come in two types, dark and giant, the CO lines more
intense in the latter. Typical densities are in both. A giant
cloud of 10 pc diameter, with one CO would have a total
mass of and there are at least a hundred such clouds in our
galaxy. Isotopic differences between and are manifest in
their spectra. The weakness of the 21 cm radio line of atomic hydrogen
in regions of high obscurity is yet another indirect pointer to hydrogen
being in molecular form.

Thermal excitation of the lowest five rotational levels of by the
primordial cosmic background radiation has also been noted from the
same gas clouds mentioned at the end of Chapter 1 with cosmic red-
shift This indicates a prevailing temperature of about 9 K at
that epoch.

Similar to CO is the molecule CS, its transition at 147
GHz also seen in the radio spectrum. The CN molecule with
a dipole moment of 1.45 D is another important species, its
2.65 mm line in the ground electronic and vibrational state having a
transition probability of Such millimeter wave transi-
tions are strongly influenced by the 2.8 K cosmic black-body radiation
that pervades the Universe. Indeed, that this CN transition was seen
in absorption against the general background, or that absorption from
J = 1 at 387.46 nm relative to that from J = 0 at 387.4 had appreciable
ratios of nearly (as against an expected 0.03 based on typical interstel-
lar conditions), thereby indicating substantial population of the J = 1
state, were early indicators of the presence of this background radiation
although not initially recognized as such.
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Another important diatomic molecule is OH, first seen in its 18 cm
radio wavelength transitions in the early 1960s. As shown in Fig. 6.16,
each rotational state is split by and further into pairs of
hyperfine levels. All four transitions are seen in dark interstellar clouds,
including in maser emission (Section 7.3).

The diatomic molecules NO, and their ions are important in
our atmosphere and in other planetary atmospheres. In the so-called
E-layer of the ionosphere (90–130 km), and are the main ions
(the former during day time and the latter at night), whereas in the
higher F-layer it is predominantly The formation of atomic O is of
interest, either through dissociative recombination, or
through collisions with any molecule XY whose ionization potential is
lower than oxygen’s (such as or NO), Since
densities of XY decrease with latitude and are low in the F-layer, the ef-
fective recombination decreases with latitude in the F-layer while being
essentially independent of it in the E-layer. The dissociative recombi-
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nation coefficients of and are all of the order of
at room temperature. A more important loss mechanism for at

altitudes less than 200 km is through this being
also the major source of Because NO’s ionization energy of 9.4 eV
is lower than that of other atoms and molecules, once is formed, it
cannot lose its charge through or

and it therefore builds up. Below 100 km, the photoionization
of NO is important, (10.17 eV) penetrating this far and sufficient
to ionize NO but not Thus, at 80 km, their density ratio is about
50.

At altitudes above 150 km, about half the produced by photoion-
ization is in the metastable and states with enough energy to
produce through whereas the other half
in the ground state can only produce . Subsequent electronic
excitation of to followed by the re-radiation

is responsible for the 630 nm red line of aurorae. Other transi-
tions arising from that are seen in the atmosphere

include (436.8 nm) and (130.4 nm). The
557.7 nm produces the green glow at 300 km. It has also
been seen recently from the dark side of Venus, attributed to photodis-
sociation of on the sunlit side, with the 0 transported by winds
and then collisionally excited by about 4 eV to the state. The 732
and 733 nm decays of are also seen in the ionosphere. Pho-
toionization of and O in the ionosphere also produces which
is removed by The nearly resonant process
(ionization potentials differ by 0.02 eV) has a rate
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coefficient (product of cross-section and velocity) of
at in the ionosphere.

Problems

Construct the molecular orbital configuration and the quantum num-
bers of the ground electronic state of (a) CN, (b) CO.

Using atomic orbitals, and evaluate the
expectation value of the Hamiltonian for the molecule as a func-
tion of the inter-nuclear distance to construct Fig. 6.1. Evaluate
explicitly the splitting at large

Use the entries in Table 6.2 to estimate the temperature at which one
can expect 30% of the molecules in a sample of the gas to be in
the first excited vibrational state.

As in Problem 6.3, at what temperature will half of the molecules be
in the first excited rotational state?

Inter-relate the entries in the third and fourth columns of Table 6.2
for the isotopic partners HD, and by using the masses of the
nuclei involved.

Considering the parameter a in (6.20) to be small, expand to match
the quadratic term in (6.10). Evaluate the effect of the next term in
the expansion perturbatively.

Use the entries in Table 6.2 to estimate the number of rotational
levels of LiH between the ground and first excited vibrational levels
of that molecule.

From adjacent vibrational Raman lines at 267 and 343 nm, estimate
the fundamental vibrational frequency of the molecule.

Given that the intensities of alternate rotational Raman lines are in
the ratio 1:2, identify whether the molecule involved is or

Determine the moment of inertia and the internuclear distance of the
molecule, given that the first rotationally excited state lies

above the ground state. Evaluate the corresponding excitation
in

The potential energy wells for different isotopes of the same
molecule are the same, while vibrational and rotational energy levels

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

6.10

6.11
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and dissociation energies vary. Given that has a dissociation en-
ergy of 4.48 eV and a vibrational energy spacing of 0.54 eV (assuming
a harmonic oscillator well), calculate the dissociation energies of HD
and

The band spectrum of shows an alternating intensity ratio of
3/5. What is the spin of the nucleus? Explain.

A diatomic molecule has identical spinless nuclei. Do you expect to
see a pure rotational spectrum? Will the molecule exhibit a rotational
Raman spectrum? Will your answers differ if the nuclei were not
identical?

For ortho and para deuterium provide the parallel analysis of
the rotational spectra to that given for at the end of Section
6.2.7.

6.12

6.13

6.14



Chapter 7

POLYATOMIC MOLECULES

1. Introduction
The diatomic molecules considered in Chapter 6 are the major con-

stituents and have the dominant role in astronomically relevant molecu-
lar physics. However, many more complex molecules, starting with the
triatomic and and and continuing to very large
organic molecules, also have important roles and will be the object of
our study in this chapter. Many of the basic ideas have already been
introduced in the previous chapter and we will focus on the additional
specific features that are relevant to polyatomic molecules.

Structure and Spectra of Polyatomic Molecules2.

2.1 Born-Oppenheimer approximation and
electronic structure

The Born-Oppenheimer adiabatic separation of electronic motion from
that of the nuclei (Section 6.2.3) continues to be central to the study of
polyatomic species as well, and for the same reasons. The electrons,
being much lighter, move faster than the nuclei so that the quantum
mechanics of electronic motion can be viewed against the backdrop of a
fixed geometrical arrangement of the nuclei which provide the Coulomb
attractions to the electrons. Also common to the study of polyatomic
and diatomic molecules is the concept of molecular orbitals that the
electrons occupy, these playing an analogous role to that of Bohr eigen-
functions for atoms. The major difference between a diatomic molecule
and a more complicated polyatomic one is that a single variable and
cylindrical symmetry about one axis no longer suffices (although cylin-
drical symmetry still pertains to linear molecules such as O-C-O). The

207
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nuclei are arranged in more complicated geometries and one has to con-
sider the symmetries of these configurations under rotations with respect
to various axes and reflections in various planes. This study, also rele-
vant to crystal structure, has a long history and goes under the name
of discrete or point group symmetry [50]. It lies outside the scope of
this book but we merely note that such systematic classifications and
descriptions exist. As a simple example, the fixed linear arrangement of
two oxygen atoms symmetrically on either side of the central carbon in
the molecule makes this molecule invariant with respect to rota-
tions through 180° about a perpendicular axis through the carbon and
various reflections through horizontal and vertical planes with respect
to the axis of the molecule. The triangular molecule, on the other
hand, has other symmetries such as rotations through 120°.

Since the in (6.5) commutes with the various symmetry opera-
tions characterizing the molecule’s point group symmetry, the electronic
wavefunctions can be labeled by the symmetry of each configuration.
They are typically indicated by etc, each characterized
by the eigenvalues corresponding to the various symmetry operators of
rotations and reflections. By their very nature, reflections always have
eigenvalues ±1. Rotations through 180° also have eigenvalues that take
only the two values ±1 so that in a molecule such as these and

are a collection of ±1 labels. On the other hand, has some eigen-
values These labels, termed characters, and character tables
for each point group symmetry, are available and every molecule can be
assigned based on geometry its particular symmetry and corresponding
sets of characters. The molecular orbitals are correspondingly built to
have the same symmetries and labeled etc. For linear
molecules, since the projection on the axis remains a good quantum
number, the same labels of diatomic molecules are used, as
well as and u if the molecule (such as has a center of symmetry.
Each of these molecular orbitals can hold two electrons of opposite spin
projection, and orbitals of the same symmetry but increasing energy are
denoted etc. Thus the ten electrons of occupy the

configuration where is mainly the
a bonding combination of and a

and a non-bonding These are the counterparts
of the symmetry orbitals discussed in Section 6.2.1 for

Starting with atomic orbitals on each nucleus, one constructs linear
combinations for the molecular orbitals with the appropriate symme-
tries. In the case of the molecule, the construction in the previous
paragraph employs, therefore, the seven atomic orbitals:

bonding and again a combination of and
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and As in the case of atoms in Section
1.4.4, a Hartree-Fock or self-consistent field (SCF) calculation, possibly
with multiple configurations (MCSCF), is carried out by taking these
linear combinations of atomic orbitals (LCAO) and diagonalizing in
that set of basis states. The resulting eigenvalues and eigenfunctions
provide the molecular orbitals. Even with a single configuration, such as
in the example above with seven basis functions, more molecular orbitals
are derived than are occupied in the ground or even low-lying excited
states. Thus, of the seven, only the five lowest, and

are occupied in and two are unoccupied “virtual orbitals”.
They may be employed to describe excited states although any change
in electronic configuration typically leads to rearrangement of all molecu-
lar orbitals. The atomic orbitals in such calculations may be hydrogenic
(called “Slater orbitals”) or, for ease of multi-center integrals, replaced
by Gaussian functions with an form in place of

Such ab initio calculations become very cumbersome for medium or
large-sized molecules and various semi-empirical methods have been used
instead. With the inner electrons and nucleus of each atom described
as a simplified “core” and providing a “pseudo-potential” for the other
valence electrons (empirical valence ionization potentials used to fit pa-
rameters describing the core model Hamiltonian), and further approxi-
mations, such methods under the names “complete neglect of differential
overlap” (CNDO), etc., are available as complex computer programs for
the determination of the electronic states of molecules.

Electronically excited or ionized states of polyatomic molecules are
also considered analogously. Photoelectron spectroscopy, which moni-
tors the energies of emitted photoelectrons, is useful for mapping such
electronic states. Fig. 7.1 shows the photoelectron spectrum of the wa-
ter molecule, with three distinct groups of electron kinetic energy, each
with additional vibrational structure superposed. From the

ground state of ionization out of the
orbital (ionization energy 12.62 eV) to leave behind the . . .

ground state of accounts for the extreme right peaks in Fig.
7.1, whereas ionization out of arid orbitals, respectively (with
ionization energies 14.7 and 18.6 eV), accounts for the two higher energy
groups of ejected electrons. The last of these states is unstable with re-
spect to the dissociation so that the vibrational peaks
are diffuse and broadened.

An important class of electronic excitations is when an electron in the
outermost orbital is excited to a Rydberg orbital, thus the in to

etc., with As in atomic Rydberg states, the outer excited
electron moves for the most part in the Coulomb field of the ion, and
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energies are described by the Rydberg formula (1.25) with a quantum
defect that depends on the value of the excited electronic state and
its symmetry. Thus, in the first ionization energy is 12.62 eV

and describes the Rydberg states
while provides the energies of the series. Rydberg
states occur both in diatomic and polyatomic molecules. Indeed, series
in measured to very large are the basis for determining its ionization
potential to great precision.

Other topics that make the study of electronic states in polyatomic
molecules more complicated than in atoms or even diatomic molecules
include coupling between vibration and electronic wave functions called
vibronic coupling. Vibrations can distort even the geometrical struc-
ture and, therefore, symmetry of the electronic state. The absorption
spectrum of even a simple molecule like the same absorption re-
sponsible for the characteristic “smog” of urban atmospheres is
a major component of car exhausts), is complex because of such an
entanglement of upper electronic states with high vibrational levels of
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the ground state. The vibronic coupling and the large density of states
in polyatomic molecules also leads to radiationless transitions. Thus,
not all the radiation energy absorbed is re-emitted as fluorescence, only
about 30% in benzene even at low pressures. At higher pressures and in
the condensed phase, some of the energy is trapped (a change from sin-
glet to triplet states often plays a role) to be re-radiated with a time de-
lay, a phenomenon called phosphorescence while some never re-emerges
as radiation, the molecule giving up that energy in collision or other
radiationless processes.

Yet another phenomenon goes under the name of the Jahn-Teller ef-
fect which arises from a nonlinear polyatomic molecule not having an
equilibrium nuclear configuration for an orbitally degenerate electronic
term. Such an orbital degeneracy can arise from molecular symmetry.
Thus, in benzene excitation of an electron from the highest occu-
pied molecular orbital is to a orbital and gives two orbitally degenerate
electronic terms. These terms cannot then have the regular hexagonal
symmetry of equilibrium The lowest energy is achieved for a
geometry that departs from the regular hexagon which removes the ex-
act degeneracy of the two molecular orbitals and thus gives an orbitally
nondegenerate electronic term.

2.2 Rotation of polyatomic molecules
and spectra

As with diatomic molecules, in the Born-Oppenheimer approxima-
tion, the total wave function of a polyatomic molecule is a product of
the electronic wave function described above and a function describing
the rotations and vibrations associated with the degrees of freedom of
the nuclei. Again, in a first description, the rotation and vibration wave
functions occur separately in product form, the same hierachy prevail-
ing that makes the associated energies differ by about two orders of
magnitude.

We will consider first the rotation. For diatomics, which have only
one axis, rotations with respect to the two perpendicular and equivalent
directions are described as a single rotor Hamiltonian (6.8) with eigen-
states in (6.9). For a general polyatomic molecule, however, with
some fixed equilibrium configuration of the nuclei (obtained by solving
the electronic motion as in Section 7.2.1), as with the rotations of any
rigid body in three-dimensional space, one has three different moments
of inertia and (with and corresponding Hamilto-
nian
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Molecules in which two of the moments of inertia are equal are called
symmetric tops while those with all three moments distinct are asym-
metric tops. In the former, if as in benzene, we have an
“oblate symmetric top”, whereas those with are “prolate
symmetric tops”. Linear molecules, in common with diatomics, with

(all mass concentrated along the axis of the molecule), are triv-
ial examples of prolate tops. Other simple examples are which
is also a prolate symmetric top and which is an asymmetric top.
An asymmetry parameter, which vanishes unless all three moments of
inertia are distinct, is often defined:

with
The operators are with respect to the three orthogonal

axes in the molecular or “body-fixed” frame. They are related to the an-
gular momentum operators in a space-fixed frame, through
the Euler angles which relate two such frames in three dimen-
sions (Fig. 7.2). The two sets of operators are given in the (Euler)
coordinate representation by

and

The total squared angular momentum
is conserved because it, commutes with With no external

fields such as electric or magnetic to distinguish any particular direction
in the space-fixed axes, also commutes with the Hamiltonian and,
correspondingly, M is a good quantum number.
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It is convenient also to refer to quantum numbers in the body frame.
Consider first a “spherical top” with although it is
not applicable to most molecules. now also commutes with and
a corresponding quantum number can be assigned.
The energy eigenvalues are with wave functions

and degeneracy Next consider a symmetric top in which two
moments of inertia, say a and b (oblate), are equal, c being the symmetry
axis. The Hamiltonian (7.1) can be written as

and commutes with so that again K can be defined as its eigenvalue.
We have, therefore,
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and eigenfunctions of the same form as in (7.5). For a prolate symmetric
top, would be replaced by Each energy now has the (2J+1)
degeneracy in M and an additional doubling of it for states
with K and –K being degenerate. The linear molecule, a special case of
prolate configurations with has only K = 0, that is, no angular
momentum about the symmetry axis, and reduces to just the first
term in (7.7), in agreement with (6.9).

For an asymmetric top, there is no convenient recasting of (7.1) as
in (7.6). Instead, one just has to diagonalize the Hamiltonian in a con-
venient basis, the symmetric top functions offering one possible choice
for such a basis, particularly when the asymmetry parameter is small.
Thus, for any J, a (2J + 1) × (2J + 1) matrix in terms of K has to
be diagonalized. Every eigenstate is a superposition of different K val-
ues. Numerical programs and tables exist for this purpose and so-called
“correlation diagrams” trace the energies from to Also,
even the energy expressions above for symmetric tops have to be cor-
rected because molecules are not rigid rotors and, as discussed for di-
atomic molecules (Section 6.2.5), centrifugal distortion and coupling of
rotations to vibrations have to be allowed for. The moments of inertia
parameters in (7.7) are, therefore, expressed as expansions in powers of

and higher order terms involving powers of J(J + 1) and
included in (7.7) with coefficients derived semi-empirically by fitting to
data.

Pure rotation spectra, arising from radiative transitions between dif-
ferent rotational states require a non-zero electric dipole d, the transition
operator being again (Section 6.3.1). Spherical tops and certain
symmetric tops such as benzene have no dipole moment and thus no
infrared or microwave rotational spectra. When d is non-vanishing, its
vector nature requires for non-zero matrix elements with functions (7.5):

the first two constraints as in Section 6.3.1, and the third new one be-
cause does not depend on If the dipole moment d is perpendicular
to the axis c (see Fig. 7.1), the dot product also involves and then

Except that K is not defined for them, polyatomic asymmetric tops
also obey the selection rules (7.8). Transitions due to dipole moments
along the axes a, b, and c connect states differing in K values in steps
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of 2. Microwave spectroscopy spans the frequency range from a few to a
few hundred GHz. Microwaves generated by a klystron are sent through
a long tube containing the absorbing gas. Since the absorption is gener-
ally weak, it is enhanced by applying an electric field which, also acting
on the dipole moment d, shifts the resonant frequency. By modulat-
ing this electric field and detecting the absorption in synchrony, very
sensitive measurements of even weak absorption are possible. Further,
the klystron being a coherent oscillator, extremely accurate frequency
determination (down to 0.01 MHz) makes such “Stark-modulation spec-
troscopy” an effective tool for determining moments of inertia and dipole
moments of molecules and thus molecular structure. Even transitions
forbidden in electric dipole can be measured, such as magnetic dipole
transitions in Use of a magnetic field in place of the electric field,
which leads to splitting of different M states, gives an analogous Zeeman-
modulation spectroscopy.

As in the case of diatomic molecules (Section 6.2.6), the interplay
of nuclear spin statistics with rotation causes intensity alternations and
anomalies but the analysis is much less straightforward. Hyperfine struc-
ture from the coupling of the magnetic (and electric quadrupole) mo-
ment of the nuclear spin to the rotational angular momentum is also of
interest.

2.3 Vibrations of polyatomic molecules
A molecule with N nuclei has 3N degrees of freedom for the motions

of the nuclei. With three of these associated with the translation of
the center of mass and three with rotations in space (two for a linear
molecule with one moment of inertia zero), there remain (3N – 6) or
(3N – 5) degrees of freedom which describe various vibrations. Thus ,
the water molecule with N = 3 has three “normal modes” as shown in
Fig. 7.3 whereas the linear molecule has the four shown in Fig. 7.4.
By symmetry, the middle two are degenerate, having identical frequen-
cies. These are bending vibrations while the other two are stretching
vibrations, the first a “symmetric stretch” and the last an “asymmetric
stretch”. The frequency of the antisymmetric stretch is larger because
the central C atom also moves, thereby contributing to the kinetic en-
ergy and, through the virial relation, also enhancing the potential energy.
Bending motions generally have the smallest frequencies, the frequencies
in being and

The analysis of the normal modes of vibration and their correspond-
ing frequencies can be carried out in terms of a set of suitable (3N – 6)
generalized coordinates the kinetic energy and the
potential energy U. This last is obtained from solution of the molecular



216 ASTRONOMY-INSPIRED ATOMIC AND MOLECULAR PHYSICS

electronic Schrödinger equation which provides the equilibrium configu-
ration and energy and also departures from that in the form

Often the equilibrium configuration and coordinates can be defined
in terms of the bond lengths and bond angles. Thus, for the pyramidal

molecule with N = 4, the six coordinates may be chosen as the
three N-H band lengths and the three HNH bond angles

so that
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the two force constants and obtained from a quantum chemistry
calculation of the electronic motion or often by fitting to vibrational
or Raman spectra. It is useful to utilize symmetries as in the above
example where the same constant is expected for each of the NH
bonds and the same for the three identical angles. A whole elaborate
technology of point group symmetries is available for this purpose built
on the symmetries of rotations and reflections for molecules having such
geometrical symmetries.

Because nuclear masses are large, a classical-mechanical analysis of
normal modes often suffices. This involves a Lagrangian constructed
from T and the U in (7.9) and a matrix diagonalization to obtain the
coordinates of the normal modes in terms of which the Hamiltonian is
of one-dimensional harmonic oscillators. The vibrational energies are,
therefore,

with wave functions as in (6.17). Thus, in the water molecule, we have
and and the zero-

point energy is Fig. 7.5 is a sketch of the ground and low-
lying excited states labeled as As with quantum chemistry
calculations for the electronic motion, tables and computer programs
are available for carrying out the normal mode analysis of even complex
polyatomic molecules. Anharmonic corrections to (7.10) arising from
further terms in the expansion (7.9) are also available.

Turning to vibrational spectra, the analysis of the matrix element of
the dipole moment d between an initial and final vibrational state is as
in other cases considered earlier. Thus, just as in (6.23) for diatomic
molecules, the dipole moment can be expanded around its equilibrium
value along any generalized coordinate

Once again, the linear term in the expansion gives the dominant contri-
bution although higher order terms in (7.11) as well as anharmonicities
in vibrations also prove important at times. But, within the harmonic
approximation of (7.9), with oscillator wave functions independently in
each coordinate the relevant matrix elements of the linear operator
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are non-zero only for An important considera-
tion, however, is that the multiplicative be non-zero for such
a vibrational transition to be exhibited. Here again, symmetries of the
molecule and the associated group theory prove helpful in determin-
ing which transitions take place. As an example, in a linear triatomic
molecule like (Fig. 7.4), the symmetric stretch clearly has
no dipole moment for any value of and the corresponding vibrational
mode is “inactive”. Since vibrational energy spacings fall in the infrared,
the usual terminology is that such a mode is “infrared inactive”. The
other two modes of bending and asymmetric stretch do have a non-
vanishing and are “infrared active”.

Infrared radiation was itself first discovered in an astronomical con-
text, when Sir William Herschel in 1800 saw the response of a ther-
mometer when placed just outside the red region of the solar spectrum.
It took over a century before infrared absorption in molecules began to
be studied. It is now an active branch of both laboratory and astronom-



Polyatomic Molecules 219

ical molecular studies. Intense infrared bands of are seen in the
atmospheres of the major planets, bands of in Venus and in
Mars. One talks of near infrared mid infrared

and far infrared regions. In the molecule
with states the is inactive but transitions and

have frequencies and respectively, that
is, wavelengths 15 and Generally, with the ground state having
the highest occupancy, these transitions involving the ground
vibrational state and one unit of excitation are the strongest, and are
called fundamental frequencies. The 001 and 100

levels are the basis of the laser. When mixed with whose
molecules are excited by an electric discharge, collisions between and

populate the 001 level, thus creating a population inversion from
which stimulated emission at is possible (Fig. 7.6).

Superposed on vibrational transitions is rotational fine structure, which
is analyzed as in Section 7.2.2. The resultant close grouping of lines gives
rise to “bands” as observed. Thus, for symmetric tops, any allowed
vibrational transition changes the dipole moment along the symmetry
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axis or in one of the directions perpendicular to it. For the “parallel”
vibration-rotation transition, the selection rules on J and K are as in
(7.8) for pure rotation spectra:

For the perpendicular transition, on the other hand,

For asymmetric tops, the changes in rotational quantum numbers are
as before in Section 7.2.2, with K changing in steps of 2 and
Vibration-rotation absorption between 100 and in 1000
and in and 1300 to and below in

all contribute to the greenhouse effect of the Earth’s atmosphere.
A linear polyatomic molecule has a ground electronic state and is

a symmetric top with K = 0. As a result, for the parallel
vibration-rotation band and for the perpendicular band. In

changes the dipole moment component along the symmetry axis
and is hence a parallel band whereas changes perpendicular to the
symmetry axis, forming a perpendicular band. The latter shows all P,

and branches whereas the branch is absent in the
parallel band. Rotational substructure on the transition
mentioned above gives rise to a group of transitions around
thus providing partial tunability of the laser.

Again, as for diatomic molecules, Raman spectroscopy is an important
and useful adjunct to pure vibration-rotation spectra. Since Raman
transitions are due to the induced dipole moment by the electric field of
the radiation, it is the polarizability a rather than the permanent dipole
moment, and changes in that govern the transitions. Complementary
information is provided so that, for instance, the symmetric stretch in

which has and is infrared inactive is Raman active. Similarly,
in the tetrahedral molecule, which has one nondegenerate vibration

one doubly degenerate and two triply degenerate
vibrations, only and are infrared active but all four are Raman
active. Molecules with a center of symmetry obey a “rule of mutual
exclusion”, infrared active modes being Raman inactive, and vice versa.
This is because such molecules have the inversion through the center as
a good symmetry so that states are either or u under it. The electric
dipole operator is u (a vector) whereas the polarizability is so that no
pair of states can have simultaneously non-vanishing values for both.
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2.4 Degeneracies and rovibronic couplings
Even for the simplest polyatomic molecule, our discussion so far in

terms of a product wave function of electronic, vibrational, and rota-
tional motions is only approximate, although it provides the basic un-
derstanding of the electronic and nuclear motions. Couplings between
these, arising from anharmonicities in the vibrations of the nuclei or cen-
trifugal distortions, as well as the entanglement of electronic with nuclear
degrees of freedom as, for instance, when vibrations even change the ge-
ometrical arrangement of the molecule, complicate the discussion. In
particular, the presence of degeneracies which have already been noted
has the implication that the corresponding states may be mixed by any
additional coupling no matter how weak. The full wave function is a
“rovibronic” function, its factorization as a product of rotational, vibra-
tional and electronic functions only an approximation.

A first example is in linear molecules such as where the two bend-
ing modes and are degenerate (Fig. 7.4). With the molecular
axis, these vibrations in the and planes are like two orthogonal
simple harmonic motions of a pendulum in and in Equivalently,
such a two-dimensional pendulum can be viewed in circular coordinates
(the familiar conical pendulum or Lissajous figures) with an angular mo-
mentum in an angular coordinate Although these
are the conventionally used symbols, they should not be confused with
the electronic angular momentum or the azimuthal coordinate of nuclear
rotation in Section 7.2.2. The terms and here refer purely to the vi-
brational motions orthogonal to the molecular axis. In a state with such
a vibrational angular momentum interactions of the bending with the
rotation of the molecule gives a rotational energy as in (7.7) but with
replacing

with A the inverse of the moment of inertia of the nuclei about the
molecular axis for the degenerate vibration.

Each rotational level undergoes the two states
and forming the superpositions under the in-
teraction between rotation and vibration, and having slightly different
energies. Thus, in HCN, with and vibration frequency

the splitting is 112.2 MHz. Tran-
sitions between the levels of any doublet are dipole allowed, leading to
microwave absorption, the levels themselves indicated by
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Exact degeneracy is not necessary for such mixings by weak coupling
terms, and near-degeneracies can suffice. Thus, in is very close
to with the consequence that states with the same value of
are nearly degenerate and mixed by anharmonicities or other couplings.
This is called a Fermi resonance. A similar example obtains in benzene, a
stretching C-H vibrational frequency lying close to the sum of two other
vibrational frequencies. This gives rise to two strong bands at 3099 and

In larger molecules, with more vibrational frequencies, such
accidental near degeneracies are more common and this phenomenon,
therefore, quite ubiquitous.

Another spectacular example of degenerate configurations, leading to
a so-called “inversion doubling”, is provided by molecules such as
with two equivalent pyramidal configurations, the N atom on one or the
other side of the plane formed by the three H atoms. The two con-
figurations are separated by a potential barrier of
kcal/mole), the maximum energy corresponding to the N lying in the
plane of the H atoms. As in other such examples, starting from the
initial one (Section 6.2.1) of binding (with two protons separated
to infinity and an electron bound to one or the other providing two de-
generate configurations), the same basic quantum-mechanical theme of
physical eigenstates being the plus/minus superpositions obtains, any vi-
brational state of being split into two states
The two levels are split by an energy representing the tunneling of the
system between the two configurations I and II. In it is an electron
that tunnels over atomic-scale distances so that the splitting lies corre-
spondingly in the eV range. But in with the entire massive N atom
having to tunnel through the intervening barrier, the splittings are con-
siderably smaller, approximately 24 GHz (wavelength = 1.25 cm) for the
ground vibrational state. Indeed, in most molecules with two equivalent
geometrical configurations of this type, the barrier is so large relative
to the vibrational energy that the tunneling probability and, therefore,
doublet spacing is quite negligible and the molecule can be considered
effectively frozen in one of the configurations, but in there is an
appreciable effect.

In the JWKB approximation, the splitting of a vibrational level of
frequency is given by

where is the reduced mass (of N relative to the three H) and the integral
runs between the turning points defining the classically forbidden region
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Fig. 7.7 gives the doublet structure of the rotational spectrum
of With the rotational constant B approximately 298 GHz, the
doublet splitting of 24 GHz is an order of magnitude smaller
than the spacing between successive rotational levels. The energy levels
are well represented by MHz.

One important application of the doublet spectrum is that it
serves as the basis for a maser (microwave amplification by stimulated
emission of radiation). Population inversion between any two levels,
such that the upper energy state has a higher population, can give
rise to amplification of radiation, stimulated emission from the upper
level dominating over absorption from the lower. The first maser was
demonstrated by Townes and by Basov and Prokhorov in the ammonia
molecule, followed soon after by hydrogen masers operating at 1420 MHz
between the F = 1 and F = 0 hyperfine levels.
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3. Astrophysical Applications
Besides the various diatomic species considered in Section 6.4, a large

number of polyatomic molecules have been seen through their microwave
spectral lines in interstellar space. These include

etc. Indeed (n = 5, 7, 9, 11) were unfamiliar in the
laboratory but seen in radio astronomy. Similarly, ethynyl has not
been studied in its gas phase in the laboratory whereas astronomical data
has given its rotational, spin-doubling, and hyperfine constants. The

transition in HCN at 87 GHz and six transitions with and
in at 110 GHz, at 89.2GHz,and at 93.2

GHz are examples of prominent lines in radio astronomy. Negative ions
of interest are and in the Earth’s ionosphere. Even very
large molecules such as poly aromatic hydrocarbons (PAH) have been
seen as infrared emission bands of planetary nebulae, H II regions, and
extragalactic sources, whereas a number of nebulae show broad emissions
at attributed to silicon carbide grains.

Among triatomic molecules, is important in the Martian atmo-
sphere, being the main component up to 200 km (O after that). Its
photoionization and are followed
rapidly by processes producing and

A particularly interesting molecule is and its ion the three
protons arranged in the form of an equilateral triangle with internuclear
distances of 0.87 Å, slightly larger than the 0.74 Å separation in [57].

is a simple and stable species, the major ion in high pressure electric
discharges in gas through the rapid reaction
H. Similarly in astrophysical clouds, with the often due to initial
ionization of by cosmic rays. The reaction has a large rate

and can be viewed as a proton hopping from H with proton
affinity 2.7 eV to with the larger 4.4 eV proton affinity. Although
known since its discovery by J. J. Thompson in 1911, the spectrum
was first observed only in 1980 and its abundant existence seen first in
an astronomical context. Thereby, it joins its fellow two-electron species

(Section 2.4) in its importance in astronomy. It is abundant both
in dense and diffuse clouds. It is present
substantially in the ionosphere of Jovian planets and plays a pivotal
role in interstellar ion-molecule chemistry, forming column densities of

in these clouds. Both in Jupiter’s atmosphere, as well as
later in those of Uranus and Saturn, and in interstellar clouds, vibration-
rotation emission lines have been seen. Indeed, infrared lines at

from gave the first evidence for substantially higher temperatures
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near Jupiter’s poles than had been expected. Jupiter also
shows strong emission from the upper reaches of its atmosphere.
With few other molecular spectral lines in this region, is readily
observed with infrared telescopes. has also been observed in the
supernova SN1987A, two strong emissions at 3.41 and having
been attributed to thermal emission from at 1000–2000 K. Lacking
an electric dipole moment, its pure rotational spectrum is forbidden,
although the isotopic partner does possess such a spectrum and
a line has been reported in the NGC 2264 molecular cloud. Having no
bound excited electronic states (again as in ), it has no visible or
ultraviolet spectrum.

The reaction is important for the deuterium
fraction in interstellar clouds, the ratio D/H being approximately
in the interstellar medium (Fig. 1.7). The primordial deuterium fraction
in the early Universe, when the equilibrium ratios of these light nuclei
were fixed, is a key parameter for cosmological models, being very sen-
sitive to the baryon density. plays a central role in the chemistry
of interstellar clouds. Its low proton affinity means that it readily pro-
tonates other atoms and molecules:

and These ions then initiate
a whole sequence of chemical reactions such as

and
etc. Astrophysical detection of

and laboratory measurement of the microwave spectrum
have given key evidence of the chemistry of ions in clouds. The similar
process, is also important.

Besides the above collisions with CO and is also removed by
dissociative recombination, or with a rate

the reaction interesting in that the electron is
captured into a high Rydberg state, followed by a sequence of transitions
into higher lying vibrational levels from which predissociation occurs to
a repulsive potential curve of Detailed laboratory observations have
been made recently.

In recent decades, astronomical masers have been of great interest
[58]. A key parameter characterizing radio observations of them is the
antenna temperature defined as follows. The power radiated per unit
area by a cloud is given by the Planck expression
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which reduces for to the Rayleigh-Jeans value of
as the energy radiated per unit solid angle. An ideal antenna of radius
a at a distance from the cloud intercepts the solid angle
subtended by the antenna at the cloud being Therefore, the
power incident upon the antenna is

the to express an effective area. The antenna temperature,
defined as the power per unit bandwidth divided by the Boltzmann
constant equals the thermal temperature T only in the Rayleigh-Jeans
limit. Otherwise, for an object of angular size so that the surface area
is the antenna temperature and brightness temperature
are related by

A 100 m telescope operating at 3 cm wavelength or a 10 m telescope
at 3 mm have resolutions of The angular size of a cloud of diameter
100 A.U. at 1 kpc is so that K, and only a maser can
account for such a high brightness temperature. This was indeed how
the first astronomical masers in OH were identified in 1965 from the
direction of several H II regions. VLBI (Very Long Baseline Interfer-
ometry) observations two years later established that the emission came
from spots only a few milli-arc seconds across, implying brightness tem-
peratures of Masing has been seen for all four transitions in Fig.
6.16. Later, masers were seen, some emitting a solar luminosity in
a single spectral line (1.35 cm or 22 GHz of the rotation transi-
tions), only 50 kHz in width. Both OH and masers have been seen
from other galaxies as well. SiO and (over 20 masing lines) have
also been seen as intense masers from Orion (500 pc). HCN and
are other molecules exhibiting astronomical masing, several inversion
doublets of (Fig. 7.7) seen as masers.

Strong maser activity seems to be from regions of gas density
higher than normally found in giant molecular clouds, perhaps

from condensations in the interstellar medium near very luminous O or
B stars which pump the molecules to the upper state. There are also
stellar masers associated with M-type red giant or infrared stars, formed
in the outer regions of the photosphere. Interstellar masers are taken to
be indicators of active star formation. Thus NGC 6334 which is about 20
pc in size has several and OH masers. The masers appear first,



Polyatomic Molecules 227

persisting for roughly years, the OH masers lasting until the ionized
region expands beyond cm after which densities and excitation are
not sufficient for masing. Observation of masers provides maps of veloc-
ity fields across the source, both low and high

features being seen. Polarization of the masing emission probably
arises from the Zeeman effect, indicating fields of 10–100 Gauss. Besides
such information on local conditions in the interstellar medium in the
masing region, proper motions of the masers can be used to determine
distances to these sources both within our galaxy and in others. Such
direct measurements of galactic (thus the center of the galaxy has been
located at 7.1 ± 1.5 kpc) and intergalactic distances are of great cosmo-
logical interest since they are independent of the complicated hierarchy
and standard candles otherwise used for distance indicators on this scale.

Problems

How many rotational and how many vibrational degrees of freedom
does the molecule have?

Ignoring nuclear spins, which of the following molecules are polar and
which are paramagnetic?

What are the eigenvalues and eigenstates of a symmetric-top Hamil-
tonian, (7.1), with Sketch the low-lying states of the
spectrum for such an oblate symmetric top.

For the asymmetric-top Hamiltonian in (7.1), find the eigenvalues
when the angular momentum of the system is (a) 1 (b) 2.

7.1

7.2

7.3

7.4
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Index

21 cm line, 34, 36, 202

absorption coefficient, 43
absorptivity, 42
acceleration form, 48, 64
accretion disk, 131
acoustic mode, 34
adiabatic approximation, 116, 151, 168,

176, 207
adiabatic index, 24, 39, 127
Ag, 29
age of Universe, 33
airglow, 175
allowed transition, 49
ammonia doublet, 222, 223
ammonia maser, 223, 226
angular correlation, 12, 16, 62, 142, 146,

151, 153
angular momentum

grand, 148, 149
rotational, 179

anharmonic correction, 183
anharmonicity, 182, 217, 221, 222
anomalous Zeeman effect, 81
antenna temperature, 225, 226
anti-Stokes line, 193
antisymmetrization, 12, 18–22, 62, 150,

see also Pauli principle
asymmetric stretch, 215, 218
asymmetric top, 212, 214, 220, 227
asymmetry parameter, 212, 214
atom, 17-30, see also hydrogen atom

hollow, 145
in ultrastrong field, 122–126
in very strong field, 126–131

atomic orbital, 10, 18, 21, 28, 205, 207–
209

atomic potential, 25, 29, 30
atomic units, 3, 70, 71
Au, 29

Auger effect, 138
aurora, 35, 52, 197, 204
autoionization, 113, 119, 135, 138, 156

lifetime, 140, 161, 166
profile, 159, 160
selection rule, 140
width, 159, 160, 165

azimuthal quantum number, 4, 71, 81

B, 18, 20–22, 33
Ba, 33, 115, 146
Balmer, 2

continuum, 46
formula, 3
series, 3, 31
spectra, 2, 131, 132

band edge, 3
band spectrum, 194, 206
bands, 189, 219, 224
baryometer, 36
Be, 18, 33
bending, 215, 218
benzene, 211, 214, 222
Bethe trial function, 38, 61
Beutler-Fano profile, see resonance
Big Bang, 30, 169
black-body, 2, 37, 42, 43, 169, 202, 225
body-fixed axes, 184, 185
body-fixed frame, 212, 213
Bohr-Rydberg formula, 14, 15, 210
Boltzmann factor, 31, 182, 188
Boltzmann-Saha equation, 31, 165
bond angle, 216
bond length, 216
bonding, 171
Born approximation, 56, 67, 200
Born-Oppenheimer, 176–178, 195, 207,

211
bosonic nuclei, 185, 186
Brackett series, 3, 37

233
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Breit-Wigner, 159
brightness temperature, 226
Bunsen burner, 2

C, 18, 33, 34, 36
61
186

224
Ca, 18, 32, 166
carbon, 18, 34, 36
Cass A, 34
center of mass, 92
centrifugal distortion, 184, 214, 221
Cepheids, 35, 43
CH, 174, 196, 198, 201

227
212
227
224
226, 227

219, 220
Chandrasekhar function, 61, 67
Chandrasekhar limit, 24
chaotic, 109
character table, 208
characters, 208
chemical potential, 24
chromosphere, 32, 42, 84
circular dichroism, 199
circular polarization, 50, 80, 131
classical trajectory, 109–111
Clebsch-Gordan coefficient, 8, 105, 150
closed orbit, 110
clouds, 36, 42, 169, 196, 199, 201–203,

224–226
CN, 201, 202, 205
CNDO, 209
CO, 181, 188, 189, 202, 205, 225

204, 207, 215, 216, 218–222, 224
collisional capture, 66
collisional cooling, 52
comet, 198, 201
complex atom, 17–30

in ultrastrong field, 122–126
in very strong field, 126–131

configuration interaction, 16, 17, 28, 29,
158, 178

conical pendulum, 221
conjugation transformation, 101, 102
continuum absorption, 63
continuum normalization, 46, 56, 57, 67,

157
Coriolis effect, 184
corona, 32, 84, 166
correlation, 11

angular, 12, 16, 62, 142, 146, 151
diagram, 214

energy, 136
radial, 17, 62, 143, 146, 153

cosmic
background, 37, 202
red-shift, 36, 202

cosmochronology, 33
Coulomb plus diamagnetic, 87, 91–113

chaos, 109
equipotentials, 96, 111, 133
resonances, 113
strong mixing, 91, 94, 97, 112

Coulomb plus Stark field, 133
covalent bond, 170–172
cross-section, 44, 46, 59, 60
CS, 202
Cu, 29
cut-off Coulomb potential, 117
cyanogen, 32
cyclotron

emission, 91, 115, 131, 133
frequency, 88
harmonic, 91, 132
orbit, 88
period, 110
radiation, 91
radius, 90, 116, 133

cylindrical gauge, 90

damping, 45, 66
dark cloud, 202, 203
Darwin term, 83
debye, 189, 202
degeneracy, 3, 6, 31, 72, 79, 84, 89, 170,

211, 220
Kramers, 78
pressure, 9

degenerate mixing, 155, 171
degenerate perturbation, 97–105
dense cloud, 224
density functional, 22, 27, 28
detailed balance, 43, 65
determinantal wave function, 21, 22
deuterium, 36, 37, 61, 106, 108, 181, 190,

191, 205, 206, 225
diagram for perturbation

basic, 72, 73
fourth-order, 85
r-th order, 74
second-order, 74
third-order, 74, 75

diamagnetic, 71, 85, 94, 98, 102–104, 106,
107, 114, 121

diamagnetic susceptibility, 54
diamagnetic Zeeman effect, 75, see also

diamagnetic
dichroism, 199
dielectric constant, 66, 114, 134
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dielectronic recombination, 66, 135, 142,
164–167

rate, 164, 166
dielectronic satellite, 166
diffuse cloud, 224
dipole approximation, 44, 49
dipole matrix element, 45, 122, 158

alternative forms, 46–48, 64
dipole moment, 45, 66, 76, 77, 187, 192,

201, 214, 217, 220, 225
dipole operator, 45, 49, 155, 187, 189, 193,

214
dipole potential, 76, 139, 152, 154
dipole state, 76, 139, 154
Dirac equation, 51, 83, 91
Dirac-Fock, 29
direct energy, 13, 28
dispersion, 199
dissociation, 190, 196, 206
dissociative  recombination,  203,  225
Doppler shift, 34–36
double ionization, 138, 161
doubly-excited state, 16, 59, 63, 135–147,

153–157, 161–166, see also au-
toionization, resonance

E-layer, 203
E1, 50, 53, 187, 193, see also electric

dipole
E2, 52, 215
Earth

airglow, 175
atmosphere, 203, 204, 220
ionosphere, 205, 224

edge
band, 3
photoionization, 46
Lyman, 46

effective charge, 10, 11, 21, 38, 119, 129,
130, 138, 147

effective mass, 114, 134
effective quantum number, 14, 21
Einstein coefficient, 43, 49
electric dipole, 49, 50, 63, 80, 122, 154,

187, 193, 214
electric field, 44, 45, 66, 70, 76, 83, 187,

192, 214
atomic unit, 70

electric quadrupole, 52, 215
electron affinity, 61, see also negative ion
electron correlation, 62, 135, 136, 142–

144, see also hyperspherical
electron degeneracy, 9, 24
electron gas, 23, 24

one-dimensional, 127
electron pair, 144, 146, 162, 163
electron trajectory, 109–111

elliptic coordinate, 176
elliptic cylindrical, 105
emissivity, 42
energy normalization, 46, 67, 157
equilibrium separation, 171, 179
ethynyl, 224
Euler angle, 146, 149, 212, 213
exchange, 13, 47
exchange energy, 13, 19, 27–29, 129
exciton, 91, 114

F-layer, 203
Fano profile, see resonance
Fano q-parameter, see resonance
Fe, 32, 36, 84
Fermi hole, 27
Fermi momentum, 23, 127
Fermi resonance, 222
Fermi-Wentzel golden rule, 44
fermionic nuclei, 185, 186
ferromagnetism, 13
Feshbach resonance, 156, 157, see also res-

onance
fine structure, 19, 36
finite size correction, 84–86
fluorescence, 211
fluorine, 20
forbidden transition, 49, 52
form factor, 57, 67
Franck-Condon, 195, 196, 201, 202
Fraunhofer lines, 1, 2

80, 91, 199
galactic center, 227
galactic nuclei, 34
galaxy, 33, 35, 36, 201, 202, 227

magnetic field, 69
gamma ray bursts, 133
gauge, 70, 88–90, 133
gauge invariance, 90
gauge transformation, 90, 101, 133
Gaussian function, 178, 209
generalized coordinate, 215–217
generalized eigenvalue, 107
generalized oscillator strength, 55–58, 67
gerade, 171
giant cloud, 202, 226
golden rule, 44
grain, 224
grand angular momentum, 148, see also

hyperspherical
eigenfunction, 149
eigenvalue, 149

greenhouse effect, 220
group theory, 218
gyromagnetic ratio, 86, see also

H, see hydrogen atom



236 ASTRONOMY-INSPIRED ATOMIC AND MOLECULAR PHYSICS

H I region, 201
H II region, 33, 34, 201, 224, 226

11, 38, 49, 60, 61, 137
doubly-excited state, 137–141, 147,

151–157, 167
ground state, 61–64
in ultrastrong field, 124, 125
one-electron model, 62
photodetachment, 63–66, 147, 157
resonance, 156, 157, 168

169, 173, 180, 181, 186, 187, 190, 198,
201–203, 205, 206, 224, 225

208–210,216–219, 226
208, 224, 225
170–174, 176, 205, 222
35, 224, 225

Hartree-Fock, 28, 29, 47, 124, 136, 209
Hartree-Fock-Slater, 29

190, 191, 198, 199, 205
HCN, 221, 224, 226
He, see helium

doubly-excited state, 140–142
triply-excited state, 143
173

Heisenberg exchange, 13
helioseismology, 34
helium

doubly-excited state, 59, 137–145,
152–156, 161–163

exchange energy, 13, 14, 19
ground state, 9–11, 38, 48
hyperspherical analysis, 147–156,

161–163
in ultrastrong field, 124–126
metastable, 51
photoionization, 48
singly-excited state, 12–16, 38, 51,

58
Hamiltonian, 10

Hermite polynomial, 89, 181
heteronuclear, 171, 185, 189, 192
hole, 18, 19, 73

Fermi, 27
hollow atom, 145
homonuclear, 171, 184–186, 188, 189, 192,

193
hot band, 189
Hubble flow, 35
Hund’s case, 198
Hund’s coupling, 198
Hund’s rules, 19, 39
hydrogen

maser, 223
molecular ion, 35, 170, 224, 225
molecule, see

hydrogen atom, 3–8, 201, 204, 225

Bohr model, 3
eigenstates parabolic coordinates,

6–8, 38, 76, 102, 105
eigenstates parity, 4
eigenstates spherical representation,

3–5, 38, 102
electron affinity, 61
excited state, 3–8, 38, 47, 58, 66, 67,

76, 77, 85, 86
expectation values, 6
ground state, 3, 38, 47, 58, 66, 67,

77, 78, 85, 86
Hamiltonian, 3, 4
hyperfine structure, 34, 223
in magnetic field, 91-113, 132
in ultrastrong field, 115–122
metastable, 51
momentum space, 8
oscillator strength, 47, 58
radial functions, 4, 5
radial quantum number, 5
scaling relations, 5, 6

hydrogen negative ion, see
hydrogenic orbital, 9, 10, 12, 13, 20
hydrogenic ordering, 17
Hylleraas, 17, 61
hyperfine structure, 34, 215, 223
hyperspherical

adiabatic, 151–155, 168
angular momentum, 148
channel, 152, 154
coordinate, 142–144, 146, 167
harmonics, 149–151
kinetic energy, 148
pair description, 162, 163
potential surface, 147, 148
potential wells, 152–155, 161
principal quantum number, 149
quantum numbers, 162
Schrödinger equation, 149

195, 196
in-out correlation, 62
inactive mode, 218, 220
independent electron labels, 137, 138
infrared, 3, 175, 188, 202, 214, 218, 219,

224
absorption, 189
active, 218
emission band, 224
inactive, 218, 220
telescope, 225

inner screening, 21
integrable system, 109
interaction line, 72
intercombination, 15
interstellar cloud, 203, see also clouds
interstellar hydrogen, 201
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interstellar medium, 198, 225, 227
inversion, 184, 186, 220
inversion doublet, 226
inversion doubling, 222
inversion layer, 91
ionic bond, 170
ionization potential, 31, 32, 45, 95, 126
ionosphere, 203–205, 224
iron, see Fe

Jahn-Teller, 211
Jovian planets, 224
Jupiter, 35, 224, 225
JWKB method, 110–113, 134, 183, 222

Kepler period, 104
kinetic energy density, 23, 127
Kirchhoff, 1, 2, 42
klystron, 215
Kohn-Sham, 28
Kramers degeneracy, 78

221
97–102, 104, 109

Lagrange multiplier, 24, 128
Laguerre function, 106, 150
Lamb shift, 84, 154
lambda-doubling, 173, 198, 203, 204
Landé 80, 91, 199
Landau function, 90, 116–120
Landau spectrum, 89, 91, 96, 115, 120,

133
Laplace-Runge-Lenz vector, 6, 104, 105
laser, 195, 196

219, 220
LCAO, 209
Legendre polynomial, 102, 134, 167
length form, 48, 64
Lenz’s law, 77
Li, 14, 18, 33, 145, 164
LiH, 189, 205
linear molecule, 207, 212–216, 218–220
linear polarization, 50, 131
linear Stark effect, 76, 166, 199
linear Zeeman effect, 71, 79–81, 86, 93
Lissajous figure, 221
localization, 102, 109, 113, 161
loops in perturbation diagrams, 73
Lorentzian, 159
LS-coupling, 20
Lyman

alpha, 3, 32, 36, 140, 204
continuum, 46
edge, 46
forest, 36, 37
limit, 36
series, 3, 31, 36

M1, 51, 52, 84
Madelung rule, 17, 39
magnetic dipole, 51, 84, 215
magnetic field

atomic unit, 71, 78, 94
Earth’s, 69
galactic, 69
solar, 81
very strong, 126–132
ultrastrong, 115–126, 133

magnetic monopole, 70
magnetic white dwarf, 91, 131, 132
magneto-optic rotation, 199
magnetosphere, 126
many-body perturbation theory, 73
many-center integral, 178
Mars, 219, 224
maser, 201, 203, 223, 225–227
MCSCF, 209
mean free path, 42
meteor, 32
Mg, 32
microwave, 214, 221, 225
microwave spectroscopy, 215
millimeter wave, 202
minimal coupling, 49, 70, 88
missing mass, 35
molecular

bands, 169
bonds, 170–175
Hamiltonian, 176, 177
orbital, 172–175, 205, 207–209
parity, 184, 185
potential, 182
potential curve, 172, 174, 183, 195–

197
spectra, 187–194
spectroscopy, 169
structure, 170–173, 207-211

molecule
diatomic, 170–182
electronic spectrum, 193–197
lambda quantum number, 171, 173
linear, 207, 212–216, 218–220
paramagnetic, 227
polar, 227
polyatomic, 171, 207–220
pyramidal, 216, 222
Raman spectra, 192, 193, 206, 220
reflection symmetry, 173, 184, 185
rotation, 179–181, 187, 188, 211–214
strong magnetic field, 131
structure, 170–173, 207–211
tetrahedral, 220
triangular, 208,  224
vibration, 179–183, 189–191, 215–

219
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vibration-rotation, 182–184, 190,
191, 220, 221

water, 208–210, 216–219, 226
moment of inertia, 212–214
moments of oscillator strength, 53, 54
momentum space, 8, 105
momentum transfer, 56–60, 67
Morse function, 182
motional Stark field, 93, 133
multi-configuration,  29, 209
multi-center, 209
multi-electron states, see also doubly-

excited state
notation, 12

multipole, 53, 67

N, 19, 32, 86
181, 192, 203, 204, 225

224
106, 109

Na, 86
170

nebula, 166, 201, 224
diffuse, 33
planetary, 33, 34, 42, 52, 224

negative ion, 11, 61, 125, 140, 141, 175,
224, see also

neutron star, 91, 115, 117, 126, 131, 133
NH, 174

216, 222, 226, 227
nitrogen, see N,
NO, 203, 204, 227

210
non-bonding, 171
non-integrable, 109
non-ionic bond, 170
non-perturbative, see strong mixing
normal mode, 66, 215, 216
normalization

continuum, 46, 56, 67, 157
nova, 35, 131
nuclear interchange, 186
nuclear spin, 34, 185, 186, 215
nucleosynthesis, 33

O, 20, 32, 52, 203, 204
O branch,193,194

175, 181, 186, 192–194, 203, 204, 215
197, 220, 224
175

oblate, 212, 213, 227
OH, 175, 198, 203, 204, 226, 227
one-dimensional atom, 39, 116–120
opacity, 42, 43, 60, 63, 164
Opacity Project, 43
optically thick, 42
optically thin, 42

orbital, 10, 12, 13, 21, 28, 208, 209
Orion, 33, 201, 226
ortho hydrogen, 187, 202, 206
orthogonal group

four dimensions, 8
orthohelium, 14,15
oscillator strength, 43–49, 53, 54, 57, 66,

84, 109, 122, 123, 156, 159, 164
outer screening, 21
oxygen, see O,
ozone, 197, 220, 224

P branch, 189, 190, 193, 198, 220
PAH, 224
pair basis, 162, see also hyperspherical
pair coordinate, 144, 146
para hydrogen, 187, 206
parabolic, 6–8, 38, 87, 102, 105, 134, 163
parabolic approximation, 182
parabolic coordinates, 7, 134
parahelium, 14, 15
parallel transition, 220
paramagnetic, 71, 227
parametric dependence, 151, 152, 177,

194
parity, 4, 20, 50–52, 76, 93, 140, 184, 185,

188, 193
mixed, 7

Paschen continuum, 46
Paschen series, 3, 31, 37, 132
Paschen-Back, 79
Pauli principle, 9, 12, 13, 17–19, 22, 26,

27, 39, 62, 124–126, 150, 172–
174, 185, 186

Periodic Table, 22, 29, 30
in ultrastrong field, 126
in very strong field, 130

perpendicular transition, 220
perturbation theory

diagram, 72–75
first order, 72, 74, 199
high order, 74–76, 121
time-independent, 71–86

phase shift, 158, 159
phase space, 23, 39, 126, 127
phosphorescence, 211
photoabsorption, 42–46, 141, 144–146,

159, 196
cross-section, 43, 44, 46, 159

photodetachment, 61, 63, 64, 141, 147,
157

photodissociation, 196–198, 204
coupled-state, 197
indirect, 197
spontaneous, 198

photoelectron spectroscopy, 209, 210
photoionization, 46–48, 64, 204, see also

oscillator strength
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edge, 46
photosphere, 32, 226
Planck, 2, 225, see also black-body
planetary nebula, 33, 34, 42, 52, 224
Poisson distribution, 109, 110
polarizability, 45, 54, 66, 77, 192, 200, 220
polarization, 44, 45, 50, 80, 96, 122, 131,

199, 227
poly aromatic hydrocarbon, 224
population inversion, 195, 223
potential in magnetic field, 94, 96, 111,

112
potential surface

two-electron, 147, 148
potential well, see hyperspherical, molec-

ular
predissociation, 197, 198, 225
primordial deuterium, 36, 37, 225
primordial radiation, 37, 169, 202
profile index, 159, 160, see also autoion-

ization
prolate, 100, 101, 212, 214
prolate spheroidal function, 100, 101
propensity rule, 55, 200
proton affinity, 224, 225
pseudo-potential, 209
pulsar, 91, 93, 115, 116, 118, 125, 133
pump, 195

Q branch, 190, 193, 198, 220
q-parameter, 159, 160, 168
quadratic Stark effect, 77, 199
quadratic Zeeman effect, 71, 93, 131, see

also diamagnetic
quadrupole, 52, 202, 203, 215
quantum defect, 14, 38, 95, 114, 210
quantum defect theory, 15
quantum electrodynamics, 11, 84
quasar, 36, 37
quasi-bound state, 138, 160, see also res-

onance
quasi-classical, 110–113
quintessence, 1

R branch, 189, 190, 193, 198, 220
r-process, 33
radial correlation, 17, 62, 143, 146, 153
radiation transport, 41, 42
radiationless transition, 211, see also au-

toionization
radiative capture, 64–66
radiative recombination, 164
radiative width, 165
radio recombination, 33
Raman, 193

active, 220
effect, 192

inactive, 220
spectroscopy, 193, 220
spectrum, 192–194, 206
transition, 192

Random Phase Approximation, 76
rate equation, 42
Rayleigh scattering, 192
Rayleigh-Jeans, 2, 226
Rayleigh-Ritz, 10, 17, 38, 119, 124
Rayleigh-Schrödinger, 71
recombination, 142, 164
recombination era, 30
recurrence time, 110
red giant, 52, 226
red-shift, 36, 39, 202
reduced energy, 159
reduced mass, 4, 178, 200
reflection, 50, 208, see also inversion
refractive index, 199
relativistic mass, 82
relativistic perturbation, 82–84
resonance, 94–97, 113, 138, 141–147, 155–

160
Breit-Wigner, 159

159, 160
Fermi, 222
Feshbach, 156, 157, 159, 168
phase shift, 158, 159
position, 159
profile, 159, 160
“shape”, 156
width, 159, 160

resonance transition, 50
ridge state, 139, 162
rigid rotor, 179, 180
rotation, see molecule, transformation
rotation-vibration coupling, 182–184, 190,

191, 219–221
rotational

band, 188
constant, 179–181, 221, 223
degree of freedom, 227
energy, 179–181, 221
fine structure, 198, 219
quantum number, 179, 220
Raman, 192, 205, 206
spacing, 187
spectrum, 188, 193, 202, 206, 214,

225
rotations

four dimensions, 8
rotor, 98, 102, 104, 105, 109, 113, 179
rovibronic, 221
rule of mutual exclusion, 220
Russell-Saunders coupling, 20
Rutherford cross-section, 57
Rydberg constant, 2, 3
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Rydberg orbital, 209
Rydberg series, 13, 14
Rydberg-Klein-Rees, 183

S branch, 193, 194
s-process, 33
saddle point, 161, 168
Saturn, 224
scaling

hydrogen atom, 5, 6
Thomas-Fermi model, 26, 27

Schrödinger equation
diatomic molecule, 177–179
hydrogen atom, 4
in magnetic field, 88, 89, 92, 93
two-electron, 143, 149, 151
vibrational, 180

Schumann-Runge, 175, 197
screening constant, 21
selection rule, 49–53, 58, 80, 140, 189, 193,

214, 220
self-consistent field, 22, 29, 135, 209
semi-classical quantization, 110–112
semi-parabolic coordinates, 107, 110, 134
separated atom, 171
separatrix, 99, 100, 102, 104
shake-off, 140
shape resonance, 156, 157
shell structure, 22

in ultrastrong field, 126
in very strong field, 130

silicon carbide, 224
singlet, 10, 12–15, 18, 21, 187
SiO, 226
six-dimensional Coulomb, 149, 150
Slater determinant, 22, 28
Slater orbital, 209
Slater screening, 20
sodium, 86
solar

chromosphere, 32, 42, 84
continuum, 140
corona, 32, 84, 166
flare, 166
magnetic field, 81
rotation, 34, 39
spectra, 32, 84

source function, 42
space-fixed axes, 184–186, 212, 213
space-fixed frame, 184–186, 212, 213
spectroscopic notation, 12
spectroscopic state, 18
spectrum, see Landau, Raman, rota-

tional, vibrational
spherical harmonics, 4, 150
spherical tensor, 50
spherical top, 213

spin-flip, 51, 58, 141
spin-orbit, 19, 50, 51, 58, 79, 80, 83, 86,

140
spin-spin, 140
spontaneous emission, 42, 49
Sr, 94, 96
standard candle, 35
Stark effect, 6, 70, 71, 75–78, 166, 199
Stark-modulation, 215
statistical weight, 65, 166, 182, 186
stellar classification, 32
Stern-Gerlach, 86
stimulated emission, 43, 195, 219, 223
Stokes line, 192
strong mixing, 91, 94, 96, 97, 112
Sturmian basis, 107
subsurface level, 18
sum rule, 53, 57, 67
sunspot, 71, 81
superluminous galaxy, 202
supernova, 34, 225
supersymmetry, 91
susceptibility, 54
symmetric stretch, 215, 218
symmetric top, 212–214, 219, 227
symmetry

inversion, see inversion
nuclear interchange, 186
parity, see parity
point group, 208, 217
radial interchange, 154

synchrotron, 141
synchrotron light, 91

term, 19
thermodynamic equilibrium, 43
Thomas factor, 83
Thomas-Fermi model, 22–25, 39, 126–129

one dimension, 126–129
Thomas-Fermi-Dirac model, 27, 39, 129,

134
Thomas-Reiche-Kuhn, 53, 67
thorium, 33
three-photon, 167
time reversal, 78
TiO, 32, 169
transformation

conjugation, 101
gauge, 90, 101, 133
rotation, 50
spherical to parabolic, 8, 38
unitary, 7, 38, 90, 105

triplet, 12–15, 18, 22, 187
triply-excited state, 136, 143, 145
two-electron atom, 8, see also doubly-

excited state
potential surface, 147, 148

two-photon transition, 52, 94
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ultraviolet, 3, 32, 41, 175, 198, 201
Undheim, 17
ungerade, 171
united atom, 171
Uranus, 224

valley state, 139, 163
van der Waals, 200
variational principle, 10, 16, 17, 24, 38,

49, 61, 64, 119, 124, 129
vector potential, 49, 70, 88–90, 92
velocity form, 48, 49, 64
Venus, 175, 204, 219
vertical transition, 195
vibration, 170, 179–182, 214–216

energy, 180–183, 217
frequency, 221

vibration-rotation band, 202
vibration-rotation spectrum, 190, 191,

198, 220
vibrational

degree of freedom, 227
level, 181–183, 218
Raman, 193, 205
selection rule, 189
spectrum, 189, 190, 217
transition, 187
wave function, 180, 181, 194

vibrator, 98, 101, 102, 104
vibronic coupling, 210
virial theorem, 6, 12, 54, 130
virtual orbital, 209
VLBI, 36, 226

water, 207–210, 215–217, 224-226
white dwarf, 24, 52, 124, 131–133
Wien, 2
Wigner coefficient, 8, see also Clebsch-

Gordan
Wigner distribution, 109, 110
Wigner threshold law, 63

x-ray, 32, 84, 91, 131
x-ray binary, 133

z-parameter, 36, 37, 202
Zeeman effect, 71, 78–81, 199, 227

anomalous, 81
linear, 71, 78
modulation, 215
normal, 81
quadratic, 71, 93, 131, see also dia-

magnetic
zero-point energy, 190
zero range, 62
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