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Preface

The scientific, social, political, and military implications of the development of

nuclear weapons under the auspices of the United States Army’s “Manhattan

Project” in World War II drove much of world geopolitical strategy for the last

half of the twentieth century. These implications remain with us today in the form

of ongoing concerns and debates regarding issues such as weapons stockpiles and

deployments, proliferation, fissile material security and test-ban treaties. For better

or worse, the historical legacy of Los Alamos, Oak Ridge, Hanford, Trinity, Little
Boy, Fat Man, Hiroshima and Nagasaki will influence events for decades to come

even as the number of nuclear weapons in the world continues to decline.

While even a casual observer of the world situation cannot help but be aware that

the idea of terrorists or unstable international players being able to acquire enough

“fissile material” to assemble the “critical mass” necessary to construct a nuclear

weapon is of concern, popular understanding of the history and science of nuclear

weapons is extremely limited. Even most physics and engineering graduates prob-

ably have no deeper appreciation of the science underlying these weapons than a

typical high-school student. Why is there is such a thing as a critical mass in the first

place, and how can one determine it? How does a reactor differ from a weapon?

Why can’t a nuclear weapon be made with a common metal such as aluminum or

iron as its “active ingredient”? How did the properties of various uranium and

plutonium isotopes lead in World War II to the development of “gun-type” and

“implosion” weapons? How can one estimate the energy yield of these devices?

How does one arrange to assemble the critical mass at just the time when a bomb is

to be detonated?

This book is an effort to address such questions. It covers, at about the level of a

junior-year undergraduate physics major, the basic physics underlying fission

weapons as they were developed during the Manhattan Project.

This work has grown out of three courses that I have taught at Alma College.

One of these is a conventional undergraduate sophomore-level “modern physics”

class for physics majors which contains a unit on nuclear physics, the second is an

algebra-level general-education class on the history of the making of atomic bombs
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in WorldWar II, and the third a junior-level topics class for physics majors that uses

the present volume as its text. My motivation in preparing this book was that there

seemed to be no one source available for a reader with a college-level background

in physics who desired to learn something of the technical aspects of the Manhattan

Project in more detail than is typically presented in conventional modern/nuclear

texts or popular histories. Readers are often left wondering about the details of

questions such as outlined above. As my own knowledge of these issues grew, I

began assembling an informal collection of derivations and results to share with my

students and which have evolved into the present volume. I hope that readers will

discover, as I did, that studying the physics of nuclear weapons is not only

fascinating in its own right but also an excellent vehicle for reinforcing understand-

ing of foundational physical principles such as energy, electromagnetism, dynam-

ics, statistical mechanics, modern physics, and of course nuclear physics.

This book is consequently neither a conventional text nor a work of history.

I assume that readers are already familiar with the basic history of some of the

physics that led to the Manhattan Project and how the project itself was organized

(Fig. 1). Excellent background sources are Richard Rhodes’ masterful The Making

Artificial nuclear 
transmutation

(Rutherford 1919)
[1.3]

Discovery of the 
neutron

(Chadwick 1932)
[1.4]

Artificially-induced 
radioactivity

(Joliot-Curies 1934)
[1.5]

Neutron-induced 
radioactivity
(Fermi 1934)

[1.5]

Discovery/interpretation of fission
(Hahn, Meitner, Strassmann, Frisch, 

Bohr, Wheeler 1938-39)
[1.5-1.10]

The Manhattan Project
1942-1945

Uranium enrichment
(Oak Ridge, TN) [3.4-3.5]

Plutonium production
(Hanford, WA) [3.1-3.3]

Complications in bomb design
[4.1-4.3]

Criticality and efficiency physics
(Los Alamos, NM) [2.1-2.6]

Fig. 1 Concept map of important discoveries in nuclear physics and the organization of the

Manhattan Project. Numbers in square brackets indicate sections in this book where given topics

are discussed
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of the Atomic Bomb (1986) and F. G. Gosling’s The Manhattan Project: Making the
Atomic Bomb (1999). While I include some background material for sake of a

reasonably self-contained treatment, it is assumed that within the area of nuclear

physics readers will be familiar with concepts such as reactions, alpha and beta

decay, Q-values, fission, isotopes, binding energy, the semi-empirical mass formula,

cross-sections, and the concept of the “Coulomb barrier.” Familiarity with multi-

variable calculus and simple differential equations is also assumed. In reflection of

my own interests (and understanding), the treatment here is restricted to World War

II-era fission bombs. As I am neither a professional nuclear physicist nor a weapons

designer, readers seeking information on postwar advances in bomb and reactor

design and related issues such as isotope separation techniques will have to look

elsewhere; a good source is Garwin and Charpak (2001). Similarly, this book does

not treat the effects of nuclear weapons, for which authoritative official analyses are
available (Glasstone and Dolan 1977). For readers seeking more extensive refer-

ences, an annotated bibliography appears in Appendix I of the present book.

This book comprises 27 sections within five chapters. Chapter 1 examines some

of the history of the discovery of the remarkable energy release in nuclear reactions,

the discovery of the neutron, and characteristics of the fission process. Chapter 2

details how one can estimate both the critical mass of fissile material necessary for a

fission weapon and the efficiency one might expect of a weapon that utilizes a given

number of critical masses of such material. Aspects of producing the fissile material

by separating uranium isotopes and synthesizing plutonium are taken up in Chap. 3.

Chapter 4 examines some complicating factors that weapons engineers need to be

aware of. Some miscellaneous calculations comprise Chap. 5. Useful data are

summarized in Appendices A and B. Some background derivations are gathered in

Appendices C–G. For readers wishing to try their own hand at calculations, Appendix

H offers a number of questions, with brief answers provided. A bibliography for

further reading is offered in Appendix I, and some useful constants and conversion

factors appear in Appendix J. The order of the main chapters, and particularly the

individual sections within them, proceeds in such a way that understanding of later

ones sometimes depends on knowledge of earlier ones.

It should be emphasized that there is no material in the present work that cannot

be gleaned from publicly-available texts, journals, and websites: I have no access to

classified material.

I have developed spreadsheets for carrying out a number of the calcula-

tions described in this work, particularly those in Sects. 1.4, 1.7, 1.10, 2.2–2.5,

4.1, 4.2, and 5.3. These are freely available at a companion website, http://www.

manhattanphysics.com. When spreadsheets are discussed in the text they are

referred to in bold type. Users are encouraged to download these, check calcula-

tions for themselves, and run their own computations for different choices of

parameters. A number of the problems in Appendix H are predicated on using

these spreadsheets.

This book is the second edition of this work. The first edition was self-published

with Trafford Publishing, and I am grateful for their very professional work. The

present edition includes a number of new and revised sections. A discussion of
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numerically estimating bomb yield and efficiency (Sect. 2.5), an analysis of Rudolf

Peierls’ criticality parameter (Sect. 2.6), development of a model for estimating

Pu-240 production in a reactor (Sect. 5.3), and a formal derivation of the Bohr–

Wheeler spontaneous fission limit (Appendix E) are completely new, as is a

bibliography of books, articles, and websites dealing with the Manhattan Project

(Appendix I). The discussion of predetonation probability as a consequence of

spontaneous fission (Sect. 4.2) has been significantly upgraded, the analysis of

estimating the average neutron escape probability from within a sphere has been

revised (Appendix D), and some corrections have been made to the discussion of

analytically estimating bomb efficiency (Sect. 2.4).

Over several years now, I have benefitted from discussions on this material with

Gene Deci, Jeremy Bernstein, Harry Lustig, Carey Sublette, and Peter Zimmerman,

and am grateful for their time and patience. I am grateful to John Coster-Mullen

for permission to reproduce his beautiful cross-section diagrams of Little Boy and
Fat Man that appear in Chaps. 2 and 4. Students in the first version of my topics

class – Charles Cook, Reid Cuddy, David Jack and Adam Sypniewski – served as

guinea pigs for these notes and pointed out a number of confusing statements. I owe

a great debt of gratitude to Alma College for various forms of professional

development support extending over many years.

Finally, I am grateful to the staff of Springer for helping to bring this project to

fruition. Their efficiency and professionalism are nothing short of outstanding.

Naturally, I claim exclusive ownership of any errors that remain.

Suggestions for corrections and additional material will be gratefully received.

I can be reached at: Department of Physics, Alma College, Alma, MI 48801.

Alma, MI, USA B. Cameron Reed

May 17, 2010
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Chapter 1

Energy Release in Nuclear Reactions, Neutrons,
Fission, and Characteristics of Fission

Abstract This introductory chapter covers the background nuclear physics neces-

sary for understanding later calculations of critical mass, nuclear weapon efficiency

and yield, and how fissile materials are produced. It describes how the energy

released in nuclear reactions can be calculated, how artificially-produced nuclear

transmutations were discovered, the discovery of the neutron, artificially-produced

radioactivity, the discovery and interpretation of neutron-induced nuclear fission,

why only certain isotopes of uranium and plutonium are feasible for use in nuclear

weapons, and how nuclear reactors differ from nuclear weapons.

While this book is not intended to be a history of nuclear physics, it will be helpful

to set the stage by briefly reviewing some historically relevant discoveries. To this

end, we first explore the discovery of the enormous energy release characteristic of

nuclear reactions, work that goes back to Ernest Rutherford and his collaborators at

the opening of the twentieth century; this is covered in Sect. 1.2. Rutherford also

achieved, in 1919, the first artificial transmutation of an element (as opposed to this

happening naturally, such as in an alpha-decay), an issue we examine in Sect. 1.3.

Nuclear reactors and weapons cannot function without neutrons, so we devote

Sect. 1.4 to a fairly detailed examination of James Chadwick’s 1932 discovery of

this fundamental constituent of nature. The neutron had almost been discovered by

Irène and Frédéric Joliot–Curie, who misinterpreted their own experiments. They

did, however, achieve the first instance of artificially inducing radioactive decay, a

situation we examine in Sect. 1.5, which also contains a brief summary of events

leading to the discovery of fission. In Sects. 1.6–1.10 we examine the release of

energy and neutrons in fission, some theoretical aspects of fission, and delve into

why only certain isotopes of heavy elements are suitable for use in fission weapons.

Before doing any of these things, however, it is important to understand how

physicists notate and calculate the energy liberated in nuclear reactions. This is

the topic of Sect. 1.1.

B.C. Reed, The Physics of the Manhattan Project,
DOI 10.1007/978-3-642-14709-8_1, # Springer-Verlag Berlin Heidelberg 2011
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1.1 Notational Conventions for Mass Excess and Q-Values

On many occasions we will need to compute the energy liberated in a nuclear

reaction. Such energies are known as Q-values; this section develops convenient

notational and computational conventions for dealing with such calculations.

Any reaction will involve input and output reactants. The total energy of any

particular reactant is the sum of its kinetic energy and its relativistic mass-energy,

mc2. Since total mass-energy must be conserved, we can write

X
KEinput þ

X
minputc

2 ¼
X

KEoutput þ
X

moutputc
2; (1.1)

where the sums are over the reactants; the masses are the rest masses of the

reactants. The Q-value of a reaction is defined as the difference between the output

and input kinetic energies:

Q ¼
X

KEoutput�
X

KEinput ¼
X

minput �
X

moutput

� �
c2: (1.2)

If Q > 0, then the reaction liberates energy, whereas if Q < 0 the reaction

demands a threshold energy to cause it to happen.

If the masses in (1.2) are in kg and c is in m/s, Q will emerge in Joules. However,

rest masses are usually tabulated in atomic mass units (abbreviation: amu or simply u).
If f is the number of kg in one amu, then we can put

Q ¼
X

m
amuð Þ
input �

X
m

amuð Þ
output

� �
fc2: (1.3)

Q-values are conventionally quoted in MeV. If g is the number of MeV in 1 J,

then Q in MeV for masses given in amu will be given by

Q ¼
X

m
amuð Þ
input �

X
m

amuð Þ
output

� �
gfc2
� �

: (1.4)

Define e ¼ gfc2. Recalling that 1 MeV ¼ 1.602176462 � 10�13 J, then

g ¼ 6.24150974 � 1012 MeV/J. Putting in the numbers gives

e ¼ gfc2 ¼ 6:24150974 � 1012
MeV

J

� �
� 1:66053873 � 10�27 kg

amu

� �

� 2:99792458� 108
m

s

� �2
¼ 931:494

MeV

amu
: (1.5)
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More precisely, this number is 931.494013. Thus, we can write (1.4) as

Q ¼
X

m
amuð Þ
input �

X
m

amuð Þ
output

� �
e; (1.6)

where e ¼ 931.494 MeV/amu. Equation (1.6) will give Q-values in MeV when the

masses are in amu.

Now consider an individual reactant of mass number A. The mass excess m of

this species is defined as the number of amu that has to be added to A amu (as an

integer) to give the actual mass (in amu) of the species:

m amuð Þ ¼ Aþ m: (1.7)

Substituting this into (1.6) gives

Q ¼
X

Ainput þ minput
� 	�X Aoutput þ moutput

� 	� �
e: (1.8)

Nucleon number is always conserved, SAinput ¼ SAoutput, which reduces (1.8) to

Q ¼
X

minput �
X

moutput
� �

e: (1.9)

The product me is conventionally designated as D:

Q ¼
X

Dinput �
X

Doutput

� �
: (1.10)

D-values for various nuclides are tabulated in a number of texts and references

and are usually given in units of MeV. The most extensive such listing is published

as the Nuclear Wallet Cards and is available from Brookhaven National Laboratory

at http://www.nndc.bnl.gov; a list of selected values appears in Appendix A. The

value of quoting mass excesses asD-values is that theQ-value of any reaction can be
quickly computed via (1.10) without having to worry about factors of c2 or 931.494.
Various examples of D-value calculations appear in the following sections.

For a nuclide of given D-value, its mass in atomic mass units is given by

m amuð Þ ¼ Aþ D
e
: (1.11)

1.2 Rutherford and the Energy Release in Radium Decay

The energy released in nuclear reactions is on the order of a million times or more

than that typical of chemical reactions. This vast energy was first quantified by

Rutherford and Soddy (1903) in a paper titled “Radioactive Change”. In this paper

they wrote: “It may therefore be stated that the total energy of radiation during the
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disintegration of one gram of radium cannot be less than 108 g-cal and may be

between 109 and 1010 g-cal. The union of hydrogen and oxygen liberates approxi-

mately 4 � 103 g-cal per gram of water produced, and this reaction sets free more

energy for a given weight than any other chemical change known. The energy of

radioactive change must therefore be at least 20,000 times, and may be a million

times, as great as the energy of any molecular change”.

Let us have a look at the situation using modern numbers. 226Ra has an

approximately 1,600-year half-life for alpha decay:

226
88 Ra ! 222

86 Rnþ 4
2He: (1.12)

The delta-values here are, in MeV,

D 226
88 Ra
� � ¼ 23:669

D 222
86 Rn
� � ¼ 16:374

D 4
2He
� � ¼ 2:425:

8><
>: (1.13)

These give Q ¼ 4.87 MeV in contrast to the few eV typically released in

chemical reactions.

The notation used here to designate nuclides, A
ZX, is standard in the field of

nuclear physics. X denotes the symbol for the element, Z its atomic number

(¼ number of protons) and A its nucleon number (¼ number of neutrons plus

number of protons, also known as the atomic weight and the mass number). The

number of neutrons N is given by N ¼ A � Z.
Rutherford and Soddy expressed their results in gram-calories, which means the

number of calories liberated per gram of material. Since 1 eV ¼ 1.602 � 10�19 J,

4.87 MeV ¼ 7.80 � 10�13 J. One calorie is equivalent to 4.186 J, so the Q-value of
this reaction is 1.864 � 10�13 cal. One mole of 226Ra has a mass of 226 g, so a

single atom has a mass of 3.75 � 10�22 g. Hence the energy release per gram is

about 4.97 � 108 cal, in line with their estimate of 108–1010. The modern figure for

the heat of formation of water is 3,790 cal/g; gram-for-gram, therefore, radium

decay releases about 131,000 times as much energy as the formation of water from

hydrogen and oxygen. We are assuming here that the entire gram of radium is

decaying in computing the figure of 5 � 108 cal; in reality, this would take an

infinite amount of time and cannot be altered by any human intervention. But the

important fact is that individual alpha decays release millions of electron-Volts of
energy, a fantastic number compared to any chemical reaction.

Another notational convention can be introduced at this point. In this book,

reactions will usually be written out in detail as above, but some sources express

them in a more compact notation. As an example, in the next section we will

encounter a reaction where alpha-particles (helium nuclei) bombard nitrogen nuclei

to produce protons and oxygen:

4
2Heþ 14

7 N ! 1
1Hþ 17

8 O: (1.14)
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This can be written more compactly as

14
7 N

4
2He;

1
1H

� �
17
8 O: (1.15)

In this notation, convention is to have the target nucleus as the first term, the

bombarding particle as the first term within the brackets, the lighter product nucleus

as the second term within the brackets, and finally the heavier product nucleus

outside the right bracket.

1.3 Rutherford’s First Artificial Nuclear Transmutation

The discovery that nitrogen could be transformed into oxygen under the action of

alpha-particle bombardment marked the first time that a nuclear transmutation

had been deliberately achieved (Rutherford 1919). This work had its beginnings

in experiments conducted by Ernest Marsden in 1915.

In Rutherford’s experiment, alpha particles emitted by radium bombard nitro-

gen, producing hydrogen and oxygen in the reaction:

4
2Heþ 14

7 N ! 1
1Hþ 17

8 O: (1.16)

The hydrogen nuclei (protons) are detected via the scintillations they produce

when they strike a fluorescent screen. The D values for this reaction are:

D 4
2He
� � ¼ 2:425

D 14
7N
� � ¼ 2:863

D 1
1H
� � ¼ 7:289

D 17
8O
� � ¼ �0:809:

8>>>><
>>>>:

(1.17)

The Q-value of this reaction is �1.19 MeV. That Q is negative means that this

process has a threshold of 1.19 MeV, that is, the bombarding alpha must possess at

least this much kinetic energy to cause the reaction to happen. This energy emerges

from the spontaneous decay of radium which gives rise to the alphas. We saw in the

preceding section that decay of 226Ra liberates some 4.87 MeV of energy, more

than enough to power the nitrogen-bombardment reaction.

The conditions of energy and momentum conservation relevant to “two body”

reactions of the general form A þ B ! C þ D are detailed in Appendix C. A

companion spreadsheet, TwoBody.xls1, allows a user to input nucleon numbers and

D-values for all four nuclides, along with an input kinetic energy for reactant A;

nucleus B is presumed to be stationary when struck by A. The spreadsheet then

1All Excel sheets are available at http://www.manhattanphysics.com
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computes and displays the Q-value for the reaction and the post-reaction kinetic

energies and momenta for the products C and D. This will be put to considerable use

in the following section.

1.4 Discovery of the Neutron

Much of the material in this section is adopted from a publication elsewhere by the

author (Reed 2007).

James Chadwick’s discovery of the neutron in early 1932 was a critical turning

point in the history of nuclear physics. Within 2 years Enrico Fermi would generate

artificially-induced radioactivity by neutron bombardment, and less than 5 years

after that Hahn and Strassmann would discover neutron-induced uranium fission.

The latter would lead directly to the Little Boy uranium-fission bomb while Fermi’s

work would lead to reactors to produce plutonium for the Trinity and Fat Man
bombs.

Chadwick’s discovery was reported in two papers. The first, titled “Possible

Existence of a Neutron,” is a brief report dated February 17, 1932 and published in

the February 27 edition of Nature (Chadwick 1932a). A more extensive follow-up

paper dated May 10, 1932 was published on June 1 in the Proceedings of the Royal
Society of London (Chadwick 1932b). As we work through Chadwick’s analysis,

these will be referred to as Papers 1 and 2, respectively. The Nature paper is

reproduced in Andrew Brown’s excellent biography of Chadwick [Brown (1997)].

A complete description of the experiments which resulted in the discovery of the

neutron would be quite extensive, so only a brief summary of the essentials is given

here. A more thorough discussion appears in Chap. 6 of Brown; see also Chap. 6 of

Rhodes (1986).

The experiments which lead to the discovery of the neutron were first reported in

1930 by Walther Bothe and his student Herbert Becker, working in Germany. Their

research involved studying gamma radiation which is produced when light ele-

ments such as magnesium and aluminum are bombarded by energetic alpha-

particles emitted in the radioactive decay of elements such as radium or polonium.

In such reactions, the alpha particles often interact with a target nucleus to yield a

proton (hydrogen nucleus) and a gamma-ray, both of which can be detected in

Geiger counters. A good example of such a reaction is the one used by Chadwick’s

mentor, Ernest Rutherford, to produce the first artificially-induced nuclear trans-

mutation discussed in the preceding section:

4
2Heþ 14

7 N ! 1
1Hþ 17

8 Oþ g: (1.18)

The mystery began when Bothe and Becker found that boron, lithium, and

particularly beryllium gave evidence of gamma emission under alpha bombardment

but with no accompanying protons being emitted. A key point here is that they were
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certain that some sort of energetic but electrically neutral “penetrating radiation”

was being emitted; it could penetrate foils of metal but could not be deflected by a

magnetic field as electrically charged particles would be. Gamma-rays were the

only electrically neutral form of penetrating radiation known at the time, so it was

natural for them to interpret their results as evidence of gamma-ray emission

despite the anomalous lack of protons.

Bothe and Becker’s unusual beryllium result was picked up by the Paris-based

husband-and-wife team of Frédéric Joliot and Irène Curie, hereafter referred to as

the Joliot–Curies. In January 1932 they reported that the presumed gamma-ray

“beryllium radiation” was capable of knocking protons out a layer of paraffin wax

that had been put in its path. The situation is shown schematically in Fig. 1.1, where

the supposed gamma-rays are labeled as “mystery radiation.”

The energy (hence speed) of the protons could be deduced by means such as

determining what thickness of metal foil they could penetrate through before being

stopped or by measuring how many ion pairs they created in a Geiger counter; such

measurements were well-calibrated by that time. In comparison to the gargantuan

particle accelerators of today these experiments were literally table-top nuclear

physics; in his recreation of the Joliot–Curies’ work, Chadwick’s experimental

setup involved polonium deposited on a silver disk 1 cm in diameter placed close

to a disk of pure beryllium 2 cm in diameter, with both enclosed in a small vessel

which could be evacuated; a photograph appears in Brown’s biography.

The alpha-producing polonium decay in Fig. 1.1 can be written as

210
84 Po ! 206

82 Pbþ 4
2He: (1.19)

This spontaneous decay liberates Q ¼ 5.407 MeV of energy to be shared

between the lead and alpha nuclei. The masses of the products involved in such

reactions are typically such that their speeds are non-relativistic, a feature we will

make considerable use of in our analysis. Even if mass is created or lost in a

reaction, momentum must always be conserved. If the polonium nucleus is initially

stationary then the lead and alpha nuclei must recoil in opposite directions. One can

paraffin

protons

vacuum chamber

beryllium

“mystery

radiation”
polonium 

alpha
particle

Fig. 1.1 The “beryllium

radiation” experiment of

Becker, Bothe, the

Joliot–Curies and Chadwick
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easily show from classical momentum conservation that if the total kinetic energy

shared by the two product nuclei is Q, then the kinetic energy of the lighter product
nucleus must be

Km ¼ Q

1þ m=M
; (1.20)

where m and M are respectively the masses of the light and heavy product nuclei.

Here we have m/M ~ 4/206, so the alpha-particle carries off the lion’s share of the

liberated energy, about 5.3 MeV. The speed of such an alpha-particle is about 0.05c,
justifying the non-relativistic assumption.

We now set up some expressions that will be useful for dissecting Chadwick’s

analysis.

First, let us assume that Bothe and Becker and the Joliot–Curies were correct in

their interpretation that a-bombardment of Be creates gamma-rays. To conserve the

number of nucleons involved, they hypothesized that the reaction was

4
2Heþ 9

4Be ! 13
6 Cþ g: (1.21)

(Strictly speaking, we are cheating here in writing the reaction in modern

notation that presumes knowledge of both neutrons and protons, but this has no

effect on the analysis.) From left to right the D-values for this reaction are 2.425,

11.348, and 3.125, so the Q-value is 10.65 MeV; this energy, when added to the

~5.3 MeV kinetic energy of the incoming alpha, means that the g-ray can have

energy of about 16 MeV at most. But the energy of the supposed gamma-ray is

crucial here, so we do a more careful analysis. In Appendix D it is shown that in a

collision like this, the energy Eg of the emergent gamma-ray is given by solving the

quadratic equation

aE2
g þ eEg þ d ¼ 0; (1.22)

where

a ¼ 1

2EC
; (1.23)

e ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2EHeKHe

p
EC

; (1.24)

and

d ¼ EHe

EC

� �
KHe � EHe þ EBe þ KHe � ECð Þ; (1.25)
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where EHe, EBe and EC represent the mc2 rest energies (in MeV) of the alpha-

particle, Be nucleus and carbon nucleus, respectively, and where KHe is the kinetic

energy of the incoming alpha-particle. (We assume that the gamma-ray that is

produced travels in the forward direction.) These rest energies can be calculated

form the corresponding nucleon numbers and D-values as E ¼ eA þ D (Sect. 1.1).

The relevant numbers appear in Table 1.1.

These numbers give (with KHe ¼ 5.3 MeV) a ¼ 4.12795 � 10�5 MeV�1,

e ¼ 0.983587, and d ¼ �14.316590 MeV.

Solving the quadratic gives Eg ¼ 14.55 MeV; this is a little less than the

approximately 16 MeV estimated on the basis of the Q-value alone as the carbon

nucleus carries off some momentum. This solution takes the upper sign (þ) in the

solution of the quadratic; choosing the lower sign leads to a negative value for the

kinetic energy of the carbon atom, a result which would be unphysical.

Spreadsheet TwoBodyGamma.xls allows a user to investigate reactions of the

general form A þ B ! C þ g. As with TwoBody.xls, the user inputs nucleon

numbers and D-values for nuclides A, B, and C and the input kinetic energy for

reactant A; B is presumed to be stationary when struck head-on by A. The

spreadsheet computes and displays the possible solutions for the energy of the

g-ray and the kinetic energy and momentum of product C.

The 14.5-MeV gamma-rays then strike protons in the paraffin, setting them into

motion. See Fig. 1.2. Such a collision is a problem in both relativistic and classical

dynamics; a g-ray is relativistic whereas the protons can be treated classically (this

is justified below).

Suppose that the gamma-ray strikes an initially stationary particle of mass m. In
what follows, the symbol Em is used to represent the Einsteinian rest energy mc2 of
the struck particle, while Km is used to designate its post-collision classical kinetic

energymv2/2; Eg again designates the energy of the gamma-ray before the collision.

Maximum possible forward momentum will be imparted to the struck particle if

the gamma-ray recoils backwards after the collision; we assume that this is the case.

Table 1.1 D-values and rest

energies for the Joliot–Curie

g-reaction

Nucleus A D E (MeV)

He 4 2.425 3728.40228

Be 9 11.348 8394.79688

C 13 3.125 12112.55116

gamma-ray
energy Eγ

before
collision

m

recoiling 
gamma-ray

kinetic energy 
Km

after
collision

m

Fig. 1.2 A g-ray strikes a massive, initially stationary particle, which emerges from the collision

with kinetic energy Km. The g-ray is assumed to recoil backwards
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If the energy of the gamma-ray after the collision is Eg*, then conservation of mass-

energy demands

Eg þ Em ¼ E�
g þ Em þ Km: (1.26)

Since we are assuming that the struck particle does not change its identity, the

factors of Em in (1.26) cancel each other. Since the momentum of a photon of energy

E is given by E/c, conservation of momentum for this collision can be written as

Eg=c ¼ �E�
g=cþ mv; (1.27)

where v is the post-collision speed of the struck particle. The negative sign on the

right side of (1.27) means that the g-ray recoils backwards.

It will prove handy to also have on hand expressions for the classical momentum

and kinetic energy of the struck particle in terms of its rest energy:

mv ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2mKm

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mc2Km

p
c

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2EmKm

p
c

(1.28)

and

Km ¼ 1

2
mv2 ¼ mc2ð Þ v2

2c2
¼ 1

2
Em

v

c

� �2
: (1.29)

With (1.28), a factor of c can be cancelled in (1.27); then, on eliminating Eg*

between (1.26) and (1.27), we can solve for Eg:

Eg ¼ 1

2
Km þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2EmKm

p� �
: (1.30)

If the kinetic energy of the struck particle (proton) can be measured, we can use

(1.30) to figure out what energy the gamma-ray must have had to set it into such

motion. On the other hand, if we desire to solve for Km presuming that Eg is known,

the situation is slightly messier as (1.30) is a quadratic in
ffiffiffiffiffiffi
Km

p
that has no neat

solution:

Km þ
ffiffiffiffiffiffiffiffiffi
2Em

p� � ffiffiffiffiffiffi
Km

p
� 2Eg ¼ 0: (1.31)

Now, the gamma-rays involved here have Eg ~ 14.6 MeV, but a proton has a rest

energy of about 938 MeV. It is consequently quite reasonable to set Em � Eg, in

which case this quadratic can be solved approximately, as shown in what follows.

The formal solution of the quadratic is

ffiffiffiffiffiffi
Km

p
¼ � ffiffiffiffiffiffiffiffiffi

2Em

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Em þ 8Eg

p
2

:
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Extract a factor of 2Em from under the second radical:

ffiffiffiffiffiffi
Km

p
¼ � ffiffiffiffiffiffiffiffiffi

2Em

p
1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4Eg=Em

p� 	
2

:

We have 4Eg/Em �1. Invoking the expansion

ffiffiffiffiffiffiffiffiffiffiffi
1þ x

p � 1þ x=2� x2=8þ ::: x< 1ð Þ

with x ¼ 4Eg/Em gives

ffiffiffiffiffiffi
Km

p
� 1

2
�

ffiffiffiffiffiffiffiffiffi
2Em

p
1� 1þ 2

Eg

Em
� 2

E2
g

E2
m

þ :::

 !" #( )

� �
ffiffiffiffiffiffiffiffiffi
2Em

p
� Eg

Em
þ E2

g

E2
m

� :::

" #( )

�
ffiffiffiffiffiffiffiffiffi
2Em

p Eg

Em

� �
1� Eg

Em
þ :::

� �
:

Squaring gives

Km � 2
E2
g

Em

 !
1� 2

Eg

Em
þ :::

� �
: (1.32)

Equation (1.32) will prove valuable presently.

Upon reproducing the Joliot–Curie experiments, Chadwick found that protons

emerge from the paraffin with speeds of up to about 3.3 � 107 m/s. This corre-

sponds to (v/c) ¼ 0.11, so our assumption that the protons can be treated classically

is reasonable. The modern value for the rest mass of a proton is 938.27 MeV. From

(1.29), these figures give the kinetic energy of the ejected protons as 5.7 MeV,

exactly the value quoted by Chadwick on p. 695 of his Paper 2. Equation (1.30) then

tells us that if a proton is to acquire this amount of kinetic energy by being struck by

a gamma-ray, then the gamma-ray must have an energy of about 54.4 MeV. But we

saw in the argument following (1.25) that a gamma-ray arising from the Joliot–Cu-

ries’ proposed aþ 9Be ! 13C reaction has energy of only about 14.6 MeV, a

factor of nearly four too small! This represents a serious difficulty with the gamma-

ray proposal.

Before invoking a reaction mechanism involving a (hypothetical) neutron,

Chadwick devised a further test to investigate the remote possibility that 55-MeV

gamma-rays might somehow be being created in the a-Be collision. In addition to

having the “beryllium radiation” strike protons, he also directed it to strike a sample
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of nitrogen gas. The mass of a nitrogen nucleus is about 14 mass units; at a

conversion factor of 931.49 MeV per mass unit, the rest energy of a 14N nucleus

is about 13,040 MeV. If such a nucleus is struck by a 54.4-MeV gamma-ray, (1.32)

indicates that it should acquire a kinetic energy of about 450 keV. From prior

experience, Chadwick knew that when an energetic particle travels through air it

produces ions, with about 35 eV required to produce a single ionization (hence

yielding “one pair” of ions). A 450 keV nitrogen nucleus should thus generate some

13,000 ion pairs. Upon performing this experiment, however, he found that some

30,000–40,000 ion pairs would typically be produced. These figures imply a kinetic

energy of ~1.1–1.4 MeV for the recoiling nitrogen nuclei, which in turn by (1.30)

would require gamma-rays of energy up to ~90 MeV, a number completely

inconsistent with the ~55 MeV indicated by the proton experiment. Indeed, upon

letting the supposed gamma-rays strike heavier and heavier target nuclei, Chadwick

found that “ ... if the recoil atoms are to be explained by collision with a quantum,

we must assume a larger and larger energy for the quantum as the mass of the struck

atom increases.” The absurdity of this situation led him to write (Paper 2, p. 697)

that “It is evident that we must either relinquish the application of conservation of

energy and momentum in these collisions or adopt another hypothesis about the

nature of the radiation.” To be historically correct, the mass of beryllium atoms

had not yet been accurately established in 1932, so Chadwick did not know the

Eg ¼ 14.6 MeV figure for certain. However, he was able to sensibly estimate it as

no more than about 14 MeV unless the beryllium nucleus lost an unexpectedly great

amount of mass in the reaction, so, as he remarked in his Paper 2 (p. 693), “... it is

difficult to account for the production of a quantum of 50 MeV from the interaction

of a beryllium nucleus and an a-particle of kinetic energy of 5 MeV.”

To summarize to this point, the fundamental problem with the gamma-ray

hypothesis is that for the amount of energy Q liberated in the a-Be reaction, any

resulting gamma-ray will possess much less momentum than a classical particle of

the same kinetic energy; the ratio is pg pm= ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q 2Em=

p
, where Em is the rest energy

of the classical particle. Only an extremely energetic gamma-ray can kick a proton

to a kinetic energy of several MeV. Chadwick’s key insight was to realize that if the

protons were in reality being struck billiard-ball style by neutral material particles
of mass equal or closely similar to that of a proton, then the striking energy need

only be on the order of the kinetic energy that the protons acquire in the collision.

This is the point at which the neutron makes it debut. Chadwick hypothesized

that instead of the Joliot–Curie reaction of (1.21), the a-Be collision leads to the

production of carbon and a neutron via the reaction

4
2Heþ 9

4Be ! 12
6 Cþ 1

0n: (1.33)

Note that in this case a 12C atom is produced as opposed to the Joliot–Curies’

proposed 13C. Since the “beryllium radiation” was known to be electrically neutral,

Chadwick could not invoke a charged particle such as a proton or electron here.

Incidentally, the 12C nucleus will likely remain trapped in the Be target and hence

go undetected. If the neutron is assumed to have a mass excess identical to that of
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a proton, a calculation like that discussed in Appendix C (and carried out with the

TwoBody.xls spreadsheet) shows that the kinetic energy of the neutron would

be about 10.9 MeV if the neutron’s true mass and the momentum acquired by the
12C nucleus are accounted for. Chadwick was able to verify this mass presumption

experimentally as described below; since neutrons were thought of as being an

electron/proton combination, taking the neutron to have a mass excess like that of a

proton would have been a reasonable premise. A subsequent neutron/proton colli-

sion will be like a collision between equal-mass billiard balls, so it is entirely

plausible that a neutron that begins with about 11 MeV of energy will be sufficiently

energetic to accelerate a proton to a kinetic energy of ~5.7 MeV even after it (the

neutron) batters its way out of the beryllium target and through the window of the

vacuum vessel on its way to the paraffin.

As a check on this neutron hypothesis, consider again the nitrogen experiment

described above. Instead of a gamma-ray being created in the a-Be collision, now a

neutral material particle of mass m – a neutron – is presumed to be created and

which subsequently collides with an initially stationary particle of mass m as

illustrated in Fig. 1.3.

This collision can be analyzed with the familiar head-on elastic-collision for-

mulae of basic physics; if the neutron has speed vm and kinetic energy Km, then the

post-collision speed and kinetic energy of the struck mass will be

vm ¼ 2m
mþ m

� �
vm and Km ¼ 4mm

mþ mð Þ2 Km: (1.34)

Suppose that neutrons emerging from the vacuum vessel do indeed have ener-

gies of 5.7 MeV. With neutrons of mass 1 and nitrogen nuclei of mass 14, (1.34)

indicates that a nitrogen nucleus should be set into motion with a kinetic energy

equal to 56/225 ¼ 0.249 of that of the incoming neutron, or about 1.4 MeV. This

figure is in excellent agreement with the energy indicated by the observed number

of ion pairs created by the recoiling nitrogen nuclei!

As Chadwick related in his Paper 2 (p. 698), independent cloud-chamber mea-

surements of the recoiling nitrogen atoms indicated that they acquired speeds of

~4.7 � 106 m/s as a result of being struck by neutrons. Knowing this and the fact

that neutron-bombarded protons are set into motion with a speed of about

3.3 � 107 m/s, he was able to estimate the mass of the neutron by a simple classical

argument. If the mass of a proton is 1 unit and that of a nitrogen 14 units, (1.34)

indicates that the ratio of the speed of a recoiling proton to that of a recoiling

nitrogen would be (m þ 14)/(m þ 1); the measured speeds lead him to conclude

before
collision

after
collision

μ m
vm

μ m

vμ
Fig. 1.3 Particle of mass m
strikes a stationary particle of

mass m, setting the latter in

motion with speed vm
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m ~ 1.15 with an estimated error of 10%. Further experiments with boron targets led

Chadwick to report a final estimate of the neutron mass as between 1.005 and 1.008

mass units. The modern figure is 1.00866; the accuracy he achieved with equipment

which would now be regarded as primitive is nothing short of awe-inspiring.

In summary, Chadwick’s analysis consists of four main points: (1) If the “beryl-

lium radiation” comprises gamma-rays, then they must be of energy ~55 MeV to set

protons into motion as observed. (2) Such a high energy is unlikely from an a-Be
collision, although not inconceivable if the reaction happens in some unusual way

involving considerablemass loss. (3) Letting the same “gamma-rays” strike nitrogen

nuclei causes the latter to recoil with energies indicating that the gamma-rays must

have energies of ~90 MeV, utterly inconsistent with point (1). (4) If instead the

“beryllium radiation” is assumed to be a neutral particle of mass close to that of a

proton, consistent results emerge for the proton and particularly the nitrogen recoil

energies.

The neutron hypothesis also quickly proved to resolve longstanding issues

concerning the spin properties of nuclei; Chadwick was awarded the 1935 Nobel

Prize in Physics for his discovery. He further speculated in his Paper 2 that neutrons

might represent a complex particle consisting of a proton and an electron, but this

proved not to be the case: Heisenberg’s uncertainty principle ruled against the

possibility of containing electrons within such a small space. Subsequent experi-

ments by Chadwick himself showed that the neutron is a fundamental particle in its

own right.

1.5 Artificially-Induced Radioactivity and the Path to Fission

Irène and Frédéric Joliot–Curie misinterpreted the discovery of the neutron in early

1932 but scored a success 2 years later with their discovery that normally stable

nuclei could be induced to become radioactive upon alpha-particle bombardment.

Their discovery reaction involved bombarding aluminum with alphas emitted in

the decay of polonium, the same source of alphas used in the neutron-discovery

reaction:

210
84 Po ���!a

138 days

206
82 Pbþ 4

2He: (1.35)

The Q-value of this reaction was found in the preceding section to be 5.41 MeV.

These alphas then bombard aluminum, fuse with it, and chip off a neutron to leave

phosphorous:

4
2Heþ 27

13Al ! 1
0nþ 30

15P: (1.36)

The D values here are respectively 2.425, �17.197, 8.071 and �20.201, giving

Q ~ �2.64 MeV. Despite this threshold the incoming alpha is more than energetic
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enough to cause the reaction to proceed. The 30P nucleus subsequently undergoes

positron decay to 30Si with a half-life of 2.5 min:

30
15P ��!b

þ

2:5 min

30
14Si: (1.37)

It was this positron emission that alerted the Joliot–Curies to the fact that they

had induced radioactivity in aluminum. When the bombarded aluminum was

dissolved in acid the small amount of phosphorous created could be separated

and chemically identified as such; that the radioactivity carried with the phospho-

rous and not the aluminum verified their suspicion.

The Joliot–Curies’ success stimulated Enrico Fermi to see if he could similarly

induce radioactivity by neutron bombardment. He soon succeeded with fluorine:

1
0nþ 19

9 F ! 20
9 F ���!b�

11:1 sec

20
10Ne, (1.38)

and also with aluminum, discovering a different half-life than had the Joliot–Curies:

1
0nþ 27

13Al ! 1
1Hþ 27

12Mg���!b�

9:5 min

27
13Al: (1.39)

It was not long before Fermi and his collaborators had worked their way up the

periodic table to uranium, neutron bombardment of which would lead to the

discovery of fission.

The above reaction is not the only one possible when a neutron strikes alumi-

num. In such reactions, three different reaction channels are typically seen: the

neutron may chip off a proton as above, but it may also give rise to an alpha-particle

or simply be absorbed by the aluminum nucleus. In all cases the product eventually

decays by beta-decay to something stable:

1
0nþ 27

13Al !

1
1Hþ 27

12Mg ��!b
�

9:5 min

27
13Al

4
2Heþ 24

11Na ��!b
�

15 hr

24
12Mg

28
13Al ��!

b�

2:25 min

28
14Si:

8>>>>><
>>>>>:

(1.40)

The path from the discovery of artificially-induced radioactivity to the discovery

of fission was full of near-misses. A brief description of significant developments is

given here as a segue into the next five sections, where the physics of fission is

covered in more detail. A good qualitative discussion of this material can be found

in Chaps. 8 and 9 of Rhodes (1986); a comprehensive technical discussion of

developments between the discovery of the neutron and the discovery of fission

appears in Amaldi (1984).
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As neutron sources, Fermi and his group used small glass vials containing radon

gas mixed with powdered beryllium. Radon alpha-decays with a half-life of 3.8

days and is consequently a copious source of alpha particles; these alphas strike

beryllium nuclei and produce neutrons of energy ~11 MeV as in Chadwick’s

polonium-source experiment. In early 1934 the Rome group began systematically

bombarding target elements with neutrons, working their way up through the

periodic table. By the spring of 1934 they had come to uranium, for which, at the

time, only one isotope was known, 238U. (235U would be discovered by University

of Chicago mass spectroscopist Arthur Dempster in 1935.) Upon carrying out the

bombardment, they found that b� activity was induced, with evidence for several

half-lives appearing; in particular, they noted one of 13 min. They knew from

previous experience with heavy elements that induced beta-decay often resulted

from neutron bombardment, so they assumed that in the case of uranium they must

be synthesizing a new element, number 93:

1
0nþ 238

92 U ! 239
92U!b

�
239
93X!b

�
?; (1.41)

where X denotes a new “transuranic” element which might itself undergo a

subsequent beta-decay. Indeed, chemical testing revealed that their beta-emitters

were not uranium isotopes or any known element between lead (Z ¼ 82) and

uranium, a result that strengthened their belief that they were synthesizing new

“transuranic” elements. Indeed, it was in part for this work that Fermi was awarded

the 1938 Nobel Prize in Physics.

As it happens, 238U is in fact quite fissile when bombarded by very energetic

neutrons (see Sect. 1.9). However, the experimental arrangement adopted by

Fermi’s group precluded their being able to detect the high-energy fission frag-

ments that are so created. In addition to being an alpha-emitter, radon is a fairly

prolific gamma-ray emitter, and these gamma-rays would have caused an unwanted

background signal for their ionization-chamber detectors if they were placed near

neutron sources. Consequently, their procedure was to irradiate target samples and

then literally run them down a long hallway to a detector far from the neutron

source. Since they were seeking to detect delayed effects (induced half-lives are

often on the order of minutes) this procedure would not affect their results. But the

fission process occurs on a timescale of about 10�15 s, so any fission fragments that

they might have detected directly would be long gone by the time the sample

arrived at the detector. Fission fragments tend to be neutron rich and hence suffer a

succession of beta-decays, and it must have been beta-decays from such fragments

remaining in the samples that were being detected and attributed to synthesis of

transuranic elements. A common product of fission is barium, and a particular

isotope of this element, 131Ba, indeed has a beta-decay half-life of 14.6 min.

Because any reaction that had ever been explored involved transmutations of

elements by at most one or two places in the periodic table, nobody was expecting

fission to happen and so never considered that their experimental arrangement

might be biasing them against detecting it. Retrospect is always perfect.
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In October 1934 Fermi discovered by accident that if the bombarding neutrons

were caused to be slowed (“moderated”) before hitting the target element by first

having them pass through water of paraffin, the activity of the induced radioactiv-

ities could in some cases be drastically increased. Fermi attributed this to the

neutrons having more time in the vicinity of target nuclei and hence a greater

probability of reacting with them. As a result, the Rome group began re-investigat-

ing all those elements which they had previously subjected to fast (energetic)
neutron bombardment. Uranium was one of many elements which proved to yield

greater activity upon slow neutron bombardment. Ironically, slow neutron bom-

bardment of uranium does create plutonium, as we will see in Sect. 1.9; Fermi

initially thought this was happening with fast neutron bombardment of uranium,

which tends to lead to fission.

The possibility that new elements were being created was treated with some

skepticism within the nuclear research community. Among the leaders of that

community were Otto Hahn and Lise Meitner at the Kaiser Wilhelm Institute for

Chemistry in Berlin, who between them had accumulated years of experience with

the chemistry and physics of radioactive elements. In 1935, they and chemist Fritz

Strassmann began research to sort out to what elements uranium transmuted under

slow neutron bombardment. By 1938 the situation had become extremely muddled,

with no less than ten distinct half-lives having been identified. To complicate things

further, Irène Curie (Marie and Pierre’s daughter) and Paul Savitch, working in

Paris, had identified an approximately 3.5-h b half-life resulting from slow neutron

bombardment of uranium, an activity which Hahn and his group had not found.

Curie and Savitch suggested that the 3.5-h decay might be attributed to thorium,

element 90. If this were true it would mean that neutrons slowed to the point of

possessing less than an eV of kinetic energy (see Sect. 3.2) were somehow capable

of knocking alpha-particles out of uranium nuclei.

Further research by Curie and Savitch showed that the 3.5-h beta-emitter had

chemical properties similar to those of element 89, actinium. This observation

would eventually be realized as another missed chance in the discovery of fission.

To isolate the beta-emitter from the bombarded uranium target, Curie and Savitch

used a lanthanum-based chemical analysis. Lanthanum is element 57, which is in

the same column of the periodic table as actinium. Chemists were long familiar

with the fact that elements in the same column of the table behave similarly as far as

their chemical properties are concerned. That the beta emitter “carried” with

lanthanum in a chemical separation indicated that it must have chemistry similar

to lanthanum, and since the element nearest uranium in the periodic table with such

chemistry is actinium, it was assumed that nuclei of that element must be the beta-

decayers. The other possibility, that uranium might in fact be transmuting to

lanthanum, would have seemed ludicrous as U and La differ by a factor of nearly

two in mass. In actuality, Curie and Savitch were in fact detecting 141La, which is

now known to have a half-life of 3.9 h.

Hahn, Meitner, and Strassmann resolved to try to reproduce the French work.

Tragically, in July 1938, Meitner was forced to flee to Holland. Born into a Jewish
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family in Austria, she had assumed that her Austrian citizenship would protect her

against German anti-Semitic laws, but this protection ended with the German

annexation of Austria in March 1938. Hahn and Strassmann carried on with the

work and corresponded with her by letter, but her career was essentially destroyed.

By December of 1938 Hahn and Strassmann had refined their chemical techni-

ques and had become convinced that they were detecting barium (element 56) as a

result of slow-neutron bombardment of uranium. Barium is adjacent to lanthanum

in the periodic table and is another common product of uranium fission. On

December 19 Hahn wrote to Meitner (who by then was settled in Sweden) of the

barium result, and 2 days later followed up with a second letter indicating that they

were also detecting lanthanum. By chance, Meitner’s nephew, physicist Otto

Frisch, was then working at Niels Bohr’s institute in Copenhagen. He traveled to

Sweden to spend Christmas with his aunt and they conceived of the fission process

on December 24, working out an estimate of the energy that could be expected to be

released. By this time Hahn and Strassmann had already submitted their barium

paper to the journal Naturwissenschaften (Hahn and Strassmann 1939). Otto Hahn

was awarded (solely) the 1944 Nobel Prize in Chemistry; Meitner and Strassmann

did not share in the recognition.

Soon after returning to Copenhagen on New Year’s Day 1939, Frisch informed

Niels Bohr of the discovery of fission. Bohr was about to depart for a semester at

Princeton University, and it is he who “carried the word” of the discovery to the

NewWorld on the same day (January 16) that Meitner and Frisch submitted a paper

to Nature with their interpretation of the fission process. This was published on

February 11 (Meitner and Frisch 1939), by which time the process had been

duplicated in a number of laboratories in Europe and America.

Otto Frisch is credited with borrowing the term “fission” from the concept of cell

division in biology to describe this newly-discovered phenomenon. He is also

credited with being the first person to set up an experiment to deliberately demon-

strate it and measure the energy of the fragments, work he did in Copenhagen on

Friday, January 13. After replicating the Hahn and Strassmann uranium results, he

also tested thorium. This element proved to act like uranium in that it would fission

under bombardment by fast neutrons, but at the same time to act curiously unlike

uranium in that it did not do so at all when bombarded with slow neutrons. This

asymmetry catalyzed a crucial revelation on the part of Niels Bohr a few weeks

later as to what isotope of uranium is responsible for slow-neutron fission. Uranium

consists of two isotopes, the “even/even” (in the sense Z/N) isotope 238U and the

much rarer “even/odd” isotope 235U, whereas thorium has only one naturally-

occurring isotope, 232Th, an “even/even” nuclide. Bohr realized that, as a matter

of pure logic, 235U must be responsible for slow-neutron fission as it is the one

“parity” of isotope that thorium does not possess.

The difference in behavior between 238U and 235U under neutron bombardment

and how this relates to their nuclear “parity” is examined further in Sect. 1.9. Until

then, we examine in more detail the energetics of the fission process itself.
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1.6 Energy Release in Fission

Neutron-induced uranium fission can happen in a multiplicity of ways with a wide

variety of fission products resulting. Empirically, equal division of the bombarded

nucleus is quite unlikely; the most likely mass ratio for the products is about 1.5.

To understand the energy release in fission, consider the splitting of a 235U

nucleus into barium and krypton (the Hahn-Strassmann fission-discovery situation)

along with the release of three neutrons:

1
0nþ 235

92U ! 141
56 Baþ 92

36Krþ 3 ð10nÞ: (1.42)

The delta values are

D 1
0n
� � ¼ 8:071

D 235
92 U
� � ¼ 40:921

D 141
56 Ba
� � ¼ �79:726

D 92
36Kr
� � ¼ �68:79;

8>>>><
>>>>:

(1.43)

hence Q ¼ 173.3 MeV.

The fission energy latent in a single kilogram of 235U is enormous. With an

atomic weight of 235 g/mol, 1 kg of 235U comprises about 4.26 mol or 2.56 � 1024

atoms. At 173 MeV/reaction the potential fission energy amounts to

4.43 � 1032 eV, or 7.1 � 1013 J. Explosion of 1 ton of TNT liberates about

4.2 � 109 J, so 1 kg of 235U is equivalent to nearly 17 kt (kilotons) of TNT. The
explosive yield of the Little Boy uranium bomb dropped on Hiroshima has been

estimated at 13 kt (Penney et al. 1970), from which we can infer that only some

0.8 kg of 235U actually underwent fission. Upon considering that Little Boy
contained about 64 kg of 235U (Sect. 2.3), we can appreciate that the first fission

weapons were actually rather inefficient despite their enormous explosive yields.

Weapon efficiency is examined in detail in Sects. 2.4 and 2.5.

In writing the above fission reaction it was assumed that three neutrons were

released in the process. If one is to have any hope of sustaining a neutron-moderated

chain reaction, it is clear that, on average, at least one neutron will have to be

liberated per fission event. Soon after the discovery of fission a number of research

teams began looking for evidence of these “secondary” neutrons, and proof of their

existence was not long in coming. On March 16, 1939, two independent teams at

Columbia University submitted letters to The Physical Review reporting their

discovery: Anderson et al. (1939) and Szilard and Zinn (1939). Both groups

estimated about two neutrons emitted per each captured. Their papers were pub-

lished on April 15. In Paris on April 7, von Halban et al. (1939) submitted a paper to

Nature in which they reported 3.5 � 0.7 neutrons liberated per fission; their paper

was published on April 22. The modern value for the average number of secondary

neutrons liberated by U-235 when it is fissioned by a fast neutron is about 2.6. In an
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ingenious experiment carried out about the same time and reported in the April

8 edition of Nature, Feather (1939) reported that the fission process must take place

within a time of no more than about 10�13 s. To researchers in the field of nuclear

physics, it was apparent in the spring of 1939 that a rapid, extremely energetic

uranium-based neutron-initiated-and-maintained chain reaction was at least a theo-

retical possibility.

1.7 The Bohr–Wheeler Theory of Fission: The Z2 A= Limit
Against Spontaneous Fission

Much of the material in this section is adopted from a publication elsewhere by the

author (Reed 2003).

Within a few weeks of the discovery of slow-neutron-induced fission of ura-

nium, Niels Bohr published a paper in which he argued that of the two then-known

isotopes of uranium (235U and 238U), it was likely to be the lighter, much rarer one

that was undergoing fission whereas the heavier one would likely simply absorb any

bombarding neutrons and later decay (Bohr 1939). Experimental verification of this

prediction came in early 1940 when Alfred Nier separated a small sample of

uranium into its constituent isotopes via mass spectroscopy (Nier et al. 1940). In

the meantime, Bohr continued with his work on the theory of nuclear fission, and, in

the September 1, 1939 edition of The Physical Review, he and John Wheeler of

Princeton University published an extensive analysis of the theory of fission (Bohr

and Wheeler 1939). In this seminal work they reported two important discoveries:

(1) That there exists a natural limit Z2 A= ~48 beyond which nuclei are unstable

against disintegration by spontaneous fission, and (2) That in order to induce a

nucleus with Z2 A= < 48 to fission, it must be supplied with a necessary “activation

energy,” a quantity also known as a “fission barrier.” Uranium isotopes fall into this

latter Z2 A= range.

Bohr and Wheeler’s calculations are extremely challenging even for advanced

physics students. We can, however, get some idea of what they did by invoking

some simplifying approximations and by taking some empirical numbers at face

value. This section is devoted to an analysis of the issue of the limiting value of

Z2 A= against spontaneous fission. A more formal treatment of the Bohr and

Wheeler calculation is presented in Appendix E.

Bohr and Wheeler modeled the nucleus as a deformable “liquid drop” whose

shape can be described by a sum of Legendre polynomials configured to conserve

volume as the nucleus deforms, and considered the total energy of the nucleus to be

the sum of two contributions. These are a “surface” energy UA proportional to the

surface area of the nucleus, and an electrostatic contributionUC corresponding to its

Coulomb self-potential. If a nucleus finds itself deformed from its original spherical

shape, UA will increase due to the consequent increase in surface area, while UC

simultaneously decreases as the nuclear charge becomes more spread out. If (UA þ
UC)deformed < (UA þ UC)original, then the nucleus will be unstable against further
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deformation and eventual fission. The surface-energy term originates in the fact that

nucleons near the surface of the nucleus are less strongly bound than those inside,

while the Coulomb term arises from the mutual repulsion of the protons.

The usual textbook approach to establishing the Z2 A= limit is to quote expres-

sions for the surface and Coulomb energies of nuclei modeled as ellipsoids, and

then compute the difference in energy between a spherical nucleus and an ellipsoid

of the same volume. We can do an approximate treatment, however, by modeling

nuclei as spheres.

Begin with a spherical parent nucleus of radius RO as shown in Fig. 1.4a.

Imagine that this nucleus splits into two spherical product nuclei of radii R1 and

R2 as shown in part b of the figure; after this, they will repel each other by Coulomb

repulsion and fly away at high speed as shown in part c of the figure.

Presuming that the density of nuclear matter is constant, conservation of nucleon

number demands that volume be conserved:

R3
O ¼ R3

1 þ R3
2: (1.44)

Define the mass ratio of the fission products as

f ¼ R3
1

R3
2

: (1.45)

This ratio could be defined as the inverse of that adopted here, a point to which

we shall return below. In terms of the mass ratio, the radii of the product nuclei are

R1 ¼ RO
f

1þ f

� �1=3
(1.46)

Original nucleus Moment of fission Separation → ∞

RO

R1

R2

R1

R2

a b c

Fig. 1.4 Schematic illustration of the fission process
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and

R2 ¼ RO
1

1þ f

� �1=3
: (1.47)

Following Bohr andWheeler, we take the energy of the system at any moment to

comprise two contributions: (1) a surface energy proportional to the surface area of

the system, and (2) the Coulombic self-energy of the system. The surface energy of

the original nucleus can be written as

U
orig
A ¼ aS R

2
O (1.48)

where the coefficient aS is to be determined. That for the fissioned nucleus will be

Ufiss
A ¼ aS R2

1 þ R2
2

� � ¼ aS R
2
Oa; (1.49)

where

a ¼ f 2=3 þ 1

1þ fð Þ2=3
: (1.50)

For the Coulomb self-energy, begin with the result that the electrostatic self-

energy of a sphere of charge of radius r is given by

Uself
C ¼ 4 pr2

15 eo

� �
r5; (1.51)

where r is the charge density. In the present case, r ¼ 3 Z e=4 pR3
O where Z is the

atomic number of the parent nucleus. This gives 4pr2=15 eo ¼ 3 Z2e2=20 p eoR6
O

and hence

Uorig
C ¼ 3 e2 Z2

20 p eo RO

� �
: (1.52)

The electrostatic self-energy of the system at the moment of fission (part b

Fig. 1.4) is the sum of that of each of the product nuclei plus that of the point-

charge repulsion between them:

Ufiss
C ¼ 3 e2Z2

20p eoR6
O

 !
R5
1 þ R5

2

� �þ Q1Q2

4 p eo R1 þ R2ð Þ ; (1.53)

where Q1 and Q2 are the charges of the product nuclei. In terms of the mass ratio f
this reduces to

Ufiss
C ¼ 3 e2Z2

20 p eoRO

� �
bþ gð Þ; (1.54)
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where

b ¼ f 5=3 þ 1

1þ fð Þ5=3
(1.55)

and

g ¼ 5=3ð Þ f
1þ fð Þ5=3 f 1=3 þ 1ð Þ

: (1.56)

The common factor appearing in (1.52) and (1.54) can be simplified. Empiri-

cally, nuclear radii behave as R ~ aA1/3, where a ~ 1.2 fm. Incorporating this

approximation and substituting values for the constants gives

3 e2 Z2

20 p eo RO
� 0:72

Z2

A1=3

� �
MeV: (1.57)

If the same empirical radius expression is incorporated into the surface-energy

expressions, we can absorb the factor of 1.2 fm into the definition of aS and write

(1.48) and (1.49) asUorig
A ¼ aS A

2=3 and Ufiss
A ¼ aS A

2=3a; the units of aSwill emerge

as MeV.

We can now begin to consider the question of the limiting value of Z2 A= . If the

total energy of the two nuclei in the fission circumstance shown in Fig. 1.4b is less
than that for the original nucleus of Fig. 1.4a, then the system will proceed to

fission. That is, spontaneous fission will occur if

U
orig
A þ U

orig
C >Ufiss

A þ Ufiss
C : (1.58)

Substituting (1.48)–(1.50), (1.52) and (1.54)–(1.57) into (1.58) shows that SF

will occur for

Z2

A
>

aS a� 1ð Þ
0:72 1� b� gð Þ : (1.59)

Estimating the Z2 A= stability limit apparently demands selecting an appropriate

mass ratio and knowing the value of aS. For the latter, we could adopt a value from

the semi-empirical mass formula, but it is more satisfying to derive a value for aS
based on some direct physical grounds. We take up this issue now, returning later to

the question of an appropriate mass ratio.

To calibrate the value of aS we appeal to the fact that fission can be induced by

slow neutrons, with (in the case of uranium) Q ~ 170 MeV of energy being

liberated. In the present notation this appears as

Uorig
A þ U

orig
C

� �
� U1

A þ U1
C

� � ¼ Q; (1.60)
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where U1
A and U1

C respectively designate the areal and Coulombic energies of the

system when the product nuclei are infinitely far apart. Since the areas of the

product nuclei do not change following fission, U1
A ¼ Ufiss

A ; see (1.49) and (1.50).

U1
C is given by (1.53) without the point–charge interaction term, that is, (1.54)

without the g term. From these we find

aS ¼
Q=A2=3
� �� 0:72 Z2=Að Þ 1� bð Þ

1� að Þ ; (1.61)

where A and Z refer to the parent nucleus in the fission reaction, not the general

Z2 A= spontaneous-fission limit we seek.

Values of aS derived in this way from a number of fission reactions involving
235U are shown in Table 1.2. The first reaction is representative of the Hahn and

Strassmann fission-discovery reaction. The second is concocted to have the masses

of the fission products as 139 and 95, values claimed by Weinberg and Wigner

(1958, p. 30) to be the most probable mass yields in slow-neutron fission of 235U.

The last two reactions are less probable ones chosen to give a sense of how sensitive

aS is to the choice of calibrating reaction. The mass ratios are those of the fission

products, neglecting any neutrons emitted. As one might hope if aS reflects some

fundamental underlying physics, its value is fairly insensitive to the choice of

calibrating reaction. The values of aS derived here are consistent with those quoted

in numerical fits of the semi-empirical mass formula, ~18 MeV.

With aS in hand we can establish an estimate of the stability limit for Z2 A=
against spontaneous fission based on (1.59).

If the limiting value of Z2 A= is to be a matter of fundamental physics, it should

be independent of any fission-product mass ratio, a consideration that begs the

question of what value of f to use in a, b, and g in (1.59). In particular, it would make

no sense to use the mass ratio for the induced reaction used to calibrate aS to

determine a limit against spontaneous fission. To resolve this dilemma, recall that

f could also have been defined as the inverse of what was adopted in (1.45). The

only value of f that is in any sense “unique” is therefore f ¼ 1. Indeed, plots of the

right side of (1.59) vs. f for fixed values of aS reveals that a minimum always occurs

at f ¼ 1, symmetric (in the sense of f ! 1/f ) about f ¼ 1. To establish a lower limit

to the spontaneous-fission condition, let us thus take (1.59) evaluated at f ¼ 1:

Z2=A
� �

lim
� 3:356 aS: (1.62)

Table 1.2 Fission reactions, derived surface energy parameter, and derived spontaneous fission

limit

Fission products of 1n þ 235U Q (MeV) f aS (MeV) (Z2/A)lim
141
56 Baþ 92

36Kr þ 3 1
0n
� �

173.2 1.53 18.3 61.4
139
54 Xeþ 95

38Sr þ 2 1
0n
� �

183.6 1.46 17.5 58.6
116
46 Pdþ 116

46 Pdþ 4 1
0n
� �

177.0 1.00 19.0 63.7
208
82 Pbþ 26

10Ne þ 2 1
0n
� �

54.2 8.00 16.3 54.7
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Limiting values of Z2 A= so calculated are given in the last column of Table 1.2;

in each case these are based on the aS values in the preceding column of the table.

While these are somewhat high compared to Bohr and Wheeler value of 48, the

agreement is respectable given the simplicity of our model.

Spreadsheet TwoSphereFission.xls allows a user to enter mass numbers and

delta-values for reactions like those in Table 1.2; the spreadsheet calculates values

for Q, f, a, b, g, aS, and the limiting value of Z2 A= .

We can estimate the value of Z beyond which nuclei will be unstable against

spontaneous fission. From data given in the online version of the Nuclear Wallet
Cards, one finds that there are 352 isotopes that are either permanently stable or

have half-lives >100 years. A plot of A vs. Z for these isotopes can be approxi-

mately fit by a power law as shown in Fig. 1.5; the fit is

A � 1:6864Z1:0870 r2 ¼ 0:9965
� �

: (1.63)

This fit slightly underestimates A(Z) for heavy nuclei, giving A ~ 230 for

Z ¼ 92, but is sufficiently accurate for our purposes. For a limiting Z2 A= of 60,

(1.63) predicts a maximum stable Z of about 157; the Bohr and Wheeler value of 48

gives a maximum Z of about 123.

1.8 Energy Spectrum of Fission Neutrons

When nuclei fission they typically emit two or three neutrons. These secondary

neutrons are not all of the same energy, however; they exhibit a spectrum of kinetic

energies. Knowing the average energy of these “secondary” neutrons is important

in understanding the relative fissilities of 235U and 238U as discussed in Sect. 1.9.

Fig. 1.5 ln(A) vs. ln(Z) for 352 nuclides with half-lives >100 years
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According to Hyde (1964), the probability of a neutron being emitted with

energy between E and E þ dE can be expressed as

PðEÞ dE ¼ K
ffiffiffi
E

p
e�E=adE; (1.64)

where K is a normalization constant and a is a fitting parameter. For energies

measured in MeV, a ~ 1.29 MeV in the case of 235U. This distribution is shown

in Fig. 1.6.

To determine the normalization factor K, we insist that the sum of the probabil-

ities over all possible energies be unity:

Z1
0

PðEÞ dE ¼ 1 ) K

Z1
0

ffiffiffi
E

p
e�E=a dE ¼ 1: (1.65)

Setting x ¼ ffiffiffiffiffiffiffiffi
E=a

p
renders this as

2Ka3=2
Z1
0

x2 e�x2 dx ¼ 1: (1.66)

This integral evaluates to
ffiffiffi
p

p
=4, hence

K ¼ 2ffiffiffi
p

p
a3=2

: (1.67)

To determine the mean neutron energy Eh i we take a probability-weighted

average of E over all possible energies:

Eh i ¼
Z1
0

EPðEÞ dE ¼ K

Z1
0

E3=2e�E=a dE: (1.68)
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Fig. 1.6 Energy spectrum of neutrons released in fission of 235U
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Again setting x ¼ ffiffiffiffiffiffiffiffi
E=a

p
renders this in a dimensionless form as

Eh i ¼ 2Ka5=2
Z1
0

x4 e�x2 dx: (1.69)

This integral evaluates to 3
ffiffiffi
p

p
=8; invoking the normalization of (1.67) then gives

Eh i ¼ 3

2
a: (1.70)

For a ~ 1.29 MeV, Eh i ~ 1.93 MeV, or, say, about 2 MeV. From kinetic theory,

this is equivalent to a 3kT/2 temperature of ~1.5 � 1010 K (see Problem 1.8 in

Appendix H).

In considering the question of why 238U does not make an appropriate material

for a weapon (Sect. 1.9), it proves helpful to know what fraction of the secondary

neutrons are of energy greater than about 1.6 MeV. For the moment, suffice it to say

that the reason for this is that the probability of fissioning 238U nuclei by neutron

bombardment is essentially zero for neutrons of energy less than this value.

The fraction of neutrons with kinetic energy E greater than some value e is

given by

f E � eð Þ ¼
Z1
e

pðEÞdE ¼ K

Z1
e

ffiffiffi
E

p
e�E=adE: (1.71)

With (1.67) and setting x ¼ E/a,

f E � eð Þ ¼ 2ffiffiffi
p

p
Z1
e=a

ffiffiffi
x

p
e�xdx: (1.72)

This integral cannot be solved analytically; it must be evaluated numerically.

For e ¼ 1.6 MeV and a ¼ 1.29 MeV, the lower limit of integration becomes

e/a ¼ 1.24. The integral itself evaluates to 0.4243 and the entire expression to 2

(0.4243)/p1/2 ¼ 0.4788. For convenience, we round this off to 0.5. This means that

about one-half of the neutrons emitted in the fission of a 235U nucleus would be

energetic enough to fission a 238U nucleus. We shall see in the next section,

however, that the story is more complicated than this.

1.9 Leaping the Fission Barrier

Much of the material in this section is adopted from a publication elsewhere by the

author (Reed 2008).
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The isotopes 235U and 238U differ not at all in their chemical properties and yet

behave so differently under neutron bombardment. How can this be?While a detailed

treatment of fission is very complex and lies beyond the scope of the present text,

we can get some idea of why things behave this way from some energy arguments.

Theory indicates that any otherwise stable nucleus can be induced to fission

under neutron bombardment. However, any specific isotope possesses a character-

istic fission barrier. This means that a certain minimum energy has to be supplied to

deform the nucleus sufficiently to induce the fission process to proceed. This

concept is analogous to the activation energy for a chemical reaction; the two

terms are in fact used synonymously.

This energy can be supplied in two ways: (1) in the form of kinetic energy

carried in by the bombarding neutron that initiates the fission, and/or (2) from

“binding” energy liberated when the target nucleus absorbs the bombarding particle

and so becomes a different nuclide with its own characteristic mass. Both factors

play roles in understanding uranium fission.

The smooth curve in Fig. 1.7 shows theoretically-computed fission barrier

“heights” in MeV as a function of mass number A; the irregular curve incorporates
more sophisticated calculations. Barrier energies vary from a high of about 55 MeV

for isotopes with A ~ 90 down to a few MeV for the heaviest elements such as

uranium and plutonium. For elements heavier than Pu, half-lives for various modes

of decay (a and b decays) tend to be so short as to make them impractical candidates

for weapons materials despite their low fission barriers.
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Fission is believed to proceed via formation of an “intermediate” or “compound”

nucleus formed when the target nucleus absorbs the incoming neutron. Two cases

are relevant for uranium:

1
on þ 235

92 U ! 236
92 U (1.73)

and

1
on þ 238

92 U ! 239
92 U: (1.74)

For reaction (1.73), the D values are 8.071, 40.921, and 42.446. The Q-value of
this reaction is then 6.546 MeV. For reaction (1.74), the D values are 8.071, 47.309,

and 50.574, leading to a Q-value of 4.806 MeV. Now imagine that the bombarding

neutrons are “slow”, that is, that they bring essentially no kinetic energy into the

reactions. (“Fast” and “slow” neutron energies are explored in more detail in

Sect. 3.2) The nucleus of 236U formed in reaction (1.73) will find itself in an excited
state with an internal energy of about 6.5 MeV while the 239U nucleus formed in

reaction (1.74) will have a like energy of about 4.8 MeV.

Fission barriers for various nuclides are tabulated in Appendix A. For the

compound nuclei considered here, 236U and 239U, these are respectively 5.67 and

6.45 MeV. In the case of 236U the Q-value exceeds the fission barrier by nearly

0.9 MeV. Consequently, any bombarding neutron, no matter how little kinetic

energy it has, can induce fission in 235U. On the other hand, the Q-value of reaction
(1.74) falls some 1.6 MeV short of the fission barrier. To fission 238U by neutron

bombardment thus requires input neutrons of at least this amount of energy. 235U is

known as a “fissile” nuclide while 238U is termed “fissionable.”

Figure 1.8 shows the situation for various U and Pu isotopes; Q � EBarrier is

plotted as a function of target mass number A. The upper line is for Pu isotopes

while the lower one is for U isotopes.
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Fig. 1.8 Energy release minus fission barrier for fission of isotopes of uranium (lower line) and
plutonium (upper line). If Q � EBarrier > 0, an isotope is said to be “fissile”
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From Fig. 1.8, it appears that both 232U and 233U would make good candidates

for weapons materials. 232U is untenable, however, as it has a 70-year alpha-decay

half-life. For practical purposes, 233U is also not convenient as it does not occur

naturally and has to be created by neutron bombardment of 232Th in a reactor that is

already producing plutonium (Kazimi 2003). Aside from its fission-barrier issue,
234U has such a low natural abundance as to be of negligible consequence

(~0.006%), and 236U does not occur naturally at all. 237U is close to having

Q – EBarrier � 0, but has only a 6.75-day half-life against beta-decay.

In the case of plutonium, mass numbers 236, 237, 238 and 241 have such short

half-lives against various decay processes as to render them too unstable for use in a

weapon even if one went to the trouble of synthesizing them in the first place (2.87-

day alpha-decay, 45-day electron capture, 88-day alpha-decay and 14-day beta-

decay, respectively). 240Pu turns out to have such a high spontaneous fission rate

that its very presence in a bomb core actually presents a danger of causing an

uncontrollable premature detonation; this issue is analyzed in Sect. 4.2. Pu nuclei of

mass number 239 are the only ones of this element that are suitable as a weapons

material.

A pattern in evident in Fig. 1.8. All stable nuclei have lower masses than one

would predict on the naive basis of adding up the masses of their Z protons and

A–Z neutrons; the difference goes into binding energy. Nuclear physicists have

known for many decades that in this mass-energy sense, so-called even/odd nuclei

such as 235U or 239Pu are inherently less stable than even/even nuclei; the underly-

ing cause has to do with the way in which nuclear forces act between pairs of

nucleons. In other words, in comparison to even/odd nuclei, even/even nuclei are

of even lower mass than the naive mass-addition argument would suggest. Hence,

when an even/odd nucleus such as 235U takes in a neutron it becomes an even/even

nucleus of “relatively” low mass; the mass difference appears as excitation energy

via E ¼ mc2. When an even/even nucleus takes in a neutron it liberates mass-

energy as well, but not as much as in the even/odd case; the result is dramatically

different Q � EBarrier values. This “parity” effect reveals itself as the jagged lines

in Fig. 1.8.

The issue of the unsuitability of 238U as a weapons material is, however, more

subtle than the above argument lets on. We saw in Sect. 1.8 that the average energy

of secondary neutrons liberated in fission of uranium nuclei is about 2 MeV and that

about half of these neutrons have energies greater than the ~1.6 MeV excitation

energy of the n þ 238U ! 239U reaction. In view of this it would appear that 238U

might make a viable weapons material. Why does it not? The problem turns out to

depend on what happens when fast neutrons encounter 238U nuclei.
The fission-spectrum averaged inelastic-scattering cross-section for neutrons

against 238U is about 2.6 bn, whereas the average fission cross-section is about

0.31 bn. (Inelastic scattering means a collision wherein the kinetic energy of the

incoming particle is reduced in the collision; in an elastic scattering the kinetic

energy of the incoming particle is conserved. If the concept of a cross-section is

unfamiliar to you, it is discussed in more detail in Sect. 2.1) Thus, a fast neutron

striking a 238U nucleus is about eight times as likely to be inelastically scattered as it
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is to induce a fission. Experimentally, neutrons of energy 2.5 MeV inelastically

scattering from 238U have their energy reduced to a most probable value of about

0.275 MeV as a result of a single scattering (Fetisov 1957). The vast majority of

neutrons striking 238U nuclei will thus promptly be slowed to energies below the

fission threshold. The catch is that below about 1 MeV, 238U begins to have a

significant non-fission neutron capture cross-section. The relevant cross-sections

are shown in Fig. 1.9; see also Fig. 2.3.

In short, the non-utility of 238U as a weapons material is due not to a lack of

fission cross-section for fast neutrons but rather to a parasitic combination of

inelastic scattering and a fission threshold below which it has an appreciable capture

cross-section for slowed neutrons. To aggravate the situation further, the capture

cross-section of 238U below about 0.01 MeV is characterized by a dense forest of

capture resonances with cross-sections of up to thousands of barns (Hyde 1964;

Garwin and Charpak 2001); the curves in Fig. 1.9 terminate at about 0.03 MeV at

the low-energy end. The overall result is a rapid suppression of any chain reaction.
235U and 239Pu have cross-sections for inelastic scattering as well, but they differ

from 238U in that they have no fission threshold; slowed neutrons will still fission

them and fission will in fact always strongly dominate over capture for them. All of

these isotopes also elastically scatter neutrons but this is of no concern here as this

process does not degrade the neutrons’ kinetic energies. These cross-section argu-

ments also play a central role in the issue of achieving controlled chain reactions, as

is discussed in Sect. 3.1.

238-inelastic

239-fission

235-fission

238-fission238-capture

Fig. 1.9 239Pu, 235U, and 238U fission cross-sections and 238U capture and inelastic-scattering

cross-sections as functions of bombarding neutron energy

1.9 Leaping the Fission Barrier 31



To put further understanding to this fast-fission poisoning effect of 238U, con-

sider the following numbers. Suppose that 2-MeV secondary neutrons lost only half

their energy due to inelastic scattering. At 1 MeV, the fission cross-section of 235U

is about 1.22 bn while the capture cross-section of 238U is about 0.13 bn. In a sample

of natural U, where the 238U:235U abundance ratio is 140:1, capture would conse-

quently dominate fission by a factor of about 15:1. The net result is that only 235U

can sustain a growing fast-neutron chain reaction and it is for this reason that this

isotope must be laboriously isolated from its more populous sister isotope if one

aspires to build a uranium bomb. Bomb-grade uranium is defined as 90% pure 235U.

Despite its non-fissility, 238U played a crucial role in the Manhattan Project. The
239U nucleus formed in reaction (1.74) sheds its excess energy in a series of two

beta-decays, ultimately giving rise to 239Pu:

239
92U ���!b�

23:5 min

239
93Np ���!b�

2:36 days

239
94Pu: (1.75)

Like 235U, 239Pu is an even–odd nucleus and was predicted by Bohr and Wheeler

to be fissile under slow-neutron bombardment. This is indeed the case. The reaction

1
on þ 239

94 Pu ! 240
94 Pu (1.76)

has a Q-value of 6.53 MeV, but the fission barrier of 240Pu is only about 6.1 MeV.

Fast neutrons thus promptly fission 239Pu. Slow neutron bombardment of Pu-239

can actually lead to two outcomes: fission (cross-section 750 bn) or neutron

absorption (cross-section 270 bn) to produce semi-stable Pu-240, which has an

a-decay half-life of 6,560 years.

1.10 A Semi-Empirical Look at the Fission Barrier

In this section we extend the model of fission developed in Sect. 1.7 to show how

one can “derive” the general trend of fission-barrier energy as a function of mass

number as shown in Fig. 1.7. This derivation is not rigorous and will require some

interpolation and adoption of a result from Bohr and Wheeler’s (1939) paper. Also,

as fission barriers are now known to depend in complex ways on nuclear shell

effects, pairing corrections, energy levels, and deformation and mass asymmetries,

we cannot expect the simple model presented here to capture their detailed

behavior.

We saw in Sect. 1.7 that if a nucleus of mass number A and atomic number Z is

modeled as a sphere, its total energy UE can be expressed as

U
orig
E ¼ aSA

2=3 þ aC
Z2

A1=3

� �
; (1.77)

where aS and aC are respectively surface and Coulomb energy parameters of values

aS ~ 18 MeV and aC ~ 0.72 MeV. Further, if the fissioning nucleus is modeled as
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two touching spheres of mass ratio f ( f > 1), then the energy of the system at the

moment of fission is given by

Ufiss
E ¼ aSA

2=3aþ aC
Z2

A1=3

� �
bþ gð Þ; (1.78)

where

a ¼ f 2=3 þ 1

1þ fð Þ2=3
; (1.79)

b ¼ f 5=3 þ 1

1þ fð Þ5=3
; (1.80)

and

g ¼ 5=3ð Þ f
1þ fð Þ5=3 f 1=3 þ 1ð Þ

: (1.81)

The difference in energy between the fissioning and original configurations is

given by

DE ¼ U
fiss
E � Uorig

E ¼ aSA
2=3 a� 1ð Þ þ aC

Z2

A1=3

� �
bþ g� 1ð Þ: (1.82)

Typically, DE > 0, that is, there is an energy barrier that inhibits the fission

process. The goal here is to look at the run of DE as a function of the mass number A.
For a reason that will become clear in a moment, divide through (1.82) by aSA

2/3:

DE
aSA2=3

¼ a� 1ð Þ þ aC
aS

Z2

A

� �
bþ g� 1ð Þ: (1.83)

The reason for this manipulation is to set up our expression for DE in a form

ready to accommodate an important result obtained by Bohr and Wheeler. This is

that, in terms of aS and aC, they were able to prove that the limiting value of Z2 A=
against spontaneous fission is given by

Z2

A

� �
lim

¼ 2
aS
aC

� �
: (1.84)

A formal proof of this important result appears in Appendix E. This expression is

analogous to (1.62) but is more general as it is entirely independent of the particular

shape of the fissioning nucleus. In terms of this limit, we can write (1.83) as

DE
aSA2=3

¼ a� 1ð Þ þ 2 bþ g� 1ð Þ x; (1.85)
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where x is defined as

x ¼ Z2

A

� �
Z2

A

� �
lim

0 	 x 	 1ð Þ: (1.86)

Now consider, as Bohr and Wheeler did, fission into equal-mass product nuclei:

f ¼ 1. In this case we have a ¼ 1.25992, b ¼ 0.62996, and g ¼ 0.26248, and

hence

DE
aSA2=3

¼ flinearðxÞ ¼ 0:25992� 0:21511 x: (1.87)

Equation (1.87) predicts that DE aSA
2=3

�
will decline linearly with x until it

reaches zero at x ¼ (0.25992/0.21511) ¼ 1.208; this behavior is shown as the

straight line in Fig. 1.10.

That this result predicts a fission barrier of zero for a value of x > 1 indicates

that our simple “two-sphere” model of fission cannot be an accurate representa-

tion of the real shape of a fissioning nucleus; we should have f(x) ! 0 as

x ! 1. Presumably f(x) should have some shape more akin to the smooth

curve shown in Fig. 1.10. The precise recipe for the curve shown is elucidated

in what follows.

Following Bohr and Wheeler, we develop a plausible interpolating function

for f(x). Presuming (as they did) that flinear(x) accurately models the fission barrier

Fig. 1.10 Straight line: fission barrier function flinear(x) of (1.87). The curved line is the inter-

polating function of (1.89) and (1.90) designed to give fsmooth(x) ! 0 as x ! 1
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for nuclei with small values of x, we seek an interpolating function that satisfies four
criteria:

ið Þ f ðxÞ ¼ ða� 1Þ at x ¼ 0

iið Þ df=dx ¼ 2ðbþ g� 1Þ at x ¼ 0

iiið Þ f ðxÞ ¼ 0 at x ¼ 1

ivð Þ df=dx ¼ 0 at x ¼ 1

(1.88)

Conditions (i) and (ii) demand that f(x) behave as (1.87) for small values of x;
condition (iii) is the Bohr and Wheeler limiting condition of (1.86), and condition

(iv) ensures that f(x) will approach this limiting condition “smoothly.” Apparently,

a virtual infinitude of interpolating functions could be conceived. With no physical

guide beyond these four criteria to help narrow down a selection, we make a simple

choice: a polynomial. The lowest-order polynomial with four adjustable constants

is a cubic, that is,

fsmoothðxÞ ¼ Fx3 þ Bx2 þ Cxþ D: (1.89)

Fitting the above criteria to this function shows that we must have

D ¼ a� 1ð Þ
C ¼ 2 bþ g� 1ð Þ

B ¼ 7� 3a� 4b� 4gð Þ
F ¼ 2 aþ bþ g� 2ð Þ

9>>>=
>>>;
: (1.90)

In their paper, Bohr and Wheeler do not make clear precisely what sort of

interpolation they used; they appear to have adopted some interpolating function

and calibrated it using the then experimentally-estimated barrier DE ~ 6 MeV for
238U.

For f ¼ 1, (1.90) gives (D, C, B, F) ¼ (0.2599,�0.2151, �0.3495, 0.3047); this

is the smooth curve in Fig. 1.10. With this function that now respects the correct

limiting value of Z2 A= , we can write the energy necessary to distort a nucleus to the

point of fission as

DE ¼ aSA
2=3fsmoothðxÞ: (1.91)

To compare our model with Fig. 1.7 it is desirable to plot DE in terms of mass

number A. To do this we need some model for how the atomic number Z tracks with

mass number A, since x ¼ Z2 A=ð Þ Z2 A=ð Þlim
�

. If the plot in Fig. 1.5 is reversed, one

finds that

Z � 0:60679A0:92383 2 	 Z 	 98; r2 ¼ 0:99742
� �

: (1.92)
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Figure 1.11 shows the run of DE vs. A for f ¼ 1 upon assuming (1.92) and (aS,
aC) ¼ (18, 0.72) MeV.

In computing Fig. 1.11, a modification was made to (1.91). This is that for

A ¼ 1, it predicts DE ¼ 4.65 MeV. This “offset” value was subtracted from all

values of DE on the rationale that one cannot fission a nucleus with A ¼ 1.

Spreadsheet BarrierCubic.xls allows a user to set the mass ratio f and values for
the parameters aS and aC; the spreadsheet computes and displays the values of a, b,
and g of (1.79)–(1.81) and plots Figs. 1.10 and 1.11, taking into account the A ¼ 1

offset.

Figure 1.11 is remarkably similar in shape to Fig. 1.7 in that it displays a broad

peak at A ~ 100 with DE ~ 55 MeV, followed by a decline. The present model

predicts DE ~ 15.8 MeV for A ¼ 235 (for which (1.92) gives Z ¼ 94.1), and so is

obviously not fully accurate. But it does successfully capture the general trend of

barrier energy as a function of A. For elements lighter than uranium the fission

barrier is too great to be overcome by release of binding energy alone.
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Chapter 2

Critical Mass and Efficiency

Abstract This chapter forms the heart of this book. After deriving the properties of

neutron travel through materials, a detailed analysis is presented of how the critical

mass of a fissile material, in both “bare” and “tampered” configurations, can be

calculated. The calculations are applied to both uranium-235 and plutonium-239.

Analytic expressions are developed for estimating bomb energy yield and effi-

ciency. A numerical simulation is developed to analyze conditions of pressure,

fission rate, expansion, and energy yield within a fissioning bomb core, and is

applied to the Hiroshima Little Boy bomb. Spreadsheets for performing the calcula-

tions are made available to interested users through a supporting website.

Every atom of separated uranium or plutonium in the Manhattan Project was

precious, so estimating the amount of fissile material needed to make a workable

nuclear weapon – the so-called critical mass – was a crucial issue for the developers

of Little Boy and Fat Man. Equally important was being able to estimate what

efficiency one might expect for a fission bomb. For various reasons, not all of the

fissile material in a bomb core actually undergoes fission during a nuclear explo-

sion; if the expected efficiency were to prove so low that one might just as well use a

few conventional bombs to achieve the same energy release, there would be no

point in taking on the massive engineering challenges involved in making nuclear

weapons. In this chapter we investigate these issues.

The concept of critical mass involves two competing effects. As nuclei fission

they emit secondary neutrons. A fundamental empirical law of nuclear physics,

derived in Sect. 2.1, demands that a certain fraction of these neutrons reach the

surface of the mass and escape while the remainder are consumed in fissioning

other nuclei. However, if on average more than one neutron is emitted per fission

we can afford to let some escape since only one is required to initiate a subsequent

fission. For a small sample of material the escape probability is high; as the size of

the sample increases, the escape probability declines and at some point will reach a

value such that the number of neutrons that fail to escape will number enough to

fission every nucleus in the sample. Thus, there is a minimum size (hence mass) of

B.C. Reed, The Physics of the Manhattan Project,
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material at which every nucleus will in principle be fissioned even while some

neutrons escape.

The above description of critical mass should be regarded as a purely qualitative

one. Technically, the important issue is known as criticality. Criticality is said to

obtain when the number of free neutrons in a bomb core is increasing with time.

A full understanding of criticality demands familiarity with time-dependent diffu-

sion theory. Application of diffusion theory to this problem requires understanding

a concept known as the mean free path (MFP) for neutron travel, so this is

developed in Sect. 2.1. Section 2.2 takes up a time-dependent diffusion theory

treatment of criticality. Section 2.3 addresses the effect of surrounding the fissile

core with a tamper, a metallic casing which has the effects of decreasing the critical

mass and improving the efficiency of the explosion. Sections 2.4 and 2.5 take up the

issue of bomb efficiency through analytic approximations and a numerical simula-

tion, respectively. Section 2.6 presents an alternate treatment of untamped critical-

ity that has an interesting historical connection.

For readers interested in further sources, an excellent account of the concept of

critical mass appears in Logan (1996); see also Bernstein (2002).

2.1 Neutron Mean Free Path

See Fig. 2.1. A thin slab of material of thickness s (ideally, one atomic layer) and

cross-sectional area S is bombarded by incoming neutrons at a rate Ro neutrons/

(m2 s).

Let the bulk density of the material be r g/cm3. In nuclear reaction calculations,

however, density is usually expressed as a number density of nuclei in the material,

that is, the number of nuclei per cubic meter. In terms of r this is given by

nuclear number
density n

s

surface
area Σ

bombardment rate
Ro neutrons 
per m2 per second

Fig. 2.1 Neutrons penetrating a thin target foil
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n ¼ 106
rNA

A

� �
; (2.1)

where NA is Avogadro’s number and A is the atomic weight (g/mol) of the material;

the factor of 106 arises from converting cm3 to m3.

Assume that each nucleus presents a total reaction cross-section of s square

meters to the incoming neutrons. Cross-sections are usually measured in barns (bn),

where 1 bn ¼ 10�28 m2. The first question we address is: “Howmany reactions will

occur per second as a consequence of the bombardment rate Ro?” The volume of the

slab is Ss, hence the number of nuclei contained in it will be Ssn. If each nucleus

presents an effective cross-sectional area s to the incoming neutrons, then the total

area presented by all nuclei would be Ssns. The fraction of the surface area of the

slab that is available for reactions to occur is then (Ssns/S) ¼ sns. The rate of

reactions R (reactions/s) can then sensibly be assumed to be the rate of bombarding

particles over the entire surface area of the slab times the fraction of the surface area

available for reactions:

Reactions

per second

 !
¼ incident neutron

flux=second

� �
fraction of surface area

occupied by cross� section

� �

or

R ¼ RoSð Þ s n sð Þ: (2.2)

The probability P that an individual incident neutron precipitates a reaction is

then

Preact ¼

reactions

per second

 !

incident neutron flux

per second

 ! ¼ s n s: (2.3)

For our purposes, more directly useful is not the probability that a neutron will be

consumed in a reaction, but rather that it will pass through the slab to escape out the

back side:

Pescape ¼ 1� Preact ¼ 1� s n s: (2.4)

Now consider a block of material of macroscopic thickness x. As shown in

Fig. 2.2, we can imagine this to be comprised of a large number of thin slabs each of

thickness s placed back-to-back.
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The number of slabs is � ¼ x/s. If No neutrons are incident on the left side of the

block, the number that would survive to emerge from the first thin slab would

be NoP, where P is the probability in (2.4). These neutrons are then incident on the

second slab, and the number that would emerge unscathed from that passage would

be (NoP)P ¼ NoP
2. These neutrons would then strike the third slab and so on. The

number that survive passage through the entire block to escape from the right side

would be NoP
�, or

Nesc ¼ No 1� s n sð Þx=s: (2.5)

Define z ¼ –sns. The number that escape can then be written as

Nesc ¼ No 1þ zð Þ�s n x=z ¼ No 1þ zð Þ1=z
h i�s n x

: (2.6)

Now, ideally, s is very small, which means that z! 0. The definition of the base

of the natural logarithms, e, is e ¼ lim
z!0

1þ zð Þ1=z, so we have

Nesc ¼ Noe
�s n x;

or

Pdirect escape ¼ Nesc

No
¼ e�snx: (2.7)

Equation (2.7) is the fundamental escape probability law. In words, it says that

the probability that a bombarding neutron will pass through a slab of material of

thickness x depends exponentially on x, on the number density of nuclei in the slab,

and on the reaction cross-section of those nuclei to incoming neutrons. If s ¼ 0, all

of the incident particles will pass through unscathed. If s n xð Þ ! 1, none of the

incident particles will make it through.

x

No
incident
neutrons

Ne
escaping
neutrons

s

Fig. 2.2 Neutrons

penetrating a thick target
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In practice, (2.7) is used to experimentally establish values for cross-sections by

bombarding a slab of material with a known number of incident particles and then

seeing how many emerge from the other side; think of (2.7) as effectively defining s.
Due to quantum-mechanical effects, the cross-section is not the geometric area of

the nucleus.

The total cross section had in mind here can be broken down into a sum of cross-

sections for individual processes such as fission, elastic scattering, inelastic scatter-

ing, non-fission capture and the like:

stotal ¼ sfission þ selastic scatter þ sinelastic scatter þ scapture þ ::: : (2.8)

In practice, cross-sections can depend very sensitively on the energy of the

incoming neutrons; such energy-dependence plays a crucial role in the contrast

between how nuclear reactors and nuclear weapons function. As an example,

Fig. 2.3 (see also Fig. 1.9) shows the variation of the fission cross-section for
235U under neutron bombardment for neutrons in the energy range 1–10 eV; note

the dramatic resonance effects at certain energies. This graph shows only a small

fraction of the energy range over which the cross-section for the 235U(n, f ) reaction
has been measured; measurements from 10�5 eV to 20 MeV are available from the

source listed in the figure caption.

A very important result that derives from this escape-probability law is an

expression for the average distance that an incident neutron will penetrate into

the slab before being involved in a reaction. Look at Fig. 2.4, where we now have a

slab of thickness L and where x is a coordinate for any position within the slab.

Imagine also a small slice of thickness dx whose front edge is located at position x.

Fig. 2.3 Cross-section for the 235U(n, f ) reaction over the energy range 1–10 eV. At 0.01 eV, the

cross-section for this reaction is about 930 bn. Data from National Nuclear Data Center
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From (2.7), the probability that a neutron will penetrate through the entire slab to

emerge from the face at x ¼ L is Pemerge ¼ e�snL. This means that the probability

that a neutron will be involved in a reaction and not travel through to the face at

x ¼ L will be Preact ¼ 1� e�snL. If No neutrons are incident at the x ¼ 0 face then

the number that will be consumed in reactions within the slab will be

Nreact ¼ No 1� e�snLð Þ. We will use this result in a moment.

Also from (2.7), the number of neutrons that penetrate to x and x þ dx, respec-
tively, is give by

Nx ¼ Noe
�s n x (2.9)

and

Nxþdx ¼ Noe
�s n xþdxð Þ: (2.10)

Some of the neutrons that reach x will be involved in reactions before reaching

x þ dx, that is, Nx > Nxþdx. The number of neutrons consumed between x and

x þ dx, designated as dNx, is given by

dNx ¼ Nx � Nxþdx ¼ Noe
�s n x 1� e�s n dx� �

: (2.11)

If dx is infinitesimal, then s n dxð Þ will be very small. This means that we can

write e�sn dxð Þ � 1� s n dxð Þ, and hence write dNx as

dNx ¼ Noe
�s n x s n dxð Þ; (2.12)

a result equivalent to differentiating (2.7) above.

Now, these dNx neutrons penetrated distance x into the slab before being

consumed in a reaction, so the total travel distance accumulated by all of them in

doing so would be (xdNx). The average distance that a neutron destined to be

consumed in a reaction will travel before being consumed is given by integrating

accumulated travel distances over the length of the slab and dividing by the number

x

No
incident
neutrons

Ne
escaping
neutrons

dx

x = 0 x = L

Fig. 2.4 Neutrons penetrating a target of thickness L
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of neutrons consumed in reactions within the slab, that is, Nreact ¼ No 1� e�snLð Þ
from above:

xh i ¼ 1

Nreact

ZL
0

x dNx ¼ 1

No 1� e�snLð Þ
ZL
0

Nosnð Þ x e�snxdx

¼ 1

s n
1� e�snL 1þ snLð Þ

1� e�snL

� �
: (2.13)

If we have a slab of infinite thickness, or, more generally, one such that the

product snL is large, then e�snL will be small and we will have

xh i sn Lð Þlarge !
1

s n
: (2.14)

This quantity is known as the characteristic length or mean free path for the

particular reaction quantified by s. This quantity will figure prominently in Sects. 2.2

through 2.6. If it is computed for an individual cross section such as sfission or

scapture, one speaks of the mean free path for fission or capture. Such lengths are

often designated by the symbol l. As an example, consider fission in 235U. The

nuclear number density n is 4.794 � 1028 m�3, and the fission cross section is

sf ¼ 1.235 bn ¼ 1.235 � 10�28 m2. These numbers give lf ¼ 16.9 cm, or about

6.65 in.

Finally, it should be emphasized that the derivations in this section do not apply

to bombarding particles that are charged, in which case one has very complex

ionization issues to deal with.

2.2 Critical Mass: Diffusion Theory

We now consider critical mass per se. Qualitatively, the concept of critical mass

derives from the observation that some species of nuclei fission upon being struck

by a bombarding neutron and consequently release secondary neutrons. In a sample

of fissile material these secondary neutrons can potentially go on to induce other

fissions, resulting in a chain reaction. However, the development in the preceding

section indicates that we can expect a certain number of neutrons to reach the

surface of the sample and escape, particularly if the sample is small. If the density of

neutrons within the sample is increasing with time, criticality is said to obtain.

Whether or not this condition is fulfilled depends on quantities such as the density

of the material, its cross-section for fission, and the number of neutrons emitted per

fission, which is designated by the symbol n.
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To explore the time-dependence of the number of neutrons in the core requires

the use of time-dependent diffusion theory. In this section we use this theory to

calculate the critical masses of so-called “bare” spherical assemblies of 233U, 235U,
237Np, 239Pu, and 241Am, the five isotopes that one can feasibly consider for use in

nuclear weapons. Of these, 235U and 239Pu are used in practice. The term “bare”

refers to an untamped core. More correctly, we compute critical radii which can be
transformed into equivalent critical masses upon knowing the density of the mate-

rial involved.

The development presented here is based on the development in Appendix G of a

differential equation which describes the spatiotemporal behavior of the neutron

number density N, that is, the number of neutrons per cubic meter within the core.

The derivation in Appendix G depends upon on some material developed in

Sect. 3.5; it is consequently recommended that both those sections be read in

advance of this one. Also, be sure not to confuse n and N; the former is the number

density of fissile nuclei while the latter is the number density of neutrons; both play
roles in what follows. Note also that the definition of N here differs from that in the

previous section, where it represented a number of neutrons.

Before proceeding, an important limitation of this approach needs to be made

clear. Following Serber et al. (1992), I model neutron flow within the bomb core by

use of a diffusion equation. A diffusion approach is appropriate if neutron scattering

is isotropic. Even if this is not so, a diffusion approach will still be reasonable if

neutrons suffer a large enough number of scatterings so as to effectively erase non-

isotropic angular effects. Unfortunately, neither of these conditions are fulfilled in

the case of a uranium core: fast neutrons elastically scattering against uranium show

a strong forward-peaked effect, and the mean free path of a fast neutron in 235U,

about 3.6 cm, is only about half of the 8.4-cm bare critical radius (see Table 2.1

below). I adopt a diffusion-theory approach for a number of reasons, however. As

much of the physics of this area remains classified or at least not easily accessible,

we are forced to settle for an approximate model; diffusion theory has the advantage

of being analytically tractable at an upper-undergraduate level. Also, despite these

various limitations, a comparison of critical radii as predicted by diffusion theory

Table 2.1 Threshold critical radii and masses (untamped)

Quantity Unit 235U 239Pu 233U 237Np 241Am

A g/mol 235.04 239.05 233.04 237.05 241.06

r g/cm3 18.71 15.6 18.55 20.25 13.67

sf bn 1.235 1.800 1.946 1.335 1.378

sel bn 4.566 4.394 4.447 4.965 4.833

n – 2.637 3.172 2.755 2.81 2.5

n 1022 cm�3 4.794 3.930 4.794 5.144 3.415

lfission cm 16.89 14.14 10.72 14.56 21.25

lelastic cm 4.57 5.79 4.69 3.92 6.06

ltotal cm 3.60 4.11 3.26 3.09 4.71

RO cm 8.37 6.346 5.676 6.736 11.307

MO kg 45.9 16.7 14.2 25.92 82.8

46 2 Critical Mass and Efficiency



with those of an openly-published more exact treatment shows that the two agree

within about 5% for the range of fissility parameters of interest here (Reed 2008).

Central to any discussion of critical radius are the fission and transport mean

free paths for neutrons, respectively symbolized as lf and lt. These are given by

(2.14) as

lf ¼ 1

sf n
(2.15)

and

lt ¼ 1

stn
; (2.16)

where st is the so-called transport cross-section. If neutron scattering is isotropic

(which we assume), the transport cross-section is given by the sum of the fission and

elastic-scattering cross-sections:

st ¼ sf þ sel: (2.17)

We do not consider here the role of inelastic scattering, which affects the

situation only indirectly in that it lowers the mean neutron velocity. To keep the

treatment simple we will also not deal at this point with the effect of any external

tamper/neutron reflector.

In a spherical fissioning bomb core, the diffusion theory of Appendix G provides

the following differential equation for the neutron number density:

@N

@t
¼ vneut

lf
n� 1ð ÞN þ ltvneut

3
r2N
� �

; (2.18)

where vneut is the average neutron velocity and the other symbols are as defined earlier.

Now, let r represent the usual spherical radial coordinate. Upon assuming a

solution for N(t, r) of the form N(t, r) ¼ Nt(t)Nr(r), (2.18) can be separated as

1

Nt

@Nt

@t

� �
¼ n� 1

t

� �
þ D

Nr

1

r2
@

@r
r2
@Nr

@r

� �� �
; (2.19)

where D is the so-called diffusion coefficient,

D ¼ ltvneut
3

; (2.20)

and where t is the mean time that a neutron will travel before causing a fission:

t ¼ lf
vneut

: (2.21)
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If the separation constant for (2.19) is defined as a/t (that is, the constant to

which both sides of the equation must be equal), then the solution for the time-

dependent part of the neutron density emerges directly as

NtðtÞ ¼ Noe
a=tð Þt (2.22)

where No represents the neutron density at t ¼ 0. No would be set by whatever

device is used to initiate the chain-reaction. Note that we could have called the

separation constant just a, but this form will prove a little more convenient for

subsequent algebra. With this definition of the separation constant, the radial part of

(2.19) appears as

n� 1

t

� �
þ D

Nr

1

r2
@

@r
r2
@Nr

@r

� �� �
¼ a

t
: (2.23)

The first and last terms in (2.23) can be combined (this is why the separation

constant was defined as a/t); on dividing (2.23) by D, we find

1

d2
þ 1

Nr

1

r2
@

@r
r2
@Nr

@r

� �� �
¼ 0; (2.24)

where

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lf lt
3 ð � aþ n� 1Þ

s
: (2.25)

Now define a new dimensionless coordinate x according as

x ¼ r

d
: (2.26)

This brings (2.24) to the form

1

Nr

1

x2
@

@x
x2

@Nr

@x

� �� �
¼ �1: (2.27)

Aside from a normalization constant, the solution of this differential equation

can easily be verified to be

NrðrÞ ¼ sin x

x

� �
: (2.28)

To determine a critical radius RC, we need a boundary condition to apply to

(2.28). As explained in Appendix G, this takes the form
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N RCð Þ ¼ � 2 lt
3

@N

@r

� �
RC

¼ � 2 lt
3 d

@N

@x

� �
RC

: (2.29)

On applying this to (2.28), one finds that the critical radius is given by solving

the transcendental equation

x cotðxÞ þ x=� � 1 ¼ 0; (2.30)

where

� ¼ 2lt
3d

¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lt �aþ n� 1ð Þ

3lf

s
: (2.31)

With fixed values for the density and nuclear constants for some fissile material,

(2.30) and (2.31) contain two variables: the core radius r and the exponential factor a,
and they can be solved in two different ways. For both approaches, assume that we are

working with material of “normal” density, which we designate as ro. For the first

approach, start by looking back at (2.22). If a ¼ 0, the neutron number density is neither

increasing nor decreasing with time; in this case one has what is called threshold
criticality. To determine the so-called threshold bare critical radius Ro, set a ¼ 0 in

(2.25) and (2.31), set the density to ro, solve (2.30) for x, and then get r (¼Ro) from
(2.26). The corresponding threshold bare critical mass Mo then follows from Mo ¼
(4p/3)Ro

3ro. It is this mass that one usually sees referred to as the critical mass; this

quantity will figure prominently in the discussion of efficiency in Sects. 2.4 and 2.5.

The second type of solution begins with assuming that one has a core of some

radius r > Ro. In this case one will find that (2.30) will be satisfied by some value of

a > 0, with a increasing as r increases. That is, since x �= ¼ 3r 2lt= in (2.30) is

independent of a, we can set r to some desired value; (2.30) can then be solved for

x, which gives d from (2.26), and hence a from (2.25). With a > 0 the reaction will

grow exponentially in time until all of the fissile material is used up, a situation known

as “supercriticality.” To see why increasing the radius demands that a must increase,

implicitly differentiate (2.30) to show that d� dx= ¼ � x=ð Þ2 1� x2 sin2x
	� �

, which

demands d� dx= < 0 for all values of x. From the definition of x, an increase in r (and/or
in the density, for that matter) will cause x to increase. To keep (2.30) satisfied means

that � must decrease, which, from (2.31), can happen only if a increases.

We come now to a very important point. This is that the condition for threshold

criticality can in general be expressed as a constraint on the product rr where r is

the mass density of the fissile material and r is the core radius. The factor � in (2.30)
is independent of the density, depending only on the cross-sections and secondary

neutron number n. Hence, for a ¼ 0, (2.30) will be satisfied by some unique value

of xwhich will be characteristic of the material being considered. Since x ¼ r/d and
d itself is proportional to 1/r [see (2.25)], we can equivalently say that the solution

of (2.30) demands a unique value of rr for a given combination of s and n values.
If as above Ro is the bare threshold critical radius for material of normal density ro,
then any combination of r and r such that rr ¼ roRo will also be threshold critical,
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and any combination with rr > roRo will be supercritical. For a sphere of material

of mass M, the mass, density, and radius relate as M / rr3, which means that the

“criticality product” rr can be written as rr /M/r2. This relationship underlies the

concept of implosion weapons. If a sufficiently strong implosion can be achieved,

then one can get away with having less than a “normal” critical mass by starting

with a sphere of material of normal density and crushing it to high density by

implosion; such weapons are thus inherently more efficient than those that depend

on a non-implosive “gun” mechanism to assemble subcritical components.

As described in Sect. 4.2, the implosion technique also helps to overcome pre-

detonation issues with spontaneous fission. The key point here is that there is no

unique critical mass for a given fissile material.

Table 2.1 shows calculated critical radii and masses for five nuclides usually

considered for use in nuclear weapons; due to short alpha or beta half-lives and/or

high spontaneous fission rates, no nuclides beyond those listed in the Table are

likely to be suitable candidates for weapons materials.

Sources for the fission and elastic-scattering cross-sections appearing in the Table

are given in Appendix B; the values quoted therein are used as they are averaged over

the fission-energy spectra of the nuclides. The n values were adopted from the

Evaluated Nuclear Data Files (ENDF) maintained by the National Nuclear Data

Center at Brookhaven National Laboratory (http://www.nndc.bnl.gov). For 235U and
239Pu, the n values are for prompt neutrons of energy 2MeV, about the average energy

of fission neutrons. The n value for 233U refers to neutrons of energy 2.5MeV; that for
237Np was adopted from Hyde (1964) for neutrons of energy 1.4 MeV, and that for
241Am is assumed. The densities for 235U and 233U are respectively (235/238) and

(233/238) times the density of natural uranium, 18.95 g/cm3.

Spreadsheet CriticalityAnalytic.xls1 allows users to carry out these calculations
for themselves. This spreadsheet is actually used for the calculations developed in

this section and in Sects. 2.3 and 2.4. In its simplest use – corresponding to this

section – the user enters the relevant parameters: the core density, atomic weight,

fission and scattering cross-sections, and the number of secondary neutrons per

fission. The “Goal Seek” function then allows one to solve (2.30) and (2.31) for

x (assuming a ¼ 0), from which the bare critical radius and mass are computed.

In practice, having available only a single critical mass of fissile material will not

produce much of an explosion. The reason for this is that fissioning nuclei give rise

to fission products with tremendous kinetic energies. The core consequently very

rapidly – within microseconds – heats up and expands, causing its density to drop

below that necessary to maintain criticality. In a core comprised of but a single

critical mass this will happen at the moment fissions begin, so the chain reaction

will quickly fizzle as a falls below zero. To get an explosion of appreciable

efficiency one must start with more than a single critical mass of fissile material

or implode an initially subcritical mass to high density before initiating the explo-

sion. If the core is surrounded by a massive tamper that is imploded to crush the

1All Excel sheets are available at http://www.manhattanphysics.com
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core, the tamper will resist the expansion to some extent and can also serve to reflect

some of the escaped neutrons back into the core to cause more fissions. The issue of

using more than one critical mass to enhance weapon efficiency is examined in

more detail in Sects. 2.4 and 2.5.

To close this section, it is interesting to look briefly at a famousmiscalculation of
critical mass on the part ofWerner Heisenberg. At the end ofWorldWar II a number

of prominent German physicists including Heisenberg were interned for 6 months

in England and their conversations secretly recorded. This story is detailed in

Bernstein (2001); see also Logan (1996) and Bernstein (2002). On the evening of

August 6, 1945, the internees were informed that an atomic bomb had been dropped

onHiroshima and that the energy releasedwas equivalent to about 20,000 tons of TNT

(in actuality, the yield was about 13,000 tons). Heisenberg then estimated the critical

mass based on this information and a subtly erroneous model of the fission process.

We saw in Sect. 1.6 that complete fission of 1 kg of 235U liberates energy

equivalent to about 17 kt TNT. Heisenberg predicated his estimate of the critical

mass on the basis of assuming that about 1 kg of material did in fact fission. One

kilogram of 235U corresponds to about O ~ 2.56 � 1024 nuclei. Assuming that on

average n ¼ 2 neutrons are liberated per fission, then the number of fission gen-

erations G necessary to fission the entire kilogram would be nG ¼ O. Solving for

G gives G ¼ ln(O)/ln(n) ~ 81, which Heisenberg rounded to 80. So far, this

calculation is fine. Heisenberg then argued that as neutrons fly around in the

bomb core they will randomly bounce between nuclei, traveling a mean distance

l between each collision; l here is the mean free path between fissions as in (2.15)

above. From Table 2.1 we have l ~ 17 cm for U-235, but, at the time, Heisenberg

took l ~ 6 cm. Since a random walk of G steps where each is of length l will take

one a distance r � l
ffiffiffiffi
G

p
from the starting point, he estimated a critical radius of

r � 6cmð Þ ffiffiffiffiffi
80

p
~ 54 cm. This would correspond to a mass of some 12,500 kg,

roughly 13 U.S. tons! Given that only one kilogram actually underwent fission, this

would be a fantastically inefficient weapon. Such a bomb and its associated tamper,

casing, and instrumentation would represent an unbearably heavy load for a World

War II-era bomber.

The problem with Heisenberg’s calculation was that he imagined the fission

process to be created by a single neutron that randomly bounces throughout the

bomb core, begetting secondary neutrons along the way. Further, his model is too

stringent; there is no need for every neutron to cause a fission; many neutrons

escape. In the days following August 6 Heisenberg revised his model, arriving at the

diffusion theory approach described in this section.

2.3 Effect of Tamper

In the preceding section we saw how to calculate the critical mass of a sphere of

fissile material. In that development we neglected the effect of any surrounding

tamper. In this section we develop a simple model to account for the presence of a
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tamper. The discussion here draws from the preceding section and from Bernstein

(2002), Serber (1992), and especially Reed (2009).

The idea behind a tamper is to surround the fissile core with a shell of dense

material, as suggested in Fig. 2.5. This serves two purposes: (i) it reduces the critical

mass, and (ii) it slows the inevitable expansion of the core, allowing more time for

fissions to occur until the core density drops to the point where criticality no longer

holds. The reduction in critical mass occurs because the tamper will reflect some

escaped neutrons back into the core; indeed, the modern name for a tamper is

“reflector”, but I retain the historical terminology here. This effect is explored in

this section; estimating the distance over which the core expands before criticality

no longer holds in taken up in the next section. This slowing effect is difficult to

model analytically, but can be treated with an approximate numerical model, which

is done in Sect. 2.5.

The discussion here parallels that in Sect. 2.2. Neutrons that escape form the core

will diffuse into the tamper. To describe the behavior of neutrons in the tamper

we can use (2.18) without the term corresponding to production of neutrons, that is,

the first term on the right side of (2.18); we are assuming that the tamper is not made

of fissile material:

@Ntamp

@t
¼ ltamptransvneut

3
r2Ntamp

� �
; (2.32)

where Ntamp is the number density of and ltamptrans the transport mean free path for

neutrons in the tamper. vneut is the average neutron speed within the tamper, which

we will later assume for sake of simplicity to be the same as that within the core.

We are assuming that the tamper does not absorb neutrons; otherwise, we would

have to add a term to (2.32) represent that effect.

Superscripts and subscripts tamp will be used liberally here as it will be

necessary to join tamper physics to core physics via suitable boundary conditions.

core 

tamper 

initiator 

Fig. 2.5 Tamped bomb core
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As was done in Sect. 2.2, take a trial solution for Ntamp of the form

Ntamp t; rð Þ ¼ Ntamp
t ðtÞNtamp

r ðrÞ where Ntamp
t ðtÞ and Ntamp

r ðrÞ are respectively the

time-and space dependences of Ntamp; r is the usual spherical radial coordinate.

Upon substituting this into (2.32) we find, in analogy to (2.19),

1

Ntamp
t

@Ntamp
t

@t

� �
¼ ltamptransvneut

3

� �
1

Ntamp
r

1

r2
@

@r
r2
@Ntamp

r

@r

� �� �
: (2.33)

Define the separation constant here to be d/t where t is the mean time that a

neutron will travel in the core before causing a fission, that is, as defined in (2.21):

t ¼ lcorefiss

vneut
: (2.34)

This choice renders (2.33) as

1

Ntamp
t

@Ntamp
t

@t

� �
¼ ltamptransvneut

3

� �
1

Ntamp
r

1

r2
@

@r
r2
@Ntamp

r

@r

� �� �
¼ d

t
: (2.35)

It may seem strange to invoke a core quantity when dealing with diffusion in the
tamper, but we can define the separation constant however we please. In principle,

d may be different from the exponential factor a of Sect. 2.2, but we will find that

boundary conditions demand that they be equal. This choice of separation constant

is advantageous in that the neutron velocity vneut, which we assume to be the same

in both materials, cancels out.

The solution of (2.35) depends on whether d is positive, negative, or zero; the

latter choice corresponds to threshold criticality in analogy to a ¼ 0 in Sect. 2.2.

The situations of practical interest will be d � 0, in which case the solutions have

the form

Ntamp ¼

A

r
þ B d ¼ 0ð Þ

e d=tð Þt A
er=dtamp

r
þ B

e�r=dtamp

r


 �
d > 0ð Þ;

8>>><
>>>:

(2.36)

where A and B are constants of integration (different for the two cases), and where

dtamp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ltamptrans l

core
fiss

3 d

s
: (2.37)

The situation we now have is that the neutron density in the core is described by

(2.22) and (2.28) as
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Ncore ¼ Acoree
a=tð Þt sin r=dcoreð Þ

r
; (2.38)

with dcore given by (2.25):

dcore ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lcorefiss l
core
trans

3 �aþ n� 1ð Þ

s
; (2.39)

while that in the tamper is given by (2.36) and (2.37).

The physical question is: “What boundary conditions apply in order that we have

a physically reasonable solution?” Let the core have radius Rcore and let the outer

radius of the tamper be Rtamp; we assume that the inner edge of the tamper is snug

against the core. First consider the core/tamper interface. If no neutrons are created

or lost at this interface then it follows that both the density and flux of neutrons

across the interface must be continuous. That is, we must have

Ncore Rcoreð Þ ¼ Ntamp Rcoreð Þ (2.40)

and, from (6.72) of Appendix G,

lcoretrans

@Ncore

@r

� �
Rcore

¼ ltamptrans

@Ntamp

@r

� �
Rcore

: (2.41)

Equation (2.41) accounts for the effect of any neutron reflectivity of the tamper

via ltamptrans.

In addition, we must consider what is happening at the outer edge of the tamper.

If there is no “backflow” of neutrons from the outside, then the situation is

analogous to the boundary condition of (2.29) that was applied to the outer edge

of the untampered core:

Ntamp Rtamp

� � ¼ � 2

3
ltamptrans

@Ntamp

@r

� �
Rtamp

: (2.42)

Applying (2.40)–(2.42) to (2.36)–(2.39) results, after some tedious algebra, in

the following constraints:

1þ 2Rthreshl
tamp
trans

3R2
tamp

� Rthresh

Rtamp

" #
Rthresh

dcore

� �
cot

Rthresh

dcore

� �
� 1

� �

þ ltamptrans

lcoretrans

¼ 0; d ¼ 0ð Þ
(2.43)

and, for d > 0,
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e2 xct�xtð Þ xc cot xc � 1� l xct � 1ð Þ
Rtamp þ 2ltamptrans xt � 1ð Þ 3=

� �
¼ xc cot xc � 1þ l xct þ 1ð Þ

Rtamp � 2ltamptrans xt þ 1ð Þ 3=

� �
; (2.44)

where

xct ¼ Rcore dtamp
	

xc ¼ Rcore dcore=

xt ¼ Rtamp dtamp
	

l ¼ ltamptrans lcoretrans

	

9>>>=
>>>;
: (2.45)

It is also necessary to demand that a ¼ d, else the fact that (2.40)–(2.42) must

also hold as a function of time would be violated. Some comments on these results

follow.

(i) Equation (2.43) corresponds to tamped threshold criticality, where a ¼ d ¼ 0.

Once values for the d’s and l’s are given, the only unknown is Rthresh, the

threshold critical radius for a tamped core.

(ii) To use (2.44) and (2.45), proceed as follows: (i) Decide on the number of

tamped threshold critical masses C (>1) of material for your bomb core. This

will have radius Rcore ¼ C1=3Rthresh, where Rthresh comes from solving (2.43).

(ii) Pick a value for Rtamp, the outer radius of the tamper. (iii) Solve (2.44)

numerically for a (¼d), which enters the d’s and x’s of (2.44) and (2.45) through
(2.37) and (2.39).

The value of knowing a will become clear when the efficiency and yield

calculations of Sects. 2.4 and 2.5 are developed; for the present, our main concern

is with Rthresh.

A special-case application of (2.43) can be used to get an approximate sense of

how dramatically the presence of a tamper decreases the threshold critical mass.

Suppose that the tamper is very thick, Rtamp>>Rthresh. In this case (2.43) reduces to

Rthresh dcore=ð Þ cot Rthresh dcore=ð Þ ¼ 1� ltamptrans lcoretrans

	� �
: (2.46)

Now consider two sub-cases. The first is that the tamper is in fact a vacuum.

Since empty space would have essentially zero cross-section for neutron scattering,

this is equivalent to specifying ltamptrans ¼ 1, in which case (2.46) becomes

Rthresh dcore=ð Þ cot Rthresh dcore=ð Þ ¼ �1: (2.47)

This can only be satisfied if

Rthresh

dcore

� �
vacuum tamper

¼ p: (2.48)
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The second sub-case is more realistic in that we imagine a thick tamper with a

non-zero transport mean free path. For simplicity, assume that lcoretrans � ltamptrans, that is,

that the neutron-scattering properties of the tamper are much like those of the core.

In this case (2.46) becomes

Rthresh dcore=ð Þ cot Rthresh dcore=ð Þ ¼ 0: (2.49)

The solution in this case is

RThresh

dcore

� �
thick tamper finite cross�section

¼ p
2
; (2.50)

one-half the value of the vacuum-tamper case. To summarize:With an infinitely-thick

tamper of finite transport mean free path, the threshold critical radius is one-half of

what it would be if no tamper were present at all. A factor of two in radius means a

factor of eight inmass, so the advantage of using a tamper is dramatic, even aside from

the issue of any retardation of core expansion. This factor of two is predicated on an

unrealistic assumption for the tamper thickness and so we cannot expect such a

dramatic effect in reality, but we will see that the effect is dramatic enough.

What sort of critical-mass reduction can one expect in practice? In a website

devoted to design details of nuclear weapons, Sublette (2007) records that the

Hiroshima Little Boy bomb used tungsten-carbide (WC) as its tamper material.

Tungsten has five naturally-occurring isotopes, 180W, 182W, 183W, 184W, and 186W,

with abundances 0.0012, 0.265, 0.1431, 0.3064, and 0.2843, respectively. The

KAERI table-of-nuclides site referenced in Appendix B gives elastic-scattering

cross sections for the four most abundant of these as (in order of increasing weight)

4.369, 3.914, 4.253, and 4.253 bn. Neglecting the small abundance of 180W, the

abundance-weighted average of these is 4.235 bn. Adding the 2.352 bn elastic-

scattering cross-section for 12C gives a total of 6.587 bn; the cross-sections must be

added, not averaged, since we are considering the tungsten-carbide molecules to be

“single” scattering centers of atomic weight equal to the sum of the individual atomic

weights for W and C, 183.84 þ 12.00 ¼ 195.84. The bulk density of tungsten-

carbide is 14.8 g/cm3. Assuming an outer radius for the tamper of 17.5 cm (the

choice of this value is explained below), (2.43) indicates that the tamped threshold

critical radius of 235U in this configuration is 6.20 cm, equivalent to a mass of 18.7 kg,

about 60% less than the untamped value of 45.9 kg (Table 2.1). Figure 2.6 shows how

the tamped threshold critical mass for a U-235 core depends on the outer radius of a

surrounding tungsten-carbide tamper. The mass of the tamper would be about 38 kg

for an outer radius of 10 cm and just over 950 kg for an outer radius of 25 cm.

A shell of tungsten carbide of outer radius 17.5 cm and thickness 11.3 cm has a

mass of 317 kg. The 17.5 cm outer radius was chosen as Sublette records that the

Little Boy tamper had a mass of about 311 kg and that its core comprised about

64 kg of 235U in a cylindrical shape surrounded by a cylindrical WC tamper of

diameter and length 13 in. (see also Coster-Mullen (2010)). Assuming for
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simplicity spherical geometry, a 64-kg core at a density of 18.71 g/cm3 would have

an outer radius of 9.35 cm; a 311-kg tamper would then require an outer radius of

about 18 cm. For the mass of its tamper, therefore, Little Boy utilized about 3.5

threshold critical masses of fissile material.

Spreadsheet CriticalityAnalytic.xls allows users to carry out these calculations

for themselves. In addition to the core parameters entered for the calculations of

Sect. 2.2, the user enters the density, atomic weight, scattering cross-section and

outer radius of the tamper. The “Goal Seek” function is then to determine the

tamped threshold critical radius and mass from (2.43).

Why was tungsten-carbide used as the Little Boy tamper material? As one of the

purposes of the tamper is to briefly retard core expansion, denser tamper materials

are preferable; tungsten-carbide is fairly dense and has a low neutron absorption

cross-section. In this sense it would seem that depleted uranium, which the Manhat-

tan Project possessed in abundance, would be an ideal tamper material. (Depleted is
the term given to the uranium that remains after one has extracted its fissile U-235.

The term may sound strange in that the remains are actually enriched in U-238, but

the term is used in the sense of the material having been depleted of U-235.) The

reason that it was not used may be that it has a fairly high spontaneous fission rate,

about 675 per kg/s (see Sect. 4.2). Over the approximately 100 ms required to

assemble the core of a Hiroshima gun-type bomb, a 300 kg depleted-U tamper

would have a fairly high probability of suffering a spontaneous fission and hence of

initiating a predetonation. Further, as discussed in Sect. 1.9, U-238 has a significant

inelastic-scattering cross-section: fast neutrons striking it tend to be slowed to the

point that they become likely to be captured and hence lost to the possibility of being

reflected back into the core. Former weapons designer Theodore Taylor has pointed

out that beryllium is one of the best neutron reflectors known: its fission-spectrum

Fig. 2.6 Threshold tamped critical mass of a pure 235U core as a function of the outer radius of a

tamper of tungsten-carbide (A ¼ 195.84 g/mol, r ¼ 14.8 g/cm3, selastic ¼ 6.587 bn)
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averaged elastic scattering cross section is about 2.7 bn, while its inelastic-scattering

cross-section is only about 40 mbn (McPhee 1974).

2.4 Estimating Bomb Efficiency: Analytic

Material in this section is adopted from a publication elsewhere by the author

(Reed 2007).

In the preceding sections we examined how to estimate the critical mass for bare

and tamped cores of fissile material. The analysis in Sect. 2.2 revealed that the

threshold bare critical mass of 235U is about 46 kg. In Sect. 1.6, however, we saw

that complete fission of 1 kg of 235U liberates energy equivalent to that of about

17 kt of TNT. Given that the Little Boy uranium bomb that was dropped on

Hiroshima used about 64 kg of 235U and is estimated to have had an explosive

yield of only about 13 kt, we can infer that it must have been rather inefficient. The

purpose of this section is to explore what factors dictate the efficiency of a fission

weapon and to show how one can estimate that efficiency.

This section is the first of two devoted to the question of weapon efficiency and

yield. In this section these issues are examined purely analytically. The advantage

of an analytic approach is that it is helpful for establishing a sense of how the

efficiency depends on the various parameters involved: the mass and density of the

core and the various nuclear constants. However, conditions inside an exploding

bomb core evolve very rapidly as a function of time, and this evolution cannot be

fully captured with analytic approximations, elegant as they may be. To do so, one

really needs to numerically integrate the core conditions as a function of time,

tracking core size, expansion rate, pressure, neutron density and energy release

along the way. Such a numerical integration is the subject of the next section; these

two sections therefore closely complement each other and should be read as a unit.

In the present section, we consider only untamped cores for sake of simplicity;

tamped cores are considered in the following section.

To begin, it is helpful to appreciate that the efficiency of a nuclear weapon

involves three distinct time scales. The first is mechanical in nature: the time

required to assemble the subcritical fissile components into a critical assembly

before fission is initiated. In principle, this time can be as long as desired, but in

practice it is constrained by the occurrence of spontaneous fission. We do not want

spontaneous fissions to be likely during the time required to assemble the core lest

stray neutrons trigger a predetonation.

What is the order of magnitude of the assembly time? In a simple “gun-type”

bomb, the idea is that a “projectile” piece of fissile material is fired like a shell

inside an artillery barrel toward a mating “target” piece of fissile material, as

sketched in Fig. 2.7. In World War II, the highest velocity that could be achieved

for an artillery shell was about 1,000 m/s. If a projectile piece of length ~ 10 cm is

shot toward a mating target piece at this speed, the time required for it to become

fully engaged with the target piece from the time that the leading edge of the

projectile meets the target piece will be ~ (10 cm)/(105 cm/s) ~ 10�4 s ~ 100 ms.
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This type of assembly mechanism was used in the Hiroshima Little Boy bomb,

which explains its cylindrical shape as illustrated in the photograph in Fig. 2.8.

As shown in the cross-sectional schematic in Fig. 2.9, the projectile piece was fired

from the tail end of the bomb and traveled most of the approximately 10-foot length

of the weapon toward the nose.

As we will see in a more detailed analysis presented in Sect. 4.2, spontaneous

fission was not an issue for assembling a uranium bomb over a time of 100 ms, but
was such a serious issue with plutonium that it necessitated development of the

implosion mechanism for triggering those weapons. So far as the present section is

concerned, however, the essential idea is that if the spontaneous fission probability

can be kept negligible during the assembly time (which we assume), the efficiency

of the weapon is dictated by the other two time scales.

The first of these other two time scales is nuclear in nature. Once fission has been

initiated, how much time is required for all of the fissile material to be consumed?

This time we call tfission. The other is again mechanical. As soon as fissions have

been initiated, the core will begin to expand due to the extreme gas pressure of the

fission fragments. As we will see, this expansion leads after a time tcriticality to loss

of criticality, after which the reaction rate will diminish. Weapon efficiency will

depend on how these times compare: if tcriticality > tfission then in principle all of the
core material will undergo fission and the efficiency would be 100%.

~ 10 cm

Target piece
Projectile
piece

~ 1000 m/s

~ 10 cm
Fig. 2.7 Assembly timescale

for a gun-type fission weapon

Fig. 2.8 Little Boy test units. Little Boy was 126 in. long, 28 in. in diameter, and weighed 8,900

pounds when fully assembled (Sublette 2007). Photo courtesy Alan Carr, Los Alamos National

Laboratory

2.4 Estimating Bomb Efficiency: Analytic 59



A. Front nose elastic locknut attached to 1-in. diameter Cd-plated draw bolt

B. 15.125-in. diameter forged steel nose nut

C. 28-in. diameter forged steel target case

D. Impact-absorbing anvil with shim

E. 13-in. diameter 3-piece WC tamper liner assembly with 6.5-in. bore

F. 6.5-in. diameter WC tamper insert base

G. 14-in. diameter K-46 steel WC tamper liner sleeve

H. 4-in. diameter U-235 target insert discs (6)

I. Yagi antenna assemblies (4)

J. Target-case to gun-tube adapter with four vent slots and 6.5-in. hole

K. Lift lug

L. Safing/arming plugs (3)

M. 6.5-in. bore gun

N. 0.75-in. diameter armored tubes containing priming wiring (3)

O. 27.25-in. diameter bulkhead plate

P. Electrical plugs (3)

Q. Barometric ports (8)

R. 1-in. diameter rear alignment rods (3)

S. 6.25-in. diameter U-235 projectile rings (9)

T. Polonium–beryllium initiators (4)

U. Tail tube forward plate

V. Projectile WC filler plug

W.Projectile steel back

X. 2-pound Cordite powder bags (4)

Y. Gun breech with removable inner breech plug and stationary outer bushing

Z. Tail tube aft plate

(AA) 2.25-in. long 5/8–18 socket-head tail tube bolts (4)

(BB) Mark-15 Mod 1 electric gun primers with AN-3102-20AN receptacles (3)

(CC) 15-in. diameter armored inner tail tube

(DD) Inner armor plate bolted to 15-in. diameter armored tube

(EE) Rear plate with smoke puff tubes bolted to 17-in. diameter tail tube

Fig. 2.9 Cross-section drawing of Y-1852 Little Boy showing major components. Not shown are

radar units, clock box with pullout wires, barometric switches and tubing, batteries, and electrical

wiring. Numbers in parentheses indicate quantity of identical components. Drawing is to scale.

Copyright by and used with kind permission of John Coster-Mullen
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First consider tcriticality. This involves two key ideas: (i) that a fissioning bomb core

will rapidly (within about a microsecond) heat up, melt, vaporize, and thereafter

behave as an expanding gas with the expansion driven by the gas pressure in a PDV
manner, and (ii) that the vast majority of energy liberated in fission reactions can

be assumed to go into the kinetic energy of the fission products. Our approach here

will be to establish the range of radius (and hence time) over which the core can

expand before the expansion lowers the density of the fissile material to subcriticality.

Fission reactions will continue to happen after this time, of course, but it is this

“criticality shutdown timescale” that fundamentally sets the efficiency scale of

the weapon.

As in the preceding sections, let N(r, t) represent the number density of neutrons

within the core; our concern here is with the time-dependence of this quantity. From

(2.22), the time-evolution of the number-density of neutrons within the core is

given by

NðtÞ ¼ Noe
a=tð Þ t; (2.51)

where No is the neutron density at t ¼ 0. No is set by the number of neutrons

released by some “initiator” at the bomb core, and a is given by solving (2.25),

(2.30), and (2.31) for the core at hand. Recall that for threshold criticality a ¼ 0 and

that for a core of more than one critical mass we will have a > 0, an issue to which

we will return in a moment.

On average, a neutron will cause another fission after traveling for a time given

by t ¼ lf / vneut where lf is the mean free path for fission and vneut is the average

neutron velocity. Inverting this, we can say that a single neutron will lead to a

subsequent fission at a rate of 1/t per second. Hence the rate of fissions as a function
of time is given by

fissions=sec ¼ NoV

t

� �
e a=tð Þ t: (2.52)

Equation (2.52) is actually more complicated than it looks because a is really a

function of time. To see this, consider a core of some general radius r and density r.
Both r and r will vary in time as the core expands. In Sect. 2.2 we saw that the

condition for criticality can be expressed as rr � K where K is a constant charac-

teristic of the material being used, and that, for a core of some mass M, this

condition is expressible as rr / M/r2. As the core expands, the value of rr will
decrease and must eventually fall below the level needed to maintain criticality; we

call this situation “criticality shutdown.” This is also known in the technical

literature as second criticality. For a single critical mass of normal-density material,

this will happen as soon as the expansion begins. One way to (briefly) circumvent

this is to provide a tamper to momentarily retard the expansion and so to give the

reaction time to build up to a significant degree. Another is to start with a core of

more than one critical mass of material of normal density, and this is what is
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assumed here. The effect of a tamper and the detailed time-evolution of a(t) is dealt
with in the following section.

Thus, assume that we have a core of C (> 1) untamped threshold critical masses

of material of normal density; the initial radius of such a core will be ri ¼ C1/3Ro.

We can then solve the diffusion-theory criticality equations, (2.30) and (2.31), for

the value of a that just satisfies those equations upon setting the radius to be C1/3

times the threshold critical radius determined in Table 2.1. But as the core expands

due to the momentum acquired by fission fragments, a will decline from this initial

value down to zero at the moment of criticality shutdown, hence the remark above

that a is a function of time. To avoid having to deal with this complexity, we take

a to be an “effective” a given by the average of these two extreme values, that is,

ainitial/2; this is done automatically in the CriticalityAnalytic.xls spreadsheet. This
assumption is not strictly valid as the core expands exponentially as opposed to

linearly in time, but the intent here is to get a sense of how the efficiency depends on

the various parameters at hand.

Now consider the energy released by these fissions. If each fission liberates

energy Ef, then the rate of energy liberation throughout the entire volume V of the

core will be

dE

dt
¼ NoV Ef

t

� �
e a=tð Þ t: (2.53)

Integrating this from time t ¼ 0 to some general time t gives the energy liberated
to that time:

EðtÞ ¼ NoV Ef

t

� � Z t

0

e a=tð Þ tdt ¼ NoV Ef

a

� �
e a=tð Þ t; (2.54)

where it has been assumed that e a=tð Þt >>1 for the timescale of interest, an assump-

tion to be investigated a posteriori. The energy density corresponding to E(t) is
given by U(t) ¼ E(t)/V, and corresponding to this, we know from thermodynamics

that there will be a growth in pressure given by P(t) ¼ g U(t). The choice of

g depends on whether gas pressure (g ¼ 2/3) or radiation pressure (g ¼ 1/3) is

dominant; in the case of a “gas” of uranium nuclei of standard density of that metal,

radiation pressure dominates for per-particle energies greater than about 2 keV (see

Problem 2.12). Thus

PðtÞ ¼ gNo Ef

a

� �
e a=tð Þ t ¼ Po e

a=tð Þ t; (2.55)

where Po ¼ gNoEf a=
� �

is the pressure at t ¼ 0.

For simplicity, we model the bomb core as an expanding sphere of radius r(t)
with every atom in it moving at speed v. Do not confuse this velocity with the
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average neutron speed, which enters into t. If the sphere is of density r(t) and total

mass M, its total kinetic energy will be

Kcore ¼ 1

2
Mv2 ¼ 2p

3

� �
r v2r3: (2.56)

Now invoke the work-energy theorem in its thermodynamic formulationW ¼ P(t)
dV and equate the work done by the gas (or radiation) pressure in changing the core

volume by dV over time dt to the change in the core’s kinetic energy over that time:

PðtÞ dV
dt

¼ dKcore

dt
: (2.57)

To formulate this explicitly, write dKcore/dt ¼ (2p/3)rr3(2vdv/dt), dV/dt ¼ 4

pr2(dr/dt), and incorporate (2.55) to give

dv

dt
¼ 3Po

r r

� �
e a=tð Þ t: (2.58)

To solve this for the radius of the core as a function of time we face the problem

of what to do about the fact that both r and r are functions of time. We deal with this

by means of an approximation.

Review the discussion about core expansion following (2.52) above. As the core

expands, its density when it has any general radius r will be r(r) ¼ Cro(Ro/r)
3, and

criticality will hold until such time as rr ¼ roRo, or, on eliminating r, r ¼ C1/2Ro.

We can then define Dr, the range of radius over which criticality holds:

Dr ¼ C1=2 � C1=3
� 

Ro; (2.59)

a result we will use in a moment.

Now, since ri ¼ C1/3Ro, (rr)initial ¼ C1/3(roRo). For C ¼ 2 (for example), this

gives (rr)initial ¼ 1.26(roRo). At criticality shutdown we will have (rr)crit ¼ (roRo),

so (rr)crit and (rr)initial do not differ greatly. In view of this, we assume that the

product rr in (2.58) can be replaced with a mean value given by the average of the

initial and final (loss-of-criticality) radii:

rrh i ¼ 1

2
1þ C1=3
� 

roRo: (2.60)

We can now integrate (2.58) from time t ¼ 0 to some general time t to determine

the velocity of the expanding core at that time:
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vðtÞ ¼ 3Po

r rh i
� � Z t

0

e a=tð Þ tdt ¼ 3Po t
r rh i a

� �
e a=tð Þ t; (2.61)

where it has again been assumed that e a=tð Þt >>1.

The stage is now set to compute the amount of time that the core will take to

expand through the distance Dr of (2.59). Writing v ¼ dr/dt and integrating (2.61)

from ri to ri þ Dr for time ¼ 0 to tcriticality gives

tcrit � t
a

� 
ln

Dr a2 r rh i
3Pot2

� �
¼ t

a

� 
ln

Dr a3 r rh i
3 g t2NoEf

� �
; (2.62)

again assuming e a=tð Þt >>1 and using Po ¼ gNoEf a= . Notice that we cannot

determine tcrit without knowing the initial neutron density No.

We now define efficiency. Equation (2.54) gives the total energy liberated up

to time t. If all of the nuclei were to fission, then total energy Ef n V would be

liberated, where n and V are the initial nuclear number density and volume of the

core. We define efficiency as the ratio of the total energy liberated up to time tcrit to
the total possible that can be liberated if all nuclei fission:

Efficiency ¼
Ef No V

a

� 
Ef n V
� � exp a=tð Þ tcrit½ � ¼ Dr a2 r rh i

3 g n t2Ef
; (2.63)

where we again substituted for Po. Note that the efficiency does not depend on the
initial neutron density.

The yield of the weapon is given by the product of this efficiency times the core

mass (in kilograms) times the energy liberated per kilogram of fissioned nuclei,

EfNA 1000 A=ð Þ, where A is the atomic weight in g/mol.

To help determine what value of g to use, we can compute the total energy

liberated to time tcrit as in (2.63), and then compute the energy per particle by

dividing by the number of nuclei in the core, nV. The result is

energy per nucleus

at time tcrit

 !
¼ efficiencyð ÞEf : (2.64)

Even if the efficiency is very low, say 0.1%, then for Ef ¼ 180 MeV the energy

per nucleus would be 180 keV, much higher than the ~2 keV per-particle energy

where radiation pressure dominates over gas pressure; it would thus seem reason-

able to take g ¼ 1/3.

Further, it can be shown by substituting (2.62) into (2.55) and (2.61) that at the

time of criticality shutdown the core velocity is given by

v tcritð Þ ¼ aDr
t

; (2.65)
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and that the pressure within the core is given by

P tcritð Þ ¼ a2 Dr rrh i
3 t2

: (2.66)

Curiously, this pressure does not depend on the value of g.
To determine tcrit explicitly requires adopting a number of “initial” neutrons to

be distributed throughout the volume of the core. But since tcrit depends logarith-
mically on No, it is not particularly sensitive to the choice made for that number;

presumably the minimum sensible value is one initial neutron.

We can also estimate the timescale to fission the entire core by demanding that

the integral of (2.52) from time zero to time tfiss equals the total number of nuclei

within the core, nV:

nV ¼ NoV

t

� � Ztfiss
0

e a=tð Þ tdt ) tfiss ¼ t
a

� 
ln

a n
No

� �
: (2.67)

Numbers for uranium and plutonium cores of C ¼ 2 bare threshold critical

masses appear in Table 2.2. Secondary neutrons are assumed to have E ¼ 2 MeV,

and it is assumed that the initial number of neutrons is one.

The timescales and pressures involved in the detonation process are remarkable:

Neutrons travel for a time of only t ~ 1/100 ms between fissions, and criticality

shuts down after only 1–2 ms. A pressure of 1015 Pa is equivalent to about 10 billion
atmospheres. In the case of 235U, changing the initial number of neutrons to 1,000

changes the fission and criticality timescales by only about 10%, down to 1.81 and

1.64 ms, respectively. Since (a/t)tcrit ~ 50, the assumption that e a=tð Þt>>1 is quite

reasonable. Even though tcrit/tfiss ~ 0.9, the efficiencies are low: small changes in an

exponential argument lead to large changes in the results.

Spreadsheet CriticalityAnalytic.xls carries out the efficiency and yield calcula-

tions for an untamped core as developed above. In addition to the parameters already

entered for the calculations of the preceding two sections, the user need only

Table 2.2 Criticality and efficiency parameters for C ¼ 2, Ef ¼ 180 MeV, g ¼ 1/3. Initial

number of neutrons ¼ 1. Secondary neutron energy ¼ 2 MeV

Quantity Unit Physical meaning 235U 239Pu

ainitial/2 – Effective value of a 0.246 0.304

RO cm Threshold critical radius 8.37 6.346

t ns Neutron travel time between fissions 8.64 7.23

Dr cm Expansion distance to crit shutdown 1.29 0.98

Efficiency % Efficiency 1.34 1.71

P(tcrit) 1015 Pa Pressure at crit shutdown 6.20 6.47

Yield kt Explosive yield 21.7 9.9

tfiss ms Time to fission all nuclei 2.08 1.39

tcrit ms Time to crit shutdown 1.93 1.29
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additionally specify an initial number of neutrons, a value for g, and the mass of the

core. The “Goal Seek” function is then run a third time, to solve (2.30) and (2.31) for

the value of a. The spreadsheet then computes and displays quantities such as the

expansion distance to second criticality, the fission and criticality timescales, the

pressure within and velocity of the core at second criticality, and the efficiency and

yield.

When applied to a 64 kg 235U core (C ¼ 1.39),CriticalityAnalytic.xls indicates
that the expansion distance to second criticality is Dr ¼ 0.53 cm and that the yield

will be only 1.6 kt. This is not directly comparable to the ~13 kt yield of Little Boy,
however, as that device was tamped; a more realistic simulation of Little Boy is

given in the next section.

It is important to emphasize that the above calculations cannot be applied to a

tamped core; that is, one cannot simply solve (2.44) and (2.45) for a core of some

specified mass and tamper of some size (outer radius) and use the value of a so

obtained in the time and efficiency expressions established above. The reason for

this has to do with the distance through which the core can expand before second

criticality, (2.59) above:

Dr ¼ C1=2 � C1=3
� 

Ro: (2.68)

This expression derived from the fact that the criticality equation for the

untamped case involves the density and radius of the core in the combination rr;
in the tamped case the criticality condition admits no such combination of para-

meters, so the subsequent calculations of criticality timescale and efficiency do not

simply transform to using a tamped critical radius. Efficiency in the case of a

tamped core can only be established numerically, which is the subject of the next

section, where we will see that, typically, Drtamped > Drbare.

2.5 Estimating Bomb Efficiency: Numerical

In this section, a numerical approach to estimating weapon efficiency and yield is

developed. The essential physics necessary for this development was established in

the preceding three sections; what is new here is how that physics is used.

The analysis presented in this section is adopted from a publication elsewhere by

the author (Reed 2010).

The approach taken here is one of standard numerical integration: The para-

meters of a bomb core and tamper are specified, along with a timestep Dt. At each
timestep, the energy released from the core is computed, from which the accelera-

tion of the core at that moment can be computed. The velocity and radius of the core

can then be tracked until such time as second criticality occurs, after which the rate

of fissions will drop drastically and very little additional energy will be liberated.

The simulation developed here is realized via a spreadsheet where rows corre-

spond to time steps and the columns are used to track various quantities.
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This spreadsheet, CriticalityNumerical.xls, is very similar to that developed in the

preceding sections, CriticalityAnalytic.xls.
Specifically, the integration process involves eight steps:

(i) Fundamental parameters are specified: the mass of the core, its atomic weight,

initial density, and nuclear characteristics sf, sel, and n. For the tamper, its

atomic weight, density, initial outer radius (effectively, its mass) and elastic-

scattering cross-section are specified. The energy release per fission Ef and gas/

radiation pressure constant g are also specified. A timestep Dt also needs to be

set; from the discussion in the preceding section, this will be on the order of

nanoseconds.

(ii) Elapsed time, the speed of the core, and the total energy released are initialized

to zero; the core radius is initialized according as its mass and initial density.

(iii) The exponential neutron-density growth parameter a is determined by numeri-

cal solution of (2.44) and (2.45).

(iv) The rate of fissions at a given time is given by (2.52):

fissions= sec ¼ NoV

t

� �
e a=tð Þ t: (2.69)

(v) The amount of energy released during time Dt is computed from (2.53):

DE ¼ NoV Ef

t

� �
e a=tð Þ t Dtð Þ: (2.70)

(vi) The total energy released to time t is updated, EðtÞ ! EðtÞ þ DE, and the

pressure at time t is given by [see the discussion preceding (2.55)]

PcoreðtÞ ¼ gEðtÞ
VcoreðtÞ : (2.71)

I use the core volume here on the rationale that the fission products which cause

the gas/radiation pressure will likely largely remain within the core.

(vii) A key step is computing the change in the speed of the core over the elapsed

time Dt due to the energy released during that time. In the discussion leading

up to (2.58), this was approached by invoking the work-energy theorem:

PðtÞ dVcore

dt
¼ dKcore

dt
: (2.72)

To improve the veracity of the simulation, it is desirable to account, at least in

some approximate way, for the retarding effect of the tamper on the expansion of
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the core. To do this, I treat the dK/dt term in (2.72) as involving the speed of the core

but with the mass involved being that of the core plus that of the tamper. The dV/dt
term is taken to apply to the core only. I treat the tamper as being of constant density

but with an outer radius that is recomputed at each step to keep its mass as specified

at the outset; the inner edge of the tamper is assumed to remain snug against the

expanding core. With r as the radius and v the speed of the core, we have

gEðtÞ
VcoreðtÞ

dVcore

dt

� �
¼ dKtotal

dt

) gEðtÞ
VcoreðtÞ 4p r2

dr

dt

� �
¼ 1

2
Mcþt 2v

dv

dt

� �
;

from which we can compute the change in expansion speed of the core over time

Dt as

Dv ¼ 4p r2gEðtÞ
Vcore Mcþt

� �
Dtð Þ: (2.73)

With this, the expansion speed of the core and its outer radius can be updated

according as vðtÞ ! vðtÞ þ Dv and rðtÞ ! rðtÞ þ vðtÞDt. The outer radius of the

tamper is then adjusted on the assumption that its density and mass remain constant.

(viii) Return to step (iii) to begin the next timestep; continue until second criticality

is reached when a ¼ 0.

The assumption that the density of the tamper remains constant is probably not

realistic: nuclear engineers speak of the “snowplow” effect, where high-density

tamper material piles up just ahead of the expanding core/tamper interface. But the

point here is an order-of-magnitude pedagogical model.

CriticalityNumerical.xls consists of three interlinked sheets. The first is essen-

tially a copy of CriticalityAnalytic.xls, where the user inputs the fundamental data

of step (i) above. As before, the Excel “Goal Seek” function is then run three times,

to establish values for (1) the bare threshold critical radius, (2) the tamped threshold

critical radius, and (3) the value of a corresponding to the chosen core mass.

The radii (and corresponding masses) in (1) and (2) are computed for reference;

the tamped threshold critical radius is also used in computing a “normalized” radius

as described below.

A significant complexity in carrying out this simulation is that one apparently

needs to solve (2.44) and (2.45) for the value of a at each time-stepped core radius:

the fission rate, energy generation rate, and pressure all depend on a as a function of
time. I have found, however, that a is usually quite linear as a function of core

radius. This behavior can be used to greatly simplify the programming of the

simulation. Sheet 2 of the spreadsheet allows the user to establish parameters for this

linear behavior for the values of the various parameters that were input on Sheet 1.

Sheet 2 consists of rows representing radii running from the initial core radius to 1.4

times the value of the second-criticality radius for a bare core of the mass chosen by
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the user on Sheet 1; this range appears to be suitable to establish the behavior of a.
For convenience, Sheet 2 utilizes a “normalized” radius defined as

rnorm ¼ r � C1=3Rthresh
tamp

C1=2 � C1=3ð ÞRthresh
tamp

; (2.74)

where C is now defined as the number of tamped threshold critical masses. rnorm
¼ 1 corresponds to the second criticality radius one would compute from (2.59) if it

applied as well to a tamped core. Sheet 2 tracks the changing mass density, nuclear

number density, and fission and total mean free paths within the core as a function

of r. By running the Goal Seek function on each of 28 radii between 1.0 and 1.4

normalized radii, the user adjusts a in each case to render (2.44) equal to zero. The

behavior of a(r) is displayed in an automatically-generated graph. On a separate

line with a fixed to a value very near zero (10�10 is built-in), the user adjusts the

radius to once again render (2.44) equal to zero, thus establishing the radius of

second criticality for the parameters of the system. The slope and intercept of a

linear a(r) fit are then automatically computed in preparation for the next step.

While one could use just the initial and final radii to establish the linear relationship,

it is probably wise to check the extent of linearity with all 28 radial points.

The actual time-dependent simulation occurs on Sheet 3. The simulation is set

up to involve 500 timesteps, one per row. The initial core radius is transferred from

Sheet 1 for t ¼ 0. Because much of the energy release in a nuclear weapon occurs

during the last few generation of fissions before second criticality, Sheet 3 allows

the user to set up two different timescales: an “initial” one (dtinit) intended for use

in the first few rows of the Sheet when a larger timestep can be tolerated without

much loss of accuracy, and a later one (dtlate), to be chosen considerably smaller

and used for the majority of the rows. In this way a user can optimize the 500 rows

to both capture sufficient accuracy in the last few fission generations while arran-

ging for a(r) to just approach zero at the last steps of the process. Typical choices

for dtinit and dtlate might be a few tenths of a microsecond and a few tenths of a

nanosecond, respectively. At each radius, Sheet 3 computes the value of a(r) from
the linear approximation of Sheet 2, the core volume, mass density, nuclear number

densities and mean free paths within the core, t, rates of fission and energy

generation, pressure, and total energy liberated to that time. The core speed and

radius are updated depending upon the timestep in play, and the updated radius is

transferred to the subsequent row to seed the next step. The user is automatically

presented with graphs of a(r), the fission rate, pressure, and total energy liberated

(in kilotons equivalent) as functions of time.

2.5.1 A Simulation of the Hiroshima Little Boy Bomb

Using the parameters for the Little Boy bomb given in Sect. 2.3 (64 kg core of radius

9.35 cm plus a 311 kg tungsten-carbide tamper of outer radius 18 cm), the following

results were obtained with CriticalityNumerical.xls.
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Figure 2.10 shows the run of a(r) for this situation: it is sensibly linear over the

expansion of the core to second criticality at a radius of 12.31 cm, with a(r) ~
�18.53r þ 2.28. This represents an expansion distance of Dr ¼ 2.96 cm from the

initial core radius of 9.35 cm; for an untamped 64 kg core, (2.59) predicts a value

for Dr of only 0.53 cm; the effect of the tamper is significant.

Figures 2.11 and 2.12 show a, the integrated energy release, and the fission rate

and pressure as functions of time. The number of initial neutrons is taken to be one.

Notice that a actually remains close to its initial value until just before second

criticality. The brevity and violence of the detonation are astonishing. The vast

majority of the energy is liberated within an interval of about 0.1 ms. The pressure
peaks at close to 5 � 1015 Pa, or about 50 billion atmospheres, equivalent to about

one-fifth of that at the center of the Sun. The fission rate peaks at about 3.6 � 1031

per second. The core acceleration peaks at about 1.4 � 1012 m/s2 at t ~ 0.9 ms, and
second criticality occurs at t ~ 1.07 ms, at which time the core expansion velocity is

about 270 km/s. These graphs dramatically illustrate what Robert Serber wrote in

The Los Alamos Primer: “Since only the last few generations will release enough

energy to produce much expansion, it is just possible for the reaction to occur to an

interesting extent before it is stopped by the spreading of the active material”.

The predicted yield of Little Boy from this simulation is 11.9 kt. This result is in

surprisingly good agreement with the estimated ~12-kt yield published by Penney

et al. (1970). At a fission yield of 17.59 kt/kg of pure U-235 (at 180 MeV/fission),

this represents an efficiency of only about 1.1% for the 64-kg core. While some of

this agreement must be fortuitous in view of the approximations incorporated in the

present model, it is encouraging to see that it gives results of the correct order of

magnitude. That the yield estimate needs to be taken with some skepticism is

demonstrated by the fact that increasing the initial number of neutrons to 10

increases the yield to 12.5 kt. However, this change does not much affect the

Fig. 2.10 Neutron density exponential growth parameter a vs. core radius for a simulation of the

Little Boy bomb: 64 kg core plus 311 kg tungsten-carbide tamper
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timescale or the peak pressure and fission rates. A 1952 Los Alamos report on the

yield of the Hiroshima bomb, http://www.fas.org/sgp/othergov/doe/lanl/la-1398.

pdf, gives a yield of 18.5 � 5 kt for Little Boy; published yield estimates are clearly

subject to considerable uncertainty.

Figure 2.13 shows how the simulated yield of the 64-kg core varies as a function

of tamper mass; the points are the results of simulations for initial tamper outer radii

Fig. 2.11 Neutron density exponential growth parameter a (descending curve, left scale) and
integrated energy release in kilotons (ascending curve, right scale) vs. time for a simulation of the

Little Boy bomb

Fig. 2.12 Logarithm (base 10) of fission rate (solid curve, left scale) and logarithm of pressure

(dashed curve, right scale) vs. time for a simulation of the Little Boy bomb
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of 12, 13, . . . 17, 17.5, 18, 18.5, and 19 cm. In the latter case the mass of the tamper

would be about 375 kg, or just over 800 pounds. As the tamper mass increases so

does the efficiency of the weapon as measured by the number of kilotons of yield

per kilogram of fissile material.

2.6 Another Look at Untamped Criticality: Just One Number

In Sect. 2.2, we saw that the criticality condition for an untamped core is

x cotðxÞ þ g x� 1 ¼ 0; (2.75)

where, for threshold criticality (a ¼ 0),

g ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3lf

lt n� 1ð Þ

s
¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3st

sf n� 1ð Þ

s
: (2.76)

Once the nuclear parameters sf, sel, and n are set, (2.75) is solved numerically for

x, from which the critical radius R follows from (again with a ¼ 0)

R ¼ d x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lf lt

3 n� 1ð Þ

s
x ¼ 1

n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

3sf st n� 1ð Þ

s
x; (2.77)

where n is again the nuclear number density. The critical radius is fundamentally set

by sf, sel, n, and n; our concern here will be with the first three of these variables.

Since these quantities will be different for different fissile isotopes, it would

appear that there is no “general” statement one can make regarding critical radii.

Fig. 2.13 Yield of a 64-kg U-235 core vs. mass of surrounding tungsten-carbide tamper. The

curve is interpolated. The Little Boy tamper had a mass of about 310 kg
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The purpose here, however, is to show how sf, sel, and n can be combined into one

convenient dimensionless variable that largely dictates the critical radius in any

particular case – the “just one number” of the title of this section.

As formulated, (2.75) and (2.76) are convenient in that both x and g are

dimensionless, but are awkward in that g is not conveniently bounded: if n is very
large g will approach zero, but as n ! 1, it will diverge to infinity. It would be

handy to some combination of sf, sel, and n that is finitely bounded.

Such a combination was developed by Peierls (1939), in a paper which was the

first published in English to explore what he termed “criticality conditions in

neutron multiplication.” He defined a quantity x given by

x2 ¼ sf n� 1ð Þ
sel þ n sf

: (2.78)

For 1 � n � 1, 0 � x � 1. Note that it is the elastic-scattering cross-section sel
that appears in the denominator of the definition of x, not the transport cross-section
st ¼ sel þ sf.

If (2.76) and (2.78) are both solved for (n – 1) and the results equated, the

relationship between g and x emerges as

g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

4

1

x2
� 1

� �s
: (2.79)

Similarly, if the definition of d in (2.77) is solved for (n –1), then one finds

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

3

1

x2
� 1

� �s
lt: (2.80)

A general formulation of critical radii can now be made as follows: For a range

of values of x between zero and one, (2.75) and (2.79) can be solved for x. For
each solution, (2.77) and (2.80) then show that the value of R/lt is purely a

function of x:

R

lt
¼ x xð Þ d ¼ x xð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

3

1

x2
� 1

� �s
: (2.81)

In other words, a graph of x xð Þ d xð Þ 	 R lt= vs. x can be used to immediately

indicate the ratio of the untamped threshold critical radius to the transport mean free

path for any fissile isotope whose sf, sel, and n values are specified. The advantage
of this approach is that the graph need only be constructed once.
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Figure 2.14 shows R/lt as a function of x. For 235U and 239Pu, x ~ 0.5084 and

0.6221, and R/lt ~ 2.33 and 1.54, respectively. It is intuitively sensible that for

small values of x (that is, for n ! 1), the critical radius will be large, and vice-versa.
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Chapter 3

Producing Fissile Material

Abstract All of the theories and calculations underlying nuclear weapons would

be of no value unless one can devise ways of obtaining sufficient fissile material:

uranium-235 and plutonium-239. This chapter analyses some of the methods that

were used for securing these materials during the Manhattan Project: the develop-

ment of reactors to synthesize plutonium, and the use of electromagnetic and

gaseous enrichment methods for uranium.

The vast majority of the manpower and funding of the Manhattan Project were

devoted to producing fissile material. 235U had to be laboriously separated from

natural uranium, and plutonium had to be synthesized in nuclear reactors. In this

chapter we examine some of the physics behind these techniques. Historically, the

first major step along these lines was when Enrico Fermi and his collaborators

achieved the first operation of a self-sustaining chain-reaction on December 2,

1942, with their CP-1 (“Critical Pile 1”) reactor. This proved that a chain-reaction

could be created and controlled, and opened the door to the design and development

of the massive plutonium-producing reactors located at Hanford, WA.We thus look

first at issues of reactor criticality (Sects. 3.1 and 3.2), and then examine plutonium

production (Sect. 3.3). Sections 3.4 and 3.5 are devoted to analyzing techniques of

uranium enrichment.

3.1 Reactor Criticality

The key quantifier in achieving a self-sustaining chain reaction is what is known as

the “criticality factor” or “reproduction factor”, designated as k. This dimensionless

number is defined in such a way that if k � 1 then the reaction will be self-

sustaining, whereas if k < 1 the reaction will eventually die out. In fact, if k > 1

the reaction rate will grow exponentially; reactors are equipped with control

mechanisms that can be adjusted to maintain k ¼ 1. k is analogous to the secondary
neutron number n that was central to the discussion of critical mass and efficiency in

the preceding chapter.
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Achieving a chain reaction with uranium of natural isotopic composition

involves several competing factors. The small fraction of 235U present is inherently

extremely fissile when bombarded by slow neutrons, and for each neutron con-

sumed in fissioning a 235U nucleus some 2.4 are on average released; these can go

on to initiate other fissions. On the other hand, the vastly more abundant 238U nuclei

tend to capture neutrons without fissioning, removing them from circulation.

When a nucleus is struck by a neutron, one of three things will in general happen:

(i) the nucleus may fission, (ii) the nucleus may capture (or “absorb”) the neutron

without fissioning, and (iii) the neutron may simply scatter from the nucleus. This

last process serves only to redirect neutrons within the reactor and can be ignored if

the reactor is sufficiently large that a neutron has a good chance of being involved in

a fission or absorption before being scattered through the surface of the reactor and

lost. We will be concerned with processes (i) and (ii).

The likelihood of each process is quantified by a corresponding cross-section.

We will be concerned with fission (f) and capture (c) cross-sections for 235U and
238U. In self-evident notation we write these as sf5, sc5, sf8, and sc8. Numerical

values for these quantities are listed in Table 3.1 for both isotopes for both “fast”

and “slow” neutrons, also known as “unmoderated” and “moderated” neutrons,

respectively. For the latter, the cross-sections refer to neutrons of kinetic energy

0.0253 eV; the origin of this curious number is explained in Sect. 3.2. Sources for

these values are given in Appendix B. Also shown are the average secondary-

neutron numbers for each isotope for both fast and slow-neutron induced fissions.

Two important things to notice here are (i) the large fission cross-section for slow
neutrons in the case of 235U, and (ii) the non-zero capture cross-section for slow
neutrons for the same isotope: upon absorbing a slow neutron, a 235U nucleus

actually has about a one-in-seven chance of not fissioning.
The number given in Table 3.1 for the capture cross-section of 238U for fast

neutrons, 2.661 bn, is the sum of this isotope’s true capture cross-section for fast

neutrons (0.0664 bn) plus its inelastic scattering cross-section for fast neutrons

(2.595 bn). The rationale for this is that when neutrons inelastically scatter from
238U they lose so much of their energy as to fall below the fission threshold for that

isotope and are virtually guaranteed to be captured should they strike another 238U

nucleus; inelastic scattering by 238U is therefore effectively capture by it (see

Sect. 1.9). To simplify matters we assume that no neutrons are lost due to capture

by fission products or by escape from the reactor; in reality, these are not trivial

problems.

Table 3.1 Fissility

parameters
Parameter Fast neutrons Slow neutrons

sf5 (bn) 1.235 584.4

sc5 (bn) 0.08907 98.81

n5 2.637 2.421

sf8 (bn) 0.3084 0

sc8 (bn) 2.661 2.717

n8 2.655 2.448
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Suppose that our reactor consists of a mixture of 235U and 238U isotopes. For

each isotope we write a total cross section as the sum of the cross-sections for all

individual processes involving that isotope:

s5 ¼ sf 5 þ sc5
� �

(3.1)

and

s8 ¼ sf 8 þ sc8
� �

: (3.2)

Let the fractional abundance of 235U be designated by F; 0 � F � 1. For

neutrons created in fissions or otherwise supplied, the total cross-section for them

to suffer some subsequent process is given by the abundance-weighted sum of the

cross-sections for the individual isotopes:

stotal ¼ F s5 þ 1� Fð Þ s8: (3.3)

Now imagine following a single neutron as it flies about within the reactor until

it is consumed in causing a fission or by being captured. The reproduction factor k is
defined as the average number of neutrons that this one original neutron subse-

quently gives rise to. We derive an expression for k by separately computing the

number of secondary neutrons created by fissions with 235U and 238U and then

adding the two results.

The probability of our neutron striking a nucleus of 235U is given by the ratio of

the total cross-section for 235U to that for the total cross-section for all processes and

isotopes, weighted by the abundance fraction of that isotope: Fs5 stotal=ð Þ. Once the
neutron has struck the 235U nucleus the probability that it initiates a fission will be

sf5 s5=
� �

. Hence, by the usual multiplicative process for combining independent

probabilities, the overall probability that the neutron will fission a 235U nucleus will

be the product of these factors, Fs5 stotal=ð Þ sf5 s5=
� � ¼ Fsf5 stotal=

� �
. If fission of a

235U nucleus liberates on average n5 secondary neutrons, then the average number

of neutrons created by our one neutron from fissioning a 235U nucleus will be

n5 Fsf5 stotal=
� �

. Likewise, fissions of 238U nuclei will give rise, on average, to

n8 1� Fð Þ sf8 stotal=
� �

secondary neutrons. The total number of secondary neutrons

created by our one initial neutron will then be

k ¼ F n5 sf5 þ 1� Fð Þn8 sf8
stotal

: (3.4)

In natural uranium, F ¼ 0.0072; we ignore here the very small natural abun-

dance of 234U. Notice that as F ! 1, k ! n5.
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We first apply this to the possibility for a chain reaction with unmoderated (fast)
neutrons in natural uranium:

stotal ¼ F sf5 þ sc5
� �þ 1� Fð Þ sf8 þ sc8

� �
¼ 0:0072ð Þ 1:32407ð Þþ 0:9928ð Þ 2:9694ð Þ¼2:958: (3.5)

Hence

kfast ¼ F n5 sf5 þ 1� Fð Þn8 sf8
stotal

¼ 0:0072ð Þ 2:637ð Þ 1:235ð Þ þ 0:9928ð Þ 2:655ð Þ 0:3084ð Þ
2:958

¼ 0:283: (3.6)

Since kfast < 1, a self-sustaining chain reaction using unmoderated neutrons

with natural uranium is impossible. This is why a lump of ordinary uranium of

any size is perfectly safe against a spontaneous chain reaction; a nuclear weapon

cannot be constructed using uranium of natural isotopic composition.

Figure 3.1 shows kfast as a function of F; kfast does not exceed unity until

F ~ 0.53. One must therefore undertake a significant enrichment effort to construct

a uranium bomb. Bomb-grade uranium is usually considered to be 90% 235U.

In the case of moderated neutrons the story is different. Here we have

stotal ¼ 0:0072ð Þ 584:4þ 98:81ð Þ þ 0:9928ð Þ 0þ 2:717ð Þ ¼ 7:617: (3.7)

Hence

kslow ¼ F n5 sf5 þ 1� Fð Þn8 sf 8
stotal

¼ 0:0072ð Þ 2:421ð Þ 584:4ð Þ þ 0

7:617
¼ 1:337: (3.8)

Here k > 1, which means that a self-sustaining reaction with moderated neu-

trons is possible. This slow-neutron reproduction factor is the premise underlying

CP-1 and all commercial power-producing reactors. In situations where a commer-

cial reactor would be impractical, such as in a naval vessel, smaller reactors are

used that are fueled with uranium significantly enriched in 235U.

3.2 Neutron Thermalization

Fermi’s CP-1 reactor used graphite (crystallized carbon) as a moderator to slow

neutrons emitted from fissioning 235U nuclei to so-called “thermal” speeds to take

advantage of the large fission cross-section of that isotope for neutrons of such
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energy. Graphite was used as it has a low capture cross-section for neutrons. We can

estimate the typical distance a neutron will travel while this is happening, and hence

get an understanding of why the lumps of uranium in CP-1 were distributed as a

cubical lattice with a spacing of 8.25 in. (21 cm). A detailed description of CP-1 was

published in Fermi (1952).

It is first necessary to quantify more precisely what is meant by a thermal

neutron. From Maxwellian statistical mechanics, the most probable velocity of a

particle of mass m at absolute temperature T is given by

vmp ¼
ffiffiffiffiffiffiffiffi
2kT

m

r
; (3.9)

where k is Boltzmann’s constant. Thermalization is taken to correspond to T ¼ 298

K, that is, room temperature. For neutrons, this evaluates to

vmp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1:381� 10�23J=K
� �

298Kð Þ
1:675� 10�27kg
� �

s
¼ 2217m=s: (3.10)

The kinetic energy of such a neutron is

E ¼ 1

2
mv2mp ¼ 4:115� 10�21J ¼ 0:025eV: (3.11)

In technical nuclear physics literature, “thermal” neutrons are defined to have

v ¼ 2,200 m/s, which corresponds to an energy of 0.0253 eV. This energy is a far

cry from the typical ~2 MeV with which a secondary neutron emerges from a

fission. The premise here is that since the nuclei of the moderating material will be
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Fig. 3.1 Fast-neutron reproduction factor k vs. 235U abundance fraction
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randomly moving with energies characteristic of at least room temperature, neu-

trons cannot be slowed to speeds less than this.

Consider a neutron of mass mn that has initial speed vo as it emerges from a

fissioning nucleus. From classical conservation of momentum, if this neutron

strikes an initially stationary carbon atom of mass mC head-on, then the neutron

will recoil from the collision with speed v given by

v ¼ mn � mC

mn þ mC

����
���� vo: (3.12)

A carbon atom is about 12 times heavier than a neutron, so

v � 11

13

� �
vo: (3.13)

If the neutron goes on to strike another carbon nucleus, its speed will be reduced

by a further factor of 11/13. After N such collisions its final speed will be

v � 11

13

� �N
vo: (3.14)

Energy is proportional to speed squared, so the ratio of the final kinetic energy of

the neutron to its initial kinetic energy will be

E

Eo
� 11

13

� �2N
: (3.15)

For Eo ¼ 2MeV and E ¼ 0.0253 eV, N ~ 54, a not very large number. In reality

we should expect to need a somewhat larger number of collisions to achieve

thermalization as not all of them will be head-on as assumed here, but even a factor

of two increase in N would not change our final conclusion drastically.

How far will a neutron travel during these 50-odd scatterings? In Sect. 2.1 a

derivation was given of the average distance a bombarding particle can be expected

to penetrate through a medium before suffering some sort of reaction. In application

to the present case we can write this as a characteristic scattering length

ls ¼ 1

ssn
; (3.16)

where ss is the scattering cross-section and n is the number density of nuclei.

Strictly, this applies only for neutrons scattering through a medium of infinite

extent, but since any sensible reactor will have a size considerably greater than

ls, this is not a problem.

80 3 Producing Fissile Material



The density of graphite is 1.62 g/cm3, for which n ~ 8.13 � 1028 m�3. For

thermal neutrons, the elastic scattering cross-section for 12C is 4.746 bn; this

number is taken from the KAERI site referenced in Appendix B. These figures give

ls � 2:6 cm: (3.17)

This is equivalent to about 1 in. Now, we know from statistical mechanics that if

a particle takes N randomly-directed steps of length l meters from some starting

point, then the resulting average displacement from the starting point will beffiffiffiffi
N

p
l meters. In the present case the neutron displacement will be

ffiffiffiffi
N

p
ls

� ffiffiffiffiffi
54

p
2:6cmð Þ � 19cm, a figure very close to CP-1’s 21-cm lattice spacing. Even

if N ¼ 100, we would have a mean displacement of only about 26 cm. Fermi

designed CP-1 to occupy the minimum volume possible while achieving effective

neutron thermalization.

3.3 Plutonium Production

The three giant graphite-moderated, water-cooled plutonium production piles con-

structed for the Manhattan Project in Hanford, Washington, were vastly scaled-up,

much more complex versions of Fermi’s CP-1 Chicago pile. Fueled with natural

uranium, these reactors were designed to utilize a controlled slow-neutron chain-

reaction as described in the preceding two sections to synthesize 239Pu from neutron

absorption and b-decay of 238U according as the reaction:

1
onþ 238

92 U ! 239
92 U ���!b�

23:5 min

239
93Np ���!b�

2:36 days

239
94 Pu:

The important question is the rate of plutonium production, say in units of grams

per day. The answer to this can be gleaned from knowledge of the power output of

the reactor, the isotopic composition of the fuel, and the fission and capture

(absorption) cross-sections for the isotopes involved. The analysis presented in

this section is adopted from a publication elsewhere by this author (Reed 2005).

Commercial power-producing reactors are usually rated by their net electrical

power output, so many “megawatts electrical”, which we designate by the symbol

Pe. However, this quantity reflects power output after accounting for the inevitable

thermal (Carnot) inefficiencies involved. The power output “within” the plant itself

– the number of “megawatts thermal” – is given by Pt ¼ Pe/�, where � is the

thermal efficiency of the plant. Typically, � ~ 0.3–0.4. In the case of a reactor the

power created derives from mass-energy liberated in the fissioning of 235U atoms.

Various fission reactions are possible, but we can simplify the situation by assuming

that each liberates, on average, energy E. If E is given in MeV (typically,
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E ~ 180 MeV), then the reaction rate necessary to sustain thermal power produc-

tion Pt is

fissions per second ¼ 106Pt

1:6022� 10�13E
� � ; (3.18)

where the numerical factors arise from converting megawatts to watts and MeV to

Joules.

Each fissioning 235U atom liberates secondary neutrons; call this number n as we
did in the discussions of critical mass and reactor criticality. For our purposes, such

secondary neutrons subsequently suffer one of three fates: (i) they can strike

another 235U atom and cause it to fission, (ii) they can be absorbed by an atom of
235U without causing fission, or (iii) they can be absorbed by an atom of 238U.

Process (i) is necessary to keep the reaction going, while process (iii) is what

ultimately produces Pu. Process (ii) is parasitic, serving only to remove neutrons

from circulation. As in Sect. 3.1, designate the cross-sections for these processes as

sf5, sc5, and sc8, respectively. We adopt sf5; sc5; sc8
� � ¼ (584, 99, 2.7) bn (see

Appendix B; sf8 ¼ 0 for thermal neutrons). These figures are for “thermalized” or

“moderated” neutrons such as one has in a reactor, not the fast neutrons one has in a

bomb. To simplify matters, we assume that no neutrons are lost due to capture by

fission products or by diffusion and escape through the surface of the reactor. Also,

as before, we can neglect neutron scattering as this just redirects neutrons within the

reactor.

The other factor we need is the fractional abundance F of 235U in the fuel rods. In

natural uranium, F ¼ 0.0072. For various reasons, power-producing reactors in the

United States use fuel enriched to F ~ 0.03. As before, the total effective cross-

section for a reaction of any sort to occur is then given by the abundance-weighted

sum of each possibility:

stot ¼ F sf 5 þ sc5
� �þ 1� Fð Þ sc8: (3.19)

Now, of the n neutrons liberated in each fission, the number subsequently

absorbed by 238U (and hence the number of atoms of 239Pu produced per fission)

is given by n times the ratio of the effective absorption cross-section for 238U to stot:

neutrons absorbed by 238U per 235U fission ¼ n
1� Fð Þ sc8

stot

� 	
: (3.20)

This expression is a central part of the story, but left as it is would result in

seriously overestimating the rate of Pu production. To appreciate this, consider the

analogous expression for the number of subsequent fission events created by each

secondary neutron:
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neutrons causing subsequent 235U fission per 235U fission

¼ n
F sf5
stot

� 	
: (3.21)

As in the discussion of reactor criticality, this number is known as the “repro-

duction factor” k. In a reactor fueled with uranium enriched to F ¼ 0.03, the above

cross-sections give k ¼ 1.835 for n ¼ 2.421 (Table 3.1). If left uncontrolled, the

number of fissions would multiply by a factor of nearly 2 in each generation and

rapidly lead to a catastrophic meltdown. To achieve a steady reaction rate, control

rods are used to absorb a sufficient number of neutrons in order to have k ¼ 1.

Hence, we need to correct (3.20) by dividing by k, that is, by dividing by (3.21):

neutrons absorbed by238U per 235U fission ¼ 1� Fð Þ sc8
F sf5

� 	
: (3.22)

The rate of production of Pu is then given by multiplying this result by the fission

rate, (3.18):

Atoms of Pu produced per second

¼ 106Pt

1:6022� 10�13E
� �

" #
1� Fð Þ sc8
F sf5

� 	
: (3.23)

On accounting for the atomic mass of 239Pu (239.05u ¼ 3.970 � 10�25 kg) and

the number of seconds in a day, we can transform (3.23) into an expression for the

number of grams of Pu produced per day:

Pu production gr=dayð Þ ¼ 214:1
Pt 1� Fð Þ sc8

EF sf5

� 	
: (3.24)

Notice that the rate of Pu production is independent of the number of neutrons

liberated per fission; this is because the reactor is controlled to ensure that only one

second-generation fission is created per first-generation fission, no matter what the

value of n.
For a plant producing electric power at a rate of 1 GW fueled at F ¼ 0.03 and

operating at efficiency � ¼ 0.3 (hence, Pt ¼ 3.33 GW), (3.24) gives a plutonium

production rate of 593 g/day ¼ 216 kg/year, assuming E ¼ 180 MeV/fission.

Given that there are some 100 commercial reactors in operation in the United

States we can thus estimate the annual production of plutonium to be on the order

of 20,000 kg, enough for more than 2,000 Nagasaki-type bombs. The rate of

Pu production is very sensitive to small changes in the enrichment factor in view

of this parameter appearing in the denominator of (3.24). A 1 GW-electrical reactor

of the same efficiency but fueled with natural uranium (such as the Canadian

CANDU system) will produce some 920 kg of Pu per year.
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The Hanford reactors were fueled with natural uranium (F ¼ 0.0072) and

operated at a thermal power MW/� ¼ 250 MW. For these figures, (3.24) gives a

production rate of 190 g/day. Three reactors operating at this power would yield

570 g/day. To get enough Pu to construct a bomb core of 6 kg would therefore

require about 11 days of steady-state operation. Fuel slugs were left in the Hanford

reactors for typically 100 days of neutron bombardment; after being withdrawn

they had to be cooled, and time allowed for dangerous short-lived fission products

to decay. A discussion of the design of these reactors appears in Weinberg (2002).

Since commercial-reactor fuel rods in the US are not as a rule reprocessed, the

Pu created remains locked up in them. Ironically, 239Pu a-decays back to 235U with

a half-life of about 24,000 years; our distant descendants will find a fresh supply of

“enriched” fuel rods awaiting them!

Fuel rods typically remain in commercial reactors for periods much longer than

100 days. A result of this is that some of the 239Pu atoms that are formed have time

to absorb neutrons to become 240Pu; some 25% of the Pu in spent fuel rods is this

isotope (Kazimi 2003). Section 5.3 of the present book develops a numerical

simulation of reactor operation to show how to estimate the production rate of
240Pu, but we will see that the essential overall scale of plutonium production is not

much affected. As we explore in Sect. 4.2, this isotope is characterized by an

extremely high spontaneous fission rate, a situation that presents a dangerous

challenge for anyone who seeks to construct a nuclear weapon from such spent

fuel. An excellent treatment of issues in civilian nuclear power generation appears

in Garwin and Charpak (2001).

3.4 Electromagnetic Separation of Isotopes

The Manhattan Project’s Oak Ridge, Tennessee, facility was devoted to separating

uranium isotopes for use in the Little Boy bomb. Three separate techniques were

involved in this effort: (i) electromagnetic separation, (ii) gaseous (barrier) diffu-

sion, and (iii) liquid thermal diffusion. The first two of these can be examined on the

basis of undergraduate-level physics and are so treated in this and the following

sections. The physics of liquid thermal diffusion is extremely complex, however, so

we do not consider that process further. Readers interested in the technical details of

liquid thermal diffusion are urged to consult the classic paper “The Separation

of Isotopes by Thermal Diffusion” by Jones and Furry (1946).

We first deal with electromagnetic separation of isotopes. Barrier diffusion is

taken up in Sect. 3.5.

The electromagnetic separation facility at Oak Ridge was code-named Y-12, and

utilized “calutron” separators designed by Ernest Lawrence; the name is a contrac-

tion of “California University Cyclotron”. The design of these separators was

predicated on the phenomenon that an ion directed into a magnetic field perpendic-

ular to the ion’s initial velocity will subsequently travel in a circular orbit whose

radius is dictated by the strength of the field, the magnitude of the initial velocity, the
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extent of ionization, and the mass of the ion. Isotopes of different masses conse-

quently travel in different orbits and so can be separated. As with any isotope

separation technique, this method depends on the very slight mass difference

between the isotopes involved. In the case of 235U and 238U the mass difference is

very small, so this technique is extremely difficult to realize in practice.

To analyze this we use a coordinate system where the x and y axes are in the

plane of the page and the z-axis comes out of the page as shown in Fig. 3.2.

Assume that a uniform magnetic field ~B ¼ B ẑ emerges perpendicularly from

the page. An ion of mass m and net charge q (usually positive) moves under the

influence of the field. According to the Lorentz force law, the force on the ion at any

time will be

~F ¼ q ~v� ~B
� � ¼ qB vyx̂� vxŷ

� �
: (3.25)

Newton’s Second law holds that ~F ¼ m~a, so we can write

qB vyx̂� vxŷ
� � ¼ m

dvx
dt

x̂þ dvy
dt

ŷþ dvz
dt

ẑ

� �
; (3.26)

from which we have

dvx
dt

¼ a vy (3.27)

and

dvy
dt

¼ �a vx; (3.28)

where

a ¼ qB

m
: (3.29)

x 

y 

z 

magnetic field directed
out of page

 

Fig. 3.2 Coordinate system

for analyzing motion of

charged particles in a

magnetic field. The x and y
axes are in the plane of the

page; the z-axis emerges from

the page, as does the magnetic

field
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Equations (3.27) and (3.28) are coupled differential equations: the rate of change
of vx depends on vy and vice-versa. Note that we must have dvz/dt ¼ 0; if the ion

enters the magnetic field with vz ¼ 0, its subsequent motion will be restricted to the

xy plane, the case assumed here.

Equations (3.27) and (3.28) can be separated by the following trick. Differentiate

(3.27) with respect to time:

d2vx
dt2

¼ a
dvy
dt

: (3.30)

Now substitute (3.28) into the right side of (3.30) to eliminate dvy/dt:

d2vx
dt2

¼ �a2 vx: (3.31)

What we have gained here is a differential equation that involves only the

x-component of the velocity. Likewise, differentiating (3.28) and using (3.27) gives

d2vy
dt2

¼ �a2 vy: (3.32)

Both vx and vy are governed by the same differential equation. The general

solutions are

vx ¼ A cos atð Þ þ C sin atð Þ
vy ¼ D cos atð Þ þ E sin atð Þ

)
; (3.33)

where A, C, D, and E are constants of integration (B is reserved for the magnetic

field strength); we use different constants in the x and y directions as we eventually
impose different boundary conditions on them.

Integrating (3.33) with respect to time gives the equations of motion for the ion:

x ¼ 1

a
A sin atð Þ � C cos atð Þ½ � þ Kx

y ¼ 1

a
D sin atð Þ � E cos atð Þ½ � þ Ky

9>=
>;; (3.34)

where Kx and Ky are further constants of integration.

Not all of A, C, D, and E are independent. This can be seen by back-substituting

(3.33) into (3.27) (or into (3.28) – the result is the same):

dvx
dt

¼ a vy

) �A sin atð Þ þ C cos atð Þ ¼ D cos atð Þ þ E sin atð Þ; (3.35)
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which shows that we must have D ¼ C and E ¼ �A. These constraints simplify

(3.33) and (3.34) to

vx ¼ A cos atð Þ þ C sin atð Þ
vy ¼ C cos atð Þ � A sin atð Þ

)
(3.36)

and

x ¼ 1

a
A sin atð Þ � C cos atð Þ½ � þ Kx

y ¼ 1

a
C sin atð Þ þ A cos atð Þ½ � þ Ky

9>=
>;: (3.37)

We now set some initial conditions and impose them on (3.36) and (3.37).

Assume that at t ¼ 0 the positively-charged ion enters the magnetic field at rinitial
¼ (0, 0) while moving straight upward (in the positive-y direction) with velocity

vinitial ¼ (0, v). This initial velocity can be supplied by passing the ions through an

accelerating voltage before they are introduced into the magnetic field. The initial

situation is sketched in Fig. 3.3.

The initial-velocity condition requires A ¼ 0 and C ¼ v from (3.36); these

results and the initial-position condition, when substituted into (3.34), demand

Kx ¼ v/a and Ky ¼ 0. The velocity and position equations hence become:

vx ¼ v sin atð Þ
vy ¼ v cos atð Þ

)
(3.38)

and

x ¼ v

a
1� cos atð Þ½ �

y ¼ v

a
sin atð Þ

9>=
>;: (3.39)

vinitial

x
(x,y) = (0, 0)

mass 
m

Fig. 3.3 A positively-

charged ion is launched with

initial velocity in the y
direction; the magnetic field

emerges from the plane of the

page

3.4 Electromagnetic Separation of Isotopes 87



Equations (3.38) indicate that an ion’s speed remains unchanged once it enters

the magnetic field; a magnetic field can do no work on a charged particle. That

(3.39) corresponds to circular motion can be appreciated by transforming to a new

(“primed”) coordinate system where the origin is displaced along the x-axis by an

amount v/a:

x0 ¼ x� v=a

y0 ¼ y

)
: (3.40)

In this coordinate system, equations (3.39) transform to

x0 ¼ � v

a
cos atð Þ

y0 ¼ þ v

a
sin atð Þ

9>=
>;: (3.41)

These expressions correspond to clockwise circular motion of radius v/a. The
resulting motion is illustrated in Fig. 3.4.

From the definition of a, the orbital radius will be

R ¼ v

a
¼ mv

qB
: (3.42)

The initial velocity v is usually created by accelerating the ions through a

potential (voltage) Vacc before injecting them into the magnetic field. The resulting

speed is given by

1

2
mv2 ¼ qVacc ) v ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2qVacc

m

r
: (3.43)

v

x
(0, 0)

mass 
m

x′ = 0

R = v/α

Fig. 3.4 Motion of a

positively-charged particle in

a magnetic field which

emerges perpendicularly from

the page. v is the velocity of

the particle at the moment

shown
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The orbital diameter 2R is

D ¼
ffiffiffiffiffiffiffiffiffiffiffi
8Vacc

qB2

s ffiffiffiffi
m

p
: (3.44)

Heavier ions will have larger orbital radii; two ions of different mass entering the

magnetic field will follow paths as shown in Fig. 3.5.

The ions will be maximally separated when they return to the x-axis after one-
half of an orbit. The separation will be the difference of the diameters:

s ¼ K
ffiffiffiffiffiffiffiffiffiffiffiffi
mheavy

p � ffiffiffiffiffiffiffiffiffiffi
mlight

p� �
; K ¼

ffiffiffiffiffiffiffiffiffiffiffi
8Vacc

qB2

s
: (3.45)

Hewlett and Anderson (1962; pp. 142–145) state that the Y-12 magnets at Oak

Ridge produced a field of 0.34 T and that uranium tetrachloride (UCl4) ion beams

were accelerated to 35,000 V before being injected into the field. If the UCl atoms

were singly ionized, (3.45) gives K ~ 3.89 � 1012 m/kg1/2. The molecular weights

of 235UCl4 and
238UCl4 are 375 and 378 mass units, respectively. Either of these

values when substituted into (3.44) gives a beam diameter of 3.07 m, and (3.45)

gives a separation between the light and heavy beams of 1.23 cm, about half

an inch.

For various reasons, the ion beam current represented by the stream of 235UCl4
ions in the Y-12 magnets had to be held to only a few hundred microamperes

(Parkins 2005). A beam current of 500 mA would correspond to collecting some

3.12 � 1015 ions per second. With a per-atom mass of 3.90 � 10�25 kg for 235U,

this means that one could collect some 1.22 � 10�9 kg of 235U per second, or about

105 mg/day. To collect 50 kg at this rate would require some 1,300 years of

operation! It is thus understandable why the Y-12 facility eventually involved

1,152 magnet “tanks,” each utilizing two or four ion sources.

v

x
(0, 0)

heavy ion

light ion

s

Fig. 3.5 As Fig. 3.4 but for

ions of different masses
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As described elsewhere by this author (Reed 2009), some of the Y-12 magnets

were square coils of about 30 windings and side lengths of 3 m. The field at the

center of such a coil is

B ¼ 2
ffiffiffi
2

p
moNi

pL
; (3.46)

where mo ¼ 4p � 10�7 (Tesla-meter)/amp, L is the side length, i is the current, and
N is the number of windings. With L ¼ 3 m and N ¼ 30, the current required to

generate a field of 0.34 T is

i ¼ pBL

2
ffiffiffi
2

p
mo N

¼ p 0:34 Tð Þ 3mð Þ
2

ffiffiffi
2

p
4p� 10�7T �m=amp
� �

30ð Þ � 30;000 amp: (3.47)

The Y-12 electromagnets were enormously consumptive of electricity. By July

1945 the Y-12 facility had consumed some 1.6 billion kWh of electricity to enrich

uranium for the Little Boy bomb. This amount of electrical energy corresponds to

about 1,400 kt of TNT – some 100 times the yield of Little Boy itself!

3.5 Gaseous (Barrier) Diffusion

Like electromagnetic separation, gaseous diffusion played a central role in enriching

uranium for the Little Boy fission bomb. The physical principal utilized in this

facility, code-named K-25, was that when a gas of mixed isotopic composition is

pumped against a barrier made of a mesh of millions of tiny holes, atoms of the

lighter isotope will tend to diffuse through the barrier slightly more readily than

those of the heavier one. (Strictly, the correct name for this process is effusion.) The
gas on the other side of the barrier is collected with a vacuum pump and is said to be

enriched in the lighter isotope as a result. However, the enrichment realizable

through any one stage of barrier is limited by the relative masses of the two

isotopes; the process must be repeated hundreds or thousands of times to achieve

significant overall enrichment. In the case of uranium this is particularly so as the

isotopes differ in mass by only about 1.3%. In fact, the input material to the K-25

plant was uranium hexafluoride gas, for which the isotopes differ by <1% in mass:
235UF6 has atomic weight 349 while that of 238UF6 is 352.

In view of the importance of gaseous diffusion to the success of the Manhattan

Project, the basic physics of this process is derived here from first principles.

It is helpful to start with a result from classical thermodynamics. Suppose that

we have a gas of atoms each of mass m trapped in a container at absolute tempera-

ture T. According to the Maxwell–Boltzmann distribution, the mean speed of an

atom is given by
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vh i ¼
ffiffiffiffiffiffiffiffiffiffi
8 k T

pm

r
: (3.48)

We can imagine all atoms to have this speed, racing about in all possible

directions. As shown in Fig. 3.6, imagine an abstract three-dimensional space

where the axes are the (x, y, z) components of an atom’s velocity. The magnitude

of the velocity vector v shown in the diagram is v and its direction is given by

spherical coordinates (y, f).
If there is no preferred direction of motion, then any direction of travel (y, f)

must be as probable as any other. From solid geometry we know that the solid angle

subtended by angular limits y to y + dy and f to f + df is dO ¼ siny dy df; if
(y, f) are measured in radians then the solid angle is said to be measured in

steradians. Integrating overall all possible directions [y ¼ (0, p); f ¼ (0, 2p)]
shows that the total available solid angle is 4p steradians.

The probability that any atom chosen at random is moving in the direction of a

particular solid angle dO is then given by P(dO) ¼ dO/4p, that is,

P ðdOÞ ¼ 1

4p
sin y dy df: (3.49)

We now consider the diffusion process itself. Figure 3.7 shows a small portion of

a diffusion barrier with a single hole of area S. In reality there would be millions

of such holes, but analyzing one of them will get us what we need. Atoms are

pumped against the lower side of the barrier. All atoms are presumed to be moving

at speed vh i, and, at the moment shown, atom number 3 is just escaping through the

hole. The fundamental problem is to compute the number of atoms that escape

through the hole over some elapsed time Dt.
Over time Dt an atom moving at speed vh iwould travel distance vh iDt. As can be

imagined with the aid of Figs. 3.7 and 3.8, any atommoving in the same direction as

vx

vy

vz

v
q

fFig. 3.6 Spherical

coordinates. The axes are the

components of the velocity

vector v
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#3 and that is within an “escape cylinder” of slant length vh iDt that projects back
from the hole along the direction of v, that is, along a direction given by (y, f), must

escape within time Dt.
The number of atoms contained within the cylinder shown in Fig. 3.8 would be

the volume of the cylinder times the number density of atoms rN ¼ N/V where N is

the number of atoms in the gas and V is the volume of the container. To make

number density a meaningful concept we have to assume that the density of the gas

stays constant; as atoms fly in and out through the sides of the cylinder we presume

that for each one that leaves the escape cylinder one arrives to take its place.

The volume of a cylinder of top area S, slant length vh iDt and tilt angle y is

given by

Vcyl ¼ S vh i Dtð Þ cos y: (3.50)

The number of atoms in the escape cylinder will then be

1

barrier

hole
area S

2

3

45

Fig. 3.7 Atoms moving in

the vicinity of a hole of area

S. Atom #3 is just escaping

through the hole

v

y

x

z

< v> Δ t

Fig. 3.8 Escape cylinder for

a particle with velocity v
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Ncyl ¼ rN S vh i Dtð Þ cos y: (3.51)

Now, not all of these Ncyl atoms will be moving in the correct direction (y, f) to
achieve escape. To account for this, we have to multiply (3.51) by the probability of

an atom having its velocity so directed, which is given by (3.49):

NescðDt; y;fÞ ¼ Ncyl P ðdOÞ ¼ rNS vh i Dtð Þ
4p

cos y sin y dy df: (3.52)

We can account for all possible directions of escape by integrating (3.52) over

the relevant angles:

Nesc Dtð Þ ¼ rNS vh i Dtð Þ
4p

Zp=2
0

sin y cos y dy
Z2p
0

df: (3.53)

Notice that that the limits on y here run from 0 to only p/2; we want to account

for only outward-moving atoms. Since the diffusion barrier is packed with millions

of holes practically edge-to-edge, it will not matter if an atom is offset from the one

shown in the figures; any outward-moving atom will find a hole to escape through.

The integrals appearing in (3.53) are standard, and evaluate to 1/2 and 2p.
Combining these with (3.48) gives the important result

Nesc Dtð Þ ¼ 1

4
rN S vh i Dtð Þ ¼ C

rNffiffiffiffi
m

p
� �

; (3.54)

where

C ¼ SDtð Þ
ffiffiffiffiffiffi
kT

2p

r
: (3.55)

Equation (3.54) is the central result for understanding barrier diffusion; it tells us

that the number of atoms destined to escape through a hole of area S over time Dt is
proportional to their density but, through the mean speed, inversely proportional to

the square root of their mass. S could as well represent the area of all of the holes in
the barrier.

First consider a gas consisting of a single-isotope species. All stages of the

diffusion mechanism are presumed to have the same volume V, the same hole area

S, and to operate at the same temperature T for the same time Dt; that is, that the
constant C is presumed to be the same for each stage of the diffusion cascade. Let ro
be the number density of the feedstock to the first stage of the cascade. From (3.54)

the number of atoms that will escape from the first stage of the diffuser will be
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N1 ¼ C
roffiffiffiffi
m

p
� �

: (3.56)

The number density of atoms in the second stage will then be N1/V or

renter stage 2 ¼
N1

V
¼ C

V

roffiffiffiffi
m

p
� �

: (3.57)

With this input number density for stage 2, the number of atoms that escape

through stage 2 is given by re-applying (3.54):

N2 ¼ C
renter stage 2ffiffiffiffi

m
p

� �
¼ C2

V
¼ roffiffiffiffi

m
pð Þ2

: (3.58)

Propagating this logic shows that after a total of n successive stages the number

of atoms that emerge from the n’th stage will be

Nn ¼ Cn

Vn�1

roffiffiffiffi
m

pð Þn : (3.59)

If the gas consists of a mixture of two isotopes, say 235U and 238U, (3.59) will

apply to each according as the relevant vales of ro and m. If we designate the two
isotopes with subscripts 5 and 8, then the final ratio of the number of 235 atoms

to the number of 238 atoms can be written as

N5

N8

¼ ro5
ro8

� �
m8

m5

� �n=2
: (3.60)

Even if different stages of the cascade have different values of V, S, T or Dt,
(3.60) will still be correct as it expresses a ratio and those quantities will cancel at

each stage as they apply equally to each isotope.

Since m8 > m5, (3.60) indicates that the ratio N5/N8 grows with each stage.

However, the amount of enrichment achieved at each stage is tiny: If we start with

uranium of natural isotopic composition and ignore the small natural abundance of
234U, ro5/ro8 ¼ 0.0072/0.9928 ¼ 7.25 � 10�3, and, with uranium hexafluoride,

m8/m5 ¼ 1.0086.

The extent of enrichment is usually quantified by the percentage of 235U. If we

define x ¼ N5/N8 ¼ r5/r8, then

% 235ð Þ ¼ 100
x

xþ 1

� �
: (3.61)

Bomb grade 235U is usually considered to be reached at 90% enrichment

(x ¼ 9), which requires n ¼ 1,665. In the case of 1,000 stages, 34% enrichment

can be realized, whereas 50% enrichment requires n ¼ 1,151. Rhodes (1986,
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p. 495) relates that the original design criteria for the K-25 plant called for 2,892

stages, which would theoretically have realized 99.94% enrichment. In the actual

K-25 facility, the feedstock was not input to the first stage of the cascade, as

“depleted” uranium hexafluoride from each stage was recycled to preceding stages.

Figure 3.9 shows the run of percent 235U as a function of the number of diffusion

stages as predicted by (3.61), assuming that one starts with uranium of natural

isotopic composition.

A website on uranium enrichment published by Kennesaw State University,

available at http://chemcases.com/nuclear/nc-07.htm, indicates that uranium

enriched to 0.86% (x ¼ 0.008673) by the S-50 liquid thermal diffusion process

served as the feed material to K-25, which produced as output 7%-enriched

(x ¼ 0.07527) material to be fed to the calutrons. For these figures, (3.60) gives

n ~ 505 enriching stages. Of course, one has to expect losses in such a complex

process: material will inevitably become stuck in valves, pumps, and the miles of

pipes involved in such a facility.
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Chapter 4

Complicating Factors

Abstract A number of controllable and uncontrollable factors can act to thwart

efforts to make nuclear weapons or to secure fissile material. This chapter analyses

three of the most serious of these. First, the reactors used to synthesize plutonium

during the Manhattan Project used graphite as a moderating agent to slow neutrons.

However, if the graphite is contaminated with even a small fraction of a neutron-

absorbing element such as boron, the presence of such a contaminant can effec-

tively poison the operation of the reactor. This chapter examines how much

contaminant is tolerable. Second, within a bomb core itself, the fissile material

will inevitably suffer some level of spontaneous fissions, which, if too great, can

cause a predetonation. This problem led to the immensely difficult engineering

challenge of implosion during the Manhattan Project. This chapter presents a

detailed analysis of the spontaneous fission issue and how one can estimate the

probability that a bomb will function correctly in the face of this problem. Finally,

the presence of even a small amount of light-element contaminants within the core

can lead to predetonation via what are called “a-n” reactions; this possibility sets

stringent limits on the purity of the core material. Estimates of the tolerable levels

of light-element impurities are developed.

A number of factors can thwart efforts to make nuclear weapons. In this chapter we

explore three of these. The first (Sect. 4.1) involved being able to operate large-

scale plutonium-production reactors in the face of neutron-absorbing impurities in

the graphite that was used as a moderating medium. The other two (Sects. 4.2 and

4.3) involve the problem that if stray neutrons should be present during the brief

time that one is assembling sub-critical pieces of fissile material to form a super-

critical core, one runs the risk that such neutrons could initiate a premature and

hence low-efficiency explosion. Some of these “background” neutrons arise from

the fissile material itself and are fundamentally uncontrollable (Sect. 4.2), while

others can be controlled, albeit with difficulty (Sect. 4.3).

B.C. Reed, The Physics of the Manhattan Project,
DOI 10.1007/978-3-642-14709-8_4, # Springer-Verlag Berlin Heidelberg 2011
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4.1 Boron Contamination in Graphite

The presence of impurities in the graphite used as a moderator in the CP-1 and

Hanford reactors was a matter of serious concern in the Manhattan Project. Since

the purpose of the graphite was to slow and scatter neutrons without absorbing

them, it was important that it be as free as possible of any neutron-absorbing

impurities. The commercially-produced graphite of the time often contained trace

amounts of boron, which has a voracious appetite for neutron absorption. Indeed, it

was unappreciated boron contamination of their graphite that led German research-

ers to conclude that only heavy water could serve as an adequate moderator, a

situation that was at least in part responsible for their failure to achieve a self-

sustaining chain-reaction. In this section we examine the severity of this effect.

Two isotopes of boron occur naturally: 10B (19.9%) and 11B (80.1%). The

problem is that boron-10 has a huge cross-section – over 3,800 bn – for capture

of thermal neutrons by the reaction

1
0nþ 5

10B ! 4
2Heþ7

3Li, (4.1)

for which Q ¼ 2.79 MeV. In view of this, the presence of even a small amount of

boron-10 can quickly suppress the desired chain reaction.

Table 4.1 lists the relevant cross-sections; we assume that the graphite is a

mixture of carbon-12 and boron. These cross-sections are for thermal neutrons

and are adopted from the KAERI site listed in Appendix B. While other reactions

are possible between these isotopes and thermal neutrons, the point here is a simple

model which emphasizes the difference in behavior between 10B and 11B versus 12C

in response to thermal neutron bombardment.

The figures given in the last row of the table are computed on the basis of

assigning the total cross-section for 10B to neutron capture, and the sum of the (n, a)
and radiative capture cross-sections for 11B and 12C to neutron capture.

Suppose that we are willing to tolerate a total neutron-capture cross section of

stotalcapture. The question is: What maximum fraction by number can boron constitute of

the graphite?

Let the number fractions of the three isotopes 10B, 11B and 12C be f 10, f 11, and

f 12, respectively. With obvious notation for the cross-sections, stotalcapture can be

written as

stotalcapture ¼ f 10s10capture þ f 11s11capture þ f 12s12capture; (4.2)

Table 4.1 Boron and carbon

cross-sections (barns)
Cross-section 10B 11B 12C

s (total) 3,840 5.050 4.750

s (n, a) 3,837 0.03138 0.07265

s (elastic) 2.144 5.045 4.746

s (radiative capture) 0.500 0.005075 0.003530

s (capture, adopted) 3,840 0.036455 0.076180
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where we must have

f 10 þ f 11 þ f 12 ¼ 1: (4.3)

The abundance ratio of 10B to 11B is 19.9 to 80.1%. Define this ratio as a, that is,

a ¼ f 10

f 11
¼ 0:199

0:801
¼ 0:248: (4.4)

With this definition, (4.2) and (4.3) become

stotalcapture ¼ f 11 a s10capture þ s11
capture

� �
þ f 12s12capture (4.5)

and

f 11 aþ 1ð Þ þ f 12 ¼ 1: (4.6)

Solving (4.6) for f 11 and substituting the result into (4.5) gives

f 12 ¼ stotalcapture � b

s12capture � b
; (4.7)

where

b ¼ as10capture þ s11capture
1þ a

: (4.8)

Equations (4.7) and (4.8) give the number fraction of the graphite that must be in

the form of 12C. Suppose we are willing to tolerate stotalcapture ¼ 0.1 bn, a value not

much greater than the adopted 12C capture cross section. With the numbers given in

Table 4.1, we find b ¼ 763.106 bn and f 12 ¼ 0.9999688. This means that the

graphite must be >99.996% pure to keep the neutron-capture cross-section to the

modest figure of 0.1 bn. Put another way, the total boron number fraction cannot

exceed 0.0000312, that is, no more than one atom in 32,000 in the graphite can be

boron! According to a U.S. Department of energy history of the Hanford reactors,

the Boron in the graphite blocks in those reactors was held to a purity of 0.4 parts

per million (DOE 2001).

Is 0.1 bn for the total neutron capture cross-section a reasonable number? To

check this, we can use the results of the analysis of neutron thermalization in

Sect. 3.2 to make a very rough estimate of what fraction of neutrons would survive

their scatterings through the graphite. To simplify matters, let us assume that the

total cross-section for 10B is ascribed to neutron capture (s10total ¼ 3,840 bn), while

the totals for 11B and 12C, (s11total, s
12
total) ¼ (5.050 bn, 4.750 bn), are ascribed purely

to elastic scattering. The total interaction cross-section is then

stotal ¼ f 10s10total þ f 11s11total þ f 12s12total; (4.9)

4.1 Boron Contamination in Graphite 99



where the f’ s are again the isotopic number fractions. The probability that a neutron

will survive an interaction with a nucleus in the graphite, that is, the probability that

it will not be captured upon striking a nucleus, will be the cross-section for

scattering only, f 11s11total þ f 12s12total, divided by stotal. For N independent successive

scatterings the probability of survival will be

Psurvive ¼ f 11s11total þ f 12s12total
stotal

� �N
: (4.10)

We saw in Sect. 3.2 that on the order of 50 or so scatterings are required to

thermalize a neutron of initial energy 2 MeV. For the isotopic fractions

corresponding to stotalcapture¼ 0.1 bn as used above, stotal ¼ 4.7738 bn, and the

probability of surviving 50 interactions is about 0.779. If stotalcapture is increased to

0.12 bn (about one boron atom per 17,000) the survival probability for 50 interac-

tions drops to 0.631; for 70 interactions it would be only 0.525. In this latter case, of

every 2.5 neutrons emitted per “average” fission, only a little more than one would

on average survive thermalization to go on to contribute to the next generation of

fissions. These numbers make clear that even a fraction of a percent of boron

impurity would be disastrous.

To be fair, this calculation overstates the case in that it takes no account of the

fact that the (n, a) cross-section for 10B is a strong function of energy; the cross-

section is small for energetic neutrons (a few tenths of a barn at 1 MeV) but

increases exponentially with decreasing energy. It is really only in its last few

scatterings to thermalization a neutron faces a significant probability of capture by
10B, whereas we have assumed that the 3,840 bn figure applies for all energies.

Nevertheless, these numbers do give one a sense of why it is so important to reduce

neutron-absorbing contaminants to essentially negligible levels.

Spreadsheet Boron.xls can be used to examine the calculations presented in this

section. The user sets the value for the total tolerable capture cross-section of (4.5)

and the number of successive scatterings N; the spreadsheet computes the tolerable

boron fraction and the probability that a neutron will survive N scatterings.

4.2 Spontaneous Fission of 240Pu, Predetonation, and Implosion

Material in this section is adopted from a publication elsewhere by this author

(Reed 2010).

Emilio Segrè’s discovery in December 1943 that 235U has a very low spontane-

ous fission (SF) rate cleared the way for use of the “gun assembly” mechanism of

the Little Boy bomb. Conversely, his later discovery that reactor-produced pluto-

nium has a very high SF rate meant that gun assembly would be far too slow for the

Trinity and Fat Man bombs. The problem was not with the 239Pu to be used as fissile

material for the bombs, but rather that some 240Pu was inevitably formed in the

Hanford reactors as a consequence of already-formed 239Pu nuclei absorbing
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neutrons; 240Pu has an extremely high SF rate. Only implosion could trigger a

Plutonium bomb quickly enough to prevent a SF from causing a premature detona-

tion. In this section we examine the probability of predetonation. How one can

estimate the amount of 240Pu created in a reactor is analyzed in Sect. 5.3.

Let NA designate Avogadro’s number, and let A be the atomic weight (g/mol) of

some spontaneously fissioning material. The number of atoms in 1 kg of material

will be 103(NA/A). For any decay process characterized by a half-life t1/2 seconds,
the average lifetime of a nucleus against decay is t1/2/(ln 2). Consequently, the

average spontaneous fission rate F (number per kilogram per second) is given by the

number of atoms divided by their average lifetime:

F ¼ 103
NA

A

� �
ln 2

t1=2

� �
kg�1sec�1
� �

: (4.11)

Recommended values for SF half-lives for heavy isotopes have been published

by Holden and Hoffman (2000). Numbers for four isotopes of interest are given in

Table 4.2; see also Table 2.1. The spontaneous fission rates in the fourth column in

Table 4.2 are quoted in spontaneous fissions per kilogram of material per 100 ms.
The secondary-neutron n values for U-238 and Pu-240 represent the number of

neutrons emitted in spontaneous fissions of these nuclides; these are adopted from

Table 1.33 of Hyde (1964).

The reason for quoting the rates SF’s in this way this was discussed in Sect. 2.4. If

we assume that the core of a bomb is on the order of 10 cm in size and that the gun

method is capable of accelerating projectiles to 1,000 m/s, then about 100 ms will be
required to complete the assembly. During this time, a 50-kg 235U assembly would

suffer some 2.81 � 10�5 spontaneous fissions, a negligibly small number; the

probability of predetonation would be miniscule (although not zero). From the

point of view of spontaneous fission, then, contamination of a few percent 238U in

a 235U core will not present a significant hazard. A 10-kg plutonium core contami-

nated with even only 1% 240Pu, however, is likely to suffer some five spontaneous

fissions in this brief time; the core pieces are not likely to reach their fully assembled

configuration before a spontaneous fission causes a pre-detonation. The only option

aside from the virtually impossible task of trying to remove the offending 240Pu is to

speed up the assembly process to on the order of a microsecond or less. For a pure
10-kg 239Pu core the rate is about 0.007 spontaneous fissions per 100 ms.

While the above numbers give a sense of the potential magnitude of the

possibility of a spontaneous-fission-induced predetonation, a more careful anal-

ysis is necessary to fully quantify this risk. Because spontaneous fission is

Table 4.2 Spontaneous

fission parameters
Nuclide t1/2 (year) A (g/mol) SF (kg 100 ms)�1 n
235U 1.0 � 1019 235.04 5.627 � 10�7 2.637
238U 8.2 � 1015 238.05 6.776 � 10�4 2.1
239Pu 8 � 1015 239.05 6.916 � 10�4 3.172
240Pu 1.14 � 1011 240.05 48.33 2.257
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fundamentally a random phenomenon, one is restricted to speaking in terms of

probabilities: the physics of the situation will dictate a certain probability that

a predetonation may happen. It is then a question of judgment as to the accept-

ability of that risk.

The approach taken here is based on a probabilistic model of neutrons traveling

through a bomb core, and should be understandable to readers familiar with

concepts such as multiplying together independent probabilities to generate an

overall probability. I do not discuss the much more complex question of estimating

the yield of a weapon in the event of predetonation (Mark 1993).

Random processes are described by Poisson statistics. To calculate the predeto-

nation probability we have to treat two effects: the probabilities that 0, 1, 2, . . .
spontaneous fissions occur during the assembly time, and the probability that the

secondary neutrons so released travel to the edge of the core and escape without

causing secondary fissions.

Imagine a spherical bomb core containing mass M of spontaneously fissioning

material, and let F be the rate of spontaneous fissions as given by (4.11). We assume

an already spherical geometry for the bomb core while it is being assembled – an

obviously somewhat unrealistic model for a gun-type bomb. The average number of

spontaneous fissions during the assembly time tassemble is

m ¼ MFtassemble: (4.12)

From Poisson statistics, the probability Pk (k ¼ 0, 1, 2, ...) that exactly k
spontaneous fissions occur during this time is given by

Pk ¼ mk

k !
e�m: (4.13)

If each spontaneous fission releases on average n neutrons, then k spontaneous

fissions will release kn neutrons. For no predetonation to occur, all of these

neutrons must escape. If Pescape represents the probability that an individual

neutron escapes without causing a fission, then the probability that all will escape

is Pescape

� �kn
; how Pescape is determined is described below. Hence, the probability

that both k spontaneous fissions occur and all of the emitted neutrons escape is

Pk Pescape

� �kn
.

To determine the probability of no predetonation we have to account for all

possible number of occurrences of spontaneous fissions:

Pno predet ¼
X
k¼0

Pk Pescape

� �kv
: (4.14)

In principle, the sum in (4.14) goes to infinity, but in practice the first few terms

will suffice.

The next part of the argument is to determine Pescape, the overall escape

probability for one neutron.
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Neutrons can escape the core in one of two ways: they may escape directly by

traveling in a straight line from their point of origin to the edge of the sphere, or they

can scatter one or more times before escaping. For a given neutron, it is impossible

to predict how many times it will scatter before escaping, but we can develop an

expression for the probability that it will escape following a specified number of

scatterings; adding these probabilities gives Pescape. It is useful to imagine that Smax,
the maximum possible number of scatterings before escape, is known in advance.

How Smax is treated is discussed following (4.19) below.

If pj represents the probability that a neutron escapes following j successive
scatterings, the overall total probability of escape is

Pescape ¼ p0 þ p1 þ p2 þ � � � þ pSmax
: (4.15)

Do not to confuse these probabilities with those of (4.13), which are the

probabilities of a given number of spontaneous fissions.

To determine the pj, recall the expression from Sect. 2.1 for the probability that

a neutron will penetrate through a linear distance x of material: PðxÞ ¼ exp

�stot n xð Þ, where n is the number density of nuclei in the material, and stot is the
total reaction cross-section for neutrons in the material. As in the calculation of

critical mass, stot is given by the sum of the scattering and fission cross sections. We

ignore any possibility of non-fission neutron capture, which for any reasonably pure

fissile material should be small. Now, this P(x) refers to neutrons penetrating

through a linear distance x. If the neutrons are emitted in random directions within

the bomb core, we need to average P(x) over all possible directions of neutron

emission from all points within the sphere. So as not to disturb the flow of the present

argument, this issue is examined in Appendix F, where it is shown that the appro-

priate average, Psph

� 	
, can be expressed as a double integral which can readily be

computed within the spreadsheet for the predetonation calculation.

The probability that a neutron will not directly escape is 1� Psph

� 	
. These

neutrons must first interact with a nucleus either by causing a fission (f ) or by
being scattered (s). The respective probabilities of these competing processes are

sf/stotal and ss/stotal. Hence, the probability that a neutron will suffer one scattering
is given by

Pone ¼ ss
stotal

� �
1� Psph

� 	� � � g: (4.16)

The probability that such a once-scattered neutron will then escape, that is, p1 of
(4.15), is given by Pone times Psph

� 	
:

p1 ¼ ss
stotal

� �
1� Psph

� 	� �
Psph

� 	 ¼ g Psph

� 	
: (4.17)

Similarly, the probability that a neutron that has already undergone one scatter-

ing will experience a second scattering is given by Pone of (4.16) times the
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probability of suffering a further interaction, 1� Psph

� 	� �
, times the probability of

that interaction being a scattering, ss/stotal, that is, Ptwo ¼ g2. The probability of

escape after two scatterings is thus p2 ¼ g2 Psph

� 	
. Carrying on this logic and

assuming that scatterings are independent events, the probability that a neutron

will suffer j successive scatterings and then escape is given by

pj ¼ gj Psph

� 	
: (4.18)

Hence we have

Pescape ¼ Psph

� 	 XSmax

j¼0

gj

 !
¼ Psph

� 	 1� gSmaxþ1

1� g


 �
: (4.19)

Equation (4.19) follows from the fact that the summation is the partial sum of a

geometric series. Note that we have assumed that the neutrons are randomly

redirected at each scattering.

What about the maximum number of scatterings Smax? For a reaction character-

ized by the cross-section s, the mean free path between reactions (Sect. 2.1) is

l ¼ 1/sn. For U-235 and Pu-239 the mean free paths are about 4 cm, which is of the

same order as the untamped critical radii, 8.4 and 6.3 cm, respectively. Many

neutrons might not scatter at all, while some might suffer a few scatterings. As

described in the results given below, however, the calculated predetonation prob-

abilities are fairly insensitive to changes in Smax. The worst case scenario, which

maximizes the predetonation probability, is Smax ¼ 0. As shown below, for a model

of the Little Boy U-235 core the predetonation probability changes by less than 1%

for reasonable choices of Smax. For the Fat Man Pu-239 core the sensitivity is

greater, up to a few percent, but the value of Smax is not a determining factor in

whether or not implosion is necessary. Thus, the choice of Smax is left to the user to
be assigned as desired. (That the worst-case scenario is Smax ¼ 0 may seem

counterintuitive, as one would expect more neutron–nucleus interactions would

lead to more chances for fissions. But recall that some neutrons may escape even

after a very large number of scatterings; setting Smax ¼ 0 means that we forgo

accounting for such escapees, leading to an overestimate of the predetonation

probability.)

Equations (4.11)–(4.14) and (4.19) can be used to predict the no-predetonation

probability once the nuclear constants, core and contaminant masses, and assembly

time scale are specified. Spreadsheet PreDetonation.xls has been developed to

carry out this calculation. The user enters the core and contaminant masses and their

atomic weights, the relevant cross-sections, the SF half-life and secondary neutron

number for the spontaneously fissile material, the maximum number of scatterings

to be considered, and the assembly timescale. The spreadsheet then computes the

non-predetonation probability; see also the description of computing the escape

probability in Appendix F. To calculate the sum in (4.14) the spreadsheet takes an

upper limit of k ¼ 20, which is entirely sufficient for any reasonable situation.
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4.2.1 Little Boy Predetonation Probability

As described in Sect. 2.3, the Hiroshima Little Boy core comprised about 64 kg of

uranium in a cylindrical configuration, of which about 80% was U-235 and 20%

(12.8 kg) was U-238. The half-life of U-238 for spontaneous fission, 8.2 � 1015

year, is about 1,200 times shorter than that of U-235, rendering the latter isotope

almost negligible as far as the predetonation probability is concerned. As in

Sect. 2.3, I model the core of Little Boy as being spherical; a 64 kg sphere of

density 18.71 g/cm3 has a radius of 9.35 cm. The effect of a surrounding tamper on

escaping neutrons is ignored. In this case, even for a 200 ms assembly time, the non-

predetonation probability is about 98.4% for Smax ¼ 0. For Smax ¼ 5 (probably too

large), this rises slightly to 98.9%. At worst, fizzles could be expected to occur in

about two such bombs out of every one hundred. For a 200 ms assembly time there is

a 98.3% probability that no spontaneous fission will occur. The spherically aver-

aged direct escape probability Psph

� 	
for this 64 kg core is 0.268; for Smax ¼ 5,

Pescape of (4.15) is 0.609. For a 100 ms assembly time, the mean number of

spontaneous fissions is only about 0.009.

4.2.2 Fat Man Predetonation Probability

The untamped critical mass of Pu-239 is about 17 kg. However, the Trinity and Fat
Man bombs used cores of mass about 6.2 kg due to the greater efficiency afforded

by implosion (Sublette 2007). For a 6.2 kg core of pure Pu-239, an assembly time of

200 ms yields a no-predetonation probability of 99.2% (Smax ¼ 0). Although this

would appear to be better odds than the U-238 contaminated Little Boy device, the
comparison is misleading because a non-imploded Pu core of this mass would be

subcritical. In reality, the 6.2 kg cores contained about 1.2% Pu-240 (0.0744 kg),

which makes the outcome very different. Figure 4.1 shows the Smax ¼ 0 non-

predetonation probability for this case as a function of the assembly time. For

Smax ¼ 0 and a time of 100 ms the non-predetonation probability is only 5.8%

(12.0% for Smax ¼ 1); there is no realistic hope of successfully assembling such a

core in a time scale characteristic of the gun design. Here Psph

� 	 ¼ 0.497, and, for

Smax ¼ 5, Pescape ¼ 0.771. Although these numbers do not differ much from those

of the Little Boy calculation, the mean number of spontaneous fissions is enor-

mously greater in the case of the Pu-240 contaminated Fat Man device: over

100 ms, for example, this number is 3.6 in contrast to 0.009.

We can make a rough estimate of the real Trinity non-predetonation probability

as follows. Neglecting the neutron initiator housed at its center, the core would have

a radius of about 4.56 cm for a density of 15.6 g/cm3. If the implosion is to crush the

core to a density twice as great as this value, the final radius would be about 3.62 cm.

If this is done at a speed of, say, 2,000 m/s, some 4.7 ms would elapse. Modeling the

core as having a mass 6.2 kg at a density midway between these values, 23.4 g/cm3,

gives a Smax ¼ 0 non-predetonation probability of 86.5% (88.9% for Smax ¼ 1; the
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altered density makes little difference to the probabilities: at 15.6 g/cm3 they are

respectively 87.5 and 90.5%). Implosion is the only means to achieve such short

assembly times. Former Los Alamos Theoretical Division Director Carson Mark,

working from figures given in a letter from Robert Oppenheimer to Manhattan

Engineer District Commander General Leslie Groves, reported that Oppenheimer

estimated a 88% chance of a “nominal” 20 kt yield from the Trinity device (Mark

1993); we can conclude that the present model is reasonable.

Given that plutonium synthesized in fuel rods in commercial reactors comprises

about 20% Pu 240, we can appreciate the difficulties faced by terrorists who would

plan to steal spent fuel rods and use them to create a workable plutonium bomb. Mark

concluded, however, that even a 0.5 kt “fizzle yield” for a terrorist bomb based on

reactor-grade plutonium would still produce a severely damaging explosion. Such an

explosion would be equivalent to about 200 of the truck bombs used to destroy the

Murrah Federal Building in Oklahoma City in 1995 (Bernstein 2008). Thus, while an

efficient Trinity-like terrorist weapon based on purloined fuel rods is highly unlikely,
the issue of fuel supply and security will remain a pressing one for years to come.

Figure 4.2 shows a photograph of the Trinity test device; Fig. 4.3 shows the

Nagasaki Fat Man bomb; the bulbous casing enclosed the implosion assembly

within and provided stable flight characteristics when dropped.

To end this section, we ask: “How can one obtain an implosion?” After all,

explosions are normally seen to be outwardly-directed phenomena. This was done

by using an assembly of implosion lenses. The fundamental idea is sketched in

Fig. 4.4, which shows a single lens in cross-section; in three dimensions imagine a

roughly pyramidal-shaped block that would fit comfortably on your lap. The block is

composed of two explosive castings that mate precisely together. The outer casting is

of a fast-burning explosive (technically known as “Composition B”, or just Comp B),

Fig. 4.1 Non-predetonation probability for a non-imploded 6.2-kg Pu core contaminated with 1.2%

Pu-240 as a function of assembly time. The maximum number of scatterings is assumed to be zero
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Fig. 4.2 The Trinity device atop its test tower on July 15, 1945. Norris Bradbury (1909–1997),

who served as Director of the Los Alamos Laboratory from 1945 to 1970, stands to the right. The

spherical shape of this implosion device is clearly visible; the cables feeding from the box halfway

up the device go to the implosion-lens detonators discussed in the text. Photo courtesy Alan Carr,

Los Alamos National Laboratory

Fig. 4.3 The Nagasaki Fat Man plutonium implosion weapon shortly before its mission. Fat Man
was 12 feet long, 5 feet in maximum diameter, and weighed 10,300 pounds when fully assembled

(Sublette 2007). Photo courtesy Alan Carr, Los Alamos National Laboratory
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while the inner, lens-shaped one is a slower burning material known as Baratol,

a mixture of barium nitrate and TNT. A detonator at the outer edge of the Comp

B initiates an outward-expanding detonationwave.When the detonation wave hits the

Baratol, it too begins exploding. If the interface between the two is of just the right

shape, the two waves can be arranged to combine as they progress along the interface

in such as way as to create an inwardly-directed converging wave in the Baratol; the

dashed lines in Fig. 4.4 illustrate the right-to-left progression of the detonation. As

sketched in Fig. 4.5, 32-such “binary explosive” assemblies were fitted together to

create imploding spheres inside the Trinity and Fat Man devices. Within the Baratol

lenses resided another spherical assembly of 32 blocks of Comp B, which are

detonated by the Baratol to achieve a high-speed symmetric crushing of tamper

spheres that lay within them. A fascinating and very readable personal reminiscence

of casting and machining the implosion lenses was published by Hull and Bianco

(2005); for a more technical history, see Hoddeson et al. (1993).

4.3 Tolerable Limits for Light-Element Impurities

Beyond the uncontrollable issue of predetonation caused by spontaneous fission,

another danger for weapons designers, particularly in the case of plutonium bombs,

is that a chain reaction can be initiated by the natural a-decay of the fissile material

if that material contains even a small percentage of light-element impurities.

A particular danger in this regard is the presence of any beryllium in a Pu core.
239Pu has a fairly short half-life for a-decay, about 24,100 years, or 7.605 � 1011 s.

From the decay-rate formula given in the preceding section this leads to an

enormous rate of a-decays:

Fig. 4.4 Schematic

illustration of implosion

lens segment
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Ra ¼ 103
NA

A

� �
ln 2

t1=2

� �
¼ 103

6:022 � 1023

239

� �
ln 2

7:605 � 1011

� �

¼ 2:296 � 1012kg�1sec�1: (4.20)

This rate is much greater than the rate of spontaneous fissions for 240Pu. For a

10-kg core we would have an a-decay rate of some 2.3 � 1013 s�1. If some of these

alphas should find a beryllium nucleus to react with during the time that the bomb

Fig. 4.5 Cross-section drawing of the Y-1561 Fat man implosion sphere showing major compo-

nents. Only one set of 32 lenses, inner charges, and detonators is depicted. Numbers in parentheses

indicate quantity of identical components. Drawing is to scale. Copyright by and used with kind

permission of John Coster-Mullen. (A) 1773 EBW detonator inserted into brass chimney sleeve

(32) (B) Comp B component of outer polygonal lens (32) (C) Cone-shaped Baratol component of

outer polygonal lens (32) (D) Comp B inner polygonal charge (32) (E) Removable aluminum

pusher trap-door plug screwed into upper pusher hemisphere (F) 18.5-in. diameter aluminum

pusher hemispheres (2) (G) 5-in. diameter Tuballoy (U-238) two-piece tamper plug (H) 3.62-in.

diameter Pu-239 hemisphere with 2.75-in. diameter jet ring (I) 0.5-in. thick cork lining (J) 7-piece

Y-1561 Duralumin sphere (K) Aluminum cup holding pusher hemispheres together (4) (L) 0.8-in.

diameter Polonium–beryllium initiator (M) 8.75-in. diameter Tuballoy tamper sphere (N) 9-in.

diameter boron plastic shell (O) Felt padding layer under lenses and inner charges
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core is being assembled, the result will be a neutron which could go on to initiate a

premature chain reaction in the plutonium. Recall Chadwick’s (a, n) reaction for

producing neutrons by a-bombardment of beryllium (Sect. 1.4):

4
2Heþ9

4Be ! 6
12Cþ 1

0n: (4.21)

A similar effect happens with a bombardment of lithium:

4
2Heþ7

3Li ! 5
10Bþ1

0n: (4.22)

This issue is a serious one; as described by Bernstein (2007), plutonium metal at

room temperature is rather brittle and difficult to form into desired shapes unless

alloyed with another metal. A light alloying metal such as aluminum, however,

cannot be used because of this (a, n) problem; one has to use a heavier metal. Los

Alamos metallurgists alloyed plutonium with gallium to achieve desirable mallea-

bility properties. For impurities heavier than calcium the issue is moot as the alphas

cannot mount the Coulomb barrier of the nucleus (Serber 1992).

Chemical processing of the plutonium will inevitably introduce some level of

impurities. What level of impurity can one tolerate if the resulting rate of neutron

production is to be kept below, say, one per 100 ms? For simplicity, we develop the

analysis assuming that only one impurity is present.

To address this issue requires appreciating two empirical ideas from experimen-

tal nuclear physics: (i) the yield of a reaction, and (ii) the range of a particle within a
given material. We discuss these first and then develop a formula for predicting the

neutron-generation rate for some impurity. We have in mind here beryllium as the

impurity for sake of definiteness.

The yield y of a reaction can be understood as follows. Suppose that one has a well-
mixed sample of Be and an a emitter such as plutonium, radium, or polonium. Not all

of the emitted alphas will find a Be nucleus to react with; atoms are mostly empty

space. The yield of the reaction is the number of neutrons produced per a emitted.

From figures given by Fermi (1949, p. 179), 1 Curie (Ci) of radium well-mixed with

beryllium yields about 10–15 � 106 neutrons per second, and 1 Ci of poloniumwell-

mixed with Be yields some 2.8 � 106 neutrons per second. Both Ra and Po are a-
emitters. On recalling that 1 Ci ¼ 3.7 � 1010 s�1, these figures correspond to yields

of 2.7–4.1 � 10�4 and 7.6 � 10�5, respectively. Radium and polonium alphas

respectively have energies of about 4.8 and 5.3 MeV; curiously, the more energetic

alphas give a lower yield. The reason for this is that a higher-energy particle will have

a longer range of travel in some material before being consumed in a reaction, thus

lowering the yield; this is discussed further in the next paragraph. Plutonium alphas

have energies of about 5.2 MeV, so we might expect a yield for Pu-alphas on Be

somewhere between these two results, say y ~ 10�4. This is in the ballpark: West &

Sherwood (1982) give the neutron yield of 5.2-MeV alphas on 9Be as 6.47 � 10�5.

The range of an energetic particle in some material is a measure of how far it

will travel before being stopped by a nucleus of that material. Empirically, the
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Bragg-Kleeman rule (Evans 1955, p. 652) states that range is proportional to the

square root of the atomic weight A of the material being traversed and inversely

proportional to its mass density:

R /
ffiffiffi
A

p

r
: (4.23)

The stopping power S of a material is defined to be inversely proportional to the

range. Suppose that one has a mixture of two materials, A and B, each with different
ranges for a particles. If RA > RB, then SA < SB, and one would expect an a to have

a greater probability of reacting with a nucleus of material B than one of material A,
presumably in the proportion SB/SA. We thus use stopping power as a measure of

relative amounts of “reactivity” of the two materials:

S / rffiffiffi
A

p : (4.24)

In considering the presumably small amount of some impurity in a bomb core,

the density to be used here for the impurity will not be its “normal” density, but

rather that given by its small mass distributed throughout the volume of the core.

Now consider a bomb core of heavy fissile material of atomic weight AH and

density rH along with an admixture of some light-element impurity of atomic

weight AL and density rL (as defined above). We presume that the amount of

impurity is so slight that rH will be essentially the “normal” value for that material.

Also let the nuclear number densities of the two materials be nH and nL, respec-
tively; the goal here is to get an expression for the tolerable limit on nL/nH. If V is

the volume of the core, the mass of the impurity will be nLALV/NA, and its mass

density will be nLAL/NA. This will give a stopping power SL according as

SL / rffiffiffi
A

p / nLAL

NA

ffiffiffiffiffiffi
AL

p / nL
ffiffiffiffiffiffi
AL

p
NA

; (4.25)

and similarly for the heavy fissile material.

Let Rn be the rate of neutron production (neutron/s) caused by the impurity. If the

fissile material has no neutron yield for a bombardment (Coulomb barrier too

great), we can express Rn as

Rn ¼ Ra y
fraction of total stopping

power due to impurity

 !

¼ Ra y
nL

ffiffiffiffiffiffi
AL

p

nL
ffiffiffiffiffiffi
AL

p þ nH
ffiffiffiffiffiffi
AH

p
� �

; (4.26)

where Ra is the rate of a-decay as in (4.20). Unless one has very poor chemical

separation techniques we would expect nL � nH, so we can simplify this to
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Rn ¼ Ra y
nL
nH

� � ffiffiffiffiffiffi
AL

AH

r� �
: (4.27)

Since we presumably know a tolerable maximum neutron rate Rn, it is more

convenient to write this as a constraint on the ratio of number densities:

nL
nH

� �
<
1

y

Rn

Ra

� � ffiffiffiffiffiffi
AH

AL

r
: (4.28)

Assuming beryllium as the contaminant in a 10-kg Pu core, adopting the West

and Sherwood yield, and taking Rn ¼ 10�4 s�1 (¼1 per 100 ms) gives

nL
nH

� �
<

1

6:47� 10�5
� � 104

2:3� 1013

� � ffiffiffiffiffiffiffiffi
239

9

r
� 3:5� 10�5: (4.29)

This means that no more than about 1 atom in 29,000 can be one of beryllium.

In the case of a 235U core the situation is much more favorable; one can tolerate a

very high degree of impurity if necessary. The a-decay half life for 235U is about

7.0 � 108 years, or ~2.2 � 1016 s. This gives Ra ~ 8.0 � 107 kg�1 s�1, or about

4.0 � 109 s�1 for a 50-kg core. For a yield of 5 � 10�5, (4.28) gives nL/nH < 0.26.

Incidentally, 238U has an a-decay rate equal to about 0.16 of that of 235U while that

of 240Pu is about 3.7 times that of 239Pu, further reasons to minimize their presence

in bomb cores. Of course, the spontaneous fission and a-decay effects are additive.

An interesting application of the yield concept is to the question of initiating a

nuclear explosion. This was accomplished by using a device placed within the core

known as an initiator. According to Sublette (2007), this was an approximately

golfball-sized sphere that contained polonium and beryllium, which were initially

separated by a metal foil. Upon implosion or by being crushed by an incoming

projectile piece of fissile material, the Po and Be mix; alphas from the Po then strike

Be nuclei, liberating neutrons to initiate the detonation. Sublette records that the

Manhattan Project initiators used 50 Ci of polonium. This is equivalent to a mass of

about 11 mg, and a rate of a emission of 1.85 � 1012 s�1. If we suppose a yield of

10�4, this corresponds to some 185 neutrons during the critical ~1 ms of assembly

time. Re-running the time-dependent simulation of a Little Boy 64-kg 235U core

plus 310-kg tamper described in Sect. 2.3 with the initial number of neutrons equal

to 200 gives a yield of 13.8 kt, a quite reasonable result.
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Chapter 5

Miscellaneous Calculations

Abstract This chapter explores a few interesting miscellaneous issues: Would the

core of a nuclear weapon actually feel warm to the touch? How bright did the 1945

Trinity test appear to the naked eye? Could it have been seen from the Moon? How

can one estimate the production in a reactor of trace elements that are of such

concern in predetonation issues?

In this final chapter we take up some miscellaneous but interesting issues associated

with fission weapons. One often reads that a bomb core is warm to the touch, and in

Sect. 5.1 we investigate this claim. Section 5.2 quantifies just how bright a nuclear

explosion appears to the naked eye. Finally, Sect. 5.3 develops a numerical simula-

tion for estimating the production of trace isotopes such as 240Pu in a reactor.

5.1 How Warm is It?

Would a lump of plutonium feel warm to the touch? 239Pu is an alpha emitter with a

half-life of 24,110 years. As seen in the preceding section, this corresponds to some

2.3 � 1012 alpha-decays per second per kilogram of material. With alphas of

energy 5.2 MeV, the power generated by alpha-decay in a 1-kg mass of 239Pu

amounts to P ~ 1.912 W!

We can make a crude estimate of how much hotter the surface of such a mass

would be than the surrounding air by assuming that this power is radiated away in

accordance with the Stefan–Boltzmann law. If the material is considered to act like

a blackbody, then the power radiated is given by

P ¼ A s T4
sphere � T4

ambient

� �
; (5.1)

where A is the surface area of the mass and s is the Stefan–Boltzmann constant,

5.67 � 10�8 W/(m2K4). For a 6.2-kg Trinity/Fat Man core, these numbers

B.C. Reed, The Physics of the Manhattan Project,
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correspond to a power output of 11.85 W. If spherical, this mass would have a

radius of 4.56 cm and a surface area of 2.61 � 10�2 m2. For an ambient tempera-

ture of 20�C (293 K), these numbers correspond to an equilibrium temperature

Tsphere ~ 79�C, warm indeed. Some of the heat generated would also be lost by

convection to the outside air and so this result is likely an overestimate, but the

claim of warmth is certainly credible.

5.2 Brightness of the Trinity Explosion

Much of the analysis presented in this section is adopted from a publication

elsewhere by the author (Reed 2006).

Nuclear weapons release fantastic amounts of energy, only a small fraction of

which is initially in the form of visible light. However, they rapidly ionize and heat

the surrounding air to incandescence, creating extremely bright fireballs. Rhodes

(1986, p. 672) remarks of the July 16, 1945, Trinity test that “Had astronomers been

watching they could have seen it reflected from the moon, literal moonshine,” an

allusion to Ernest Rutherford’s famous dismissal of the prospect of atomic energy.

Investigating this impressive claim makes for an informative exercise in the physics

of astronomical magnitudes and prompts other intriguing questions: Just how bright

would the explosion have appeared to an observer on the Moon? What about an

observer on Mars or otherwise located in the solar system? What fraction of the

bomb’s yield was in the form of visible light?

These questions can be addressed with the help of information published in a

report on the Trinity test prepared by the test’s director, Kenneth Bainbridge. His

report, titled Trinity, was prepared soon after the test as Los Alamos report

LA-1012. In 1976, a public version of this report was released as Los Alamos

report LA-6300-H. This report is available from the History link of the Los Alamos

National Laboratory website at http://www.lanl.gov/history/atomicbomb/trinity.

shtml. On page 52 of this report appears a graph of the illumination created by

the Trinity test in “Suns” equivalent as a function of time at a detector located

10,000 yd from the explosion. This is reproduced in Fig. 5.1. At t ¼ 10�4 s the

illumination is approximately 80 Suns; it drops to about 0.1 Suns at t ~ 0.04 s, rises

back to about 2 Suns at t ¼ 0.4 s and then declines to about 0.4 Suns as t ~ 10 s.

In working the following analysis, it must be remembered that many Trinity
diagnostic experiments were overwhelmed by the explosion and so yielded only

approximate results; the following calculations should be regarded as “back-of-the-

envelope” estimates at best. I interpret “Suns” of illumination to mean multiples of

the solar constant, that is, the flux of solar energy at the Earth, about 1,400 W/m2.

To determine the brightness of the Trinity explosion as it would have been

seen from various vantage points, it is most convenient to work with its equivalent

astronomical magnitude. For readers not familiar with the magnitude scale,

details can be found in any good college-level astronomy textbook; the relevant

relationships are briefly summarized here without extensive derivation.
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For various historical, physical, and physiological reasons, the scale of astro-

nomical magnitudes is defined in terms of the common logarithm of the measured

brightnesses of stars. The apparent magnitude m of a star is defined in terms of its

measured brightness b (its energy flux in W/m2) such that the difference between

the apparent magnitudes of two stars A and B is given by

mA � mB ¼ 2:5 log bB bA=ð Þ: (5.2)

In practice, this relationship is applied to a given star by measuring its brightness

in comparison to that of a “standard” star of arbitrarily-assigned apparent magni-

tude; historically, the star Vega was taken to define m ¼ 0.

The absolute magnitude M of a star is defined in analogy to (5.2) but with the

measured brightnesses replaced by the true energy outputs (in Watts) of the stars.

In astronomical parlance, energy outputs are known as luminosities and are tradi-

tionally designated by the symbol L:

MA �MB ¼ 2:5 log LB LA=ð Þ: (5.3)

The apparent and absolute magnitudes of a star are related via its distance; the

inverse-square law of light leads to the relationship

m�M ¼ 5 log dpc
� �� 5; (5.4)

where dpc designates the distance of the star in parsecs (pc). The apparent and

absolute magnitudes for a star at a distance of 10 pc will by definition be equal.

One parsec is defined as the distance a star must be from the Sun in order that it has

a parallax of one second of arc when viewed from a baseline equal in length to the

Earth’s orbital radius of one Astronomical Unit (AU); 1 pc ¼ 206,265 AU ¼ 3.086

� 1016 m. One parsec is equivalent to about 3.26 light-years. The star nearest the

Sun, Proxima Centauri, is about 4.2 light-years distant.
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Fig. 5.1 Brightness of the

Trinity explosion as a

function of time. Scales are

logarithmic. The quality of

the curve is somewhat erratic

as this graph was produced by

scanning a copy of Fig. 7 of

Los Alamos report LA-6300;

the original version contains

numerous grid lines which

have not been reproduced to

avoid cluttering the diagram
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Equations (5.2)–(5.4) reflect the historical definition of astronomical magnitude

as originally developed by Hipparchus in about the second century BC, who defined

the brightest stars visible to the naked eye to have m ¼ þ1 and the faintest as

having m ¼ þ6. Numerically lower magnitudes are associated with brighter
objects. Sirius has m ~ �1.4, whereas Venus, at its brightest, appears at

m ~ �4.5. The full moon has m ~ �12.7 and the Sun m ~ �27.

We now apply these concepts to the Trinity (TR) explosion by comparing it to

the Sun (S). From (5.3), the absolute magnitudes of these two sources of illumina-

tion are related to their luminosities according as

MTR ¼ MS þ 2:5 log LS LTR=ð Þ: (5.5)

Now, let N represent the equivalent number of Suns of Trinity illumination

incident at some moment on a detector at a distance of 10,000 yd from the explosion

(as Fig. 5.1). Define the solar constant to be C. For a spherically symmetric

explosion, Trinity’s total power (in Watts) will be LTR ¼ 4pr2CN where r desig-
nates 10,000 yd. Hence

MTR ¼ MS þ 2:5 log LS 4pr2CN
�� �

: (5.6)

The measured absolute magnitude and luminosity of the Sun are þ4.82 and

3.83 � 1026 W, respectively. (Strictly, these numbers apply for light emitted in

the visible part of the electromagnetic spectrum). Putting C ¼ 1,400 W/m2 and

r ¼ 10,000 yd ¼ 9,144 m, (5.6) gives

MTR ¼ 40:86� 2:5 logðNÞ: (5.7)

By combining (5.4) and (5.7), we can derive an expression for the apparent

magnitude of Trinity as viewed from distance dpc parsecs:

mTR ¼ 35:86þ 5 log dpc
� �� 2:5 logðNÞ: (5.8)

For practical purposes, solar-system distances are more conveniently measured

in AUs: dpc ¼ dAU/206,265. With this conversion, (5.8) becomes

mTR ¼ 9:29þ 5 log dpc
� �� 2:5 logðNÞ: (5.9)

We are now ready to compute Trinity apparent magnitudes. Consider first an

observer located on the Moon, with d ¼ 384,400 km ¼ 2.57 � 10�3 AU. With

N ¼ 80, we find mTR ¼ �8.4. Neglecting any effects due to atmospheric absorp-

tion and cloud cover, Trinity would momentarily have appeared over 30 times
brighter than Venus to an observer located on the Moon; apply (5.2) in the sense

of comparing the brightnesses of the two. Not until the fireball cooled to N ~ 2.2
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a few tenths of a second after the explosion would it have diminished to the

brightness of Venus for our lunar observer, and, even after 10 s (N ~ 0.4,

m ~ �2.7) would still have outshone Jupiter (m ~ �2). In actuality on the day of

the Trinity test, the moon was at first-quarter phase and set about 1 AM New Mexico

time, some four and one-half hours before the test.

Figure 5.2 shows curves of Trinity apparent magnitude as a function of distance

in AUs for various values of N. At the time of the test, Mercury, Venus, and Mars

were respectively 0.97, 0.88, and 1.65 AUs from the Earth. When N ¼ 80, Trinity
would have appeared brighter than m ¼ þ6 for observers residing on all three

of these planets, although only Venus and Mars were actually above the horizon at

the time.

Could astronomers actually have detected the light of Trinity as reflected from

the Moon? The Moon is seen by reflected sunlight, so the key issue is how the flux

of Trinity light on the Moon would have compared with that from the Sun. In his

LA-6300 report, Bainbridge remarks that the total radiant energy density received

at 10,000 yd was 12,000 J/m2. If we presume that all of this light was emitted over

1 ms, such an energy density corresponds to a flux of 6.8 W/m2 at the distance of the

Moon. The solar flux at the Moon will be essentially the same as that at the Earth,

about 1,400 W/m2, some 200 times greater. The idea of reflected Trinity light being
visible from Earth is thus probably literary license.

Finally, we can estimate what fraction of Trinity’s yield was in the form of

visible light. Various estimates of the yield can be found in the literature; we use

15 kt TNT equivalent. Explosion of one ton of TNT liberates 4.2 � 109 J of energy;

15 kt would be equivalent to 6.3 � 1013 J. An energy density of 12,000 J/m2 at

10,000 yd corresponds to a total energy of 1.26 � 1013 J if the energy of the

explosion radiated uniformly in all directions, or approximately 20% of the total.

In other words, some four-fifths of Trinity’s energy release was in forms invisible to
the human eye.
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5.3 Model for Trace Isotope Production in a Reactor

In Sect. 3.3 we examined the production of Pu-239 in a reactor via calculations that

involved only the isotopes U-235, U-238, and Pu-239; no account was taken of

other isotopes that are produced along with the Pu-239. In Sect. 4.2, however, we

saw that even a small amount of Pu-240 can lead to significant predetonation issues

because of its high spontaneous fission rate. It was remarked in that section that

formation of Pu-240 in a reactor is inevitable on account of neutron absorption by

already-synthesized atoms of Pu-239. The purpose of this section is to develop a

numerical simulation to approximately quantify the production rate of Pu-240.

The idea here is to simulate the time-evolution of the abundances of a few

key isotopes in a reactor of given thermal power output and fuel load. Reactor

engineering is an extremely complex discipline, so a number of simplifying

assumptions have to be made for purposes of a pedagogical model. The simulation,

Reactor.xls1, can be found at the companion website.

In developing any reactor simulation the first issue to decide is that of what

isotopes are to be tracked. Figure 5.3 shows the isotopes tracked and reactions

considered in the present case. U-236 can be formed from neutron capture by

U-235. U-236 has a small thermal neutron-capture cross-section of its own, but as

this is only about 5 bn it is neglected; U-236 is assumed to simply accumulate as an

end product. For simplicity, I assume that the creation of Pu-239 via neutron

absorption by U-238 is an instantaneous process; no account is taken of the

23-min and 2.9-day beta-decay half lives of the intervening U-239 and Np-239

nuclei. This is a quite reasonable assumption since the model will typically be run

for tens or hundreds of simulated days. The neutron capture cross sections for

Pu-239, Pu-240, and Pu-241 are all fairly large, so these species are tracked; Pu-242

is assumed to accumulate like U-236. U-235, Pu-239, and Pu-241 all have appre-

ciable fission cross-sections, so those processes must be tracked as well; of course,

the vast majority of the energy generated comes from fission of U-235.

The simulation is predicated on a constant number of atoms within the reactor’s

fuel load, so I assume that when a nucleus fissions it gives rise to a single atom of

“fission product.” The simulation is actually programmed to track two fission

products should the user desire. Since fission products can absorb neutrons, provi-

sion is made for assigning a neutron-capture cross section for the production of

fission product “2” from fission product “1”. The results discussed below assumed

a zero-cross section for this process, but this can easily be changed by the user.

In reality, most fission products have half-lives of but a few hours and so decay

quickly.

I also assume that no fresh fuel is loaded into the reactor during the span of the

simulation. (Many reactors can be refueled when on-line; the Hanford reactors had

this capability.) Some smaller cross-sections, such as that for fission of U-238, are

neglected, and no alpha or beta-decays are presumed to occur.

1All Excel sheets are available at http://www.manhattanphysics.com

120 5 Miscellaneous Calculations

http://www.manhattanphysics.com


To formulate the simulation, we can begin with a result that was established in

Sect. 3.3. From (3.18), if P is the thermal power generated by the reactor in

megawatts and Ef is the average energy per fission in MeV, then the number of

fissions per day is given by

fissions=day ¼ R ¼ 86400ð Þ 106
� �

P

1:6022 � 10�13Ef

" #
: (5.10)

The unit of time in the simulation is take to be 1 day, but the user can set the

timestep Dt as desired. Over such a timestep, we will have

fissions per Dt days ¼ RDt: (5.11)

As in Sect. 3.3, let n be the number of neutrons released per fission. The number

of neutrons released over time Dt will then be

neutrons released per Dt days ¼ nRDt: (5.12)
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U-238
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fission
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neutron
capture

neutron
capture
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# 2
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neutron
capture

neutron
capture

neutron
capture

Fig. 5.3 Flowchart for species tracked in reactor simulation. The relevant cross-sections appear in

Table 5.1
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Fundamentally, the simulation operates by tracking the fractional abundances of

isotopes as a function of time. For a given isotope i, let FiðtÞ be the fractional

abundance of that isotope in the fuel at time t. (F is used here for fractional

abundance as opposed to the f of Sect. 4.1, as that symbol is used here to represent

fission.) If N is the total number of atoms of fuel loaded into the reactor, then the

number of atoms of isotope i at time t will be NiðtÞ ¼ N FiðtÞ.
Now consider some process p that a nucleus can suffer under neutron bombard-

ment; this will be either fission ( f) or absorption (a) of the neutron. No other

processes are allowed to occur, and all free neutrons are assumed to either cause

a fission or be absorbed during a given timestep. The total cross-section available

for all processes over all isotopes at any time is given by the abundance-weighted

sums of all individual-process cross-sections in play:

stotalðtÞ ¼
X
i;p

sip N
iðtÞ

¼ N F235 s235f þ s235a

� �
þ F238 s238a

� �þ F239 s239f þ s239a

� �n
þF240 s240a

� �þ F241 s241f þ s241a

� �o
:

(5.13)

The total fission cross-section at any time will be

sfissðtÞ ¼ N F235 s235f

� �
þ F239 s239f

� �
þ F241 s241f

� �n o
: (5.14)

The probability of a neutron causing a subsequent fission will be sfiss=stotal; the
total number of atoms N will cancel when taking this ratio. The number of fissions

that occur over Dt will then be the number of neutrons available over that interval

times the probability of their causing fissions:

fissions occurring over Dt days ¼ nRDt
sfiss
stotal

� �
: (5.15)

Now, if the power output of the reactor is to remain steady, this number of

fissions must just equal RDt of (5.11), which sets a constraint on n:

n ¼ stotal
sfiss

� �
: (5.16)

Since the cross-sections will vary in time due to the varying abundance fractions,

n will also vary; it has to be computed afresh at each timestep. A steadily-increasing

n value is the price we pay for demanding a constant power output from a fuel load

whose abundance of U-235 steadily decreases.

The next step is to find out how many atoms of isotope i undergo a given process
during elapsed time Dt. If all neutrons are involved in some event over time Dt, then
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the number of events that are of process type p with isotope i is given by the total

number of events involved times the ratio of the total cross-section for that process

with isotope i to the total available cross-section:

Events i; pð Þ ¼ nRDtð Þs
i
p N FiðtÞ
stotal

: (5.17)

We can now develop an expression for the change in the number of atoms of

isotope i over time Dt; accumulation of fission products is dealt with separately as a

special case below. Atoms of a given isotope can be created by neutron capture by a

nucleus of lower weight if applicable, while simultaneously being lost due to fission

and capturing neutrons themselves to produce isotopes of greater weight. The net

change in the number of atoms of the isotope concerned will be the ratio of the

aggregate cross-section for these effects to the total cross-section times the number

of events nRDt that must be accounted for, that is,

Ni tþ Dtð Þ ¼ NiðtÞ þ nRDt
stotal

� �
N Flowerslowera � Fisif � Fisia
h i

: (5.18)

The simulation actually tracks fractional abundances, that is, (5.18) divided by

N. The factor of N in (5.18) thus disappears, but one factor of N still remains in stotal
as per (5.13). Because of this, we need to know the number of atoms in the fuel

supply; I make the assumption that the fuel is all composed of U-238 initially.

Given that the fuel in most reactors is enriched to only a few percent U-235, this

will not be a drastic approximation.

What of the fission products? “Product 1” accumulates from fissions of the three

fissile isotopes in the simulation, U-235, Pu-239 and Pu-241, but is lost according as

its own abundance and capture cross-section for neutrons:

N1 tþ Dtð Þ ¼ N1ðtÞ þ nRDt
stotal

� �
N F235s235f þ F239s239f þ F241s241f � F1s1a
h i

:

(5.19)

Similarly, product 2 accumulates from neutron capture by product 1; there is no

loss mechanism for product 2:

N2 tþ Dtð Þ ¼ N2ðtÞ þ nRDt
stotal

� �
N F1s1a
	 


: (5.20)

To run the simulation, the user sets the cross-sections and initial abundance

fractions at t ¼ 0. Since the only isotopes present initially are presumed to be

U-235 and U-238, the operator need only specify the initial fractional abundance of

235. The user also sets the power output P, the timestep Dt, and the total mass of

fuel in kg. Initial values for the total and fission cross-sections and n are computed
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from (5.13), (5.14), and (5.16). New fractional abundances for each isotope and

the fission products at time t þ Dt are computed according as (5.18)–(5.20). The

cross-sections and n are updated and the process iterated. Rows of the spreadsheet

correspond to timesteps (250 altogether) and columns hold the abundances for the

various isotopes. For practical purposes, it makes sense to run the simulation only to

a time such that n remains less than the maximum value it could attain in reality,

n ~ 2.5.

The simulation also tracks what is known to reactor engineers as the “burnup” or

“fuel exposure” in megawatt-days per metric ton (MWd/MT). This is the cumula-

tive amount of thermal energy produced by the reactor per metric ton of fuel.

One metric ton is 1,000 kg, and a megawatt-day means literally one megawatt times

1 day: (1.0 � 106 J/s) (86,400 s) ¼ 8.64 � 1010 J. A burnup of 33,000 MWd/MT is

characteristic of the spent fuel from commercial reactors (Mark 1993); this can also

be quoted as 33 gigawatt-days per metric ton, or GWd/MT.

Relevant cross-sections are collected in Table 5.1.

We now apply this model to the Hanford reactors of the Manhattan Project.

According to a Department of Energy publication (DOE 2001), these reactors

consisted of 2004 “process tubes”, each of which during normal operation

contained 32 cylindrical slugs of natural uranium fuel (235F ¼ 0.0072, initially)

measuring 1.44 in. in outside diameter by 8.7 in. long. At a density of 18.95 g/cm3

this would correspond to just under 4.4 kg per slug, or a total fuel load of about

282,000 kg. I round this down to 275 MT for computational purposes as the slugs

were jacketed in a layer of aluminum. The reactors operated at a thermal power

output of 250 MW, and a given slug was irradiated for typically 100 days before

being removed and processed.

Assuming 180 MeV per fission, the simulation shows that after 100 days a total

of 18.57 kg of plutonium will have been produced, of which 99.66% is Pu-239 and

0.34% is Pu-240. This overall plutonium production rate agrees closely with that

estimated in Sect. 3.3, 190 g/day. The burnup to 100 days is about 91 MWd/MT.

The initial value of n is 1.801, and at 100 days is 1.807. The figure used for the

Pu-240 abundance in the Trinity and Fat Man devices in Sect. 4.2 was 1.2%, but it

must be remembered that the simulation developed here does not account for all

processes going on within the reactor. If the Fat Man predetonation probability

calculation of Sect. 4.2 is repeated for a 6.2 kg core containing 0.34% Pu-240

(0.0211 kg), the probability that the bomb will function correctly for a 100 ms

Table 5.1 Cross-sections for

reactor simulation
Isotope Fission Absorption
235U 585 99
236U 0 0
238U 0 2.68
239Pu 750 271
240Pu 0 290
241Pu 1,010 361
242Pu 0 0

Product 1 0 0
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assembly time is only 44%; implosion would still required to achieve a sensibly

high probability of avoiding predetonation. According to Mark (1993), the pluto-

nium created in a modern commercial reactor that has generated a burnup of 33

GWd/MT will be 21% Pu-240.
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Chapter 6

Appendices

6.1 Appendix A: Selected D-Values and Fission Barriers

D-values for nuclides involved in every reaction in this book are listed below. These
are adopted from Jagdish K. Tuli, Nuclear Wallet Cards (Brookhaven National

Laboratory, April 2005.) The full publication is available at http://www.nndc.bnl.

gov. Fission barriers quoted for selected heavy nuclides are taken from an online

IAEA publication, http://www-nds.iaea.org/RIPL-2/fission/fis-barrier-exp.readme;

the barrier values cited here are the larger of the “inner” and “outer” barriers listed

in that document.

Nuclide D (MeV) Nuclide D (MeV) EBarrier (MeV)
1
0n 8.071 92

36Kr �68.79
1
1H 7.289 95

38Sr �75.117
2
1H 13.136 94

40Zr �87.267
3
1H 14.950 116

46 Pd �79.96
4
2He 2.425 118

46 Pd �75.5
6
3Li 14.087 139

54 Xe �75.64
7
3Li 14.908 141

56 Ba �79.726
9
4Be 11.348 150

66 Dy �69.317
10
5 B 12.051 206

82 Pb �23.785
12
6 C 0.000 208

82 Pb �21.749
13
6 C 3.125 210

84 Po �15.953
14
7 N 2.863 220

86 Rn 10.613
16
8 O �4.737 222

86 Rn 16.374
17
8 O �0.809 224

88 Ra 18.827
17
9 F 1.952 226

88 Ra 23.669
19
9 F �1.487 231

91 Pa 33.426
20
9 F �0.017 232

91 Pa 35.948 6.40
20
10Ne �7.042 233

92 U 36.920 5.55
22
10Ne �8.025 235

92 U 40.921 6.00
26
10Ne 0.43 236

92 U 42.446 5.67
25
12Mg �13.193 238

92 U 47.309 6.30

(continued)
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Nuclide D (MeV) Nuclide D (MeV) EBarrier (MeV)
27
12Mg �14.587 239

92 U 50.574 6.45
27
13Al �17.197 237

93 Np 44.873 6.00
30
15P �20.201 239

93 Np 49.312
31
15P �24.441 239

94 Pu 48.590 6.20
35
16S �28.846 240

94 Pu 50.127 6.05
56
26Fe �60.605 241

95 Am 52.936 6.00
252
99 Es 77.29

6.2 Appendix B: Densities, Cross-Sections and Secondary
Neutron Numbers

6.2.1 Thermal Neutrons (0.0253 eV)

Quantity Unit U-235 U-238 Pu-239

Density g/cm3 18.71 18.95 15.6

Atomic wt. g/mol 235.04 238.05 239.05

scapture bn 98.81 2.717 270.3

sfission bn 584.4 0 747.4

selastic scatter bn 15.04 9.360 7.968

n – 2.421 2.448 2.872

6.2.2 Fast Neutrons (2 MeV)

Quantity Unit U-235 U-238 Pu-239

Density g/cm3 18.71 18.95 15.6

scapture bn 0.089 0.066 0.053

sfission bn 1.235 0.308 1.800

selastic scatter bn 4.566 4.804 4.394

n – 2.637 2.655 3.172

The density for 235U is (235/238) that of natural uranium, 18.95 g/cm3. Plutonium

exhibits several different crystalline phases depending on temperature (Bernstein

2007, 2008); the so-called “delta” phase is the one used for weapons. The density

figure for Pu is that for the delta-phase as quoted on page 144 of Bernstein (2008).

The n value for U-238 for fission-energy neutrons is for neutrons of energy 2.9MeV.

Cross-sections are adopted from the Korean Atomic Energy Research Institute

(KAERI) Table of Nuclides, http://atom.kaeri.re.kr/ton/index.htm. Cross-sections

that are exceedingly small are recorded here as zero. For fast neutrons, cross-

sections represent averaged values over the fission-energy spectrum. Secondary

neutron numbers are adopted from ENDF files.
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6.3 Appendix C: Energy and Momentum Conservation
in a Two-Body Collision

In many instances we have cause to examine reactions where an “incoming”

nucleus strikes a second nucleus that is initially at rest, with two product nuclei

emerging from the reaction. An example of this is the reaction used by Rutherford

to first induce an artificial transmutation,

4
2He þ 14

7 N ! 1
1H þ 17

8O:

We are usually interested in the final kinetic energy and/or momentum of one of

the product nuclei. (Often, the other product may remain stuck in the bombarded

sample and so not easily studied.) In this section we develop formulae for these

quantities, assuming that we have a head-on collision.

Figure 6.1 illustrates the situation. Let the rest masses of the nuclei be mA, mB,

mC, and mD. Nucleus A is presumed to bring kinetic energy KA into the reaction; the

struck nucleus, B, is assumed to be at rest when struck. Products C and D emerge

from the reaction with kinetic energies KC and KD. If no transmutation is involved

we can set C ¼ A and D ¼ B. We assume that it is desired to know the final kinetic

energies and momenta of nuclei C and D.
Begin with energy conservation. From the definition of Q in Sect. 1.1 we can

write energy conservation for our reaction as

KA ¼ KC þ KD � Q; (6.1)

where

Q ¼ EA þ EB � EC � ED; (6.2)

and where the E’s are the mc2 rest energies of the various nuclei.

mA mB

KA

mC mD

KC KD

Fig. 6.1 Head-on collision of two nuclei producing two other nuclei
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As for momentum conservation, any reaction we will have cause to examine will

be such that none of the momenta are relativistic. This allows us to deal with

momentum from a purely classical perspective, which greatly simplifies the alge-

bra. In Newtonian mechanics the momentum p of a mass m which is moving with

kinetic energy K is given by p ¼ ffiffiffiffiffiffiffiffiffiffi
2mK

p ¼ ffiffiffiffiffiffiffiffiffi
2EK

p
c= , so we have, upon canceling

factors of 2 and c, ffiffiffiffiffiffiffiffiffiffiffi
EAKA

p ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffi
ECKC

p
þ ffiffiffiffiffiffiffiffiffiffiffiffi

EDKD

p
: (6.3)

A� sign has been put in front of the momentum for nucleus C as a reminder that

it may be moving forward or backward after the collision; the direction of C will

emerge automatically from the numbers. We assume that nucleus D is moving

forward after the reaction.

The goal here is to solve (6.1) and (6.3) for KD in terms of the known quantities

KA, EA, EB, EC, ED and Q. We need to eliminate KC. To do this, first isolate the

� ffiffiffiffiffiffiffiffiffiffiffiffi
ECKC

p
term from (6.3) and then square the result, which will cause the � sign

to disappear. Then solve (6.1) for KC and substitute into the result of manipulating

(6.3). The result is a quadratic in
ffiffiffiffiffiffi
KD

p
:

aKD þ b
ffiffiffiffiffiffi
KD

p þ g ¼ 0; (6.4)

where

a ¼ EC þ EDð Þ; (6.5)

b ¼ �2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EAED KA

p
; (6.6)

and

g ¼ EAKA � ECKA � EC Qð Þ: (6.7)

Solving the quadratic gives

ffiffiffiffiffiffi
KD

p ¼ �b�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ag

p
2a

: (6.8)

There are two possible solutions for KD (provided that b2 � 4ag>0; see below),

either or both of which may be valid. Their validities can be checked after the fact

by computing KC in two separate ways and checking for consistency: (i) from (6.1),

and (ii) from conservation of momentum by first computing pD ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mDKD

p ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2EDKD

p
c= , demanding pC ¼ pA � pD, and then evaluating KC ¼ p2C 2EC=

� �
c2.

(Recall that we are assuming that D is always moving forward after the reaction.)

It can be seen from (6.8) that a real solution for KD will obtain only when

b2 � 4ag> 0. From (6.5)–(6.7), this demand reduces to

0 > KA EA � EC � EDð Þ � Q EC þ EDð Þ: (6.9)
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Now, EA � EC � EDð Þ is likely to be less than zero, so let us write (6.9) as

0 >� KA EA � EC � EDj j � Q EC þ EDð Þ: (6.10)

Consider (6.10) in two separate cases: (i)Q > 0 and (ii)Q < 0. If Q > 0 we can

write Q ¼ þ Qj j, and (6.10) reduces to

Qj j EC þ EDð Þ>� KA EA � EC � EDj j; (6.11)

which is always true. This means that in cases whereQ > 0 there is no constraint on

KA. On the other hand, if Q < 0, write Q ¼ � Qj j, in which case we have

0 >� KA EA � EC � EDj j þ Qj j EC þ EDð Þ; (6.12)

which demands

KA>
Qj j EC þ EDð Þ
EA � EC � EDj j : Q < 0ð Þ (6.13)

This expression means that there is a threshold energy for KA in cases where

Q < 0.

We now apply this analysis to the Rutherford transmutation reaction. Identify A,
B, C, and D as He, N, O, and H, respectively. The relevant numbers appear in

Table 6.1. This reaction has a Q-value of �1.192 MeV. A conversion factor of

e ¼ 931.494 MeV/amu was used to compute rest masses in MeV/c2 via the

relationship rest mass ¼ eA þ D.
Suppose that the alpha particle enters the reaction with KA ¼ 5 MeV. Then we

find

a ¼ EC þ EDð Þ ¼ 16773:37 MeVð Þ;

b ¼ �2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EAEDKA

p ¼ �8366:79 MeVð Þ3=2;

and

g ¼ EAKA � ECKA � ECQð Þ ¼ �41656:11 MeVð Þ2:

The two solutions for KD give 3.404 and 1.812 MeV, but only the first of these

proves to be valid. The corresponding momentum of the proton is

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2EDKD

p
c

¼ 1

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 938:783 MeVð Þ 3:404MeVð Þ

p
¼ 79:94

MeV

c
:

Table 6.1 Rutherford alpha-

bombardment reaction

parameters

Reactant Nuclide A D Rest mass (MeV/c2)

A 4
2He 4 2.425 3728.401

B 14
7 N 14 2.863 13043.779

C 17
8 O 17 �0.809 15834.589

D 1
1H 1 7.289 938.783
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The oxygen nucleus emerges from the reaction with kinetic energy KC ¼ 0.404

MeV and momentum 113.15 MeV/c.

Equation (6.13) gives a threshold energy of KA > 1.533 MeV. This is larger than

the 1.192 MeV one might expect on the basis of the Q-value alone. This is because
both momentum and energy must be conserved; were nucleus A to strike nucleus B
with only 1.192 MeV of kinetic energy, nuclei C and D would emerge form the

reaction with no kinetic energy and hence no momentum, a situation inconsistent

with A bringing momentum into the reaction in the first place.

These calculations are carried out in the spreadsheet TwoBody.xls.1

6.4 Appendix D: Energy and Momentum Conservation
in a Two-Body Collision that Produces a Gamma-Ray

In Sect. 1.4, the Joliot–Curies’ proposed gamma-producing reaction

4
2He þ 9

4Be ! 13
6C þ g (6.14)

arose. The alpha-particle carries ~5.3 MeV of kinetic energy into the reaction and

bombards the initially stationary Be nucleus. The quantities of interest in this

reaction are the energy and momentum of the emergent gamma-ray. In this section

we develop formulae for these quantities, assuming that the collision is head on and

that the Be nucleus is initially stationary.

Figure 6.2 illustrates the situation. Let the rest masses of the three nuclei be mA,

mB, and mC. Nucleus A is presumed to bring kinetic energy KA into the reaction.

Product C emerges from the reaction with kinetic energy KC and the gamma-ray

with energy Eg. (We do not refer to Eg as a kinetic energy as that term is usually

reserved for the motional energy of a particle of non-zero rest mass.)

Begin with energy conservation, accounting for the kinetic energies of the

reactants as well as their relativistic rest energies:

KA þ mA þ mBð Þ c2 ¼ KC þ mCc
2 þ Eg: (6.15)

mA -ray

KA
E

mB mC

KC

Fig. 6.2 Head-on collision of two massive particles leading to production of a massive particle

and a gamma-ray

1All Excel sheets are available at http://www.manhattanphysics.com
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For momentum conservation we take the Newtonian momentum p ¼ ffiffiffiffiffiffiffiffiffiffi
2mK

p
for

the particles with mass, and, from Einstein, p ¼ E/c for the gamma-ray, giving

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mAKA

p
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mCKC

p
þ Eg c= ; (6.16)

where the upper (lower) sign is to be taken if nuclide C is moving to the right (left)

after being produced; we assume that the gamma-ray is moving forward after the

reaction. The direction of C after the reaction is dictated by energy and momentum

conservation. Let the rest energies mc2 of the particles with mass be designated by

E’s, e.g, EA ¼ mAc
2. If we replace the masses in (6.16) by these rest energies, a

factor of c can be canceled, leaving

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2EAKA

p
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ECKC

p
þ Eg: (6.17)

We desire to eliminate KC between (6.15) and (6.17). Rearrange (6.17) to isolate

the
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ECKC

p
term, square, and then solve for KC. The � sign vanishes and we get

KC ¼ EA

EC

� �
KA �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2EAKA

p
Eg

EC
þ E2

g

2EC
: (6.18)

Now rearrange (6.15) to the form

KC ¼ EA þ EB þ KA � EC � Eg: (6.19)

Substitute (6.19) into (6.18) and rearrange; the result is a quadratic equation

in Eg:

aE2
g þ eEg þ d ¼ 0; (6.20)

where

a ¼ 1

2EC
; (6.21)

e ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2EAKA

p
EC

; (6.22)

and

d ¼ EA

EC

� �
KA � EA þ EB þ KA � ECð Þ: (6.23)

Hence

Eg ¼ �e�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2 � 4ad

p

2a
: (6.24)
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There are two possible solutions for Eg; often, one of these will be unphysical in

that it leads to a negative value for KC from (6.19).

These calculations are done in the spreadsheet TwoBodyGamma.xls.

6.5 Appendix E: Formal Derivation of the Bohr–Wheeler
Spontaneous Fission Limit

6.5.1 E1: Introduction

Material in this section is adopted from a publication elsewhere by the author (Reed

2009).

In Sects. 1.7 and 1.10 we used a simplified model of a fissioning nucleus to get a

sense of how the limit against spontaneous fission (SF), Z2 A= ¼ 2aS aC= � 48 arises

(Bohr and Wheeler 1939). Given the historic significance of this result, a formal

derivation of it is justified, and is presented here.

Curiously, few texts actually present a full derivation of this work. Some offer

partial treatments based on starting from “it-can-be-shown-that” expressions for the

area and self-energy of an ellipsoid of variable eccentricity (see, for example,

Cottingham and Greenwood 2001), a derivation of which from first principles

appears in Bernstein and Pollock (1979). However, the ellipsoidal model does not

really reflect the approach taken by B&W, who used a sum of Legendre polyno-

mials to describe the shape of the surface of a nucleus as it distorts. To be sure, if the

SF limit is a matter of instability against slight distortions then it should be

irrelevant how the distortion is modeled, but it seems unfortunate that pedagogical

tendency has shifted away from the “true” historical approach.

This situation is no doubt due to the fact that some of the mathematics of the

B&W analysis is tricky, even if one is facile with multivariable calculus and

properties of Legendre polynomials. B&W published virtually none of the alge-

braic details of their work, which they referred to as a “straightforward calculation.”

Present and Knipp (1940a, b) pointed out that that there is an internal inconsistency

in B&W and that they changed the definition of some of their surface-distortion

parameters part-way through their derivation. In a paper that now seems all but

forgotten, Plesset (1941) reconstructed the details of the B&W derivation, but his

work is difficult to follow in view of some tangled notation and the fact that he

carried through his algebra to higher orders of perturbation than are necessary to

understand the SF limit.

In reconstructing the B&W derivation, one faces the question of what level of

detail to present. To lay out every step of the algebra would result in a manuscript

that is far too lengthy for sensible publication. Conversely, the danger of brevity is

that subtle but important points can get overlooked. Here I try to tread a middle path

by setting down benchmark steps in the calculations between which most readers

should be able fill in the intervening gaps. A supporting document with all of the
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algebraic details is available online at the companion website for this book. No

treatment is given here of the much more complex question of the fission barrier,
which requires carrying the algebra to higher orders of perturbation.

This derivation is rather lengthy. In Sect. E2, the Legendre-polynomial model of

a distorted nucleus is described, and the calculation of the volume of the nucleus is

carried out. The surface area energy is calculated in Sect. E3. Section E4 deals with

the lengthy and somewhat tricky calculation of the Coulomb self-energy of the

nucleus, which, when combined with the results of the preceding sections, leads to

understanding how the SF limit arises.

6.5.2 E2: Nuclear Surface Profile and Volume

Bohr and Wheeler began by imagining an initially spherical nucleus of radius RO

undergoing a distortion expressible as a sum of Legendre polynomials:

r yð Þ ¼ RO 1þ a0 þ a2P2 cos yð Þ þ :::f g; (6.25)

where P2(cos y) is the second-order Legendre polynomial, P2(cos y) ¼ (3 cos2y
� 1)/2. y is the polar angle in the usual spherical coordinate system. Such a

perturbation, greatly exaggerated, is sketched schematically in Fig. 6.3, where the

nucleus has been perturbed into a dumbbell shape along the polar axis.

z

y

x

r

ds

Fig. 6.3 The surface of a

distorted nucleus is described

by the function r yð Þ of (6.25).
A ribbon of surface of edge

length ds and area

dA ¼ 2p r sin y ds at
colatitude y is shown
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The perturbation coefficients a0 and a2 are presumed to be small; using only two

coefficients is enough to derive the SF limit. Coefficient a2 dictates the non-

spherical shape of the nucleus; a0 is necessary to be able to ensure volume

conservation as the distortion occurs. It is conventional to consider a2 as the

“independent” coefficient, and ultimately express both the area and Coulomb

energies as functions of it alone. The essence of the Bohr–Wheeler calculation is

to compare the total energy of the deformed nucleus (a2 6¼ 0) to that which it had in

its initial spherical condition (a0 ¼ a2 ¼ 0), and then determining what circum-

stance must hold so that any perturbation, no matter how slight, will lead yield a

lower-energy configuration. The lowest-order contributions to these energies both

prove to be of order a22, so it is not necessary to carry through terms to any higher

orders than that. Some texts do not emphasize that the volume of the nucleus is

assumed to be conserved, that is, that nuclei are considered to be incompressible.

Note that there is no “first-order” term a1P1 in (6.25). The reason for this is

sometimes stated as being that such a term (or, indeed, any odd-parity perturbation)

creates only a displacement of the center of mass of the nucleus along the z-axis, but

this is not quite true: such a term would introduce a distortion of the shape of the

nucleus, rendering it somewhat flattened at the “south pole” (y ¼ p). Incorporating
only even-order Legendre polynomials simplifies the situation to having a nucleus

whose centre of mass remains at the coordinate origin and which is symmetric

about the xy plane. Because r yð Þ contains no dependence on the azimuthal angle f,
the nucleus remains axially symmetric about the polar axis. The sign of a2 dictates
the nature of the distortion. If a2 > 0, the nucleus becomes squeezed at the equator

and elongated at the poles, as suggested in Fig. 6.3; a2 < 0 produces the opposite

effect, rendering the nucleus somewhat doughnut-shaped in the equatorial plane.

At this point, one might well ask: “Why Legendre polynomials?” The surface of

the nucleus could presumably be described by any arbitrarily-chosen function of the

spherical coordinates (y, f), subject only to the condition that it contains enough

parameters to be able to ensure volume conservation. The value of Legendre

polynomials, and particularly of the Associated Legendre polynomials and spheri-

cal harmonics built up from them, is that they constitute an orthogonal set of

functions over (y, f) with a particularly simple orthogonality relationship, namely

(6.28) below. Consequently, they form a natural family of functions for describing

perturbations from circularity or sphericity.

The first task is to ensure conservation of volume. The volume of the distorted

nucleus is given by

V ¼
Zp

y¼0

Zr yð Þ

r¼0

Z2p
f¼0

r2 sin y df dr dy: (6.26)

Note carefully here the order of integrations over r and y. Because the upper

limit of r is a function of y, the integral over r must be done first, then that over y.
The integral over f gives 2p directly. Hence we have
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V ¼ 2p
3

Zp
y¼0

r3 yð Þ sin y dy: (6.27)

Be sure to understand the distinction between the integrands in (6.26) and (6.27):

in the former, r is a variable whose limits are 0 and r yð Þ; the r3 yð Þ in (6.37) means a

function of y given by the cube of (6.25).

The B&W calculation involves numerous integrals of the form of (6.27), with

different powers of r yð Þ and sometimes other functions of y in the integrand. It is

convenient to make a change of variable x ¼ cosy, which renders siny dy as – dx,
with limits x ¼ (1, �1). The limits can be flipped, with the result that the negative

sign in – dx can be dropped. In terms of this new variable, the orthonormalization

relation for Legendre polynomials,

Z1
�1

Pi Pj dx ¼ 2 d j
i

iþ jþ 1
; (6.28)

is also extremely valuable.

The evaluation of the volume integral is described briefly here; most other

integrals are left to the reader as exercises. Transforming to x and substituting

(6.25) into (6.27) gives

V ¼ 2 pR3
O

3

� � Z1
�1

1þ a0 þ a2P2½ �3 dx: (6.29)

Treating the square bracket as 1þ a0ð Þ þ a2P2 and cubing gives

V ¼ 2 pR3
O

3

� �
1þ a0ð Þ3

Z1
�1

dxþ 3 1þ a0ð Þ2a2

8<
:

Z1
�1

P2 dx

þ 3 1þ a0ð Þa22
Z1
�1

P2
2dxþ a32

Z1
�1

P3
2dx

9=
;: (6.30)

The first integral gives 2, the second vanishes by (6.28) (why?), the third gives

2/5 by (6.28), and the last is dropped as I retain terms only to order a22. The volume

integral thus evaluates as

V ¼ 4 pR3
O

3

� �
1þ a0ð Þ3 þ 3

5
1þ a0ð Þ a22 þ :::

� �
: (6.31)
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If volume is to be conserved, then the contents of the brace bracket in (6.31) must

equal unity. If a0 and a2 are presumed small, then the a0 a22 and a30 terms can be

dropped; what remains is a quadratic equation in a0whose solution is

a0 � � 1

5
a22: (6.32)

This result will prove valuable in computing the area and Coulomb energies.

6.5.3 E3: The Area Integral

Figure 6.3 shows a “ribbon” of surface area at co-latitude y and angular width dy
that goes all the way around the nucleus. The area of the ribbon will be its arc length

times its circumference, which is r siny. But the deformed nucleus does not have a

spherical profile, so the arc length is not simply r dy. Rather, we have to compute it

by using the general expression for arc-length in spherical coordinates for a

trajectory running along a line of constant “longitude” f:

ds2 ¼ dr2 þ r2dy2: (6.33)

Since r is a function of y, we can write this as

ds2 ¼ dr2 þ r2dy2 ¼ r2dy2 1þ 1

r2
dr

dy

� �2" #
: (6.34)

The area of the ribbon is then

dA ¼ 2p r sin y ds ¼ 2p r2 sin y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

r2
dr

dy

� �2s
dy: (6.35)

If the nucleus is not greatly distorted, then dr/dy will be small. We can then

invoke a binomial expansion,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

r2
dr

dy

� �2s
� 1þ 1

2

1

r2
dr

dy

� �2
� 1

8

1

r4
dr

dy

� �4
þ :::: (6.36)

From (6.25), dr=dyð Þ ¼ a2 RO dP2=dyð Þ, so, to retain terms to order a22, we need
only carry two terms in the expansion in (6.36):

dA ¼ 2p sin y r2 þ 1

2

dr

dy

� �2
þ :::

( )
dy: (6.37)
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To this level of approximation, the surface area of the deformed nucleus

comprises two contributions:

A ¼ 2p
Zp
0

r2 sin y dyþ 1

2

Zp
0

dr

dy

� �2
sin y dyþ :::

8<
:

9=
;: (6.38)

These integrals are fairly straightforward, and reduce to

A � 4 pR2
O 1þ a0ð Þ2 þ 4

5
a22 þ :::

� �
: (6.39)

Substitute into this the result of volume conservation, a0 � �a22=5. Also invoke

the usual nuclear radius approximation RO � aoA
1=3 (ao ~ 1.2 fm), and write

the factor which converts surface area to equivalent energy as O. US can then be

written as

US � aSA
2=3

	 

1þ 2

5
a22 þ :::

� �
; (6.40)

where aS ¼ 4 pO a2o � 18MeV. The areal energy increases upon perturbation of

the nucleus from its initially spherical shape; this is understandable in that a sphere

is the surface of minimum area which encloses a given volume.

6.5.4 E4: The Coulomb Integral and the SF Limit

Figure 6.4 illustrates the geometry of computing the Coulombic self-potential of the

distorted nucleus.

The nucleus is divided into elements of volume dt throughout which the protons
are assumed to be uniformly distributed. By considering pairs of volume elements

labeled as “1” and “2”, the electrostatic self energy is computed from

UC ¼ 1

2

r2

4peo

� � Z
ð1Þ

Z
ð2Þ

dt1 dt2
r12

; (6.41)

where r is the charge density and r12 is the distance between the two volume

elements. Each volume element is three-dimensional, so (6.41) is actually a sextu-
ple integral. As in the computation of the surface area, integrals over rmust be done

before those over y. Care must be taken to keep track of the “1” and “2” integrals

and coordinates.

To treat the factor of r12 in the denominator of (6.41), invoke the identity
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1

r12
¼

X
k¼0

rk2
rkþ1
1

� �
Pk cos y12ð Þ; r2 < r1

X
k¼0

rk1
rkþ1
2

� �
Pk cos y12ð Þ; r2 > r1;

8>>>><
>>>>:

(6.42)

where y12 is the angle between the directions from the origin to volume elements

1 and 2.

It is immaterial whether one integrates over the “1” or “2” coordinates first;

I elect the latter and proceed by writing (6.41) as

UC ¼ r2

8peo

Z
ð1Þ

Z
ð2Þ

dt2
r12

8><
>:

9>=
>; dt1: (6.43)

Call the inner integral U2. To proceed, break it into two regimes, one for r2 ¼ 0

to r1 (for which r2 < r1), and another from r2 ¼ r1 to r2 y2ð Þ (for which r2 > r1),
and use (6.42):

U2 ¼
Z
ð2Þ

dt2
r12

¼
X
k

Zr1
0

rk2
rkþ1
1

� �
Pk dt2 þ

X
k

Zr2 y2ð Þ

r1

rk1
rkþ1
2

� �
Pk dt2: (6.44)

y

x

z

r1

12
r2

r12

Fig. 6.4 Geometry for

computing the Coulomb self-

energy of the distorted

nucleus. The two volume

elements are located at

distances r1 and r2 from the

origin, and are separated by

distance r12. The angle
between them as viewed from

the origin is y12
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Note that Pk still means Pk cos y12ð Þ. As these integrals are over the “2” coordi-
nates, factors of r1 can be extracted from within them but must remain within the

sums. Writing the volume elements explicitly as dt ¼ r2dr dO then gives

U2 ¼
X
k

1

rkþ1
1

Z
y;f

Zr1
0

rkþ2
2 Pkdr2 dO2þ

X
k

rk1

Z
y;f

Zr2 y2ð Þ

r1

r1�k
2 Pkdr2 dO2: (6.45)

The first integral over r2 is trivial and gives rkþ3
1 k þ 3ð Þ= ; the second requires

care in the case of k ¼ 2, where a logarithmic term arises:

U2 ¼ r21
X
k

Z
y;f

Pk

k þ 3ð ÞdO2 þ
X
k 6¼2

rk1
2� kð Þ

Z
y;f

r2�k
2 yð ÞPkdO2

�r21
X
k 6¼2

1

2� kð Þ
Z
y;f

PkdO2 þ r21

Z
y;f

ln
r2 yð Þ
r1

� �
P2 dO2: (6.46)

Now, from the addition theorem for spherical harmonics, the Pk cos y12ð Þ can be
written in terms of products of Associated Legendre polynomials whose arguments

are the cosines of the individual direction angles of the volume elements:

Pk cos y12ð Þ ¼
Xk
m¼�k

k � mð Þ !
k þ mð Þ ! P

m
k cos y1ð ÞPm

k cos y2ð Þ exp im f1 � f2ð Þ½ �: (6.47)

Imagine (6.47) substituted into (6.46). In integrating over f1 and f2, only m ¼ 0

will give non-zero contributions. The Associated Legendre polynomials conse-

quently reduce to regular Legendre polynomials, which I designate as Pk(1) and

Pk(2). Thus, for example, Pk(1) designates the k’th-order Legendre polynomial for

coordinate set “1”. Then we have

U2 ¼ r21
X
k

Pkð1Þ
k þ 3ð Þ

Z
y;f

Pkð2ÞdO2 þ
X
k 6¼2

rk1Pkð1Þ
2� kð Þ

Z
y;f

r2�k
2 yð ÞPkð2ÞdO2

�r21
X
k 6¼2

Pkð1Þ
2� kð Þ

Z
y;f

Pkð2ÞdO2 þ r21P2ð1Þ

Z
y;f

ln
r2 yð Þ
r1

� �
P2ð2Þ dO2: (6.48)

The first and third integrals in (6.48) vanish except when k ¼ 0 in view of (6.28);

for k ¼ 0 they respectively give 4 p r21=3 and � 2 p r21, for a total of � 2 p r21=3.
The second and third integrals in (6.48) are a little more involved and involve

further series expansions of the r yð Þ terms; details are given in the available
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web-based document. A crucial manipulation in carrying along expansions to

correct orders in these two integrals is to factor terms of the form rp yð Þ as

1þ a0 þ a2P2ðkÞ
� �p ¼ 1þ a0ð Þp 1þ a2P2ðkÞ

1þ a0ð Þ
� �p

; (6.49)

and then undertake a binomial expansion of the brace bracket to order a22. The
overall result for U2 is

U2 ¼ � 2 p
3

r21 þ 2 pR2
O 1þ a0ð Þ2 þ 4 p

5
P2ð1Þ

r21a2
1þ a0ð Þ

þ p a22 R
2
O

X
k

Pkð1Þ
r1
RO

� �k
1� kð Þ
1þ a0ð Þk k; 2; 2f g; (6.50)

where i; j; kf g designates the integral of the product of three Legendre polynomials

over x ¼ cosy:

i; j; kf g ¼
Z1
�1

Pi Pj Pk dx: (6.51)

At this point, (6.50) goes back into (6.43) and (6.44) to give the Coulomb

energy as

UC ¼ r2

8 p eo
� 2 p

3

Z
y;f

Zr1 yð Þ

0

r41dr1dO1þ

8><
>: 2 pR2

O 1þ a0ð Þ2
Z
y;f

Zr1 yð Þ

0

r21dr1dO1

þ 4 p
5

a2
1þ a0ð Þ

Z
y;f

Zr1 yð Þ

0

P2ð1Þ r41dr1dO1

þ p a22 R
2
O

X
k

1� kð Þ k; 2; 2f g
Rk
o 1þ a0ð Þk

Z
y;f

Zr1 yð Þ

0

rkþ2
1 Pkð1Þ dr1dO1

9>=
>;:

(6.52)

The third integral in (6.52) is done here as an example; complete solutions for

the others are detailed in the web document. Integrating over r1 and f and

transforming to x renders the integral as

8 p2

25

a2
1þ a0ð Þ

Z1
�1

P2ð1Þ r51 yð Þ dx: (6.53)
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Put r1 yð Þ ¼ Ro 1þ a0ð Þ þ a2P2½ �. In expanding r1 to the fifth power, keep only

terms to order a22, which gives

8 p2

25

a2R5
O

1þ a0ð Þ
Z1
�1

P2ð1Þ 1þ a0ð Þ5 þ 5 1þ a0ð Þ4a2P2ð1Þ
h

þ 10 1þ a0ð Þ3a22P2
2ð1Þ þ :::

i
dx: (6.54)

Note the presence of the factor of P2(1) in front of the square bracket within the

integrand. The first term within the square bracket will make no contribution to the

integral since the integral of P2(1) over �1 � x � 1 is zero. We can ignore the last

term within the square bracket as it will lead to a term of order a32 when combined

with the factor of a2 outside the integral. Only the second term gives a surviving

contribution:

8 p2

5
R5
O 1þ aoð Þ3a22

Z1
�1

P2
2ð1Þ dx ¼

16 p2

25
R5
o 1þ a0ð Þ3a22: (6.55)

Upon carrying out the other integrals in (6.52), the result, again to order a22, is

UC ¼ r2

8 p eo
p2R5

O

32

15
1þ a0ð Þ5 þ 128

75
1þ a0ð Þ3a22

� �
: (6.56)

On writing the charge density as r ¼ 3 Z e 4 pR3
O


, again invoking RO � aoA

1=3,

and substituting the volume-conservation condition a0 � �a22=5, UC reduces to

UC � aC
Z2

A1=3

� �
1� 1

5
a22 þ :::

� �
: (6.57)

where aC ¼ 3 e2 20p eoao=ð Þ � 0:72 MeV is the Coulomb energy parameter. The

Coulomb self-energy decreases upon perturbation of the nucleus from its initially

spherical shape.

We can now determine the limiting condition for stability against spontaneous

fission. If the nucleus becomes slightly distorted, that is, if a2 6¼ 0, then fission will

proceed spontaneously if the total energy of the deformed nucleus is less than what

it was in its initial undeformed spherical shape (a2 ¼ 0), that is, if DE ¼ (US þ
UC)deformed � (US þ UC)undeformed < 0. On substituting (6.40) and (6.57), DE
emerges as

DE ¼ 2

5
aSA

2=3a22

� �
1� 1

2

aC
aS

� �
Z2

A

� �� �
: (6.58)

Clearly, whatever the value of a2, DE will be negative so long as

Z2

A
> 2

aS
aC

� �
; (6.59)
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the Bohr and Wheeler SF condition. With aS ~ 18 MeV and aC ~ 0.72 MeV, the

limiting Z2 A= evaluates to about 50. Readers seeking expressions for US and UC to

higher orders of perturbation are urged to consult Present and Knipp (1940a, b) and

Plesset (1941).

With empirically-known values for aS and aC, the Z2 A= limit provides an

understanding of why nature stocks the periodic table with only about 100 ele-

ments: nuclei have A ~ 2Z, so Z2 A= ~ 50 corresponds to a limiting Z of about 100.

In extending their analysis to higher orders of perturbation, B&W also provided the

first real understanding as to why only a very few isotopes at the heavy end of the

periodic table are subject to fission by slow neutrons: yet heavier ones are too near

the Z2 A= limit to remain stable for long against SF, while for lighter ones the fission

barrier is too great to be overcome by the binding energy released upon neutron

absorption.
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6.6 Appendix F: Average Neutron Escape Probability
from Within a Sphere

We derive here the mean escape probability for neutrons emitted from within

a sphere, the quantity Psph

� �
of Sect. 4.2 This is based on extending the semi-

empirical linear expression

PðxÞ ¼ exp �stot n xð Þ (6.60)

to three dimensions.

Figure 6.5 shows an element of volume dV at radius rwithin a sphere of radius R.
We can put this volume element somewhere along the z-axis without any loss of

generality.

The vector r goes from the center of the sphere to dV, that is, r ¼ r ẑ. The vector
d represents the straight-line path of a neutron emitted from dV in a direction that
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reaches the surface of the sphere, and R ¼ r þ d is a vector from the center of the

sphere to where the neutron reaches the surface, as shown in Fig. 6.6.

To specify the direction of d, we use the usual spherical coordinate angles (y, f)
originating at dV:

d ¼ d sin y cosfð Þx̂þ d sin y sinfð Þŷþ d cos yð Þẑ: (6.61)

From R � R ¼ R2 ¼ r þ dj j2 and (6.61), we can obtain an expression for the

magnitude of d:

d w; yð Þ ¼ R �w cos yþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� w2 sin2y

p	 

; (6.62)

where w ¼ r/R is a dimensionless radial variable.

If neutrons emitted from dV travel in random directions, then the probability of

any one of them being emitted into the solid angle defined by the angular limits y to
y þ dy and f to f þ df is

dV

r
R

d

z

x

y

Fig. 6.5 Neutrons escaping

from a small volume dV
within a bomb core. A

neutron begins at position r. R
is its position when it reaches

the surface of the core. d goes
from the volume element to

the edge of the sphere in a

direction defined in Fig. 6.6

below

dV
d

x

y

z

Fig. 6.6 Detailed view

of vector d of Fig. 6.5
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P dOð Þ ¼ 1

4p
sin y dy df: (6.63)

The probability that a neutron emitted into dO will escape is P(x) times P dOð Þ,
where the distance d of (6.62) replaces x in the expression for P(x) in (6.60). By

invoking a second set of spherical coordinates y0;f0ð Þ measured with respect to the

origin, we can write dV as dV ¼ r2 sin y0 dy0 df0 dr. If the number of neutrons

emitted per unit volume is constant, we can obtain the overall average escape

probability by weighting P(x) times P dOð Þ times dV, integrating over all directions
of emission y and over the entire volume of the sphere, and then dividing by the

volume of the sphere:

Psph

� � ¼ 3

4pR3

�
Zp
y¼0

Z2p
f¼0

ZR
r¼0

Zp
y0¼0

Z2p
f0¼0

e�snd w;yð Þ sin ydydf
4p

� �
r2 sin y0dy0df0dr
� �

(6.64)

The integrals over y, y0, and f0 can be carried out directly and yield 8p2.
Transforming the integral over r into one over w gives

Psph

� � ¼ 3

2

Z1
w¼0

Zp
y¼0

w2 sin ye�snd w;yð Þdydw: (6.65)

This integral is incorporated into the spreadsheet PreDetonation.xls discussed
in Sect. 4.2. The spreadsheet actually comprises two “Sheets”. In Sheet 1 the user

enters cross-sections, core and contaminant masses, and spontaneous fission data.

The integral is done in Sheet 2, with 100 columns for w (from 0 to 1 in steps of 0.01)

and 100 rows for y (0 to p in steps of p/100). The result of the integral is

automatically transferred to the first Sheet for use in calculating the predetonation

probability for a given assembly time.2

6.7 Appendix G: The Neutron Diffusion Equation

The analysis of critical mass presented in Sect. 2.2 was developed from the

diffusion equation for neutrons. This equation is a differential equation for the

time and space-dependence of the number density of neutrons within a bomb core.

Fundamentally, it expresses a competition between neutron gain and loss.

2Note added in proof: (6.65) can be solved analytically. See S. Croft, Nucl. Instr. and Meth. in

Phys. Res. A288, 589–592 (1990).
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Imagine isolating a small volume of material within the core. The volume

concerned will gain neutrons both from fissions happening within it and from

neutrons that enter from surrounding material. At the same time, it will lose

neutrons as they are consumed in causing fissions and as they fly out into surround-

ing material or to the outside world. The quantity of interest is the number density

of neutrons in the volume at hand, N, which has units of neutrons/m3 and is

presumed to be a function of both position and time. In anticipation of modeling

a spherical core we write the neutron number density as N(r, t). In words, the net

rate of change of neutron density can be expressed as

dN

dt
¼

net rate of neutron density gain

from fissions per unit volume

 !

þ
net rate of neutron density gain by neutron

transport through boundary; per unit volume

 !
: (6.66)

The derivation given here is motivated by that appearing in Serber (1992);

readers seeking more details are urged to consult Liverhant (1960) or any similar

text on reactor engineering.

We approach the development of the diffusion equation in two steps, with each

corresponding to one of the terms on the right side of (6.66). The first term can be

explained fairly easily, so we examine it first.

Assume that that, on average, neutrons have speed vh i. From the development in

Sect. 2.1 we know that the average distance a neutron will travel before causing a

fission is given by lf ¼ 1/nsf where n is the number density of fissile nuclei and

sf their fission cross-section. The time that a neutron will travel before causing a

fission is then t ¼ lf vh i= . On average, then, individual neutrons will cause fissions

at a rate vh i lf


per second. If each fission produces n secondary neutrons, then

the net rate of secondary neutron production per “average” neutron will be

n� 1ð Þ vh i lf


per second; the “�1” appears because the neutron causing the fission

is consumed in doing so. Now apply this argument to a volume V where the number

density of neutrons is N. The total number of neutrons will be NV and the rate of

secondary neutron production will consequently be NV n� 1ð Þ vh i lf


per second.

The rate of change of the density of neutrons caused by fissions is given by this

quantity divided by V, or

@N

@t

� �
fission

¼ vh i
lf

n� 1ð ÞN: (6.67)

The second term in (6.66) involves neutrons entering and leaving the volume as

they fly about. This step is trickier and is most easily dealt with in two sub-steps.

To begin, an important quantity here is the transport mean free path, the average
distance a neutron will travel before suffering any interaction. In a bomb core the
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important interactions are fission and elastic scattering; again appealing to Sect. 2.1

we can write this as

lt ¼ 1

nstotal
¼ 1

n sfission þ selastic
� � : (6.68)

We are assuming that the only important processes are fission and elastic

scattering.

Imagine neutrons flying about in a spherical bomb core of radius R as sketched in

Fig. 6.7. The first sub-step here is to get an expression for the net rate at which

neutrons flow from the inside to the outside through an imaginary surface at

radius r.
This derivation makes use of a result established in Sect. 3.5, where we

examined the effusion of particles through holes in a barrier. In deriving equation

(3.54), we found that the effusion rate of particles through a hole of area A is

given by

effusion rate ¼ 1

4
N A vh i: (6.69)

The unit of this expression is neutrons/s, or simply s�1. In our case A will be the

area of the imaginary surface at radius r, namely 4pr2.
Apply (6.69) to the imaginary surface at radius r. Unlike the barrier diffusion

issue taken up in Sect. 3.5, here we have neutrons passing through the surface that

have come from both “within” (radii < r) and “outside” (radii > r) the surface.

Suppose that those that come from within have come from a region where the

average neutron number density is N<, while those that pass through from

the outside have come from a region where the neutron number density is N>.

R

rFig. 6.7 Schematic

representation of a fissioning

spherical bomb core of radius

R. The small circles represent

neutrons. The neutron number

density N(r, t) is presumed to

be a function both position

and time within the core
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The net neutron flux from the inside to the outside through the imaginary surface

will then be

net effusion rate

inside to outside

at radius r

0
B@

1
CA ¼ 1

4
A vh i N< � N>ð Þ: (6.70)

While the neutrons will on average travel distance lt of (6.68) between interac-

tions, they will be flying about in random directions. In specifying the locations of

N< and N> we should consequently use values corresponding to the average radial
displacement that a neutron will undergo between its last collision and reaching the

surface at r, that is, their average displacement perpendicular to the escape surface.

This will presumably be less than lt due to the neutrons’ random flights. For the

moment, let us represent this average radial displacement as lrh i; how this relates to

lt is taken up following (6.81) below.

Now, reverse the order of the terms in (6.70) and both multiply and divide it by

2 lrh i:
net effusion rate

inside to outside

at radius r

0
B@

1
CA ¼ � 1

4
A vh i N> � N<ð Þ

2 lrh i
� �

2 lrh ið Þ: (6.71)

The square bracket in (6.71) is the change in N divided by the distance over

which that change occurs, that is, the derivative of N with respect to radial distance:

net effusion rate

inside to outside

at radius r

0
B@

1
CA ¼ � 1

2
A vh i lrh i @N

@r

� �
r

¼ �2 p r2 vh i lrh i @N

@r

� �
r

; (6.72)

where we have substituted for the area of the sphere and used partial derivatives as a

reminder that N is a function of both position and time.

Be sure to understand why factors of 2 were included with the factors of lrh i in
(6.71): the surfaces of density N< and N> are each a distance lrh i from the surface

at radius r and so the distance over which the change N> � N<ð Þ occurs is 2 lrh i.
We come now to the second sub-step of this part of the derivation. We desire an

expression for the net rate of change of N per unit volume due to random neutron

motions. To do this, apply (6.72) to a spherical shell within the core that extends

from inner radius r to outer radius r þ dr, as shown in Fig. 6.8:

rate of neutrons from

within r entering shell

 !
¼ �2 p r2 vh i lrh i @N

@r

� �
r

: (6.73)
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At the same time, neutrons exit the volume by passing through the surface at

r þ dr:

rate of neutrons exiting

shell from within shell

 !
¼ �2 p r þ drð Þ2 vh i lrh i @N

@r

� �
rþdr

: (6.74)

Notice that in writing these expressions we evaluate (∂N/∂r) at the inner and

outer surfaces of the shell. It follows that the net rate of neutron flux into the shell is
given by the entry rate, (6.73), minus the exit rate, (6.74); the overall result could in

fact be a loss (and will be so at the outer surface of the core):

net rate

of neutrons

entering shell

0
B@

1
CA ¼ 2 p vh i lrh i r þ drð Þ2 @N

@r

� �
rþdr

� r2
@N

@r

� �
r

� �
: (6.75)

Expanding out the factor of r þ drð Þ2 and writing

@N

@r

� �
rþdr

¼ @N

@r

� �
r

þ @2N

@r2

� �
r

dr; (6.76)

one arrives at, after a few lines of algebra,

net rate of neutrons

entering shell

 !
¼ 2 p vh i lrh i r2

@2N

@r2

� �
r

þ 2r
@N

@r

� �
r

� �
dr

�

þ2r
@2N

@r2

� �
r

dr2 þ @N

@r

� �
r

dr2 þ @2N

@r2

� �
r

dr3
�
: (6.77)

r

r + dr

Fig. 6.8 Spherical shell of

material of inner radius r and
thickness dr
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Now recall the Laplacian operator in spherical coordinates:

r2N
� �

r
¼ 1

r2
r2

@2N

@r2

� �
r

þ 2r
@N

@r

� �
r

� �
: (6.78)

But for a factor of 1/r2, this is exactly the square-bracketed term in (6.77), that is,

we can write

net rate of

neutrons

entering shell

0
BB@

1
CCA ¼ 2 p vh i lrh i r2 r2N

� �
r
dr þ 2r

@2N

@r2

� �
r

dr2
�

þ @N

@r

� �
r

dr2 þ @2N

@r2

� �
r

dr3
�
: (6.79)

Now, the volume of the shell is 4p r2dr. If we divide (6.79) by this volume we

will arrive at the rate of change of the density of neutrons within the volume due to

neutrons flying into or out of it:

@N

@t

� �
neutron flight

¼1

2
vh i lrh i r2N

� �
r
þ2

r

@2N

@r2

� �
r

drþ 1

r2
@N

@r

� �
r

drþ 1

r2
@2N

@r2

� �
r

dr2
� �

:

(6.80)

If we let the shell become infinitesimally thin, that is, if dr ! 0, then the last

three terms on the right side of (6.80) will vanish and we are left with

@N

@t

� �
neutron flight

¼ 1

2
vh i lrh i r2N

� �
; (6.81)

where we drop the subscript r on r2N for brevity.

We now need to address the issue of expressing lrh i in terms of the transport

cross-section of (6.68). To do this we again appeal to Sect. 3.5, where we looked at

the rate of escape of particles from within a slanted “escape cylinder.” From (3.52),

the number of particles traveling in the range of spherical directions (y, f) to

(y þ dy, f þ df) that escape in elapsed time Dt is given by

Nesc Dtð Þ ¼ NA vh i Dtð Þ
4p

cos y sin y dy df; (6.82)

where N, A, and vh i are again respectively the neutron number density, the area of

the surface of escape, and the average neutron speed.

In (6.82), vh i Dtð Þ corresponds to the average distance that a neutron travels while
making good its escape, that is, vh i Dtð Þ ¼ lt. Since y is measured from the z-axis
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(review Figs. 3.6 and 3.8), the vertical component of this distance, that is, the

average distance that a neutron travels in a direction perpendicular to the escape

surface, will be lt cosy. In the context of our spherical bomb core this perpendicular

direction translates into the distance that a neutron will travel in the radial direction
while escaping, which is what we are interested in. The total radial distance traveled

by neutrons that escape in time Dt will then be

total radial distance

traveled by all neutrons

moving in directions ðy;fÞ
that escape in time Dt

0
BBBBB@

1
CCCCCA ¼

number that escape

in time Dt

 !

�
average radial distance

traveled by each neutron

 !

¼ NA l2t
4p

cos2y sin y dy df: (6.83)

To account for all possible direction of escape we integrate over 0 � y �p/2 and
0 � f � 2p:

total radial distance

traveled by all neutrons

that escape in time Dt

0
B@

1
CA ¼ NA l2t

4p

Z2p
f¼0

Zp=2
y¼0

cos2y sin y dy df: (6.84)

This double integral gives 2p/3, so

total radial distance

traveled by all neutrons

that escape in time Dt

0
B@

1
CA ¼ NA l2t

6
: (6.85)

For use in (6.81) we need the average radial distance traveled, which we can get
by dividing (6.85) by the total number that escape in time Dt. Equation (6.69) gives
the rate of escape (neutrons/s), so the number that escape in time Dt will just be that
rate times Dt:

average radial distance

traveled by all neutrons

that escape in time Dt

0
B@

1
CA ¼

NA l2t
6

	 

1
4
N A vh iDt� � ¼ 2

3
lt; (6.86)
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where we used vh i Dtð Þ ¼ lt. This result, when substituted into (6.81) gives

@N

@t

� �
neutron flight

¼ 1

3
vh ilt r2N

� �
: (6.87)

We have now established two important results. These are (i) that within a unit

volume of core material, (6.67) accounts for the rate of change of neutron density

caused by neutrons created by fissions, and, (ii), that (6.87) accounts for that caused

by neutrons entering or leaving the volume. The total rate of change of neutron

density is the sum of these two effects:

dN

dt
¼ v

lf
n� 1ð ÞN þ v lt

3
r2N
� �

; (6.88)

where we have dropped the angle brackets on the average neutron speed. This is the

diffusion equation used in Sect. 2.3 to study critical mass.

Solving (6.88) can be approached by the usual separation-of-variables tech-

nique; this is done in Sect. 2.2. To actually determine a critical radius, however,

requires a boundary condition, that is, some specification on N(R). Establishing this
condition requires being a little more careful with our derivation in (6.70) and

(6.71) regarding the edge of the sphere. Consider first (6.70) applied to the surface

of the core at radius R. Here there will be no “backflow” of neutrons from the

outside; the only neutrons that pass through the surface of the core will be those

which have come from a characteristic distance lrh i from within. In this case, (6.70)

reduces to

net effusion rate

through core surface

 !
¼ 1

4
A vh i N<ð Þ: (6.89)

Now consider (6.71) at the surface. The role of N> will be played by NR, that is,

the neutron density at the surface. In this case we have the change in N over only a

distance of lrh i as opposed to the previous 2 lrh i since there is no inward flux from

the outside:

net effusion rate

through core surface

 !
¼ � 1

4
A vh i NR � N<ð Þ

lrh i
� �

lrh i

¼ 1

4
A vh i lrh i @N

@r

� �
R

: (6.90)

Demand consistency by equating (6.89) and (6.90); also invoke (6.86) for lrh i.
On approximating N< ~ NR, we find
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NðRÞ ¼ � 2

3
lt

dN

dr

� �
R

: (6.91)

This is the boundary condition used in Sect. 2.2 for determining critical mass.
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6.8 Appendix H: Questions

1.1 Compute Q-values for the following reactions. Reaction (a) produces high-

energy neutrons for use in so-called “boosted” fission weapons. Reaction (b)

is important in the production of tritium for use in reaction (a). Reaction (c) is

a hypothetical fission reaction. Reaction (d) is an example of how alpha-

bombardment of a light element can release neutrons, an important consider-

ation in avoiding pre-detonation in fission weapons.

(a) 2
1H þ 3

1H ! 4
2He þ 1

0n

(b) 6
3Li þ 1

0n ! 3
1H þ 4

2He

(c) 1
0n þ 238

92 U ! 2 118
46 Pd
� �þ 3 1

0n
� �

(d) 4
2He þ 27

13Al ! 30
15P þ 1

0n

1.2 To melt 1 g of ice at 0	C into 1 g of water at 0	C requires input of 80 cal of

heat energy. If all of the energy involved in the alpha-decay of 1 g 226Ra could

directed into melting ice, how many grams of ice could be melted per day?

The decay rate of 226Ra is 3.7 � 1010 per g/s, and the emergent alphas have

kinetic energies of 4.8 MeV.

1.3 Prove equation (1.20) (assume classical mechanics) and then apply it to the

case of radium decay discussed in Sect. 1.2. What will be the kinetic energy of

the emergent a-particle? How does your result compare to the value of

4.78 MeV quoted in the Chart of the Nuclides?
1.4 For each of the reactions below, compute the energy of the resulting g-ray for

both forward and backward motion. Assume that the target nucleus is station-

ary in each case.

(a) 1
1H þ 16

8O ! 17
9 F þ g KH ¼ 4:9 MeVð Þ

(b) 4
2He þ 27

13Al ! 31
15P þ g KHe ¼ 6:5 MeVð Þ

(c) 56
26Fe þ 94

40Zr ! 150
66Dy þ g KFe ¼ 50 MeVð Þ
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1.5 For each of the reactions below, compute the Q-value of the reaction, the

threshold energy (if any), and the kinetic energies and directions of motion of

the products. Assume that the target nucleus is initially stationary in each case.

(a) 4
2He þ 27

13Al ! 30
15P þ 1

0n KHe ¼ 5 MeVð Þ
(b) 2

1H þ 3
1H ! 4

2He þ 1
0n KH ¼ 3 MeVð Þ

(c) 4
2He þ 19

9F ! 22
10Ne þ 1

1H KHe ¼ 2:75 MeVð Þ
(d) 4

2He þ 56
26Fe ! 35

16S þ 25
12Mg KHe ¼ 30 MeVð Þ

(e) 16
8O þ 238

92U ! 252
99Es þ 2

1H

1.6 Consider a g-ray of energy Q and a classical, non-relativistic particle of mass

m with the same kinetic energy. Both strike a classical, non-relativistic

particle of massM head on. Show that the ratio of the kinetic energy acquired

by M when struck by the massive particle to that when struck by the g-ray is

Km
M

Kg
M

¼ 2Em

Q 1þ Em EM=ð Þ2 ;

where the E’s designate rest masses and where it has been assumed that

Q 
 EM. Apply to an a-particle being struck by a g-ray and a proton, where

Q ¼ 10 MeV.

1.7 Show that the kinetic energy of a nonrelativistic neutron moving with speed

v ¼ bc is given by E � 470 b2 MeV.

1.8 In an environment of absolute temperature T, the motion of a particle is on

average equivalent to kinetic energy 3kT/2 where k is Boltzmann’s constant.

Show that if a neutron is moving at a nonrelativistic speed with kinetic energy E
MeV, then the equivalent temperature is T ¼ (7.74 � 109 E) Kelvin. Energies
of a couple MeV are characteristic of neutrons released in fission reactions.

1.9 See Fig. 6.9 below. A neutron of mass m and kinetic energy K (non-relativis-

tic) strikes and is absorbed by a heavy nucleus of mass 2M � m. The
resulting compound nucleus flies off with kinetic energy KC. Shortly there-

after the compound nucleus fissions into two equal halves, each of mass M.

One fragment travels backward with kinetic energy KB while the other

continues forward with kinetic energy KF. Energy 2Q is liberated in the

fission, that is, KB þ KF � KC ¼ 2Q. Show that to a good approximation,

the difference in kinetic energies DQ ¼ KF � KB between the forward and

backward-moving fission fragments is given by

neutron target
nucleus

compound
nucleus

2M
K

fission

M M

KB K
F

KC

Fig. 6.9 Problem 1.9
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DQ
Q

� 2

ffiffiffiffiffiffiffiffi
Km

QM

s
:

Apply your result to a neutron with K ¼ 14 MeV striking a 235U nucleus; what

is DQ/Q if Q ¼ 100 MeV? HINTS: Conserve momentum in each reaction.

Assume thatM � m, K 
 2Q, and that DQ/KB (or DQ/KA) is small. Are these

approximations justified in the 14-MeV neutron + 235U reaction?

1.10 Suppose that all of the energy liberated in the explosion of a 20-kt fission
weapon could be directed into raising 1 cubic kilometer of water in the Earth’s

gravitational field. How high could that cubic km of water be raised?

1.11 Use BarrierCubic.xls to carry out the calculations involved in Sect. 1.10 for

fitting a cubic equation of the form fsmoothðxÞ ¼ Fx3 þ Bx2 þ Cxþ D to model

the fission barrier. If aC ¼ 0.70 MeV and aS ¼ 16.5 MeV, what are the

parameters F, B, C, and D for a fission with mass ratio f ¼ 1.45? What is

the “offset” energy in this case for A ¼ 1 if you adopt a (Z, A) fit of the form

Z � 0:60679A0:92383?

1.12 See Fig. 6.10. A nucleus containing Z1 protons approaches a fixed target

nucleus containing Z2 protons and a total of A nucleons; the kinetic energy

of the incoming nucleus is E MeV when it is far from the target nucleus. If

nuclear radii are described empirically by R ~ aOA
1/3 where aO ¼ 1.2 fm,

show that the ratio of the distance d of closest approach of the nuclear centers
to the radius of the target nucleus is given by

d

R
¼ 1:2

Z1Z2
EA1=3

� �
;

Apply to an alpha-particle with E ¼ 5 MeV approaching a U-235 nucleus.

2.1 Using the same nuclear-radius empirical expression as in the previous prob-

lem, estimate the geometrical cross-sectional area of a 235U nucleus; give your

result in barns. How does your result compare to the fission cross-section for

fast neutrons for this isotope, sf ¼ 1.235 bn?

2.2 Because cadmium-113 has an enormous cross-section for absorbing thermal

neutrons, strips of cadmium metal are often used in control mechanisms in

reactors. Given r ¼ 8.65 g/cm3, A ¼ 112.904 g/mol and sabsorb ¼ 20,600,

Z1

Z2 , AE (MeV)

R

d

Fig. 6.10 Problem 1.12
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compute the probability that a neutron will penetrate through a strip of Cd-113

of thickness 0.05 mm.

2.3 Show that the time between fissions t ¼ lf /vneut for neutrons traveling with

speed vneut corresponding to classical kinetic energy EMeV between nuclei in

a material of atomic weight A g/mol, density r g/cm3, and fission cross-

section sf barns is given by

t ¼ 1:20A

sfr
ffiffiffi
E

p nanoseconds

Compute t for the case of 2-MeV neutrons in 235U: A ¼ 235, r ¼ 18.71 g/

cm3 and sf ¼ 1.235 bn.

2.4 Show that if the boundary condition in Sect. 2.2 for neutron escape from a

spherical bomb core is simplified to N(RC) ¼ 0 (that is, if we demand that no
neutrons escape from the surface), then the threshold critical radius can be

expressed explicitly as

RC ¼ pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 n� 1ð Þp 1

n
ffiffiffiffiffiffiffiffiffisfst

p
 !

:

Evaluate this result numerically for a 235U core using the fissility parameters

given in Sect. 2.2. What is the resulting threshold critical mass?

2.5 In Sect. 2.2 we took the solution to the spatial part of the diffusion equation,

(2.27), to be of the form (sin x/x). But any second-order differential equation

should have two solutions. The second solution in this case is (cos x/x). This
solution is usually rejected on the basis of a physical argument, however.

What do you suppose this argument to be?

2.6 Working from the development of bomb efficiency in Sect. 2.4, show that the

speed of the expanding core at the time of criticality shutdown is given by

v tcritð Þ ¼ aDr
t

:

Evaluate v tcritð Þ explicitly in the case of a 235U corewithC ¼ 2 using the values

given in Table 2.2. How does v tcritð Þ compare to the average neutron speed?

2.7 Working from the development of bomb efficiency in Sect. 2.4, show that

the pressure within the expanding core at the time of criticality shutdown is

given by

P tcritð Þ ¼ a2 Dr rrh i
3 t2

:

Evaluate P tcritð Þ in the case of a 235U core with C ¼ 2. Express your result in

atmospheres: 1 atm ~ 101,000 Pa.
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2.8 Consider a fissile material with r ¼ 17.3 g/cm3, A ¼ 250 g/mol, sf ¼
1.55 bn, sel ¼ 6 bn, and n ¼ 2.95. What are the bare threshold critical radius

and mass of this material? What are the (analytic) effective a-value, Dr,
efficiency, and yield for a core of C ¼ 3 critical masses of this material

if Ef ¼ 185 MeV and if the secondary neutrons have E ¼ 2 MeV? Take

g ¼ 1/3. If the initial number of neutrons is taken to be one, what are the

fission and criticality-shutdown timescales?

2.9 Consider a mass m of a pure fissile material whose normal density is ro, with
m being less than the bare threshold critical mass for the material. Show that

this mass can be made critical by compressing it to a radius given by

rcompress �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3m

4proRo
;

s

where Ro is the threshold critical radius at normal density for the material.

Show further that if C (<1) is the number of threshold critical masses

represented by m, then the ratio of the density at this compressed radius to

the initial density is given by

rcompress
ro

¼
ffiffiffiffi
1

C

r
:

Evaluate numerically for 100 g of 235U.

2.10 The diffusion equation for neutrons in a bomb core, (2.18), can be applied in

any coordinate system provided that the expression for r2N in that system is

used. To this end, consider a cubical bomb core that extends from 0 � x � L,
0 � y � L, and 0 � z � L. Solve the diffusion equation in Cartesian coordi-

nates. Show that if the simplified boundary condition N(LC) ¼ 0 is used, then

the side length for threshold criticality is given by

LC ¼ pffiffiffiffiffiffiffiffiffiffiffi
n� 1

p ffiffiffiffiffiffiffiffiffi
lf lt

p
;

where the symbols have the same meanings as in Sect. 2.2. Compare this

result to that in Problem 2.4 to show that the critical mass for a cubical bomb

core of a given material is 35=2 4pð Þ= � 1:24 times that for a spherical core of

the same material. HINT: If you are familiar with quantum mechanics, the

solution to this problem is very similar to that of a particle in a three-

dimensional infinite potential box.

2.11 Consider a fission bomb made of a 60 kg core of pure 239Pu (normal density)

surrounded by a 238U tamper (18.95 g/cm3) of outer radius 17 cm. Use the

numerical integration spreadsheet of Sect. 2.5 with the fissility parameters

given in Appendix B for fast neutrons to determine the tamped threshold

critical mass and yield of such a weapon. Take g ¼ 1/3, the average neutron

energy to be 2 MeV, and the energy per fission to be 180 MeV.
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2.12 It is remarked in Sect. 2.4 that in the case of a gas of uranium nuclei of normal

density of that metal (18.95 g/cm3), radiation pressure dominates gas pressure

for per-particle energies greater than about 2 keV. This problem investigates

this issue.

For a “gas” of photons, thermodynamics provides the following expression

for the pressure:

Prad ¼ 8p5k4

45c3h3

� �
T4;

where k is Boltzmann’s constant, c is the speed of light, h is Planck’s constant
and T is the absolute temperature. For a gas of “classical” particles, the ideal

gas law can be cast as

Pclassical ¼ 106
rNAk

A

� �
T;

where r and A are the density and atomic weight of the material in g/cm3 and

g/mol, respectively, and where NA is Avogadro’s number. Given that in the

classical case the per-particle energy is 3kT/2, show that radiation pressure

will dominate over the gas pressure for per-particle energies satisfying

E>
3

2

45� 106

8p5

� �
ch

e

� �
rNA

A

� �1=3
� 4:908� 10�5
� � rNA

A

� �1=3
eV;

where e is the electron charge. Hence verify the ~2 keV figure for uranium.

3.1 See Fig. 6.11. A non-relativistic neutron initially traveling in the x-direction
with kinetic energy Kn suffers a completely elastic collision with an initially

stationary nucleus of rest massmA. The neutron scatters through angle y while
the struck nucleus scatters through angle f as shown. After the collision the

neutron and struck nucleus have kinetic energies Kn
0 and KA, respectively. By

conserving classical kinetic energy and momentum, eliminate f and KA to

show that the initial and final neutron kinetic energies are related asffiffiffiffiffiffiffi
Kn

0

Kn

s
¼ cos yþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos2yþ A2 � 1
p

Aþ 1
;

mA

mn

Kn

KA
mA

mn
Kn

/

Fig. 6.11 Problem 3.1
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whereA is themass ratiomA/mn. If a neutron strikes an initially stationary carbon

nucleus (A ¼ 12) and scatters through y ¼ 90	, what will be the it’s final speed
in terms of its initial speed? Compare to the head-on case examined in Sect. 3.2.

3.2 Consider an ideal gas trapped within a sealed container at absolute tempera-

ture T. Working from the development in Sect. 3.5, show that the number of

molecules that strike a square-meter area of the container wall per second is

given by

Pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 pmk T

p ;

where P is the pressure, m is the mass of an individual molecule, and k is

Boltzmann’s constant. HINT: Use the Boltzmann’s-constant form of the Ideal

Gas Law. Air is mostly diatomic nitrogen (N2); standard atmospheric pressure

is about 101,000 Pa. Evaluate your answer for T ¼ 300 K.

3.3 Consider the first stage of a gaseous diffusion plant for separating uranium

isotopes, where essentially all (139/140) of the atoms are 238U. Suppose that

vaporized pure uranium at T ¼ 300 K and P ¼ 1 atmosphere is pumped

against a barrier; assume a vacuum on the other side. Working from your

result in the previous problem, what total “hole area” S will you need if you

want to process 140 kg of uranium per day? This would correspond to

processing (although not isolating) 1 kg 235U per day.

3.4 As in Problem 3.2, consider an ideal gas trapped within an initially sealed

container at absolute temperature T. The wall of the container is punctured,

resulting in a small hole of area A through which molecules of the gas can

effuse; assume that the outside environment is a vacuum so that no molecules

effuse from the outside back to the inside. Effusion represents a net loss of
molecules from within the container.

(a) Working from the development in Sect. 3.5, show that, as a function of

time, the pressure within the container will behave as

P ¼ Poe
�t=t;

where Po is the initial pressure and t is a characteristic effusion timescale given
by

t ¼ 4V

A vh i ;

where V is the volume of the container and vh i is the average molecular speed.

Assume that the temperature inside stays constant. The meaning of t is that if
the hole is not plugged, the pressure will drop to 1/e ~ 0.37 of its initial value

after t seconds.
(b) A spacecraft cabin of volume 5 m3 is punctured by a meteor, resulting in a

hole of area 1 cm2. If you model the atmosphere inside as pure diatomic

nitrogen initially at standard atmospheric pressure and T ¼ 300 K, what is the

timescale t in this case? Average molecular speed as a function of tempera-

ture is given by
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vh i ¼
ffiffiffiffiffiffiffiffiffiffi
8 k T

pm

r
:

3.5 A reactor fueled with uranium enriched to F ¼ 0.06 produces electrical

power at a rate of 750 MW with a thermal efficiency � ¼ 0.29. What will

be the rate of plutonium production in this reactor? Take sf5 ¼ 584 bn,

sc8 ¼ 2.7 bn, and a fission energy of 180 MeV per reaction.

4.1 The half-life for spontaneous fission of 242
96Cm is 7.0 � 106 year. What is the

corresponding rate of spontaneous fissions per kg per second?

4.2 A rogue militia organization in an unstable country claims to have acquired

20 kg of Pu 239 of normal density and to have developed a crude gun-type

bomb. The core contains 3% Pu 240. If they are to have a 50–50 chance of non-

predetonation, what is the maximum tolerable assembly time? Take Smax ¼ 0.

4.3 According to the publication of West & Sherwood cited in Sect. 4.3, the yield

of 5.2 MeV alphas on 27Al is 4.25 � 10�7. If the number-density ratio of

aluminum to the fissile material in a bomb core is held to 10�5, what

maximum rate of alpha-decays can be tolerated if the production of neutrons

is to be kept to no more than 104 per second?

4.4 The purpose of this problem is to make a very crude estimate of the radioac-

tivity produced by a fission weapon.

Suppose that fission of 235U happens exclusively by the reaction

235
92Uþ 1

0n ! 141
56 Baþ 92

36Krþ 3 1
0n
� �

Assume that 1 kg of 235U is fissioned in this way. 141Ba and 92Kr then both

subsequently decay by beta-decay with half-lives of 18 min and 1.8 s, respec-

tively. Use the decay rate expression of Sect. 4.2 to estimate the “immediate”

beta-radioactivity so generated; ignore the neutrons released in the above

reaction for sake of simplicity. If this radioactivity falls out over an area of 10

square miles, what will be the resulting immediate radioactivity in Curies per

square meter? To put your result in perspective, household smoke detectors

use 1 mCi alpha-emitters as ionization sources to help detect smoke particles.

6.9 Answers

1.1 (a) 17.59 MeV, (b) 4.78 MeV, (c) 182.2 MeV, (d) �2.64 MeV

1.2 7.34 g

1.3 4.784 MeV

1.4 (a) Eg ¼ 5.24 or 5.18 MeV

(b) Eg ¼ 15.44 or 15.21 MeV

(c) Reaction impossible; Eg ¼ �48 MeV forward; �46.5 MeV backward.

1.5 (a) Threshold 3.034; Q ¼ �2.642; P & n energies 0.307, 2.051; both forward
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(b) No threshold; Q ¼ 17.59; He & n energies 0.99, 19.60;

He backward; n forward

(c) No threshold; Q ¼ 1.674; Ne & H energies

0.068 and 4.356; both forward

(d) Threshold 17.296; Q ¼ �16.141; S & Mg energies 1.304

and 12.56; S backward; Mg forward

(e) Threshold 51.07; Q ¼ �47.85; Es & D energies 2.816 and 9.330; both

forward

1.6 Km
M Kg

M

 � 120

1.7 DQ/Q ~ 0.07; all approximations satisfied

1.8 8.57 m

1.9 (F, B, C, D) ¼ (0.3031, �0.3510, �0.2072, 0.2552); offset ¼ 4.183 MeV

1.10 d/R ¼ 7.16

2.1 s ~ 1.723 bn

2.2 Penetration probability ~0.00863

2.3 8.63 ns

2.4 RC ¼ 11.05 cm; mass ~105.7 kg.

2.5 Diverges at r ¼ 0.

2.6 v(tcrit) ~ 3.68 � 105 m/s; ~ 1.9% neutron speed

2.7 P(tcrit) ~ 6.20 � 1015 Pa ~ 61 billion atmospheres

2.8 Ro ¼ 6.74 cm; Mo ¼ 22.2 kg. For C ¼ 3, aeff ¼ 0.421, Dr ¼ 1.95 cm,

efficiency ¼ 6.36%, yield ¼ 72 kt (at 17 kt/kg), tfiss ¼ 1.12 ms, tcrit ¼ 1.07 ms.
2.9 rcompress ¼ 3.91 mm; rf ¼ 21.15 ro
2.10 Threshold tamped critical mass 10.26 kg; yield ~75 kt. The initial core radius

is 9.72 cm; core radius at second criticality ¼ 14.41 cm.

3.1 vfinal=vinitial ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
11=13

p
3.2 Strike rate ~2.904 � 1027 m�2/s

3.3 4.12 � 10�6 m2

3.4 About 7 min

3.5 223 g/day

4.1 7.806 � 109 kg�1s�1

4.2 2.70 ms
4.3 7.0 � 1015 s�1

4.4 1.04 � 106 Ci/m2

6.10 Appendix I: Further Reading

Apropos of the significance of the topic, an online search keyed on the phrase

“Manhattan Project” will typically return millions of hits, a number which will

surely grow as more and more previously classified material becomes publicly

available. Scientists and historians will continue to revisit both the technical and

human aspects of the project for years to come. While many of the sources that turn
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up in an online search are interesting and well-researched, it can be difficult to sort

through such a deluge of material for credible, objective information on the history,

science, and personalities associated with the project. This appendix offers a brief,

necessarily very limited, annotated bibliography of Manhattan Project books,

journal articles, and websites. Some of the references listed here appear in various

chapters in this book but are copied here for sake of completeness. A more complete

bibliography can be found in the author’s “Resource Letter MP-1: The Manhattan

Project and related nuclear research”, Am. J. Phys. 73(9), 805–811 (2005).

The sources cited below are divided into four categories: general works, bio-

graphical and autobiographical works, technical works, and websites. Web

addresses appear in italic font to discriminate them from surrounding text.

6.10.1 General Works

Coster-Mullen, J.: Atom Bombs: The Top Secret Inside Story of Little Boy and Fat

Man (2010). This remarkable self-published work contains a trove of drawings,

photographs, reproductions of documents, mission logs and reports and detailed

descriptions of Little Boy and Fat Man and the Hiroshima and Nagasaki bomb-

ing missions. Available from online booksellers.

Fermi, R., Samra, E.: Picturing the Bomb: Photographs from the Secret World of

the Manhattan Project. Harry N. Abrams, New York (1995). Beautifully repro-

duced and instructively captioned photographs of sites and artifacts associated

with the MP. The first author is Enrico Fermi’s granddaughter.

Gosling, F. G.: The Manhattan Project: Making the Atomic Bomb. U.S. Department

of Energy (1999). A brief but very readable and well-illustrated summary.

Available free from the DOE at http://www.osti.gov/accomplishments/docu-
ments/fullText/ACC0001.pdf.

Hersey, J.: Hiroshima. Knopf, New York (1985). Originally published in 1946, this

compelling work of firsthand accounts of Hiroshima survivors is a “must read”

for students of the MP. The edition cited here includes an additional chapter

written 40 years later which brings the survivors stories up-to-date.

Hewlett, R.G., Anderson, O.E.: A History of the United States Atomic Energy

Commission, Vol. 1: The New World, 1939/1946. Pennsylvania State Univer-

sity, University Park, PA (1962). Detailed history of the Manhattan Project

prepared under the auspices of the Historical Advisory Committee of the U.S.

Atomic Energy Commission. Full of facts, figures, dates, names, and places.

Fully referenced to Manhattan Engineer District documents.

Jones, V.C.: United States Army in World War II. Special Studies. Manhattan: The

Army and the Atomic Bomb. Center of Military History, United States Army,

Washington, DC (1985). Comprehensive history of Army involvement in the

Manhattan Project, fully referenced to Manhattan Engineer District documents.

Unfortunately, this work no longer appears to be available through the Govern-

ment Printing Office, but many libraries have copies.
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Laurence, W.L.: Dawn Over Zero: The Story of the Atomic Bomb. Knopf,

New York (1946). Laurence was a New York Times science reporter who was

allowed to visit Los Alamos during the Project, witnessed the Trinity test, and

rode aboard Bockscar on the Nagasaki bombing mission. This work was the one

of the first serious popular accounts of the Project.

Rhodes, R.: The Making of the Atomic Bomb. Simon and Schuster, New York

(1986). This remains the best current overall survey of the context, personalities,

and science and engineering of the Manhattan Project. Some chapters are not

directly germane to the Project, but Rhodes does a superb job of explaining

the relevant physics in layman’s language. Contains an extensive bibliography.

A follow-on book, Dark Sun: The Making of the Hydrogen Bomb (Simon and

Schuster, New York, 1995) details the development of the hydrogen bomb and is

particularly interesting for its description of Soviet espionage in the United

States during the Manhattan Project and afterward.

Smyth, H.D.: Atomic Energy for Military Purposes: The Official Report on the

Development of the Atomic Bomb under the Auspices of the United States

Government, 1940–1945. Princeton University Press, Princeton, NJ, (1948).

This work was the first official report on the Manhattan Project. The edition

cited here includes various appendices not included in the original 1945 edition.

Various editions are readily available online.

Stoff, M.B., Fanton, J.F., Williams, R.H.: The Manhattan Project: A Documentary

Introduction to the Atomic Age. McGraw Hill, New York (1991). This book

includes reproductions of a number of official documents and memoranda

concerning the Project. It is now somewhat dated because so much material is

available online, but it is still worth perusing.

United States Department of Energy: The First Reactor (1982). This publication

presents a brief, well-illustrated account of the first self-sustaining chain reac-

tion. Available online at http://www.osti.gov/accomplishments/documents/full-
Text/ACC0044.pdf

6.10.2 Biographical and Autobiographical Works

Bernstein, J.: Hitler’s Uranium Club: The Secret Recordings at Farm Hall. Ameri-

can Institute of Physics, New York (1996). At the end of the war, a number of

leading German nuclear physicists including Werner Heisenberg were interned

for 6 months at Farm Hall, an English country estate, and their conversations

secretly recorded. Bernstein analyses the transcripts.

Bernstein, J.: Oppenheimer: Portrait of an Enigma. Ivan R. Dee, Inc., Chicago

(2004). Engaging brief biography of Oppenheimer by one who knew him

personally.

Bird, K., Sherwin, M.J.: American Prometheus: The Triumph and Tragedy of

J. Robert Oppenheimer. Knopf, New York (2005). This book is likely to become

the definitive biography of Oppenheimer. The authors particularly examine his
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upbringing, ethical outlook, and postwar political activities. Descriptions of

physics can be muddled in some places.

Cassidy, D.C.: Uncertainty: The Life and Science of Werner Heisenberg. W.H.

Freeman, New York (1993). Published prior to release of the Farm Hall tran-

scripts [see Bernstein (1996) above], this work continues to be the major

scholarly biography of Heisenberg.

Cassidy, D.C.: J. Robert Oppenheimer and the American Century. Pi, New York

(2005). A full scholarly biography of Oppenheimer. Cassidy devotes fairly little

space to the well-trodden ground of Oppenheimer’s Los Alamos years but gives

a much more complete picture of his life and scientific work than many sources.

Includes lists of Oppenheimer’s publications and students.

Fermi, L.: Atoms in the Family: My Life with Enrico Fermi. University of Chicago

Press, Chicago (1954). Fermi’s life and work as related by his wife, Laura.

Chapters 18–23 deal with the first chain-reacting pile and the Fermis’ time at Los

Alamos.

Frisch, O. What Little I Remember. Cambridge University Press, Cambridge

(1979). Frisch helped to interpret fission, is generally credited with being the

first experimenter to deliberately produce fission, and in collaboration with

Rudolf Peierls estimated that the critical mass of U-235 might be on the order

of kilograms.

Goodchild, P.: Robert Oppenheimer: Shatterer of Worlds. BBC, London, (1980).

A well-illustrated treatment of the Manhattan Project and Oppenheimer’s life.

Groves, L.R.: Now It Can Be Told: The Story of the Manhattan Project. Harper and

Row, New York (1962). Now somewhat dated, but still valuable; the view from

one who was there.

Howes, R.C., Herzenberg, C.C.: Their Day in the Sun: Women of the Manhattan

Project. Temple University Press, Philadelphia (1999). Examines the lives and

work of female physicists, chemists, biologists, technicians and others on the

Project.

Norris, R.S.: Racing for the Bomb: General Leslie R. Groves, The Manhattan

Project’s Indispensable Man. Steerforth, South Royalton, VT (2002). Detailed

account of the life and work of General Groves.

Pais, A., Crease, R.P.: J. Robert Oppenheimer: A Life. Oxford, New York (2006).

Pais knew Oppenheimer from 1946 until the latter’s death in 1967 and had

completed about three-quarters of this work before his own passing in August

2000; it was completed by his widow and Robert Crease. The emphasis here is

not so much on Oppenheimer’s Los Alamos years but rather on his contributions

to the growth of American theoretical physics, his postwar directorship of the

Institute for Advanced Study, as a leader of conferences, and his service on

numerous government committees.

Peierls, R.: Bird of Passage: Recollections of a Physicist. Princeton University

Press, Princeton (1985). Memoirs of the other half of the Frisch-Peierls team;

written with humor and warmth.

Segrè, E.: Enrico Fermi: Physicist. University of Chicago Press, Chicago (1970).

Very readable biography by one of Fermi’s closest collaborators.
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6.10.3 Technical Works

Amaldi, E.: From the discovery of the neutron to the discovery of nuclear fission.

Phys. Rep. 111 (1–4), 1–331 (1984). Masterful account of the development of

nuclear physics during the 1930s; contains over 900 references. Amaldi’s career

began as a student of Fermi.

Bernstein, J.: Plutonium: A History of the World’s Most Dangerous Element.

Joseph Henry, Washington (2007). Reviews the history of the discovery of

fission and plutonium, its bizarre chemical properties, and the crucial, often-

overlooked contributions of metallurgists at Los Alamos.

Bernstein, J.: Nuclear Weapons: What You Need to Know. Cambridge University

Press, Cambridge, UK (2008). This companion volume to the above entry

summarizes the development of nuclear weapons from the discoveries of Thom-

son and Rutherford through the North Korean test of 2006. Full of interesting

personal anecdotes and sidebar stories.

Brode, H.L.: Review of nuclear weapons effects. Annu. Rev. Nuc. Sci. 18, 153–202
(1968). This article gives an advanced technical account of the fireball, shock,

thermal, radiation, electromagnetic pulse, and fallout effects of nuclear explosions.

Broyles, A.A.: Nuclear explosions. Am. J. Phys. 50(7), 586–594 (1982). An

undergraduate-level account of the effects of nuclear explosions.

Fermi, E.: Experimental production of a divergent chain reaction. Am. J. Phys. 20
(9), 536–558 (1952). Description of Fermi’s first critical pile, published on the

tenth anniversary of that achievement.

Garwin, R.L., Charpak, G.: Megawatts and megatons: a turning point in the nuclear

age? Knopf, New York (2001). Excellent treatment of nuclear power, nuclear

weapons, radiation effects, waste disposal, and associated environmental and

political issues.

Glasstone, S., Dolan, P.J.: The Effects of Nuclear Weapons, 3rd edn. United States

Department of Defense and Energy Research and Development Administration,

Washington (1977). This sobering volume summarizes technical analyses of the

shock, blast, thermal, and radiation effects of nuclear explosions on structures

and people. Available at a number of sites online; see, for example, http://www.
dtic.mil/cgi-bin/GetTRDoc?
AD¼ADA087568&Location¼U2&doc¼GetTRDoc.pdf

Hawkins, D.: Project Y, The Los Alamos Story. Tomash, Los Angeles, (1983).

Originally published as Los Alamos report LAMS-2532, Manhattan District

History, Project Y, The Los Alamos Project. Now unfortunately out of print,

this book gives a detailed technical and administrative history of Los Alamos

from its inception through December 1946. However, the original Los Alamos

report on which the book is based is available at http://www.cfo.doe.gov/me70/
manhattan/publications/LANLMDHProjectYPart1.pdf

Hoddeson, L., Henriksen, P.W., Meade, R.A., Westfall, C.: Critical Assembly: A

Technical History of Los Alamos During the Oppenheimer Years, 1943–1945.
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Cambridge University Press, Cambridge (1993). An authoritative technical

history of Los Alamos during the war years.

Serber, R.: The Los Alamos Primer: The First Lectures on How To Build An

Atomic Bomb. University of California Press, Berkeley (1992). The original

lectures given by Serber to Los Alamos scientists in April 1943 are reproduced

and supplemented by extensive annotations. Includes the March 1940 Frisch-

Peierls memoranda that can be said to have started the Project.

6.10.4 Websites

Readers are cautioned that websites and addresses can change.

The Los Alamos National Laboratory’s history website can be found at http://
www.lanl.gov/history.

The Bulletin of the Atomic Scientists is a good source of up-to-date information

on weapons deployments, treaties concerning nuclear weapons, and nuclear issues

in general. http://www.thebulletin.org.
The National Science Foundation Digital Library on the Atomic Bomb at www.

atomicarchive.com contains material on the history and science of the atomic

bomb, and includes links to the full text of the Smyth report and the declassified

version of Bainbridge’s report on the Trinity test.

The office for history of science and technology at the University of California at

Berkeley has created a website exploring Robert Oppenheimer’s life. http://ohst.
berkeley.edu.

The National Science Foundation-funded Alsos digital library for nuclear issues

at http://alsos.wlu.edu provides links to a broad range of annotated references for

the study of nuclear issues including books, articles, films, CDs and websites.

Carey Sublette maintains an extensive site on nuclear weapons at http://
nuclearweaponarchive.org/Nwfaq/Nfaq8.html.

The homepage of the National Museum of Nuclear Science and History

(Albuquerque, NM) can be found at http://www.nuclearmuseum.org.
The U.S. Department of Energy Office of History and Heritage Resources

maintains an Interactive History website on the Manhattan Project at http://www.
cfo.doe.gov/me70/manhattan/index.htm.

A number of National Nuclear Security Administration documents available

under the Freedom of Information Act are available at http://www.doeal.gov/opa/
FOIAReadRmLinkst.aspx.

The Nevada Site Office of the National Nuclear Security Administration offers

an online collection of films of nuclear tests conducted between 1945 and 1962.

http://www.nv.doe.gov/library/films/testfilms.aspx.
The Harry S. Truman Library and Museum makes available online a collection

of documents, diary entries, letters and press releases relevant to President Tru-

man’s decision to use atomic bombs.

http://www.trumanlibrary.org/whistlestop/study_collections/bomb/large.
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The Atomic Heritage Foundation is a non-profit organization dedicated to the

preservation and interpretation of the Manhattan Project, and works with the

Department of Energy and the former Manhattan Project communities to preserve

historic resources and other aspects of the history. http://www.atomicheritage.org.
The Federation of American Scientists maintains a website where they make

available copies of hundreds of Los Alamos Technical Reports and Publications.

http://www.fas.org/sgp/othergov/doe/lanl/index1.html.
The B-Reactor Museum Association is a volunteer group that works with local,

state and federal authorities to preserve the Hanford B reactor and turn it into a

publicly-accessible museum. http://www.b-reactor.org.
I have prepared a spreadsheet-based timeline of the Manhattan Project, MPTi-

meline.xls; this is available at the companion website.

6.11 Appendix J: Useful Constants and Conversion Factors

Quantity Symbol Value Unit

Speed of light c 2.99792458 � 108 m/s
Electron charge e 1.602176462 � 10�19 C
Planck’s constant h 6.62606876 � 10�34 Js
Permittivity constant eO 8.85418782 � 10�12 C2/Jm
Avogadro’s number NA 6.02214199 � 1023 mol�1

Atomic mass unit u 1.66053873 � 10�27 kg
Boltzmann constant k 1.3806503 � 10�23 J/K
Kiloton TNT kt 4.2 � 1012 J
Fission 1 kg 235U 7.1 � 1013 J
Fission 1 kg 235U ~17 kt
Curie Ci 3.7 � 1010 decay/s
Calorie cal 4.186 J

6.11.1 Rest Masses

10�27 kg amu MeV

Proton 1.67262158 1.00727646688 938.271998

Neutron 1.67492716 1.00866491578 939.565330

Electron 0.000910938188 0.0005485799110 0.510998902

Alpha 6.64465598 4.0015061747 3727.37904
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diffusion theory for fission weapon core, 46

expansion distance to shutdown, 65, 70

Peierls’ formulation of, 73

reactor, 75–78

threshold (a = 0), 46, 49

Cross section (s),
definition; relation to mean free path, 45

table of values, 128

Curie, Irène, 7, 17

D
Delta-value (D)

definition, 4

table of values, 127–128

Diffusion

equation, derivation of, 146–154

neutrons (criticality theory), 45–51

gaseous (barrier), 90–95

E
Efficiency

effect of spontaneous fission, 100–108

of nuclear explosion, 58–72

Energy, conservation of, in collisions,

129–134

F
Fat Man, 100, 104–108
Fermi, Enrico

neutron-induced radioactivity and, 15

reactor criticality and, 78, 79, 81

Fission

barrier, 20, 27–36

discovery of, 15, 17, 18

energy release in, 19–20

in nuclear weapon, 58, 59, 61, 62, 64–71

liquid-drop model, 20

neutron energy spectrum, 25–27

spontaneous, 20–25, 100–108, 134–144

theory of, 20–25

Z2/A limit against spontaneous, 20–25,

134–135

Frisch, Otto, 18

G
Gamma ray

collisions involving, 132–134

involved in neutron discovery, 6–14

Graphite

effect of impurities in reactor, 98–100
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Hahn, Otto, 17, 18

I
Implosion, 50, 100–108

Impurities

light-element in bomb core, 108–112

Isotope enrichment and separation

electromagnetic, 84–90

gaseous diffusion, 90–95

J
Joliot, Frédéric, 7–9, 11, 14, 15

L
Little Boy, 58, 59, 60, 66, 69–72

yield, 66, 70–72

M
Mean free path (l), 40–45, 73, 74
Meitner, Lise, 17, 18

Momentum, conservation of in collisions,

129–134

N
Neutron(s)

diffusion theory of, 45–51, 146–154

discovery of, 6–14

emitted in fission, 19–20

energy spectrum of fission, 25–27

escape probability

linear geometry, 42, 43

spherical geometry, 144–146

number in nucleus (N), 4
number density (N), 46, 47, 49, 52, 61, 64
thermalization, 78–81

Nucleon number (A), 4
Nuclear weapon

critical mass, U and Pu, 46

efficiency, 58–72

tamper, 51–58

P
Plutonium

bare critical mass, 46

fission characteristics of, 29–32

production of, 81–84

spontaneous fission (Pu-240), 100–108

Predetonation

by light-element impurities, 108–112

by spontaneous fission, 100–108

Pressure

in exploding bomb core, 65, 67

Q
Q-value, 2–3

R
Radioactivity

artificially-induced, 14–18

neutron-induced, 15

Reactor

boron contamination, 98–100

criticality, 75–78

plutonium production in, 81–84

trace isotope production in, 120–125

Rutherford, Ernest, 3–6

S
Spontaneous fission

and implosion, 100–108

Z2/A limit against, 20–25, 134–135

Stopping power, 111

Strassmann, Fritz, 17, 18

Supercriticality (a> 0), 49, 61

Surface energy (fission), 20, 21, 23, 24, 32, 135

T
Tamper

effect of on critical mass, 51–58

Thermal neutrons, 78–81

Transmutation, artificial (Rutherford), 5–6

Trinity
brightness of, 116–118

yield, 119

Tungsten carbide (tamper), 56, 57, 69, 70, 72

U
Uranium

bare critical mass, 46, 49, 50

discovery of fission in, 15–18

fission characteristics of isotopes, 16,

18–20, 28

reactor, 75–78

W
Warmth, bomb core, 115–116

Wheeler, John, 20, 144

Z
Z (atomic number), 4
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