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Preface

This book is intended as a textbook for a radiation physics course in academic
medical physics graduate programs as well as a reference book for candidates
preparing for certification examinations in medical physics subspecialities. The
book may also be of interest to many professionals, not only physicists, who
in their daily occupations deal with various aspects of medical physics or
radiation physics and have a need or desire to improve their understanding of
radiation physics.

Medical physics is a rapidly growing specialty of physics, concerned with
the application of physics to medicine, mainly but not exclusively in the appli-
cation of ionizing radiation to diagnosis and treatment of human disease. In
contrast to other physics specialties, such as nuclear physics, condensed matter
physics, and high-energy physics, studies of modern medical physics attract
a much broader base of professionals, including graduate students in medi-
cal physics; medical residents and technology students in radiation oncology
and diagnostic imaging; students in biomedical engineering; and students in
radiation safety and radiation dosimetry educational programs. These profes-
sionals have diverse background knowledge of physics and mathematics, but
they all have a common need to improve their knowledge and understanding
of the physical concepts that govern the application of ionizing radiation in
diagnosis and treatment of disease.

Numerous textbooks that cover the various subspecialties of medical
physics are available, but they generally make a transition from the elementary
basic physics directly to the intricacies of the given medical physics subspe-
cialty. The intent of this textbook is to provide the missing link between the
elementary physics and the physics of the subspecialties of medical physics.

The textbook is based on notes that I developed over the past 30 years of
teaching radiation physics to M.Sc. and Ph.D. students in medical physics at
McGill University in Montreal. It contains 14 chapters, each chapter covering
a specific group of subjects related to radiation physics that, in my opinion,
form the basic knowledge required from professionals working in contemporary
medical physics.



VIII Preface

Most of the subjects covered in this textbook can be found discussed in
greater detail in many other specialized physics texts, such as nuclear physics,
quantum mechanics, and modern physics, etc. However, these texts are aimed
at students in a specific physics specialty, giving more in-depth knowledge of
the particular specialty but providing no evident link with medical physics
and radiation physics. Some of these important specialized texts are listed in
the bibliography at the end of this book for the benefit of readers who wish
to attain a better insight into subjects discussed in this book. To recognize
the importance of relevant history for understanding of modern physics and
medical physics, Appendix C provides short biographies on scientists whose
work is discussed in this book.

I am indebted to my colleagues in the Medical Physics department of
the McGill University Health Centre for their encouragement, approval and
tolerance of my concentrating on the book during the past year. I am greatly
indebted to my former students and/or colleagues Dr. Geoffrey Dean, Dr.
François DeBlois, Dr. Slobodan Dević, Michael D.C. Evans, Marina Olivares,
William Parker, Horacio Patrocinio, Dr. Matthew B. Podgorsak and Dr. Jan
P. Seuntjens who helped me with discussions on specific topics as well as with
advice on how to present certain ideas to make the text flow better. I also
appreciate constructive comments by Prof. José M. Fernandez-Varea from
the University of Barcelona and Prof. Pedro Andreo from the University of
Stockholm and the Karolinska University Hospital.

Special thanks are due to my colleague Dr. Wamied Abdel-Rahman, not
only for helpful discussions of the subject matter, but also for his skillful
drawing of figures presented in the book and for significant contributions
to Chapters 7 and 12. Secretarial help from Ms. Margery Knewstubb and
Ms. Tatjana Nǐsić is very much appreciated.

I received my undergraduate physics education at the University of Ljub-
ljana in Slovenia. I would like to thank the many teachers from the University
of Ljubljana who introduced me to the beauty of physics and provided me
with the knowledge that allowed me to continue my studies in the USA and
Canada.

My sincere appreciation is due to my former teachers and mentors Profes-
sors John R. Cameron and Paul R. Moran from the University of Wisconsin in
Madison and Professors Harold E. Johns and John R. Cunningham from the
University of Toronto who introduced me to medical physics; a truly reward-
ing profession that brings together one’s love of physics and compassion for
patients.

Finally, I gratefully acknowledge that the completion of this book could
not have been accomplished without the support and encouragement of my
spouse Mariana. Especially appreciated are her enthusiasm for the project
and her tolerance of the seemingly endless hours I spent on the project during
the past several years.

Montréal, October 2009 Ervin B. Podgoršak



Medical Physics: A Specialty and Profession

1 Medical Physics and Its Subspecialties

Medical physics is a branch of physics concerned with the application of
physics to medicine. It deals mainly, but not exclusively, with the use of
ionizing radiation in diagnosis and treatment of human disease.

Diagnostic procedures involving ionizing radiation use relatively low energy
x rays in the 100 kV range (diagnostic radiology) or γ rays (nuclear medicine
also known as molecular imaging); therapeutic procedures involving ion-
izing radiation most commonly use high energy megavoltage x rays and
γ rays or megavoltage electrons (radiotherapy also known as radiation therapy,
radiation oncology, and therapeutic radiology).

Other applications of physics in diagnosis of disease include the use of
nuclear magnetic resonance in anatomic, functional, and spectroscopic mag-
netic resonance imaging (MRI); ultrasound (US) in imaging; bioelectrical
investigations of the brain (electroencephalography) and heart (electrocardio-
graphy); biomagnetic investigations of the brain (magnetoencephalography);
and infrared radiation in thermography. Physicists are also involved in the use
of heat for cancer therapy (hyperthermia), in applications of lasers for surgery,
and in medical informatics.

During the past two decades medical physics has undergone a tremen-
dous evolution, progressing from a branch of applied science on the fringes of
physics into an important mainstream discipline that can now be placed on
equal footing with other more traditional branches of physics such as nuclear
physics, particle physics and condensed matter physics. Since the number of
new jobs in medical physics is growing faster than the number of jobs in other
specialties of physics, universities are under much pressure to develop new
graduate programs in medical physics or to expand their existing medical
physics programs.
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The medical physics specialty covers several diverse areas of medicine. It
is therefore customary for medical physicists to concentrate on and work in
only one of the four specific subspecialties of medical physics:

1. Diagnostic radiology physics dealing with diagnostic imaging with x rays,
ultrasound and magnetic resonance.

2. Nuclear medicine physics also referred to as molecular imaging physics
dealing with diagnostic imaging using radionuclides.

3. Radiotherapy physics or radiation oncology physics dealing with treatment
of cancer with ionizing radiation.

4. Health physics dealing with the study of radiation hazards and radiation
protection.

2 Brief History of Use of Ionizing Radiation in Medicine

The study and use of ionizing radiation started with three important
discoveries: x rays by Wilhelm Röntgen in 1895, natural radioactivity by Henri
Becquerel in 1896, and radium by Pierre and Marie Curie in 1898. Since then,
ionizing radiation has played an important role in atomic and nuclear physics
where it ushered in the era of quantum mechanics, provided the impetus for
development of radiology and radiotherapy as medical specialties and medical
physics as a specialty of physics. In addition, ionizing radiation also proved
useful in many other diverse areas of human endeavor, such as in industry,
power generation, waste management, and security services.

The potential benefit of x ray use in medicine for imaging and treat-
ment of cancer was recognized within a few weeks of Röntgen’s discovery
of x rays. Two new medical specialties: radiology and radiotherapy evolved
rapidly, both relying heavily on physicists for routine use of radiation as well
as for development of new techniques and equipment.

Initially, most technological advances in medical use of ionizing radi-
ation were related to: (1) improvements in efficient x-ray beam delivery;
(2) development of analog imaging techniques; (3) optimization of image qual-
ity with concurrent minimization of delivered dose; and (4) an increase in
beam energies for radiotherapy.

During the past two decades, on the other hand, most developments
in radiation medicine were related to integration of computers in imaging,
development of digital diagnostic imaging techniques, and incorporation of
computers into therapeutic dose delivery with high-energy linear accelerators.
Radiation dosimetry and treatment planning have also undergone tremen-
dous advances in recent years: from development of new absolute and relative
dosimetry techniques to improved theoretical understanding of basic radiation
interactions with human tissues, and to the introduction of Monte Carlo tech-
niques in the determination of dose distributions resulting from penetration
of ionizing radiation into tissue.
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Currently, ionizing radiation is used in medicine for imaging in diagnostic
radiology and nuclear medicine, for treatment of cancer in radiotherapy, for
blood irradiation to prevent transfusion-associated graft versus host disease,
and for sterilization of single use medical devices. The equipment used for
modern imaging and radiotherapy is very complex and requires continuous
maintenance, servicing, and calibration to ensure optimal as well as safe per-
formance. Optimal performance in imaging implies acquisition of optimized
image quality for lowest possible patient radiation dose, while in radiotherapy
it implies a numerically and spatially accurate dose delivery to the prescribed
target. Optimal performance can only be achieved with services provided by
engineers who maintain and service the equipment, and medical physicists
who deal with calibration of equipment, in vitro and in vivo dose measure-
ment, dosimetry and treatment planning, as well as quality assurance of image
acquisition and patient dose delivery.

3 Educational Requirements for Medical Physicists

Pioneers and early workers in medical physics came from traditional branches
of physics. By chance they ended up working in nuclear medicine, radiology, or
radiotherapy, and through on-the-job training developed the necessary skills
and knowledge required for work in medical environment. In addition to clin-
ical work, they also promoted medical physics as science as well as profession,
and developed graduate medical physics educational programs, first through
special medical physics courses offered as electives in physics departments and
more recently through independent, well-structured medical physics academic
programs that lead directly to graduate degrees in medical physics.

Since medical physicists occupy a responsible position in the medical envi-
ronment, they are required to have a broad background of education and
experience. The requirement for basic education in physics and mathematics
is obvious, but the close working relationship of medical physicists with physi-
cians and medical scientists also requires some familiarity with basic medical
sciences, such as anatomy, physiology, genetics, and biochemistry.

Today’s sophistication of modern medical physics and the complexity of
the technologies applied to diagnosis and treatment of human disease by radi-
ation demand a stringent approach to becoming a member of the medical
physics profession. Currently, the most common path to a career in medical
physics is academic progression, through a B.Sc. degree in one of the physical
sciences but preferably in physics, to a M.Sc. degree in medical physics, and
then to a Ph.D. degree in medical physics.

The minimum academic requirement for a practicing medical physicist is
M.Sc. degree in medical physics, and this level is adequate for physicists who
are mainly interested in clinical and service responsibilities. However, medical
physicists working in academic environments should possess a Ph.D. degree
in medical physics.
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Academic education alone does not make a medical physicist. In addi-
tion to academic education, practical experience with medical problems and
equipment is essential, and this may be acquired through on-the-job clini-
cal education or, preferably, through a structured two-year traineeship (also
referred to as internship or residency) program in a hospital after graduation
with M.Sc. or Ph.D. degree in medical physics.

Because medical physicists work in health care and their work directly or
indirectly affects patient safety and well-being, standards for their didactic and
clinical education, work, and professional conduct are set and maintained by
various professional bodies through the processes of educational accreditation,
professional certification, and professional licensure. Accreditation is usually
given to institutions, while certification and licensure are given to individual
professionals. As the profession of medical physics matures, these processes are
becoming more and more stringent to ensure quality of work and protection
of patients undergoing diagnostic or therapeutic procedures using ionizing
radiation.

In relation to the medical physics profession, accreditation, certification,
and licensure are defined as follows:

• Educational accreditation represents an attestation by an appropriate
accreditation agency that the accredited educational program (M.Sc.
and/or Ph.D.) or clinical residency education program, offered by a given
educational institution, typically a University incorporating a medical
school, provides quality education in medical physics and meets applicable
standards.

• Professional certification in medical physics like in other professions is
obtained from a national professional society and attests that the cer-
tified medical physicist is able to competently execute a job or task in
the area covered by the certification. The certification is usually attained
through a rigorous examination process run by an appropriate national
medical physics organization or medical organization. With respect to
expiry there are two types of professional certification: (1) lifetime and
(2) more commonly, time-limited typically to 5 or 10 years. For continued
certification, the time-limited certificates must be renewed before expiry,
usually through a rigorous “maintenance of certification” (MOC) process
involving continuing education.

• While professional certification attests to the competence of a profes-
sional in certain field, it does not confer legal right to practice. Certain
jurisdictions require by law that medical physicists demonstrate compe-
tence before they are legally allowed to practice. This legal requirement is
referred to as licensure and the examination process is often similar to that
used for professional certification except that professional certification is
conferred by a professional organization while licensure is conferred by a
government agency. Thus, certification and licensure deal with the same
professional issues but differ in legal status they confer.
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4 Accreditation of Medical Physics Educational
Programs

Many universities around the world offer academic and clinical educational
programs in medical physics. To achieve international recognition for its grad-
uates, a medical physics educational program should hold accreditation by an
international accreditation body that attests to the program’s meeting rig-
orous academic and clinical standards in medical physics. Currently, there is
only one such international body, the Commission on Accreditation of Medical
Physics Educational Programs (CAMPEP) – www.campep.org/, founded in
the late 1980s and sponsored by four organizations: the American Association
of Physicists in Medicine (AAPM), the American College of Medical Physics
(ACMP), the American College of Radiology (ACR), and the Canadian Col-
lege of Physicists in Medicine (CCPM). In September 2009, 58 medical physics
education programs (21 academic and 37 residency programs) were accred-
ited by the CAMPEP. Several other jurisdictions are studying or setting up
accreditation services for academic medical physics programs.

5 Certification of Medical Physicists

Several national professional medical physics organizations certify the com-
petence of medical physicists. The certification is obtained through passing
a rigorous written and oral examination that can be taken by candidates
who possess M.Sc. or Ph.D. degree in medical physics and have completed
an accredited residency in medical physics. Currently, the residency require-
ment is relaxed and a minimum of two years of work experience in medical
physics after graduation with M.Sc. or Ph.D. degree in medical physics is
also accepted, because of the shortage of available residency positions. How-
ever, in the future, graduation from an accredited medical physics academic
program as well as an accredited medical physics residency education pro-
gram will likely become mandatory for admission to write the medical physics
certification examination.

The medical physics certification attests to the candidate’s competence in
the delivery of patient care in one of the subspecialties of medical physics.
The requirement that its medical physics staff be certified provides a medical
institution with the necessary mechanism to ensure that high standard medical
physics services are given to its patients.

6 Appointments and Areas of Activities

Medical physicists are involved in four areas of activity: (1) Clinical service
and consultation; (2) Research and development ; (3) Teaching; and (4) Admin-
istration. They are usually employed in hospitals and other medical care



XIV Medical Physics: A Specialty and Profession

facilities. Frequently, the hospital is associated with a medical school and
medical physicists are members of its academic staff. In many non-teaching
hospitals, physicists hold professional appointments in one of the clinical
departments and are members of the professional staff of the hospital. Larger
teaching hospitals usually employ a number of medical physicists who are orga-
nized into medical physics departments that provide medical physics services
to clinical departments.

7 Medical Physics Organizations

Medical physicists are organized in national, regional, and international
medical physics organizations. The objectives of these organizations generally
are to advance the medical physics practice and profession through:

• Promoting medical physics education and training.
• Promoting the advancement in status and stature of the medical physics

profession.
• Lobbying for a formal national and international recognition of medical

physics as a profession.
• Holding regular meetings and conferences as well as publishing journals,

proceedings, reports, and newsletters to disseminate scientific knowledge
and discuss professional issues of interest to medical physicists.

• Improving the scientific knowledge and technical skills of physicists work-
ing in medicine.

• Sponsoring accreditation commissions for academic and residency pro-
grams in medical physics, and organizing certification programs as well
as maintenance of certification and continuing education programs for
medical physicists.

• Developing professional standards and quality assurance procedures for
applications of physics in medicine.

• Fostering collaborations with other medical physics organizations as well
as other related scientific and professional organizations.

The International Organization for Medical Physics (IOMP) is the
largest medical physics organization representing 16,500 medical physicists
worldwide and 80 adhering national member organizations (www.iomp.org).
The organization was founded in 1963, largely through the efforts of the
UK-based Hospital Physicists’ Association (HPA) which was the first national
body of medical physicists in the world. The four national founding members
of the IOMP were the UK, US, Sweden and Canada.

According to the inaugural statutes of the IOMP, each interested country
was to join the IOMP through a National Committee for Medical Physics
which was to coordinate medical physics interests within its own country and
select delegates to represent it at the general meeting of the IOMP.
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In retrospect, the requirement for joining the IOMP through a National
Committee proved to have been successful in stimulating medical physicists in
many countries to first form their national organization and then through the
national organization join the IOMP. During the first 45 years of its existence,
the IOMP grew from its original four sponsors to 80 national sponsoring
organizations spanning all continents of the world.

The IOMP speaks on professional and scientific issues of interest to the
world community of medical physicists. In particular, it co-sponsors the Jour-
nal of Applied Clinical Medical Physics (JACMP), and sponsors the World
Congress on Medical Physics and Biomedical Engineering that is held every
three years and attracts several thousand medical physicists and engineers
from around the world.

The IOMP also sponsors regular Conferences on Medical Physics with spe-
cific objectives aiming at developing local medical physics services, strengthen-
ing the links amongst regional medical physicists, and promoting the medical
physics profession in regions and countries where holding a large World
Congress would not be feasible.

In addition to representing 80 adhering national medical physics organiza-
tions, the IOMP also represents 4 regional medical physics federations and is
in the process of adding two more regional federations to its roster. The four
existing regional federations are:

• Asia-Oceania Federation of Organizations for Medical Physics (AFOMP)
• European Federation of Organisations for Medical Physics (EFOMP)
• Latin American Medical Physics Association (Associação Latino-

americana de Fisica Medica – ALFIM)
• Southeast Asian Federation for Medical Physics (SEAFOMP)

In addition to the four established regional medical physics organizations,
there are two federations in the process of formation: Federation of African
Medical Physics Organisations (FAMPO) and Middle East Federation of
Organisations for Medical Physics (MEFOMP).

From the list above we note that all continents except North America are
covered by one or more regional medical physics organizations. North America
consisting of only three countries, on the other hand, is covered well by the
American Association of Physicists in Medicine (AAPM). The AAPM, despite
being formed in 1958 as a U.S. national medical physics organization, can
also be considered an international organization open to all practicing med-
ical physicists irrespective of their country of work. Most Canadian medical
physicists, in addition to supporting their national Canadian medical physics
organizations, also belong to the AAPM and so do many Mexican medical
physicists. It is thus reasonable to assume that the AAPM, in addition to
playing the role of one of the 80 national IOMP sponsoring countries, also
plays the role of a regional organization covering North America. For reasons
of language, Mexico is one of the 11 countries sponsoring the ALFIM.
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The European Federation of Organizations for Medical Physics
(EFOMP) – www.efomp.org/ was founded in 1980 in London by 18 European
Community members to serve as an umbrella organization to all national
member medical physics organizations in Europe. It became the largest
regional medical physics organization in the world, currently covering 39
national medical physics organizations representing over 5000 medical physi-
cists from the 27 European Union (EU) countries and 12 countries adjacent
to the EU.

The EFOMP’s mission is:

1. to harmonize and advance medical physics at an utmost level both in its
professional, clinical, and scientific expression throughout Europe.

2. to strengthen and make more effective the activities of the national mem-
ber organizations by bringing about and maintaining systematic exchange
of professional and scientific information, by the formulation of common
policies, and by promoting education and training programs in medical
physics.

The EFOMP accomplishes its mission by:

• Organizing congresses, meetings, and special courses.
• Publishing the journal “Physica Medica: The European Journal of Medical

Physics”(EJMP), sponsoring four other scientific journals, and publishing
an electronic bulletin “The European Medical Physics News”.

• Harmonizing European education and training in medical physics.
• Improving the profession and practice of medical physics in Europe.
• Encouraging the formation of organizations for medical physics where such

organizations do not exist.
• Making recommendations on the appropriate general responsibilities, orga-

nizational relationships, and roles of medical physicists.

The Asia-Oceania Federation of Organizations for Medical Physics
(AFOMP) – www.afomp.org/ was founded in 2000 and is currently sponsored
by 16 regional countries. The federation publishes a newsletter and works
closely with its member organizations as well as with the IOMP on professional
and educational issues of interest to medical physicists in the region. It also
organizes a regional medical physics congress on a yearly basis, cosponsors the
“Journal of the Australasian College of Physical Scientists and Engineers in
Medicine”, and is developing an accreditation program for academic medical
physics programs as well as a certification program for medical physicists.

The American Association of Physicists in Medicine (AAPM),
founded in 1958 (www.aapm.org), is the most prominent and by far the largest
national medical physics organization in the world. It has over 6300 members,
many of them from countries other than the US, making the AAPM the most
international of the national medical physics organizations.
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According to the AAPM “The mission of the Association is to advance
the practice of physics in medicine and biology by encouraging innovative
research and development, disseminating scientific and technical information,
fostering the education and professional development of medical physicists,
and promoting the highest quality medical services for patients”.

The AAPM is a very active organization involved in promotion of medical
physics through:

• Sponsoring a monthly scientific journal “Medical Physics”.
• Organizing two yearly international scientific meetings; one a free standing

meeting and the other held in conjunction with the Radiological Society
of North America (RSNA) annual meeting.

• Conducting annual summer schools on relevant medical physics or clinical
subjects.

• Publishing task group reports and summer school proceedings.
• Publishing a bi-monthly Newsletter about AAPM activities and items of

interest to AAPM members. It contains timely information and serves as
a forum for debate about professional and educational issues of interest to
AAPM members.

• Hosting a virtual library that contains many of the continuing education
courses presented at the AAPM annual meetings.

• Providing a variety of educational and training programs in cooperation
with medical physics organizations throughout the world.

• Sponsoring the Commission on Accreditation of Medical Physics Educa-
tional Programs (CAMPEP) with three other organizations.

8 Medical Physics Around the World

Of the 80 national medical physics organizations that are sponsoring the
IOMP, most have a relatively small number of members, as evident from the
average number of members for the 80 countries that amounts to about 200.
There are only a few countries that have national organizations exceeding 500
members: USA 6300; UK 1700; Germany 1100; India 850; Japan 780; Italy
730; Spain 510; and Canada 500.

Since it is reasonable to assume that the IOMP represents the majority of
practicing medical physicists worldwide, one may estimate the current average
concentration of medical physicists in the world at 2.5 per million population.
However, there are large variations in this concentration from one region to
another and from one country to another. For example, developed countries
employ from 10 to 20 medical physicists per million population, while there are
several developing countries with no medical physicists and many countries
with less than 1 medical physicist per million population.
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Considering the rapidly evolving technological base in modern medicine
which requires an ever-increasing technical input from physicists, engineers,
and technicians, the potential for growth in demand for medical physicists in
the future is obvious. This is especially so for developing countries with many
of them making serious efforts to modernize their health care services and
in dire need of a significant improvement in their technological health care
base not only in terms of equipment but also in terms of trained personnel to
operate and maintain it.

9 Career in Medical Physics

Many academic and clinical educational programs are now available to an
aspiring medical physicist for entering the medical physics profession. The
ideal educational and professional steps are as follows:

1. Undergraduate B.Sc. degree in physics (typical duration: 4 years)
2. Graduate degree (M.Sc. and/or Ph.D.) in medical physics from an accred-

ited medical physics program. Typical duration of M.Sc. program is 2 years;
typical duration of Ph.D. program is 3 years after M.Sc. studies.

3. Residency in medical physics from an accredited residency program in
medical physics. Typical duration of a residency program for a resident
holding M.Sc. or Ph.D. degree in medical physics is 2 years.

4. Successful completion of a national certification examination in one of the
four subspecialties of medical physics (as soon as possible upon completion
of residency).

In principle, becoming a medical physicist through the four steps listed above
is feasible; however, in practice, the steps are still somewhat difficult to follow
because of the relatively low number of accredited academic and residency
programs in medical physics. The number of these programs is growing, how-
ever. We are now in a transition period and within a decade, progression
through the four steps listed above is likely to become mandatory for physicists
entering the medical physics profession, similarly to the physicians entering
the medical profession. The sooner broad-based didactic and clinical educa-
tion through accredited educational programs in medical physics become the
norm, the better it will be for the medical physics profession and for patients
the profession serves.

A career in medical physics is very rewarding and the work of medical
physicists is interesting and versatile. A characteristic of modern societies is
their ever-increasing preoccupation with health. Research in cancer and heart
disease is growing yearly and many new methods for diagnosis and therapy
are physical in nature, requiring the special skills of medical physicists not
only in research but also in the direct application to patient care.



9 Career in Medical Physics XIX

Undergraduate students with a strong background in science in general
and physics in particular who decide upon a career in medical physics will
find their studies of medical physics interesting and enjoyable, their employ-
ment prospects after completion of studies excellent, and their professional
life satisfying and rewarding.

Physics played an important role in the development of imaging and
treatment of disease with ionizing radiation and provided the scientific base,
initially for the understanding of the production of radiation, its interaction
with matter, and its measurement, and, during recent years, for the techno-
logical development of equipment used for imaging and delivery of radiation
dose. The importance of modern technology and computerization in radiation
medicine has been increasing steadily and dramatically, resulting in extremely
sophisticated, efficient, and accurate equipment that is also very costly.

Medical physicists, with their scientific education in general and their
understanding of modern imaging and radiation therapy in particular, are
well placed to play an important role in safe, efficient and cost-effective use
of high technology in diagnosis and treatment of disease with radiation, be it
as part of an engineering team that designs the equipment or part of a med-
ical team that purchases the equipment and uses it for patient care. Medical
physicists also get involved in general health technology assessment as part of
a biomedical engineering team that offers impartial and objective evaluation
of medical devices to ensure that they meet appropriate standards of safety,
quality, and performance both technically and clinically.

As part of medical team, medical physicists are involved with writing
specifications for high technology equipment before it is purchased, with
negotiating conditions for its purchase, with organizing its acceptance and
commissioning upon delivery by the vendor, as well as with organizing the
equipment maintenance, servicing and calibration upon its acceptance and
commissioning. Medical physicists also deal with governmental regulatory
agencies and ensure that hospitals and clinics meet regulatory requirements
to make the use of radiation in diagnosis and treatment of disease as safe as
possible for both the patients and staff.
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1

Introduction to Modern Physics

This chapter provides an introduction to modern physics and covers basic
elements of atomic, nuclear, relativistic, and quantum physics as well as elec-
tromagnetic theory. These elements form the background knowledge that is
required for a study of medical radiation physics. The first few pages of this
chapter present lists of basic physical constants, of important derived physical
constants, and of milestones in modern physics and medical physics. These
lists would normally be relegated to appendices at the end of the book; how-
ever, in this textbook they are given a prominent place at the beginning of
the book to stress their importance to modern physics as well as to medical
physics.
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After introducing the basic physical constants and the derived physical
constants of importance in modern physics and medical physics, the chapter
spells out the rules governing physical quantities and units and introduces
the classification of natural forces, fundamental particles, ionizing radiation
in general as well as directly and indirectly ionizing radiation. Next the basic
definitions for atomic and nuclear structure are given and the concepts of
the physics of small dimensions (quantum physics) as well as large velocities
(relativistic physics) are briefly reviewed.

A short introduction to particle-wave duality is given, wave mechanics is
briefly discussed, and Fermi second golden rule and the Born collision formula
are introduced. After a brief discussion of Maxwell equations and the Poynting
theorem, the chapter concludes with a discussion of the normal probability
distribution.

Medical physics is intimately related to modern physics and most milestone
discoveries in modern physics were rapidly translated into medical physics
and medicine, as evident from the list of milestones in medical physics pro-
vided in Sect. 1.3. Medical physics is a perfect and long-standing example of
translational research where basic experimental and theoretical discoveries are
rapidly implemented into benefiting humanity through improved procedures
in diagnosis and treatment of disease.

A thorough understanding of the basics presented in this chapter will facil-
itate the readers’ study of subsequent chapters and enhance their appreciation
of the nature, importance, and history of medical physics as it relates to the
use of ionizing radiation in diagnosis and treatment of human disease.

1.1 Fundamental Physical Constants

Currently the best source of data on fundamental physical constants is
the Committee on Data for Science and Technology (CODATA), an inter-
disciplinary scientific committee of the International Council for Science
(ICSU) with headquarters in Paris, France. The ICSU’s membership comprises
117 national organizations and 30 international scientific unions.

The CODATA Task Group on Fundamental Constants (www.codata.org)
was established in 1969 and its purpose is to periodically provide the scien-
tific and technological communities with an internationally accepted set of
values of fundamental physical constants for worldwide use. The mission of
CODATA is: “To strengthen international science for the benefit of society by
promoting improved scientific and technical data management and use” and
its membership comprises 23 full national members, 2 associate members, and
16 international scientific unions. The committee publishes “The DATA Sci-
ence Journal”, a peer-reviewed, open access electronic journal featuring papers
on management of data and databases in science and technology.
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The data below (rounded off to four significant figures) were taken from
the recent CODATA set of values issued in 2006 and easily available from
the web-site supported by the National Institute of Science and Technology
(NIST) in Washington, DC, USA (http://physics.nist.gov/cuu/Constants/)

Avogadro constant .. . . . . . . . . . . . . . . . . . . . . . . . . . . . NA = 6.022×1023 mol−1

Speed of light in vacuum . . . . . . . . . . . . . . . c = 2.998×108 m/s ≈ 3×108 m/s

Unified atomic mass constant . . . .. u = 1.661×10−27 kg = 931.5 MeV/c2

Electron charge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . e = −1.602×10−19 C

Electron rest mass . . . . . . . . . . . . . me = 9.109×10−31 kg = 0.5110 MeV/c2

Positron rest mass . . . . . . . . . . . . .. me = 9.109×10−31 kg = 0.5110 MeV/c2

Proton rest mass . . . . . . . mp = 1.673×10−27 kg = 1.007 u = 938.3 MeV/c2

Neutron rest mass . . . . . . mn = 1.675×10−27 kg = 1.009 u = 939.6 MeV/c2

Planck constant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . h = 6.626×10−34 J ·s

Reduced Planck constant . . . . . . . . . . . . . . . . . . � =
1
2π
h = 1.055×10−34 J · s

Boltzmann constant k = 1.381×10−23 J · K−1 = 0.8631×10−12 C/(V · m)

Electric constant . . . . . . . . . . . . . . . . . . . . . . . . . . . ε0 = 8.854×10−12 C/(V · m)

Magnetic constant μ0 = 4π×10−7 (V · s)/(A · m) ≈ 12.57 (V · s)/(A · m)

Newtonian gravitation constant. . . . . . .. G = 6.672×10−11 m3 · kg−1 · s−2

Proton / electron mass. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . mp/me = 1836.1

Specific charge of electron . . . . . . . . . . . . . . . .. e/me = 1.759×1011 C · kg−1

Planck constant / electron charge . . . . . . . . . . . . h/e = 4.136×10−15 V · s

Alpha particle mass mα = 6.645×10−27 kg = 4.0015 u = 3727.4 MeV/c2

Elementary charge / Planck constant . . . . . . . . . e/h = 2.418×1014 A·J−1
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1.2 Derived Physical Constants and Relationships

• Speed of light in vacuum:

c =
1√
ε0μ0

≈ 3×108 m/s (1.1)

• Reduced Planck constant × speed of light in vacuum:

�c =
h

2π
c = 197.3 MeV · fm = 197.3 eV · nm ≈ 200 MeV · fm (1.2)

• Bohr radius constant [see (3.4)]

a0 =
�c

α mec2
=

4πε0
e2

(�c)2

mec2
= 0.5292 Å (1.3)

• Fine structure constant [see (3.6)]

α =
e2

4πε0
1
�c

=
�c

a0mec2
= 7.297×10−3 ≈ 1

137
(1.4)

• Rydberg energy [see (3.8)]

ER =
1
2
mec

2α2 =
1
2

[
e2

4πε0

]2
mec

2

(�c)2
= 13.61 eV (1.5)

• Rydberg constant [see (3.11)]

R∞ =
ER

2π�c
=
mec

2 α2

4π�c
=

1
4π

[
e2

4π ε0

]2
mec

2

(�c)3
= 109 737 cm−1 (1.6)

• Classical electron radius [see (6.43), (6.60), (7.31), (7.41), and (7.89)]

re =
e2

4πε0mec2
= 2.818 fm (1.7)

• Compton wavelength of the electron [see (7.44)]

λc =
h

mec
=

2π�c

mec2
= 0.02426 Å (1.8)

• Thomson classical cross section for free electron [see (7.41)]

σTh =
8π
3
r2e = 0.6653 b = 0.6653×10−24 cm2 (1.9)

• Collision stopping power constant [see (6.43)]

C0=4πNA

(
e2

4πε0

)2 1
mec2

=4πNAr
2
emec

2=0.3071 MeV · cm2 ·mol−1 (1.10)
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1.3 Milestones in Modern Physics and Medical Physics

X rays Wilhelm Konrad Röntgen 1895

Natural radioactivity Antoine-Henri Becquerel 1896

Electron Joseph John Thomson 1897

Radium-226 Pierre Curie, Marie Curie – Sk�lodowska 1898

Alpha particle Ernest Rutherford 1899

Energy quantization Max Planck 1900

Special theory of relativity Albert Einstein 1905

Photoelectric effect Albert Einstein 1905

Characteristic x rays Charles Barkla 1906

Alpha particle scattering Hans Geiger, Ernest Marsden 1909

Atomic model Ernest Rutherford 1911

Thermionic emission Owen W. Richardson 1911

Electron charge Robert Millikan 1911

Model of hydrogen atom Neils Bohr 1913

Energy quantization James Franck, Gustav Hertz 1914

Tungsten filament for x-ray tubes William D. Coolidge 1914

Proton Ernest Rutherford 1919

X-ray scattering (Compton effect) Arthur H. Compton 1922

Exclusion principle Wolfgang Pauli 1925

Quantum wave mechanics Erwin Schrödinger 1926

Wave nature of the electron Clinton J. Davisson, Lester H. Germer 1927

Cyclotron Ernest O. Lawrence 1931

Neutron James Chadwick 1932

Positron Carl D. Anderson 1932

Artificial radioactivity Irène Joliot-Curie, Frédéric Joliot 1934

Čerenkov radiation Pavel A. Čerenkov, Sergei I. Vavilov 1934

Uranium fission Meitner, Frisch, Hahn, Strassmann 1939

Betatron Donald W. Kerst 1940

Spontaneous fission Georgij N. Flerov, Konstantin A. Petržak 1940

Nuclear magnetic resonance Felix Bloch, Edward Purcell 1946

Cobalt-60 machine Harold E. Johns 1951

Recoil-less nuclear transition Rudolf L. Mössbauer 1957

Gamma Knife Lars Leksell 1968

Computerized tomography (CT) Godfrey N. Hounsfield, Alan M. Cormack 1971

Magnetic resonance imaging (MRI) Paul C. Lauterbur, Peter Mansfield 1973

Positron emission tomography (PET) Michael Phelps 1973
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1.4 Physical Quantities and Units

1.4.1 Rules Governing Physical Quantities and Units

A physical quantity is defined as quantity that can be used in mathematical
equations of science and technology. It is characterized by its numerical value
(magnitude) and associated unit. The following rules apply in general:

• Symbols for physical quantities are set in italic (sloping) type, while
symbols for units are set in roman (upright) type.

For example: m = 21 kg; E = 15 MeV; K = 180 cGy.
• The numerical value and the unit of a physical quantity must be separated

by space.
For example: 21 kg, not 21kg; 15MeV, not 15MeV.

• Superscripts and subscripts used with physical quantities are in italic type
if they represent variables, quantities, or running numbers; they are in
roman type if they are descriptive.

For example: NX (exposure calibration coefficient with X a quantity),

not NX;
n∑

i=0

Xi, where i and n represent running numbers, not
n∑

i=0

Xi;

aμtr where a and tr are descriptive subscripts, not aμtr; Umax not Umax.
• A space or half-high dot is used to signify multiplication of units.

For example: 15m/s or 15 m · s−1 or 15 m s−1, not 15 ms−1.
• It must be clear to which unit a numerical value belongs and which

mathematical operation applies to the specific quantity.
For example: 10 cm × 15 cm, not 10 × 15 cm; 1 MeV to 10 MeV or
(1 to 10) MeV, not 1MeV– 10 MeV and not 1 to 10MeV; 100 cGy ±
2 cGy or (100 ± 2) cGy not 100± 2 cGy; 80 %± 10 % or (80 ± 10) %,
not 80 ± 10 %; 210×(1 ± 10 %) cGy, not 210 cGy ± 10 %.

1.4.2 The SI System of Units

The currently used metric system of units is known as the Système Inter-
national d’Unités (International System of Units) with the international
abbreviation SI. The system is founded on base units for seven basic physical
quantities. All other quantities and units are derived from the seven base
quantities and units. The seven base quantities and their units are:

Length � . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . meter (m)
Mass m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . kilogram (kg)
Time t . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . second (s)
Electric current I . . . . . . . . . . . . . . . . . . . . . ampere (A)
Temperature T . . . . . . . . . . . . . . . . . . . . . . . . kelvin (K)
Amount of substance . . . . . . . . . . . . . . . . . . mole (mol)
Luminous intensity . . . .. . . . . . . . . . . . . . . . candela (cd)
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Table 1.1. The main basic physical quantities and several derived physical
quantities with their units in Système International (SI) and in radiation physics

Physical Symbol Units Units commonly used Conversion

quantity in SI in radiation physics

Length � m nm, Å, fm 1 m = 109 nm = 1010 Å = 1015 fm

Mass m kg MeV/c2 1 MeV/c2 = 1.778×10−30 kg

Time t s ms, μ s, ns, ps 1 s = 103 ms = 106 μs = 109 ns = 1012 ps

Current I A mA, μ A, nA, pA 1 A = 103 mA = 106 μA = 109 nA

Temperature T K T (inK) = T (in oC) + 273.16

Mass density ρ kg/m3 g/cm3 1 kg/m3 = 10−3 g/cm3

Current density j A/m2

Velocity υ m/s

Acceleration a m/s2

Frequency ν Hz 1 Hz = 1 s−1

Electric charge q C e 1 e = 1.602×10−19 C

Force F N 1 N = 1 kg · m · s−2

Pressure p Pa 760 tor = 101.3 kPa 1 Pa = 1 N · m−2 = 7.5×10−3 torr

Momentum p N · s 1 N · s = 1 kg · m · s−1

Energy E J eV, keV, MeV 1 eV = 1.602×10−19 J = 10−3 keV

Power P W 1 W = 1 J/s = 1 V · A

Examples of basic and derived physical quantities and their units are given
in Table 1.1. The Système International obtains its international authority
from the Meter Convention that was endorsed in 1875 by 17 countries; the
current membership stands at 48 countries.

While six of the seven basic physical quantities and their units seem
straightforward, the quantity “amount of substance” and its unit the mole
(mol) cause many conceptual difficulties for students. The SI definition of the
mole is as follows: “One mole is the amount of substance of a system which
contains as many elementary entities as there are atoms (unbound, at rest,
and in ground state) in 0.012 kilograms of carbon-12”.

The following additional features should be noted:

• The term “elementary entity” is defined as atom, molecule, ion, electron, or
some other particle and represents the smallest component of a substance
which cannot be broken down further without altering the nature of the
substance.

• When referring to “mole of a substance” it is important to specify the
elementary entity under consideration, such as atom, molecule, ion, other
particle, etc.

• The number of elementary entities in a mole is by definition the same for
all substances and is equal to a universal constant called the Avogadro
constant NA with unit mol−1, as discussed in Sect. 1.13.2.
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Table 1.2. Non-SI unit of quantities of importance to general physics as well as
medical physics

Physical quantity Unit Symbol Value in SI units

Time day d 1 d = 24 h = 86400 s
hour h 1 h = 60 min = 3600 s
minute min 1 min = 60 s

Angle degree o 1o = (π/180) rad
Energy electron volta eV 1 eV = 1.6×10−19 J
Mass unified atomic u 1 u = 931.5 MeV/c2

mass unitb

a The electron volt (eV) is defined as the kinetic energy acquired by an electron with
charge e = 1.6×10−19 C passing through a potential difference of 1V in vacuum.
b The unified atomic mass unit (u) or dalton (Da) is a unit of atomic or molecular
mass. It is equal to 1/12 of the mass of an unbound carbon-12 atom, at rest in its
ground state. (for more detail see Sect. 1.13).

1.4.3 Non-SI Units

Certain units are not part of the SI system of units but, despite being out-
side the SI, are important and widely used with the SI system. Some of the
important non-SI units are listed in Table 1.2.

1.5 Classification of Forces in Nature

Four distinct forces are observed in the interaction between various types of
particles. These forces, in decreasing order of strength, are the strong force,
electromagnetic (EM) force, weak force, and gravitational force with relative
strengths of 1, 1/137, 10−6, and 10−39, respectively. The four fundamental
forces, their source, and their transmitted particle are listed in Table 1.3. As
far as the range of the four fundamental forces is concerned, the forces are
divided into two groups: two forces are infinite range force and two are very
short-range force:

1. The range of the EM and gravitational force is infinite (1/r2 dependence
where r is the separation between two interacting particles).

2. The range of the strong and weak force is extremely short (of the order of
a few femtometers).

Each force results from a particular intrinsic property of the particles, such
as strong charge for the strong force, electric charge for the EM force, weak
charge for the weak force, and energy for the gravitational force:

• Strong charge enables the strong force transmitted by mass-less particles
called gluons and resides in particles referred to as quarks.

• Electric charge enables the electromagnetic force transmitted by photons
and resides in charged particles such as electrons, positrons, protons, etc.
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Table 1.3. The four fundamental forces in nature, their source, their transmitted
particle, and their relative strength normalized to 1 for the strong force

Force Source Transmitted particle Relative strength

Strong Strong charge Gluon 1
EM Electric charge Photon 1/137
Weak Weak charge W+, W−, and Zo 10−6

Gravitational Energy Graviton 10−39

• Weak charge enables the weak force transmitted by particles called W and
Z0, and resides in particles called quarks and leptons.

• Energy enables the gravitational force transmitted by a hypothetical
particle called graviton.

1.6 Classification of Fundamental Particles

Two classes of fundamental particles are known: hadrons and leptons.

1. Hadrons are particles that exhibit strong interactions. They are composed
of quarks with a fractional electric charge ( 2

3 or −1
3 ) and characterized by

one of three types of strong charge called color (red, blue, green). There
are six known quarks: up, down, strange, charm, top, and bottom. Two
classes of hadrons are known: mesons and baryons.

– Mesons have rest masses that fall between the rest mass of the electron
and the rest mass of the proton.

– Baryons have a rest mass equal to or greater than the proton rest
mass. Proton and neutron as well as many more exotic heavy particles
belong to the baryon group. All baryons with the exception of proton
are unstable and decay into products that include a proton as the end
product.

2. Leptons are particles that do not interact strongly. Electron e, muon μ,
tau τ and their corresponding neutrinos νe, νμ, and ντ are in this category.

1.7 Classification of Radiation

Radiation is classified into two main categories, as shown in Fig. 1.1: non-
ionizing and ionizing, depending on its ability to ionize matter. The ionization
potential of atoms, i.e., the minimum energy required for ionizing an atom,
ranges from a few electronvolts for alkali elements to 24.6 eV for helium (noble
gas). Ionization potentials of all other atoms are between the two extremes.

• Non-ionizing radiation cannot ionize matter because its energy is
lower than the ionization potential of atoms or molecules of the absorber.
The term non-ionizing radiation thus refers to all types of electromagnetic
radiation that do not carry enough energy per quantum to ionize atoms
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Fig. 1.1. Classification of radiation

or molecules of the absorber. Near ultraviolet radiation, visible light,
infrared photons, microwaves, and radio waves are examples of non-
ionizing radiation.

• Ionizing radiation can ionize matter either directly or indirectly because its
quantum energy exceeds the ionization potential of atoms and molecules
of the absorber. Ionizing radiation has many practical uses in industry,
agriculture, and medicine but it also presents a health hazard when used
carelessly or improperly. Medical physics is largely, but not exclusively,
based on the study and use of ionizing radiation in medicine; health physics
deals with health hazards posed by ionizing radiation and with safety issues
related to use of ionizing radiation.

1.8 Classification of Ionizing Radiation

Ionizing radiation is classified into two distinct categories according to the
mode of ionization and also into two categories according to the density of
ionization it produces in the absorber.
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1.8.1 Directly and Indirectly Ionizing Radiation

According to the mode of ionization there are two categories of ionizing
radiation, directly ionizing and indirectly ionizing:

1. Directly ionizing radiation: Comprises charged particles (electrons, pro-
tons, α particles, heavy ions) that deposit energy in the absorber through a
direct one-step process involving Coulomb interactions between the directly
ionizing charged particle and orbital electrons of the atoms in the absorber.

2. Indirectly ionizing radiation: Comprises neutral particles (photons such as
x rays and γ rays, neutrons) that deposit energy in the absorber through
a two-step process as follows:

• In the first step a charged particle is released in the absorber (pho-
tons release either electrons or electron/positron pairs, neutrons release
protons or heavier ions).

• In the second step, the released charged particles deposit energy to the
absorber through direct Coulomb interactions with orbital electrons of
the atoms in the absorber.

Both directly and indirectly ionizing radiations are used in diagnosis and
treatment of disease. The branch of medicine that uses ionizing radiation in
treatment of disease is called radiotherapy, therapeutic radiology or radiation
oncology. The branch of medicine that uses ionizing radiation in diagnosis of
disease is called medical imaging and is usually divided into two categories:
diagnostic radiology based on use of x rays for imaging and nuclear medicine
now often referred to as molecular imaging based on use of radionuclides for
imaging.

1.8.2 Low LET and High LET Radiation

The ionization density produced by ionizing radiation in tissue depends on
the linear energy transfer (LET) of the ionizing radiation beam. The LET has
been defined for use in radiobiology and radiation protection to specify the
quality of an ionizing radiation beam. According to the density of ionization
produced in the absorber there are two distinct categories of ionizing radiation:

1. Low LET (also referred to as sparsely ionizing) radiation.
2. High LET (also referred to as densely ionizing) radiation.

In contrast to stopping power (see Chap. 6) which focuses attention on the
energy loss by an energetic charged particle moving through an absorber,
the LET focuses on the linear rate of energy absorption by the absorbing
medium as the charged particle traverses the absorber. The LET is measured
in keV/μm with 10 keV/μm separating the low LET (sparsely ionizing) radi-
ation from the high LET (densely ionizing) radiation. Table 1.4 gives a list of
various low LET and high LET ionizing radiation beams and the LETs they
produce in tissue.
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Table 1.4. LET values for various low LET radiation beams (left hand side of
table) and high LET radiation beams (right hand side of table). LET of 10 keV/μm
separates low LET radiation from high LET radiation

Low LET High LET
LET (keV/μm) LET (keV/μm)

radiation radiation

X rays: 250 kVp 2 Electrons: 1 keV 12.3
γ rays: Co − 60 0.3 Neutrons: 14 MeV 12
X rays: 3 MeV 0.3 Protons: 2 MeV 17
Electrons: 10 keV 2.3 Carbon ions: 100 MeV 160
Electrons: 1 MeV 0.25 Heavy ions: 100–2000

1.8.3 Use of Ionizing Radiation

The study and use of ionizing radiation started with the discovery of x rays
by Wilhelm Röntgen in 1895 and the discovery of natural radioactivity by
Henri Becquerel in 1896. Since then, ionizing radiation played an important
role in atomic and nuclear physics where it ushered in the era of modern
physics and in many diverse areas of human endeavor, such as medicine, indus-
try, power generation, weapon production, waste management, and security
services. Concurrently with the development of new practical uses of ionizing
radiation, it became apparent that ionizing radiation can cause somatic and
genetic damage to biologic material including human tissue. For safe use of
ionizing radiation it is thus imperative that the user have not only a clear
understanding of the underlying physics but also of the biological hazards
posed by ionizing radiation.

Ionizing radiation is used in the following areas:

1. In medicine where it is used for imaging in diagnostic radiology and
nuclear medicine; for treatment of cancer in radiotherapy; for blood irra-
diation to prevent transfusion-associated graft versus host disease; and for
sterilization of single use medical devices.

2. In nuclear reactors where it is used for basic nuclear physics research; for
production of radionuclides used in medicine and industry; and for electric
power generation.

3. In industrial radiography where it is used for nondestructive inspection of
welds in airplane manufacturing as well as inspection of welds in gas and
oil pipelines.

4. In well logging where it is used to obtain information about the geologic
media and recoverable hydrocarbon zones through which a borehole has
been drilled.

5. In insect pest control where insects made sterile by a high radiation dose
are released into the wild to control and eradicate insect pests.

6. In security services where it is used for screening of cargo and luggage as
well as for mail sanitation mainly against the anthrax bacterium.
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7. In food production where it is used for irradiation of foods such as meat,
poultry, fish, spices, fresh fruit, vegetables, and grains to: kill bacteria,
viruses, parasites, and mold; slow the ripening process; prevent sprouting;
and extend shelf life.

8. In waste management where hospital waste and domestic sewage sludge
are irradiated with the objective to kill pathogenic microorganisms and
disease-causing bacteria before release into the environment.

9. In chemical industry where radiation processing produces a chemical mod-
ification of industrial materials such as polymers (polyethylene) and crude
rubber used in vulcanized tires.

10. In production of weapons based on fission and fusion for military purpose.

1.9 Classification of Directly Ionizing Radiation

Most directly ionizing radiations have been found suitable for use in external
beam radiotherapy; however, their usage varies significantly from one particle
to another, as result of physical and economic considerations. Generally, with
regard to radiotherapy, directly ionizing radiations are divided into two cate-
gories: electron therapy and hadron therapy. Electrons interact with absorber
atoms mainly through Coulomb interactions; hadrons, with the exception
of neutrons, interact with the absorber through Coulomb interactions with
orbital electrons as well as through strong interactions with the nuclei of the
absorber.

Electrons have been used in routine radiotherapy for treatment of superfi-
cial lesions for the past 50 years, while proton beams, the most common hadron
beams used in external beam radiotherapy, have only recently been used on
a wider, albeit still limited, scale. Heavier hadrons, such as carbon-12, are
still considered an experimental modality available in only a few institutions
around the world.

Electron beams are produced relatively inexpensively in clinical linear
accelerators (linacs). Proton beams, on the other hand, are produced in a
cyclotron or synchrotron and these machines are significantly more sophisti-
cated and expensive in comparison with linacs. Much work is currently being
done on alternative means for proton beam generation with the goal to design
compact machines that will fit into a treatment bunker similarly to the cur-
rent experience with clinical linacs. Laser-based proton generating methods
currently hold most promise for eventual use in compact, inexpensive, and
practical proton machines.

1.9.1 Electrons

Electrons play an important role in medical physics and, because of their rel-
atively small mass are considered light charged particles. Joseph J. Thomson
discovered electrons in 1897 while studying the electric discharge in a partially
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evacuated Crookes tube (see Sect. 14.4.1). They are used directly as beams
for cancer therapy, are responsible for the dose deposition in media by photon
and electron beams, and they govern the experimental and theoretical aspects
of radiation dosimetry. With regard to their mode of production, electrons fall
into the following categories:

• Electrons released in medium by photoelectric effect are referred to as
photoelectrons.

• Electrons released in medium by Compton effect are referred to as Comp-
ton or recoil electrons.

• Electrons produced in medium by pair production interactions in the field
of the nucleus or in the field of an orbital electron are referred to as pair
production electrons.

• Electrons emitted from nuclei by β− decay are referred to as beta particles
or beta rays.

• Electrons produced by linear accelerators (linacs), betatrons or microtrons
for use in radiotherapy with kinetic energies typically in the range from
4 MeV to 30 MeV are referred to as megavoltage electrons.

• Electrons produced through Auger effect are referred to as Auger electrons,
Coster–Kronig electrons, or super Coster–Kronig electrons.

• Electrons produced through internal conversion are referred to as internal
conversion electrons.

• Electrons produced by charged particle collisions are of interest in radia-
tion dosimetry and are referred to as delta (δ) rays.

• Electrons released from metallic surface in thermionic emission are referred
to as thermions.

1.9.2 Positrons

The positron or antielectron is the antiparticle of an electron with same mass
and spin as the electron and charge equal in magnitude but opposite in sign to
that of the electron. In 1928 Paul Dirac was the first to postulate positron’s
existence and in 1932 Carl D. Anderson discovered it as the first evidence
of antimatter in his experimental study of cosmic rays. There are three ways
for generating positrons: (1) positron emission beta decay, (2) nuclear pair
production, and (3) triplet production:

1. Positrons emitted from nuclei by β+ radioactive decay are used in positron
emission tomography (PET) and referred to as beta particles or beta rays.

2. Positrons produced by nuclear pair production or triplet production are
referred to as pair production positrons and play an important role in
interactions of high-energy photons with absorbing medium.

1.9.3 Heavy Charged Particles

For use in radiotherapy heavy charged particles are defined as particles such
as proton and heavier ions with mass exceeding the electron mass. They are
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produced through acceleration of nuclei or ions in cyclotrons, synchrotrons or
heavy particle linacs. Heavy charged particles of importance in nuclear physics
and also potentially useful in medicine for treatment of disease are:

• Proton is the nucleus of a hydrogen-1 (11H) atom. The hydrogen-1 atom,
a stable isotope of hydrogen with a natural abundance of 99.985 %, is
called protium or light hydrogen and consists of a nucleus (proton) and
one electron.

• Deuteron, the nucleus of a hydrogen-2 (21H) atom, consists of one proton
and one neutron bound together with a total binding energy of 2.225 MeV.
The hydrogen-2 atom, a stable isotope of hydrogen with a natural abun-
dance of 0.015 %, is called deuterium or heavy hydrogen and consists of a
nucleus (deuteron) and one electron.

• Triton, the nucleus of a hydrogen-3 (31H) atom, consists of one proton and
two neutrons bound together with a total binding energy of 8.48 MeV.
The hydrogen-3 atom, a radioactive isotope of hydrogen with a half-life
t1/2 of 12.32 years, is called tritium and consists of a nucleus (triton) and
one electron.

• Helion, the nucleus of a helium-3 (32He) atom, consists of two protons and
one neutron bound together with a total binding energy of 7.72 MeV. The
helium-3 atom, a stable isotope of helium with a natural abundance of
∼0.00014 %, consists of a nucleus (helion) and two electrons.

• Alpha particle, the nucleus of a helium-4 (42He) atom, consists of two pro-
tons and two neutrons bound together with a total binding energy of
28.3 MeV. The helium-4 atom, a stable isotope of helium with a natural
abundance of ∼99.99986 %, consists of a nucleus (alpha particle) and two
electrons.

The basic atomic and nuclear properties of heavy charged particles and atoms
listed above are summarized in Appendix A and in Table 1.5.

Table 1.5. Basic properties of heavy charged particles used in nuclear physics and
medicine. For the nuclear structures, the table lists the special name as well as the
number of protons and neutrons; for associated atomic structures the table lists the
symbol, natural abundance and the special name

ATOM NUCLEUS

Designation Symbol Natural Name Name Protons Neutrons Nuclear

abundance (%) stability

Hydrogen-1 1
1H 99.985 Protium Proton 1 0 Stable

Hydrogen-2 2
1H 0.015 Deuterium Deuteron 1 1 Stable

Hydrogen-3 3
1H — Tritium Triton 1 2 Radio-

active

Helium-3 3
2He 0.00014 Helium-3 Helion 2 1 Stable

Helium-4 4
2He 99.99986 Helium-4 Alpha 2 2 Stable

particle
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As they penetrate into an absorber, energetic heavy charged particles lose
energy through Coulomb interactions with orbital electrons of the absorber.
Just before the heavy charged particle has expended all of its kinetic energy,
its energy loss per unit distance traveled increases drastically and this results
in a high dose deposition at that depth in the absorber. This high dose region
appears close to the particle’s range in the absorber and is referred to as the
Bragg peak. The depth of the Bragg peak in tissue depends on the mass and
energy of the charged particle (see Sect. 1.12.4).

In contrast to heavy charged particles listed above, heavier charged parti-
cles are nuclei or ions of heavier atoms such as carbon-12 (126C), nitrogen-14(
14
7N
)
, or neon-20

(
20
10Ne

)
. They are generated with cyclotrons and syn-

chrotrons for general use in nuclear and high-energy physics but are also used
for radiotherapy in a few highly specialized institutions around the world.
They offer some advantages over charged particle radiotherapy with proton
beams; however, equipment for their production is very expensive to build
and operate, and advantages of their use for general radiotherapy are still not
clearly established.

1.9.4 Pions

Pions π belong to a group of short-lived subatomic particles called mesons.
They are either neutral

(
π0
)

or come with positive (π+) or negative (π−)
electron charge and their rest mass is about 140me where me is the rest mass
of the electron. Pions do not exist in free state in nature; they reside inside the
nuclei of atoms and, based on their mass, were identified as the quanta of the
strong interaction. They can be ejected from the nucleus in nuclear reactions
by bombarding target nuclei with energetic electrons or protons.

Of the three pion types, the negative π mesons (π−) have been used
for radiotherapy, since, by virtue of their negative charge, they produce
the so-called “pion stars” in irradiated nuclei. As negative pions penetrate
an absorber, they lose energy, similarly to heavy charged particles, through
Coulomb interactions with orbital electrons of the absorber. However, close
to their range in the absorber, they not only exhibit a Bragg peak, they
are also drawn into a nucleus of the absorber. This nuclear penetration
makes the absorbing nucleus unstable and causes it to break up violently
into smaller energetic fragments. These fragments fly apart and deposit a
significant amount of energy within a short distance from the point of the
nuclear reaction. The effect is called a “pion star” and it accentuates the nor-
mal Bragg peak dose distribution. In the past pions showed great promise for
use in radiotherapy; however, during recent years the studies of pions were
largely abandoned in favor of heavy charged particles such as protons.
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1.10 Classification of Indirectly Ionizing
Photon Radiation

Indirectly ionizing photon radiation consists of three categories of photon:
ultraviolet (UV), x ray, and γ ray. While UV photons are of some limited use
in medicine, imaging and treatment of disease are carried out with photons
of higher energy such as x rays and γ rays. With regard to their origin, these
photons fall into five categories, all of them discussed in detail in subsequent
chapters of this book:

• Gamma rays (see Sect. 11.7):

Photons resulting from nuclear transitions.

• Annihilation quanta (see Sect. 7.6.10):

Photons resulting from positron–electron annihilation.

• Characteristic (fluorescence) x rays (see Sect. 4.1):

Photons resulting from electron transitions between atomic shells.

• Bremsstrahlung x rays (see Sect. 4.2):

Photons resulting from electron–nucleus Coulomb interactions.

• Synchrotron radiation or magnetic bremsstrahlung (see Sect. 4.3):

Photons resulting from electrons moving in circular orbits in storage
rings.

1.11 Radiation Quantities and Units

Accurate measurement of radiation is very important in any medical use of
radiation, be it for diagnosis or treatment of disease. In diagnosis one must
optimize the image quality so as to obtain the best possible image quality
with the lowest possible radiation dose to the patient to minimize the risk of
morbidity. In radiotherapy the prescribed dose must be delivered accurately
and precisely to maximize the tumor control probability (TCP) and to min-
imize the normal tissue complication probability (NTCP). In both instances
the risk of morbidity includes acute radiation effects (radiation injury) as well
as late effects such as induction of cancer and genetic damage.

Several quantities and units were introduced for the purpose of quantifying
radiation and the most important of these are listed in Table 1.6. Also listed
are the definitions for the various quantities and the relationships between the
old and the SI units for these quantities.

• Exposure X is related to the ability of photons to ionize air. Its unit
roentgen (R) is defined as charge of 2.58×10−4 C produced per kilogram
of air.
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Table 1.6. Radiation quantities, radiation units, and conversion between old and
SI units

Quantity Definition SI unit Old unit Conversion

Exposure X X =
ΔQ

Δmair
2.58× 10−4 C

kg air
1 R =

1 esu

cm3 airSTP

1R = 2.58× 10−4 C

kg air

Kerma K K =
ΔEtr

Δm
1 Gy = 1

J

kg
—– —–

Dose D D =
ΔEab

Δm
1 Gy = 1

J

kg
1 rad = 100

erg

g
1 Gy = 100 rad

Equiv. dose H H = DwR 1 Sv 1 rem 1 Sv = 100 rem

Activity A A = λ N 1 Bq = 1 s−1 1 Ci = 3.7×1010 s−1 1 Bq =
1 Ci

3.7×1010

where

ΔQ is the charge of either sign collected.

Δmair is the mass of air.

ΔEtr is energy transferred from indirectly ionizing particles to charged particles in absorber.

ΔEab is absorbed energy.

Δm is the mass of medium.

wR is the radiation weighting factor.

λ is the the decay constant.

N is the number of radioactive atoms.

R stands for roentgen.

Gy stands for gray.

Sv stands for sievert.

Bq stands for becquerel.

Ci stands for curie.

STP stands for standard temperature (273.2 K) and standard pressure (101.3 kPa).

• Kerma K (acronym for kinetic energy released in matter) is defined for
indirectly ionizing radiations (photons and neutrons) as the energy trans-
ferred to charged particles per unit mass of the absorber.

• Dose D is defined as the energy absorbed per unit mass of medium. Its
SI unit gray (Gy) is defined as 1 J of energy absorbed per kilogram of
medium.

• Equivalent dose H is defined as the dose multiplied by a radiation-
weighting factor wR. The SI unit of equivalent dose is sievert (Sv).

• Activity A of a radioactive substance is defined as the number of nuclear
decays per time. Its SI unit is becquerel (Bq) corresponding to one decay
per second.

1.12 Dose Distribution in Water for Various
Radiation Beams

Dose deposition in water is one of the most important characteristics of the
interaction of radiation beams with matter. This is true in general radia-
tion physics and even more so in medical physics, where the dose deposition
properties in tissue govern both the diagnosis of disease with radiation
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(imaging physics) as well as treatment of disease with radiation (radiotherapy
physics).

Imaging with ionizing radiation is limited to the use of x-ray beams in
diagnostic radiology and γ-ray beams in nuclear medicine, while in radiother-
apy the use of radiation is broader and covers essentially all ionizing radiation
types ranging from x rays and γ rays through electrons to neutrons, protons
and heavier charged particles.

In diagnostic radiology imaging one is interested in the radiation beam
that propagates through the patient, while in nuclear medicine imaging (now
referred to as molecular imaging) one is interested in the radiation beam
that emanates from the patient. In radiotherapy, on the other hand, one is
interested in the energy deposited in the patient by a radiation source that
is located either outside of the patient (external beam radiotherapy) or inside
the tumor (brachytherapy).

When considering the dose deposition in tissue by radiation beams, four
beam categories are usually defined: two categories (photons and neutrons) for
indirectly ionizing radiation and two categories (electrons and heavy charged
particles) for directly ionizing radiation. Typical dose distributions in water
for the four categories are displayed in Fig. 1.2, normalized to 100 % at the dose
maximum (percentage depth doses) for various radiation types and energies:

Fig. 1.2. Percentage depth dose against depth in water for radiation beams of
various types and energies. Parts a and b are for indirectly ionizing radiation: in a
for photon beams in the range from 100 kVp to 22 MV and in b for various neutron
beams. Parts c and d are for directly ionizing radiation: in c for electron beams
in the range from 9 MeV to 32 MeV and in d for heavy charged particle beams
(190 MeV protons, 190 MeV deuterons, and 310 MeV carbon ions)
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for indirectly ionizing radiation in (a) for photons and in (b) for neutrons and
for directly ionizing radiation in (c) for electrons and in (d) for heavy charged
particles (protons, deuterons, and carbon-12 ions). It is evident that the depth
dose characteristics of radiation beams depend strongly upon beam type and
energy. However, they also depend in a complex fashion on other beam param-
eters, such as field size, source–patient distance, etc. In general, indirectly ion-
izing radiation exhibits exponential-like attenuation in absorbing media, while
directly ionizing radiation exhibits a well-defined range in absorbing media.

Of the four beam categories of Fig. 1.2, photon beams in the indirectly ion-
izing radiation category and electron beams in the directly ionizing radiation
category are considered conventional beams, well understood and readily avail-
able for radiotherapy in all major medical institutions around the world. On
the other hand, neutron beams in the indirectly ionizing radiation category
and heavy ions including protons in the directly ionizing radiation category
remain in the category of special beams, available in only a limited number
of institutions around the world, despite having been in use for the past five
decades. These beams offer some advantages in treatment of certain malig-
nant diseases; however, in comparison with conventional beams, they are
significantly more complicated to use as well as to maintain and their infras-
tructure and operating costs are also considerably higher, currently precluding
a widespread clinical use.

The special beams (neutrons and protons) provide certain advantages
when used in treatment of selected tumor types; however, their choice and
prescribed dose must account not only for the physical beam characteristics
but also for the biological effects associated with radiation beams: the relative
biological effectiveness (RBE) and the oxygen enhancement ratio (OER).

Since the biological effect of a dose of radiation depends on its LET,
knowing the LET of a given radiation beam is important when prescribing a
tumoricidal dose in radiotherapy. As the LET of radiation increases, the ability
of the radiation to produce biological damage also increases. The relative bio-
logical effectiveness (RBE) is used for comparison of the dose of test radiation
to the dose of standard radiation to produce the same biological effect. The
RBE varies not only with the type of radiation but also with the type of cell
or tissue, biologic effect under investigation, dose, dose rate and fractionation.
In general, the RBE increases with LET to reach a maximum of 3 to 8 at very
high LET of ∼200 keV/μm and then it decreases with further increase in LET.

The presence or absence of molecular oxygen within a cell influences the
biological effect of ionizing radiation: the larger is the cell oxygenation above
anoxia, the larger is the biological effect of ionizing radiation. The effect is
quite dramatic for low LET (sparsely ionizing) radiations, while for high LET
(densely ionizing) radiations it is much less pronounced. The oxygen enhance-
ment ratio (OER) is defined as the ratio of doses without and with oxygen
(hypoxic versus well oxygenated cells) to produce the same biological effect.
For the low LET radiations, such as x rays, γ rays and electrons. OER equals
about 3, while for high LET radiations such as neutrons it is about 1.5.
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1.12.1 Dose Distribution in Water for Photon Beams

A photon beam propagating through air or vacuum is governed by the inverse-
square law; a photon beam propagating through a patient, on the other hand,
is not only affected by the inverse-square law but also by attenuation and
scattering of the photon beam inside the patient. The three effects make the
dose deposition in a patient a complicated process and its determination a
complex task.

Typical dose distributions for several photon beams in the energy range
from 100 kVp to 22 MV are shown in Fig. 1.2a. Several important points and
regions of the absorbed dose curves may be identified. The beam enters the
patient on the surface where it delivers a certain surface dose Ds. Beneath the
surface, the dose first rises rapidly, reaches a maximum value at a depth zmax,
and then decreases almost exponentially until it reaches an exit dose value at
the patient’s exit point. The depth of dose maximum zmax is proportional to
the beam energy and amounts to 0 for superficial (50 kVp to 100 kVp) and
orthovoltage (100 kVp to 300 kVp) beams; 0.5 cm for cobalt-60 γ rays; 1.5 cm
for 6 MV beams; 2.5 cm for 10 MV beams; and 4 cm for 22 MV beams.

The relatively low surface dose for high-energy photon beams (referred to
as the skin sparing effect) is of great importance in radiotherapy for treatment
of deep-seated lesions without involvement of the skin. The tumor dose can
be concentrated at large depths in the patient concurrently with delivering a
low dose to patient’s skin that is highly sensitive to radiation and must be
spared as much as possible when it is not involved in the disease.

The dose region between the surface and the depth of dose maximum zmax

is called the dose build-up region and represents the region in the patient in
which the dose deposition rises with depth as a result of the range of secondary
electrons released in tissue by photon interactions with the atoms of tissue. It
is these secondary electrons released by photons that deposit energy in tissue
(indirect ionization). The larger is the photon energy, the larger are the energy
and the range of secondary electrons and, consequently, the larger is the depth
of dose maximum.

It is often assumed that at depths of dose maximum and beyond electronic
equilibrium is achieved; however, a better term is transient electronic equilib-
rium because of the effects of photon beam attenuation as the photon beam
penetrates into a patient. Electronic equilibrium or, more generally, charged
particle equilibrium (CPE) exist for a volume if each charged particle of a
given type and energy leaving the volume is replaced by an identical particle
of the same type and energy entering the volume.

1.12.2 Dose Distribution in Water for Neutron Beams

Neutron beams belong to the group of indirectly ionizing radiation, but rather
than releasing electrons like photons do, they release protons or heavier ions
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that subsequently deposit their energy in absorbing medium through Coulomb
interactions with the electrons and nuclei of the absorber.

As shown in Fig. 1.2b, the dose deposition characteristics in water by neu-
trons are similar to those of photon beams. Neutron beams exhibit a relatively
low surface dose although the skin sparing effect is less pronounced than that
for photon beams. They also exhibit a dose maximum beneath the skin sur-
face and an almost exponential decrease in dose beyond the depth of dose
maximum. Similarly to photons, the dose build up region depends on neu-
tron beam energy; the larger is the energy, the larger is the depth of dose
maximum.

For use in radiotherapy, neutron beams are produced either with cyclotrons
or neutron generators. In a cyclotron, protons or deuterons are accelerated to
kinetic energies of 50 MeV to 80 MeV and strike a thick beryllium target to
produce fast neutrons that are collimated into a clinical neutron beam. The
neutron beams produced in the beryllium target have beam penetration and
build up characteristics similar to those of 4 MV to 10 MV megavoltage x-ray
beams.

Less common in clinical use are neutron generators in which deuterons are
accelerated to 250 keV and strike a tritium target to produce a 14 MeV neu-
tron beam which exhibits penetration characteristics similar to those obtained
for a cobalt-60 teletherapy γ ray beam.

Producing physical depth dose characteristics that are similar to those
produced by megavoltage photon beams, neutrons offer no advantage over
photons in this area. However, neutrons are high LET (densely ionizing) par-
ticles in comparison with low LET (sparsely ionizing) photon radiation and
produce more efficient cell kill per unit dose. The high LET of neutron beams
produces RBE > 1 which means that, to achieve the same biological effect, a
lower neutron dose is required compared to the photon dose.

Moreover, in comparison with photons, neutrons by virtue of their high
LET are more efficient in killing hypoxic cells in comparison to well-oxygenated
cells. The oxygen enhancement ratio (OER) of neutrons is 1.5 compared to
an OER of 3 for photons. Thus, neutrons offer no physical advantage over
photons and it is the biological advantage of neutron beams that makes neu-
trons attractive for use in radiotherapy despite the increased complexity of
producing and using them clinically.

1.12.3 Dose Distribution in Water for Electron Beams

Electrons are directly ionizing radiations and deposit their energy in tissue
through Coulomb interactions with orbital electrons and nuclei of the absorber
atoms. Megavoltage electron beams represent an important treatment modal-
ity in modern radiotherapy, often providing a unique option for treatment of
superficial tumors that are less than 5 cm deep. Electrons have been used in
radiotherapy since the early 1950s, first produced by betatrons and then by
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linear accelerators. Modern high-energy linear accelerators used in radiother-
apy typically provide, in addition to two megavoltage x-ray beam energies,
several electron beams with energies from 4 MeV to 25 MeV.

As shown in Fig. 1.2c, the electron beam percentage depth dose curve
plotted against depth in patient exhibits a relatively high surface dose (of the
order of 80 %) and then builds up to a maximum dose at a certain depth
referred to as the electron beam depth dose maximum zmax. Beyond zmax

the dose drops off rapidly, and levels off at a small low-level dose compo-
nent referred to as the bremsstrahlung tail. The bremsstrahlung component
of the electron beam is the photon contamination of the beam that results
from radiation loss experienced by incident electrons as they penetrate the
various machine components, air, and the patient. The higher is the energy of
the incident electrons, the higher is the bremsstrahlung contamination of the
electron beam.

Several parameters are used to describe clinical electron beams, such
as the most probable energy on the patient’s skin surface; mean electron
energy on the patient’s skin surface; and the depth at which the absorbed
dose falls to 50 % of the maximum dose. The depth of dose maximum gen-
erally does not depend on beam energy, contrary to the case for photon
beams; rather, it is a function of machine design. On the other hand, the
beam penetration into tissue clearly depends on beam energy; the higher is
the energy, the more penetrating is the electron beam, as is evident from
Fig. 1.2c.

1.12.4 Dose Distribution in Water for Heavy
Charged Particle Beams

Heavy charged particle beams fall into the category of directly ionizing radi-
ation depositing their energy in tissue through Coulomb interactions with
orbital electrons of the absorber. As they penetrate into tissue, heavy charged
particles lose energy but, in contrast to electrons, do not diverge apprecia-
bly from their direction of motion and therefore exhibit a distinct range
in tissue. This range depends on the incident particle’s kinetic energy and
mass.

Just before the heavy charged particle reaches its range, its energy loss
per unit distance traveled increases dramatically and this results in a high
dose deposition referred to as Bragg peak (see Sect. 1.9.3). As indicated in
Fig. 1.2d, the Bragg peak appears close to particle’s range, is very narrow,
defines the maximum dose deposited in tissue, and characterizes all heavy
charged particle dose distributions.

Because of their large mass compared to the electron mass, heavy charged
particles lose their kinetic energy only interacting with orbital electrons of
the absorber; they do not lose any appreciable amount of energy through
bremsstrahlung interactions with absorber nuclei.
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1.12.5 Choice of Radiation Beam and Prescribed Target Dose

The choice of radiation beam and dose prescription in treatment of disease
with radiation depends on many factors such as:

1. Medical patient-related and physician-related factors:
• Tumor type and histology.
• Tumor location in the patient.
• Location of sensitive structures and healthy tissues in the vicinity of

the target.
• Patient’s tolerance of treatment.
• Any previous radiation treatment.
• Physician’s training and experience.

2. Availability of equipment for diagnostic imaging and dose delivery.
3. Physical parameters of the radiation beam to be used in treatment:

• Depth dose characteristics, governed by machine design, beam energy,
field size, and other machine parameters.

• Density of ionization produced in tissue by the radiation beam to be
used in treatment.

4. Biological factors produced in tissue by the radiation beam:
• Relative biological effectiveness (RBE).
• Oxygen enhancement ratio (OER).

Based on machine related physical factors, superficial tumors are treated,
depending on their size, with single beams of:

1. Superficial x rays (50 kVp to 80 kVp) produced in superficial x-ray
machines.

2. Orthovoltage x rays (100 kVp to 300 kVp) produced in orthovoltage x-ray
machines.

3. Electrons in the energy range from 4 MeV to 25 MeV produced in clinical
linear accelerators.

Deep-seated tumors, on the other hand, are treated with multiple mega-
voltage beams from cobalt-60 teletherapy machine or linear accelerator in the
energy range from 4 MV to 25 MV. Over the past decade there have been
significant advances in technology and techniques used to plan and deliver
precision radiotherapy. The patient’s path through a radiotherapy depart-
ment involves several steps, some of them not involving the patient directly
but all of them important for a favorable treatment outcome. In short, the
steps are as follows:

1. Definition of target and collection of patient data with diagnostic imaging
techniques.

2. Treatment planning and, if required, fabrication of treatment accessories.
3. Prescription of target dose and dose fractionation.
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4. Dose delivery, typically with multiple fractions at one fraction per day for
a duration of several weeks.

5. Follow up at regular intervals.

The aim of modern dose delivery is to optimize the tumor control probability
(TCP) by delivering as high as possible dose to the target and causing as little
as possible morbidity for the patient by keeping the normal tissue complication
probability (NTCP) as low as possible. Therefore, accurate knowledge of the
tumor (target) location in the body, as well as its shape and volume are
very important parameters of modern radiotherapy. This knowledge is usually
acquired with diagnostic imaging which involves appropriate fusion of patient
data collected with two or more imaging modalities.

Traditional treatment planning is carried out by matching radiation fields
with target dimensions and subsequently calculating the resulting dose dis-
tribution, while modern treatment planning is carried out by prescribing a
suitable dose distribution and subsequently calculating the intensity modu-
lated fields required to achieve the prescribed dose distribution. The tradi-
tional treatment planning is now referred to as forward planning; planning
with beam intensity modulation is called inverse planning and dose delivery
using intensity modulated fields is called intensity modulated radiotherapy
(IMRT). In principle, the IMRT optimizes the dose delivery to the patient by
conforming the prescribed dose distribution to the target volume; however,
in this process one assumes that the target location is accurately known and
that the position and shape of the target do not change during the treatment
(intra treatment motion) and from one fractionated treatment to another
(inter treatment motion).

To have a better control of the target motion problem recent development
in dose delivery technology introduced the so-called image guided radiother-
apy (IGRT) which merged imaging and dose delivery into one machine,
allowing accurate positioning of the target into the radiation beam. The
most recent development is adaptive radiotherapy (ART) which enables tar-
get shape and position verification not only before and after treatment but
also during the dose delivery process.

1.13 Basic Definitions for Atomic Structure

The constituent particles forming an atom are protons, neutrons and electrons.
Protons and neutrons are known as nucleons and form the nucleus of the atom.
The following definitions apply for atomic structure:

• Atomic number Z: number of protons and number of electrons in an atom.
• Atomic mass number A: number of nucleons in an atom, i.e., number of

protons Z plus number of neutrons N in an atom; i.e., A = Z +N.
• Atomic mass M: expressed in unified atomic mass units u, where 1 u is

equal to one twelfth of the mass of the carbon-12 atom (unbound, at rest,
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and in ground state) or 931.5 MeV/c2. The atomic mass M is smaller
than the sum of individual masses of constituent particles because of the
intrinsic energy associated with binding the particles (nucleons) within the
nucleus (see Sect. 1.15). On the other hand, the atomic mass M is larger
than the nuclear mass M because the atomic mass M includes the mass
contribution by Z orbital electrons while the nuclear mass M does not.
The binding energy of orbital electrons to the nucleus is ignored in the
definition of the atomic mass M.

• While for carbon-12 the atomic mass M is exactly 12 u, for all other atoms
M in u does not exactly match the atomic mass number A. However, for
all atomic entities A (an integer) and M are very similar to one another
and often the same symbol (A) is used for the designation of both.

• Number of atoms Na per mass of an element is given as

Na

m
=
NA

A
, (1.11)

where NA is the Avogadro number discussed in Sect. 1.13.2.
• Number of electrons per volume of an element is

Z
Na

V
= ρ Z

Na

m
= ρ Z

NA

A
. (1.12)

• Number of electrons per mass of an element is

Z
Na

m
= Z

NA

A
. (1.13)

Note that (Z/A) ≈ 0.5 for all elements with one notable exception of
hydrogen for which (Z/A) = 1. Actually, Z/A slowly decreases from 0.5
for low Z elements to 0.4 for high Z elements. For example: Z/A for
helium-4 is 0.5, for cobalt-60 it is 0.45, for uranium-235 it is 0.39.

1.13.1 Mean Atomic Mass (Standard Atomic Weight)

Most of the naturally occurring elements are mixtures of several stable iso-
topes, each isotope with its own relative natural abundance. For a given
chemical element one stable isotope usually predominates; however, natural
elements generally consist of atoms of same atomic number Z but of various
different atomic mass numbers A as a result of different numbers of neu-
trons N . The mean atomic mass M̄ of an element is often referred to as the
standard atomic weight of an element and is given as the mean atomic mass of
all stable isotopes of the element, accounting for the isotopes’ natural relative
abundance and relative atomic mass.
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For example:

• Natural carbon (Z = 6) consists of two stable isotopes, carbon-12 with a
natural abundance of 98.93 % and relative atomic mass of 12.0000 u and
carbon-13 with a natural abundance of 1.07 % and relative atomic mass of
13.003355 u. The mean atomic mass (standard atomic weight) of carbon
M̄(C) is determined as follows

M̄(C) = 0.9893× 12.0000 u + 0.0107× 13.003355 u = 12.0107 u. (1.14)

• Natural iridium (Z = 77) consists of two stable isotopes, iridium-191 with
a natural abundance of 37.3 % and relative atomic mass of 190.960591 u
and iridium-193 with a natural abundance of 62.7 % and relative atomic
mass of 192.962924 u. The mean atomic mass (standard atomic weight) of
iridium M̄(Ir) is determined as follows

M̄(Ir) = 0.373×190.960591 u+0.627×192.962924 u = 192.216 u. (1.15)

• Natural iron is a slightly more complicated example containing four stable
isotopes with the following relative abundances and relative atomic masses:

Iron-54: 5.845 % and 53.9396148 u
Iron-56: 91.754 % and 55.9349421 u
Iron-57: 2.119 % and 56.9353987 u
Iron-58: 0.282 % and 57.9332805 u

After accounting for the relative abundances and atomic masses for the
four iron isotopes we get the following mean atomic mass (standard atomic
weight) for natural iron: M̄(Fe) = 55.845 u.

1.13.2 Unified Atomic Mass Unit and the Mole

The unified atomic mass unit u also called the dalton (Da) is related to the
macroscopic SI base unit of mass, the kilogram (kg), through the Avogadro
number NA, defined as the number of atoms (6.02214179×1023) at rest and
in their ground state contained in exactly 12 g (12×10−3 kg) of carbon-12.
Since 12 g of carbon-12 is also defined as a mole (mol) of carbon-12, we can
state that NA = 6.02214179×1023 mol−1.

Since 1 u by definition equals to the mass of 1/12 of the carbon-12 atom and
since 12 g of carbon-12 by definition contains Avogadro number (6.02214179×
1023) of atoms, we conclude that the mass of one carbon-12 atom equals to
(12 g)/NA and that the relationship between the unified atomic mass unit u
and the SI mass unit kilogram is

1 u =
1
12

× 12 g · mol−1

NA
=

10−3 kg
mol

mol
6.02214179×1023 = 1.66053878×10−27 kg

(1.16)
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In terms of energy we can express the mass 1 u in MeV/c2 to get

1 u =
1 uc2

c2

=
(1.66053878×10−27 kg)× (2.99792458×108 m · s−1)2

c2 × 1.602176487×10−13
× MeV

J
= 931.494028 MeV/c2 ≈ 931.5 MeV/c2, (1.17)

where we used the following 2006 CODATA constants available from the
NIST:

Avogadro number: NA = 6.02214179×1023 mol−1 (1.18)
Unified atomic mass unit: u = 1.660538782×10−27 kg (1.19)
Speed of light in vacuum: c = 2.9979458×108 m · s−1 (1.20)
Elementary charge (electron): e = 1.602176487×10−19 C (1.21)

The mass in grams of a chemical element equal to the mean atomic mass
(standard atomic weight) M̄(X) of the element X is referred to as a mole
of the element and contains exactly Avogadro number of atoms. In general,
Avogadro constant NA is given as the number of entities per mole, where the
entity can be atoms per mole, molecules per mole, ions per mole, electrons
per mole, etc. The mean atomic mass number M̄ of all elements is thus
defined such that a mass of M̄ grams of the element contains exactly Avogadro
number of atoms.

For example: Cobalt has only one stable isotope, cobalt-59, so that the
mean atomic mass M̄(Co) of natural cobalt is the atomic mass of cobalt-59
at 58.9332 u. Thus:

• 1 mol of natural cobalt is 58.9332 g of natural cobalt.
• A mass of 58.9332 g of natural cobalt contains 6.022×1023 cobalt atoms.

As far as the unit of atomic mass is concerned we have three related options.
The atomic mass can be expressed in one of the following three formats:

• Without a unit when it represents the ratio between the mass of a given ele-
ment and the unified atomic mass unit u ( 1/12 of the mass of the carbon-12
atom). In this case the atomic mass is dimensionless and expresses the
magnitude of the atomic mass relative to the standard mass that is 1/12 of
the mass of the carbon-12 atom.

• In units of the unified atomic mass unit u where u represents 1/12 of the
mass of the carbon-12 atom.

• In units of g/mol when the mean atomic mass (standard atomic weight)
is multiplied by the molar mass constant Mu = 1 g/mol.

For example, for the carbon-12 atom we can state that its relative atomic
mass is 12.000, or that its atomic mass is 12.000 u, or that its molar mass is
12.000 g/mol. For elemental carbon we can state that its mean atomic mass
(standard atomic weight) is 12.0107, or that its mean atomic mass (standard
atomic weight) is 12.0107 u, or that its molar atomic weight is 12.0107 g/mol.
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1.13.3 Mean Molecular Mass (Standard Molecular Weight)

If we assume that the mass of a molecule is equal to the sum of the masses
of the atoms that make up the molecule, then for any molecular compound
there are NA molecules per mole of the compound where the mole in grams
is defined as the sum of the mean atomic masses of the atoms making up
the molecule. Moreover, a mole of a molecular compound contains Avogadro
number NA of molecules.

The standard molecular weight of a molecular compound is calculated
from the molecule’s chemical formula and the standard atomic weights for
the atoms constituting the molecule. For example:

• Water molecule contains two atoms of hydrogen [M̄(H) = 1.00794] and
one atom of oxygen [M̄(O) = 15.9994]. The standard molecular weight of
water is:

M̄(H2O) = 2×M̄(H) + M̄(O) = 2× 1.00794 u + 15.9994 u = 18.0153 u
(1.22)

and one mole of water which contains NA molecules is 18.0153 g of water.
• The molecule of carbon dioxide contains one atom of carbon [M̄(C) =

12.0107] and two atoms of oxygen [M̄(O) = 15.9994]. The standard
molecular weight of carbon dioxide CO2 is:

M̄(CO2) = M̄(C) + 2×M̄(O) = 12.0107 u + 2× 15.9994 u = 44.0095 u
(1.23)

and one mole of carbon dioxide which contains NA molecules is 44.0095 g
of carbon dioxide.

In the calculation of the standard molecular weight of water molecules above
we used the mean values for the standard atomic weights to account for traces
of deuterium, oxygen-17, and oxygen-18 in natural water molecules and found
18.0153 for the molecular weight of water. However, the most common water
molecule will contain hydrogen-1 (protium) and oxygen-16 and will thus have
a slightly lower molecular weight amounting to 18.0106 as a result of protium
atomic mass of 1.00783 and oxygen-16 atomic mass of 15.9949.

Similarly, we get a molecular weight of carbon dioxide as 43.9898 for a
typical molecule containing carbon-12 and oxygen-16 in contrast to 44.0095
that we calculated as the mean value after accounting for traces of carbon-13,
oxygen-17 and oxygen-18 in natural carbon dioxide.

In the first approximation assuming that atomic mass equals to the atomic
mass number A, we get 18 g for the mole of water and 44 g for the mole
of carbon dioxide, very similar to the values obtained in (1.22) and (1.23),
respectively.



30 1 Introduction to Modern Physics

1.14 Basic Definitions for Nuclear Structure

Most of the atomic mass is concentrated in the atomic nucleus consisting
of Z protons and (A− Z) neutrons, where Z is the atomic number and A
the atomic mass number of a given nucleus. Proton and neutron have nearly
identical rest masses; the proton has positive charge, identical in magnitude to
the negative electron charge and the neutron has no charge and is thus neutral.

In nuclear physics the convention is to designate a nucleus with symbol
X as A

ZX, where A is the atomic mass number and Z the atomic number.
For example: The cobalt-60 nucleus is identified as 60

27Co, the radium-226
nucleus as 226

88Ra, and the uranium-235 nucleus as 235
92U.

There is no basic relation between the atomic mass number A and the
atomic number Z in a nucleus, but the empirical relationship

Z =
A

1.98 + 0.0155A2/3
(1.24)

provides a good approximation for stable nuclei. Protons and neutrons are
commonly referred to as nucleons, have identical strong attractive interac-
tions, and are bound in the nucleus with the strong force. As discussed in
Sect. 1.5, in contrast to electrostatic and gravitational forces that are inversely
proportional to the square of the distance between two particles, the strong
force between two nucleons is a very short-range force, active only at distances
of the order of a few femtometers. At these short distances the strong force is
the predominant force exceeding other forces by many orders of magnitude,
as shown in Table 1.3. With regard to relative values of atomic number Z and
atomic mass number A of nuclei, the following conventions apply:

• An element may be composed of atoms that all have the same number of
protons, i.e., have the same atomic number Z, but have a different number
of neutrons, i.e., have different atomic mass numbers A. Such atoms of
identical Z but differing A are called isotopes of a given element.

• The term isotope is often misused to designate nuclear species. For
example, cobalt-60, cesium-137, and radium-226 are not isotopes, since
they do not belong to the same element. Rather than isotopes, they should
be referred to as nuclides. On the other hand, it is correct to state that
deuterium (with nucleus called deuteron) and tritium (with nucleus called
triton) are heavy isotopes of hydrogen or that cobalt-59 and cobalt–60 are
isotopes of cobalt. Thus, the term radionuclide should be used to designate
radioactive species; however, the term radioisotope is often used for this
purpose.

• The term nuclide refers to all atomic forms of all elements. The term
isotope is narrower and only refers to various atomic forms of a single
chemical element.

• In addition to being classified into isotopic groups (common atomic num-
ber Z), nuclides are also classified into groups with common atomic
mass number A (isobars) and common number of neutrons (isotones).
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For example, cobalt-60 and nickel-60 are isobars with 60 nucleons each
(A = 60); hydrogen-3 (tritium) and helium-4 are isotones with two neu-
trons each (A− Z = 2).

• If a nucleus exists in an excited state for some time, it is said to be in an
isomeric (metastable) state. Isomers thus are nuclear species that have
common atomic number Z and atomic mass number A. For example,
technetium-99m is an isomeric state of technetium-99 and cobalt-60m is
an isomeric state of cobalt-60.

1.15 Nuclear Binding Energies

The sum of masses of the individual components of a nucleus that contains Z
protons and (A− Z) neutrons is larger than the actual mass of the nucleus.
This difference in mass is called the mass defect (deficit) Δm and its energy
equivalent Δmc2 is called the total binding energy EB of the nucleus. The
total binding energy EB of a nucleus can thus be defined as:

1. The positive work required to disassemble a nucleus into its individual
components: Z protons and (A− Z) neutrons.

or

2. The energy liberated when Z protons and (A− Z) neutrons are brought
together to form the nucleus.

The binding energy per nucleon (EB/A) in a nucleus (i.e., the total binding
energy of a nucleus divided by the number of nucleons) varies with the number
of nucleons A and is of the order of ∼8 MeV/nucleon. It may be calculated
from the energy equivalent of the mass deficit Δm as follows:

EB

A
=

Δmc2

A
=
Zmpc

2 + (A− Z)mnc
2 −Mc2

A
, (1.25)

where

A is the atomic mass number.
M is the nuclear mass in atomic mass units u.

mpc
2 is the proton rest energy.

mnc
2 is the neutron rest energy.

As shown in Fig. 1.3, the binding energy per nucleon EB/A against the
atomic mass number A exhibits the following characteristics:

1. For 1 ≤ A ≤ 4 the binding energy per nucleon rises rapidly from 1.1MeV
per nucleon for deuteron

(
2
1H
)

through 2.8 MeV and 2.6 MeV per nucleon
for triton

(
3H
)

and helium-3
(
3
2He
)
, respectively, to 7.1 MeV per nucleon

for helium-4
(
4
2He
)
. The nucleus of the helium-4 atom is the α particle.

2. For 4 ≤ A ≤ 28, EB/A fluctuates and exhibits peaks for nuclides in which
A is a multiple of four.
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Fig. 1.3. Binding energy per nucleon in MeV/nucleon against atomic mass
number A

3. For 28 < A < 60, EB/A rises slowly with increasing A to reach a peak
value of 8.8 MeV per nucleon for A ≈ 60 (iron, cobalt, nickel).

4. For A exceeding 60, EB/A falls monotonically from 8.8 MeV/nucleon to
reach 7.5 MeV per nucleon for uranium-238.

The larger is the binding energy per nucleon (EB/A) of an atom, the larger is
the stability of the atom. Thus the most stable nuclei in nature are the ones
with A ≈ 60. Nuclei of light elements (small A) are generally less stable than
the nuclei with A ≈ 60 and the heaviest nuclei (large A) are also less stable
than the nuclei with A ≈ 60.

The peculiar shape of the EB/A against A curve suggests two methods for
converting mass into energy: (1) fusion of nuclei at low A and (2) fission of
nuclei at large A, as discussed in greater detail in Sect. 12.8.

• Fusion of two nuclei of very small mass, e.g., 2
1H+3

1H → 4
2He+n, will create

a more massive nucleus and release a certain amount of energy. Experi-
ments using controlled nuclear fusion for production of energy have so far
not been successful; however, steady progress in fusion research is being
made in various laboratories around the world. It is reasonable to expect
that in the future controlled fussion will become possible and will result in
a relatively clean and abundant means for sustainable power generation.

• Fission of elements of large mass, e.g., 235
92U+n, will create two lower mass

and more stable nuclei and lose some mass in the form of kinetic energy.
Nuclear fission was observed first in 1934 by Enrico Fermi and described
correctly by Otto Hahn, Fritz Strassman, Lise Meitner, and Otto Frisch
in 1939. In 1942 at the University of Chicago Enrico Fermi and colleagues
carried out the first controlled chain reaction based on nuclear fission (see
Sect. 12.7).
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1.16 Nuclear Models

Several models of the nucleus have been proposed; all phenomenological and
none of them capable of explaining completely the complex nature of the
nucleus, such as its binding energy, stability, radioactive decay, etc. The two
most successful models are the liquid-drop model that accounts for the nuclear
binding energy and the shell model that explains nuclear stability.

1.16.1 Liquid-Drop Nuclear Model

The liquid-drop nuclear model, proposed by Niels Bohr in 1936, treats the
nucleons as if they were molecules in a spherical drop of liquid. Scattering
experiments with various particles such as electrons, nucleons and α particles
reveal that to a first approximation nuclei can be considered spherical with
essentially constant density.

The radius R of a nucleus with atomic mass number A is estimated from
the following expression

R = R0
3
√
A, (1.26)

where R0 is the nuclear radius constant equal to 1.25 fm.
Using (1.26) we estimate the density of the nucleus with mass M and

volume V as

ρ =
M

V ≈ Amp

(4/3)πR3
=

mp

(4/3)πR3
0

≈ 1.5×1014 g · cm−3, (1.27)

where mp is the rest mass of the proton (938.3 MeV/c2).
Based on the liquid drop model of the nucleus the nuclear binding energy

was split into various components, each with its own dependence on the
atomic number Z and atomic mass number A. Four of the most important
components of the nuclear binding energy are:

1. Volume correction Since the binding energy per nucleon EB/A is essentially
constant, as shown in Fig. 1.3, the total nuclear binding energy is linearly
proportional to A.

2. Surface correction Nucleons on the surface of the liquid-drop have fewer
neighbors than those in the interior of the drop. The surface nucleons will
reduce the total binding energy by an amount proportional to R2, where
R is the nuclear radius proportional to A1/3, as given in (1.26). Thus the
surface effect correction is proportional to A2/3.

3. Coulomb repulsion correction accounts for the Coulomb repulsion among
protons in the nucleus. The repulsive energy reduces the total binding
energy and is proportional to Z (Z − 1), the number of proton pairs in
the nucleus, and inversely proportional to R, i.e., inversely proportional to
A1/3.

4. Neutron excess correction reduces the total binding energy and is propor-
tional to (A− 2Z)2 and inversely proportional to A.
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The total nuclear binding energy EB is then written as follows

EB = C1A− C2A
2/3 − C3

Z (Z − 1)
A1/3

− C4
(A− 2Z)2

A
. (1.28)

Equation (1.28) is referred to as the Weizsächer semi-empirical binding energy
formula in which the various components are deduced theoretically but their
relative magnitudes are determined empirically to match the calculated results
with experimental data. The constants in (1.28) were determined empirically
and are given as follows:

C1 ≈ 16 MeV; C2 ≈ 18 MeV; C3 ≈ 0.7 MeV; and C4 ≈ 24 MeV.

1.16.2 Shell Structure Nuclear Model

Experiments have shown that the number of nucleons the nucleus contains
affects the stability of nuclei. The general trend in binding energy per nucleon
EB/A, as shown in Fig. 1.3, provides the EB/A maximum at around A = 60
and then drops for smaller and larger A. However, there are also considerable
variations in stability of nuclei depending on the parity in the number of
protons and neutrons forming a nucleus.

In nature there are 280 nuclides that are considered stable with respect
to radioactive decay. Some 60 % of these stable nuclei have an even num-
ber of protons and an even number of neutrons (even-even nuclei); some
20 % have an even–odd configuration and a further 20 % have and odd
even configuration. Only four stable nuclei are known to have an odd–odd
proton/neutron configuration. A conclusion may thus be made that an even
number of protons or even number of neutrons promotes stability of nuclear
configurations.

When the number of protons is: 2, 8, 20, 28, 50, 82 or the number of
neutrons is: 2, 8, 20, 28, 50, 82, 126 the nucleus is observed particularly stable
and these numbers are referred to as magic numbers. Nuclei in which the
number of protons as well as the number of neutrons is equal to a magic
number belong to the most stable group of nuclei.

The existence of magic numbers stimulated development of a nuclear model
containing a nuclear shell structure in analogy with the atomic shell structure
configuration of electrons. In the nuclear shell model, often also called the
independent particle model, the nucleons are assumed to move in well-defined
orbits within the nucleus in a field produced by all other nucleons. The nucle-
ons exist in quantized energy states of discrete energy that can be described
by a set of quantum numbers, similarly to the situation with electronic states
in atoms.

The ground state of a nucleus constitutes the lowest of the entire set of
energy levels and, in contrast to atomic physics where electronic energy levels
are negative, in nuclear physics the nuclear ground state is set at zero and the
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excitation energies of the respective higher bound states are shown positive
with respect to the ground state.

To raise the nucleus to an excited state an appropriate amount of energy
must be supplied. On de-excitation of a nucleus from an excited state back to
the ground state a discrete amount of energy will be emitted.

1.17 Physics of Small Dimensions and Large Velocities

At the end of the nineteenth century physics was considered a completed
discipline within which most of the natural physical phenomena were satisfac-
torily explained. However, as physicists broadened their interests and refined
their experimental techniques, it became apparent that classical physics
suffered severe limitations in two areas:

1. Dealing with dimensions comparable to small atomic dimensions.
2. Dealing with velocities comparable to the speed of light.

Modern physics handles these limitations in two distinct, yet related, sub-
specialties: quantum physics and relativistic physics, respectively:

1. Quantum physics extends the range of application of physical laws to small
atomic dimensions of the order of 10−10 m (radius a of atom), includes
classical laws as special cases when dimension �a, and introduces the
Planck constant h as a universal constant of fundamental significance.
Erwin Schrödinger, Werner Heisenberg, and Max Born are credited with
developing quantum physics in the mid 1920s.

2. Relativistic physics extends the range of application of physical laws to
large velocities υ of the order of the speed of light in vacuum c (3×108 m/s),
includes classical laws as special cases when υ	c, and introduces c as a
universal physical constant of fundamental significance. The protagonist of
relativistic physics was Albert Einstein who formulated the special theory
of relativity in 1905.

1.18 Planck Energy Quantization

Modern physics was born in 1900 when Max Planck presented his revolu-
tionary idea of energy quantization of physical systems that undergo simple
harmonic oscillations. Planck energy ε quantization is expressed as

ε = nhν, (1.29)

where

n is the quantum number (n = 0, 1, 2, 3 . . .).
h is a universal constant referred to as the Planck constant.
ν is the frequency of oscillation.
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The allowed energy states in a system oscillating harmonically are continuous
in classical models, while in the Planck model they consist of discrete allowed
quantum states with values nhν, where n is a non-negative integer quantum
number. Planck used his model to explain the spectral distribution of ther-
mal radiation emitted by a blackbody defined as an entity that absorbs all
radiant energy incident upon it. All bodies emit thermal radiation to their
surroundings and absorb thermal radiation from their surroundings; in ther-
mal equilibrium the rates of thermal emission and thermal absorption are
equal.

Planck assumed that sources of thermal radiation are harmonically oscil-
lating atoms possessing discrete vibrational energy states. When an oscillator
jumps from one discrete quantum energy state E1 to another energy state E2

where E1 > E2, the energy difference ΔE = E1 − E2 is emitted in the form
of a photon with energy hν, i.e.,

ΔE = E1 − E2 = hν =
hc

λ
, (1.30)

where

h is the Planck constant.
ν is the frequency of the photon.
c is the speed of light in vacuum.
λ is the wavelength of the photon.

Thus, according to Planck law, radiation such as light is emitted, transmit-
ted, and absorbed in discrete energy quanta characterized by the product of
frequency ν and Planck constant h. Planck’s postulate of energy quantization
lead to the atomic model with its angular momentum quantization intro-
duced by Niels Bohr in 1913 and to quantum wave mechanics developed by
Erwin Schrödinger in 1926. The so-called Schrödinger equation, used exten-
sively in atomic, nuclear, and solid-state physics, is a wave equation describing
probability waves (wave functions) that govern the motion of small atomic
particles. The equation has the same fundamental importance to quantum
mechanics as Newton laws have for large dimension phenomena in classical
mechanics.

1.19 Quantization of Electromagnetic Radiation

Electromagnetic (EM) radiation incident on metallic surface may eject charged
particles from the surface, as first observed by Heinrich Hertz in 1887. Joseph
Thomson proved that the emitted charged particles were electrons and Albert
Einstein in 1905 explained the effect by proposing that EM radiation was
quantized similar to the quantization of oscillator levels in matter introduced
by Max Planck in 1900 (see Sect. 1.26).
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A quantum of EM radiation, called a photon, has the following properties:

• It is characterized by frequency ν and wavelength λ = c/ν where c is the
speed of light in vacuum.

• It carries energy hν and momentum pν = h/λ where h is Planck constant.
• It has zero rest mass.

In a metal the outer electrons move freely from atom to atom and behave
like a gas with a continuous spectrum of energy levels. To release an elec-
tron from a metal a minimum energy, characteristic of the given metal and
referred to as the work function eφ, must be supplied to the electron. Einstein
postulated that the maximum kinetic energy (EK)max of the electron ejected
from the surface of a metal by a photon with energy hν is given by the
following expression

(EK)max = hν − eφ. (1.31)

The maximum kinetic energy of the ejected electrons depends on the inci-
dent photon energy hν and the work function eφ of the metal but does not
depend on the incident radiation intensity. The effect of electron emission from
metallic surfaces was named the photoelectric effect and its explanation by
Einstein on the basis of quantization of EM radiation is an important contri-
bution to modern physics. Notable features of the surface photoelectric effect
are as follows:

• Electrons can be ejected from a metallic surface by the photoelectric effect
only when the incident photon energy hν exceeds the work function eφ of
the metal, i.e., hν > eφ.

• The photoelectric effect is a quantum phenomenon: a single electron
absorbs a single photon; the photon disappears and the electron is ejected
with a certain kinetic energy.

• The typical magnitude of the work function eφ for metals is of the order of
a few electron volts (e.g., aluminum: 4.3 eV; cesium: 2.1 eV; cobalt: 5.0 eV;
copper: 4.7 eV; iron: 4.5 eV; lead: 4.3 eV; uranium: 3.6 eV), as given in
the Handbook of Chemistry and Physics. The work function is thus of the
order of energy hν of visible photons ranging from 1.8 eV (700 nm) to
3 eV (400 nm) and near ultraviolet photons ranging in energy from 3 eV
(400 nm) to 10 eV (80 nm).

• The surface photoelectric effect is related to the atomic photoelectric effect
in which high-energy photons with energies exceeding the binding energy
of orbital electrons eject electrons from atomic shells (see Sect. 7.5) rather
than from metallic surfaces.

1.20 Special Theory of Relativity

The special theory of relativity, introduced in 1905 by Albert Einstein, extends
the range of physical laws to large velocities and deals with transformations
of physical quantities from one inertial frame of reference to another.
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An inertial frame of reference implies motion with uniform velocity. The
two postulates of the special relativity theory are:

1. The laws of physics are identical in all inertial frames of reference.
2. The speed of light in vacuum c is a universal constant independent of the

motion of the source.

Albert A. Michelson and Edward W. Morley in 1887 showed that the speed of
light c is a universal constant independent of the state of motion of the source
or observer. Einstein, with his special theory of relativity, explained the results
of the Michelson–Morley experiment and introduced, in contrast to classi-
cal Galilean transformations, special transformations referred to as Lorentz
transformations to relate measurements in one inertial frame of reference to
measurements in another inertial frame of reference.

When the velocities involved are very small, the Lorentzian transforma-
tions simplify to the classical Galilean transformations, and the relativistic
relationships for physical quantities transform into classical Newtonian rela-
tionships. Galilean and Lorentzian transformations have the following basic
characteristics:

• Galilean and Lorentzian transformations relate the spatial and time coor-
dinates x, y, z, and t in a stationary frame of reference to coordinates x′,
y′, z′, and t′ in a reference frame moving with a uniform speed υ in the x
direction as follows:

Galilean transformation Lorentzian transformation

x′ = x− υt (1.32) x′ = γ(x− υt) (1.33)

y′ = y (1.34) y′ = y (1.35)

z′ = z (1.36) z′ = z (1.37)

t′ = t (1.38) t′ = γ
(
t− xυ

c2

)
(1.39)

where γ =
1√

1 − υ2

c2

(1.40)

• For υ 	 c the Lorentzian transformation reduces to the Galilean transfor-
mation since γ ≈ 1. The specific form of the Lorentzian transformation is
a direct consequence of c = const in all frames of reference.

• Einstein also showed that atomic and subatomic particles, as they are
accelerated to a significant fraction of the speed of light c, exhibit another
relativistic effect, an increase in mass as a result of the mass-energy equiv-
alence stated as E = mc2, where m and E are the mass and energy,
respectively, of the particle. A corollary to the second postulate of rel-
ativity is that no particle can move faster than the speed of light c in
vacuum.
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• Conservation of energy and momentum:

– In classical mechanics where υ 	 c, the momentum given as p = m0υ
and the kinetic energy given as EK = 1

2m0υ
2 are conserved in all

collisions (m0 is the mass of the particle at υ = 0).
– In relativistic mechanics where υ ≈ c, the momentum p = mυ = γm0υ

and the total energy E = m0c
2 + EK are conserved in all collisions.

1.21 Important Relativistic Relations

In relativistic mechanics the mass of a particle is not a conserved quantity,
since it depends on the velocity of the particle and may be converted into
kinetic energy. The reverse transformation is also possible and energy may be
converted into matter.

1.21.1 Relativistic Mass

Newton classical equation of motion is preserved in relativistic mechanics,
i.e.,

F =
dp
dt
, (1.41)

where p is the momentum of a particle acted upon by force F. The momentum
p is proportional to the velocity υ of a particle through the relationship

p = mυ, (1.42)

wherem is the mass of the particle, dependent on the magnitude of the particle
velocity υ, i.e., m = m (υ) .

The mass m(υ) is referred to as the relativistic mass of a particle and is
given by Einstein’s expression (see Fig. 1.4 and Table 1.7) as follows

m(υ) =
m0√
1 − υ2

c2

=
m0√
1 − β2

= γm0 (1.43)

or
m(υ)
m0

=
1√

1 − υ2

c2

=
1√

1 − β2
= γ, (1.44)

where

m0 is the mass of a particle at υ = 0, referred to as the particle rest mass.
c is the speed of light in vacuum, a universal constant.
β is υ/c.
γ is (1 − β2)−1/2 or [1 − (υ/c)2]−1/2.
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Fig. 1.4. Particle mass m as a function of its velocity υ. A plot of m against υ of
(1.43) in a and a plot of γ against β of (1.44) in b

Table 1.7. Mass against velocity according to (1.44)

(υ/c) = β 0 0.1 0.25 0.5 0.75 0.9 0.99 0.999 0.9999

(m/m0) = γ 1.000 1.005 1.033 1.155 1.512 2.294 7.089 22.37 70.71

1.21.2 Relativistic Force and Relativistic Acceleration

In classical physics the Newton second law of mechanics is given as follows

F =
dp
dt

= m0
dυ
dt

= m0a, (1.45)

indicating that the acceleration a is parallel to force F, and that mass m0 is
constant.

In relativistic physics the acceleration a is not parallel to the force F at
large velocities because the speed of a particle cannot exceed c, the speed of
light in vacuum. The force F, with the mass m a function of particle velocity
υ as given in (1.43), can be written as
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F =
dp
dt

=
d(mυ)

dt
= m

dυ
dt

+ υ
dm
dt

(1.46)

and

F =
dp
dt

=
d(γm0υ)

dt
= γm0

dυ
dt

+moυ
dγ
dt

= γmo
dυ
dt

+moυ
γ3υ

c2
dυ
dt
, (1.47)

where
dγ
dt

=
1[

1 − υ2

c2

]3/2

υ

c2
dυ
dt

=
γ3υ

c2
dυ
dt
. (1.48)

The acceleration a = dυ/dt will be determined by obtaining a dot product of
the force F and velocity υ as follows

F · υ = γmoυ
dυ
dt

+
moγ

3υ3

c2
dυ
dt

= γmoυ
dυ
dt
(
1 + γ2β2

)
= γ3moυ

dυ

dt
. (1.49)

Inserting (1.49) into (1.47) gives the following result for the relativistic force F

F = γm0
dυ
dt

+
F · υ
c2

υ = γm0
dυ
dt

+ (F · β)β. (1.50)

Solving (1.50) for a = dυ/dt gives the relativistic relationship for the
acceleration a

a =
dυ
dt

=
F − (F · β)β

γm0
. (1.51)

For velocities υ 	 c, where β → 0 and γ → 1, the relativistic expression for
acceleration a transforms into Newton’s classical result a = dυ/dt = F/m0

with a parallel to F.

1.21.3 Relativistic Kinetic Energy

The expression for the relativistic kinetic energy EK = E−E0, where E = mc2

is the total energy of the particle and E0 = m0c
2 is its rest energy, is derived

below.
The particle of rest mass m0 is initially at rest at the initial position xi

and moves under the influence of force F to its final position xf . The work
done by force F is the kinetic energy EK of the particle calculated using the
integration of (1.45) and the following steps:

1.

EK =

xf∫
xi

Fdx =

xf∫
xi

(
m

dυ
dt

+ υ
dm
dt

)
dx (1.52)

2. Multiply (1.43) by c, square the result, and rearrange the terms to obtain

m2c2 −m2υ2 = m2
0c

2. (1.53)
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3. Differentiate (1.53) with respect to time t to obtain

c2
d(m2)

dt
− d

dt
(m2υ2) = 0 (1.54)

4. Equation (1.54), after completing the derivatives, gives

2c2m
dm
dt

− 2m2υ
dυ
dt

− 2υ2m
dm
dt

= 0. (1.55)

5. After dividing (1.55) by 2mυ we obtain the following expression

c2

υ

dm
dt

= m
dυ
dt

+ υ
dm
dt
. (1.56)

The expression for EK in (1.52) using (1.56) can now be written as follows

EK = c2
xf∫

xi

1
υ

dm
dt

dx = c2
m∫

m0

dm = mc2 −m0c
2 = E − E0, (1.57)

since dx/dt is the particle velocity υ by definition and the masses m0 and m
correspond to particle positions xi and xf , respectively.

Inserting (1.43) into (1.57) results in the following expression for the
relativistic kinetic energy EK

EK = mc2 −m0c
2 = γm0c

2 −m0c
2 = (γ − 1)m0c

2

= (γ − 1)E0 =

⎛
⎜⎜⎝ 1√

1 − υ2

c2

− 1

⎞
⎟⎟⎠E0, (1.58)

in contrast with the well known classical expression

EK =
m0υ

2

2
. (1.59)

The relativistic expression (1.58) and the classical expression (1.59)
are plotted in Fig. 1.5, with the kinetic energy normalized to rest energy[
EK/

(
m0c

2
)]

on the ordinate (y) axis and the velocity normalized to the
speed of light (υ/c) on the abscissa (x) axis. At low particle velocity where
(υ 	 c), the two expressions coincide; however, at high velocities υ the rela-
tivistic expression (1.58), as a result of increase in mass m with velocity υ,
increases rapidly to attain an infinite value at υ = c or at υ/c = 1, while,
for the classical expression (1.59) in which the mass remains constant with
increasing velocity υ, the ratio EK/

(
m0c

2
)

attains a value of 0.5 for υ = c.
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Fig. 1.5. Classical expression (1.59) and relativistic expression (1.58) both nor-
malized to electron rest mass m0c

2 and plotted against normalized velocity
υ/c

1.21.4 Total Relativistic Energy as a Function of Momentum

The expression for the total relativistic energy E as a function of momentum
p is as follows

E =
√
E2

0 + p2c2. (1.60)

Equation (1.60) is obtained from Einstein expression for the relativistic mass
given in (1.43) as follows:

1. Square the relationship for the relativistic mass m of (1.43), multiply the
result by c4, and rearrange the terms to obtain

m2c4 −m2c2υ2 = m2
0c

4. (1.61)

2. Equation (1.61) can be written as

E2 − p2c2 = E2
0 (1.62)

or
E =

√
E2

0 + p2c2, (1.63)

using the common relativistic relationships for the total energy E, rest
energy E0, and momentum p, i.e., E = mc2, E0 = m0c

2, and p = mυ.

The following two relationships are also often used in relativistic
mechanics:

1. The particle momentum p using (1.57) and (1.63) for the kinetic energy
EK and total energy E, respectively, can be expressed as

p =
1
c

√
E2 − E2

0 =
1
c

√
E2

K + 2EKE0 =
EK

c

√
1 +

2E0

EK
. (1.64)
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2. The particle speed υ is, in terms of its total energy E and momentum p
given as

υ

c
=
mυc

mc2
=
pc

E
. (1.65)

It is easy to show that the two expressions for momentum p, given in (1.42)
and (1.64) and restated below, are equivalent to one another. From (1.42) and
(1.64) we get

p = mυ = γm0υ =
m0υ√
1 − β2

(1.66)

and

p =
1
c

√
E2 − E2

0 =
1
c

√
γ2m2

0c
4 −m2

0c
4 = m0c

√
γ2 − 1, (1.67)

respectively, and since

γ2 − 1 =
1

1 − β2
− 1 =

β2

1 − β2
, (1.68)

we can express the momentum p of (1.67) as

p = m0c
√
γ2 − 1 =

m0cβ√
1 − β2

= γm0υ, (1.69)

proving the equivalence of the two expressions (1.42) and (1.64) for
momentum p.

1.21.5 Taylor Expansion and Classical Approximations
for Kinetic Energy and Momentum

The Taylor expansion of a function f (x) about x = a is given as follows

f(x) = f(a) + (x− a)
df
dx

∣∣∣∣
x=a

+
(x− a)2

2!
d2f

dx2

∣∣∣∣
x=a

+ · · · + (x− a)n

n!
dnf

dxn

∣∣∣∣
x=a

.

(1.70)

The Taylor expansion into a series given by (1.70) is particularly useful when
one can neglect all but the first two terms of the series. For example, the
first two terms of the Taylor expansion of the function f(x) = (1 ± x)n about
x = 0 for x	 1 are given as follows

f(x) = (1 ± x)n ≈ 1 ± nx. (1.71)

• The approximation of (1.71) is used in showing that, for small velocities
where υ 	 c or υ/c 	 1, the relativistic kinetic energy EK of (1.57)
transforms into the well-known classical relationship EK = 1

2m0υ
2
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EK = E − E0 = m0c
2

⎛
⎜⎜⎝ 1√

1 − υ2

c2

− 1

⎞
⎟⎟⎠

≈ m0c
2

{
1 +

1
2
υ2

c2
− · · · − 1

}
=
m0υ

2

2
. (1.72)

• Another example of the use of Taylor expansion of (1.71) is the classical
relationship for the momentum p = m0υ that, for υ 	 c, i.e., υ/c	 1, is
obtained from the relativistic relationship of (1.64) as follows

p =
1
c

√
E2 − E2

0 =
1
c

√√√√√√m2
0c

4

⎛
⎜⎝ 1

1 − υ2

c2

− 1

⎞
⎟⎠ =

m0c
2

c

√(
1 − υ2

c2

)−1

− 1

≈ m0c

√
1 +

υ2

c2
+ · · · − 1 = m0υ. (1.73)

1.21.6 Relativistic Doppler Shift

The speed of light emitted from a moving source is equal to c, a universal
constant, irrespective of the source velocity. While the speed of the emitted
photons equals c, the energy, wavelength, and frequency of the emitted pho-
tons all depend on the velocity of the moving source. The energy shift resulting
from a moving source in comparison with the stationary source is referred to
as the Doppler shift and the following conditions apply:

• When the source is moving toward the observer, the measured photon fre-
quency and energy increase while the wavelength decreases (blue Doppler
shift).

• When the source is moving away from the observer, the measured photon
frequency and energy decrease while the wavelength increases (red Doppler
shift).

1.22 Particle–Wave Duality

For electromagnetic radiation, the energy Eν of a photon is given by Planck
law as

Eν = hν = h
c

λ
, (1.74)

where

h is Planck constant.
c is the speed of light in vacuum.
ν is photon frequency.
λ is the wavelength of the photon.
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The photon energy Eν can be also written in terms of the photon momentum
pν as

Eν = pνc, (1.75)

using (1.63) and recognizing that the rest mass of the photon is zero. Merging
(1.74) and (1.75), the photon momentum pν is given as

pν =
Eν

c
=
hν

c
=
h

λ
, (1.76)

highlighting the particle–wave duality of electromagnetic radiation, since both
(1.74) and (1.76) contain within their structure a wave concept through
wavelength λ and frequency ν as well as a particle concept through Eν

and pν .

1.22.1 De Broglie Equation and De Broglie Wavelength

Following the recognition of particle–wave duality of electromagnetic radi-
ation, Louis de Broglie in 1924 postulated a similar property for particles
in particular and matter in general, namely a characterization with wave-
length λ and momentum p related to one another through the following
expression, already applicable to electromagnetic radiation, as shown in (1.74)
and (1.75)

λ =
h

p
. (1.77)

In relation to particles, (1.77) is referred to as de Broglie equation and λ is
referred to as de Broglie wavelength of a particle. Using (1.64) and (1.77) we
can calculate de Broglie wavelength λ of a particle as a function of its kinetic
energy EK to get

λ =
h

p
=

2π�c

EK

√
1 +

2E0

EK

. (1.78)

De Broglie wavelength λ of a particle can also be expressed as a function of
its velocity υ or normalized velocity β using (1.42) and (1.43) to get

λ =
h

p
=

h

mυ
=

2π�c

γm0c2β
=

2π�c

m0c2

√
1 − β2

β
. (1.79)

In Fig. 1.6 we plot (1.78) representing de Broglie wavelength λ for a given
particle against the particle’s kinetic energy EK for an electron, proton and α
particle with solid curves and for a photon of energy hν with the dashed line.
Figure 1.7 displays (1.79), a plot of de Broglie wavelength λ as a function of
the normalized velocity β for an electron, proton, and α particle.



1.22 Particle–Wave Duality 47

Fig. 1.6. Plot of (1.78) representing de Broglie wavelength λ against kinetic energy
EK for electron, proton, and alpha particle with solid curves and for photon with a
dashed curve

Fig. 1.7. Plot of (1.79) representing de Broglie wavelength λ against the normalized
velocity υ/c for electron, proton, and alpha particle

The following observations can be made from Figs. 1.6 and 1.7:

• At large kinetic energies, where EK � E0 and total energy E ≈ EK, de
Broglie wavelength λ converges to 2π�c/EK coinciding with the photon
line, so that all particles have the same de Broglie wavelength at a given
energy.

• At low kinetic energies, as EK → 0, de Broglie wavelength λ approaches
∞ as (2π�c) /

√
2E0EK; the larger is E0, the slower is the approach of λ

to ∞ with a decreasing kinetic energy.
• For macroscopic objects that are moving with practical speed of the order

of 250 m/s (airplane) or less de Broglie wavelength λ is extremely small
with an order of magnitude of 10−34 m, some 16 orders of magnitude
smaller than the highest resolution achievable experimentally.
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1.22.2 Davisson–Germer Experiment

In 1927 Clinton J. Davisson and Lester H. Germer confirmed experimentally
the wave nature of electrons by bombarding a nickel target with electrons and
measuring the intensity of electrons scattered from the target. The target was
in the form of a regular crystalline alloy that was formed through a special
annealing process. The beam of electrons was produced by thermionic emission
from a heated tungsten filament. The electrons were accelerated through a
relatively low variable potential difference U that enabled the selection of the
incident electron kinetic energy EK. The scattered electrons were collected
with a Faraday cup and their intensity was measured with a galvanometer.

Davisson and Germer discovered that for certain combinations of electron
kinetic energy EK and angle of incidence φ the intensity of scattered electrons
exhibited maxima, similar to the scattering of x rays from a crystal with a
crystalline plane separation d that follows the Bragg relationship. Bragg has
shown that for x rays from two successive planes to interfere constructively
their path lengths must differ by an integral number m of wavelengths λ. The
first order diffraction maximum for m = 1 is the most intense.

Figure 1.8 shows the similarity between the Bragg experiment in x ray scat-
tering on a crystal with plane separation d and Davisson–Germer experiment
of electron wave scattering on nickel atoms also arranged in crystalline planes
with separation d. Constructive interference between waves scattered from
two planes occurs when

AB + BC = 2d sinφ = mλ, (1.80)

where

φ is the angle of incidence (Bragg angle) of the incident wave equal to the
angle of reflection.

λ is the wavelength of the incident wave that may be a monoenergetic x ray
wave in Bragg experiment or matter (electron) wave in Davisson–Germer
experiment.

Davisson and Germer determined the wavelength λ of electrons from the
known atomic separation d and the measured Bragg angle φ at which the
electron intensity exhibited a maximum. They found that the wavelength λ
calculated with (1.80) agreed well with electron wavelength λe calculated from
de Broglie relationship

λe =
h

p
=

h

meυ
=

2π�c√
2mec2eU

, (1.81)

where υ is the velocity of electrons determined from the classical kinetic energy
relationship EK = 1

2meυ
2 = eU with U the applied potential of the order of

10 V to 100 V. The Davisson–Germer experiment, shown schematically in
Fig. 1.9a, unequivocally demonstrated the diffraction of electrons and with it
the wave nature of the electron.
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Fig. 1.8. Schematic representation of the Davisson-Germer experiment of elastic
electron scattering on a nickel single crystal target. The electrons are produced in an
electron gun and scattered by the nickel crystalline structure that has atom spacing
d and acts as a reflection grating. The maximum intensity of scattered electrons
occurs at Bragg angle of incidence φ as a result of constructive interference from
electron matter waves following the Bragg relationship of (1.80). The scattering
angle θ is the angle between the incident and scattered wave and equals to 2φ

1.22.3 Thomson–Reid Experiment

At about the same time as Davisson and Germer, George P. Thomson and his
assistant A. Reid carried out an experiment that also confirmed de Broglie
contention that matter can behave as waves. In contrast to Davisson and
Germer who measured with a Faraday cup the intensity of electrons scattered
from a nickel absorber, Thomson and Reid passed a collimated electron beam
with kinetic energy of the order of 50 keV through a thin gold or aluminum foil
(thickness of about 1000 Å and measured the transmitted electron intensity
with a photographic plate.

Because of the crystalline structure of the metallic foil and the wave nature
of the electrons, the intensity of electrons measured with film appeared in the
form of concentric circles governed by the Bragg condition (1.80). The diam-
eter of each ring is proportional to de Broglie wavelength of the electron and
inversely proportional to the speed of the electron, similar to the results found
in Davisson–Germer experiment. The Thomson-Reid experiment is shown
schematically in Fig. 1.9b.
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Fig. 1.9. Schematic representation of two seminal experiments to confirm the wave
nature of electrons with diffraction patterns: (a) Davisson-Germer experiment using
electron scattering on nickel crystalline structure and (b) Thomson-Reid experiment
using electron scattering on a gold foil. In (a) electrons are collected with a Faraday
cup, in (b) they are collected on a photographic plate

1.22.4 General Confirmation of Particle – Wave Duality

Davisson–Germer and Thomson–Reid experiments confirmed that electrons
behave as waves under certain conditions, and other experimentalists have
subsequently tested and confirmed the universal character of the de Broglie
postulate by observing similar diffraction results for hydrogen and helium
atoms as well as for neutron beams.

The experimental discovery of electron and neutron diffraction was a
very important finding in support of quantum mechanics. The wavelength λ
associated with a particle is called its de Broglic wavelength and is defined
as the Planck constant divided by the particle momentum p, as shown
in (1.77).

The experimentally determined particle–wave duality suggests that both
models can be used for particles as well as for photon radiation. However, for
a given measurement only one of the two models will apply. For example, in
the case of photon radiation, the Compton effect is explained with the parti-
cle model, while the diffraction of x rays is explained with the wave model.
On the other hand, the charge-to-mass ratio e/me of the electron implies
a particle phenomenon, while the electron diffraction suggests wave-like
behavior.
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Both Davisson and Thomson shared the 1937 Nobel Prize in Physics for
their discovery of the diffraction of electrons by crystals. It is interesting to
note that Joseph J. Thomson, the father of George Thomson, discovered the
electron as particle in 1897, while George Thomson confirmed the wave nature
of the electron in 1927.

1.23 Matter Waves

1.23.1 Introduction to Wave Mechanics

Associated with any particle is a matter wave, as suggested by the de
Broglie relationship of (1.77). This matter wave is referred to as the parti-
cle’s wave function Ψ (z, t) for one-dimensional problems or Ψ (x, y, z, t) for
three-dimensional problems and contains all the relevant information about
the particle. Quantum mechanics, developed by Erwin Schrödinger as wave
mechanics and Werner Heisenberg as matrix mechanics between 1925 and
1929, is a branch of physics that deals with the properties of wave functions
as they pertain to particles, nuclei, atoms, molecules, and solids.

The main characteristics of wave mechanics are as follows:

• The theory has general application to microscopic systems and includes
Newton theory of macroscopic particle motion as a special case in the
macroscopic limit.

• The theory specifies the laws of wave motion that the particles of any
microscopic system follow.

• The theory provides techniques for obtaining the wave functions for a given
microscopic system.

• It offers means to extract information about a particle from its wave
function.

The main attributes of wave functions Ψ (z, t) are:

• Wave functions are generally but not necessarily complex and contain the
imaginary number i.

• Wave functions cannot be measured with any physical instrument.
• Wave functions serve in the context of the Schrödinger wave theory but

contain physical information about the particle they describe.
• Wave functions must be single-valued and continuous functions of z and t

to avoid ambiguities in predictions of the theory.

The information on a particle can be extracted from a complex wave function
Ψ (z, t) through a postulate proposed by Max Born in 1926 relating the prob-
ability density dP (z, t) /dz in one dimension and dP (x, y, z, t) /dV in three
dimensions with the wave functions Ψ (z, t) and Ψ (x, y, z, t), respectively, as
follows

dP (z, t)
dz

= Ψ∗ (z, t) · Ψ (z, t) (1.82)
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and
dP (x, y, z, t)

dV = Ψ∗ (x, y, z, t) · Ψ (x, y, z, t) , (1.83)

where

Ψ∗ is the complex conjugate of the wave function Ψ .
V stands for volume.

The probability density is real, non-negative and measurable. In
one-dimensional wave mechanics, the total probability of finding the particle
somewhere along the z axis in the entire range of the z axis is equal to one, if
the particle exists. We can use this fact to define the following normalization
condition

+∞∫
−∞

dP (z, t)
dz

dz =

+∞∫
−∞

Ψ∗ (z, t)Ψ (z, t) dz = 1. (1.84)

Similarly, in three-dimensional wave mechanics, the normalization expression
is written as

+∞∫
−∞

dP (x, y, z, t)
dV dV =

+∞∫
−∞

+∞∫
−∞

+∞∫
−∞

Ψ∗(x, y, z, t)Ψ(x, y, z, t)dV = 1 (1.85)

where the volume integral extends over all space and represents a cer-
tainty that the particle will be found somewhere (unit probability). Any
one-dimensional wave function Ψ (z, t) that satisfies (1.84) is by definition
normalized. Similarly, any three-dimensional wave function Ψ (x, y, z, t) that
satisfies (1.85) is also normalized.

While the normalization condition expresses certainty that a particle, if
it exists, will be found somewhere, the probability that the particle will be
found in any interval a ≤ z ≤ b is obtained by integrating the probability
density Ψ∗ · Ψ from a to b as follows

P =

b∫
a

Ψ∗ · ΨdV. (1.86)

1.23.2 Quantum Mechanical Wave Equation

The particulate nature of photons and the wave nature of matter are referred
to as the wave–particle duality of nature. The waves associated with matter are
represented by the wave function Ψ (x, y, z, t) that is a solution to a quantum
mechanical wave equation. This wave equation cannot be derived directly from
first principles of classical mechanics; however, it must honor the following four
conditions:
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1. It should respect the de Broglie postulate relating the wavelength λ of the
wave function with the momentum p of the associated particle

p =
h

λ
= �k, (1.87)

where k is the wave number defined as k = 2π/λ.
2. It should respect Planck law relating the frequency ν of the wave function

with the total energy E of the particle

E = hν = �ω, (1.88)

where ω is the angular frequency of the wave function.
3. It should respect the relationship expressing the total energy E of a particle

of mass m as a sum of the particle’s kinetic energy EK = p2 / (2m) and
potential energy V , i.e.,

E =
p2

2m
+ V. (1.89)

4. It should be linear in Ψ (z, t) which means that any arbitrary linear com-
bination of two solutions for a given potential energy V is also a solution
to the wave equation.

While the wave equation cannot be derived directly, we can determine it for
a free particle in a constant potential and then generalize the result to other
systems and other potential energies. The free particle wave function in one
dimension Ψ (z, t) can be expressed as follows

Ψ(z, t) = C ei(kz−ωt), (1.90)

where (kz − ωt) is the phase of the wave with k = 2π/λ the wave number and
ω = 2πν the angular frequency of the wave.

We now determine the partial derivatives ∂/∂z and ∂/∂t of the wave
function to obtain

∂Ψ (z, t)
∂z

= ikC ei(kz−ωt) = ikΨ(z, t) = i
p

�
Ψ (z, t) (1.91)

and
∂Ψ (z, t)

∂t
= −iωC ei(kz−ωt) = −iωΨ(z, t) = i

E

�
Ψ(z, t) . (1.92)

Equations (1.91) and (1.92) can now be written as follows

pΨ(z, t) = −i�
∂

∂z
Ψ(z, t) (1.93)

and
EΨ(z, t) = i�

∂

∂t
Ψ(z, t) , (1.94)
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where (−i�∂/∂z) and (i�∂/∂t) are differential operators for the momentum p
and total energy E, respectively.

Equations (1.93) and (1.94) suggest that multiplying the wave function
Ψ(z, t) by a given physical quantity, such as p and E in (1.93) and (1.94),
respectively, has the same effect as operating on Ψ(z, t) with an operator that
is associated with the given physical quantity. As given in (1.89), the total
energy E of the particle with mass m is the sum of the particle’s kinetic
and potential energies. If we now replace p and E in (1.89) with respective
operators, given in (1.93) and (1.94), respectively, we obtain

− �
2

2m
∂2

∂x2
+ V = i�

∂

∂t
. (1.95)

Equation (1.95) represents two new differential operators; the left hand
side operator is referred to as the hamiltonian operator [H ], the right hand
side operator is the operator for the total energy E. When the two operators
of (1.95) are applied to a free particle wave function Ψ (z, t) we get

− �
2

2m
∂2Ψ (z, t)
∂z2

+ V Ψ (z, t) = i�
∂Ψ (z, t)

∂t
. (1.96)

Equation (1.96) was derived for a free particle moving in a constant poten-
tial V ; however, it turns out that the equation is valid in general for any
potential energy V (z, t) and is referred to as the time-dependent Schrödinger
equation with V (z, t) the potential energy describing the spatial and temporal
dependence of forces acting on the particle of interest. The time-dependent
Schrödinger equation is thus in the most general three dimensional form
written as follows

− �
2

2m
∇2Ψ (x, y, z, t) + V (x, y, z, t)Ψ (x, y, z, t) = i�

∂Ψ (x, y, z, t)
∂t

. (1.97)

1.23.3 Time-independent Schrödinger Equation

In most physical situations the potential energy V (z, t) only depends on
the spatial coordinate z, i.e., V (z, t) = V (z) and then the time-dependent
Schrödinger equation can be solved with the method of separation of vari-
ables. The wave function Ψ (z, t) is written as a product of two functions
ψ (z) and T (t), one depending on the spatial coordinate z only and the other
depending on the temporal coordinate t only, i.e.,

Ψ(z, t) = ψ (z)T (t) . (1.98)

Inserting (1.98) into the time-dependent wave equation given in (1.96) and
dividing by ψ (z)T (t) we get

− �
2

2m
1

ψ (z)
∂2ψ (z)
∂z2

+ V (z) = i�
1

T (t)
∂T (t)
∂t

. (1.99)
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Equation (1.99) can be valid in general only if both sides, the left hand
side that depends on z alone and the right hand side that depends on t alone,
are equal to a constant, referred to as the separation constant Λ. We now have
two ordinary differential equations: one for the spatial coordinate z and the
other for the temporal coordinate t given as follows

− �
2

2m
d2ψ (z)

dz2
+ V (z)ψ (z) = Λψ (z) (1.100)

and
dT (t)

dt
= − iΛ

�
T (t) . (1.101)

The solution to the temporal equation (1.101) is

T (t) = exp
(
−i
Λ

�
t

)
, (1.102)

representing simple oscillatory function of time with angular frequency ω =
Λ/�. According to de Broglie and Planck, the angular frequency must also be
given as E/�, where E is the total energy of the particle.

We can now conclude that the separation constant Λ equals the total par-
ticle energy E and obtain from (1.101) the following solution to the temporal
equation

T (t) = exp
(
−i
E

�
t

)
= e−iωt. (1.103)

Recognizing that Λ = E we can write (1.100) as

− �
2

2m
d2ψ (z)

dz2
+ V (z)ψ (z) = Eψ (z) (1.104)

and obtain the so-called time-independent Schrödinger wave equation for the
potential V (z).

The essential problem in quantum mechanics is to find solutions to the
time-independent Schrödinger equation for a given potential energy V , gen-
erally only depending on spatial coordinates. The solutions are given in the
form of:

1. Physical wave functions ψ (x, y, z) referred to as eigenfunctions.
2. Allowed energy states E referred to as eigenvalues.

The time independent Schrödinger equation does not include the imaginary
number i and its solutions, the eigenfunctions, are generally not complex.
Since only certain functions (eigenfunctions) provide physical solutions to the
time-independent Schrödinger equation, it follows that only certain values of
E, referred to as eigenvalues, are allowed. This results in discrete energy values
for physical systems and it also results in energy quantization.

Many mathematical solutions are available as solutions to wave equa-
tions. However, to serve as a physical solution, an eigenfunction ψ (z) and
its derivative dψ/dz must be:
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1. Finite
2. Single valued
3. Continuous

Corresponding to each eigenvalue En is an eigenfunction ψn (z) that is a solu-
tion to the time-independent Schrödinger equation for the potential Vn (z).
Each eigenvalue is also associated with a corresponding wave function Ψ (z, t)
that is a solution to the time-dependent Schrödinger equation and can be
expressed as

Ψ (z, t) = ψ (z) e−i E
�

t. (1.105)

1.23.4 Measurable Quantities and Operators

As the term implies, a measurable quantity is any physical quantity of a
particle that can be measured. Examples of measurable physical quantities
are: position z, momentum p, kinetic energy EK, potential energy V , total
energy E, etc.

In quantum mechanics an operator is associated with each measurable
quantity. The operator allows for a calculation of the average (expectation)
value of the measurable quantity, provided that the wave function of the
particle is known.

The expectation value (also referred to as the average or mean value) Q of
a physical quantity Q, such as position z, momentum p, potential energy V ,
and total energy E of a particle, is determined as follows provided that the
particle’s wave function Ψ (z, t) is known

Q =
∫
Ψ∗ (z, t) [Q]Ψ (z, t)dz, (1.106)

where [Q] is the operator associated with the physical quantity Q. A listing of
most common measurable quantities in quantum mechanics and their associ-
ated operators is given in Table 1.8. Two entries are given for the momentum,
kinetic energy, and Hamiltonian operators: in one dimension and in three
dimensions.

The quantum uncertainty ΔQ for any measurable quantity Q is given as

ΔQ =
√
Q2 − Q̄2, (1.113)

where Q̄2 is the square of the expectation value of the quantity Q and Q2 is
the expectation value of Q2. The following conditions apply for ΔQ:

• When ΔQ = 0, the measurable quantity Q is said to be sharp and all
measurements of Q yield identical results.

• In general, ΔQ > 0 and repeated measurements result in a distribution of
measured points.
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Table 1.8. Several measurable quantities and their associated operators used in
quantum mechanics. Two entries are given for the momentum, kinetic energy, and
Hamiltonian operators, one-dimensional on the left and 3-dimensional on the right

Measurable Symbol Associated operator Symbol Equation
quantity

Position z z [z] (1.107)

Momentum p −i� ∂

∂z
or −i�∇ [p] (1.108)

Potential energy V V [V ] (1.109)

Kinetic energy EK − �
2

2m

∂2

∂z2
or − �

2

2m
∇2 [EK] (1.110)

Hamiltonian H − �
2

2m

∂2

∂z2
+ V or − �

2

2m
∇2 + V [H ] (1.111)

Total energy E i�
∂

∂t
[E] (1.112)

1.23.5 Transition Rate and the Fermi Second Golden Rule

Many physical interactions that particles undergo can be described and eval-
uated with the help of the transition rate between the initial state i and the
final state f of the particular system consisting of the particle and the potential
operator acting on it. In general, the transition rate (also called reaction rate)
Wif is equal to the transition probability per unit time and depends upon:

1. Coupling between the initial and final states.
2. Density of the final states ρ (Ef) defined as the number of levels per energy

interval.

The transition (reaction) rate Wif is usually expressed with the following
relationship referred to as the Fermi second golden rule

Wif =
2π
�

|Mif |2 ρ (Ef) , (1.114)

with Mif denoting the amplitude of the transition matrix element (probability
amplitude) and describing the dynamics of the particular interaction. Mif is
usually expressed in an integral form as

Mif =
∫∫∫

ψ∗
f V ψidV , (1.115)

where

ψi is the wave function of the initial state.
ψ∗

f is the complex conjugate of the wave function of the final state.
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V is the potential which operates on the initial state wave function ψi, i.e.,
is the potential operator which couples the initial and final eigenfunctions
of the system.

Fermi second golden rule is derived from time dependent perturbation theory
and is used widely in atomic, nuclear, and particle physics to deal with a wide
variety of interactions, such as atomic transitions, beta decay, gamma decay,
particle scattering (Rutherford, Mott) and nuclear reactions. At relatively low
energies, all these interactions also play an important role in medical physics
and radiation dosimetry.

1.23.6 Particle Scattering and Born Collision Formula

Much of the current knowledge in atomic, nuclear, and particle physics comes
from analyses of scattering experiments carried out with various particles as
projectile interacting with a target represented by atoms, nuclei, or other par-
ticles. An important parameter for describing a given scattering interaction
is the differential cross section dσ/dΩ for the scattering interaction. The dif-
ferential cross section is defined as the probability of scattering into a given
solid angle dΩ and in quantum mechanics it is expressed as a transition rate,
highlighting the most important use of the Fermi second golden rule stated in
(1.114)

dσ
dΩ

=
2π
�

|Mif |2 ρ (Ef) , (1.116)

where the matrix element Mif for the scattering interaction is given
in (1.115).

The differential cross section for a scattering process can be calculated with
many degrees of sophistication, and the result of the calculation is accepted
as valid when it agrees with the experimental result. Some of the issues to be
considered and accounted for in the calculations are:

1. Classical versus relativistic mechanics.
2. Elastic versus inelastic scattering.
3. Point-like versus finite projectile.
4. Point-like versus finite scatterer.
5. No spin versus spin of projectile.
6. No spin versus spin of scatterer.
7. Shape of the coupling potential.

The matrix element Mif is usually calculated using the Born approximation
under the following assumptions:

1. Only a single scattering event occurs.
2. Initial and final states of the particle undergoing the scattering event are

described by plane waves.
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Fig. 1.10. General relationship between the initial momentum of the particle pi

before scattering and the final momentum of the particle pf after scattering. Δp
is the momentum transfer from the incident particle to the scatterer and θ is the
scattering angle. Part a is for general inelastic scattering with Δp given by (1.121);
part b is for elastic scattering with Δp given by (1.123)

The wave function ψi of the plane wave for the initial particle to undergo
scattering is given by

ψi (r) = C exp (ikir) = C exp
[
ipir
�

]
, (1.117)

where

ki is the initial wave vector of the particle (projectile) before interaction,
related to the incident particle momentum pi through ki = pi/�.

pi is the initial momentum of the particle before scatterin.
C is a normalization constant obtained from the normalization equation∫

ψ∗
i ψi dV = 1.

Similarly, the wave function ψf of the final plane wave is given as

ψf (r) = C exp (ikfr) = C exp
[
ipfr

�

]
, (1.118)

where

kf is the final wave vector of the particle (projectile) after the scattering
event, related to the final particle momentum pf through kf = pf/�.

pf is the final momentum of the particle after scattering.
C is a normalization constant obtained from the normalization equation∫

ψ∗
f ψf dV = 1.
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Figure 1.10 shows the general relationship between the initial momentum
of the particle pi = �ki before scattering and the final momentum of the
particle pf = �kf after scattering. The momentum transfer Δp from the
particle to the scatterer is given as

Δp = pi − pf (1.119)

and we define the wave vector K as

K =
Δp
�

=
pi

�
− pf

�
= ki − kf . (1.120)

Using the law of cosines we express the magnitudes of Δp and K as follows

Δp = |Δp| =
√

|pi|2 + |pf |2 − 2 |pi| |pf | cos θ =
√
p2
i + p2

f − 2pipf cos θ
(1.121)

and

K = |K| =
1
�

√
|pi|2 + |pf |2 − 2 |pi| |pf | cos θ =

1
�

√
p2
i + p2

f − 2pipf cos θ,

(1.122)
where θ, as shown in Fig. 1.10, is the scattering angle.

When the scattering process is elastic, the magnitude of the initial momen-
tum is equal to the magnitude of the final momentum, i.e., |pi| = |pf | = p
and (1.121) and (1.122) yield

Δp = |Δp| =
√

2p2 − 2p2 cos θ =
√

2p2 (1 − cos θ) = 2p sin
θ

2
. (1.123)

and
K = |K| =

Δp
�

=
2p
�

sin
θ

2
=

2
λ̄

sin
θ

2
. (1.124)

The matrix element (scattering amplitude) Mif for spherically symmetrical
central scattering potential V (r) is in general written as

Mif = C2

∫∫∫
e−ikfrV e+ikir dV = C2

∫∫∫
V (r) e+iKr dV = V (K)

(1.125)
using (1.120) for K. The right hand integral in (1.125) is the Fourier transform
of the central potential V (r) representing V (r) in the momentum space. For
the central potential V (r) the matrix element Mif can now be simplified to get

Mif = C2

∫∫∫
V (r) e+iKr dV = C2

2π∫
0

π∫
0

∞∫
0

V (r) eiKrr2 sinΘdrdΘdΦ

= 2πC2

∞∫
0

r2V (r)

⎧⎨
⎩

+1∫
−1

eiKr cos Θd cosΘ

⎫⎬
⎭dr. (1.126)
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First, we deal with the integral inside the curly bracket of (1.126) to get

+1∫
−1

eiKr cos Θ d (cosΘ) =
[
eiKr cos Θ

iKr

]cos Θ=1

cos Θ=−1

=
[
eiKr − e−iKr

iKr

]
=

2 sin (Kr)
Kr

,

(1.127)
and finally we have the following expression for the matrix element Mif

Mif = 4πC2

∞∫
0

r2V (r)
sin (Kr)
Kr

dr. (1.128)

The differential scattering cross section dσ/dΩ is now given as

dσ
dΩ

=
2π
�

|Mif |2 ρ(Ef) =
{

2π
�

(
4πC2

)2}
ρ(Ef)

∣∣∣∣∣∣
∞∫
0

r2V (r)
sin (Kr)
Kr

dr

∣∣∣∣∣∣
2

=

∣∣∣∣∣∣
2m
�2

∞∫
0

r2V (r)
sin (Kr)
Kr

dr

∣∣∣∣∣∣
2

. (1.129)

Equation (1.129) is referred to as the Born collision formula and is valid for
elastic scattering brought about by a spherically symmetrical central scat-
tering potential V (r). The derivation of the density of final states ρ (Ef) is
cumbersome but can be found in standard quantum mechanics and nuclear
physics texts.

1.24 Uncertainty Principle

In classical mechanics the act of measuring the value of a measurable quantity
does not disturb the quantity; therefore, the position and momentum of an
object can be determined simultaneously and precisely. However, when the
size of the object diminishes and approaches the dimensions of microscopic
particles, it becomes impossible to determine with great precision at the same
instant both the position and momentum of particles or radiation nor is it
possible to determine the energy of a system in an arbitrarily short time
interval.

Werner Heisenberg in 1927 proposed the uncertainty principle that limits
the attainable precision of measurement results. The uncertainty principle
covers two distinct components:

One component (momentum-position uncertainty principle) deals with the
simultaneous measurement of the position z and momentum pz of a particle
and limits the attainable precision of z and pz measurement to the following
product
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ΔzΔpz ≥ 1
2

�, (1.130)

where

Δz is the uncertainty on z.
Δpz is the uncertainty on pz.

Thus, there are no limits on the precision of individual z and pz measure-
ments. However, in a simultaneous measurement of z and pz the product of
the two uncertainties cannot be smaller than 1

2� where � is the reduced Planck
constant

(
� = 1

2πh
)
. Thus, if z is known precisely (Δz = 0), then we cannot

know pz , since (Δpz = ∞). The reverse is also true: if pz is known exactly
(Δpz = 0), then we cannot know z, since Δz = ∞.

The other component (energy-time uncertainty principle) deals with the
measurement of the energy E of a system and the time interval Δt required
for the measurement. Similarly to the (Δz,Δpz) situation, the Heisenberg
uncertainty principle states the following

ΔEΔt ≥ 1
2

�, (1.131)

where

ΔE is the uncertainty in the energy determination.
Δt is the time interval taken for the measurement.

Classical mechanics sets no limits on the precision of measurement results and
allows a deterministic prediction of the behavior of a system in the future.
Quantum mechanics, on the other hand, limits the precision of measurement
results and thus allows only probabilistic predictions of the system’s behavior
in the future.

1.25 Complementarity Principle

In 1928 Niels Bohr proposed the principle of complementarity postulat-
ing that any atomic scale phenomenon for its full and complete description
requires that both its wave and particle properties be considered and deter-
mined. This is in contrast to macroscopic scale phenomena where particle
and wave characteristics (e.g., billiard ball as compared to water wave) of
the same macroscopic phenomenon are mutually incompatible rather than
complementary.

The Bohr principle of complementarity is thus valid only for atomic size
processes and asserts that these processes can manifest themselves either as
waves or as particles (corpuscules) during a given experiment, but never as
both during the same experiment. However, to understand and describe fully
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an atomic scale physical process the two types of properties must be inves-
tigated with different experiments, since both properties complement rather
than exclude each other.

The most important example of this particle–wave duality is the photon, a
mass-less particle characterized with energy, frequency and wavelength. How-
ever, in certain experiments such as in Compton effect the photon behaves
like a particle; in other experiments such as double-slit diffraction it behaves
like a wave.

Another example of the particle–wave duality are the wave-like properties
of electrons as well as heavy charged particles and neutrons that manifest
themselves through diffraction experiments (Davisson–Germer and Thomson–
Reid experiments; see Sect. 1.22.2 and 1.22.3, respectively).

1.26 Emission of Electrons from Material Surface:
Work Function

Emission of electrons from the surface of a solid material into vacuum is an
important phenomenon governed by the so-called work function eφ defined
as the minimum energy that must be supplied to an electron to remove it
from the surface of a given material. For condensed matter eφ is of the order
of a few electron volts and presents an effective surface barrier preventing
electrons from leaving the material under normal circumstances. However,
electrons can be liberated from the material surface into vacuum through
various effects such as, for example:

1. Energy equal to or exceeding the work function eφ can be supplied to
surface electrons by photons of energy hν larger than eφ, typically in the
visible or near ultraviolet region. The electrons obtain sufficient energy to
overcome the surface potential barrier and can leave the metal surface. The
effect is referred to as the surface photoelectric effect or photoemission and
Albert Einstein is credited with explaining the effect theoretically in 1905
on the basis of quantization of electromagnetic radiation.

2. Heating a metal to temperature above 1000 ◦C increases the kinetic energy
of electrons and enables these electrons to overcome the potential barrier
and leave the metal surface. Emission of electrons under this condition is
referred to as thermionic emission (see Sect. 1.27) and forms the basis for
production of electrons with hot cathode in Coolidge x-ray tubes, electron
guns of linear accelerators, and many other modern sources of electrons.

3. Placing a material into a very strong electric field may deform the mate-
rial potential barrier and allow unexcited electrons to escape through
the surface barrier from the condensed material into vacuum. This leak-
age or tunneling of electrons through the potential barrier is referred to
as field emission (FE) and, as discussed in Sect. 1.28, has found use in
electron microscopes, flat panel displays and, more recently has shown
promise in electron sources based on cold cathode manufactured with
carbon nanotubes.
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4. In radiation dosimetry, weak electron emission from pre-irradiated
condensed matter dosimeters (phosphors) is referred to as exoelectron
emission (EE) and can be stimulated by heating of the phosphor to get ther-
mally stimulated EE or by exposing the phosphor with visible or ultraviolet
light to get optically stimulated EE.

1.27 Thermionic Emission

Thermionic emission, a very important phenomenon in medical physics, is
defined as the flow of charge carriers from the surface of a solid or over
some kind of potential barrier, facilitated by supplying thermal energy to
the solid. Charge carriers so released from the solid are called thermions and
the science dealing with the phenomenon is called thermionics. The most
common practical example of thermionic emission is the emission of elec-
trons from a hot metal cathode into vacuum, as used in filaments of Coolidge
x-ray tubes, electron guns of linear accelerators, and so-called thermionic
diodes.

Many physicists have contributed to the science of thermionics, most
notably Owen W. Richardson who in 1928 received the Nobel Prize in Physics
for his work and the discovery of the law governing the phenomenon. Dushman
demonstrated the modern form of the law governing the thermionic emis-
sion and the law is now referred to as the Richardson–Dushman equation. It
expresses the relationship between the current density j in ampere per meter
of electrons emitted from the metal and the absolute temperature T in kelvin
of the metal as

j = AT 2 e−
eφ
kT , (1.132)

where

A is the Richardson constant with a theoretical value of 1.2×106 A/m2 /K2.
eφ is the work function of the metal.

From (1.132) it is evident that thermionic emission is controlled by three
characteristics of the emitter: (1) its temperature; (2) its material composition
(work function); and (3) its surface area. The current density j rises rapidly
with temperature T of the emitter and decreases with an increase in the work
function eφ. The work function is defined, similar to the definition of the
atomic ionization potential, as:

• Ionization of a free atom involves removing one of its outer shell electrons
by giving it an energy which is equal or exceeds its binding energy and is
referred to as the ionization potential of the atom. The range of atomic ion-
ization potentials in nature is from a few electron volts for alkali elements
to 24.6 eV for the noble gas helium.
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• To remove an electron from a solid consisting of an array of atoms an elec-
tron in the conduction band must be supplied a minimum energy referred
to as the work function typically ranging from 2 eV to 5 eV for most ele-
ments. The magnitude of the work function for a metal is usually about a
half of the ionization potential of the free atom of the metal.

In the absence of external electric field electrons leaving a heated metal in
vacuum form a cloud surrounding the emitter. The cloud, referred to a space
charge, represents an electronic equilibrium in which the number of electrons
governed by (1.132) that leave the emitter and enter the cloud is equal to the
number of electrons that are attracted back to the emitter. As the temperature
of the emitter increases, the number of electrons in the space charge also
increases because of the increased electron emission, as predicted by (1.132).

In practical use of thermionic emission, the thermionic emitter is not only
heated but is also immersed in an external electric field. This field enhances
the emission current density j if it has the same sign as the emitted thermion
charge and diminishes it if the signs are opposite. In practice, one is interested
in enhancing j with external electric field. This corresponds to lowering the
work function eφ by eΔφ where Δφ is proportional to E1/2 where E is the
electric field applied externally, such as, for example, the field applied between
the cathode and anode of a Coolidge x-ray tube. The Richardson–Dushman
equation then reads

j = AT 2 e−
eφ−e Δφ

kT . (1.133)

The effect of lowering the work function of a metal by applying an external
electric field is called the Schottky effect and (1.133) is referred to as the
Schottky equation. In typical x-ray tubes the external electric field is such
that all electrons emitted from the filament are attracted to the anode and
no space charge around the filament is present. At very high external elec-
tric fields of the order of 108 V/m quantum tunneling begins to contribute
to the emission current and the effect is referred to as field emission (see
Sect. 1.28.2).

1.28 Tunneling

The particle–wave duality is highlighted in discussions of potential wells and
potential barriers, both important phenomena in quantum and wave mechan-
ics; the potential wells attract and trap particles, potential barriers reflect
or transmit them. While medical physics and clinical physics rarely deal with
quantum and wave mechanics, there are several physical phenomena of impor-
tance to radiation physics and, by extension, to medical physics that can only
be explained through wave-mechanical reasoning. Tunneling, for example, is
a purely wave-mechanical phenomenon that is used in explaining α decay and
field emission: two important effects in radiation physics.
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In addition, there are several other phenomena of importance in electron-
ics that can be explained invoking tunneling such as, for example, in the
periodic inversion of the ammonia molecule NH3, used as standard in atomic
clocks, and in a semiconductor device called tunnel diode that is used for fast
switching in electronic circuits.

A classical particle incident on a square barrier will pass the barrier only
if its kinetic energy EK exceeds the barrier potential EP. If EP>EK, the
classical particle is reflected at the barrier and no transmission occurs.

A quantum-mechanical particle incident on a square barrier has access to
regions on both sides of the barrier, irrespective of the relative magnitudes of
kinetic energy EK and the barrier potential EP. A matter wave is associated
with the particle and it has a non-zero magnitude on both sides of the barrier
as well as inside the barrier. The wave penetrates and traverses the barrier
even when EP > EK, clearly contravening classical physics but conforming to
the rules of wave mechanics. The non-zero probability for finding the particle
on the opposite side of the barrier indicates that the particle may tunnel
through the barrier or one may say that the particle undergoes the tunneling
effect. In tunneling through a barrier, the particle behaves as a pure wave
inside the barrier and as a pure particle outside the barrier.

1.28.1 Alpha Decay Tunneling

Alpha decay is considered a tunneling phenomenon in which α particles with
kinetic energies between 4 MeV and 9 MeV tunnel through a potential barrier
of the order of 30 MeV. The tunneling theory of the α decay was proposed by
George Gamow in 1928. Inside the parent nucleus (atomic number Z) the α
particle is free yet confined to the nuclear potential well by the strong nuclear
force. The dimension of the well is of the order of few femtometers; once the
α particle is beyond this distance from the center of the parent nucleus, it
only experiences Coulomb repulsion between its charge 2e and the charge of
the daughter nucleus (Z − 2) e.

A classical α particle with EK < 9 MeV cannot overcome a potential
barrier with EP > 30 MeV. On the other hand, a α particle with wave-like
attributes may tunnel through the potential barrier and escape the parent
nucleus through this purely quantum-mechanical phenomenon.

1.28.2 Field Emission Tunneling

Emission of electrons from a solid into vacuum under the influence of a strong
electric field aimed in a direction to accelerate electrons away from the sur-
face is referred to as field emission (FE). Unlike thermionic emission (see
Sect. 1.27), field emission does not depend on temperature of the material.
The effect is purely quantum-mechanical and is attributed to wave-mechanical
tunneling of electrons through the surface potential barrier which is affected
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by the strong electric field so as to facilitate the tunneling process. Since elec-
tric field rather than heat is used to induce FE, the effect is often referred to as
cold cathode emission, in contrast to thermionic emission which is stimulated
by heat and consequently referred to as hot cathode emission.

In FE as well as in the Schottky effect the surface potential barrier is
effectively lowered by the applied electric field. However, in Schottky effect
the electrons surmount the barrier while in TE they tunnel through it.

Field emission has been known from the early days of quantum mechanics
as a clear example of electron tunneling through a sufficiently thin poten-
tial barrier. The effect is also known as Fowler-Nordheim tunneling in honor
of the physicists who in 1928 were the first to study it experimentally and
theoretically. The tunneling probability shows exponential dependence on the
tunneling distance which is inversely proportional to the electric field. The
Fowler-Nordheim expression for the current density j in FE exhibits a func-
tional dependence on electric field that is similar to the functional dependence
of current density j on temperature T for thermionic emission given in (1.132).

Field emission occurs at surface points where the local electric field is
extremely high, typically of the order of 1 V/nm or 109 V/m. These high
electric fields are generated by applying relatively low voltages to needlelike
metal tips with minute radius of curvature r of the order of 100 nm or less.
Since the electric field equals ∼V /r, its magnitude for small r is very large.

Field emission has found practical application in solid-state electronic
components such as tunnel diodes, high-resolution electron microscopy, high-
resolution flat panel display, and many other electronic devices using an
electron source. During recent years, cold cathodes based on carbon nan-
otubes (CNT) have shown promise in x-ray tube technology where they could
serve as an alternative to Coolidge’s hot cathode design (see Sect. 14.4.3).

1.29 Maxwell Equations

The basic laws of electricity and magnetism can be summarized by four
Maxwell equations. The equations may be expressed in integral form or
in differential form and the two forms are linked through two theorems of
vector calculus: Gauss divergence theorem and Stokes theorem. In radiation
physics and medical physics Maxwell equations play an important role in the
understanding of bremsstrahlung production, in waveguide theory of particle
acceleration, and in the theory of ionization chamber operation.

For a vector function A and volume V bounded by a surface S the two
vector calculus theorems are given as follows:

Gauss theorem �
V

∇ · A dV =
�
V

div A dV =
�
S

A · dS (1.134)
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Stokes theorem
�
S

(∇ × A) · dS =
�
S

curl A · dS =
∮
	

A · d� (1.135)

The four Maxwell equations (integral form on the right, differential form on
the left) are given as follows:

1. Maxwell–Gauss equation for electricity (also known as Gauss law for
electricity)

∇ · E =
ρ

ε0

�
S

E · dS =
1
ε0

�
V

ρ dV =
q

ε0
(1.136)

2. Maxwell–Gauss equation for magnetism (also known as Gauss law for
magnetism)

∇ · B = 0
�
S

B · dS = 0. (1.137)

3. Maxwell–Faraday equation (also known as Faraday law of induction)

∇ × E = −∂B
∂t

∮
	

E · d� = − ∂

∂t

�
S

B · dS = −∂φmag

∂t
(1.138)

4. Maxwell–Ampère equation (also known as Ampère circuital law)

∇ × B = μ0j +
1
c2
∂E
∂t

∮
	

B · d� = μ0I +
1
c2

∫
S

E · dS, (1.139)

where

E is the electric field in volt per meter (V/m).
B is the magnetic field in tesla T where 1 T = 1 V. s/m2.
ρ is the total charge density in coulomb per cubic meter

(
C/m3

)
.

j is the total current density in ampère per square meter
(
A/m2

)
.

ε0 is the permeability of vacuum (electric constant).
μ0 is are the permittivity of vacuum (magnetic constant).
q is the total charge enclosed by the Gaussian surface S in coulombs (C).
I is the total current passing through the surface S in ampères (A).

The four Maxwell equations combined with the Lorentz force and Newton
second law of motion provide a complete description of the classical dynamics
of interacting charged particles and electromagnetic fields. The Lorentz force
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FL for charge q moving in electric field E and magnetic field B with velocity
υ is given as follows

FL = q (E + υ × B) . (1.140)

Maxwell equations boosted the theory of electromagnetic fields in a similar
fashion to the boost classical mechanics received from Newton laws. However,
classical mechanics has subsequently been shown deficient at small dimen-
sions on atomic and nuclear scale where quantum physics applies and at large
velocities of the order of the speed of light in vacuum where relativistic physics
applies. Maxwell equations, on the other hand, survived subsequent develop-
ments in physics related to quantum and relativistic mechanics and remain
as valid today as they were when Maxwell introduced them some 150years
ago. With the theory of electromagnetic field, Maxwell equations succeeded
in unifying electricity, magnetism, and photons on a broad spectrum ranging
in frequency from radio waves to gamma rays.

1.30 Poynting Theorem and Poynting Vector

In 1884 English physicist John Henry Poynting used the Lorentz equation
for a moving charge in an electromagnetic field (EM) and Maxwell equations
for electromagnetism to derive a theorem that expresses the conservation of
energy for EM fields. The theorem relates the rate of change of the energy
u stored in the EM field and the energy flow expressed by the Poynting
vector S.

An electromagnetic field interacts with a charged particle q traveling with
velocity υ through the Lorentz force FL

FL =
d (mυ)

dt
= q (E + υ × B) . (1.141)

Multiply (1.141) with velocity υ to obtain an energy relationship

υ · FL = υ
d (mυ)

dt
=

1
2

dmυ2

dt
= qυ · E, (1.142)

where only the electric field contributes to the particle’s energy, since for the
magnetic filed υ · (υ ×B) = 0. We now multiply (1.142) with the particle
density n to get

n
d
dt
mυ2

2
=

dEK

dt
= nqυ · E = j · E, (1.143)

where

EK is the kinetic energy of the ensemble of charged particles.
j is the current density j = nqυ.
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Next, we use the Ampère–Maxwell equation (1.139) to express the current
density j in terms of electric field E and magnetic field B.

j · E =
1
μ0

E · ∇ × B − ε0
∂

∂t

E2

2
, (1.144)

where ε0 and μ0 are the electric permitivity of vacuum and magnetic perme-
ability of vacuum, respectively. Using the vector identity

∇ · (E × B) = B · ∇ × E − E · ∇ × B (1.145)

we express (1.144) as

j · E = − 1
μ0

∇ (E × B) − 1
μo

B · ∇ × E − ε0
∂

∂t

E2

2
. (1.146)

Inserting (1.138), the Faraday–Maxwell equation, into (1.146) we get

j · E = −∇
(

E × B
μ0

)
− ∂

∂t

{
ε0E2

2
+

B2

2μ0

}
= −∇ · S − ∂u

∂t
, (1.147)

where

u is the electromagnetic field energy density

u = ε0
E2

2
+

B2

2μ0
. (1.148)

S is the Poynting vector

S = E × B
μ0
, (1.149)

representing the energy flow with dimensions energy/(area× time) or
power/area.

The Poynting theorem can also be expressed in integral form where the
integration is carried out over an arbitrary volume V

−
∫
V

j · EdV =
∫
V

[
du
dt

+ ∇ · S
]
dV . (1.150)

The conservation of energy is with Poynting theorem thus expressed as follows:
the time rate of change of electromagnetic (EM) energy within a given volume
V added to the energy leaving the given volume per unit time equals to the
negative value of the total work done by the EM fields on the ensemble of
charged particles encompassed by the given volume.
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1.31 Normal Probability Distribution

Random variation in natural processes most commonly follows the probabil-
ity distribution generally known in mathematics as the normal probability
distribution but also referred to as Gaussian distribution in physics and “bell
curve” in social science. The function describing the normal distribution has
a long tradition in mathematics and physics. De Moivre used it in 18th cen-
tury as an approximation to the binomial distribution, Laplace used it to
study measurement errors, and Gauss used it in his analysis of astronomical
data.

In general, the normal probability distribution is described by the following
continuous probability density function P (x)

P (x) =
1

σ
√

2π
e−

(x−x̄)2

2σ2 , (1.151)

where
σ is the standard deviation related to the width of the “bell curve”.
x̄ is the mean value of x also called the expectation value of x.
The following general characteristics apply to the probability distribution
function P (x)

1. P (x) has a peak at x̄ and is symmetric about x̄.
2. P (x) is unimodal.
3. P (x) extends from −∞ to +∞.

4. The area under P (x) equals to 1. i.e.,
+∞∫
−∞

P (x)dx = 1.

5. P (x) is completely specified by the two parameters x̄ and σ.
6. P (x) follows the empirical rule which states that:

– 68.3 % of data will fall within 1 standard deviation σ of the mean x̄.
– 95.5 % of the data will fall within 2σ of the mean x̄.
– 99.7 % of the data will fall within 3σ of the mean x̄.

7. The inflection points on the P (x) curve occur one standard deviation from
the mean, i.e., at x̄− σ and x̄+ σ.

1.31.1 Standard Probability Density Function

For the special case of mean value x̄ = 0 and standard deviation σ = 1, the
probability distribution is called the standard normal distribution and the
probability density function of (1.151) simplifies into the standard probability
density function

P (x) =
1√
2π
e−

x2
2 . (1.152)

The standard probability density function P (x) of (1.152) is plotted in
Fig. 1.11 and Fig. 1.12(a). It exhibits the following notable characteristics:
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1. For x = 0, P (0) = 1/
√

2π = 0.399.
For x = 1, P (1) = (1/

√
2π)e−0.5 = 0.242.

For x = 2, P (2) = (1/
√

2π)e−2 = 0.054.

2. Total area under the P (x) curve from x = −∞ to x = +∞
+∞∫

−∞
P (x)dx =

1√
2π

+∞∫
−∞

e−
x2
2 dx =

2√
2π

+∞∫
0

e−
x2
2 dx = 1. (1.153)

3. Mean value or expectation value of x

x̄ =
1√
2π

+∞∫
−∞

xe−
x2
2 dx = 0. (1.154)

4. Variance v of x is a parameter giving a measure of the dispersion of a set of
data points around the mean value. For the normal probability distribution
the variance is defined as follows

v(x) = x2 =
1√
2π

+∞∫
−∞

x2e−
x2
2 dx =

4√
π

+∞∫
0

u2e−u2
du = 1. (1.155)

5. Standard deviation σ of the mean x̄ is the square root of the variance v

σ =
√

v = 1. (1.156)

1.31.2 Cumulative Distribution Function

A probability distribution can also be characterized with the general cumula-
tive distribution function Q(x) expressed as follows

Q(x) =

x∫
−∞

P (x′)dx′ =
1

σ
√

2π

x∫
−∞

e−
(x′−x̄)2

2σ2 dx′ =
1
2

[
1 + erf

x− x̄

σ
√

2

]
, (1.157)

while the standard cumulative distribution function is the general cumulative
distribution function of (1.146) evaluated with x̄ = 0 and σ = 1

Q(x) =

x∫
−∞

P (x′)dx′ =
1√
2π

x∫
−∞

e−
(x′)2

2 dx′ =

√
2
π

x√
2∫

−∞
e
−
(

x′√
2

)2

d
x′√
2

=
1√
π

0∫
−∞

e
−
(

x′√
2

)2

d
x′√
2

+
1
2

2√
π

x√
2∫

0

e
−
(

x′√
2

)2

d
x′√
2

=
1
2

[
1 + erf

x√
2

]
.

(1.158)
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Fig. 1.11. Standard probability density function P (x) of (1.142) with the variable
x plotted in units of σ, the standard deviation of the mean. The total area under
the curve from x = −∞ to x = +∞ is equal to 1. The darker grey area under the

probability curve represents 68.3 % of the total area, i.e., 1√
2π

+1∫
−1

e−
x2
2 dx = 0.683; the

two lighter grey areas represent 13.6 % of the total area each, i.e., 1√
2π

+2∫
−2

e−
x2
2 dx =

2 × 0.136 + 0.683 = 0.955

The standard cumulative distribution function is plotted in Fig. 1.12(b) and
exhibits the following notable properties:

1. Q(x) = 0 for x = −∞.
2. Q(x) = 0.5 for x = 0.
3. Q(x) = 1 for x = ∞.
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Fig. 1.12. Part a: Standard probability density function P (x) of (1.142) for the
mean or expectation value x̄ = 0; standard deviation σ = 1, and variance v = 1.
Part b: Standard cumulative distribution function Q(x) of (1.158) for the mean or
expectation value x̄ = 0; standard deviation σ = 1, and variance v = 1. Part c:
Error function erf(x) of (1.159).
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1.31.3 Error function

In (1.157) and (1.158) “erf” denotes a special function of sigmoid shape called
the error function defined as

erf(x) =
2√
π

x∫
0

e−(x′)2dx′, (1.159)

with the following notable features: −1 ≤ erf(x) ≤ +1; erf(0) = 0; erf(∞) = 1;
erf(−x) = −erf(x); and erf(−∞) = −1.

The error function erf(x)is plotted in Fig. 1.12(c) and its tabulated values
are readily available in standard mathematical tables.
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Coulomb Scattering

This chapter deals with various types of elastic scattering interactions that
heavy and light charged particles can have with atoms of an absorber. The
interactions fall into the general category of Coulomb interactions and the
chapter starts with a discussion of the intriguing Geiger-Marsden experiment
of alpha particle scattering on thin gold foils. The experiment is of great
historical importance and its results have lead to Rutherford’s ingenious con-
clusion that most of the atom is empty space and that most of the atomic
mass is concentrated in the atomic nucleus. The kinematics of the α particle
scattering is discussed in detail and the differential and total cross section
concept for scattering is introduced for Rutherford scattering and expanded
to other types of Coulomb scattering.
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The chapter continues with a discussion of the Mott electron-nucleus scat-
tering and introduces correction factors for electron spin, nuclear recoil, and
the finite size of the nucleus to achieve better agreement with measured data.
A brief discussion of the form factor representing the Fourier transform of
the nuclear charge density follows and the chapter continues with a general
discussion of elastic scattering of charged particles. The chapter concludes
with a discussion of the characteristic scattering distance, scattering cross
section and mean square scattering angle for various scattering events occur-
ring on single scattering centers (single scattering) as well as the mean square
scattering angle and mass scattering power for multiple scattering.

2.1 General Aspects of Coulomb Scattering

Coulomb scattering is a general term used to describe elastic Coulomb interac-
tions between two charged particles: an energetic projectile and a target. Much
of the knowledge in atomic, nuclear, and particle physics has been derived from
various Coulomb scattering experiments, starting with the famous Geiger and
Marsden experiment of 1909 in which α particles were scattered on gold nuclei.
Based on the angular distribution of the scattered α particles, measured by
Geiger and Marsden, Rutherford concluded that most of the atomic mass and
the positive atomic charge are concentrated in the atomic nucleus which is at
least four orders of magnitude smaller than the size of the atom.

The Rutherford model of the atom revolutionized physics in particular
and science in general. Since then other Coulomb-type scattering experiments
were carried out, typically using energetic protons or electrons as projectiles
bombarding atomic nuclei or orbital electrons with the objective to learn more
about the atomic and nuclear structure.

It is now well understood that in order for a particle to be useful as a
nuclear probe, its de Broglie wavelength (Sect. 1.22.1) must be of the order of
the nuclear size which is currently estimated with the relationship R = R0

3
√
A

given in (1.26 ) with R the nuclear radius, A the atomic mass number and R0

the nuclear radius constant (1.25 fm). As shown in Sect. 1.22.1, the de Broglie
wavelength of a particle can be expressed as a function of the particle’s kinetic
energy EK as

λ =
2π�c

EK

√
1 +

2E0

EK

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

≈ 2π�c√
2E0EK

for EK 	 E0 = m0c
2,

≈ 2π�c

EK
≈ 2π�c

E
for EK � E0 = m0c

2.

(2.1)

In Fig. 1.6 we show the de Broglie wavelength λ against kinetic energy
EK for electrons, protons, and α particles. Typical nuclear size is of the order
of 10 fm and the de Broglie wavelength λ of 10 fm is attained at kinetic
energies EK of 2 MeV for α particles, 10 MeV for protons, and 130 MeV
for electrons. Electrons with kinetic energies above 200 MeV can serve as an
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excellent probe for nuclear studies, not only because these electrons possess
a suitable de Broglie wavelength but also because they are point-like and
experience only Coulomb interactions with the nuclear constituents even when
they penetrate the nucleus. This is in contrast to heavy charged particles which
upon penetration of the nucleus will undergo strong interactions in addition
to Coulomb interactions, making the analysis of experimental results difficult
and cumbersome.

In the first approximation electron scattering on a nucleus can be treated
like Rutherford scattering; however, when doing so, several other interactions
are ignored, such as: spin effects in magnetic interactions; energy transfer to
the nucleus of the scatterer (target recoil); relativistic and quantum effects;
and effects of the finite size of the nucleus. Modern scattering theories now
account for these additional interactions; however, they are still based on
principles enunciated 100 years ago in Manchester by Geiger, Marsden, and
Rutherford.

Scattering of α particles on atomic nuclei is referred to as Rutherford
scattering in honor of Rutherford’s contribution to the understanding of the
scattering process as well as the structure of the atom. In addition to the
Rutherford scattering of α particles on atomic nuclei (see Sect. 2.2), the most
notable other Coulomb elastic scattering phenomena are:

• Scattering of energetic electrons on atomic nuclei referred to as Mott sca-
ttering (Sect. 2.5).

• Scattering of electrons on atomic orbital electrons referred to as
Møller scattering.

• Scattering of positrons on atomic orbital electrons referred to as Bhabha
scattering.

• Multiple scattering involving any one of the above listed scattering types
and referred to as Molière multiple scattering (Sect. 2.7).

2.2 Geiger–Marsden Experiment

In 1909 Hans Geiger and Ernest Marsden in collaboration with Ernest
Rutherford carried out an experiment studying the scattering of 5.5 MeV
α particles on a thin gold foil with a thickness of the order of 10−6 m.
They obtained the α particles from radon-222, a natural α-particle emit-
ter, collimated them into a small pencil beam, and directed the beam in
vacuum onto a thin gold foil in which scattering occurred. The scattered α
particles were detected by counting with a low-power microscope the scintil-
lations produced in a zinc sulphide (ZnS) receptor (area: 1 cm2) that could
be rotated around the foil at a given distance from the source. The alpha par-
ticle counter was invented several years before by William Crookes and called
the spinthariscope. The Geiger–Marsden experiment, shown schematically in
Fig. 2.1, seems rather mundane; however, its peculiar and unexpected results
had a profound effect on modern physics in particular and on humanity in
general.
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Fig. 2.1. Schematic diagram of the Geiger–Marsden experiment in the study of
α-particle scattering on gold nuclei in a thin gold foil. Θ is the total scattering angle
for α particles upon traversing the 1 μm thick gold foil and undergoing a large
number of scattering interations

2.2.1 Thomson Model of the Atom

In 1898 Joseph J. Thomson, who is also credited with the discovery of the
electron in 1897, proposed an atomic model in which the mass of the atom is
distributed uniformly over the volume of the atom with a radius of the order
of 1 Å and negatively charged electrons are dispersed uniformly within a con-
tinuous spherical distribution of positive charge. The electrons form rings and
each ring can accommodate a certain upper limit in the number of electrons
and then other rings begin to form. With this ring structure Thomson could
in principle account for the periodicity of chemical properties of elements. A
schematic representation of the Thomson’s atomic model, often referred to
as the “plum-pudding model”, is given in Fig. 2.2a, suggesting the following
features:

• In the ground state of the atom the electrons are fixed at their equilibrium
positions and emit no radiation.

• In an excited state of the atom the electrons oscillate about their equi-
librium positions and emit radiation through dipole oscillations by virtue
of possessing charge and being continuously accelerated or decelerated
(Larmor relationship).

According to the Thomson atomic model the angular distribution of a pen-
cil beam of α particles scattered in the gold foil in the Geiger–Marsden
experiment is Gaussian and given by the following expression (for derivation
see Sect. 2.7.5)
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Fig. 2.2. Schematic diagram of two atomic models: (a) Thomson “plum-pudding”
model of 1898 in which the electrons are uniformly distributed in a sea of positive
atomic charge and (b) Rutherford nuclear model in which the electrons revolve in
empty space around the nucleus that is positively charged and contains most of the
atomic mass. The size of the nucleus with diameter of the order of 10−14 m is at least
4 orders of magnitude smaller than the size of the Rutherford atom with diameter
of the order of 10−10 m. The size of the Thomson atom is of the order of 10−10 m,
similar to the size of Rutherford atom

N(Θ)dΘ =
2ΘN0

Θ2
e
−Θ2

Θ2 dΘ, (2.2)

where

Θ is the scattering angle of the α particle after it passes through
the gold foil (note: the α particle undergoes ∼104 interactions as
a result of a foil thickness of 10−6 m and an approximate atomic
diameter of 10−10 m.

N(Θ) dΘ is the number of α particles scattered within the angular range
of Θ to Θ+dΘ.

N0 is the number of α particles striking the gold foil.
Θ2 is the mean square net deflection experimentally determined to

be of the order of 3×10−4 rad2, i.e.,
√
Θ2 ≈ 1◦.

Geiger and Marsden found that more than 99 % of the α particles incident on
the gold foil were scattered at angles less than 3◦ and that their distribution
followed a Gaussian shape given in (2.2); however, they also found that one in
∼104 α particles was scattered with a scattering angle Θ exceeding 90◦. This
implied a measured probability of 10−4 for scattering with scattering angle
Θ > 90◦, in drastic disagreement with the probability of 10−3500 predicted by
the theory based on the Thomson atomic model, as shown in (2.3) below.
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According to the Thomson atomic model the probability for α-particle
scattering with Θ > 90◦ (i.e., with a scattering angle Θ between 1

2π and π)
is calculated by integrating (2.2) from 1

2π to π as follows

N
(
Θ >

π

2

)
N0

=

π∫
π/2

N(Θ) dΘ

N0
= −

π∫
π
2

e
−Θ2

Θ2 d
(
−Θ

2

Θ2

)
(2.3)

= − e
−Θ2

Θ2

∣∣∣∣
π

π
2

= −e−{ 180◦
1◦ }2

+ e−{ 90◦
1◦ }2

= e−902 ≈ 10−3500,

where we use the experimentally determined value of 1◦ for the root mean
square angle

√
Θ2.

2.2.2 Rutherford Model of the Atom

At the time of the Geiger–Marsden experiment, the Thomson atomic model
was the prevailing atomic model based on the assumption that the positive
charges and the negative (electron) charges of an atom were distributed uni-
formly over the atomic volume (“plum-pudding” model) to make the atom
neutral on the outside. The theoretical result of 10−3500 for the probability
of α-particle scattering with a scattering angle greater than 90◦ on a gold
foil consisting of Thomson atoms is an extremely small number in compari-
son with the result of 10−4 obtained experimentally by Geiger and Marsden.
This discrepancy between experiment and theory highlighted a serious prob-
lem with the Thomson atomic model and stimulated Ernest Rutherford to
propose a completely new atomic model that agreed better with experimen-
tal results obtained by Geiger and Marsden. The two main features of the
Rutherford model are as follows:

1. Mass and positive charge of the atom are concentrated in the nucleus the
size of which is of the order of 10−15 m = 1 fm.

2. Negatively charged electrons revolve about the nucleus in a cloud, the
radius of which is of the order of 10−10 m = 1 Å.

The two competing atomic models are depicted schematically in Fig. 2.2. Con-
trary to the Thomson “plum-pudding” atomic model, essentially all mass
of the Rutherford atom is concentrated in the atomic nucleus that is also
the seat of the positive charge of the atom and has a radius of the order of
10−15 m, as shown schematically in Fig. 2.2b. As shown in (1.27), the den-
sity of the nucleus with mass M is enormous with an order of magnitude of
1.5×1014 g · cm−3.
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As for the atomic electrons, Rutherford proposed that they are distributed
in a spherical cloud on the periphery of the atom with a radius of the order
of 10−10 m; however, he did not speculate on the rules governing the motion
of electrons in an atom. It was Niels Bohr who soon thereafter expanded the
Rutherford model by proposing four postulates, one of them dealing with
quantization of electron angular momentum, which allowed him to derive
from first principles the electron planetary motion in one-electron structures
(See Sect. 3.1). Rutherford, a superb experimental physicist, and Bohr, an
extremely gifted theoretical physicist, are credited with developing the cur-
rently accepted atomic model which in their honor is referred to as the
Rutherford–Bohr atomic model.

2.3 Rutherford Scattering

2.3.1 Kinematics of Rutherford Scattering

Based on his model and five additional assumptions, Rutherford derived the
kinematics for the scattering of α particles on gold nuclei using basic principles
of classical mechanics. The five additional assumptions are as follows:

1. Scattering of α particles on gold nuclei is elastic.
2. The mass of the gold nucleus M is much larger than the mass of the α

particle mα, i.e., M � mα.
3. Scattering of α particles on atomic electrons is negligible because mα �
me, where me is the electron mass.

4. The α particle does not penetrate the nucleus (no nuclear reactions).
5. The classical relationship for the kinetic energy EK of the α particle, i.e.,
EK = 1

2mαυ
2, is valid, where υα is the velocity of the α particle.

Rutherford used concepts of classical mechanics in his derivation of the
kinematics of α-particle scattering. To show that this was an acceptable
approach we determine the speed of 5.5 MeV α particles used in the Geiger–
Marsden experiment. The speed υα of the α particles relative to the speed
of light in vacuum α for 5.5 MeV α particles can be calculated using either
the classical relationship or the relativistic relationship of (1.58). Note that
mαc

2 = 3727 MeV:

1. The classical calculation is done using the classical expression for the
kinetic energy EK of the α particle

EK =
1
2
mαυ

2
α =

1
2
mαc

2

{
υ2

α

c2

}
. (2.4)

Solve (2.4) for υα/c to obtain

υα

c
=
√

2EK

mαc2
=

√
2 × 5.5 MeV
3727 MeV

= 0.0543. (2.5)
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2. The relativistic calculation is carried out using the relativistic expression
(1.68) for the kinetic energy EK of the α particle

EK =
mαc

2√
1 −
(υα

c

)2
−mαc

2. (2.6)

Solve (2.6) for υα/c to obtain

υα

c
=

√√√√√1 − 1(
1 +

EK

mαc2

)2 =

√√√√√1 − 1(
1 +

5.5
3727

)2 = 0.0543 (2.7)

The relativistic calculation of (2.6) and classical calculation of (2.4) give iden-
tical results since the velocity of the α particle is much smaller than c, the
speed of light in vacuum, or (υα/c) 	 1, for α particles with kinetic energy
EK of the order of a few million electron volts. Rutherford’s use of the sim-
ple classical relationship rather than the correct relativistic expression for the
kinetic energy of the naturally occurring α particles was thus justified. Note
that all naturally occurring α particles have kinetic energy of the order of a
few million electron volts, so the use of classical mechanics is appropriate for
all naturally occurring α particles.

The interaction between the α particle (charge ze) and the nucleus (charge
Ze) is a repulsive Coulomb interaction between two positive point charges,
and, as result, the α particle follows a hyperbolic trajectory, as shown schemat-
ically in Fig. 2.3. Note that θ represents the scattering angle in a single
α-particle interaction with one nucleus, whereas Θ of (2.2) represents the
scattering angle resulting from the α particle traversing the thin gold foil and
undergoing some 104 interactions while traversing the foil.

For a single α-particle interaction depicted in Fig. 2.3 the nucleus is in the
outer focus of the hyperbola because of the repulsive interaction between
the α particle and the nucleus. For an interaction between two charges
of opposite sign (for example, energetic electron interacting with atomic
nucleus) the Coulomb interaction is attractive and the trajectory of the pro-
jectile is also a hyperbola but the target resides in the inner focus of the
hyperbola.

Two important parameters of Coulomb scattering are the impact param-
eter b and the scattering angle θ. As shown in Fig. 2.3:

• Impact parameter b is defined as the perpendicular distance between the
initial velocity vector υi of the projectile and the center of the target it is
approaching.

• Scattering angle θ is defined as the angle between the initial momentum
vector pi and the final momentum vector pf .
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Fig. 2.3. Schematic diagram for scattering of an α particle on a nucleus: θ is the
scattering angle; b the impact parameter; Δp the change in α-particle momentum;
υi the initial velocity of the α particle; and pi the initial momentum of the α particle.
The trajectory of the α particle is a hyperbola as result of the repulsive Coulomb
interaction between the α particle and the nucleus. The nucleus is in the outer focus
of the hyperbolic trajectory of the α particle

2.3.2 Distance of Closest Approach in Head-on Collision Between
α-Particle and Nucleus

A special case of Rutherford scattering occurs when b = 0 corresponding
to the α particle being on a direct-hit trajectory. Considering the classical
conservation of energy in a direct hit α-particle elastic scattering event, the
following points can be made:

1. The total energy E(r) of the α particle–nucleus system consists of two com-
ponents: kinetic energy EK(r) of the α particle and the repulsive Coulomb
potential energy EP(r) where

EK(r) =
mαυ

2

2
, (2.8)

EP(r) =
zZe2

4πε0
1
r
. (2.9)

and r is the distance between the α particle and the nucleus.
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2. The scattering is elastic. The kinetic energy EK of the α particle does not
remain constant during the scattering process; however, the initial kinetic
energy (EK)i is equal to the final kinetic energy (EK)f since the nucleus
is assumed to remain stationary. This means that the final velocity of the
α particle υf is equal to the initial velocity of the α particle υi.

3. In general, total energy E(r) is the sum of the kinetic energy EK(r) and
potential energy EP(r)

E(r) = (EK)i = EK(r) + EP(r) = EK(r) +
zZe2

4πε0
1
r
. (2.10)

4. The total energy E(r) at any distance r > Dα–N from the nucleus equals
the initial kinetic energy (EK)i of the α particle, since EP(r = ∞) → 0. As
the α particle approaches the nucleus, its velocity υα and kinetic energy
EK(r) diminish and the repulsive potential energy EP(r) increases with
the sum of the two always equal to the initial kinetic energy (EK)i of the
α particle.

5. In its approach toward the nucleus the α particle eventually stops at a dis-
tance from the nucleus Dα–N, defined as the distance of closest approach.
At r = Dα–N the α particle kinetic energy EK(r = Dα–N) is zero, and
the total energy E(r) equals the potential energy EP(r = Dα–N) which is
expressed as

E(r = Dα–N) = (EK)i = EK(r = Dα–N) + EP(r = Dα–N)

= 0 +
zZe2

4πε0
1

Dα–N
. (2.11)

The distance of closest approach Dα–N between the α particle with (EK)i =
5.5 MeV and a gold nucleus (Z = 79) in a direct hit scattering event is
determined from (2.11) as follows

Dα–N =
zZe2

4πε0
1
EK

=
2 × 79 × e× 1.6 × 10−19 C · V · m
4π × 8.85 × 10−12 C × 5.5×106 eV

= 41.3 fm

(2.12)

or

Dα–N =
zZ�cα

EK
=

2 × 79 × 197.3 MeV · fm
137 × 5.5 MeV

≈ 41.3 fm

For naturally occurring α particles interacting with nuclei of atoms the dis-
tance of closest approach Dα–N exceeds the radius R of the nucleus. Thus,
the α particle does not penetrate the nucleus and no nuclear reaction occurs.
For example, as shown in (2.12), Dα–N for the Geiger–Marsden experiment
with 5.5 MeV α-particle scattering on gold nuclei is 41.3 fm compared to the
gold nucleus radius determined from (1.26) as
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R = R0
3
√
A = 1.25 fm 3

√
197 ≈ 7.3 fm, (2.13)

where R0 is the nuclear radius constant equal to 1.25 fm, as discussed in
Sect. 1.16.1.

2.3.3 General Relationship between Impact Parameter
and Scattering Angle

The general relationship between the impact parameter b and the scatter-
ing angle θ may be derived most elegantly by determining two independent
expressions for the change in momentum Δp of the scattered α particle. The
momentum transfer is along the symmetry line that bisects the angle π − θ,
as indicated in Fig. 2.3. The magnitude of the repulsive Coulomb force FCoul

acting on the α particle is given by

FCoul =
zZe2

4πε0
1
r2
, (2.14)

where

r is the distance between the α particle and the nucleus M ,
z is the atomic number of the α particle (for helium z = 2 and A = 4),
Z is the atomic number of the absorber (for gold Z = 79 and A = 197).

Since the component of the force Fcoul in the direction of the momentum
transfer is FΔp = FCoul cosφ, the momentum transfer (impulse of force) Δp
may be written as the time integral of the force component FΔp as follows

Δp =

∞∫
−∞

FΔp dt =

∞∫
−∞

FCoul cosφdt =
zZe2

4πεo

π−θ
2∫

− π−θ
2

cosφ
r2

dt
dφ

dφ

=
zZe2

4πεo

π−θ
2∫

− π−θ
2

cosφ
ωr2

dφ, (2.15)

where

φ is the angle between the radius vector r and the bisector, as also shown
in Fig. 2.3,

dt
dφ

is the inverse of the angular frequency ω.

The angular frequency ω = dφ/dt = υ/r can be expressed as a function of
the impact parameter b, initial α-particle velocity υi, and radius vector r
by invoking conservation of angular momentum L, where L is in general
defined as
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Fig. 2.4. Geometry for determination of the angular momentum L for two different
points on the α-particle trajectory. Point A is for the α particle located in the apex
of the hyperbola and point B is for the α particle located at a very large distance
from the nucleus

L = r × p = r ×mαυ. (2.16)

With the help of Fig. 2.4 we now express |L| = L, the magnitude of the
angular momentum L, for two different points (A and B) on the α-particle
hyperbolic trajectory. Point A is at the apex of the hyperbola and point B is
at a very large distance from the nucleus where the α-particle position defines
the impact parameter b. The angular momentum L at point B is given as

|L| = L = rmαυi sinψ = mαυib, (2.17)

while for the apex point A, where υ and r are perpendicular to each other
and υ = ωr, it is

|L| = L = |r ×mαυ| = mαrυ sin 90o = mαωr
2. (2.18)

Using the conservation of angular momentum L, we merge (2.17) and (2.18)
to get

L = mαυib = mαωr
2, (2.19)

and the following expression for the angular frequency ω

ω =
υib

r2
, (2.20)
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with υi the initial velocity of the α particle at r = ∞. Since the scattering
is elastic, the kinetic energy will be conserved in the scattering interaction,
so it follows that the final α particle velocity υf will be equal to the initial
α particle velocity (υf = υi).

After inserting (2.20) into (2.15) we get a simple integral for Δp with the
following solution

Δp =
zZe2

4πε0
1
υib

π−θ
2∫

−π−θ
2

cosφ dφ =
zZe2

4πε0
1
υ∞b

{sinφ}+ π−θ
2

−π−θ
2

= 2
zZe2

4πε0
1
υib

cos
θ

2
.

(2.21)

With the help of the momentum vector diagram, given in Figs. 2.3 and 2.4,
the momentum transfer Δp may also be written as

Δp = 2pi sin
θ

2
= 2mαυi sin

θ

2
. (2.22)

Combining (2.21) and (2.22) we obtain the following expressions for the impact
parameter b

b =
zZe2

4πε0mαυ2
i

cot
θ

2
=

1
2
zZe2

4πε0
1
EK

cot
θ

2

=
1
2
Dα–N cot

θ

2
=

1
2
Dα–N

√
1 + cos θ
1 − cos θ

, (2.23)

with the use of:

1. Classical relationship for the kinetic energy of the α particle
(
EK=1

2mαυ
2
i

)
,

since υi 	 c.
2. Definition of Dα–N as the distance of closest approach between the α parti-

cle and the nucleus in a “direct-hit” head-on collision for which the impact
parameter b = 0, the scattering angle θ = π, and Dα–N = zZe2/ (4πε0EK)
from (2.12).

2.3.4 Hyperbolic Trajectory and Distance of Closest Approach

Equations for the hyperbolic trajectory of an alpha particle interacting with
a nucleus can be derived from the diagram given in Fig. 2.3 and the simple
rule governing the hyperbola with the target in the outer focus because of
the repulsive interaction between the projectile (α particle) and the target
(nucleus)

r − r′ = 2a, (2.24)
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where

a is the distance between the apex and the vertex of the hyperbola,
r is the distance between the point of interest on the hyperbola and the

outer focus,
r′ is the distance between the point of interest on the hyperbola and the

inner focus.

The parameters of the hyperbola, such as a, r, and r′, are defined in Fig. 2.3
and the locations of the inner focus, outer focus, apex A and vertex V are
also indicated in Fig. 2.3. Solving (2.24) for r′ and squaring the result, we get
the following expression for (r′)2

(r′)2 = r2 − 4ar + 4a2. (2.25)

Using the law of cosines in conjunction with Fig. 2.3, we express (r′)2 as

(r′)2 = r2 − 4aεr cosφ+ 4a2ε2, (2.26)

where ε is the eccentricity of the hyperbola.
Subtracting (2.26) from (2.25) and solving for r(φ), we now obtain the

following general equation for the hyperbolic trajectory of the α particle

r (φ) =
a
(
ε2 − 1

)
ε cosφ− 1

. (2.27)

Three separate special conditions are of interest with regard to (2.27):

1. r = ∞ for determining the eccentricity ε.
2. φ = 0 for determining the general distance of closest approach Rα–N.
3. θ = π for determining the distance of closest approach in a direct hit that

results in the shortest distance of closest approach defined as Dα–N in
(2.12).

Eccentricity ε is determined as follows:
For r = ∞ the angle φ equals to 1

2 (π − θ) and, to get r = ∞, the denominator
in (2.27)

[
ε cos[ 12 (π − θ)] − 1

]
must equal to zero, resulting in the following

relationship for the eccentricity ε

ε cos
π − θ

2
− 1 = ε sin

θ

2
− 1 = 0 or ε =

1

sin
θ

2

. (2.28)

Distance of closest approach Rα–N between the α particle and the nucleus
in a non-direct hit collision (θ < π and φ = 0) is from (2.27) given as

Rα–N = r (φ = 0) =
a
(
ε2 − 1

)
ε− 1

= a (1 + ε) = a

⎧⎪⎨
⎪⎩1 +

1

sin
θ

2

⎫⎪⎬
⎪⎭ . (2.29)
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The result Rα–N = a(1 + ε) can also be obtained directly from Fig. 2.3 by rec-
ognizing that the distance between the outer focus and apex of the hyperbola
equals to (aε+ a).

Distance of closest approach in a direct-hit collision, Dα–N (b = 0;
θ = π) can now from (2.29) with θ = π be written as

Dα–N = Rα–N (θ = π) = 2a, (2.30)

from where it follows that a, the distance between the apex A and the vertex
V of the hyperbola, (see Figs. 2.3 and 2.4) is equal to 1

2Dα–N. This allows
us to express Rα–N of (2.29) as a function of the direct-hit distance of clos-
est approach Dα–N or as a function of the impact parameter b using the
relationship (2.23) between Dα–N and b

Rα–N = a

⎧⎪⎨
⎪⎩1 +

1

sin
θ

2

⎫⎪⎬
⎪⎭ =

Dα–N

2

⎧⎪⎨
⎪⎩1 +

1

sin
θ

2

⎫⎪⎬
⎪⎭ = b

1 + sin
θ

2

cos
θ

2

= b
cos

θ

2

1 − sin
θ

2

.

(2.31)

2.3.5 Hyperbola in Polar Coordinates

In polar coordinates (r, ϕ) the hyperbolic α-particle trajectory may be exp-
ressed as

1
r

=
1
b

sinψ +
a

b2
(cosψ − 1) , (2.32)

with parameters a, b, and ψ defined in Fig. 2.3. Note that ψ and φ are different
angles and that the following relationship for angles ψ, φ, and θ applies

ψ + φ =
∣∣∣∣π − θ

2

∣∣∣∣ . (2.33)

It can be shown that the general expressions (2.32) and (2.27) defining the
hyperbola are equivalent.

2.4 Cross Sections for Rutherford Scattering

2.4.1 Differential Cross-Section for Rutherford Scattering:
Classical Derivation

The differential cross section dσRuth/dΩ for Rutherford scattering into a solid
angle dΩ = 2π sin θ dθ that corresponds to an angular aperture between θ and
θ+ dθ (equivalent to impact parameters between b and b− db), assuming the
azimuthal distribution to be isotropic, is the area of a ring with mean radius
b and width db
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dσRuth = 2πb db = 2π
b

sin θ
sin θ

∣∣∣∣dbdθ

∣∣∣∣dθ. (2.34)

Recognizing that
dΩ = 2π sin θ dθ, (2.35)

expressing sin θ as

sin θ = 2 sin
θ

2
cos

θ

2
, (2.36)

and, using (2.23) for the impact parameter b to determine |db/dθ| as
∣∣∣∣dbdθ

∣∣∣∣ = Dα–N

4
1

sin2 θ

2

, (2.37)

we obtain from (2.34) combined with (2.35), (2.36), and (2.37) the following
expression for dσRuth/dΩ, the differential Rutherford cross section

dσRuth

dΩ
=
(
Dα–N

4

)2 1

sin4 θ

2

=
(
Dα–N

4

)2 1

(1 − cos θ)2
. (2.38)

Inserting the expression for Dα–N of (2.12) into (2.38) and using the defi-
nition of the fine structure constant α = e2 (4πε0�c)−1, we can express the
Rutherford differential cross section as

dσRuth

dΩ
=
(

zZ�c

4

)2(
α

EK

)2 1

sin4 θ

2

, (2.39)

allowing us to conclude that the Rutherford differential scattering cross section
|dσRuth/dΩ| is:

1. Proportional to the atomic number z of the projectile and the atomic
number Z of the target.

2. Proportional to the electromagnetic coupling (fine structure) constant α2.
Thus, the electromagnetic force is governed by photon exchange between
the α particle and the nucleus.

3. Inversely proportional to the square of the initial kinetic energy EK of the
α particle.

4. Inversely proportional to the fourth power of sin (θ/2) arising from the 1/r2

variation of the Coulomb repulsive force in effect between the α particle
and the nucleus.

At small scattering angles θ, where sin
(

1
2θ
) ≈ 1

2θ, the differential Rutherford
cross section (2.38) can be simplified to read

dσRuth

dΩ
=
D2

α–N

θ4
. (2.40)
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Since most of the Rutherford scattering occurs for θ 	 1 rad and even at
θ = 1

2π the small angle result is within 30 % of the general Rutherford
expression, it is reasonable to use the small angle approximation of (2.40)
at all angles for which the unscreened point-Coulomb field expression is valid.
Departures from the point Coulomb field approximation appear for large and
small angles θ, corresponding to small and large impact parameters b, respec-
tively, and resulting from α-particle penetration of the nucleus and nuclear
field screening by orbital electrons, respectively.

2.4.2 Differential Cross Section for Rutherford Scattering
(Quantum-Mechanical Derivation)

The Rutherford differential cross section dσRuth/dΩ of (2.38) was derived clas-
sically; however, it can also be derived quantum-mechanically in a short and
simple manner by using the Fermi second golden rule, discussed in Sect. 1.23.5,
and the Born collision formula, discussed in Sect. 1.23.6. The Born collision
formula was introduced in a general form in (1.129) and can be written for
Rutherford scattering in terms of the spherically symmetric Coulomb nuclear
potential VN(r) playing the role of the potential operator V (r)

V (r) = VN(r) =
(
zZe2

4πε0

)
1
r
. (2.41)

For Rutherford scattering, (1.129) is expressed as follows

dσRuth

dΩ
=

∣∣∣∣∣∣
2mα

�2

∞∫
0

r2
zZe2

4πε0
sin(Kr)
K2r2

d (Kr)

∣∣∣∣∣∣
2

=
(
Dα–N

4

)2 1

sin4 θ

2

∣∣∣∣∣∣
∞∫
0

sin (Kr) d(Kr)

∣∣∣∣∣∣
2

, (2.42)

after inserting the expression for nuclear Coulomb potential VN(r) given in
(2.41), expression for K given in (1.124), and the expression for Dα–N given
in (2.12).

The value of the integral in (2.42) poses a problem at its upper limit, since
it oscillates about zero there. This problem can be obviated by accounting for
screening effects or simply by substituting into (2.42) the nuclear Coulomb
potential VN(r) of (2.41) by a Yukawa type potential VYuk(r) where

VYuk(r) = VN(r) e−ηr =
zZe2

4πε0
1
r
e−ηr, (2.43)

to get

dσRuth

dΩ
=
(
Dα–N

4

)2 1

sin4 θ

2

∣∣∣∣K
∫ ∞

0

e−ηr sin(Kr) dr
∣∣∣∣
2

, (2.44)
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with η a positive constant which is set to zero upon solving (2.44). The integral
in (2.44) in the limit η → 0 gives

lim
η→0

∫ ∞

0

e−ηr sin(Kr) dr = lim
η→0

[
e−ηr −η sinKr −K cosKr

η2 +K2

]∞
0

= lim
η→0

K

η2 +K2
=

1
K
, (2.45)

and (2.44) then gives the standard well known result for the Rutherford
differential cross section derived classically in Sect. 2.4.1 and presented in
(2.38) as

dσRuth

dΩ
=
(
Dα–N

4

)2 1

sin4 θ

2

. (2.46)

2.4.3 Screening of Nuclear Potential by Orbital Electrons

At large impact parameters b (i.e., at small scattering angles θ) the screening
effects of the atomic orbital electrons cause the potential felt by the α particle
to fall off more rapidly than the 1/r Coulomb point-source potential. It is
convenient to account for electron screening of the nuclear potential with
the Thomas–Fermi statistical model of the atom in which the Thomas–Fermi
atomic potential is given as

VTF(r) ≈ zZe2

4πε0
1
r
e
− r

aTF . (2.47)

In (2.47) aTF is the Thomas–Fermi atomic radius expressed as

aTF =
ξa0
3
√
Z
, (2.48)

where

ξ is the Thomas–Fermi atomic radius constant,
a0 is the Bohr atomic radius

(
a0 = 0.53 Å

)
, discussed in Sect. 3.1.1,

Z is the atomic number of the atom.

The Thomas–Fermi radius aTF represents a fixed fraction of all atomic elec-
trons or, more loosely, the radius of the atomic electron cloud that effectively
screens the nucleus. The nuclear screening implies that, with a decreasing
scattering angle θ, the scattering cross-section will flatten off at small angles
θ to a finite value at θ = 0 rather than increasing as θ−4 and exhibiting a sin-
gularity at θ = 0. The constant ξ in (2.48) calculated from the Thomas–Fermi
atomic model has a value of 0.885, while Jackson recommends a value of 1.4
as a better description of a general range of atomic and nuclear phenomena.
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For our purposes ξ ≈ 1 is a good and simple approximation to yield the
following expression for the Thomas–Fermi radius aTF

aTF ≈ a0
3
√
Z
, (2.49)

suggesting that the effective radius of the atomic electron charge cloud
decreases with an increasing atomic number Z as 1/ 3

√
Z, decreasing from

∼a0 for low Z to ∼0.2a0 for high Z elements. At first glance this result seems
surprising considering that the radius of atoms increases with Z, as shown
in (3.39). However, the radii of lower level atomic shells are inversely propor-
tional to Z and this in turn results in a decreasing effective charge radius aTF

with increasing Z.
The Fermi second golden rule (Sect. 1.23.5) can be used in conjunction with

the Born approximation (Sect. 1.23.6) to calculate dσRuth/dΩ for very small
scattering angles θ approaching 0 where (2.38) and (2.40) exhibit a singularity
and predict dσRuth/dΩ = ∞, an obviously unacceptable result. Using the
Thomas–Fermi potential of (2.47) for the potential V (r), the differential cross
section for Rutherford scattering is expressed as

dσRuth

dΩ
=

∣∣∣∣∣∣
2mα

�2

∞∫
0

r2VTF(r)
sin (Kr)
Kr

dr

∣∣∣∣∣∣
2

=

∣∣∣∣∣∣
2mα

�2

zZe2

4πε0

∞∫
0

e
− r

aTF
sin (Kr)
Kr

dr

∣∣∣∣∣∣
2

.

(2.50)
In standard tables of integrals we find the following solution for the integral
in (2.50)

∞∫
0

e−ax sin(bx) dx = −
[
e−ax

a2 + b2
[a sin(bx) + b cos (bx)

]x=∞

x=0

(2.51)

and with its help we evaluate the integral in (2.50) as

∞∫
0

e
− r

aTF sin(Kr) dr =
K

1
a2
TF

+K2

=
1

K

[
1 +

1
(KaTF)2

] . (2.52)

The differential cross section for the Rutherford scattering dσRuth/dΩ is now
expressed as

dσRuth

dΩ
=

∣∣∣∣∣∣∣∣
2mα

�2

zZe2

4πε0
1
K2

1

1 +
1

(KaTF)2

∣∣∣∣∣∣∣∣

2

. (2.53)

The term [1 + (KaTF)−2]−2 may be regarded as a correction factor to the
standard differential scattering cross section (2.46) for θ → 0 where the
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Thomas–Fermi screening of the simple point-source Coulomb nuclear potential
becomes important. The product KaTF using the expression for K of (1.124)
is now given as

KaTF =
2paTF

�
sin

θ

2
(2.54)

and for a typical Rutherford scattering experiment using naturally emitted α
particles on a gold foil amounts to ∼105 sin (θ/2). Thus, unless the scatter-
ing angle is very small, the correction factor [1 + (KaTF)−2]−2 is equal to 1
and (2.53) transforms into the simple Rutherford relationship given in (2.38).
Equation (2.53) is then simplified to read

dσRuth

dΩ
=
∣∣∣∣2mα

�2

zZe2

4πε0
1
K2

∣∣∣∣
2

=
∣∣∣∣2mα

�2

zZe2

4πε0
�

2

4p2 sin2 (θ/2)

∣∣∣∣
2

=
(
Dα–N

4

)2 1

sin4 θ

2

(2.55)

and shows that the Rutherford scattering formula for a point-charge Coulomb
field approximation can also be derived through quantum mechanical rea-
soning using the Fermi second golden rule and the Born approximation but
neglecting any magnetic interaction involving spin effects.

2.4.4 Minimum Scattering Angle

We now return to (2.53) to show that for very small scattering angles θ it pro-
vides a finite result for dσRuth/dΩ in contrast to the singularity exhibited by
(2.55). The general differential cross section dσRuth/dΩ including the small-θ
correction factor [1 + (KaTF)−2]−2 is

dσRuth

dΩ
=
(
Dα–N

4

)2 1

sin4 θ

2

1[
1 +

1
(KaTF)2

]2 ≈ D2
α–N

θ4
1[

1 +
(

�

paTFθ

)2
]2 ,

(2.56)
after introducing the expression for K given in (2.54) and using the approxi-
mation sin θ ≈ θ for small scattering angles θ.

Next we introduce the concept of θmin, the minimum cutoff scattering
angle for a given scattering experiment. Using the expressions for p and aTF

given by (1.64) and (2.49), respectively, we define θmin as

θmin =
�

paTF
=

�
3
√
Z

pa0
=

�c 3
√
Z

a0

√
EK (EK + 2E0)

, (2.57)
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where

EK is the kinetic energy of the α particle,
E0 is the rest energy of the α particle (3727.4 MeV).

Quantum-mechanically, based on Heisenberg uncertainty principle of (1.130),
we define the minimum cutoff angle θmin (also referred to as the Born screening
angle) as follows: When the classical trajectory of the incident particle is
localized within Δz ≈ aTF, the corresponding uncertainty on the transverse
momentum of the particle is Δp ≥ �/aTF, resulting in

θmin =
Δp
p

≈ �

paTF
=

λ̄

aTF
. (2.58)

For small scattering angles θ including θ = 0 the differential scattering cross
section dσRuth/dΩ given in (2.56) simplifies to

dσRuth

dΩ
=

D2
α–N

[θ2 + θ2min]
2 , (2.59)

and converges to the following finite value for θ = 0

dσRuth

dΩ
=
D2

α–N

θ4min

. (2.60)

2.4.5 Effect of the Finite Size of the Nucleus

At relatively large scattering angles θ the differential cross section dσRuth/dΩ
is smaller than that predicted by (2.38) because of the finite size of the nucleus.
Approximating the charge distribution of the atomic nucleus by a volume
distribution inside a sphere of radius R results in the following electrostatic
potentials V (r) for regions inside and outside the nucleus

V (r) =
zZe2

4πε0R

(
3
2
− 1

2
r2

R2

)
for r < R (inside the nucleus), (2.61)

V (r) =
3
8
zZe2

πε0R
for r = 0 (at the center of the nucleus), (2.62)

V (r) =
zZe2

4πε0R
for r = R (at the edge of the nucleus), (2.63)

V (r) =
zZe2

4πε0r
for r > R (outside the nucleus). (2.64)
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For use in the Fermi golden rule in conjunction with the Born approxima-
tion the four functions above can be approximated with the following single
function VFNS(r) approximating the effects of the finite nuclear size (FNS)
and covering the whole region of r from 0 to ∞

VFNS(r) =
zZe2

4πε0
1
r

(
1 − e−

2r
R

)
, (2.65)

where R is the nominal radius of the nucleus calculated from R = Ro
3
√
A,

given in (1.26).
In Fig. 2.5 the potential energy VFNS is plotted against r, the distance

from the center of the nucleus, for the gold nucleus. It converges to
(
2zZe2

)
/

(4πε0R) at r = 0 and provides a reasonable and continuous approximation
both inside the finite nucleus where r ≤ R and outside the nucleus for r > R
where the point source Coulomb approximation holds.

For comparison, also shown in Fig. 2.5 are the Coulomb point source poten-
tial (dashed curve) and the finite source potential assuming a uniform charge
distribution inside the nuclear sphere with radius R (light solid curve). At
r = 0 the Coulomb source potential exhibits a singularity and the finite
source with uniform charge density converges to

(
3zZe2

)
/ (8πε0R), as shown

in (2.62). For the gold nucleus VFNS at r = 0 converges to 64.9 MeV and the
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Fig. 2.5. Potential energy V (r) against distance r from the center of gold nucleus
with radius R = 7.3 fm. Three different potential energies are plotted: (1) Point
source nuclear potential VN(r) of (2.41) shown with dashed curve exhibiting singu-
larity at r = 0; (2) Potential for uniform charge distribution inside nuclear sphere of
(2.61) shown with light solid curve and converging to (3zZe2)/(8πεoR) = 48.7 MeV
at r = 0; and (3) Exponential function potential VFNS(r) of (2.65) approximating
potential inside and outside the finite size nucleus, shown with heavy solid curve,
and converging to (zZe2)/(2πεoR) = 64.9 MeV at r = 0
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field assuming a uniform charge distribution inside the nucleus converges to
48.7 MeV, as shown in Fig. 2.5.

Inserting (2.65) into the Born approximation of (1.129) results in the
following integral for dσRuth/dΩ

dσRuth

dΩ
=

∣∣∣∣∣∣
2mα

�2

∞∫
0

r2VFNS(r)
sin (Kr)
Kr

dr

∣∣∣∣∣∣
2

=

∣∣∣∣∣∣
2mα

�2

zZe2

4πε0K

∞∫
0

(
1 − e−

2r
R

)
sin(Kr) dr

∣∣∣∣∣∣
2

=

∣∣∣∣∣∣
2mα

�2

zZe2

4πε0K

⎧⎨
⎩

∞∫
0

sin(Kr) dr −
∞∫
0

e−
2r
R sin(Kr) dr

⎫⎬
⎭
∣∣∣∣∣∣
2

. (2.66)

The integrals in the curly bracket of (2.66) are calculated using (2.51) to get⎧⎨
⎩

∞∫
0

sin(Kr) dr −
∞∫
0

e−
2r
R sin (Kr) dr

⎫⎬
⎭

=

⎡
⎢⎣−cos (Kr)

K
+
e−

2r
R [2R−1 sin(Kr) +K cos (Kr)]

4
R2

+K2

⎤
⎥⎦

r=∞

r=0

=
1
K

− K
4
R2

+K2

=
1

K

(
1 +

K2R2

4

) . (2.67)

2.4.6 Maximum Scattering Angle

The differential cross section dσRuth/dΩ after inserting (2.67) into (2.66) is
given as

dσRuth

dΩ
=

∣∣∣∣∣∣∣∣
2mα

�2

zZe2

4πε0
1
K2

1(
1 +

K2R2

4

)
∣∣∣∣∣∣∣∣

2

=
(
Dα–N

4

)2 1

sin4 θ

2

1⎡
⎣1 +

(
pR sin

(
1
2θ
)

�

)2
⎤
⎦

2

=
(
Dα–N

4

)2 1

sin4 θ

2

1⎡
⎣1 +

(
sin
(

1
2θ
)

θmax

)2
⎤
⎦

2 , (2.68)
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after first inserting the expression for K = 2 (p/�) sin (θ/2) of (1.124) and
then defining the maximum (cutoff) scattering angle θmax, beyond which the
scattering cross section falls significantly below the sin−4

(
1
2θ
)

expression, as

θmax =
�

pR
=

�c

R0
3
√
A
√
EK (EK + 2E0)

, (2.69)

where again

EK is the kinetic energy of the α particle,
E0 is the rest energy of the α particle (3727.4 MeV).

The maximum cutoff scattering angle θmax can be defined quantum-mechani-
cally based on the Heisenberg uncertainty principle of (1.130) as follows: When
the classical trajectory of the incident particle is localized within Δz ≈ R,
the corresponding uncertainty on the transverse momentum of the particle is
Δp ≥ �/R, leading to

θmax =
Δp
p

≈ �

pR
=
λ̄

R
=

λ

2πR
, (2.70)

where λ is the de Broglie wavelength of the incident α particle and we assume
that θmax 	 1.

2.4.7 General Relationships for Differential Cross Section
in Rutherford Scattering

In each Rutherford collision the angular deflections obey the Rutherford
expression with cutoff at θmin and θmax given by (2.57) and (2.69), respec-
tively. The typical value for �/p in the two expressions can be estimated for
α particles with a typical kinetic energy of 5.5 MeV as follows

�

p
=

�c√
EK (EK + 2E0)

≈ 197.3 MeV · fm√
5.5 (5.5 + 2 × 3727.4) MeV

≈ 1 fm, (2.71)

where we use the expression for p given in (1.64). Inserting the value for
�/p ≈ 1 fm into (2.58) and (2.69), respectively, for a typical α particle kinetic
energy of 5.5 MeV, combined with appropriate values for aTF = 0.123×105 fm
and R = 7.3 fm, results in the following angles θmin and θmax for the gold
atom

θmin =
�

paTF
=

�c

pc

3
√
Z

a0
≈ (1 fm)

3
√

79
0.5292×105 fm

≈ 8.1×10−5 rad (2.72)

and

θmax =
�

pR
=

�c

pc

1
R0

3
√
A

≈ (1 fm)
1

(1.25 fm) 3
√

197
≈ 0.14 rad. (2.73)
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We now see that the Rutherford scattering of α particles on nuclei is governed
by the following stipulation: θmin 	 θmax 	 1, justifying our assumptions in
(2.58) and (2.70) that both cutoff angles are much smaller than 1. We also
note that the ratio θmax/θmin is independent of α particle kinetic energy EK

but depends on the atomic number Z and mass number A of the scatterer
and is given as

θmax

θmin
=
aTF

R
≈ a0

R0
3
√
ZA

=
0.5292×105 fm

1.25 fm
1

3
√
ZA

≈ 0.423×105

3
√
ZA

. (2.74)

From (2.74) we estimate that the ratio θmax/θmin ranges from ∼ 5×104 for
low atomic number Z scatterers to ∼ 1.5×103 for high atomic number Z
scatterers, since 3

√
ZA ranges from 1 at low Z to about 30 at high Z. We may

thus conclude that θmax/θmin � 1 for all elements. For gold, the material used
in Geiger–Marsden experiment, 3

√
ZA amounts to ∼ 1.76×103.

The differential cross section dσRuth/dΩ for Rutherford scattering of
5.5 MeV α particles on gold nuclei is plotted in Fig. 2.6 in the form(
D−2

α–N

)
dσRuth/dΩ against the scattering angle θ in the range from 10−5

rad to π. As calculated in (2.72) and (2.73), θmin = 8.1×10−5 rad and
θmax = 0.14 rad, respectively. Three distinct regions can be identified on
the graph: small θ; intermediate θ; and large θ.

Fig. 2.6. Differential Rutherford scattering cross section [(1/D2
α−N)×(dσRuth/dΩ)]

plotted against the scattering angle θ for 5.5 MeVα particles interacting with gold.
The minimum and maximum scattering angles θmin = 8.1×10−5 rad and θmax =
0.14 rad, respectively, are identified. For θ → 0 the value of the ordinate approaches
(1/θ4min) ≈ 2.32×1016 (rad)−4
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1. In the intermediate region θmin 	 θ 	 θmax where θmin 	 θmax 	 1, the
simple Rutherford differential scattering expressions given by (2.38) and
(2.40) apply, resulting in a straight line [curves (1) and (2)] on the log–log
plot

1
D2

α–N

dσRuth

dΩ
=

1
16

1
sin4 (θ/2)

≈ 1
θ4
. (2.75)

2. In the small angle θ region (θ < θmin), as a result of nuclear screening
and after applying the Thomas–Fermi atomic model, the differential cross
section is given by

1
D2

α–N

dσRuth

dΩ
=

1

(θ2 + θ2min)
2 , (2.76)

resulting in curve (3) in Fig. 2.6 and converging to a finite value of θ−4
min =

2.32×1016 rad−4 for θ = 0.
3. In the large angle θ region where θ > θmax, (2.40) represented by curve (1)

is still linear, while (2.38) results in curve (2). A correction for finite nuclear
size and nuclear penetration of the scattered particle lowers the value of the
differential cross section from the value predicted by the simple Rutherford
equation and results from (2.68) in

1
D2

α–N

dσRuth

dΩ
=

1
16

1
sin4 (θ/2)

1(
1 +

sin2 (θ/2)
θ2max

)2 , (2.77)

shown as curve (4) in Fig. 2.6.

2.4.8 Total Rutherford Scattering Cross Section

The total cross section for Rutherford scattering can be approximated by
using the small angle approximation and integrating (2.59) over the complete
solid angle to obtain

σRuth =
∫

dσRuth

dΩ
dΩ = 2π

θmax∫
0

dσRuth

dΩ
sin θ dθ ≈ 2πD2

α–N

θmax∫
0

θ dθ

(θ2 + θ2min)
2

= πD2
α–N

θmax∫
0

d
(
θ2 + θ2min

)
(θ2 + θ2min)

2 = πD2
α–N

{
1

θ2min

− 1
θ2max + θ2min

}

= πD2
α–N

1
θ2min

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 − 1

1 +
(
θmax

θmin

)2

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
. (2.78)
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In each Rutherford collision the angular deflections obey the Rutherford
expression with cutoffs at θmin and θmax given by (2.72) and (2.73), respec-
tively. The typical value for �/p in the expressions for θmin and θmax was
estimated in (2.71) for α particles with a typical kinetic energy of 5.5 MeV as
1 fm while θmin and θmax for gold atom were estimated in (2.72) and (2.73) as
8.1×10−5 rad and 0.14 rad, respectively. The cutoff angles θmin and θmax thus
satisfy the Rutherford condition stipulating that θmin 	 θmax 	 1 and, since
also θmax/θmin � 1, the total cross section for Rutherford scattering given in
(2.78) can be simplified, after inserting (2.12) and (2.57), to read

σRuth ≈ πD2
α–N

θ2min

= πa2
TF

(
Dα–N

(�/p)

)2

= πa2
TF

{
2zZe2

4πε0�υi

}2

. (2.79)

The parameters of (2.79) are as follows:

aTF is the Thomas–Fermi atomic radius
Z is the atomic number of the absorber foil,
z is the atomic number of the α particle,
υi is the initial velocity of the α particle, equal to the final velocity

of the α particle
Dα–N is the distance of closest approach between the α particle and nucleus

in a direct-hit head-on collision (b = 0).

For the Geiger–Marsden experiment with 5.5 MeV α particles scattered on
a 1μm thick gold foil we calculate the following total scattering cross section

σRuth =
πD2

α–N

θ2min

=
π
(
41×10−13 cm

)2
(
8.1×10−5

)2 = 8.05×109 b. (2.80)

2.4.9 Mean Square Scattering Angle
for Single Rutherford Scattering

Rutherford scattering is confined to very small angles and for energetic α
particles θmax 	 1 rad. An α particle traversing a gold foil will undergo a
large number of small angle θ scatterings and emerge from the foil with a
small cumulative angle Θ that represents a statistical superposition of a large
number of small angle deflections.

Large angle scattering events, on the other hand, are rare and a given
α particle will undergo at most only one such rare scattering event while
traversing the gold foil. As discussed in Sect. 2.2, Geiger and Marsden found
that only about 1 in 104 α particles traverses the 1 μm thick gold foil with a
scattering angle Θ exceeding 90◦. The range of Rutherford angular scattering
is thus divided into two distinct regions:

1. Single scattering events with large angle θ.
2. Multiple scattering events resulting in a small cumulative angle Θ.
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In the multiple-scatter region, the mean square angle for single scattering
θ2 is

θ2 =

∫
θ2

dσRuth

dΩ
dΩ

∫ dσRuth

dΩ
dΩ

=

∫
θ2

dσRuth

dΩ
dΩ

σRuth
. (2.81)

The denominator in (2.81) is the total Rutherford scattering cross section
σRuth, given in (2.79). It is proportional to the square of the distance of
closest approach (Dα–N)2 and inversely proportional to θ2min. The integral
in the numerator of (2.81) is in the small angle approximation (sin θ ≈ θ)
calculated as follows

∫
θ2

dσRuth

dΩ
dΩ = 2πD2

α–N

θmax∫
0

θ2 sin θ dθ

(θ2 + θ2min)
2 ≈ 2πD2

α–N

θmax∫
0

θ3dθ

(θ2 + θ2min)
2

= πD2
α–N

θmax∫
0

(
θ2 + θ2min

)
d
(
θ2 + θ2min

)
(θ2 + θ2min)

2 − πD2
α−N

θmax∫
0

θ2mind
(
θ2 + θ2min

)
(θ2 + θ2min)

2

= πD2
α–N

{
ln
(
θ2 + θ2min

)
+

θ2min

θ2 + θ2min

}θmax

0

= πD2
α–N

{
ln
(

1 +
θ2max

θ2min

)
+

θ2min

θ2max + θ2min

− 1
}
. (2.82)

The mean square angle θ2 of (2.81) for a single scattering event, after incor-
porating the Rutherford total scattering cross section given in (2.79), is then
given by the following relationship

θ2=θ2min ln
(

1+
θ2max

θ2min

)
− θ2minθ

2
max

θ2min + θ2max

=θ2min ln
(

1+
θ2max

θ2min

)
−
(

1
θ2min

+
1

θ2max

)−1

.

(2.83)
The expression in (2.83) can be simplified using Rutherford scattering condi-
tion stipulating that θmin 	 θmax 	 1 to obtain

θ2 ≈ 2 θ2min ln
θmax

θmin
. (2.84)

For the Geiger–Marsden experiment with 5.5 MeV α particles scattered on a
gold foil we calculate the following mean square angle for single Rutherford
scattering

θ2 ≈ 2θ2min ln
θmax

θmin
= 2 × (8.1×10−5 rad

)2
ln

0.14
8.1×10−5

= 9.8×10−8 (rad)2,

(2.85)
resulting in the following root mean square scattering angle√

θ2 = 3.13×10−4 rad. (2.86)
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2.4.10 Mean Square Scattering Angle
for Multiple Rutherford Scattering

Since the successive scattering collisions are independent events, the central-
limit theorem of statistics (see Sect. 2.7.1) shows that for a large number n >
20 of such collisions, the distribution in angle will be Gaussian around the
forward direction [see (2.2)] with a cumulative mean square scattering angle
Θ2 related to the mean square scattering angle θ2 for a single scattering event
given in (2.83). The cumulative mean square angle Θ2 and the mean square
angle θ2 for a single scattering event are related as follows

Θ2 = nθ2 (2.87)

where n, the number of scattering events, is

n =
Na

V
σRutht = ρ

NA

A
σRutht = πρ

NA

A

D2
α–N

θ2min

t. (2.88)

In (2.88) the parameters are as follows:

σRuth is the total Rutherford cross section given by (2.78),
Na/V is the number of atoms per volume equal to ρNA/A,

ρ is the density of the foil material,
t is the thickness of the foil,
A is the atomic mass number,

NA is the Avogadro number (NA = 6.023×1023 mol−1),
Dα–N is the distance of closest approach between the α particle and the

nucleus in a direct hit interaction where b = 0 [see (2.12)],
θmin is the cutoff angle defined in (2.57).

The mean square angle Θ2 of the Gaussian distribution after combining
(2.85), (2.87) and (2.88) is then given by

Θ2 = 2πρ
NA

A
t D2

α–N ln
θmax

θmin
, (2.89)

indicating that the mean square angle Θ2 for multiple Rutherford scatter-
ing increases linearly with the foil thickness t. Inserting the expressions for
θmin and θmax of (2.57) and (2.69), respectively, into (2.89), we now get the
following expression for the mean square angle Θ2 in Rutherford scattering

Θ2 = 2πρ
NA

A
t D2

α–N ln
1.4a0

Ro
3
√
AZ

= 2πρ
NA

A
t

{
zZe2

4πε0EK

}2

ln
1.4a0

R0
3
√
AZ

,

(2.90)
where a0 = 0.5292 Å and R0 = 1.25 fm are the Bohr radius constant of (3.4)
and the nuclear radius constant of (1.26), respectively.
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For the Geiger–Marsden experiment with 5.5 MeV α particles scattered
on a gold foil we calculate the following mean square angle for multiple
Rutherford scattering

Θ2 = 2πρ
NA

A
t D2

α–N ln
θmax

θmin

= 2π × 19.3 (g/cm3)
6.022×1023 (mol)−1

197 (g/mol)
10−4 cm (41×10−13 cm)2

× ln
0.14

8.1×10−5
= 46.4×10−4 (rad)2, (2.91)

resulting in the following root mean square scattering angle for multiple
scattering

√
Θ2 = 0.068 rad = 3.9◦. (2.92)

2.4.11 Importance of the Rutherford Scattering Experiment

Tables 2.1–2.3 summarize the parameters of the Geiger–Marsden α-particle
scattering experiment, listing the important parameters of the α particles;
the gold atom; and Rutherford scattering, respectively, based on expressions
derived in this section. All data are calculated for Rutherford scattering of
5.5 MeV α particles on gold nuclei.

The α-particle scattering experiment on a thin gold foil conducted by Hans
Geiger and Ernest Marsden under the guidance of Ernest Rutherford seems
rather mundane, yet it is one of the most important experiments in the history
of physics. Nature provided Geiger and Marsden with ideal conditions to probe
the nucleus with radon-222 α particles with kinetic energy of 5.5 MeV.

Table 2.1. Properties of α particles used in the Geiger–Marsden experiment

Properties of α particles

Atomic number z = 2
Rest energy E0 = mαc

2 = 3727.4 MeV
Kinetic energy EK = E − E0 = 5.5 MeV

Normalized velocity
υα

c
=

√√√√√1 − 1(
1 +

EK

mαc2

)2
= 0.054 (2.7)

Momentum p =
1

c

√
E2 − E2

0 =
1

c

√
E2

K + 2EKE0 = 202.6 MeV/c (1.64)

Reduced Planck
constant divided
by momentum

�

p
=

�c

pc
=

197.3 MeV · fm
202.6 MeV

= 0.974 fm ≈ 1 fm (2.71)
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Table 2.2. Properties of gold atom of importance in Rutherford scattering

Properties of gold atom 197
79Au

Atomic number Z = 79
Atomic mass number A = 197
Density ρ = 19.3 g/cm3

Thomas–Fermi radius aTF =
a0

3
√
Z

=
0.5292 Å

3
√

79
= 0.123 Å (2.49)

Nuclear radius R = R0
3
√
A = (1.25 fm) 3

√
197 = 7.3 fm (2.13)

Thickness of gold foil t = 10−4 cm = 1 μm

Table 2.3. Parameters of Geiger–Marsden experiment. α particles with kinetic
energy of 5.5 MeV undergo Rutherford scattering on a 1 μm thick gold foil

Parameters of Rutherford scattering

Distance of closest
approach

Dα−N =
zZe2

4πε0

1

EK
= 41 fm (2.12)

Minimum scattering angle θmin =
�

p

1

aTF
=

1 fm

0.123×105 fm

= 8.1×10−5 rad (2.72)

Maximum scattering angle θmax =
�

p

1

R
=

1 fm

7.3 fm
≈ 0.14 rad (2.73)

Ratio
θmax

θmin

θmax

θmin
=

0.14

8.1×10−5
= 1.766×103 (2.74)

Differential Rutherford
cross section at θ = 0

dσRuth

dΩ

∣∣∣∣
θ=0

=
D2

α−N

θ4min

= 3.9×1017 b/sr (2.76)

Rutherford cross section σRuth = π
D2

α−N

θ2min

= 8.05×109 b (2.79)

Mean square scattering
angle for single
scattering

θ2 ≈ 2θ2min ln
θmax

θmin
= 9.8×10−8 (rad)2 (2.80)

Root mean square angle
for single scattering

√
Θ2 = 3.13×10−4 rad (2.86)

Mean square scattering
angle for multiple
scattering

Θ2 = 2πρ
NA

A
tD2

α−N ln
θmax

θmin
= nθ2

= 46.4×10−4 (rad)2

(2.89)

Root mean square angle
for multiple scattering

√
Θ2 = 0.068 rad = 3.9◦ (2.92)

Number of scattering
events

n = πρ
NA

A

D2
α−N

θ2min

t ≈ 47500 (2.88)
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The radon-222 α particles allowed penetration of the atom but their energy
was neither too large to cause nuclear penetration and associated nuclear
reactions nor large enough to require relativistic treatment of the α-particle
velocity. Since artificial nuclear reactions and the relativistic mechanics were
not understood in 1909 when the Geiger–Marsden experiment was carried out,
Rutherford would not be able to solve with such elegance the atomic model
question, if the kinetic energy of the α particles used in the experiment was
much larger than 5.5 MeV thereby causing penetration of the gold nucleus or
much smaller than 5.5 MeV thereby preventing penetration of the atom.

Geiger–Marsden experiment provided the stimulus for development of
nuclear physics and will remain forever on the short list of milestones in
physics. It also served as the first known method for estimation of the upper
limit of nuclear size through the calculation of the distance of closest approach
Dα–N but was soon eclipsed by new and more sophisticated scattering exper-
iments that are now used for this purpose. However, the basic principles of
the original technique are still used in the so-called Rutherford backscattering
spectroscopy (RBS) which is an analytical tool used in materials science for
determining structure and composition of materials by measuring backscat-
tering of a beam of high energy ions (protons or helium ions) accelerated in a
linear accelerator.

2.5 Mott Scattering

In comparison with heavy charged particles, energetic electrons are much
better suited for studies of nuclear size and charge distribution. However,
to obtain agreement with experimental results, the theoretical treatment of
the scattering process must go beyond the rudimentary Rutherford-Coulomb
point-source scattering approach and account for various other parameters
such as:

1. Electron spin
2. Relativistic effects
3. Quantum effects
4. Recoil of the nucleus
5. Nuclear spin
6. Finite size of the nucleus

Accounting for these additional parameters refines the scattering theory
beyond the level achieved by Rutherford but also makes it significantly more
complex. For example, the finite size of the nucleus implies that the target is
not a point charge but consists of its own structure containing protons and
neutrons which, in turn, have their own constituents referred to as quarks.

At low electron energies where the electron does not penetrate the nucleus
the electron scattering by the nucleus can be described with the standard
Rutherford-type scattering formula [see (2.39)]
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dσRuth

dΩ
=
(
De–N

4

)2 1

sin4 θ

2

=
(
De–N

2

)2 1
(1 − cos θ)2

=
(
Zα�c

4EK

)2 1

sin4 θ

2

,

(2.93)

where

De–N =
Ze2

4πε0
1
2
mυ2

(2.94)

is here referred to as the effective characteristic distance for the electron–
nucleus scattering (see Sect. 2.6.2) in contrast to the distance of closest
approach Dα–N used in Rutherford scattering of α particles, as discussed
in Sect. 2.3.2. In the expression for De–N of (2.93), m is the total mass of
the incident electron in contrast to me which is the rest mass of the electron
(m = me/

√
1 − (υ/c)2), and υ is the velocity of the incident electron.

At very high electron energies (above 100 MeV) electrons are highly rela-
tivistic and two corrections to the simple Rutherford-type formula (2.93) are
required: correction for electron spin and correction for nuclear recoil.

2.5.1 Correction for Electron Spin

The effect of the electron magnetic moment introduces to the Rutherford
relationship for electron scattering given in (2.93) a spin correction factor
expressed as

fspin = 1 − β2 sin2 θ

2
, (2.95)

which, for relativistic electrons where β = υ/c→ 1, simplifies to

fspin ≈ 1 − sin2 θ

2
= cos2

θ

2
=

1 + cos θ
2

. (2.96)

For relativistic electrons (υ ≈ c) the spin correction factor fspin does not
depend on the kinetic energy EK of the incident electron but depends on
the scattering angle θ and, as shown in Fig. 2.7, ranges from fspin = 1 for
θ = 0 through fspin = 0.85 for θ = 45◦, fspin = 0.5 for θ = 90◦ and fspin =
0.146 for θ = 135◦ to fspin = 0 for θ = 180◦. Thus, at small scattering
angles θ the electron spin effects are negligible, while at large scattering angles
they significantly decrease the differential scattering cross section from that
given by the Rutherford expression of (2.93), essentially disallowing electron
backscattering at θ = 180◦.

Figure 2.8 plots, for a point-like Coulomb scattering source, the differen-
tial cross section for electron–nucleus scattering without spin correction in
curve (1) and with spin correction in curve (2). The following expressions are
plotted:
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Fig. 2.7. Spin correction factor fspin of (2.96) against scattering angle θ for electron–
nucleus (Mott) scattering

Fig. 2.8. Normalized Mott differential scattering cross section dσMott/dΩ against
scattering angle θ. Curve (1) is the Rutherford component without electron spin
correction (i.e., fspin = 1); curve (2) is for the Rutherford component corrected for
the electron spin effect given as fspin = cos2

(
1
2
θ
)

= 1
2
(1 + cos θ)
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16
D2

e–N

dσMott

dΩ
=

16
D2

e–N

dσRuth

dΩ
fspin =

1

sin4 θ

2

× 1 + cos θ
2

, (2.97)

where

curve (1) is without spin correction or fspin = 1 independent of θ
curve (2) is with spin correction given in Fig. 2.7 and (2.96) as fspin =

cos2(θ/2).

2.5.2 Correction for Recoil of the Nucleus

The nuclear recoil correction factor frecoil is given as the ratio between the
kinetic energy of the scattered (recoil) electron E′

K and the kinetic energy
of the incident electron EK. The kinetic energy of the scattered electron E′

K

is determined from considerations of conservation of energy and momentum
during the scattering process. The considerations resemble the derivation of
scattered photon energy and recoil electron kinetic energy in Compton effect
(see Sect. 7.3.3).

The schematic diagram of the scattering process is shown in Fig. 2.9 where
an incident electron with momentum p and kinetic energy EK is scattered,
essentially elastically, through a scattering angle θ to end with momentum p′

and kinetic energy E′
K. To be useful as a nuclear probe and to have a relatively

small de Broglie wavelength (of the order of 10 fm) the electron must be of
sufficiently high kinetic energy and is thus relativistic. The conservation of
energy during the scattering process is written as follows

Mc2 + EK +mec
2 = ΔEK +Mc2 + E′

K +mec
2 (2.98)

or

EK = ΔEK + E′
K, (2.99)

Fig. 2.9. Schematic representation of electron–nucleus (Mott) scattering
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where

ΔEK is the recoil kinetic energy transferred from the incident electron to
the nucleus,

Mc2 is the rest energy of the nucleus,
mec

2 is the rest energy of the incident electron.

Using the law of cosines on the vector diagram of Fig. 2.9, the conservation
of momentum p = p′ + Δp, with an assumption that in elastic scattering
|p| ≈ |p′|, can be stated as follows

|Δp|2 = |p|2 + |p′|2 − 2 |p| |p′| cos θ ≈ 2 |p|2 (1 − cos θ), (2.100)

where Δp is the recoil momentum of the nucleus. The recoil kinetic energy
ΔEK is given as

ΔEK ≈ |Δp|2
2M

=
|p|2 (1 − cos θ)

M
=

E2
K

Mc2

(
1 +

2mec
2

EK

)
(1 − cos θ), (2.101)

using the expression for the incident electron momentum magnitude |p| = p
of (1.64) given as

p =
1
c

√
E2

K + 2EKmec2 =
EK

c

√
1 +

2mec2

EK
. (2.102)

Recognizing that in the electron scattering experiment mec
2 	 EK 	 Mc2

and E′
K = EK − ΔEK we now get the following expression for the recoil

correction frecoil

frecoil =
E′

K

EK
=

1

1 +
EK

Mc2
(1 − cos θ)

=
1

1 +
2EK

Mc2
sin2 θ

2

. (2.103)

The recoil correction factor frecoil depends on the kinetic energy EK of the
incident electron, the rest mass of the scattering nucleus Mc2, and the scat-
tering angle θ. For small scattering angles frecoil ≈ 1 irrespective of EK and
then, for a given EK/Mc2, it decreases with θ increasing from 0 to 180◦. Since
generally Mc2 � EK, unless we are dealing with very low atomic number
scatterer and very high incident electron kinetic energy, it is reasonable to
assume that frecoil ≈ 1.

Figure 2.10 plots the relationship between the kinetic energy of the scat-
tered electron E′

K and the kinetic energy of the incident electron EK for four
scattering angles (0, 1

4π,
1
2π, and π) of Mott scattering on hydrogen and

gold nuclei in the kinetic energy range from 1 MeV to 106 MeV. In the
electron kinetic energy of interest in medical physics (up to 30 MeV), the
kinetic energy of the scattered electron E′

K is equal to the kinetic energy of
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Fig. 2.10. Scattered electron kinetic energy E′
K = frecoilEK against the incident

electron kinetic energy EK for Mott scattering on hydrogen and gold nuclei for four
different scattering angles (0, 1

4
π, 1

2
π, and π). The recoil correction frecoil is given

in (2.103)

the incident electron EK for all scattering materials and all scattering angles
θ. This implies that frecoil = 1 for all situations of interest in medical physics.

From Fig. 2.10 we arrive at several other conclusions, of little interest in
medical physics but relevant to high energy physics:

1. frecoil = 1 for θ = 0 at all kinetic energies of the incident electron from 0
to ∞.

2. For backscattered electron (θ = π), its kinetic energy saturates at 1
2Mc2

whereM is the rest mass of the recoil nucleus. This results in frecoil → 0 but
happens only at very large incident electron kinetic energies, way outside
of the energy region of interest in medical physics.

3. Similarly, for side-scattered electron (θ = 1
2π), its kinetic energy saturates

at Mc2 at very high incident electron kinetic energy.
4. The findings in points (2) and (3) are similar to relationships observed in

Compton scattering (see Sect. 7.3.3) except that in Compton scattering the
recoil particle is an electron which has a significantly smaller rest energy
than a nucleus. This makes the recoil of the Compton electron of great
importance to medical physics, since a significant fraction of the incident
photon energy is transferred to the recoil electron in the photon energy
range of interest in medical physics.
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2.5.3 Differential Cross Section for Mott Scattering
of Electrons on Point-Like Atomic Nuclei

Accounting for the spin correction of (2.96) and the nuclear recoil correction
of (2.103) we now write the Mott expression for the differential cross section
in electron–nucleus scattering as

dσMott

dΩ
=

dσRuth

dΩ
fspinfrecoil =

dσRuth

dΩ

{
cos2

θ

2

}
× 1

1 +
EK

Mc2
(1 − cos θ)

,

(2.104)
where dσRuth/dΩ is the Rutherford electron–nucleus scattering formula given
in (2.93) and valid at very low electron kinetic energies. The most important
component of (2.104) is the Rutherford component; the product of the two
corrections to the Rutherford component (the electron spin quantum effect
fspin and the nuclear recoil frecoil) is of the order of unity except when the
scattering angle θ is close to 180◦ or when the kinetic energy of the incident
electron is very large.

2.5.4 Hofstadter Correction for Finite Nuclear Size
and the Form Factor

Figure 2.11 shows, for scattering of 125 MeV electrons on gold nuclei, several
differential cross sections plotted against the scattering angle θ:

Fig. 2.11. Elastic scattering of 125 MeV electrons on gold nuclei. Curve (R) is
for data calculated with Rutherford equation (2.93) without spin or nuclear recoil
correction. Curve (M) is for Rutherford equation incorporating spin correction of
(2.96) and nuclear recoil correction of (2.103). Data points are Hofstadter’s measured
data
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1. Curve (R) represents the calculated simple Rutherford differential cross
section (2.93) assuming a point-like Coulomb field and ignoring the electron
spin effects as well as nuclear recoil.

2. Curve (M) represents the Mott differential scattering cross section (2.104)
assuming a point-like Coulomb source and incorporating corrections for
electron spin (fspin) and nuclear recoil (frecoil ≈ 1).

3. Data points represent data that Robert Hofstadter measured in the early
1960s at Stanford University. While at small scattering angles Hofstadter’s
measurements agree with the Mott theory, for scattering angles θ exceeding
45◦ the measured points show significantly lower values than the theory,
and the discrepancy increases with increasing θ.

Hofstadter carried out extensive experimental and theoretical studies of
electron–nucleus scattering and for this work received a Nobel Prize in Physics
in 1961. He explained the discrepancy between his measured data and Mott
theory of Fig. 2.11 by expanding the Mott expression of (2.104) to account
for the finite size of the nucleus using a form factor F (K) correction. The
experimental differential cross section for elastic electron–nucleus scattering
then becomes expressed as

dσexp

dΩ
=

dσMott

dΩ
|F (K)|2 =

dσRuth

dΩ

{
cos2

θ

2

}
× 1

1 +
EK

Mc2
(1 − cos θ)

|F (K)|2 ,

(2.105)
where K is proportional to the momentum transferred from incident electron
to the nucleus, or

K = |K| =
1
�

√
|pi|2 + |pf |2 − 2 |pi| |pf | cos θ =

1
�
2p sin

θ

2
=

2
λ̄

sin
θ

2
. (2.106)

The form factor F (K) represents a Fourier transform of the nuclear charge
density distribution ρ(r) assumed to be spherically symmetric. In the Born
approximation (see Sect. 1.23.6), F (K) is expressed as

F (K) =
∫ ∫ ∫

ρ(r) eiKrdV =

∞∫
0

π∫
0

2π∫
0

ρ(r) eiKr cos θr2 dr sin θ dθ dφ

= 2π

∞∫
0

r2ρ(r)

⎧⎨
⎩

1∫
−1

eiKr cos θd(cos θ)

⎫⎬
⎭ dr

= 2π

∞∫
0

r2ρ(r)
eiKr − e−iKr

iKr
dr = 2π

∞∫
0

r2ρ(r)
sin Kr
Kr

dr, (2.107)
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with the normalization

∫
ρ(r)dV =

∞∫
0

+1∫
−1

2π∫
0

r2ρ(r)dφd(cos θ)dr = 4π

∞∫
0

ρ(r)r2dr = 1. (2.108)

The magnitude of the form factor F (K) is determined experimentally by
comparing the measured cross section to the Mott cross section for point-like
nucleus. The measurements are carried out for fixed electron beam energy at
various scattering angles θ, i.e., at various values of |K| = K. In practice, how-
ever, F (K) can be measured only over a limited range of momentum transfer
|K| /� so that a full functional dependence of F (K) cannot be determined
for use in inverse Fourier transform which would yield the nuclear charge
distribution ρ(r)

ρ(r) =
1

(2π)3

∫
F (K)e−iKrdV . (2.109)

Much effort has been spent on experimental determination of nuclear size
and charge distribution. The current consensus is that nuclei are not charged
spheres with a sharply defined surface. Rather, the nuclear charge density ρ(r)
can be described by a Fermi function with two parameters (α and β) both of
the order of 1 fm

ρ(r) =
ρ(0)

1 + e(r−α)/β
. (2.110)

As a guide to nuclear size, the nucleus is commonly approximated as a
homogeneously charged sphere with radius R given as

R = R0
3
√
A, (2.111)

where A is the atomic mass number and R0 is the nuclear radius constant
amounting to 1.25 fm, as discussed in Sect. 1.16.1.

2.6 General Aspects of Elastic Scattering
of Charged Particles

Most interactions of energetic charged particles as they traverse an absorber
can be characterized as elastic Coulomb scattering between an energetic
charged particle and the atoms of the absorber. The charged particles of inter-
est in medical physics are either light charged particles such as electrons and
positrons or heavy charged particles such as protons, α particles, and heav-
ier ions. Negative pions π− were included in the group of charged particles
as intermediate mass particles; however, interest in their use in radiotherapy
has waned during the past 20 years with the advent of proton radiotherapy
machines.
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Charged particles can have elastic scattering interactions with orbital elec-
trons as well as nuclei of the absorber atoms. The Coulomb force between the
charged particle and the orbital electron or the nucleus of the absorber gov-
erns the elastic collisions and is either attractive or repulsive depending on
the polarity of the interacting charged particles. In either case the trajectory
of the projectile is a hyperbola: for an attractive Coulomb force the target
is in the inner focus of the hyperbola; for a repulsive Coulomb force the tar-
get is in the outer focus of the hyperbola. An elastic collision between an
α particle and a nucleus of an absorber is shown schematically in Fig. 2.3
(Rutherford scattering) in Sect. 2.3.1; an elastic collision between a heavy
charged particle and an orbital electron is shown schematically in Fig. 6.3 in
Sect. 6.4.1.

Various investigators worked on theoretical aspects of elastic scattering
of charged particles, most notably: Rutherford with Geiger and Marsden on
α particle scattering; Mott on electron–nucleus scattering as well as on non-
relativistic electron–orbital electron scattering; Møller on relativistic electron–
orbital electron scattering; Bhabha on positron–orbital electron scattering;
and Molière on multiple scattering.

As shown in previous sections of this chapter, Rutherford scattering the-
ory forms the basis for all charged particle single scattering theories. However,
various corrections must be applied to Rutherford’s formalism when moving
from a discussion of classical α particle scattering on an infinite-mass gold
nucleus to a discussion of relativistic electrons scattered on finite size absorber
nuclei. To highlight the various different projectiles, scattering centers, and
corrections, in addition to Rutherford scattering, we speak of Mott scatter-
ing, Møller scattering, Bhabha scattering, Hofstadter scattering, etc in single
scattering events and of Molière scattering when we consider the composite
effect of scattering on a large number of scattering centers.

The particle interactions in absorbers are characterized by various param-
eters that describe single and multiple scattering events:

1. For single scattering we define the differential and total scattering cross
section, effective characteristic distance, and mean square scattering angle.

2. For multiple scattering we define the mean square scattering angle and the
mass scattering power.

2.6.1 Differential Scattering Cross Section
for a Single Scattering Event

The differential scattering cross section dσ/dΩ for a single scattering event
between two charged particles was discussed in relation to Rutherford scat-
tering in Sect. 2.3. In the small scattering angle θ approximation where
sin(1

2θ) ≈ 1
2θ, the differential scattering cross section based on Rutherford’s
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seminal work is in general expressed as

dσ
dΩ

=
D2

(θ2 + θ2min)2
, (2.112)

where θmin is a cutoff angle; a minimum angle below which the unscreened
point Coulomb field expression is no longer valid; D is a scattering parameter
generally referred to as the characteristic scattering distance, such as, for
example, Dα–N defined as the distance of closest approach between the α
particle and the nucleus in Rutherford scattering.

2.6.2 Characteristic Scattering Distance

Each elastic scattering event between two particles (energetic projectile and
stationary target) can be characterized by a scattering parameter referred
to as the characteristic scattering distance D. This distance depends on the
nature of the specific scattering event as well as on the physical properties
of the scattered particle and the atomic number Z of the scattering material.
The differential scattering cross section of (2.38) was derived for Rutherford
scattering of α particles on gold nuclei in Sect. 2.4.1 and is a good approxi-
mation for scattering of both heavy and light charged particles, as long as the
characteristic scattering distance D, appropriate for the particular scattering
event, is used in the calculations.

Characteristic Scattering Distance
for Rutherford Scattering

In Rutherford scattering of a α particle (projectile) on a nucleus (target) the
characteristic scattering distance D, as shown in (2.12) and (2.30), is the
distance of closest approach Dα–N between the α particle and the nucleus in
a direct-hit (head on) collision (b = 0, θ = π)

Dα–N =
zZe2

4πε0
1

(EK)i
=
zZe2

4πε0
1

mαυ
2
α

2

=
2zZe2

4πε0
1

pαυα
, (2.113)

where

z is the atomic number of the α particle,
Z is the atomic number of the absorber atom,

(EK)i is the initial kinetic energy of the α particle,
mα is the mass of the α particle,
υα is the initial and final velocity of the α particle,
pα is the momentum of the α particle
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Characteristic Scattering Distance
for Electron–Nucleus Scattering

In electron (projectile)–nucleus (target) elastic scattering the characteristic
scattering distance De–N, similarly to (2.113), is given as follows (note that
z = 1 for the electron)

De–N =
Ze2

4πε0
1

mυ2

2

=
2Ze2

4πε0
1
pυ

=
2Ze2

√
1 − β2

4πε0(mec2β2)
=

2Zre
√

1 − β2

β2
, (2.114)

where

m is the total mass of the electron, i.e., m = me

/√
1 − β2 = γmec

2.
me is the rest mass of the electron.
β is the velocity of the electron normalized to c, i.e., β = υ/c.
υ is the velocity of the electron.
p is the momentum of the electron.
Z is the atomic number of the absorber.
re is the classical radius of the electron (2.82 fm).

Characteristic Scattering Distance
for Electron–Orbital Electron Scattering

In electron (projectile)–orbital electron (target) scattering the characteristic
scattering distance De–e, similarly to (2.114), is given by (note that Z = 1 for
orbital electron)

De−e =
e2

4πε0
1

mυ2

2

=
2e2

4πε0
1
pυ

=
2e2
√

1 − β2

4πε0(mec2β2)
=

2re
√

1 − β2

β2
, (2.115)

where

m is the total mass of the electron, i.e., m = me

/√
1 − β2 = γmec

2.
me is the rest mass of the electron.
β is the velocity of the electron normalized to c, i.e., β = υ/c.
υ is the velocity of the electron.
p is the momentum of the electron.
re is the classical radius of the electron (2.82 fm).

Characteristic Scattering Distance
for Electron–Atom Scattering

The characteristic scattering distance De−a for electron (projectile) scattering
on absorber atoms (target) has two components: the electron–nucleus (e–N)
component of (2.114) and the electron–orbital electron (e–e) component of
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(2.115). The differential cross section for elastic electron scattering on atoms
of an absorber consists of the sum of the differential electron–nucleus cross
section and Z times the differential electron–orbital electron cross section, i.e.,

dσ
dΩ

∣∣∣∣
e−a

=
dσ
dΩ

∣∣∣∣
e−N

+ Z
dσ
dΩ

∣∣∣∣
e−e

=
D2

e−a

(θ2 + θ2min)2
, (2.116)

where De−a is the characteristic scattering distance for electron-atom elastic
scattering given as

D2
e−a = D2

e−N + ZD2
e−e. (2.117)

The characteristic scattering distance De−a is determined from (2.117) after
inserting (2.114) and (2.115) to get

De−a =
√
D2

e−N + ZD2
e−e =

e2

4πε0

√
Z(Z + 1)
mυ2

2

=
2e2

4πε0

√
Z(Z + 1)
pυ

=
2re
√
Z(Z + 1)

√
1 − β2

β2
=

2re
√
Z(Z + 1)
γβ2

, (2.118)

where

m is the total mass of the electron, i.e., m = me

/√
1 − β2 = γmec

2.
me is the rest mass of the electron.
β is the velocity of the electron normalized to c, i.e., β = υe/c.
υe is the velocity of the electron.
p is the momentum of the electron.
Z is the atomic number of the absorber.
re is the classical radius of the electron (2.82 fm).

A summary of characteristic scattering distances D for four elastic Coulomb
scattering events including scattering of: (1) α particle on nucleus (Rutherford
scattering); (2) electron on nucleus (Mott scattering); (3) electron on atomic
orbital electron; and (4) electron on atom is given in Table 2.4.

2.6.3 Minimum and Maximum Scattering Angles

The minimum and maximum scattering angles θmin and θmax, respectively,
are angles where the deviation from point Coulomb nuclear field becomes
significant. These departures from the point Coulomb field approximation
appear at very small and very large scattering angles θ, corresponding to very
large and very small impact parameters b, respectively.

At very small angles θ the screening of the nuclear charge by atomic orbital
electrons decreases the differential cross section and at large angles θ the
finite nuclear size or nuclear penetration by the charged particle decreases the
differential cross section, as discussed for Rutherford scattering in Sects. 2.4.4
and 2.4.6, respectively.
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Table 2.4. Characteristic scattering distances D for four elastic Coulomb scattering
events. Note that m in De−N, De−e, and De−a stands for the total mass of the
electron and not the rest mass of the electron

Elastic Coulomb
scattering

Characteristic scattering distance D

α Particle–
nucleus
(Rutherford)

Dα−N =
zZe2

4πε0
mαυ

2
α

2

=
zZe2

4πε0(EK)i
See (2.12)
and (2.113)

Electron–nucleus
(Mott)

De−N =
Ze2

4πε0
mυ2

e

2

=
2Zre

√
1 − β2

β2
See (2.94)
and (2.114)

Electron–orbital
electron

De−e =
e2

4πε0
mυ2

e

2

=
2re
√

1 − β2

β2
See (2.115)

Electron–atom De−a =
e2
√
Z(Z + 1)

4πε0
mυ2

e

2

=
2re
√
Z(Z + 1)

√
1 − β2

β2
See (2.116)

As evident from Figs. 2.3 and 6.3, the relationship governing the change
of momentum Δp in elastic scattering is given as follows

sin
θ

2
=

Δp
pi
, (2.119)

where

θ is the scattering angle,
pi is the particle initial momentum at a large distance from the scattering

interaction.

In the small angle θ approximation, we get the following simple relationship
from (2.22) and (2.119) recognizing that sin θ ≈ θ

θ ≈ Δp
pi
. (2.120)

As shown in (2.57) and (2.69), θmin and θmax, respectively, are given by the
following quantum-mechanical expressions

θmin ≈ Δp
pi

≈ �

aTFpi
=

�

pi

3
√
Z

a0
=

�c

a0

3
√
Z√

EK(EK + 2E0)

≈ 3.723×10−3 MeV 3
√
Z√

EK(EK + 2E0)
(2.121)
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and

θmax ≈ Δp
pi

≈ �

Rpi
=

�

piR0
3
√
A

=
�c

R0

1
3
√
A
√
EK(EK + 2E0)

≈ 1.578×102 MeV
3
√
A
√
EK(EK + 2E0)

, (2.122)

where

pi is the initial momentum of the charged particle.
aTF is the Thomas–Fermi atomic radius equal to ∼ a0Z

−1/3 with a0 the
Bohr radius constant and Z the atomic number of the absorber, as
given in (2.49).

a0 is the Bohr radius constant defined in (3.4).
R is the radius of the nucleus equal to R0A

1/3 with R0 the nuclear radius
constant (R0 = 1.25 fm), as discussed in Sect. 1.16.1.

EK is the initial kinetic energy of the charged particle related to the initial
momentum of the charged particle through (1.64).

E0 is the rest energy of the charged particle.
A is the atomic mass number of the absorber.

Figure 2.12a shows the maximum scattering angle θmax against kinetic
energy EK given in (2.122) in the range from 1 keV to 1000 MeV for electron
and α particle elastic scattering in carbon, aluminum, copper, silver, and lead.
Figure 2.12b shows the minimum scattering angle θmin given in (2.121) under
same conditions as those in Fig. 2.12a. Based on (2.121) and (2.122) as well
as Fig. 2.12 we now make the following observations about the minimum and
maximum scattering angles θmin and θmax, respectively:

1. In general, θmin and θmax depend on the kinetic energy EK and rest energy
E0 of the elastically scattered projectile as well as the atomic number Z
and atomic mass number A of the target. However, the ratio θmax/θmin is
independent of the incident particle physical properties and depends solely
on the atomic number Z and the atomic mass A of the absorber target as
follows

θmax

θmin
=

a0

R0
3
√
A 3
√
Z

≈ 0.5292 Å
1.25×10−5 Å 3

√
AZ

≈ 0.423×105

(AZ)1/3
=

Const
3
√
AZ

.

(2.123)
2. For a given EK the maximum scattering angle θmax is inversely propor-

tional to Z1/3 since θmax ∝ A−1/3 and A ≈ 2Z and the minimum scattering
angle θmin is proportional to Z1/3.

3. For kinetic energies EK of the projectile much smaller than its rest energy
E0, or EK 	 E0, both θmin and θmax for a given target are proportional to
1/

√
EK, as shown in Fig. 2.12 in the whole EK energy range for α particles

and at kinetic energies EK below 100 keV for electrons.
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Fig. 2.12. Maximum scattering angle θmax in (a) and minimum scattering angle
θmin in (b) against kinetic energy EK for electrons and α particles scattered on
carbon, aluminum, copper, silver, and gold

4. For kinetic energies EK of the projectile much larger than its rest energy
E0, or EK � E0, both θmin and θmax for a given target are proportional to
1/EK, as shown in Fig. 2.12 for electrons in the energy range above 10 MeV.

5. For Rutherford scattering of 5.5 MeV α particles on gold nucleus Au-197
(Geiger–Marsden experiment) we obtain from (2.121) a minimum scat-
tering angle θmin of 8.1×10−5 rad, as given in (2.72), and from (2.122)
a maximum scattering angle of θmax of 0.14 rad, as given in (2.73), in
agreement with the general condition that θmin 	 θmax 	 1.
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6. For 10 MeV electrons scattered on gold-197, on the other hand, we find sig-
nificantly larger θmin from (2.121) and θmax from (2.122) at 1.5×10−3 rad
and 2.6 rad, respectively. However, we may still assume that θmin 	 θmax.
Note: For θmax calculated from (2.122) larger than unity, θmax is usually
set equal to 1.

7. The factor (AZ)1/3 ranges from unity for hydrogen to ∼28 for high atomic
number absorbers such as uranium with Z = 92 and A = 235.

2.6.4 Total Cross Section for a Single Scattering Event

The total cross section σ for a single scattering event, similarly to the discus-
sion of Rutherford cross section given in Sect. 2.4.8, is approximated as follows
using the small angle approximation sin θ ≈ θ:

σ =
∫

dσ
dΩ

dΩ ≈ 2πD2

θmax∫
0

θ dθ
(θ2 + θ2min)2

= πD2

θmax∫
0

d(θ2 + θ2min)
(θ2 + θ2min)2

= −πD2

[
1

θ2 + θ2min

]θmax

0

= πD2

{
1

θ2min

− 1
θ2max + θ2min

}

= πD2 1
θ2min

{
1 − 1

1 + (θmax/θmin)2

}
. (2.124)

Since θmax/θmin � 1 even for very high atomic number materials, we can
simplify the expression for total cross section σ to read

σ ≈ πD2

θ2min

, (2.125)

where

D is the effective characteristic distance discussed in Sect. 2.6.2,
θmin is the minimum scattering angle discussed in Sect. 2.6.3.

2.6.5 Mean Square Scattering Angle for a Single Scattering Event

The mean square scattering angle for a single scattering event θ2 is defined
by the following general relationship

θ2 =

θmax∫
0

θ2
dσ
dΩ

dΩ

θmax∫
0

dσ
dΩ

dΩ
=

2π
σ

θmax∫
0

θ2
dσ
dΩ

sin θ dθ, (2.126)
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where

dσ
/
dΩ is the differential cross section for the single scattering event, given

in (2.112),
σ is the total cross section for the single scattering event [see (2.124)

and (2.125)],
θ is the scattering angle for the single scattering event,

θmax is the maximum scattering angle calculated from (2.122). It is taken
as the actual calculated value when the calculated θmax is smaller
than 1 and is taken as unity when the calculated θmax exceeds 1.

The mean square angle θ2 for a single scattering event may be approxi-
mated in the small angle approximation as follows

θ2 =
2πD2

σ

θmax∫
0

θ3 dθ

(θ2 + θ2min)
2 =

πD2

σ

θmax∫
0

(θ2 + θ2min) d(θ2 + θ2min)

(θ2 + θ2min)
2

− πD2

σ

θmax∫
0

θ2min d(θ2 + θ2min)

(θ2 + θ2min)
2

=
πD2

σ

{
ln
(

1 +
θ2max

θ2min

)
− 1

1 + (θmin/θmax)2

}
(2.127)

or, after inserting the expression for σ given in (2.125)

θ2 = θ2min

{
ln
(

1 +
θ2max

θ2min

)
− 1

1 + (θmin/θmax)2

}

= θ2min ln
(

1 +
θ2max

θ2min

)
− θ2minθ

2
max

θ2min + θ2max

. (2.128)

with θmin minimum scattering angle defined in (2.121) and θmax largest angle
to be still considered a small angle in single scattering and defined in (2.122).
At low energies θmax calculated from (2.122) may exceed 1 rad and the maxi-
mum scattering angle is then taken as θmax ≈ 1 rad.

The ratio θmax/θmin is independent of particle kinetic and total energy
and depends only on the atomic number Z and the atomic mass number A
of the absorber, as shown in (2.123). Since, in addition θmax � θmin, we can
simplify (2.128) to read

θ2 ≈ 2 θ2min ln
θmax

θmin
. (2.129)
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After inserting (2.123) into (2.129) and assuming that A ≈ 2Z we get the
following approximation for the mean square scattering angle θ2 for single
scattering

θ2 ≈ 2θ2min ln

(√
0.423×105√

3
√

2 3
√
Z

)2

= 4 θ2min ln
[
183Z−1/3

]
, (2.130)

with the minimum scattering angle θmin given in (2.121).

2.7 Molière Multiple Elastic Scattering

Multiple or compound Coulomb scattering results from a large number of
single scattering events that a charged particle will experience as it moves
through an absorber. These single scattering events are independent and
statistically random processes governed by a Rutherford-type Coulomb inter-
action and confined to a very small scattering angle θ with respect to the
direction of incidence. In honor of Molière who carried out much of the initial
theoretical work on multiple scattering, this type of scattering is often referred
to as Molière multiple scattering.

As discussed for standard Rutherford scattering in Sect. 2.3, a particle
traversing a thin metallic foil will experience a large number of Coulomb
interactions with nuclei of the absorber and these interactions will generally
produce only small angle deflections. The cumulative effect of these inde-
pendent interactions will be a superposition of a large number of random
deflections resulting in the particle emerging through the foil: (1) at a small
cumulative scattering angle Θ, and (2) at a mean scattering angle Θ with
respect to the incident direction of zero for a beam of particles striking the
foil.

The angular distribution of particles transmitted through a foil is Gaussian
in shape and centered round the direction of the incident particles, reflecting
the cumulative action of a large number of independent small-angle scatter-
ing interactions. This was shown by (2.2) for α-particle scattering on gold
nuclei.

The measured angular distributions of charged particles emerging through
a foil show excellent agreement with a Gaussian distribution at small cumu-
lative scattering angles Θ but also exhibit a higher tail than the Gaussian
distribution at large scattering angles. This discrepancy at large scattering
angles is attributed to the effect of rare large-angle single scattering events
which were first explained by Rutherford as follows: In its travel through the
foil a charged particle may experience a close encounter with a scattering
center and this hard collision will result in a large angle deflection, possi-
bly amounting to 180◦. These large-angle Coulomb scattering interactions are
extremely rare yet not negligible and occur with a typical frequency of about
one such interaction per several thousand particles transmitted through a thin
foil. The following conclusions can now be made:
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1. A charged particle traversing a foil will have numerous soft interactions
with scattering centers in the absorber that are random and independent
from one another. These interactions result in small individual deflections
from the incident direction as well as in a small cumulative scattering
angle Θ.

2. One in several 1000 particles of the particle beam traversing a foil will
have a hard interaction (close encounter) with a scattering center resulting
in a large-angle deflection. Because of the very small probability for a
hard collision, only one such large angle deflection can occur to a given
charged particle. All large-angle deflections are therefore attributed to one
single-scattering event for a given charged particle.

3. The angular distribution of charged particles traversing a foil thus has
three regions:

a. Small angle Θ region governed by a Gaussian distribution resulting
from Molière multiple scattering.

b. Large angle single-scatter region produced by a small fraction of par-
ticles striking the foil and resulting from single hard collisions between
a charged particle and a scattering center.

c. Intermediate region between the multiple scatter small-angle region
and the single-scatter large-scattering angle region referred to as the
region of plural scattering. The plural scattering distribution enables
the transition from the multiple scattering region into the single
scattering region.

The mean square angle θ2 for single scattering derived in Sect. 2.6.5 also plays
a role in determining the mean square angle Θ2 which governs the Gaussian
distribution in Molière multiple scattering distribution, as shown in Sect 2.7.1.

2.7.1 Mean Square Scattering Angle for Multiple Scattering

The thicker is the absorber and the larger is its atomic number Z, the greater
is the likelihood that the incident particle will undergo several single scatter-
ing events. For a sufficiently thick absorber the mean number of successive
encounters rises to a value that permits a statistical treatment of the pro-
cess. Generally, 20 collisions are deemed sufficient and we then speak of
multiple Coulomb scattering that is characterized by a large succession of
small angle deflections symmetrically distributed about the incident particle
direction.

The mean square angle for multiple Coulomb scattering Θ2 is calculated
from the mean square angle for single scattering θ2 (2.128) with the help of
the central limit theorem that states the following:

For a large number N of experiments that measure some stochastic
variable X, the probability distribution of the average of all measure-
ments is Gaussian and is centered at X with a standard deviation
1/

√
N times the standard deviation of the probability density of X.
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Since the successive single scattering collisions in the absorber are indepen-
dent events, the central limit theorem shows that for a large number n > 20 of
such collisions the distribution in angle will be Gaussian around the forward
direction with a mean square scattering angle Θ2 given as

Θ2 = nθ2, (2.131)

where

θ2 is the mean square scattering angle for single scattering given in (2.128),
n is the number of scattering events calculated as follows

n =
Na

V
σt = ρ

NA

A
σt ≈ πρ

NA

A

D2

θ2min

t (2.132)

where we inserted the expression of (2.125) for the cross section and

Na/V is number of atoms per volume equal to ρNA/A,
σ is the total cross section for a single scattering event given in (2.124)

and (2.125),
t is thickness of the absorber,
ρ is density of the absorber,

NA is the Avogadro number,
A is the atomic mass number of the absorber.

Incorporating the expression for the mean square angle for single scattering
θ2 from (2.128) into (2.131) and using (2.132) for the number of scattering
events, the mean square angle for multiple scattering Θ2 can be written as

Θ2 = ρ
NA

A
σtθ2min

{
ln
(

1 +
θ2max

θ2min

)
− 1

1 + θ2min/θ
2
max

}
, (2.133)

where θmin and θmax are the minimum and maximum scattering angles, respec-
tively, defined in Sect. 2.6.3, and D is the characteristic scattering distance for
a particular scattering event, defined in Sec. 2.6.2.

Since θmax � θmin holds in general, we can simplify (2.133) for heavy
charged particle scattering on nuclei of an absorber by inserting (2.125) for
the total cross section σ with (2.113) for the characteristic scattering distance
D and (2.130) for θ2 to get

Θ2 = nθ2 = 4
(
ρ
NA

A
σt

)
θ2min ln[183Z−1/3] = 4πρ

NA

A
D2t ln[183Z−1/3]

= 4πρ
NA

A

(
2zZe2

4πε0pυ

)2

{ln[183Z−1/3]}t. (2.134)

Similarly, for electrons scattered on absorber atoms (nuclei and orbital elec-
trons) we simplify (2.133) by inserting (2.125) for the total cross section σ with
(2.118) for the characteristic scattering distance D and (2.130) for θ2 to get
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Θ2 = nθ2 =
(
ρ
NA

A
σt

)
4θ2min ln[183Z−1/3]

= 16πρ
NAr

2
eZ(Z + 1)
Aγ2β4

{ln[183Z−1/3]}t =
4πρ
αX0

t, (2.135)

where X0 is defined as the radiation length and discussed in Sect. 2.7.2.
From (2.135) we can express the change in the mean square scattering

angle Θ2 with propagation distance t in the foil as

dΘ2

dt
= 16πρ

NAr
2
eZ(Z + 1)
Aγ2β4

ln[183Z−1/3] =
4πρ
αX0

. (2.136)

As shown in (2.134) and (2.135), the mean square scattering angle Θ2 for
multiple scattering increases linearly with the foil thickness t but, as long
as the foil thickness is not excessive, the angular distribution of transmitted
particles will remain Gaussian and forward peaked.

2.7.2 Radiation Length

The expressions for the mean square scattering angle Θ2 of (2.135) and (2.136)
can be expressed in terms of a distance parameter called the radiation length
X0. This parameter serves as a unit of length, depends on the mass of the
charged particle as well as on the atomic number of the absorbing material,
and is defined as the mean distance a relativistic charged particle travels in
an absorbing medium while its energy, due to radiation loss, decreases to
1/e (∼36.8 %) of its initial value. X0 is also defined as 7/9 of the mean free
path for pair production by a high energy photon in the absorber.

The radiation length X0, which usually refers to electrons, is expressed in
square centimeters per gram as follows

1
X0

= 4α
NA

A
Z(Z + 1)r2e ln(183Z−1/3)

= 1.4×10−3 (cm2/mol)
Z(Z + 1)

A
ln(183Z−1/3), (2.137)

where

α is the fine structure constant (1/137),
NA is the Avogadro number (6.022×1023/mol),
Z is the atomic number of the absorber,
re is the classical electron radius (2.818 fm).

For electrons, values of radiation length X0 calculated from (2.137) are
24 g/cm2 (9 cm) in aluminum; 10.2 g/cm2 (1.1 cm) in copper; and 5.8 g/cm2

(0.51 cm) in lead.
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2.7.3 Mass Scattering Power

As shown in (2.133), the mean square scattering angle for multiple scattering
Θ2 increases linearly with the absorber thickness t. A mass scattering power
T/ρ can thus be defined for electrons:

1. Either as the mean square angle for multiple scattering Θ2 per mass
thickness ρt.

2. Or the increase in the mean square angle Θ2 per unit mass thickness ρt,
in analogy with the mass stopping power.

The mass scattering power (T/ρ) is thus expressed as follows

T

ρ
=
Θ2

ρt
=

dΘ2

d(ρt)
=
NA

A
σθ2min

{
ln
(

1 +
θ2max

θ2min

)
− 1

1 + θ2min/θ
2
max

}
(2.138)

and this result, after inserting (2.125) for the total cross section σ, is usually
given as follows (ICRU #35)

T

ρ
= π

NA

A
D2

{
ln
(

1 +
θ2max

θ2min

)
− 1 +

[
1 +

θ2max

θ2min

]−1
}
, (2.139)

with D, the effective characteristic scattering distance, discussed in Sect. 2.6.2
for various scattering interactions.

2.7.4 Mass Scattering Power for Electrons

The mass scattering power T/ρ for electrons is determined from the general
relationship of (2.139) by inserting (2.118) for the characteristic distance D
in electron scattering with nuclei and orbital electrons of the absorber foil to
get

T

ρ
= 2πr2e

NAZ(Z + 1)
A

√
1 − β2

β2

{
ln
(

1 +
θ2max

θ2min

)
− 1 +

[
1 +

θ2max

θ2min

]−1
}
.

(2.140)
The term

(√
1 − β2

)
/β2 in (2.118) for D can be expressed in terms of the

electron kinetic energy EK and electron rest energy E0 = mec
2. We first define

the ratio EK/(mec
2) as τ and then use the standard relativistic relationship

for the total energy of the electron, i.e.,

mec
2 + EK =

mec
2√

1 − β2
(2.141)

to obtain √
1 − β2 =

1
1 + τ

(2.142)
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and

β2 =
τ(2 + τ)
(1 + τ)2

, (2.143)

resulting in the following expression for the term

√
1 − β2

β2

√
1 − β2

β2
=

1 + τ

τ(2 + τ)
. (2.144)

The mass scattering power T/ρ of (2.139) for electron may then be expressed
as follows

T

ρ
= 4π

NA

A
r2eZ(Z + 1)

[
1 + τ

τ(2 + τ)

]2{
ln
(

1 +
θ2max

θ2min

)
− 1 +

[
1 +

θ2max

θ2min

]−1
}
.

(2.145)
In (2.145), θmax is the cutoff angle resulting from the finite size of the nucleus.
In (2.122), the cutoff angle θmax was given by the ratio of the reduced de
Broglie wavelength of the electron �/pe to the nuclear radius R given in (1.26)
as R = R0

3
√
A with R0 = 1.25 fm the nuclear radius constant and A the

nucleon number or atomic mass number. The electron momentum pe using
(1.60) and (2.142) can be expressed as

pe =
1
c

√
E2 − E2

0 =
1
c

√
EK(EK + 2E0)

=
1
c
E0

√
1

1 − β2
− 1 =

E0β

c
√

1 − β2
=
E0β(1 + τ)

c
(2.146)

giving the following expression for θmax

θmax =
�

peR
=

�cA−1/3

R0

√
EK(EK + 2E0)

=
�cA−1/3

E0β(1 + τ)R0
≈ αa0A

−1/3

β(1 + τ)R0
≈ 309A−1/3

β(1 + τ)
, (2.147)

with

β electron velocity normalized to c, the speed of light in vacuum,
A atomic mass number of the absorber,
τ electron kinetic energy normalized to electron rest mass energy E0,

EK electron kinetic energy.

The screening angle θmin results from the screening of the nucleus by the
atomic orbital electrons and is expressed in (2.121) by the ratio of the reduced
de Broglie wavelength of the electron �/pe [given in (2.71)] to the Thomas–
Fermi atomic radius aTF given in (2.49) as aTF ≈ a0Z

−1/3, with a0 the
Bohr radius constant of (3.4) and Z the atomic number of the absorber.
Recognizing that �c/(E0a0) = α, the minimum scattering angle, also known
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as the screening angle, θmin can be expressed as

θmin =
�

peaTF
=

�c Z1/3

E0β(1 + τ)a0
=

αZ1/3

β(1 + τ)
=

Z1/3

137β(1 + τ)
(2.148)

with

β electron velocity normalized to speed of light in vacuum c,
Z atomic number of the absorber,
τ electron kinetic energy normalized to electron rest mass energy, i.e., τ =

EK/(mec
2), and

α fine structure constant (1/137).

Similarly to the expression in (2.74) and (2.123), the ratio θmax/θmin is now
given by a simple expression independent of electron rest energyE0 and kinetic
energy EK

θmax

θmin
=

309 × 137A−1/3

Z1/3
≈ 0.423×105

3
√
AZ

, (2.149)

and ranges from θmax/θmin ≈ 0.42×105 for hydrogen to θmax/θmin ≈ 1500 for
uranium-235.

Two features of the mass scattering power T/ρ can be identified:

1. (T/ρ) is roughly proportional to Z. This follows from the Z(Z + 1)/A
dependence recognizing that A ≈ 2Z to obtain (T/ρ) ∝ Z.

2. (T/ρ) for large electron kinetic energies EK where τ � 1 is proportional
to 1/E2

K. This follows from (1 + τ)2/ {τ(2 + τ)}2 ≈ 1/τ2 for τ � 1.

A plot of the mass scattering power (T/ρ) for electrons in various materials
of interest in medical physics in the electron kinetic energy range from 1 keV
to 1000 MeV is given in Fig. 2.13. The mass scattering power (T/ρ) consists
of two components: the electron–nucleus (e–N) scattering and the electron–
orbital electron (e–e) scattering.

2.7.5 Fermi-Eyges Pencil Beam Model for Electrons

Fermi in his study of cosmic radiation derived an analytical solution to the
transport equation for energetic charged particles traversing thin foils. He
used Molière’s small angle multiple scattering approximation and assumed
that the energetic cosmic particles lost no energy in the thin foils he used
in his experiments. Eyges extended Fermi’s work to electron pencil beams
traversing absorbing media and accounted for electron energy loss as well as
for electron transport through heterogeneous absorbers.

As shown in Fig. 2.14, electrons moving in a pencil beam along the z
axis (applicate axis) of a Cartesian coordinate system strike the absorber at
the origin (0,0,0) of the coordinate system and undergo multiple scattering
interactions as they penetrate into the absorber. After traversing a given thick-
ness of the absorber, each electron emerges in a direction defined by angles
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Fig. 2.13. Mass scattering power (T/ρ) against electron kinetic energy EK for
various materials of interest in medical physics

Θ and Φ. The projections of the polar angle Θ onto the (x,z) and (y,z) planes
are Θx and Θy, respectively.

The Fermi-Eyges solution to the transport equation gives the probability
P (x, z)dx of finding an electron at depth z in the absorber with a displacement
from the original z direction between x and x + dx on the abscissa and the
probability P (y, z)dy of finding the electron between y and y + dy on the
ordinate. The two probability density functions P (x, z)dx and P (y, z)dy are
given as follows (see Sect. 1.30)

P (x, z)dx =
1

σ(z)
√

2π
e
− x2

2[σ(z)]2 dx (2.150)

and

P (y, z)dy =
1

σ(z)
√

2π
e
− y2

2[σ(z)]2 dy, (2.151)

with σ(z) representing the standard deviation of the mean as a measure of
the width of the distribution at depth z. According to the Fermi-Eyges theory
the variance v(z) which by definition is the square of the standard deviation
σ(z) is expressed as

v(z) = [σ(z)]2 =
1
2

z∫
0

T (z′)[z − z′]2dz′, (2.152)

where T (z′) is the linear scattering power of the absorber at depth z′, eval-
uated for the mean electron energy at depth z′. The scattering power T was
discussed in Sect. 2.7.3 and shown to be proportional to the mean square
scattering angle Θ2 in (2.138).
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Fig. 2.14. Electrons in a pencil beam moving along applicate (z) axis of a Cartesian
coordinate system strike an absorber at the origin of the coordinate system and
undergo multiple scattering interactions as they penetrate into the absorber. After
traversing a given thickness of the absorber, each electron emerges in a direction
defined by angles Θ and Φ

In general, the combined probability P (x, y, z)dxdy is a product of the two
probability density functions, P (x, z)dx of (2.150) and P (y, z)dy of (2.151),
expressed as follows

P (x, y, z)dxdy = [P (x, z)dx] × [P (y, z)dy] =
1

2π[σ(z)]2
e
− x2+y2

2[σ(z)]2 dxdy.

(2.153)

From Fig. 2.14 we get the following relationships among angles Θ, Θx, Θy,
and Φ and Cartesian coordinates x, y, and z

tanΘ =
x/ cosΦ

z
=
x/ sinΦ

z
, (2.154)

tanΘx =
x

z
= tanΘ cosΦ, (2.155)

tanΘy =
y

z
= tanΘ sinΦ, (2.156)

tan2Θ = tan2Θx + tan2Θy. (2.157)
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In the small angle approximation where sinΘ ≈ Θ, cosΘ ≈ 1, and tanΘ ≈ Θ,
the relationship of (2.157) connecting Θ, Θx, and Θy simplifies to read

Θ2 = Θ2
x +Θ2

y (2.158)

and, since the scattering events are symmetrical about the initial direction z,
the following relationships also apply

Θ2
x = Θ2

x =
1
2
Θ2. (2.159)

The final polar angle Θ following multiple scattering events cannot be
determined by a simple addition of the polar angles for the individual scat-
tering events because of the Φ component which is present in each single
scattering event. The projections Θx and Θy, however, are additive and this
then allows us to apply the central limit theorem stated in Sect. 2.7.1. For the
(x,z) plane we define P (x,Θx, z)dΘx as the probability that an electron, after
traversing an absorber thickness dz, will be deflected through an angle, the
projection of which onto the (x,z) plane will be between Θx andΘx+dΘx. Sim-
ilarly, for the (y,z) plane we define P (y,Θy, z)dΘy as the probability that an
electron, after traversing an absorber thickness dz, will be deflected through
an angle, the projection of which onto the (y,z) plane will be between Θy and
Θy + dΘy.

The two probability functions P (x,Θx, z) and P (y,Θy, z) are Gaussian
functions expressed as

P (x,Θx, z) =
1√

2πΘ2
x

e
− Θ2

x
2Θ2

x =
1√
πΘ2

e
−Θ2

x
Θ2 (2.160)

and

P (y,Θy, z) =
1√

2πΘ2
y

e
− Θ2

y

2Θ2
y =

1√
πΘ2

e
−Θ2

y

Θ2 , (2.161)

where we used (2.159) to modify the two original Gaussian distributions.
Similarly to (2.153), the combined probability P (x,Θx, y, Θy, z) is given

as the product of the two probability functions P (x,Θx, z) and P (y,Θy, z) to
give

P (x,Θx, y, Θy, z) = P (x,Θx, z) × P (y,Θy, z)

=
1√
πΘ2

e
−Θ2

x
Θ2

1√
πΘ2

e
−Θ2

y

Θ2 =
1

πΘ2
e
−Θ2

Θ2 ,
(2.162)

after we use (2.158) for the sum of Θ2
x and Θ2

y.
The discussion of the Thomson model of the atom in Sect. 2.2.1 made use

of (2.162) when in (2.2) we estimated N(Θ)dΘ, the number of α particles
that are scattered on gold nuclei within the angular range Θ to Θ+ dΘ, with
N0 representing the number of α particles striking, and passing through, the
gold foil. The fractional number of α particles scattered into the angular range
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Θ to Θ + dΘ is expressed as follows

N(Θ)dΘ
N0

= P (x,Θx, y, Θy, z)dΩ = 2πP (x,Θx, y, Θy, z) sinΘdΘ

≈ 2πΘ
1

πΘ2
e
−Θ2

Θ2 dΘ =
2Θ
Θ2

e
−Θ2

Θ2 dΘ = e
−Θ2

Θ2 d
Θ2

Θ2
,

(2.163)

where we used the small angle approximation sinΘ ≈ Θ.
An integration of (2.163) overΘ from 0 to π results in 1, since Θ2, the mean

square scattering angle for multiple scattering, is very small. The Θ angular
distribution is strongly peaked in the forward (z) direction of the incident
pencil electron beam, with Θ, the mean scattering angle Θ, equal to 0 and√
Θ2, the root mean square angle for multiple scattering of the order of 1◦.

2.7.6 Dose Distribution for Pencil Electron Beam

The dose distribution for a pencil electron beam in absorbing medium is
related to the distribution function given by the Fermi-Eyges solution to the
Fermi electron transport equation that in three dimensions is expressed as
follows

∂P

∂z
= −Θx

∂P

∂Θx
−−Θx

∂P

∂Θx
+
T (x, y, z)

4

(
∂2P

∂Θ2
x

+
∂2P

∂Θ2
y

)
, (2.164)

with T (x, y, z) the linear scattering power of the absorber and the probability
function P given as a product of two Gaussian probability functions

P = P (x,Θx, y, Θy, z) = P (x,Θx, z) × P (y,Θy, z) (2.165)

The Fermi-Eyges theory predicts that the dose distribution in the absorber,
in a plane perpendicular to the incident direction of the initial pencil electron
beam, is represented by a Gaussian distribution. The theory also predicts that
the spatial spread of the electron beam in the absorber is an increasing func-
tion of depth in the absorber irrespective of the depth. However, experiments
show that the spatial spread indeed increases with depth from the absorber
surface to about a depth close to 2/3 of the practical electron range, but at
larger depths the spatial spread saturates, then decreases, and vanishes at
depths greater than the range of electrons in the absorber.

The Fermi-Eyges theory considers only the small angle multiple Coulomb
scattering and assumes that the energy of the electron, as it moves through
the phantom, is dependent only on depth and that no electrons are absorbed
in the scattering medium. This is certainly an improvement over the Fermi
assumption of no energy loss of charged particles in the absorber; however,
neglecting the electron absorption in the absorber causes significant discrep-
ancy between measurement and Fermi-Eyges theory at depths close to the
electron range.
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2.7.7 Determination of Electron beam Kinetic Energy
from Measured Mass Scattering Power

The plot of (T /ρ) against electron kinetic energy EK for kinetic energies in
the megavoltage energy range (Fig. 2.13) is essentially linear on a log-log plot
resulting in the (T /ρ) ∝ 1/E2

K dependence. The steady 1/E2
K drop of (T /ρ)

as a function of increasing EK suggests a relatively simple means for electron
kinetic energy determination from a measurement of the mass scattering power
(T /ρ) in a given medium.

The propagation of an electron pencil beam in an absorber is described
by a distribution function that is given by the Fermi-Eyges solution to the
Fermi differential transport equation. The Fermi-Eyges theory predicts that
the dose distribution in a medium on a plane perpendicular to the incident
direction of the pencil electron beam is given by a Gaussian distribution with
a spatial spread proportional to the variance of the Gaussian distribution.

Equation (2.152) shows that the variance [σ(z)]2 of the Gaussian distribu-
tion is related to the scattering power T (z) at depth z. In situations where the
scattering power T (z) of the absorber is constant in the absorber thickness z
(for example, in measurements of spatial spread in air layers z much thinner
than the range of electrons in air), (2.152) can be simplified to read

[σ(z)]2 =
1
2

z∫
0

T (z′)[z − z′]2dz′ =
1
2
T (z)

z∫
0

[z − z′]2dz′

=
1
2
T (z)

z∫
0

[z2 − 2zz′ + (z′)2]dz′ =
1
6
z3T (z). (2.166)

In deriving (2.166) the following assumptions are made:

1. Only small angle scattering events are considered.
2. The air layer z is much smaller than the electron range in air.
3. Secondary electrons, set in motion by the electron incident pencil beam,

are ignored.
4. The bremsstrahlung contamination of the electron pencil beam is ignored.

Function [σ(z)]2 given in (2.166) is a linear function of z3 with the slope
proportional to the mass scattering power (T /ρ), which in turn is a func-
tion of electron beam kinetic energy EK through function τ , as given in
(2.146). Thus, from a measurement of [σ(z)]2, the spatial spread of an elec-
tron pencil beam in air, at several distances z from the pencil beam origin,
one first determines (T /ρ) through (2.166) and then determines the electron
beam kinetic energy EK with data tabulated for air or data calculated for air
from (2.146).



3

Rutherford-Bohr Model of the Atom

This chapter is devoted to a discussion of the Rutherford–Bohr model of the
atom. The two giants of modern physics, Rutherford and Bohr, have not col-
laborated on the model; however, they both made a major contribution to
it; Rutherford by introducing the concept of the atomic nucleus with elec-
trons revolving about the nucleus in a cloud and Bohr by introducing the
idea of electron angular momentum quantization and by deriving from first
principles the kinematics of the hydrogen atom and one-electron atoms in
general.
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The chapter deals first with the hydrogen atom in detail following the
steps that Bohr enunciated almost 100 years ago in determining the radii of
electron allowed orbits, velocity of electron in orbit, binding energy of electron
while in allowed orbit, as well as hydrogen atom spectra.

Next, the successes and limitations of the Rutherford-Bohr model are dis-
cussed, the Hartree approximation for multi-electron atoms is introduced, and
the experimental confirmation of the validity of the atomic model is presented.
The chapter concludes with a discussion of the Schrödinger equation for the
ground state of the hydrogen atom providing several sample calculations for
the ground state of the hydrogen atom based on the Schrödinger equation.

3.1 Bohr Model of the Hydrogen Atom

In 1913 Niels Bohr combined Rutherford’s concept of the nuclear atom with
Planck’s idea of the quantized nature of the radiative process and developed,
from first principles, an atomic model that successfully deals with one-electron
structures like the hydrogen atom and one-electron ions such as singly ionized
helium, doubly ionized lithium, etc forming a hydrogen-like or hydrogenic
structure. The model, known as the Bohr model of the atom, is based on
four postulates that combine classical mechanics with the concept of angular
momentum quantization.

The four Bohr postulates are stated as follows:

1. Postulate 1: Electrons revolve about the Rutherford nucleus in well-
defined, allowed orbits (referred to as shells). The Coulomb force of
attraction Fcoul = Ze2/

(
4πε0r2

)
between the electrons and the positively

charged nucleus is balanced by the centrifugal force Fcent = meυ
2/r, where

Z is the number of protons in the nucleus (atomic number); r the radius of
the orbit or shell; me the electron mass; and υ the velocity of the electron
in the orbit.

2. Postulate 2: While in orbit, the electron does not lose any energy despite
being constantly accelerated (this postulate is in contravention of the basic
law of nature which states that an accelerated charged particle will lose part
of its energy in the form of radiation).

3. Postulate 3: The angular momentum L = meυr of the electron in an
allowed orbit is quantized and given as L = n�, where n is an integer
referred to as the principal quantum number and � = h/(2π) is the reduced
Planck constant with h the Planck constant. The simple quantization of
angular momentum stipulates that the angular momentum can have only
integral multiples of a basic unit which is equal to �.

4. Postulate 4: An atom or ion emits radiation when an orbital electron
makes a transition from an initial allowed orbit with quantum number ni

to a final allowed orbit with quantum number nf for ni > nf .
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Fig. 3.1. Schematic diagram of the Rutherford–Bohr atomic model. In part (a)
electron revolves about the center of the nucleus M under the assumption that
M → ∞; in part (b) nuclear mass is finite and both the electron as well as the
nucleus revolve about their common center-of-mass

The angular momentum quantization rule simply means that � is the low-
est angular momentum available to the electron (n = 1, ground state) and
that higher n orbits (n > 1, excited states) can only have integer values of
� for the magnitude of the orbital angular momentum, where n is the prin-
cipal quantum number or the shell number. One-electron atomic structures
are now referred to as the Bohr atom, while the atomic model consisting
of a nucleus and electrons in planetary orbits about the nucleus is called
the Rutherford–Bohr atomic model in honor of Rutherford who introduced
the nuclear atomic model and Bohr who explained its kinematics from first
principles.

3.1.1 Radius of the Bohr Atom

Assuming that the mass of the nucleus M is much larger than the mass of the
electron me, i.e., M � me and that M → ∞, equating the centrifugal force
and the Coulomb force on the electron (see Fig. 3.1a)

meυ
2

rn
=

1
4πε0

Ze2

r2n
(3.1)

and inserting the quantization relationship for the angular momentum L of
the electron (third Bohr postulate)

L = meυnrn = meωnr
2
n = n�, (3.2)

we get the following relationship for rn, the radius of the nth allowed Bohr
orbit,

rn =
4πε0
e2

(�c)2

mec2

(
n2

Z

)
= a0

(
n2

Z

)
=
(
0.5292 Å

)×
(
n2

Z

)
, (3.3)
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where a0 is a constant called the Bohr radius of the Bohr one-electron atom
and given as

a0 =
4πε0
e2

(�c)2

mec2
= 0.5292 Å. (3.4)

3.1.2 Velocity of the Bohr Electron

Inserting the expression for rn of (3.3) into (3.2) we obtain the following
expression for υn/c, where υn is the velocity of the electron in the nth
allowed Bohr orbit

υn

c
=

n �c

mec2rn
=

e2

4πε0
1
�c

(
Z

n

)
= α

(
Z

n

)
≈ 1

137

(
Z

n

)
≈ (7×10−3

)×
(
Z

n

)
,

(3.5)
where α is the so-called fine structure constant expressed as

α =
e2

4πε0
1
�c

=
1

137
≈ 7.3×10−3. (3.6)

Since, as evident from (3.5), the electron velocity in the ground state
(n = 1) orbit of hydrogen is less than 1 % of the speed of light c, the use
of classical mechanics in one-electron Bohr atom is justifiable. Both Ruther-
ford and Bohr used classical mechanics in their momentous discoveries of the
atomic structure and the kinematics of electronic motion, respectively. On the
one hand, nature provided Rutherford with an atomic probe in the form of
naturally occurring α particles having just the appropriate energy (few MeV)
to probe the atom without having to deal with relativistic effects and nuclear
penetration. On the other hand, nature provided Bohr with the hydrogen
one-electron atom in which the electron orbital velocity is less than 1 % of
the speed of light in vacuum so that the electron can be treated with simple
classical relationships.

3.1.3 Total Energy of the Bohr Electron

The total energy En of the electron when in one of the allowed orbits (shells)
with radius rn is the sum of the electron’s kinetic energy EK and potential
energy EP

En = EK + EP =
meυ

2
n

2
+
Ze2

4πε0

rn∫
∞

dr
r2

=
1
2
Ze2

4πε0
1
rn

− Ze2

4πε0
1
rn

= −1
2
Ze2

4πε0
1
rn

= −1
2

(
e2

4πε0

)2
mec

2

(�c)2

(
Z

n

)2

= −ER

(
Z

n

)2

= − (13.61 eV)×
(
Z

n

)2

. (3.7)
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Equation (3.7) represents the energy quantization of allowed bound electronic
states in a one-electron atom. This energy quantization is a direct consequence
of the simple angular momentum quantization L = n� introduced by Bohr.
ER is a constant called Rydberg energy and is expressed as

ER =
1
2

(
e2

4πε0

)2
mec

2

(�c)2
=

1
2
α2mec

2 = 13.61 eV. (3.8)

The energy level diagram for a hydrogen atom is shown in Fig. 3.2. It provides
an excellent example of energy level diagram for one-electron structures such
as hydrogen, singly ionized helium atom, or doubly ionized lithium atom. The
energy levels for hydrogen were calculated from (3.7) using Z = 1. The six
lowest bound energy levels (n = 1 through n = 6) of the hydrogen atom
according to (3.7) are: −13.61 eV, −3.40 eV, −1.51 eV, −0.85 eV, −0.54 eV,
and −0.38 eV.

Fig. 3.2. Energy level diagram calculated with (3.7) for the hydrogen atom (Z = 1)
as example of energy level diagram for one-electron structure. In the ground state
(n = 1) of hydrogen the electron is bound to the nucleus with a binding energy of
13.61 eV and the first excited state is at −3.40 eV
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By convention the following general conditions apply:

1. The negative energy levels of the electron represent discrete allowed elec-
tron states bound to the nucleus with a given binding energy EB.

2. An electron bound to the nucleus in a one-electron configuration can only
attain discrete allowed negative energy levels, as predicted by (3.7). Ener-
gies of bound states in an atom are negative; however, the binding energy
of the electron in a bound state is positive. Thus we say that the energy
level of the hydrogen ground state is E1 = −13.61 eV, but the electron is
bound in the hydrogen atom with a binding energy EB = 13.61 eV.

3. A stationary free electron, infinitely far from the nucleus has zero kinetic
energy.

4. An electron with positive energy is free and moving in a continuum of
kinetic energies.

5. The zero energy level separates the continuum of positive free electron
kinetic energies from the negative discreet energy levels of bound atomic
electrons.

6. Electron in n = 1 state is said to be in the ground state; an electron in a
bound state with n > 1 is said to be in an excited state.

7. Energy must be supplied to an electron in the ground state of a hydrogen
atom to move it to an excited state. An electron cannot remain in an
excited state; it will move to a lower level shell and the transition energy
will be emitted in the form of a photon.

3.1.4 Transition Frequency and Wave Number

The energy hν of a photon emitted as a result of an electronic transition from
an initial allowed orbit with n = ni to a final allowed orbit with n = nf , where
ni > nf , is given by

hν = Ei − Ef = −ERZ
2

(
1
n2

i

− 1
n2

f

)
. (3.9)

The wave number k of the emitted photon is then given by

k =
1
λ

=
ν

c
=

ER

2π�c
Z2

(
1
n2

f

− 1
n2

i

)
= R∞Z2

(
1
n2

f

− 1
n2

i

)

=
(
109 737 cm−1

)× Z2

(
1
n2

f

− 1
n2

i

)
, (3.10)

where R∞ is the so-called Rydberg constant expressed as

R∞ =
ER

2π�c
=

1
4π

(
e2

4πε0

)2
mec

2

(�c)3
=
α2mec

2

4π�c
= 109 737 cm−1. (3.11)
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Table 3.1. Characteristics of the first six emission series of the hydrogen atom

Name of
series

Spectral
range

Final
orbit nf

Initial orbit
ni

Limit of
series (eV)

Limit of
series (Å)

Lyman Ultraviolet 1 2, 3, 4, . . . ,∞ 13.61 911
Balmer Visible 2 3, 4, 5, . . . ,∞ 3.40 3646
Paschen Infrared 3 4, 5, 6, . . . ,∞ 1.51 8210
Brackett Infrared 4 5, 6, 7, . . . ,∞ 0.85 14584
Pfund Infrared 5 6, 7, 8, . . . ,∞ 0.54 22957
Humphreys Infrared 6 7, 8, 9, . . . ,∞ 0.38 32623

3.1.5 Atomic Spectra of Hydrogen

Photons emitted by excited atoms are concentrated at a number of discrete
wavelengths (lines). The hydrogen spectrum is relatively simple and results
from transitions of a single electron in the hydrogen atom. Table 3.1 gives a
listing for the first six known series of the hydrogen emission spectrum. It also
provides the upper limit in electron volts corresponding to the lower limit in
ångströms (Å) for each of the six series. The Lyman series is in the ultraviolet
region of the photon spectrum, the Balmer series is in the visible region, all
the other series are in the infrared region.

3.1.6 Correction for Finite Mass of the Nucleus

A careful experimental study of the hydrogen spectrum has shown that
the Rydberg constant for hydrogen is RH = 109 677 cm−1 rather than the
R∞ = 109 737 cm−1 value that Bohr derived from first principles. This small
discrepancy is of the order of one part in 2000 and arises from Bohr’s assump-
tion that the nuclear mass (proton in the case of hydrogen atom) M is infinite
and that the electron revolves about a point at the center of the nucleus, as
shown schematically in Fig. 3.1a.

When the finite mass of the nucleusM is taken into consideration, both the
electron and the nucleus revolve about their common center-of-mass, as shown
schematically in Fig. 3.1b. The total angular momentum L of the system is
given by the following expression:

L = me (r − x)2 ω +Mx2ω, (3.12)

where

r is the distance between the electron and the nucleus.
x is the distance between the center-of-mass and the nucleus.

r − x is the distance between the center-of-mass and the electron.
me is the mass of the orbital electron.
M is the mass of the nucleus.
ω is the angular frequency of the electron in an allowed orbit.
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After introducing the relationship which states that the radii of the orbits
(x for the nucleus and r − x for the electron are in inverse proportion to the
masses (M for the nucleus and me for the electron))

me (r − x) = Mx (3.13)

into (3.12), the angular momentum L for the atomic nucleus–electron system
may be written as

L = Mx2ω +me (r − x)2 ω =
me M

me +M
r2ω = μr2ω, (3.14)

where μ is the so-called reduced mass of the atomic nucleus–electron system
given as

μM =
me M

me +M
=

1
1
me

+
1
M

=
me

1 +
me

M

. (3.15)

All Bohr relationships, given above for one-electron structures in (3.3)
through (3.7) under the assumption that the nuclear mass M is infinite
(M → ∞) compared to the electron mass me, are also valid for finite nuclear
massesM as long as the electron rest massme in these relationships is replaced
with the appropriate reduced mass μM. Thus, the corrected expression for the
radius rn of the Bohr one-electron atom is

rn =
4πε0
e2

�

μM

n2

Z
= a0

me

μM

n2

Z
= a0

(
1 +

me

M

) n2

Z
(3.16)

and the corrected energy levels En are

En = −1
2

(
e2

4πε0

)2
μMc

2

(�c)2

(
Z

n

)2

= −ER
μM

me

(
Z

n

)2

= −ER
1

1 +
me

M

(
Z

n

)2

.

(3.17)
The correction accounting for a finite rather than infinite nuclear mass thus
amounts to (1 +me/M) for rn and to (1 +me/M)−1 for En. Both are minute
and often ignored corrections of the order of 0.05 % for hydrogen (proton) and
even smaller for larger mass nuclei. From (3.16) and (3.17) it is also evident
that the Bohr atom radius rn scales inversely with the reduced mass μM, while
the Rydberg energy En scales linearly with the reduced mass μM.

For the hydrogen atom the reduced mass μH of the electron–proton system
is very close to the electron mass because the proton is much heavier than the
electron (mp : me = 1836 : 1)

μH =
memp

me +mp
=

me

1 +
me

mp

= 0.9995me (3.18)
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Table 3.2. Nuclear mass correction factor CM, Rydberg constant RM, and
orbital electron binding energy EB for the lowest atomic number Z one-electron
atoms or ions [R∞ = 109 737 cm−1; CM = 1 + (mec

2/Mc2); and RM = R∞/CM]

One-electron Nuclear rest mec
2

Mc2
CM RM EB(eV)atom or ion energy (MeV)

Hydrogen 938.3 5.446×10−4 1.0005446 109 677 13.61/CH

Deuterium 1876 2.724×10−4 1.0002724 109 707 13.61/Cd

Tritium 2809 1.819×10−4 1.0001819 109 717 13.61/Ct

Helium-3 3227 1.584×10−4 1.0001584 109 720 54.44/CHe−3

Helium-4 4668 1.095×10−4 1.0001095 109 725 54.44/CHe−4

Lithium-7 6534 0.782×10−4 1.0000782 109 728 122.5/CLi−7

∞ ∞ 0 1.00 R∞ 13.61 × Z2

and the Rydberg constant RH is given as

RH =
μH

me
R∞ =

1

1 +
me

mp

R∞ =
109 737 cm−1

1 +
1

1836

= 109 677 cm−1, (3.19)

representing a 1 part in 2000 correction, in excellent agreement with the
experimental result which was measured for the hydrogen emission spectrum.

Table 3.2 displays, for the lowest atomic number Z one-electron structures,
the nuclear mass correction factor CM, the Rydberg constant RM, and the
binding energy EB of the orbital electron to the nucleus. It is evident that
the finite nuclear mass correction to the Bohr theory is indeed very small
amounting to 5 parts per 104 for hydrogen and rapidly falling to even lower
values with increasing Z.

3.1.7 Positronium, Muonium, and Muonic Atom

In addition to one-electron atoms and ions, several more exotic, short-lived,
and unusual “atomic” structures are known whose kinematics can be described
using the same concepts as those applied to the Bohr atom. However, to
achieve meaningful theoretical results, the use of the appropriate reduced
mass μM rather than the electron mass me is mandatory, because μM for these
structures can be significantly different from me in contrast to the reduced
mass of the Bohr atom which is within 0.05 % or better of the electron mass.

Examples of these special atom-like structures are: positronium Ps, muo-
nium Mu, and muonic atom. The basic properties of these structures pertinent
to the Bohr model are summarized in Table 3.3. These structures are not of
much interest in medical physics; however, their Bohr atom-related behavior
serves as an excellent example of the relevance of the reduced mass μM to the
Bohr atomic model.
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Table 3.3. Basic properties of Bohr atom, positronium Ps, muonium Mu, and
muonic hydrogen related to Bohr theory for one-electron structures

Atomic Bohr Positronium Muonium Muonic
system atom Ps Mu hydrogen

Constituents p and e− e+ and e− μ+ and e− p and μ−

mp =1836 me− me+ =me− mμ+ =207 me− mμ− = 207 me−

Reduced 0.9995 me 0.5 me 0.995 me 186 me

mass μM

Radius of 1.0005 a0n
2 2 a0n

2 1.005 a0n
2 a0n

2/186
orbits rn

Energy −0.9995 ER
1

n2
−0.5 ER

1

n2
−0.995 ER

1

n2
−186 ER

1

n2

levels En

Ground −13.61 −6.805 −13.54 −2531.5
state E1(eV)

Rydberg 0.9995 R∞ 0.5 R∞ 0.995 R∞ 186 R∞
constant RM

The positronium (Ps) is a semi-stable, hydrogen-like atomic configura-
tion consisting of a positron and electron revolving about their common
center-of-mass before the process of annihilation occurs (Sect. 7.6.10). Because
it consists of two particles of equal mass, positronium is sometimes considered
to be the lightest atom and carries the chemical symbol Ps. Its lifetime is of
the order of 10−7 s and its reduced mass equals to 0.5me. Croatian physicist
Stjepan Mohorovičić predicted the existence of positronium in 1934 and the
Austrian-American physicist Martin Deutsch discovered it in 1951.

Muonium (Mu) is a light, hydrogen-like neutral atom consisting of a posi-
tive muon μ+ and an orbital electron e−. Physical chemists consider muonium
to be a light unstable isotope of hydrogen. It is formed when an energetic
positive muon slows down in an absorber and attracts an electron which then
revolves about the muon similarly to an orbital electron revolving about a
proton in the hydrogen atom. The reduced mass of muonium is within 0.5 %
of the electron mass.

Muonic atom is an atom in which an electron is replaced by a negative
muon μ− orbiting close to or within the nucleus. Muonic hydrogen is the
simplest muonic atom consisting of a proton and negative muon with a reduced
mass of 186me.

Muons are unstable elementary particles with a mass of 207me belonging to
the group of leptons which also incorporates the electron, tau, and neutrinos.
They are produced in high-energy particle accelerators, have a mean lifetime
of 2.2 μs, and decay into two neutrinos and an electron or positron depending
on their charge.
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3.1.8 Quantum Numbers

The Bohr atomic theory predicts quantized energy levels for the one-electron
hydrogen atom that depend only on n, the principal quantum number, since
En = −ER/n

2, as shown in (3.7). In contrast, the solution of the Schrödinger
equation in spherical coordinates for the hydrogen atom (Sect. 3.4) gives three
quantum numbers for the hydrogen atom: n, �, and m	,
where

n is the principal quantum number with allowed values n = 1, 2, 3, . . . ,
giving the electron binding energy in shell n as En = −ER/n

2.
� is the orbital angular momentum quantum number with the following

allowed values � = 0, 1, 2, 3, . . . , n−1, giving the electron orbital angular
momentum L = �

√
� (�+ 1).

m	 is referred to as the magnetic quantum number giving the z component
of the orbital angular momentum Lz = m	� and has the following
allowed values: m	 = −�, −�+ 1, −�+ 2, . . . , �− 2, �− 1, �.

3.1.9 Stern–Gerlach Experiment and Electron Spin

In 1921 an experiment conducted by Otto Stern and Walter Gerlach has
shown that each electron, in addition to its orbital angular momentum L,
possesses an intrinsic angular momentum referred to as the spin S. The Stern–
Gerlach experiment has shown that electron spin is quantized into two states
and provided a major impetus for development of the quantum theory of the
atom.

As shown schematically in Fig. 3.3a, the experiment consisted of passing
a beam of neutral silver atoms through a strongly inhomogeneous magnetic
field with a gradient transverse to their direction of motion. The silver atoms
originated in an oven and were formed into a narrow beam by a collima-
tor before traversing the inhomogeneous magnet. After passing through the
magnet, the silver atoms were collected on a glass plate. Figure 3.3b shows a
cross section through the magnet in a plane perpendicular to the direction of
motion of the gold atoms.

Stern and Gerlach designed their experiment with the aim of proving spa-
tial quantization produced by orbiting electrons in an atom. Rather than
finding an expected (2�+ 1) quantization, they actually observed a splitting
of the silver beam into only two components. Thus, while in classical mechan-
ics there would be no splitting of the beam, as suggested in Fig. 3.3c and
Fig. 3.3d, the result found by Stern and Gerlach unequivocally proved spa-
tial quantization but was clearly unexpected showing only two silver beam
components, as illustrated in Fig. 3.3e.

The Stern–Gerlach experiment eventually lead to a conclusion that elec-
trons, in addition to possessing an orbital angular momentum, also possess
an intrinsic angular momentum known as the spin, specified by two quantum
numbers: s = 1/2 and ms that can take two values (1/2 or –1/2). The electron
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Fig. 3.3. Schematic representation of the Stern–Gerlach experiments. Part (a)
shows that silver atoms originate in an oven and are formed into a beam by a
collimator before they pass through an inhomogeneous magnet and strike a glass
collector plate. (b) Cross section through the magnet in a plane perpendicular to the
motion of the silver atoms. (c), (d), and (e) Sketches of the expected beam trace on
the receptor plate using classical physics in (c) and (d) and quantum physics in (e)

spin is given as S = �
√
s (s+ 1) = �

√
3/2 and its z component Sz = ms�.

Thus, for each set of the spatial quantum numbers n, �, and m	 which follow
from the Schrödinger equation there are two options for the spin quantum
number (spin up with ms = +1/2 and spin down with ms = −1/2).

A neutral silver atom has one electron in its outer shell and the intrinsic
spin of this unpaired electron causes the silver atom to behave like a small
magnet with two poles (magnetic dipole). In moving through a uniform mag-
netic field this atomic dipole precesses in the field. However, if this atomic
dipole moves through an inhomogeneous magnetic field, the magnetic forces
acting on each of the two poles are different from one another and this causes
a deflection of the atom from its straight trajectory as it traverses the magnet.

If silver atoms possess one of two quantized intrinsic angular momentum
states provided by the unpaired outer shell electron, in passing through the
inhomogeneous magnetic field, they will first take up their quantized orienta-
tions with respect to the field direction and then deviate from their original
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path following one of two trajectories: one caused by deflection in the direction
of the field gradient and the other caused by deflection in direction opposite
to the field gradient.

Stern and Gerlach found a clear separation of silver atoms between two
traces on the receptor plate and this served as proof of spatial quantization
from which the quantization of the intrinsic angular momentum of the electron
was inferred. The Stern–Gerlach experiment is one of about a dozen seminal
experiments that shaped modern physics during the past century.

3.1.10 Spin–Orbit Coupling

The orbital and spin angular momenta of an electron actually interact with
one another. This interaction is referred to as the spin–orbit coupling and
results in a total electronic angular momentum J that is the vector sum of
the orbital and intrinsic spin components, i.e., J = L + S. The following
features are notable:

• The total angular momentum J has the value J = �
√
j (j + 1) where

the possible values of the quantum number j are: |�− s|, |�− s+ 1|, . . .,
|�+ s|, with s = 1/2 for all electrons.

• The z component of the total angular momentum has the value Jz = mj�,
where the possible values of mj are: −j, −j+1, −j+2, . . ., j−2, j−1, j.

• The state of atomic electrons is thus specified with a set of four quantum
numbers: n, �, m	, ms when there is no spin–orbit interaction and n, �, j,
mj when there is spin–orbit interaction.

3.1.11 Successes and Limitations of the Bohr Model of the Atom

With his four postulates and the innovative idea of angular momentum quan-
tization Bohr provided an excellent extension of the Rutherford atomic model
and succeeded in explaining quantitatively the photon spectrum of the hydro-
gen atom and other one-electron structures such as singly ionized helium,
doubly ionized lithium, etc.

According to the Bohr atomic model, each of the six known series of the
hydrogen spectrum arises from a family of electronic transitions that all end
at the same final state nf . The Lyman (nf = 1), Brackett (nf = 4), and Pfund
(nf = 5) series were not known at the time when Bohr proposed his model;
however, the three series were discovered soon after Bohr predicted them with
his model. The Humphreys (nf = 6) series has been discovered only recently.

In addition to its tremendous successes, the Bohr atomic model suffers
several severe limitations:

1. The orbital electron in revolving about the nucleus is constantly accelerated
and by virtue of its charge should lose part of its energy in the form of
photons (Larmor law) and spiral into the nucleus. With its assumption
that the electron, while in an allowed orbit, emits no photons the Bohr
model is in contravention of Larmor law.
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2. The model does not predict the relative intensities of the photon emission
in characteristic orbital transitions.

3. The model fails to explain the observed fine structure of hydrogen spectral
lines where each spectral line is further composed of closely spaced spectral
lines.

4. The model does not work quantitatively for multi-electron atoms.
5. The model does not explain the splitting of a spectral line into several lines

in a magnetic field (Zeeman effect).
6. The model does not explain the splitting of a spectral line into several lines

in an electric field (Stark effect).

The idea of atomic electrons revolving about the nucleus should not be taken
too literally; however, the Bohr model for the one-electron structure combined
with angular momentum quantization serves as a reasonable intermediate step
on the way to more elaborate and accurate theories provided with quantum
mechanics and quantum electrodynamics. The Schrödinger quantum theory
dispensed with the picture of electrons moving in well defined orbits but the
Bohr theory is still often used to provide the first approximation to a particular
problem, because it is known to provide reasonable results with mathemat-
ical procedures that are, in comparison with those employed in quantum
mechanics, significantly simpler and faster.

3.1.12 Correspondence Principle

Niels Bohr postulated that the smallest change in angular momentum L of
a particle is equal to � where � is the reduced Planck constant (2π� = h).
This is seemingly in drastic disagreement with classical mechanics where the
angular momentum as well as the energy of a particle behave as continuous
functions. In macroscopic systems the angular momentum quantization is not
noticed because � represents such a small fraction of the angular momentum;
on the atomic scale, however, � may be of the order of the angular momentum
making the � quantization very noticeable.

The correspondence principle proposed by Niels Bohr in 1923 states that
for large values of the principal quantum number n (i.e., for n → ∞) the
quantum and classical theories must merge and agree. In general, the corre-
spondence principle stipulates that the predictions of the quantum theory for
any physical system must match the predictions of the corresponding classical
theory in the limit where the quantum numbers specifying the state of the
system are very large. This principle can be used to confirm the Bohr angular
momentum quantization (L = n�) postulate as follows.

Consider an electron that makes a transition from an initial orbit ni = n to
a final orbit nf = n−Δn, where n is large and Δn	 n. The transition energy
ΔE and the transition frequency νtrans of the emitted photon are related as
follows:

ΔE = Einitial − Efinal = 2π� νtrans (3.20)
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and
νtrans =

ΔE
2π�

. (3.21)

Since n is large, we can calculate ΔE from the derivative with respect to n of
the total orbital energy En given in (3.7) to obtain

dEn

dn
=

d
dn

(
−ER

Z2

n2

)
= 2ER

Z2

n3
. (3.22)

To get ΔE we express (3.7) as follows

ΔE = 2ERZ
2 Δn
n3

(3.23)

resulting in the following expression for the transition frequency νtrans

νtrans =
ΔE
2π�

=
2ERZ

2

2π�

Δn
n3

=
{
Ze2

4πε0

}2
me

2π�3

Δn
n3

(3.24)

after we insert ER from (3.8).
Recognizing that the velocity υ and angular frequency ω are related

through υ = ωr, we get from (3.1) the following expression

Ze2

4πε0
= meυ

2r = meω
2r3, (3.25)

which, when squared, yields

{
Ze2

4πε0

}2

= m2
eω

4r6. (3.26)

The angular momentum was given in (3.2) as

L = n� = meυr = meωr
2, (3.27)

which, when cubed, gives
n3

�
3 = m3

eω
3r6. (3.28)

Combining (3.26) and (3.28) with (3.24), we get the following expression for
the transition frequency νtrans

νtrans =
{
Ze2

4πε0

}2
me

2π�3

Δn
n3

=
m2

eω
4r6me Δn

2πm3
eω

3r6
=

ω

2π
Δn. (3.29)

After incorporating expressions for rn and υn given in (3.3) and (3.5),
respectively, the classical orbital frequency νorb for the orbit n is given as

νorb =
ωn

2π
=

υn

2πrn
=

αc

2πa0n3
. (3.30)
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It is of note that νtrans of (3.24) equals to νorb of (3.30) for large values of
n and Δn = 1, confirming the correspondence between quantum physics and
classical physics for n→ ∞.

We now compare the transition frequency νtrans and orbital frequency νorb
for a small n transition from ni = 2 to nf = 1 in a hydrogen atom (Z = 1)
and obtain

νorb(n = 2) =
υ2

2πr2
=

αc

16πa0
= 8.24×1014 s−1 (3.31)

and

νtrans =
E2 − E1

2π�
=

ER

2π�

{
1 − 1

4

}
=

3ER

8π�
=

3αc
16πa0

= 24.72×1014 s−1 = 3νorb

(3.32)
From (3.31) and (3.32) we note that for low values of n the orbital frequency
νorb differs from the transition frequency νtrans, in contrast to the situation at
large n where νtrans = νorb, as shown by (3.29) and (3.30). Thus, at large n
there is agreement between quantum and classical physics, as predicted by the
correspondence principle enunciated by Niels Bohr, while for low n quantum
and classical physics give different results, with νtrans > νorb.

3.2 Multi-Electron Atom

A multi-electron atom of atomic number Z contains a nucleus of charge +Ze
surrounded by Z electrons, each of charge −e and revolving in an orbit about
the nucleus. The kinematics of individual electron motion and its energy level
in a multi-electron atom are governed by:

1. Kinetic energy of the orbital electron.
2. Attractive Coulomb force between the electron and the nucleus.
3. Repulsive Coulomb force exerted on the electron by the other Z−1 atomic

electrons.
4. Weak interactions involving orbital and spin angular momenta of orbital

electrons.
5. Minor interactions between the electron and nuclear angular momenta.
6. Relativistic effects and the effect of the finite nuclear size.

3.2.1 Exclusion Principle

Wolfgang Pauli in 1925 eloquently answered the question on the values of
quantum numbers assigned to individual electrons in a multi-electron atom.
Pauli exclusion principle that states: “In a multielectron atom there can never
be more than one electron in the same quantum state” is important for the
understanding of the properties of multi-electron atoms and the periodic table
of elements. The following conditions apply:
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• According to the Pauli exclusion principle in a multi-electron atom no two
electrons can have all four quantum numbers identical. The four quantum
numbers are: n, �, j, and mj .

• The energy and position of each electron in a multi-electron atom are most
affected by the principal quantum number n. The electrons that have the
same value of n in an atom form a shell.

• Within a shell, the energy and position of each electron are affected by
the value of the orbital angular momentum quantum number �. Electrons
that have the same value of � in a shell form a sub-shell.

• The specification of quantum numbers n and � for each electron in a multi-
electron atom is referred to as the electronic configuration of the atom.

• Pauli exclusion principle confirms the shell structure of the atom as well
as the sub-shell structure of individual atomic shells:
– Number of electrons in sub-shells that are labeled with quantum

numbers n, �, m	: 2 (2�+ 1)
– Number of electrons in sub-shells that are labeled with quantum

numbers n, �, j: (2j + 1)
– Number of electrons in a shell:

2
n=1∑
	=0

(2�+ 1) = 2n2 (3.33)

The main characteristics of atomic shells and sub-shells are given in Tables 3.4
and 3.5, respectively. The spectroscopic notation for electrons in the K, L, and
M shells and associated sub-shells is given in Table 3.6.

3.2.2 Hartree Approximation for Multi-Electron Atoms

The Bohr theory works well for one-electron structures (hydrogen atom, singly
ionized helium, doubly ionized lithium, etc.) but does not apply directly to
multi-electron atoms because of the repulsive Coulomb interactions among
electrons constituting the atom.

Table 3.4. Main characteristics of atomic shells

Principal quantum number n 1 2 3 4 5
Spectroscopic notation K L M N O
Maximum number of electrons 2 8 18 32 –

Table 3.5. Main characteristics of atomic subshells

Orbital quantum number � 0 1 2 3
Spectroscopic notation s p d f
Maximum number of electrons 2 6 10 14
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Table 3.6. Spectroscopic notation for electrons in the K, L, M shells of a multi-
electron atom

Principal Orbital angular momentum � and total angular
quantum momentum j of electron
number n

s1/2 p1/2 p3/2 d3/2 d5/2 f

1 K
2 LI LII LIII

3 MI MII MIII MIV MV

The repulsive Coulomb interactions among electrons constituting the atom
disrupt the attractive Coulomb interaction between an orbital electron and
the nucleus and make it impossible to predict accurately the potential that
influences the kinematics of the orbital electron. Douglas Hartree proposed
an approximation that predicts the energy levels and radii of multi-electron
atoms reasonably well despite its inherent simplicity.

Hartree assumed that the potential seen by a given atomic electron is

V (r) = −Zeff e
2

4πε0
1
r
, (3.34)

where

Zeff is the effective atomic number.
Zeff e is an effective charge that accounts for the nuclear charge Ze as well

as for the effects of all other atomic electrons.

Hartree’s calculations show that in multi-electron atoms the effective
atomic number Zeff for K-shell electrons (n = 1) has a value of about Z − 2.
Charge distributions of all other atomic electrons produce a charge of about
−2e inside a sphere with the radius of the K shell, partially shielding the
K-shell electron from the nuclear charge +Ze and producing an effective
charge Zeffe = (Z − 2) e.

For outer shell electrons Hartree’s calculations show that the effective
atomic number Zeff approximately equals n, where n specifies the principal
quantum number of the outermost filled shell of the atom in the ground state.

Based on the Bohr one-electron atom model, the Hartree relationships for
the radii rn of atomic orbits (shells) and the energy levels En of atomic orbits
are similar to the Bohr expressions given for the one-electron structures in
(3.3) to (3.7) except that the atomic number Z of Bohr expressions is replaced
by effective atomic number Zeff in Hartree expressions. The atomic radius rn
and energy level En are thus in the Hartree multi-electron approximation
expressed as

rn =
a0 n

2

Zeff
(3.35)

and

En = −ER

(
Zeff

n

)2

. (3.36)
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The Hartree approximation for the K-shell (n = 1) electrons in multi-electron
atoms then results in the following expressions for the K-shell radius and
K-shell binding energy

r1 = rK =
a0

Z − 2
(3.37)

and
E1 = −EB(K) ≈ −ER(Z − 2)2, (3.38)

showing that the K-shell radii are inversely proportional to Z − 2 and the
K-shell binding energies increase as (Z − 2)2.

– K-shell radii range from a low of 0.5×10−2 Å for very high atomic number
elements to 0.53 Å for hydrogen.

– K-shell binding energies (equal to ionization potentials of K shell) range
from 13.61 eV for hydrogen to 9 keV for copper, 33 keV for iodine, 69.5 keV
for tungsten, 88 keV for lead, and 115 keV for uranium. For Z > 30, (3.38)
gives values in good agreement with measured data. For example, the
calculated and measured K-shell binding energies for copper are 9.9 keV
and 9 keV, respectively, for tungsten 70.5 keV and 69.5 keV, respectively,
and for lead 87 keV and 88 keV, respectively.

In Fig. 3.4 we plot, for all natural elements with Z from 1 to 100, the K-shell
binding energy EB (K) which may also be referred to as the ionization poten-
tial of the K shell. Measured data are shown with the solid curve and data
calculated with the Hartree approximation (3.38) are shown with the dashed
curve. The agreement between the two curves is reasonable, indicating that
the simple Hartree theory provides a good approximation for estimation of
K-shell binding energies of all elements.

Fig. 3.4. K-shell binding energy EB(K) against atomic number Z for elements from
Z = 1 to Z = 100. Solid curve represents measured data, dashed curve is for data
calculated with the Hartree approximation of (3.38)
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The Hartree approximation for outer shell electrons in multi-electron
atoms with (Zeff ≈ n) predicts the following outer shell radius (radius of atom)
and binding energy of outer shell electrons (ionization potential of atom)

router shell =
a0n

2

Zeff
≈ na0 = n

4πε0
e2

(�c)2

mec2
= n× (0.53 Å) (3.39)

and

Eouter shell = −ER

(
Zeff

n

)2

≈ −ER =
1
2
α2mec

2 = −13.6 eV, (3.40)

with a0 and ER the Bohr radius and Rydberg energy defined in Sect. 3.1.
The radius of the K-shell constricts with an increasing Z; the radius of the

outermost shell (atomic radius), on the other hand, increases slowly with Z,
resulting in a very slow variation of the atomic size with the atomic number Z.

A comparison between the Bohr relationships for one-electron atoms and
Hartree relationships for multi-electron atoms is given in Table 3.7. The table
compares expressions for the radii of shells, velocities of electrons in shells,
energy levels of shells, and wave number for electronic transitions between
shells. Two sets of equations are provided for the Bohr theory: a simpler set
obtained under the assumption that nuclear mass is infinite (M → ∞) and a
set obtained after account is made of the finite nuclear mass.

A simplified energy level diagram for tungsten, a typical multi-electron
atom of importance in medical physics for its use as target material in x-ray
tubes, is shown in Fig. 3.5. The K, L, M, and N shells are completely filled with
their normal allotment of electrons

(
2n2
)
, the O shell has 12 electrons and the

P shell has two electrons. The n> 1 shells are actually split into subshells, as
discussed in Sect. 3.1.1. In Fig. 3.5 the fine structure of shells is represented
by only one energy level that is equal to the average energy of all subshells
for a given n.

– A vacancy in a shell with a low quantum number n (inner shell) will result
in high-energy transitions in the keV range referred to as x-ray transitions.

– A vacancy in a shell with a high quantum number n (outer shell) will
result in relatively low-energy transitions (in the eV range) referred to as
optical transitions.

3.2.3 Periodic Table of Elements

The chemical properties of atoms are periodic functions of the atomic number
Z and are governed mainly by electrons with the lowest binding energy, i.e., by
outer shell electrons commonly referred to as valence electrons. The periodicity
of chemical and physical properties of elements (periodic law) was first noticed
by Dmitri Mendeleyev, who in 1869 produced a periodic table of the then-
known elements.



3.2 Multi-Electron Atom 159

Table 3.7. Expressions for the radius, velocity, energy, and wave number of atomic
structure according to: (1) Bohr one-electron atom model assuming infinite nuclear
mass, (2) Bohr one-electron atom model corrected for finite nuclear mass, and (3)
Hartree multi-electron model approximation

One-electron atom Multi-electron atom

Bohr theory Hartree approximation

Assumption: Corrected for finite Zeff (for n = 1) ≈ Z − 2

M → ∞ nucleus size Zeff (for outer shell) ≈ n

Radius rn rn = a0
n2

Z
rn = a0

me

μM

n2

Z
rn = a0

n2

Zeff

r1 =
a0

Z
= a0

(
1 +

me

M

)
n2

Z
r1 = rK ≈ a0

Z − 2
a0 = 0.5292Å router shell ≈ na0

Velocity υn υn = αc
Z

n
υn = αc

Z

n
υn = αc

Zeff

n
υ1 = αcZ υ1 = υK ≈ αc (Z − 2)

α =
1

137
≈ 7×10−3 υouter shell ≈ αc

Energy En En = −ER

(
Z

n

)2

En = −ER
μM

me

(
Z

n

)2

En = −ER

(
Zeff

n

)2

E1 = −ERZ2 = −ER
1

1 +
me

M

(
Z

n

)2

E1 = EK shell

≈ −ER(Z − 2)2

ER = 13.61 eV Eouter shell ≈ −ER

Wave k = R∞Z2

(
1

n2
f
− 1

n2
i

)
k = RMZ2

(
1

n2
f
− 1

n2
i

)
k = R∞Z2

eff

(
1

n2
f
− 1

n2
i

)
number k

R∞ = 109 737 cm−1

RM =
μM

me
R∞

=
1

1 +
me

M

R∞

Zeff (Kα) ≈ Z − 1

k (Kα) ≈ 3

4
R∞ (Z − 2)2

Since Mendeleyev’s time the periodic table of elements has undergone sev-
eral modifications as the knowledge of the underlying physics and chemistry
expanded and new elements were discovered and added to the pool. However,
the basic principles elucidated by Mendeleyev are still valid today.

In a modern periodic table of elements each element is represented by
its chemical symbol and its atomic number. The periodicity of properties of
elements is caused by the periodicity in electronic structure that follows the
rules of the Pauli exclusion principle (see Sect. 3.2.1).

The periodic table of elements is now most commonly arranged in the
form of seven horizontal rows or periods and eight vertical columns or groups.
Elements with similar chemical and physical properties are listed in the same
column.

The periods in the periodic table are of increasing length as follows:

• Period 1 has two elements: hydrogen and helium.
• Periods 2 and 3 have eight elements each.
• Periods 4 and 5 have 18 elements each.
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Fig. 3.5. A simplified energy level diagram for the tungsten atom, a typical example
of a multi-electron atom

• Period 6 has 32 elements but lists only 18 entries with entry under
lanthanum at Z = 57 actually representing the lanthanon series of 15
elements with atomic numbers from 57 (lanthanum) through 71 listed
separately. Synonyms for lanthanon are lanthanide, lanthanoid, rare earth,
and rare-earth element.

• Period 7 is still incomplete with 23 elements (ranging in atomic number Z
from 87 to 109) but lists only nine entries with entry under actinium at
Z = 89 actually representing the actinon series of 15 elements with atomic
numbers from 89 (actinium) through 103 listed separately. Synonyms for
actinon are actinide and actinoid.

The groups in the periodic table are arranged into eight distinct groups,
each group split into subgroups A and B. Each subgroup has a comple-
ment of electrons in the outermost atomic shell (in the range from 1 to 8)
that determines its valence, i.e., chemical property, hence the term “valence
electron” to designate outer shell electrons.
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Table 3.8 gives a simplified modern periodic table of elements with atomic
numbers Z ranging from 1 (hydrogen) to 109 (meitnerium). Several groups
of elements have distinct names, such as alkali elements (group I.A), alkali
earth elements (group II.A), halogens (group VII.A) and noble gases (group
VIII.A). Elements of other groups are grouped into transition metals, non-
transition metals, non-metals (including halogens of group VII.A), lanthanons,
and actinons.

3.2.4 Ionization Potential of Atoms

The ionization potential (IP) of an atom is defined as the energy required for
removal of the least bound electron (i.e., the outer shell or valence electron)
from the atom. The ER value predicted by Hartree is only an approximation
and it turns out, as shown in Fig. 3.6, that the ionization potentials of atoms
vary periodically with Z from hydrogen at 13.6 eV to a high value of 24.6 eV
for helium down to about 4.5 eV for alkali elements that have only one outer
shell (valence) electron.

The highest atomic ionization potential in nature is the ionization potential
of the helium atom at 24.6 eV. In contrast, the ionization potential of a singly
ionized helium atom

(
He+

)
can be calculated easily from the Bohr theory

using (3.7) with Z = 2 and n = 1 to obtain an IP of 54.4 eV. This value is
substantially higher than the IP for a helium atom because of the two-electron
repulsive interaction that lowers the IP in the neutral helium atom.

A plot of the ionization potential IP against atomic number Z, shown in
Fig. 3.6, exhibits peaks and valleys in the range from 4.5 eV to 24.6 eV, with
the peaks occurring for noble gases (outer shell filled with a shell-completing
complement of orbital electrons such as two electrons for the K shell of helium
or eight electrons for the L shell of neon, etc.) and valleys for alkali elements
with one solitary electron in the outer shell. Note: the ionization potential of
the lead atom is a few electron volts in contrast to the ionization potential of
the K shell in lead that is 88 keV.

3.3 Experimental Confirmation
of the Bohr Atomic Model

The Rutherford–Bohr atomic model postulates that the total energy of atomic
electrons bound to the nucleus is quantized. The binding energy quantiza-
tion follows from the simple quantization of the electron angular momentum
L = n�. Direct confirmation of the electron binding energy quantization was
obtained from the following three experiments:

1. Measurement of absorption and emission spectrum of monoatomic gases
2. Moseley experiment
3. Franck–Hertz experiment
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Table 3.8. Simplified periodic table of elements covering 109 known elements and
consisting of 7 periods and 8 groups, each group divided into subgroups A and B

Alkali metals  (group I.A) with one electron in the outer atomic shell:
Lithium  Li (3); Sodium Na (11); Potassium K (19); Rubidium Rb (37); Cesium Cs 
(55); Francium Fr (87).

Alkali earth metals (group II.A) with 2 electrons in the outer atomic shell:
Beryllium Be (4); Magnesium Mg (12); Calcium Ca (20); Strontium Sr (38); Barium
Ba (56); Radium Ra  (88).

Transition metals with 1 or 2 electrons in the outer atomic shell.

Non-transition metals with 3, 4, 5, or 6 electrons in the outer atomic shell.

Non-metals with 3, 4, 5, 6, or 7 electrons in the outer atomic shell.

Halogens (group VII.A) with 7 electrons in the outer atomic shell
Fluorine F (9); Chlorine Cl (17); Bromine Br (35); Iodine I (53); Astatine At (85).

Noble (Inert) gas es  (group VIII.A) with 8 electrons in the outer atomic shell
Helium He (4); Neon Ne (10); Argon Ar (18); Krypton Kr(36); Xenon Xe (54);
Radon Rn (86).

La

Lanthanons  (lanthanide series from Z = 57 to Z = 71): 15 elements
Lanthanum  La (57)         Cerium Ce (58)                Praseodymium Pr (59)    Neodymium  Nd (60); 
Promethium  Pm (61)      Samarium Sm (62)           Europium  Eu (63)           Gadolinium Gd (64);  
Terbium  Tb (65)              Dysprosium Dy (66)         Holmium Ho (67)             Erbium Er (68);          
Thulium Tm (69)              Ytterbium Yb (70)             Lutetium  Lu (71).

Ac

Actinons  (actinide series from Z = 89 to Z = 103): 15 elements
Actinium Ac (89)               Thorium Th (90)               Protactinium Pr (91)        Uranium U(92)  
Neptunium Np (93)           Plutonium Pu (94)            Americium Am (95)         Curium Cm (96);
Berkelium Bk (97)             Californium Cf (98)          Einsteinium Es (99)         Fermium Fm (100)
Mendelevium Md (101)     Nobelium No(102)           Lawrencium  Lr(103).
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Fig. 3.6. Ionization potential (ionization energy) of atoms against atomic number
Z. The noble gases that contain the most stable electronic configurations and the
highest ionization potentials are identified, as are the alkali elements that contain
the least stable electronic configurations and the lowest ionization potentials with
only one valence electron in the outer shell. The numbers in brackets identify the 7
periods, the numbers below the period number indicate the number of atoms in a
given period

3.3.1 Emission and Absorption Spectra of Monoatomic Gases

In contrast to the continuous spectra emitted from the surface of solids at high
temperatures, the spectra emitted by free excited atoms of gases consist of
a number of discrete wavelengths. An electric discharge produces excitations
in the gas, and the radiation is emitted when the gas atoms return to their
ground state. Correct prediction of line spectra emitted or absorbed by mono-
atomic gases, especially hydrogen, serves as an important confirmation of
the Rutherford–Bohr atomic model. The following features of emission and
absorption spectra of mono-atomic gases are notable:

• The emission spectrum is measured by first collimating the emitted radia-
tion by a slit, and then passing the collimated slit-beam through an optical
prism or a diffraction grating. The prism or grating breaks the beam into
its wavelength spectrum that is recorded on a photographic plate. Each
kind of free atom produces its own characteristic emission line, making
spectroscopy a useful complement to chemical analysis.

• In addition to the emission spectrum, it is also possible to study the absorp-
tion spectrum of gases. The experimental technique is similar to that used
in measurement of the emission spectrum except that in the measure-
ment of the absorption spectrum a continuous spectrum is made to pass
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through the gas under investigation. The photographic plate shows a set
of unexposed lines that result from the absorption by the gas of distinct
wavelengths of the continuous spectrum.

• For every line in the absorption spectrum of a given gas there is a corre-
sponding line in the emission spectrum; however, the reverse is not true.
The lines in the absorption spectrum represent transitions to excited states
that all originate in the ground state. The lines in the emission spec-
trum, on the other hand, represent not only transitions to the ground
state but also transitions between various excited states. The number of
lines in an emission spectrum will thus exceed the number of lines in the
corresponding absorption spectrum.

3.3.2 Moseley Experiment

Henry Moseley in 1913 carried out a systematic study of Kα x rays produced
by all then-known elements from aluminum to gold using the Bragg tech-
nique of x-ray scattering from a crystalline lattice of a potassium ferrocyanide
crystal. The characteristic Kα x rays (electronic transition from ni = 2 to
nf = 1) were produced by bombardment of targets with energetic electrons.
The results of Moseley’s experiments serve as an excellent confirmation of the
Bohr atomic theory.

From the relationship between the measured scattering angle φ and the
known crystalline lattice spacing d (the Bragg law: 2d sinφ = mλ, where m
is an integer) Moseley determined the wavelengths λ of Kα x rays for various
elements and observed that the

√
ν where ν is the frequency (ν = c/λ) of the

Kα x rays was linearly proportional to the atomic number Z. He then showed
that all x-ray data could be fitted by the following relationship

√
ν =

√
a(Z − b), (3.41)

where a and b are constants.
The same

√
ν versus Z behavior also follows from the Hartree-type approx-

imation that in general predicts the following relationship for the wave
number k

k =
1
λ

=
ν

c
= R∞ Z2

eff

(
1
n2

f

− 1
n2

i

)
(3.42)

or

√
ν =

√
cR∞

(
1
n2

f

− 1
n2

i

)
Zeff . (3.43)

For Kα characteristic x rays, where ni = 2 and nf = 1, the Hartree expression
gives

k (Kα) =
3
4
R∞Z2

eff =
3
4
R∞ (Z − 1)2 . (3.44)

Note that in the Kα emission Zeff = Z − 1 rather than Zeff = Z − 2 which
is the Zeff predicted by Hartree for neutral multi-electron atoms. In the Kα
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emission there is a vacancy in the K shell and the L-shell electron making
the Kα transition actually sees an effective charge (Z − 1) e rather than an
effective charge (Z − 2) e, as is the case for K-shell electrons in neutral atoms.

Moseley also measured several lines belonging to the L characteristic radi-
ation series for various elements and found similar regularities. This result,
now referred to as the Moseley law, has been of great importance in substan-
tiating the Rutherford–Bohr atomic theory and highlighted the significance
of the atomic number Z of elements as indicator of nuclear charge.

3.3.3 Franck–Hertz Experiment

Direct confirmation that the internal energy states of an atom are quantized
came from an experiment carried out by James Franck and Gustav Hertz in
1914. The experimental set up is shown schematically in Fig. 3.7a.

An evacuated vessel containing three electrodes (cathode, anode, and
plate) is filled with low pressure mercury vapor. Electrons are emitted thermio-
nically from the heated cathode and accelerated toward the perforated anode
by a potential U applied between cathode and anode. Some of the electrons
pass through the perforated anode and travel to the plate, provided their
kinetic energy upon passing through the perforated anode is sufficiently high
to overcome a small retarding potential Uret that is applied between the anode
and the plate.

The experiment involves measuring the electron current reaching the plate
as a function of the accelerating voltage U . With an increasing potential U
the current at the plate increases with U until, at a potential of 4.9 V, it
abruptly drops, indicating that some interaction between the electrons and
mercury atoms suddenly appears when the electrons attain a kinetic energy
of 4.9 eV. The interaction was interpreted as an excitation of mercury atoms
with a discrete energy of 4.9 eV; the electron raising an outer shell mercury
electron from its ground state to its first excited state and in doing so losing
a 4.9 eV portion of its kinetic energy and its ability to overcome the retarding
potential Uret between the anode and the plate.

Fig. 3.7. (a) Schematic diagram of the Franck–Hertz experiment; (b) Typical result
of the Franck–Hertz experiment using mercury vapor
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The sharpness of the current drop at 4.9 V indicates that electrons with
energy below 4.9 eV cannot transfer their energy to a mercury atom, sub-
stantiating the existence of discrete energy levels for the mercury atom. With
voltage increase beyond 4.9 V the current reaches a minimum and then rises
again until it reaches another maximum at 9.8 V, indicating that some elec-
trons underwent two interactions with mercury atoms. Other maxima at
higher multiples of 4.9 V were also observed with careful experiments. Typical
experimental results are shown in Fig. 3.7b. In contrast to the minimum exci-
tation potential of the outer shell electron in mercury of 4.9 eV, the ionization
potential of mercury is 10.4 eV.

A further investigation showed a concurrent emission of 2530 Å ultraviolet
rays by the mercury vapor gas that, according to Bohr model, will be emitted
when the mercury atom reverts from its first excited state to the ground state
through a 4.9 eV optical transition. The photon energy Eν = 4.9 eV is given
by the standard relationship

Eν = hν = 2π�
c

λ
=

12397 eV · Å
λ

. (3.45)

from which the wavelength of the emitted photon can be calculated as

λ =
2π�c

Eν
=

2π 197.3×106 eV 10−5 Å
4.9 eV

= 2530 Å. (3.46)

Ultraviolet photons with a wavelength of 2536 Å were actually observed
accompanying the Franck–Hertz experiment, adding to the measured peaks
in the current I versus voltage U diagram of Fig. 3.7b another means for the
confirmation of the quantization of atomic energy levels.

3.4 Schrödinger Equation for Hydrogen Atom

In solving the Schrödinger equation for a hydrogen or hydrogen-like one-
electron atom, a 3-dimensional approach must be used to account for the
electron motion under the influence of a central force. The Coulomb potential
binds the electron to the nucleus and the coordinate system is chosen such
that its origin coincides with the center of the nucleus. To account for the
motion of the nucleus we use the reduced mass μM of (3.18) rather than the
pure electron rest mass me in the calculation.

The time-independent Schrödinger wave equation was given in (1.104) as

− �
2

2 μM
∇2ψ + V (r)ψ = Eψ, (3.47)

where

V (r) is the potential seen by the electron.
E is the total energy of the electron.
∇2 is the Laplacian operator in Cartesian, cylindrical or spherical

coordinates.
μM is the reduced mass of the electron-proton system given in (3.18).
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For the hydrogen atom, the potential V (r) is represented by the spherically-
symmetric Coulomb potential as follows

V (r) = − 1
4πε0

e2

r
. (3.48)

The Schrödinger wave equation is separable in spherical coordinates (r, θ, φ)
and for the hydrogen atom it is written by expressing the Laplacian operator
in spherical coordinates as follows

− �
2

2μM

{
1
r2

∂

∂r

(
r2
∂

∂r

)
+

1
r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1
r2 sin2 θ

∂2

∂φ2

}

ψ(r, θ, φ) − e2

4πε0
1
r
ψ(r, θ, φ) = Eψ(r, θ, φ), (3.49)

with (r, θ, φ) the spherical coordinates of the electron.
The boundary conditions stipulate that |ψ|2 must be an integrable func-

tion. This implies that the wave function ψ(r, θ, φ) vanishes as r → ∞, i.e.,
the condition that lim

r→∞ψ(r, θ, φ) = 0 must hold.

Equation (3.49) can be solved with the method of separation of variables by
expressing the function ψ(r, θ, φ) as a product of three functions: R(r), Θ(θ),
and Φ(φ); each of the three functions depends on only one of the three
spherical variables, i.e.,

ψ(r, θ, φ) = R(r)Θ(θ)Φ(φ). (3.50)

Inserting (3.50) into (3.49) and dividing by R(r)Θ(θ)Φ(φ) we get the
following expression
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− e2
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= E. (3.51)

Separation of variables then results in the following three ordinary differential
equations

d2Φ

dφ2
= −m	Φ, (3.52)

− 1
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dΘ
dθ

)
+
m2

	Θ
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= � (�+ 1)Θ, (3.53)
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)
R = � (�+ 1)

R

r2
, (3.54)
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with separation constants m	 and � (�+ 1), where m	 and � are referred to as
the magnetic and orbital quantum numbers, respectively.

Equation (3.54) for R(r) gives physical solutions only for certain values of
the total energy E. This indicates that the energy of the hydrogen atom is
quantized, as suggested by the Bohr theory, and predicts energy states that
are identical to those calculated for the Bohr model of the hydrogen atom.
The energy levels En calculated from the Schrödinger wave equation, similarly
to those calculated for the Bohr atom, depend only on the principal quantum
number n; however, the wave function solutions depend on three quantum
numbers: n (principal), � (orbital) and m	 (magnetic). All quantum numbers
are integers governed by the following rules:

n = 1, 2, 3 . . . , � = 0, 1, 2, . . . , n− 1, m	 = −�,−�+ 1, . . . , (�− 1), �.
(3.55)

3.4.1 Schrödinger Equation for Ground State of Hydrogen

Equation (3.49) is generally quite complex yielding wave functions for the
ground state n = 1 of the hydrogen atom as well as for any of the excited
states with associated values of quantum numbers � and m	. However, the
ground state of the hydrogen atom can be calculated in a simple fashion as
follows.

Since V (r) is spherically symmetric, we assume that solutions to the
Schrödinger equation for the ground state of hydrogen will be spherically
symmetric which means that the wave function ψ(r, θ, φ) does not depend on
θ and φ, it depends on r alone, and we can write for the spherically symmetric
solutions that ψ(r, θ, φ) = R(r). The general Schrödinger equation of (3.51)
then becomes significantly simpler and, after some rearranging of terms, it is
given as follows

d2R(r)
dr2

+
2
r

{
dR(r)

dr
+
μM

�2

e2

4πε0
R(r)

}
+

2μME

�2
R(r) = 0. (3.56)

We can now simplify the Schrödinger equation further by recognizing that for
large r the (1/r) term will be negligible and we obtain

d2R(r)
dr2

−
[
−2μME

�2

]
R(r) ≈ 0. (3.57)

Next we define the constant −2μME/�
2 as λ2 and recognize that the total

energy E1 for the ground state of hydrogen will be negative

λ2 = −2μME1

�2
. (3.58)
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The simplified Schrödinger equation is now given as follows

d2R(r)
dr2

− λ2R(r) = 0. (3.59)

Equation (3.59) is recognized as a form of the Helmholtz differential equa-
tion in one dimension that leads to exponential functions for λ2 > 0, to a
linear function for λ = 0, and to trigonometric functions for λ2 < 0. Since the
total energy E is negative for bound states in hydrogen, λ2 is positive and
the solutions to (3.59) are exponential functions. The simplest exponential
solution is

R(r) = Ce−λr, (3.60)

with the first derivative expressed as

dR(r)
dr

= −λCe−λr = −λR(r). (3.61)

The second derivative of the function R(r) of (3.60) is given as follows

d2R(r)
dr2

= λ2Ce−λr = λ2R(r). (3.62)

Inserting (3.60) and (3.62) into (3.57) shows that (3.60) is a valid solution
to (3.59). We now insert (3.60), (3.61), and (3.62) into (3.56) and get the
following expression for the ground state of the hydrogen atom

λ2R(r) +
2
r

{
−λ+

μM

�2

e2

4πε0

}
R(r) +

2μME1

�2
R(r) = 0. (3.63)

The first and fourth term of (3.63) cancel out because λ2 is defined as(−2μME1/�
2
)

in (3.58). Since (3.63) must be valid for any ψ (r), the term in
curly brackets equals to zero and provides another definition for the constant
λ as follows

λ =
μM

�2

e2

4πε0
=
μMc

2

(�c)2
e2

4πε0
. (3.64)

We recognize (3.64) for λ as the inverse of the Bohr radius constant a0 that
was given in (3.4). Therefore, we express 1/λ as follows

1
λ

= a0 =
4πε0
e2

(�c)2

μMc2
= 0.5292 Å. (3.65)
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Combining (3.58) and (3.64) for the constant λ, we now express the ground
state energy E1 as

E1 = −1
2

�
2

μM

1
a2
0

= −1
2

(
e2

4πε0

)2
μMc

2

(�c)2
� −13.61 eV. (3.66)

The wave function R(r) for the ground state of hydrogen is given in (3.60)
in general terms with constants C and λ. The constant λ was established
in (3.65) as the inverse of the Bohr radius constant a0; the constant C we
determine from the normalization condition of (1.85) that is given by the
following expression ∫ ∫ ∫

|ψ (r)|2 dV = 1, (3.67)

with the volume integral extending over all space. The constant C is deter-
mined after inserting ψ(r, θ, φ) = R(r) given by (3.60) into (3.67) to obtain

∫ ∫ ∫
|ψ (r)|2 dV = C2

2π∫
0

π∫
0

∞∫
0

e
− 2r

a0 r2 dφ sin θ dθ dr

= 4πC2

∞∫
0

r2e−
2r
a0 dr = 4πC2 1

4a3
0

= 1, (3.68)

where the last integral over r is determined from the following recursive
formula ∫

xneax dx =
1
a
xneax − n

a

∫
xn−1eax dx. (3.69)

The integral over r in (3.68) is equal to 1/
(
4a3

0

)
and the constant C is now

given as follows
C = π−1/2a

−3/2
0 , (3.70)

resulting in the following expression for the wave function R(r) for the ground
state of the hydrogen atom

ψn,	,m�
(r, θ, φ) = ψ100 = R1(r) =

1

π1/2a
3/2
0

e−
r

a0 . (3.71)

The probability density of (1.83) can now be modified to calculate the radial
probability density dP/dr as follows

dP
dV = ψ∗(r, θ, φ)ψ(r, θ, φ) = |ψ(r, θ, φ)|2 (3.72)

and
dP
dr

= 4πr2 |ψ(r, θ, φ)|2 , (3.73)
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since dV = 4πr2 dr for the spherical symmetry governing the ground state
(n = 1) of the hydrogen atom.

The radial probability density dP/dr for the ground state is given as
follows, after inserting (3.71) into (3.73)

dP
dr

=
4r2

a3
0

e
− 2r

a0 or a0
dP
dr

=
[
2r
a0

]2
e
− 2r

a0 (3.74)

A plot of unit-less a0 (dP/dr), given as 4 (r/a0)
2 exp (−2r/a0), against (r/a0)

for the ground state of the hydrogen atom, is shown in Fig. 3.8. The following
observations can be made based on data shown in Fig. 3.8:

1. The radial probability density dP/dr = 0 for r = 0 and r = ∞.
2. dP/dr reaches its maximum at r = a0, highlighting the Schrödinger theory

prediction that the ground state electron in hydrogen atom is most likely
to be found at r = a0, where a0 is the Bohr radius constant given in (3.4).
One can also obtain this result by calculating d2P/dr2 and setting the
result equal to zero to obtain the maximum of a0 (dP/dr) = 4e−2 = 0.541
at the normalized radius of r/a0 = 1. Thus, the most probable radius rp
for the electron in the ground state of hydrogen is equal to a0.

3. Contrary to Bohr theory that predicts the electron in a fixed orbit with
r = a0, the Schrödinger theory predicts that there is a finite probability
for the electron to be anywhere between r = 0 and r = ∞. However, the
most probable radius for the electron is r = a0.

Fig. 3.8. The radial probability density of (3.74) multiplied with the Bohr radius
constant a0 against normalized radius r/a0 for the ground state electron in the
hydrogen atom
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3.4.2 Sample Calculations for Ground State of Hydrogen

To illustrate the Schrödinger theory further we now carry out a few sample cal-
culations for the ground state of the hydrogen atom based on the Schrödinger
equation:

1. The probability that the electron will be found inside the first Bohr radius
a0 is calculated by integrating (3.74) from r = 0 to r = a0 to get

P =
4
a3
0

a0∫
0

r2e−
2r
a0 dr =

{
4e−

2r
a0

a3
0

[
−a0r

2

2
− a2

0r

2
− a3

0

4

]}r=a0

r=0

= −
{
e−

2r
a0

[
2
(
r

a0

)2

+ 2
r

a0
+ 1

]}r=a0

r=0

= 1 − 5e−2 = 0.323. (3.75)

2. The probability that the electron will be found with radius exceeding a0 is
similarly calculated by integrating (3.74) from r = a0 to r = ∞

P =
4
a3
0

∞∫
a0

r2e
− 2r

a0 dr =

{
4e−

2r
a0

a3
0

[
−a0r

2

2
− a2

0r

2
− a3

0

4

]}r=∞

r=a0

= −
{
e−

2r
a0

[
2
(
r

a0

)2

+ 2
r

a0
+ 1

]}r=∞

r=a0

= 5e−2 = 0.677. (3.76)

3. The probability that the electron will be found with radius between r = 0
and r = ∞ obviously must be equal to 1 and is given as the sum of (3.75)
and (3.76) or calculated directly

P =
4
a3
0

∞∫
0

r2e
− 2r

a0 dr =

{
4e−

2r
a0

a3
0

[
−a0r

2

2
− a2

0r

2
− a3

0

4

]}r=∞

r=0

= −
{
e
− 2r

a0

[
2
(
r

a0

)2

+ 2
r

a0
+ 1

]}r=∞

r=0

= 1.

(3.77)

4. The probability that the orbital electron will be found inside the nucleus
(proton) is calculated by integrating (3.74) from r = 0 to r = R where
R is the proton radius estimated from (1.26) as R ≈ 1.25 fm. Using
R/a0 = (1.25 fm) /

(
0.53×105 fm

)
= 2.36×10−5 we get the following

probability
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P =
4
a3
0

R∫
0

r2e
− 2r

a0 dr =

{
4e−

2r
a0

a3
0

[
−a0r

2

2
− a2

0r

2
− a3

0

4

]}r=R

r=0

= −
{
e−

2r
a0

[
2
(
r

a0

)2

+ 2
r

a0
+ 1

]}r=R

r=0

= 1 − e
− 2R

a0

{
2
(
R

a0

)2

+ 2
R

a0
+ 1

}

≈ 1 −
[
1 − 2R

a0

] [
2
(
R

a0

)2

+ 2
R

a0
+ 1

]

≈ 2
(
R

a0

)2

= 1.11×10−9. (3.78)

5. The average electron radius r̄ is calculated using (1.106) and (3.71) to get

r̄ =
∫ ∫ ∫

r [R(r)]2 dV =
4
a3
0

∞∫
0

r3e
− 2r

a0 dr =
4a4

03!
16a3

0

=
3
2
a0. (3.79)

6. The most probable radius rp = a0 and the average radius r̄ = 1.5 a0

are not identical because the radial probability density distribution is not
symmetrical about its maximum at a0, as shown in Fig. 3.8. As calculated
in (3.75) and (3.76), the area under the dP/dr curve between r = 0 and
r = a0 amounts to only about one half the area under the curve between
r = a0 and r = ∞.

7. The expectation value of electron’s kinetic energy ĒK (also referred to as
the average or mean kinetic energy of the electron) in the ground state of
the hydrogen atom is calculated from (1.106) using

[(−�
2 / (2me)

]∇2 for
the associated kinetic energy operator, as given in (1.110) for one dimen-
sion. The wave function for the ground state of hydrogen ψ is spherically
symmetric and given in (3.71). Following (1.106) ĒK is in general written as

ĒK = − �
2

2me

∫ ∫ ∫
ψ∗∇2ψ dV . (3.80)

In (3.80) the Laplace operator ∇2 in spherical coordinates operates on
spherically symmetrical wave function ψ to give

∇2ψ =
1

a
3/2
0 π1/2

1
r2

∂

∂r

[
r2
∂

∂r
e−

r
a0

]
=

1

a
3/2
0 π1/2

[
1
a2
0

− 2
ra0

]
e−

r
a0 .

(3.81)
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Since dV for spherical symmetry is given as 4πr2 dr, we write ĒK as follows

ĒK = − 2�
2

mea4
0

⎧⎨
⎩

1
a0

∞∫
0

r2e−
2r
a0 dr − 2

∞∫
0

re−
2r
a0 dr

⎫⎬
⎭

= − �
2

2mea2
0

+
�

2

mea2
0

=
�

2

2mea2
0

=
1

2mec2

[
�c

a0

]2
(3.82)

=
1

2 × 0.511×106 eV

[
197.3×106 eV · fm

0.5292×105 fm

]2
= 13.6 eV,

and get +13.6 eV for the expectation value of electron’s kinetic energy.

8. The expectation (mean) value of the potential energy ĒP can be deter-
mined in similar manner to the derivation of the kinetic energy expectation
value in (3.82). The associated potential energy operator is given as
[V ] =

[−e2/ (4πε0r)
]

and the hydrogen ground state wave function is
spherically symmetrical and given in (3.71). ĒP is in general expressed
as follows

ĒP =
∫ ∫ ∫

ψ∗[V ]ψ dV , (3.83)

where [V ] is the potential energy operator. For the ground state of hydrogen
we get

ĒP = − e2

4πε0
4π
πa3

0

∞∫
0

e−
2r
a0

r
r2dr = − e2

4πε0a0

[
e−

2r
a0

(
2r
a0

− 1
)]∞

0

(3.84)

= − e2

4πε0a0
=

1.602×10−19 C · eV · m
4π × 8.85×10−12 C × 0.5292×10−10 m

= −27.2 eV

for the expectation (mean) value of the potential energy ĒP.

9. The expectation (mean) values of the kinetic energy ĒK and the potential
energy ĒP of the ground state of hydrogen atom were determined quantum-
mechanically in (3.82) and (3.84), respectively, using appropriate ground
state wave function (3.71) and appropriate energy operators. The mean
kinetic energy ĒK = 13.6 eV is equal to one half of the mean potential
energy ĒP = −27.2 eV but with opposite sign. The sum of the two expec-
tation values ĒK + ĒP is equal to the total energy E1 of the electron in the
ground state of the hydrogen atom

E1 = ĒK + ĒP = 13.6 eV − 27.2 eV = −13.6 eV. (3.85)
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The quantum-mechanical result (3.85) is in agreement with the value of
−13.6 eV for E1 obtained by Bohr, as discussed in Sect. 3.1.3

E1 = EK + EP =
meυ

2
1

2
− e2

4πε0r1
=

1
2
mec

2α2 − e2

4πε0a0

=
0.511×106 eV

2 × 1372
− e× 1.6×10−19 C · V · m

4π × 8.85×10−12 C × 0.5292×10−15 m
(3.86)

= 13.6 eV − 27.2 eV = −13.6 eV,

where we used (3.3) and (3.4) for r1 = a0 = 0.5292 Å and (3.5) and (3.6)
for υ1/c = α = 1/137.
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Production of X Rays

This chapter deals mainly with production of x rays but it also provides a
brief introduction to Čerenkov radiation and synchrotron radiation (magnetic
bremsstrahlung). Two types of x ray are known: characteristic (fluorescence)
radiation and bremsstrahlung, and both are important in medical physics,
because they are used extensively in diagnostic imaging and in external beam
radiotherapy.
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Characteristic x rays are produced by electronic transitions in atoms
triggered by vacancies in inner electronic shells of the absorber atom.
Bremsstrahlung x rays, on the other hand, are produced by inelastic Coulomb
interactions between a light energetic charged particle and the nucleus of the
absorber atom.

Theoretical and practical aspects of characteristic radiation are discussed
by introducing first the Siegbahn and IUPAC notation for designation of elec-
tronic levels in atom, followed by a discussion of the fluorescence yield and the
Auger effect. A theoretical discussion of bremsstrahlung follows by introduc-
ing the Larmor relationship and basic principles of emission of radiation from
accelerated charged particles. The chapter concludes with a brief discussion of
the Čerenkov radiation and the synchrotron radiation, both of some interest
in medical physics and nuclear physics.

4.1 X-Ray Line Spectra

A vacancy in an atomic shell plays an important role in physics and chemistry.
Defined as an electron missing from the normal complement of electrons in
a given atomic shell, a vacancy can be produced by eight different effects or
interactions ranging from various photon–atom interactions through charge
particle–atom interactions to nuclear effects. Depending on the nature and
energy of the interaction, the vacancy may occur in the outer shell or in one
of the inner shells of the atom. A list of the eight effects for production of
shell vacancy in an atom is as follows:

1. Photoelectric effect (see Sect. 7.5)
2. Compton scattering (see Sect. 7.3)
3. Triplet production (see Sect. 7.6.1)
4. Charged particle Coulomb interaction with atom (see Sects. 6.3 and 6.11)
5. Internal conversion (see Sect. 11.8)
6. Electron capture (see Sect. 11.6)
7. Positron annihilation (see Sect. 7.6.10)
8. Auger effect (see Sect. 4.1.2)

An atom with a vacancy in its inner shell is in a highly excited state and
returns to its ground state through one or several electronic transitions. In
each of these transitions an electron from a higher atomic shell fills the shell
vacancy and the energy difference in binding energy between the initial and
final shell or sub-shell is emitted from the atom in one of two ways:

1. In the form of characteristic (fluorescence) radiation.
2. Radiation-less in the form of Auger electrons, Coster–Kronig electrons or

super Coster–Kronig electrons.
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4.1.1 Characteristic Radiation

Radiation transitions result in emission of photons that are called character-
istic radiation, since the wavelength λ and energy hν of the emitted photon
are characteristic of the atom in which the photon originated. An older term,
fluorescence radiation, is still occasionally used to describe the characteristic
photons. The set of radiation transition photons emitted from a given atom
is referred to as the line spectrum of the atom. Charles G. Barkla is credited
with the discovery of characteristic x rays and in 1917 he was awarded the
Nobel Prize in Physics for his discovery.

Energy level diagrams for high atomic number x-ray targets are usually
drawn using the n, �, j and mj quantum numbers, as shown with a generic
energy level diagram in Fig. 4.1. In addition to dependence on n (main struc-
ture), the energy level diagram also exhibits dependence on � and j (fine
structure). However, only certain transitions, fulfilling specific selection rules,
result in x rays. The selection rules for allowed characteristic transitions lead-
ing to most intense characteristic lines are called the electric dipole selection
rules and are stipulated as follows:

Δ� = ±1 and Δj = 0 or ± 1. (4.1)

In addition to electric dipole selection rules, magnetic dipole and electric
quadrupole selection rules are also known, but they produce significantly
weaker characteristic lines. Lines allowed by electric dipole selection rules are
referred to as normal x-ray lines; lines not allowed by electric dipole selection
rules are referred to as forbidden lines. In Fig. 4.1 only transitions from the
M and L to the K shell are shown; allowed transitions with solid lines and a
forbidden transition with a dotted line.

The energies released through an electronic transition are affected by the
atomic number Z of the absorbing atom and by the quantum numbers of the
atomic shells involved in the electronic transition. Transitions between outer
shells of an atom generally result in optical photons and are referred to as
optical transitions (photon energy hν is of the order of a few electronvolts);
transitions between inner shells of high atomic number elements may result
in x rays and are referred to as x-ray transitions (photon energy hν is of the
order of 10 keV to 100 keV).

Traditionally, the following conventions introduced by early workers in
x-ray spectroscopy, most notably by Karl M.G. Siegbahn, have been used in
atomic physics:

1. Transitions of electrons to the K shell are referred to as the K lines, to the
L shell as L lines, to the M shell as M lines, etc.

2. Transitions from the nearest neighbor shell are designated as α transition;
transitions from the second nearest neighbor shell or a higher-level shell
are generally designated as β transition; however, other designations may
also be used for some of these.
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Fig. 4.1. Typical energy level diagram for a high atomic number element showing
the K (n = 1), L (n = 2), and M (n = 3) shells with associated sub-shells. The
numbers in brackets indicate the maximum possible number of electrons in a given
sub-shell equal to (2j + 1). Kα and Kβ transitions are also shown. The allowed Kα

and Kβ transitions are shown with solid lines, the forbidden Kα3 transition is shown
with a dashed line

3. Transitions from one shell to another do not all have the same energy
because of the fine structure (sub-shells) in the shell levels. The highest
energy transition between two shells is usually designated with number 1,
the second highest energy with number 2, etc.

4. In Fig. 4.1 the transition Kα3 represents a forbidden transition (Δ� = 0)
from the L to the K shell (2s1/2 → 1s1/2 with Δ� = 0 and Δj = 0).
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5. The transition Kβ1 represents an allowed transition from the M shell to
the K shell (3p3/2 → 1s1/2 with Δ� = 1 and Δj = 1).

6. Radiation transitions that do not follow the strict electric dipole selection
rules of (4.1) may also occur but their intensities are much lower than those
of the allowed (normal) transitions.

The original x-ray spectroscopy nomenclature for identification of character-
istic (fluorescence) x rays has been in use since 1920s and is referred to as
the Siegbahn notation in honor of Carl M.G. Siegbahn who introduced the
notation and received the 1924 Nobel Prize in Physics for his research in
x-ray spectroscopy. The notation became outdated and cumbersome to use
in recent years and the International Union of Pure and Applied Chemistry
(IUPAC) in 1991 proposed a new and more systematic nomenclature referred
to as the IUPAC notation.

The main differences between Siegbahn’s notation and the IUPAC notation
are as follows:

1. Both notations follow Barkla’s designation of electronic shells as the K shell
for n = 1, L shell for n = 2, M shell for n = 3, etc; however, the sub-shells
are designated with Roman numerals in the Siegbahn notation (e.g., LI,
LII, LIII, etc.) and with Arabic numerals in the IUPAC notation (e.g., L1,
L2, L3, etc.).

2. In the Siegbahn notation the subshell origin of a characteristic photon is
not identified (e.g., Kα1 , Kα2 , Kβ3, etc.), while in the IUPAC notation
both the initial and the final subshell producing the characteristic photon
are identified and separated by a hyphen (e.g., K − L3, K − L2, K − M2,
etc.). Note that in the IUPAC notation the initial and final states of the
electron vacancy rather than those of the electron making the transition
are identified.

3. Another advantage of the IUPAC notation is that it coincides with the
current nomenclature used in Auger electron emission and photoelectron
spectroscopy.

An example of a generic x-ray energy diagram is given in Fig. 4.2 show-
ing a series of K-shell characteristic photons; transitions allowed by electric
dipole selection rules of (4.1) are shown with solid lines, transitions for-
bidden by electric dipole selection rules are shown with dashed lines. For
comparison, all electronic transitions to the K shell are identified with both
notations: Siegbahn and IUPAC. It is obvious that, of the two notations,
the IUPAC notation is more systematic and easier to follow, since it clearly
identifies the two sub-shells contributing to the emission of the characteristic
photon.
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Fig. 4.2. Atomic energy level diagram for a high atomic number element showing
the K shell as well as the L, M, and N sub-shells. All possible transitions to the
K shell are displayed using the traditional Siegbahn notation (right hand side) and
the new IUPAC (International Union of Pure and Applied Chemistry) notation (left
hand side)

4.1.2 Fluorescence Yield and Auger Effect

Each spontaneous electronic transition from an initial higher level atomic shell
(higher quantum number n; lower binding energy EB) to a final lower level
shell (lower n; higher EB) is characterized by a transition energy (Efinal −
Einitial) which is:

1. Either emitted in the form of a characteristic (fluorescence) photon.
2. Or transferred to a higher shell electron which is ejected from the atom as

an Auger electron.



4.1 X-Ray Line Spectra 183

Fig. 4.3. Schematic representation of Auger effect, Coster–Kronig effect, and super
Coster–Kronig effect. In Auger effect the electron makes an intershell transition
and the transition energy is transferred to the Auger electron. In Coster–Kronig
effect the electron makes an intrashell transition and the transition energy is trans-
ferred to an electron in a higher shell. In super Coster–Kronig effect the electron
makes an intrashell transition and the energy is transferred to an electron in the
same shell

The phenomenon of emission of Auger electron from an excited atom is called
the general Auger effect and actually encompasses three different mechanisms:
Auger effect, Coster–Kronig effect, and super Coster–Kronig effect. In Auger
effect the primary transition occurs between two shells, in Coster–Kronig and
super Coster–Kronig effects the primary transition occurs within two sub-
shells of a shell. The three effects are illustrated schematically in Fig. 4.3:

1. In Auger effect the primary transition occurs between two shells and the
transition energy is transferred to an orbital electron from the initial shell
or an even higher-level shell.

2. In Coster–Kronig effect the transition energy originates from two sub-
shells of a given shell and is transferred to an electron in another shell.
The emitted electron is called a Coster–Kronig electron.

3. In super Coster–Kronig effect the transition energy which, like in (2), orig-
inates from two sub-shells of a given shell is transferred to a sub-shell
electron within the shell in which the primary transition occurred. The
emitted electron is called a super Coster–Kronig electron.

The radiation-less electronic transition is called Auger effect after French
physicist Pierre Auger who is credited with its discovery in 1925. It is now
accepted that Austrian physicist Lise Meitner actually discovered the effect
in 1923, but the effect continues to be known as the Auger effect.
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By way of example, in Fig. 4.1 a vacancy in the K shell may be filled with an
electron from the L2 sub-shell making the transition energy EB (K)−EB (L2)
available either for emission of a characteristic Kα2 photon or for emission of
an Auger electron, say from an M3 sub-shell. The energy of the emitted Auger
electron is equal to

EK (eKL2M3) = [EB (K) − EB (L2)] − EB (M3) (4.2)

and the Auger electron emitted from the M shell is designated as a eKL2M3

electron following standard nomenclature for Auger electrons. The subscript
stipulates that:

1. The initial vacancy occurred in the K-shell.
2. The K-shell vacancy was filled by an electron from the L2 sub-shell.
3. The transition energy was transferred to an M3 electron which was emitted

from the atom as Auger electron with kinetic energy given in (4.2).

A vacancy created in an electronic shell or sub-shell will thus be followed by
emission of a characteristic (fluorescence) photon or an Auger electron. The
branching between the two possible routes is governed by the fluorescence
yield ω for the given atom of the absorber and for the given atomic shell of the
absorber atom. The fluorescence yield of a given shell is defined as the number
of fluorescence (characteristic) photons emitted per vacancy in the shell. It
can also be regarded as the probability, after creation of a shell vacancy, of
fluorescence photon emission as opposed to Auger electron emission.

Fluorescence yields ωK, ωL, and ωM for K, L, and M shell electron vacan-
cies, respectively, are plotted in Fig. 4.4 against atomic number Z for all
elements. The following features of fluorescence yield are noteworthy:

1. A plot of the fluorescence yield ωK against absorber atomic number Z
results in a sigmoid shaped curve with ωK ranging from ωK = 0 for low Z
elements through ωK = 0.5 at Z = 30 to ωK = 0.96 at very high Z.

2. For the L-shell vacancy the fluorescence yield ωL is zero at Z < 30 and
then rises with Z to reach a value ωL = 0.5 at Z = 100.

3. The fluorescence yield ωM is zero for all elements with Z < 60, and for
Z > 60 it rises slowly with increasing Z to attain a value ωM ≈ 0.05
for very high Z absorbers, indicating that fluorescence emission from the
M shell and higher level electronic shells is essentially negligible for all
absorbers, even those with very high atomic number Z.

4. For a given absorber, the higher is the shell level (i.e., the lower is the shell
binding energy), the lower is the fluorescence yield ω and, consequently,
the higher is the probability for the Auger effect (1 − ω).

Figure 4.4 also plots the probability for Auger effect for vacancies in the K,
L, and M shells. In general, the probability for Auger effect following a given
shell vacancy equals to 1 − ω, where ω is the fluorescence yield for the given
electronic shell.



4.2 Emission of Radiation by Accelerated Charged Particle 185

Fig. 4.4. Fluorescence yields ωK for hν > (EB)K, ωL for (EB)L < hν < (EB)K, and
ωM for (EB)M < hν < (EB)L against atomic number Z. Also shown are probabilities
for Auger effect 1 − ωK, 1 − ωL, and 1 − ωM. Data were obtained from Hubbell

The exact mechanism of energy transfer in Auger effect is difficult to calcu-
late numerically. In the past, the effect was often considered an internal atomic
photoelectric effect and the explanation makes sense energetically. However,
two experimental facts contradict this assumption:

1. Auger effect often results from forbidden radiation transitions, i.e., transi-
tions that violate the selection rules for the radiative fluorescence process.

2. Fluorescence yield ω for high atomic number Z materials is significantly
larger than that for low atomic number materials; contrary to the well-
known photoelectric effect Z dependence that follows a Z3 behavior (see
Sect 7.5).

4.2 Emission of Radiation by Accelerated Charged
Particle (Bremsstrahlung Production)

Bremsstrahlung is a type of x ray produced by light charged particles when
they undergo inelastic collisions with nuclei of absorber atoms. Charged par-
ticles are characterized by their rest mass, charge, velocity and kinetic energy.
With regard to their rest mass, charged particles of interest to medical physics
and dosimetry are classified into two categories:
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1. Light charged particles : electrons e− and positrons e+, both capable of
producing bremsstrahlung photons because of their relatively small mass.

2. Heavy charged particles : protons p, deuterons d, alpha particles α, heav-
ier ions such as Li+, Be+, C+, Ne+, etc. producing negligible amount of
bremsstrahlung photons.

With regard to their velocity, charged particles are classified into three
categories:

1. Stationary with υ = 0
2. Moving with a uniform velocity υ = constant
3. Accelerated with an acceleration a = dυ/dt.

Of the three categories, only accelerated light charged particles are capable
of producing bremsstrahlung photons even though particles in all three cate-
gories, by virtue of being charged, are surrounded by an electric field generated
by the charge of the particle. With regard to velocity, only accelerated charged
particles lose some of their energy in the form of photon radiation.

4.2.1 Stationary Charged Particle: No Emission of Radiation

A stationary charged particle has an associated constant electric field E whose
energy density ρ is given by

ρ =
1
2
ε0E2, (4.3)

where ε0 is the electric constant also called permittivity of vacuum
[
ε0 =

8.85×10−12 A · s/ (V · m)
]
. The energy is stored in the field and is not radi-

ated away by the charged particle of charge q. There is no magnetic field
associated with a stationary charged particle. The electric field E(r) produced
by a stationary charged particle is governed by the Coulomb law which states
that the electric field is proportional to q and inversely proportional to the
square of the distance r between the charge q and the point-of-interest P. The
electric field thus follows an inverse square law with distance r from q and is
isotropic (spherically symmetric)

E(r) =
1

4πε0
q

r3
r or E (r) =

1
4πε0

q

r2
, (4.4)

where r is a vector pointing from particle with charge q to the point-of-
interest P. The science that deals with phenomena arising from stationary
electric charges is referred to as electrostatics.

4.2.2 Charged Particle Moving with Uniform Velocity:
No Emission of Radiation

A charged particle moving with a uniform velocity υ has an associated mag-
netic field B as well as an electric field E . The energy density ρ is then
given by
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ρ =
1
2
ε0E2 +

1
2μ0

B2, (4.5)

where ε0 is the electric constant (permittivity of vacuum) and μ0 is the
magnetic constant, also called permeability of vacuum

[
μ0 =4π×10−7

V . s/ (A · m)
]
. The energy is stored in the field, moves along with the charged

particle, and is not radiated away by the charged particle.
Since a moving charged particle q produces both an electric field and a

magnetic field, the two fields are considered together as the electromagnetic
(EM) field and the science dealing with these fields is referred to as electro-
magnetism. The classical approach to electromagnetism was developed toward
the end of nineteenth century and is based on the law of Biot–Savart, the
Ampère law, and Maxwell equations. In the early 1960s Edward M. Purcell
introduced the idea of relativistic electromagnetism by explaining electromag-
netism using Einstein theory of special relativity and the Lorentz contraction
factor

√
1 − (υ/c)2.

To determine E and B produced by a moving charged particle, Purcell
introduced two inertial reference frames, Σ and Σ′. The charged particle is at
rest at the origin of Σ′, and Σ′ is moving along the x axis of the reference
frame Σ with uniform velocity υ. At time t = 0 the origins of the two reference
frames coincide. The charged particle is at rest in Σ′, thus in the reference
frame Σ′ it produces an electric field E governed by Coulomb law given in
(4.4) but it produces no magnetic field B. In the reference frame Σ, on the
other hand, we have a moving charge, implying a current with an associated
magnetic field B in addition to an electric field E.

Texts on electromagnetism and relativistic electrodynamics give the fol-
lowing results for E and B produced by charge q moving with uniform
velocity υ

E =
q

4πε0
r
r3

1 − β2

(1 − β2 sin2 θ)3/2
or E =

q

4πε0r2
1 − β2

(
1 − β2 sin2 θ

)3/2
(4.6)

and

B =
υ × E
c2

=
q

4πε0c2
υ × r
r3

1 − β2

(1 − β2 sin2 θ)3/2
or

B =
qβ

4πε0cr3
1 − β2

(
1 − β2 sin2 θ

)3/2
, (4.7)

where

q is the charge of the charged particle, identical in both reference frames.
r is the radius vector connecting the origin of Σ with the point-of-interest P.
θ is the angle between υ and r in the reference frame Σ.
β is υ/c with c the speed of light in vacuum according to the standard

notation used in relativistic physics.
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The electric field E of (4.6) is equal to the Coulomb field of (4.4) produced
by a stationary charge q, corrected for charge motion with a field correction
factor Cυ which depends on the magnitude of velocity υ and on the angle θ

Cυ =
1 − β2

(
1 − β2 sin2 θ

)3/2
. (4.8)

Equation (4.6) shows that the electric field is radial, it diverges radially from
the charge, and its intensity is proportional to 1/r2. However, because of the
effect of the field correction factor Cυ, the field is not the same in all directions
unlike the case with the Coulomb law for stationary charge given in (4.4).

Figure 4.5 shows a plot of the field correction factor Cυ against angle θ in
the range from 0 to π for four values of β (0, 0.5, 0.75, and 0.9). The following
special features are noted:

1. For υ = 0 or β = 0 the expressions for E and B of (4.6) and (4.7), respec-
tively, reduce to expressions for stationary charge q where E is given by
(4.4) and B = 0. Moreover, we note that for υ = 0 or (β = 0) the field
correction factor Cυ = 1 for all angles θ confirming the Coulomb law and
isotropic electric field E for a stationary charge q.

Fig. 4.5. Field correction factor Cυ of (4.8) against angle θ for normalized velocity
β of 0, 0.5, 0.75, and 0.9. For a given β the minimum Cυ occurs at θ = 0 and θ = π
and equals to 1 − β2. Maximum Cυ occurs at θ = 1

2
π and equals to 1/

√
1 − β2
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2. For υ 	 c or β 	 1 expressions (4.6) and (4.7), respectively, reduce to
classical expressions

E =
qr

4πε0r3
(4.9)

and

B =
qυ × r

4πε0c2r3
, (4.10)

referred to as Coulomb law (4.4) and Biot-Savart law, respectively.
3. For θ = 0 in the direction of charge motion and θ = π in the direction

opposite to charge motion, the field correction factor Cυ has a minimum
value for a given β, is smaller than 1 for all β < 1, and simplifies to

Cυ(θ = 0) = Cυ (θ = π) = (Cυ)min = 1 − β2. (4.11)

This suggests a constriction of the electric field along the direction of
motion, since 1− β2 < 1 for all β except for the case of stationary charged
particle for which β = 0 and the electric field is given by the Coulomb law
of (4.4).

4. For θ = π/2 in directions perpendicular to the direction of motion, the
field correction factor Cυ has a maximum value for a given β, exceeds 1
for all β < 1, and simplifies to

Cυ (θ = π/2) = (Cυ)max =
1√

1 − β2
= γ, (4.12)

where γ is defined in Sect. 1.2.1. This suggests an increase in the electric
field E in comparison with electric field produced by a stationary charged
particle of charge q, since 1/

√
1 − β2 = γ > 1 for all β except for β = 0.

5. For β = 0 (stationary particle) the field correction factor Cυ equals to 1
for all angles θ. For β < 1 the field correction factor Cυ goes through 1
around angles θ of 60◦ and 120◦ for all β.

In Fig. 4.6 we show the field correction factor Cυ of (4.8) in a polar diagram
with radius representing Cυ and the angle representing angle θ for various
velocities β ranging from β = 0 (stationary particle) through β = 0.5 and
β = 0.75 to β = 0.9. For θ = 0 and θ = π, Cυ is given by (4.11); for θ = 1

2π
it is given by (4.12); for any arbitrary angle θ it is given by (4.8). We can
also regard the graph of Fig. 4.6 as a display of the electric field E associated
with the charged particle and normalized to 1 for the field of the particle
when it is stationary υ = 0). For the stationary particle the electric field
is governed by the Coulomb relationship and is spherically symmetric. For
charged particle moving with velocity υ the field is cylindrically symmetric in
planes perpendicular to the direction of motion; however, in planes containing
the direction of motion the electric field distribution is no longer isotropic and
depends on angle θ and velocity υ.
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Fig. 4.6. Electric field E produced by a charged particle q moving with uniform
velocity υ in vacuum for four velocities β of 0 (stationary particle), 0.5, 0.75, and
0.9. At β = 0 the field is isotropic and governed by Coulomb law; for relativistic
particles the field constricts in the direction of motion and in the direction opposite
to direction of motion and the field expands in directions perpendicular to direction
of motion. The plot is essentially a polar diagram of the field correction factor Cυ

of (4.8)
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For a moving charged particle the fields in Fig. 4.6 are shown corrected
and normalized to value of 1 of the stationary field. As discussed above, at
low (classical) velocities υ the electric field E produced by the charged par-
ticle is isotropic and follows the inverse square law. However, as the velocity
of the charged particle increases and approaches c, the speed of light in vac-
uum, the electric field is constricted in the forward and backward direction
and increases in a direction at right angles to the particle motion. The elec-
tric field is contracted by a factor (1 − β2) in the direction of flight of the
particle, whereas it is enhanced by a factor γ = 1/

√
1 − β2 in the transverse

direction.
The electric field distortion for moving charged particles is of importance

in collision stopping power calculations (Chap. 6). As a charged particle passes
through an absorber, it sweeps out a cylinder throughout which its electric
field is capable of transferring energy to orbital electrons of the absorber. The
radius of this cylinder increases with increasing parameter γ as the charged
particle velocity υ increases, allowing more orbital electrons to be affected by
the charged particle, thereby increasing the energy loss of the charged particle
in a given absorber.

4.2.3 Accelerated Charged Particle: Emission of Radiation

For an accelerated charged particle the non-static electric and magnetic fields
cannot adjust themselves in such a way that no energy is radiated away
from the charged particle. As a result, an accelerated or decelerated charged
particle emits some of its kinetic energy in the form of photons referred
to as bremsstrahlung radiation. The electric and magnetic fields associated
with accelerated charged particle are calculated from the so-called Lienard–
Wiechert potentials. To determine the fields at time t the potentials must
be evaluated for an earlier time (called the retarded time), with the charged
particle at the appropriate retarded position on its trajectory.

The electric field E and the magnetic field B of an accelerated charged
particle have two components:

1. Local (or near) velocity field component which falls off as 1/r2.
2. Far (or radiation) acceleration field component which falls off as 1/r.

At large distances r of interest in medical physics and dosimetry the 1/r
radiation component dominates and the 1/r2 near field component may be
ignored, since it approaches zero much faster than the 1/r component. The
energy loss by radiation is thus determined by the far field components of the
electric field E and the magnetic field B. The far field components of E and
B are given as follows

E =
q

4πε0
r × (r × υ̇)

c2r3
or E =

1
4πε0

q

c2
υ̇ sin θ
r

(4.13)
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and

B =
q

4πε0
υ̇ × r
c3r2

=
μ0

4π
q

c

υ̇ × r
r2

or B =
q

4πε0
υ̇ sin θ
c3r

=
μ0

4π
q

c

υ̇ sin θ
r

=
E
c
,

(4.14)

where

r is the radius vector connecting the charged particle with the point of
observation.

υ̇ is the acceleration vector of the charged particle.
υ̇ is the magnitude of the acceleration vector.
q is the charge of the charged particle,
θ is the angle between r and υ.
c is the speed of light in vacuum.

The E and B fields propagate outward with velocity c and form the electro-
magnetic (EM) radiation (bremsstrahlung) emitted by the accelerated charged
particle. The energy density ρ of the emitted radiation is given by

ρ =
1
2
ε0E2 +

1
2μ0

B2 = ε0E2, (4.15)

noting that B = E/c and c2 = 1/(ε0μ0) in vacuum.

4.2.4 Intensity of Radiation Emitted
by Accelerated Charged Particle

The intensity of the emitted radiation is defined as the energy flow per unit
area A, and is given by the vector product E ×B/μ0, known as the Poynting
vector S (see Sect. 1.29), where

S =
E × B
μ0

. (4.16)

After using (4.13) and (4.14) and recognizing that E and B are perpendicular
to one another, we obtain the following relationship for the magnitude of the
Poynting vector

S = |S| =
EB
μ0

= ε0cE2 =
1

16π2ε0

q2a2

c3
sin2 θ

r2
. (4.17)

The following characteristics of the emitted radiation intensity are notable:

1. Emitted radiation intensity S(r, θ) is linearly proportional to: q2, square
of particle’s charge; a2, square of particle’s acceleration; and sin2 θ.

2. Emitted radiation intensity S(r, θ) is inversely proportional to r2, reflecting
an inverse square law behavior.



4.2 Emission of Radiation by Accelerated Charged Particle 193

3. Emitted radiation intensity S(r, θ) exhibits a maximum at right angles
to the direction of motion where θ = 1

2π. No radiation is emitted in the
forward direction (θ = 0) or in the backward direction (θ = π).

4.2.5 Power Emitted by Accelerated Charged Particle Through
Electromagnetic Radiation (Classical Larmor Relationship)

The power P (energy per unit time) emitted by the accelerated charged par-
ticle in the form of bremsstrahlung radiation is obtained by integrating the
intensity S(r, θ) over the area A. Recognizing that dA = r2dΩ = 2πr2 sin θ dθ
we obtain

P =
dE
dt

=
∫
S(r, θ) dA =

∫
S(r, θ)r2 dΩ =2π

π∫
0

S(r, θ)r2 sin θ dθ

= − 2π
16π2ε0

q2a2

c3

π∫
0

sin2θ d(cosθ)

= − q2a2

8πε0c3

π∫
0

(1 − cos2 θ) d(cos θ) =
1

6πε0
q2a2

c3
. (4.18)

Equation (4.18) is the classical Larmor relationship predicting that the power
P emitted in the form of bremsstrahlung radiation by an accelerated charged
particle is proportional to:

1. q2, square of particle’s charge.
2. a2, square of particle’s acceleration.

The Larmor expression represents one of the basic laws of nature and is of
great importance to radiation physics. It can be expressed as follows: “Any
time a charged particle is accelerated or decelerated it emits part of its kinetic
energy in the form of bremsstrahlung photons.”

As shown by the Larmor relationship of (4.18), the power emitted in the
form of radiation depends on (qa)2 where q is the particle charge and a is
its acceleration. The question arises on the efficiency for x-ray production
for various charged particles of mass m and charge ze. As charged particles
interact with an absorber, they experience Coulomb interactions with orbital
electrons (charge e) and nuclei (charge Ze) of the absorber.

Bremsstrahlung is only produced through inelastic Coulomb interactions
between a charged particle and the nucleus of the absorber. The acceleration
a produced in this type of Coulomb interaction can be evaluated through
equating the Newton force with the Coulomb force
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ma =
zeZe

4πε0r2
, (4.19)

from where it follows that

a ∝ zZe2

m
. (4.20)

Thus, acceleration a experienced by a charged particle interacting with
absorber nuclei is linearly proportional with:

1. Charge of the charged particle ze
2. Charge of the absorber nucleus Ze

and inversely proportional to:

1. Mass m of the charged particle
2. Square of the distance between the two interacting particles r2.

Since it is proportional to a2, as shown in (4.18), the power of bremsstrahlung
production is inversely proportional to m2, the square of the particle’s mass.
Thus, a proton, by virtue of its relatively large mass mp in comparison with
the electron massme, (mp/me = 1836) will produce much less bremsstrahlung
radiation than does an electron, specifically about (mp/me)2 ≈ 4×106 times
less. The radiation stopping power for electrons in comparison to that for
protons is over six orders of magnitude larger at the same velocity and in the
same absorbing material.

1. As a result of the inverse m2 dependence, a heavy charged particle travers-
ing a medium loses energy only through ionization (collision) losses and
its radiation losses are negligible. The collision losses occur in interactions
of the heavy charged particle with orbital electrons of the medium. The
total stopping power for heavy charged particle is then given by the col-
lision stopping power and the radiation stopping power is ignored, i.e.,
Stot = Scol and Srad ≈ 0.

2. Light charged particles, on the other hand, undergo collision as well as
radiation loss, since they interact with both the orbital electrons and the
nuclei of the absorber. The total stopping power for light charged particles
is then a sum of the collision stopping power and the radiation stopping
power, i.e., Stot = Scol + Srad.

3. As established in 1915 by William Duane and Franklin L. Hunt, the inci-
dent light particle can radiate an amount of energy which ranges from zero
to the incident particle kinetic energy EK

EK = hνmax = 2π
�c

λmin
, (4.21)

producing a sharp cutoff at the short-wavelength end of the continuous
bremsstrahlung spectrum (Duane–Hunt law).
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4.2.6 Relativistic Larmor Relationship

Recognizing that a = υ̇ = ṗ/m we can extend the classical Larmor result to
relativistic velocities and obtain

P =
dE
dt

=
1

6πε0
q2

m2c3

∣∣∣∣dp
dt

∣∣∣∣ .
∣∣∣∣dp
dt

∣∣∣∣ . (4.22)

For the special case of linear motion (e.g., in a linear accelerator waveguide)
the emitted power P is given as follows

P =
dE
dt

=
1

6πε0
q2

m2c3

(
dp
dt

)2

=
1

6πε0
q2

m2c3

(
dE
dx

)2

, (4.23)

noting that the rate of change of momentum (dp/dt) is equal to the change
in energy of the particle per unit distance (dE/dx).

4.2.7 Relativistic Electric Field Produced
by Accelerated Charged Particle

The velocity υ of the charged particle affects the electric field E and, as
β = υ/c increases, the electric field E becomes tipped forward and increases
in magnitude as predicted by an expression differing from the classical result
of (4.13) by a factor 1/ (1 − β cos θ)5/2

E(r, θ) =
1

4πε0
q

c2
υ̇

r

sin θ√
(1 − β cos θ)5

. (4.24)

As a result, the emitted radiation intensity which is equal to the magnitude
S(r, θ) of the Poynting vector S also becomes tipped forward

S(r, θ) = ε0cE2 =
1

16π2ε0

q2a2

c3r2
sin2 θ

(1 − β cos θ)5
. (4.25)

Note that at classical velocities where β → 0, (4.24) and (4.25) revert to the
classical relationships, given in (4.13) and (4.17), respectively. The emitted
radiation intensity of (4.25) has the following notable properties:

1. Intensity S(r, θ) is in general proportional to sin2 θ/ (1 − β cos θ)5. In clas-
sical mechanics where β → 0, the radiation intensity is proportional to
sin2 θ and the maximum intensity occurs at θ = 1

2π.
2. As β increases, the radiation intensity becomes more and more forward-

peaked; however, the intensities for the forward direction (θ = 0) and the
backward direction (θ = π) are still equal to zero, similarly to the classical
situation.
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Fig. 4.7. Radiation intensity distributions for two accelerated electrons; one with
β = 0.006 corresponding to an electron kinetic energy of 10 eV and θmax of 89.2◦

and the other with β = 0.941 corresponding to an electron kinetic energy of 1 MeV
and θmax of 10◦. Both distributions are normalized to 1 at θmax. The actual ratio of
radiation intensities at θmax = 89.2◦ and θmax = 10◦ is 1 vs. 1.44×104, as shown in
Table 4.1

3. The function sin2 θ/ (1 − β cos θ)5 that governs the radiation intensity dis-
tribution S(r, θ) of (4.25) is plotted in Fig. 4.7 for β = 0.006 (classical
result for υ → 0) and for β = 0.941. For electrons

(
mec

2 = 0.511 MeV
)

these two β values correspond to kinetic energies of 10 eV and 1 MeV,
respectively.

4. Note that in Fig. 4.7 the maximum values of both β distributions are nor-
malized to 1. In reality, as shown in Table 4.1, if the maximum value for
the β = 0.006 distribution is 1, then, for the β = 0.941 distribution, it is
more than four orders of magnitude larger at 1.44×104.

4.2.8 Characteristic Angle

From (4.25) it is evident that, as β increases, the emitted radiation intensity
S(r, θ) becomes more forward-peaked, and its peak intensity that occurs at a
characteristic angle θmax also increases.
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Table 4.1. Various parameters for bremsstrahlung production by electrons with
kinetic energy EK

EK (MeV) βa γb θcmax CS (r, θmax)
d

10−5 0.006 1.00002 89.2◦ 1.0000
10−4 0.020 1.0002 87.2◦ 1.0025
10−3 0.063 1.002 81.2◦ 1.024
10−2 0.195 1.02 64.4◦ 1.263
10−1 0.548 1.20 35.0◦ 6.47
1 0.941 2.96 10.0◦ 1.44×104

10 0.999 20.4 1.4◦ 1.62×1011

102 0.9999 70.71 0.4◦ 1.64×1015

a. β =
υ

c
=

√√√√√1 − 1(
1 +

EK

mec2

)2
, where mec

2 = 0.511 MeV.

b. γ =
1√

1 − β2
, where γ and β are defined in (1.44).

c. θmax = arccos

{
1

3β

(√
1 + 15β2 − 1

)}
, where β is given in (a).

d. CS (r, θmax) =
sin2 θmax

(1 − β cos θmax)
5
, where C =

(
e2a2

16π2ε0c3r2

)−1

.

The characteristic angle θmax is determined as follows:

Set dS(r, θ)/dθ |θ=θmax = 0, where S(r, θ) is given in (4.25), to obtain

2 sin θmax cos θmax

(1 − β cos θmax)
5 − 5β sin3 θmax

(1 − β cos θmax)
6 = 0. (4.26)

Equation (4.26) yields a quadratic equation for cos θmax, given as follows

3β cos2 θmax + 2 cos θmax − 5β = 0. (4.27)

The physically relevant solution to the quadratic equation (4.27) is

cos θmax =
1
3β

(√
1 + 15β2 − 1

)
, (4.28)

resulting in the following expression for θmax

θmax = arccos
{

1
3β

(√
1 + 15β2 − 1

)}
. (4.29)
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The limiting values for θmax are as follows:

1. In the classical region β → 0, resulting in θmax → 1
2π, as shown below:

lim
β→0

θmax = lim
β→0

arccos
{

1
3β

(√
1 + 15β2 − 1

)}

= lim
β→0

arccos
{

1
3β

(
1 +

15
2
β2 + · · · − 1

)}

= lim
β→0

arccos
{

5
2
β

}
= arccos 0 =

π

2
. (4.30)

2. In the relativistic region β → 1, resulting in θmax → 0

lim
β→1

θmax = lim
β→1

arccos
{

1
3β

(√
1 + 15β2 − 1

)}
= arccos 1 = 0. (4.31)

3. In the extreme relativistic region, where β ≈ 1 and γ =
1√

1 − β2
→ ∞,

we can write

β =
1√

1 − 1
γ2

≈ 1 +
1

2γ2
(4.32)

and

1
β

=
√

1 − 1
γ2

≈ 1 − 1
2γ2

. (4.33)

then

cos θmax ≈ 1 − 1
2
θ2max (4.34)

and

1
3β

(√
1 + 15β2 − 1

)
≈ 1

3

(
1 − 1

2γ2

)(√
1 + 15

(
1 +

1
γ2

)
− 1

)

≈ 1
3

(
1 − 1

2γ2

){
4
(

1 +
15

32γ2

)
− 1
}

≈ 1 − 1
8γ2

, (4.35)

showing that θmax approaches 0 as 1/(2γ), i.e.,

θmax ≈ 1
2γ
. (4.36)
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Fig. 4.8. Functions θmax = arccos
[
(3β)−1

√
1 + 15β2 − 1

]
given in (4.29) and

θmax ≈ 1/ (2γ) given in (4.36) plotted against electron kinetic energy EK

The two functions for θmax given in (4.29) and (4.36) are plotted against
electron kinetic energy EK in Fig. 4.8. In the extreme relativistic region where
EK > 1 MeV the two functions coincide well and 1/(2γ) provides an excellent
and simple expression for θmax. However, for kinetic energies below 1 MeV
the two functions diverge with decreasing EK and approach 1

2π rad (90◦) and
0.5 rad (28.7◦), respectively, for EK → 0.

Table 4.1 lists parameters β, γ, θmax and S (r, θmax) for bremsstrahlung
production by electrons and positrons with kinetic energies between 10−5 MeV
and 102 MeV.

The entry CS (r, θmax) in Table 4.1 highlights the significant increase
in the bremsstrahlung photon distribution at θ = θmax and confirms the
rapid increase in x-ray production efficiency with an increase in electron (or
positron) kinetic energy.

Parameters β and θmax, given in Table 4.1, are also plotted against the
electron kinetic energy EK in Figs. 4.9 and 4.10, respectively. For very low
kinetic energies EK (classical region) β ≈ 0 and θmax ≈ 90◦. As EK increases,
β rises and asymptotically approaches 1 for very high EK, while θmax decreases
with increasing EK and asymptotically approaches 0◦ for very high EK. In
the orthovoltage x-ray range θmax ≈ 40◦; in the megavoltage x-ray range
θmax ≈ 5◦.
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Fig. 4.9. Normalized electron velocity β against the kinetic energy EK of the
electron

Fig. 4.10. Characteristic angle θmax against kinetic energy EK of the electron
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Table 4.2. Electric field E and magnetic field B associated with a charged particle
of charge q moving with: (1) velocity υ = 0; (2) constant velocity υ; or (3) with
acceleration a = dυ/dt = υ̇. The field correction factor Cυ is given in (4.18) as
Cυ = (1 − β2)(1 − β2 sin2 θ)−3/2 where β is the velocity υ of the charged particle
normalized to c, the speed of light in vacuum

Electric Magnetic Bremsstrahlung
field E field B possible?

Velocity
υ = 0
Acceleration
a = 0
See (4.14)

E =
q

4πε0

r

r3

E =
q

4πε0

1

r2

B = 0 NO

B = 0

Velocity
υ = constant
Acceleration
a = 0
See (4.6) and (4.7)

E =
q

4πε0

r

r3
Cυ

E =
q

4πε0

1

r2
Cυ

B =
q

4πε0c2
υ × r

r3
Cυ

B =
q

4πε0c

β

r2
Cυ

NO

Velocity
υ 	= constant
Acceleration
a = dυ/dt = υ̇ 	= 0
See (4.13) and (4.14)

E =
q

4πε0

r× (r × υ̇)

c2r3

E =
q

4πε0

υ̇ sin θ

c2r

B =
q

4πε0

υ̇ × r

c3r2

B =
q

4πε0

υ̇ sin θ

c3r
=

E
c

YES

4.2.9 Electromagnetic Fields Produced by Charged Particles

Generally, charged particles are surrounded by electric and magnetic fields
determined by several parameters such as the charge q and velocity υ of
the charged particle, the distance r of the point of interest from the charged
particle, as well as the angle θ between the radius vector r and velocity υ.

The production of bremsstrahlung is governed by the acceleration a =
dυ/dt and the rest mass m0 of the charged particle. A stationary charged
particle (υ = 0) or a charged particle moving with constant velocity υ emits
no energy in the form of bremsstrahlung photons which means that it expe-
riences no radiation loss. For bremsstrahlung emission to occur, a charged
particle must be of relatively small rest mass, such as electron and positron,
and must be subjected to acceleration or deceleration. A summary of electric
and magnetic fields associated with charged particles under various velocity
conditions is provided in Table 4.2.

4.3 Synchrotron Radiation

Synchrotron radiation refers to electromagnetic radiation emitted by charged
particles following a curved trajectory in free space under the influence of a
magnetic field. The phenomenon was first observed in 1947 in synchrotrons
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(hence the term synchrotron radiation) which, as discussed in Sect. 14.5.4, are
accelerators that accelerate charged particles in circular orbits to very high
relativistic energies. Since the effect occurs under the influence of a magnetic
field that keeps the particles in a circular trajectory, it is sometimes called
magnetic bremsstrahlung.

Electrons as well as heavier charged particles may produce the synchrotron
radiation. The radiation can be considered:

1. Either an unnecessary nuisance causing energy losses when the objective is
to attain high kinetic energies of charged particles in circular accelerators.

2. Or an extraordinary dedicated source of intense, short duration, x ray or
ultraviolet pulses that can be exploited as a tool to study structure of
matter on an atomic, molecular, and cellular scale or to devise ultra fast
imaging studies in cardiology.

Originally, research on synchrotron radiation was conducted as a sideline to
particle acceleration, recently, however, special sources of synchrotron radia-
tion called storage rings were built with the specific purpose to produce and
exploit synchrotron radiation (Sect. 14.5.5).

The magnetic field exerts a Lorentz force on the charged particle perpen-
dicularly to the particle’s direction of motion, causing particle’s acceleration
and, according to the Larmor relationship of (4.18), emission of photons.
Larmor relationship of (4.18) for power P radiated by particle of charge q
accelerated with acceleration a is given as follows

P =
1

6πε0
q2a2

c3
. (4.37)

For a classical particle in circular motion with radius R, the acceleration is
simply the centrifugal acceleration υ2/R, where υ is the velocity of the particle.
For a relativistic particle with velocity υ → c and mass m = γm0, where m0

is the particle’s rest mass, in circular motion in a circular accelerator with
radius R, the acceleration is similarly obtained from

F = m0a =
dp
dt′

, (4.38)

where

p is the relativistic momentum of the particle: p = mν = γm0ν.
t′ is the proper time in the particle’s reference frame given as: t′ = t/γ =

t
√

1 − β2.

Neglecting the rate of change of γ with time t, the acceleration a can now be
written as

a =
1
m0

dp
dt′

=
γ

m0

d (γm0υ)
dt

= γ2 dυ
dt

= γ2 υ
2

R
. (4.39)
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The power radiated from a relativistic particle according to Larmor relation-
ship of (4.18) and acceleration a of (4.39) is as follows

P =
1

6πε0
q2a2

c3
=

q2γ4

6πε0c3
υ4

R2
=
cq2β4γ4

6πε0R2
. (4.40)

Since we know that the particle total energy E is given as E = γm0c
2 = γE0,

where E0 is the particle rest energy, we write (4.40) as follows

P =
cq2β4

6πε0R2

(
E

E0

)4

. (4.41)

For highly relativistic particles, υ → c and the energy loss rate is governed by
γ4 = (E/E0)4 when R is fixed for a given accelerator. Equation (4.41) suggests
that the larger is the accelerator radius R, the smaller is the rate of energy loss.

The radiation loss ΔE during one complete revolution of a highly rela-
tivistic particle (β ≈ 1) is calculated by first determining the duration τ of
one revolution as

τ =
2πR
υ

≈ 2πR
c
. (4.42)

The radiation loss in one revolution is then

ΔE = Pτ =
cq2

6πεoR2

(
E

E0

)4 2πR
c

=
q2

3ε0R

(
E

E0

)4

. (4.43)

The radiation energy loss ΔE per turn is inversely proportional to the
radius R of the orbit and linearly proportional to (E/E0)

4. For electrons
(q = e and m0 = me = 0.511 MeV) we get the following expression for ΔE

ΔE =
e2

3ε0 (mec2)
4

E4

R
=

{
8.8×10−8 eV · m

(MeV)4

}
E4

R
. (4.44)

The energy is radiated in a cone centered along the instantaneous velocity
of the particle. The cone has a half angle θsyn approximated as (E0/E). For
highly relativistic particles the cone is very narrow and the radiation is emitted
in the forward direction similarly to the situation with the bremsstrahlung loss
by relativistic particles, discussed in Sect. 4.2.8.

The wavelength distribution of synchrotron radiation follows a continuous
spectrum in the x-ray, ultraviolet, and visible region, with the peak emitted
wavelength linearly proportional to R and (E0/E)3.

4.4 Čerenkov Radiation

As discussed in Sect. 4.2.3, a charged particle radiates energy in free space
only if accelerated or decelerated; a charged particle in rectilinear uniform
velocity motion in free space does not lose any of its kinetic energy in
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the form of photon radiation. However, if a charged particle moves with
uniform rectilinear motion through a transparent dielectric material, part of
its kinetic energy is radiated in the form of electromagnetic radiation if the
particle velocity υ exceeds the phase velocity of light cn in the particular
medium, i.e.,

υ > cn =
c

n
, (4.45)

where n is the index of refraction of light in the particular medium.
The phenomenon of visible light emission under these conditions is referred

to as Čerenkov radiation and was discovered by Pavel A. Čerenkov and
Sergei I. Vavilov in 1934. The effect is commonly referred to as Čerenkov
effect; however, in honor of both discoverers it is often also called the
Čerenkov–Vavilov effect.

The emitted Čerenkov radiation does not come directly from the charged
particle. Rather, the emission of Čerenkov radiation involves a large number of
atoms of the dielectric medium that become polarized by the fast charged par-
ticle moving with uniform velocity through the medium. The orbital electrons
of the polarized atoms are accelerated by the fields of the charged particle and
emit radiation coherently when υ > cn = c/n.

Čerenkov radiation is emitted along the surface of a forward directed cone
centered on the charged particle direction of motion. The cone is specified
with the following relationship

cos θcer =
cn
υ

=
1
βn

, (4.46)

where θcer is the Čerenkov angle defined as the angle between the charged
particle direction of motion and the envelope of the cone.

Equation (4.46) suggests that there is a threshold velocity υthr below which
no Čerenkov radiation will occur for a given charged particle and absorbing
dielectric

υthr =
c

n
= cn (4.47)

or

βthr =
1
n

(4.48)

The threshold velocity υthr has the following properties:

1. For υ > υthr the Čerenkov radiation is emitted with the Čerenkov angle
θcer.

2. For υ < υthr no Čerenkov photons are produced.
3. The speed threshold for Čerenkov radiation in water is υthr = (1/1.33) c =

0.75c.
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4. The velocity threshold of 0.75c for water corresponds to an energy thresh-
old

(EK)thr =
mec

2√
1 −
(υthr

c

)2
=

nmec
2

√
n2 − 1

= 0.775 MeV. (4.49)

Thus, Čerenkov radiation occurs in water for electrons with kinetic energies
exceeding 0.775 MeV.

For emission of Čerenkov radiation, the number of quanta per wavelength
interval Δλ is proportional to 1/λ2, favoring the blue end of the visible spec-
trum. This explains the characteristic bluish glow surrounding the fission core
of a swimming-pool nuclear reactor (see introductory figure to Chapt. 9) or
surrounding the high activity cobalt-60 sources stored in water-filled stor-
age tanks prior to their installation in teletherapy machines. The Čerenkov
radiation results from Compton electrons that propagate through water with
velocities υ exceeding c/n = 0.75c.

Other notable characteristics of Čerenkov radiation are as follows:

1. Čerenkov radiation is independent of charged particle mass but depends
on particle charge and particle velocity υ.

2. Equation (4.46) also shows that there is a maximum angle of emission
(θcer)max in the extreme relativistic limit where β → 1

(θcer)max = arccos (1/n) . (4.50)

Thus, for relativistic electrons (β → 1) in water (n = 1.33), (θcer)max =
41.2◦.

3. Čerenkov radiation frequencies appear in the high frequency visible and
near visible regions of the electromagnetic spectrum, but do not extend
into the x-ray region because for x rays n < 1.

4. Since the refraction index n depends on the wavelength λ of the emitted
radiation, the emission angle θcer for Čerenkov radiation also depends on
the frequency of the Čerenkov radiation in addition to depending on the
charged particle velocity υ.

As a charged particle moves through a dielectric, the total amount of energy
appearing as Čerenkov radiation is very small compared to the total energy
loss by a charged particle through collision (ionization) and radiation
(∼bremsstrahlung) losses. For example, electrons in water lose about
2 MeV · cm−1 through collision and bremsstrahlung radiation losses and only
about 400 eV · cm−1 through Čerenkov radiation losses, i.e., about a factor
of 5000 times less. It is obvious that Čerenkov radiation is negligible as far
as radiation dosimetry is concerned. However, the Čerenkov–Vavilov effect is
used in Čerenkov detectors not only to detect fast moving charged particles
but also to determine their energy through a measurement of the Čerenkov
angle.
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Two–Particle Collisions

This chapter deals with collisions between two particles characterized by an
energetic projectile striking a stationary target. Three categories of projectiles
of interest in medical physics are considered: light charged particles such as
electrons and positrons, heavy charged particles such as protons and α par-
ticles, and neutral particles such as neutrons. The targets are either atoms
as a whole, atomic nuclei, or atomic orbital electrons. The collisions are clas-
sified into three categories: (1) Nuclear reactions, (2) Elastic collisions, and
(3) Inelastic collisions.
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The many types of interacting particles as well as the various possible
categories of interactions result in a wide range of two-particle collisions of
interest in nuclear physics and in medical physics. Several parameters, such
as the Q value and energy threshold in nuclear reactions, as well as energy
transfer in elastic scattering, used in characterization of two-particle collisions
are defined in this chapter and determined using considerations of momentum
and energy conservation classically as well as relativistically. Many of these
parameters play an important role in radiation dosimetry through their effects
on stopping powers, as discussed in Chap. 6. They also play an important role
in the production of radioactive nuclides, as discussed in Chap. 12.

5.1 Collisions of Two Particles: General Aspects

A common problem in nuclear physics and radiation dosimetry is the collision
of two particles in which a projectile with mass m1, velocity υ1 and kinetic
energy (EK)1 strikes a stationary target with mass m2 and velocity υ2 = 0.
The probability or cross section for a particular collision as well as the collision
outcome depend on the physical properties of the projectile (mass, charge,
velocity, kinetic energy) and the stationary target (mass, charge).

As shown schematically in Fig. 5.1, the collision between the projectile and
the target in the most general case results in an intermediate compound that
subsequently decays into two reaction products: one of mass m3 ejected with
velocity υ3 at an angle θ to the incident projectile direction, and the other
of mass m4 ejected with velocity υ4 at an angle φ to the incident projectile
direction.

Targets are either atoms as a whole, atomic nuclei, or atomic orbital elec-
trons. In an interaction with a projectile, targets are assumed to be stationary
and they interact with the projectile either through a Coulomb interaction
when both the projectile and the target are charged or through a direct
collision when the projectile is not charged.

Projectiles of interest in medical physics fall into one of three categories,
each category characterized by its own specific mechanism for the interaction
between the projectile and the target. The three categories of projectile are:
(1) heavy charged particle, (2) light charged particle, and (3) neutron:

1. Heavy charged particles, such as protons, α particles, and heavy ions, inter-
act with the target through Coulomb interactions. Typical targets for heavy
charged particles are either atomic nuclei or atomic orbital electrons.

2. Light charged particles, such as electrons and positrons, interact with the
target through Coulomb interactions. Typical targets for light charged
particles are either atomic nuclei or atomic orbital electrons.

3. Neutrons interact with the target through direct collisions with the target.
Typical targets for neutrons are atomic nuclei.
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Fig. 5.1. Schematic representation of a two-particle collision of a projectile (incident
particle) with mass m1, velocity υ1, momentum pi and kinetic energy (EK)i striking
a stationary target with mass m2 and velocity υ2 = 0. An intermediate compound
entity is produced temporarily and it decays into two reaction products, one of mass
m3 ejected with velocity υ3 at an angle θ to the incident projectile direction, and
the other of mass m4 ejected with velocity v4 at an angle φ to the incident projectile
direction

Two-particle collisions are classified into three categories: (1) nuclear reac-
tions, (2) elastic collisions, and (3) inelastic collisions.

1. Nuclear reactions, shown schematically in Fig. 5.1 and discussed in
Sect. 5.2, represent the most general case of a two-particle collision of a
projectile m1 with a target m2 resulting in two reaction products, m3 and
m4, that differ from the initial products m1 and m2.

– In any nuclear reaction a number of physical quantities must be
conserved, most notably: charge, linear momentum and mass-energy.

– In addition, the sum of atomic numbers Z and the sum of atomic
mass numbers A for before and after the collision must also be
conserved, i.e.,

∑
Z (before collision) =

∑
Z (after collision)

and ∑
A (before collision) =

∑
A (after collision).



210 5 Two–Particle Collisions

2. Elastic scattering is a special case of a two-particle collision in which:

– The products after the collision are identical to the products before
the collision, i.e., m3 = m1 and m4 = m2.

– The total kinetic energy and momentum before the collision are equal
to the total kinetic energy and momentum, respectively, after the
collision.

– A minute and generally negligible fraction of the initial kinetic energy
of the projectile is transferred to the target.

Two-particle elastic scattering is shown schematically in Fig. 5.2. The
energy transfer in elastic collisions is discussed in Sect. 5.3; the cross sec-
tions for single and multiple elastic scattering of two charged particles are
discussed in Sect. 2.6

3. In inelastic scattering of the projectile m1 on the target m2, similarly
to elastic scattering, the reaction products after collision are identical to
the initial products, i.e., m3 = m1 and m4 = m2; however, the incident
projectile transfers a portion of its kinetic energy to the target in the form
of not only kinetic energy but also in the form of an intrinsic excitation
energy E∗. The excitation energy E∗ may represent:

– Nuclear excitation of the target.
– Atomic excitation or ionization of the target.
– Emission of bremsstrahlung by the projectile.

Fig. 5.2. Schematic diagram of an elastic collision between a projectile with mass
m1 and velocity υ1 striking a stationary target m2. The projectile is scattered with
a scattering angle θ; the target recoils with a recoil angle φ. The impact parameter
is b. After the collision the velocity of the projectile m1 is u1; the velocity of the
target m2 is u2
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As a result of the various types of projectiles and targets as well as several
categories of two-particle collisions, many different two-particle interactions
are possible. The interactions of interest in medical physics and radiation
dosimetry are summarized in Table 5.1.

Table 5.1. Collisions between various projectiles and targets of interest in medical
physics and radiation dosimetry; examples of interactions resulting from specific
combinations of projectiles and targets are listed immediately below the table

Projectile Heavy charged Light charged Neutron
particle particle

Target Nucleus Electron Nucleus Electron Nucleus Electron

Nuclear reaction
m2 (m1,m3)m4

Yesa No Yese No Yesj No

Elastic scattering
m2 (m1,m1)m2

Yesb No Yesf Yesh Yesk No

Inelastic scattering
m2 (m1,m1)m2

∗
Yesc Yesd Yesg Yesi Yesl No

Heavy charged particle interactions with nuclei of the target:

a. Nuclear reaction precipitated by a heavy charged particle projectile m1 striking
a nucleus m2 resulting in products m3 and m4.

Example: Deuteron bombarding nitrogen-14, resulting in nitrogen-15 and a
proton:

14
7N(d,p)157N.

b. Elastic Coulomb collision of heavy charged particle with atomic nucleus.
Example: Rutherford scattering of α particle on gold nucleus:

197
79Au(α,α)19779Au.

c. Inelastic collision of heavy charged particle with nucleus.
Example: Nuclear excitation, resulting in excited nucleus which reverts to its
ground state through emission of a γ-ray photon:

A
ZX(α,α)AZ X∗ ⇒ A

Z X∗ → A
Z X + γ.

Heavy charged particle interactions with orbital electrons of the target:
d. Inelastic collision of heavy charged particle with atomic orbital electron.

Example: Excitation or ionization of an atom.

Light charged particle interactions with nuclei of the target:
e. Nuclear reaction precipitated by an energetic light charged particle striking the

nucleus.
Examples: (e,n) and (e,p) nuclear reactions.

f. Elastic collision between a light charged particle and atomic nucleus.
Example: Radiation-less scattering of electrons on the nuclei of the target.
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Table 5.1. Notes Continued

g. Inelastic collision between a light charged particle and atomic nucleus.
Example: Bremsstrahlung production by electrons or positrons undergoing a
Coulomb interaction with an atomic nucleus (radiation loss).

Light charged particle interactions with orbital electrons of the target:

h. Elastic collision between a light charged particle and an orbital electron.
Example: Ramsauer effect in which an electron of very low kinetic energy
(below 100 eV) undergoes an elastic collision with an atomic orbital
electron.

i. Inelastic collision between a light charged particle and atomic orbital electron.
Example 1: Electron-orbital electron interaction resulting in atomic
excitation or ionization (hard and soft collisions).
Example 2: Positron annihilation leaving atom in an ionized state coinciding
with emission of two γ annihilation quanta (See Sect. 7.6.10).

Neutron interactions with nuclei of the target:

j. Nuclear reaction caused by neutron colliding with atomic nucleus.
Example 1: Neutron capture by a stable target or neutron activation of a
stable target (see Sect. 8.4), resulting in radioactive isotope of same species
as the stable target

59
27Co(n, γ)6027Co.

Example 2: Spallation and nuclear fission for high atomic number targets.
k. Elastic collision between neutron and atomic nucleus (see Sect. 9.2.1).
l. Inelastic collision between neutron and atomic nucleus (see Sect. 9.2.2).

Example: Nuclear excitation

A
Z X(n,n)AZX∗⇒ A

Z X∗ → A
ZX + γ.

5.2 Nuclear Reactions

Two-particle collisions between the projectile m1 and target m2 resulting in
products m3 and m4 are referred to as nuclear reactions and are governed
by conservation of total energy and momentum laws. As shown in Table 5.1,
the projectile can be a heavy charged particle, a light charged particle, or a
neutron.

The collision leading to a nuclear reaction is shown schematically in Fig. 5.1
with the projectile m1 moving with velocity υ1 and kinetic energy (EK)1
striking a stationary target m2. An intermediate compound entity is produced
temporarily that decays into two reaction products, m3 and m4, ejected with
velocities υ3 at angle θ and υ4 at angle φ, respectively.
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5.2.1 Conservation of Momentum in Nuclear Reaction

The conservation of momentum in a two-particle nuclear collision is expressed
through the vector relationship

m1υ1 = m3υ3 +m4υ4, (5.1)

that can be resolved into a component along the incident direction and a
component perpendicular to the incident direction to obtain

m1υ1 = m3υ3 cos θ +m4υ4 cosφ (5.2)

and

0 = m3υ3 sin θ −m4υ4 sinφ, (5.3)

where the angles θ and φ are defined in Fig. 5.1 and υ1, υ3, and υ4 are
magnitudes of velocity vectors υ1, υ3, and υ4, respectively.

5.2.2 Conservation of Energy in Nuclear Reaction

The total energy of the projectile m1 and target m2 before the interaction
(collision) must equal to the total energy of reaction products m3 and m4

after the collision
{
m10c

2 + (EK)i
}

+
(
m20c

2 + 0
)

=
{
m30c

2 + (EK)3
}

+
{
m40c

2 + (EK)4
}
,

(5.4)

where

m10c
2 is the rest energy of the projectile.

m20c
2 is the rest energy of the target.

m30c
2 is the rest energy of the reaction product m3.

m40c
2 is the rest energy of the reaction product m4.

(EK)i is the kinetic energy of the projectile (incident particle).
(EK)3 is the kinetic energy of the reaction product m3.
(EK)4 is the kinetic energy of the reaction product m4.

Inserting into (5.4) the so-called Q value for the collision in the form

Q =
(
m10c

2 +m20c
2
)− (m30c

2 +m40c
2
)
, (5.5)

we get the following relationship for the conservation of energy

(EK)i +Q = (EK)3 + (EK)4 . (5.6)
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Each two-particle collision possesses a characteristicQ value that can be either
positive, zero, or negative.

• For Q > 0, the collision is exothermic (also called exoergic) and results in
release of energy.

• For Q = 0, the collision is termed elastic.
• For Q < 0, the collision is termed endothermic (also called endoergic) and,

to take place, it requires an energy transfer from the projectile to the
target.

In (5.5) theQ value for a nuclear reaction is determined by subtracting the sum
of nuclear rest energies of reaction products after the reaction

∑
i,afterMic

2

from the sum of nuclear rest energies of reactants (projectile and target) before
the reaction

∑
i,beforeMic

2, or

Q =
∑

i,before

Mic
2 −

∑
i,after

Mic
2. (5.7)

If atomic masses rather than nuclear masses are used in calculations of Q
values for nuclear reactions, in many instances the electron masses cancel out,
so that there is no difference in the end result. However, in situations where
electron masses do not cancel out, special care must be taken when using
atomic masses to account for all electrons involved in the interaction.

The Q value for a nuclear reaction can also be determined with the help of
nuclear binding energy EB by subtracting the sum of nuclear binding energies
of reactants for before the interaction

∑
i,beforeEB(i) from the sum of nuclear

binding energies of reaction products after the interaction
∑

i,afterEB(i), or

Q =
∑

i,after

EB(i) −
∑

i,before

EB(i). (5.8)

Similar approach can be taken in calculating Q values for spontaneous nuclear
decay, as shown in Chap. 11, by using nuclear rest masses, atomic rest masses,
or binding energies of the parent, daughter, and other products specific to the
particular decay.

5.2.3 Threshold Energy for Nuclear Reactions

An exothermic reaction can occur spontaneously; an endothermic reaction
cannot take place unless the projectile has a kinetic energy exceeding threshold
energy.

• The threshold energy is defined as the smallest total energy Ethr or the
smallest kinetic energy (EK)thr of the projectile at which an endothermic
collision can still occur.
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• The threshold energy for an endothermic collision is determined through
the use of the so-called invariant

E2 − p2c2 = invariant, (5.9)

where

E is the total energy before the collision and total energy after the
collision.

p is the total momentum before and the total momentum after the
collision.

c is the speed of light in vacuum.

The invariant is valid for both the laboratory coordinate system and for the
center-of-mass coordinate system and, for convenience, the conditions before
the collision are written for the laboratory system while the conditions after
the collision are written for the center-of-mass system.

The conditions for before and after the collision are written as follows:

1. Before collision:

Total energy before:

Ethr +m20c
2 =

√
m2

10c
4 + p2

1c
2 +m20c

2, (5.10)

where Ethr is the total threshold energy of the projectile.

Total momentum before: p1

2. After collision:

Total energy after in the center-of-mass system: m30c
2 +m40c

2

Total momentum after in the center-of-mass system: 0

The invariant of (5.9) for before and after the collision then gives

E2 − p2c2 =
(√

m2
10c

4 + p2
1c

2 +m20c
2

)2

− p2
1c

2 =
(
m30c

2 +m40c
2
)2 − 0.

(5.11)

Solving for Ethr =
√
m2

10c
4 + p2

1c
2 results in the following expression for the

total threshold energy

Ethr =

(
m30c

2 +m40c
2
)2 − (m2

10c
4 +m2

20c
4
)

2m20c2
. (5.12)
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Noting that Ethr = (EK)thr + m10c
2, where (EK)thr is the threshold kinetic

energy of the projectile, we get the following expression for (EK)thr

(EK)thr =

(
m30c

2 +m40c
2
)2 − (m10c

2 +m20c
2
)2

2m20c2
. (5.13)

The threshold kinetic energy (EK)thr of the projectile given in (5.13) may
now be written in terms of the nuclear reaction Q value as follows:

1. First, we note that from (5.5) for the Q value we can write the following
expression
(
m30c

2 +m40c
2
)2

=
(
m10c

2 +m20c
2
)2

+Q2 − 2Q
(
m10c

2 +m20c
2
)
.

(5.14)

2. Inserting the relationship of (5.14) into (5.13) we obtain

(EK)thr = −Q
[
m10c

2 +m20c
2

m20c2
− Q

2m20c2

]
≈ −Q

(
1 +

m10

m20

)
, (5.15)

where, since Q	 m20c
2, we can ignore the Q/2m20c

2 term in (5.15).

In (5.15) the threshold kinetic energy (EK)thr of the projectile exceeds the |Q|
value by a relatively small amount to account for conservation of both energy
and momentum in the collision.

As a special case the invariant of (5.9) may also be used to calculate the
threshold photon energy (Eγ)thr for pair production (see Sect. 7.6.2):

1. In the field of nucleus of rest mass mA (nuclear pair production) as the
threshold energy

(
ENPP

γ

)
thr

(
ENPP

γ

)
thr

= 2mec
2

(
1 +

me

mA

)
. (5.16)

2. In the field of orbital electron of rest mass me (electronic pair production
also called triplet production) as the threshold energy

(
ETP

γ

)
thr(

ETP
γ

)
thr

= 4mec
2. (5.17)

5.3 Two-Particle Elastic Scattering: Energy Transfer

Elastic scattering in a two-particle collision is a special case of a nuclear
collision between a projectile m1 and target m2:

1. The initial and final products are identical (i.e., m3 = m1 and m4 = m2);
however, the projectile changes its direction of motion (i.e., is scattered)
and the target recoils.



5.3 Two-Particle Elastic Scattering: Energy Transfer 217

2. The Q value for the collision, as given in (5.7), equals zero, i.e., Q = 0.
3. A certain amount of kinetic energy (ΔEK) is transferred from the pro-

jectile m1 to the target m2. The amount of energy transfer is governed
by conservation of the kinetic energy and momentum, and depends on
the scattering angle θ of the projectile and the recoil angle φ of the
target.

Two-particle elastic scattering between projectile m1 moving with velocity
υ1 and a stationary target m2 is shown schematically in Fig. 5.2, with θ the
scattering angle of the projectile, φ the recoil angle of the target, and b the
impact parameter. After the collision particle m1 continues with velocity u1

and the target recoils with velocity u2.

5.3.1 General Energy Transfer from Projectile
to Target in Elastic Scattering

The kinetic energy transfer ΔEK from projectile m1 to the target m2 is deter-
mined classically using the conservation of kinetic energy and momentum laws
as follows:

Conservation of kinetic energy:

(EK)i =
1
2
m1υ

2
1 =

1
2
m1u

2
1 +

1
2
m2u

2
2, (5.18)

where (EK)i is the kinetic energy of the projectile (incident particle) m1.

Conservation of momentum:

m1υ1 = m1u1 cos θ +m2u2 cosφ (5.19)

and

0 = m1u1 sin θ −m2u2 sinφ, (5.20)

where

υ1 is the initial velocity of the projectile m1.
u1 is the final velocity of the projectile m1.
u2 is the final velocity of the target m2.
θ is the scattering angle of the projectile m1.
φ is the recoil angle of the target m2.

Equations (5.19) and (5.20) can, respectively, be written as follows

(m1υ1 −m2u2 cosφ)2 = m2
1u

2
1 cos2 θ (5.21)

and

m2
1u

2
1 sin2 θ = m2

1u
2
1 −m2

1u
2
1 cos2 θ = m2

2u
2
2 sin2 φ, (5.22)
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Inserting (5.21) into (5.22) gives

m2
2u

2
2 = m2

1u
2
1 −m2

1υ
2
1 + 2m1υ1m2u2 cosφ, (5.23)

which, after inserting (5.18) multiplied by 2m1, reads

m2
2u

2
2 = 2m1υ1m2u2 cosφ−m1m2u

2
2

or

2m1υ1 cosφ = (m1 +m2)u2. (5.24)

Since ΔEK = 1
2m2u

2
2, we get the following general expression for the kinetic

energy transfer ΔEK from the projectile (incident particle) m1 with kinetic
energy (EK)i to the stationary target m2

ΔEK = (EK)i
4m1m2

(m1 +m2)
2 cos2 φ, (5.25)

where φ is the recoil angle of the target m2, defined graphically in Fig. 5.2.

5.3.2 Energy Transfer in a Two-Particle Elastic
Head-on Collision

A head-on (direct hit) elastic collision between two particles is a special elastic
collision in which the impact parameter b equals to zero. This results in a
maximum possible momentum transfer Δpmax and maximum possible energy
transfer (ΔEK)max from the projectile m1 to the target m2.

The head-on two-particle elastic collision is characterized as follows:

1. The impact parameter b = 0
2. The target recoil angle φ = 0
3. The projectile scattering angle θ is either 0 or π depending on the relative

magnitudes of masses m1 and m2

– For m1 > m2, the scattering angle θ = 0 (forward scattering).
– For m1 < m2, the scattering angle θ = π (back-scattering).
– For m1 = m2, the projectile stops and target recoils with φ = 0.

5.3.3 Classical Relationships for a Head-on Collision

Before collision After collision

◦ → ◦ ◦ → ◦ →
m1, υ1 m2, υ2= 0 m1, u1 m2, u2

Conservation of momentum:

m1υ1 + 0 = m1u1 +m2u2. (5.26)
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Conservation of kinetic energy:

m1υ
2
1

2
+ 0 =

m1u
2
1

2
+
m2u

2
2

2
. (5.27)

The maximum momentum transfer Δpmax and the maximum kinetic energy
transfer ΔEmax from the projectile (incident particle) to stationary target in
a head-on collision are given as follows:

• The maximum momentum transfer Δpmax from the projectile m1 to the
target m2 is given by:

Δpmax = m1υ1 −m1u1 =
2m1m2

m1 +m2
υ1 =

2m2

m1 +m2
pi, (5.28)

where pi is the momentum of the projectile m1.
• The maximum energy transfer ΔEmax from the projectile m1 to the

stationary target m2 is given by

ΔEmax =
m1υ

2
1

2
− m1u

2
1

2
=
m2u

2
2

2
=

4m1m2

(m1 +m2)
2 (EK)i , (5.29)

where (EK)i is the initial kinetic energy of the projectile (incident particle)
m1. The same result can be obtained from the general relationship given
in (5.25) after inserting φ = 0 for the target recoil angle.

5.3.4 Special Cases for Classical Energy Transfer
in a Head-on Collision

1. Projectile mass m1 much larger than target mass m2;

m1 � m2 → ΔEmax =
4m1m2

(m1 +m2)
2 (EK)i ≈ 4

m2

m1
(EK)i = 2m2υ

2
1 .

(5.30)

Example: proton colliding with orbital electron: mp � me:

ΔEmax =
4memp

(me +mp)
2 (EK)i ≈ 4

me

mp
(EK)i = 2meυ

2
1 . (5.31)

Since 4me/mp = 4/1836 ≈ 0.002, we see that in a direct hit between a
proton and an electron only about 0.2 % of the proton kinetic energy is
transferred to the target electron in a single collision.

2. Projectile mass m1 much smaller than target mass m2;

m1 	 m2 → ΔEmax =
4m1m2

(m1 +m2)
2 (EK)i ≈ 4

m1

m2
(EK)i . (5.32)
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Example 1: α particle colliding with gold nucleus (Au-207): mα 	 mAu

(Rutherford scattering, see Sect. 2.2):

ΔEmax = 4
mαmAu

(mα +mAu)2
(EK)i ≈ 4

mα

mAu
(EK)i . (5.33)

Since 4mα/mAu ≈ 0.08, we see that in a single direct hit head-on collision
only about 8 % of the incident α-particle kinetic energy is transferred to
the gold target.

Example 2: Neutron colliding with lead nucleus (Pb-207): mn << mpb:

ΔEmax = 4
mnmPb

(mn +mPb)
2 (EK)i ≈ 4

mn

mPb
(EK)i . (5.34)

Since 4mn/mPb ≈ 1/50 = 0.02, we see that in a direct hit only about 2 %
of the incident neutron kinetic energy is transferred to the lead target. This
shows that lead is a very inefficient material for slowing down the neutrons;
low atomic number materials are much more suitable for this purpose. Of
practical importance here is the use of polyethylene as shielding material
for doors in high-energy linac bunkers to shield against neutrons produced
in the linac.

3. Projectile mass m1 equal to target mass m2;

m1 = m2 → ΔEmax =
4m1m2

(m1 +m2)
2 (EK)i = (EK)i (5.35)

Example: (interaction between two distinguishable particles) such as
positron colliding with orbital electron or neutron colliding with hydrogen
atom.

In a direct hit between two distinguishable particles of equal mass the
whole kinetic energy of the incident particle is transferred to the target in
a single hit.

4. Projectile mass m1 equal to target mass m2;

m1 = m2 → ΔEmax =
1
2

(EK)i (5.36)

Example: (interaction between two indistinguishable particles) such as elec-
tron colliding with orbital electron: after the interaction, the particle with
the larger kinetic energy is assumed to be the incident particle; therefore
the maximum possible energy transfer is 1

2 (EK)i.
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5.3.5 Relativistic Relationships for a Head-on Collision

The relationship for ΔEmax in (5.29) was calculated classically. The relativistic
result given below is similar to the classical result, with m10 and m20 standing
for the rest masses of the projectile (incident particle) m1 and stationary
target m2, respectively

Before collision After collision

◦ → ◦ ◦ → ◦ →
m10, υ1 m20, υ2= 0 m10, u1 m20, u2

Conservation of momentum:

γβm10c+ 0 = γ1β1m10c+ γ2β2m20c. (5.37)

Conservation of total energy:

γm10c
2 +m20c

2 = γ1m10c
2 + γ2m20c

2, (5.38)

with β =
υ1

c
; β1 =

u1

c
; β2 =

u2

c

and γ =
1√

1 − β2
; γ1 =

1√
1 − β2

1

; γ2 =
1√

1 − β2
2

.

The maximum momentum transfer Δpmax and the maximum total energy
transfer ΔEmax from the projectile to the target in a head-on collision are
given relativistically by the following expressions:

• The maximum momentum transfer Δpmax from the projectile m10 to the
target m20 is given by

Δpmax =
2 (γm10 +m20)m20

m2
10 +m2

20 + 2γm10m20
pi, (5.39)

where pi is the momentum of the projectile (incident particle) of rest mass
m10.

• The maximum energy transfer ΔEmax from the projectilem10 to the target
m20 is given by

ΔEmax =
2 (γ + 1)m10m20

m2
10 +m2

20 + 2γm10m20
(EK)i , (5.40)

where (EK)i is the kinetic energy of the projectile (incident particle)
m10.

• The relativistic equations for the maximum momentum transfer of (5.39)
and maximum energy transfer of (5.40) transform into the classical equa-
tions (5.28) and (5.29), respectively, for small velocities of the projectile
where β → 0, corresponding to γ =

(
1 − β2

)−1/2 → 1.
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5.3.6 Special Cases for Relativistic Energy Transfer
in Head-on Collision

1. Projectile rest mass m10 much larger than target rest mass m20;
(m10 � m20)

ΔEmax =
2 (γ + 1)

m20

m10

1 +
[
m20

m10

]2
+ 2γ

[
m20

m10

] (EK)i ≈ 2
(
γ2 − 1

) m20

m10
m10c

2

= 2m20c
2 β2

1 − β2
, (5.41)

with the kinetic energy of the projectile m10 given as follows

(EK)i = m10c
2

[
1√

1 − β2
− 1

]
= m10c

2 (γ − 1) . (5.42)

Example: Heavy charged particle with mass m10 = mp (e.g., proton)
colliding with an orbital electron with mass m20 = me.
Note that, for the classical case of low velocity υ1 of the incident heavy
projectile m10, (5.41) transforms into ΔEmax ≈ 2m20υ

2
1 given in (5.30)

with m20 the rest mass of the target and υ1 the velocity of the projectile
m10.

2. Projectile rest mass m10 much smaller than target rest mass m20;
(m10 	 m20)

ΔEmax=
2 (γ + 1)

m20

m10

1 +
[
m20

m10

]2
+ 2γ

[
m20

m10

] (EK)1 ≈
2 (γ + 1)

m20

m10

m20

m10

[
m20

m10
+ 2γ

]m10c
2 (γ−1)

=
2
(
γ2 − 1

)
m20

m10
+ 2γ

m10c
2 =

2m10c
2

m20

m10
+ 2γ

β2

1 − β2
. (5.43)

Note that, for small velocity υ1 = cβ of the projectile with rest mass m10,
(5.43) transforms into (5.32) as follows

ΔEmax =
2m10υ

2
1

m20

m10
+ 2γ

1
1 − β2

≈ 4
m10

m20

m10υ
2
1

2
= 4

m10

m20
(EK)i . (5.44)
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3. Projectile rest mass m10 equal to target rest mass m20; (m10 = m20)
(collision between two distinguishable particles)

ΔEmax =
2 (γ + 1)m10m20

m2
10 +m2

20 + 2γm10m20
(EK)i =

2 (γ + 1)m2
10

2 (γ + 1)m2
10

= (EK)i .

(5.45)

Example: positron (projectile) colliding with an orbital electron (target)
[see (5.35)]. The positron stops and the electron moves away with the
kinetic energy of the incident positron.

4. Projectile rest mass m10 equal to target rest mass m20; (m10 = m20)
(Collision between two indistinguishable particles)

ΔEmax =
1
2

(EK)i . (5.46)

Example: electron colliding with an orbital electron representing a collision
between two indistinguishable particles – after the interaction, the parti-
cle with larger kinetic energy is assumed to be the incident particle [see
(5.36)].

5.3.7 Maximum Energy Transfer Fraction in Head-on Collision

The general expression for energy transfer ΔEmax from the projectile with rest
mass energy m10c

2 and kinetic energy EK to the target with rest mass energy
m20c

2 in a head-on (direct hit) two-particle collision is given in (5.40). The
classical limit (γ → 1) of (5.40) is given in (5.29). To express the maximum
energy transfer fraction ΔEmax/EK we rewrite (5.40) as follows

η =
(

ΔEmax

EK

)
η

=
2 (γ + 1)m10c

2m20c
2

(m10c2)
2 + (m20c2)

2 + 2γm10c2m20c2

=
4m10c

2m20c
2 + 2EKm20c

2

(m10c2 +m20c2)
2 + 2EKm20c2

,

(5.47)

where we used EK = (γ − 1)m10c
2 with γ the standard relativistic velocity

factor γ = [1 − (υ/c)2]−1/2 and υ the velocity of the projectile.
The classical limit of (5.47) is determined by taking (5.47) to the limit of

γ → 1 or assuming that EK 	 m20c
2 to get

η = lim
γ→1

ΔEK

EK
=

4m10c
2m20c

2

(m10c2 +m20c2)
2 . (5.48)

In Fig. 5.3 we plot the energy transfer fraction η of (5.47) against the
projectile kinetic energy EK for head-on elastic collision of various projectile–
target combinations. For all collisions, η ranges from the classical limit of
(5.48) to η = 1 at very large relativistic kinetic energies EK of the projectile.
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Fig. 5.3. Energy transfer fraction η of (5.47) against kinetic energy EK of the
projectile for various projectile-target combinations in direct hit head-on collision

A few special features of the η against EK plot become apparent:

1. Curves for η against EK are of sigmoid shape ranging from a minimum η
given by the classical limit of (5.48) to a maximum of η = 1 at high EK.

2. For all head-on elastic collisions, η eventually attains a value of unity at
some large value of EK. This means that at large EK there is full energy
transfer from the projectile to the target.

3. For identical masses of the projectile and the target
(
m10c

2 = m20c
2
)

the
maximum energy transfer fraction η equals to 1 for all EK from the classical
range to ∞ when the two particles are distinguishable, such as electron and
positron or neutron and proton, for example.

4. For scattering of indistinguishable particles such as electron/electron scat-
tering, for example, the convention is to assume that the scattered particle
is the one with the higher kinetic energy so that the maximum energy
transfer can only amount to 1

2ΔEmax.

Solving (5.47) for EK allows us to calculate the projectile kinetic energy (EK)η

at which η attains a predetermined value. In general we get

(EK)η =
η(m10c

2 +m20c
2)2 − 4m10c

2m20c
2

2m20c2(1 − η)
(5.49)

Table 5.2 lists the projectile kinetic energies (EK)η at which the maximum
energy transfer fraction η in a head-on collision attains values of 0.1; 0.5; and
0.9 or 10 %; 50 %; and 90 % for various projectile–target combinations. Of



5.3 Two-Particle Elastic Scattering: Energy Transfer 225

Table 5.2. Kinetic energy (EK)η of the projectile at which the maximum energy
transfer fraction in head-on elastic collision attains values of η = 10 %, η = 50 %,
and η = 90 % for various projectile-target combinations, calculated using (5.49)
with appropriate projectile mass m10 and target mass m20. The classical limit of η
was determined with (5.48)

Projectile Target Classical Energy (EK)η in MeV to reach

limit

of η 10 % 50 % 90 %

Electron

m10 = 0.511 MeV/c2
Proton

m20 = 938.3 MeV/c2
0.002 50 4.7×102 4.2×103

Proton

m10 = 938.3 MeV/c2
Electron

m20 = 0.511 MeV/c2
0.002 9.4×104 8.6×105 7.7×106

Neutron

m10 = 939.6 MeV/c2
Lead nucleus

m20 = 192.8×103 MeV/c2
0.019 8.7×103 9.4×104 8.6×105

α particle

m10 = 3727.4 MeV/c2
Gold nucleus

m20 = 183.5×103 MeV/c2
0.078 2.7×103 8.1×104 7.9×105

Neutron

m10 = 939.6 MeV/c2
Helium-4

m20 = 3727.4 MeV/c2
0.643 — — 7.5×103

Neutron

m10 = 939.6 MeV/c2
Deuteron

m20 = 1875.6 MeV/c2
0.889 — — 220

Positron

m10 = 0.511 MeV/c2
Electron

m20 = 0.511 MeV/c2
1.000 — — —

Neutron

m10 = 939.6 MeV/c2
Proton

m20 = 938.3 MeV/c2
∼1.000 — — —

Electron

m10 = 0.511 MeV/c2
Electron

m20 = 0.511 MeV/c2
0.500 — — —

Proton

m10 = 938.3 MeV/c2
Proton

m20 = 938.3 MeV/c2
0.500 — — —

course, for some interactions not all or even none of the above η values are
relevant depending on the relative masses of the projectile and the target. The
closer are the two masses to one another, the higher is already the classical
limit of η and η can only increase with kinetic energy EK or remain constant
at η = 1 when the two particles have the same mass but are distinguishable
from one another. Table 5.2 also gives the classical limits of (5.48) for the
various elastic scattering interactions listed.



6

Interactions of Charged Particles with Matter

In this chapter we discuss interactions of charged particle radiation with
matter. A charged particle is surrounded by its Coulomb electric field that
interacts with orbital electrons and the nucleus of all atoms it encounters, as
it penetrates into matter. Charged particle interactions with orbital electrons
of the absorber result in collision loss, interactions with nuclei of the absorber
result in radiation loss. The energy transfer from the charged particle to mat-
ter in each individual atomic interaction is generally small, so that the particle
undergoes a large number of interactions before its kinetic energy is spent.
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Stopping power is the parameter used to describe the gradual loss of energy
of the charged particle, as it penetrates into an absorbing medium. Two
classes of stopping power are known: collision stopping power that results
from charged particle interaction with orbital electrons of the absorber and
radiation stopping power that results from charged particle interaction with
nuclei of the absorber.

Stopping powers play an important role in radiation dosimetry. They
depend on the properties of the charged particle such as its mass, charge, veloc-
ity and energy as well as on the properties of the absorbing medium such as
its density and atomic number. In addition to stopping powers, other param-
eters of charged particle interaction with matter, such as the range, energy
transfer, mean ionization potential, and radiation yield, are also discussed in
this chapter.

6.1 General Aspects of Energy Transfer from Charged
Particle to Medium

The discovery of energetic charged particle emission from radioactive materials
in 1896 stimulated interest not only in the origin of the emitted particles but
also in how they were slowed down as they traversed matter. The theory of
stopping power played an important role in the development of atomic and
nuclear models starting with the α particle scattering studies of Hans Geiger,
Ernest Marsden and Ernest Rutherford in 1908 and the classical stopping
power theory developed by Niels Bohr in 1913, and culminating with the
quantum mechanical and relativistic theory of stopping power proposed by
Hans Bethe in the 1930s and refined by Ugo Fano in the 1960s. More recent
developments introduced several additional secondary correction factors to
increase the accuracy of theoretical stopping power expressions; however, the
main theoretical foundations that early workers enunciated decades ago are
still valid today.

As a charged particle travels through an absorber, it experiences Coulomb
interactions with the nuclei and orbital electrons of absorber atoms. These
interactions can be divided into three categories depending on the size of the
classical impact parameter b of the charged particle trajectory compared to
the classical atomic radius a of the absorber atom with which the charged
particle interacts:

1. Coulomb force interaction of the charged particle with the external nuclear
field of the absorber atom for b	 a (bremsstrahlung production).

2. Coulomb force interaction of the charged particle with orbital electron of
the absorber atom for b ≈ a (hard collision).

3. Coulomb force interaction of the charged particle with orbital electron of
the absorber atom for b� a (soft collision).
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Fig. 6.1. Three different types of collision of a charged particle with an atom,
depending on the relative size of the impact parameter b and atomic radius a. Hard
(close) collision for b ≈ a; soft (distant) collision for b � a; and radiation collision
for b� a

Radiation collision, hard collision, and soft collision are shown schematically
in Fig. 6.1, with b the impact parameter of the particle trajectory and a the
atomic radius of the absorber atom.

6.1.1 Charged Particle Interaction with Coulomb Field
of the Nucleus (Radiation Collision)

When the impact parameter b of a charged particle is much smaller than the
radius a of the absorber atom (i.e., b 	 a), the charged particle interacts
mainly with the nucleus and undergoes either elastic or inelastic scattering
possibly accompanied with a change in direction of motion.

The vast majority of these interactions are elastic so that the particle is
scattered by the nucleus but loses only an insignificant amount of its kinetic
energy to satisfy the conservation of momentum requirement. However, a
small percentage of the scattering interactions are inelastic and may result
in significant energy loss for the charged particle accompanied by emission
of x-ray photons. This type of interaction is called bremsstrahlung collision.
At a given particle acceleration, the probability for this type of interaction is
inversely proportional to the square of the mass of the charged particle, mak-
ing the bremsstrahlung production for charged particles other then electrons
and positrons essentially negligible.

6.1.2 Hard (Close) Collision

When the impact parameter b of a charged particle trajectory is of the order
of the radius a of the absorber atom (i.e., b ≈ a), the charged particle may
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have a direct Coulomb impact interaction with a single atomic orbital electron
and transfer to it a significant amount of energy. The interaction is referred
to as hard or close collision.

The orbital electron leaves the atom as a δ ray, and is energetic enough to
undergo its own Coulomb interactions with absorber atoms. The maximum
possible energy transfer from a charged particle to an orbital electron (δ ray)
is discussed in detail in Sect. 5.3. The number of hard collisions experienced
by a charged particle moving in an absorber is generally small; however, the
energy transfers associated with hard collisions are relatively large, so that
the particle loses roughly 50 % of its kinetic energy through hard collisions.

The theories that govern hard collisions depend strongly on the charac-
teristics of charged particles and generally assume that the orbital electron
(δ ray) released through a hard collision is free before and after the interac-
tion, since the kinetic energy transferred to it from the charged particle is
much larger than its atomic binding energy.

6.1.3 Soft (Distant) Collision

When the impact parameter b of the charged particle trajectory is much larger
than the radius a of the absorber atom (i.e., b � a), the charged particle
interacts with the whole atom and the whole atomic complement of bound
electrons. The interaction is called a soft or distant collision. The energy trans-
fer from the charged particle to a given bound electron is very small; however,
the number of these interactions is large, so that approximately 50 % of energy
loss by a charged particle occurs through these small-energy-transfer inter-
actions that may cause atomic polarization, excitation or ionization through
removal of a valence electron. In the energy region of soft collisions the expres-
sions derived with a given theory are valid for all types of charged particles
including electrons and positrons.

6.2 General Aspects of Stopping Power

During its motion through an absorbing medium a charged particle experi-
ences a large number of interactions before its kinetic energy is expended. In
each interaction the charged particle’s path may be altered (elastic or inelastic
scattering) and it may lose some of its kinetic energy that will be transferred
to the medium (collision loss) or to photons (radiation loss). Each of these
possible interactions between the charged particle and orbital electrons or
the nucleus of the absorber atoms is characterized by a specific cross section
(probability) σ for the particular interaction. The energy loss of the charged
particle propagating through an absorber depends on the characteristics of
the particle as well as the absorber.
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The rate of energy loss (typically expressed in MeV) per unit of path length
(typically expressed in cm) by a charged particle in an absorbing medium is
called the linear stopping power (−dE/dx). Dividing the linear stopping power
by the density ρ of the absorber results in the mass stopping power S given
in units of MeV · cm2 · g−1. The stopping power is a property of the material
in which a charged particle propagates.

In general, the average energy loss per unit path length −dE/d� experi-
enced by the heavy particle is calculated by multiplying the cross section for
a given energy loss σni by the energy loss ΔEni and a summation over all
possible individual collisions i

−dE
d�

=
∑

i

Ni

∑
n

ΔEniσni, (6.1)

where Ni is the density of atoms i that can be expressed:

1. Either in number of atoms per unit volume resulting in −dE/d� referred
to as the linear stopping power −dE/dx and representing energy loss per
unit distance traversed in the absorber. The typical units of linear stopping
power are MeV/cm or less common keV/μm.

2. Or in number of atoms per unit mass resulting in −dE/d� referred to
as mass stopping power S = − (1/ρ) dE/dx and representing energy loss
per g/cm2 of material traversed in the absorber. The typical unit of mass
stopping power is MeV · cm2 · g−1.

With regard to charged particle interaction, two types of stopping power are
known:

1. Radiation stopping power (also called nuclear stopping power) resulting
from charged particle Coulomb interaction with the nuclei of the absorber.
Only light charged particles (electrons and positrons) experience apprecia-
ble energy loss through these interactions that are usually referred to as
bremsstrahlung interactions. For heavy charged particles (protons, α par-
ticles, etc.) the radiation (bremsstrahlung) loss is negligible in comparison
with the collision loss.

2. Collision stopping power (also called ionization or electronic stopping
power) resulting from charged particle Coulomb interactions with orbital
electrons of the absorber. Both heavy and light charged particles expe-
rience these interactions that result in energy transfer from the charged
particle to orbital electrons through impact excitation and ionization of
absorber atoms.

The total stopping power Stot for a charged particle of energy EK traveling
through an absorber of atomic number Z is in general the sum of the radia-
tion (nuclear) stopping power Srad and collision (electronic) stopping power
Scol, i.e.,

Stot = Srad + Scol. (6.2)
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The collision stopping power Scol is further subdivided into two components:
the soft (distant) collision stopping power Ssoft

col and the hard (close) collision
stopping power Shard

col

Scol = Ssoft
col + Shard

col (6.3)

The total stopping power is thus in general terms expressed as the following
sum

Stot = Srad + Scol = Srad + Ssoft
col + Shard

col (6.4)

6.3 Radiation (Nuclear) Stopping Power

As shown by the Larmor relationship (4.18), any time a charged particle is
accelerated or decelerated part of its kinetic energy is emitted in the form
of bremsstrahlung photons. The rate of bremsstrahlung energy dissipation is
proportional to a2 (the square of the charged particle acceleration a) which in
turn is proportional to (zZ/m)2 with z and m the atomic number and mass,
respectively, of the radiating charged particle, and Z the atomic number of
the absorber target.

The bremsstrahlung intensity is thus linearly proportional to (zZ)2 and
inversely proportional to m2. As a consequence of the relatively large mass of
heavy charged particles, the bremsstrahlung yield produced by heavy charged
particles such as protons and α particles in comparison with electrons and
positrons is insignificant and generally ignored.

Hans Bethe and Walter Heitler have shown in 1930s that the cross sec-
tion for emission of bremsstrahlung σrad has the same form in classical and
quantum theory and is proportional to

σrad ∝ αr2eZ
2
(
cm2/nucleus

)
, (6.5)

where

α is the fine structure constant
[
e2/ (4πε0�c) = 1/137

]
.

re is the classical electron radius
[
e2/
(
4πε0mec

2
)

= 2.818 fm
]
.

Z is the atomic number of the absorber target.

Table 6.1 provides expressions for σrad for various regions of incident electron
kinetic energy (EK)0 from the classical region where (EK)0 	 mec

2 all the
way to the extreme relativistic region where (EK)0 � mec

2/α.
The rate of bremsstrahlung production by light charged particles (electrons

and positrons) traveling through an absorber is generally expressed by the
mass radiation stopping power Srad (in MeV cm2 g−1) given as follows

Srad = Na σradEi, (6.6)



6.3 Radiation (Nuclear) Stopping Power 233

where

Na is the atomic density, i.e., number of atoms per unit mass: Na =
N/m = NA/A.

σrad is the total cross section for bremsstrahlung production given for
various energy regions in Table 6.1.

Ei is the initial total energy of the light charged particle, i.e., Ei =
(EK)0 +mec

2.
(EK)0 is the initial kinetic energy of the light charged particle.

Inserting σrad from Table 6.1 into (6.6) we obtain the following expression for
Srad

Srad = α r2eZ
2NA

A
EiBrad, (6.7)

where Brad is a slowly varying function of Z and Ei, also given in Table 6.1 and
determined from σrad/

(
α r2eZ

2
)
. As shown in Table 6.2, the parameter Brad

has a value of 16
3 for light charged particles in the non-relativistic energy range

(EK)0 	 mec
2; about 6 at (EK)0 = 1 MeV; 12 at (EK)0 = 10 MeV; and 15 at

(EK)0 = 100 MeV. Hans Bethe and Walter Heitler derived (6.7) theoretically.

Table 6.1. Total cross section for bremsstrahlung production and parameter Brad

for various ranges of electron kinetic energies

Energy range σrad

(
cm2/nucleon

)
Brad = σrad/

(
αr2eZ

2
)

Non-relativistic

(EK)0 � mec
2 16

3
αr2eZ

2 16

3
(6.8)

Relativistic Complicated power series — (6.9)

(EK)0 ≈ mec
2

High-relativistic
8αr2eZ

2

[
ln

(
Ei

mec2

)
− 1

6

]
8

[
ln

(
Ei

mec2

)
− 1

6

]
(6.10)

mec
2 � (EK)0 � mec

2

αZ1/3

Extreme relativistic
4αr2eZ

2

[
ln

183

Z1/3
+

1

18

]
4

[
ln

183

Z1/3
+

1

18

]
(6.11)

(EK)0 � mec
2

αZ1/3

Table 6.2. Parameter Brad for various initial kinetic energies of light charged
particles

Kinetic energy Classical 1MeV 10MeV 100 MeV

Brad ∼5.3 ∼6 ∼10 ∼15
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Martin Berger and Stephen Seltzer have provided extensive tables of Srad for
a wide range of absorbing materials. As indicated in (6.7), the mass radiation
stopping power Srad is proportional to:

1.
(
NAZ

2/A
)

indicating a proportionality with the atomic number of the
absorber Z by virtue of Z/A ≈ 0.5 for all elements with the exception
of hydrogen. The higher is the atomic number Z of the absorber, the
larger is the radiation stopping power Srad and the larger is the radiation
yield.

2. Total energy Ei [(or kinetic energy (EK)0 for (EK)0 � mec
2] of the light

charged particle.
3. Parameter Brad which is a slowly varying function of light charged particle

total energy Ei and absorber atomic number Z, as shown in Table 6.2.

Figure 6.2 shows the mass radiation stopping power Srad for electrons in water,
aluminum, and lead based on tabulated data obtained from the National Insti-
tute of Standards and Technology (NIST). The Srad data are shown with
heavy solid curves, mass collision stopping powers Scol (discussed in Sect. 6.5)
are shown with light curves for comparison. The radiation stopping power
Srad clearly shows an approximate proportionality: (1) to the atomic number
Z of the absorber at a given initial kinetic energy of the light charged particle
and (2) to initial kinetic energy (EK)0 of the light charged particle for a given
absorber material.

Fig. 6.2. Mass radiation stopping power Srad for electrons in water, aluminum and
lead shown with heavy solid curves against the electron kinetic energy EK. Mass
collision stopping powers Scol, discussed in Sect. 6.5, for the same materials are
shown with light solid curves for comparison. Data were obtained from the NIST
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6.4 Collision (Electronic) Stopping Power
for Heavy Charged Particles

Energy transfer from energetic heavy charged particles to a medium (absorber)
they traverse occurs mainly through Coulomb interactions of the charged par-
ticles with orbital electrons of the absorber atoms (collision or electronic loss);
inelastic Coulomb interactions between heavy charged particles and nuclei of
absorber atoms (radiation loss) are negligible and thus ignored.

Two different approaches were developed to describe a heavy charged
particle energy loss to orbital electrons of absorber atoms:

1. Bohr’s approach (1913) is in the realm of classical physics and is based on
the concept of impact parameter between the particle’s trajectory and the
absorber nucleus.

2. Bethe’s approach (1931) is in the realm of quantum mechanics and rela-
tivistic physics, and assumes that the momentum transfer related to the
particle’s energy loss is quantized.

The basic theories dealing with collision loss of energetic heavy charged
particles in absorbing media make the following assumptions:

1. The energetic charged particle is moving through the absorber much faster
than the orbital electrons of absorber atoms.

2. The energetic charged particle is much heavier than the energy-absorbing
orbital electrons.

3. The energetic charged particle interacts with absorber atoms only through
electromagnetic forces; nuclear reactions between the particle and absorber
nuclei are not considered.

4. The energetic charged particle loses energy through interactions with
orbital electrons of the absorber; elastic and inelastic interactions between
the heavy charged particle and nuclei of the absorber are negligible.

6.4.1 Momentum and Energy Transfer from Heavy Charged
Particle to Orbital Electron

In 1913 Niels Bohr was first to propose a theory describing a heavy charged
particle energy loss in an absorbing medium. His classical derivation of the
mass collision stopping power Scol of a heavy charged particle, such as a
proton, is based on the calculation of the momentum change (impulse) Δp
of the heavy charged particle having a Coulomb interaction with an orbital
electron. The Coulomb interaction between the heavy charged particle (charge
ze and mass M) and the orbital electron (charge e and mass me) is shown
schematically in Fig. 6.3. The situation here seems similar to that depicted in
Fig. 2.3 for Rutherford scattering between an α particle with massmα and gold
nucleus with mass M . We must note, however, that in Rutherford scattering
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Fig. 6.3. Schematic diagram of a collision between a positively charged heavy parti-
cle with massM and an orbital electron with massme. SinceM � me, the scattering
angle θ ≈ 0◦. The scattering angle is shown larger than 0◦ to highlight the principles
of the Coulomb collision and aid in the derivation of Δp. The electron is in the inner
focus of the hyperbola because of the attractive Coulomb force between the positive
heavy charged particle and the negative orbital electron

mα 	M , while the case here is reversed as we have a heavy charged particle
with mass M in translational motion and interacting with a stationary orbital
electron with mass me where M � me. Assuming that the heavy particle is
positively charged, the orbital electron is located in the inner focus of the
hyperbolic trajectory that, in principle, the heavy charged particle follows. In
Rutherford scattering, on the other hand, the α particle and the nucleus repel
one another and the nucleus is located in the outer focus of the hyperbolic
trajectory that the α particle follows.

The momentum transfer (impulse) Δp is along a line that bisects the
angle π− θ, as indicated in Fig. 6.3, and the magnitude of Δp is calculated in
a similar manner to that used for Rutherford scattering in Sect. 2.3.3

Δp =
∫
FΔp dt =

∞∫
−∞

FCoul cosφdt. (6.12)
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The magnitude of the Coulomb force FCoul between the heavy particle and
the electron is

FCoul =
ze2

4πεo
1
r2
, (6.13)

where

r is the distance (radius vector) between the two particles.
z is the atomic number of the heavy charged particle.

Incorporating the expression for the Coulomb force (6.13) into (6.12), the
momentum transfer Δp can now be written as

Δp =
ze2

4πεo

π−θ
2∫

−π−θ
2

cosφ
r2

dt
dφ

dφ, (6.14)

where φ is the angle between the radius vector r and the bisector of the
hyperbola, as shown in Fig. 6.3. The angular momentum L for the collision
process is defined as follows (see Fig. 2.4)

L = |r ×Mυ| = rMυ sinψ = Mυb = Mωr2, (6.15)

where

M is the mass of the heavy charged particle.
υ is the initial velocity of the heavy charged particle (i.e., velocity before

the interaction).
ω is the angular frequency equal to dφ/dt.
ψ is the angle between the radius vector r and the initial asymptote of the

hyperbola, as shown in Fig. 6.3.
b is the impact parameter for the heavy charged particle–orbital elect-

ron Coulomb interaction. Note: at ∞, where the charged particle velo-
city is υ, the following relationship holds: r sinψ = b (see Fig. 2.4).

Using the conservation of angular momentum expressed in (6.15), we can now
write (6.14) in a simpler form:

Δp =
ze2

4πεo
1
υb

π−θ
2∫

−π−θ
2

cosφ dφ =
ze2

4πεo
1
υb

{sinφ}(π−θ)/2
−(π−θ)/2 = 2

ze2

4πεo
1
υb

cos
θ

2
.

(6.16)

Equation (6.16) is identical to the Rutherford expression for Δp in (2.21).
However, in the case of a heavy charged particle (ze) interacting with a sta-
tionary orbital electron (e), the scattering angle θ ≈ 0 and cos

(
1
2θ
) ≈ 1,

resulting in the following simplified expression for Δp



238 6 Interactions of Charged Particles with Matter

Δp = 2
ze2

4πεo
1
υb
. (6.17)

The energy transferred to the orbital electron from the heavy charged particle
for a single interaction with an impact parameter b is

ΔE(b) =
(Δp)2

2me
= 2
(

e2

4πεo

)2
z2

meυ2b2
, (6.18)

using the classical expression between kinetic energy EK = 1
2mυ

2 and
momentum p = mυ

EK =
mυ2

2
=

p2

2m
. (6.19)

Note that in (6.18) me is the rest mass of the electron (target) and υ is the
velocity of the heavy charged particle (projectile), so that 1

2meυ
2 should not

be misconstrued for the kinetic energy of the projectile. From (6.17) and (6.18)
we express the impact parameter b as

b = 2
(

e2

4πε0

)
z

υΔp
=
√

2
me

(
e2

4πε0

)
z

υ[ΔE(b)]1/2
. (6.20)

Following (6.1) we set up a summation over all possible collisions to
determine the mass collision stopping power for heavy charged particles

Scol = −1
ρ

dE
dx

= Ne

∫
ΔE(b)dσcol = Ne

∫
ΔE(b)

dσcol

db
db

=
∫

ΔE(b)
dσcol

d(ΔE)
d (ΔE), (6.21)

where Ne is the electron density (number of electrons per unit mass) of the
absorber (Ne = ZNA/A), and dσcol/db as well as dσcol/d(ΔE) as well as are
differential cross sections for the collision interaction.

The mass collision stopping power Scol is calculated by integrating ΔE(b)
of (6.21) over all possible impact parameters b ranging from bmin to bmax

or over all possible energy transfers ΔE(b) ranging from ΔEmin to ΔEmax.
Intuitively we might have considered integration in (6.21) over all possible
impact parameters b from 0 to ∞ or over all possible energy transfers ΔE
from 0 to the kinetic energy of the incident charged particle (EK)i; however,
we must account for two physical limitations affecting the energy transfer from
a heavy charged particle to an orbital electron which is bound to the atomic
nucleus:

1. Minimum possible energy transfer ΔEmin is governed by the ionization
and excitation potential of orbital electrons of absorber atoms resulting in
a minimum possible energy transfer ΔEmin below which energy transfer
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becomes impossible. Since energy transfer ΔE and impact parameter b
are inversely proportional, as shown in (6.18), ΔEmin corresponds to the
maximum impact parameter bmax beyond which energy transfer becomes
impossible.

2. Maximum possible energy transfer ΔEmax in a head-on collision between
the heavy charged particle and an orbital electron is governed by the masses
of the two interacting particles and is significantly lower than the inci-
dent particle kinetic energy (EK)i, as discussed in Sect 5.3. Energy transfer
larger than ΔEmax is physically impossible.

6.4.2 Minimum Energy Transfer and Mean
Ionization/Excitation Potential

For large impact parameters b the energy transfer ΔE(b), calculated from
(6.18), may be smaller than the binding energy of the orbital electron or
smaller than the minimum excitation potential of the given orbital elec-
tron. Thus, no energy transfer is possible for b > bmax where bmax cor-
responds to a minimum energy transfer ΔEmin, referred to as the mean
ionization/excitation potential I of the absorber atom. For a given atom,
its mean ionization/excitation potential is always larger than the ionization
potential of the atom, since I accounts for all possible atomic ionizations as
well as atomic excitations, while the atomic ionization potential pertains to
the energy required to remove the least bound atomic electron (i.e., valence
electron in the outer shell).

The mean ionization/excitation potential I corresponds to the minimum
amount of energy ΔEmin that can be transferred, on average, to an absorber
atom in a Coulomb interaction between a charged particle and an orbital
electron. Using (6.18), ΔEmin is written as

ΔEmin = 2
(

e2

4πεo

)2
z2

meυ2b2max

= I, (6.22)

showing that ΔEmin ∝ 1/b2max and bmax ∝ 1/
√

ΔEmin = 1/
√
I.

In general, the mean ionization/excitation potential I cannot be calcu-
lated from the atomic theory; however, it can be determined empirically from
measured stopping power data compared to data calculated using an appro-
priate stopping power formula. Current values for I recommended for use by
the ICRU and the NIST are plotted in Fig. 6.4 and show a general rise of I
with increasing atomic number Z. Figure 6.4 also highlights three empirical
relationships that can be used for a rough estimation of I for a given absorber
Z. The three approximations are

I (in eV) = 11.5Z for Z < 15, (6.23)
I (in eV) = 10Z for Z > 15, (6.24)

I (in eV) = 9.1Z
(
1 + 1.9Z−2/3

)
. (6.25)
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Fig. 6.4. Mean ionization/excitation potential I for elements against atomic num-
ber Z. Also plotted are three empirical relationships given in (6.23), (6.24), and
(6.25) that can be used for a rough estimation of I for a given absorber Z. Data
were obtained from the ICRU Report 37 and from the NIST

Table 6.3. Mean ionization/excitation potential I for various absorbing materials
(from the ICRU Report 37)

Element H C Al Cu Ag W Pb Ra U Cf

Z 1 6 13 29 47 74 82 88 92 98
I (eV) 19.2 78 167 322 470 727 823 826 890 966

Table 6.4. Mean ionization/excitation potential I for various compounds of interest
in medical physics (from the ICRU Report 37)

Compound I (eV) Compound I (eV)

Air (dry) 85.7 Lithium fluoride 94
Water (liquid) 75 Photographic emulsion 331
Water (vapor) 71.6 Sodium iodide 452
Muscle (skeletal) 75.3 Polystyrene 68.7
Bone (compact) 91.9 A-150 plastic 65.1

Typical values of the mean ionization/excitation potential I from the ICRU
Report 37 are given in Table 6.3 for several elements and in Table 6.4 for
several compounds of interest in medical physics and dosimetry. It is impor-
tant to note that the mean ionization/excitation potential I only depends on
the absorbing medium but does not depend on the type of charged particle
interacting with the absorbing medium.
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6.4.3 Maximum Energy Transfer

For small impact parameters b the energy transfer is governed by the maxi-
mum energy ΔEmax that can be transferred in a single head-on collision, as
discussed in Sect. 5.3.2. Classically ΔEmax for a head-on collision between a
heavy charged particle M with kinetic energy EK = 1

2Mυ2 and an orbital
electron with mass me where me 	M , as discussed in Sect. 5.3.4, is given by

ΔEmax =
4meM

(me +M)2
EK ≈ 4

me

M
EK = 4

me

M

Mυ2

2
= 2meυ

2. (6.26)

Equation (6.26) shows that only a very small fraction (4me/M) of the
heavy charged particle kinetic energy can be transferred to an orbital electron
in a single collision (note that M � me). The classical relationship between
ΔEmax and the minimum impact parameter bmin that allows the maximum
energy transfer from a heavy charged particle to an orbital electron is

ΔEmax = 2
(

e2

4πεo

)2
z2

meυ2b2min

= 2meυ
2, (6.27)

resulting in ΔEmax ∝ 1/b2min or bmin ∝ 1/
√

ΔEmax.
In relativistic mechanics the maximum energy transfer ΔEmax from a

heavy charged particle of rest mass M0 to orbital electron of rest mass me

where me 	M0 was in (5.41) given as

ΔEmax = 2mec
2
(
γ2 − 1

) 1

1 + 2γ
me

M0
+
(
me

M0

)2 ≈ 2mec
2 β2

1 − β2
, (6.28)

where β and γ are given by the standard relativistic relationships

β =
υ

c
; γ =

1√
1 − β2

; and γ2 − 1 =
β2

1 − β2
. (6.29)

6.4.4 Classical Derivation of the Mass Collision Stopping Power

Following the general definition of the mass collision stopping power given
in (6.21), integration over the impact parameter b or energy transfer ΔE(b)
gives, respectively

Scol = −1
ρ

dE
dx

= Ne

∫
ΔE(b)dσcol = 2πNe

∫ bmax

bmin

ΔE(b)bdb (6.30)
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and

Scol = −1
ρ

dE
dx

= Ne

∫
ΔE(b) dσcol

= 2πNe

∫ ΔEmax

ΔEmin

ΔE(b)
b db

d[ΔE(b)]
d[ΔE(b)], (6.31)

where we integrate (6.30) from the minimum impact parameter bmin to maxi-
mum impact parameter bmax and (6.31) from minimum energy transfer ΔEmin

to maximum energy transfer ΔEmax, and

Ne is the electron density, i.e., number of electrons per mass of the absorber
(Ne = ZNA/A), with Z and A the atomic number and atomic mass
number of the absorber, respectively.

dσcol is the differential cross section for collision loss expressed as

dσcol = 2πb db = 2πb
db

d[ΔE(b)]
d[ΔE(b)], (6.32)

with b given in (6.20) and the derivative db/d[ΔE(b)] equal to

db
d[ΔE(b)]

=
1
2

√
2
me

(
e2

4πε0

)
z

υ
[ΔE(b)]−3/2 , (6.33)

to give the following expression for dσcol

dσcol = 2πb db = 2πb
db

d[ΔE(b)]
d[ΔE(b)]

= 2π
(

e2

4πε0

)2
z2

meυ2

d[ΔE(b)]
[ΔE(b)]2

. (6.34)

After incorporating (6.18) into ( 6.30), the mass collision stopping power Scol

can be written as

Scol = 4π
ZNA

A

(
e2

4πε0

)2
z2

meυ2

∫ bmax

bmin

db
b

= 4π
ZNA

A

(
e2

4πε0

)2
z2

meυ2
ln
bmax

bmin
,

(6.35)

while, after incorporating (6.34) into (6.31), we get the following expression
for the mass collision stopping power Scol

Scol = 2π
ZNA

A

(
e2

4πε0

)2
z2

meυ2

∫ ΔEmax

ΔEmin

d[ΔE(b)]
[ΔE(b)]

= 2π
ZNA

A

(
e2

4πε0

)2
z2

meυ2
ln

ΔEmax

ΔEmin
. (6.36)
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Since from (6.22) and (6.27) we write

bmax

bmin
=
√

ΔEmax

ΔEmin
, (6.37)

and obtain the following expression for Scol of (6.35)

Scol = 4π
ZNA

A

(
e2

4πε0

)2
z2

meυ2
ln
bmax

bmin

= 4π
ZNA

A

(
e2

4πε0

)2
z2

meυ2
ln
√

ΔEmax

ΔEmin
, (6.38)

identical to Scol in (6.36).
The energy transfer ΔE(b) from the heavy charged particle to an orbital

electron ranges from ΔEmin (bmax) = I to ΔEmax (bmin) of (6.27). Insertion of
expressions for ΔEmin and ΔEmax given in (6.22) and (6.27), respectively, into
(6.36) or (6.38) results in the following classical expression for mass collision
stopping power derived by Niels Bohr in 1913

Scol = 2π
ZNA

A

(
e2

4πε0

)2
z2

meυ2
ln

2mυ2

I
. (6.39)

Figure 6.5 shows a plot of the mass collision stopping power Scol of alu-
minum in part (a) and lead in part (b) for protons (z = 1) in the kinetic
energy range from 10−3 MeV to 104 MeV. Curves (2) are for measured data
tabulated by the NIST, curves (1) are for the Bohr classical expression given
in (6.39).

In the intermediate energy range from ∼300 keV to ∼100 MeV both the
theory and measurement exhibit the same trends; however, the measurement
consistently exceeds the calculated data by a factor of 2. In the low energy
range (EK < 300 keV) and the high energy range (EK > 100 MeV) the dis-
crepancy between measured and calculated data is significantly larger, clearly
indicating that Bohr classical theory does not provide a realistic description of
particle stopping in absorbing media. The reasons for this seem obvious: the
Bohr theory ignores quantum mechanical and relativistic effects and treats
electron binding effects in a very rudimentary fashion through the mean
ionization/excitation potential I.

6.4.5 Bethe Collision Stopping Power

With the advent of quantum mechanics and relativistic physics many scientists
attempted to improve the Bohr collision stopping power theory by incorpo-
rating the new concepts into the newly developed theories. Most notable were
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Fig. 6.5. Mass collision stopping powers of part a aluminum and part b lead against
proton kinetic energy EK. Curves (2) represent experimental data compiled by the
NIST, curves (1) are calculated with Bohr’s stopping power equation (6.39)

efforts in 1930s by Hans Bethe and Felix Bloch who developed a new collision
stopping power theory based on quantum mechanical and relativistic con-
cepts and, in contrast to Bohr classical theory, achieved excellent agreement
between theoretical and experimental data.

In 1931 Hans Bethe proposed a theory in which the energy loss of a heavy
charged particle traversing an absorber is calculated using the Born approx-
imation applied to the collision of the heavy charged particle with atomic
orbital electrons. As suggested in Sect. 1.23.6, the differential cross section
for momentum transfer from the heavy charged particle to atomic electrons
was proportional to the square of the matrix element defined by the Coulomb
interaction between the relevant initial and final states, and the wave functions
for the incident and scattered heavy charged particle were described by plane
waves.
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Bethe divided the possible energy transfers ΔE to an orbital electron into
two categories: soft (distant) and hard (close). The energy boundary η between
soft and hard collisions was not clearly defined but was generally chosen such
that for soft collisions the energy transfer ΔE was smaller than η and for hard
collisions ΔE was larger than η. Thus, η was large compared to the binding
energies of atomic electrons, yet it was also small enough to allow for all hard
collisions, characterized with ΔE ≥ η, a representation of the charged particle
as point source.

Bethe considered average energy losses for the soft and hard collisions
separately and obtained the following expressions for the soft and hard mass
collision stopping powers

Ssoft
col =

(
−1
ρ

dE
dx

)soft

ΔE<η

= 2π
ZNA

A

(
e2

4πε0

)2
z2

meβ2υ2

{
ln

2mec
2β2η

(1 − β2) I2
− β2

}

(6.40)

and

Shard
col = −1

ρ

(
dE
dx

)hard

ΔE>η

= 2π
ZNA

A

(
e2

4πε0

)2
z2

meβ2υ2

{
ln

ΔEmax

η
− β2

}

= 2π
ZNA

A

(
e2

4πε0

)2
z2

meβ2υ2

{
ln

2mec
2β2

(1 − β2) η
− β2

}
, (6.41)

where

I is the mean ionization/excitation potential, discussed in Sect. 6.4.2.
ΔEmax is the maximum energy transfer from the heavy charged particle to

the orbital electron, as given relativistically in (6.28).

The expression for Ssoft
col is valid for all types of charged particles (heavy and

light), while the expression for Shard
col is valid only for heavy charged particles

and cannot be used for electrons and positrons.
As suggested in (6.3), the mass collision stopping power is given as the

sum of the soft (6.40) and hard (6.41) mass collision stopping powers. Adding
(6.40) and (6.41) we get

Scol = Ssoft
col + Shard

col = 2π
ZNA

A

(
e2

4πε0

)2
z2

mee2β2

×
{

ln
2mec

2β2η

(1 − β2) I2
+ ln

2mec
2β2

(1 − β2) η
− 2β2

}
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= 4π
ZNA

A

(
e2

4πε0

)2
z2

mec2β2

{
ln

2mec
2

I
+ ln

β2

1 − β2
− β2

}

= C0
z2

Aβ2
Z

{
ln

2mec
2

I
+ ln

β2

1 − β2
− β2

}
, (6.42)

where the demarcation energy η separating soft from hard collisions falls out
of the final equation and C0 is the collision stopping power constant equal to

C0 = 4πNA

(
e2

4πε0

)2 1
mec2

= 4πNAr
2
emec

2 = 0.3071 MeV · cm2 · mol−1,

(6.43)

with re = e2/
(
4πε0mec

2
)

= 2.818 fm defined as the classical electron radius.
The expression (6.42) is known as the Bethe mass collision stopping power

equation. It is valid for heavy charged particles, such as protons and α par-
ticles, and accounts for quantum mechanical as well as relativistic effects. In
the classical limit for υ 	 c (6.42) yields

Scol = 4π
ZNA

A

(
e2

4πε0

)2
z2

meυ2
ln

2mυ2

I
= C0

z2c2

Aυ2
Z ln

2meυ
2

I
, (6.44)

which is non-relativistic yet it accounts for quantum-mechanical effects and
is exactly double the result obtained from the Bohr classical stopping power
theory in (6.39). Since, as shown in Fig. 6.5, the discrepancy between Bohr
theory and measurement in the intermediate energy range was also by a factor
of 2, one may surmise that a plot of mass collision stopping power calculated
from the Bethe equation (6.42) will yield good agreement with measured data.
That this is so is shown in Fig. 6.6 in which we plot the measured (available
from the NIST) and calculated mass collision stopping powers Scol of lead for
protons in the kinetic energy range from 1 keV to 104 MeV. The calculated
data are obtained from two different theories: Bohr classical theory data are
calculated from (6.39) and shown by the dashed curve and Bethe theory data
are calculated from (6.42) and shown by the solid curve.

In the intermediate and high energy relativistic range the agreement
between experiment and Bethe theory is excellent; however, at low ener-
gies the agreement fails. Both the theory and measurement predict a peak
in stopping power with decreasing energy, but the measured peak is higher
and appears at a lower energy than the calculated peak. Clearly there must be
some other unaccounted for effect that causes this discrepancy. As discussed
in Sect. 6.4.6, it was Ugo Fano who modified Bethe theory in order to explain
this discrepancy at low kinetic energies.

The discrepancy at low kinetic energies notwithstanding, the Bethe col-
lision stopping power formula agrees well with measured data in the inter-
mediate and high energy relativistic region, and clearly predicts the shape of
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Fig. 6.6. Measured and calculated mass collision stopping powers of lead against
proton kinetic energy EK. Experimental data available from the NIST are shown
with data points; calculated data are shown with solid and dashed curves. The
dashed curve is calculated with the Bohr classical mass collision stopping power
equation (6.39); the solid curve is calculated with the Bethe mass collision stopping
power equation (6.42) accounting for quantum mechanical as well as relativistic
effects

the stopping power curve as well as provides the functional dependence of
the many important parameters of the charged particles and absorbing media
that influence the stopping power curve.

Shape of the Bethe Mass Collision Stopping Power Curve

As indicated schematically in Fig. 6.7, a plot of the collision stopping power
Scol against kinetic energy EK for a heavy charged particle goes through three
distinct regions with increasing EK:

Region 1: At very low kinetic energies, Scol rises with energy and reaches a
peak.

Region 2: In the intermediate energy region beyond the peak, Scol decreases
as 1/υ2 or 1/EK of the charged particle until it reaches a broad
minimum.

Region 3: In the relativistic energy region beyond the broad minimum, Scol

rises slowly with increasing kinetic energy EK as a result of the
relativistic terms

{
lnβ2 − ln(1 − β2) − β2

}
.

Maxima and Minima on the Stopping Power Curves

The maximum Smax
col (EK) and minimum Smin

col (EK) on the stopping power
curve (6.42) can be determined by setting dScol/dEK = 0. To simplify the
calculation we note that dScol/dEK = (dScol/dβ) (dβ/dEK) and dβ/dEK �= 0.
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Fig. 6.7. Schematic representation of the shape of the collision stopping power Scol

as a function of the charged particle kinetic energy EK. Three regions are shown as
the kinetic energy increases from zero: (1) low energy region; (2) intermediate energy
region; and (3) relativistic energy region. In region (1), Scol rises almost linearly
and reaches a maximum at about 250 I , where I is the mean ionization/excitation
potential of the absorber. In region (2), Scol decreases as 1/υ2 or 1/EK where υ is
the velocity of the charged particle to reach a broad minimum at ∼2.5M0c

2 where
M0c

2 is the rest energy of the charged particle. In region (3), Scol rises slowly with
increasing EK because of relativistic effects

We then write the Bethe equation (6.42) as

Scol =
const
β2

{
ln

2mec
2

I
+ lnβ2 − ln(1 − β2) − β2

}
(6.45)

and determine dScol/dβ as

dScol

dβ
= − 2 const

β3

{
ln

2mec
2

I
+ ln β2 − ln(1 − β2) − β2

}

+
const
β2

{
2
β

+
2β

1 − β2
− 2β

}
= 0 (6.46)

or

ln
2mec

2

I
= 1 +

β2

1 − β2
− ln

β2

1 − β2
= 1 +

EK

E0

(
2 +

EK

E0

)

− ln
{
EK

E0

(
2 +

EK

E0

)}
, (6.47)
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where we used: Ek/E0 = γ − 1 = 1/
√

1 − β2 − 1 and

EK is kinetic energy of the incoming charged particle: EK = E0(γ − 1).
E0 is rest energy of the incoming heavy charged particle with rest mass M0.

We now have two functions, y1 and y2, where

y1 = ln
2mec

2

I
(6.48)

depends on the mean ionization/excitation potential I and

y2 = 1 +
β2

1 − β2
− ln

β2

1 − β2
= 1 +

EK

E0

(
2 +

EK

E0

)
− ln

{
EK

E0

(
2 +

EK

E0

)}

(6.49)

depends on the charged particle kinetic energy EK and rest energy E0.
A plot of the two functions, shown in Fig. 6.8 for a full range of absorber

media from Z = 1 to Z = 92, for a given absorbing medium results in two
intercepts between the two functions; the intercept on the left defines EK

for Smax
col (EK) and the one on the right defines EK for Smin

col (EK). While the
region of EK for Smax

col (EK) seems relatively broad, ranging from 0.02 MeV for
hydrogen to 1 MeV for lead, the region of EK for Smin

col (EK) is very narrow
ranging from ∼2×103 MeV for uranium to ∼2.4×103 MeV for hydrogen. The

Fig. 6.8. Functions y1 and y2 against kinetic energy EK of the heavy charged
particle. Function y1 is a constant for a given element and is shown for various
elements between hydrogen (Z = 1) and lead (Z = 82). The left intercepts between
the two functions indicate the maximum in stopping power according to Bethe
collision stopping power equation (6.42), the right intercepts indicate the minimum
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minimum in the collision stopping power curve is thus essentially independent
of absorber material and occurs at EK ≈ 2.5E0 = 2.5M0c

2.
The region of EK for Smax

col (EK) is in the low kinetic energy region and
can be evaluated by taking the β → 0 limit of y2 to get y2 = 1 − lnβ2 and
finding the intercept y1 = y2 as

ln
2mec

2β2

I
= ln

4meEK

MI
= 1 (6.50)

or

EK =
e

4
M

me
I ≈ 1250AI, (6.51)

where we use M ≈ Amp for the mass of the heavy charged particle, with
mp the proton mass and A the atomic mass number of the heavy charged
particle; mp/me = 1836; and e = 2.718. Figure 6.5 shows the proton beam
maxima for aluminum and lead at 207.5 keV and 1.03 MeV, respectively,
significantly higher than experimental data which show the maxima at 50 keV
and 200 keV, respectively. An inspection of stopping power tables for various
absorber elements shows that the experimentally measured EK for Smax

col (EK)
increases with atomic number Z of the absorber and occurs at approximately
250 I for all absorber elements.

Dependence on Particle Charge

Scol of (6.42) depends on z2, the atomic number of the heavy charged particle
(projectile). This implies, for example, that mass collision stopping powers of
an absorbing medium will differ by: (1) factor of 4 in the case of protons and
α particles of same velocities; (2) factor of 16 in the case of protons and α
particles of same kinetic energies.

Dependence on Particle Velocity

At low kinetic energies the Bethe equation (6.42) breaks down, as shown in
Fig. 6.6, and to achieve better agreement between theory and measurement
one must use the Fano shell correction, discussed in Sect. 6.4.6. At interme-
diate energies Scol is governed by the 1/υ2 (i.e., 1/EK) term and decreases
rapidly with increasing EK. In the relativistic energy region Scol rises slowly
with kinetic energy as a result of the 1/β2 term which saturates at ∼1 and
the
{
ln[β2/(1 − β2) − β2

}
term which slowly increases with increasing kinetic

energy.

Dependence on Particle Mass

As shown in (6.42), Scol does not depend on the mass of the heavy charged
particle. A given absorbing material will have the same stopping power for all
heavy charged particles of a given kinetic energy and charge ze.
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Dependence on Absorbing Medium

Scol of (6.42) depends on the atomic number Z, atomic mass A, and mean
ionization/excitation potential I of the absorbing medium through two terms,
both of which decrease the mass collision stopping power with an increase in
atomic number Z. The first term is the Z/A term of the electron density
Ne = ZNA/A and the second term is the (− ln I) term.

Since Z/A varies from substance to substance within quite a narrow range
(it falls from 0.5 for low Z elements to ∼0.4 for high Z elements, with one
notable exception of hydrogen for which Z/A ≈ 1), we note that the mass
collision stopping power does not vary much from substance to substance.
This means that the energy losses of a given charged particle passing through
layers of equal thickness in g/cm2 are about the same for all substances. One
should note, however, that, for a given charge particle kinetic energy, Scol of
lower atomic number absorber will exceed Scol of a higher atomic number
absorber.

6.4.6 Fano Correction to Bethe Collision Stopping Power Equation

As discussed in relation to Fig. 6.6, the Bethe collision equation does not hold
at low kinetic energies of the heavy charged particle. In the 1960s Ugo Fano
solved the problem by introducing two correction factors, one referred to as
the shell correction and the other as the polarization correction.

Shell Correction

Fano noted that Bethe’s approach, based on the Born approximation, assumes
that the velocity of the heavy charged particle is much larger than the veloc-
ity of the bound orbital electrons of the absorber. While at high energies this
assumption is correct, at low kinetic energies of the incident charged parti-
cle it does not hold. Orbital electrons stop participating in energy transfer
from the charged particle when their velocity becomes comparable to the
charged particle velocity. This effect causes an overestimate in the mean ion-
ization/excitation potential I at low energies and results in an underestimate
in Scol calculated from the Bethe equation.

Fano introduced the so-called shell correction term C/Z to account for
the overestimate in I and various theories have subsequently been devel-
oped for its determination. Since the K shell electrons are the fastest of all
orbital electrons, they are the first to be affected by low particle velocity with
decreasing particle velocity. The shell correction is often addressed as the K
shell correction, labeled CK/Z and all possible higher shell corrections are
ignored.

The correction term C/Z is a function of the absorbing medium and
charged particle velocity; however, for the same medium and particle velocity,
it is the same for all particles including electrons and positrons.
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Polarization or Density Effect Correction

In addition to the shell correction factor, Fano introduced a second correc-
tion term δ to the Bethe collision stopping power equation to account for the
polarization or density effect in condensed media. The effect influences the soft
(distant) collision interactions by polarizing the condensed absorbing medium
thereby decreasing the collision stopping power of the condensed medium in
comparison with same absorbing medium in gaseous state. For heavy charged
particles the density correction is important at relativistic energies and neg-
ligible at intermediate and low energies; however, for electrons and positrons
it plays a role in stopping power formulas at all energies.

Bethe Collision Stopping Power Equation Incorporating Fano
Corrections

The Bethe collision stopping power equation incorporating the Fano shell cor-
rection and density correction terms is for heavy charged particles written as

Scol = 4π
NA

A

(
e2

4πε0

)2
z2

mec2β2
Z

{
ln

2mec
2

I
+ ln

β2

1 − β2
− β2 − C

Z
− δ

}
,

(6.52)

where C/Z and δ are the shell correction and density correction, respectively,
and all other parameters of the absorber (Z, A, and I) and of the heavy
charged particle (β and z) were defined before in (6.42).

6.4.7 Collision Stopping Power Equations
for Heavy Charged Particles

The collision stopping power equations stated above for heavy charged parti-
cles can be summarized as follows

Scol = C0
z2

β2

Z

A
Bcol, (6.53)

where

C0 is the collision stopping power constant defined in (6.43) as C0 =
4πNAr

2
emec

2 = 0.3071 MeV · cm2 · mol−1.
z is the atomic number of the heavy charged particle.
β is the heavy charged particle velocity normalized to the speed of light

in vacuum c.
Z is the atomic number of the absorbing medium.
A is the atomic mass of the absorber in g/mol.

Bcol is the so-called atomic stopping number.
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Table 6.5. Expressions for the atomic stopping number Bcol for various energy
ranges of heavy charged particle energy

Derivation of Scol Atomic stopping number Bcol

Classical Bohr – 1913
{

ln

√
2meυ

2

I

}
(6.54)

Non-relativistic,
{

ln
2meυ

2

I

}
(6.55)quantum-mechanical

Bethe – 1931

Relativistic,
{

ln
2mec

2

I
+ ln

β2

1 − β2
− β2

}
(6.56)quantum-mechanical

Bethe – 1931

Relativistic,
{

ln
2mec

2

I
+ ln

β2

1 − β2
− β2 − C

Z
− δ

}
(6.57)Quantum-mechanical with

shell correction (C/Z) and
density correction (δ)

The atomic stopping number Bcol is a function of the velocity β of the charged
particle and of the atomic number Z of the absorber through the mean ioniza-
tion/excitation potential I. The form of the expression for Bcol also depends
on the specific approach taken in its derivation, as indicated in Table 6.5.

The units of Scol in (6.53) are MeV · cm2 · g−1; the constant C0 has units
of MeV · cm2 · mol−1, and Bcol has no units. Since the units of A are g/mol,
incorporating an appropriate value for A into (6.53) results in proper units
for Scol in MeV · cm2 · g−1. From the general expression for the mass collision
stopping power Scol given in (6.53) it is evident that Scol for a heavy charged
particle traversing an absorber does not depend on charged particle mass but
depends upon charged particle velocity β and atomic number z as well as
absorber atomic number Z, atomic mass A, and mean ionization/excitation
potential I.

Figure 6.9 plots the mass collision stopping powers of carbon, aluminum,
copper, and lead for protons in the kinetic energy EK range from 1 keV to
104 MeV. The data were obtained from the NIST which at high proton ener-
gies uses Bethe collision stopping power equation (6.42) including the Fano
shell and density correction terms as well as the so-called Barkas and Bloch
corrections for deviations from the Born approximation. At low proton ener-
gies the NIST data are determined with fitting formulas which are largely
based on experimental data. The NIST collision stopping power database uses
mean ionization/excitation potentials recommended by the ICRU Report 37.

The four curves in Fig. 6.9 exhibit the standard collision stopping power
behavior of rising with EK at low kinetic energies, reaching a peak at between
50 keV and 200 keV, then falling as 1/υ2 or 1/EK at intermediate energies,
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Fig. 6.9. Mass collision stopping powers for carbon, aluminum, copper, and lead
against proton beam energy. Data were obtained from the NIST

reaching a minimum around EK/E0 ≈ 2.5, and then rising slowly with EK in
the relativistic energy range. In the intermediate and relativistic energy range
the mass collision stopping powers at a given kinetic energy EK are fairly
similar; however, it is evident that the lower atomic number absorbers have
the higher mass collision stopping powers because of the effects of the (Z/A)
and (− ln I) terms in the Bethe equation (6.42), as discussed in Sect. 6.4.6.

6.5 Collision Stopping Power for Light Charged Particles

Electron and positron interactions (collisions) with orbital electrons of an
absorber differ from those of heavy charged particles in three important
aspects. For light charged particles:

1. Relativistic effects become important at relatively low kinetic energies.
2. Collisions with orbital electrons may result in large energy transfers (up

to 50 % of the incident energy for electrons, up to 100 % of the incident
energy for positrons). Collisions may also result in elastic and inelastic
scattering with large angular deviations.

3. Collisions with nuclei of the absorber may result in bremsstrahlung pro-
duction (radiation loss – see Sect. 6.3) and, depending on the light charged
particle incident energy, radiation loss may actually exceed the collision
loss.
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In a manner similar to the approach taken with heavy charged particles, Scol

for electrons and positrons is also calculated separately for soft and hard
collisions, and the results are then added to obtain the collision stopping
power Scol, as indicated in (6.3). The soft collision term (ΔE < η) is identical
to that obtained for heavy charged particles in (6.40) and the integration also
runs from I to η except that for electrons and positrons we use z = 1 to obtain

Ssoft
col = 2π

ZNA

A

(
e2

4πε0

)2 1
meβ2υ2

{
ln

2mec
2β2η

(1 − β2)I2
− β2

}
. (6.58)

On the other hand, the hard collision term (ΔE > η) is significantly more
complicated for light charged particles than the term given for heavy charged
particles in (6.41). The hard collision term for light charged particles is
calculated by integrating

Shard
col = Ne

ΔEmax∫
η

ΔEdσcol = Ne

ΔEmax∫
η

ΔE
dσcol

d(ΔE)
d(ΔE), (6.59)

with the differential cross section for electrons determined by Christian Møller
and for positrons by Homi J. Bhabha. The integration runs from η to ΔEmax

where ΔEmax = 1
2EK for electrons and ΔEmax = EK for positrons, as

discussed in Sect. 5.3.4.
The complete mass collision stopping powers for electrons and positrons,

according to the ICRU Report 37, are expressed as follows

Scol = 2πr2e
Z

A
NA

mec
2

β2

[
ln
EK

I
+ ln(1 + τ/2) + F±(τ) − δ

]
, (6.60)

where re is the classical electron radius defined in (6.43). In (6.60) the function
F−(τ) applies to electrons and is given as

F−(τ) =
(
1 − β2

) [
1 + τ2/8 − (2τ + 1) ln 2

]
, (6.61)

while the function F+ (τ) applies to positrons and is given as

F+(τ) = 2 ln 2 − (β2/12
) [

23 + 14/ (τ + 2) + 10/ (τ + 2)2 + 4/(τ + 2)3
]
,

(6.62)

where

τ is the electron or positron kinetic energy normalized to mec
2, i.e.,

τ = EK/(mec
2), as discussed in Sect. 2.7.4.

β is the electron or positron velocity normalized to c, i.e., β = υ/c.
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Fig. 6.10. Mass collision stopping power Scol for electrons in water, aluminum and
lead against electron kinetic energy. The collision stopping power data are shown
with heavy solid curves; the radiation stopping power data of Fig. 6.2 are shown
with light solid curves for comparison. Data were obtained from the NIST

Figure 6.10 shows mass collision stopping powers Scol for electrons in
water, aluminum and lead with heavy solid lines and, for comparison, mass
radiation stopping powers of Fig. 6.2 are shown with light solid lines. Similarly
to stopping power behavior for heavy charged particles, the data of Fig. 6.10
show that higher atomic number absorbers have lower Scol than lower atomic
number absorbers at same electron energies. The dependence of Scol on stop-
ping medium results from two factors in the stopping power expression given
by (6.60), both lowering Scol with an increasing Z of the stopping medium:

1. The factor Z/A makes Scol dependent on the number of electrons per unit
mass of the absorber. Z/A is 1 for hydrogen; 0.5 for low Z absorbers; then
gradually drops to ∼0.4 for high Z absorbers.

2. The (− ln I) term decreases Scol with increasing Z, since I increases almost
linearly with increasing Z, as shown in (6.23), (6.24), and (6.25).

6.6 Total Mass Stopping Power

Generally, the total mass stopping power Stot of charged particles is given
by the sum of two components: the radiation stopping power Srad and the
collision stopping power Scol

Stot = Srad + Scol. (6.63)
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For heavy charged particles the radiation stopping power is negligible
(Srad ≈ 0), thus Stot = Scol.

For light charged particles both components contribute to the total stop-
ping power; within a broad range of kinetic energies below 10 MeV collision
(ionization) losses are dominant (Scol > Srad); however, the situation is
reversed at high kinetic energies where Srad > Scol. The following features
are noted:

1. The crossover between the two modes occurs at a critical kinetic energy
(EK)crit where the two stopping powers are equal, i.e., Srad[(EK)crit] =
Scol[(EK)crit] for a given absorber with atomic number Z

2. The critical kinetic energy (EK)crit can be estimated from the following
relationship

(EK)crit ≈
800 MeV

Z
, (6.64)

and for water, aluminum and lead it amounts to ∼100 MeV, ∼61 MeV
and ∼10 MeV, respectively.

3. For high Z absorbers the dominance of radiation loss over collision loss
starts at lower kinetic energies than in low Z absorbers. However, even in
high Z media, such as lead and uranium, (EK)crit is at ∼10 MeV, well in
the relativistic region.

4. The ratio of collision to radiation stopping power (Scol/Srad) at a given
electron kinetic energy may be estimated from the following

Scol

Srad
=

800 MeV
Z EK

=
(EK)crit
EK

. (6.65)

Figure 6.11 shows the total mass stopping power Stot for electrons (heavy solid
curves) in water, aluminum and lead against the electron kinetic energy EK.
For comparison the radiation and collision components of the total stopping
power of Figs. 6.2 and 6.10 are also shown.

6.7 Radiation Yield

The radiation yield (sometimes also referred to as the bremstrahlung yield)
Y [(EK)0] of a light charged particle with initial kinetic energy (EK)0 striking
an absorber is defined as that fraction of the initial kinetic energy that is
emitted as radiation with energy Erad through the slowing down process of
the particle in the absorber. The following features should be noted:

1. The energyErad is generally emitted in the form of bremsstrahlung, but can
also be from positron in-flight annihilation, and in the form of characteristic
radiation following impact ionization and impact excitation atomic events.

2. For heavy charged particles Y [(EK)0] ≈ 0.
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Fig. 6.11. Total mass stopping power Stot for electrons in water, aluminum and
lead against the electron kinetic energy shown with heavy solid curves. The mass
collision stopping powers and mass radiation stopping powers are shown with dashed
curves and light solid curves, respectively, for comparison. The total stopping power
of a given material is the sum of the radiation and collision stopping powers. Data
were obtained from the NIST. The critical energies (EK)crit are 100 MeV, 61 MeV,
and 10 MeV for water, aluminum, and lead, respectively

3. For light charged particles (electrons and positrons) the radiation yield
Y [(EK)0] is determined from stopping power data as follows:

Y [(EK)0] =

(EK)0∫
0

Srad(E)
Stot(E)

dE

(EK)0∫
0

dE

=
1

(EK)0

(EK)0∫
0

Srad(E)
Stot(E)

dE. (6.66)

4. For positron interactions, in-flight annihilation may also produce photons
before the positron energy has been completely expended, so that in gen-
eral the radiation yield is the sum of two contributions: the bremsstrahlung
yield YB[(EK)0] and the in-flight annihilation yield YA[(EK)0]. How-
ever, since the in-flight annihilation yield is much smaller than the
bremsstrahlung yield, it is generally ignored in calculation of the radiation
yield Y [(EK)0] and the term “bremsstrahlung yield” is often incorrectly
used to describe the total radiation yield.

The energy Erad radiated per charged particle is from (6.66) given as

Erad = (EK)0 · Y [(EK)0] =

(EK)0∫
0

Srad(E)
Stot(E)

dE, (6.67)
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Fig. 6.12. Radiation yield Y
[
(EK)0

]
in percent of incident charged particle kinetic

energy (EK)0 for selected absorbing media from carbon to uranium against incident
electron kinetic energy (EK)0. Data were obtained from the NIST

while the energy Ecol lost through ionization per charged particle is

Ecol = (EK)0 − Erad = (EK)0 · {1 − Y [(EK)0]} =

(EK)0∫
0

Scol(E)
Stot(E)

dE. (6.68)

The radiation yield Y [(EK)0] for various absorbing media from carbon at low
Z to uranium at high Z is plotted against incident electron kinetic energy
(EK)0 in Fig. 6.12. For a given incident electron kinetic energy (EK)0, the
radiation yield Y [(EK)0] increases with absorber atomic number Z and, for a
given absorber atomic number Z, the radiation yield Y [(EK)0] increases with
increasing incident (initial) electron kinetic energy (EK)0.

6.8 Range of Charged Particles

The range R of a charged particle in a particular absorbing medium is an
experimental concept providing the thickness of an absorber that the particle
can just penetrate. It depends on the particle’s kinetic energy, mass as well
as charge, and on the composition of the absorbing medium. In traversing
matter charged particles lose their energy in ionizing and radiation collisions
that may also result in significant deflections from their incident trajectory.
In addition, charged particles suffer a large number of deflections as a result
of elastic scattering.
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Fig. 6.13. Schematic diagram of charged particle penetration into absorbing
medium. Top: Heavy charged particle (proton, α particle, heavy ion, etc); bottom:
light charged particle (electron or positron)

These scattering effects are much more pronounced for light charged par-
ticles (electrons and positrons) in comparison to heavy charged particles
because:

1. Heavy charged particles do not experience radiation losses, transfer only
small amounts of energy in individual ionizing collisions, and mainly suf-
fer small angle deflections in elastic collisions. Their path through an
absorbing medium is thus essentially rectilinear, as shown schematically
in Fig. 6.13.

2. Electrons with kinetic energy EK, on the other hand, can lose energy up
to 1

2EK in individual ionizing collisions and energy up to EK in individual
radiation collisions. Since they can also be scattered with very large scat-
tering angles, their path through the absorbing medium is very tortuous,
as shown schematically in Fig. 6.13.

Various definitions of range are in common use. For example, the path length of
a charged particle is the total distance along the particle’s actual trajectory
until it comes to rest, regardless of the direction of motion. The projected
range, on the other hand, is the sum of individual path lengths projected onto
the incident particle direction. Also used and defined below are the CSDA
range RCSDA, maximum range Rmax, the 50 % range R50, practical range Rp,
and the therapeutic ranges R80 and R90.



6.8 Range of Charged Particles 261

6.8.1 CSDA Range

Most of the collision and radiation interactions individually transfer only
minute fractions of the incident particle’s kinetic energy, and it is convenient
to think of the particle that is moving through an absorber as losing its kinetic
energy gradually and continuously in a process often referred to as the “con-
tinuous slowing down approximation” (CSDA). Martin Berger and Stephen
Seltzer introduced the CSDA range concept in 1983 and defined the CSDA
range RCSDA as

RCSDA =

(EK)0∫
0

dE
Stot(E)

, (6.69)

where

RCSDA is the CSDA range (mean path length) of the charged particle
in the absorber (typically in cm2 · g−1).

(EK)0 is the initial kinetic energy of the charged particle.
Stot(E) is the total mass stopping power of the charged particle as a

function of the kinetic energy EK.

The CSDA range is a calculated quantity that represents the mean path length
along the particle’s trajectory and not necessarily the depth of penetration
in a defined direction in the absorbing medium. For heavy charged particles,
RCSDA is a very good approximation to the average range R of the charged
particle in the absorbing medium, because of the essentially rectilinear path of
the charged particle (see Fig. 6.13) in the absorbing medium; for light charged
particles the CSDA range can be up to twice the average range R.

6.8.2 Maximum Penetration Depth

The maximum penetration depth Rmax is defined as the depth in the absorb-
ing medium beyond which no particles are observed to penetrate. For heavy
charged particles Rmax ≈ RCSDA for all absorbing media, while for light
charged particles Rmax/RCSDA ≈ 1 for low Z absorbers and decreases with
increasing Z to reach Rmax/RCSDA ≈ 0.5 for high Z absorbers.

6.8.3 Range of Heavy Charged Particles in Absorbing Medium

Figure 6.14 gives the CSDA rangeRCSDA of protons in aluminum, copper, and
lead. Because of the decrease in the collision stopping power Scol with increas-
ing atomic number Z of the absorber, for a given proton kinetic energy EK,
the range in g/cm2 increases with the absorber atomic number Z. The CSDA
range of heavy charged particles in an absorbing medium can be determined
from the following expression
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Fig. 6.14. CSDA range of protons against incident kinetic energy (EK)0 in
aluminum, copper, and lead. Data are from the NIST

RCSDA =

(EK)0∫
0

dEK

Scol(EK)
, (6.70)

after inserting into (6.69) the relationship Stot = Scol, since for heavy charged
particles Srad is negligible. (EK)0 in (6.70) is the initial kinetic energy of
the incident heavy charged particle. The collision stopping power Scol for
non-relativistic heavy charged particles is given quantum mechanically by the
Bethe equation (6.55) as

Scol = C0
z2

β2

Z

A
Bcol = C1

z2

υ2
ln

2meυ
2

I
, (6.71)
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where

C1 is a constant for a given absorber containing C0 defined in (6.43) as
well as the atomic number Z and atomic mass A of the absorber: C1 =
C0c

2Z/A.
Bcol is the atomic stopping number defined in (6.53).
υ is the velocity of the heavy charged particle.

me is the rest mass of the electron.

For a non-relativistic heavy charged particle of mass M0, its kinetic energy
EK and velocity υ are related through the classical expression EK = 1

2M0υ
2.

The CSDA range is then given as

R
(M0)
CSDA =

1
C1z2

(EK)0∫
0

υ2dE

ln
2meυ

2

I

=
2M0

C1z2

(EK)0∫
0

EK

M0
d
(
EK

M0

)

ln
[
C2
EK

M0

] , (6.72)

where C2 is a constant for a given absorbing medium: C2 = 4me/I. For
non-relativistic protons with rest mass mp and incident kinetic energy (EK)0,
based on (6.72), the CSDA range in a given absorber is given as

R
(p)
CSDA [(EK)0] =

2mp

C1

(EK)0∫
0

EK

mp
d
(
EK

mp

)

ln
[
C2
EK

mp

] . (6.73)

The CSDA range for protons in various absorbers has been measured
extensively in the past and the data are readily available in tabular as well as
graphic form. It turns out that the proton CSDA range

(
R

(p)
CSDA

)
data can

be used to estimate the CSDA range RCSDA of any heavy charged particle
following a simple relationship that links the two CSDA ranges.

The CSDA range RCSDA (6.72) of an arbitrary heavy charged particle in
a given absorber can be written in terms of the proton CSDA range as follows

R
(M0)
CSDA [(EK)0] =

(
M0

mp

)
2mp

C1z2

(EK)0∫
0

(
EK

mp

mp

M0

)
d
(
EK

mp

mp

M0

)

ln
[
C2
EK

mp

mp

M0

]

=
1
z2

(
M0

mp

)
⎧⎪⎪⎨
⎪⎪⎩

2mp

C1

(E′
K)0∫

0

E′
K

mp
d
(
E′

K

mp

)

ln
[
C2
E′

K

mp

]
⎫⎪⎪⎬
⎪⎪⎭

=
1
z2

(
M0

mp

)
R

(p)
CSDA[(E′

K)0], (6.74)
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where we use the substitution

E′
K = EK

mp

M0
(6.75)

and

(EK)0 is the incident kinetic energy of the arbitrary heavy charged particle.
(E′

K)0 is the corresponding incident kinetic energy of the proton given as

(E′
K)0 = (EK)0

mp

M0
. (6.76)

Therefore, the general procedure for finding RCSDA of a heavy charged particle
of rest mass M0 and incident kinetic energy (EK)0 is to find in range tables
for protons the R

(p)
CSDA at corresponding incident proton kinetic energy of

(E′
K)0 = (EK)0mp/M0 and then multiplying this value with M0/(mpz

2), as
shown in (6.74).

For example, in a given absorber the CSDA range of a 20 MeV α particle
is the same as the range of a 6 MeV proton, since, according to (6.74), for the
α particle

Mα

mp

1
z2

≈ 1 and (E′
K)0 =

mp

Mα
(EK)0 ≈ 1

4
(EK)0 . (6.77)

Thus

R
(α)
CSDA (20 MeV) ≈ R

(p)
CSDA (5 MeV) . (6.78)

Another example: a deuteron with kinetic energy of 20 MeV has the same
velocity and stopping power as a 10 MeV proton. However, its CSDA range
is twice that of a 10 MeV proton, since

Md

mp

1
z2

≈ 2 and (E′
K)0 = (EK)0

mp

Md
≈ 1

2
(EK)0 . (6.79)

Thus

R
(d)
CSDA (20 MeV) ≈ 2R(p)

CSDA (10 MeV) . (6.80)

6.8.4 Range of Light Charged Particles (Electrons and Positrons)
in Absorbers

For light charged particles, the CSDA range RCSDA exceeds the average range
R in an absorbing medium, because of the very tortuous path that the light
charged particles experience in the absorbing medium (see Fig. 6.13 ). For low
atomic number absorbers the difference is only about 10 % to 15 %, however,
for high Z absorbers, the CSDA range can be up to twice the average range
of charged particles in the absorber.
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Fig. 6.15. Typical electron beam depth dose curve (dose against depth in water)
normalized to 100 at the depth of dose maximum zmax. Several ranges of interest in
radiotherapy and dosimetry, such as R80, R50, Rp, and Rmax, are identified on the
curve

Electrons are used in external beam radiotherapy for treatment of super-
ficial lesions, therefore, accurate knowledge of electron range in water and
tissue is important. Since the CSDA range can serve only as a rough guide on
the penetration of electron beams into tissue, other more appropriate ranges
have been defined for use in radiotherapy, all of them based on measurement
of electron depth dose distribution in water.

A typical electron beam depth dose curve (dose versus depth in water –
see Sect. 1.12.3) is plotted in Fig. 6.15. The dose distribution is normalized
to 100 % at the depth of dose maximum zmax, and exhibits a relatively high
surface dose, a rapid dose fall off beyond zmax, and a leveling off of the dose at
a low level component referred to as the bremsstrahlung tail. Various electron
ranges of interest in radiotherapy and radiation dosimetry, such as R80, R90,
Rp, and Rmax, are identified on the depth dose curve of Fig. 6.15.

The maximum range Rmax is defined as the depth at which extrapolation
of the tail of the depth dose curve meets the bremsstrahlung background. It
is the largest penetration depth of electrons in the absorbing medium. The
drawback of Rmax is that it does not provide a well- defined measurement
point.

The practical range Rp is defined as the depth at which the tangent plotted
through the steepest section of the electron depth dose curve intersects with
the extrapolation line of the bremsstrahlung background. It is used for the
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determination of EK(z), the mean electron beam kinetic energy at a depth z
in a water phantom, with a relationship proposed by Harder

EK(z) = EK(0)
[
1 − z

Rp

]
, (6.81)

where EK(0) is the mean electron kinetic energy at the water phantom surface
at z = 0.

The depths R90, R80, and R50 on the depth dose curve are defined as
depths at which the percentage depth doses beyond the depth of dose max-
imum zmax attain values of 90 %, 80 %, and 50 %, respectively. R90 or R80

are used for prescription of tumor dose in radiotherapy, while R50 is used in
radiation dosimetry for determination of the mean electron kinetic energy on
the water surface EK(0) which is then in turn used in the Harder relationship
of (6.81). The relationship between R50 and EK(0) is as follows

EK(0) = CR50, (6.82)

where C is a constant, for water equal to 2.33 MeV/cm.

6.9 Mean Stopping Power

In radiation dosimetry the main interest is in the energy absorbed per unit
mass of the absorbing medium governed by collision losses of charged particles.
It is often convenient to characterize a given radiation beam with electrons of
only one energy rather than with an electron spectrum dφ/dE that is present
in practice. For example, monoenergetic electrons set in motion with an initial
kinetic energy (EK)0 in an absorbing medium will through their own slowing
down process produce a spectrum of electrons in the medium ranging in energy
from (EK)0 down to zero.

The electron spectrum dφ(E)/dE, when ignoring any possible hard colli-
sions, is given as

dφ(E)
dE

=
N

Stot(E)
, (6.83)

where

N is the number of monoenergetic electrons of energy (EK)0 produced
per unit mass in the absorbing medium.

Stot(E) is the total stopping power.

For this electron spectrum, produced by monoenergetic electrons, as shown
by Harold E. Johns and John R. Cunningham, we can define a mean collision
stopping power Scol as follows
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Scol[(EK)0] =

(EK)0∫
0

dφ
dE

Scol(E)dE

(EK)0∫
0

dφ
dE

dE

. (6.84)

Using (6.69) and (6.83) the integral in the denominator of (6.84) is determined
as follows

(EK)0∫
0

dφ
dE

dE = N

(EK)0∫
0

dE
Stot(E)

= N ·RCSDA. (6.85)

Using (6.63), (6.66) and (6.83), the numerator of (6.86) is determined as
follows

(EK)0∫
0

dφ
dE

Scol(E)dE = N

(EK)0∫
0

Scol(E)
Stot(E)

dE (6.86)

= N

(EK)0∫
0

Stot(E) − Srad(E)
Stot(E)

dE = N · (EK)0 −N · (EK)0 · Y [(EK)0].

The mean collision stopping power Scol [(EK)0] of (6.84) can now be written
as

Scol[(EK)0] = (EK)0
1 − Y [(EK)0]

RCSDA
. (6.87)

The relationship (6.87) for Scol [(EK)0] could also be stated intuitively by
noting that an electron with an initial kinetic energy (EK)0 will, through
traveling the pathlength � equal to RCSDA in the absorbing medium: (1) lose
an energy (EK)0 Y [(EK)0] to bremsstrahlung and (2) deposit an energy
(EK)0 {1 − Y [(EK)0]} in the medium. The same would hold for a positron
except that it could also lose part of its energy to photon production in in-flight
annihilation events.

6.10 Restricted Collision Stopping Power

In radiation dosimetry one is interested in determining the energy transferred
to a localized region of interest; however, the use of the mass collision stopping
power Scol for this purpose may overestimate the dose because Scol incorpo-
rates both hard and soft collisions. The δ rays resulting from hard collisions
may be energetic enough to carry their kinetic energy a significant distance
from the track of the primary particle thereby escaping from the region of
interest in which the dose is determined.
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The concept of restricted mass collision stopping power LΔ has been intro-
duced to address this issue by excluding the δ rays with energies exceeding a
suitable threshold value Δ.

The choice of the energy threshold Δ depends on the problem at hand.
For dosimetric measurements involving air-filled ionization chambers with a
typical electrode separation of 2 mm a frequently used threshold value is
10 keV (Note: the range of a 10 keV electron in air is of the order of 2 mm).
For microdosimetric studies, on the other hand, one usually takes 100 eV as
a reasonable threshold Δ value.

Of course, to be physically relevant Δ must not exceed ΔEmax, the max-
imum possible energy transfer to orbital electron from the incident particle
with kinetic energy EK in a direct-hit collision. As shown in Sect. 5.3.6, ΔEmax

equals to 1
2EK for electrons, EK for positrons, and 2mec

2β2/
(
1 − β2

)
for

heavy charged particles [see (5.46), (5.45), and (5.41), respectively].
For a given kinetic energy EK of the primary particle the restricted colli-

sion stopping power LΔ is in general smaller than the unrestricted collision
stopping power Scol; the smaller is the threshold Δ, the larger is the dis-
crepancy. As Δ increases from a very small value, the discrepancy diminishes
until at Δ = ΔEmax the restricted and unrestricted collision stopping powers
become equal, i.e., LΔ=ΔEmax = Scol, irrespective of EK.

Figure 6.16 displays the unrestricted collision mass stopping power as
well as the restricted collision mass stopping powers with Δ = 10 keV and

Fig. 6.16. Unrestricted mass collision stopping power Scol and restricted mass
collision stopping power LΔ with thresholds Δ = 10 keV and Δ = 100 keV for
electrons in carbon against kinetic energy EK. Data are based on the ICRU Report 37



6.11 Bremsstrahlung Targets 269

Δ = 100 keV against kinetic energy EK for electrons in carbon based on data
in the ICRU Report 37. The following observations can now be made:

1. Since energy transfers to secondary electrons are limited to 1
2EK, the unre-

stricted mass collision stopping power Scol and restricted mass collision
stopping power LΔ are identical for a given kinetic energy EK of the elec-
tron for kinetic energies lower than or equal to 2Δ. This is indicated in
Fig. 6.16 with vertical lines at 20 keV and 200 keV for the threshold values
Δ = 10 keV and Δ = 100 keV, respectively.

2. For a given EK > 2Δ, the smaller is Δ, the larger is the discrepancy
between the unrestricted and restricted stopping powers.

3. For given Δ and EK > 2Δ, the larger is EK, the larger is the discrepancy
between the unrestricted and restricted stopping powers.

6.11 Bremsstrahlung Targets

Bremsstrahlung production is of great importance in medical physics, since the
majority of radiation beams used in diagnostic radiology and in external beam
radiotherapy are produced through bremsstrahlung interactions of monoen-
ergetic electrons with solid targets. These targets are components of x-ray
machines and linear accelerators; the most commonly used radiation-emitting
machines for diagnosis and treatment of disease.

An electron that strikes the target with a given kinetic energy will undergo
many different interactions with target atoms before it comes to rest and
dissipates all of its kinetic energy in the target. As discussed in Sect. 6.1,
there are two classes of electron interactions with a target atom:

1. Incident electron interaction with orbital electron of a target atom results
mainly in collision impact loss and ionization of the target atom that may
be accompanied by an energetic electron referred to as delta ray. The
collision loss in an x-ray target is followed by emission of characteristic
x rays and Auger electrons.

2. Incident electron interaction with the nucleus of a target atom results
mainly in elastic scattering events but may also result in radiation loss
accompanied with bremsstrahlung production.

While bremsstrahlung is a major contributor to the x-ray spectrum at superfi-
cial (50 kVp to 100 kVp) and orthovoltage (100 kVp to 350 kVp) energies, it is
essentially the sole contributor to the x-ray spectrum at megavoltage energies.
With regard to their thickness compared to the average range R of electrons
in the target material, x-ray targets are either thin or thick ; the thickness of
a thin target is much smaller than R, while the thickness of a thick target is
of the order of R.

As discussed in Sect. 4.2.8, the peak x-ray intensity occurs at a character-
istic angle θmax that depends on the kinetic energy of incident electrons. As
shown schematically in Fig. 6.17:
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1. In the diagnostic energy range (50 kVp to 350 kVp) x-ray tubes are used
for production of x rays and most photons are emitted at 90◦ from the
direction of electron deceleration in the target. The characteristic angle
θmax thus equals ∼90◦ (see Fig. 6.17a).

2. In the megavoltage radiotherapy range (4 MV and above) accelerating
waveguides are used for electron acceleration and x-ray production and
most photons are emitted in the direction of electron deceleration in the
target. The characteristic angle θmax is then ∼0◦ and the target is referred
to as a transmission target (see Fig. 6.17b).

X-ray beams produced in x-ray targets are heterogeneous and contain photons
of many energies ranging from 0 to a maximum energy hνmax which is equal
to the kinetic energy EK of the electrons striking the target. The relationship

hνmax = EK = eU (6.88)

is referred to as the Duane-Hunt law in honor of two American physicists,
William Duane and Franklin Hunt, who discovered the law in 1915. In its
original form the Duane-Hunt law stated that there is a sharp upper limit to
the x-ray frequencies emitted from an x-ray target stimulated by an impact
of electrons and that this frequency νmax is given by the quantum connection,
independently of the target material, as

νmax =
c

λmin
=
eU

h
, (6.89)

where

c is the speed of light in vacuum.
λmin is the minimum photon wavelength.

e is the electron charge.
U is the potential difference used in electron acceleration.

Fig. 6.17. Schematic comparison of x-ray production in the diagnostic radiology
orthovoltage range with an x-ray machine (x rays emitted mostly orthogonally to the
electron beam) and in the radiotherapy megavoltage range with a linear accelerator
(x rays emitted mostly in the direction of the electron beam)
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The Duane-Hunt law, sometimes called the inverse photoelectric effect, defines
the maximum photon energy hνmax in an x-ray beam produced by thin or
thick x-ray targets. However, to describe a heterogeneous x-ray beam we must
provide information on a full x-ray spectrum, since the spectrum is affected
not only by the maximum photon energy hνmax but also by the target type
(thin or thick) and target atomic number Z.

The spectrum of an x-ray beam is most commonly shown by plotting
either:

1. Number of photons per energy interval [ΔN/Δ(hν)] against photon energy
hν of the given energy interval bin

or

2. Photon intensity Iν against photon energy hν of a given energy inter-
val bin, where the photon intensity Iν is proportional to the product
(ΔN/ΔE) ·hν.

X-ray spectra can also be presented by plotting (ΔN/ΔE) or beam intensity
I against photon wavelength λ. In this case the Duane-Hunt law is given by
specifying the minimum wavelength λmin rather than the maximum frequency
νmax, where λmin = c/νmax. Since Iνdν = Iλdλ the following relationship also
applies

Iλ = Iν

∣∣∣∣dνdλ
∣∣∣∣ =
∣∣∣∣I2 d

dλ

( c
λ

)∣∣∣∣ = c

λ2
Iν . (6.90)

6.11.1 Thin X-Ray Targets

Thin x-ray targets are mainly of theoretical interest and their thickness is very
small compared to the range of electrons of given kinetic energy in the target
material. By definition, a thin target is so thin that electron striking it:

1. Loses essentially no energy by atomic ionizations.
2. Suffers no significant elastic collisions.
3. Traverses the target without interacting with target atoms or experiences

only one bremsstrahlung interaction while traversing the target.

The bremsstrahlung radiation produced in a thin target by electrons of kinetic
energy EK has a constant intensity Iν = I0 for hν ≤ hνmax and zero intensity
Iν = 0 for hν > hνmax, as shown schematically in Fig. 6.18a. The maximum
photon energy in the spectrum follows the Duane-Hunt law (6.89). Since the
x-ray intensity is proportional to the product (ΔN/Δhν)·hν, it follows that, in
comparison with the number of photons of energy hνmax, the x-ray spectrum
contains twice as many photons of energy 0.50 hνmax; 4 times as many photons
of energy 0.25 hνmax; 10 times as many photons of energy 0.10 hνmax, etc.
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Fig. 6.18. Typical x-ray intensity spectrum: (a) for thin target radiation and (b) for
thick target radiation

6.11.2 Thick X-Ray Targets

Thick x-ray targets have thicknesses of the order of the average range of
electrons R in the target material. In practice, typical thicknesses are equal
to about 1.1R to satisfy two opposing conditions:

1. To ensure that no electrons that strike the target can traverse the target.
2. To minimize the attenuation of the bremsstrahlung beam produced by

electrons that are scattered (decelerated) many times in the target.

Thick target radiation is much more difficult to handle theoretically than thin
target radiation; however, in practice most targets used in bremsstrahlung
production are of the thick target variety. A typical spectrum of a clinical
x-ray beam consists of spectral lines characteristic of the target as well as
the filtration material and superimposed onto the continuous bremsstrahlung
spectrum. The bremsstrahlung spectrum originates in the x-ray target, while
the characteristic spectrum originates not only in the target but also in any
filtration placed into the x-ray beam.
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Figure 6.19a displays three typical spectra from a tungsten target:

1. Unfiltered 100 kVp bremsstrahlung spectrum with superimposed tungsten
Kα and Kβ lines.

2. Filtered 100 kVp bremsstrahlung spectrum with superimposed tungsten
Kα and Kβ lines.

3. Filtered 60 kVp bremsstrahlung spectrum. The K lines are not present in
the spectrum because the ionization potential of the K shell in tungsten is
70 keV and the kinetic energy of electrons striking the tungsten target is
only 60 keV.

The spectral distribution of thick-target bremsstrahlung can be represented
as a superposition of contributions from a large number of thin targets, each
thin target traversed by a lower energy monoenergetic electron beam having
a lower hνmax than the previous thin target. This is shown schematically
in Fig. 6.19b which depicts a typical thin target bremsstrahlung spectrum
(curve 1) and several thick target bremsstrahlung spectra (curves 2, 3, and 4)
for an x-ray tube in which 100 keV electrons strike the target. Curve 1 is for
a thin target producing constant beam intensity for photon energies from 0
to the kinetic energy of the electrons striking the target (100 keV). Curve 2
represents an unfiltered spectrum (inside the x-ray tube) for a thick target
and a superposition of numerous thin target spectra; curve 3 is spectrum
for a beam filtered by an x-ray tube window which filters out the low energy
photons; and curve 4 is spectrum for a beam filtered by the x-ray tube window
and additional filtration.

As indicated in Figs. 6.18b and 6.19b, the beam intensity Iν for a thick tar-
get as a function of photon energy hν may be described with an approximate
linear relationship

Iν ≈ CZ (hνmax − hν) , (6.91)

where

C is a constant.
Z is the atomic number of the thick target.

hνmax is the Duane-Hunt photon energy limit.
Iν is the beam intensity at photon energy hν with a maximum value

CZhνmax at hν = 0 and a value of zero for hν ≥ hνmax.

The total intensity I is determined by integrating Iν over the whole energy
range from 0 to hνmax

I = CZ

hνmax∫
0

(hνmax − hν) dhν =
1
2
CZ (hνmax)

2 =
1
2
CZ (eU)2 , (6.92)

where U is the accelerating voltage and eU is the electron kinetic energy.
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Fig. 6.19. Typical spectra produced by electrons with kinetic energy of 100 keV
striking a tungsten target. Part a displays characteristic line spectra superimposed
onto the bremsstrahlung spectrum and part b displays only the bremsstrahlung
spectrum under various conditions: curve 1 is for a thin target, producing a constant
intensity beam; curves 2, 3, and 4 are for a thick target with curve 2 representing
an unfiltered spectrum (inside the x-ray tube), curve 3 representing an x-ray beam
filtered by an x-ray tube window, and curve 4 representing an x-ray beam filtered
by the x-ray tube window and additional filtration

The total photon intensity I emitted from the x-ray target is thus propor-
tional to:

1. Target atomic number Z.
2. Square of the accelerating potential U .

The average energy Erad radiated by an electron of initial energy (EK)0 in
being stopped in a thick target was given in (6.67) as
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Erad = (EK)0 Y [(EK)0] =

(EK)0∫
0

Srad(E)
Stot(E)

dE. (6.93)

In the diagnostic energy range, where (EK)0 	 mec
2, the mass radiation

stopping power Srad is independent of the electron kinetic energy and, from
(6.6) combined with Table 6.1, given as

Srad =
NA

A
σradEi =

16
3
α r2eZ

2Ei =
16
3
α r2e

NA

A
Z2
[
(EK)0 +mec

2
]
. (6.94)

For (EK)0 	 mec
2 the mass radiation stopping power Srad of (6.93) is inde-

pendent of the kinetic energy of the electron and (6.93) may then be simplified
to read

Erad = Srad

(EK)0∫
0

dE
Stot(E)

= SradRCSDA = const
NA

A
Z2RCSDA. (6.95)

Since in the low energy range Stot ≈ Scol and Scol ∝ NAZ/A, we note that
RCSDA ∝ (NAZ/A)−1 and the average energy radiated by the electron stopped
in a thick target is linearly proportional to the atomic number Z of the target,
i.e.,

Erad ∝ Z f [(EK)0 , Z] , (6.96)

where f [(EK)0 , Z] is a slowly varying function of the target atomic number Z.
A few other notable features of bremsstrahlung targets used in diagnostic

and therapeutic medical equipment are listed below:

• The integrated intensity of thick-target bremsstrahlung depends linearly
on the atomic number Z of the target material. This implies that high Z
targets will be more efficient for x-ray production that low Z targets.

• In megavoltage radiotherapy only photons in the narrow cone in the for-
ward direction are used for the clinical beams and the radiation yield in
the forward direction is essentially independent of the atomic number Z
of the target.

• The thick target bremsstrahlung is linearly proportional to the atomic
number Z of the target in the diagnostic energy range where (EK)0 	
mec

2. This rule will fail when (EK)0 becomes large enough for the radiation
losses to no longer be negligible in comparison with collision losses.
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Interactions of Photons with Matter

In this chapter we discuss the various types of photon interaction with
absorbing media. Photons are indirectly ionizing radiation and they deposit
energy in the absorbing medium through a two-step process: (1) in the first
step energy is transferred to an energetic light charged particle and (2) in the
second step energy is deposited in the absorbing medium by the charged par-
ticle. The energy transferred to charged particles from the interacting photon
generally exceeds the energy subsequently deposited in the absorbing medium
by the charged particles, because some of the transferred energy may be radi-
ated from the charged particles in the form of photons. Some of the photon
interactions are only of theoretical interest and help in the understanding of
the general photon interaction phenomena, others are of great importance in
medical physics, since they play a fundamental role in imaging, radiotherapy
as well as radiation dosimetry.
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Depending on their energy and the atomic number of the absorber, pho-
tons may interact with an absorber atom as a whole, with the nucleus of an
absorber atom, or with an orbital electron of the absorber atom. As far as the
photon fate after the interaction with an absorber atom is concerned there
are two possible outcomes: (1) photon disappears and a portion of its energy
is transferred to light charged particles and (2) photon is scattered. The prob-
ability of a particular interaction to occur depends on the photon energy as
well as on the density and atomic number of the absorber, and is generally
expressed in the form of an interaction cross section.

In this chapter we first discuss the general aspects of photon interaction
with matter and define the various attenuation coefficients and beam geome-
tries that are used in describing the penetration of ionizing photon beams in
absorbers. In the second part of the chapter we discuss in detail and on a
microscopic scale the various interactions that a photon can experience with
absorber atoms or their constituents, the nuclei and orbital electrons. For each
photon interaction we also discuss the various events that follow the photon
interactions.

7.1 General Aspects of Photon Interactions
with Absorbers

In penetrating an absorbing medium, photons may experience various
interactions with the atoms of the medium. These interactions involve either
the nuclei of the absorbing medium or the orbital electrons of the absorbing
medium:

1. The interactions with nuclei may be direct photon–nucleus interactions
(photodisintegration) or interactions between the photon and the electro-
static field of the nucleus (pair production).

2. The photon–orbital electron interactions are characterized as interactions
between the photon and either (1) a loosely bound electron (Thomson scat-
tering, Compton effect, triplet production) or (2) a tightly bound electron
(photoelectric effect, Rayleigh scattering).

A loosely bound electron is an electron whose binding energy EB is small in
comparison with photon energy hν, i.e., EB 	 hν. An interaction between a
photon and a loosely bound electron is considered to be an interaction between
a photon and a “free” (i.e., unbound) electron.

A tightly bound electron is an electron whose binding energy EB is com-
parable to, larger than, or slightly smaller than the photon energy hν. For a
photon interaction to occur with a tightly bound electron, the binding energy
EB of the electron must be of the order of, but slightly smaller, than the
photon energy, i.e., EB �hν. An interaction between a photon and a tightly
bound electron is considered an interaction between a photon and the atom
as a whole.
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As far as the photon fate after the interaction with an atom is concerned
there are two possible outcomes:

1. Photon disappears (i.e., is absorbed completely) and a portion of its energy
is transferred to light charged particles (electrons and positrons).

2. Photon is scattered and two outcomes are possible:

a. The resulting photon has the same energy as the incident photon and
no light charged particles are released in the interaction.

b. The resulting scattered photon has a lower energy than the incident
photon and the energy excess is transferred to a light charged particle
(electron).

The light charged particles (electrons and positrons) released or produced in
the absorbing medium through photon interactions will:

1. Either deposit their energy to the medium through Coulomb interactions
with orbital electrons of the absorbing medium (collision loss also referred
to as ionization loss), as discussed in detail in Sect. 6.3.

2. Or radiate their kinetic energy away in the form of photons through
Coulomb interactions with the nuclei of the absorbing medium (radiation
loss), as discussed in detail in Sect. 6.2.

The most important parameter used for characterization of x-ray or gamma
ray penetration into absorbing media is the linear attenuation coefficient μ.
This coefficient depends on energy hν of the photon and atomic number Z of
the absorber, and may be described as the probability per unit path length
that a photon will have an interaction with the absorber.

The functional relationship between the thickness of an absorber and inten-
sity of a photon beam attenuated by the absorber is usually derived using
differential calculus, as shown in Sect. 7.1.1. However, the relationship can also
be derived without calculus with the help of a thought experiment (Gedanken
experiment) shown schematically in Fig. 7.1. A collimated monoenergetic
photon beam of energy hν strikes a detector and produces a measured intensity
I0. When an absorber of thickness � is placed into the photon beam’s path, the
measured beam intensity decreases to I1 which can be expressed as I1 = RI0
with R the ratio between I1 and I0. Since I1 < I0, it follows that R < 1.

When another layer � of the same absorber material is placed into the
photon beam, the measured intensity decreases to I2 = RI1 = R2I0, with
three layers to I3 = RI2 = R2I1 = R3I0, etc, until for a large number n of
absorber layers we get In = RIn−1 = · · · = Rn−1I1 = RnI0. Designating the
total absorber thickness as x where x = n� we can now write

In = I(x) = RnI0 = Rx/	I0 (7.1)

or

ln
I(x)
I0

= x
lnR
�

= −μx, (7.2)
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Fig. 7.1. Experimental setup for a simple determination of the attenuation
coefficient μ

where, as a consequence of R < 1, i.e., lnR < 0, we define the ratio − (lnR) /�
as the attenuation coefficient μ. Equation (7.2) for intensity I(x) represents
the standard law of exponential attenuation and is usually written in an
exponential form as follows

I(x) = I0 e
−μx, (7.3)

with

I0 the beam intensity without attenuator.
μ the linear attenuation coefficient.

7.1.1 Narrow Beam Geometry

The attenuation coefficient μ is determined experimentally using the so-called
narrow beam geometry technique that implies a narrowly collimated source
of monoenergtic photons and a narrowly collimated detector. As shown in
Fig. 7.2a, a slab of absorber material of thickness x is placed between the
source and detector. The absorber decreases the detector signal (intensity
which is proportional to the number of photons striking the detector) from
I(0) measured without the absorber in place to I(x) measured with absorber
thickness x in the beam.

A layer of thickness dx′ of the absorber reduces the beam intensity by
dI and the fractional reduction in intensity, −dI/I, is proportional to two
parameters:

1. Linear attenuation coefficient μ (often referred to as the attenuation
coefficient μ), measured in units of (length)−1, such as m−1 or cm−1.

2. Layer thickness dx′.
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Fig. 7.2. Measurement of photon attenuation in absorbing material: (a) narrow
beam geometry; (b) broad beam geometry

We can thus write −dI/I as follows

−dI
I

= μdx′, (7.4)

where the negative sign is used to indicate a decrease in signal I with an
increase in absorber thickness x and μ represents the probability that a pho-
ton interacts in a unit thickness of absorber traversed. The product μdx′

represents the probability that a photon interacts in the absorber layer dx′.
After integration of (7.4) over absorber thickness from 0 to x and over

intensity from the initial intensity I(0) to intensity I(x) at absorber thickness
x, we get

I(x)∫
I(0)

dI
I

= −
x∫

0

μdx′ or I(x) = I(0)e
−

x∫
0

μdx′

. (7.5)

For a homogeneous medium the attenuation coefficient μ is uniform (μ =
const) and (7.5) reduces to the standard exponential relationship valid for
monoenergetic photon beams

I(x) = I(0)e
−μ

x∫
0

dx′

= I(0)e−μx. (7.6)

Equation (7.6) represents the standard expression of the law of exponential
attenuation which applies for narrow beam geometry and:

1. Either a constant attenuation coefficient μ and simple absorption of radia-
tion without any scattering and without production of secondary radiation
in the absorber

2. Or, when scattering and secondary radiation are present, they do not
contribute to I(x).
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Since the exponential function y = ez can be approximated by the
following infinite Taylor series

y = ez =
∞∑

n=0

zn

n!
≈ 1 +

z

1!
+
z2

2!
+
z3

3!
+
z4

4!
+ · · · , (7.7)

for μx sufficiently small, we can approximate (7.6), after inserting into (7.7)
z = −μx and y = I(x)/I(0), by the first two terms of the series (7.7) to get

I(x)
I(0)

≈ 1 − μx. (7.8)

The smaller is μx in comparison to 1, the more accurate is the approximation
(7.8). For example, at μx = 0.1, approximation (7.8) is within 0.5 % of the
value calculated with (7.6) (0.900 vs 0.905); at μx = 0.05, approximation (7.8)
is within 0.1 % of the value calculated with (7.6) (0.950 vs 0.951).

7.1.2 Characteristic Absorber Thicknesses

Several thicknesses of special interest are defined as parameters for monoen-
ergetic photon beam characterization in narrow beam geometry:

1. First half-value layer
(
HVL1 or x1/2

)
is the thickness of a homogeneous

absorber that attenuates the narrow beam intensity I(0) to one-half (50 %)
of the original intensity, i.e., I

(
x1/2

)
= 0.5I(0). Half-value layers are often

used for characterization of superficial and orthovoltage x-ray beams. The
absorbing materials used for this purpose are usually aluminum (for the
superficial energy range) and copper (for the orthovoltage energy range).
The relationship between the half-value layer x1/2 and the attenuation
coefficient μ is determined from the basic definition of the half-value layer
as follows

I
(
x1/2

)
=

1
2
I(0) = I(0)e−μx1/2 , (7.9)

resulting in

1
2

= e−μx1/2 or μx1/2 = ln 2 or HVL = x1/2 =
ln 2
μ

(7.10)
2. Mean free path (MFP or x) or relaxation length is the thickness of a homo-

geneous absorber that attenuates the beam intensity I(0) to 1/e = 0.368
(36.8 %) of its original intensity, i.e., I(x) = 0.368I(0). The photon mean
free path is the average distance a photon of energy hν travels through a
given absorber before undergoing an interaction. The relationship between
the mean free path x and the attenuation coefficient μ is determined from
the basic definition of the mean free path as follows
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x =

∞∫
0

xe−μxdx

∞∫
0

e−μxdx
=

1
μ2

1
μ

=
1
μ

(7.11)

or

I(x) =
1
e
I(0) = I(0)e−μx, (7.12)

resulting in

1
e

= e−μx or μx = 1 and MFP = x =
1
μ
. (7.13)

3. Tenth-value layer (TVL or x1/10) is the thickness of a homogeneous
absorber that attenuates the beam intensity I(0) to one-tenth (10 %) of
its original intensity, i.e., I

(
x1/10

)
= 0.1I(0). Tenth-value layers are used

in radiation protection in treatment room shielding calculations. The rela-
tionship between the tenth-value layer x1/10 and the attenuation coefficient
μ is determined from the basic definition of the tenth-value layer as follows

I
(
x1/10

)
=

1
10
I(0) = I(0) e−μx1/10 , (7.14)

resulting in

1
10

= e−μx1/10 or μx1/10 = ln10 and TVL = x1/10 =
ln10
μ

.

(7.15)

4. Second half-value layer (HVL2), measured with the same homogeneous
absorber material as the first half value layer (HVL1), is defined as the
thickness of the absorber that attenuates the narrow beam intensity from
0.5I(0) to 0.25I(0). The ratio between HVL1 and HVL2 is called the homo-
geneity factor χ of the photon beam.

• When χ = 1, the photon beam is monoenergetic such as a cobalt-60
beam with energy of 1.25 MeV or cesium-137 beam with energy of
0.662 MeV.

• When χ �= 1, the photon beam possesses a spectral distribution.
• For χ < 1 the absorber is hardening the photon beam, i.e., preferen-

tially removing low-energy photons from the spectrum (photoelectric
effect region).

• For χ > 1 the absorber is softening the photon beam, i.e., preferentially
removing high-energy photons from the spectrum (pair production
region).
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Fig. 7.3. Intensity I(x) against absorber thickness x for monoenergetic photon
beam. Half-value layer x1/2, mean-free path x, and tenth-value layer x1/10 are
identified

From (7.10), (7.13), and (7.15), the linear attenuation coefficient μ may be
expressed in terms of x1/2, x, and x1/10, respectively, as follows

μ =
ln 2
x1/2

=
1
x

=
ln 10
x1/10

, (7.16)

resulting in the following relationships among the characteristic thicknesses

x1/2 = (ln 2)x =
ln 2
ln 10

x1/10 ≡ 0.301x1/10. (7.17)

Figure 7.3 is a typical plot of intensity I(x) against absorber thickness x for a
narrow, monoenergetic photon beam. The functional relationship I(x) against
x is a perfect exponential function expressed in (7.3). The figure also highlights
the half-value layer x1/2, the mean free path x, and the tenth-value layer
x1/10. The various characteristic thicknesses and their effects on photon beam
intensity are summarized in Table 7.1.

7.1.3 Other Attenuation Coefficients and Cross Sections

In addition to the linear attenuation coefficient μ, three other related attenu-
ation coefficients (often referred to as cross sections) are in use for describing
photon beam attenuation characteristics. They are: the mass attenuation
coefficient μm, atomic attenuation coefficient aμ, and electronic attenuation
coefficient eμ.
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Table 7.1. Characteristic absorber thickness and its effects upon beam intensity
attenuation

Absorber
I(x)

I(0)
100

I(x)

I(0)
Name Symbol

thickness

(ln 2) /μ 0.500 50.0 % Half-value layer HVL = x1/2

1/μ 0.368 36.8 % Mean free path MFP = x
(ln 10) /μ 0.100 10.0 % Tenth-value layer TVL = x1/10

3/μ 0.050 5.0 % Three mean free paths 3 x
5/μ 0.0067 ∼0.07 % Five mean free paths 5 x
7/μ 0.0009 ∼0.1 % Seven mean free paths 7 x
9/μ 0.00012 ∼0.012 % Nine mean free paths 9 x

1. Mass attenuation coefficient μm is defined as the linear attenuation
coefficient μ divided by the mass per unit volume of the absorber (absorber
mass density) ρ. The mass attenuation coefficient μm = μ/ρ is independent
of absorber density and its SI unit is m2/kg. The older unit cm2/g is still
often used

(
1 m2/kg = 10 cm2/g

)
. When the mass attenuation coefficient

is used in (7.3), the thickness of the absorber is expressed in kg/m2 or
g/cm2 where 1 kg/m2 = 10−1 g/cm2.

2. Atomic attenuation coefficient aμ is defined as linear attenuation coef-
ficient μ divided by the number of atoms Na per volume V of the absorber.
It can also be defined as the mass attenuation coefficient μ/ρ divided
by the number of atoms Na per mass of the absorber. The SI unit of
the atomic attenuation coefficient is m2/atom; however, a smaller unit
cm2/atom is still in common use

(
1 m2/atom = 104 cm2/atom

)
. When the

atomic attenuation coefficient is used in (7.3), the thickness of the absorber
is given in atom/m2 or atom/cm2 where 1 atom/m2 = 10−4 atom/cm2.

3. Electronic attenuation coefficient eμ is defined as the linear attenua-
tion coefficient μ divided by the number of electrons Ne per volume V of
the absorber. It can also be defined as the mass attenuation coefficient μ/ρ
divided by the number of electronsNe per mass of the absorber. The SI unit
of the electronic attenuation coefficient is m2/electron; however, a smaller
unit cm2/electron is still in common use. When the electronic attenua-
tion coefficient is used in (7.3), the thickness of the absorber is given in
electron/m2 or electron/cm2 where 1 electron/m2 = 10−4 electron/cm2.

Since the mass, atomic and electronic attenuation coefficients are measured in
units of area per mass, area per atom, and area per electron, respectively, they
are often referred to as cross sections following the nomenclature in common
use in nuclear physics. Based on their definition, the relationship among the
various attenuation coefficients or interaction cross sections can be expressed
as follows

μ = ρμm = n�
aμ = Zn�

eμ (7.18)
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Table 7.2. Attenuation coefficients and cross sections used in photon attenuation
studies

Symbol Relationship
to μ

SI units Common
units

Linear attenuation
coefficient

μ μ m−1 cm−1

Mass attenuation
coefficient

μm μ/ρ m2/kg cm2/g

Atomic cross section
(attenuation
coefficient)

aμ μ/n� m2/atom cm2/atom

Electronic cross section
(attenuation
coefficient)

eμ μ/(Zn�) m2/electron cm2/electron

where

ρ is the mass density of the absorber.
n� is the number of atoms Na per volume V of the absorber, i.e., n� =

Na/V , andNa/V = ρNa/m = ρNA/A withm the mass of the absorber,
NA the Avogadro number of atoms per mole, and A the atomic mass
of the absorber in g/mol.

Z is the atomic number of the absorber.
Zn� is the number of electrons per volume V of absorber. i.e., Zn� =

ρZNA/A.

Table 7.2 lists the various attenuation coefficients and cross sections, their
relationship to the linear attenuation coefficient μ, their SI units, and their
commonly used units.

7.1.4 Energy Transfer Coefficient and Energy
Absorption Coefficient

In radiation dosimetry two energy-related coefficients are in use to account
for:

1. Mean energy transferred from photons to charged particles (elec-
trons and positrons) in a photon–atom interaction (linear energy transfer
coefficient μtr and mass energy transfer coefficient μtr/ρ).

2. Mean energy absorbed in the medium (linear energy absorption coef-
ficient μab and mass energy absorption coefficient μab/ρ ). Note that the
linear energy absorption coefficient is commonly labeled as μen in the lit-
erature; however, we use the subscript “ab” for energy absorbed, similarly
to the common usage of the subscript “tr” for energy transferred.
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Mean energy transferredEtr and energy transfer coefficient μtr as well as mean
energy absorbed Eab and energy absorption coefficient μab are discussed in
more detail in Chap. 8.

Linear energy transfer coefficient μtr with SI unit m−1 and more com-
monly used unit cm−1, is defined as

μtr = μ
Etr

hν
= μf tr, (7.19)

where

μ is the linear attenuation coefficient dependent on the incident photon
energy hν and the absorber atomic number Z.

Etr is the mean energy transferred from incident photon to kinetic energy
of charged particles released or produced in the absorber.

f tr is the total mean energy transfer fraction
[
f tr = Etr/ (hν)

]
, i.e., the

total mean fraction of the photon energy hν transferred to kinetic energy
of charged particles through various interactions between the incident
photon and atoms of the absorber.

The mass energy transfer coefficient is defined as the ratio μtr/ρ where ρ is
the mass density of the absorber. The common units of μtr/ρ are m2/kg and
cm2/g, related as follows: 1 m2/kg= 10 cm2/g.

Linear energy absorption coefficient μab with units m−1 and cm−1 is in
a similar manner to (7.19) defined as

μab = μ
Eab

hν
= μfab, (7.20)

where

μ is the linear attenuation coefficient dependent on incident photon
energy hν and the absorber atomic number Z.

Eab is the mean energy transferred from the secondary charged particles to
the absorber, i.e., the mean energy absorbed in the absorber.

fab is the total mean energy absorption fraction, i.e., the total mean
fraction of the incident photon energy hν absorbed in the absorber.

The mass energy absorption coefficient is defined as the ratio μab/ρ with ρ
the absorber mass density. The common units of μab/ρ are m2/kg and cm2/g.

Mean energy transferred from photon to secondary charged parti-
cles in the absorber, Etr, can be expressed as a sum of two components:
Eab defined above and Erad, the mean energy lost by secondary charged
particles and radiated from the secondary charged particles in the form of
photons through bremsstrahlung and in-flight annihilation or emitted as fluo-
rescence photons during atomic relaxation after impulse ionization or impulse
excitation of absorber atoms.
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Etr, the mean energy transferred from photon to secondary charged
particles, is thus expressed as the following sum

Etr = Eab + Erad. (7.21)

Combining (7.20) and (7.21) we now get the following expression for the mass
energy absorption coefficient μab/ρ

μab

ρ
=
Etr − Erad

hν

μ

ρ
=
μtr

ρ

(
1 − Erad

Etr

)
=
μtr

ρ
(1 − g)

=
μ

ρ
f tr (1 − g) =

μ

ρ
fab, (7.22)

where g is the mean radiation fraction defined as that fraction of the mean
kinetic energy Etr which was transferred from the incident photon to charged
particles and subsequently radiated as Erad from the charged particles in the
form of photons.

Mean radiation fraction g can thus be expressed as follows

g =
Erad

Etr

= 1 − Eab

Etr

= 1 − fab

f tr

= 1 −
μab

ρ
μtr

ρ

. (7.23)

As discussed in Sect. 7.10, the mean radiation fraction g is the mean value of
the radiation yields Y [(EK)0] for the spectrum of all electrons and positrons
of various starting energies (EK)0 produced or released in the medium by
primary photons.

7.1.5 Broad Beam Geometry

In contrast to the narrow beam geometry that is used in determination of
the various attenuation coefficients and cross sections for photon beam atten-
uation, one can also deal with broad beam geometry in which the detector
reading is not only diminished by attenuation of the primary photon beam
in the absorber, but is also increased by the radiation scattered from the
absorber into the detector. The geometry for a broad beam experiment on
photon attenuation in an absorber is shown in Fig. 7.2b.

The signal IB(x) measured by the detector for an absorber thickness x in
broad beam geometry is expressed as follows

IB(x)
IN(x)

= B, (7.24)
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where

B is the so-called build-up factor that accounts for the secondary photons
that are scattered from the absorber into the detector.

IN(x) is the narrow beam geometry signal for absorber thickness x given in
(7.6) as

IN(x) = IN(0)e−μx, (7.25)

with IN(0) the narrow beam geometry signal measured in the absence of the
absorber. The buildup factor B is affected by photon beam energy as well
as the geometry, absorber atomic number and thickness, and the quantity
measured which can be photon fluence, photon energy fluence, beam intensity,
beam exposure, kerma, or dose. For narrow beam geometry B = 1, for broad
beam geometry B is positive and under certain conditions can amount to a
factor of 10 or more. Since in broad beam attenuation photons interacting
with the absorber may be scattered into the detector thereby contributing
to the measured signal, the apparent attenuation is lower than that obtained
under narrow beam conditions and results in an overestimation of the HVL
of the beam.

An alternative concept to the buildup factor is the concept of the mean
effective attenuation coefficient μeff expressed, using (7.24) and (7.25), as
follows

IB(x) = IN(x)B = IN(0)Be−μx = IN(0)e−μeffx. (7.26)

From (7.26) we get the following expression for μeff

μeff = μ− lnB
x
. (7.27)

Broad beam geometry is used in radiation protection for design of treat-
ment room shielding and in beam transport studies. When measuring atten-
uation coefficients, however, care must be taken to ensure that the build up
factor B is unity, i.e., one must use narrow beam geometry, defined in 7.1.1.

7.1.6 Classification of Photon Interactions with Absorber Atoms

Photons with energy in the ionizing radiation category have several options
for interacting with matter. The seven interactions of importance in medical
physics and radiation dosimetry are summarized in Table 7.3. The specific
interactions are classified as effects and many of them carry the name of their
discoverer. The effects listed in Table 7.3 can be classified according to:

1. Type of target (orbital electron or nucleus), as shown in Table 7.4.
2. Type of interaction (photon disappearance or photon scattering), as shown

in Table 7.5.
3. Type of particle released (electron or positron), as shown in Table 7.6.
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Table 7.3. Most important photon interactions with atoms of the absorber

Interaction Symbol for electronic
attenuation
coefficient
(cross section)

Symbol for atomic
attenuation
coefficient
(cross section)

Symbol for
linear
attenuation
coefficient

Thomson scattering eσTh aσTh σTh

Rayleigh scattering – aσR σR

Compton scattering eσc aσc σc

Photoelectric effect – aτ τ
Nuclear pair production – aκpp κp

Triplet production eκtp aκtp κt

Photodisintegration – aσPN σPN

Table 7.4. Types of targets in photon interactions with atoms (orbital electrons or
nuclei)

Photon–orbital electron interactions Photon–nucleus interactions

With bound electrons With nucleus directly
Photoelectric effect Photodisintegration
Rayleigh scattering

With “free electrons” With Coulomb field of nucleus
Thomson scattering Nuclear pair production
Rayleigh scattering

With Coulomb field of electron
Triplet productions

Table 7.5. Types of photon–atom interactions (complete photon absorption or
photon scattering)

Complete absorption of photon Photon scattering

Photoelectric effect Thomson scattering
Nuclear pair production Rayleigh scattering
Triplet production Compton scattering
Photodisintegration

Table 7.6. Release and production of charged particles in photon interactions with
absorber atoms

Result of interaction Interaction event

1. No charged particles released Thomson scattering
or produced Rayleigh scattering

2. Only electrons released Photoelectric effect
Compton scattering

3. Electrons and positrons produced Nuclear pair production
and released Triplet production
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As far as importance to medical physics and radiation dosimetry is con-
cerned, photon interactions with atom of absorber are classified into four
categories:

1. Interactions of major importance:

Photoelectric effect.
Compton scattering by “free” electron.
Pair production in the field of nucleus (including triplet production).

2. Interactions of moderate importance:
Rayleigh scattering.

3. Interactions of minor importance:
Photonuclear reaction (also known as photonuclear effect).
Thompson scattering by “free” electron.

4. Negligible interactions:
Thomson scattering by the nucleus.
Compton scattering by the nucleus.
Meson production.
Delbrück scattering (elastic scattering of photon by nuclear Coulomb
field-virtual nuclear pair production).

7.2 Thomson Scattering

The scattering of low energy photons
(
hν 	 mec

2
)

by loosely bound, i.e.,
essentially “free” electrons of an absorber, is described adequately by non-
relativistic classical theory of Joseph J. Thomson. Thomson assumed that the
incident photon beam set each quasi-free electron of the absorber atom into a
forced resonant oscillation and then used classical theory to calculate the cross
section for re-emission of the electromagnetic (EM) radiation as a result of
the induced dipole oscillation of the electron. This type of photon scattering
is now called Thomson scattering (elastic scattering).

The electric fields Ein for the harmonic incident radiation and Eout for
the emitted scattered electromagnetic waves [far field, see (4.13)] are given,
respectively, by

Ein = E0 sinωt (7.28)

and

Eout =
e

4πε0
ẍ sinΘ
c2r

, (7.29)
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where

E0 is the amplitude of the incident harmonic oscillation.
Θ is the angle between the direction of emission r and the polarization

vector of the incident wave E in.
ẍ is the acceleration of the electron.

The equation of motion for the accelerated electron vibrating about its
equilibrium position is

meẍ = eE = eE0 sinωt. (7.30)

Inserting ẍ from (7.30), the equation of motion for the accelerated electron,
into (7.29), we get the following expression for Eout

Eout =
e2

4πε0
E0

mec2
sinωt sinΘ

r
= reE0

sinωt sinΘ
r

, (7.31)

where re is the classical radius of the electron defined as re = e2/(4πε0mec
2) =

2.82 fm.

7.2.1 Thomson Differential Electronic Cross Section
per Unit Solid Angle

The differential electronic cross section deσTh for re-emission of radiation into
a solid angle dΩ in Thomson scattering is by definition given as follows

deσTh =
Sout

Sin

dA =
Sout

Sin

r2dΩ or
deσTh

dΩ
= r2

Sout

Sin

. (7.32)

The incident and emitted wave intensities are expressed by the time averages
of the corresponding Poynting vectors Sout and Sin, respectively [see (4.17)]

Sin = ε0cE2
in = εocE2

0 sin2 ωt =
1
2
ε0cE2

0 (7.33)

and

Sout = ε0cE2
out = ε0c

r2eE2
0 sin2 ωt sin2Θ

r2
=
ε0cr

2
eE2

0

2
sin2Θ

r2
, (7.34)

recognizing that sin2 ωt = 1
2 .

Inserting Sin and Sout into (7.32) we get the following expression for the
differential electronic cross section per unit solid angle deσTh/dΩ

deσTh

dΩ
= r2e sin

2Θ. (7.35)
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The mean value of sin2Θ, i.e., sin2Θ, for unpolarized radiation may be
evaluated using the following relationships

cosΘ =
a

r
; sin θ =

b

r
; and cosψ =

a

b
, (7.36)

where the angles θ, Θ, and ψ as well as the parameters a and b are defined in
Fig. 7.4.

Combining expressions given in (7.36) we obtain

cosΘ = sin θ cosψ, (7.37)

where

θ is the scattering angle defined as the angle between the incident photon
direction and the scattered photon direction, as shown in Fig. 7.4.

ψ is the polarization angle.

Fig. 7.4. Schematic diagram of Thomson scattering where the incident photon with
energy hν is scattered and emitted with a scattering angle θ. Note that angles θ and
Θ are not coplanar (i.e., they are not in the same plane)
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The mean value sin2Θ is now determined by integration over the polar-
ization angle ψ from 0 to 2π as follows

sin2Θ =

2π∫
0

sin2Θdψ

2π∫
0

dψ
=

1
2π

∫ 2π

0

(
1 − cos2Θ

)
dψ = 1 − sin2 θ

2π

∫ 2π

0

cos2ψ dψ

= 1 − sin2 θ

2π

{
1
2

sinψ cosψ +
1
2
ψ

}2π

0

= 1 − 1
2

sin2 θ=
1
2
(
1 + cos2 θ

)
.

(7.38)

The differential electronic cross section per unit solid angle for Thomson
scattering deσTh/dΩ is from (7.35) and (7.38) expressed as follows

deσTh

dΩ
=
r2e
2
(
1 + cos2 θ

)
in (cm2/electron)/steradian, (7.39)

and drawn in Fig. 7.5 against the scattering angle θ in the range from 0 to π.
The graph in part (a) is plotted in the Cartesian coordinate system; that in
part (b) shows the same data in the polar coordinate system. Both graphs
show that de σ Th/dΩ ranges from 39.7 mb/ (electron · steradian) at θ = π/2
to 79.4 mb/(electron · steradian) for θ = 0◦ and θ = π.

The differential electronic cross section per unit scattering angle for Thom-
son scattering deσTh/dθ gives the fraction of the incident energy that is
scattered into a cone contained between θ and θ + dθ. The function, plot-
ted in Fig. 7.6 against the scattering angle θ, is expressed as follows, noting
that dΩ = 2π sin θ dθ

deσTh

dθ
=

deσTh

dΩ
dΩ
dθ

= 2π sin θ
deσTh

dΩ
= πr2e sin θ(1 + cos2 θ). (7.40)

As shown in Fig. 7.6, deσTh/dθ is zero at θ = 0 and θ = 180◦, reaches
maxima at θ=55◦ and θ= 125◦, and attains a non-zero minimum at θ=90◦.
The two maxima and the non-zero minimum are determined after setting
d2σTh/dθ2 = 0 and solving the result for θ.

7.2.2 Thomson Total Electronic Cross Section

The total electronic cross section eσTh for Thomson scattering is obtained by
determining the area under the deσTh/dθ curve of Fig. 7.6 or by integrating
(7.40) over all scattering angles θ from 0 to π to obtain

eσTh =
∫

deσTh

dΩ
dΩ =

r2e
2

π∫
0

(
1 + cos2 θ

)
2π sin θ dθ

= −πr2e

⎧⎨
⎩

π∫
0

d (cos θ) +

π∫
0

cos2 θ d (cos θ)

⎫⎬
⎭ =

8π
3
r2e = 0.665 b. (7.41)
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Fig. 7.5. Differential electronic cross section deσTh/dΩ per unit solid angle against
the scattering angle θ for Thomson scattering, as given by (7.39). (a) Plotted in
Cartesian coordinate system and (b) in polar coordinate system. The units shown
are mb/(electron · steradian)

This is a noteworthy result in that it contains no energy-dependent terms
and predicts no change in energy upon re-emission of the electromagnetic
radiation. The cross section eσTh is called the Thomson classical cross section
for a free electron and has the same value (0.665 b) for all incident photon
energies.
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Fig. 7.6. Differential electronic cross section deσTh/dθ per unit angle θ for Thomson
scattering plotted against the scattering angle θ

7.2.3 Thomson Total Atomic Cross Section

The atomic cross section for Thomson scattering aσTh is in terms of the
electronic cross section eσTh given as

aσTh = Z(eσTh), (7.42)

showing a linear dependence upon atomic number Z, as elucidated experimen-
tally for low atomic number elements by Charles Glover Barkla, an English
physicist who received the Nobel Prize in Physics for his discovery of charac-
teristic x rays.

For photon energies hν exceeding the electron binding energy but small in
comparison with the electron rest mass energy mec

2, i.e., EB 	 hν 	 mec
2,

the atomic cross section aσTh measured at small θ approaches the Thomson’s
value of (7.41). At larger θ and larger photon energies (hν → mec

2); however,
the Thomson classical theory breaks down and the intensity of coherently scat-
tered radiation on free electrons diminishes in favor of incoherently Compton
scattered radiation.
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7.3 Incoherent Scattering (Compton Effect)

An interaction of a photon of energy hν with a loosely bound orbital elec-
tron of an absorber is called Compton effect (Compton scattering) in honor of
Arthur Compton who made the first measurements of photon-“free electron”
scattering in 1922. The effect is also known as incoherent scattering. In theo-
retical studies of the Compton effect an assumption is made that the incident
photon interacts with a free and stationary electron. A photon, referred to as
a scattered photon with energy hν′ that is smaller than the incident photon
energy hν, is produced in Compton effect and an electron, referred to as a
Compton (recoil) electron, is ejected from the atom with kinetic energy EK.

A typical Compton effect interaction is shown schematically in Fig. 7.7
for a 1 MeV photon scattered on a “free” (loosely bound) electron with a
scattering angle θ = 60◦. The scattering angle θ is defined as the angle between
the incident photon direction and the scattered photon direction. It ranges
from θ = 0◦ (forward scattering) through 90◦ (side scattering) to θ = 180◦

(back scattering). The recoil electron angle φ is the angle between the incident
photon direction and the direction of the recoil Compton electron and it ranges
from φ = 0 to φ = 90◦.

7.3.1 Compton Wavelength-Shift Equation

The corpuscular nature of the photon is assumed and relativistic conserva-
tion of total energy and momentum laws are used in the derivation of the
well-known Compton wavelength shift relationship

Δλ = λ′ − λ = λC (1 − cos θ) , (7.43)

where

λ is the wavelength of the incident photon: λ = 2π�c/(hν).
λ′ is the wavelength of the scattered photon: λ′ = 2π�c/(hν′).

Δλ is the difference between the scattered and incident photon wavelength,
i.e., Δλ = λ′ − λ.

λC is the so-called Compton wavelength of the electron defined as

λC =
h

mec
=

2π�c

mec2
= 0.0243 Å. (7.44)

Equation (7.43) for the wavelength shift Δλ can be derived using relativistic
relationships for conservation of total energy and momentum in a Compton
interaction between the incident photon and a “free” electron.

The conservation of total energy is expressed as

hν +mec
2 = hν′ + Ee, (7.45)
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Fig. 7.7. Diagram of Compton effect. An incident photon with energy hν = 1 MeV
interacts with a stationary and free electron. A photon with energy hν′ is produced
and scattered with a scattering angle θ = 60◦. The difference between the incident
photon energy hν and the scattered photon energy hν′ is given as kinetic energy to
the recoil electron. (a) Schematic diagram; (b) vector representation of the effect

where

mec
2 is the rest energy of the recoil electron.

Ee is the total energy of the recoil electron.

Using (1.58) the total energy of the recoil (Compton) electron is

Ee = mec
2 + EK (7.46)

and (7.45) can be expressed as

hν +mec
2 = hν′ +mec

2 + EK (7.47)

or

hν = hν′ + EK, (7.48)
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where EK is the kinetic energy of the recoil electron. Using (1.70) the total
recoil electron energy is

Ee =
√

(mec2)
2 + p2

ec
2 (7.49)

and (7.45) can be expressed as

hν +mec
2 = hν′ +

√
(mec2)

2 + p2
ec

2, (7.50)

where pe is the momentum of the recoil electron. Equation (7.50) can be
written as

(hν − hν′) +mec
2 =

√
(mec2)

2 + p2
ec

2, (7.51)

and, after squaring (7.51), we get the following expression for p2
e

p2
e =

1
c2

{
(hν)2 + (hν′)2 − 2 (hν) (hν′) + 2mec

2 (hν − hν′)
}
. (7.52)

As shown in Fig. 7.7, the conservation of momentum in the direction of the
incident electron hν is expressed as

pν = pν′ cos θ + pe cosφ or pe cosφ = pν − pν′ cos θ (7.53)

and in the direction normal to that of the incident photon hν it is expressed
as

0 = −pν′ sin θ + pe sinφ or pe sinφ = pν′ sin θ, (7.54)

where

pν is the momentum of the incident photon pν = hν/c.
pν′ is the momentum of the scattered photon pν′ = hν′/c.
pe is the momentum of the recoil (Compton) electron, as given in (1.60):

pe = c−1
√
EK (EK + 2mec2).

A summary of parameters for the conservation of total energy and momentum
in Compton effect is presented in Table 7.7 in terms of total energy and
momentum before and after the Compton interaction.

We now continue with the derivation of the wavelength shift equation and
square (7.53) and (7.54) to get, respectively

p2
e cos2 φ =

(
hν

c

)2

− 2
hν

c

hν′

c
cos θ +

(
hν′

c

)2

cos2 θ (7.55)

and

p2
e sin2 φ =

(
hν′

c

)2

sin2 θ. (7.56)
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Table 7.7. Summary of parameters for conservation of total energy and momentum
in Compton effect. The incident photon direction coincides with the abscissa (x) axis
of the Cartesian coordinate system, as shown in Fig. 7.7

Before Compton interaction After Compton interaction

Total energy before interaction Total energy after interaction

hν +mec
2 hν′ + EK +mec

2

Momentum before interaction (x axis) Momentum after interaction (x axis)
hν

c

hν′

c
cos θ + pe cosφ

Momentum before interaction (y axis) Momentum after interaction (y axis)

0
hν′

c
sin θ − pe sinφ

Summation of (7.55) and (7.56) eliminates the recoil angle φ dependence and
we get the following expression for p2

e

p2
e =

1
c2

{
(hν)2 − 2(hν) (hν ′) cos θ + (hν ′)2

}
. (7.57)

Merging expressions (7.52) and (7.57) for p2
e results in

2(hν)(hν ′) (1 − cos θ) = 2mec
2(hν − hν ′), (7.58)

which, after division with 2(hν)(hν ′) and incorporation of ν = c/λ and ν ′ =
c/λ ′, results in the well known Compton wavelength shift equation for photon
interaction with a “free” electron

λ ′ − λ = Δλ =
h

mec
(1 − cos θ) = λC(1 − cos θ), (7.59)

with λC the Compton wavelength of the electron defined in (7.44). Compton
derived the wavelength shift equation which carries his name in 1923 and in
1927 he was awarded the Nobel Prize in Physics for his discovery.

The Compton wavelength shift equation (7.59) can also be derived by using
a general relationship for p2

e . In Fig. 7.7b we redraw the schematic diagram of
Fig. 7.7a for the Compton effect following the general vector relationship for
conservation of momentum expressed as

pν = pe + pν′ . (7.60)

Using the law of cosines in conjunction with Fig. 7.7b we now get the following
relationship for p2

e

p2
e = p2

ν + p2
ν′ − 2pνpν′ cos θ =

(
hν

c

)2

+
(
hν ′

c

)2

− 2
hν

c

hν ′

c
cos θ. (7.61)
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Equating expressions for p2
e given in (7.52) and (7.61) and using c = λν we

get the following expression relating the wavelength of the incident photon λ,
the wavelength of the scattered photon λ′, and the scattering angle θ

1
λ

1
λ′

cos θ =
1
λ

1
λ′

− mec
2

h

[
1
λ
− 1
λ′

]
, (7.62)

which, after multiplication with λλ′, gives the well known Compton equation
for the wavelength shift Δλ = λ′ − λ in a Compton interaction given in
(7.59). The change in wavelength λ governed by the Compton wavelength
shift expression given in (7.59) depends only on the scattering angle θ and
does not depend on incident photon energy hν.

7.3.2 Relationship Between Scattering Angle and Recoil Angle

The scattering angle θ and the Compton electron recoil angle φ, as defined
in Fig. 7.7, are related to one another and their explicit relationship can be
derived from the momentum conservation expressions given in (7.53) and
(7.54). We first express (7.54) as

pe = pν′
sin θ
sinφ

(7.63)

and insert the resulting (7.63) into (7.53) to get

pν

pν′
= cos θ + sin θ cotφ. (7.64)

The ratio pν/pν′ of (7.64) is from (7.58) equal to

pν

pν ′
=

hν/c

hν′/c
= 1 + ε (1 − cos θ) , (7.65)

where ε is defined as the incident photon energy hν normalized to electron
rest mass energy mec

2 = 0.511 keV

ε =
hν

mec2
. (7.66)

Merging (7.64) and (7.65) we get the following relationships between θ and φ

cotφ =
(1 + ε)(1 − cos θ)

sin θ
= (1 + ε)

1 − cos2
θ

2
+ sin2 θ

2

2 sin
θ

2
cos

θ

2

= (1 + ε) tan
θ

2
.

(7.67)

Recognizing that cotφ = 1/ tanφ, we can write (7.67) as

tanφ =
1

1 + ε
cot

θ

2
or cot

θ

2
= (1 + ε) tanφ. (7.68)
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The φ vs θ relationships (7.67) and (7.68), plotted in Fig. 7.8 for various values
of ε = hν/(mec

2), show that for a given θ, the higher is the incident photon
energy hν or the higher is ε, the smaller is the recoil electron angle φ. Figure 7.8
also shows that the range of the scattering angle θ is from 0 to π, while the
corresponding range of the recoil electron angle φ is limited from φ = π/2 for
θ = 0 to φ = 0 for θ = π, respectively. The Compton electron recoil angle φ is
thus confined to the forward hemisphere with respect to the direction of the
incident photon, while the photon scattering angle θ ranges between 0◦ for
forward scattering through 1

2π for side scattering to π for backscattering.

7.3.3 Scattered Photon Energy as Function of Incident Photon
Energy and Photon Scattering Angle

The Compton wavelength shift equation for Δλ given in (7.59) leads to a
relationship for the energy of the scattered photon hν′ as a function of the
incident photon energy hν and scattering angle θ

Δλ = λ′ − λ =
c

ν′
− c

ν
=

h

mec
(1 − cos θ) =

2h
mec

sin2 θ

2
(7.69)

or
1
hν′

− 1
hν

=
1

mec2
(1 − cos θ) =

2
mec2

sin2 θ

2
, (7.70)

Fig. 7.8. Relationships (7.67) and (7.68) between the electron recoil angle φ and
photon scattering angle θ
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where we used the trigonometric relationship sin2(θ/2) = (1− cos θ)/2. From
(7.70) we obtain the following expression for hν′

hν′ = hν
1

1 + ε(1 − cos θ)
= hν

1

1 + 2ε sin2 θ

2

= hν

1

sin2 θ

2
1

sin2 θ

2

+ 2ε
, (7.71)

where ε = hν/(mec
2), as defined in (7.66).

One can also express the scattered photon energy hν′ as a function of
the electron recoil angle φ. From the θ vs. φ relationship (7.67) we express
1/ sin2(θ/2) as a function of φ

1

sin2 θ

2

= 1 + (1 + ε)2
1 − cos2 φ

cos2 φ
(7.72)

and insert it into (7.71) to get

hν′ = hν
(1 + ε)2 − ε(ε+ 2) cos2 φ

(1 + ε)2 − ε2 cos2 φ
. (7.73)

The relationship between hν′ and hν of (7.71) is plotted in Fig. 7.9 for var-
ious scattering angles θ between 0◦ and π (backscattering). The following
conclusions can be made:

1. For θ = 0 corresponding to φ = 1
2π, the energy of the scattered photon

hν′ equals the energy of the incident photon hν, irrespective of hν. Since
in this case no energy is transferred to the recoil electron, we are dealing
with classical Thomson scattering (see Sect. 7.2).

2. For θ > 0, the energy of the scattered photon saturates at high values of
hν; the larger is the scattering angle θ, the lower is the saturation value of
hν′ for hν → ∞.

3. For θ = 1
2π corresponding to φ = cot−1(1+ε), the scattered photon energy

hν′, after inserting θ = π/2 into (7.71) or φ = cot−1(1 + ε) into (7.73), is
given as

hν′ =
hν

1 + ε
, (7.74)

with the following saturation energy hν′sat for hν → ∞

hν′sat
[
θ = π

2 , φ = cot−1(1 + ε)
]

= lim
hν→∞

hν

1 + ε
= lim

hν→∞
hν

1 +
hν

mec2

= lim
hν→∞

1
1
hν

+
1

mec2

= mec
2 = 0.511 MeV. (7.75)
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Fig. 7.9. Scattered photon energy hν′ against the incident photon energy hν for
various scattering angles θ in the range from 0◦ to 180◦

4. For θ = π corresponding to φ = 0, the scattered photon energy hν′, after
inserting θ = π into (7.71) or φ = 0 into (7.73), is given as

hν′ =
hν

1 + 2ε
, (7.76)

with the following saturation energy hν′sat for hν → ∞

hν′sat(θ = π) = lim
hν→∞

hν

1 + 2ε
= lim

hν→∞
hν

1 +
2hν
mec2

= lim
hν→∞

1
1
hν

+
2

mec2

=
mec

2

2
= 0.255 MeV. (7.77)

5. Results in points (3) and (4) above show that photon scattered with angles
θ larger than 1

2π cannot exceed 511 keV in kinetic energy no matter how
high is the incident photon energy hν. This finding is of practical impor-
tance in design of shielding barriers for linear accelerator installations. We
also note from (7.77) that the maximum energy of the backscattered pho-
ton (θ = π) cannot exceed 0.255 MeV = 1

2mec
2 no matter how high is the

incident photon energy hν.
6. For a given hν the scattered photon energy hν′ will be in the range between
hν/(1+2ε) for θ = π corresponding to φ = 0 and hν for θ = 0 corresponding
to φ = 1

2π, i.e.,
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Fig. 7.10. The Compton scatter fraction f ′
C(hν, θ) shown with dotted curves and

the Compton energy transfer fraction fC(hν, θ) shown with solid curves against the
scattering angle θ for various incident photon energies hν in the range from 10 keV
to 100 MeV. Numbers on the vertical scale at θ = π indicate the maximum value of
fc(hν, θ) at θ = π

hν

1 + 2ε

∣∣∣∣
θ=π

≤ hν′ ≤ hν|θ=0 . (7.78)

We now define the Compton scatter fraction f ′
C(hν, θ) as the ratio between

the scattered photon energy hν′ to the incident photon energy hν. From
(7.71) we note that f ′

C(hν, θ) = hν′/(hν) = [1 + ε(1− cos θ)]−1 and plot the
expression with dotted curves in Fig. 7.10 against the scattering angle θ for
various incident photon energies hν in the range from 10 keV to 100 MeV.
The following features are notable:

1. As evident from Fig. 7.9, hν = hν′ for all hν at θ = 0 (forward scattering)
and this then gives f ′

C(hν, θ)|θ=0 = 1 for all hν from 0 to ∞.
2. For a given hν, as θ increases, f ′

C(hν, θ) gradually decreases from
f ′
C(hν, θ)|θ=0 = 1 and levels off at f ′

C(hν, θ)|θ=π = 1/(1 + 2ε) with
ε = hν/(mec

2).
3. For a given scattering angle θ, the larger is the incident photon energy hν,

the smaller is the Compton scatter fraction f ′
C(hν, θ).



306 7 Interactions of Photons with Matter

7.3.4 Energy Transfer to Compton Recoil Electron

Kinetic energy of the Compton (recoil) electron EC
K(hν, θ) depends on photon

energy hν and photon scattering angle θ. The relationship is determined using
conservation of energy expressed in (7.48) to get

EC
K(hν, θ) = hν − hν′ = hν − hν

1
1 + ε(1 − cos θ)

= hν
ε(1 − cos θ)

1 + ε(1 − cos θ)
= hν

2ε sin2 θ

2

1 + 2ε sin2 θ

2

, (7.79)

where the scattered photon energy hν′ as a function of the incident photon
energy hν is given in (7.71).

The recoil electron kinetic energy of (7.79) can also be expressed as a func-
tion of electron recoil angle φ similarly to the derivation of the φ dependence
of the scattered photon energy hν′ of (7.73). We insert the expression (7.72)
for 1/ sin2(θ/2) into (7.79) and get

EC
K(hν, φ) = hν

2ε cos2 φ
(1 + ε)2 − ε2 cos2 φ

. (7.80)

For a given photon energy hν the recoil electron kinetic energy ranges
from a minimum value of (EC

K)min = 0 for scattering angle θ = 0 (forward
scattering) corresponding to electron recoil angle φ = 1

2π (see Fig. 7.8) to a
maximum value of

(EC
K)max = EC

K(hν, θ = π) = hν
2ε

1 + 2ε
(7.81)

for scattering angle θ = π (backscattering) corresponding to electron recoil
angle φ = 0.

The ratio of the kinetic energy of the Compton (recoil) electron EC
K(hν, θ)

to the energy of the incident photon hν represents the fraction of the incident
photon energy that is transferred to the Compton electron in a Compton effect
and is called the Compton energy transfer fraction fC(hν, θ). Using (7.79) the
Compton energy transfer fraction fC(hν, θ) is expressed as follows

fC(hν, θ) =
EC

K(hν, θ)
hν

=
ε(1 − cos θ)

1 + ε(1 − cos θ)
, (7.82)

with the maximum value of the energy transfer fraction (fC)max given for
θ = π as

(fC)max = fC(hν, θ)|θ=π =
2ε

1 + 2ε
. (7.83)

Figure 7.10 shows, with solid curves, a plot of fC(hν, θ) against scattering
angle θ for various incident photon energies in the range from 10 keV to
100 MeV. The following features are notable:
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1. For all hν, as a result of hν′|θ=0 = hν, the Compton energy transfer
fraction fC(hν, θ)|θ=0 = 0.

2. For a given hν, as the angle θ increases from 0, the energy transfer fraction
fC(hν, θ) increases from 0 and saturates at 2ε/(1 + 2ε) of (7.83) for θ = π
(back-scattering). The values of (fC)max for a given incident photon energy
hν are indicated on the graph of Fig. 7.10 at θ = π.

3. As a function of hν, (fC)max is proportional to hν amounting to 0.038 for
hν = 0.01 MeV, 0.281 for hν = 0.1 MeV, 0.796 for hν = 1 MeV, 0.975 for
hν = 10 MeV, and 0.997 for hν = 100 MeV.

4. For a given θ, the larger is the incident photon energy hν, the larger is the
Compton energy transfer fraction fC(hν, θ).

5. For a given hν and a given θ, the sum of the Compton scatter fraction
f ′
C(hν, θ) and the Compton energy transfer fraction fC(hν, θ) equals to 1,

i.e., f ′
C(hν, θ) + fC(hν, θ) = 1.

6. As shown in (7.59), the Compton shift in wavelength Δλ is independent of
the energy of the incident photon hν. The Compton shift in energy, on the
other hand, depends strongly on the incident photon energy hν. Low-energy
photons are scattered with minimal change in energy, while high-energy
photons suffer a very large change in energy. The shift in photon energy
hν − hν′ is equal to the kinetic energy EC

K transferred to the Compton
recoil electron.

The expression of (7.81) which gives the relationship between the incident
photon energy hν and the maximum recoil energy of the electron

(
EC

K

)
max

can be solved for hν after inserting ε = hν/(mec
2) to obtain the following

quadratic equation for hν

(hν)2 − (EC
K

)
max

hν − 1
2
(
EC

K

)
max

mec
2 = 0, (7.84)

which has the following physically relevant solution (hν ≥ 0)

hν =
1
2
(
EC

K

)
max

{
1 +

√
1 +

2mec2(
EC

K

)
max

}
. (7.85)

In Fig. (7.11) we plot, against incide photon energy hν the minimum, mean,
and maximum Compton recoil electron energies as the minimum, mean, and
maximum energy transfer fractions, respectively, obtained by dividing the
energies EC

K with the appropriate photon energy hν. From the dosimetric
point of view, the most important relationship plotted in Fig. 7.11 is the
plot of fC = E

C

K/(hν), the mean fraction of the incident photon energy hν
transferred to recoil electrons, also referred to as the mean energy transfer
fraction for the Compton effect fC. It represents the energy transferred from
photon to Compton recoil electron averaged over all scattering angles θ.
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Data for fC = E
C

K/(hν) are summarized in Table 7.8 in bold face, showing
that the fractional energy transfer to recoil electrons is quite low at low photon
energies (fC = 0.019 athν = 0.01 MeV) and then slowly rises through fC =
0.138 at hν = 0.1 MeV and fC = 0.440 at hν = 1 MeV to become fC = 0.684
at hν = 10 MeV and fC = 0.796 at hν = 100 MeV. The mean energy transfer
fraction fC = E

C

K/(hν) is discussed further in Sect. 8.2.1.
Figure (7.11) and Table 7.8 also show the maximum, mean, and mini-

mum fractions (hν′max/hν, hν
′/hν, and hν′min/hν, respectively) of the inci-

dent photon energy hν given to the scattered photon. The fractions are
calculated as follows

(f ′
C)max =

hν′max

hν
=
hν′|θ=0

hν
= 1, (7.86)

(f
′
C) =

hν′

hν
= 1 − E

C

K

hν
= 1 − fC, (7.87)

(f ′
C)min =

hν′min

hν
=
hν′|θ=π

hν
=

1
1 + 2ε

= 1 − (EC
K)max

hν
= 1 − (fC)max,

(7.88)

where ε = hν/(mec
2) and (fC)max was given in (7.83).

Fig. 7.11. Fraction of incident photon energy hν transferred in Compton effect to:

– Maximum energy of recoil electron:
(
EC

K

)
max

/ (hν); θ = π [see (7.81)].

– Mean energy of recoil electron: E
C
K/ (hν) [see (7.113) below].

– Maximum energy of scattered photon: hν′max/ (hν); θ = 0◦ [see (7.86)].
– Mean energy of the scattered photon: hν′/ (hν) [see (7.87)].
– Minimum energy of the scattered photon: hν′min/ (hν); θ = π [see (7.88)]
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Table 7.8. Fractions of the incident photon energy transferred through Compton
effect to the maximum electron kinetic energy

(
EC

K

)
max

/ (hν); mean electron kinetic

energy
(
E

C
K

)
/ (hν); maximum scattered photon energy hν′max/ (hν); mean scattered

photon energy hv′/ (hν); and minimum scattered photon energy hν′min/ (hν)

hν (MeV) 0.01 0.1 1.0 10.0 100.0

ε = hν/
(
m2

ec
2
)

0.0196 0.1956 1.956 19.56 195.6(
EC

K

)
max

/ (hν) 0.038 0.282 0.796 0.975 0.998

fC =
(
E

C
K

)
/ (hν) 0.019 0.139 0.440 0.684 0.796

hν′max/ (hν) 1.0 1.0 1.0 1.0 1.0

hν′/ (hν) 0.981 0.861 0.560 0.316 0.204

hν′min/ (hν) 0.962 0.718 0.204 0.025 0.002

7.3.5 Differential Electronic Cross Section
for Compton Scattering

The probability or cross section for a Compton interaction between a photon
and a “free electron” per unit solid angle is given by an expression derived
by Oskar Klein and Yoshio Nishina in 1928. The differential Klein–Nishina
electronic cross section per unit solid angle for Compton effect deσ

KN
C /dΩ

is given in
[(

cm2/electron
)
/steradian

]
or in

[(
m2/electron

)
/steradian

]
as

follows

deσ
KN
c

dΩ
=
r2e
2

(
ν′

ν

)2{
ν′

ν
+
ν

ν′
− sin2 θ

}
=
r2e
2

(1 + cos2 θ)FKN =
deσTh

dΩ
FKN,

(7.89)

where

ν is the frequency of the incident photon.
ν′ is the frequency of the scattered photon.
θ is the scattering angle of the photon.
re is the classical radius of the electron (2.82 fm).

FKN(hν, θ) is the Klein–Nishina form factor, dependent on incident photon
energy hν and photon scattering angle θ.

deσTh/dΩ is the differential electronic cross section per unit solid angle for
Thomson scattering given in (7.39).

The Klein–Nishina form factor FKN(hν, θ) for a free electron is given as follows

FKN (hν, θ) =
1

[1 + ε (1 − cos θ)]2

{
1 +

ε2 (1 − cos θ)2

[1 + ε (1 − cos θ)] (1 + cos2 θ)

}
,

(7.90)

where ε = hν/(mec
2).
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Fig. 7.12. Klein–Nishina atomic form factor for Compton effect FKN against
scattering angle θ

The Klein–Nishina form factor FKN is plotted in Fig. 7.12 against the
scattering angle θ for various values of the energy parameter ε. For ε = 0
the form factor equals 1 irrespective of the scattering angle θ. As shown in
(7.90) and in Fig. 7.12, the form factor FKN is a complicated function of the
scattering angle θ and parameter ε. However, it is easy to see that:

1. FKN ≤ 1 for all θ and ε. (7.91)
2. FKN = 1 for θ = 0 at any ε. (7.92)
3. FKN = 1 for ε = 0 at any θ (Thomson scattering). (7.93)

From (7.89) we see that the differential electronic cross section for the
Compton effect deσ

KN
C /dΩ when FKN = 1 is equal to the Thomson differential

cross section deσTh/dΩ of (7.39)

deσ
KN
C

dΩ
|FKN=1 =

deσTh

dΩ
=
r2e
2

(1 + cos2 θ). (7.94)

This result also follows directly from the first part of (7.89) after inserting the
relationship hν′ = hν for elastic (Thomson) scattering.

The differential Compton electronic cross section deσ
KN
C /dΩ of (7.89)

is plotted in Fig. 7.13 against the scattering angle θ for various values of
ε ranging from ε≈ 0 which results in FKN =1 for all θ (i.e., Thomson scat-
tering) to ε=10 for which the FKN causes a significant deviation from the
Thomson cross section for all angles θ except for θ=0.
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Fig. 7.13. Differential electronic cross section for Compton effect deσ
KN
C /dΩ against

scattering angle θ for various values of ε = hν/(mec
2), as given by (7.89). The differ-

ential electronic cross section for Compton effect deσ
KN
C /dΩ for ε = 0 is equal to the

differential electronic cross section for Thomson scattering deσTh/dΩ (see Fig. 7.5).
(a) Displays the data in Cartesian coordinate system; (b) in polar coordinate
system
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The data are plotted in Cartesian coordinate system in Fig. 7.13a and
in polar coordinate system in Fig. 7.13b to give a better illustration of the
Compton scattering phenomenon. The following features are noteable:

1. At low ε the probabilities for forward scattering (θ = 0) and backscattering
(θ = π) are equal and amount to 79.4 mb (Thomson scattering), twice as
large as the probability for side scattering

(
θ = 1

2π
)
.

2. As energy hν increases, the scattering becomes increasingly more forward
peaked and backscattering rapidly diminishes. Thus, the probability for
backscattering decreases but the probability for forward scattering remains
constant at 79.4 mb (Thomson limit).

3. The polar diagram of Fig. 7.13 is sometimes colloquially referred to as the
“peanut diagram” to help students remember its shape.

7.3.6 Differential Electronic Cross Section
per Unit Scattering Angle

The directional distribution of the Compton scattered photons and recoil
electrons is of significant theoretical and practical interest. The differential
scattering cross section per unit solid angle deσ

KN
C /dΩ is given in (7.89)

and plotted in Fig. 7.13 for various incident photon energies ε; however, it
is also important to consider the directional distribution of scattered pho-
tons and recoil electrons in the form of the cross section per unit scattering
angle θ and per unit recoil angle φ.

The differential electronic cross section per unit scattering angle deσ
KN
C /dθ

is obtained from the differential electronic cross section per unit solid angle
deσ

KN
C /dΩ of (7.89) by recognizing that dΩ = 2π sin θ dθ

deσ
KN
C

dθ
=

deσ
KN
C

dΩ
dΩ
dθ

= πr2eFKN(1 + cos2 θ) sin θ. (7.95)

The differential cross section deσ
KN
C /dθ is plotted against scattering angle θ in

Fig. 7.14 for four values of ε ranging from ε=0 to ε=10. The curve for ε=0
approximates the Thomson cross section discussed in Sect. 7.2, encompasses
the largest area, and, similarly to the Thomson cross section, exhibits two
maxima (one at θ = 55◦ and the other at θ = 125◦) and a non-zero minimum
at θ = 90◦. With increasing ε the area under the deσ

KN
C /dθ curve diminishes,

becomes increasingly asymmetrical, and exhibits a single maximum at increas-
ingly smaller angles θ. Note that the recoil electron data appear only in the
forward hemisphere because the electron recoil angle φ ranges from 0◦ to 90◦.

For better visualization, the data of Fig. 7.14 are re-plotted with solid
curves in a polar diagram in Fig. 7.15. The increased forward scattering of
photons with increase in ε is clearly visible.
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Fig. 7.14. Differential electronic cross section per unit scattering angle θ for
Compton effect deσ

KN
C /dθ against scattering angle θ (solid curves) and differen-

tial electronic cross sections per unit recoil angle φ for Compton effect deσ
KN
C /dφ

against recoil angle φ (dashed curves) for four values of ε (0, 0.1, 1, and 10), the
incident photon energy hν normalized to the rest mass energy of the electron mec

2.
The cross sections are drawn on a Cartesian plot

7.3.7 Differential Electronic Cross Section
per Unit Recoil Angle

For each photon which is scattered with an angle θ, there is an electron which
recoils with an angle φ. The two angles are related through (7.68) and (7.72),
and shown schematically in Fig. 7.7. The differential electronic cross section
per unit recoil angle deσC/dφ is determined from the differential electronic
cross section per unit scattering angle deσC/dθ as follows

deσ
KN
C

dφ
=

deσ
KN
C

dθ
dθ
dφ
. (7.96)

The derivative dθ/dφ is determined from the relationship θ vs φ, given
in (7.67) and (7.68) and derived in Sect. 7.3.2. Differentiating both sides of
(7.67) and (7.68) results, respectively, in

− dφ
sin2 φ

= (1 + ε)
dθ

2 cos2
θ

2

and
dφ

cos2 φ
= − 1

2(1 + ε)
dθ

sin2 θ

2

(7.97)

or

dθ
dφ

= −
2 cos2

θ

2
(1 + ε) sin2 φ

and
dθ
dφ

= −
2(1 + ε) sin2 θ

2
cos2 φ

. (7.98)
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Fig. 7.15. Differential electronic cross section per unit scattering angle θ for Comp-
ton effect deσ

KN
C /dθ against scattering angle θ (heavy solid curves) and differential

electronic cross sections per unit recoil angle φ for Compton effect deσ
KN
C /dφ against

recoil angle φ (light solid curves) for four values of ε (0, 0.1, 1, and 10), the incident
photon energy hν normalized to the rest mass energy of the electron mec

2. The cross
sections are drawn on a polar plot; the upper half of the plot shows the distributions
for scattered photons, the lower half for recoil electrons

The differential electronic cross section per unit recoil angle deσC/dφ, after
incorporating (7.95) and (7.98) into (7.96), is expressed with the following two
equations

deσ
KN
C

dφ
= 2πr2eFKN

(1 + cos2 θ) sin θ cos2
θ

2
(1 + ε) sin2 φ

(7.99)

or

deσ
KN
C

dφ
= 2πr2eFKN

(1 + ε)(1 + cos2 θ) sin θ sin2 θ

2
cos2 φ

(7.100)

and plotted in Fig. 7.14 with dashed curves. The angular distribution of elec-
trons exhibits a similar general shape to that for scattered photons, except
that the distribution for scattered photons spans a range in θ from 0◦ to 180◦,
while the distribution for corresponding recoil electrons spans a range in φ
from 90◦ to 0◦. The following features in deσ

KN
C /dφ are noted:
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1. The area under the deσ
KN
C /dφ decreases with increasing ε.

2. At very low incident photon energy hν the deσ
KN
C /dφ curve is symmetri-

cal and exhibits two maxima, similar to the deσ
KN
C /dθ curve which also

exhibits two maxima (at θ = 55◦ and θ = 125◦, as seen in Thomson scat-
tering) at low hν. The 55◦ maximum on the photon curve corresponds to
a φ = 62.5◦ maximum on the recoil electron curve; the 125◦ maximum
on the photon curve corresponds to a φ = 27.5◦ maximum on the recoil
electron curve.

3. With increasing ε, the electron curve becomes more and more asymmetrical
and for large ε exhibits only one peak which moves to increasingly smaller
angles φ.

Electron recoiled data of Fig. 7.14 are re-plotted with light solid curves in
the polar diagram of Fig. 7.15. The angular distribution of recoil electrons is
present only in the forward hemisphere; however, it is zero in forward direction
φ = 0 and exhibits maxima at values of φ which depend on photon energy
hν; the larger is hν or ε, the smaller is the angle at which maximum occurs.

7.3.8 Differential Klein–Nishina Energy Transfer Cross Section

The differential electronic energy transfer coefficient
(
deσ

KN
C

)
tr
/dΩ for the

Compton effect is calculated by multiplying the differential electronic cross
section deσC/dΩ of (7.89) with the fractional energy of the Compton recoil
electron given in (7.79) to get

(
deσ

KN
C

)
tr

dΩ
=

deσ
KN
C

dΩ
EC

K

hν
=

deσTh

dΩ
FKN

ε (1 − cos θ)
1 + ε (1 − cos θ)

=
r2e
2

(
ν′

ν

)2 {
ν′

ν
+
ν

ν′
− sin2 θ

}
hν − hν′

hν

=
r2e
2
(
1 + cos2 θ

) ε(1 − cos θ)
[1 + ε (1 − cos θ)]3

×
{

1 +
ε2 (1 − cos θ)2

[1 + ε (1 − cos θ)] (1 + cos2 θ)

}
, (7.101)

where ε = hν/(mec
2), is the incident photon energy normalized to the electron

rest energy.

7.3.9 Energy Distribution of Recoil Electrons

The differential electronic Klein–Nishina cross section deσ
KN
C /dEK express-

ing the initial energy spectrum of Compton recoil electrons averaged over all
scattering angles θ is calculated from the general Klein–Nishina relationship
for deσ

KN
C /dΩ as follows
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deσ
KN
C (EK)
dEK

=
deσ

KN
C

dΩ
dΩ
dθ

dθ
dEK

=
πr2e
εhν

{
2 − 2EK

ε (hν − EK)
+

E2
K

ε2(hν − EK)2
+

E2
K

hν (hν − EK)

}
,

(7.102)

where

deσ
KN
C /dΩ is given in (7.89).
dΩ/dθ is 2π sin θ.

dθ/dEK is (dEK/dθ)
−1 with EK (θ) given in (7.79).

The differential electronic cross section deσ
KN
C /dEK of (7.102) is plotted in

Fig. 7.16 against the kinetic energy EC
K of the recoil electron for various values

of the incident photon energy hν in the range from 0.5 MeV to 10 MeV. The
following features are easily recognized:

• The distribution of kinetic energies given to the Compton recoil electrons
is essentially flat from zero almost to the maximum electron kinetic energy
(EC

K)max where a sharp increase in concentration occurs.
• (EC

K)max is determined using (7.81)

(EC
K)max =

2hνε
(1 + 2ε)

= hν − hν′min. (7.103)

Since, as shown in (7.77), hν′min approaches 1
2mec

2 for high hν, we note that
(EC

K)max approaches hν − 1
2mec

2 as hν → ∞.

7.3.10 Total Electronic Klein–Nishina Cross Section
for Compton Scattering

The total electronic Klein-Nishina cross section for the Compton scattering
on a free electron eσ

KN
C

[
in cm2/electron

]
is calculated by integrating the

differential electronic cross section per unit solid angle deσ
KN
C /dΩ of (7.89)

over the whole solid angle to get

eσ
KN
C =

∫
deσ

KN
c

dΩ
dΩ = 2πr2e

{
1 + ε

ε2

[
2(1 + ε)
1 + 2ε

− ln (1 + 2ε)
ε

]

+
ln(1 + 2ε)

2ε
− 1 + 3ε

(1 + 2ε)2

}
, (7.104)

where ε = hν/(mec
2). The numerical value of eσ

KN
C can also be obtained

through a determination of the area under the deσ
KN
C /dθ curve for a given ε

(see Fig. 7.14–solid curves).
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Fig. 7.16. Differential electronic Klein–Nishina cross section per unit kinetic energy
deσ

KN
c /dEK calculated from (7.102) and plotted against the kinetic energy of the

Compton recoil electron EC
K for various incident photon energies hν in the range

from 0.5 MeV to 10 MeV. For a given photon energy the maximum kinetic energy
of the recoil electron in MeV, calculated from (7.81), is indicated on the graph

Two extreme cases are of interest, since they simplify (7.104) for eσ
KN
C :

1. For small incident photon energies hν we get the following relationship
from (7.104)

eσ
KN
C =

8π
3
r2e

(
1 − 2ε+

26
5
ε2 − 133

10
ε3 +

1144
35

ε4 − · · ·
)
, (7.105)

which for ε→ 0 approaches the classical Thomson result of (7.41), i.e.,

eσ
KN
C

∣∣
ε→0

≈ eσTh =
8π
3
r2e = 0.665 b. (7.106)

2. For very large incident photon energies hν, i.e., ε� 1, Heitler showed that
(7.104) for ε→ ∞ gives

eσ
KN
C ≈ πr2e

2 ln(2ε) + 1
2ε

. (7.107)

Figure 7.17 shows the Compton electronic cross section eσ
KN
C as determined by

the Klein–Nishina relationship of (7.104) against the incident photon energy
hν in the energy range from 0.001 MeV to 1000 MeV. The following features
are easily identified:
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Fig. 7.17. Compton electronic cross section eσ
KN
C and Compton electronic energy

transfer cross section
(
eσ

KN
C

)
tr

for a free electron against incident photon energy hν
in the energy range from 0.001 MeV to 1000 MeV, determined from Klein–Nishina
equations given in (7.104) and (7.108), respectively. For very low photon energies,

eσ
KN
C ≈ eσTh = 0.665 b. For very high photon energies (hν → ∞), (eσ

KN
C )tr ≈ eσ

KN
C

1. At low photon energies eσ
KN
C is approximately equal to the classical

Thomson cross section eσTh which, with its value of 0.665 b, is independent
of photon energy [see (7.41)].

2. For intermediate photon energies eσ
KN
C decreases gradually with photon

energy to read 0.46 b at hν = 0.1 MeV; 0.21 b at hν = 1 MeV; 0.05 b at
hν = 10 MeV; and 0.008 b at hν = 100 MeV.

3. At very high photon energies hν, the Compton electronic cross section eσc

attains 1/ (hν) dependence, as shown in (7.107).
4. The Compton electronic cross section eσ

KN
C is independent of atomic num-

ber Z of the absorber, since in the Compton theory the electron is assumed
to be free and stationary, i.e., the electron’s binding energy to the atom is
assumed to be negligible in comparison with the photon energy hν.

7.3.11 Electronic Energy Transfer Cross Section
for Compton Effect

The electronic energy transfer cross section (eσKN
C )tr in (cm2/electron) is

obtained by integrating the differential electronic energy transfer cross sec-
tion d(eσKN

C )tr/dΩ of (7.101) over all photon scattering angles θ from 0◦ to
180◦ and over recoil angle φ from 0◦ to 90◦ to get
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(eσKN
C )tr

2πr2e
=

2(1 + ε)2

ε2(1 + 2ε)
− 1 + 3ε

(1 + 2ε)2
− (1 + ε)(2ε2 − 2ε− 1)

ε2(1 + 2ε)2

− 4ε2

3(1 + 2ε)3
−
[
1 + ε

ε3
− 1

2ε
+

1
2ε3

]
ln(1 + 2ε). (7.108)

In addition to the Compton electronic cross section eσ
KN
C of (7.104),

Fig. 7.17 also shows the energy transfer cross section for the Compton effect
(eσKN

C )tr calculated with (7.108) and plotted against the incident photon
energy hν in the energy range from 0.001 MeV to 1000 MeV. At 0.001 MeV,
(eσKN

C )tr is small and of the order of 10−3 b/electron; it increases with pho-
ton energy hν to reach a peak of 0.1 b/electron at hν ≈ 700 keV and then
decreases with energy hν to ∼10−3 b/electron at hν = 1000 keV. At high
incident photon energies hν where ε� 1, (7.108) simplifies to

(eσKN
C )tr ≈ 2πr2e

{
1
ε
− 3

4ε
− 1

2ε
− 1

6ε
+

ln(2ε)
2ε

}
= πr2e

2 ln(2ε) − 1.64
2ε

.

(7.109)

For all incident photon energies hν, the Compton electronic cross section
eσ

KN
C exceeds the Compton energy transfer cross section (eσKN

C )tr; however,
the difference diminishes with increasing hν. At large photon energies hν the
difference between eσC and (eσKN

C )tr is small and determined by subtracting
(7.109) from (7.107) to get

eσ
KN
C − (eσKN

C )tr ≈ 1.32πr2e
ε

. (7.110)

Equation (7.110) shows that as ε → ∞ the difference between eσC and
(eσKN

C )tr goes to zero indicating that (eσKN
C )tr ≈ eσ

KN
C for hν → ∞.

7.3.12 Mean Energy Transfer Fraction for Compton Effect

Since (eσKN
C )tr and eσ

KN
C are related through the following relationship

(eσKN
C )tr = eσ

KN
C

E
C

tr

hν
= eσ

KN
C fC, (7.111)

where fC = E
C

tr/(hν) is the mean fraction of the incident photon energy trans-
ferred to the kinetic energy of the Compton recoil electron, we can calculate
E

C

K/(hν) from (7.111) as

fC =
E

C

K

hν
=

(eσKN
C )tr

eσKN
C

, (7.112)

with (eσKN
C )tr and eσ

KN
C given in (7.108) and (7.104), respectively.
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Inserting (7.104) and (7.108) into (7.112) gives the following result for the
mean fraction of the incident photon energy transferred to the kinetic energy
of the recoil electron in Compton effect fC = E

C

K/ (hν)
{

2(1 + ε)2

ε2(1 + 2ε
− 1 + 3ε

(1 + 2ε)2
− (1 + ε)(2ε2 − 2ε− 1)

ε2(1 + 2ε)2
−

fC =

− 4ε2

3(1 + 2ε)3
−
[
1 + ε

ε3
− 1

2ε
+

1
2ε3

]
ln(1 + 2ε)

}

{
1 + ε

ε2

[
2(1 + ε)
1 + 2ε

− ln(1 + 2ε)
ε

]
+

ln(1 + 2ε)
2ε

− 1 + 3ε
(1 + 2ε)2

} . (7.113)

At first glance (7.113) looks cumbersome; however, it is simple to use once
the appropriate value for ε at a given photon energy hν has been established.
For example, incident photon of energy hν = 1.022 MeV results in ε = 2
that, when inserted into (7.113), gives fC = E

C

K/ (hν) = 0.440 or mean recoil
electron energy of E

C

K = 0.440 MeV. The mean energy of the corresponding
scattered photon is hν′ = hν − E

C

K = 0.660 MeV.
The Compton mean energy transfer fraction fC = E

C

K/ (hν) was plotted
as one of several curves in Fig. 7.11. Because of its significance in radia-
tion dosimetry, we plot the Compton mean energy transfer fraction again
in Fig. 7.18 in the incident photon energy hν range between 0.01 MeV and
100 MeV. On the graph, referred to as “The Compton Graph”, we indicate
the important anchor points, such as fC = 0.02; 0.14; 0.44; 0.68; and 0.79 at
hν = 10 keV, 100 keV, 1 MeV, 10 MeV, and 100 MeV, respectively. The
Compton graph is of much importance in clinical radiation dosimetry because
the most important interaction between human tissue and x rays and γ rays
used in medicine is the Compton interaction.

The plot of fC = E
C

K/ (hν) against incident photon energy hν in Fig. 7.18
shows that when low energy photons interact in a Compton process, very little
energy is transferred to recoil electrons on the average and most energy goes to
the scattered photon resulting in (eσKN

C )tr 	 eσ
KN
C . On the other hand, when

high-energy photons (hν > 10 MeV) interact in a Compton process, most of
the incident photon energy is given to the recoil electron and relatively little
energy is given to the scattered photon resulting in (eσKN

C )tr ≈ eσ
KN
C .

For very high incident photon energies where ε � 1, we simplify (7.113)
using the ratio of (7.109) and (7.107) to get

fC

∣∣
ε	1

≈ 2 ln(2ε) − 1.64
2 ln(2ε) + 1

=
ln(2ε) − 0.82
ln(2ε) + 0.5

(7.114)

Table 7.9 shows that (7.114) is an excellent approximation for the Compton
mean energy transfer fraction fC for incident photon energies hν exceeding
10 MeV.
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Fig. 7.18. “The Compton Graph” showing the mean energy transfer fraction fC

against photon energy hν in the energy range from 1 keV to 100 MeV. Anchor points
of fC = 0.02, 014, 0.44, 0.68, and 0.79 for photon energies hν = 10 keV, 100 keV,
1 MeV, 10 MeV, and 100 MeV, respectively, calculated from (7.113) are also shown

Table 7.9. Mean energy transfer fractions for Compton effect fC determined from
(7.113) and (7.114)

hν (MeV) 0.01 0.1 1.0 10 100 1000

ε 0.0196 0.196 1.957 19.6 195.7 1957

fC from (7.113) 0.019 0.139 0.440 0.684 0.796 0.85

fC from (7.114) — — 0.293 0.683 0.796 0.85

7.3.13 Binding Energy Effects and Corrections

The Compton electronic cross section eσ
KN
C of (7.104) and electronic energy

transfer cross section (eσKN
C )tr of (7.108) were calculated with Klein–Nishina

relationships for free electrons and are plotted in Fig. 7.17. From (7.18) we
note that the Compton atomic cross section aσ

KN
C is linearly proportional to

the Compton electronic cross section eσ
KN
C

aσ
KN
C = Z(eσKN

C ), (7.115)

where Z, the atomic number of the absorber, is the proportionality constant
and eσ

KN
C is calculated with (7.104).
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When we compare the measured atomic cross sections aσC and calculated
atomic cross sections aσ

KN
C for various absorbers, we find agreement with

(7.115) at high photon energies and a discrepancy at low photon energies
where the measured atomic cross section is significantly smaller than the cal-
culated aσ

KN
C . Evidently, at very low incident photon energies the assumption

of “free” electron breaks down and the electronic binding energy EB affects
the Compton atomic cross section; the closer is the photon energy hν to EB,
the larger is the deviation of the measured atomic cross section aσC from that
calculated using free-electron Klein–Nishina electronic cross section eσ

KN
C .

This discrepancy is shown in Fig. 7.19 which displays, for various absorbers
ranging from hydrogen to lead, the measured atomic cross sections aσC (solid
curves) and the calculated Klein–Nishina atomic cross sections aσ

KN
C (dashed

curves) of (7.115). Two trends are noticed:

1. For a given Z of the absorber, the lower is the incident photon energy hν,
the larger is the discrepancy between the measured aσC and the calculated
aσ

KN
C .

2. For a given incident photon energy hν, the higher is the atomic number Z
of the absorber, the more pronounced is the discrepancy.

3. The higher is the atomic number Z of the absorber, the higher is the
equivalent photon energy hνeq at which the measured aσC and the calcu-
lated aσ

KN
C begin to coincide. For example, as shown in Fig. 7.19, hνeq for

hydrogen is ∼20 keV, for aluminum ∼100 keV, and for lead ∼300 keV.
Figure (7.19) also shows that hνeq ∝ √

Z.

Incoherent Scattering Function

Various theories have been developed to account for electronic binding effects
on Compton atomic cross sections. Most notable is the method developed by
John Hubbell from the National Institute for Science and Technology (NIST)
in Washington, USA.

The binding energy corrections to the Klein–Nishina relationships have
usually been treated in the impulse approximation taking into account all
orbital electrons of the absorber atom. This involves applying a multiplicative
correction function S(x, Z), referred to as the incoherent scattering function,
to the Klein–Nishina differential atomic cross sections as follows

daσC

dΩ
=

deσ
KN
C

dΩ
S(x, Z), (7.116)

where x, the momentum transfer variable, stands for sin (θ/2) /λ, derived
in (7.120).

The total Compton atomic cross section aσC is obtained from the following
integral

aσC =
∫
S(x, Z)

deσ
KN
C

dΩ
dΩ =

θ=π∫
θ=0

S(x, Z)deσ
KN
C (θ), (7.117)
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Fig. 7.19. Compton atomic cross section aσC plotted against incident photon energy
hν for various absorbers ranging from hydrogen to lead. The dashed curves repre-
sent aσ

KN
C data calculated with Klein–Nishina free-electron relationship (7.115); the

solid curves represent the aσC data that incorporate the binding effects of orbital
electrons. The Klein–Nishina free electron coefficients eσ

KN
C for Compton effect are

also shown. Equivalent photon energy hνeq beyond which the measured cross section

aσC and calculated cross section aσ
KN
C agree are shown with × for a given absorber

where the incoherent scattering function S(x, Z) relates to the properties
of the absorber atom and is important for collisions in which the electron
momentum pe is small enough so that the electron has a finite probability for
not escaping from the atom.

From Fig. 7.7, in conjunction with the application of the law of cosines on
the triangle (pν ,pν′ ,pe), we obtain the following relationship for p2

e :

p2
e = p2

ν + p2
ν′ − 2pνpν′ cos θ (7.118)

or

pe =

√(
hν

c

)2

+
(
hν′

c

)2

− 2
hν

c

hν′

c
cos θ. (7.119)

For small hν we know that hν′ ≈ hν (see Fig. 7.9) and pe of (7.119) is
approximated as follows:

pe ≈ hν

c

√
2(1 − cos θ) =

hν

c

√
4 sin2 θ

2
= 2h

sin
θ

2
λ

= 2hx, (7.120)

where x = (sin θ/2)/λ is defined as the momentum transfer variable with λ
the wavelength of the incident photon.
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John Hubbell compiled extensive tables of the incoherent scattering func-
tion S(x, Z) and Fig. 7.20 presents Hubbell’s data for S(x, Z) plotted against
x = sin(θ/2)/λ for several absorbers in the range from hydrogen to lead. The
figure shows that S(x, Z) saturates at Z for relatively large values of x; the
higher is Z, the larger is x at which the saturation sets in. With decreasing
x, the function S(x, Z) decreases and attains at x = 0.01 a value that is less
than 1 % of its saturation Z value. The following features can be recognized
from Fig. 7.20:

1. The electron binding correction is effective only when S(x, Z) < Z.
2. For S(x, Z) = Z there is no correction and the Klein–Nishina coefficients

eσ
KN
c provide correct values for the atomic cross sections aσc through the

simple relationship aσC = Z(eσKN
C ).

3. The binding energy correction is only important at photon energies of the
order of EB, and this occurs in the photon energy region where photo-
electric effect and Rayleigh scattering are much more probable than is the
Compton effect. Thus, ignoring the binding correction on Compton cross
sections will only insignificantly affect the determination of the total cross
section for photon interactions at relatively low photon energies, since, at
these low photon energies, effects other than the Compton effect make a
much larger contribution to the total attenuation coefficient than does the
Compton effect.

Fig. 7.20. Incoherent scattering function S(x,Z) plotted against the momentum
transfer variable x where x = sin (θ/2) /λ for various absorbers in the range from
hydrogen to lead. For large values of x the incoherent scattering function S(x,Z)
saturates at Z, the atomic number of the absorber. The saturation values thus are:
1 for hydrogen; 6 for carbon; 29 for copper, and 82 for lead
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The effects of binding energy corrections on Klein–Nishina differential
atomic cross sections per unit scattering angle daσ

KN
C /dθ are shown in

Fig. 7.21 for various incident photons with energies in the range from 1 keV
to 10 MeV interacting with hydrogen in part (a), carbon in part (b), and lead
in part (c). The solid curves are for simple Klein–Nishina expression given
as daσ

KN
C /dθ = Z deσ

KN
C /dθ; the curves accentuated with data points repre-

sent the Klein–Nishina electronic cross sections corrected with the incoherent
scattering function S(x, Z), i.e., daσC/dθ = S(x, Z) deσ

KN
C /dθ. The following

conclusions may be made from Fig. 7.21:

1. For a given absorber Z, the binding energy correction expressed with the
incoherent scattering function S(x, Z) is most significant at low photon
energies and diminishes with increasing photon energy. For example, in
lead the uncorrected and corrected 1 keV curves differ considerably, the
10 keV curves differ less, the 0.1 MeV curves even less, while for 1 MeV
and 10 MeV the uncorrected and corrected curves are identical.

2. For a given photon energy hν, the binding energy correction is more sig-
nificant for absorbers with higher atomic number Z. For example, the
uncorrected and corrected 0.1 MeV curves in hydrogen are identical,
for carbon, they are almost identical, and for lead they are significantly
different.

Binding Effects and Compton Energy Transfer Fraction

The theory of Compton interaction assumes that the photon interacts with
a “free and stationary” orbital electron of the absorber atom. Hence, the
Compton energy transfer fraction depends on the incident photon energy hν
but does not depend on absorber atomic number Z, except for exhibiting a
small and generally ignored Z dependence at low photon energies where elec-
tron binding to the nucleus affects the “free electron” Compton coefficients,
as described by the incoherent scattering function S(x, Z).

By way of example, Table 7.10 compares, for lead absorber and various
incident photon energies hν, the Compton mean energy transfer fractions fC

for “free electron” in row (2) and corrected for binding energy effects in row
(3). The corrected fC accounts for electron binding effects and was calculated
by Steve Seltzer.

In the MeV photon energy region the agreement between the “free elec-
tron” fC and the corrected fC is excellent even for high Z absorbers where
the binding effects are the most pronounced, indicating independence of fC

from absorber atomic number Z. At low photon energies, on the other hand,
there is some Z dependence, yet it is generally ignored because it occurs in
the energy range where the photoelectric contribution to the total attenuation
coefficient predominates and the Compton effect makes only an insignificant
contribution to the total attenuation coefficient.
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Fig. 7.21. Differential atomic cross section per unit scattering angle θ for Compton
effect, daσC/dθ, against scattering angle θ for various photon energies in the range
from 1 keV to 10 MeV interacting with hydrogen in (a), carbon in (b), and lead in
(c). The solid curves represent Klein–Nishina electronic data multiplied by absorber
atomic number Z; the curves accentuated with data points represent the Klein–
Nishina electronic data corrected with the incoherent scattering function S(x,Z)
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Table 7.10. “Free electron” mean energy transfer fraction fC (from Fig. 7.18 and
Table 7.8) and fC corrected for electron binding effects (data from Steve Seltzer)

hν (MeV) 0.01 0.1 1 10 100

fC (“free electron”) 0.019 0.139 0.440 0.684 0.796

fC (corrected for
electron binding)

0.023 0.148 0.443 0.684 0.796

7.3.14 Compton Atomic Cross Section
and Mass Attenuation Coefficient

In the energy region not affected by electron binding effects the Compton
atomic cross section aσ

KN
C is determined from the electronic cross section of

(7.104) using the standard relationship

aσ
KN
C = Z(eσKN

C ), (7.121)

where Z is the atomic number of the absorber. The Klein–Nishina Compton
electronic cross section eσ

KN
C is given for free electrons and is thus independent

of Z. This makes the atomic attenuation coefficient (cross section) aσc linearly
dependent on Z, as shown in (7.121).

The Compton mass attenuation coefficient σC/ρ is calculated from the
Compton atomic cross section aσ

KN
C with the standard relationship

σKN
C

ρ
=
NA

A
aσ

KN
C , (7.122)

which can be expanded using (7.113) to read

σKN
C

ρ
=
NA

A
aσ

KN
C =

ZNA

A
eσ

KN
C ≈ 1

2
NA(eσKN

C ). (7.124)

Since Z/A ≈ 0.5 for all elements with the exception of hydrogen for
which Z/A = 1, σC/ρ is essentially independent of Z, as shown in (7.124).
In reality, Z/A = 0.5 for low atomic number absorbers but with increasing
Z the ratio Z/A gradually falls to Z/A ≈ 0.4 for very high atomic number
absorbers, implying a small yet non-negligible Z dependence of σKN

C /ρ.
Tables 7.11 and 7.12 list the Compton atomic cross section aσC and mass

attenuation coefficient σC/ρ, respectively, for 10 keV and 1 MeV photons inter-
acting with various absorbers in the range from hydrogen to lead. Columns
(5) display the atomic cross sections aσC incorporating binding energy cor-
rections, while columns (6) display the Klein–Nishina atomic cross sections
aσ

KN
C = Z(eσKN

C ) calculated from (7.121) by a simple multiplication of the
electronicKlein–Nishina coefficients eσ

KN
C with the absorber atomic number Z.
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Table 7.11. Compton atomic cross sections aσc and mass attenuation coefficients
σc/ρ at photon energy hν of 10 keV for various absorbers

(1) (2) (3) (4) (5) (6) (7) (8)

Element Symbol Atomic Atomic aσc Z × eσKN
C

aσC

aσKN
C

σC/ρ

number mass (b/atom)a (b/atom)b
(
cm2/g

)c
Z A

Hydrogen H 1 1.008 0.60 0.64 0.938 0.0358
Carbon C 6 12.01 2.70 3.84 0.703 0.0135
Aluminum Al 13 26.98 4.74 8.33 0.569 0.0106
Copper Cu 29 63.54 8.15 18.57 0.439 0.0176
Tin Sn 50 118.69 12.00 32.03 0.375 0.0607
Lead Pb 82 207.2 15.60 52.52 0.297 0.0153

a. Data are from the NIST.

b. eσ
KN
C (hν = 10 keV) = 0.6405×10−24 cm2/electron = 0.6405 b/electron.

c.
σC

ρ
=
NA

A
aσC =

ZNA

A
eσ

KN
C ≈ NA

2
eσ

KN
C = 0.193 cm2/g. (7.123)

Table 7.12. Compton atomic cross sections aσc and mass attenuation coefficients
σc/ρ at photon energy hν of 1 MeV for various absorbers

(1) (2) (3) (4) (5) (6) (7) (8)

Element Symbol Atomic Atomic aσc Z × eσKN
C

aσC

aσKN
C

σC/ρ

number mass (b/atom)a (b/atom)b
(
cm2/g

)c
Z A

Hydrogen H 1 1.008 0.211 0.211 1.00 0.1261
Carbon C 6 12.01 1.27 1.27 1.00 0.0636
Aluminum Al 13 26.98 2.75 2.75 1.00 0.0613
Copper Cu 29 63.54 6.12 6.12 1.00 0.0580
Tin Sn 50 118.69 10.5 10.56 0.994 0.0534
Lead Pb 82 207.2 17.19 17.32 0.992 0.0500

a. Data are from the NIST.

b. eσ
KN
C (hν = 1 MeV) = 0.2112×10−24 cm2/electron = 0.2112 b/electron.

c.
σC

ρ
=
NA

A
aσC =

ZNA

A
eσ

KN
C ≈ NA

2
eσ

KN
C = 0.0636 cm2/g. (7.125)

The two coefficients (aσC and aσ
KN
C ) agree well for incident photon energy

hν of 1 MeV. However, the discrepancy between the two is significant for
photon energy of 10 keV, as also evident in Fig. 7.19.

We also note that at hν = 1 MeV the σC/ρ values follow straight from the
Klein–Nishina electronic cross sections and are affected only by the specific
value for Z/A. This is not the case for σc/ρ at hν = 10 keV since σc/ρ at
10 keV is affected not only by Z/A but also by the electronic binding effects
that are significant in this energy range for all Z; the larger is Z, the larger
is the binding effect, as shown in columns (5) and (6) of Table 7.11. Column
(7) of Tables 7.11 and 7.12 gives the ratio between atomic cross sections
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aσC corrected for electron binding effect and the Klein–Nishina atomic cross
section aσ

KN
C . At photon energy hν = 10 keV the ratio is smaller than 1.00,

especially so for high atomic number Z absorbers indicating significant binding
effects. On the other hand, at hν = 1 MeV the ratio is equal to 1.00, except for
very high Z where it is 1 % lower, indicating absence of the electron binding
effect even for very high Z absorbers.

7.3.15 Compton Mass Energy Transfer Coefficient

The Compton mass energy transfer coefficient (σC)tr /ρ is calculated from the
mass attenuation coefficient σC/ρ using the standard relationship

(σC)tr
ρ

=
σC

ρ

E
C

K

hν
= fC

σC

ρ
, (7.126)

where fC is the mean energy transfer fraction for the Compton effect given by
(7.113) and plotted as “The Compton Graph” in Fig. 7.18 which shows that
the Compton mean energy transfer fraction increases with increasing energy
from a low value of 0.019 at 10 keV, through 0.440 at 1 MeV, to reach a value
of 0.796 at 100 MeV. As a result of the Compton graph behavior we can state
that:

1. For low incident photon energies (σC)tr/ρ	 σC/ρ.
2. For high incident photon energies (σC)tr/ρ ≈ σC/ρ.

Figure 7.22 shows the aσC and aσ
KN
C data for lead from Fig. 7.19 and, in

addition, it also shows the binding energy effect on the Compton atomic
energy transfer coefficients of lead by displaying (aσC)tr and (aσKN

C )tr both
obtained by multiplying the aσC and aσ

KN
C data, respectively, with the appro-

priate Compton mean energy transfer fraction given by (7.113) and plotted
in Fig. 7.18.

7.4 Rayleigh Scattering

Rayleigh scattering is an interaction between a photon and absorber atom
characterized by photon scattering on bound atomic electrons. The atom
is neither excited nor ionized as a result of the interaction and after the
interaction the bound electrons revert to their original state. The atom as
a whole absorbs the transferred momentum but its recoil energy is very small
and the incident photon scattered with scattering angle θ has essentially the
same energy as the original photon. The scattering angles are relatively small
because the recoil imparted to the atom produces no atomic excitation or
ionization.

The Rayleigh scattering is named after physicist John W. Rayleigh who in
1900 developed a classical theory for scattering of electromagnetic radiation by
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Fig. 7.22. The Compton atomic attenuation coefficient (cross section) for lead
of Fig. 7.19 and the Compton atomic energy transfer coefficients for lead; dashed
curves are Klein–Nishina data for free unbound electrons; solid curves are data
incorporating electronic binding effects. Data are from the NIST

atoms. The effect occurs mostly at low photon energies hν and for high atomic
number Z of the absorber, in the energy region where electron binding effects
severely diminish the Compton Klein–Nishina cross sections. As a result of a
coherent contribution of all atomic electrons to the Rayleigh (i.e., coherent)
atomic cross section, the Rayleigh cross section exceeds the Compton cross
section in this energy region.

7.4.1 Differential Atomic Cross Section for Rayleigh Scattering

The differential Rayleigh atomic cross section daσR/dΩ per unit solid angle
is given as follows

daσR

dΩ
=

deσTh

dΩ
{F (x, Z)}2 =

r2e
2

(1 + cos2 θ) {F (x, Z)}2
, (7.127)

where

deσTh/dΩ is the differential Thomson electronic cross section [see (7.39)].
F (x, Z) is the so-called atomic form factor for Rayleigh scattering with

the momentum transfer variable x = sin(θ/2)/λ defined in
(7.120).

λ is the wavelength of the incident photon.
Z is the atomic number of the absorber.
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Fig. 7.23. Atomic form factor F (x,Z) for Rayleigh scattering plotted against the
momentum transfer variable x = sin (θ/2) /λ

The Rayleigh differential atomic cross section daσR/dθ per unit scattering
angle θ is

daσR

dθ
=

daσR

dΩ
dΩ
dθ

=
r2e
2

(1 + cos2 θ){F (x, Z)}22π sin θ (7.128)

= πr2e sin θ(1 + cos2 θ){F (x, Z)}2.

7.4.2 Form Factor for Rayleigh Scattering

Calculations of the atomic form factor F (x, Z) are difficult and, since they
are based on atomic wavefunctions, they can be carried out analytically only
for the hydrogen atom. For all other atoms the calculations rely on various
approximations and atomic models, such as the Thomas–Fermi, Hartree, or
Hartree–Fock model.

The atomic form factor F (x, Z) is equal to Z for small scattering angles
θ and approaches zero for large scattering angles θ. Its values are plotted in
Fig. 7.23 against the momentum transfer variable x = sin(θ/2)/λ for various
absorbers ranging in atomic number Z from 1 to 82.

Figure 7.24 is a plot of the Rayleigh differential atomic cross section per
unit scattering angle daσR/dθ against the scattering angle θ for hydrogen
and carbon, respectively, consisting of a product of the Thomson differential
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Fig. 7.24. Differential atomic cross section per unit scattering angle for Rayleigh
scattering daσR/dθ, given by (7.128), for incident photon energies of 1 keV, 3 keV,
and 10 keV for hydrogen in (a) and carbon in (b). The Thomson differential atomic
cross section daσTh/dθ (similar to the Thomson electronic cross section of Fig. 7.6)
for the two absorbing materials is shown by the dotted curves for comparison

electronic cross section per unit scattering angle deσTh/dθ given in (7.40)
and the square of the atomic form factor F (x, Z), as given in (7.128). For
comparison the Thomson differential atomic cross section daσTh/dθ is also
shown in Fig. 7.24. For hydrogen daσTh/dθ = deσTh/dθ, while for carbon
daσTh/dθ = 6 deσTh/dθ, with both curves symmetrical about θ = 1

2π.
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The daσR/dθ curves for various energies shown in Fig. 7.24 are not sym-
metrical about θ = 1

2π because of the peculiar shape of the atomic form factor
F (x, Z) that causes a predominance in forward Rayleigh scattering; the larger
the photon energy, the more asymmetrical is the daσR/dθ curve and the more
forward peaked is the Rayleigh scattering. The area under each daσR/dθ curve
gives the total Rayleigh atomic cross section aσR for a given photon energy
hν and absorber atomic number Z.

7.4.3 Scattering Angles in Rayleigh Scattering

The angular spread of Rayleigh scattering depends on the photon energy hν
and the atomic number Z of the absorber. It can be estimated from the
following relationship

θR ≈ 2 arcsin
(

0.026Z1/3

ε

)
, (7.129)

where

θR is the characteristic angle for Rayleigh scattering, representing the open-
ing half-angle of a cone that contains 75 % of the Rayleigh-scattered
photons.

Z is the atomic number of the absorber.
ε is the reduced photon energy, i.e., ε = hν/(mec

2).

As suggested by (7.129), the Rayleigh characteristic angle θR increases
with increasing Z of the absorber for the same hν and decreases with increas-
ing photon energy hν for the same Z. Table 7.13 lists the angle θR for photon
energies in the range from 100 keV to 10 MeV and various absorbers (carbon,
copper and lead), calculated from (7.129).

The main characteristics of Rayleigh scattering can be summarized as
follows:

1. At high photon energies (hν > 1 MeV) Rayleigh scattering is confined to
small angles for all absorbers.

2. At low photon energies hν, particularly for high Z absorbers, the angular
distribution of Rayleigh-scattered photons is much broader. In this energy
range the Rayleigh atomic cross section aσR exceeds the Compton atomic
cross section aσC but is nonetheless very small in comparison with the
photoelectric atomic cross section aτ . The Rayleigh atomic cross section
aσR is therefore often ignored in gamma ray transport as well as in shielding
barrier calculations.

3. Rayleigh scattering plays no role in radiation dosimetry, since no energy
is transferred to charged particles through Rayleigh scattering. However,
the scattering is of interest in diagnostic imaging because it has an adverse
effect on image quality.
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Table 7.13. The Rayleigh characteristic angle θR for various absorbers with atomic
number Z and incident photon energy hν in the range from 100 keV to 10 MeV,
calculated from (7.129)

Absorber Symbol Atomic Incident photon energy hν (MeV)
number Z

0.1 0.5 1 5 10

Carbon C 6 28◦ 6◦ 3◦ 0.6◦ 0.3◦

Copper Cu 29 48◦ 9◦ 5◦ 0.9◦ 0.5◦

Lead Pb 82 70◦ 13◦ 7◦ 1.3◦ 0.7◦

7.4.4 Atomic Cross Section for Rayleigh Scattering

The Rayleigh atomic cross section aσR can be obtained by determining the
area under the appropriate daσR/dθ curve plotted against scattering angle θ,
as shown in Fig. 7.24, or it can be calculated by integrating the Rayleigh
differential cross section per unit scattering angle daσR/dθ of (7.128) over all
possible scattering angles θ from 0 to π, i.e.,

aσR = πr2e

π∫
0

sin θ(1 + cos2 θ)[F (x, Z)]2dθ. (7.130)

Rayleigh atomic cross section aσR is shown with solid curves against incident
photon energy hν in the range from 1 keV to 1000 MeV in Fig. 7.25. For com-
parison, the figure also shows, with dashed curves, the Compton atomic cross
section aσC of Fig. 7.19 in the same energy range. The following conclusions
may be reached from Fig. 7.25:

1. At low photon energies, aσR exceeds aσC; the higher is the atomic number
of the absorber, the larger is the difference. However, at low photon energies
both aσR and aσC are negligible in comparison with the atomic cross section
for the photoelectric effect aτ , so both are usually ignored in calculations
of the total atomic cross section aμ for a given absorber at very low photon
energies.

2. The photon energy hνeq at which the atomic cross sections for Rayleigh
and Compton scattering are equal, i.e., aσR = aσC, is proportional to the
atomic number Z of the absorber. From Fig. 7.25 we also note that for
photon energies exceeding hνeq the Rayleigh atomic cross section aσR is
inversely proportional to (hν)2; i.e.,

aσR ∝ 1
(hν)2

. (7.131)

3. In general, as evident from Fig. 7.25, we may also state that, for a given
photon energy hν, the Rayleigh atomic coefficient aσR is proportional to
Z2, where Z is the atomic number of the absorber.
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Fig. 7.25. Atomic cross sections for Rayleigh scattering aσR shown with solid curves
and atomic cross sections for Compton scattering aσC shown with dashed curves
against incident photon energy hν in the range from 1 keV to 1000 MeV for various
absorbers ranging from hydrogen to lead. For very low photon energies aσR curves
exhibit a plateau with a value of eσThZ

2 where eσTh is the energy independent
Thomson cross section and Z is the atomic number of the absorber (note that
F (x,Z) → Z for low hν, i.e., large λ. For a given absorber, the photon energy hνeq
at which aσR = aσC is indicated with o. Data are from the NIST

7.4.5 Mass Attenuation Coefficient for Rayleigh Scattering

The Rayleigh mass attenuation coefficient σR/ρ is determined through the
standard relationship

σR

ρ
=
NA

A
aσR. (7.132)

Two important conclusions can be made:

1. Since aσR ∝ Z2/(hν)2 and A ≈ 2Z, we conclude that σR/ρ ∝ Z/(hν)2,
where Z and A are the atomic number and mass, respectively, of the
absorber.

2. Since no energy is transferred to charged particles in Rayleigh scattering,
the energy transfer coefficient for Rayleigh scattering is zero: (σR)tr = 0.

3. At very low photon energies hν the Rayleigh atomic cross section aσR

for a given absorber of atomic number Z exhibits a plateau at Z2
eσTh

where eσTh is the energy independent Thomson electronic cross section of
0.665 b/electron given in (7.41).
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7.5 Photoelectric Effect

An interaction between a photon and a tightly bound orbital electron of an
absorber atom is called photoelectric effect (colloquially often referred to
as photoeffect). In the interaction the photon is absorbed completely and
the orbital electron is ejected with kinetic energy EK. The ejected orbital
electron is called a photoelectron. The photoelectric interaction between a
photon of energy hν and a K-shell atomic electron is shown schematically in
Fig. 7.26.

In contrast to Compton effect which occurs between photon and a “free
(loosely bound) electron”, the photoelectric effect occurs between a photon
and a “tightly bound” electron. As discussed in Sect. 7.1, the distinction
between “loose” and “tight” binding arises from the relative magnitude of
photon energy hν and electron shell binding energy EB rather than from an
absolute value of hν or EB. Thus, when EB 	 hν, the electron is said to be
loosely bound or “free” and when EB � hν the electron is assumed tightly
bound.

7.5.1 Conservation of Energy and Momentum
in Photoelectric Effect

The requirement for electron tight binding to the atom arises from consid-
eration of total energy and momentum conservation which for photon – free
electron photoelectric interaction would be expressed as follows:

Fig. 7.26. Schematic diagram of the photoelectric effect. A photon with energy
hν interacts with a K-shell electron. The photon is absorbed completely and the
K-shell electron is ejected from the atom as photoelectron with kinetic energy EK =
hν−EB(K), where EB(K) is the binding energy of the K-shell electron. The vacancy
in the K shell is subsequently filled with a higher orbit electron and the energy
of the electronic transition will be emitted either in the form of a characteristic
(fluorescence) photon or in the form of an Auger electron
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1. Total energy before interaction: hν +mec
2 (7.133)

Total energy after interaction: EK +mec
2 (7.134)

Conservation of energy : hν = EK (7.135)

2. Momentum before interaction: pν =
hν

c
(7.136)

Momentum after interaction:

pe =

√
E2 + (mec2)

2

c
=
EK

c

√
1 +

mec2

EK
(7.137)

Conservation of momentum:
hν

c
=
EK

c

√
1 +

mec2

EK
(7.138)

or, after multiplying (7.138) by c:

hν = EK

√
1 +

mec2

EK
, (7.139)

where E,EK and mec
2 are the total energy, kinetic energy, and rest

mass energy of the photoelectron, respectively.

Equations (7.135) and (7.139) clearly contradict one another, since (7.135)
states that hν = EK and (7.139) states that hν > EK. One concludes that
in a photoelectric interaction the photon and free electron alone could not
simultaneously conserve the total energy and momentum and therefore pho-
toelectric effect cannot occur between a photon and a free electron. The extra
energy and momentum carried by the photon are transferred to a third par-
ticle, the parent atom of the photoelectron, but this can happen only when
the photoelectron is tightly bound to the parent atom which means that the
electron binding energy EB and the incident photon energy hν are of the same
order of magnitude, with hν slightly exceeding EB.

The main characteristics of the photoelectric effect are thus as follows:

1. The extra energy and momentum carried by the photon are transferred to
the absorbing atom; however, because of the relatively large nuclear mass,
the atomic recoil energy is exceedingly small and may be neglected. The
kinetic energy EK of the ejected photoelectron is assumed to be equal to
the incident photon energy hν less the binding energy EB of the orbital
electron, i.e.,

EK = hν − EB. (7.140)

2. When the photon energy hν exceeds the K-shell binding energy EB(K) of
the absorber, i.e., hν > EB(K), about 80 % of all photoelectric absorptions
occur with the K-shell electrons of the absorber and the remaining 20 %
occur with less tightly bound higher shell electrons.
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3. The energy uptake by the photoelectron may be insufficient to bring about
its ejection from the atom in a process referred to as atomic ionization but
may be sufficient to raise the photoelectron to a higher orbit in a process
referred to as atomic excitation.

4. The vacancy that results from the emission of the photoelectron from
a given shell will be filled by a higher shell electron and the transition
energy will be emitted either as a characteristic (fluorescence) photon or
as an Auger electron, the probability for each governed by the fluorescence
yield ω, as discussed in Sections 4.1 and 7.5.7.

7.5.2 Angular Distribution of Photoelectrons

The angular distribution of photoelectrons depends on the incident photon
energy hν. The photoelectron emission angle φ is defined as the angle between
the incident photon direction and the direction of the emitted photoelec-
tron, similarly to the definition of the recoil electron angle φ in Compton
scattering (see Fig. 7.7). At low hν of the order of 10 keV photoelectrons
tend to be emitted at angles close to 90◦ to the incident photon direction,
hence in the direction of the electric vector of the incident photon. As hν
increases, however, the photoelectron emission peak moves progressively to
more forward photoelectron emission angles, somewhat akin to the emission
of bremsstrahlung photons in electron bremsstrahlung interaction, discussed
in Sect. 4.2.8.

Figure 7.27 displays on a Cartesian plot the directional distribution of
photoelectron emission for various incident photon energies hν in the range
from hν = 10 keV with maximum emission angle φmax ≈ 70◦ to hν = 10 MeV
with φmax ≈ 2◦. The ordinate (y axis) plots dn/dφ, the relative number of
photoelectrons ejected between two cones with half-angles of φ and φ + dφ
for a given incident photon energy hν. While, for a given hν, the relative
number of photoelectrons per angular interval varies with emission angle φ,
all photoelectrons irrespective of emission angle φ are emitted with the same
kinetic energy given in (7.140).

7.5.3 Atomic Cross Section for Photoelectric Effect

The atomic cross section (attenuation coefficient) for the photoelectric effect
aτ as a function of the incident photon energy hν exhibits a characteristic saw-
tooth structure in which the sharp discontinuities, referred to as absorption
edges, arise whenever the photon energy coincides with the binding energy of
a particular electron shell. Since all shells except the K shell exhibit a fine
structure, the aτ curve plotted against the incident photon energy hν also
exhibits a fine structure in the L, M, . . . etc. absorption edges. Three distinct
energy regions characterize the atomic cross section aτ :
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Fig. 7.27. Angular distribution of photoelectrons ejected between two cones with
half angles of φ and φ + dφ for a given incident photon energy hν in the incident
photon energy hν range from 10 keV to 10 MeV. Angle φ is the photoelectron
emission angle defined as the angle between the incident photon direction and the
direction of the emitted photoelectron, as shown in the inset. Graph is based on
data from Robley Evans. All peaks in angular distribution are normalized to 1

1. Region in the immediate vicinity of absorption edges.
2. Region at some distance from the absorption edge.
3. Region in the relativistic region far from the K absorption edge.

Theoretical predictions for aτ in region (1) are difficult and uncertain. For
region (2) the atomic attenuation coefficient for K-shell electrons aτK is given
as follows

aτK = α4 (eσTh)Zn

√
32
ε7
, (7.141)

where

ε is the usual normalized photon energy, i.e., ε = hν/(mec
2).

α is the fine structure constant (1/137).
Z is the atomic number of the absorber.

eσTh is the Thomson electronic cross section given in (7.41).
n is the power for the Z dependence of aτK ranging from n = 4 at

relatively low photon energies to n = 4.6 at high photon energies.
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In the relativistic region (ε� 1), aτK is given as follows

aτK =
1.5
ε
α4Z5(eσTh). (7.142)

The following conclusions may be reached with regard to energy and atomic
number dependence of aτK:

1. The energy dependence of aτK is assumed to go as (1/(hν)3 at low photon
energies hν and gradually transforms into 1/(hν) at high hν.

2. The energy dependence for regions (2) and (3) can be identified from
Fig. 7.28 that displays the atomic cross section for the photoelectric effect
aτ against incident photon energy for various absorbers ranging from water
to lead.

3. Absorption edges are clearly shown in Fig. 7.28, the K absorption edges are
identified for aluminum (1.56 keV), copper (8.98 keV) and lead (88 keV).
The fine structures of the L and M absorption edges are also
displayed.

4. The atomic number Z dependence (aτ ∝ Zn) of aτ , where n ranges from
4 to ∼5, is also evident from Fig. 7.28.

Fig. 7.28. Photoelectric atomic cross section aτ against photon energy hν for vari-
ous absorbers. Energies of K-absorption edges are also indicated. Data are from the
NIST
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7.5.4 Mass Attenuation Coefficient for Photoelectric Effect

The mass attenuation coefficient for the photoelectric effect τ/ρ is calculated
from the atomic cross section aτ with the standard relationship

τ

ρ
=
NA

A
aτ, (7.143)

where A and ρ are the atomic number and density, respectively, of the
absorber.

7.5.5 Energy Transfer to Charged Particles
in Photoelectric Effect

In the photoelectric interaction between a photon of energy hν and an
absorber atom of atomic number Z the photoelectron is ejected from the atom
with a kinetic energy EK = hν−EB(j), leaving behind a vacancy in the shell
or subshell from which it was ejected. EB(j) stands for the binding energy of
the j-subshell electron. Since the photoelectric effect is an interaction between
a photon and the whole atom of the absorber, of all orbital electrons available
for a photoelectric interaction, the most tightly bound electron has by far the
highest probability for interaction with the incident photon. Therefore, pho-
tons with energy exceeding the K-shell binding energy of the absorber atom
are most likely to interact with K-shell electrons; photons with energy between
the L shell and the K shell binding energies are most likely to interact with
L shell electrons, etc.

The vacancy that is left behind by the photoelectron is subsequently filled
with an electron from a higher-level atomic shell, the resulting vacancy in the
higher level shell is filled by another even higher shell electron, and so on until
the vacancy migrates (“cascades”) to the outer shell of the atom and is filled
by a free electron from the environment to neutralize the ion. As discussed
in Sect. 4.1, the transition energies, which in total equal the binding energy
of the electron that was ejected as the photoelectron, are emitted from the
atom:

1. Either in the form of characteristic (fluorescence) photons.
2. Or in the form of Auger electrons including Coster–Kronig and super

Coster–Kronig electrons.
3. Or, most generally, in a combination of fluorescence photons and Auger

electrons.

The probability for photoelectric effect to occur is governed by the photoelec-
tric attenuation coefficient τ which depends on the absorber atomic number Z
and photon energy hν. As discussed in Sect. 4.1.2, the branching between emis-
sion of a fluorescence photon and emission of an Auger electron is governed
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by the fluorescence yield ωj for the given atom and for the given atomic shell
or subshell j.

Because of the presence of Auger electrons, in addition to the photoelectron
which is ejected from the atom with kinetic energy hν − EB(j), the mean
energy transferred to charged particles (photoelectron and Auger electrons)
in a photoelectric process E

PE

tr for hν > EB(j) is generally somewhere between
two possible extremes: hν − EB(j) and hν, defined as follows:

1. E
PE

tr = hν−EB(j) for ωj = 1. No Auger electrons are produced in the pho-
toelectric process. The photoelectron is the only charged particle released,
and its kinetic energy is hν − EB(j).

2. E
PE

tr = hν for ωj = 0. No characteristic (fluorescence) photons are pro-
duced in the photoelectric process so that, in addition to the photoelectron,
Auger electrons are also released. The photoelectron leaves the atom with
kinetic energy hν − EB(j) and the Auger electrons are released from the
atom with a combined kinetic energy equal to EB(j).

3. In general, 0 < ωj < 1, the mean energy transferred to charged parti-
cles in a photoelectric process E

PE

tr is between the two extremes discussed
above, i.e., hν − EB(j) < E

PE

tr < hν, and a combination of characteristic
(fluorescence) photons and Auger electrons is released in addition to the
photoelectron.

The mean energy transferred to charged particles in a photon interaction
with an absorber atom is an important dosimetric quantity, since all or a
sizeable portion of this energy will be absorbed in the medium and will con-
tribute to the radiation dose in the medium. In principle, determining the
mean energy transferred to charged particles in a photoelectric event E

PE

tr is
simple: one determines kinetic energy of all Auger, Coster–Kronig and super
Coster–Kronig electrons and adds the sum of these energies to the kinetic
energy of the photoelectron. In practice, however, because of cascade effects
and the large number of Auger electrons released, it is simpler to determine
the mean fluorescence emission energy XPE for a given shell vacancy and then
subtract XPE from the incident photon energy hν to obtain the total mean
energy transferred to charged particles (photoelectron and Auger electrons) as

E
PE

tr = hν −XPE. (7.144)

For use in radiation dosimetry, the mean photoelectric energy transfer frac-
tion fPE is defined as the mean fraction of the incident photon energy hν that
is transferred to kinetic energy of secondary charged particles (photoelectron
and Auger electrons) released in a photoelectric event, i.e.,

fPE =
E

PE

tr

hν
= 1 − XPE

hν
. (7.145)
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In general, the mean photoelectric fluorescence emission energy XPE is
given as

XPE(j) =
∑

j

Pjωjhνj =
∑

j

PjωjηjEB(j), (7.146)

where j stands for:

1. K shell and electronic subshells L1, L2, L3; M1, M2, . . . for hν ≥ EB (K).
2. Electronic subshells L1, L2, L3; M1, M2, . . . for EB(L1) ≤ hν < EB(K).
3. Electronic subshells L2, L3; M1, M2, M3, . . . for EB(L2) ≤ hν < EB(L1),

etc.

The parameters of (7.146), Pj , ωj , hνj, ηj , and EB(j), are defined below and
plotted for the K and L electronic shells in Fig. 7.29 against absorber atomic
number Z for all elements from Z = 1 to Z = 100:

EB(j) is the binding energy of subshell j electron, by definition equal to the
threshold energy for photoelectric interaction between a photon and
a subshell j electron.

Pj is the probability for the photoelectric effect, if it occurs, to occur in
the j subshell of an absorber atom. Of course, the photon energy
hν must exceed the threshold energy EB(j) for the photoelectric
event to occur in subshell j. Thus, for hν ≥ EB(j) → Pj �= 0;
for hν < EB(j) → Pj = 0.

ωj is the fluorescence yield for subshell j.
hνj is the mean fluorescence photon energy representing the energy of the

emitted j-subshell fluorescence photon and accounting for all possible
fluorescence photons emitted, for their relative intensities, as well as
for the resulting cascade fluorescence effects.

ηj is the fluorescence efficiency defined for emission of j-shell fluorescence
photon as the mean fraction of the j-subshell binding energy EB(j)
carried by the fluorescence photon.

7.5.6 Photoelectric Probability

The probability Pj for the photoelectric effect, if it occurs, to occur in the
j subshell of an absorber atom is determined with the help of the photoelectric
mass attenuation coefficient τ/ρ plotted against the photon energy hν to
encompass the K, L, and M absorption edges. In general, Pj is expressed as
follows

Pj =

(
1 −

j−1∑
n=0

Pn

)
ξj , (7.147)

where P0 = 0;
∑
Pj = 1; and ξj is an absorption edge parameter defined for

subshell j as



344 7 Interactions of Photons with Matter

ξj =
(τ/ρ)Hj − (τ/ρ)Lj

(τ/ρ)Hj
, (7.148)

with H and L designating the high and low values, respectively, of τ/ρ at
the K absorption edge or subedges (L1 , L2, etc). The numerator of (7.148)
represents the photon interactions in subshell j, while the denominator rep-
resents interactions in all subshells including subshell j that are available for
interaction.

Fig. 7.29. Various atomic parameters relevant to photoelectric effect plotted
against atomic number Z of the absorber: (a) fluorescence yields ωK, ωL, and ωm;
photoelectric probabilities PK and PL; fluorescence efficiencies ηK and ηL, and pho-
toelectric mean energy transfer fractions fPE for photon energies hν = EB (K)
and hν = EB (L1). (b) K-shell and L1, L2, L3-subshell binding energies; mean flu-
orescence photon energies hνK and hνL; and mean fluorescence emission energies
XPE (K) and XPE (L1)
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Fig. 7.30. Photoelectric mass attenuation coefficient τ/ρ against incident photon
energy hν for lead in the energy range from 1 keV to 100 keV covering the K, L, and
M absorption edges. High and low τ/ρ values at the K absorption edge as well as the
L and M absorption subedges are shown to help in the derivation of the absorption
edge parameter ξj

To illustrate the determination of ξj and Pj we plot in Fig. 7.30 the photo-
electric mass attenuation coefficient τ/ρ for lead in the photon energy range
from 1 keV to 100 keV. The graph covers the K, L, and M absorption edges
with associated subedges and displays the high and low τ/ρ values for the
K absorption edge (7.32 cm2/g and 1.56 cm2/g, respectively) as well as for
the three L subshells and five M subshells. Table 7.14 presents the absorption
edge parameters ξj for the K, L, and M shells of lead for various photon beam
energy ranges. The table also provides a summary of data required for deter-
mination of absorption edge parameters ξj for lead. Row (4) gives the K, L,
and M subshell binding energies; row (5) the K, L, and M fluorescence yields;
rows (6) and (7) the high and low τ/ρ values, respectively, at the K shell and
the L and M subshell absorption edges. The table also provides the photoelec-
tric probabilities Pj calculated with (7.148) for various photon energy regions
covering photon energies from EB (M1) = 3.9 keV to hν = ∞.

As discussed above, for subshells j with binding energy EB(j) exceeding
the photon energy hν, the photoelectric probability Pj is zero, i.e., for hν <
EB(j) → Pj = 0. On the other hand, for hν ≥ EB(j) the photoelectric
probability Pj is finite, smaller than 1 and larger than 0. In this energy range
the subshell whose binding energy EB(j) is the closest to hν has by far the
highest Pj value, so much so that it becomes practical and acceptable to
account only for the highest Pj in the calculation of the mean photoelectric
fluorescence emission energy XPE.
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Table 7.14. Binding energy EB(j), fluorescence yield ωj , mass attenuation coef-
ficients (τ/ρ)Hj and (τ/ρ)Lj , absorption edge parameters ξj , and photoelectric
probability Pj for K, L, and M shell electrons in lead

1 Photon energy range Shell K L M

2 Subshell – L1 L2 L3 M1 M2 M3 M4 M5

3 j 1 2 3 4 5 6 7 8 9

4 EB (keV) 88 15.9 15.2 13.0 3.9 3.6 3.1 2.6 2.5

5 ωshell 0.97 0.39 0.05

6 (τ/ρ)Hj 7.32 152 142 158 1360 1570 2140 2440 1380

7 (τ/ρ)Lj 1.56 131 104 63 1300 1490 1850 1930 790

8 ζj 0.79 0.138 0.283 0.601 0.044 0.051 0.136 0.209 0.428

9 hν ≥ EB (K) Psubshell 0.79 0.03 0.05 0.08 0 0 0.01 0.01 0.015

10 Pshell 0.79 0.16 0.035

11 EB (L1) ≤ hν < EB(K) Psubshell 0 0.138 0.244 0.370 0.011 0.012 0.030 0.040 0.065

12 Pshell 0 0.753 0.159

13 EB (L2) ≤ hν < EB (L1) Psubshell 0 0 0.283 0.431 0.013 0.014 0.035 0.047 0.076

14 Pshell 0 0.714 0.185

15 EB (L3) ≤ hν < EB (L2) Psubshell 0 0 0 0.601 0.018 0.019 0.049 0.065 0.106

16 Pshell 0 0.601 0.258

17 EB (M1) ≤ hν < EB (L3) Psubshell 0 0 0 0 0.044 0.049 0.123 0.164 0.265

18 Pshell 0 0 0.645

By way of example, we calculate the photoelectric probabilities PK and
PL for photons of energy hν = 100 keV and hν = 15.5 keV interacting with
lead. Row (4) of Table 7.14 shows that the 100 keV photon energy hν exceeds
the binding energy of the K-shell electron in lead (88 keV) suggesting that PK

will be the dominant probability for a photoelectric event. Similarly, the pho-
ton energy of 15.5 keV is between binding energies of the L1 (15.9 keV) and
L2 (15.2 keV) subshells indicating that the 15.5 keV photon can interact
neither with a K-shell electron (PK = 0) nor with a L1 subshell electron
(PL1 = 0) but can interact with L2 and L3 electrons as well as with all
higher shell electrons. Since in this case PK = 0, one expects PL given as
the sum PL1 +PL2 +PL2 to be the dominant probability for the photoelectric
interaction.

Equation (7.147) gives the following results for the photoelectric probabil-
ities PK and PL for 100 keV and 15.5 keV photons interacting with lead (see
Table 7.14):

1. For the hν = 100 keV photon interacting with lead atom:
hν > EB(K) = 88 keV

P0 = 0 (7.149)
PK = (1 − P0) ξK = 0.79 (7.150)
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PL1 = [1 − (P0 + PK)] ξL1 = (1 − 0.79)× 0.138 = 0.03 (7.151)

PL2 = [1 − (P0 + PK + PL1)] ξL2 = (1 − 0.82) × 0.283 = 0.05 (7.152)

PL3 = [1 − (P0 + PK + PL1 + PL2)] ξL3 = (1 − 0.87)× 0.601 = 0.08
(7.153)

PL = PL1 + PL2 + PL3 = 0.16 (7.154)

2. For hν = 15.5 keV photon interacting with lead:
EB(L1) = 15.9 keV < hν < EB(L2) = 15.2 keV

PK = 0 (7.155)

PL1 = 0 (7.156)

PL2 = [1 − (P0 + PK + PL1)] ξL2 = 0.283 (7.157)

PL3 = [1 − (P0 + PK + PL1 + PL2)] ξL3 = (1 − 0.283)0.601 = 0.431 (7.158)

PL = PL1 + PL2 + PL3 = 0.714 (7.159)

The photoelectric probabilities PK and PL calculated for the two photon ener-
gies in lead above are plotted in Fig. 7.31 and listed in Table 7.14 together
with probabilities for several other regions in photon energy hν spanning
the absorption edges, as defined for individual subshells in lead. The most
important photon energy region is the one for which the photon energy hν
matches or exceeds the K-shell binding energy EB(K). In this situation K-shell
parameters dominate the photoelectric probabilities and higher shell param-
eters, for simplicity, are generally ignored. The next photon energy region is
EB(L1) ≤ hν < EB(K) for which the L-shell parameters dominate, etc.

7.5.7 Fluorescence Yield

The fluorescence yield ωj was discussed in Sect. 4.1.2 and defined as the num-
ber of fluorescence (characteristic) photons emitted per vacancy in the given
shell or subshell j. It can also be regarded as the probability, after creation
of a shell or subshell vacancy, of fluorescence photon emission as opposed
to Auger electron emission. Consequently, the probability for emission of an
Auger electron following creation of a j-subshell vacancy is given as (1 − ωj).
The fluorescence yield ωj is defined for an individual electronic subshell j but
is commonly given for a shell as an average value over all subshells forming a
shell.

Fluorescence yields ωK, ωL, and ωM following creation of K, L, and M shell
electron vacancies, respectively, are plotted in Figs. 4.4 and 7.29(a) against
atomic number Z for all elements from Z = 1 to Z = 100. Figure 4.4 also
plots the probability for emission of Auger electrons (1 − ωj) against absorber
atomic number Z for vacancies in the K, L, and M shells.
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Fig. 7.31. Photoelectric probability Pj for various regions in incident photon energy
in the range from hν = EB (M1) = 3.9 keV to hν = ∞

For a given shell, the fluorescence yield ranges from 0 for low atomic num-
ber Z absorbers to a maximum value at high atomic number Z; for a given
absorber atomic number Z, the fluorescence yield decreases with increasing
principal quantum number of a shell. For example:

1. ωK ranges from ωK = 0 for absorbers with atomic numbers below Z = 10
through ωK = 0.5 for Z = 30 and saturates at ωK = 0.97 for absorbers
with very high atomic number Z.

2. ωL ranges from ωL = 0 for absorbers with atomic number below Z = 30
through ωL = 0.25 for Z = 70 and attains a value of ωL ≈ 0.5 for absorbers
with very high atomic number Z.

3. ωM ranges from ωM = 0 for Z < 60 to a low value of ωM = 0.05 for very
high atomic number Z absorbers.

7.5.8 Mean Fluorescence Photon Energy

The determination of the mean energy hνj of the j-subshell fluorescence pho-
ton is by no means a simple task. These photons result from x-ray and optical
transitions governed by well-known selection rules and are emitted with var-
ious intensities and energies depending on the subshell in which the allowed
x-ray transition originated.
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In the 1980s Hubbell determined hνK for all elemental absorbers by cal-
culating, for each given absorber, the intensity-weighted mean energy of all
possible K-shell fluorescence photons. In 1990s Seltzer refined the calculation
by also accounting for all cascade radiation transitions that accompany the
migration of the vacancy from the K shell to the outer shell of the absorber
atom. The main contribution to hνK comes from the intensity-weighted mean
energy for the possible K-shell fluorescence photons; however, Seltzer’s cas-
cade approach results in additional fluorescence photons from higher-level
electronic shells and increases Hubbell’s hνK values by a relatively small
percentage.

By way of an example, we determine the mean K-shell fluorescence energy
hνK in lead. Figure 7.32 shows for lead absorber an atomic energy level dia-
gram and K-shell fluorescence lines with their relative intensities normalized
to 100 % for the highest intensity K − L3(Kα1) transition. The energy level
diagram is displayed using both the original Siegbahn spectroscopic notation
as well as the new IUPAC notation, both notations discussed in Sect. 4.1.1.
A simple calculation for the lead absorber results in intensity-weighted mean
K-shell fluorescence photon energy of 76.5 keV. In addition, the main contri-
bution to cascade fluorescence will come from possible vacancy in L2 and L3

subshells, created by the two most probable Kα fluorescence photons.
The L-shell vacancies will be filled by electronic transitions from the M,

N or even higher shells creating fluorescence photons or Auger electrons with
energies of the order of 12 keV. Since the weight of the two Kα lines, as
shown in Fig. 7.32, is ∼80 % (relative intensity for the two lines is 160 out of
a total of 200) and the fluorescence yield ωL for lead is 0.4, we estimate the
cascade fluorescence contribution as ∼4 keV. Adding this result to the mean
K-shell fluorescence photon energy of 76.5 keV, gives a total hνK of 80.5 keV
resulting in a fluorescence efficiency of ηK = 0.915 for a lead absorber [note:
EB(K) = 88 keV for lead].

7.5.9 Mean Fluorescence Emission Energy

As indicated in (7.146), the mean photoelectric fluorescence emission energy
XPE(j) actually emitted in the form of a fluorescence photon following a
photoelectric event in the j subshell of an absorber atom is obtained by cor-
recting hνj for probabilities Pj and ωj . For a photon with energy hν exceeding
the K-shell binding energy EB(K) of the absorber and ignoring all possible
higher shell photoelectric interactions because of their small probability in
comparison with the probability for interaction in the K shell, the mean
fluorescence emission energy XPE(K) emitted after a photoelectric event is
approximated as

XPE(K) = PKωKhνK = PKωKηKEB(K), (7.160)
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Fig. 7.32. Atomic energy level diagram for the K, L, M, and N shells of lead,
illustrating the emission of K-shell fluorescence (characteristic) photons, their ener-
gies and relative intensities, normalized to 100 % for the Kα1 (K − L3) transition.
The K-shell characteristic (fluorescence) x-ray photons are identified in the standard
Siegbahn notation as well as in the new IUPAC notation

where we use only the first term of the summation given in (7.146) and

PK is the probability for the photoelectric effect, if it occurs, to occur in
the K shell of an absorber atom. As shown in Fig. 7.29(a), PK ranges
from PK ≈ 1 for low atomic number Z absorbers to PK ≈ 0.75 for high
Z absorbers.

ωK is the fluorescence yield for the K shell strongly dependent on absorber
atomic number Z, as shown in Figs. 4.4 and 7.29(a).

hνK is the mean K-shell fluorescence photon energy plotted against absorber
atomic number Z in Fig. 7.29(a).
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ηK is the fluorescence efficiency defined for emission of K-shell fluorescence
photon as the mean fraction of the K-shell binding energy carried by
the fluorescence photon. As shown in Fig. 7.29(a), ηK decreases slowly
from ηK ≈ 0.97 for low Z absorbers, reaches a broad minimum of
ηK ≈ 0.9 at Z ≈ 50 and then rises slowly to reach ηK = 0.95 for high
Z absorbers.

7.5.10 Mean Photoelectric Energy Transfer Fraction

As suggested by (7.144) and (7.160), the mean energy transferred to charged
particles (photoelectron and Auger electrons) in a K shell photoelectric event
E

PE

tr is in general given as

E
PE

tr = hν −XPE(K) = hν − PKωKηKEB(K) for hν > EB(K),
(7.161)

allowing us to write the mean photoelectric energy transfer fraction fPE, valid
for hν ≥ EB(K), as

fPE =
E

PE

tr

hν
= 1 − XPE

hν
= 1 − PKωKηKEB(K)

hν
. (7.162)

The photoelectric energy transfer fraction fPE ranges from fPE[hν = EB(K)]
= 1 − PKωKηK to fPE(hν → ∞) = 1; i.e., {fPE[EB(K)] = 1 − PKωKηK} ≤
fPE(hν) ≤ {1 = fPE(∞)}. Since each absorber Z has its own characteristic
EB(K), it follows that fPE depends not only on photon energy hν but also
on the atomic number Z of the absorber atom.

Figure 7.33(a) gives a plot of fPE(hν, Z) against photon energy hν for
hν > EB(K) and eight selected elements Z ranging from carbon representing
low Z absorbers to uranium representing high Z absorbers. The following
general conclusions can be made:

1. For all absorbers the fraction fPE(hν, Z) starts at its lowest value at the
K absorption edge where hν = EB(K) and then gradually approaches
fPE(hν, Z) = 1 with increasing photon energy hν.

2. For fPE(Z, hν) = 1, the incident photon energy hν for hν > EB(K) is
transferred to electrons in full. The photoelectron receives kinetic energy
[hν−EB(K)] and the remaining portion of energy amounting to EB(K) goes
either to Auger electrons for low Z absorbers or is essentially negligible in
comparison to hν for all absorbers at very high photon energies hν.

3. The dotted curve in Fig. 7.33(a) represents an envelope of points for the
value of fPE(Z, hν) at the absorption edge, i.e., fPE[hν = EB(K), Z] = 1−
PKωKηK against incident photon energy hν = EB(K). For low Z absorbers
fPE[EB(K)] is approximately equal to 1 and it then decreases with Z
until it levels off at a broad minimum amounting to fPE[EB(K)] = 0.3
for very high Z. The same data for fPE[hν = EB(K), Z] are also plotted
in Fig. 7.29(a) against atomic number Z of the absorber.
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Equations (7.161) and (7.162) are valid for photon energies hν exceeding the
absorber K-shell binding energy (K absorption edge energy) EB(K). We can
apply similar methodology to lower energy photons but must recognize that
in this energy range K-shell electrons will no longer contribute to photon
interaction. Since the L shell contains three subshells (L1, L2, and L3), we
limit the energy range to L1, the L subshell with the highest binding energy.
As shown in Fig. 7.31, for energies between the K and L absorption edge, i.e.,
EB(L1) ≤ hν < EB(K), the majority of photoelectric interactions will happen
with L-shell electrons (PK = 0; PL = 0.753; PM = 0.159) rather than with
higher shell electrons and we write the mean photoelectric energy transfer
fraction fPE(hν, Z) as

fPE(hν, Z) =
E

PE

tr

hν
= 1 − PLωLhνL

hν
= 1 − PLωLηLEB(L1)

hν
, (7.163)

with parameters PL, ωL, and ηL plotted in Fig. 7.29(a) and EB(L1) plotted in
Fig. 7.29(b).

Figure 7.33(b) extends the fPE range of photon energies into the region
between the L and K absorption edges and plots fPE(hν, Z) for the eight
selected elements of Fig. 7.33(a) for this energy range. The effect of the K
absorption edge on fPE(hν, Z) is now clearly visible, especially for high Z
absorbers. For a given absorber, the minimum value in the L shell fPE(hν, Z)
which occurs at hν = EB(L1) exceeds by a significant margin the minimum
fPE value for the K shell, as shown by the two dashed curves connecting the
minimum fPE values for the K and L shells.

Since, as shown in Fig. 7.29(a), the fluorescence yield ωM is zero for all
elements with Z < 60 and for Z > 60 it rises slowly to attain a value ωM ≈ 0.05
for the very high Z absorbers, one can surmise that:

1. Fluorescence emission from high-level electronic shells is essentially negli-
gible for all absorbers, even those with very high atomic number Z.

2. Extension of fPE(hν, Z) data to energies below EB(L1) will result in
fPE(hν, Z) ≈ 1 for all absorbers and all photon energies hν < EB(L1).

3. The mean photoelectric energy transfer fraction fPE(hν, Z), plotted in
Fig. 7.33(b) and covering photon energies exceeding the binding energy of
the L1 subshell, can be used for all photon energies hν and absorber atomic
numbers Z. For photon energies below EB(L1) for a given absorber, it is
reasonable to use the approximation fPE(hν, Z) ≈ 1.

A summary of relevant atomic photoelectric parameters is given in Table 7.15
for eight selected absorbers ranging from carbon to uranium. Data in rows
(3) through (9) are relevant for photon energies exceeding the K-shell binding
energy EB(K); data in rows (10) through (16) are relevant for photon ener-
gies between EB(L1) and EB(K). Row (10) of the table lists fPE[EB(K), Z]
for photon energy hν equal to the K-shell electron binding energy EB(K) or
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Fig. 7.33. Mean photoelectric energy transfer fraction fPE against photon energy
hν for eight selected absorber atoms ranging from low Z carbon to high Z uranium.
(a) For photon energy exceeding the K-shell binding energy while (b) extends the
energy range downwards to EB(L1). The dashed curves connect fPE points for which
hν = EB(K) and hν = EB(L1)

K-absorption edge energy, representing the lowest value attained by fPE for
a given Z. Row (16) of the table lists fPE[EB(L1), Z] for photon energy equal
to the L1 subshell binding energy EB(L1) or L1 adsorption edge energy.
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Table 7.15. Various photoelectric parameters for the K and L shells of eight selected
elements ranging from low atomic number carbon to high atomic number uranium. The
following quantities that were already plotted in Fig. 7.29 are tabulated: photoelectric prob-
abilities PK and PL; fluorescence yields ωK and ωL; fluorescence efficiencies ηK and ηL;
binding energies EB(K) and EB(L); mean fluorescence photon energies hνK and hνL; mean
fluorescence emission energies XPE(K) and XPE(L); and mean photoelectric energy transfer
fractions fPE for photon energies hν = EB(K) and hν = EB(L1)

1. Element C Al Cu Mo Sn W Pb U

2. Atomic number Z 6 13 29 42 50 74 82 92

3. PK 1.0 0.911 0.871 0.852 0.839 0.803 0.788 0.767

4. ωK 0.002 0.036 0.446 0.764 0.859 0.957 0.968 0.976

5. ηK 0.982 0.953 0.909 0.895 0.892 0.906 0.915 0.925

6. EB(K) (keV) 0.284 1.56 8.98 20.0 29.2 69.5 88.0 115.6

7. hvK = ηKEB(K) (keV) 0.279 1.49 8.16 17.9 26.1 63.0 80.5 106.9

8. XPE(K) = PKωKhvK (keV) 0 0.05 3.17 11.7 18.8 48.4 61.4 80.1

9. fPE[EB(K)] = 1 − PKωKηK 1.0 0.969 0.647 0.417 0.357 0.304 0.302 0.307

10. PL – – 0.883 0.827 0.803 0.761 0.752 0.742

11. ωL 0 0 0.006 0.039 0.081 0.304 0.386 0.478

12. ηL – – 0.839 0.799 0.783 0.728 0.706 0.669

13. EB(L1) (keV) 0.013 0.118 1.1 2.87 4.47 12.1 15.9 21.8

14. hνL = ηLEB(L1) (keV) 0 0 0.92 2.29 3.50 8.80 11.2 14.6

15. XPE(L) = PLωLhvL (keV) 0 0 0.005 0.074 0.227 2.03 3.25 5.17

16. fPE[EB(L1)] = 1 − PLωLηL 1.0 1.0 0.996 0.974 0.949 0.832 0.795 0.763

PK and PL Photoelectric probability for the K shell and L shell, respectively; also defined

as fraction of all photoelectric interactions that occur in K shell and L shell,

respectively.

ωK and ωL Fluorescence yield for the K shell and the L shell, respectively.

ηK and ηL Fluorescence efficiency for the K shell and the L shell, respectively.

EB(K) Binding energy of orbital electron in the K shell.

EB(L1) Binding energy of orbital electron in the L1 subshell hvK Mean fluorescence

photon energy for all allowed fluorescence x-ray transitions including

cascade effects following formation of a K-shell vacancy.

hvL Mean fluorescence photon energy for all allowed fluorescence x-ray transitions

including cascade effects following formation of a L-shell vacancy.

XPE(K) Mean fluorescence emission energy for K-shell photoelectric process.

XPE(L) Mean fluorescence emission energy for L-shell photoelectric process.

fPE[EB(K)] Photoelectric mean energy transfer fraction for incident photon energy

hν = EB(K).

fPE[EB(L1)] Photoelectric mean energy transfer fraction for incident photon energy

hν = EB(L1).
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7.5.11 Mass Energy Transfer Coefficient for Photoelectric Effect

The mass energy transfer coefficient for the photoelectric effect (τK)tr/ρ for
hν ≥ EB(K) is given by the following relationship

(τK)tr
ρ

=
τ

ρ

(E
PE

K )tr
hν

=
τ

ρ
fPE =

τ

ρ

hν − PKωKηKEB (K)
hν

=
τ

ρ

(
1 − PKωKηKEB (K)

hν

)
, (7.164)

where fPE = 1−PKωKηKEB(K)/(hν) is the mean photoelectric energy trans-
fer fraction, providing the fraction of the incident photon energy transferred
from the photon to charged particles (photoelectron and Auger electrons)
in a photoelectric process. All other parameters of (7.164) were defined in
Sect. 7.5.5.

7.6 Pair Production

When the incident photon energy hν exceeds 2mec
2 = 1.02 MeV, with mec

2

the rest energy of electron and positron, the production of an electron–positron
pair in conjunction with a complete absorption of the photon by absorber atom
becomes energetically possible. For the effect to occur, three quantities must
be conserved: energy, charge, and momentum.

For hν > 2mec
2, total energy and charge can be conserved even if pair

production occured in free space. However, to conserve the linear momentum
simultaneously with total energy and charge, the effect cannot occur in free
space; it can only occur in the Coulomb field of a collision partner (either
atomic nucleus or orbital electron) that can take up a suitable fraction of the
momentum carried by the photon. The energy distribution and angular dis-
tribution of electrons and positrons in pair production are complex functions
of the incident photon energy hν and absorber atomic number Z.

7.6.1 Conservation of Energy, Momentum and Charge
in Pair Production

Before the pair production interaction the incident photon has energy Eν =
hν > 2mec

2 and momentum pν = hν/c. In the interaction an electron–
positron pair is produced with a total energy Epair = 2γmec

2 and total
momentum ppair = 2γmeυ. A summary of parameters for before and after
pair production interaction in free space is given in Table 7.16.

Based on data in Table 7.16 the total energy conservation in “free space”
pair production would be expressed as

Eν = hν ≡ EPair = 2γmec
2, (7.165)
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Table 7.16. Parameters of pair production interaction in “free space”

Before the pair production interac-
tion in “free space”

After the pair production interac-
tion in “free space”

Total energy before interaction Total energy after interaction

Eν = hν (7.166) EPair = 2γmec
2 (7.167)

Momentum before the interaction Momentum after the interaction

pν =
hν

c
(7.168) pPair = 2γmeυ = EPair

υ

c2
(7.169)

Total charge before the interaction Toatal charge after the interaction
0 0

while the conservation of momentum would be written as follows

pν =
hν

c
≡ ppair = 2γmeυ = 2γmec

2 υ

c2
= Epair

υ

c2
= Eν

υ

c2
= pν

υ

c
. (7.170)

Equation (7.170) is contradictory and shows that both total energy and
momentum cannot be conserved simultaneously. Since the particle velocity
υ is always smaller than c, it follows that pν , the momentum before the
pair production interaction, is always larger than ppair, the total momentum
after the pair production interaction. The photon possesses momentum excess
that cannot be absorbed by the electron–positron pair, therefore, it must be
absorbed by a collision partner, be it the atomic nucleus or an orbital elec-
tron of the absorber. Thus, in an absorber atom two collision partners are
available for absorbing the extra photon momentum: the atomic nucleus and
orbital electrons:

1. When the extra momentum is absorbed by the atomic nucleus of the
absorber, the recoil energy, as a result of the relatively large nuclear mass,
is exceedingly small and the effect is described as the standard pair produc-
tion (usually referred to as nuclear pair production). Two particles (electron
and positron) leave the interaction site.

2. When an orbital electron of the absorber picks up the extra photon momen-
tum, the recoil energy of the orbital electron may be significant and the
effect is described as the pair production in the field of electron, i.e., elec-
tronic pair production better known as triplet production. Three particles
(two electrons and a positron) leave the interaction site.

The total charge before the pair production interaction is zero and the
total charge after interaction is also zero. The charge conservation rule is thus
satisfied in pair production. The nuclear pair production and triplet produc-
tion interactions are shown schematically in Fig. 7.34, nuclear pair production
in part (a), triplet production in part (b).
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Fig. 7.34. Schematic representation of pair production: (a) nuclear pair production
in the Coulomb field of the absorber nucleus and (b) electron pair production (triplet
production) in the Coulomb field of an orbital electron

7.6.2 Threshold Energy for Nuclear Pair Production
and Triplet Production

In contrast to other common photon interactions, such as photoelectric effect,
Rayleigh scattering and Compton scattering, pair production exhibits a clear
threshold energy below which the effect cannot happen. The threshold energy
is derived following the procedure described in detail in Sect. 5.2.3 that is
based on the invariant: E2 − p2c2 = invariant where E and p are the total
energy and total momentum, respectively, before and after the interaction.
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Table 7.17. Parameters for photon energy threshold calculation in nuclear pair
production using the invariant E2 − p2c2 = invariant

Before the pair production interac-
tion (in laboratory coordinate sys-
tem)

After the pair production interac-
tion (in center-of-mass coordinate
system)

Total energy before interaction Total energy after interaction

(hν)NPP
thr +mAc

2 (7.171) (mAc
2 + 2mec

2) (7.172)

Momentum before interaction Momentum after interaction

(hν)NPP
thr

c
(7.173)

0

Table 7.18. Parameters for photon energy threshold calculation in triplet produc-
tion using the invariant E2 − p2c2 = invariant

Before the triplet production inter-
action (in laboratory coordinate
system)

After the triplet production inter-
action (in center-of-mass coordinate
system)

Total energy before interaction Total energy after interaction

(hν)TP
thr +mec

2 (7.174) 3mec
2 (7.175)

Momentum before interaction Momentum after interaction

(hν)TP
thr

c
(7.176)

0

For pair production in the field of the nucleus (nuclear pair production:
NPP) the conditions for before the interaction (in the laboratory system)
and for after the interaction (in the center-of-mass system) are written, as
shown in Table 7.17, with (hν)NPP

thr the threshold photon energy for nuclear
pair production and mAc

2 the rest energy of the nucleus, the interaction
partner.

The invariant E2 − p2c2 = invariant for before and after the nuclear pair
production event is now written as

{
(hν)NPP

thr +mAc
2
}2

−
(

(hν)NPP
thr

c

)2

c2 =
(
mAc

2 + 2mec
2
)2 − 0, (7.177)
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resulting in the following expression for pair production threshold energy
ENPP

thr = (hν)NPP
thr

ENPP
thr = (hν)NPP

γthr = 2mec
2

(
1 +

mec
2

mAc2

)
= (1.022 MeV) ×

(
1 +

mec
2

mAc2

)
.

(7.178)

Threshold energy for pair production in the field of the nucleus is
2mec

2[1 +
(
mec

2
)
/
(
mAc

2
)
] with 2mec

2 accounting for materialization of the
electron–positron pair and the minute energy of 2

(
mec

2
)2
/
(
mAc

2
)

expended
for nuclear recoil in order to conserve the momentum of the incident photon
(hν/c). In the first approximation we can use (hν)NPP

thr ≈ 2mec
2, since the ratio

mec
2/mAc

2 is very small, indicating that the recoil energy of the absorber
nucleus, which enabled the pair production event, is exceedingly small.

For triplet production (TP) the conditions for before the interaction
(in the laboratory system) and for after the interaction (in the center-of-mass
system) are written, as shown in Table 7.18, with (hν)TP

thr the threshold photon
energy for triplet production and mec

2 the rest mass of the orbital electron,
the interaction partner.

Note: The total energy after the triplet interaction is 3mec
2 to account

for rest energies of the orbital electron which enables the interaction as
well as for the electron–positron pair that is produced in the interaction
(materialization).

The invariant E2 − p2c2 = invariant for before and after the triplet
production event is now written as

{
(hν)TP

thr +mec
2
}2

−
[
(hν)TP

thr

]2
=
(
3mec

2
)2 − 0, (7.179)

resulting in the following expression for the triplet production threshold
energy ETP

thr

ETP
thr = (hν)TP

thr = 4mec
2 = 2.044 MeV. (7.180)

The threshold energy for triplet production is 4mec
2 consisting of 2mec

2

for materialization of the electron–positron pair and 2mec
2 for recoil energy

of the three participating particles with each obtaining kinetic energy of
2
3mec

2.

7.6.3 Energy Distribution of Electrons and Positrons
in Nuclear Pair Production and Triplet Production

In both the nuclear pair production and in triplet production the energy
converted into mass (materialization) is 2mec

2, so energy conservation is
expressed as:
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1. For pair production, ignoring the minute kinetic energy transferred to recoil
energy of the nucleus

hν = 2mec
2 + (EK)e− + (EK)e+ (7.181)

2. For triplet production

hν = 2mec
2 + (EK)e− + (EK)e+ + (EK)orb.el. , (7.182)

where (EK)e− and (EK)e+ are kinetic energies of the electron and positron,
respectively, of the electron–positron pair produced in the nuclear pair pro-
duction and triplet production. (EK)orb.el. is the kinetic energy of the orbital
electron which, with its Coulomb field, enabled the triplet production event
and was subsequently ejected from the absorber atom.

The total kinetic energy transferred to charged particles (electron and
positron) in nuclear pair production is

(ENPP
K )tr = hν − 2mec

2, (7.183)

ignoring the minute recoil energy of the nucleus. Generally, the electron and
the positron do not receive equal kinetic energies but their average is given as

E
NPP

K =
hν − 2mec

2

2
. (7.184)

The mean energy transferred to each charged particle released in the
absorber is thus 1

2 (hν−2mec
2) in nuclear pair production and 1

3 (hν−2mec
2) in

triplet production. The actual energy distribution among the charged particles
released or produced in the absorber follows very broad general guidelines:

1. For nuclear pair production, all distributions of the available energy(
hν − 2mec

2
)

are almost equally probable except for the extreme case in
which one particle would obtain all the available energy and the other
particle none of it.

2. For triplet production, F. Perrin, who also was the first to derive the thresh-
old energy of 4mec

2 for triplet production, showed that the kinetic energy
of each of the three particles released lies within limits defined by the
following expression

EK =
ε2 − 2ε− 2 ± ε

√
ε (ε− 4)

2ε+ 1
mec

2, (7.185)

where ε, like in the Compton effect, is defined as the photon energy hν
normalized to electron rest mass energy mec

2

ε =
hν

mec2
. (7.186)
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3. For triplet production threshold energy of hν = 4mec
2 Perrin’s equation

reduces to EK = 2
3mec

2, meaning that each of the three particles carries
1/3 of the total energy (2mec

2) available for particle recoil. Note: Of the
4mec

2 threshold energy, 2mec
2 goes for materialization of the electron–

positron pair and the remaining 2mec
2 goes into combined recoil energy of

the three particles.
4. For example, for a 20 MeV photon Perrin’s equation (7.185) predicts that

the kinetic energies of each one of the three particles released will lie
between limits of 0.68 keV and 18.7 MeV.

7.6.4 Angular Distribution of Charged Particles
in Pair Production

Like the energy distribution, the angular distribution of electrons and positrons
produced in pair production is a complex function of incident photon energy
hν and absorber atomic number Z. Walter Heitler and Hans Bethe are cred-
ited with carrying out the seminal theoretical work on this problem. With
increasing incident photon energy hν the distribution of charged particles is
peaked increasingly in the forward direction. For very high photon energies
with ε = hν/(mec

2) � 1, the mean angle θ of positron and electron emission
is of the order of θ ≈ 1/ε with respect to the direction of the incident photon,
resulting in a forward peaked angular distribution of electrons and positrons.

7.6.5 Nuclear Screening

For very high photon energies (hν > 20 MeV) significant contribution to the
pair production cross section may come from interaction points that lie outside
the orbit of K shell electrons. The Coulomb field in which the pair produc-
tion occurs is thus reduced because of the screening of the nucleus by the
two K-shell electrons, thereby requiring a screening correction in theoretical
calculations. Hans Bethe and Walter Heitler used the Thomas–Fermi atomic
model (see Sect. 2.4.3) in their theory of pair production to describe the elec-
trostatic potential resulting from the nuclear charge in conjunction with the
K shell electrons producing the screening effect.

7.6.6 Atomic Cross Section for Pair Production

The theoretical derivations of atomic cross sections for pair production aκ
are very complicated, some based on Born approximation, others not, some
accounting for nuclear screening and others not. In general, the atomic cross
sections for pair production in the field of a nucleus or orbital electron appear
as follows

aκ = αr2eZ
2P (ε, Z), (7.187)
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where

α is the fine structure constant (α = 1/137).
re is the classical electron radius

[
re = e2/

(
4πε0mec

2
)

= 2.818 fm
]
.

Z is the atomic number of the absorber.
P (ε, Z) is a complicated function of the photon energy hν and atomic

number Z of the absorber, as given in Table 7.19.

It is evident from (7.187) through (7.191) and from Table 7.19 that, aside
from the effects of nuclear screening by K-shell electrons, the atomic cross
section for nuclear pair production aκNPP is proportional to Z2, while the
atomic cross section for triplet production aκTP is linearly proportional to Z.
In general, the relationship between aκNPP and aκTP is given as follows

aκNPP

aκTP
= ηZ, (7.192)

where η is a parameter, depending only on hν, and, according to Robley Evans,
equal to 2.6 at hν = 6.5 MeV, 1.2 at hν = 100 MeV, and approaching unity as
hν → ∞. This indicates that the atomic cross section for triplet production
aκTP is at best about 30 % of the pair production cross section aκNPP for
Z = 1 and less than 1 % for high Z absorbers.

Since aκNPP, the atomic cross section for pair production in the field of the
atomic nucleus, exceeds significantly aκTP, the atomic cross section for triplet
production, as shown in Fig. 7.35 for two absorbing materials: carbon with
Z = 6 and lead with Z = 82, both the nuclear pair production and the triplet
production contributions are usually combined and their sum given under the
header of general pair production as follows

aκ = aκNPP + aκTP = aκNPP

{
1 +

1
ηZ

}
, (7.193)

Table 7.19. Characteristics of atomic cross section for pair production in the field of
the nucleus (nuclear pair production) and in the field of an orbital electron (electronic
pair production also called triplet production), according to Marmier and Sheldon

Field Energy range P (ε, Z) Comment

Nucleus 1 � ε� 1/(αZ1/3)
28

9
ln 2ε− 218

27
No screening (7.188)

Nucleus ε� 1/(αZ1/3)
28

9
ln

183

Z1/3
− 2

27
Complete
screening

(7.189)

Nucleus Outside the limits
above but ε > 4

28

9
ln 2ε− 218

27
− 1.027 No screening (7.190)

Electron ε > 4
1

Z

(
28

9
ln 2ε − 11.3

)
No screening (7.191)
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where the electronic effects (triplet production) are accounted for with a cor-
rection term 1/ (ηZ). This term is equal to zero for hν < 4mec

2, where 4mec
2

is the threshold energy for triplet production.
Atomic cross sections for general pair production aκ including both the

nuclear pair production and the triplet production are plotted in Fig. 7.36
for various absorbers ranging from hydrogen to lead. The increase of aκ with
incident photon energy hν and with atomic number Z of the absorber is
evident.

7.6.7 Mass Attenuation Coefficient for Pair Production

The mass attenuation coefficient for pair production κ/ρ is calculated from
the atomic cross section aK with the standard relationship

κ

ρ
=
NA

A
aK, (7.194)

where A and ρ are the atomic mass and density, respectively, of the absorber.

Fig. 7.35. Atomic cross sections for nuclear pair production aκNPP (solid curves)
and for triplet production (electronic pair production) aκTP (dotted curves) against
incident photon energy hν for carbon and lead. Data are from the NIST
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Fig. 7.36. Atomic cross section for general pair production (including nuclear pair
production and triplet production) aκ against incident photon energy hν for various
absorbers in the range from hydrogen to lead. Data are from the NIST

7.6.8 Energy Transfer to Charged Particles in Nuclear Pair
Production and Triplet Production

In pair production interaction between a photon of energy hν and a nucleus of
absorber atom with atomic number Z (nuclear pair production), an electron–
positron pair is produced in the field of the nucleus, as shown in Fig. 7.34(a).
The incident photon disappears in the interaction: 2mec

2 (=1.022 MeV) of its
energy hν is expended for production of the electron–positron pair (materi-
alization) and

(
hν − 2mec

2
)

of its energy is shared as kinetic energy between
the two particles of the electron–positron pair.

In triplet production interaction between a photon of energy hν and an
orbital electron of absorber atom with atomic number Z (electronic pair
production), an electron–positron pair is produced in the field of an orbital
electron, as shown in Fig. 7.34(b). The incident photon disappears in the inter-
action: 2mec

2 (=1.022 MeV) of its energy hν is expended for production of
the electron–positron pair (materialization) and

(
hν − 2mec

2
)

of its energy
is shared between the triplet formed by the electron–positron pair and the
orbital electron.

For both the nuclear pair production and the triplet production the mean
energy transfer E

PP

tr to charged particles is

E
PP

tr = hν − 2mec
2. (7.195)
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Fig. 7.37. The mean pair production energy transfer fraction fPP against photon
energy hν

The mean energy transfer fraction for general pair production including
nuclear pair production and triplet production fPP is given as

fPP =
E

PP

tr

hν
= 1 − 2mec

2

hν
(7.196)

and plotted in Fig. 7.37. For incident photon energy hν < 2mec
2 = 1.022 MeV,

fPP = 0; with photon energy hν increasing above 1.022 MeV, fPP first rises
rapidly through fPP = 0.5 at hν ≈ 2 MeV, fPP = 0.66 at hν ≈ 3 MeV,
and fPP = 0.9 at hν ≈ 10 MeV, asymptotically approaches fPP = 1 as
[1 − const/ (hν)] and saturates at fPP ≈ 1 for hν > 100 MeV. Like the mean
Compton energy transfer fraction fC (hν), the mean pair production energy
transfer fraction fPP depends on photon energy and does not depend on the
atomic number Z of the absorber. The anchor points [fPP = 0.5; 0.6; 0.9 at
hν (MeV) = 2; 3; 10, respectively] for the fPP diagram are also shown in
Fig. 7.37.

7.6.9 Mass Energy Transfer Coefficient for Pair Production

The mass energy transfer coefficient for pair production κtr/ρ is proportional
to the mass attenuation coefficient for pair production κ/ρ through the mean
pair production energy transfer fraction fPP plotted in Fig. 7.37 and given in
(7.196)

κtr

ρ
=
κ

ρ
fPP =

κ

ρ

(
1 − 2mec

2

hν

)
=
κ

ρ

(
1 − 2

ε

)
, (7.197)
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Fig. 7.38. Mass energy transfer coefficient κtr/ρ (solid curves) and mass attenuation
coefficient κ/ρ (dashed curves) for pair production against photon energy hν for
carbon and lead. Data are from the NIST

where ε, as before, is the photon energy hν normalized to the electron rest
energy mec

2.
Figure 7.38 shows a comparison between the mass attenuation coefficient

κ/ρ (dashed curve) and the mass energy transfer coefficient κtr/ρ (solid curve)
against photon energy hν for carbon (low Z absorber) and lead (high Z
absorber). The following features are apparent:

1. At photon energies hν below 1.022 MeV both coefficients κ/ρ and κtr/ρ
are equal to zero as a result of the threshold for pair production of 2mec

2 =
1.022 MeV.

2. For photon energies hν increasing from the threshold value, κ/ρ at first
significantly exceeds κtr/ρ because of the low value of the mean pair pro-
duction energy transfer fraction fPP at relatively low photon energies of
the order of a few megaelectron volt.

3. As shown in Fig. 7.37, however, fPP rises rapidly with hν, reaching a value
of fPP = 0.9 at hν = 10 MeV and asymptotically approaching fPP = 1
for photon energies exceeding 100 MeV. This implies that with increasing
photon energy hν the two coefficients converge to the same value.

4. At photon energies hν exceeding 10 MeV, fPP ≈ 1 and the mass energy
transfer coefficient for pair production κtr/ρ is equal to the mass attenua-
tion coefficient for pair production κ/ρ.
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7.6.10 Positron Annihilation

The positron e+ is an antiparticle to electron e−. The two particles have
identical rest masses and rest mass energies, (me+c

2 = me−c
2 = mec

2 = 0.511
MeV), and charges that are opposite in sign but equal in magnitude (1.6×
10−19 C); electrons are negative, positrons positive. Electrons were discovered
in 1897 by Joseph J. Thomson while he was carrying out experiments with a
Crookes tube; positrons in 1932 by Carl Anderson during his study of cosmic
ray tracks in a Wilson cloud chamber. Of interest in medical physics are
positrons produced by:

1. Energetic photons undergoing pair production or triplet production
(important in radiation dosimetry and health physics).

2. Beta plus (β+) decay used in positron emission tomography (PET)
imaging.

Positronium

Energetic positrons move through an absorbing medium and lose their kinetic
energy through collision and radiation losses in Coulomb interactions with
orbital electrons and nuclei, respectively, of the absorber. Eventually, each
positron collides with an electron of the absorber and the two annihilate
directly or they annihilate through an intermediate step forming a metastable
hydrogen-like structure (see Sect. 3.1.7) called positronium (Ps). The positron
and electron of the positronium revolve about their common center-of-mass in
discrete orbits that are subjected to Bohr quantization rules with the reduced
mass equal to one half of the electron rest mass and the lowest energy state
with a binding energy of 1

2ER = 6.8 eV. The process of positron–electron anni-
hilation is an inverse to pair production with the total mass before annihilation
transformed into one, two, or three photons.

Standard Positron–Electron Annihilation

The most common electron–positron annihilation occurs after the positron lost
all of its kinetic energy and undergoes annihilation with an orbital electron of
the absorber. The electron is considered stationary and free. The annihilation
results in two photons (annihilation quanta) of energymec

2 = 0.511 MeV each
and moving in opposite directions (at nearly 180◦ to one another), ensuring
conservation of total charge (zero), total energy (2mec

2 = 1.02 MeV), and
total momentum (zero).

In-Flight Annihilation

A less common event (of the order of 2 % of all positron–electron annihilation
interactions) is the in-flight annihilation between a positron with non-zero
kinetic energy EK and either a tightly bound electron or a “free” electron.
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When the electron is tightly bound to the nucleus, the nucleus can pick
up the recoil momentum, and annihilation-in-flight produces only one photon
with energy equal to the sum of the total positron energy Ee+ (which in turn
is the sum of its rest energyme+c

2 and its kinetic energy Ee+

K ) and rest energy
of the electron me−c

2

hν = Ee+ +me−c
2 =

(
Ee+

K +me+c
2
)

+me−c
2. (7.198)

When the annihilation electron is essentially free, the in-flight annihila-
tion results in two photons, hν1 and hν2, moving from the annihilation point
each with its own emission angle (θ and φ, respectively) with respect to the
incident positron direction. Energies of the two photons are governed by emis-
sion angles θ and φ as well as by the principles of energy and momentum
conservation, as indicated in Fig. 7.39 and Table 7.20.

Fig. 7.39. Two-photon in-flight positron annihilation. The kinetic energy of the

incident positron is Ee+

K , its momentum is pe =
√
Ee+

K (Ee+
K + 2mec2). Photon 1 is

emitted with energy hν1 and momentum pν1 ; photon 2 is emitted with energy hν2
and momentum pν2 . The photon emission angles are θ and φ measured with respect
to the direction of the incoming positron. The x components of pν1 and pν2 are
hν1c

−1 cos θ and hν2c
−1 cosφ, respectively. The y components of pν1 and pν2 are

hν1c
−1 sin θ and hν2c

−1 sin θ, respectively
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Table 7.20. Total energy and momentum conservation for in-flight annihilation

Total energy before annihilation Total energy after annihilation

Ee+

K +me+c
2 +me−c

2 hν1 + hν2 (7.199)

Momentum before annihilation (x axis) Momentum after annihilation (x axis)

pe+ =
1

c

√
E2 − (me+c

2)2

=
Ee+

K

c

√
1 +

2me+c
2

Ee+
K

hν1
c

cos θ +
hν2
c

cosφ (7.200)

Momentum before annihilation (y axis) Momentum after annihilation (y axis)

0 hν1
c

sin θ − hν2
c

sinφ (7.201)

The relationships among the energies of emitted photons and emission
angles are determined from the following three expressions for:

1. Conservation of energy

Ee+

K + 2mec
2 = hν1 + hν2 (7.202)

2. Conservation of momentum (x-axis component)

Ee+

K

c

√
1 +

2me+c2

Ee+
K

=
hν1
c

cos θ +
hν2
c

cosφ (7.203)

3. Conservation of momentum (y-axis component)

0 =
hν1
c

sin θ − hν2
c

sinφ (7.204)

To simplify the calculation process we rewrite (7.202), (7.203), and (7.204) as
follows

hν1 = E − hν2 (7.205)
hν2 cosφ = A− hν1 cos θ (7.206)
hν2 sinφ = hν1 sin θ, (7.207)

where

A = EK

√
1 +

2mec2

EK
(7.208)

and

E = EK + 2mec
2. (7.209)
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Next we square equations (7.206) and (7.207), add the two resulting equations,
and insert (7.206) to get

hν2 =
A2 + E2 − 2AE cos θ

2(E −A cos θ)
. (7.210)

Inserting (7.210) into (7.205) results in

hν1 =
E2 −A2

2(E −A cos θ)
. (7.211)

In a similar manner, eliminating θ from (7.205), (7.206), and (7.207) results
in the following expressions for hν1 and hν2 as a function of φ

hν1 =
A2 + E2 − 2AE cosφ

2(E −A cosφ)
(7.212)

and

hν2 =
E2 −A2

2(E −A cosφ)
. (7.213)

The general relationship between θ and φ can be stated from (7.207) as

hν1
hν2

=
sinφ
sin θ

(7.214)

or from (7.210) and (7.211) as

hν1
hν2

=
E2 +A2 − 2EA cosφ

E2 −A2
(7.215)

and from (7.212) and (7.213) as

hν1
hν2

=
E2 −A2

E2 +A2 − 2EA cos θ
. (7.216)

Merging (7.215) and (7.216) results in the following relationship linking
θ and φ

cos θ + cosφ
1 + cos θ cosφ

=
2EA

E2 +A2
. (7.217)

A special case of two-photon in-flight annihilation occurs when one photon
of energy hν1 is moving in the direction of the incoming positron and the
other photon of energy hν2 is moving in a direction opposite to the incoming
positron. The scattering angles thus are θ = 0 and φ = 180◦ and inserting
θ = 0 into (7.210) and (7.211) or inserting φ = 0 into (7.212) and (7.213)
results in the following simple expressions for hν1 and hν2
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hν1 =
1
2

(E +A) =
1
2

⎡
⎣EK + 2mec

2 + EK

√
1 +

2mec2

EK

⎤
⎦ (7.218)

and

hν2 =
1
2

(E −A) =
1
2

⎡
⎣EK + 2mec

2 − EK

√
1 +

2mec2

EK

⎤
⎦ . (7.219)

In the high relativistic region where EK � mec
2 we can use the approximation√

1 +
2mec

2

EK
≈ 1 +

mec
2

EK
(7.220)

to get a further simplification for hν1 and hν2

hν1 ≈ EK +
3
2
mec

2 (7.221)

and

hν2 ≈ 1
2
mec

2. (7.222)

By way of example we calculate the parameters for in-flight annihilation of
a 2 MeV kinetic energy positron with a stationary and “free electron”. We
assume that one of the two photons produced moves away with angle θ = 60◦,
as defined in Fig. 7.40, and calculate the angle φ for the other photon as well
as the energies hν1 and hν2 of the two annihilation photons.

We first calculate the two parameters A and E from (7.208) and (7.209)
as follows

A = EK

√
1 +

2mec2

EK
= 2.459 MeV, (7.223)

E = EK + 2mec
2 = 3.022 MeV. (7.224)

Fig. 7.40. In-flight annihilation of a positron of kinetic energy 2 MeV with a “free
electron”. One photon leaves the interaction site with angle θ = 60◦
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Next we use (7.217) to determine the angle φ for the second photon

cos θ + cosφ
1 + cos θ cosφ

=
0.5 + cosφ

1 + 0.5 cosφ
=

2EA
A2 + E2

= 0.979 (7.225)

or

cosφ = 0.938 and φ = arccos 0.938 = 20.2◦ (7.226)

Energies hν1 and hν2 of the two photons produced in the annihilation process
are calculated from (7.210) through (7.213)

hν1 =
E2 −A2

2 (E −A cos θ)
=
A2 + E2 − 2AE cosφ

2 (E −A cosφ)
= 0.86 MeV (7.227)

and

hν2 =
A2 + E2 − 2AE cos θ

2 (E −A cos θ)
=

E2 −A2

2 (E −A cosφ)
= 2.16 MeV. (7.228)

We can verify the results for φ, hν1, and hν2 by using (7.205), (7.206), (7.207),
and (7.214)

hν1 + hν2 = E = EK + 2mec
2 = 3.02 MeV, (7.229)

A = EK

√
1 +

2mec2

EK
= hν1 cos θ + hν2 cosφ = 2.46 MeV, (7.230)

hν1 sin θ = hν2 sinφ = 0.745, (7.231)
hν1
hν2

= 0.398 =
sinφ
sin θ

. (7.232)

The in-flight annihilation process calculated in this example is plotted
schematically in Fig. 7.40.

7.7 Photonuclear Reactions (Photodisintegration)

Photonuclear reaction occurs in a direct interaction between an energetic
photon and an absorber nucleus causing nuclear disintegration. Two other
names are often used for the effect: “photodisintegration” and “nuclear pho-
toelectric effect”. In photonuclear reaction the nucleus absorbs a photon and
the most likely result of such an interaction is the emission of a single neutron
through a (γ, n) reaction, even though emissions of charged particles such as
protons or alpha particles, gamma rays, more than one neutron, or fission frag-
ments (photofission) are also possible but much less likely to occur. Neutrons
produced in photonuclear reactions are referred to as photoneutrons.

While the photonuclear reactions do not play a role in general photon
attenuation studies, they are of considerable importance in shielding calcula-
tions whenever photon energies exceed the photonuclear reaction threshold.
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Neutrons produced through the (γ, n) photonuclear reactions are usually far
more penetrating than the photons that produced them. In addition, the
daughter nuclei resulting from the (γ, n) reaction may be radioactive and the
neutrons, through subsequent neutron capture, may produce radioactivity in
the irradiation facility, adding to radiation hazard in the facility. This raises
concern over the induced radioactivity in clinical high-energy linear acceler-
ator installations (above 10 MV) and stimulates a selection of appropriate
machine components to decrease the magnitude and half-life of the radioacti-
vation. It also sets forth requirements for adequate treatment room ventilation
to expel the nitrogen-13 and oxygen-15 produced in the room (typical air
exchanges in treatment rooms are of the order of six to eight per hour).

Photonuclear reactions are endothermic (endoergic), thus for the reaction
to occur the incident photon must possess minimum or threshold energy to be
able to trigger the reaction. The threshold energy represents the separation
energy of a neutron from the nucleus that is of the order of 8 MeV or more
for most nuclei, except for the deuteron (21H) and berillium-9 (94Be) where it
is at 2.225 MeV and 1.665 MeV, respectively.

In photodisintegration of a deuteron a photon with energy exceeding the
deuteron binding energy strikes a deuteron d and breaks it into its constituent
nucleons: proton p and neutron n. The reaction is written as follows

d + γ = n + p +Q or d(γ, n)p, (7.233)

where Q is the so-called Q value of the photonuclear reaction (see Sect. 5.2.2).
Chadwick discovered the deuteron photodisintegration in 1935 and the

reaction was used as early confirmation of the conversion of energy to mass as
predicted by the theory of relativity. The reaction is still of great importance
to nuclear physics because the deuteron is the simplest bound nucleus known,
just like the hydrogen atom is of great importance to atomic physics as the
simplest atomic structure known.

7.7.1 Cross Section for Photonuclear Reaction

The cross sections for photonuclear reactions vary as a function of photon
energy as well as the absorber nucleus. The most notable features of the cross
section for nuclear absorption of energetic photons are the reaction thresh-
old and the so-called “giant resonance”, both depending on the absorbing
material.

Above the threshold photon energy the cross section gradually increases,
reaches a broad peak referred to as giant resonance, and then decreases with
a further increase in photon energy. The giant resonance peak is centered at
about 23 MeV for low atomic number Z absorbers and at about 12 MeV for
high Z absorbers. The only exceptions again are the two reactions 2H(γ, n)1H
and 9Be(γ, n)2α that have giant resonance peaks at much lower energy.

The full-width-at-half-maximum (FWHM) in the giant resonance cross
sections typically ranges from about 3 MeV to 9 MeV and it depends on the
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Table 7.21. Photonuclear (γ,n) giant resonance cross section parameters for
selected absorbers. (Data are from Hubbell)

Absorber Threshold
energy
(MeV)

Resonance
peak energy
hνmax (MeV)

Resonance
FWHM (MeV)

Percent of total
electronic cross
section at hνmax

2H 2.225 5 10.0 —
12C 18.7 23.0 3.6 5.9
27Al 13.1 21.5 9.0 3.9
63Cu 10.8 17.0 8.0 2.0
208Pb 7.4 13.6 3.8 2.7
235U 6.1 12.2 7.0 2.4

detailed properties of absorber nuclei. Table 7.21 provides various parameters
of the “giant (γ, n) resonance” cross section for selected absorbers:

1. With increasing atomic number Z of the absorber the resonance peak
energy steadily decreases from 23 MeV for carbon-12 (12C) to 12.2 MeV
for uranium-235 (235U).

2. The magnitude of the atomic cross section for photodisintegration aσPN,
even at the resonance peak energy hνmax, is relatively small in comparison
with the sum of competing “electronic” cross sections and amounts to only
a few percent of the total “electronic” cross section. As a result, aσPN is
usually neglected in photon attenuation studies in medical physics.

3. High-energy electrons are also capable of triggering nuclear reactions that
release neutron and protons; however, the probabilities for electron-nucleus
reactions are smaller than those for photonuclear reactions.

4. Cross sections for photonuclear (γ, n) reactions, generally in the millibarn
range, are much smaller than cross sections for neutron activation (n, γ)
reactions.

7.7.2 Threshold Energy for Photonuclear Reaction

We can determine the Q value and threshold kinetic energy (EK)thr for a pho-
tonuclear reaction, as discussed in general in Sect. 5.2, using the rest energy
method or the binding energy method:

• In the rest energy method we subtract the sum of nuclear rest ener-
gies of reaction products after the reaction

∑
i,after

Mic
2 from the sum of

nuclear rest energies of reactants (target and projectile) before the reaction∑
i,before

Mic
2.

• In the binding energy method we subtract the sum of nuclear binding ener-
gies of reactants before the interaction

∑
i,before

EB(i) from the sum of nuclear

binding energies of reaction products after the interaction
∑

i,after

EB(i).
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By way of example, we now determine the threshold energy for the pho-
tonuclear (γ, n) reactions on deuteron, beryllium-9 and lead-208. We first
determine the reaction Q value and then use (5.15) to determine the threshold
energy EPN

γ . The appropriate data for rest energies and binding energies are
provided in Appendix A.

1. Rest energy method: Q =
∑

i,before

Mic
2 − ∑

i,after

Mic
2, as shown in (5.7)

Q(d, γ) = M(d)c2 + 0 − [mnc
2 +mpc

2] (7.234)

= 1875.6128 MeV − [939.5654 MeV + 938.2720 MeV] = −2.225 MeV

Q(94Be, γ) = M(94Be)c2 + 0 − [mnc
2 +M(84Be)c2] (7.235)

= 8392.7499 MeV − [939.5654 MeV + 7454.8500 MeV] = −1.666 MeV

Q(20882Pb, γ) = M(20882Pb)c2 + 0 − [mnc
2 +M(20782Pb)c2] (7.236)

= 193687.0956 MeV−[939.5654 MeV + 192754.8983 MeV] = −7.37 MeV

2. Binding energy method: Q =
∑

i,after

EB(i) − ∑
i,before

EB(i), as shown in (5.8)

Q(d, γ) = 0 − EB(d) = −2.225 MeV (7.237)

Q(94Be, γ) = EB(84Be) − EB(94Be) (7.238)

= 56.4996 MeV − 58.1650 MeV = −1.666 MeV

Q(20882Pb, γ) = EB(20782 Pb) − EB(20882Pb) (7.239)

= 1629.0779 MeV − 1636.4457 MeV = −7.368 MeV

As expected, for a given photonuclear reaction, both the rest energy method
and the binding energy method give the same result for the Q value. The
threshold energy EPN

γ can be determined from the Q value using (5.15) which
provides a general relationship between the threshold kinetic energy (EK)thr of
the projectile (positive) and the Q value for an endothermic nuclear reaction
(negative). In general, (EK)thr exceeds the absolute value of Q by a relatively
small amount to account for conservation of energy and momentum in the
collision. However, in the case of photonuclear reaction, the projectile is a
photon with zero rest mass, resulting in the absoluteQ value and the threshold
energy being equal to one another, i.e., (EPN

γ )thr ≈ |Q|, as shown in (5.15) by
setting m10 = 0.

Photonuclear threshold energies for the examples given above are thus as
follows: EPN

γ (d) = 2.225 MeV, EPN
γ (94Be) = 1.666 MeV, and EPN

γ (20882Pb) =
7.368 MeV, as given in Table 7.21.
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Energy Transfer and Energy Absorption
in Photon Interactions with Matter

This chapter presents a discussion of the important mechanisms involved in
energy transfer and energy absorption in an absorber irradiated with an exter-
nal photon beam. First, the energy transfer mechanism is introduced, the
components of the energy transfer fraction are described, the mass energy
transfer coefficient is defined, and the mean energy transferred from photon
to light charged particles is calculated. The next section of the chapter deals
with energy absorption which is the fraction of the energy transferred from
photons to energetic charged particles that is subsequently absorbed in the
irradiated medium.
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The difference between the energy transferred and energy absorbed is
attributed to energy radiated from the charged particles in the form of pho-
tons. The mean radiation fraction and its three components (bremsstrahlung,
in-flight annihilation, and impulse ionization) are defined and used to deter-
mine the total mean energy absorption fraction, as well as the mass energy
absorption coefficient and the mean energy absorbed in absorbing medium.

The chapter concludes with a discussion of attenuation coefficients of
compounds and mixtures and gives two specific examples of photon beam
interaction with absorber: (1) Interaction of 2 MeV photons with lead absorber
and (2) Interaction of 8 MeV photons with copper absorber.

8.1 Macroscopic Attenuation Coefficient

As discussed in Sect. 7.1.3, four types of attenuation coefficient are in use:
linear, mass, atomic, and electronic. The four coefficients are related to one
another through physical properties of the absorber (density ρ, atomic number
Z, and atomic mass A), as given in (7.18). The attenuation coefficient of
monoenergetic photons in a specific absorber depends on photon energy hν
and absorber atomic number Z.

In general, the macroscopic attenuation coefficient represents a sum of
attenuation coefficients for all individual interactions that a photon of energy
hν may have with atoms of the absorber. As discussed in previous sections,
the interactions of interest in medical physics and contributing to the atten-
uation coefficient are the photoelectric effect, Rayleigh scattering, Compton
scattering, and pair production including triplet production. Other less com-
mon effects, such as Delbrück scattering and photonuclear reactions, are of
interest in nuclear physics but usually ignored in medical physics and radiation
dosimetry.

For an absorber of density ρ, atomic number Z, and atomic mass A, we
write the relationships for the linear attenuation coefficient μ, mass atten-
uation coefficient μm, atomic attenuation coefficient (cross section) aμ, and
electronic attenuation coefficient (cross section) eμ as a sum of contributions
μi from the four individual effects

μ =
∑

i

μi = τ + σR + σc + κ, (8.1)

μm =
μ

ρ
=
∑

i

(
μ

ρ

)
i

=
1
ρ

(τ + σR + σC + κ) =
τ

ρ
+
σR

ρ
+
σC

ρ
+
κ

ρ
, (8.2)

aμ =
1
ρ

A

NA
μ =

1
ρ

A

NA

∑
i

μi =
1
ρ

A

NA
(τ + σR + σC + κ)

= aτ + aσR + aσC + aκ, (8.3)

eμ =
1
ρ

A

ZNA
μ =

1
ρ

A

ZNA

∑
i

μi (8.4)
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where

τ, τ/ρ, and aτ are the linear, mass, and atomic attenuation coefficient,
respectively, for photoelectric effect,

σR, σR/ρ and aσR are the linear, mass, and atomic attenuation coefficient,
respectively, for Rayleigh scattering,

σC, σC/ρ, and aσC are the linear, mass, and atomic attenuation coefficient,
respectively, for Compton effect,

κ, κ/ρ, and aκ are the linear, mass, and atomic attenuation coefficient,
respectively, for pair production (including triplet).

The fundamental interactions of photons with matter are generally exp-
ressed with cross section on atomic scale or cross section per atom for
individual effects. The mass attenuation coefficient which is proportional to
the atomic cross section is considered more fundamental than the linear atten-
uation coefficient because, in contrast with the linear attenuation coefficient,
the mass attenuation coefficient is independent of the actual mass density as
well as physical state of the absorber.

In Fig. 8.1 we show the total mass attenuation coefficient μ/ρ for carbon
as example of low atomic number absorber in part (a) and lead as example of
high atomic number absorber in part (b), plotted against photon energy hν. In
addition to μ/ρ which represents the sum of the individual coefficients for the
photoelectric effect, Rayleigh scattering, Compton effect, and pair production,
the coefficients for the individual components are also shown. Also shown are
the absorption edges for the lead absorber; the absorption edges for the carbon
absorber are not visible, because they occur off-scale at energies below 1 keV.
The following general conclusions can be made from Fig. 8.1:

1. For all absorber materials the photoelectric effect is the predominant mode
of photon interaction with the absorber at low photon energies.

2. At intermediate photon energies and low atomic numbers Z the Comp-
ton effect mass coefficient σC/ρ predominates and makes the largest
contribution to the total mass attenuation coefficient μ/ρ.

3. The width of the region of Compton scattering predominance depends
on the atomic number Z of the absorber; the lower is Z, the broader is
the Compton scattering predominance region. For water and tissue this
region ranges from ∼20 keV up to ∼20 MeV, indicating that for most of
radiotherapy the most important interaction of photon beams with tissues
is the Compton scattering.

4. The pair production dominates at photon energies hν above 10 MeV and
at high atomic numbers Z of the absorber.

5. In all energy regions the Rayleigh scattering mass coefficient σR/ρ plays
only a secondary role in comparison with the other three coefficients.
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Fig. 8.1. Mass attenuation coefficient μ/ρ against photon energy hν in the range
from 1 keV to 1000 MeV for carbon in (a) and lead in (b). In addition to the
total coefficient μ/ρ, the individual coefficients for photoelectric effect, Rayleigh
scattering, Compton scattering, and pair production (including triplet production)
are also shown. The mass attenuation coefficient μ/ρ is the sum of the coefficients
for individual effects, i.e., μ/ρ = (τ + σR + σC + κ)/ρ
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8.2 Energy Transfer from Photons to Charged
Particles in Absorber

The total mean energy transfer fraction f tr(hν, Z) is defined as the fraction
of photon energy hν that is transferred to kinetic energy of charged par-
ticles produced or released in the absorber during various possible photon
interactions with absorber atoms. It is generally expressed as a sum of four
components, each component representing a specific effect that contributes to
photon attenuation in the absorber (photoelectric effect, Rayleigh scattering,
Compton effect, and pair production). The total mean energy transfer fraction
f tr(hν, Z) is given as follows

f tr =
∑

i

μi

μ
f i =

{
τ

μ
fPE +

σR

μ
fR +

σC

μ
fC +

κ

μ
fPP

}

=
∑

i

wif i =
{
wPEfPE + wRfR + wCfC + wPPfPP

}
(8.5)

=
Etr
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=
∑
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tr

hν
=

1
hν

{
wPEE

PE

tr + wRE
R

tr + wCE
C

tr + wPPE
PP

tr

}
,

with

wi the relative weight of given effect i for photon energy hν and absorber
atomic number Z defined as the ratio between the linear attenuation
coefficient μi for the given effect i and the total linear attenuation
coefficient μ which, as given in (8.1), is the sum of individual linear
attenuation coefficients μi (see Sect. 8.2.2).

f i the mean energy transfer fraction for effect i representing the mean
energy transfer fractions fPE, fR = 0, fC and fpp for photoelec-
tric effect, Rayleigh scattering, Compton effect, and pair production,
respectively, discussed in detail in Sects. 7.5.10, 7.4.3, 7.3.12, and 7.6.8,
respectively. Note that fR = 0 for all photon energies hν and all
absorber atomic numbers Z (see Sect. 8.2.1).

E
i

tr the mean energy transferred from photon to charged particles for inter-
action i, representing one of the three effects: photoelectric effect,
Compton scattering, and general pair production which includes nuclear
and electronic pair production, discussed in detail in Sects. 7.5.10, 7.4.3,
7.3.12, and 7.6.8, respectively.

8.2.1 General Characteristics of the Mean Energy
Transfer Fractions

Of the five effects listed above (photoelectric, Rayleigh, Compton, nuclear
pair production, and triplet production), Rayleigh scattering does not transfer
any energy to charged particles, so it can be ignored in the context of energy
transfer. Three of the remaining four effects (photoelectric, Compton, and
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triplet production) produce vacancies in atoms of the absorber, and these
vacancies engender either characteristic photons or Auger electrons or both.
In general, therefore, kinetic energy of the Auger electrons must be added to
the kinetic energy of primary particles produced in photon interactions when
the mean energy transfer fractions fPE, fC, and fTP for the photoelectric
effect, Compton effect, and triplet production, respectively, are determined.
These energy transfer fractions are then expressed as follows

fPE =
E

PE

tr

hν
=
hν −XPE

hν
=
hν −∑

j

Pjωjhνj

hν
= 1 −

∑
j

Pjωjhνj

hν
(8.6)

fC =
E

C

tr

hν
=
hν − hν′ −XC

hν
= 1 − hν ′ +XC

hν
(8.7)

fTP =
E

TP

tr

hν
=
hν − 2mec

2 −XTP

hν
= 1 − 2mec

2 +XTP

hν
, (8.8)

where XPE, XC, and XTP are the mean fluorescence emission energies for the
photoelectric effect, Compton effect, and triplet production, respectively and
hν′ is the mean energy of the scattered photon.

For the photoelectric effect the mean fluorescence emission energy XPE

and its components have been discussed in detail in Sect. 7.5.9 and the treat-
ment ofXC as well asXTP would in principle be similar; however, a closer look
at XC and XTP reveals that their influence upon the mean energy transfer is
significantly different from that discussed in Sect. 7.5.9 for the photoelectric
effect.

For the Compton effect, the mean fluorescence emission energyXC in (8.7)
is different from the photoelectric XPE in (8.6) and (7.146) because of the
difference in the distribution of electronic vacancies produced in the absorber
atom by the two effects. In contrast to the photoelectric interaction which is
by far the most likely to happen with the most tightly bound available orbital
electron of the absorber, a Compton interaction is equally probable with any
one of the whole electronic complement of the absorber atom. Moreover, since
the majority of atomic electrons reside in outer atomic shells, a Compton
interaction is more probable with an outer shell electron, resulting in relatively
low energy fluorescence photons XC that can be ignored in comparison with
the incident photon energy hν.

For triplet production, in view of the relatively high threshold for triplet
production (4mec

2 = 2.044 MeV) in comparison with the mean energy of
fluorescence photons XTP, these photons, similarly to the situation with the
Compton effect, can be ignored and the mean energy transferred in triplet
production, like that in nuclear pair production, is expressed as

E
PP

tr = hν − 2mec
2, (8.9)
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where E
PP

tr accounts for both the nuclear pair production and triplet
production.

The mean fluorescence emission energies XC and XTP in (8.7) and
(8.8), respectively, can thus be ignored thereby significantly simplifying the
expressions for fC and fTP which can now be written as

fC =
E

C

tr

hν
=
hν − hν′

hν
= 1 − hν′

hν
, (8.10)

as already seen in (7.113) and “The Compton graph” in Fig. 7.18, and

fTP =
E

TP

tr

hν
=
hν − 2mec

2

hν
= 1 − 2mec

2

hν
, (8.11)

as shown for general pair production in Fig. 7.37.
For comparison, Fig. 8.2 displays the three non-zero energy transfer frac-

tions fPE, fC and fPP together on one graph (note that fR = 0) and the
following general characteristics are notable:

Dependence on Photon Energy hν

1. All three energy transfer fractions depend upon photon energy hν and
increase with increasing hν with the exception of photoelectric discontinu-
ities at the K and L absorption edges where the photoelectric fraction fPE

drops significantly. All three fractions converge to 1 at large hν with fPE

displaying the fastest convergence to 1, followed by fPP.
2. Both fPE and fPP converge to 1 as [1 − C/(hν)] where C is a constant

(2mec
2) for pair production and a parameter depending on the atomic

number Z of the absorber for the photoelectric effect. The mean Compton
energy transfer fraction fC also increases with hν but displays a slow
convergence to 1, so that at the very high photon energy hv of 1000 MeV
it still amounts to only fC = 0.85.

Dependence on Absorber Atomic Number Z

1. The pair production mean energy transfer fraction fPP does not depend on
the atomic number Z of the absorber.

2. The Compton mean energy transfer fraction fC exhibits a slight, generally
negligible, atomic number Z dependence as a result of electron binding
effects.

3. In contrast to fC and fPP, the photoelectric mean energy transfer fraction
fPE, in addition to depending on hν, also depends on the atomic number
Z of the absorber; the higher is Z, the lower is at fPE the K absorption
edge and the slower is the convergence to 1 with increasing hν.

4. For a given Z, the lowest value in fPE is attained at the K absorption edge.
5. For photon energies hν matching the K absorption edge energy of the

absorber, fPE[EB(K)] = PKωKηK ranges from fPE = 1 for low Z absorbers
down to fPE ≈ 0.3 for high Z absorbers.
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Dynamic Range of Mean Energy Transfer Fractions

1. For a given absorber Z, fPE ranges from its lowest value at the K absorption
edge [hν = EB(K)] to fPE = 1 both at low photon energies where hν <
EB(M) and at high photon energies where hν > 10 MeV.

2. For all absorbers, the range of fC is from fC < 0.02 for hν < 10 keV to
fC > 0.85 for hν > 1000 MeV.

3. For all absorbers, the range of fpp is from fpp = 0 for hν ≤ 1.02 MeV
through fPP = 0.5 at hν = 2 MeV to fpp ≈ 1 for hν > 10 MeV.

8.2.2 Relative Weights for Individual Effects

The relative weights wi of photoelectric effect wPE, Rayleigh scattering wR,
Compton scattering wC, and pair production wPP, are plotted against photon
energy hν in Fig. 8.3 for eight selected absorbers ranging from carbon to
uranium.

Fig. 8.2. Mean energy transfer fractions f i plotted against photon energy hν for
the four main photon interactions with absorber atoms: fPE for photoelectric effect,
fR for Rayleigh scattering, fC for Compton effect, and fPP for pair production.
The photoelectric energy transfer fraction fPE depends on photon energy hν and on
absorber atomic number Z, and is plotted for eight selected absorber atoms ranging
from carbon to uranium. The energy transfer fractions for the other three effects:
fR, fC, and fPP do not depend on absorber atomic number Z, therefore one curve
for each effect covers all absorber atomic numbers. The dashed curves connect fPE

points for which hν = EB(K) and hν = EB(L1). Note that fR = 0 for all photon
energies hν and all absorber atomic numbers Z
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Fig. 8.3. Relative weights wi plotted for eight selected absorber atoms ranging from
carbon to uranium against photon energy hν for the four main photon interactions
with absorber atoms: photoelectric effect wPE, Rayleigh scattering wR, Compton
effect wC, and pair production wPP. Data were calculated using the NIST XCOM
database
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Fig. 8.4. Relative weights wi for the four main photon interactions with atoms of
absorber against photon energy hν for eight selected absorber atoms from carbon
to uranium. (a) Relative weight of photoelectric effect wPE; (b) relative weight of
Rayleigh scattering wR; (c) relative weight of Compton effect wC; and (d) rela-
tive weight of pair production wPP. Data were calculated using the NIST XCOM
database

For all elements, on semilog photon energy diagram, wPE and wPP exhibit
a sigmoid shape, while wR and wC exhibit a bell shape. The relative weight
wPE shows discontinuities at absorption edges where the photon energy equals
the binding energy of a given atomic shell. As a result of the discontinuities
in wPE, the relative weights wR and wC also exhibit discontinuities at same
photon energies. The relative weights wi for the eight absorbers of Fig. 8.3
are re-plotted in Fig. 8.4 for hν ≥ EB(K): in part (a) for the photoelectric
effect; in part (b) for Rayleigh scattering; in part (c) for Compton effect; and
in part (d) for pair production.

For the photoelectric effect, the relative weight wPE is approximately equal
to 1 at relatively low photon energies hν of the order of the K-shell binding
energy EB(K). With increasing photon energy, wPE decreases and asymp-
totically approaches zero. It attains a 50 % point at ∼20 keV for low Z
absorbers, at ∼100 keV for intermediate Z absorbers, and at ∼0.8 MeV for
high Z absorbers. For low Z absorbers, wPE ≈ 0 for photon energies exceeding
0.1 MeV, for intermediate Z absorbers for photon energies above 1 MeV, and
for high Z absorbers for photon energies above 10 MeV.
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For Rayleigh scattering, wR follows a bell shaped distribution and reaches
a peak of only about 10 % of the total attenuation coefficient; at ∼20 keV for
low Z absorbers, at ∼100 keV for intermediate Z absorbers, and at ∼500 keV
for high Z absorbers. Thus, the relative weight for Rayleigh scattering wR

amounts at best to only about 0.1 for all photon energies and absorbers.
For Compton scattering, wC also follows a bell shaped distribution and it

peaks at ∼2 MeV for all absorbers. The distribution is broad and peaks at
wC = 1 for low Z absorbers, while it is narrow and peaks at wC ≈ 0.7 for
high Z absorbers. The higher is the atomic number Z of the absorber, the
narrower is the wC distribution and the lower is its peak value.

For pair production, wPP exhibits a sigmoid curve shape starting at the
pair production threshold photon energy of 1.022 MeV. Beyond 1.022 MeV
the distribution rises rapidly with photon energy hν to reach a saturation
value of wPP = 1 at high photon energies; the higher is the absorber atomic
number Z, the lower is the energy at which wPP attains saturation. The point
of 50 % saturation occurs at photon energy of ∼25 MeV for low Z absorbers
and at only ∼5 MeV for high Z absorbers.

8.2.3 Regions of Predominance for Individual Effects

In the photon energy range 1 keV ≤ hν ≤ 1000 MeV, of interest in medical
physics and dosimetry, the predominance of a given effect i is indicated for
photon energy regions where wi is close to unity (wi ≈ 1). For example,
wPE ≈ 1 at low photon energies; wC = 1 (for low Z absorbers) at intermediate
photon energies; and wPP = 1 at high photon energies. From Figs. 8.3 and
8.4 we can also speculate on atomic number Z dependence; the broader is
the energy region where wi ≈ 1, the broader is the region of predominance of
effect i. For example, for high Z absorbers, wPE and wPP regions are broad
and the wC region is narrow, while for low Z absorbers the wC region is broad
and the wPE as well as wPP regions are narrow.

The areas of predominance of individual effects are customarily shown on
a hν versus Z diagram displaying points where the attenuation coefficients
for photoelectric effect and Compton effect are equal, i.e., τ = σC, and points
where the attenuation coefficients for Compton effect and pair production are
equal, i.e., σC = κ, as shown in Fig. 8.5a.

We expand this approach in the (hν, Z) diagram shown in Fig. 8.5b and
connect specific points which have relative percentage weights wi of 10 %,
50 %, and 90 % for photoelectric effect, Compton scattering, and pair pro-
duction. The pairs of curves for (wC = 50 % and wPP = 50 %) coincide
and so do pairs for (wC = 90 % and wPP = 10 %), and (wC = 10 % and
wPP = 90 %) because in their energy range the relative contributions from
the photoelectric effect and Rayleigh scattering to the total attenuation coeffi-
cients are zero. On the other hand, at low photon energies the pairs of curves
for (wPE = 50 % and wC = 50 %); (wPE = 90 % and wC = 10 %); and
(wPE = 10 % and wC = 90 %) do not quite coincide because of a small
contribution from Rayleigh scattering to the total attenuation coefficient.
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Fig. 8.5. Representation of the relative predominance of the three main processes
of photon interaction with absorber atom: photoelectric effect τ , Compton effect
σC,and pair production κ in a (hν, Z) diagram where hν is photon energy and
Z is the absorber atomic number. The two curves in (a) connect points where
photoelectric and Compton cross sections are equal (τ = σC) shown by the curve
on the left and Compton and pair production cross sections are equal (σC = κ)
shown by the curve on the right. In (b) we connect specific points which have
relative percentage weights of 10 %, 50 % and 90 % for the photoelectric effect
(PE), Compton effect (C), and pair production (PP). Data were calculated using
the NIST XCOM database
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Fig. 8.6. Weighted mean energy transfer fractions wifi for the four main photon
interactions with absorber atoms plotted for eight selected absorber atoms against
photon energy hν. Part (a) is for photoelectric effect (wPEfPE); (b) for Rayleigh
scattering (wRfR); (c) for Compton effect (wCfC); and (d) for pair production
(wPPfPP)

8.2.4 Mean Weighted Energy Transfer Fractions

In Fig. 8.6 we plot for eight selected absorbers the product wif i which repre-
sents the mean weighted energy transfer fractions: for the photoelectric effect
wPEfPE; for Rayleigh scattering wRfR; for the Compton effect wCfC; and
for pair production wPPfPP. The curves are similar to those plotted for the
relative weights wi in Fig. 8.4, except that their shapes are clearly affected
by the individual mean energy transfer fractions f i given in Fig. 8.2. Most
notably wRfR is zero at all photon energies because fR = 0 at all energies.

Similarly to average energy transfer fractions f i, the product wif i is at low
photon energies large for the photoelectric effect and zero for pair production,
and the roles for wPEfPE and wPPfPP are reversed at high photon energies.
The product wCfC is bell shaped and equals zero at small photon energies as
well as at very large photon energies. It reaches a maximum at intermediate
photon energies of the order of a few MeV (the point of maximum actually
ranges from ∼2 MeV for high Z absorbers to ∼5 MeV for low Z absorbers).
The maximum in wCfC ranges from a high value of ∼0.6 for low Z absorbers
to a low value of ∼0.35 for high Z absorbers.



390 8 Energy Transfer and Energy Absorption in Photon Interactions

Fig. 8.7. Total mean energy transfer fraction f tr against photon energy hν for car-
bon in (a) and lead in (b). The three components of f tr; namely the weighted mean
energy transfer fractions for the photoelectric effect wPEfPE, Compton effect wCfC,
and pair production wPPfPP, are plotted with fine line curves in the background
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8.2.5 Total Mean Energy Transfer Fraction

As indicated in (8.5), the total mean energy transfer fraction f tr is a sum of
four mean weighted energy transfer fractions: photoelectric wPEfPE, Rayleigh
wRfR, Compton wCfC, and pair production wPPfPP. Figure 8.7 shows f tr

and its three non-zero individual components for two absorbers: carbon as
example of a low atomic number Z absorber in part (a) and lead as exam-
ple of high Z absorber in part (b). The resulting total mean energy transfer
fractions f tr for the two elements are plotted with heavy solid curves, while
the photoelectric, Compton, and pair production components wPEfPE, wCfC,
and wPPfPP, respectively, are plotted in the background with light solid
curves.

For low Z absorbers, such as carbon in Fig. 8.7a, the total mean energy
transfer fraction f tr is clearly governed by the photoelectric component
wPEfPE at low photon energies (hν < 100 keV), by the Compton component
wCfC at intermediate photon energies of the order of 1 MeV, and by the pair
production component wPPfPP at very high photon energies (hν > 100 MeV).
For high Z absorbers, such as lead in Fig. 8.7b, there is no energy range
where wCfC would be the sole contributor to f tr, yet, this is the case for the
photoelectric component wPEfPE which governs f tr at low photon energies
and the pair production component wPPfPP which governs f tr at very high
photon energies.

In Fig. 8.8 we show the total mean energy transfer fraction f tr for eight
selected absorber elements ranging from carbon to uranium. The curves for
carbon and lead have already been shown in Fig. 8.7; however, in Fig. 8.8, in
order to avoid clutter, the individual four components forming f tr, namely:
wPEfPE, wRfR, wCfC, and wPPfPP, as given in (8.5), are not shown sepa-
rately. Figure 8.8a is for photon energy hν exceeding the K shell binding energy
EB(K) for each given absorber; Fig. 8.8b is for photon energy hν exceeding
the L1 subshell binding energy EB(L1).

The following are general features of the total mean energy transfer
fraction f tr = Etr/(hν) = wPEfPE + wRfR + wCfC + wPPfPP of (8.5):

1. For low atomic number Z absorbers such as carbon, f tr is close to unity
(f tr ≈ 1) at low and very high photon energies and reaches a minimum
at intermediate photon energies of the order of 100 keV. The minimum
value and its photon energy position increase with atomic number Z of
the absorber.

2. For high atomic number Z absorbers such as lead, f tr has a minimum
value when hν equals EB(K), and exhibits with increasing photon energy
hν a peak and valley, and then asymptotically approaches f tr = 1 at very
high photon energies. The positions of the peak and valley increase with
atomic number Z of the absorber.
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Fig. 8.8. Total mean energy transfer fraction f tr against photon energy hν for
eight selected absorber atoms from carbon to uranium. Part (a) is for hν exceeding
the K-shell binding energy of the absorber atom, i.e., hν ≥ EB(K); (b) is for hν
exceeding the binding energy of the L1 subshell, i.e., hν ≥ EB(L1)
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8.2.6 Mass Energy Transfer Coefficient

Once the total mean energy transfer fraction f tr(hν, Z) is known, we can use
(7.19) to determine the mass energy transfer coefficient μtr/ρ from the mass
attenuation coefficient μ/ρ. The total mean energy transfer fraction f tr was
given in Fig. 8.7 for carbon and lead and in Fig. 8.8 for eight selected absorbers
ranging in atomic number Z from carbon to uranium. In Fig. 8.9 we plot the
three components of (7.19): f tr, μ/ρ, and μtr/ρ, in the photon energy range
from 1 keV to 100 MeV for two absorbers: carbon and lead as representatives
of low Z and high Z materials, respectively.

For both absorbers of Fig. 8.9 the mean energy transfer fraction f tr equals
1 at low and high photon energies, implying that in these energy ranges
the mass energy transfer coefficient μtr/ρ equals the mass attenuation coef-
ficient μ/ρ. At intermediate photon energies, on the other hand, the total
mean energy transfer fraction f tr is small and for high Z absorbers it is also
structured in a complicated fashion because of the influence of the K and L
absorption edges. In the intermediate photon energy range, μtr/ρ can be sig-
nificantly (up to a factor of 10) smaller than μ/ρ. An accurate determination
of the total mean energy transfer fraction f tr is thus of great importance in
radiation dosimetry, since the kerma and ultimately the dose are related to
μtr/ρ which is obtained by multiplying the total mean energy transfer fraction
f tr with mass attenuation coefficient μ/ρ, as given in (7.19).

8.2.7 Mean Energy Transferred from Photon to Charged Particles

Equation (8.5) gives the total mean energy transfer fraction f tr(hν, Z) and also
allows us to determine the mean energy transferred from photon to secondary
charged particles Etr using the following relationship

Etr = hν
∑

i

wif i =
(
wPEfPE + wRfR + wCfC + wPPfPP

)
hν

= wPEE
PE

tr + wRE
R

tr + wCE
C

tr + wPPE
PP

tr = f trhν. (8.12)

Etr consists of three non-zero components: photoelectric wPEE
PE

tr , Compton
wCE

C

tr, and pair production wCE
PP

tr . In Fig. 8.10 we plot the three components
against photon energy hν for eight selected absorbers ranging from carbon to
uranium. The following general conclusions can be made:

1. The photoelectric component wPEE
PE

tr = wPEfPEhν of the total mean
energy transfer Etr is equal to hν at very low photon energies hν; exhibits
discontinuities at absorption edges; reaches a peak and then drops with
increasing photon energy hν. The higher is the absorber Z, the higher is
the peak in wPEE

PE

tr and the higher is the photon energy hν at which the
peak occurs, ranging from ∼15 keV for carbon to ∼1 MeV for uranium.
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Fig. 8.9. Mass attenuation coefficient μ/ρ from the NIST XCOM database and
the calculated mass energy transfer coefficient μtr/ρ against photon energy hν for
carbon in (a) and lead in (b). Values of the two coefficients are given in cm2/g in
the left hand scale. The total mean energy transfer fraction f tr of (8.5) which links
μtr/ρ with μ/ρ is shown in the background with values shown on the right hand
scale. The attenuation coefficient μ/ρ is plotted with the fine dark line, the energy
transfer coefficient μtr/ρ with the heavy dark line, and the total energy transfer
fraction f tr with the light grey line
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2. The Compton component wCE
C

tr = wCfChν of the total mean energy
transfer Etr rises with photon energy hν at low hν and saturates at high
hν; the higher is the absorber atomic number Z, the lower is the satura-
tion value of wCE

C

tr amounting to ∼1.5 MeV for uranium absorber and to
∼20 MeV for carbon absorber.

3. The pair production component wPPE
PP

tr =wPPfPPhν of the total mean
energy transfer Etr rises steeply with photon energy hν starting at 1.022
MeV (threshold for pair production) and converges to wPPE

PP

tr = hν for
very high photon energies hν. The larger is the absorber atomic number
Z, the faster is the wPPE

PP

tr convergence to the Etr = hν curve.
4. The photoelectric component wPEE

PE

tr = wPEfPEhν predominates at low
hν, the Compton component wCE

PE

tr = wCfChν at intermediate hν, and
the pair production component wPPE

PP

tr = wPPfPPhν at high hν.
5. The Compton component wCE

C

tr = wCfChν predominates for photon
energies hν between ∼50 keV and ∼20 MeV for low Z absorbers and
between ∼1 MeV and ∼5 MeV for high Z absorbers. For photon ener-
gies hν below these lower limits, the photoelectric component wPEE

PE

tr =
wPEfPEhν predominates; for photon energies hν exceeding the upper limit,
the pair production component wPPE

PP

tr = wPPfPPhν predominates.

Fig. 8.10. Weighted mean energy transfers wiE
i
tr for photoelectric effect, Compton

effect, and pair production for eight selected absorber atoms ranging from car-
bon (low atomic number) to uranium (high atomic number) plotted against photon
energy hν
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Fig. 8.11. Etr, the mean energy transferred from photon to charged particles in
carbon absorber, in (a) and lead absorber in (b) plotted against photon energy hν.

The three components of Etr (photoelectric wPEE
PE
tr ; Compton wCE

C
tr; and pair

production wPPE
PP
tr ) are shown with fine line curves in the background
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In Fig. 8.11 we plot with the heavy solid line the sum of the three com-
ponents: wPEE

PE

tr , wCE
C

tr, and wPPE
PP

tr resulting in Etr, the mean energy
transferred from photons to secondary charged particles against photon energy
hν for carbon in part (a) and lead in part (b). The three components of Etr

from Fig. 8.10 are shown with light curves in the background. At very low
hν and very high hν, Etr equals the photon energy hν for all absorbers,
since in these two energy regions the total mean energy transfer fraction f tr

equals to 1. In the intermediate photon energy range where f tr < 1 the
mean energy transferred to charged particles Etr is smaller than hν by up
to an order of magnitude for low Z absorbers and by up to a factor of 3 for
high Z absorbers. The maximum deviation of Etr from hν occurs at photon
energy hν of the order of 50 keV for low Z absorbers and 100 keV for high Z
absorbers.

8.3 Energy Absorption

As shown in Sect. 7.1.4, the mass energy absorption coefficient μab/ρ can be
determined in one of two ways:

1. From the mass attenuation coefficient μ/ρ by multiplying μ/ρ with total
mean energy absorption fraction fab, discussed in Sect. 8.3.2

μab

ρ
=
μ

ρ

Eab

hν
=
μ

ρ
fab (8.13)

2. From the mass energy transfer coefficient μtr/ρ by multiplying μtr/ρ with
(1 − g)

μab

ρ
=
μ

ρ

Eab

hν
=
μ

ρ

Etr − Erad

hν
=
μ

ρ

Etr

hν
− μ

ρ

Etr

hν

Etr − Erad

Etr

=
μtr

ρ
(1 − g) = f tr

μ

ρ
(1 − g), (8.14)

where g is the mean radiation fraction discussed in Sect. 8.3.1 and we used
(7.19) for the last step in (8.14).

Thus, before we can address the mass energy absorption coefficient μab/ρ we
must define and determine the mean radiation fraction g and the total mean
energy absorption fraction fab.

8.3.1 Mean Radiation Fraction

The mean radiation fraction g is defined as the mean fraction of the energy
that is transferred through photon interactions from photon to energetic elec-
trons and positrons in the absorbing medium (see Sect. 8.2) and subsequently
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lost by these secondary charged particles through various radiation processes
as the charged particles move through the absorber and come to rest in the
absorber. Mathematically g is expressed by the following expression

g =
Erad

Etr

=
Etr − Eab

Etr

= 1 − Eab

Etr

= 1 − fab

f tr

= 1 − μab/ρ

μtr/ρ
, (8.15)

where

Etr is the mean energy transferred from the interacting photon to sec-
ondary light charged particles (electrons and positrons) that are
released or produced through photon interactions in the absorber
Etr = Eab + Erad),

Eab is the mean energy deposited in the absorbing medium by the light
secondary charged particles (electrons and positrons) as they travel
through the absorber,

Erad is the mean energy radiated from the light secondary charged particles
(electrons and positrons) as they travel through the absorber and come
to rest in the absorber.

As discussed in Sect. 6.7 in conjunction with the radiation yield, the radiation
processes by which the energetic secondary charged particles may lose energy
as they travel through the absorber are:

1. Bremsstrahlung interaction by electrons and positrons while they travel
through the absorbing medium (see Sect. 4.2.3). This is the predomi-
nant radiation-emitting interaction experienced by the secondary charged
particles.

2. In-flight annihilation process experienced by positrons. This process is less
important than bremsstrahlung, but is generally not negligible.

3. Production of fluorescence radiation resulting from electron and positron
impact ionization and impact excitation of atoms of the absorbing medium.
This process is usually neglected in comparison to bremsstrahlung.

Thus, the mean radiation fraction g depends on incident photon energy hν
as well as on the absorber atomic number Z and generally consists of three
components:

g = gB + gA + gI, (8.16)

where gB, gA, and gI stand for the mean bremsstrahlung, mean in-flight
annihilation, and mean impulse ionization fractions, respectively.

Figure 8.12 shows graphs of the mean radiation fraction g and its two main
components (gB and gA) against photon energy hν for eight selected absorbers
ranging from carbon to uranium. The mean radiation fraction g for incident
photon energies ranging from 0.1 MeV to 1000 MeV was calculated with
the standard g/EGSnrcMP Monte Carlo user code. In the code the charged
particles released by photon interactions in the absorber are tracked and the
energy fraction lost to radiation through bremsstrahlung interactions, positron
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in-flight annihilation, and emission of fluorescence x rays is calculated as the
charged particles slow down from their initial kinetic energy to rest in the
absorber or to the point of positron in-flight annihilation in the absorber.

Figure 8.12a shows g and gB (note linear ordinate scale) and Fig. 8.12b
shows g and gA (note logarithmic ordinate scale). In Fig. 8.12a the g and
gB curves for a given absorber are very close to one another, with g only
slightly exceeding gB confirming that gB is the predominant contributor to g
and validating the frequently used approximation in which gB is assumed to
represent the total mean radiation fraction g. The mean radiation fraction g
is often loosely referred to as the mean bremsstrahlung fraction even though
strictly speaking it should always be referred to as the mean radiation fraction.

Several features of the mean radiation fraction g and its two components
gB and gA become apparent from Fig. 8.12:

1. For a given photon energy hν the mean radiation fraction g increases with
absorber atomic number Z.

2. For a given absorber atomic number Z the mean radiation fraction g
increases with photon energy hν and saturates at g = 1 at very high
photon energies hν.

3. The mean bremsstrahlung fraction gB is the sole contributor to g for pho-
ton energies hν below 1.022 MeV, which, as shown in Sect. 7.6, is the
threshold energy for pair production.

4. For hν > 1.022 MeV pair production becomes possible and both the mean
bremsstrahlung fraction gB and the mean in-flight annihilation fraction gA

contribute to g; however, the mean bremsstrahlung fraction gB predom-
inates at all photon energies and exceeds the mean in-flight annihilation
fraction gA by at least an order of magnitude.

5. At photon energies hν > 10 MeV the mean bremsstrahlung fraction gB

increases almost linearly with hν until it saturates at gB ≈ 1 for extremely
high photon energies.

6. The mean in-flight annihilation fraction gA first rises rapidly with photon
energy between 1 MeV and 10 MeV and saturates around g ≈ 0.02 at
photon energy hν ≈ 20 MeV for high Z absorbers and at photon energy
around hν ≈ 100 MeV for low Z absorbers.

7. For low Z absorbers and photon energies below 1 MeV the mean radiation
fraction g is negligible (g < 0.001); for electrons produced by cobalt-60 γ
rays in water g = 0.003.

The mean radiation fraction g and the radiation yield Y [(EK)0] for light
charged particles, discussed in Sect. 6.7, are different, yet related, quanti-
ties. The radiation fraction g is the mean value of radiation yields Y [(EK)0]
for all electrons and positrons of various initial energies (EK)0 present in the
spectrum of light charged particles released or produced in absorbing medium
by either monoenergetic photons or by a spectrum of photons. On the one
hand, the radiation yield Y [(EK)0] is defined, as given in (6.66), for monoen-
ergetic electrons and positrons with initial energy (EK)0, while, on the other
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Fig. 8.12. Mean radiation fraction g against photon energy hν for eight selected
absorbers ranging from carbon to uranium. Part (a) displays with heavy solid curves
the total mean radiation fraction g and with light solid curves its bremsstrahlung
component gB for the various absorbers (note linear scale for g and gB). Part (b)
displays the total mean radiation fraction g and its in-flight annihilation compo-
nent gA (note the logarithmic scale for g and gA). Data were calculated using the
g/EGSnrcMP code obtained from the NRC, Ottawa, Canada
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hand, g is the mean radiation fraction calculated for a spectrum of electrons
and positrons released in the medium by photons of energy hν.

The graph of g versus hν of Fig. 8.12 can be linked to the graph of the radi-
ation yield Y [(EK)0] versus incident electron kinetic energy (EK)0 of Fig. 6.12
by determining, for a given photon energy hν, three quantities: Etr, (EK)0,
and Y [(EK)0]:

1. Etr, mean energy transferred to light charge carriers (electrons and
positrons) through photon interactions with absorber atoms.

2. (EK)0,mean of the initial kinetic energies acquired by the charged particles
(note: in pair production two particles, an electron and a positron are
produced in each interaction and in the first approximation we assume
that they share the energy in equal proportions. Thus, (EK)0 < Etr).

3. Y [(EK)0] for mean initial kinetic energy (EK)0 from the Y [(EK)0] versus
(EK)0 diagram given in Fig. 6.12.

4. An assumption can then be made that Y [(EK)0, Z] ≈ g(hν, Z).

8.3.2 Total Mean Energy Absorption Fraction

The total mean energy absorption fraction fab is determined from the total
mean energy transfer fraction f tr of (8.5) as follows

fab = f tr(1 − g), (8.17)

with g the mean radiation fraction plotted in Fig. 8.12 and discussed in
Sect. 8.3.1.

In Fig. 8.13 we plot fab with heavy solid curves against photon beam
energy hν for two absorbers: carbon in part (a) and lead in part (b). In the
background we plot, with light solid curves, the mean energy transfer fraction
f tr and its three components wPEfPE, wCfC, and wPPfPP as well as the
mean radiation fraction g and the function (1− g) for the two absorbers. The
following observations can be made:

1. For relatively low photon energies hν (below 1 MeV for low Z absorber
and below 200 keV for high Z absorber) where g ≈ 0 and (1 − g) ≈ 1, the
mean energy transfer fraction f tr and the mean energy absorption fraction
fab are equal.

2. At higher photon energies hν (above 1 MeV for low Z absorber and above
200 keV for high Z absorber) f tr and fab diverge as hν increases, with
f tr asymptotically approaching f tr = 1, as shown in Fig. 8.13, and fab

asymptotically approaching fab = 0 at high photon energies hν.
3. Since the mean radiation fraction g is proportional to absorber atomic

number Z resulting in inverse proportionality with Z of the function 1 − g,
the mean energy absorption fraction fab is at high photon energy hν
inversely proportional to the absorber atomic number Z.
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Figure 8.14 shows the total mean energy absorption fraction fab for eight
selected absorbers from carbon to uranium and for photon energies exceeding
the L1 absorption edge energy for a given absorber. At relatively low photon
energies fab is equal to the mean energy transfer fraction f tr and both exhibit
the fine structure caused by absorption edges. At photon energies hν above
1 MeV for high Z absorbers and above 10 MeV for low Z absorbers, fab

and f tr start to deviate from one another. While f tr continues to increase
with increasing hν and attains a value of 1 at very high photon energies hν,
as shown in Fig. 8.8, fab attains a local maximum and then falls to 0 with
increasing hν as a result of g → 1.The energy hν at which the local peak in fab

occurs is inversely proportional to the absorber atomic number Z appearing at
hν = 10 MeV for high Z absorbers and at hν = 30 MeV for low Z absorbers.
The magnitude of fab at the peak energy hν is also inversely proportional
with Z, amounting to fab ≈ 0.6 for high Z absorbers and increasing with Z
to reach fab ≈ 0.8 for low Z absorbers.

8.3.3 Mass Energy Absorption Coefficient

The mass energy absorption coefficient μab/ρ is shown for two absorbers:
carbon and lead in Fig. 8.15 with the heavy solid line curve. Shown with
fine line curves are the mass energy transfer coefficient μtr/ρ and the mass
attenuation coefficient μ/ρ from Fig. 8.9. In addition, in Fig. 8.15 we also show
in the background with light curves the total mean energy transfer fraction
f tr, the function 1− g, and the total mean energy absorption fraction fab for
carbon in part (a) and for lead in part (b).

Based on Fig. 8.15a for carbon and Fig. 8.15b for lead we conclude that:

1. For low Z absorbers and photon energies hν below 10 MeV, fab = f tr and
1 − g ≈ 1 resulting in μab/ρ ≈ μtr/ρ.

2. For high Z absorbers and photon energies hν below 100 keV, fab = f tr

and 1 − g ≈ 1 resulting in μab/ρ = μtr/ρ.
3. With increasing photon energies above 20 MeV for low Z absorbers and

above 2 MeV for high Z absorbers, μab/ρ starts to deviate from μtr/ρ
because of an increasing mean radiation fraction g with photon energy hν.
As the mean radiation fraction g approaches 1, μab/ρ approaches 0 while
μtr/ρ approaches μ/ρ.

8.3.4 Mean Energy Absorbed in Absorbing Medium

From (8.5) and (8.17) we get the following expression for Eab, the mean energy
absorbed in medium

Eab =
(
wPEfPE + wCfC + wPPfPP

)× (1 − g)hν = fabhν = Etr(1 − g).
(8.18)
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Fig. 8.13. Total mean energy absorption fraction fab against photon energy hν
for carbon in (a) and lead in (b). Components of fab, namely the weighted mean
energy transfer fractions for the photoelectric effect wPEfPE, Compton effect wcf c,
and pair production wPPfPP forming the total mean energy transfer fraction f tr as
well as the radiation fraction g and the function (1 − g) are plotted with fine line
curves in the background, while the mean energy absorption fraction fab is plotted
with the heavy black line
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Fig. 8.14. Total mean energy absorption fraction fab against photon energy hν
for eight selected absorber atoms from carbon to uranium. The data are plotted for
photon energy hν exceeding the binding energy of the L1 subshell of the absorber
atom

Eab is plotted against photon energy hν in Fig. 8.16 with a heavy line
curve for two absorbers: carbon in part (a) and lead in part (b). The fine line
curves in the background represent the mass energy transfer coefficient μtr/ρ,
while the heavy grey line curve represents the function (1−g) with g the mean
radiation fraction. The following general conclusions can be made:

1. For all absorbers, Etr and Eab are equal at relatively low photon energies
hν where the radiation fraction g is negligible.

2. For all absorbers Eab < Etr at high photon energies. The two quantities
start to diverge with increasing hν at hν = 10 MeV for low Z absorbers
and hν = 1 MeV for high Z absorbers.

3. As g → 1 at very high photon energies hν, the energy Eab absorbed in the
absorber approaches 0.

8.4 Coefficients of Compounds and Mixtures

At a given photon energy hν, the attenuation coefficients μ, energy transfer
coefficients μtr, and energy absorption coefficients μab for a compound or
mixture of elements are approximated by a summation of a weighted mean of
its constituents, as follows
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Fig. 8.15. Mass attenuation coefficient μ/ρ from the NIST XCOM database, calcu-
lated mass energy transfer coefficient μtr/ρ, and calculated mass energy absorption
coefficient μab/ρ, all against photon energy hν for carbon in (a) and lead in (b).
Values of the three coefficients are given in cm2/g in the left hand scale. The total
mean energy transfer fraction f tr and the total mean energy absorption fraction fab

as well as the function (1−g) which links fab with f tr are plotted in the background
with their values shown on the right hand scale. The mass attenuation coefficient
μ/ρ and the mass energy transfer coefficient μtr/ρ are plotted with the fine black
line; the mass energy absorption coefficient μab/ρ with the heavy black line; and
the total energy transfer fraction f tr, the total mean energy absorption fraction fab,
and the function (1 − g) with the light grey line
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Fig. 8.16. Etr, mean energy transferred from photon to charged particles, and Eab,
mean energy absorbed in the absorber, for carbon in (a) and lead in (b) plotted
against photon energy hν. The function (1− g) which relates Etr and Eab is plotted
in the background

μ =
∑

j

wjμj , (8.19)

μtr =
∑

j

wj(μtr)j , (8.20)

μab =
∑

j

wj(μab)j , (8.21)
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where

wj is the proportion by weight of the jth constituent element.
μj is the attenuation coefficient of the jth constituent element.

(μtr)j is the energy transfer coefficient of the jth constituent element.
(μab)j is the energy absorption coefficient of the jth constituent element.

By way of a few examples, we determine the proportion by weight wj of
the constituent elements for water, polystyrene, and Lucite and calculate, for
10 MeV photons, the mass attenuation coefficient of water, the mass energy
transfer coefficient of polystyrene, and the mass energy absorption coefficient
of Lucite. A discussion of mean atomic mass and mean molecular mass is
given in Sect. 1.14. Attenuation coefficient data for constituent atoms as well
as a summary of results are given in Table 8.1.

1. Water H2O with constituent elements hydrogen (mean atomic mass
MH = 1.00794 u) and oxygen (mean atomic mass MO = 15.9994 u) has
mean molecular mass MH2O = 18.0153 u. Mass attenuation coefficient of
water (μ/ρ)hν

H2O
is approximated as follows

(
μ

ρ

)hν

H2O

=
2 × 1.00794

18.0153

(
μ

ρ

)hν

H

+
15.9994
18.0153

(
μ

ρ

)hν

O

= 0.1119
(
μ

ρ

)hν

H

+ 0.8881
(
μ

ρ

)hν

O

(8.22)

(
μ

ρ

)10 MeV

H2O

= 0.1119× 0.0325 (cm2/g) + 0.8881× 0.0209 (cm2/g)

= 0.0222 cm2/g. (8.23)

2. Polystyrene (C8H8)x with constituent elements carbon (mean atomic
weight MC = 12.0107 u) and hydrogen (mean atomic mass MH =
1.00794 u) has a molecular mass MC8H8 = 104.149 u. Mass energy transfer
coefficient of polystyrene (μtr/ρ)hν

C8H8
is approximated as

(
μtr

ρ

)hν

C8H8

=
8× 12.0107

104.149

(
μtr

ρ

)hν

C

+
8× 1.00794

104.149

(
μtr

ρ

)hν

H

= 0.9226
(
μtr

ρ

)hν

C

+ 0.0774
(
μtr

ρ

)hν

H

(8.24)

(
μtr

ρ

)10 MeV

C8H8

= 0.9226×0.0143 (cm2/g) + 0.0774×0.0227 (cm2/g)

= 0.0150 cm2/g. (8.25)
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3. Lucite (C5H8O2)x with constituent elements carbon (mean atomic weight
MC = 12.0107 u), hydrogen (mean atomic weight MH = 1.00794 u),
and oxygen (atomic mass MO = 15.9994 u) has mean molecular weight
MC5H8O2 = 100.1158 u. Mass energy absorption coefficient of Lucite
(μab/ρ)hν

C5H8O2
is approximated as follows

(
μab

ρ

)hν

C5H8O2

=
5 × 12.0107
100.1158

(
μab

ρ

)hν

C

+
8 × 1.00794
100.1158

(
μab

ρ

)hν

H

+
2 × 15.9994
100.1158

(
μab

ρ

)hν

O

= 0.5998
(
μab

ρ

)hν

C

+ 0.0805
(
μab

ρ

)hν

H

+ 0.3196
(
μab

ρ

)hν

O

(8.26)

(
μab

ρ

)10 MeV

C5H8O2

= 0.5998× 0.0138 (cm2/g)

+ 0.0805× 0.0225 (cm2/g)

+ 0.3196× 0.0148 (cm2/g) = 0.0148 cm2/g. (8.27)

In radiation dosimetry, air is commonly used as the radiation sensitive medium
in ionization chambers for determination of exposure and dose in various tis-
sue equivalent media. It thus represents an important mixture of gases and,
as given in Table 8.2, consists of molecules of nitrogen (N2), oxygen (O2),
and carbon dioxide (CO2), as well as argon atoms (Ar) in the following
respective proportions by volume and number: 78.08 %, 20.95 %, 0.93 %,
and 0.03 %. This translates to respective proportions by weight of: 75.8 %,
22.6 %, 0.93 %, and 0.03 %. The mass attenuation coefficient of air (μ/ρ)hν

air

at photon energy hν, and similarly the mass energy transfer coefficient and
mass energy absorption coefficient, are approximated as follows
(
μ

ρ

)hν

air

= 0.758
(
μ

ρ

)hν

N2

+ 0.226
(
μ

ρ

)hν

O2

+ 0.0093
(
μ

ρ

)hν

Ar

+ 0.0003
(
μ

ρ

)hν

CO2

.

(8.28)

Table 8.1. Mass attenuation coefficient μ/ρ, mass energy transfer coefficient μtr/ρ,
and mass energy absorption coefficient μab/ρ for 10 MeV photons in various low
atomic number absorbers. Results from the three examples [(8.23), (8.25) and (8.27)]
are shown in bold

Coefficient Hydrogen Carbon Oxygen Water Polystyrene Lucite

μ/ρ (cm2/g) 0.0325 0.0196 0.0209 0.0222 0.0206 0.0210
μtr/ρ (cm2/g) 0.0227 0.0143 0.0154 0.0162 0.0150 0.0153
μab/ρ (cm2/g) 0.0225 0.0138 0.0148 0.0157 0.0145 0.0148
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Table 8.2. Properties of dry air of importance in radiation dosimetry

Gas Molecular mass Percent Partial pressure Percent
(u) by volume (kPa) by weight

Nitrogen (N2) 28.013 78.08 79.1 75.8
Oxygen (O2) 31.999 20.95 21.2 22.6
Argon (Ar) 39.948 0.93 0.94 0.93
Carbon dioxide 44.000 0.03 0.03 0.03

100 101.3 100

8.5 Effects Following Photon Interactions
with Absorber

In photoelectric effect, Compton effect, and triplet production vacancies are
produced in atomic shells through ejection of orbital electrons:

1. For orthovoltage and megavoltage photons used in diagnosis and treatment
of disease with radiation, the shell vacancies occur mainly in inner atomic
shells of the absorber.

2. Nuclear pair production, Rayleigh scattering and photodisintegration do
not produce shell vacancies.

3. As discussed in detail in Sect. 4.1, vacancies in inner atomic shells are not
stable; they are followed by emission of characteristic (fluorescence) x rays
or Auger electrons depending on the fluorescence yield of the absorbing
material and cascade to the outer shell of the ion. The ion eventually
attracts an electron from its surroundings and becomes a neutral atom.

4. Pair production and triplet production are followed by annihilation of the
positron with an orbital electron of the absorber, most commonly produc-
ing two annihilation quanta of 0.511 MeV each and moving at 180◦ to
each other. Annihilation of a positron before it expended all of its kinetic
energy is referred to as in-flight annihilation and may produce photons
exceeding 0.511 MeV in energy (Sect. 7.6.10) as well as angular deflections
significantly different from 180◦.

A list of the major photon interactions with absorber atoms identifying the
interactions that result in orbital shell vacancy is provided in Table 8.3. The
table also identifies the type of charged particle produced in each given photon
interaction as well as the name used to designate the charged particle.

8.6 Summary of Photon Interactions

As is evident from discussions in Chapter 7 and this chapter, photons have
numerous options for interaction with absorber atoms. The probabilities for
interaction in general depend on the incident photon energy hν and the atomic
number Z of the absorber.
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Table 8.3. Production of electron shell vacancy and charged particles produced
in various photon interactions with absorber atoms. A vacancy produced in inner
atomic shell migrates to outer shell and the excess energy is emitted in the form of
characteristic (fluorescence) photons or Auger electrons

Photon interaction Electron shell Charged particles released or produced
with absorber vacancy produced in the photon interaction with absorber

Thomson scattering No None
Compton effect Yes Compton (recoil) electron
Rayleigh scattering No None
Photoelectric effect Yes Photoelectron
Pair production No Electron-positron pair
Triplet production Yes Electron-positron pair + orbital electron
Photodisintegration No Photoneutron, proton, etc

While over a dozen different photon interactions are known in nuclear
physics, six of these are of importance to medical physics because they govern:

1. The physics of attenuation and scattering of photon beams by tissues of
importance in imaging physics and radiation dosimetry.

2. The physics of energy transfer from photons to light charged particles in
an absorber and the ultimate energy absorption in irradiated tissues. This
is of importance in radiation dosimetry, treatment planning, clinical dose
prescription, and dose delivery.

3. Less importantly, physics of neutron production which poses a potential
health hazard to patients and staff involved with the use of high energy
linacs in treatment of cancer with radiation.

The six modes of photon interactions with absorber atoms of relevance to
medical physics are:

1. Photoelectric effect.
2. Rayleigh scattering.
3. Compton effect.
4. Nuclear pair production.
5. Electronic pair production (also known as triplet production).
6. Photonuclear reactions (also known as photodisintegration).

The six modes of photon interactions are discussed in detail in Chapters 7
and 8, and their most important characteristics are:

1. Reiterated in the next five sections (Sect. 8.6.1 through Sect. 8.6.5 – Note
that the discussions of the nuclear pair production and the electronic pair
production are combined under the header “pair production”.

2. Shown schematically in Figures 8.17 and 8.18.
3. Summarized in Table 8.4.
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Fig. 8.17. Schematic diagrams of the six most important modes of photon interac-
tion with atoms of absorber: a Photoelectric effect; b Rayleigh scattering; c Compton
effect; d Electronic pair production (triplet production); e Nuclear pair production;
f Photodisintegration. The first four modes represent photon interactions with a K-
shell orbital electron; the last two modes (e and f) represent photon interactions with
the nucleus of the absorber atom. The electronic and nuclear pair production modes
are usually handled together under the header “pair production”, and photonu-
clear reactions are usually ignored, so that often in medical physics an assumptions
is made that there are only four important modes of photon interaction with
absorber atoms: photoelectric effect, Rayleigh scattering, Compton effect, and pair
production
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Table 8.4. Main characteristics of photoelectric effect, Rayleigh scattering, Comp-
ton effect, and pair production

Photoelectric Rayleigh Compton Pair
effect scattering effect production

Photon
interaction

With whole
atom (bound
electron)

With bound
electrons

With free
electron

With nuclear
Coulomb field

Mode of photon
interaction

Photon
disappears

Photon
scattered

Photon
scattered

Photon
disappears

Energy
dependence

1

(hν)3
1

(hν)2
Decreases
with energy

Increases with
energy

Threshold
energy

Shell binding
energy

No Shell
binding
energy

∼2mec2

Linear
attenuation
coefficient

τ σR σC κ

Atomic coef.
dependence
on Z

aτ ∝ Z4
aσR ∝ Z2

aσC ∝ Z aκ ∝ Z2

Mass coefficient
dependence
on Z

τ

ρ
∝ Z3 σR
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Fig. 8.18. Schematic diagram of the six modes available to incident photons for
interaction with absorber atoms of importance to medical physics: photonuclear
reactions, Rayleigh scattering, Compton effect, photoelectric effect, electronic pair
production, and nuclear pair production (Note: the modes are not listed in any
particular order of importance). Also shown are the particles produced or released
in the absorber during a given photon interaction as well as the effects that fol-
low a given photon interaction, such as emission of characteristic radiation, Auger
electrons, annihilation quanta, and bremsstrahlung photons. Figure also indicates
that the secondary photons (Rayleigh- and Compton-scattered photons, character-
istic photons, annihilation quanta, and bremsstrahlung photons) can start their own
photon interaction cycle in the absorber

Figure 8.17 shows the basic features of the six photon interaction modes,
indicating clearly that:

1. Four of the six modes (photoelectric effect, Rayleigh scattering, Compton
effect, and electronic pair production) are interactions between a photon
and orbital electron of an absorber atom.
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2. Three of the six modes (photoelectric effect, Compton effect, and elec-
tronic pair production) produce a vacancy in the absorber atom by causing
ejection of the orbital electron with which the photon interacts.

3. Two of the six modes (nuclear pair production and photonuclear reaction)
are interactions between a photon and nucleus of an absorber atom.

Figure 8.17 also indicates the photon energy hν range for the six modes of
interaction as well as the products that appear after the particular interaction.
Kinetic energies EK of the charged particles released during the interaction
and of importance in radiation dosimetry are also indicated.

Figure 8.18 provides information similar to that of Fig. 8.17 but to a
greater detail, as it also presents the effects that follow the individual photon
interactions, such as:

1. Emission of characteristic x-ray photons following a vacancy produced in
atomic shell of an absorber atom.

2. Emission of Auger electrons following a vacancy produced in atomic shell
of an absorber atom.

3. Production of ionization and excitation of absorber atoms by the energetic
charged particles produced in the initial photon interactions.

4. Production of delta rays by the energetic charged particles produced in the
initial photon interactions.

5. Bremsstrahlung production by the energetic charged particles produced in
the initial photon interactions.

6. Production of annihilation quanta by positrons generated in the nuclear
pair production and the electronic pair production.

7. Redirection of scattered photons, characteristic photons, annihilation pho-
tons, and bremsstrahlung photons to start a new photon interaction cycle
in the absorber.

8.6.1 Photoelectric Effect

1. The photoelectric effect (sometimes also referred to as photoeffect) is an
interaction between a photon with energy hν and a tightly bound orbital
electron of an absorber atom. The interaction is thus between a photon
and an absorber atom as a whole. The electron is ejected from the atom
and referred to as a photoelectron.

2. A tightly bound orbital electron is defined as an orbital electron with bind-
ing energy EB either larger than hν or of the order of hν. For EB > hν
the photoeffect cannot occur; for hν > EB the photoelectric effect is pos-
sible. The closer is hν to EB, the larger is the probability for photoelectric
effect to happen, provided, of course, that hν exceeds EB. At hν = EB the
probability abruptly drops and exhibits the so-called absorption edge.

3. With increasing incident photon energy hν, the atomic, linear, and mass
photoelectric attenuation coefficients decrease from their absorption edge
value approximately as 1/ (hν)3.
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4. The atomic photoelectric attenuation coefficient aτ varies approximately
as Z5 for low Z absorbers and as Z4 for high Z absorbers.

5. The mass photoelectric attenuation coefficient τm = τ/ρ varies approxi-
mately as Z4 for low Z absorbers and as Z3 for high Z absorbers.

6. In water and tissue E
PE

tr , the mean energy transferred to electrons (photo-
electrons and Auger electrons) is equal to E

PE

ab , the mean energy absorbed
in the medium because the radiation fraction g is negligible; i.e., g ≈ 0.

7. Furthermore, in water and tissue E
PE

tr is approximately equal to the photon
energy hν because the fluorescence yield ωK is approximately equal to
zero. Thus in water and tissue the following relationship holds for the
photoelectric effect: E

PE

tr = E
PE

ab ≈ hν.

8.6.2 Rayleigh Scattering

1. Rayleigh scattering is an interaction between a photon with energy hν and
the whole atom. All orbital electrons contribute to the scattering event and
the phenomenon is referred to as coherent scattering because the photon
is scattered by the constructive action of the tightly bound electrons of the
whole atom.

2. The photon leaves the point of interaction with the incident energy hν
intact but is redirected through a small scattering angle. Since no energy
is transferred to charged particles, Rayleigh scattering plays no role in
radiation dosimetry; however, it is of some importance in imaging physics
because the scattering event has an adverse effect on image quality.

3. The atomic Rayleigh attenuation coefficient aσR decreases approximately
as 1/(hν)2 and is approximately proportional to Z2 of the absorber.

4. Even at very small incident photon energy hν, the Rayleigh component of
the total attenuation coefficient is small and amounts to only a few percent
of the total attenuation coefficient.

8.6.3 Compton Effect

1. Compton effect (often referred to as Compton scattering) is an interaction
between a photon with energy hν and a free orbital electron.

2. A free electron is defined as an orbital electron whose binding energy EB

is much smaller than the photon energy hν; i.e., hν � EB.
3. In each Compton interaction a scattered photon and a free electron

(referred to as Compton or recoil electron) are produced. The sum of the
scattered photon energy hν′ and the Compton recoil electron kinetic energy
EK is equal to the incident photon energy hν. The relative distribution of
the two energies depends on the incident photon energy hν and on the
angle of emission (scattering angle θ ) of the scattered photon.
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4. The electronic and mass Compton attenuation coefficients eσC and σC/ρ,
respectively, are essentially independent of the atomic number Z of the
absorber.

5. The atomic and mass Compton attenuation coefficients aσC and σC/ρ,
respectively, decrease with increasing incident photon energy hν.

6. The atomic Compton attenuation coefficient aσ is linearly proportional to
the atomic number Z of the absorber.

7. The average fraction of the incident photon energy hν transferred to recoil
electron increases with hν (see The Compton Graph in Figs. 7.11 and 7.18).
At low photon energies the Compton energy transfer coefficient (σc)tr is
much smaller than the Compton attenuation coefficient σC; i.e., (σc)tr 	
σc. At high photon energies, on the other hand, (σC)tr ≈ σC.

8. In water and tissue the Compton process is the predominant mode of pho-
ton interaction in the wide photon energy range from ∼20 keV to ∼20 MeV
(see Fig. 8.5).

8.6.4 Pair Production

1. Pair production is an interaction between a relatively high energy photon
and the Coulomb field of either a nucleus or orbital electron. The pho-
ton disappears and an electron-positron pair is produced. The process is
an example of mass-energy equivalence and is sometimes referred to as
materialization.

2. Pair production in the field of a nucleus is referred to as nuclear pair
production and has threshold energy of ∼2mec

2 = 1.022 MeV.
3. Pair production in the Coulomb field of an orbital electron of the absorber

is referred to as electronic pair production or triplet production. The
process is much less probable than nuclear pair production and has thresh-
old energy of 4mec

2 = 2.044 MeV. The photon disappears and three
light charged particles are released: the original orbital electron and the
electron-positron pair produced in the interaction.

4. Contributions from the nuclear pair production and the electronic pair
production are usually combined into one contribution referred to as pair
production.

5. The probability for pair production interaction first increases rapidly with
the incident photon energy hν for photon energies above the threshold
energy and then eventually saturates at very high photon energies resulting
in a logarithmic type curve.

6. The atomic pair production attenuation coefficient aκ varies approximately
as Z2 of the absorber.

7. The mass pair production coefficient κm = κ/ρ varies approximately
linearly with the atomic number Z of the absorber.
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8. The average energy transferred from the incident photon hν to charged
particles in both the nuclear pair production and the electronic pair
production, E

PP

tr , is hν − 2mec
2 = 1.022 MeV.

8.6.5 Photonuclear Reactions

1. Photonuclear reactions (also called photodisintegration or nuclear photo-
electric effect) are direct interactions between an energetic photon with
energy hν and a nucleus of the absorber atom. The nucleus absorbs the
photon and the most likely result of such an interaction is the emission of
a single neutron from the nucleus through a (γ, n) reaction.

2. The threshold energy for photonuclear reactions is of the order of ∼8 MeV
for all nuclides with two notable exceptions of the deuteron at 2.22 MeV
and beryllium-9 at 1.67 MeV.

3. Cross sections for photonuclear reactions exhibit a broad peak “giant reso-
nance” centered at about 23 MeV for low atomic number Z absorbers and
at about 12 MeV for high Z absorbers. The full-width-at-half-maximum
(FWHM) typically ranges from ∼3 MeV to ∼9 MeV.

4. Atomic cross sections for photonuclear reactions aσPN even at the peak of
the giant resonance amounts to only about a few per cent of the sum of
the “electronic cross sections”, i.e., aσPN << aτ + aσR + aσC + aκ. For
this reason, the photonuclear reactions are generally ignored in medical
physics.

8.7 Sample Calculations

To provide a practical summary of the material presented in Chapters 7 and 8
we investigate with two examples the various interactions that photons can
have with absorbers. In Sect. 8.7.1 we present the simple relationships that
govern photoelectric, Rayleigh, Compton, and pair production interactions
of monoenergetic 2 MeV photons with a lead absorber. We also determine
various attenuation coefficients as well as the mass energy transfer coefficient
and the mass energy absorption coefficient.

In Sect. 8.7.2 we deal with interactions of monoenergetic 8 MeV photons
with copper absorber. In this example, we use the basic relationships presented
in this chapter to estimate the appropriate attenuation coefficients, energy
transferred to charged particles, energy absorbed by the absorber, as well as
the mass energy transfer coefficient and the mass energy absorption coefficient.
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8.7.1 Example 1: Interaction of 2 MeV Photon with Lead
Absorber

For monoenergetic 2 MeV photons interacting with lead (Z =82;A=207.2
g/mol; ρ=11.36 g/cm3) linear attenuation coefficients for the photo-electric
effect, coherent scattering, Compton effect, and pair production are: τ =
0.055 cm−1, σR = 0.008 cm−1, σC = 0.395 cm−1, and κ = 0.056 cm−1, resp-
ectively. The average energy transferred to charged particles Etr = 1.13 MeV
and the average energy absorbed in lead is Eab = 1.04 MeV.

Determine:

(1) Linear attenuation coefficient μ.
(2) Mass attenuation coefficient μm.
(3) Atomic attenuation coefficient aμ.
(4) Mass energy transfer coefficient μtr.
(5) Mean radiation fraction g.
(6) Mass energy absorption coefficient μab.

1. Linear attenuation coefficient μ [see (8.1)] is the sum of the four indi-
vidual components: photoelectric, Rayleigh, Compton, and pair production
including nuclear and electronic pair production

μ = τ +σR +σC +κ = (0.055+0.008+0.395+0.056) cm−1 = 0.514 cm−1

(8.29)
2. Mass attenuation coefficient μm [see (8.2)]

μm =
μ

ρ
=

0.514 cm−1

11.36 g/cm3 = 0.0453 cm2/g. (8.30)

3. Atomic attenuation coefficient (cross section) aμ [see (8.3)]

aμ =
{
ρNA

A

}−1

μ

=
207.2 (g/mol) 0.514 cm−1

11.36 g/cm3 6.022×1023 (atom/mol)
= 1.56×10−23 cm2/atom

(8.31)

4. Mass energy transfer coefficient μtr/ρ

μtr

ρ
=
Etr

hν

μ

ρ
=

1.13 MeV × 0.0453 cm2/g
2 MeV

= 0.0256
cm2

g
. (8.32)

The mass energy transfer coefficient μtr/ρ can also be determined using
(8.5) with the appropriate mean energy transfer fractions f i
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f tr =
∑

i

μi

μ
f i =

{
τ

μ
fPE +

σR

μ
fR +

σC

μ
fC +

κ

μ
fPP

}
=
Etr

hν
. (8.33)

The appropriate mean energy transfer fractions can be found in
Fig. (8.2)

fPE = E
PE
tr

hν = hν−PKωKhνK
hν = 1 − PKωKhνK

hν = 0.965 (8.34)

fR = E
R
tr

hν = 0 (8.35)

fC = E
C
tr

hν = 0.53 (8.36)

fPP = E
PP
tr

hν = hν−2mec
2

hν = 1 − 2mec
2

hν = 0.49, (8.37)

resulting in the following mass energy transfer coefficient μtr/ρ

μtr

ρ
=
Etr

hν

μ

ρ
=

{
τ

μ
fPE +

σR

μ
fR +

σC

μ
fC +

κ

μ
fPP

}
μ

ρ

=
1

11.36 g · cm−3
(0.055 × 0.965 + 0 + 0.395 × 0.53 + 0.056 × 0.50) cm−1

= 0.0256
cm2

g
, (8.38)

in excellent agreement with the result obtained in (8.32). We can now
also verify the mean energy transferred from 2 MeV photons to charged
particles (electrons and positrons) in the lead absorber stated as 1.13 MeV
in the assignment above. Using the mean energy transfer fractions of (8.34)
through (8.37) we get the following result for Etr

Etr = f trhν =
τ

μ
E

PE

tr +
σR

μ
E

R

tr +
σC

μ
E

C

tr +
κ

μ
E

PP

tr

= 0.107 × 1.93 MeV + 0.016× 0 + 0.769 × 1.06 MeV

+ 0.109 × 0.98 MeV = 1.13 MeV. (8.39)

5. Mean radiation fraction g

g =
Etr − Eab

Etr

= 1 − Eab

Etr

= 1 − 1.04 MeV
1.13 MeV

= 0.08, (8.40)

in excellent agreement with the radiation fraction of 0.08 we get for 2 MeV
photons in lead from Fig. 8.12.
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6. Mass energy absorption coefficient μab/ρ

μab

ρ
=
μen

ρ
=
Eab

hν

μ

ρ
=

1.04 MeV × 0.0453 cm2/g
2 MeV

= 0.0236
cm2

g
(8.41)

or from (7.22) and (8.15)

μab

ρ
=
Etr − Erad

hν

μ

ρ
=
μtr

ρ

(
1 − Erad

Etr

)
=
μtr

ρ
(1 − g) =

μ

ρ
f tr(1 − g) =

μ

ρ
fab

= 0.0256
cm2

g
(1 − 0.08) = 0.0235

cm2

g
, (8.42)

in good agreement with (8.41). The inverse relationship also holds, as
expected

g = 1 − μab/ρ

μtr/ρ
= 1 − 0.0236 cm2/g

0.0256 cm2/g
= 0.08. (8.43)

Fig. 8.19. Schematic diagram for general photon interactions with an atom.
In this example a 2 MeV photon hν interacts with a lead atom. An indi-
vidual 2 MeV photon, as it encounters a lead atom at point A, may inter-
act with the atom through photoelectric effect, Rayleigh scattering, Compton
effect or pair production, or it may not interact at all. However, for a large
number of 2 MeV photons striking lead, we may state that on the average:

– 1.13 MeV will be transferred at point A to charged particles (mainly to fast ene-
rgetic electrons, but possibly also to positrons if the interaction is pair produc-
tion);

– 0.87 MeV will be scattered through Rayleigh and Compton scattering (hν′)
Of the 1.13 MeV transferred to charged particles:
– 1.04 MeV will be absorbed in lead over the fast charged particle tracks, and
– 0.09 MeV will be emitted in the form of bremsstrahlung photons (hν′′)
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Summary of results is shown schematically in Fig. 8.19. A 2 MeV photon
in lead will, on the average, transfer 1.13 MeV to charged particles, while the
scattered photon will have an energy of 0.87 MeV.

– Etr = 1.13 MeV: Mean energy transferred to charged particles (electrons
and positrons).

– hν′ = 0.87 MeV: Mean energy scattered through Rayleigh and Compton
scattering.

Of the 1.13 MeV of energy transferred to charged particles in the lead
absorber:

– Eab = 1.04 MeV: Mean energy absorbed in lead.
– hν′′ = 0.09 MeV: Mean energy re-emitted through bremsstrahlung radia-

tion loss.

The radiation fraction g for 2 MeV photons in lead is 0.08.

8.7.2 Example 2: Interaction of 8 MeV Photon with Copper
Absorber

Monoenergetic photons with energy hν = 8 MeV [ε = hν/(mec
2) = 15.66]

interact with a copper absorber (Z = 29; A = 63.54 g/mol; ρ = 8.96 g/cm3).
Using only the relationships and graphs given in Chapters 7 and 8, determine
the following quantities:

1. Atomic cross section aμ.
2. Mass attenuation coefficient μm.
3. Linear attenuation coefficient μ.
4. Mean energy transferred to charged particles Etr.
5. Mass energy transfer coefficient μtr/ρ.
6. Mean radiation fraction g.
7. Mean energy radiated by charged particles as bremsstrahlung.
8. Mean energy absorbed in the copper absorber Eab.
9. Mass energy absorption coefficient μab/ρ.

1. To determine the total atomic cross section aμ we first calculate the
individual atomic cross sections for photoelectric effect aτ , Compton effect
aσC, and pair production aκ. The total atomic cross section aμ will be the
sum of the three individual atomic cross sections. We ignore the atomic
cross sections for Rayleigh scattering aσR and for photonuclear reactions
aσPN because they are very small in comparison with the photoelectric,
Compton and pair production cross sections.
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Photoelectric effect

Since ε >> 1, we use (7.142) to estimate aτ for K-shell electrons in copper
and get

aτK =
1.5
ε
α4Z5

eσTh =
1.5

15.66
295

1374
0.665

b
atom

= 3.71×10−3 b
atom

≈ 0.004 b/atom. (8.44)

Compton effect

We use the Klein-Nishina relationship for the electronic cross section eσ
KN
C ,

given in (7.104), and then calculate aσ
KN
C from aσ

KN
C = Z(eσKN

C )

eσ
KN
C = 2πr2e

{
1 + ε

ε2

[
2(1 + ε)
1 + 2ε

− ln(1 + 2ε)
ε

]
+

ln(1 + 2ε)
2ε

− 1 + 3ε
(1 + 2ε)2

}

= 2π(2.818×10−15 m)2(0.068× 0.809 + 0.111 − 0.046)

= 0.0599 b/electron. (8.45)

The Compton atomic cross section aσ
KN
C is calculated from the electronic

cross section eσ
KN
C as follows [see (7.121)]

aσ
KN
C = Z(eσKN

C ) = 29 (electron/atom)× 0.0599 b/electron

= 1.737 b/atom. (8.46)

Pair production

Since the photon energy of 8 MeV is significantly above the nuclear pair
production threshold of 1.02 MeV and also above the triplet production
threshold of 2.04 MeV, both effects (nuclear pair production and triplet
production) may occur and then contribute to the total atomic cross section
aμ.

To determine the atomic pair production cross section we use (7.191) to
get

aκPP = αr2eZ
2PPP(ε, Z). (8.47)

We assume that 1 	 ε	 1/(αZ1/3), where for our example ε = 15.66 and
1/(αZ1/3) = 44.6, and use (7.187) to determine PPP(ε, Z) as follows

PPP(ε, Z) =
28
9

ln(2ε) − 218
27

= 10.73 − 8.07 = 2.65. (8.48)

The atomic cross-section for nuclear pair production aκNPP is now calcu-
lated from (7.191) as follows
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aκNPP = αr2eZ
2PPP(ε, Z) =

7.94×10−2 × 292 × 2.65
137

b
atom

= 1.292 b/atom. (8.49)

To account for the triplet production contribution we use (7.193) with
η = 2.5 to get the following result for the total pair production atomic
cross section aκ

aκ = aκNPP

{
1 +

1
ηZ

}
= 1.292

b
atom

{
1 +

1
2.5 × 29

}
= 1.310 b/atom.

(8.50)
Two observations can now be made:

– For 8 MeV photons interacting with copper, triplet production con-
tributes only of the order of 1.5 % to the total atomic pair production
cross section.

– The atomic cross sections aσC and aκ for Compton scattering and pair
production, respectively, are similar to one another. This can actually
be surmised from Fig. 8.5 that shows the loci of points (Z, hν) for
which aτ = aσC and aσC = aκ. The point (Z = 29, hν = 8 MeV) is
very close to the aσC = aκ curve and thus will possess similar atomic
cross-sections aσC and aκ.

1. Total atomic cross section aμ is the sum of the cross sections for
individual non-negligible effects, as given in (8.1)

aμ = aτ + aσR + σC + aκ = (0.004 + 0 + 1.737 + 1.310) b/atom
= 3.051 b/atom (8.51)

2. Mass attenuation coefficient μm is calculated, as suggested in (8.2),
from

μm =
μ

ρ
= aμ

NA

A
= 3.051

b
atom

6.022×1023 atom/mol
63.54 g/mol

= 0.0289
cm2

g
.

(8.52)
3. Linear attenuation coefficient μ is determined by multiplying μmwith

the absorber density ρ to get [see (8.2)]

μ = ρμm = 8.96
g

cm3
0.0289

cm2

g
= 0.259 cm−1. (8.53)

4. Mean energy Etr transferred from photons to charged particles is deter-
mined using (8.12)

Etr =
∑

i

wiE
i

tr = wPEE
PE

tr + wCE
C

tr + wPPE
PP

tr = f trhν, (8.54)
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where

f tr is the total mean energy transfer fraction defined in (8.5).
wi is the relative weight of individual effects i [see (8.5)].
E

i

tr is the mean energy transferred from photon to charged particles for
effect i.

The parameters wi and E
i

tr are given as follows

wPE = aτ

aμ
=

0.004
3.051

= 1.3×10−3, (8.55)

wC = aσc

aμ
=

1.737
3.051

= 0.57, (8.56)

wPP = aκ

aμ
=

1.310
3.051

= 0.43, (8.57)

and

E
PE

tr = hν − PKωKhνK = 8 MeV − 0.5 × 0.85 × 7.7×10−3 MeV ≈ 8 MeV
(8.58)

(see Fig. 7.29 for values of PK, ωK, and hνK).

E
C

tr = 0.67 × 8 MeV ≈ 5.36 MeV, (8.59)

(see “The Compton Graph” in Fig. 7.17)

E
PP

tr = hν − 2mec
2 = 8 MeV − 1.02 MeV = 6.98 MeV. (8.60)

Inserting into (8.54) the weights wi and mean energy transfers E
i

tr for the
three individual effects, we now calculate the mean energy transferred from
8 MeV photons to charged particles in copper

Etr = 1.3×10−3 × 8 MeV + 0.57 × 5.36 MeV + 0.43 × 7 MeV

= ∼0 + 3.06 MeV + 3.01 MeV = 6.07 MeV. (8.61)

5. Mass energy transfer coefficient μtr/ρ is determined from the following
expression [see (7.19)]

μtr

ρ
=
Etr

hν

μ

ρ
=

6.07
8

0.0289
cm2

g
= 0.0219 cm2/g. (8.62)

6. Mean radiation fraction g can be read directly from Fig. 8.12 which
plots g versus photon energy hν and for 8 MeV monoenergetic photons
yields g = 0.1. As discussed in Sect. 8.3.1, the mean radiation fraction g can
also be estimated through first determining (EK)0, the mean initial kinetic
energy of charged particles produced in the absorber by photon interac-
tions with absorber atoms, and then finding the radiation yield Y (EK)0
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for light charged particles of initial energy (EK)0 (see Fig. 6.12). For our
example of 8 MeV photons interacting with copper absorber we proceed as
follows:

– In general, the mean radiation fraction g represents the mean radiation
yield Y (EK)0 for the spectrum of charged particles released by 8 MeV
photons in the copper absorber.

– This charged particle spectrum is composed of recoil Compton electrons
with mean energy of 5.36 MeV [as determined in (8.59)] as well as elec-
trons and positrons produced in pair production with mean energy of
0.5×7 MeV = 3.5 MeV [see (8.60)]. Photoelectrons are ignored, because
of the low probability for the photoelectric effect at photon energy of
8 MeV.

– The actual spectrum of charged particles released by 8 MeV pho-
tons in the copper absorber can only be determined reliably by Monte
Carlo calculations. In the first approximation, however, we assume that
all charged particles are produced with monoenergetic initial kinetic
energies (EK)0.

– The mean energy transferred to charged particles Etr exceeds (EK)0,
the mean of the initial energies acquired by charged particles that are
set in motion in the absorber, because in pair production two charged
particles with a combined energy of 6.98 MeV are set in motion and the
initial average energy for each of the two charged particles is only 3.5
MeV rather than ∼7 MeV.

– Mean initial energy (EK)0 of all charged particles released in copper
by 8 MeV photons is thus given as

(EK)0 = Etr
aσ + aκ

aσ + 2aκ
= 6.07 MeV

1.737 + 1.310
1.737 + 2 × 1.310

= 4.25 MeV.

(8.63)
– The radiation yield Y (EK)0, given in Fig. 6.12, can be equated with the

radiation fraction g to get g ≈ 0.08 for 4.25 MeV light charged particles
(electrons and positrons), in reasonable agreement with g = 0.1 obtained
directly from Fig. 8.12.

7. Mean energy Erad radiated by charged particles as bremsstrahlung and
to some degree as in-flight annihilation photons is given by (7.23) as

Erad = g × Etr = 0.1 × 6.07 MeV = 0.61 MeV. (8.64)

8. Mean energy Eab absorbed in the copper absorber is given as the dif-
ference between the mean energy transferred from photon to electrons as
well as positrons and the mean energy radiated in the form of photons by
electrons and positrons

Eab = Etr − Erad = 6.07 MeV − 0.61 MeV = 5.46 MeV. (8.65)
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Fig. 8.20. Schematic diagram for general photon interactions with an atom. In
this example an 8 MeV photon hν interacts with a copper atom. An individ-
ual 8 MeV photon, as it encounters a copper atom at point A, may interact
with the atom through photoelectric effect, Rayleigh scattering, Compton effect,
or pair production, or, of course, it may not interact at all. However, for a large
number of 8 MeV photons striking copper, we may state that on the average:

– 6.07 MeV will be transferred at point A to charged particles (mainly to fast
energetic electrons, but possibly also to positrons if the interaction is pair
production).

– 1.93 MeV will be scattered through Rayleigh and Compton scattering (hν′).
Of the 6.07 MeV transferred to charged particles:
– 5.46 MeV will be absorbed in lead over the fast charged particle tracks.
– 0.61 MeV will be emitted in the form of bremsstrahlung photons (hν′′).
– The mean energies transferred to charged particles in a photoelectric process,

Rayleigh scattering, Compton scattering, and pair production are: ∼8 MeV;
0; 5.36 MeV; and 6.98 MeV, respectively

9. Mass energy absorption coefficient μab/ρ is calculated from (7.20)

μab

ρ
=
μ

ρ

Eab

hν
= 0.0289

cm2

g
5.46
8

= 0.0197 cm2/g. (8.66)

Mass energy absorption coefficient μab/ρ may also be calculated from the
mass energy transfer coefficient μtr/ρ and the radiation fraction g as follows
[see (7.22) and (8.14)]

μab

ρ
=
μtr

ρ
(1 − g) = 0.0219

cm2

g
(1 − 0.1) = 0.0197 cm2/g. (8.67)
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Table 8.5. Comparison of results of Example 2 (Sect. 8.7.2) with data tabulated
by Johns and Cunningham (J&C), Attix, and the NIST

J&C Attix NIST Our estimate

aτ (b/atom) 0.002 0.003 0.002 0.004

aσ (b/atom) 1.74 1.74 1.76 1.74

aκ (b/atom) 1.45 1.49 1.50 1.31
μm (cm2/g) 0.030 0.031 0.031 0.029
μab/ρ (cm2/g) 0.022 — 0.021 0.019

Etr (MeV) 6.08 — — 6.07

Eab (MeV) 5.51 — — 5.46

Erad (MeV). 0.57 — — 0.61

In summary, we determined for 8 MeV photons interacting with a copper
absorber that on the average:

– Etr = 6.07 MeV: Mean energy transferred to charged particles (electrons
and positrons).

– hν′ = 1.93 MeV: Mean energy scattered through Rayleigh and Compton
scattering.

– Eab = 5.46 MeV: Mean energy absorbed in copper;
– hν′′ = 0.61 MeV: Mean energy radiated in the form of bremsstrahlung.
– The atomic cross-section aμ, the mass attenuation coefficient μm, and the

linear attenuation coefficient μ for 8 MeV photons in copper are estimated
as 3.051 b/atom; 0.0289 cm2/g; and 0.259 cm−1, respectively.

– The mass energy transfer coefficient μtr/ρ and mass energy absorption coef-
ficient μab/ρ are estimated as 0.0219 cm2/g and 0.0197 cm2/g, respectively.

– The radiation fraction g for 8 MeV photons in copper is ∼0.1.

A summary of results for 8 MeV photons interacting with copper absorber
is shown schematically in Fig. 8.20. A comparison of our estimates with tab-
ulated values in books by Johns and Cunningham as well as Attix and data
provided by the NIST is shown in Table 8.5. Our estimates based on expres-
sions and figures given in Chapters 7 and 8 are in reasonable, although not
perfect, agreement with tabulated data. This shows that measurements still
provide the gold standard, as theories cannot give a perfect picture; however,
the theories give general trends and help with understanding of the underlying
physics.
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Interactions of Neutrons with Matter

Neutrons, by virtue of their neutrality, are indirectly ionizing radiation
exhibiting a quasi-exponential penetration into an absorber and depositing
energy in the absorber through a two-step process: (1) energy transfer to heavy
charged particles and (2) energy deposition in the absorber through Coulomb
interactions of these charged particles with atoms of the absorber. As they
penetrate into matter, neutrons may undergo elastic and inelastic scattering
as well as trigger nuclear reactions, such as neutron capture, spallation, and
fission.
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Two distinct categories of neutrons are of direct importance in medical
physics: thermal neutrons used in boron-neutron capture therapy (BNCT) and
fast neutrons used in external beam radiotherapy. Indirectly, thermal neutrons
play an important role in production of radionuclide sources that are used in
external beam radiotherapy, in brachytherapy as well as in nuclear medicine
imaging. A nuclear reactor and two types of thermal neutron interaction are
used for this purpose: (1) neutron activation of suitable target material and
(2) fission reaction induced by thermal neutrons in fissile target materials.

Several parameters used for describing neutron fields and neutron dose
deposition in absorbers are defined and discussed in this chapter. Also dis-
cussed are several radiotherapy techniques based on neutron beams, machines
for production of neutron beams in radiotherapy, and an efficient source of
neutrons for use in brachytherapy, the californium-252.

9.1 General Aspects of Neutron Interactions
with Absorbers

Neutrons, similarly to photons, may penetrate an absorber without interacting
or they may undergo various interactions with the absorber. In contrast to
photons, however, neutrons interact mostly with the nuclei of the absorber
and have only minor interactions with orbital electrons of the absorber.

Neutron beams, similarly to photon beams, belong to the category of indi-
rectly ionizing radiation beams, both types transferring energy to absorbing
medium through an intermediate step in which energy is transferred to a
charged particle (protons and heavier nuclei in the case of neutrons; electrons
and positrons in the case of photons).

The secondary heavy charged particles released in a medium traversed
by neutrons have a very short range in the medium ensuring charged particle
equilibrium. Since no bremsstrahlung x rays are generated by charged particles
put in motion by neutrons, the absorbed dose for neutron beams is equal to
kerma at any point in the neutron field.

In terms of their kinetic energy EK, neutrons are classified into several
categories:

1. Ultracold neutrons with EK < 2×10−7 eV
2. Very cold neutrons with 2×10−7 eV ≤ EK ≤ 5×10−5 eV
3. Cold neutrons with 5×10−5 eV ≤ EK ≤ 0.025 eV
4. Thermal neutrons with EK ≈ 0.025 eV
5. Epithermal neutrons with 1 eV < EK < 1 keV
6. Intermediate neutrons with 1 keV < EK < 0.1 MeV
7. Fast neutrons with EK > 0.1 MeV.

Of the seven categories listed above, only thermal, epithermal, and fast neu-
trons are used in medicine and are thus of interest in medical physics. Note
that the velocity of an ultracold neutron with a kinetic energy of 2×10−7 eV
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is ∼6 m/s
(
υ/c ≈ 2×10−8

)
; of a thermal neutron with a kinetic energy

of 0.025 eV it is ∼2200 m/s
(
υ/c ≈ 7×10−6

)
; and of a fast neutron it is

1.4×107 m/s (υ/c ≈ 0.05).

9.2 Neutron Interactions with Nuclei of the Absorber

Neutrons by virtue of being neutral particles can approach a target nucleus
without any interference from a Coulomb repulsive or attractive force, since
they, unlike protons and electrons, are not affected by nuclear charge. Once in
close proximity to the target nucleus, neutrons can interact with it through the
short range attractive nuclear potential and trigger various nuclear reactions.

There are five principal processes by which neutrons interact with the
nuclei of the absorber:

1. Elastic scattering
2. Inelastic scattering
3. Neutron capture
4. Nuclear spallation
5. Nuclear fission

The probability (cross section) for these different types of interactions varies
with the kinetic energy of the neutron and with the physical properties of the
nuclei of the absorber.

9.2.1 Elastic Scattering

In elastic scattering a neutron collides with a nucleus of mass M that recoils
with an angle φ with respect to the neutron initial direction of motion, as
shown schematically in Fig. 5.2 and discussed in Sect. 5.3 for general two-
particle elastic scattering. Kinetic energy and momentum are conserved in
the interaction.

For a neutron with mass mn and initial kinetic energy (EK)i, the kinetic
energy ΔEK transferred to the nucleus is in general given as shown in (5.25)

ΔEK = (EK)i
4mnM

(mn +M)2
cos2 φ. (9.1)

The maximum possible energy transfer (ΔEK)max is attained in a head-on
collision for which φ = 0◦ (see Sect. 5.3.3)

(ΔEK)max = ΔEK|φ=0 = (EK)i
4mnM

(mn +M)2
. (9.2)

The average kinetic energy ΔEK transferred to the recoil nucleus is

ΔEK =
1
2
(ΔEK)max =

1
2
(EK)i

4mnM

(mn +M)2
= 2(EK)i

mnM

(mn +M)2
. (9.3)
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The kinetic energy of the scattered neutron, (EK)f , in a head-on collision is
equal to

(EK)f = (EK)i − (ΔEK)max = (EK)i

(
mn −M

mn +M

)2

, (9.4)

while
(
ĒK

)
f
, the average energy attained by the scattered neutron, is

(
EK

)
f
= (EK)i − ΔEK = (EK)i

m2
n +M2

(mn +M)2
. (9.5)

Thus, for example, if the target nucleus is hydrogen (nucleus is a proton
with mass mp), then M = mp ≈ mn and the neutron will transfer on the
average one half of its initial kinetic energy to the proton [see (9.5)], while
the maximum energy transferred to the proton equals to the initial neutron
energy (EK)i [see (9.2)]. The recoil proton will then travel a short distance
through the absorbing medium and rapidly transfer its kinetic energy to the
medium through Coulomb interactions with the nuclei and orbital electrons
of the medium.

The transfer of neutron’s energy to the absorbing medium is much less effi-
cient whenmn 	M ; the larger isM , the less efficient is the energy transfer, as
evident from (9.2). For example, as shown in Sect. 5.3.4, (9.2) predicts an only
2 % fractional energy transfer from a neutron colliding head-on with a lead
nucleus, compared to a 100 % energy transfer in a head-on neutron-proton
collision. This, of course, has implications for shielding against neutron radia-
tion in high-energy linear accelerator installations, where low atomic number
materials are used in neutron barriers for shielding against neutrons produced
by high-energy photons.

9.2.2 Inelastic Scattering

In inelastic scattering the neutron n is first captured by the nucleus and then
re-emitted as neutron n′ with a lower energy and in a direction that is different
from the incident neutron direction. The nucleus is left in an excited state and
will de-excite by emitting high-energy γ rays. This process is illustrated by
the following relationship

n + A
ZX → A+1

ZX
∗ → A

ZX
∗ + n′ ⇒ A

ZX
∗ → A

ZX + γ, (9.6)

where
A
ZX is the stable target nucleus.

A+1
ZX

∗ is an unstable compound nucleus.
A
ZX

∗ is an excited target nucleus.
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9.2.3 Neutron Capture

Neutron capture is a term used to describe a nuclear reaction in which a ther-
mal neutron bombards a nucleus leading to the emission of a proton or γ ray.
Two of these interactions are of particular importance in tissue: 14N(n, p)14C
and 1H(n, γ)2H and one interaction, 113Cd(n,γ)114Cd, is of importance in
shielding against thermal neutrons.

A cadmium filter with a thickness of 1 mm absorbs essentially all incident
thermal neutrons with energies below 0.5 eV, but readily transmits neutrons
with energies exceeding 0.5 eV. The cross section for neutron capture plotted
against neutron kinetic energy exhibits a broad resonance with a peak at
0.178 eV. At the resonance peak energy the cross section for neutron capture
by natural cadmium (12 % abundance of cadmium-113) is 7800 b, while pure
cadmium-113 has a cross section of ∼64×103 b.

Often neutron bombardment of a stable target is carried out in a nuclear
reactor with the intent of producing a radioactive nuclide (radionuclide) for
industrial or medical purposes. When the main interest in the reaction is
the end product, the reaction is termed neutron activation. Of interest in
medical physics is the neutron activation process in general and in particular
when it is used for production of cobalt-60 sources for radiotherapy, iridium-
192 sources for brachytherapy, and molybdenum-99 radionuclide for nuclear
medicine diagnostic imaging procedures. The neutron activation process is
discussed in greater detail in Sect. 12.6.

9.2.4 Spallation

Spallation is in general defined as fragmentation of a target into many smaller
components as a result of impact or stress. Consequently, nuclear spalla-
tion is defined as disintegration of a target nucleus into many small residual
components such as α particles and nucleons (protons and neutrons) upon
bombardment with a suitable projectile such as light or heavy ion beams or
neutrons. Nuclear spallation can also occur naturally in earth’s atmosphere
as a result of exposure of nuclides to energetic cosmic rays such as protons.

An example of spallation is as follows

16
8O + n → 3α + 2p + 3n. (9.7)

Most of the energy released from the spallation process is carried away by
the heavier fragments that deposit their energy in the absorber locally. On
the other hand, neutrons and de-excitation γ rays produced in spallation
carry their energy to a remote location. Spallation can be used for production
of radionuclides and for generation of neutron beams in spallation neutron
generators.
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9.2.5 Nuclear Fission Induced by Neutron Bombardment

Fission is a particular type of neutron interaction produced by bombard-
ment of certain very high atomic number nuclei (Z ≥ 92) by thermal or fast
neutrons. The target nucleus fragments into two daughter nuclei of lighter
mass and the fission process is accompanied with production of several fast
neutrons. Nuclei that are capable of undergoing fission are called fission-
able nuclei in general; nuclei that undergo fission with thermal neutrons are
called fissile nuclei. Fission fragments combined with the nuclei that are sub-
sequently formed through radioactive decay of fission fragments are called
fission products.

Since neutrons are produced as a by-product of nuclear fission, the initial
fission reaction may be followed by other fission reactions, resulting in a self-
sustained nuclear chain reaction and a substantial release of energy. Controlled
chain reactions are used in nuclear reactors for research and educational pur-
poses as well as for power generation. Three fissile nuclides have been used
in nuclear reactors: one is naturally occurring uranium-235 and the other two
are artificially produced uranium-233 and plutonium-239. Nuclear fission and
the nuclear chain reaction are discussed in more detail in Sects. 12.7 and 12.8.

Two typical examples of fission reaction triggered by thermal neutron
bombarding a uranium-235 nucleus are as follows

235
92U + n = 89

36Kr +144
56Ba + 3n + energy (∼180 MeV) (9.8)

and
235
92U + n = 100

38Sr + 134
54Xe + 2n + energy. (9.9)

9.3 Neutron Kerma

Like in other applications of ionizing radiation in medicine, dosimetry of neu-
tron beams is very important for achieving the desired treatment outcome.
Since neutrons are indirectly ionizing particles, they are detected by measuring
the ionizing particles that are released in the absorbing medium through inter-
actions of neutrons with absorber nuclei. The most common interactions are:
(n, α), (n, p), and (n, γ); the most common neutron detectors are: gas-filled
ionization chambers, scintillation detectors, thermoluminescent dosimeters,
track detectors, and radiographic film. Neutron fields are usually described in
terms of fluence ϕ (EK) rather than energy fluence ψ, as is usually the case
with photon fields. For a monoenergetic neutron beam of fluence ϕ in cm−2

undergoing a specific type of interaction i with a particular atom at a point
in medium, the kerma Ki in a small mass m is expressed as

Ki = ϕσi
N

m

(
ΔEK

)
i
, (9.11)
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where

σi is the cross section for the particular interaction i.
N is the number of target atoms in mass m with N/m = NA/A.(

ΔEK

)
i

is the mean energy transferred from neutrons to charged particles
through the particular interaction i.

The product σiN/m summed over all possible neutron interactions is the mass
attenuation coefficient μ/ρ for neutrons in the absorbing medium. Following
the convention used for photon beams, the mass energy transfer coefficient
μtr/ρ for neutrons is defined as follows

μtr

ρ
=
μ

ρ

ΔEK

EK
, (9.12)

where ΔEK/EK is the fraction of the neutron incident energy transferred to
charged particles.

The total kerma K accounting for all possible interactions is

K =
∑

i

ϕ σi
N

m
ΔEK = ϕ

μ

ρ
ΔEK = ϕ

μtr

ρ
EK, (9.13)

where EK is the kinetic energy of the monoenergetic neutron beam and the
mass energy transfer coefficient (μtr/ρ) is given in units of cm2 · g.

9.4 Neutron Kerma Factor

The product (μtr/ρ)EK in (9.13), defined as the neutron kerma factor Fn

with units of J ·cm2 ·g−1, is tabulated for neutrons instead of the mass energy
transfer coefficient (μtr/ρ). Figure 9.1 provides the neutron kerma factor Fn

against neutron kinetic energy for various materials of interest in medical
physics (hydrogen, water, tissue, carbon, oxygen, and nitrogen).

From (9.13) for monoenergetic neutrons we get the following expression
for the neutron kerma K

K = ϕ(Fn)EK,Z , (9.14)

where

ϕ is the fluence of monoenergetic neutrons of kinetic energy EK.
(Fn)EK,Z is the neutron kerma factor Fn in J · cm2 · g−1 for neutrons of

kinetic energy EK in the irradiated absorber with atomic num-
ber Z.

For neutron beams characterized with an energy spectrum ϕ′(EK) of particle
fluence, kerma K is expressed as follows

K =

(EK)max∫
0

ϕ′ (EK) (Fn)EK,Z dEK, (9.15)
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where (EK)max is the maximum neutron kinetic energy in the continuous
neutron spectrum with the differential fluence distribution ϕ′ (EK).

An average value for the neutron kerma factor Fn for the spectrum of
neutrons ϕ′ (EK) is given as

(Fn)ϕ′(EK),Z =
K

ϕ
=

(EK)max∫
0

ϕ′(EK)(Fn)EK,ZdEK

EKmax∫
0

ϕ′(EK)dEK

. (9.16)

9.5 Neutron Dose Deposition in Tissue

Neutrons, by virtue of their neutrality, similarly to photons, deposit dose in
tissue through a two-step process:

1. Energy transfer to heavy charged particles, such as protons and heavier
nuclei in tissue.

2. Energy deposition in tissue by heavy charged particles through Coulomb
interactions of the charged particles with atoms of tissue.

Similarly to photons, the nature of neutron interactions with tissue depends
on the kinetic energy of neutrons; however, the options available for neutron
interactions are not as varied as those for photons (see Chap. 7). For neutrons
there are only two energy ranges to consider:

1. Thermal neutron energy of the order of 0.025 eV.
2. Epithermal, intermediate and fast neutrons.

Fig. 9.1. Neuton kerma factor Fn against neutron kinetic energy EK for various
materials of interest in medical physics. Data were obtained from the NIST
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9.5.1 Thermal Neutron Interactions in Tissue

Thermal neutrons undergo two possible interactions with nuclei of tissue:

1. Neutron capture by nitrogen-14
(
14
7N
)

nucleus that produces carbon-14(
14
6C
)

and a proton. The cross section for the 14
7N(n, p)146C reaction is

σN-14 = 1.84 b/atom.
2. Neutron capture by hydrogen-1

(
1
1H
)

nucleus (proton) that produces a
deuterium nucleus (deuteron) and a γ photon. The cross section for reaction
1
1H(n, γ)21H is σH-1 = 0.33 b/atom.

According to the ICRU and the ICRP, the human tissue composition in per-
cent by mass is: ∼10 % for hydrogen-1 and ∼3 % for nitrogen-14. The data
for oxygen-16 and carbon-12, the other two abundant constituents of tissue,
are ∼75 % and ∼12 %, respectively.

The kerma deposited in muscle tissue per unit neutron fluence ϕ is from
(9.9) given as follows

K

ϕ
= σ

(
Nt

m

)
ΔEK, (9.17)

where

σ is the thermal neutron cross section for the specific nuclear reac-
tion.

ΔEK is the average energy transfer in the nuclear reaction.
(Nt/m) is the number of specific nuclei, such as nitrogen-14 or hydrogen-1,

per unit mass of tissue.

Thermal Neutron Capture in Nitrogen-14 in Tissue

The kinetic energy released by thermal neutron capture in nitrogen-14 is
determined by calculating the change in total nuclear binding energy between
the nitrogen-14 nucleus (EB = 104.66 McV) and the carbon-14 nucleus (EB =
105.29 McV). Since the total binding energy of carbon-14 exceeds that of
nitrogen-14 by 0.63 MeV, we note that the energy released to charged par-
ticles in thermal neutron capture by the nitrogen-14 nucleus is 0.63 MeV.
This energy is shared as kinetic energy between the proton and the carbon-
14 nucleus in the inverse proportion of their masses, since both nuclei
carry away the same momenta, but in opposite directions. Thus, the pro-
ton receives a kinetic energy of 0.58 MeV; the carbon-14 atom kinetic energy
of 0.05 MeV.

The number of nitrogen-14 atoms per gram of tissue, (Nt/m)N-14, is
determined as follows:
1. 1 mole of N-14 contains NA atoms of N-14.
2. 1 g of N-14 contains (NA/A) atoms of N-14 where A = 14.01 g · mol−1.
3. 1 g of tissue contains 0.03 g of N-14 atoms, i.e., 0.03 × (NA/A) atoms of

N-14, therefore (Nt/m)N-14 = 1.3×1021 atom/g.
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The kermaK per unit thermal neutron fluence ϕ for the 14
7N(n, p)146C reaction

is thus equal to

K

ϕ
= σ

(
Nt

m

)
N-14

ΔEK = 1.84×10−28
(
m2/atom

)

×1.3×1021 (atom/g) × 0.63 MeV

= 2.4×10−17 Gy · m2/neutron. (9.18)

Thermal Neutron Capture in Hydrogen-1 in Tissue

Despite a lower cross section for capture in hydrogen compared to nitro-
gen, thermal neutrons have a much larger probability for being captured by
hydrogen than by nitrogen in tissue because in number of atoms per gram
of tissue (concentration) hydrogen surpasses nitrogen with a ratio of ∼45
to 1.

In the 1
1H(n, γ)21H reaction a γ photon is produced and the binding energy

difference between a proton EB = 0 and deuteron (EB = 2.225 MeV) is
2.225 MeV. Neglecting the recoil energy of the deuteron, we assume that
the γ photon receives the complete available energy of 2.225 MeV, i.e.,
Eγ = 2.225 MeV.

The number of hydrogen-1 atoms per gram of tissue, (Nt/m)H-1 is deter-
mined as follows:

1. 1 mole of H-1 contains NA atoms of H-1.
2. 1 g of H-1 contains (NA/A) atoms of H-1.
3. 1 g of tissue contains 0.1 g of H-1 atoms, i.e., 0.1 × (NA/A) atoms of H-1,

therefore (Nt/m)H-1 = 6×1022 atom/g ≈ 45 × (Nt/m)H-1.

The energy transfer to γ photons per thermal neutron fluence ϕ and per mass
of tissue m for the 1

1H(n, γ)21H nuclear reaction is given as follows, again using
(9.11)

Eγ

ϕm
= σH-1

(
Nt

m

)
H-1

ΔEγ = 0.33×10−28
(
m2/atom

)

×6×1022 (atom/g)× 2.22 MeV

= 7×10−16 J · kg−1 · m2/neutron. (9.19)

The result of (9.19) represents the energy per unit neutron fluence and per
unit mass of tissue that is transferred to γ photons. The amount of this energy
that actually contributes to the kerma in tissue depends on the fraction of
this energy that is transferred from the γ photons to electrons in tissue.
This fraction depends on the size of the tissue mass: for a small size mass
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most of the γ photons may escape; for a large mass all photons might be
absorbed.

The human body is intermediate in size, so most of the γ photons pro-
duced through the 1

1H(n, γ)21H reaction are absorbed in the body, making
the 1

1H(n, γ)21H reaction the main contributor to kerma and dose delivered to
humans from thermal neutrons. The 1

1H(n, γ)21H reaction also dominates the
kerma production in tissue for epithermal neutrons, since the body acts as
moderator for thermalizing the neutrons.

9.5.2 Interactions of Intermediate and Fast Neutrons
with Tissue

For neutrons with kinetic energies above 100 eV (upper end epithermal, inter-
mediate, and fast neutrons) by far the most important interaction is the elastic
scattering with nuclei of tissue, most importantly with hydrogen-1.

As given in Sect 5.3, the following expressions govern the elastic collisions
by two particles:

1. The kinetic energy transfer ΔEK from the neutron with mass mn to tissue
nucleus with mass M , as derived in (5.25), is

ΔEK =
4mnM

(mn +M)2
(EK)n cos2 φ, (9.20)

where

(EK)n is the kinetic energy of the incident neutron.
φ is the recoil angle of the target M nucleus.

2. The maximum kinetic energy transfer (ΔEK)max, occurs for φ = 0 and is
given as follows

(ΔEK)max =
4mnM

(mn +M)2
(EK)n . (9.21)

3. The average energy transfer by elastic scattering from a neutron to tissue
nucleus M is given as follows

ΔEK =
4mnM

(mn +M)2
(EK)n cos2 φ =

2mnM

(mn +M)2
(EK)n

=
1
2

(ΔEK)max . (9.22)

The average energy ΔEK transferred to recoil nucleus M in tissue in elastic
scattering depends on the nuclear mass M and ranges from 0.5 (EK)n for
hydrogen-1; through 0.14 (EK)n for carbon-12; 0.12 (EK)n for nitrogen-14,
to 0.11 (EK)n for oxygen.
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Table 9.1. Parameters of tissue constituents relevant to neutron absorption and
scattering

Abundance Abundance Abundance ΔEK in %
(% by mass) (#atoms/g (relative to of (EK)n

of tissue) hydrogen)

Hydrogen-1 10 6.0×1022 1 50
Carbon-12 75 3.8×1022 0.63 14
Nitrogen-14 3 1.3×1021 0.022 12
Oxygen-16 12 4.5×1021 0.075 11

Table 9.2. Two predominant interactions of neutrons depositing dose in tissue and
their regions of predominance

Reaction ΔEK (MeV) K/ϕ (Gy per neutron/m2)

(EK)n < 100 eV 14
7N(n,p)146C 0.63 2.4×10−17

(EK)n > 100 eV 1
1H(n,n′)11H

′ 0.5(EK)n 0.5σel(EK)n

4. Of the possible contributors to energy transfer to nuclei in tissue, hydrogen-
1 is the most efficient, since it not only provides the largest number of
atoms per tissue mass, it also transfers, on the average, the largest amount
of energy (50 %) from the neutron to the scattering nucleus per each elastic
scattering event, as shown in Table 9.1.

5. The dependence of the kerma factor (K/ϕ, kerma per unit fluence) on
neutron energy is essentially split into two regions, one for neutron energy
below 100 eV and the other for neutron energy above 100 eV, as summarized
in Table 9.2.

9.6 Neutron Beams in Medicine

Of the four main energy categories of neutrons (thermal, epithermal, inter-
mediate and fast, as listed in Sect. 9.1) three categories: thermal, epithermal
and fast neutrons are used in radiotherapy; thermal and epithermal neutrons
for boron neutron capture therapy (BNCT) and fast neutrons for external
beam radiotherapy and brachytherapy. Fast neutrons are also used in medicine
for in-vivo neutron activation analysis and in neutron radiography but these
applications are still research oriented and not used routinely in patient
care.
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9.6.1 Boron Neutron Capture Therapy (BNCT)

The boron neutron capture therapy (BNCT) irradiation technique relies
on the exceptionally high thermal neutron cross section (σ = 3840 barn) of
the boron-10 nuclide. Exposed to thermal neutrons, boron-10 undergoes the
following nuclear reaction:

10
5B + n → 7

3Li + α +Q (2.79 MeV) , (9.23)

where n represents a thermal neutron, α an alpha particle, and 7
3Li the

lithium-7 nucleus.
As discussed in Sect. 5.2.2, the Q value for the reaction of (9.23) is calcu-

lated using either the nuclear rest energies for the nuclei or the total binding
energies for the nuclei as follows

Q = M(105B)c2 +mnc
2 − {M(73Li)c2 +mαc

2
}

= (9324.4362 + 939.5654) MeV − (6533.8329 + 3727.3791) MeV (9.24)

= 2.79 MeV

or

Q = EB(73Li) +EB(α) − EB(105B)

= (39.24459 + 28.29569− 64.75071) MeV = 2.79 MeV, (9.25)

where mnc
2 is the neutron rest energy equal to 939.5654 MeV. The nuclear

masses M and binding energies EB for the nuclides of (9.23) are given in
Appendix A.

Both methods give a reaction Q value of 2.79 MeV that is shared between
a γ photon (0.48 MeV) produced by an excited lithium-7 nucleus and
reaction products lithium-7 and the α particle. The 2.31 MeV kinetic energy
(2.79 MeV–0.48 MeV) is shared between the two reaction products in the
inverse proportion of their masses, i.e., lithium-7 carries away an energy of
0.84 MeV; the α particle 1.47 MeV. The range of these reaction products in
tissue is of the order of 6 μm to 10 μm which is of the order of a typical cell
diameter.

By virtue of their relatively large masses, both reaction products are
densely ionizing particles that can produce significant radiation damage on
the cellular level during their short travel through tissue. In addition, the cel-
lular damage produced by these densely ionizing particles depends much less
on the presence of oxygen than is the case with standard sparsely ionizing
beams, such as x rays, γ rays, and electrons.

Boron-10 and thermal neutrons have no direct effect on tissue components,
since: (1) boron is not toxic to humans and (2) thermal neutrons cannot pro-
duce ionization in tissue components because their kinetic energy (∼0.025 eV)
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is much lower than the ionization potential of all atoms (range 5 eV to 24.5
eV). However, boron-10 and thermal neutrons interact to produce nuclear
fission fragments with a shared energy of 2.31 MeV, as shown in (9.24) and
(9.25).

The basic premise behind the BNCT is that: (1) bio-molecules labeled with
boron-10 can be administered to the patient and selectively concentrated in
a rapidly growing tumor and (2) the tumor is exposed to thermal neutrons,
a higher dose will be delivered to the tumor than to the adjacent normal
tissue. This is so because the tumor contains the boron-10 nuclide, while the
surrounding tissues do not, at least not to the same extent. The therapeutic
effect achieved depends on the achieved concentration of boron-10 in the target
as well as on the fluence of thermal neutrons. Since, as discussed in Sect.
9.5.1 the thermal neutron cross sections for hydrogen (0.33 b) and nitrogen
(1.8 b) in tissue are at least three orders of magnitude smaller than that of
boron-10 (3840 b), we may assume that most of the target dose is delivered
by the relatively heavy fission products resulting from the boron-10 nuclides
interacting with a thermal neutrons.

In theory the idea behind the BNCT is logical and simple; however, in
practice the technique is still considered experimental despite more than half
a century that has already been spent on its development by various research
groups. Most attempts with the use of the BNCT are concentrated on treat-
ment of malignant brain tumors, and essentially all practical aspects of dose
delivery with the BNCT are wrought with difficulties. The most serious of
these difficulties are:

1. Boron-10 is difficult to concentrate in the tumor.
2. Thermal neutrons of sufficient fluence rate (of the order of 1012 cm−2 ·

s−1) can only be obtained from a nuclear reactor and reactors are not
readily available for this kind of purpose nor are they located close to
hospitals.

3. Thermal neutrons have very poor penetration into tissue, exhibiting negli-
gible skin sparing and a rapid dose fall-off with depth in tissue (50 % dose
at ∼2 cm depth in tissue).

4. The thermal neutron beam produced in a nuclear reactor is contaminated
with γ photons and the dosimetry of the mixed neutron/γ-ray fields is
problematic.

Despite difficulties, there are several research groups around the world (Japan,
USA, and Europe) working with great enthusiasm on making the BNCT more
clinically useful, yet so far success was limited.

9.6.2 Radiotherapy with Fast Neutron Beams

In contrast to the BNCT, radiotherapy with fast neutrons is quite advanced,
practiced in several centers around the world, and accepted as a viable, albeit
uncommon, alternative to standard radiotherapy with photon and electron
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beams. In comparison with photon and electron beams, the main attraction
of fast neutron beams is their much lower oxygen enhancement ratio (OER);
the main drawback is their significantly more difficult and more expensive
means of production.

The OER is defined as the ratio of doses without and with oxygen (hypoxic
vs. well-oxygenated cells) to produce the same biological effect. The OER for
electrons and photons (sparsely ionizing radiations) is about 2–3 while for
neutrons (densely ionizing radiation) it is only about 1.5. This means that
treatment of anoxic tumors, with neutrons is much less affected by the absence
of oxygen than is the standard treatment with photons or electrons.

The depth dose distributions produced in tissue by fast neutron beams
exhibit similar characteristics to those of photon beams (see Sect. 1.12 and
Fig. 1.2). The dose maximum occurs at a depth beneath the surface and
depends on beam energy; the larger is the energy, the larger is the depth
of dose maximum and the more penetrating is the neutron beam. The skin
sparing effect is present, yet less pronounced than in photon beams of similar
penetration. As a rough comparison one can state that in terms of tissue
penetration, a 14 MeV neutron beam is equivalent to a cobalt-60 γ-ray beam.

In contrast with the production of clinical photon beams, there are three
major technical difficulties associated with generating clinical fast neutron
beams:

1. Beam intensity to achieve sufficiently high dose rate.
2. Beam energy to attain sufficient penetration into tissue.
3. Beam collimation to minimize dose to healthy tissues and to minimize total

body dose to the patient.

9.6.3 Machines for Production of Clinical Fast Neutron Beams

Two types of machine are used for production of clinical fast neutron beams:

1. Neutron generator operated et about 250 kV.
2. Cyclotron operated et 15 MeV to 75 MeV.

Deuterium–Tritium (DT) Neutron Generator

In a DT neutron generator a beam of deuterons
(
d = 2

1H
)

is accelerated
to a few hundred keV and directed onto a tritium

(
t = 3

1H
)

target thereby
producing the following exothermic nuclear reaction:

d + t → α + n +Q (17.6 MeV) or 2
1H + 3

1H = 4
2He + n +Q (17.59 MeV) .

(9.26)

As described in Sect. 5.2.2, the Q value for the d–t reaction,Qd–t, is calculated
by using the nuclear binding energy method or the nuclear rest energy method.
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Data for nuclides of (9.26) are given in Appendix A. The binding energy
calculation is as follows

Qd–t = EB(α)– {EB(d) + EB(t)}
= 28.29569 MeV − {2.22458 + 8.48182} MeV = 17.59 MeV. (9.27)

Same Q value result can be obtained by accounting for nuclear masses for the
nuclei in (9.26)

Qd–t =
[
mdc

2 +mtc
2
]
–
[
mαc

2 +mnc
2
]

=
{[
M(21H) +M(31H)

]
–
[
M(42He) +mn

]}
c2 (9.28)

= {[1875.6128 + 2808.9209] – [3727.3791 + 939.5654]} MeV

= 17.59 MeV.

The reaction energy Qd–t of 17.6 MeV is shared between the neutron n and
the α particle in inverse proportions to their masses, resulting in a neutron
kinetic energy of 14.05 MeV and an d-particle kinetic energy of 3.54 MeV.

DT neutron generators are relatively inexpensive; however, they have dif-
ficulties producing stable beams of sufficient intensity because of problems
with the tritium target. Since at their best, the DT neutron generators pro-
duce beams that are only equivalent in penetration to cobalt-60 γ-ray beams
and have significantly lower outputs than a standard cobalt unit, they are not
serious contenders for delivery of routine radiotherapy treatments. However,
as discussed in Sect. 1.12.2, neutron beams with their lower oxygen enhance-
ment ratio (OER) have a certain biological advantage over photon beams in
treatment of poorly oxygenated tumors.

Fast Neutron Beams from Cyclotrons

Cyclotrons provide practical means for production of clinical neutron beams,
in addition to their use in production of clinical heavy charged particle beams
and in production of radionuclides for use in industry and medicine. Ernest
Lawrence, the inventor of the cyclotron in 1930, was in 1938, in collabora-
tion with Robert Stone, the first to use external neutron beams in treatment
of cancer. The beams were produced with a cyclotron, a cyclic accelerator
discussed in Sect. 14.5.2.

While the initial treatment results were encouraging, many patients devel-
oped unacceptable late complications and external beam neutron therapy was
discontinued for many years. However, during the hiatus, it became obvious
that the complications experienced by the first neutron patients resulted from
an overdose caused by a poor understanding of the radiobiology of neutron
beams rather than from any inherent deleterious property of neutron beams.
Neutron therapy with a more careful prescription of target dose and fraction-
ation was restarted in the second half of 1960s and during the past 40 years
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external beam neutron therapy has become an accepted, albeit still somewhat
esoteric, cancer treatment modality.

The most common and efficient approach for production of clinical neutron
beams with cyclotrons is to accelerate protons (p) or deuterons (d) in the
energy range from 50 MeV to 70 MeV onto a beryllium-9 target. This results
in neutron spectra that are characteristic of the particular nuclear reaction
used, with the maximum neutron energy in the spectrum given as the sum of
the incident charged particle kinetic energy and the reaction Q value for the
particular nuclear reaction that produces the neutrons.

Beryllium-9, the only stable isotope of beryllium, is chosen as target mate-
rial for its neutron production efficiency as well as for its suitable mechanical
and thermal properties. At the same incident particle energy, deuterons in
comparison to protons will produce more neutrons in the beryllium target
because some of the neutrons are produced through deuteron stripping reac-
tion in addition to the standard compound nucleus formation. Consequently,
currents required to achieve reasonable neutron dose rates with deuteron
acceleration are typically 5 times lower than those required with proton
acceleration.

The two nuclear reactions involving energetic protons and deuterons strik-
ing beryllium thick targets produce neutron beams with beam penetration
and build-up characteristics that are similar to those produced by 4 MV to
8 MV x-ray beams. They are as follows

p + 9
4Be → 9

5B + n +Q (−1.85 MeV), (9.29)

d + 9
4Be → 10

5B + n +Q (4.36 MeV). (9.30)

The reaction Q values for the two reactions can be determined either with
the nuclear binding energy EB method or with the nuclear rest energy Mc2

method. The appropriate data are given in Appendix A.
For the reaction (9.29) the nuclear binding energy method gives

Q = EB(95B)−EB(94Be) = (56.31445− 58.16497) MeV = −1.85 MeV, (9.31)

while the nuclear rest energy method gives the same result

Q =
[
mpc

2 +M(94Be)c2
]− [M(95B)c2 +mnc

2
]

= [938.2703 + 8392.7499] MeV − [8393.3069 + 939.5654] MeV (9.32)

= −1.85 MeV.

In a similar manner we get the following result for the (9.30) reaction

Q = EB(d) + EB(94Be) − EB(105B)

= (2.22458 + 58.16497− 64.75071) MeV = 4.36 MeV (9.33)
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and

Q =
[
mdc

2 +M(94Be)c2
]− [mnc

2 +M(105B)c2
]

= [1875.6128 + 8392.7499] MeV − [939.5654 + 9324.4362] MeV (9.34)

= 4.36 MeV.

Note that in (9.31) and (9.33) the proton and neutron are elementary particles
with no binding energy, the deuteron in (9.33), on the other hand, consists of
a proton and neutron bound together with a total binding energy EB(d) =
2.22458 MeV or a binding energy per nucleon of 1.1123 MeV.

9.6.4 Californium-252 Neutron Source

Californium (Cf) is a synthetic radioactive transuranic element in the actinide
series with an atomic number Z of 98 and 20 known radioisotopes. Of these
only Cf-252, as an intense neutron emitter, is of commercial interest and
was found useful in a wide range of specialized areas of science, industry,
and medicine, such as the study of fission, neutron activation analysis, neu-
tron radiography, well logging, nuclear reactor start up, and brachytherapy of
cancer.

Californium-252 is produced by bombarding actinide oxide target rods
in a nuclear reactor with a very high neutron fluence rate of the order of
1015 cm−2 · s−1 for 12 months or more. Next, the heavy element components
are separated and purified, and, finally, the californium fraction is separated,
purified, and encapsulated into portable sealed sources for use in science,
industry, and medicine. The main characteristics of Cf-252 are as follows:

1. Cf-252 decays with a half-life (t1/2)α of 2.73 years through α decay (Sect.
11.2) into curium-248. About 96.9 % of all Cf-252 decays occur through
the α decay.

2. About 3.1 % of all Cf-252 decays occur through spontaneous fission (Sect.
11.9). The half-life (t1/2)SF for spontaneous fission (SF) of Cf-252 is 85.5
years.

3. The effective half-life (t1/2)eff of Cf-252, accounting for both possible decays
(α and SF), is 2.645 years, as determined following the relationship of
(10.75) for the decay constant resulting from branching decay

1
(t1/2)eff

=
1

(t1/2)α
+

1
(t1/2)SF

. (9.35)

The monthly decay of Cf-252 is 2.2 % of the initial mass.
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4. In each spontaneous fission event on average 3.8 neutrons are produced per
fission, amounting to a neutron production rate of 2.34×106 μg−1 · s−1, as
determined by multiplying the neutron factor fn = 3.8 with the specific
activity for the spontaneous fission aSF

fnaSF =
ln 2

(t1/2)SF

NA

A

= 3.8
0.693

85.5 × 365 × 24 × 3.6×103 s
6.022×1023

252 g

= 2.34×106 s−1 ·μg−1. (9.36)

Production rate of 2.34×106 neutrons per microgram per second or 140
million neutrons per microgram per minute classify Cf-252 as a very intense
neutron source for use in industry and medicine. Industrial sources with
mass exceeding 100 mg of Cf-252 approach neutron intensities produced
by nuclear reactors and are used for neutron radiography.

5. Specific activity of Cf-252 is 2×107 Bq/μg (540 Ci/g) determined using the
effective half-life (t1/2)eff = 2.645 y in conjunction with (10.2) and (10.13).

6. Neutron spectrum emitted by Cf-252 is similar to that of a fission reactor,
with a Maxwellian energy distribution (average energy of 2.1 MeV and
most probable energy of ∼0.7 MeV).

Industrial sources contain up to 50 mg of Cf-252 emitting of the order of 1011

neutrons per second. High dose rate (HDR) brachytherapy requires about
500 μg of Cf-252 per source and emits ∼109 neutrons per second. Current
technology results in source diameters of the order of 3 mm; adequate for intra-
cavitary brachytherapy but not suitable for interstitial brachytherapy. Smaller
dimension (miniature) sources are likely to be produced in the near future,
making the Cf-252 brachytherapy more practical and more widely available.
Standard HDR brachytherapy is carried out with iridium-192 sources that
emit a spectrum of γ rays with an effective energy of ∼400 keV. The advantage
of neutron irradiation is that neutron therapy is significantly more effective
than conventional photon therapy in treatment of hypoxic (oxygen deficient)
malignant disease.

9.6.5 In-vivo Neutron Activation Analysis

In-vivo analysis of human body elements by activation with fast neutrons
provides means for quantitative evaluation of elemental and chemical human
body composition for studies in human physiology as well as for clinical diag-
nosis and treatment of a variety of diseases and disorders. Elements that are
of main interest in in-vivo neutron activation are calcium, nitrogen, carbon,
potassium and sodium. Measurements of calcium body content are related to
diagnosis of osteopenia and osteoporosis; measurements of nitrogen content
to nutritional status of the body.
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Neutron capture by an atom results in an unstable excited compound
nucleus. This nucleus either decays into ground state through emission of
a “prompt” gamma ray or it decays by emission of a nucleon followed by
“delayed” gamma emission. Both the prompt as well as delayed gamma emis-
sions are used in in-vivo neutron activation analysis. Prompt gamma rays are
measured during the irradiation procedure; delayed gamma rays are measured
after irradiation with neutrons.

The clinical neutron activation technique is non-destructive and based on
two steps:

1. Bilateral irradiation of the patient with fast neutrons to obtain uniform
activation throughout the body.

2. Subsequent measurement of the induced activity in a whole body counter
with large thallium-activated sodium iodide or germanium lithium-drifted
detectors.

The whole body dose received by the patient undergoing neutron activation
should be as low as possible and with modern equipment amounts to only
about 0.001 Gy, typically consisting of a neutron and gamma ray compo-
nent. Since the introduction of the in-vivo neutron activation technique in
the early 1960s, all known sources of fast neutrons have been used for clinical
neutron activation of the body: nuclear reactors, DT generators, cyclotrons,
and (α, n) sources. Radionuclide neutron sources offer the least expensive and
most convenient approach.

9.7 Neutron Radiography

X-ray and γ-ray radiography became indispensable imaging tools in medicine,
science and industry; however, radiography with more exotic particles such as
protons and neutrons is also being developed.

Neutron radiography (NR) is a non-invasive imaging technique similar to
the industrial γ radiography except that instead of x-ray or γ-ray transmis-
sion through an object, it uses attenuation of a neutron beam in an object.
While the transmission of photons through an absorber is characterized by
photon interactions with orbital electrons of the absorber and is governed
by the atomic number, density and thickness of the absorber, the transmis-
sion of neutrons through an absorber is characterized by neutron interactions
with the nuclei of the absorber and governed by the neutron cross sections of
the absorber nuclei. In contrast to x rays, neutrons are attenuated strongly
by some low atomic number materials such as hydrogen, lithium, boron and
cadmium but penetrate many high atomic number materials with relative
ease.

Elements with similar atomic numbers will exhibit very similar x-ray atten-
uation and yet may have markedly different neutron attenuation characteris-
tics. Organic materials and water are clearly visible in neutron radiographs
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because of their hydrogen content, while many structural materials such as
aluminum and iron or shielding materials such as lead are nearly transparent.

Neutron radiography can be carried out with neutrons of any energy rang-
ing from cold to fast neutrons, but the results depend strongly on the neutron
cross sections of elements comprising the test object. Most applications of
NR are now found in industry but research in medical use is also carried out.
Because of their large hydrogen content, biological objects can be imaged only
with fast neutrons and, since the equivalent doses required for clinical imaging
are large, the procedure can be justified only for patients undergoing neutron
radiotherapy.
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Kinetics of Radioactive Decay

Radioactivity also known as radioactive decay, nuclear transformation, and
nuclear disintegration is a spontaneous process by which an unstable parent
nucleus emits a particle or electromagnetic radiation and transforms into a
more stable daughter nucleus that may or may not be stable. An unstable
daughter nucleus will decay further in a decay series until a stable nuclear
configuration is reached. The radioactive decay is governed by the formal-
ism based on the definition of activity and the radioactive decay constant.
Henri Becquerel discovered the process of natural radioactivity in 1896 and
soon thereafter in 1898 Pierre Curie and Marie Curie discovered radium
and polonium and coined the term “radioactivity” to describe the emission
of “emanations” from unstable natural elements. Frédéric Joliot and Irène
Joliot-Curie discovered artificial radioactivity in 1934.
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In this chapter we discuss the general aspects of radioactive decay and
show that the decay follows first order kinetics. We first address the simple
decay of a radioactive parent into a stable daughter and then discuss the more
complicated radioactive series decay of parent producing an unstable daugh-
ter which decays into a granddaughter nuclide which may or may not be
stable. The various equilibria between the daughter and parent are discussed
and a generalized approach to series decay kinetics is presented. The chap-
ter concludes with discussion of special situations such as many-component
radioactive series decay described with Bateman equations; branching decay;
and decay of mixtures of several radionuclides in a sample.

10.1 General Aspects of Radioactivity

Radioactivity or radioactive decay, discovered in 1986 by Henri Becquerel, is
a process by which an unstable parent nucleus transforms spontaneously into
one or several daughter nuclei that are more stable than the parent nucleus
by having larger binding energies per nucleon than does the parent nucleus.
The daughter nucleus may also be unstable and will decay further through
a chain of radioactive decays until a stable nuclear configuration is reached.
Radioactive decay is usually accompanied by emission of energetic particles or
gamma ray photons or both that may be used in science, industry, agriculture,
and medicine.

Nuclear decay, also called radioactive decay, nuclear disintegration,
nuclear transformation, and nuclear transmutation is a statistical phenomenon
that is commonly described by the following characteristics:

• The exponential laws that govern nuclear decay and growth of radioactive
substances were first formulated by Ernest Rutherford and Frederick Soddy
in 1902 and then refined by Harry Bateman in 1910.

• A radioactive substance containing atoms of same structure is often
referred to as radioactive nuclide or radionuclide. Radioactive atoms, like
any other atomic structure, are characterized by the atomic number Z and
atomic mass number A.

• Radioactive decay involves a transition from the quantum state of the
original nuclide (parent) to a quantum state of the product nuclide (daugh-
ter). The energy difference between the two quantum levels involved in a
radioactive transition is referred to as the decay energy Q. The decay
energy is emitted either in the form of electromagnetic radiation (usually
gamma rays) or in the form of kinetic energy of the reaction products.

• The mode of radioactive decay depends upon the particular nuclide
involved.

• All radioactive decay processes are governed by the same general formalism
that is based on the definition of the activity A(t) and on a characteristic
parameter for each radioactive decay process: the total radioactive decay
constant λ with dimensions of reciprocal time usually in s−1.
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• The decay constant λ is independent of the age of the radioactive atom
and is essentially independent of physical conditions such as temperature,
pressure, and chemical state of the atom’s environment. Careful measure-
ments have shown that λ can actually depend slightly on the physical
environment. For example, at extreme pressure or at extremely low tem-
perature the technetium-99m radionuclide shows a fractional change in
λ of the order of 10−4 in comparison to the value at room temperature
(293 K) and standard pressure (101.3 kPa).

• The total radioactive decay constant λ multiplied by a time interval that
is much smaller than 1/λ represents the probability that any particular
atom of a radioactive substance containing a large number N(t) of iden-
tical radioactive atoms will decay (disintegrate) in that time interval. An
assumption is made that λ is independent of the physical environment of
a given atom.

• Activity A(t) of a radioactive substance containing a large number N(t) of
identical radioactive atoms represents the total number of decays (dis-
integrations) per unit time and is defined as a product between N(t)
and λ, i.e.,

A(t) = λN(t). (10.1)

• The SI unit of activity is the becquerel (Bq) given as 1 Bq = 1 s−1. The
becquerel and hertz both correspond to s−1, but hertz refers to frequency
of periodic motion, while becquerel refers to activity.

• The old unit of activity, the curie (Ci), was initially defined as the activity
of 1 g of radium-226 and given as 1 Ci = 3.7×1010 s−1. The activity of 1 g
of radium-226 was subsequently measured to be 3.665×1010 s−1; however,
the definition of the curie was kept at 3.7×1010 s−1. The current value of
the activity of 1 g of radium-226 is thus 0.988 Ci or 3.665×1010 Bq.

• Bq and Ci are related as follows: 1 Bq = 2.703×10−11 Ci or 1 Ci =
3.7×1010 Bq.

• Specific activity a is defined as activity A per unit mass M , i.e.,

a =
A
M

=
λN

M
=
λNA

A
, (10.2)

where NA is the Avogadro number (6.022×1023 mol−1).
• The specific activity a of a radioactive atom depends on the decay constant

λ and on the atomic mass number A of the radioactive atom. The units of
specific activity are Bq/kg (SI unit) and Ci/g (old unit). The relationship
between the two units is as follows

1
Ci
g

=
3.7×1010

10−3

Bq
kg

= 3.7×1013 Bq
kg

= 37
TBq
kg

(10.3)

or

1
Bq
kg

=
1

3.7×1013

Ci
g

= 2.703×10−14 Ci
g
. (10.4)
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10.2 Decay of Radioactive Parent
into a Stable Daughter

The simplest form of radioactive decay is characterized by a radioactive parent
nucleus P decaying with decay constant λP into a stable daughter nucleus D:

P λP−→ D. (10.5)

The rate of depletion of the number of radioactive parent nuclei NP(t) is equal
to the activity AP(t) at time t, i.e.,

dNP(t)
dt

= −AP(t) = −λPNP(t). (10.6)

The fundamental differential equation of (10.6) for NP(t) can be rewritten in
general integral form to get

NP(t)∫
NP(0)

dNP(t)
NP

= −
t∫

0

λPdt, (10.7)

where NP(0) is the number of radioactive nuclei at time t = 0.
Assuming that λP is constant, we can write (10.7) as follows

ln
NP(t)
NP(0)

= −λPt (10.8)

or
NP(t) = NP(0) e−λPt. (10.9)

The activity of parent nuclei P at time t may now be expressed as follows

AP(t) = λPNP(t) = λPNP(0) e−λPt = AP(0) e−λPt, (10.10)

where AP(0) = λPNP(0) is the initial activity of the radioactive substance.
The decay law of (10.10) applies to all radioactive nuclides irrespective

of their mode of decay; however, the decay constant λ is different for each
radioactive nuclide P and is the most important defining characteristic of
a radioactive nuclide. When more than one mode of decay is available to a
radioactive nucleus (branching), the total decay constant λ is the sum of the
partial decay constants λi applicable to each mode

λ =
∑

i

λi. (10.11)

Half-life (t1/2)P of a radioactive substance P is that time during which
the number of radioactive nuclei of the substance decays to half of the initial
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value NP(0) present at time t = 0. We can also state that in the time of one
half-life the activity AP(t) of a radioactive substance diminishes to one half
of its initial value, i.e.,

NP[t = (t1/2)P] =
1
2
NP(0) = NP(0)e−λ(t1/2)P

or
AP[t = (t1/2)P] =

1
2
AP(0) = AP(0)e−λ·(t1/2)P . (10.12)

From (10.12) we obtain the following relationship between the decay constant
λP and the half-life (t1/2)P

λP =
ln 2

(t1/2)P
=

0.693
(t1/2)P

. (10.13)

The actual lifetime of any radioactive nucleus can vary from 0 to ∞; however,
for a large number NP of parent nuclei we can define the average (mean) life
τP of a radioactive parent substance P that equals the sum of lifetimes of
all individual atoms divided by the initial number of radioactive nuclei. The
average (mean) life thus represents the average life expectancy of all nuclei in
the radioactive substance P at time t = 0; i.e.,

AP(0)τP = AP(0)

∞∫
0

e−λPt dt =
AP(0)
λP

= NP(0), (10.14)

The decay constant λP and mean life τP are related through the following
expression

τP =
1
λP
. (10.15)

The mean life τP can also be defined as the time required for the number of
radioactive atoms or their activity to fall to 1/e = 0.368 of its initial value
NP(0) or initial activity AP(0), respectively. The mean life τP and half-life are
related as follows

τP =
1
λP

=
(t1/2)P

ln 2
= 1.44 (t1/2)P. (10.16)

The average (mean) life τP can also be determined using the standard method
for finding the average of a continuous variable

τP = C

∞∫
0

te−λPtdt =

∞∫
0

te−λPtdt

∞∫
0

e−λPtdt
=

1
λ2

P

1
λP

=
1
λP
, (10.17)
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Fig. 10.1. Activity AP(t) plotted against time t for a simple decay of a radioactive
parent P into a stable daughter D. The activity follows the relationship given in
(10.10). The concepts of half-life (t1/2)P and mean life τP are also illustrated. The
area under the exponential decay curve from 0 to ∞ is equal to AP(0)τP where
AP(0) is the initial activity of the parent nuclei. The slope of the tangent to the
decay curve at t = 0 is equal to −λPAP(0) and this tangent crosses the abscissa axis
at t = τP

where C is a normalization constant expressed as

C =

⎡
⎣

∞∫
0

e−λPtdt

⎤
⎦
−1

. (10.18)

A typical example of a radioactive decay for initial condition AP(t = 0) =
AP(0) is shown in Fig. 10.1 with a plot of parent activity AP(t) against time t,
i.e.,

AP(t) = AP(0) e−λPt. (10.19)

The following properties of the radioactive decay curve are notable:

1. Area under the activity AP(t) vs. time t curve for 0 ≤ t ≤ ∞ is given as

∞∫
0

AP(t)dt = AP(0)

∞∫
0

e−λPtdt =
AP(0)
λP

= AP(0)τP = NP(0) (10.20)

and the result equals the initial number of radioactive nuclei at time t = 0.
2. Total number of radioactive nuclei present at any time t > 0 is simply the

activity AP(t) multiplied by the mean life τP.
3. The concept of half-life (t1/2)P is shown in Fig. 10.1 as the time in which

the activity AP(t) drops from AP(0) to 0.5 AP(0).
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4. The concept of mean life τP is shown in Fig. 10.1 as the time in which the
activity AP(t) drops from AP(0) to 0.368AP(0) = e−1 AP(0).

5. Area AP(0)τP is shown in Fig. 10.1 by a rectangle with sides AP(0) and
τP. If the initial activity AP(0) could remain constant for mean life τP all
atoms would be transformed by the time t = τP at which the activity would
ubruptly drop to zero.

6. In general, the slope of the tangent to the decay curve at time t is given as

dAP(t)
dt

= −λPAP(0)e−λPt, (10.21)

while the initial slope at t = 0 is equal to −λPAP(0).
7. The linear function, with the slope equal to −λPAP(0) and the ordinate

intercept at time t = 0 equal to AP(0), is

AP(t) = −λPAP(0)t+ AP(0) (10.22)

and represents the tangent to the decay curve at t = 0. It serves as a good
approximation for the activity AP(t) vs. t relationship when t	 τP, i.e.,

AP(t) ≈ AP(0){1 − λPt} = AP(0)
{

1 − t

τP

}
(10.23)

and results in AP(t) = 0 at t = τP, in contrast to (10.19) that predicts
AP(t) = 0 only at t→ ∞.

10.3 Radioactive Series Decay

Section 10.2 dealt with the radioactivity of a sample containing only one
parent radionuclide subjected to only one radioactive decay mode leading to
a stable daughter. This simple radioactive decay was described with (10.9)
and (10.19). The radioactivity of a sample is significantly more complex if the
sample consists of two or more components, such as in the case of:

1. Radioactive decay series where a radioactive parent P decays with decay
constant λP into a daughter D that in turn is radioactive and decays with
a decay constant λD into a stable granddaughter G

P λP−→ D λD−→ G. (10.24)

2. Complicated decay chain in which the granddaughter and several of its
progeny are also radioactive.

3. Radionuclide in the sample is subjected to more than one mode of decay.
This type of decay is referred to as branching decay.

4. Sample consists of more than one radioactive species in a mixture of
independent activities.
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Radioactive decay series is much more common than the simple radioac-
tive decay. It forms a decay chain starting with the parent radionuclide and
moves through several generations to eventually end with a stable nuclide.
We first analyse the simple chain P → D → G where both the parent and
daughter are radioactive and the granddaughter is not radioactive. We then
generalize the discussion into larger chains in Sect. 10.6 and address the ques-
tion of branching decay in Sect. 10.7 as well as heterogeneous samples in
Sect. 10.8.

10.3.1 Parent → Daughter → Granddaughter Relationships

The rate of change dND/dt in the number of daughter nuclei D is equal to the
supply of new daughter nuclei D through the decay of P given as λPNP(t) and
the loss of daughter nuclei D from the decay of D to G given as [−λDND(t)],
i.e.,

dND

dt
= λPNP(t) − λDND(t) = λPNP(0)e−λPt − λDND(t), (10.25)

where NP(0) is the initial number of parent nuclei at time t = 0.
The parent P follows a straightforward radioactive decay process with the

initial condition NP(t = 0) = NP(0), as described by (10.9)

NP(t) = NP(0)e−λPt. (10.26)

We are now interested in obtaining the functional relationship for the
number of daughter nuclei ND(t) assuming an initial condition that at t = 0
there are no daughter nuclei D present. The initial condition for the number
of daughter nuclei ND is thus as follows

ND(t = 0) = ND(0) = 0. (10.27)

The general solution of the differential equation given by (10.25) will be of
the form

ND(t) = NP(0){pe−λP t + de−λDt}, (10.28)

where p and d are constants to be determined using the following four steps:

1. Differentiate (10.28) with respect to time t to obtain

dND

dt
= NP(0)

{−pλPe
−λPt − dλDe

−λDt
}
. (10.29)

2. Insert (10.28) and (10.29) into (10.25) and rearrange the terms to get

e−λPt {−pλP − λP + pλD} = 0. (10.30)
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3. The factor in curly brackets of (10.30) must be equal to zero to satisfy
the equation for all values of t, yielding the following expression for the
constant p

p =
λP

λD − λP
. (10.31)

4. The coefficient d depends on the initial condition forND, i.e.,ND(t = 0) = 0
and may now be determined from (10.28) as

p+ d = 0 (10.32)

or after inserting (10.31)

d = −p = − λP

λD − λP
. (10.33)

The number of daughter nuclei ND(t) of (10.28) may now be written as follows

ND(t) = NP(0)
λP

λD − λP

{
e−λPt − e−λDt

}
. (10.34)

Recognizing that the activity of the daughter AD(t) is λDND(t) we now write
the daughter activity AD(t) as

AD(t) =
NP(0)λPλD

λD − λP

{
e−λPt − e−λDt

}
= AP(0)

λD

λD − λP

{
e−λPt − e−λDt

}

= AP(0)
1

1 − λP

λD

{
e−λPt − e−λDt

}
= AP(t)

λD

λD − λP
{1 − e−(λD−λP)t},

(10.35)

where

AD(t) is the activity at time t of the daughter nuclei equal to λDND(t).
AP(0) is the initial activity of the parent nuclei present at time t = 0.
AP(t) is the activity at time t of the parent nuclei equal to λPNP(t).

10.3.2 Characteristic Time

Equation (10.35) represents several general expressions for the activity AD(t)
of the daughter nuclei D and predicts a value of zero for AD(t) at t = 0 (initial
condition) and at t = ∞ (when all nuclei of the parent P and daughter D
have decayed). This suggests that AD(t) will pass through a maximum at
a specified characteristic time (tmax)D for λP �= λD. The characteristic time
(tmax)D is determined by setting dAD/dt = 0 at t = (tmax)D and solving
for (tmax)D to get

λPe
−λP(tmax)D = λDe

−λD(tmax)D (10.36)
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and

(tmax)D =
ln
λP

λD

λP − λD
. (10.37)

Equation (10.37), governed by the initial conditions at t = 0

AP(t = 0) = AP(0) and AD(t = 0) = 0, (10.38)

may also be expressed in terms of half-lives (t1/2)P and (t1/2)D as well as in
terms of mean-lives τP and τD for the parent P nuclei and daughter D nuclei,
respectively, as

(tmax)D =
ln

(t1/2)D
(t1/2)P

(ln2)
{

1
(t1/2)P

− 1
(t1/2)D

} =
(t1/2)P(t1/2)D

(t1/2)D − (t1/2)P

ln
(t1/2)D
(t1/2)P
ln2

(10.39)
and

(tmax)D =
ln
τD
τP

1
τD

− 1
τP

=
τPτD
τP − τD

ln
τP
τD
. (10.40)

10.4 General Form of Daughter Activity

Equations (10.37), (10.39) and (10.40) show that (tmax)D is positive and real,
irrespective of the relative values of λP and λD, except for the case of λP = λD

for which AD(t) in (10.35) is not defined.
At t = (tmax)D we get from (10.35) that AP[(tmax)D] = AD[(tmax)D],

i.e., the activities of the parent and daughter nuclei are equal and the condi-
tion referred to as the ideal equilibrium is met. The term “ideal equilibrium”
was coined by Robley Evans to distinguish this instantaneous condition from
other types of equilibrium (transient and secular) that are defined for the
relationship between the parent and daughter activity under certain special
conditions.

• For 0 < t < (tmax)D, the activity of parent nuclei AP(t) always exceeds
the activity of the daughter nuclei AD(t), i.e., AD(t) < AP(t).

• For (tmax)D < t < ∞, the activity of the daughter nuclei AD(t) always
exceeds the activity of the parent nuclei AP(t), i.e., AD(t) > AP(t).

Equation (10.35), describing the daughter activity AD(t), can be written
in a general form covering all possible physical situations. This is achieved
by introducing variables x, yP, and yD as well as a decay factor m defined
as follows:
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1. x: time t normalized to half-life of parent nuclei (t1/2)P

x =
t

(t1/2)P
, (10.41)

2. yP: parent activity AP(t) normalized to AP(0), the parent activity at t = 0

yP =
AP(t)
AP(0)

= e−λPt [see (10.10) and (10.26)] (10.42)

3. yD: daughter activity AD(t) normalized to AP(0), the parent activity at
t = 0

yD =
AD(t)
AP(0)

, (10.43)

4. m: decay factor defined as the ratio of the two decay constants, i.e., λP/λD

m =
λP

λD
=

(t1/2)D
(t1/2)P

, (10.44)

Insertion of x, yD, andm into (10.35) results in the following expression for yD,
the daughter activity AD(t) normalized to the initial parent activity AP(0),
as defined in (10.43)

yD =
1

1 −m

{
e−x ln 2 − e−

x
m ln 2

}
=

1
1 −m

{
1
2x

− 1
2x/m

}
. (10.45)

Equation (10.45) for yD as a function of x has physical meaning for all positive
values of m except for m = 1 for which yD is not defined. However, since
(10.45) gives yD = 0/0 for m = 1, we can apply the L’Hôpital rule and
determine the appropriate function for yD as follows

yD(m = 1) = lim
m→1

d
dm

{
1
2x

− 1
2x/m

}

d
dm

(1 −m)
= lim

m→1

−2−
x
m ln 2

{ x

m2

}
−1

= (ln 2)
x

2x
.

(10.46)
Similarly, (10.19) for the parent activity AP(t) can be written in terms of
variables x and yP as follows

yP = e−λPt = e−x ln 2 =
1
2x
, (10.47)

where x was given in (10.41) as x = t/(t1/2)P and yP = AP(t)/AP(0) is the
parent activity normalized to the parent activity at time t = 0.

The characteristic time (tmax)D can now be generalized to (xD)max by
using (10.41) to get the following expression

(xD)max =
(tmax)D
(t1/2)P

. (10.48)
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Three approaches can now be used to determine (xD)max for yD in (10.45)

1. Set
dyD
dx

= 0 at x = (xD)max and solve for (xD)max to get

dyD
dx

∣∣∣∣
x=(xD)max

=
ln 2

1 −m

{
−2−x +

1
m

2−
x
m

}∣∣∣∣
x=(xD)max

= 0. (10.49)

Solving (10.49) for (xD)max we finally get

(xD)max =
m

m− 1
logm
log 2

=
m

m− 1
lnm
ln 2

. (10.50)

For m = 1 (10.50) is not defined; however, since it gives (xD)max = 0/0 we
can apply the L’Hôpital rule to get (xD)max|m→1 as follows

(xD)max|m→1 = lim
m→1

d(m lnm)
dm

ln 2
d(m− 1)

dm

= lim
m→1

1 + lnm
ln 2

=
1

ln 2
=1.44. (10.51)

Thus, (xD)max is calculated from (10.50) for any positive m except for
m = 1. For m = 1, (10.51) gives (xD)max = 1.44.

2. Insert (10.41) and (10.44) into (10.37) for (tmax)D and solve for (xD)max

to get the result given in (10.50).
3. Recognize that when x = (xD)max the condition of ideal equilibrium applies

for (10.43), i.e., yP[(xD)max] = yD[(xD)max]. Insert x = (xD)max into
(10.45) and (10.47), set yP[(xD)max] = yD[(xD)max], and solve for (xD)max

to get the result of (10.50).

In Fig. 10.2 we plot (10.45) for yD against x using various values of the decay
factor m in the range from 0.1 to 10. The function plotted with the dashed
curve for m = 1 is the function given in (10.46). For comparison we also plot
yP of (10.47) against x.

All yD curves of Fig. 10.2 start at the coordinate system origin at (0,0),
rise with x, reach a peak at (xD)max, as given in (10.50), and then decay with
an increasing x. The smaller is m, the steeper is the initial rise of yD, i.e.,
the larger is the initial slope of yD. The initial slope and its dependence on
m can be determined from the derivative dyP/dx of (10.49) by setting x = 0
to get

dyD
dx

∣∣∣∣
x=0

=
ln 2

1 −m

{
−2−x +

1
m

2
−
x

m

}∣∣∣∣∣
x=0

=
ln 2
m

. (10.52)

Noting that x = t/(t1/2)P, m = λP/λD, and yD = AD(t)/AP(0), we can link
the data of Fig. 10.2 with physical situations that occur in nature in the range
0.1 < m < 10. Of course, the m region can be expanded easily to smaller and
larger values outside the range shown in Fig. 10.2.
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Fig. 10.2. Variable yD of (10.45) against variable x for various values of the decay
parameter m in the range from 0.1 to 10. The dashed curve is for yP of (10.47)
against x. The parameter (xD)max shown by dots on the yP curve is calculated from
(10.50). Values for (yD)max are obtained with (10.53)

As indicated with dots on the yp curve in Fig. 10.2, (yD)max, the maxima
in yD for a givenm, occur at points (xD)max where the yD curves cross over the
yP curve. The (xD)max values for a given m can be calculated from (10.50)
and (yD)max for a given m can be calculated simply by determining yP(x)
at x = (xD)max with yP(x) given in (10.47). We thus obtain the following
expression for (yD)max

(yD)max = yP(xD)max = 2( m
1−m ) ln m

ln 2 =
1

2(xD)max
≡ e

m
1−m ln m = e−(ln 2)(xD)max ,

(10.53)
where (xD)max was given by (10.50). Equation (10.53) is valid for all positive
m with the exception of m = 1. We determine (yD)max for m = 1 by applying
the L’Hôpital rule to (10.53) to get

(yD)max|m=1 = lim
m→1

2
d

dm
(m ln m)

d
dm

(1−m) ln 2 = lim
m→1

2
ln m+1
− ln 2 = 2−

1
ln 2 = e−1 = 0.368.

(10.54)
As shown in (10.53), (yD)max and (xD)max are related through a simple
exponential expression plotted in Fig. 10.3 and also given by (10.47) with
x = (xD)max and yP = (yD)max. Figures 10.4 and 10.5 show plots of
(yD)max and (xD)max, respectively, against m as given by (10.53) and (10.50),
respectively, for positivem except form = 1. Them = 1 values of (xD)max and
(yD)max, equal to 1/ln 2 and 1/e, respectively, were calculated from (10.51)
to (10.54), respectively.
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Fig. 10.3. Parameter (yD)max against parameter (xD)max, as given in (10.53)

Fig. 10.4. Parameter (yD)max against decay factor m calculated from (10.53) for all
m > 0 except for m = 1. The value of (yD)max for m = 1 is calculated from (10.54)

Fig. 10.5. Parameter (xD)max against decay factor m calculated from (10.50) for all
m > 0 except for m = 1. The value of (xD)max for m = 1 is calculated from (10.51)
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10.5 Equilibria in Parent–Daughter Activities

In many Parent P → Daughter D → Granddaughter G relationships after
a certain time t the parent and daughter activities reach a constant ratio
independent of a further increase in time t. This condition is referred to as
radioactive equilibrium and can be analyzed further by examining the behavior
of the activity ratio AD(t)/AP(t) obtained from (10.35) as

AD(t)
AP(t)

=
λD

λD − λP
{1 − e−(λD−λP)t} =

1

1 − λP

λD

{1 − e−(λD−λP)t}

=
1

1 − (t1/2)D
(t1/2)P

⎧⎪⎪⎨
⎪⎪⎩

1 − e
−(ln 2)

⎡
⎣ 1
(t1/2)D

−
1

(t1/2)P

⎤
⎦
⎫⎪⎪⎬
⎪⎪⎭

(10.55)

for the two initial conditions:

1. AP(t = 0) = AP(0) = λPNP(0), (10.56)
2. AD(t = 0) = AD(0) = 0. (10.57)

Inserting the decay factor m of (10.44) and variable x of (10.41) into (10.55)
and defining parameter ξ as ξ = AD(t)/AP(t) = yD/yP, we write (10.55) as
follows

ξ(x) =
AD(t)
AP(t)

=
1

1 −m
{1 − e−(ln 2) 1−m

m x} ≡ 1
1 −m

{1 − 2
m−1

m x}. (10.58)

The ξ(x) expression of (10.58) is valid for all positive m except for m = 1
for which it is not defined. However, we can determine the ξ(x) functional
relationship for m = 1 by applying the L’Hôpital rule to convert the indeter-
minate form of (10.58) into a determinate form which allows the evaluation
of the m→ 1 limit

ξ(m = 1) = lim
m→1

d
dm

{
1 − 2

m−1
m x
}

d(1 −m)
dm

= lim
m→1

{
−2

m−1
m x ln 2

[
x

m
− m− 1

m2
x

]}

−1

= x ln 2. (10.59)

Equation (10.59) shows that ξ(x) for m = 1 is a linear function of x, as shown
in Fig. 10.6 in which we plot ξ(x) for various values of m in the range from
0.1 to 10. The m = 1 linear equation actually separates two distinct regions
for the variable ξ: (1) region where m > 1 and (2) region where 0 < m < 1.
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Fig. 10.6. Variable ξ = AD(t)/AP(t) = yD/yP against normalized time x for several
decay factors m in the range from 0.1 to 10 calculated from (10.58) except for
ξ(m = 1) which gives a linear function calculated in (10.59)

1. For the m > 1 region, we write (10.58) as follows

ξ =
1

m− 1

{
e

m−1
m x ln 2 − 1

}
. (10.60)

Note that ξ rises exponentially with x, implying that the ratio AD(t)/AP(t)
also increases with time t and thus no equilibrium between AP(t) and AD(t)
will ensue with an increasing time t. The exponential behavior of ξ(x) is
clearly shown in Fig. 10.6 with the dashed curves for m > 1 in the range
1 < m < 10.

2. For the 0 < m < 1 region, (10.58) suggests that the exponential term
diminishes with increasing x and exponentially approaches zero. This
means that at large x the parameter ξ approaches a constant value that is
independent of x and is equal to 1/(1–m). Under these conditions the par-
ent activity AP(t) and daughter activity AD(t) are said to be in transient
equilibrium, and are governed by the following relationship

ξ =
AD(t)
AP(t)

=
yD
yP

=
1

1 −m
=

1

1 − λP

λD

=
λD

λD − λP
. (10.61)

3. After initially increasing, the daughter activity AD(t) goes through a max-
imum and then decreases at the same rate as the parent activity AP(t) and
the two activities are related through (10.61). As m decreases the daugh-
ter and parent activities at relatively large times t become increasingly
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more similar, since, as m → 0, ξ → 1. This represents a special case of
transient equilibrium (λD � λP, i.e., m → 0) and in this case the parent
and daughter are said to be in secular equilibrium. Since in secular equi-
librium ξ = 1, the parent and daughter activities are approximately equal,
i.e., AP(t) ≈ AD(t) and the daughter decays with the same rate as the
parent.

Equations (10.55) and (10.59) are valid in general, irrespective of the relative
magnitudes of λP and λD; however, as indicated above, the ratio AD(t)/AP(t)
falls into four distinct categories that are clearly defined by the relative
magnitudes of λP and λD. The four categories are discussed below:

10.5.1 Daughter Longer-Lived than Parent

Half-life of the daughter exceeds that of the parent: (t1/2)D > (t1/2)P
or λD < λP.

We write the ratio AD(t)/AP(t) of (10.55) as follows

ξ(x) =
AD(t)
AP(t)

=
λD

λP − λD
{e(λP−λD)t − 1}. (10.62)

Since the decay parameter m exceeds 1, we note that the ratio AD/AP

increases exponentially with time t. Therefore, no equilibrium between the
parent activity AP(t) and the daughter activity AD(t) will be reached for any
time t.

10.5.2 Equal Half-Lives of Parent and Daughter

Half-lives of parent and daughter are equal: (t1/2)D = (t1/2)P or λD = λP.
The condition is mainly of theoretical interest as no such example has been

observed in nature yet. The ratio AD(t)/AP(t) is given as a linear function,
given in (10.59). As shown in Fig. 10.6, the condition m = 1 separates the
region of no equilibrium where m > 1 from the region of transient and secular
equilibrium where m < 1.

10.5.3 Daughter Shorter-Lived than Parent:
Transient Equilibrium

Half-life of the daughter is shorter from that of parent: (t1/2)D < (t1/2)P
or λD > λP.

The activity ratio AD(t)/AP(t) at large t becomes a constant equal to
λD/(λD − λP) and is then independent of t and larger than unity, i.e.,

AD(t)
AP(t)

≈ λD

λD − λP
= const > 1. (10.63)
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The constancy of the ratio AD(t)/AP(t) at large t implies a transient
equilibrium between AP(t) and AD(t). The ratio AD(t)/AP(t) of (10.55) can
be written in terms of the characteristic time tmax by inserting into (10.55)
a new variable t = ntmax with tmax given in (10.37) to get the following
expression for AD(t)/AP(t)

AD(t)
AP(t)

=
λD

λD − λP
{1 − e−(λD−λP)ntmax} =

λD

λD − λP
{1 − e

−n ln
λD
λP }

=
λD

λD − λP

{
1 −
(
λP

λD

)n}
. (10.64)

Equation (10.64) allows us to estimate the required value of n to bring the
ratio AD(t)/AP(t) to within a certain percentage p of the saturation value of
λD/(λD −λP) in transient equilibrium. This simply implies that the following
relationship must hold

[
λP

λD

]n

=
p

100
, (10.65)

or, after solving for n,

n =
ln

100
p

ln
λD

λP

. (10.66)

For example, the activity ratio ξ = AD(t)/AP(t) will reach 90 %, 98 %,
99 %, and 99.9 % of its saturation value; i.e., p is 10 %, 2 %, 1 %, and
0.1 %, respectively, for values of n equal to 2.3/ ln(λD/λP); 3.9/ ln(λD/λP);
4.6/ ln(λD/λP); and 6.9/ln(λD/λP).

10.5.4 Daughter much Shorter-Lived than Parent:
Secular Equilibrium

Half-life of the daughter is much shorter than that of the parent: (t1/2)D 	
(t1/2)P or λD � λP. The ratio of daughter activity AD(t) and parent activity
AP(t), i.e., AD(t)/AP(t) of (10.55) simplifies to

AD(t)
AP(t)

≈ 1 − e−λDt. (10.67)

For relatively large time t� tmax, (10.67) becomes equal to unity or

AD(t)
AP(t)

≈ 1. (10.68)
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The activity of the daughter AD(t) very closely approximates that of its par-
ent AP(t), i.e., AD(t) ≈ AP(t), and they decay together at the rate of the
parent. This special case of transient equilibrium in which the daughter and
parent activities are essentially identical, i.e., AD(t) ≈ AP(t), is called secular
equilibrium.

10.5.5 Conditions for Parent–Daughter Equilibrium

Figure 10.6 is a plot of ξ(x) the ratio of the daughter activity AD to parent
activity AP against x, the time normalized to the parent half-life (t1/2)P. The
linear function x ln 2 of (10.59) for m = 1, where m is the decay factor of
(10.44), clearly separates the equilibrium (transient and secular) region where
m < 1 from the no-equilibrium region where m > 1.

The four regions of the decay factor m are summarized in Table 10.1. The
regions with m→ 0 and 0 < m < 1 provide secular and transient equilibrium,
respectively, between the parent and daughter activities; the regions for
m = 1 and m > 1 provide no equilibrium between the parent and daughter
activities.

An example of transient equilibrium of importance in medical physics is
the beta minus decay of molybdenum-99 to technetium-99m (Tc-99m) with
a half-life of 66 h in comparison to the half-life of the Tc-99m isomeric state
of 6 h. The decay to Tc-99m occurs in 86 % of disintegrations, the remaining
14 % of disintegrations go to other excited states of Tc-99 which promptly
decay through gamma ray emission to ground state. The production and use
of Tc-99m for nuclear medicine imaging is discussed in Sect. 11.10.

Table 10.1. Four special regions for the decay factor m between m = 0 and m = ∞.
The region where m → 0 results in secular equilibrium between the parent and
daughter activities and the region where 0 < m < 1 results in transient equilibrium
between the parent and daughter activities. Regions where m = 1 and m > 1 do
not result in equilibrium between the parent and daughter activities

Decay factor
m

Relative
value

Equilibrium Relationship for ξ =
AD(t)

AP(t)

m ≈ 0 λD � λP Secular ξ = 1

0 < m < 1 λD > λP Transient ξ =
1

1 −m
=

λD

λD − λP
(10.70)

m = 1 λD = λP No ξ =
t ln 2

(t1/2)P
(10.71)

m > 1 λD < λP No ξ =
1

m− 1

{
e

m−1
m

t ln 2
(t1/2)P − 1

}
(10.72)
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An excellent example of secular equilibrium is the alpha decay of radium-
226 (Ra-226) into radon-222 (Rn-222) discussed in Sect. 11.2.2. The half-life
of Ra-226 is 1602 years compared to Rn-222 half-life of 3.82 days.

10.6 Bateman Equations for Radioactive Decay Chain

The laws of spontaneous radioactive decay are independent of the radiation
emitted in the radioactive decay process. Since the number of radioactive
nuclides in a radioactive sample is in general very large, it can be treated as a
continuous variable and its behavior can be evaluated with standard methods
of calculus. The exponential laws of radioactive decay were first formulated
by Ernest Rutherford and Frederick Soddy in 1902 to explain the results of
their experiments on the thorium series of radionuclides.

The P → D → G radioactive decay chain discussed in Sect 10.3. can be
extended to a general chain of decaying nuclei with an arbitrary number of
radioactive chain links by using equations proposed by U.K. mathematician
Harry Bateman in 1910. The general radioactive chain is as follows

N1 → N2 → N3 → · · · → Ni−1 → Ni (10.69)

and Bateman’s initial condition stipulates that at t = 0 only N1(0) parent
nuclei are present, while all other descendent nuclei are not present yet, i.e.,

N2(0) = N3(0) = · · · = Ni−1(0) = Ni(0) = 0. (10.73)

Bateman equations are given as a set of equations that give the number
of atoms Ni(t) of each nuclide of a radioactive decay chain produced after
a given time t recognizing that at t = 0 (initial condition) only a given
number of parent nuclei were present. The number of nuclei Ni(t) is given
as follows

Ni(t) = C1e
−λ1t + C2e

−λ2t + C3e
−λ3t + · · · + Cie

−λit, (10.74)

where Ci are constants given as follows

C1 = N1(0)
λ1λ2 · · ·λi−1

(λ2 − λ1)(λ3 − λ1) · · · (λi − λ1)
, (10.75)

C2 = N1(0)
λ1λ2 · · ·λi−1

(λ1 − λ2)(λ3 − λ2) · · · (λi − λ2)
, (10.76)

Ci = N1(0)
λ1λ2 · · ·λi−1

(λ1 − λi)(λ3 − λi) · · · (λi−1 − λi)
. (10.77)
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Fig. 10.7. Decay curves shown on a semi-logarithmic plot for a mixture of two
radionuclides: short-lived A and long-lived B (solid curve). The dashed lines are
individual decay curves for radionuclides A and B

10.7 Mixture of Two or More Independently Decaying
Radionuclides in a Sample

An unknown mixture of two or more independently decaying radionuclides,
each with its own half-life and decay constant, will produce a composite decay
curve that does not result in a straight line when plotted on a semi-logarithmic
plot, unless, of course, all radionuclides have identical or very similar half-lives.
In principle, the decay curves of the individual radionuclides can be resolved
graphically, if their half-lives differ sufficiently and if at most three radioactive
components are present.

Figure 10.7 illustrates this for a mixture of two radionuclides: nuclide A
with short half-life and nuclide B with long half-life. The solid curve rep-
resents the measured decay curve (activity) for the mixture with the two
components A and B. For large time t, the short-lived component A is essen-
tially gone and the composite activity curve follows the decay of the long-lived
radionuclide B.

The initial activities and half-lives of the nuclides A and B can be
determined graphically as follows:

1. The first step is to carry out a linear extrapolation to time t = 0 of the
long-time portion of the composite curve (region where the curve becomes
linear on a semi-logarithmic plot). This gives the decay curve for nuclide
B and the initial activity of nuclide B at t = 0.
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2. The second step is to obtain the decay curve for the short-lived component
A by subtracting the straight-line curve B from the composite curve. This
results in another straight line on the semi-logarithmic plot, this time for
nuclide B, and gives the initial activity of nuclide A at t = 0.

3. Half-lives for components A and B may be determined from the individual
linear decay data for radionuclides A and B. The two radionuclides may
then be identified through the use of tabulated half-lives for the known
natural and artificial radionuclides.

4. Experimental uncertainties in measured data generally preclude handling
systems of more than three components, and even only two-component
curves may be difficult to resolve if their decay constants differ by less
than a factor of two.

10.8 Branching Decay and Branching Fraction

In many instances decay of a radionuclide can proceed by more than one mode
of decay; for example beta plus and beta minus decay or alpha and beta decay,
etc., and the radionuclide is said to undergo branching decay to two or more
different daughter nuclides. Another avenue for branching decay is a parent
decaying to different energy states of the same daughter.

Most of branching decays offer a choice of only two branches; however,
examples of more than two possible branches are known. In general, the overall
decay constant λ for the parent decay is the sum of the partial decay constants
λi for each possible mode of decay i

λ =
N∑

i=1

λi, (10.78)

with N the number of available decay modes.
The ratio between the decay rate for an individual decay mode i to the

total decay rate is referred to as fi, the branching fraction for mode i. The
branching fraction can also be defined as the ratio λi/λ where λi is the partial
decay constant for mode i and λ is the overall decay constant. In the common
situation of only two possible branches, one often defines the branching ratio
as the ratio between the two partial decay constants or the ratio between the
two branching fractions for the two decay modes.

An example of branching decay into two different daughter nuclides, impor-
tant for medical physics, is discussed in Sect. 11.6.4 for iridium-192 (Ir192)
that may decay through β− decay into platinum-192 (Pt-192) with a branch-
ing fraction of 95.2 % or through electron capture decay into osmium-192
(Os-192) with a branching fraction of 4.8 %. The overall decay constant
of Ir-192 (t1/2 = 73.83 d) is 1.0866×10−7 s−1 resulting in the following
partial decay constants:
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1. For the beta minus decay of Ir-102 into Pt-192: λIr→Pt = 0.952λIr−192 =
1.0344×10−7 s−1

2. For the beta plus decay of Ir-192 into Os-192: λIr→Os = 0.048λIr−192 =
0.0522×10−7 s−1

An example of branching decay into different energy states of daughter nucleus
is the production of technetium-99m radionuclide from molybdenum-99 for
nuclear medicine imaging. The parent radionuclide Mo-99 undergoes branching
beta minus decay with half-life of t1/2 = 65.94 h and decay constant
λ = 1.2166×10−7 s−1 into:

1. Metastable Tc-99m with a branching fraction of 86% resulting in a partial
decay constant λMo→Tc−99m = 0.86λMo = 1.0463×10−7 s−1

2. Standard excited states of Tc-99 which promptly decay by γ-ray emission
into the Tc-99 ground state.
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Modes of Radioactive Decay

Henri Becquerel’s discovery of natural radioactivity in 1896 opened a whole
new world of physics and introduced new and exciting opportunities for
physics research that eventually developed into important branches of modern
physics such as nuclear physics and particle physics. While the early investiga-
tors explained the macroscopic kinetics of radioactive decay soon after 1896
starting with the work of Marie and Pierre Curie, Ernest Rutherford and
Frederick Soddy, it took several decades until the various radioactive decay
modes were fully understood on a microscopic scale.
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In this chapter the various radioactive decay modes are presented with a
special emphasis on specific aspects of radioactive decay that are of impor-
tance to medical physics. In addition to standard modes of radioactive decay,
such as alpha, beta and gamma decay, the chapter also includes proton and
neutron decay as well as spontaneous fission as interesting examples of sponta-
neous decay despite their limited importance to medical physics. The chapter
concludes with a discussion of the Segrè chart of the nuclides which presents
an orderly catalog of all known stable as well as radioactive nuclear species,
provides useful basic data for all known nuclides, and indicates the possible
decay paths for radionuclides.

11.1 Introduction to Radioactive Decay Processes

Radioactive nuclides, either naturally occurring or artificially produced by
nuclear reactions, are unstable and strive to reach more stable nuclear con-
figurations through various processes of spontaneous radioactive decay that
involve transformation to a more stable nuclide and emission of energetic par-
ticles. General aspects of spontaneous radioactive decay may be discussed
using the formalism based on the definitions of activity A and decay con-
stant λ without regard for the actual microscopic processes that underlie the
radioactive disintegrations. A closer look at radioactive decay processes shows
that they are divided into six main categories:

1. Alpha (α) decay
2. Beta (β) decay
3. Gamma (γ) decay
4. Spontaneous fission (SF)
5. Proton emission decay
6. Neutron emission decay

β decay actually encompasses three decay processes (β−, β+, and electron
capture) and γ decay encompasses two (γ decay and internal conversion).

There are many spontaneous radioactive decay modes that an unsta-
ble nucleus may undergo in its quest for reaching a more stable nuclear
configuration. On a microscopic scale the nine most important modes are:

1. α decay
2. β− decay
3. β+ decay
4. Electron capture (EC)
5. γ decay
6. Internal conversion (IC)
7. Spontaneous fission (SF)
8. Proton emission decay
9. Neutron emission decay
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Nuclear transformations are usually accompanied by emission of energetic
particles (charged particles, neutral particles, photons, etc.). The particles
released in the various decay modes are as follows:

• Alpha (α) particles in α decay,
• Electrons in β− decay,
• Positrons in β+ decay,
• Neutrinos in β+ decay,
• Antineutrinos in β− decay,
• γ rays in γ decay,
• Atomic orbital electrons in internal conversion,
• Neutrons in spontaneous fission and in neutron emission decay,
• Heavier nuclei in spontaneous fission,
• Protons in proton emission decay.

In each nuclear transformation a number of physical quantities must be
conserved. The most important of these quantities are:

1. Total energy
2. Momentum
3. Charge
4. Atomic number
5. Atomic mass number (number of nucleons).

The total energy of particles released by the transformation process is equal
to the net decrease in the rest energy of the neutral atom, from parent
P to daughter D. The disintegration (decay) energy, often referred to as the
Q value of the radioactive decay, is defined as follows

Q = {M(P) − [M(D) +m]} c2, (11.1)

where M(P), M(D), and m are the nuclear rest masses (in unified atomic
mass units u) of the parent, daughter, and emitted particles, respectively.
The energy equivalent of u is 931.5 MeV.

Often atomic masses rather than nuclear masses are used in calculations
of Q values of radioactive decay. In many decay modes the electron masses
cancel out, so that it makes no difference if atomic or nuclear masses are used
in (11.1). On the other hand, there are situations where electron masses do
not cancel out (e.g., in β+ decay) and there special care must be taken to
account for all electrons involved when atomic rest masses are used in (11.1).

For radioactive decay to be energetically possible the Q value must be
greater than zero. This means that spontaneous radioactive decay processes
release energy and are called exoergic or exothermic. For Q > 0, the energy
equivalent of the Q value is shared as kinetic energy between the particles
emitted in the decay process and the daughter product. Since the daughter
has a much larger mass than the other emitted particles, the kinetic energy
acquired by the daughter is usually negligibly small.
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In light (low atomic number Z) elements nuclear stability is achieved when
the number of neutronsN and the number of protons Z is approximately equal
(N ≈ Z). As the atomic number Z increases, the N/Z ratio for stable nuclei
increases from 1 at low Z elements to about 1.5 for heavy stable elements.

• If a nucleus has a N/Z ratio too high for nuclear stability, it has an excess
number of neutrons and is called neutron-rich. It decays through conver-
sion of a neutron into a proton and emits an electron and anti-neutrino.
This process is referred to as β− decay. If the N/Z ratio is extremely high,
a direct emission of a neutron is possible.

• If a nucleus has a N/Z ratio that is too low for nuclear stability, it has
an excess number of protons and is called proton-rich. It decays through
conversion of a proton into a neutron and emits a positron and a neutrino
(β+ decay). Alternatively, the nucleus may capture an orbital electron,
transform a proton into a neutron and emit a neutrino (electron capture).
A direct emission of a proton is also possible, but less likely, unless the
nuclear imbalance is very high.

11.2 Alpha Decay

Alpha (α) decay was the first mode of radioactive decay detected and investi-
gated during the 1890s. It played a very important role in early modern physics
experiments that led to the currently accepted Rutherford–Bohr atomic model
(see Chapters 2 and 3) and is characterized by a nuclear transformation in
which an unstable parent nucleus P attains a more stable nuclear configu-
ration (daughter D) through ejection of an α particle. This α particle is a
helium-4 nucleus that has, with a binding energy of 7 MeV/nucleon, a very
stable configuration.

While α decay was well known since the discovery of natural radioactivity
by Henri Becquerel in 1896 and α particles were already used as nuclear
probes by Hans Geiger and Ernest Marsden in 1909, its exact nature was
finally unraveled much later in 1928 by George Gamow.

In α decay the number of protons and neutrons is conserved by producing
a 4

2He nucleus (α particle) and lowering the parent’s A and Z by 4 and 2,
respectively, i.e.,

A
ZP → A−4

Z−2D + 4
2He. (11.2)

• When an α particle is emitted by the radioactive parent (Z,A) nucleus,
the atomic number Z of the parent decreases by 2 and it sheds two orbital
electrons from its outermost shell to become a neutral daughter atom
(Z − 2, A− 4).

• The energetic α particle slows down in moving through the absorber
medium and captures two electrons from its surroundings to become a
neutral 4

2He atom.
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• Typical kinetic energies of α particles released by naturally occurring
radionuclides are between 4 MeV and 9 MeV, corresponding to a range in
air of about 1 cm to 10 cm, respectively, and in tissue of about 10−3 cm
and 10−2 cm, respectively.

The Coulomb barrier that an α particle experiences on the surface of the
parent nucleus is of the order of 30 MeV; thus classically an α particle with a
kinetic energy of few MeV cannot overcome the barrier. However, the quantum
mechanical effect of tunneling (see Sect. 1.28.1) gives the α particle a certain
finite probability for tunneling through the potential barrier and escaping the
parent nucleus P that transforms into the daughter nucleus D. Thus, positive
decay energy Qα and the quantum mechanical effect of tunneling make the α
decay possible.

11.2.1 Decay Energy in Alpha Decay

The decay energy Qα released in α decay appears as kinetic energy shared
between the α particle and the daughter nucleus and is given as follows

Qα =
{M(P) − [M(D) + M (

4
2He
)]}

c2

= {M(P) − [M(D) +mα]} c2, (11.3)

where M(P), M(D), and M(42He) are the atomic rest masses and M(P),
M(D) and mα are the nuclear rest masses of the parent, daughter, and α
particle, respectively.

Since neither the total number of protons nor the total number of neutrons
changes in the α decay, Qα can also be expressed in terms of binding energies
EB of the parent, daughter, and helium nuclei, as follows

Qα = EB(D) +EB(α) − EB(P), (11.4)

where

EB(D) is the total binding energy of the daughter D nucleus.
EB(α) is the total binding energy of the α particle (28.3 MeV).
EB(P) is the total binding energy of the parent P nucleus.

The definition of nuclear binding energy EB is given in (1.25). For α decay to
be possible, Qα must be positive. This implies that the combined total binding
energies of the daughter nucleus and the α particle nucleus must exceed the
total binding energy of the parent nucleus. Or, similarly, this implies that the
rest mass of the parent nucleus M(P) must exceed the combined rest masses
of the daughter nucleus M(D) and the α particle mα.

Two entities are produced in α decay: the α particle and the daughter
product. For decay of the parent nucleus at rest this implies that the α particle
and the daughter will acquire momenta p equal in magnitude but opposite in
direction and kinetic energies equal to (EK)α = p2/ (2mα) for the α particle
and (EK)D = p2/ [2M(D)] for the daughter.
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The most promient general features of α decay are as follows:

• α decay occurs commonly in nuclei with Z > 82 because in this range of
atomic number Z decay energies Qα given by (11.3) or (11.4) are positive
and of the order of ∼4 MeV to ∼9 MeV.

• The Qα > 0 results mainly from the high total binding energy of the
4
2He nucleus (28.3 MeV) that is significantly higher than for nuclei of
3
2He (helion), 3

1H (triton), 2
1H (deuteron) for which spontaneous ejection

from parent nuclei energetically is not feasible.
• Ejection of a heavy nucleus from the parent nucleus is energetically possible

(large Q value); however, the effect of tunneling through the potential
barrier is then also much more difficult for the heavy nucleus in comparison
with tunneling for the α particle.

• Emission of heavy particles from parent nuclei with Z > 92 is possible and
represents a mode of radioactive decay referred to as spontaneous fission.
This process competes with the α decay and is discussed in Sect. 11.9.

The total decay energyQα must be positive for α decay to occur and is written
as follows

Qα = (EK)α + (EK)D =
p2

2mα
+

p2

2M(D)
=

p2

2mα

{
1 +

mα

M(D)

}

= (EK)α

{
1 +

mα

M(D)

}
. (11.5)

Since mα 	 M(D), the α particle recoils with a much higher kinetic energy
than the daughter. Thus, the α particle acquires a much larger fraction of the
total disintegration energy Qα than does the daughter.

From (11.5) we determine (EK)α, the kinetic energy of the α particle, as

(EK)α =
Qα

1 +
mα

M(D)

. (11.6)

After inserting Qα from (11.3) we get

(EK)α =
M(P)c2 −M(D)c2 −mαc

2

1 +
mα

M(D)

≈ [M(P)c2 −M(D)c2 −mαc
2
]{AP − 4

AP

}

= Qα

{
AP − 4
AP

}
≈ Qα

{
1 − 4

AP

}
, (11.7)

where AP is the atomic mass number of the parent nucleus; (AP − 4) is the
atomic mass number of the daughter nucleus; and mα/M (D) ≈ 4/ (AP − 4).
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The kinetic energy (EK)D of the recoil daughter nucleus, on the other
hand, is given as follows

(EK)D = Qα − (EK)α = Qα −Qα

{
1 − 4

AP

}
= 4

Qα

AP
. (11.8)

11.2.2 Alpha Decay of Radium-226 into Radon-222

For historical reasons, the most important example of radioactive decay in
general and α decay in particular is the decay of radium-226 with a half-life
of 1600 years into radon-222 which in itself is radioactive and decays by α
decay into polonium-218 with a half-life of 3.824 days:

226
88Ra →222

86Rn + α. (11.9)

Radium-226 is the sixth member of the naturally occurring uranium series
starting with uranium-238 and ending with stable lead-206. It was discovered
in 1898 by Marie Curie and Pierre Curie and was used for therapeutic pur-
poses almost immediately after its discovery, either as an external (sealed)
source of radiation or as an internal (open) source.

The external use of radium-226 and radon-222 focused largely on treatment
of malignant disease. In contrast, internal use of these two radionuclides was
spread over the whole spectrum of human disease between 1905 through the
1930s and was based on ingestion of soluble radium salts, inhalation of radon
gas, or drinking water charged with radon.

When radium-226 is used as a sealed source, the radon-222 gas cannot
escape and a build up occurs of the seven daughter products that form
the radium-226 series. Some of these radionuclides undergo α decay, others
undergo β decay with or without emission of γ rays. The γ-ray spectrum con-
sists of discrete lines ranging in energy from 0.18 MeV to 2.2 MeV producing a
photon beam with an effective energy close to that of cobalt-60 (∼1.25 MeV).
The encapsulation of the source is thick enough to absorb all α and β particles
emitted by radium-226 and its progeny; however, the encapsulation cannot
stop the γ rays and this makes radium-226 sealed sources useful in treatment
of cancer with radiation.

Before the advent of cobalt-60 and cesium-137 teletherapy machines in
1950s all radionuclide based external beam radiotherapy machines made use
of radium-226. They were called teleradium machines, contained upto 10 g of
radium-226 and were very expensive because of the tedious radium-226 man-
ufacturing process. They were also very inefficient because of the low inherent
specific activity of radium-226

(
0.988 Ci · g−1 = 3.665×1010 Bq · s−1

)
and

self-absorption of γ radiation in the source.
Widespread availability of external beam radiotherapy only started in the

1950s with the invention of the cobalt-60 teletherapy machine in Canada.
On the other hand, radium-226 proved very practical for use in brachyther-
apy where sources are placed into body cavities or directly implanted into
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malignant lesions for a specific time. While radium-based brachytherapy was
very popular in the past century, modern brachytherapy is now carried out
with other radionuclides (e.g., iridium-192, cesium-137, iodine-125, etc.) that
do not pose safety hazards associated with the radon-222 gas that may leak
through damaged radium-226 source encapsulation.

The decay energy Qα for the α decay of radium-226 is calculated either (1)
using atomic rest masses M, as shown in (11.3), or (2) nuclear rest masses M,
as also shown in (11.3), or (3) nuclear binding energies EB, as given in (11.4).
All required nuclear and atomic data are provided in Appendix A.

1. Decay energy Qα with appropriate atomic rest masses M and (11.3) is
given as

Qα =
{M (

226
88Ra

)−M (
222
86Rn

)−M (
4
2He
)}
c2

= (226.025403 u − 222.017571 u − 4.002603 u) × 931.494 MeV/u
= 0.005229 u × 931.494 MeV/u = 4.87 MeV > 0. (11.10)

2. Decay energy Qα with appropriate nuclear masses M and (11.3) is calcu-
lated as

Qα =
{
M
(
226
88Ra

)−M
(
222
86Rn

)−mα

}
c2 (11.11)

= (210496.3482− 206764.0985− 3727.3791) MeV = 4.87 MeV > 0,

3. Decay energy Qα using appropriate binding energies EB and (11.4) gives
the same result as (11.10) and (11.11)

Qα =
{
EB

(
222
86Rn

)
+ EB

(
4
2He
)− EB

(
226
88Ra

)}
= (1708.185 + 28.296− 1731.610) MeV = 4.87 MeV. (11.12)

The kinetic energy (EK)α of the α particle is given from (11.7) as

(EK)α = Qα

(
AP − 4
AP

)
= 4.87 MeV

222
226

= 4.78 MeV, (11.13)

while 0.09 MeV goes into the recoil kinetic energy (EK)D of the 222
86Rn atom,

as calculated from (11.8)

(EK)D = Qα − (EK)α = 0.09 MeV =
4Qα

AP
=

4 × 4.87 MeV
226

= 0.09 MeV.

(11.14)
Figure 11.1 shows an energy level diagram for radium-226 decaying through
α decay into radon-222. A closer look at the decay scheme of 226

88Ra, shown in
Fig. 11.1, paints a slightly more complicated picture than suggested by (11.2)
with two α lines emitted; one with (EK)α1 = 4.78 MeV emitted in 94.6 % of
decays and the other with (EK)α2

= 4.60 MeV emitted in 5.4 % of the decays.
The 4.78 MeV transition ends at the ground state of 222

86Rn; the 4.60 MeV
transition ends at the first excited state of 222

86Rn that instantaneously decays
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Fig. 11.1. Energy level diagram for the α decay of radium-226 into radon-222. The
relative mass-energy levels for the ground states of the two nuclides are calculated
from the respective atomic masses of the two radionuclides given in Appendix A

to the ground state through emission of a 0.18 MeV γ ray (γ decay; see
Sect. 11.7).

The decay energy Qα of 4.87 MeV is thus shared between the α particle
(4.78 MeV) and the recoil daughter (0.09 MeV). The α particle, because of its
relatively small mass in comparison with the daughter mass picks up most of
the decay energy; the magnitudes of the momenta for the two decay products
are of course equal, and the momenta are opposite in direction to one another.

11.3 Beta Decay

11.3.1 General Aspects of Beta Decay

The term β decay encompasses modes of radioactive decay in which the atomic
number Z of the parent nuclide changes by one unit (±1), while the atomic
mass number A remains constant. Thus, the number of nucleons and the total
charge are both conserved in the β decay processes and the daughter D can
be referred to as an isobar of the parent P.

Three processes fall into the category of β decay:

1. Beta minus (β−) decay with the following characteristics: Z → Z + 1;
A = const.

n → p+e−+νe,
A
Z P → A

Z+1D+e−+νe. (11.15)

A neutron-rich radioactive nucleus transforms a neutron into proton and
ejects an electron and an antineutrino. Free (extranuclear) neutrons actu-
ally decay into protons through the β− decay process with a life-time τ of
11.24 min. This decay is possible since the neutron rest mass exceeds that
of the proton.
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2. Beta plus (β+) decay with the following characteristics: Z → Z − 1;
A = const.

p → n+e+ +νe,
A
Z P → A

Z−1D+e+ +νe. (11.16)

A proton-rich radioactive nucleus transforms a proton into neutron and
ejects a positron and a neutrino. Free (extranuclear) protons cannot decay
into neutrons through a β+ decay process because the rest mass of the
proton is smaller than that of the neutron.

3. Electron capture with the following characteristics: Z → Z − 1; A = const.

p + e− = n + νe,
A
Z P+ e− = A

Z−1D + νe. (11.17)

A proton-rich radioactive nucleus captures an inner shell orbital electron
(usually K shell), transforms a proton into a neutron, and ejects a neutrino.

In many cases, β decay of a parent nucleus does not lead directly to the
ground state of the daughter nucleus; rather it leads to an unstable or even
metastable excited state of the daughter. The excited state de-excites through
emission of γ rays or through emission of internal conversion electrons (see
Sect. 11.8). Of course, the orbital shell vacancies produced by the electron
capture or internal conversion process will be followed by emission of discrete
characteristic photons or Auger electrons, as is the case with all atomic shell
vacancies no matter how they are produced. A detailed discussion of these
atomic phenomena is given in Chap. 4. Of course, β decay can only take place
when the binding energy of the daughter nucleus EB (D) exceeds the binding
energy of the parent nucleus EB(P).

11.3.2 Beta Particle Spectrum

For a given β decay, similarly to the situation in α decay, the β-decay energy
is uniquely defined by the difference in mass-energy between the parent and
daughter nuclei. However, in contrast to the α decay where the energy of the
emitted α particles is also uniquely defined, the β particles emitted in β decay
are not monoenergetic, rather they exhibit a continuous spectral kinetic energy
distribution with only the maximum kinetic energy (Ee)max corresponding to
the β decay energy.

This apparent contravention of the energy conservation law was puzzling
physicists for many years until in 1930 Wolfgang Pauli postulated the exis-
tence of the neutrino to explain the continuous spectrum of electrons emitted
in β decay. In 1934 Enrico Fermi expanded on Pauli’s neutrino idea and
developed a theory of β− and β+ decay. The theory includes the neutrino or
the antineutrino as the third particle sharing the available decay energy and
momentum with the β particle and the recoil nucleus. With the emission of
a third particle, the neutrino or antineutrino, the momentum and energy can
be conserved in β decay.
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The neutrino and antineutrino are assumed to have essentially zero rest
mass and are moving with the speed of light c. They are also assumed to have
only weak interactions with atoms of the absorber and are thus extremely
difficult to detect. Their charge is equal to zero. It is obvious that detection of
an essentially massless, momentless, uncharged relativistic particle that only
experiences weak interactions with matter is extremely difficult. Nonetheless,
several techniques were devised to detect the elusive neutrino particle exper-
imentally and thus prove correct Fermi’s contention about its existence in
β decay. The existence of the neutrino was finally proven experimentally in
1956.

Typical shapes of β− and β+ spectra are shown in Fig. 11.2. In general,
the spectra exhibit low values at small kinetic energies, reach a maximum at a
certain kinetic energy, and then decrease with kinetic energy until they reach
zero at a maximum energy (Ee±)max that corresponds to the β decay energy
Qβ, if we neglect the small recoil energy acquired by the daughter nucleus.

The shapes of β− and β+ spectra differ at low kinetic energies owing to the
charge of the β particles: electrons in β− decay are attracted to the nucleus;
positrons in β+ decay are repelled by the nucleus. The charge effects cause an
energy shift to lower energies for electrons and to higher energies for positrons,
as is clearly shown in Fig. 11.2.

For use in internal dosimetry calculations of β sources the effective energy
(Ee)eff of β decay spectra are usually estimated as

(Eβ)eff ≈ 1
3

(Eβ)max . (11.18)

Fig. 11.2. Typical β particle energy spectra for β− and β+ decay normalized to
the maximum energy of the β particle
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11.3.3 Daughter Recoil in Beta Minus and Beta Plus Decay

In a β− and β+ beta decay event the daughter nucleus recoils with a kinetic
energy (EK)D ranging from 0 to a maximum value.

1. The recoil kinetic energy of the daughter decay product is zero, i.e.,
(EK)D = 0, when the electron and antineutrino in β− decay or positron
and neutrino in β+ decay are emitted with the same momentum but in
opposite directions.

2. The maximum recoil kinetic energy (EK)D = max of the daughter occurs
when either one of the two decay particles (electron or antineutrino in β−

decay; positron or neutrino in β+ decay) is emitted with the maximum
available kinetic energy (Eβ)max. The β-decay energy Qβ is expressed as

Qβ = (EK)D + (Eβ)max . (11.19)

The maximum recoil kinetic energy of the daughter (EK)D is determined
using the laws of energy and momentum conservation and accounting for the
relativistic mass changes of the β particle (electron or positron). A common
name for electron or positron in β decay is β particle.

1. The β particle momentum pe± = γme±υe± is equal to the daughter momen-
tum pD = M(D)υD, where me± and M(D) are the rest masses of the
β particle and daughter nucleus, respectively; υe± and υD are the veloc-
ities of the β particle and the daughter nucleus, respectively; and γ =(
1 − β2

)−1/2 with β = υ/c.
2. The kinetic energy (EK)D of the daughter nucleus is calculated classically

as (EK)D = 1
2M(D)υ2

D; the maximum kinetic energy of the β particle is
given relativistically as (Eβ)max = (γ − 1)me±c

2.

Since pe± = pD, we get

υD = γ
me±

M(D)
υe± . (11.20)

Inserting (11.20) into the equation for the daughter kinetic energy
(EK)D = 1

2M(D)υ2
D, we obtain

(EK)D =
M(D)υ2

D

2
= γ2m

2
e±υ

2
e±

2M(D)
= γ2β2

(
me±c

2
)2

2M(D)c2
=

β2

1 − β2

(
me±c

2
)2

2M(D)c2
.

(11.21)

From the relationship (Eβ)max = (γ − 1)me±c
2 we calculate the expression

for β2/(1 − β2) to obtain

β2

1 − β2
=

2 (Eβ)max

me±c2
+
{

(Eβ)max

me±c2

}2

. (11.22)
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Inserting (11.22) into (11.21) we obtain the following expression for the recoil
kinetic energy (EK)D of the daughter nucleus

(EK)D =
β2

1 − β2

(
me±c

2
)2

2M(D)c2
=

me±c
2

M(D)c2
(Eβ)max +

(Eβ)2max

2M(D)c2
. (11.23)

The daughter recoil kinetic energy (EK)D is usually of the order of
10 eV to 100 eV; negligible in comparison to the kinetic energy of the β
particle, yet sufficiently high to be able to cause atomic rearrangements in
neighboring molecules in biological materials.

The decay energy Qβ is now given as follows

Qβ = (EK)D + (Eβ)max = (Eβ)max

{
1 +

me±c
2 + 1

2 (Eβ)max

M
(
D
)
c2

}
, (11.24)

showing that in β− and β+ decay by far the larger energy component is
the component shared between the β particle and neutrino, since these two
particles in general share the energy (Eβ)max; the recoil kinetic energy given
to the daughter is extremely small and may be neglected, unless, of course,
we are interested in calculating it, so that we may determine the local damage
produced by the daughter atom in biological materials.

11.4 Beta Minus Decay

11.4.1 General Aspects of Beta Minus Decay

Several radionuclides decaying by beta minus (β−) decay are used in medicine
for external beam radiotherapy and brachytherapy. The parent nuclide decays
by β− decay into an excited daughter nuclide that instantaneously or through
a metastable decay process decays into its ground state and emits the exci-
tation energy in the form of γ-ray photons. These photons are then used for
radiotherapy.

The most important characteristics of radionuclides used in external beam
radiotherapy are:

1. High gamma ray energy
2. High specific activity
3. Relatively long half-life
4. Large specific air-kerma rate constant

Of the over 3000 natural or artificial radionuclides known, only a few are
suitable for use in radiotherapy and of these practically only cobalt-60, with its
high photon energy (1.17 MeV and 1.33 MeV), high practical specific activity(
aCo ≈ 300 Ci · g−1

)
, and a relatively long half-life (5.26 years), meets the

source requirements for external beam radiotherapy.
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11.4.2 Beta Minus Decay Energy

The β− decay can occur to a neutron-rich unstable parent nucleus when the
mass M(Z,A) of the parent nucleus exceeds the mass M(Z + 1, A) of the
daughter nucleus by more than one electron rest mass me. The decay energy
Qβ− for the β− decay process is, in terms of nuclear mass M , given as

Qβ− = {M(Z,A) − [M(Z + 1, A) +me]} c2. (11.25)

Adding and subtracting Zmec
2 to the right-hand side of (11.25) and

neglecting the electron binding energies to the nucleus we obtain

Qβ− = {M(Z,A) + Zme − [M(Z + 1, A) +me + Zme]} c2
= {M(Z,A) −M(Z + 1, A)} c2, (11.26)

where M(Z,A) and M (Z + 1, A) represent the atomic masses of the parent
and daughter, respectively, noting that

M(Z,A) = M(Z,A) + Zme (11.27)

and
M(Z + 1, A) = M(Z + 1, A) + (Z + 1)me. (11.28)

For the β− decay to occur the atomic mass of the parent M(Z,A) must exceed
the atomic mass of the daughter M(Z + 1, A); i.e., M(Z,A) >M(Z + 1, A).

The atomic rest energy difference between the parent and daughter pro-
vides the energy released in a β− decay event, most generally consisting of:

1. Energy of the emitted electron.
2. Energy of the antineutrino.
3. Energy of the emitted γ-ray photons or conversion electrons with charac-

teristic x rays and Auger electrons.
4. Recoil kinetic energy of daughter nucleus (small and negligible).

11.4.3 Beta Minus Decay of Free Neutron into Proton

Neutrons, as subatomic particles, along with protons that are also subatomic
particles, make up the atomic nucleus held together by the strong force.
Neutrons are stable while they reside in a stable nucleus with a balanced
number of protons and neutrons. An unstable nucleus with an excessive num-
ber of neutrons may undergo several types of nuclear decay such as α decay,
β− decay, neutron emission decay, and spontaneous fission.

A free (extra-nuclear) neutron is not stable; it transforms into a proton p,
electron e−, and electron antineutrino νe. This spontaneous disintegration of
a free neutron n with a half-life of 618 s (10.3 minutes) is the simplest example
of β−decay



11.4 Beta Minus Decay 489

n → p + e− + νe +Qβ−(0.7824 MeV). (11.29)

The β− process is energetically possible, since it fulfills the requirement which,
as spelled out in Sect 11.4.2, states that the parent nucleus rest energy
M(Z,A)c2 should exceed the daughter nucleus rest energy M(Z + 1, A)c2 by
more than one electron rest energymec

2, where for neutron decayM(Z,A)c2 =
mnc

2 = 939.5654 MeV, M(Z + 1, A)c2 = mpc
2 = 938.2720 MeV, and

mec
2 = 0.5110 MeV.
The data for neutron, proton, and electron rest energies are given in

Appendix A and show that the neutron rest energy mnc
2 exceeds the pro-

ton rest energy mpc
2 by 1.2934 MeV, an amount larger than the electron rest

energy of 0.5110 MeV.
According to (11.25) the decay energy Qn

β− (Q value) for the β− decay of
the neutron is given as follows

Qn
β− = mnc

2 −mpc
2 −mec

2

= 939.5654 MeV − 938.2720 MeV − 0.5110 MeV = 0.7824 MeV.
(11.30)

The decay energyQn
β− of (11.30) will be shared between the three particles

produced in the β− decay. As given in (11.19), the maximum recoil kinetic
energy of the proton (EK)max

p will occur when either the electron e or the
electron antineutrino νe is emitted with the maximum kinetic energy (Eβ)max.
According to (11.19) and (11.24) we can write the neutron decay energyQn

β− in
the form of a quadratic equation for (Eβ)max as

Qn
β− = (EK)p + (Eβ)max = (Eβ)max

[
1 +

mec
2

mpc2

]
+

[(Eβ)max]2

2mpc2
(11.31)

which has the following physically relevant solution

(Eβ)max = mpc
2

⎧⎨
⎩−

[
1 +

mec
2

mpc2

]
+

√[
1 +

mec
2

mpc2

]2
+

2Qn
β−

mpc2

⎫⎬
⎭

= (938.2720 MeV)

⎧⎨
⎩−
[
1 +

0.5110
938.2720

]
+

√[
1 +

0.5110
938.2720

]2
+

2 × 0.7824
938.2720

⎫⎬
⎭

= 0.7817 MeV. (11.32)

Even in the event where the electron receives the maximum possible kinetic
energy (Eβ)max = 0.7817 MeV, the maximum recoil energy of the proton
(EK)max

p in β− decay of a free neutron is very small because the proton is much
heavier than the electron (mpc

2/(mec
2) = 1836). Thus, the decay energy of

0.7824 MeV is shared between the electron (Eβ)max = 0.7817 MeV and the
proton (EK)max

p = Qn
β− − (Eβ)max ≈ 7×10−4 MeV.
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Equation (11.32) can be simplified by recognizing that the term 2Qn
β−/

(mpc
2) is very small. Applying Taylor expansion to the square root term

of (11.32)

(Eβ)max = mpc
2

⎧⎨
⎩−

[
1 +

mec
2

mpc2

]
+

√[
1 +

mec2

mpc2

]2
+

2Qn
β−

mpc2

⎫⎬
⎭

= mpc
2

⎧⎨
⎩
[
1 +

mec
2

mpc2

]⎡
⎣−1 +

√
1 +

2Qn
β−

mpc2

[
1 +

mec2

mpc2

]−2
⎤
⎦
⎫⎬
⎭

(11.33)

≈ mpc
2

{[
1 +

mec
2

mpc2

][
−1 + 1 +

Qn
β−

mpc2

[
1 +

mec
2

mpc2

]−2
]}

= Qn
β−

[
1 +

mec
2

mpc2

]−1

= 0.7824
[
1 +

0.511
738.272

]
MeV = 0.7819 MeV

results in a simpler equation than (11.32) and gives a similar maximum
electron energy (Eβ)max to that of (11.32).

11.4.4 Beta Minus Decay of Cobalt-60 into Nickel-60

For medical physics an important β− decay example is the decay of unstable
cobalt-60 radionuclide with a half-life of 5.26 years into an excited nickel-60
nuclide that decays instantaneously into its ground state with emission of two
γ-ray photons of energies 1.173 MeV and 1.332 MeV, as shown schematically
in Fig 11.3.

60
27Co → 60

28Ni + e− + νe +Qβ− (2.82 MeV) . (11.34)

Cobalt-60 is used as a radiation source in teletherapy machines applied for
external beam radiotherapy. Typical cobalt-60 source activities are of the
order of 200 TBq to 400 TBq. There are several thousand cobalt units in
operation around the world and Canada is a major producer of these units
and cobalt-60 sources. In the past cobalt-60 was also used in brachytherapy
sources, however, its use for this purpose has largely been abandoned with the
introduction of iridium-192 sources.

The decay energy Qβ− for the Co-60 β− decay into Ni-60 is calculated
with (11.26) and appropriate data given in Appendix A as follows

Qβ− =
{M(6027Co) −M(6028Ni)

}
c2

= {59.933822 u − 59.930791 u} 931.494 MeV/u = 2.82 MeV. (11.35)
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Fig. 11.3. Decay scheme for the β− decay of cobalt-60 into nickel-60. The relative
mass-energy levels for the ground states of the two nuclides are calculated from
atomic masses given in Appendix A

Of course, we can also calculate the decay energy Qβ− for the cobalt-60
β− decay using (11.25) in conjuction with appropriate data available in
Appendix A. The calculated Qβ− of 2.82 MeV is shown in Fig. 11.3 as the
energy difference between the ground states of cobalt-60 and nickel-60. There
are two β− decay channels:

1. 99.9 % of decays proceed from Co-60 to the second excited state of Ni-60
with maximum and effective electron energy of 0.313 MeV and 0.1 MeV,
respectively.

2. Only 0.1 % of decays proceed from Co-60 to the first excited state of Ni-60
with maximum and effective electron energy of 1.486 MeV and 0.63 MeV,
respectively.

The excited nickel-60 nucleus attains its ground state through emission of
γ-ray photons, as discussed further in Sect. 11.7 on γ decay.

11.4.5 Beta Minus Decay of Cesium-137 into Barium-137

Another example of β− decay of interest in medical physics is the decay of
cesium-137 into barium-137 with a half-life of 30.07 years (see Fig. 11.4):

137
55Cs → 137

56Ba + e− + νe +Qβ− (1.176 MeV) . (11.36)

The decay energy Qβ− for the decay of Cs-137 into Ba-137 by β− decay is
calculated with (11.26) and appropriate atomic mass data from Appendix A
as follows

Qβ− =
{M(13755Cs) −M(13756Ba)

}
c2

= {136.907084 u − 136.905821 u} 931.494 MeV/u = 1.176 MeV. (11.37)
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Fig. 11.4. Decay scheme for β− decay of cesium-137 into barium-137. The relative
mass-energy levels for the ground states of the two nuclides are calculated from
atomic masses listed in Appendix A

The result of (11.37) can be obtained using (11.25) and appropriate nuclear
mass data from Appendix A. The calculated Qβ− of 1.176 MeV is shown in
Fig. 11.4 as the energy difference between the ground states of cesium-137
and barium-137. There are two β− decay channels:

1. 94.6 % of β− decays proceed from Cs-137 to the excited state of Ba-137m
with maximum electron energy of 0.514 MeV. The Ba-137m is a metastable
state that decays with a 2.552 min half-life to the ground state of Ba-137
with emission of a 0.662 MeV γ-ray photon. The maximum electron energy
of 0.514 MeV added to the γ-ray energy of 0.662 MeV results in decay
energy of 1.176 MeV, as calculated in (11.37).

2. 5.4 % of β− decays proceed directly from Cs-137 to the ground state of
Ba-137 with maximum electron energy of 1.176 MeV.

Cesium-137 has been used in the past as external beam source as well as
brachytherapy source. Its use in external beam radiotherapy has been aban-
doned in favor of more practical cobalt-60 teletherapy; its use in brachytherapy
has been abandoned in favor of iridium-192.

11.5 Beta Plus Decay

11.5.1 General Aspects of the Beta Plus Decay

The beta plus (β+) decay is characterized by the production of positrons that
appear in a spectral distribution with maximum positron energy specific to
the particular β+ decay. As in the β− decay, the daughter recoil kinetic energy
in β+ decay is essentially negligible. Radionuclides undergoing β+ decay are
often called positron emitters and are used in medicine for functional imaging
with a special imaging technique called positron emission tomography (PET).
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The main characteristics of PET imaging are as follows:

• PET provides information on metabolic function of organs or tissues by
detecting how cells process certain compounds such as, for example, glu-
cose. Cancer cells metabolize glucose at a much higher rate than normal
tissues. By detecting increased radiolabelled glucose metabolism with a
high degree of sensitivity, PET identifies cancerous cells, even at an early
stage when other imaging modalities may miss them.

• In a PET study one administers a positron-emitting radionuclide by injec-
tion or inhalation. The radionuclide circulates through the bloodstream to
reach a particular organ. The positrons emitted by the radionuclide have
a very short range in tissue and undergo annihilation with an available
atomic orbital electron (see Sect. 7.6.10). This process generally results in
emission of two γ photons called annihilation quanta, each with energy of
0.511 MeV, moving away from the point of production in nearly opposite
directions.

• The radionuclides used in PET studies are produced by bombardment
of an appropriate stable nuclide with protons from a cyclotron (see
Sect. 12.10) thereby producing positron-emitting radionuclides that
are subsequently attached to clinically useful biological markers. The
most commonly used positron emitting radionuclides are: carbon-11,
nitrogen-13, oxygen-15, fluorine-18 and rubidium-82.

• Fluorine-18 radionuclide attached to the biological marker deoxyglucose
forms the radiopharmaceutical fluorodeoxyglucose (FDG) that is the most
commonly used tracer in studies involving glucose metabolism in cancer
diagnosis.

11.5.2 Decay Energy in Beta Plus Decay

The β+ decay can occur to a proton-rich unstable parent nucleus where the
mass M(Z,A) of the parent nucleus exceeds the mass M(Z − 1, A) of the
daughter nucleus by more than one positron mass me. The decay energy Qβ+

for the β+ decay process is given as

Qβ+ = {M(Z,A) − [M (Z − 1, A) +me]} c2 (11.38)

in terms of nuclear masses M .
Adding and subtracting Zmec

2 to the right-hand side of (11.38) and
neglecting the electron binding energies to the nucleus we obtain

Qβ+ = {M(Z,A) + Zme − [M(Z − 1, A) +me + Zme]} c2

= {M(Z,A) − [M(Z − 1, A) + 2me]} c2, (11.39)

where M(Z,A) and M(Z − 1, A) represent the atomic masses of the parent
and the daughter, respectively.
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We note that the relationship between atomic and nuclear masses of parent
and daughter, ignoring the binding energies of orbital electrons, are

M(Z,A) = M(Z,A) + Zme (11.40)

and
M(Z − 1, A) = M(Z − 1, A) + (Z − 1)me. (11.41)

For β+ decay to occur the atomic mass of the parent M(Z,A) must exceed
the atomic mass of the daughter M(Z − 1, A) by more than two electron rest
masses, or in rest energies

M(Z,A)c2 >M(Z − 1, A)c2 + 2mec
2, (11.42)

where mec
2 is the electron rest energy of 0.5110 MeV.

11.5.3 Beta Plus Decay of Nitrogen-13 into Carbon-13

An example for a simple β+ decay is the decay of nitrogen-13 into carbon-13
with a half-life of 10 min. Nitrogen-13 is a proton-rich radionuclide produced
in a cyclotron. The decay scheme is shown in Fig 11.5 and the basic equation
for the decay is as follows

13
7N → 13

6C + e+ + νe +Qβ+(1.2 MeV). (11.43)

The decay energy Qβ+ for the β+ decay of nitrogen-13 into carbon-13 is
calculated using (11.39) as follows, with the atomic masses for the two nuclides
listed in Appendix A

Fig. 11.5. Decay scheme for β+ decay of nitrogen-13 into carbon-13. The relative
mass-energy levels of the ground states of the two nuclides are calculated from atomic
masses listed in Appendix A
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Qβ+ =
{M(137N) − [M(136C) + 2me

]}
c2

= (13.005739 u − 13.003355 u)c2 − 2mec
2 (11.44)

= 0.002384 u × 931.494 MeV/u − 2 × 0.5110 MeV
= 2.221 MeV − 1.022 MeV = 1.2 MeV.

The energy difference between the ground state of nitrogen-13 and
carbon-13 is 2.22 MeV; however, only 2.22 MeV − 2mec

2 = 1.2 MeV is avail-
able for the maximum energy of the positron. The same result of Qβ+ =
1.2 MeV is obtained if (11.38) is used with appropriate nuclear masses from
Appendix A.

Ammonia is the substance that can be labeled with the nitrogen-13
radionuclide for use in functional imaging with positron emission tomography
(PET) scanning. The nitrogen-13 labeled ammonia is injected intravenously
and is mainly used in cardiac imaging for diagnosis of coronary artery dis-
ease and myocardial infarction. It is also occasionally used for liver and brain
imaging.

11.5.4 Beta Plus Decay of Fluorine-18 into Oxygen-18

The β+ decay of fluorine-18 into oxygen-18 with a half-life of 110 min
is an important practical example of the β+ decay. Fluorodeoxyglucose
(FDG) labeled with radionuclide fluorine-18 is a sugar compound that can be
injected intravenously into a patient for use in positron emission tomography
(PET) functional imaging. Based on demonstrated areas of increased glucose
metabolism the FDG PET scan:

1. Can detect malignant disease.
2. Can distinguish benign from malignant disease.
3. Can be used for staging of malignant disease.
4. Can be used for monitoring response to therapy of malignant disease.

The decay energy Qβ+ for the β+ decay of fluorine-18 into oxygen-18 is
calculated with (11.39) as follows

Qβ+ =
{M(189F) − [M(188O) + 2me

]}
c2

= (18.000938 u − 17.999160 u) c2 − 2mec
2 (11.45)

= 0.001778 u × 931.494 MeV/u − 2 × 0.511 MeV
= 1.656 MeV − 1.022 MeV = 0.634 MeV.

The energy difference between the ground states of fluorine-18 and
oxygen-18 is 1.66 MeV; however, only 1.66 MeV − 2mec

2 = 0.638 MeV is
available for the maximum energy of the positron, as shown schematically in
Fig. 11.6 and in (11.46)

18
9F → 18

8O + e+ + νe +Qβ+(0.638 MeV). (11.46)
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Fig. 11.6. Decay scheme for β+ decay of fluorine-18 into oxygen-19. The relative
mass- energy levels for the ground states of the two nuclides are calculated from
atomic masses listed in Appendix A

11.6 Electron Capture

11.6.1 Decay Energy in Electron Capture

Electron capture (EC) radioactive decay may occur when an atomic electron
ventures inside the nuclear volume, is captured by a proton, and triggers
a proton to neutron transformation. Of all atomic electrons, the K-shell
electrons have the largest probability for venturing into the nuclear vol-
ume and thus contribute most often to the EC decay process. Typical ratios
EC(K shell)/EC(L shell) are of the order of 10:1.

Electron capture can occur in proton-rich, unstable parent nuclei, when the
mass M(Z,A) of the parent nucleus combined with the mass of one electron
me exceeds the mass of the daughter nucleus M(Z − 1, A). The decay energy
QEC for electron capture is given as

QEC = {[M(Z,A) +me] −M(Z − 1, A)} c2
= {M(Z,A) − [M(Z − 1, A) −me]} c2 (11.47)

in terms of nuclear masses M. Adding and subtracting Zme to the right-hand
side of (11.47) and neglecting the electron binding energies to the nucleus we
obtain the decay energy QEC in terms of atomic masses M

QEC = {M(Z,A) −M(Z − 1, A)} c2. (11.48)

For electron capture to occur, the atomic mass of the parent M(Z,A)
must exceed the atomic mass of the daughter M(Z − 1, A); i.e., M(Z,A) >
M(Z − 1, A). The atomic rest energy difference between the parent and the
daughter gives the energy released to the neutrino and the daughter atom in
an EC radioactive decay event.
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Electron capture is a competing process to β+ decay; however, the con-
ditions on electron capture as far as relative atomic masses of parent and
daughter are concerned are less restrictive than those imposed on β+ decay
that results in positron emission and subsequent positron annihilation with
emission of annihilation quanta. The condition on EC decay is that the parent
atomic mass M(P) simply exceeds the daughter atomic mass M(D), while
the condition on β+ decay is that the parent atomic mass exceeds that of the
daughter by a minimum of two electron masses.

• When the condition QEC > 0 is satisfied but Qβ+ of (11.38) is negative,
the β+ decay will not happen because it is energetically forbidden and EC
decay will happen alone.

• When Qβ+ > 0 then QEC is always positive and both decays (β+ and EC)
can happen. The branching ratios λEC/λβ+ vary considerably from one
radionuclide to another, for example, from a low of 0.03 for fluorine-18 to
several hundred for some other proton-rich radionuclides.

• In contrast to β− and β+ decay processes in which three decay products
share the decay energy and produce a continuous spectral distribution, in
the EC decay the two decay products do not have a continuous spectral
distribution; rather they are given discrete (monoenergetic) energies. The
monoenergetic neutrinos produce a line spectrum with energy Ev, while
the daughter has the recoil kinetic energy (EK)D, as discussed below.

11.6.2 Recoil Kinetic Energy of Daughter Nucleus
in Electron Capture Decay

The recoil kinetic kinetic energy (EK)D of the daughter nucleus in electron
capture decay is determined in two steps:

First, we determine the momenta of the daughter pD = M(D)υD and
the neutrino pν = Eν/c. The two momenta are identical in magnitude but
opposite in direction, so we can write

pD = M(D)υD = pv =
Ev

c
, (11.49)

where

Ev is the neutrino energy.
M(D) is the mass of the daughter nucleus.

υD is the velocity of the daughter nucleus.

The recoil kinetic energy of the daughter (classically) is given as follows
after inserting υD from (11.49)

(EK)D =
M(D)υ2

D

2
=

E2
ν

2M(D)c2
. (11.50)
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The energy available for sharing between the daughter nucleus D and neu-
trino ν is equal to the electron capture decay energy QEC decreased by the
binding energy EB of the captured electron

QEC − EB = Eν + (EK)D = Eν +
E2

ν
2M(D)c2

(11.51)

or
E2

ν
2M(D)c2

+ Eν − (QEC − EB) = 0. (11.52)

Equation (11.52) results in the following expression for the energy of the
monoenergetic neutrino emitted in electron capture

Eν =

{
−1 +

√
1 +

2 (QEC − EB)
M(D)c2

}
M(D)c2 ≈ QEC − EB. (11.53)

In the first approximation the recoil kinetic energy (EK)D of the daughter is
neglected and so is the binding energyEB of the captured electron. The energy
of the monoenergetic neutrino in electron capture is then approximated by the
electron capture decay energy, i.e., Eν ≈ QEC.

11.6.3 Electron Capture Decay of Beryllium-7 into Lithium-7

An example for EC decay is given in Fig. 11.7 that shows the decay scheme for
beryllium-7 decaying through EC into lithium-7. Beryllium-7 has too many
protons for nuclear stability, so it achieves better stability by transforming
a proton into a neutron. However, it can do so only through EC and not
through β+ decay, because the atomic rest energy of beryllium-7 exceeds that
of lithium-7 by only 0.86 MeV and not by a minimum of 1.02 MeV required
for β+ decay to be energetically feasible.

Fig. 11.7. Decay scheme for electron capture decay of berillium-7 into lithium-7.
The relative mass-energy levels for the ground states of the two nuclides are
calculated from the respective atomic masses listed in Appendix A
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The decay energy for electron capture decay of beryllium-7 into lithium-7
is calculated using (11.48) with appropriate atomic masses M provided in
Appendix A as follows

QEC =
{M(74Be) −M (

7
3Li
)}
c2

= (7.016929 u − 7.016004 u) c2

= 0.000925 u × 931.494 MeV/u = 0.862 MeV. (11.54)

Same result is obtained if we use (11.47) with appropriate nuclear masses
given in Appendix A.

11.6.4 Decay of Iridium-192

Iridium-192 serves as an important radioactive source for use in brachytherapy
with remote afterloading techniques. It decays with a half-life of 73.83 days
into stable platinum-192 by β− decay and into stable osmium-192 by electron
capture decay. The source is produced through a neutron activation process
on iridium-191 in a nuclear reactor (see Sect. 12.6.6). The natural abundance
of stable iridium-191 is 37.3 % in a mixture with 62.7 % of stable iridium-193.
The cross section σ for thermal neutron capture in Ir-192 is 954 b.

As shown in Fig. 11.8, iridium-192 has a very complicated γ-ray spectrum
with 14 γ energies ranging from 0.2 MeV to ∼0.9 MeV and providing effec-
tive photon energy of 0.38 MeV. Because of the relatively short half-life, the
iridium-192 source requires a source change in remote afterloading machines
every 3–4 months.

Fig. 11.8. Decay scheme for decay of iridium-192 into platinum-192 through β−

decay and into osminum-192 through electron capture decay. The relative mass-
energy levels for the ground states of the three nuclides are calculated from the
respective atomic masses given in Appendix A
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With M representing atomic masses, the β− decay energyQβ− for iridium-
192 decaying into platinum-192 is given as follows [see (11.26)]

Qβ− =
{M(19277Ir) −M(19278Pt)

}
c2

= (191.962602 u − 191.961035 u) c2

= 0.001567 u × 931.494 MeV/u = 1.453 MeV (11.55)

The electron capture decay energy QEC for iridium-192 decaying into
osmium-192 is [see (11.48)]

QEC =
{M(19277Ir) −M(19276Os)

}
c2

= (191.962602 u − 191.961479 u) c2

= 0.001123 u × 931.5 MeV/u = 1.043 MeV. (11.56)

Same results can be obtained for decay energies Qβ− = 1.453 MeV and
QEC = 1.043 MeV of the iridium-192 decay when appropriate nuclear masses
are used in conjunction with (11.25) and (11.47), respectively.

11.7 Gamma Decay

11.7.1 General Aspects of Gamma Decay

The α decay as well as the three β decay modes may produce a daughter
nucleus in an excited state without expending the full amount of the decay
energy available. The daughter nucleus will reach its ground state (i.e., it will
de-excite) through one of the following two processes:

1. Emit the excitation energy in the form of a γ photon in a decay process
referred to as gamma (γ) decay.

2. Transfer the excitation energy to one of its associated atomic orbital
electrons in a process called internal conversion (IC).

In most radioactive α or β decays the daughter nucleus de-excitation occurs
instantaneously (i.e., within 10−12 s), so that we refer to the emitted γ rays as
if they were produced by the parent nucleus. For example, for the cobalt-60
β− decay into nickel-60, the γ rays following the β− decay actually originate
from nuclear de-excitations of nickel-60 (see Fig. 11.3), yet, for convenience,
we refer to these γ rays as the cobalt-60 γ rays. Similarly, we refer to γ
photons following the β− decay of cesium-137 into barium-137m as cesium-
137 γ rays even though the γ photons actually originate from a transition in
the barium-137 nucleus (see Fig. 11.4).

In certain α or β decays, the excited daughter nucleus does not immedi-
ately decay to its ground state; rather, it de-excites with a time delay of the
order of several minutes or several hours:
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• The excited state of the daughter is then referred to as a metastable
state and the process of de-excitation is called an isomeric transition.The
metastable states are characterized by their own half-lives t1/2 and mean
(average) lives τ .

• The nucleus in a metastable state is identified with a letter “m” next to
the atomic mass number designation (e.g., barium-137m or 137m

56Ba with a
half-life of 2.552 min; technetium-99m or 99m

43Tc with a half-life of 6.01 h).
• The term isomer is used for designation of nuclei that have the same

atomic number Z and same atomic mass number A but differ in energy
states.

In addition to α and β decay there are many other modes for producing nuclei
in excited states that subsequently undergo γ decay. For example, excited
states with energies up to 8 MeV may be produced with neutron capture
(n, γ) reactions as well as with other nuclear reactions, such as (p, γ) and
(α, γ), etc. Examples of γ rays following α and β decays are given in Fig. 11.1
for α decay and Figs. 11.3 and 11.4 for β− decay.

11.7.2 Emission of Gamma Rays in Gamma Decay

In general sense, γ decay stands for nuclear de-excitation either by emission of
a γ-ray photon or by internal conversion. In a more narrow sense, γ decay only
implies emission of γ photons. The energy of γ rays emitted by a particular
radionuclide is determined by the energy level structure of the radinuclides
and can range from a relatively low value of 100 keV up to about 3 MeV.

The γ decay process may be represented as follows

A
Z X∗ → A

Z X + γ +Qγ , (11.57)

where A
Z X∗ stands for an excited state of the nucleus A

Z X and Qγ is the
γ-decay energy.

11.7.3 Gamma Decay Energy

The decay energy Qγ in γ emission is the sum of the γ-photon energy Eγ and
the recoil kinetic energy of the daughter (EK)D or

Qγ = Eγ + (EK)D . (11.58)

Since the magnitudes of the momenta of the daughter recoil nucleus pD =
M(D)υD and the γ photon pγ = Eγ/c are equal, i.e., pD = pγ , we can
determine the partition of energy between Eγ = pγc = M(D)υDc and
(EK)D = 1

2M(D)υ2
D as

(EK)D =
M(D)υ2

D

2
=

E2
γ

2M(D)c2
, (11.59)



502 11 Modes of Radioactive Decay

where M(D) and υD are the rest mass and recoil velocity, respectively, of the
daughter nucleus.

The γ-decay energy Qγ may now be written as

Qγ = Eγ + (EK)D = Eγ

{
1 +

Eγ

2M(D)c2

}
. (11.60)

Equation (11.60) shows that the recoil kinetic energy of the daughter (EK)D
represents less than 0.1 % of the γ-photon energy Eγ . The recoil energy of
the daughter nucleus is thus negligible for most practical purposes. The label
for daughter in γ decay is used in parallel with the same label used in other
nuclear decays that are clearly defined with parent decaying into daughter. In
γ decay the parent and daughter represent the same nucleus, except that the
parent nucleus is in an excited state and the daughter nucleus is in a lower
excited state or the ground state.

11.7.4 Resonance Absorption and Mössbauer Effect

The question of resonance absorption is of importance and deserves a brief
discussion. The resonance absorption is a phenomenon in which a photon
produced by a nuclear or atomic transition is re-absorbed by the same type of
nucleus or atom, respectively. Since the photon shares the de-excitation energy
with the atom or nucleus (recoil energy), it is quite possible that its energy will
not suffice to allow triggering the reverse interaction and undergoing resonance
absorption. However, if the recoil energy of the daughter atom or nucleus is not
excessive, the resonance absorption is possible because of the natural width
of the photon energy distribution and the finite lifetime of atomic and nuclear
states, where the width and lifetime are governed by the uncertainty principle
(see Sect. 1.24).

The photons’ emission and absorption spectra differ because of the atomic
or nuclear recoil energy that makes the emission energy slightly smaller than
ΔE, the energy difference between the two states. However, if there is a
region of overlap between the emission and absorption spectrum, resonance
absorption is possible.

For atomic transitions that are of the order of eV to keV the resonance
absorption is not hindered. On the other hand, for nuclear transitions that
are of the order of 10 MeV, there is no overlap between the emission and
the absorption photon spectrum and resonance absorption is not possible.
However, there is a way around this problem. In 1957 Rudolph Mössbauer
discovered that nuclear transitions occur with negligible nuclear recoil, if the
decaying nucleus is embedded into a crystalline lattice. Here, the crystal as a
whole rather than only the daughter nucleus absorbs the recoil momentum.
This effect, called Mössbauer effect, minimizes the recoil energy and makes
nuclear resonance absorption possible.
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11.8 Internal Conversion

11.8.1 General Aspects of Internal Conversion

Nuclear de-excitation in which the de-ecitation energy is transferred from the
parent nucleus almost in full to an orbital electron of the same atom is called
internal conversion (IC). The process is represented as follows

A
Z X∗ → A

Z X+ + e− +QIC → A
Z X, (11.61)

where
A
Z X∗ is the excited state of the nucleus most likely attained as a result of α

or β decay.
A
Z X+ is the singly ionized state of atom A

Z X following internal conversion
decay.

QIC is the decay energy for internal conversion.

A small portion of the nuclear de-excitation energy Qγ is required to overcome
the binding energy EB of the electron in its atomic shell, the remaining part of
the decay energy Qγ is shared between the conversion electron and the recoil
daughter nucleus

QIC = Qγ − EB = (EK)IC + (EK)D, (11.62)

where

Qγ is the energy difference between two excited nuclear states, equal to
the energy of a γ photon in γ decay.

(EK)IC is the kinetic energy of the internal conversion electron ejected from
the atom.

(EK)D is the recoil kinetic energy of the daughter nucleus with nuclear mass
M(D).

The recoil kinetic energy (EK)D of the daughter is much smaller than the
kinetic energy (EK)IC of the conversion electron and is usually neglected.
It can be calculated with exactly the same approach that was taken for the
β+ decay to get

(EK)D =
mec

2

M(D)c2
(EK)IC +

(EK)2IC
2M(D)c2

(11.63)

and

QIC = Qγ − EB = (EK)IC

{
1 +

mec
2

M(D)c2
+

(EK)IC
2M(D)c2

}
, (11.64)

where M(D) stands for the rest mass of the daughter nucleus.
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11.8.2 Internal Conversion Factor

In any nuclear de-excitation both the γ-ray emission and the internal conver-
sion electron emission are possible. The two nuclear processes are competing
with one another and are governed essentially by the same selection rules.
In contrast to the fluorescence yield ω (see Sect. 4.1.2) that is defined as the
number of characteristic photons emitted per vacancy in a given atomic shell,
the total internal conversion factor αIC is defined as

αIC =
conversion probability
γ-emission probability

=
NIC

Nγ
, (11.65)

where

NIC is the number of conversion electrons ejected from all shells per unit
time.

Nγ is the number of γ photons emitted per unit time.

In addition to the total internal conversion factor αIC one can define partial
internal conversion factors according to the shell from which the electron was
ejected

NIC

Nγ
=
NIC(K) +NIC(L) +NIC(M) + · · ·

Nγ

= αIC(K) + αIC(L) + αIC(M) + · · · , (11.66)

where αIC (i) represents the partial internal conversion factors. Further dis-
tinction is possible when one accounts for subshell electrons.

The total internal conversion factors αIC are defined with respect to Nγ

so that αIC can assume values greater or smaller than 1, in contrast to fluo-
rescence yield ω that is always between 0 and 1. Since the K-shell electrons
of all atomic electrons are the closest to the nucleus, most often the conver-
sion electrons originate from the K atomic shell. The vacancy in the K shell,
of course, is filled by a higher shell electron and the associated emission of
characteristic photon or Auger electron, as discussed in Sect. 4.1.

An example for both the emission of γ photons and emission of conversion
electrons is given in Fig. 11.4 with the β− decay scheme for cesium-137 decay-
ing into barium-137. Two channels are available for β− decay of cesium-137:

1. 94.6 % of disintegrations land in a barium-137 isomeric state (barium-137m)
that has a half-life of 2.552 min and de-excitation energy of 662 keV.

2. 5.4 % of disintegrations land directly in the barium-137 ground state.

The de-excitation energy of 0.662 MeV is emitted either in the form of a
662 keV γ photon or a conversion electron of kinetic energy ∼662 keV.

As shown in Fig. 11.4, for 100 disintegrations of cesium-137, 94.6 transi-
tions land in barium-137m; of these 85 result in γ photons; 7.8 in K conversion
electrons and 1.8 in higher shell conversion electrons. The internal conversion
factor αIC is (7.8 + 1.8)/85 = 0.113.
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11.9 Spontaneous Fission

In addition to disintegrating through α and β decay processes, nuclei with very
large atomic mass numbers Amay also disintegrate by splitting into two nearly
equal fission fragments and concurrently emit 2 to 4 neutrons. This decay
process is called spontaneous fission (SF) and is accompanied by liberation of
a significant amount of energy. It was discovered in 1940 by Russian physicists
Georgij N. Flerov and Konstantin A. Petržak who noticed that uranium-238,
in addition to α decay, may undergo the process of spontaneous fission.

Spontaneous fission follows the same process as neutron-induced nuclear
fission, (See Sect. 12.8) except that it is not self-sustaining, since it does not
generate the neutron fluence rate required to sustain a “chain reaction.” In
practice, SF is only energetically feasible for nuclides with atomic masses
above 230 u or with Z2/A ≥ 35 where Z is the atomic number and A
the atomic mass number of the radionuclide. SF can thus occur in thorium,
protactinium, uranium and transuranic elements.

Transuranic (or transuranium) elements are elements with atomic numbers
Z greater than that of uranium (Z = 92). All transuranic elements have more
protons than uranium and are radioactive, decaying through β decay, α decay,
or spontaneous fission. Generally, the transuranic elements are man-made and
synthesized in nuclear reactions in a process referred to as nucleosynthesis.
The nucleosynthesis reactions are generally produced in particle accelerators
or nuclear reactors; however, neptunium (Z = 93) and plutonium (Z =94)
are also produced naturally in minute quantities, following the spontaneous
fission decay of uranium-238.

The spontaneous fission neutrons emitted by U-238 can be captured by
other U-238 nuclei thereby producing U-239 which is unstable and decays
through β− decay with a half-life of 23.5 min into neptunium-239 which in
turn decays through β− decay with a half-life 2.35 days into plutonium-239,
or

238
92U + n Neutron capture−−−−−−−−−−−−−−→ 239

92U
β−
−→ 239

93Np + e− + νe (11.67)

239
93Np

β−
−→ 239

94Pu + e− + νe.

Spontaneous fission is a competing process to α decay; the higher is A above
uranium-238, the more prominent is the spontaneous fission in comparison
with the α decay and the shorter is the half-life for spontaneous fission. For
the heaviest nuclei, SF becomes the predominant mode of radioactive decay
suggesting that SF is a limiting factor in how high in atomic number Z and
atomic mass number A one can go in producing new elements.

• In uranium-238 the half-life for SF is ∼1016 a (years), while the half-life
for α decay is 4.5×109 a. The probability for SF in uranium-238 is thus
about 2×106 times lower than the probability for α decay.

• Fermium-256 has a half-life for SF of about 3 h making the SF in fermium-
256 about 10 times more probable than α decay.
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• Another interesting example is californium-256 which decays essentially
100 % of the time with SF and has a half-life of 12.3 min.

• For practical purposes, the most important radionuclide undergoing the
SF decay is the transuranic californium-252 (Cf-252), used in industry
and medicine as a very efficient source of fast neutrons (see Sect. 9.6.4).
Californium-252 decays through α decay into curium-248 with a half-life
of 2.65 a; however, about 3 % of Cf-252 decays occur through SF producing
on the average 3.8 neutrons per fission decay. The neutron production rate
of Cf-252 is thus equal to 2.34×106 (μg · s)−1.

11.10 Proton Emission Decay

Proton-rich nuclides normally approach stability through β+ decay or α decay.
However, in the extreme case of a very large proton excess a nucleus may also
move toward stability through emission of one or even two protons. Proton
emission is thus a competing process to β+ and α decay and is, similarly to α
decay, an example of particle tunneling through the nuclear barrier potential.

Proton emission decay is much less common than are β+ and α decay and
is not observed in naturally occurring radionuclides. In this type of decay the
atomic number Z decreases by 1 and so does the atomic mass number A

A
Z P → A−1

Z−1 D + p. (11.68)

• When a proton is ejected from a radionuclide P, the parent nucleus P sheds
an orbital electron from its outermost shell to become a neutral daughter
atom A−1

Z−1 D.
• The energetic proton slows down in moving through the absorber medium

and captures an electron from its surroundings to become a neutral
hydrogen atom 1

1H.
• Since N , the number of neutrons does not change in proton emission decay,

the parent P and daughter D are isotones.
• For lighter, very proton-rich nuclides with an odd number of protons Z,

proton emission decay is likely.
• For lighter, very proton-rich nuclides (A ≈ 50) with an even number of

protons Z, a simultaneous two-proton emission may occur in situations
where a sequential emission of two independent protons is energetically
not possible (see example in Sect. 11.10.3).

11.10.1 Decay Energy in Proton Emission Decay

The decay energy Qp released in proton emission decay appears as kinetic
energy shared between the emitted proton and the daughter nucleus and is
expressed as follows:

Qp = {M(P) − [M(D) + M(H)]} c2 = {M(P) − [M(D) +mp]} c2, (11.69)
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where M(P), M(D), and M(11H) are the atomic rest masses of the parent,
daughter and hydrogen atom, respectively, and M(P), M(D) and mp are
nuclear rest masses of the parent, daughter and hydrogen nucleus (proton),
respectively.

The total number of protons as well as the total number of neutrons does
not change in the proton emission decay. Therefore, Qp may also be expressed
in terms of binding energies of the parent and daughter nucleus as follows:

Qp = EB(D) − EB(P), (11.70)

where

EB(D) is the total binding energy of the daughter D nucleus.
EB(P) is the total binding energy of the parent P nucleus.

The nuclear binding energy is defined in (1.25). For proton emission decay to
be feasible, Qp must be positive and this implies that the total binding energy
of the daughter nucleus EB(D) must exceed the total binding energy of the
parent nucleus EB(P); that is, EB(D) > EB(P), or else that the rest mass
of the parent nucleus must exceed the combined rest masses of the daughter
nucleus and the proton, that is, M(P) > M(D) +mp.

Two products are released in proton emission decay: a proton and the
daughter product. For a decay of the parent nucleus at rest this implies that
the proton and the daughter will acquire momenta p equal in magnitude but
opposite in direction. The kinetic energy of the proton is (EK)P = p2/2mp

and of the daughter nucleus it is (EK)D = p2/2M(D).
The total decay energy Qp must be positive for the proton emission decay

and can be written as the sum of the kinetic energies of the two decay products:

Qp = (EK)p + (EK)D =
p2

2mp
+

p2

2M(D)

=
p2

2mp

{
1 +

mp

M(D)

}
= (EK)p

{
1 +

mp

M(D)

}
. (11.71)

From (11.71) we determine the emitted proton kinetic energy (EK)p as

(EK)p = Qp
1

1 +
mp

M(D)

. (11.72)

The kinetic energy of the recoil daughter (EK)D, on the other hand, is given
as follows

(EK)D = Qp − (EK)p = Qp
1

1 +
M(D)
mp

. (11.73)

The decay energyQ2p released in two-proton emission decay appears as kinetic
energy shared among the three emitted particles (two protons and the daugh-
ter nucleus) and may be calculated simply from the difference in binding
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energies EB between the daughter D and the parent P nucleus

Q2p = EB(D) − EB(P) (11.74)

or from the following expression

Q2p =
{M(P) − [M(D) + 2M(11H)

]}
c2 = {M(P) − [M(D) + 2mp]} c2,

(11.75)
where M stands for the atomic rest masses, M for nuclear rest masses and
mp for the proton rest mass.

11.10.2 Example of Proton Emission Decay

An example of proton emission decay is the decay of lithium-5 into helium-4
with a half-life of 10−21 s. The decay is schematically written as follows

5
3Li → 4

2He + p (11.76)

and the decay energy may be calculated from (11.69) or (11.70). The required
atomic and nuclear data are given in Appendix A as follows

M(53Li)c2 = 5.012541 u × 931.5 MeV/u = 4669.15 MeV (11.77)

M(42He)c2 = 4.002603 u × 931.494 MeV/u = 3728.4 MeV (11.78)

M(11H)c2 = 1.007825 u × 931.494 MeV/u = 938.78 MeV (11.79)

EB(53Li) = 26.32865 MeV (11.80)

EB(42He) = 28.29569 MeV (11.81)

We first notice that M(53Li) > M(42He) + M(21H) and that EB(42He) >
EB(53Li). This leads to the conclusion that the proton emission decay is possi-
ble. Next we use (11.69) and (11.70) to calculate the decay energy Qp and get
1.97 MeV from both equations. Equations (11.72) and (11.73) give 1.57 MeV
and 0.40 MeV for kinetic energies of the ejected proton (EK)p and the recoil
helium-4 atom (EK)4

2He, respectively, for a combined total energy of 1.97 MeV,
as given by the calculated Qp value.

11.10.3 Example of Two-Proton Emission Decay

An example of two-proton emission decay is the decay of iron-45 (a highly
proton rich radionuclide with Z = 26 and N = 19) which decays with a
simultaneous emission of two protons at a half-life of 0.35 μs into chromium-43
(a proton-rich radionuclide with Z = 24 and N = 19). The decay is sche-
matically written as follows:

45
26Fe → 43

24Cr + 2p, (11.82)

and the decay energy Q2p may be calculated from (11.74) or (11.75).
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At first glance one could expect the iron-45 radionuclide to decay by a
single proton emission into manganese-44; however, a closer inspection shows
that the one-proton decay would produce negative decay energy Qp from
(11.69) and (11.70) and thus is not energetically feasible.

The atomic and nuclear data for radionuclides 45
26Fe, 44

25Mn, and 43
24Cr are

given as follows:

M(4526 Fe)c2 = 45.014564 u × 931.5 MeV/u = 41930.79 MeV (11.83)

M(4425Mn)c2 = 44.006870 u × 931.5 MeV/u = 40992.14 MeV (11.84)

M(4324Cr)c2 = 42.997711 u × 931.5 MeV/u = 40052.11 MeV (11.85)

M(11H)c2 = 1.007825 u × 931.494 MeV/u = 938.78 MeV (11.86)

EB(4526Fe) = 329.306 MeV (11.87)

EB(4425Mn) = 329.180 MeV (11.88)

EB(4324Cr) = 330.424 MeV (11.89)

Inspection of (11.70) shows that one-proton emission decay of 45
26Fe into

44
25Mn is not possible, since it results in a negative Qp. On the other hand,
(11.74) results in positive decay energy Q2p for a two-proton decay of
45
26Fe into its isotone 43

24Cr. The decay energy Q2p calculated from (11.74)
and (11.75) then amounts to 1.12 MeV for the two-proton decay of 45

26Fe
into 43

24Cr.

11.11 Neutron Emission Decay

Neutron emission from a neutron-rich nucleus is a competing process to β−

decay but is much less common then the β− decay and is not observed in nat-
urally occurring radionuclides. In contrast to spontaneous fission which also
produces neutrons, in neutron emission decay the atomic number Z remains
the same but the atomic mass number A decreases by 1. Both the parent
nucleus P and the daughter nucleus D are thus isotopes of the same nuclear
species. The neutron emission decay relationship is written as follows:

A
Z X → A−1

Z X + n. (11.90)

11.11.1 Decay Energy in Neutron Emission Decay

The decay energy Qn released in neutron emission decay appears as kinetic
energy shared between the emitted neutron and the daughter nucleus and is
expressed as follows

Qn = {M(P) − [M(D) +mn]} c2 = {M(P) − [M(D) +mn]} c2, (11.91)
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where M(P) and M(D) are atomic masses of the parent and daughter atom,
respectively; M(P) and M(D) are the nuclear masses of the parent and
daughter, and mn is the neutron rest mass.

The total number of protons Z as well as the total number of neutrons
N does not change in the neutron emission decay. Therefore, Qn may also be
expressed in terms of binding energies of the parent and daughter nucleus as
follows

Qn = EB (D) − EB (P) , (11.92)

where

EB(D) is the total binding energy of the daughter D nucleus.
EB(P) is the total binding energy of the parent P nucleus.

For the neutron emission decay to be feasible, Qn must be positive and this
implies that the total binding energy of the daughter nucleus EB(D) must
exceed the total binding energy of the parent nucleus EB(P); that is, EB(D) >
EB(P), or else that the rest mass of the parent nucleus M(P) must exceed
the combined rest masses of the daughter nucleus and the neutron; that is,
M(P) > M(D) +mn.

Two products are released in neutron emission decay: a neutron and the
daughter product. For a decay of the parent nucleus at rest this implies that
the neutron and the daughter will acquire momenta p equal in magnitude but
opposite in direction. The kinetic energy of the neutron is (EK)n = p2/2mn

and of the daughter nucleus the kinetic energy is (EK)D = p2/ [2M(D)].
For the neutron emission decay to be possible the total decay energy Qn

must be positive and is expressed as follows

Qn = (EK)n + (EK)D =
p2

2mn
+

p2

2M(D)

=
p2

2mn

{
1 +

mn

M(D)

}
= (EK)n

{
1 +

mn

M(D)

}
. (11.93)

From (11.93) we determine the emitted neutron kinetic energy (EK)n as

(EK)n = Qn
1

1 +
mn

M(D)

. (11.94)

The kinetic energy of the recoil daughter (EK)D, on the other hand, is given
as follows

(EK)D = Qn − (EK)n = Qn
1

1 +
M(D)
mn

. (11.95)
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11.11.2 Example of Neutron Emission Decay

An example of neutron emission decay is the decay of helium-5 into helium-4
with a half-life of 8×10−22 s. The decay is schematically written as follows:

5
2He → 4

2He + n, (11.96)

and the decay energy may be calculated from (11.91) or (11.92). The required
atomic and nuclear data obtained in Appendix A are as follows:

M(52He)c2 = 5.012221 u × 931.494 MeV/u = 4668.85 MeV (11.97)

M(42He)c2 = 4.002603 u × 931.494 MeV/u = 3728.4 MeV (11.98)

mnc
2 = 1.008665 u × 931.5 MeV/u = 939.56 MeV (11.99)

EB(52He) = 27.40906 MeV (11.100)

EB(42He) = 28.29567 MeV (11.101)

We first notice that M(P) >M(D)+mn and EB

(
4
2He
)
> EB

(
5
2He
)

and con-
clude that neutron emission decay is possible. Next we use (11.91) and (11.92)
to calculate the decay energyQn and get 0.89 MeV from both equations. Equa-
tions (11.94) and (11.95) give 0.71 MeV and 0.18 MeV for the kinetic energies
of the ejected neutron (EK)n and recoil helium-4 atom (EK)4

2He, respectively,
for a combined total of 0.89 MeV, in agreement with the Qn value calculated
from (11.91) and (11.92).

11.12 Chart of the Nuclides (Segrè Chart)

All known nuclides are uniquely characterized by their number of protons Z
(atomic number) and their number of neutrons N = A − Z where A is the
number of nucleons (atomic mass number). The most pertinent information
on the 280 known stable nuclides and over 3000 known radioactive nuclides
(radionuclides) is commonly summarized in a Chart of the Nuclides in such a
way that it is relatively easy to follow the atomic transitions resulting from the
various radioactive decay modes used by radionuclides to attain more stable
configurations. Usually the ordinate (y) axis of the chart represents Z and the
abscissa (x) axis represents N in a two-dimensional Cartesian plot with each
nuclide represented by a unique square (pixel) that is placed onto the chart
according to the N and Z value of the nuclide.

The chart of the nuclides is also referred to as the Segrè chart in honor
of Emilio Segrè who was the first to suggest the particular arrangement in
the 1940s. Similarly to the Periodic Table of Elements (see Sect. 3.2.3) that
Mendeleyev introduced in 1869 to represent conveniently the periodicity in
chemical behavior of elements with increasing atomic number Z, Segrè chart
of the nuclides presents an orderly formulation of all nuclear species (sta-
ble and radioactive) against both Z and N and, in addition, provides useful
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basic nuclear data for the nuclides and indicates the possible decay paths for
radionuclides.

In addition to the number of protons Z and number of neutrons N for a
given nuclide, the Segrè Chart usually provides the following nuclear data:

• For stable nuclides the atomic mass number A; the nuclear mass in uni-
fied atomic mass units u; the natural abundance; and, for example, cross
sections for activation interactions.

• For radionuclides the atomic mass number A, nuclear mass in unified
atomic mass units u, abundance, radioactive half-life, and mode of decay.

Nuclear charts are readily available in the literature and on the internet
as a result of efforts by many authors, institutions, publishers, commer-
cial vendors, and standards laboratories. A typical example of the chart of
nuclides is shown in Fig. 11.9 displaying a condensed version of the “Karlsruher
Nuklidkarte” (Karlsruhe Chart of Nuclides) issued by the Joint Research Cen-
ter of the European Commission in Karlsruhe, Germany. The 7th edition of
the chart, issued in 2007, contains data on 280 stable nuclides, 2962 radionu-
clides in the ground state, 692 isomeric radionuclides, and 8 radioactive decay
modes. These numbers represent a significant increase over the nuclides that
were listed in the first edition of the Karlsruhe chart which was issued in 1958
and presented data on 267 stable nuclides, 1030 radionuclides, and 4 radioac-
tive modes. Of course, to get access to the data, smaller sections of the chart
must be viewed and used; Fig. 11.9 simply presents a condensed version of the
whole chart and allows identification of general features.

The chart in Fig. 11.9 covers all currently known stable and radioactive
nuclides ranging in number of protons Z from 1 to 118 and in number of neu-
trons N from 0 to 292. All pixels occupied by a nuclide form a “nuclide
landscape” in the form of an elongated island oriented from South-West
toward North-East: neutron-rich nuclides occupy the south shore; proton-rich
nuclides occupy the north shore; and very heavy nuclides that are prone to
spontaneous fission occupy the north-east tip of the island.

The magic numbers (see Sect. 1.16.2) for protons and neutrons are also
identified on the chart; the stable nuclides are shown with black squares, the
radionuclides with various colors depending on their decay mode. The color
code used is shown in the left side-bar of the figure. The stable nuclides form
the backbone of the island and follow a “curve of stability” which is defined by
an optimum number of protons and neutrons. Nuclides with a magic number
of protons Z or a magic number of neutrons N tend to exhibit maximum
stability.

The following special features of the Segrè chart are noted for pixels
representing a given element:

1. Horizontal rows give the list of known isotopes (Z = const).
2. Vertical columns give the list of isotones (N = const).
3. Diagonal lines (in direction roughly perpendicular to the “curve of

stability”) give the list of isobars for which A = Z +N = const
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Fig. 11.9. Chart of the Nuclides also known as the Segrè Chart. Each known stable
and radioactive nuclide is characterized by its unique combination of the number of
protons Z and number of neutrons N , and assigned a pixel in a 2-dimensional chart
displaying Z on the ordinate axis and N on the abscissa axis. The stable nuclides
are shown by dark pixel squares, radioactive nuclides by colored pixel squares. The
plot of stable nuclides forms a “curve of stability,” neutron-rich radionuclides are
below the curve of stability and proton-rich radionuclides are above the curve of
stability. The magic numbers for neutrons and protons are also indicated. Radionu-
clides are shown with colored pixels, each color representing the decay mode used
by the particular radionuclide to attain a more stable configuration. The color code
is displayed on the left side-bar to the chart.
c©European Communities, 2009. Courtesy of Dr. Joseph Magill: Joint Research
Centre of the European Commission, Karlsruhe, Germany. The “Karlsruher
Nuklidkarte” is available on-line at: www.nucleonica.net

The following features of nuclear stability are noted:

• Stable nuclides contain a balanced configuration of protons and neutrons
because of a preference for pairing of nucleons which for the 280 known
stable nuclides results in the following distributions of proton numbers Z
and neutron numbers N :

– 166 stable nuclides have even Z and even N .
– 57 stable nuclides have even Z and odd N .
– 53 stable nuclides have odd Z and even N .
– Only 4 stable nuclides have odd Z and odd N .
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• The stable nuclides follow a curve of stability on the Segrè chart. The curve
of stability follows Z ≈ N for low Z nuclides and then slowly transforms
into N ≈ 1.5Z with increasing Z.

• Elements with atomic number Z equal to or below Z = 83 (bismuth)
have at least one stable isotope, with two notable exceptions: technetium
(Z = 41) and promethium (Z = 61).

• Elements with 84 ≤ Z ≤ 92 are unstable and present in nature either
because they have a very long half-life or they are decay products of long-
lived thorium or uranium series.

• A few low atomic number radionuclides with relatively short half-lives such
as carbon-14 are produced by cosmic rays and their supply is continuously
replenished.

• Below the curve of stability are neutron-rich radionuclides. Most of
neutron-rich radionuclides undergo a nuclear transmutation by β− decay
but a few do so by direct neutron emission in situations where the
neutron-proton inbalance is very large.

• Above the curve of stability are proton-rich radionuclides. Most of proton-
rich radionuclides undergo a nuclear transmutation by β+ decay or electron
capture but a few do so by direct emission of one proton or even two
protons in situations where the proton-neutron inbalance is very large.

• All nuclides with Z > 82 undergo α decay or spontaneous fission and some
may also undergo β decay. α decay is also possible for Z > 82.

• Nuclides with atomic number Z exceeding 92 are called transuranic
nuclides and are artificially produced either in a nuclear reactor or with a
particle accelerator.

A small part of a simplified complete Segrè Chart is shown in Fig. 11.10 for
proton numbers from Z = 1 to Z = 12, neutron numbers from N = 0 to
N = 18, and atomic mass numbers from A = 1 to A = 30 (from hydrogen to
magnesium). The stable nuclides are identified with black pixels (squares)
indicating the curve of stability that is given by Z ≈ N for low atomic
number elements; neutron-rich radionuclides and proton-rich radionuclides are
shown in colored squares below and above the region of stability, respectively.
A typical Segrè chart provides the relative abundance of stable nuclides as well
as half-life and decay modes of radionuclides. Often cross sections for thermal
neutron activation are also provided. In Fig. 11.10 these data are omitted and
only the nuclide symbol and number of nucleons A are shown.

The red squares above the region of the proton-rich radionuclides present
the first 12 elements of the Periodic Table of Elements along with their mean
atomic mass M in unified atomic mass units u. Natural elements generally
contain a mixture of two or more isotopes of the element, as also evident from
Fig. 11.10 where, of the 12 natural low atomic number elements, only three
(beryllium, fluorine, and sodium) have only one stable isotope; six have two
stable isotopes, and three have three stable isotopes.
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Fig. 11.10. A portion of the Chart of the Nuclides (Segrè Chart) for nuclides with
proton numbers Z from 1 through 12, neutron numbers N from 0 through 18, and
atomic mass numbers A from 1 through 30. Stable nuclides are shown with black
pixel squares, radionuclides with colored pixel squares; the color code shown in the
inset defines the particular decay. The red squares above the region of proton-rich
radionuclides give the mean atomic mass in unified atomic mass units u for stable
nuclides from hydrogen to magnesium. Each horizontal row (Z = const) represents
one element including all stable and all known radioactive isotopes of the particular
chemical element; each vertical column (N = const) represents nuclides with the
same neutron number (isotones); each diagonal line perpendicular to the curve of
stability represents nuclides with the same atomic mass number (isobars). Data
were obtained from the Chart of Nuclides available from the Nuclear Data Center
at: www.nndc.bnl.gov/chart/

The mean atomic mass M of a given natural element is also referred to as
the standard atomic weight of the natural element and is given as the weighted
mean for all stable isotopes constituting the given element, as discussed in
more detail in Sect.1.13.1.

M =
∑

i

wiMi and
∑

i

wi = 1, (11.102)

where wi is the relative weight of stable isotope i and Mi is the atomic mass
of stable isotope i constituting the given natural element.



516 11 Modes of Radioactive Decay

Table 11.1. Isotopic composition, relative atomic mass and abundance of sta-
ble isotopes in natural oxygen. Data are from the NIST (www.physics.nist.gov/
PhysRefData/Compositions/notes.html)

Stable oxygen Relative Relative
isotope atomic mass (u) abdunce (%)

O-16 15.994914 99.757
O-17 16.999132 0.038
O-18 17.999161 0.205

For example, the NIST gives the standard atomic weight of natural oxygen
as 15.99940 u. This value can be obtained from the basic NIST data (isotopic
composition, atomic masses of the stable isotopes of oxygen, and relative
abundance of the stable isotopes in natural oxygen) given in Table 11.1 as
follows

M =
∑

i

wiMi = wO−16MO−16 + wO−17MO−17 + wO−18MO−18

= 0.99757× 15.994915 u + 0.00038× 16.999131 u + 0.00205× 17999160 u

= 15.99940 u (11.103)

As shown in Fig. 11.10 for low atomic number Z nuclides, radionuclides below
the curve of stability decay by β− decay, possibly α decay, and neutron emis-
sion decay when the neutron-proton imbalance is very large. Above the curve
of stability radionuclides decay by electron capture or β+ decay, possibly α
decay, and proton emission decay when the proton-neutron imbalance is very
large. As suggested by the individual rows in the Segrè chart of Fig. 11.10
(Z = const), a given atomic species or chemical element in general consists
of one or more stable isotopes and several radioactive isotopes: neutron-rich
isotopes to the right of the stable ones and proton-rich to the left.

In Fig. 11.10 proton is entered as stable isotope of hydrogen 1
1H with Z = 1

and N = 0. Although it is not an element, neutron n appears in the chart
of nuclides as neutral unstable “element” at position Z = 0 and N = 1.
While neutrons bound in stable nuclei are stable, free neutrons are unstable
undergoing β− decay (see Sect. 11.4.3) with a half-life of 618 s (10.3 minutes)
into a proton p, electron e− and electron antineutrino νe.

Atomic masses M and nuclear masses M as well as the atomic rest ener-
gies Mc2, nuclear rest energies Mc2, and nuclear binding energies EB for
all nuclides discussed in this chapter were determined from the NIST data
on atomic masses, as shown in Appendix A which lists the main attributes
of all nuclides presented in this book. The data given in the table can be
used to determine the various decay energies for the specific radioactive decay
examples presented in this chapter.
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The data were determined as follows:

1. Data for atomic masses M were obtained from the NIST and are given in
unified atomic mass units u. The rest mass of the proton mp, neutron mn,
electron me, and the unified atomic mass unit u are given by the NIST as
follows:

mp = 1.672 621 637×10−27 kg = 1.007 276 467 u = 938.272 013 MeV/c2

mn = 1.674 927 211×10−27 kg = 1.008 664 916 u = 939.565 346 MeV/c2

me = 9.109 382 15×10−31 kg = 5.485 799 094×10−4 u

= 0.510 998 910 MeV/c2

u = 1.660 538 782×10−27 kg = 931.494 028 MeV/c2

2. For a given nuclide, its nuclear rest energy Mc2 was determined by sub-
tracting the rest energy of all atomic orbital electrons (Zmec

2) from the
atomic rest energy M(u)c2 as follows

Mc2 = M(u)c2 − Zmec
2 = M(u) × 931.494 028 MeV/u

− Z × 0.510 999 MeV. (11.104)

The binding energy of orbital electrons to the nucleus is ignored in (11.104).
3. The nuclear binding energy EB for a given nuclide is determined using the

mass deficit equation given in (1.25) to get

EB = Zmpc
2 + (A− Z)mnc

2 −Mc2, (11.105)

with the nuclear rest energy Mc2 given in (11.104) and the rest energy of
proton mpc

2, neutron mnc
2, and electron mec

2 given in point (1) above.

11.13 Summary of Radioactive Decay Modes

Nuclear physics has come a long way since Ernest Rutherford’s momentous
discovery that most of the atomic mass is concentrated in the atomic nucleus
which has the size of the order of 1 fm = 10−15 m in comparison to the
atomic size of the order of 1 Å = 10−10 m. The atomic nucleus consists of
nucleons – positively charged protons and neutral neutrons, and each nuclear
species is characterized with a unique combination of the number of protons
(atomic number) Z and number of neutrons N , the sum of which gives the
number of nucleous A = Z +N (atomic mass number).

Nucleons are bound together to form the nucleus by the strong nuclear
force which, in comparison to the proton–proton Coulomb repulsive force,
is at least two orders of magnitude larger but of extremely short range of
only a few femtometers. To bind the nucleons into a stable nucleus a delicate
equilibrium between the number of protons and the number of neutrons must
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exist. As evident from Figs. 11.9 and 11.10, for light (low A) nuclear species,
a stable nucleus is formed from an equal number of protons and neutrons
(Z = N). Above the nucleon number A ≈ 40, more neutrons than protons
must constitute the nucleus to form a stable configuration in order to overcome
the Coulomb repulsion among the charged protons.

If the optimal equilibrium between protons and neutrons does not exist,
the nucleus is unstable (radioactive) and decays with a specific decay constant
into a more stable configuration that may also be unstable and decays further,
forming a decay chain that eventually ends with a stable nuclide. As discussed
in detail in this chapter, nine main processes are available to unstable nuclei
(radionuclides) to advance toward a more stable nuclear configuration; for
a given radionuclide generally only one type or at most two types of decay
process will occur.

Nuclides with an excess number of neutrons are referred to as neutron-rich;
nuclides with an excess of protons are referred to as proton-rich.

• For a slight imbalance, radionuclides will decay by β decay characterized by
transformation of a proton into a neutron in β+ decay and a transformation
of a neutron into a proton in β− decay.

• For a large imbalance, the radionuclides will decay by emission of nucleons:
α particles in α decay, protons in proton emission decay, and neutrons in
neutron emission decay.

• For very large atomic mass number nuclides (A > 230) spontaneous fission,
which competes with α decay, is also possible.

Figure 11.11 shows schematically the decay paths (except for the spontaneous
fission) possibly open to a parent radionuclide (N,Z) in its transition toward
a more stable configuration. A very small segment of a typical Segrè chart
is shown centered around the parent nucleus. Also shown are three special
lines through the parent nucleus: isotope line for Z = const, isotone line for
N = const, and isobar line for A = const.

The parent and daughter are nearest neighbors on:

1. Isobar line (A = const) in β− decay, electron capture, and β+ decay.
2. Isotone line (N = const) in proton emission decay.
3. Isotope line (Z = const) in neutron emission decay.

The following general features of radioactive decay processes are noted:

1. When radionuclide (Z,N) is below the curve of stability (i.e., is neutron-
rich), the β− decay and in extreme cases neutron emission are possible
means to attain a more stable configuration. The resulting nucleus will be
characterized by (Z + 1, N − 1) for β− decay and by (Z,N − 1) for neutron
emission decay. In β− decay the atomic mass number A of the daughter is
the same as that of the parent; in neutron emission decay A of the daughter
decreases by 1.
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Fig. 11.11. Possible decay paths available in the Chart of the Nuclides (Segrè Chart)
to a parent radionuclide (N,Z) in its quest to attain a more stable configuration.
The parent radionuclide is shown by the solid black circle, daughter nuclides are
shown by open circles. Three special lines through the parent nucleus are also indi-
cated: isotope line for Z = const, isotone line for N = const, and isobar line for
A = const. The parent and daughter are nearest neighbors on the isobar line
(A = const) in β− decay, electron capture, and β+ decay; on the isotone line
(N = const) in proton emission decay, and on the isotope line (Z = const) in
neutron emission decay

2. When radionuclide (Z,N) is above the curve of stability (i.e., is proton-
rich), the β+ decay, electron capture or in extreme cases proton emission
may be possible means to attain a more stable configuration. The resulting
nucleus will be characterized by (Z − 1, N + 1) for β+ decay and electron
capture, and by (Z − 1, N) for proton emission decay. In β+ decay and
electron capture decay the atomic mass number A of the daughter nucleus
is the same as that of the parent nucleus; in proton emission decay both Z
and A decrease by 1.
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Table 11.2. Main attributes of the nine decay modes available to an unstable
nucleus for reaching a more stable configuration

Decay Before After ΔZ = ΔN = ΔA = Decay energy Q

decay decay Zb − Za Nb − Na Ab − Aa

α P D, α +2 −2 4
{M(P) − [M(D) + mα]} c2{M(P) − [M(D) + M(42He)

]}
c2

β− P D, e−, νe +1 −1 0
{M(P) − [M(D) + me]} c2

{M(P) − M(D)} c2

β+ P D, e+, νe −1 +1 0
{M(P) − [M(D) + me]} c2

{M(P) − [M(D) + 2me]} c2

Electron

capture

P, e−orb D, νe −1 +1 0
{[M(P) + me] − M(D)} c2

{M(P) − M(D)} c2

γ P∗ P, γ 0 0 0

Internal

conversion

P∗ P, e−orb 0 0 0

Spontaneous

fission

P D1, D2 ∼Z/2 ∼Z/2 ∼A/2

Proton

emission

P D, p −1 0 −1

{
M(P) − [M(D) + mp

]}
c2

{M(P) − [M(D) + M (H)]} c2

Neutron

emission

P D, n 0 −1 −1
{M(P) − [M(D) + mn]} c2

{M(P) − [M(D) + mn]} c2

P = parent nucleus; D = daughter nucleus; eorb = orbital electron; M = nuclear rest mass; M =

atomic rest mass; M(H) = rest mass of hydrogen atom (protium); M(42He) = rest mass of helium-4

atom; me = rest mass of electron; mp = rest mass of proton; mn = rest mass of neutron; mα = rest

mass of α particle; b = before decay; a = after decay

3. Proton and neutron emission decay are much less common than α and β
decays. The two nucleon emission decays are of no importance in medical
physics and occur only in artificially produced radionuclides. The main
characteristics of radionuclides which decay by proton or neutron emission
are an extreme imbalance between the number of protons and the number
of neutrons in their nuclei as well as very short half lives.

4. In addition to β decay the radionuclides (Z,N) with Z > 83 may decay
by α decay or spontaneous fission. In α decay the resulting nucleus is
characterized by (Z − 2, N − 2), in contrast to spontaneous fission where
the resulting nuclei are much lighter than the parent nucleus.

5. In γ decay and internal conversion decay the parent nucleus is excited and
undergoes a de-excitation process by emitting a γ photon or a conversion
electron, respectively. Both the parent nucleus and the daughter nuclus are
characterized by (Z,N), since the number of protons as well as the number
of neutrons does not change in the decay process.
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A summary of the main characteristics of the eight most common radioactive
decay modes is given in Appendix B. The appendix provides expressions for
the basic decay relationship, the decay energy as well as the energy of the decay
products (daughter nucleus and emitted particles) for eight radioactive decay
modes (spontaneous fission is excluded). In radioactive decay the daughter
recoil kinetic energy (EK)D is generally ignored when determining the energy
of the other, lighter decay products. However, we must keep in mind that in α
decay as well as in proton and neutron emission decay (EK)D is of the order of
100 keV, while in other radioactive decay modes, except for the spontaneous
fission, it is of the order of 10 eV to 100 eV. Thus the daughter recoil kinetic
energy in α decay and in proton and neutron emission decay is not negligible
and should be accounted for, while for the other common radioactive decays
it may be ignored.

Table 11.2 presents a summary of the main attributes of the nine modes
of radioactive decay presented in this chapter, highlighting the changes in
atomic number Z, neutron number N , and atomic mass number A as well
as the expressions for the decay energy Q calculated using either the nuclear
masses M or the atomic masses M. The basic relationships governing the
radioactive modes of decay are summarized in Appendix B.



12

Production of Radionuclides

In 1896 Henri Becquerel discovered natural radioactivity and in 1934 Frédéric
Joliot and Irène Curie-Joliot discovered artificial radioactivity. Most natural
radionuclides are produced through one of four radioactive decay chains, each
chain fed by a long-lived and heavy parent radionuclide. The vast majority of
currently known radionuclides, however, are man-made and artificially pro-
duced through a process of nuclear activation which uses bombardment of a
stable nuclide with a suitable energetic particle to induce a nuclear transforma-
tion. Various particles or electromagnetic radiation generated by a variety of
machines are used for this purpose, most notably neutrons from nuclear reac-
tors for neutron activation and protons from cyclotrons for proton activation.
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Three models for nuclear activation are discussed in this chapter and rel-
evant medical physics examples are given for each model. Also discussed are
two nuclear chain reactions: fission and fusion. While the fission chain reac-
tion has been used for practical purposes for the past few decades, the fusion
chain reaction has not left the laboratory environment yet. Also addressed
is the production of the technetium-99m radionuclide with a molybdenum-
technetium radionuclide generator for use in nuclear medicine imaging. The
chapter concludes with a discussion of proton activation with protons obtained
from a cyclotron.

12.1 Origin of Radioactive Elements (Radionuclides)

With respect to their origin radioactive nuclides (radionuclides) are divided
into two categories:

1. Naturally-occurring.
2. Man-made or artificially produced.

There is no essential physical difference between the two categories of radioac-
tivity; the division is mainly historical and related to the sequence of
radioactivity-related discoveries. Henri Becquerel discovered natural radioac-
tivity in 1896 when he noticed that uranium spontaneously produced an
invisible, penetrating radiation that affected photographic plates. Almost
40 years later, in 1934 Irène Joliot-Curie and Frédéric Joliot discovered arti-
ficial radioactivity during a series of experiments in which they bombarded
boron samples with naturally occurring α particles and produced nitrogen
that was unstable and emitted positrons through β+ decay.

12.2 Naturally-Occuring Radionuclides

The naturally occurring radioactive elements are almost exclusively members
of one of four radioactive series that all begin with very heavy and long-lived
parents that have half-lives of the order of the age of the earth. A few long-
lived light radionuclides are also found in nature and so is carbon-14, a carbon
radiosotope produced by cosmic proton radiation. Cosmic rays are energetic
particles that originate from outer space and strike the Earth’s atmosphere.
The vast majority of cosmic rays (∼87 %) are proton, some 12 % are α par-
ticles (helium ions), and about 1 % are energetic electrons. Robert Millikan
in 1925 coined the term “cosmic ray” and proved that the “rays” were of
extraterrestrial origin. Subsequently, it was shown that the cosmic rays were
mainly charged particles; however, the term “ray” continues to be used for
designation of the extraterrestrial radiation.
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Table 12.1. The four naturally occurring radioactive series (Nα gives the number
of steps in the decay chain required to reach the final stable nucleus)

Name of
series

Parent First decay Nα Found in
nature

Half-life(
109 years

) Stable
end-product

Thorium 4n 232
90Th 228

88Ra + α 6 YES 14.05 208
82Pb

Actinium 4n + 3 235
92U 231

90Th + α 7 YES 0.704 207
82Pb

Neptunium 4n + 1 237
93Np 233

91Pa + α 7 NO 2.144×10−3 209
83Bi

Uranium 4n + 2 238
92U 234

90Th + α 8 YES 4.47 206
82Pb

The four naturally occurring series and their original parent radionuclide
are named as follows:

– Thorium series originates with thorium-232.
– Actinium series originates with uranium-235.
– Neptunium series originates with neptunium-237.
– Uranium series originates with uranium-238.

The main characteristics of the four naturally occurring series are listed in
Table 12.1. The series begin with a specific parent nucleus of very long half-life
that decays through several daughter products to reach a stable lead isotope in
the thorium, actinium, and uranium series and stable bismuth-209 nuclide
in the neptunium series. For each of the four series most of the transitions
toward the stable nuclides are α decays intersperced with few β decays.
The number of α decays in each series varies between 6 and 8, as shown
in Table 12.1 with the column labeled Nα.

The atomic mass numbers A for each member of the thorium series are
multiples of 4 and, consequently, the thorium series is sometimes referred to as
the 4n series. The atomic mass numbers of members of the neptunium series
follow the rule 4n + 1, the uranium series 4n + 2, and the actinium series
4n+ 3. Therefore, these series are often referred to as the 4n+ 1, 4n+ 2, and
4n+ 3 series, respectively, as indicated in Table 12.1.

It is assumed that collapsing stars created all heavy radioactive elements
in approximately equal proportions; however, these elements differ in their
half-lives and this resulted in significant variations in today’s abundance of
radioactive heavy elements. Neptunium-237 has a significantly shorter half-
life than the other three long-lived parent nuclei listed in Table 12.1. It does
no longer occur naturally because it has completely decayed since the for-
mation of the earth some 4.6×109 years ago. The other three parent nuclei
(232Th, 235U, and 238U) with much longer half-lives are still found in nature
and serve as parents of their own series.
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Cosmic ray protons continually produce small amounts of radioactive
materials. The most notable example is carbon-14 that decays with a half-
life of 5730 years and is used for the so-called carbon dating of once-living
objects not older than some 50 000 years.

A few naturally-occurring lighter-than-lead radioactive elements can be
found in the earth. Most notable among them is potassium-40 (40K) with
a half-life of 1.277×109 years. Since it is present in all foods, 40K accounts
for the largest proportion of the naturally-occuring radiation load through
ingestion among humans.

The existence of the four radioactive series with long-lived parent nuclei
serves as the source of many short-lived daughters that are in transient or
secular equilibrium with their parents. For example, radium-226 with its
half-life of 1600 years would have disappeared long ago were it not for the
uranium-238 decay series that provides constant replenishment of radium-226
in the environment.

12.3 Man-Made (Artificial) Radionuclides

The man-made (artificial) radionuclides are manufactured by bombarding
stable nuclides or very long-lived radionuclides with energetic particles or
energetic x rays produced by special machines of various kinds. The pro-
cess is referred to as radioactivation or nuclear activation. Since Irène Curie
and Frédéric Joliot discovered artificial radioactivity in 1934 over 3000 dif-
ferent artificial radionuclides have been synthesized and investigated. Thus,
the current list of known nuclides contains some 280 stable nuclides and
over 3000 radioactive nuclides (radionuclides). Some 200 radionuclides are
used in industry and medicine, and most of them are produced through
radioactivation.

A variety of particles may induce radioactivation; however, most com-
monly radioactivation is achieved by bombarding stable target nuclei with
neutrons produced in nuclear reactors or by protons produced in cyclotrons.
The following terminology is used in radioactivation:

1. Nuclear activation induced with thermal or fast neutrons from a nuclear
reactor is called neutron activation or neutron capture.

2. Nuclear activation induced with protons (and possibly heavier ions such as
deuterons, α particles, and heavy ions) from a cyclotron and synchrotron
is called proton activation or proton capture.

3. Nuclear activation induced by high-energy x rays from a linear accelerator
is referred to as nuclear photoactivation.

In addition to radioactivation, short-lived radionuclides used in nuclear medi-
cine can be obtained from the so-called radionuclide generators which contain
a relatively long-lived parent (produced through radioactivation) decaying
into short-lived daughter which can be chemically extracted from the parent
stored in a radionuclide generator.
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Nuclear reactors are the main source of radionuclides used in medicine.
These radionuclides are produced either through neutron activation of stable
target nuclei placed into the reactor or by chemical separation from fission
products resulting from the fission process induced in special targets or nuclear
fuel whereby fissile nuclei upon bombardment with thermal neutrons split into
two lighter fragments and two or three fission neutrons.

12.4 Radionuclides in the Environment

Over 60 radionuclides can be found in the environment and some of them pose
a health hazard to humans. They are grouped into three categories as follows:

1. Primordial – originate from before the creation of the Earth.
2. Cosmogenic – continually produced by cosmic radiation hitting the Earth.
3. Man-made or artificial – produced through the process of radioactivation

mainly in nuclear reactors.

Pathways of radionuclides into environment:

1. Atmospheric pathway (through human activity, radioactive decay, cosmo-
genic reactions).

2. Water pathway (deposited in water from air or from ground through
erosion, seepage, leaching, mining, etc.).

3. Food chain pathway (radionuclides in water and air may enter the food
chain).

Pathways of radionuclides into human body:

1. Ingestion
2. Inhalation
3. Through skin.

12.5 General Aspects of Nuclear Activation

Several types of nuclear activation are known; for example: neutron activation,
proton activation and nuclear photoactivation. In medical physics neutron
activation is important in production of radionuclides used for external beam
radiotherapy, brachytherapy, and molecular imaging; proton activation is
important in production of positron emitters used in PET scanning; and
nuclear photoactivation is important from a radiation protection point-of-view
when components of high-energy radiotherapy machines become activated
during patient treatment and pose a potential radiation hazard to staff using
the equipment.

The three activation processes listed above are inherently different, yet
there are several common features that govern the physics behind the pro-
cesses, such as cross section, target thickness, Q value, and threshold.
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12.5.1 Nuclear Reaction Cross Section

Particles of an incident beam striking a target can interact with the target
nuclei through the following three processes:

1. Scattering
2. Absorption
3. Nuclear reaction

In traversing a target the beam is attenuated in:

1. Intensity or
2. Energy or
3. Both intensity and energy

In a simplistic approach we might consider estimating the probability for a
reaction between the incident particle and a target nucleus by treating the
incident particles as points and the target nuclei as projecting an area πR2

defined by the nuclear radius R. The following assumptions are made:

• Any time an incident particle hits a nucleus, a reaction is assumed to
happen; no reaction occurs when the particle misses the nucleus.

• This geometrical picture takes no account of the finite size of the incident
particle nor does it consider the range of interaction forces that are in
effect between the incident particle and the target nucleus.

• Rather than treating a geometrical cross sectional area πR2 as a measure
of interaction probability, we assign to the nucleus an effective area σ
perpendicular to the incident beam such that a reaction occurs every time
a bombarding particle hits any part of the effective disk area.

• This effective area is referred to as the reaction cross-section σ and is
usually measured in barn, where 1 barn = 1 b = 10−24 cm2. The cross
section σ is proportional to the reaction probability P .

• The range of reaction cross sections σ in nuclear physics varies from a low
of 10−19 b to a high of 106 b with the lower limit in effect for weak neutrino
interactions with nuclei and the upper limit in effect for thermal neutron
capture in certain nuclides.

The target of thickness x0 projects an area S to the incident particle beam.
The target contains N nuclei, each characterized with a reaction cross sec-
tion σ. The density of nuclei n� represents the number of nuclei N per volume
V of the target with V = Sx0. To determine the reaction rate R (number of
reactions per unit time) we consider two target options with regard to target
thickness x0: thin targets and thick targets.

12.5.2 Thin Targets

A thin target is thin enough so that no significant overlap between target
nuclei occurs as the particle beam penetrates the target. This implies that
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negligible masking of target nuclei occurs in a thin target. The probability P
for an incident particle to trigger a reaction in a thin target is the ratio of the
effective area σN over the target area S

P =
σN

S
=
σNx0

Sx0
= n�σx0. (12.1)

If the number of incident particles per unit time is Ṅ0, then R, the number
of reactions per unit time, is given as follows

R = P Ṅ0 = Ṅ0n
�σx0. (12.2)

12.5.3 Thick Target

In comparison with a thin target, a thick target has a thickness x0 that engen-
ders considerable masking of target nuclei. In this case we assume that a thick
target consists of a large number of thin targets. In each thin target layer of
thickness dx the number of incident particles per unit time Ṅ diminishes by
dṄ , so that we can write dṄ (x) as

− dṄ (x) = Ṅ (x)n�σdx (12.3)

or
Ṅ (x)∫

Ṅ0

dṄ (x)
Ṅ (x)

= −
x0∫
0

n�σdx, (12.4)

where

Ṅ0 is the number of particles per unit time striking the target.
Ṅ (x0) is the number of particles per unit time that traverse the thick

target x0.

The solution to (12.4) is

Ṅ (x0) = Ṅ0e
−n�σx0 , (12.5)

and the number of reactions per unit time R in the thick target is now given
by the following

R = Ṅ0 − Ṅ (x0) = Ṅ0{1 − e−n�σx0}. (12.6)

Equation (12.6) reduces to thin target relationship of (12.2) for small thick-
nesses x0 to give

e−n�σx0 ≈ 1 − n�σx0 or 1 − e−n�σx0 ≈ n�σx0 (12.7)

to result in R given for a thin target in (12.2).
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12.6 Nuclear Activation with Neutrons
(Neutron Activation)

In practice the most commonly used activation process is triggered by thermal
neutrons in a nuclear reactor, where a stable parent target P upon bombard-
ment with neutrons is transformed into a radioactive daughter D that decays
with a decay constant λD into a granddaughter G

P → D → G. (12.8)

The situation in neutron activation is similar to the Parent → Daughter →
Granddaughter decay series discussed in Sect. 10.3, except that λP in neutron
activation does no longer apply, since the parent is stable or long-lived. Yet, we
can use the decay formalism for the activation problem as long as we replace
the parent decay constant λP by the product σPϕ̇ where:

σP is the probability for activation of the parent nucleus governed by the
activation cross section usually expressed in barn/atom where 1 barn =
1 b = 10−24 cm2.

ϕ̇ is the fluence rate of neutrons in the reactor usually expressed in neutrons
per cm2 per second, i.e., cm−2 · s−1. Typical modern reactor fluence rates
are of the order of 1011 cm−2 · s−1 to 1014 cm−2 · s−1. An assumption is
made that the neutron fluence rate ϕ̇ remains constant for the duration of
the activation process, and this is not always easy to achieve in practice,
especially when activation times are long.

12.6.1 Infinite Number of Parent Nuclei: Saturation Model

The daughter nuclei are produced at a rate of σPϕ̇NP(t) and they decay
with a rate of λDND(t). The number of daughter nuclei is ND(t) and the
overall rate of change of the number of daughter nuclei is dND/dt obtained
by combining the production rate of daughter nuclei σPϕ̇NP(t) with the decay
rate of daughter nuclei λDND(t) to get

dND(t)
dt

= σPϕ̇NP(t) − λDND(t), (12.9)

where NP(t) is the number of parent target nuclei. Two simplifying assump-
tions are usually made when dealing with neutron activation theory. The two
assumptions are:

1. That in neutron activation a negligible fraction of the parent atoms is
transformed, so that the number of residual target atoms NP(t0) equals
to NP(0), the initial number of target atoms placed into the reactor for
activation purposes at time t = 0. The time t0 is the total time the target
is left in the reactor. The activation model that neglects the depletion of
the number of target nuclei is referred to as the saturation model.
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2. That the neutron fluence rate ϕ̇ at the position of the sample is contributed
from all directions. The sample in the form of pellets is irradiated in a “sea”
of thermal neutrons and we may assume that the sample is a thin target
that does not appreciably affect the neutron fluence inside the pellet.

For the initial conditions NP(t = 0) = NP(0) and ND(t = 0) = ND(0) = 0
as well as the general condition that NP(t) = NP(0) = const, the differential
equation for dND/dt of (12.9) is written as

dND(t)
dt

= σPϕ̇NP(0) − λDND(t) (12.10)

or in integral form as

ND(t)∫
0

d {σPϕ̇NP(0) − λDND}
σPϕ̇NP(0) − λDND

= −λD

t∫
0

dt. (12.11)

The solution of (12.11) is as follows

ND(t) =
σPϕ̇NP(0)

λD
{1 − e−λDt}. (12.12)

The daughter activity AD(t) equals to λDND(t), thus we can write AD(t) as

AD(t) = σPϕ̇NP(0){1 − e−λDt} = (AD)sat{1 − e−λDt}, (12.13)

where we define (AD)sat, the saturation daughter activity that can be pro-
duced by bombardment of the parent target with neutrons, as equal to
σPϕ̇NP(0).

Equation (12.13) is a simple exponential relationship and its initial slope
dAD(t)/dt at t = 0 is defined as the radioactivation yield YD of the daughter
produced in the radioactivation process. The radioactivation yield represents
the initial rate of formation of new daughter activity that depends upon the
irradiation conditions as well as the decay constant of the daughter λD, as
seen from the following expression

YD =
dAD

dt

∣∣∣∣
t=0

= σPϕ̇NP(0)λD = λD(AD)sat =
(AD)sat
τD

. (12.14)

The build up of daughter activity AD(t) in a target subjected to constant
bombardment with neutrons in a reactor is illustrated in Fig. 12.1. The
radioactivation yield YD is given by the initial slope of the growth curve at time
t = 0. The extrapolation of the tangent to the growth curve at t = 0 intersects
the asymptotic saturation activity line at a time t = τD = (t1/2)D/ ln 2, where
(t1/2)D is the half-life of the daughter.
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Fig. 12.1. Growth of daughter activity AD(t) normalized to saturation activity
(AD)sat and plotted against time normalized to the half-life of the daughter (t1/2)D.
The slope of the tangent on the AD(t)/(AD)sat vs. t curve at t = 0, defined as the
activation yield YD, is also shown

The following observations regarding the daughter activity growth curve,
as given in (12.13), can now be made:

1. Initially at small t, where exp(−λDt) ≈ 1 − λDt, the growth of AD(t) is
rapid and almost linear with time, since

AD(t) = (AD)sat{1 − e−λDt} ≈ {1 − 1 + λDt− · · · }
≈ (AD)satλDt, (12.15)

but eventually at large times t the daughter activity AD(t) becomes sat-
urated (i.e., reaches a steady-state) at (AD)sat and decays as fast as it is
produced.

2. Equation (12.13) and Fig. 12.1 show that:

(a) For an activation time t = (t1/2)D, half the maximum activity (AD)sat
is produced

(b) For t = 2(t1/2)D, 3/4 of (AD)sat is produced
(c) For t = 3(t1/2)D, 7/8 of (AD)sat is produced, etc.

3. Because of the relatively slow approach to saturation (AD)sat, it is gen-
erally accepted that in practice activation times beyond 2(t1/2)D are not
worthwhile.
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12.6.2 Finite Number of Parent Nuclei: Depletion Model

In situations where a measurable fraction of the target is consumed during
the activation process, we can no longer assume that NP(t) = const. The
fractional decrease in the number of parent atoms depends on the activation
cross section σP and on the fluence rate ϕ̇ of the reactor. The activation model
that accounts for the depletion of the number of the target nuclei during the
radioactivation process is called the depletion model.

In general, the rate of change in the number of parent atoms NP(t) with
time t can be written as follows

dNP(t)
dt

= −σPϕ̇NP(t), (12.16)

similarly to the expression for radioactive decay given in (10.6) but replacing
λP in (10.6) with the product σPϕ̇. The general solution for NP(t) of (12.16)
is then

NP(t) = NP(0)e−σPϕ̇t, (12.17)

with NP(0) the initial number of parent nuclei placed into the reactor at time
t = 0 and NP(t) the number of parent nuclei at time t.

The general expression for dND/dt, the rate of change in the number of
daughter nuclei, is the number of parent nuclei transformed into daughter
nuclei [governed by NP(t), σP, and ϕ̇] minus the number of daughter nuclei
that decay [governed by ND(t) and λD]

dND(t)
dt

= σPϕ̇NP(t) − λDND(t), (12.18)

with NP(t) given in (12.17) in parallel to (10.25) for the P → D → G decay
series.

The solution to (12.18), following the steps taken in the derivation of
(10.34) for the P → D → G decay series and using the initial conditions for
NP and ND

NP(t = 0) = NP(0) (12.19)

and
ND(t = 0) = ND(0) = 0 (12.20)

is now as follows

ND(t) = NP(0)
σPϕ̇

λD − σPϕ̇
{e−σPϕ̇t − e−λDt}. (12.21)

Recognizing that AD(t) = λDND(t) and assuming the validity of the depletion
model, we get the following general expression for the growth of the daughter
activity AD(t)

AD(t) = NP(0)
σPϕ̇λD

λD − σPϕ̇
{e−σPϕ̇t − e−λDt}. (12.22)
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Since (12.22) for AD(t) in neutron activation is identical in form to (10.35)
for a radioactive decay series, we use the analysis presented with regard
to the decay series to obtain solutions for the general daughter growth in
neutron activation. Generally, in neutron activation σPϕ̇ < λD and this
results in transient equilibrium dynamics, as discussed for the decay series
in Sect. 10.3.4.

When σPϕ̇ 	 λD, we are dealing with a special case of transient equilib-
rium called secular equilibrium for which (12.22) will simplify to an expression
that was given in (12.13) for the saturation model and was derived under the
assumption that the fraction of nuclei transformed from parent to daughter in
neutron activation is negligible in comparison to the initial number of parent
atoms NP(0). Equation (12.22) then reads

AD(t) = σPϕ̇NP(0){1 − e−λDt} = (AD)sat{1 − e−λDt}, (12.23)

where (AD)sat = σPϕ̇NP(0) is the saturation activity that is attainable by the
target under the condition of secular equilibrium.

In the saturation model the activity AD(t) approaches the saturation
activity (AD)sat exponentially, as given in (12.23) and shown in Fig. 12.1.
In saturation the production rate of the daughter equals the decay rate of
the daughter resulting in a constant ND(t) and constant saturation activity
(AD)sat.

Usually, the growth of daughter in neutron activation is treated under
the condition of secular equilibrium; however, with high enough reactor flu-
ence rate ϕ̇ and low enough daughter decay constant λD, this approximation
may no longer be valid. The theoretical treatment then should recognize the
radioactivation process as one of transient equilibrium for which account must
be taken of the depletion of target nuclei, as given in (12.22). The following
points should be noted:

• As discussed in detail in Sect. 10.3, the daughter activity AD(t) in tran-
sient equilibrium cannot be assumed to reach saturation with increasing
time t. Rather, the daughter activity AD(t) is zero at time t = 0, and
with increasing time first rises with t, reaches a maximum (AD)max at
time t = (tmax)D, and then drops as t increases further until at t = ∞ it
becomes zero again.

• The daughter activity will reach its maximum (AD)max = AD[(tmax)D]
at the point of ideal equilibrium that occurs at a time (tmax)D where
dAD(tmax)/dt = 0 and AD[(tmax)D] = σPϕ̇NP[(tmax)D]. Note that in
general AD[(tmax)D] < (AD)sat.

• The time (tmax)D is given as

(tmax)D =
ln
σPϕ̇

λD

σPϕ− λD
. (12.24)

Equation (12.24) with σPϕ̇ replaced by λP is identical in form to (tmax)D that
was calculated for a decay series in 10.37.
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Defining new parameters m, (xD)max and (yD)max as well as variables x,
yP, and yD, similarly to the approach we took in Sect. 10.4 for the radioactive
decay series, we can understand better the dynamics resulting from the satu-
ration and depletion models of the neutron activation process. The parameters
and variables are for neutron activation defined as follows:

1. Factor m, now called activation factor in parallel with the decay factor m
of the radioactive series decay:

m =
σPϕ̇

λD
, compare with (10.44). (12.25)

2. Variable x

x =
σPϕ̇

ln 2
t = m

λD

ln 2
t = m

t

(t1/2)D
, compare with (10.41). (12.26)

3. Normalized number of parent nuclei yP

yP =
NP(t)
NP(0)

= e−σPϕ̇t = e−x ln 2 =
1
2x
, see (10.42) and (10.47). (12.27)

4. Normalized number of daughter nuclei yD

yD =
AD(t)

σPϕ̇NP(0)
, see (10.43), (10.45) and (10.46). (12.28)

5a. x coordinate of the (yD)max point for m > 0 and m �= 1

(xD)max =
m

m− 1
lnm
ln 2

, see (10.48) and (10.50). (12.29)

5b. x coordinate of the (yD)max point for m = 1

(xD)max =
1

ln 2
= 1.44, see (10.51). (12.30)

6a. Maximum point in yD for m > 0, m �= 1

(yD)max = yP (xmax) = 2( m
1−m ) ln m

ln 2 =
1

2xmax
,

≡ e
m

1−m lnm = e−(ln 2)(xmax)D , see (10.53). (12.31)

6b. Maximum point in yD for m = 1

(yD)max =
1
e

= 0.368, see (10.54). (12.32)
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Similarly to (10.45), the variable yD(x) for the depletion model is given by
the following function, after inserting (12.25) and (12.28) into (12.22) to get

yD =
1

1 −m

{
e−x ln 2 − e−

x
m ln 2

}
=

1
1 −m

{
1
2x

− 1
2x/m

}
. (12.33)

Equation (12.33) is valid for all positive m except for m = 1. For m = 1,
yD(x) is given by the following function, as discussed in relation to (10.46),
using L’Hôpital rule

yD (m = 1) =
x ln 2

2x
. (12.34)

For the saturation model of (12.13), on the other hand, the normalized daugh-
ter activity zD is given for any m > 0 as follows, after inserting (12.25) and
(12.28) into (12.23)

zD =
AD(t)

(AD)sat
=

AD(t)
σPϕ̇NP(0)

= 1 − e−λDt = 1 − e
− λD

σPϕ̇ (ln 2)x

= 1 − e−
(ln 2)x

m = 1 − 1
2

x
m
. (12.35)

To illustrate the general case of neutron activation for any m between zero
(secular equilibrium) and one (start of non-equilibrium conditions) we show
in Fig. 12.2 a plot of yD and zD, against x for various m in the range from 0.05
to 5 for both activation models: the saturation model of (12.35) with dashed
curves and the depletion model of (12.33) with solid curves. For comparison
we also show the yP curve that indicates the depletion of the target nuclei
during the neutron activation process.

The points of ideal equilibrium in the depletion model, where yD reaches its
maximum, are shown with dots on the yP curve in Fig. 12.2. The expressions
for (xD)max and (yD)max in terms of the activation factor m �= 1 are given
by (12.29) and (12.31), respectively, and for m = 1 by (12.30) and (12.32),
respectively.

In Fig. 12.3 we plot the normalized daughter activities zD for the saturation
model and yD for the depletion model from (12.35) and (12.33), respectively,
against the variable x on a logarithmic scale to cover six orders of magnitude
in the activation factor m ranging from 10−4 to 10. Some of the data presented
in Fig. 12.3 have already been plotted in Fig. 12.2 that covers a much smaller
range in m (from 0.05 to 5). The maxima (yD)max in depletion model curves
are indicated with heavy dots that also follow a trace of yP, the normalized
number of parent nuclei given in (12.27).

The following conclusions can now be reached with regard to Figs. 12.2
and 12.3:

1. In practical neutron activation procedures the activation factor defined in
(12.25) as m = σPϕ̇/λD is generally very small, justifying the use of the
saturation model in studies of radioactivation dynamics. However, since
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Fig. 12.2. Normalized daughter activities zD of (12.35) for the saturation model
(dotted curves) and yD of (12.33) for the depletion model (solid curves) against
the variable x for various decay factors m in the transient equilibrium region from
0.05 to 1.0 as well as for m = 2 and m = 5 in the non-equilibrium region where
m > 1. The yP curve is shown dashed. Points of ideal equilibrium specified for the
depletion model by (xD)max and (yD)max are indicated with heavy dots on the yP
curve. Variables x and yP are given by (12.26) and (12.27), respectively. Variables
zD for the saturation model and yD for the depletion model (m 	= 1) are given by
(12.35) and (12.33), respectively. Variable yD for the depletion model with m = 1 is
given by (12.34). The activation factor m is defined in (12.25)

m depends on the fluence rate ϕ̇, neutron activation processes with very
high fluence rates or relatively long activation times may invalidate the
saturation model in favor of the depletion model.

2. The initial slope dyD/dx at t = 0 is proportional to the activation yield
Y defined for the saturation model in (12.14). A closer look at Figs. 12.2
and 12.3 reveals that both the saturation model and the depletion model
predict yD with the same initial slopes equal to (ln 2/m) irrespective of
the magnitude of m. This result can be obtained by taking the derivative
dyD/dx at x = 0 of (12.35) for the saturation model and (12.33) for the
depletion model.

3. For all m in the saturation model zD approaches its saturation value of
1.0 exponentially, while in the depletion model yD reaches its peak value
(yD)max at (xD)max and then decreases with increasing x.

4. In the saturation model, for a given m, the normalized daughter activity
zD approaches exponentially the saturation value (zD)sat = 1. The larger
is m, the shallower is the initial slope, and the slower is the approach to
saturation.
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Fig. 12.3. Normalized daughter activities zD of (12.35) for the saturation model
(dashed curves) and yD of (12.33) for the depletion model (solid curves) against the
variable x for various activation factors m in the range from m = 10−4 to m = 10.
The heavy dots represent (yD)max, the maxima of yD for given m and follow the
normalized parent activity yP of (12.27). Variables x and yP are given by (12.26) and
(12.27), respectively. Variables zD for the saturation model and yD for the depletion
model (m 	= 1) are given by (12.35) and (12.33), respectively. Variable yD for the
depletion model with m = 1 is given by (12.34). The activation factor m is defined
in (12.25)

5. In the depletion model, for a given m, the normalized daughter activity
yD exhibits a maximum value (yD)max that is smaller than the saturation
value (zD)sat = 1. The larger is m, the larger is the discrepancy between
the two models and the smaller is (yD)max in comparison with (zD)sat = 1.

6. Parameter (yD)max is the point of ideal equilibrium calculated from (12.31)
for m �= 1 and (12.32) for m = 1. It depends on (xD)max, as shown in
(12.31). Parameter (xD)max in turn depends on the activation factor m
and is calculated from (10.50) and (12.29). As m decreases from m = 1
toward zero, (xD)max decreases and (yD)max increases, as shown by dots
on the yP curve in Figs. 12.2 and 12.3.

7. For m > 10−3, parameter (yD)max decreases with increasing m. Thus, in
this region of m the depletion model should be used for determination of
daughter activity.

8. For all 0 < m < 1, variables yP and yD are said to be in transient equi-
librium at x � (xD)max. For m ≥ 1 no equilibrium between yP and yD
exists at any x.
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9. For m < 10−2, yP and yD are in the special form of transient equilibrium
called secular equilibrium.

10. Form < 10−3, the saturation model and the depletion model give identical
results, (i.e., yD = zD), for x ≤ (xD)max and attain a value of 1 at x =
(xD)max. However, for x > (xD)max, zD remains in saturation, while yD
decreases in harmony with yP.

11. Using the expression for the normalized number of daughter nuclei (12.28),
we can now express (AD)max, the maximum daughter activity in the
depletion model, as follows

(AD)max = (ymax)D σPϕ̇NP(0) = σPϕ̇NP(0) 2−(xmax)D

= σPϕ̇NP(0)e−
m

1−m ln m. (12.36)

12. Equation (12.36) shows that the maximum daughter activity (AD)max

depends on the saturation activity (AD)sat = σPϕ̇NP(0) and on (yD)max

which approaches 1 for m → 0, as shown in Fig. 10.4. However, as m
increases toward 1, (yD)max decreases, resulting in (AD)max that may be
significantly smaller than (AD)sat.

13. Since the normalized daughter activity yD(x) decreases with x for x >
(xD)max, it is obvious that activation times beyond (xD)max are counter-
productive.

12.6.3 Maximum Attainable Specific Activities
in Neutron Activation

As is evident from Fig. 12.3, (yD)max, the maximum normalized daugh-
ter activity for the depletion model decreases with the activation factor
m = σpϕ̇/λD. In practice this means that, for a given daughter radionuclide,
(yD)max depends only on the particle fluence rate ϕ̇, since the parameters
σp and λD remain constant.

We now determine the maximum daughter specific activities that can be
attained during the activation process, as predicted by the saturation model
and the depletion model.

For the saturation model we use (12.35) to get the maximum daughter
specific activity (a′D)max as

(a′D)max = (aD)sat =
(AD)sat
MP

= (zD)max σPϕ̇
NP(0)
MP

=
(
σP
NA

AP

)
ϕ̇, (12.37)

where Mp and Ap are the atomic mass and the atomic mass number of the
parent nucleus, respectively, and the parameter (zD)max is equal to the satu-
ration value of zD equal to 1. Since σpNA/Ap is constant for a given parent
nucleus, we note that (aD)max is linearly proportional to ϕ̇, the particle fluence
rate. As ϕ̇→ ∞ we get

lim
ϕ̇→∞

(a′D)max = ∞. (12.38)
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This is obviously a problematic result, since we know that the maximum
daughter specific activity produced through neutron activation cannot exceed
the theoretical specific activity (aD)theor, given for the daughter in (10.2) as
follows

(aD)theor =
AD

MD
=
λDND

MD
=
λDNA

AD
. (12.39)

Equation (12.37) shows that the saturation model is useful as an approxima-
tion only for relatively low particle fluence rates ϕ̇; at high fluence rates the
model breaks down and predicts a physically impossible result.

For the depletion model we use (12.33) to get the maximum daughter
specific activity (aD)max as

(aD)max =
(AD)max

MP
= (yD)max σPϕ̇

NP(0)
MP

=
[
σPNA

AP

]
(yD)max ϕ̇, (12.40)

where we use the identity NP/MP = NA/AP. The result of (12.40) is similar
to (aD)max given in (12.37) for the saturation model; however, it contains
(yD)max, the normalized daughter activity that exhibits its own dependence
on ϕ̇, as shown in Fig. 12.3 and given in (12.31). Introducing the expression for
(yD)max of (12.31) into (12.40) and recognizing that the activation factor m of
(12.25) is equal to σpϕ̇/λD, we get the following expression for the maximum
daughter specific activity (aD)max

(aD)max =
(
σPNA

AP

)
ϕ̇ e

m
1−m ln m. (12.41)

At first glance, it seems that the depletion model of (12.41) also suffers the
same catastrophe with ϕ̇→ ∞, as shown in (12.37) for the saturation model.
However, a closer look at lim

ϕ̇→∞
(aD)max for the depletion model produces a very

logical result, namely that the maximum daughter specific activity (aD)max

will not exceed the theoretical specific activity (aD)theor, or

lim
ϕ̇→∞

(aD)max =
{
σPNA

AP

}
lim

ϕ̇→∞

⎧⎪⎨
⎪⎩ϕ̇ exp

⎡
⎢⎣−

σPϕ̇

λD

σPϕ̇

λD
− 1

ln
σPϕ̇

λD

⎤
⎥⎦
⎫⎪⎬
⎪⎭

=
λDNA

AP
≈ (aD)theor . (12.42)

The result of (12.42) is independent of the particle fluence rate ϕ̇, irrespective
of the magnitude of ϕ̇ and depends only on the decay constant λD of the
daughter and the atomic mass number AP of the parent. Recognizing that
AP ≈ AD at least for large atomic number activation targets, we can state
that λDNA/AP ≈ (aD)theor.
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The depletion model, in contrast to the commonly used saturation model,
thus adequately predicts (atheor) as the limit for the maximum attainable
daughter specific activity in neutron activation and should be taken as the
correct model for describing the parent–daughter kinematics in radioactivation
in general, irrespective of the magnitude of the particle fluence rate ϕ̇ used in
the radioactivation.

The saturation model is valid as a special case of the depletion model
under one of the following two conditions:

1. For the activation factor m = σpϕ̇/λD < 10−3.
2. For the activation time ta short compared to (tmax)D, the time of ideal

equilibrium between yP and yD.

The maximum attainable specific activities (aD)sat and (aD)max are plotted
against the neutron fluence rate ϕ̇ in Fig. 12.4 for the three most commonly
used radionuclides in medicine: cobalt-60, iridium-192, and molybdenum-99.
The theoretical specific activities (atheor)D for cobalt-60 and iridium-192 are
also indicated in the figure. We note for iridium-192 and cobalt-60 that in the
practical neutron fluence rate ϕ̇ range from 1013 cm−2 · s−1 to 1015 cm−2 · s−1

Fig. 12.4. Maximum attainable specific activities (aD)sat and (aD)max for the
saturation model (dashed curves) and the depletion model (solid curves), respec-
tively, plotted against neutron fluence rate ϕ̇ for cobalt-60, iridium-192, and
molybdenum-99 daughter products in neutron activation. The theoretical specific
activities of cobalt-60 and iridium-192 are indicated with horizontal dashed lines.
The vertical dashed lines at ϕ̇ = 1013 cm−2 · s−1 and 2×1014 cm−2 · s−1 indicate
data for the two neutron fluence rates of Table 12.3



542 12 Production of Radionuclides

Table 12.2. Characteristics of three radionuclides of importance to medical physics
and produced by thermal neutron activation in a nuclear reactor: cobalt-60 as source
in external beam radiotherapy, iridium-192 as sealed source for brachytherapy, and
molybdenum-99 as source of technetium-99m for use in nuclear medicine imaging

Daughter nuclide Cobalt-60 Iridium-192 Molybdenum-99

Half-life (t1/2)D 5.27 y 73.8 d 66 h

Decay constant λD(s−1) 4.171×10−9 1.087×10−7 2.917×10−6

Parent nuclide Cobalt-59 Iridium-191 Molybdenum-98

Nuclear reaction 59
27Co (n, γ) 60

27Co 191
77Ir (n, γ) 192

77Ir
98
42Mo (n, γ) 99

42Mo

Cross section (b) 37.2 954 0.13

atheor (Ci/g)a 1.131×103 9.215×103 4.8×105

apract (Ci/g)b ∼250 ∼450 ∼0.3

σPNA/AP(cm2/g) 0.38 3.01 8×10−4

a. Theoretical specific activity: atheor = λDNA/AD, assuming a carrier-free source
b. Practical specific activity produced in a nuclear reactor

the saturation model fails, while the depletion model approaches asymptoti-
cally the theoretical result. For molybdenum-99 in the neutron fluence range
shown in Fig. 12.4 the maximum attainable specific activities are 5 to 6 orders
of magnitude lower than (aMo)theor, so that the saturation and depletion model
give identical results as a consequence of σMOϕ̇/λMo < 10−3.

Table 12.2 lists the important characteristics of cobalt-60, iridium-192, and
molybdenum-99. The theoretical specific activity (aD)theor is calculated from
(10.2) assuming that the radioactive nuclide contains only the daughter nuclei,
i.e., the source is carrier-free.

Table 12.3 lists the neutron activation characteristics for the saturation
and depletion models applied to production of cobalt-60, iridium-192 and
molybdenum-99 for two neutron fluence rates: ϕ̇ = 1013 cm−2 · s−1 and
ϕ̇ = 2×1014 cm−2 · s−1. The two fluence rates are representative of rates
used in activation processes with modern nuclear reactors. Of main interest in
Table 12.3 are the maximum attainable specific activities (aD)sat and (aD)max

predicted by the saturation model and the depletion model, respectively, and
their comparison to the theoretical values (aD)theor for the three daughter D
products, also listed in the table.

Two interesting features of Fig. 12.4 and Table 12.3 are of note:

• For cobalt-60 (aCo)theor = 1131 Ci/g, while at ϕ̇ = 2×1014 cm−2 · s−1 the
saturation model for cobalt-60 production predicts (aCo)sat = 2054 Ci/g,
a physically impossible result. On the other hand, the depletion model
predicts that (aCo)max = 550 Ci/g which is a realistic result that can be
substantiated with experiment.
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Table 12.3. Neutron activation characteristics for the saturation and depletion
models applied to neutron activation of cobalt-59 into cobalt-60, iridium-191 into
iridium-192, and molybdenum-98 into molybdenum-99 with neutron fluence rates of
1013 cm−2 · s−1 and 2×1014 cm−2 · s−1 (a = year; d = day; h = hour)

Daughter nuclide Cobalt-60 Iridium-192 Molybdenum-99

1 (aD)theor (Ci/g) 1131 9215 479 604

ϕ̇
(
cm−2 · s−1

)
1013 2×1014 1013 2×1014 1013 2×1014

2 (aD)sat (Ci/g) 102.7 2054 813.5 16270 0.216 4.32

3 m 0.089 1.78 0.088 1.76 4.5×10−7 8.9×10−6

4 (xD)max 0.341 1.90 0.338 1.89 9.4×10−6 1.5×10−4

5 (yD)max 0.789 0.268 0.791 0.270 1.00 1.00

6 (aD)max (Ci/g) 81.0 549.8 643.3 4398 0.22 4.32

7 tmax 12.18 a 5.61 a 284.0 d 79.3 d 1392.4 h 1107.2 h

1. (aD)theor = λDNA
AD

see (12.39)

2. (aD)sat = σPNA
AP

ϕ̇ see (12.37)

3. m = σPϕ̇
λD

see (12.15)

4. (xD)max = m
(m−1)

ln m
ln 2

see (12.17)

5. (yD)max = 1

2(xD)max
see (12.19)

6. (aD)max = σPNA
AP

(yD)maxϕ̇ see (12.41)

7. (tmax)D =
(t1/2)D

m
(xD)max = ln 2

mλD
(xD)max = ln m

λD(m−1)
see (12.26)

• A study of iridium-192 results in conclusions similar to those for cobalt-
60 and this is understood, since the activation factors m for the two
radionuclides are essentially identical. The activation factor m for
molybdenum-99 for practical fluence rates, on the other hand, is so small
that both models predict identical specific activities, both a miniscule
fraction of (aMo)theor.

Of interest is also the activation time (tmax)D required to obtain (aD)max using
the depletion model. From (12.26) and (12.29) we obtain

(tmax)D
(t1/2)D

=
(xD)max

m
=

lnm
(ln 2) (m− 1)

=
λD ln

σPϕ̇

λD

(ln 2) (σPϕ̇− λD)
, (12.43)

with roughly an inverse proportionality with fluence rate ϕ̇. Thus, the higher
is the particle fluence rate ϕ̇, the shorter is the time required to reach the
maximum specific activity (aD)max. For example, (tmax)Co is 20.2 years at
ϕ̇ = 1013 cm−2 · s−1 and 5.61 years at ϕ̇ = 2×1014 cm−2 · s−1, as also shown
in Table 12.3.
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Fig. 12.5. Time (tmax)D/(t1/2)D required for reaching the maximum specific
activity (aD)max plotted against neutron fluence rate ϕ̇ for cobalt-60, iridium-
192, and molybdenum-99. The data were calculated with the depletion model of
radioactivation

The time (tmax)D/(t1/2)D of (12.43) is plotted against the neutron fluence
rate ϕ̇ for cobalt-60, iridium-192, and molybdenum-99 in Fig. 12.5. The curves
for cobalt-60 and iridium-192 are essentially identical, because the activation
factors m for the two radionuclides are fortuitously similar to one another as
a result of similar ratios σP/λD for the two radionuclides.

12.6.4 Examples of Parent Depletion: Neutron Activation
of Cobalt-59, Iridium-191, and Molybdenum-98

Using the general data of Fig. 12.3 we plot in Fig. 12.6 the specific activity
aD of cobalt-60 in part (a) and of iridium-192 in part (b) against activation
time t for various neutron fluence rates ϕ̇ in the range from 1013 cm−2 · s−1

to 2×1014 cm−2 · s−1. The specific activity aD is calculated for the saturation
model (dashed curves) given by (12.35) and the depletion model (solid curves)
given in (12.33). Both equations are modified with incorporating (12.26) to
obtain a plot of aD against the activation time t rather than against the
general variable x. The heavy dots on the depletion model curves represent
the time (tmax)D at which the maximum specific activity (aD)max occurs. The
theoretical specific activities atheor of 1131 Ci/g and 9215 Ci/g for cobalt-60
and iridium-192, respectively, are indicated on the figure.
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Fig. 12.6. Specific activity aD of cobalt-60 in part (a) and of iridium-192 in part
(b) plotted against activation time t for various neutron fluence rates ϕ̇. The specific
activity aD is calculated for the saturation model (dashed curves) given by (12.35)
and the depletion model (solid curves) given in (12.33). Both equations are used in
conjunction with (12.26) to obtain a plot of aD against activation time t rather than
against the variable x. The heavy dots on the depletion model curves represent the
time (tmax)D at which the maximum specific activity (aD)max occurs
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The discrepancy between the saturation model and the depletion model is
evident, especially at high fluence rates and large activation times. An obvious
breakdown of the saturation model occurs when it predicts a specific activity
aD of the daughter that exceeds the theoretical specific activity atheor for a
given radionuclide D.

Since both the saturation model and the depletion model show identical
initial slopes, i.e., activation yields [see (12.14) and Fig. 12.1], one may use
the saturation model as a simple yet adequate approximation to the depletion
model at activation times short in comparison with (tmax)D. However, when
the goal is to obtain optimal specific activities in the daughter of the order of
the theoretical specific activity for a given radionuclide, such as the cobalt-60
source for external beam radiotherapy or iridium-192 source for industrial
radiography, the saturation model fails and the depletion model should be
used for estimation of the required radioactivation times and specific activities
expected.

Equation (12.41) gives a relationship between the maximum attainable
specific activity (aD)max and neutron fluence rate ϕ̇ for the depletion model.
We now calculate the fraction f of the theoretical specific activity (aD)theor

that (aD)max could reach at a given fluence rate ϕ̇. The functional relationship
between f and (aD)max will allow us to estimate the maximum possible specific
activity for a given parent–daughter combination in a radioactivation process
with a given fluence rate ϕ̇. We write (aD)max as follows

(aD)max = f × (aD)theor = f
λDNA

AP
=
σPNA

AP
ϕ̇ e

m
1−m ln m, (12.44)

which gives

f = me
m

1−m ln m = m
1

1−m , (12.45)

where we used the following relationships: m = σPϕ̇/λD of (12.25) and the
approximation AD ≈ AP.

We then introduce m = αϕ̇, where α is defined as α = σP/λD, to obtain
the following expression for fraction f

f = (αϕ̇)
1

1−αϕ̇ (12.46)

and plot this expression in Fig. 12.7 for cobalt-60, iridium-192, and
molybdenum-99 in the fluence rate ϕ̇ range from 1011 cm−2 · s−1 to
1017 cm−2 · s−1. Again, the data for cobalt-60 and iridium-192 are essen-
tially the same for a given ϕ̇, since the ratio σP/λD is almost identical for the
two radionuclides. The molybdenum-99 fraction f data, on the other hand,
are extremely small in comparison to those of the other two radionuclides
indicating very low practical specific activities in the practical fluence rate
range from 1012 cm−2 · s−1 to 1015 cm−2 · s−1.
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Fig. 12.7. Specific activity fraction f defined as (aD)max / (aD)theor plotted against
the neutron fluence rate ϕ̇ for cobalt-60, iridium-192, and molybdenum-99. The data
for molybdenum are visible only at very high fluence rates because the activation
factor m at a given ϕ̇ is several orders of magnitude smaller for molybdenum-99 in
comparison with that of cobalt-60 and iridium-192

Data from Fig. 12.7 show that for cobalt-60 and iridium-192 the fraction
f is 0.07 at ϕ̇ = 1013 cm−2 · s−1 and 0.49 at ϕ̇ = 2×1014 cm−2 · s−1. Same
results are provided in Table 12.3 with the ratio (aD)max / (aD)theor. Thus, to
obtain a higher specific activity in a cobalt-60 or iridium-192 target, we would
have to surpass the currently available reactor fluence rates ϕ̇. For example, to
reach f = 0.75, i.e., (amax)D = 850 Ci/g for a cobalt-60 source and 6900 Ci/g
for an iridium-192 source, a ϕ̇ of 1015 cm−2 · s−1 would be required. This
would result in an activation factor m of 12.8 and, as shown in Fig. 12.5 and
given by (12.43), the activation time tmax to reach this specific activity would
be relatively short at 2.1 years for cobalt-60 and 30 days for iridium-192.

12.6.5 Neutron Activation of the Daughter:
The Depletion–Activation Model

In the discussion of neutron activation above we have tacitly assumed that
the daughter nuclide is not affected by exposure to activation particles. In
situations where this assumption does not hold, account must be taken of the
activation of the daughter radionuclide into a granddaughter that may or may
not be radioactive. Ignoring the possibility of the granddaughter radioactivity,
we account for the daughter activation by subtracting σDϕ̇ND(t) from the
differential equation for dND/dt given in 12.18 to obtain
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dND(t)
dt

= σPϕ̇NP(t) − λDND(t) − σDϕ̇ND(t)

= σPϕ̇NP(t) − [λD + σDϕ̇]ND(t)

= σPϕ̇NP(t) − λ∗DND(t), (12.47)

where σP and σD are cross sections for activation of parent and daughter
nuclei, respectively; NP (t) and ND(t) are numbers of parent and daugh-
ter nuclei, respectively; and ϕ̇ is the neutron fluence rate. We now define
a modified decay constant λ∗D as follows

λ∗D = λD + σDϕ̇. (12.48)

Using the same initial conditions as in 12.18, we get the following solution to
(12.47)

ND(t) = NP(0)
σPϕ̇

λ∗D − σPϕ̇

{
e−σPϕ̇t − e−λ∗

Dt
}

(12.49)

and the following expression for the daughter activity AD(t)

AD(t) = λDND(t) = NP(0)
σPϕ̇λD

λ∗D − σPϕ̇

{
e−σPϕ̇t − e−λ∗

Dt
}

= σPϕ̇NP(0)

λD

λ∗D

1 − σPϕ̇

λ∗D

{
e−σPϕ̇t − e−λ∗

Dt
}
. (12.50)

To obtain a general expression for the daughter activity in the “parent
depletion–daughter activation model” we now introduce new parameters and
variables, similarly to the approach we took in the discussion of the decay
series with 10.41 through 10.44 and the radioactivation depletion model with
12.25 through 12.30, as follows

k∗ =
σP

σD
, (12.51)

ε∗ =
λ∗D
λD

= 1 +
σDϕ̇

λD
, (12.52)

m =
σPϕ̇

λD
, same as in (12.25) (12.53)

m∗ =
σPϕ̇

λ∗D
=
m

ε∗
, (12.54)

x =
σPϕ̇

ln 2
t =

m∗λ∗D
ln 2

t, (12.55)
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yP =
NP(t)
NP(0)

= e−σPϕ̇t = e−x ln 2 =
1
2x
, (12.56)

y∗D =
AD(t)

σPϕ̇NP(0)
=

1
ε∗ (1 −m∗)

{
1
2x

− 1
2

x
m∗

}
. (12.57)

Equation (12.57) for the normalized daughter activity y∗D of the depletion–
activation model is similar to (12.28) for yD of the depletion model, except
for the factor ε∗ which is larger than 1 and depends on ϕ̇. In the depletion
model σD = 0, k∗ = ∞ and ε∗ = 1, while for the depletion–activation model
σD �= 0 and ε∗ > 1. Thus, we expect y∗D of the depletion–activation model to
behave in a similar manner to yD of the depletion model: rise from 0 to reach
a maximum (y∗D)max at x = (x∗D)max and then asymptotically decrease to zero
at large x.

Like for (10.50) and (12.31), we find for (x∗D)max the following expression

(x∗D)max =
m∗ lnm∗

(m∗ − 1) ln 2
, (12.58)

and similarly to (10.53) and (12.31) we find the expression for (y∗D)max as

(y∗D)max =
1

ε∗2x∗
max

=
1
ε∗
e−(ln 2)x∗

max =
1
ε∗
e−

m∗ ln m∗
m∗−1 . (12.59)

The maximum specific activity (a∗D)max of the daughter, similar to (12.41), is
expressed as

(a∗D)max =
[
σPNA

AP

]
(y∗D)max ϕ̇ =

[
σPNA

AP

]
ϕ̇

ε∗
e−

m∗ ln m∗
m∗−1 . (12.60)

Since both ε∗ and m∗ depend on ϕ̇, the question arises about the behavior
of (a∗D)max in the limit as the neutron fluence rate ϕ̇ becomes very large, i.e.,
ϕ̇→ ∞. We determine lim

ϕ̇→∞
(a∗D)max as follows

lim
ϕ̇→∞

(
a∗D
)
max

=

[
σPNA

AP

]
lim

ϕ̇→∞

⎧⎪⎪⎨
⎪⎪⎩

λDϕ̇

λD+σDϕ̇
exp

⎡
⎢⎢⎣−

σPϕ̇

λD+σDϕ̇
σPϕ̇

λD + σDϕ̇
− 1

ln
σPϕ̇

λD+σDϕ̇

⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭

=

[
σPNA

AP

]⎧⎪⎨
⎪⎩
λD

σD
exp

⎡
⎢⎣−

σP

σD
σP

σD
− 1

ln
σP

σD

⎤
⎥⎦
⎫⎪⎬
⎪⎭

=

[
λDNA

AP

] {
k∗e−

k∗ ln k∗
k∗−1

}
≈ g × (aD)theor , (12.61)

where we used the definition of k∗ =
σP

σD
of (12.51) and defined the function

g (k∗) as
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Fig. 12.8. A plot of function g (k∗) of (12.62) against parameter k∗ =
σP

σD

g (k∗) = k∗e−
k∗ ln k∗
1−k∗ . (12.62)

A plot of the function g (k∗) against the parameter k∗ in the range from
k∗ = 10−3 to k∗ = 103 is given in Fig. 12.8. We note several interesting
features of g (k∗):

1. In general, g (k∗) < 1 for all finite k∗.
2. As σD → 0 which implies that the activation of the daughter is negli-

gible, the parameter k∗ = σP/σD approaches infinity ∞ and function g
approaches 1, as evident from the following

lim
k∗→∞

g (k∗) = lim
k∗→∞

k∗e−
k∗ ln k∗

k∗−1 = 1. (12.63)

3. For k∗ = ∞ the maximum specific activity (a∗max)D for the depletion–
activation model transforms into (aD)theor given in 12.42 for the depletion
model.

4. The function g (k∗) = 1 applies to the depletion model in which σD = 0,
ε∗ = 1, and k∗ = ∞.

12.6.6 Example of Daughter Neutron Activation: Iridium-192

A closer investigation of the iridium radioactivation reveals a considerably
more complicated picture than the one given in Sect. 12.6.5:
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• Firstly, iridium has two stable isotopes: iridium-191 (Ir-191) with a natural
abundance of 37.2 % (σP = σ191 = 954 b) and iridium-193 with a natural
abundance of 63.7 % (σP = σ193 = 100 b). The Ir-191 isotope is of inter-
est in industry and medicine, since iridium-192, the product of neutron
activation has a reasonably long half-life of 73.8 days. In contrast, neutron
activation of Ir-193 results in Ir-194 that decays with a short half-life of
19.3 h. Since the Ir-192 radionuclide is produced through the neutron acti-
vation of the Ir-191 stable nuclide, the natural mixture of Ir-191 (37.3 %)
and Ir-193 (62.7 %) in the activation target will result in a lower final spe-
cific activity of the Ir-192 source in comparison with activation of a pure
Ir-191 target.

• Secondly, iridium-192, the daughter product of iridium-191 neutron acti-
vation, itself has a significant cross section for neutron activation σD =
σ192 = 1420 b in contrast to the parent cross section σP = σ191 = 954 b.
As shown in Sect. 12.6.5, the activation of the daughter product will affect
the specific activity of the iridium-192 source.

In Fig. 12.9 we plot the normalized activity functions for iridium-191: zD of
(12.35) for the saturation model; yD of (12.33) for the depletion model; and
y∗D of (12.57) for the depletion–activation model. The functions are plotted
against the variable x of (12.26) for two neutron fluence rates: ϕ̇ = 1013 cm−2 ·
s−1 and ϕ̇ = 2×1014 cm−2 · s−1.

Fig. 12.9. Plot of normalized activity functions against x for iridium-191 neutron
activation: zD for the saturation model (dashed curves); yD for the depletion model
(light solid curves); and y∗D for the depletion–activation model (heavy solid curves).
The functions are plotted for two neutron fluence rates: ϕ̇ = 1013 cm−2 · s−1 and
ϕ̇ = 2×1014 cm−2 · s−1
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The relevant parameters for these functions and three activation models
are listed in Table 12.4. The following features are of note:

1. For all three functions (zD, yD, and y∗D) the initial slopes at x = 0 are
identical and equal to (ln 2) /m.

2. For the saturation model zD saturates at 1; for the depletion model yD
reaches its maximum of (yD)max at (xD)max; for the depletion–activation
model y∗D reaches its maximum of (y∗D)max at (x∗D)max.

3. (x∗D)max and (y∗D)max for the depletion–activation model decrease in com-
parison to (xD)max and (yD)max for the depletion model, respectively. The
larger is ϕ̇, the larger is the discrepancy between the two parameters.

4. (y∗D)max no longer occurs at the point of ideal equilibrium where yP = y∗D,
in contrast to (yD)max of the daughter in the depletion model that occurs
at the point of ideal equilibrium.

Figure 12.10 shows a plot of the maximum attainable specific activity for
iridium-192 against neutron fluence rate ϕ̇ for three activation models:
(1) saturation model with straight line (aD)sat; (2) depletion model (aD)max;
and (3) depletion–activation model (a∗D)max. The saturation model saturates
at σPϕ̇NA/AP, the depletion model saturates at the theoretical specific activ-
ity atheor for iridium-192 at 9215 Ci/g, as also shown in Fig. 12.11, while the
depletion–activation model saturates at g (aIr−192)theor = 2742 Ci/g, where
g = 0.3, as given in (12.62) with k∗ for iridium-192 equal to 0.672, as shown
in Fig. 12.9 (Note: k∗ = σP/σD = 954/1420).

Figure 12.10 also shows that when large specific activities of iridium-192
are produced with fluence rates ϕ̇ of the order of 1013 cm−2 · s−1 or higher,
the best model for estimation of the specific activity of iridium-192 sample is
the depletion–activation model.

In Fig. 12.11 we plot the specific activity of iridium-192 against activation
time t normalized to (t1/2)D, for three radioactivation models:

1. a′D for the saturation model shown with heavy dotted curves.
2. aD for the depletion model with dotted curves.
3. a∗D for the depletion–activation model with solid curves.

The fluence rate ϕ̇ in Fig. 12.11(a) is 1013 cm−2 · s−1 and in Fig. 12.11(b) it
is 2×1014 cm−2 · s−1. The maxima for the depletion curve (aD)max and the
depletion–activation curves (a∗D)max are shown with heavy dots. The appro-
priate values for parameters (aD)max, (tmax)D, (a∗D)max, and (t∗max)D are given
in Table 12.4. Note that an assumption is made that the iridium activation
sample contains only the iridium-191 stable nuclide rather than a natural
mixture of iridium-191 and iridium-193. Thus, to get the specific activity for
a natural sample of iridium, the natural abundance of iridium-191 in the
sample would have to be taken into account.
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Table 12.4. Parameters of the depletion model and the depletion–activation model
applied to neutron activation of iridium-191 nuclide into iridium-192 radionuclide

Particle fluence rate Definition Reference

ϕ̇(cm−2 · s−1) 1013 2×1014

λD(s−1) 1.087×10−7 1.087×10−7 λD =
ln 2(
t1/2

)
D

(10.13)

λ∗
D(s−1) 1.229×10−7 3.927×10−7 λ∗

D = λD + σDϕ, σD = 1420 b (12.48)

ε 1.0 1.0 ε = 1

ε∗ 1.13 3.61 ε∗ =
λ∗

D

λD
= 1 +

σDϕ̇

λD
(12.52)

m 0.088 1.76 m =
σPϕ̇

λD
, σP = 954 b (12.25)

m∗ 0.078 0.49 m∗ =
σPϕ̇

λ∗
D

=
σPϕ̇

λD + σDϕ̇
=
m

ε∗
(12.54)

(xD)max 0.338 1.89 (xD)max =
m lnm

(m− 1) ln 2
(12.29)

(x∗
D)max 0.311 0.98 (x∗

D)max =
m∗ lnm∗

(m∗ − 1) ln 2
(12.58)

(yD)max 0.793 0.270 (yD)max =
1

2(xmax)D
(12.31)

(y∗D)max 0.713 0.140 (y∗D)max =
1

ε∗2(x∗
D)max

(12.59)

(aD)max 643.8 4,398 (aD)max = ϕ̇
σPNA

AP
(yD)max (12.40)

(a∗D)max 580.0 2,275 (a∗D)max = ϕ
σPNA

AP
(y∗D)max (12.60)

(tmax)D
(t1/2)D

3.84 1.07
(tmax)D
(t1/2)D

=
(xD)max

m
(12.26)

(t∗max)D
(t1/2)D

3.53 0.56
(t∗max)D
(t1/2)D

=
(x∗

D)max

(m∗ε∗)
(12.55)

The cross section for neutron activation of Ir-191 is σ (Ir-191) = σP = 954 b and for
Ir-192 it is σ (Ir-192) = σD = 1420 b
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Fig. 12.10. Maximum attainable specific activity for iridium-192 against neu-
tron fluence rate ϕ̇ for three activation models: (1) saturation model shown with
straight line (aD)sat; (2) depletion model (aD)max; and (3) depletion–activation
model (a∗D)max. An assumption is made that the activation parent target contains
pure iridium-191 rather than a natural mixture of iridium-191 and iridium-193 equal
to 37.3 % and 62.7 %, respectively

Again we note that the activation of the daughter product iridium-192
has a significant effect on the daughter specific activity; this is especially
pronounced at larger fluence rates, as shown in Fig. 12.12.

The following conclusions can now be made:

• The best model for description of the radioactivation kinematics is the
depletion model when the daughter product is not activated by the expo-
sure to radioactivation particles. An example for the use of this model is
the activation of cobalt-59 into cobalt-60.

• The best model for describing the radioactivation kinetics in situations
where the daughter product is activated by the radioactivation particles
is the depletion–activation model. An example for the use of this model is
the neutron activation of iridium-191 into iridium-192.

• The saturation model is only an approximation to the depletion and
depletion–activation models. It is valid only at very short activation times
or when σPϕ̇/λD< 10−3. An example for the use of this model is the
neutron activation of molybdenum-98 into molybdenum-99.
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Fig. 12.11. Specific activity aD of iridium-192 against activation time t normalized
to (t1/2)D for iridium-192 for three radioactivation models: a′D for the saturation
model with heavy dotted curves; aD for the depletion model with dotted curves; and
a∗D for the depletion–activation model with solid curves. The maxima for depletion
curves (aD)max and for the depletion–activation curves (a∗D)max are indicated with
heavy dots. Part (a) is for a fluence rate ϕ̇ of 1013 cm−2 · s−1; part (b) is for a
fluence rate ϕ̇ of 2×1014 cm−2 · s−1. An assumption is made that the activation
parent target contains pure iridium-191
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12.6.7 Practical Aspects of Neutron Activation

Thermal neutrons produced in nuclear reactors are the most common particles
used for radioactivation. This type of the radioactivation process is referred
to as neutron activation or neutron capture. Two types of neutron activation
process occur commonly: (n, γ) and (n, p).

• The (n, γ) process results in neutron capture and emission of γ rays. In the
(n, γ) reaction the target nucleus A

Z X captures a neutron and is converted
into an excited nucleus A+1

Z X∗ that undergoes an immediate de-excitation
to its ground state through emission of a γ ray. Note that A

Z X and A+1
Z X

are isotopes of the same chemical element. The schematic representation
of the reaction is as follows:

A
Z X + n = A+1

Z X∗ + γ or A
Z X(n, γ) A+1

Z X. (12.64)

The A+1
Z X nucleus is neutron rich as well as unstable and decays with a

given half-life through β− decay into a more stable configuration.
• The (n, p) process results in neutron capture and emission of a proton. It

produces a new nucleus which is an isobar of the target nucleus. In the
(n, p) reaction the target nucleus A

Z X captures a neutron and promptly
ejects a proton to become converted into a new nucleus A

Z−1Y. Note that
A
Z X and A

Z−1Y do not represent the same chemical element; however, they
possess the same atomic mass number A which means that they are isobars.
Schematically the (n, p) reaction is represented as follows:

A
Z X + n = A

Z−1Y + p or A
Z X + n = A

Z−1Y + p. (12.65)

Radionuclides produced by neutron activation in a nuclear reactor normally
contain a mixture of stable parent nuclei in addition to radioactive daughter
nuclei. The parent nuclei thus act as carrier of daughter nuclei and effectively
decrease the specific activity of the source. The (n, γ) reaction is much more
common than the (n, p) reaction and produces radioactive products that are
not carrier-free. A chemical separation of the daughter nuclei from the parent
nuclei is not feasible because the parent and daughter are isotopes of the same
element; a physical separation, while possible, is difficult and expensive.

For example, the practical specific activity of cobalt-60 sources is limited
to about 300 Ci/g or ∼25 % of the carrier-free theoretical specific activity
of 1133 Ci/g. This means that in a cobalt-60 teletherapy source ∼75 % of
the source mass is composed of stable cobalt-59 nuclei and only ∼25 % of
the source mass is composed of radioactive cobalt-60 nuclei. The reactor-
produced molybdenum-99 is mixed with stable molybdenum-98 and the source
has a practical specific activity that is significantly lower than the theoretical
specific activity of molybdenum-99.

From a medical physics perspective the most important neutron activation
processes are:
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1. Production of cobalt-60 sealed sources for use in external beam radio-
therapy with typical initial source activity of the order of 370 TBq(
104 Ci

)
.

2. Production of iridium-192 sealed sources for use in brachytherapy with
typical activities of 0.37 TBq (10 Ci).

3. Production of molybdenum-99 radionuclide for generating the technetium-
99m

(
99mTc

)
radionuclide in a radionuclide generator for use in nuclear

medicine imaging.

12.7 Nuclear Fission Induced by Neutron Bombardment

When neutrons bombard certain heavy (Z ≥ 92) nuclei, rather than under-
going neutron capture, i.e., inducing neutron activation, the neutrons may
induce a process called nuclear fission in which the target nucleus fragments
into two daughter nuclei of lighter mass. The fission process is accompanied
with production of several fast neutrons, γ rays, and neutrinos. The following
nomenclature is used when dealing with nuclear fission:

• In general, a nucleus that can undergo induced fission when struck by
a neutron is called a fissionable nucleus, while the narrower term fissile
nucleus refers to fission induced by thermal neutrons.

• As fissile nuclei undergo the fission process, lighter, generally radioactive,
nuclei called fission fragments are formed.

• Fission fragments combined with the nuclei that are subsequently formed
through radioactive decay of fission fragments are called fission products.

• Nuclides that do not undergo fission themselves when bombarded with
thermal neutrons but transform into fissile nuclides upon bombardment
with thermal neutrons followed with two β− decays are called fertile
nuclides. Fertile nuclides thus serve as source of fissile nuclides.

• Fission can be considered a form of nuclear transmutation, since the fission
fragments are not of the same nuclear species as was the original nucleus.

Fission is energetically possible only in heavy nuclei and the reason for this can
be understood from an investigation of the diagram plotting, for all known ele-
ments, the binding energy per nucleon EB/A against atomic mass number A,
given in Fig. 1.3. For heavy nuclei EB/A ≈ 7.5 MeV while for intermediate
nuclei EB/A ≈ 8.4 MeV. Thus, fission of a fissile heavy nucleus such as 235U
with a relatively low EB/A of ∼7.5 MeV into two tightly bound fragments
with EB/A ≈ 8.4 MeV results in an energy release of 0.9 MeV per nucleon
corresponding to 235 × 0.9 MeV ≈ 200 MeV per 235U nucleus or (NA/A)×
2×108 × 1.6×10−19 J =∼8.2×1010 J per 1 g of 235U.

Nuclear fission is an exothermic (also referred to as exoergic) reaction. Of
the 200 MeV per fission of a 235U nucleus, about 10 MeV is carried away
by neutrinos, about 10 MeV by γ rays, 5 MeV by new neutrons produced in
the fission process, and the remaining 175 MeV by the two fission fragments.
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Considering that the chemical reaction of burning 1 g of coal produces
at best an energy output six orders of magnitude smaller than the fission
of 1 g of 235U, the potential for power generation using fission is obvious
and exciting, but also controversial. We can reach the same conclusion if we
compare the energy release in a fission process with the energy release in a
chemical reaction, for example, of combining hydrogen and oxygen into water
which results in an energy release of about 3 eV per molecule.

Of course, the high energy yield in one fission event in itself is not of much
practical importance; however, an important characteristics of fission is that
each fission event produces on average 2–3 neutrons which under proper con-
ditions can be used to sustain the nuclear reaction through a process referred
to as nuclear chain reaction (see Sect. 12.8).

Many heavy nuclides are fissionable, however, only three fissile nuclei that
can undergo thermal neutron induced fission are known. They are:

1. Uranium-235
(
235U

)
as the only naturally occurring fissile nuclide.

2. Plutonium-239
(
239Pu

)
artificially produced from uranium-238 bombarded

with neutrons to get uranium-239 which undergoes a β− decay with a
half-life of 23.5 min into neptunium-239 which, in turn, undergoes a β−

decay with a half-life of 2.33 days into plutonium-239, or in short

238
92U + n → 239

92U
β−

−−−−−→
23.5min

239
93Np

β−
−−−−−→

2.33 d

239
94Pu, (12.66)

3. Uranium-233
(
233U

)
artificially produced from thorium-232 bombarded

with neutrons to get thorium-233 which undergoes a β− decay with a half-
life of 22min into protactinium-233 which, in turn, undergoes a β− decay
with a half-life of 27 days into uranium-233, or in short

232
90Th + n → 233

90Th
β−

−−−−−→
22min

233
91Pa

β−
−−−−−→

27 d

233
92U, (12.67)

Uranium-238 and thorium-232 do not undergo fission by thermal neutrons
and therefore are not fissile. However, they are called fertile radionuclides,
since they capture a neutron and transform into short-lived radioisotopes that
through two β− decays transmute into artificial fissile nuclides plutonium-239
and uranium-233, respectively.

The general equation for fission of uranium-235 is as follows

235
92U + n → 236

92U
∗ → b

aX + d
cY + fn, (12.68)

where the nucleus 235
92U has been penetrated by a thermal neutron n to pro-

duce a compound nucleus 236
92U∗. The compound nucleus 236

92U∗ is unstable
and divides by the fission process into two generally unstable nuclei (fission
fragments) as well as several fast neutrons. The fission fragments (b

aX and d
cY)

are of smaller Z and A than is the compound nucleus.
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Any combination of lighter nuclei is possible for fission fragments as long
as the fission process honors the conservation of atomic number Z and atomic
mass number A. This means that a + c = 92 and b + d + f = 236, with f
the number of fast neutrons produced in the fission process, typically equal to
2 or 3. Nuclei formed in fission as fission fragments range in atomic number
from 30 to 64 and in atomic mass number from 60 to about 150. In general, the
fission fragments have an asymmetrical mass distribution with daughter nuclei
clustering around atomic mass numbers A of 95 and 140 with much higher
probability than clustering around A = 118 for a symmetric distribution of
fission yield.

A sketch of the yield of fission fragments from uranium-235 bombardment
with thermal neutrons plotted against atomic mass number A is plotted in
Fig. 12.12. The unstable fission fragments are generally neutron-rich and sub-
sequently revert to stability by a succession of β− decays forming chains of
isobars, the most known being the chains with A = 99 (Mo-99) and A = 140
(Xe-140) and each occurring in about 6 % of all uranium-235 fissions. The dis-
tributions of fission fragments for uranium-233 and plutonium-239 are similar
to that shown for uranium-235 in Fig. 12.12.

Some of the fragments and fission products have half-lives of the order
of thousands of years, making the handling and storage of radioactive waste
produced by use of the fission process for power generation a serious concern
for many future generations to come. This puts a damper on enthusiasm for
commercial means of power generation based on nuclear fission.

Fig. 12.12. Yield of fission fragments against atomic mass number A for
uranium-235 bombarded with thermal neutrons. The yield for uranium-233 and
plutonium-239 is similar in shape and distribution
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12.8 Nuclear Chain Reaction

A nuclear chain reaction occurs when a nuclear reaction results in products
that on the average cause one or more nuclear reactions of the same type as
the original reaction and the process continues for several generations forming
a chain of reactions. Two types of chain reactions are known:

1. Nuclear fission chain reaction based on fission of heavy nuclei such as
uranium-235.

2. Nuclear fusion chain reaction based on fusion of light nuclei such as
deuteron 2H and triton 3H.

The discovery and understanding of nuclear chain reactions is not only one
of the most important scientific discoveries of all times, it is also one of the
most controversial ones. On the one hand, nuclear chain reaction promises
means for abundant and relatively inexpensive power generation when used
appropriately and, on the other hand, it makes possible the destruction of
humanity, if used for military purpose.

One of the most important characteristics of nuclear chain reactions is
that the reactions are self-sustaining. For example, in fission of uranium-235
nucleus on average 2.5 neutrons are produced along with the two daugh-
ter fission fragments. These new neutrons can induce additional fission in
the uranium-235 absorber and, in principle, a self-sustaining chain reac-
tion becomes possible. Another important characteristic of chain reactions
is that the individual reactions in the chain release an enormous amount
of energy in comparison with standard chemical reactions. For example, the
ratio between energy produced from the fission of one gram of uranium-235
to energy produced from burning of one gram of coal is ∼3×106, indicating
several million times larger energy release in fission compared with a chemical
reaction.

12.8.1 Nuclear Fission Chain Reaction

In a fission chain reaction the kinetic energy acquired by fission fragments is
converted into heat that can be used in nuclear reactors in a controlled fashion
for peaceful purposes: (1) in electric power generation and (2) in production of
radionuclides through neutron activation. Unfortunately, uncontrolled chain
reactions can be used for destructive purposes either directly in atomic bombs
or indirectly as detonators of fusion-based hydrogen bombs.

Any nuclear chain reaction can be described by a parameter called effective
neutron multiplication factor k, defined as the number of neutrons from a
given fission in a given generation that can cause fission in the next generation.
Generally, the factor k is smaller than the actual number of fission-generated
neutrons because some of these neutrons either escape the system or undergo
non-fission reactions. The value of k determines the fate of a chain reaction:
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• For k < 1, the system cannot sustain a chain reaction, the power diminishes
with time, and the mass of the fissile material is classified as sub-critical.

• For k = 1, every fission event causes a new fission on average. This leads to
a constant power level, a steady-state chain reaction, and the classification
of the fissile mass as critical. The critical mass is defined as the smallest
amount of fissile material able to sustain a nuclear chain reaction. Nuclear
power plants operate in this mode. The critical mass of a fissile material
depends upon its nuclear fission cross section, density, enrichment, shape,
and temperature. The shape with minimal critical mass is spherical since
a sphere requires the minimum surface area per mass.

• For k > 1, every fission event causes an increase in number of subse-
quent fission events leading to a runaway chain reaction described as
super-critical. Nuclear weapons operate in this mode.

12.8.2 Nuclear Reactor

In a nuclear reactor the nuclear chain reactions are controlled in such a way
that only one new neutron on average is used for continuation of the chain
reaction after each fission event. The first nuclear reactor was constructed in
1942 at the University of Chicago under the scientific leadership of Enrico
Fermi. Since then, several hundred nuclear reactors have been constructed
around the world, mainly for electric power generation but some also for
research purposes and for production of radionuclides used in industry and
medicine.

The principal component of any nuclear reactor is the reactor core shown
schematically in Fig. 12.13 and containing: (1) fissile material also called fuel
elements, (2) control rods, (3) moderator, and (4) coolant:

1. Three fissile radionuclides can be used in nuclear reactors: uranium-233,
uranium-235, and plutonium-239. The fission-related physical characteris-
tics of these materials are listed in Table 12.5. The fissile material that is
most commonly used is uranium oxide with uranium-235 enriched using a
suitable nuclide separation process to contain from 3 % to 5 % of 235

92U.
Natural uranium contains 99.3 % of 238

92U, 0.7 % of 235
92U, and a minute

amount (0.006 %) of 234
92U. Some reactors use a much higher grade of

enrichment operating at 20 % or even higher. The 238
92U uranium isotope

that remains after the 235
92U enrichment is called depleted uranium and

is used for applications requiring very dense materials, for example, for
collimators in teletherapy machines.

2. The neutron fluence rate, i.e., the number of neutrons available for inducing
fission in the reactor core is controlled by movable control rods that are
made of material with high cross section for absorption of neutrons, such
as cadmium or boron compounds. This mechanism maintains a constant
neutron multiplication factor k and ensures a constant criticality of the
reactor and a constant power output.
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3. The fission efficiency is the highest for thermal neutrons, but the new
fission-generated neutrons have relatively large kinetic energies of the order
of 1 MeV. Moderators are used to slow down the newly produced fast neu-
trons through elastic scattering events between neutrons and the nuclei of
the moderator. Water serves as moderator material in most reactors; how-
ever, some reactors may use the so-called heavy water (deuterium based),
graphite, or beryllium for the purposes of moderation. Heavy water has
a smaller probability for neutron absorption through the (n, γ) reaction
than water; however, it is much costlier. Graphite also does not absorb
many neutrons and scatters neutrons well. Beryllium is an excellent solid
moderator with its low neutron absorption cross section and a high neutron
scattering cross section.

4. In a nuclear power plant the reactor core is immersed in a suitable coolant.
Fission occurs in the nuclear fuel and the fission energy in the form of
kinetic energy of fission fragments and new neutrons is converted into
heat. The coolant (usually water) is used to maintain a stable temperature
in the reactor core and exits the core either as steam or as hot pressur-
ized water, subsequently used to drive turbines connected to electric power
generators.

Fig. 12.13. Schematic diagram of nuclear reactor core highlighting the four main
components: (1) fuel elements, (2) control rods, (3) moderator, and (4) coolant
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Table 12.5. Main fission-related physical characteristics of the three fissile radionu-
clides

Fissile
nucleus

Means of
production

Neutrons
per fission

Critical
mass (kg)

Half-life
(years)

Decay
process

1 233
92U

232
90Th + n ∼2 16 160 000 α to 229

90Th

2 235
92U Naturally

occuring
∼2.5 52 0.7×109 α to 231

90Th

3 239
94Pu 238

92U + n ∼3 10 24 110 α to 235
92U

12.8.3 Nuclear Power

Development of electric power generation with nuclear reactors has started
in the early 1950s and within two decades nuclear power became a viable
alternative to power generation based on fossil fuels, such as oil, natural gas,
and coal. The main advantage of nuclear power is that, in contrast to fossil
fuels, it does not produce greenhouse gases and does not cause global warming;
however, it has its own unique problems, real and imaginary, which detract
from its widespread use. The main concerns causing opposition to nuclear
power are:

1. Production of radioactive waste in the fission chain reaction and problems
with the long-term disposal of the radioactive waste.

2. Potential for accidents resulting in contamination of environment making
it inhabitable (area denial).

3. Increase in radiation exposure beyond the background level to general
population living in the vicinity of nuclear power plants resulting in
carcinogenesis (induction of cancer).

While it has been proven beyond doubt that nuclear reactors can be and are
shielded so well that radiation exposure in the vicinity of nuclear power plants
does not exceed the background radiation level, the real issues of radioactive
waste and potential for accidents are still preventing a widespread use of
nuclear power. The fission products generated in nuclear reactor chain reac-
tion are generally long lived. Thus, the nuclear waste is bound to pose a
health hazard to humans for thousands of years to come, and to date no
solution to long-term safe storage of nuclear waste has been found. As far
as accidents are concerned, accidents at the Three Mile Island nuclear power
plant in the U.S. in 1979 and at the Chornobyl power plant in Ukraine in
1986 have proven that nuclear accidents with disastrous consequences can
and do happen, no matter how unlikely they are deemed to be before they
occur.
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Waste from the nuclear fuel cycle has two components: front end and back
end. Front-end waste is usually alpha particle emitting waste originating from
the extraction of uranium and back-end waste consists mostly of spent reactor
fuel rods containing fission products that emit beta and gamma radiation.

A partial solution to the current nuclear waste dilemma is a more efficient
use of the nuclear fuel to minimize the amount of the nuclear waste generated.
Two new developments in reactor technology are showing promise in this
direction: the very high temperature (VHT) reactor and the sodium-cooled
fast (SCF) reactor, both incorporating inherent safety features to prevent
reactor core meltdown and release of radioactive fission products into the
environment.

The core of the VHT reactor is made of graphite, a moderator material
that remains strong and stable even at the very high operating tempera-
tures. Helium gas is used for reactor cooling and for transport of heat to a
heat exchanger where it is used to produce steam from water for running the
turbines that generate electricity. The VHT reactor is operating at about
1000 ◦C in contrast to about 300 ◦C operating temperature of standard
reactors and its nuclear fuel consists of carbon-coated uranium oxide to
withstand the very high operating temperature.

The SCF reactors have been in use for several decades, however, modern
designs introduce several important new features which increase efficiency.
The operating temperature is about 500 ◦C and the reactors use sodium
for the modulator material. In modern SCF reactors uranium is bombarded
with fast neutrons which are neutrons with much higher energy than that of
thermal neutrons used in standard reactors and this produces an almost two
orders of magnitude increase in efficiency in comparison with the standard
thermal reactors. Moreover, the SCF reactor can also burn spent nuclear fuel
from standard reactors and can also run on depleted uranium left over from
the uranium enrichment process, thereby significantly mitigating the nuclear
waste problem.

12.8.4 Nuclear Fusion Chain Reaction

The binding energy per nucleon EB/A plotted against atomic mass number A
in Fig. 1.3 exhibits a maximum of ∼8.8 MeV/nucleon at an atomic mass num-
ber A ≈ 60 and falls to ∼7.5 MeV/nucleon at very large A (heavy nuclei)
and to even smaller values at small A (light nuclei). For example, EB/A for
deuteron is only ∼1.1 MeV/nucleon. Just like this peculiar shape of the EB/A
curve lends itself to energy release in nuclear fission at large A, in principle,
it also holds promise in nuclear fusion of two light nuclei (with relatively
low EB/A) into a heavier nucleus with larger EB/A. The obvious problem
with fusion is that the two light nuclei must be brought very close to one
another for the short-range nuclear attractive potential to become effective
and induce nuclear fusion, but, in doing so, the Coulomb repulsive potential
must be overcome.
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An estimate of the Coulomb repulsive potential for two light nuclei just
touching results in a few MeV per nucleus, certainly an energy that can be
achieved with modern accelerators. However, relying on collision of energetic
machine-produced light particles is unlikely to enable a fusion chain reaction
because most of the collision interactions will result in elastic scattering rather
than fusion and the collision process will on average result in energy drain
rather than gain.

Other means must thus be employed in the quest for using nuclear fusion as
an inexpensive and “inexhaustible” energy source, and thermal energy seems
the most practical option. However, the required temperature to provide the
fusing nuclei with the thermal energy to overcome the Coulomb barrier of the
order of a few MeV is extremely high and of the order of 107 K. (Note: the
thermal energy kT at room temperature of about 300 K is 0.025 eV with k
the Boltzmann constant).

Arthur S. Eddington in 1920s proposed proton–proton fusion to explain
the energy source for the sun and other stars; however, the temperature of the
sun was deemed too low for providing hydrogen nuclei with sufficient thermal
energy to overcome the Coulomb barrier. Subsequent developments in quan-
tum mechanics, specifically in understanding of the tunneling phenomena,
have provided an answer for the possibility of fusion at temperatures lower
than those estimated classically. Hans Bethe developed Eddington’s work fur-
ther, described nuclear mechanisms for fusion of hydrogen into helium, and in
1967 received the Nobel Prize in Physics “for his theory of nuclear reactions,
especially for his discoveries concerning the energy production in stars.”

Despite significant worldwide effort by many research groups to achieve
controlled thermonuclear fusion, successes to date have been small. Several
fusion reactions, albeit of very short duration, have already been observed
under laboratory conditions; however, the energy expended to produce them
always exceeded the energy output, so that chain reaction conditions so far
have not been achieved. The main problem is containment of the nuclear fuel
at the very high temperatures required to overcome the Coulomb repulsion
between the two nuclei undergoing fusion. Of the two currently favored tech-
niques, one uses magnetic confinement of hot plasma in tokamak machines
and the other uses very intense laser beams or ion beams focused on very
small volumes of nuclear fuel. Progress is slow, however, and practical power
generation based on nuclear fusion is still far in the future.

In order to be useful as a potential source of energy, a fusion reaction
should satisfy several criteria, such as:

• The reaction should involve low atomic number Z nuclei, such as
deuteron d, triton t, helium-3, and helium-4.

• The reaction should be exoergic.
• The reaction should have two or more products for energy and momentum

conservation.
• The reaction should conserve the number of protons and the number of

neutrons.
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A few examples of fusion reactions that meet the criteria listed above are
given below. The Q values for the individual reactions are calculated using
data provided in Appendix A. The energy given in the Q value is shared
between the two reaction products in inverse proportion to their masses.

1. d + d → t + p +Q

(1875.6129 + 1875.6129) MeV = (2808.9209 + 938.2703) MeV +Q

Q = (3751.2250− 3747.1912) MeV = 4.03 MeV
Q = Qt +Qp = 0.75 × 4.03 MeV + 0.25 × 4.03 MeV

= 3.02 MeV + 1.01 MeV (12.69)

2. d + d → 3
2He + n +Q

(1875.6129 + 1875.6129) MeV = (2808.3913 + 939.5654) MeV +Q

Q = (3751.2258− 3747.9567) MeV = 3.27 MeV
Q = Q3

2He +Qn = 0.75 × 3.27 MeV + 0.25 × 3.27 MeV
= 2.45 MeV + 0.82 MeV (12.70)

3. d + t → 4
2He + n +Q

(1875.6129 + 2.808.9209) MeV = (3727.3791 + 939.5654) MeV +Q

Q = (4684.5338− 4666.9445) MeV = 17.59 MeV
Q = Q4

2He +Qn = 0.80 × 17.59 MeV + 0.20 × 17.59 MeV
= 14.05 MeV + 3.54 MeV (12.71)

4. d + 3
2He → 4

2He + p +Q

(1875.6129 + 2808.3913) MeV = (3727.3791 + 938.2703) MeV +Q

Q = (4684.0042− 4665.6494) MeV = 18.36 MeV
Q = Q4

2He +Qp = 0.80 × 18.36 MeV + 0.20 × 18.36 MeV
= 14.69 MeV + 3.67 MeV (12.72)

12.9 Production of Radionuclides
with Radionuclide Generator

Technetium-99m (Tc-99m) is the most widely used radionuclide for diagnostic
imaging in nuclear medicine, being used is some 80 % of all nuclear imaging
tests. It emits 140.5 keV gamma rays with a physical half-life of 6.02 hours
and thus has properties which make it very suitable for nuclear imaging. It
provides sufficiently high-energy gamma rays for imaging and has a half-life
long enough for investigation of metabolic processes, yet short enough so as
not to deliver an excessive total body dose to the patient.



12.9 Production of Radionuclides with Radionuclide Generator 567

In addition, since Tc-99m is characterized with a nuclear decay that pro-
duces only gamma rays and no α particles or energetic β particles, the total
body patient dose is kept to a minimum. Technetium-99m does not target any
specific organ or tissue in the human body; however, it can be incorporated as
tracer into a wide range of biologically active substances for accumulation in
a specific organ or tissue and subsequent imaging of the specific organ or tis-
sue. Technetium-99m is well suited for its role as radioactive tracer because it
emits readily detectable 140 keV gamma rays with a half-life of about 6 hours.

12.9.1 Molybdenum – Technetium Decay Scheme

As shown in the simplified decay scheme of Fig. 12.14, the parent nucleus
of Tc-99m is molybdenum-99 (Mo-99) which disintegrates with a half-life of
2.75 days (66 hours) through β− decay (Sect. 11.4) into several excited levels
of Tc-99m. The Tc-99m radionuclide is unusual, since it undergoes a gamma
decay into Tc-99 ground state with its own half-life of 6.02 hours rather than
decaying essentially instantaneously (within 10−16 s), as is the case with most
excited radionuclides produced through β− or β+ decay. Tc-99m is thus the
daughter product of the Mo-99 β− decay exhibiting its own relatively long
half-life of 6.02 hours; hence the label 99m with m designating an isomeric
metastable state (Sect. 11.7.1).

The diagram of Fig. 12.14 indicates a fairly complicated β− decay scheme
for the Mo-99 nucleus; however, all β− transitions into the excited Tc-99m
nucleus except the one to the 0.1405 MeV level are rare and are followed
by internal conversion transitions to the 0.1405 MeV level which decays into
ground state of Tc-99 through emission of a 140.5 keV gamma photon (88 %)
or internal conversion (12 %) with associated internal conversion and Auger
electrons and characteristic x rays. In the first approximation we assume that
the Tc-99m gamma decay involves only one transition emitting a 140.5 keV
gamma ray which is then used for diagnostic imaging. The Tc-99 nucleus, the
daughter product of the Tc-99m gamma decay, is also radioactive and decays
through β− decay with a half-life of 2.13×105 years into stable ruthenium-99
(Ru-99).

The 99
42Mo β−−−−−→

66 h

99m
43 Tc γ−−−−→

6 h

99m
43 Tc β−−−−−−−−−→

2.13×105 y
99
44Ru nuclear series

decay thus proceeds through one β− decay, one γ decay, and another β−

before ending with stable ruthenium-99 as follows

99
42Mo

β−
−→ 99m

43 Tc + e− + ν̄e +Qβ−(1.357 MeV) (12.73)

99m
43 Tc

γ−→ 99
43Tc + γ(140.5 keV) (12.74)

99
43Tc

β−
−→ 99

44Ru + e− + ν̄e +Qβ−(0.294 MeV) (12.75)
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Fig. 12.14. Simplified scheme for nuclear series decay of molybdenum-99 into
ruthenium-99, starting with β− decay of molybdenum-99 into technetium-99m
through gamma decay of technetium-99m into technetium-99 to β− decay of
technetium-99 into stable ruthenium-99. The relative mass-energy levels (not shown
to scale) for the three nuclides are calculated using atomic masses listed in
Appendix A

The decay energies Qβ− for the β− decay of 99
42Mo into radioactive 99

43Tc and
the decay of 99

43Tc into stable 99
44Ru are determined, as shown in Sect 11.4.2

for the β− decay in general. We get

Qβ−(9942Mo) = [M(9942Mo) −M(9943Tc)]c2 = (98.9077116− 98.9062546)uc2

= 0.001457× 931.494028 MeV = 1.357 MeV (12.76)

and

Qβ−(9943Tc) = [M(9943Tc) −M(9944Ru)]c2 = (98.9062546− 98.9059393)uc2

= 0.000315× 931.494028 MeV = 0.294 MeV (12.77)

in agreement with the decay scheme shown in Fig. 12.14.
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12.9.2 Molybdenum – Technetium Radionuclide Generator

The short half-life of only 6 h of technetium-99 m is advantageous from the
point-of-view of minimizing the patient dose resulting from the imaging test;
however, it also makes the logistics of source production, delivery, and storage
problematic. A method to circumvent the transportation and delivery problem
was developed in 1950s at the Brookhaven National Laboratory in Upton, NY,
whereby a supplier, rather than shipping the Tc-99m radionuclide, ships the
longer-lived parent radionuclide Mo-99 in a device referred to as a radionuclide
generator.

Originally, the device was named “radioisotope generator” and the old
term is still often used even though the term “isotope” for designation of
nuclear species has been replaced with the term “nuclide”. Thus, the device
should be called radionuclide generator not only to follow correct nomencla-
ture but also to distinguish it from another type of “radioisotope generator”
which is used for a broad class of power generators. These generators are
based on heat produced by radioactive decay of certain long-lived radionu-
clides with preference for α emitters, such as plutonium-238, curium-244, and
strontium-90. These generators can be considered as a type of battery and
are used as power sources in satellites, space probes, and unmanned remote
facilities, and have nothing in common with the radionuclide generators used
in medicine.

Several radionuclide generators are used in nuclear medicine as a source of
metastable radionuclides for imaging; however, the molybdenum-technetium
(Mo–Tc) generator is by far the most common. In the molybdenum-
technetium (Mo–Tc) radionuclide generator the Mo-99 radionuclide decays
with a 65.94-h half-life to Tc-99m. Since the daughter’s 6.02-h half-life is
much shorter than the parent’s half-life, the two radionuclides attain secu-
lar equilibrium and the daughter decays with the half-life of the parent, as
discussed in Sect. 10.3.4. This effectively extends the lifetime of the Tc-99m
radionuclide and makes its transportation much less problematic than would
be the shipping of carrier-free Tc-99m radionuclide.

The activities of Mo-99 and Tc-99m as well as the functional relation-
ship between the two are illustrated in Fig. 10.2 with the curve labeled
m = 0.1 where m is the decay factor given as m = (t1/2)D/(t1/2)P = λP/λD,
and is defined in (10.44). The decay factor for the Mo–Tc decay is m =
(t1/2)Tc/(t1/2)Mo = λMo/λTc = 6.01/65.94 = 0.091, so we can use them = 0.1
curve in Fig. 10.2 as a reasonable approximation. The parent Mo-99 decays
exponentially, as one would expect, with its half-life of 66 h. The activity of
the daughter Tc-99m, on the other hand, starts at zero rises rapidly to a max-
imum value which it attains when its activity is equal to the parent activity
(point of ideal equilibrium as defined by Robley Evans), and then it decays
with the activity of the parent. The time to reach maximum daughter activity
(equilibrium activity) can be calculated using (10.48) and (10.50) to get

(tmax)D =
m

m− 1
lnm
ln 2

(t1/2)P =
0.091
−0.90

ln 0.091
ln 2

65.94 h = 23.1 h. (12.78)
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As shown in (12.78), it takes 23.1 h (about four daughter half-lives) to
reach equilibrium activity, but 50 % of equilibrium activity will be reached
within one daughter half-life and 75 % within two daughter half-lives. Hence,
removing the daughter nuclide from the generator in a simple procedure called
the elution process (colloquially referred to as “milking the cow”) can easily
be done every 6 h to 12 h. Typically, about 80 % of the available Tc-99m
activity is extracted in a single elution process.

A large percentage of the Tc-99m generated by a Mo–Tc generator is
produced in the first three half-lives of the parent or in about one week. Thus,
regular delivery of one Mo–Tc radionuclide generator per week can ensure a
steady supply of Tc-99m for a nuclear medicine department.

A typical record of Tc-99m activity in a Mo–Tc generator is shown in
Fig. 12.15, starting at time t = 0 when the generator is loaded with Mo-99
and the activity of Tc-99m is zero. The generator is then shipped to the
clinical site, the activity of Mo-99 decays exponentially, and the activity of

Fig. 12.15. Normalized activities of Mo-99 and Tc-99m in a radionuclide generator
undergoing elution processes (E1, E2, E3, and E4) at times t = 20, 28, 44, and 52 h
corresponding to normalized times x of 0.3; 0.42; 0.67; and 0.79, respectively. Points
1, 2, 3, 4, and 5 designate the appropriate points of ideal equilibrium on the Mo-99
exponential decay curve corresponding to the four elution processes. The branching
decay ratio for Mo-99 decay is assumed equal to 100 %, while in reality it is 86 %,
as discussed in Sect. 10.8
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Tc-99m increases toward the point of ideal equilibrium. If left alone, transient
equilibrium between Mo-99 and Tc-99m would be reached in the generator, as
discussed in Sect. 10.5.3, and the two activities would decrease exponentially,
as given in (10.63) and shown in Fig. 10.2 for m ≈ 0.1.

The activity trace given in Fig. 12.15 is significantly more complicated
than that in Fig. 10.2 because of four elution processes (at times t = 20 h,
28 h, 44 h, and 52 h) that were carried out on the generator to obtain Tc-99m
radionuclide for clinical nuclear medicine studies. After each elution, the activ-
ity of Tc-99m in the generator follows a similar pattern to the initial trace
that is characterized with initial growth, peak at ideal equilibrium, and even-
tual transient equilibrium exponential decay, as indicated in Fig. 12.15. Each
elution process results in a different point of ideal equilibrium; however, all Tc-
99m activity curves eventually converge to the initial Tc-99m activity curve
which starts at zero at time t = 0. A simplifying assumption in the plot
of Fig. 12.15 is that the branching decay fraction of Mo-99 into Tc-99m is
assumed to be 100 %, while in reality it is 86 %, as discussed in Sect. 10.8.

12.9.3 Production of Molybdenum-99 Radionuclide

Two techniques, both based on nuclear reactor technology, are used for pro-
ducing the parent radionuclide Mo-99 used in Mo–Tc generator for generating
the Tc-99m radionuclide:

1. One method uses neutron activation of stable molybdenum-98 through
the 98Mo(n, γ)99Mo reaction. The disadvantage of this technique is the
relatively low specific activity of the resulting Mo-99 source, because the
molybdenum radionuclide delivered to a clinic is not carrier free.

2. The second and more common technique uses fission of enriched uranium-
235 foils to produce Mo-99 as one of the many fission fragments in the
target foil. After irradiation with thermal neutrons, Mo-99 is radiochemi-
cally separated in a hot cell from other fission fragments and this results
in a high specific activity Mo-99 source. The drawback of this technique is
the large amount of radioactive waste it creates, much of it long-lived and
problematic to dispose off.

12.10 Nuclear Activation with Protons
and Heavier Charged Particles

Protons produced by cyclotrons are used in the production of proton-rich
unstable radionuclides that decay through β+ decay or electron capture into
more stable configurations. When striking a target material, protons may
cause nuclear reactions that produce radionuclides in a manner similar to neu-
tron activation in a reactor. However, because of their positive charge, protons
striking the target must have relatively high kinetic energies, typically 10 MeV
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to 20 MeV, to penetrate the repulsive Coulomb barrier surrounding the pos-
itively charged nucleus. Proton activation reactions are generally endoergic
which means that energy must be supplied by the projectile for the reaction
to occur. The minimum energy that will allow the reaction to occur is referred
to as the threshold energy.

Proton capture by a target nucleus changes the atomic number from Z
for the parent to Z + 1 for the daughter nucleus. This allows production of
carrier-free radionuclides for use in medicine, because a chemical separation of
the newly produced daughter radionuclide from the remaining parent nuclide
is possible. Positron emitters produced for use in medicine by proton acti-
vation in cyclotrons generally have much shorter half-lives (of the order of
minutes) than radionuclides produced for use in medicine by neutron acti-
vation in nuclear reactors. This implies that cyclotrons used in production
of radionuclides should be located close to the user of the radionuclides to
minimize the transportation and delivery time.

Cyclotrons generally produce smaller quantities of radioactivity than do
nuclear reactors because:

1. Cross sections for proton capture are lower by several orders of magnitude
than those for neutron capture and they are strongly energy dependent.

2. Proton beam is monodirectional and is attenuated in the target.
3. Cyclotron particle fluence rates are generally lower than those produced

by nuclear reactors.

For cyclotrons, rather than providing a fluence rate as is done for reactor
produced neutrons, one provides a beam current, usually expressed in μA,
where 1 μA of current is equal to 6.25×1012 electronic charges per second, i.e.,
6.25×1012 electrons per second. Thus, a proton beam of 1 μA corresponds to
6.25×1012 protons per second; a helium He2+ beam corresponds to 3.125×1012

helium ions per second.
The cyclotron-produced radionuclides are positron emitters used in

positron emission tomography (PET) scanners for diagnostic imaging; a non-
invasive imaging technique that provides a functional image of organs and
tissues, in contrast to CT scanning and MRI scanning that provide anatomic
images of organs and tissues. For PET scanning the positron-emitting radionu-
clides are attached to clinically useful biological markers that are used in
studies involving various metabolic processes in cancer diagnosis and treat-
ment. The four most important positron emitting radionuclides used in
medical PET imaging are: fluorine-18, carbon-11, nitrogen-13 and oxygen-15
and their main characteristics are given in Table 12.6.

All radionuclides currently used in PET scanning have short half-lives.
This is advantageous for minimization of the total body dose that the patient
receives during the diagnostic test but generally requires the presence of
a cyclotron next to the PET machine making the operation of a PET
scanner expensive. Only fluorine-18 with a half-life of 110 minutes can be
manufactured at an offsite location.



12.10 Nuclear Activation with Protons and Heavier Charged Particles 573

Table 12.6. Main physical characteristics of four most common positron emitters
produced in a cyclotron for use in medicine

Radionuclide Specific
activity

Target Production
reaction

Q value
(MeV)

Half-life
(min)

Carbon-11 8.4×108 Nitrogen-14 14
7N + p → 11

6C + α −2.92 20.4
Nitrogen-13 1.4×109 Oxygen-16 16

8O + p → 13
7N + α −5.22 10.0

Oxygen-15 6.0×109 Nitrogen-15 15
7N + p → 15

8O + n −3.54 2.1
Fluorine-18 9.5×107 Oxygen-18 18

8O + p → 18
9F + n −2.44 110.0

12.10.1 Nuclear Reaction Energy and Threshold Energy

As discussed in Sect. 5.2, the nuclear reaction energy Q also known as the
Q value for a nuclear reaction provides the energy release or energy absorption
during the nuclear reaction. In general, the Q value is determined in one of
the following two manners:

1. The sum of nuclear rest energies of the reaction products (i.e., the total rest
energy after reaction) is subtracted from the sum of nuclear rest energies
of the reactants (i.e., the total rest energy before reaction).

2. The sum of nuclear binding energies of the reactants (i.e., the total
binding energy before reaction) is subtracted from the sum of nuclear
binding energies of reaction products (i.e., the total binding energy after
reaction).

For a given nuclear reaction the Q values obtained with the two methods
should be identical and will be either positive or negative:

1. For Q > 0 the reaction is called exoergic and the excess energy is shared
between the two reaction products.

2. For Q < 0 the reaction is called endoergic and for the reaction to occur,
energy must be supplied in the form of the kinetic energy of the projectile.

By way of example we calculate the nuclear reaction energy Q for the activa-
tion of oxygen-18 into flurorine-18 in a proton cyclotron. The reaction is as
follows

18
8O + p → 18

9F + n +Q (−2.44 MeV) (12.79)

and the Q value of −2.44 MeV is calculated using first the rest energy method
and then the binding energy method with data from Appendix A.

1. Rest energy method:

Q =

{∑
i

Mic
2

}

before

−
{∑

i

Mic
2

}

after

=
{
M(188O)c2 +mpc

2
}− {M(189F)c2 +mnc

2}
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= {16762.0227+ 938.272} MeV − {16763.1673+ 939.5654} MeV
= −2.44 MeV. (12.80)

2. Binding energy method

Q =

{∑
i

(EB)i

}

after

−
{∑

i

(EB)i

}

before

= 137.3693 MeV − 139.8071 MeV = −2.44 MeV. (12.81)

Both methods produce the same result: −2.44 MeV. The production of
fluorine-18 in a cyclotron is thus an endoergic reaction and energy must be
supplied for the reaction to occur.

In general, for endoergic reactions to occur the projectiles must have a
certain minimum threshold kinetic energy (EK)thr that exceeds the absolute
value of the Q value, so that the total momentum for before and after the
interaction is conserved. The general relationship for the threshold of endo-
ergic reactions was derived in (5.13), and based on that result we write the
threshold kinetic energy (EK)thr for the proton with rest mass mp, activating
target nuclide of rest mass Mt, as

(EK)thr = −Q
{

1 +
mp

Mt

}
. (12.82)

For example, the threshold energy for fluorine-18 production from oxygen-18
in a proton cyclotron at 2.58 MeV is slightly higher than the absolute value
of |Q| = 2.44 MeV. The threshold energy of 2.58 MeV for fluorine-18 is
determined from (12.82) as follows

(EK)thr = −Q
{

1 +
mpc

2

M(188O)c2

}

= −(−2.44 MeV)
{

1 +
938.272 MeV

16762.0227 MeV

}
= 2.58 MeV. (12.83)

12.10.2 Targets in Charged Particle Activation

The targets used in charged particle activation are either thin or thick. The
following conditions apply:

1. The thickness of a thin target is such that the target does not appreciably
attenuate the charged particle beam.

2. Charged particles traversing a thick target lose energy through Coulomb
interactions with electrons of the target and this affects the activation yield,
since the cross section for activation depends on charged particle energy.
The particle beam is completely stopped in a thick target or it is degraded
in energy to a level below the threshold energy.
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3. Similarly to the approach that one takes with thick x-ray targets assuming
they consist of many thin x-ray targets, one may assume that a thick target
in charged particle activation (CPA) consists of a large number of thin tar-
gets, each one characterized by a given charged particle kinetic energy and
reaction cross section. The kinetic energy for each slice is determined from
stopping power data for the given charged particle in the target material.

4. Target materials used in production of positron-emitting nuclides are either
in a gaseous or liquid state.

5. Cyclotron targets are most commonly of the thick target variety resulting
in complete beam absorption in the target material.

6. Essentially all energy carried into the target by the beam is transformed
into heat because of charged particle Coulomb interactions with orbital
electrons of the target atoms. Thus, targets are cooled with circulating
helium gas.

7. Only a small fraction of one percent of the charged particle beam is used
up for induction of activation, the rest is dissipated as heat.

The derivations presented in Sect. 12.4 for neutron activation could in principle
be generalized to CPA; however, the issue of beam attenuation in thick targets
that are routinely used for CPA of medical positron-emitting radionuclides
complicates matters considerably. On the other hand, the specific activities
produced by CPA are several orders of magnitude lower than specific activities
produced in neutron activation, so that in general parent nuclide depletion is
not of concern in CPA. In Sect. 12.4 it was established that the depletion
model should be used for activation factors m exceeding 10−3. Since typical
values of m in CPA are of the order of 10−7, it is obvious that daughter
activation in CPA can be calculated using the simple saturation model that
accounts for the daughter decay during the activation procedure.

Assuming that there is no charged particle beam attenuation in the tar-
get (thin target approximation), the daughter activity AD(t), similar to the
neutron activation case of (12.23), can be written as follows

AD(t) = In�xσP

(
1 − e−λDt

)
(12.84)

where

I is the intensity of the charged particle beam in particles per unit time
in
(
s−1
)
.

n� is the number of target nuclei per volume in cm−3.
x is the target thickness in cm.
σP is the reaction cross section of the parent nuclei at the energy of the

charged particle beam in barn
(
1 b = 10−24 cm2

)
.
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Waveguide Theory

This chapter is devoted to a discussion of theoretical aspects of disk-loaded
waveguides used for acceleration of electrons with linear accelerators (linacs)
in treatment of cancer with ionizing radiation. Linacs represent a significant
technological advancement over x-ray machines and cobalt-60 units which
were used for routine radiotherapy in the past before the advent of linacs.

Two research groups were involved in initial development of linear accel-
erator: William W. Hansen’s group at Stanford University in the USA and
D.W. Fry’s group at the Telecommunications Research Establishment in the
UK. Both groups were interested in linacs for research purposes and profited
heavily from the microwave radar technology based on a design frequency of
2856 MHz and developed during World War II.
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The potential for use of linacs in radiotherapy became apparent in the
1950s, and the first clinical linac was installed in the 1950s at the
Hammersmith Hospital in London. During the subsequent years, the linac
eclipsed the cobalt machine and became the most widely used radiation source
in modern external beam radiotherapy. Technical and clinical aspects of linacs
are discussed in Sect. 14.6; in this chapter we discuss the theoretical aspects of
electron acceleration in an accelerating waveguide of a linac. First, the uniform
waveguide theory is developed using Maxwell equations and then the results
of the uniform waveguide theory are extrapolated to disk-loaded waveguides
which are suitable for electron acceleration.

13.1 Microwave Propagation in Uniform Waveguide

In a disk-loaded accelerating waveguide of a linac, electrons are accelerated
with electromagnetic (EM) radiofrequency (RF) fields in the microwave fre-
quency range. Standard clinical linacs operate in the S-band (2856 MHz);
miniature waveguides used in CyberKnife and Tomotherapy machines use the
X band (104 MHz); and some research linacs run in the L band (103 MHz).
In a clinical linac the electrons are accelerated to kinetic energy in the range
from 4 MeV to 25 MeV and are used to produce two types of clinical beams:

1. Bremsstrahlung x-ray beams ranging in energy from 4 MV to 25 MV.
2. Electron beams in the kinetic energy range from 4 MeV to 25 MeV.

The disk-loaded accelerating waveguide evolved from a cylindrical uniform
waveguide which is an efficient transmitter of radiofrequency (RF) power but
is not suitable for charged particle acceleration. The theory of microwave
propagation through disk-loaded accelerating waveguides is very complex,
and often the final understanding and design of such a waveguide is achieved
through empirical means and theoretical conclusions based on the theory of
microwave propagation in uniform waveguides. The uniform waveguide theory
is simpler, yet it provides an excellent basis for the final empirical steps in the
study of disk-loaded waveguides.

In its most general form a waveguide consists of a metallic duct which has
a uniform rectangular or circular cross section and is filled with a suitable
dielectric gas or is evacuated to a very low pressure of the order of 10−6 torr.
Waveguides are used either (1) for transmission of RF power or (2) for accel-
eration of charged particles such as electrons. The transmission waveguides
have a rectangular or circular cross section; the accelerating waveguides have
a circular cross section and are thus of cylindrical shape. The theory of accel-
erating waveguides uses cylindrical coordinates r, θ, and z with the axis of the
cylinder coinciding with the z axis, as indicated in Fig. 13.1. The standard
transformation equations between the Cartesian (x, y, and z) coordinates and
the cylindrical (r, θ, and z) coordinates are given as follows

x = r cos θ, y = r sin θ, and z = z (13.1)
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Fig. 13.1. Relationship between Cartesian coordinate system (x, y, z) and cylindri-
cal coordinate system (r, θ, z)

or
r =

√
x2 + y2, θ = arctan

y

x
, and z = z, (13.2)

where r ≥ 0; 0 ≤ θ ≤ 2π; and 0 < z ≤ z0.
The propagation of microwaves through a uniform waveguide is governed

by four Maxwell equations and appropriate boundary conditions. Maxwell
equations for electric field vector E and magnetic field vector B were presented
in general differential and integral forms in Sect. 1.29; for a uniform evacuated
waveguide we write them in the differential form as follows

∇ · E = 0, Gauss law in electricity, (13.3)
∇ · B = 0, Gauss law in magnetism, (13.4)

∇ × E = −∂B
∂t
, Faraday law, (13.5)

∇ × B =
1
c2
∂E
∂t
, Ampère law, (13.6)

recognizing that in vacuum the charge density ρ and current density j, which
appear in the general form of Maxwell equations, are equal to zero. Each of the
four Maxwell equations also carries a specific name in honor of the physicist
who discovered it independently from Maxwell.
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13.2 Boundary Conditions

The boundary conditions on field vectors E and B at interfaces between two
media (medium 1 and medium 2) where the dielectric and magnetic properties
vary discontinuously are in general given by

(E2 − E1) × n̂ = 0 (13.7)

and
(B2 − B1) · n̂ = 0, (13.8)

where

n̂ is a unit vector normal at the surface.
E1 and E2 are the electric field vectors in media 1 and 2, respectively.
B1 and B2 are the magnetic field vectors in media 1 and 2, respectively.

A cylindrical evacuated uniform waveguide represents a special case in
which medium 1 is vacuum and medium 2 is the waveguide wall made of a
“perfect” conductor such as copper. The boundary conditions for the special
case of a uniform cylindrical waveguide with radius a and the interior surface S
separating vacuum (where field vectors E and B are non-zero and finite) from
the copper wall (where E and B are equal to zero) may be written as follows

n̂ × E |S = 0 or Etan g|S = 0 or Ez|S = 0 or Ez |r=a = 0 (13.9)

and

n̂ · B|S = 0 or Bnorm|S = 0 or
dBz

dn

∣∣∣∣
S

= 0 or
dBz

dr

∣∣∣∣
r=a

= 0,

(13.10)
where

Etang|S is the tangential component of the electric field vector on the surface
S at r = a.

Bnorm|S is the normal component of the magnetic filed vector on the surface
S at r = a.

Ez is the z component of the electric field vector E with z along the
cylinder axis.

Bz is the z component of the magnetic field vector B with z along the
cylinder axis.

In mathematics the boundary condition Ez|r=a = 0 is referred to as the
Dirichlet boundary condition, while the boundary condition (dBz/dr)|r=a = 0
is referred to as the Neumann boundary condition.

The boundary conditions on Ez and Bz are different from one another,
and in general cannot be satisfied simultaneously. Therefore, the fields inside
a uniform waveguide are divided into two distinct modes: transverse magnetic
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(TM) and transverse electric (TE) with the following characteristics:

1. In the TM mode, Bz = 0 everywhere and the boundary condition is of the
Dirichlet type: Ez|S = 0.

2. In the TE mode, Ez = 0 everywhere and the boundary condition is of the
Neumann type: ∂Bz/∂z|S = 0.

13.3 Differential Wave Equation
in Cylindrical Coordinates

Applying the curl vector operator (∇×) on (13.5) and using the vector identity

∇ × ∇ × A = ∇∇ · A −∇2A, (13.11)

where

A is an arbitrary vector function.
∇ is the gradient vector operator often labeled as grad.
∇· is the divergence vector operator often labeled as div.
∇2 is the vector Laplacian operator where ∇2 ≡ Δ = ∇ · ∇ ≡ div grad,

results in the following expression linking electric field vector E and magnetic
field vector B

∇ × ∇ × E = ∇∇ · E −∇2E = − ∂

∂t
∇ × B, (13.12)

which, after inserting (13.3) and (13.6), evolves into a 3-dimensional partial
differential wave equation for the electric field vector E

∇2E =
1
c2
∂2E
∂t2

. (13.13)

In (13.13), E has three components Er, Eθ, and Ez, and each of the three
components is a function of spatial coordinates r, θ, and z as well as of the
temporal coordinate t. Thus, we write

E = [Er (r, θ, z, t) ; Eθ (r, θ, z, t) ; Ez (r, θ, z, t)] . (13.14)

In a similar fashion, applying the curl vector operator (∇×) on (13.6)
and using the vector identity (13.11) results in the following expression for
magnetic field vector B and electric field vector E

∇ × ∇ × B = ∇∇ · B −∇2B = − ∂

∂t
∇ × E, (13.15)

which, after incorporating (13.4) and (13.5), evolves into the following
3-dimensional partial differential wave equation for the magnetic field
vector B
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∇2B =
1
c2
∂2B
∂t2

(13.16)

In (13.16) B has three components Br, Bθ, and Bz and each of the three
components is a function of spatial coordinates r, θ, and z as well as of the
temporal coordinate t. Thus, we write

B = [Br(r, θ, z, t); Bθ(r, θ, z, t); Bz (r, θ, z, t)] . (13.17)

Wave equations (13.13) for electric field vector E and (13.16) for mag-
netic field vector B contain the vector Laplacian operator ∇2 which, when
operating on an arbitrary field vector A with components Ar, Aθ, and Az ,
is expressed in cylindrical coordinate system as follows (see, for example:
http://mathworld.wolfram.com/VectorLaplacian.html)

∇2A ≡

∣∣∣∣∣∣∣∣∣∣∣∣∣

∂2Ar

∂r2
+

1
r

∂Ar

∂r
+

1
r2
∂2Ar

∂θ2
+
∂2Ar

∂z2
− 2
r2
∂Aθ

∂θ
− Ar

r2

∂2Aθ

∂r2
+

1
r

∂Aθ

∂r
+

1
r2
∂2Aθ

∂θ2
+
∂2Aθ

∂z2
+

2
r2
∂Ar

∂θ
− Aθ

r2

∂2Az

∂r2
+

1
r

∂Az

∂r
+

1
r2
∂2Az

∂θ2
+
∂2Az

∂z2
+ 0 + 0

∣∣∣∣∣∣∣∣∣∣∣∣∣

=
1
c2
∂2A
∂t2

≡

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
c2
∂2Ar

∂t2

1
c2
∂2Aθ

∂t2

1
c2
∂2Az

∂t2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (13.18)

As evident from (13.18), the individual relationships for the r and θ com-
ponents of vector field A are quite complicated; however, the relationship for
the z component of A retains the original form of the wave equation, expressed
by the scalar Laplacian operator in the cylindrical coordinate system as

∂2Az

∂r2
+

1
r

∂Az

∂r
+

1
r2
∂2Az

∂θ2
+
∂2Az

∂z2
≡ 1
r

∂

∂r

(
∂Az

∂r

)
+

1
r2
∂2Az

∂θ2
+
∂2Az

∂z2
=

1
c2
∂2Az

∂t2
.

(13.19)
Using the scalar Laplacian operator in cylindrical coordinates of (13.19), we
now express the wave equations for Ez and Bz as follows

∇2Ez ≡ ∂2Ez

∂r2
+

1
r

∂Ez

∂r
+

1
r2
∂2Ez

∂θ2
+
∂2Ez

∂z2
=

1
c2
∂2Ez

∂t2
(13.20)

and

∇2Bz ≡ ∂2Bz

∂r2
+

1
r

∂Bz

∂r
+

1
r2
∂2Bz

∂θ2
+
∂2Bz

∂z2
=

1
c2
∂2Bz

∂t2
. (13.21)
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Wave equations (13.13) and (13.16) describe the electric and magnetic fields,
respectively, in a uniform waveguide. We first study the r, θ, and z compo-
nents of the electric field vector E and the magnetic field vector B, and then
define the special RF modes which may prove useful for particle acceleration.
Whereas radiofrequency can be transmitted through vacuum as well as various
dielectric gases, vacuum is required for particle acceleration.

Equations (13.20) and (13.21) for Ez and Bz, respectively, are known as
3-dimensional wave equations in cylindrical coordinates; they are linear par-
tial differential equations of the second order in four variables (three spatial
variables: r, θ, and z, and one temporal variable: t) with constant coefficients.
The two equations have identical form and can in general be written as follows

∇2η ≡ 1
r

∂

∂r

(
r
∂η

∂r

)
+

1
r2
∂2η

∂θ2
+
∂2η

∂z2
=
∂2η

∂r2
+

1
r

∂η

∂r
+

1
r2
∂2η

∂θ2
+
∂2η

∂z2
=

1
c2
∂2η

∂t2
,

(13.22)

with η a function of r, θ, z, and t representing both Ez(r, θ, z, t) and
Bz(r, θ, z, t).

The conditions imposed on η (r, θ, z, t) fall into two categories:

1. Those involving spatial coordinates r, θ, and z and governed by boundary
conditions.

2. Those involving the temporal coordinate t and governed by initial condi-
tions.

The most common approach to solving the 3-dimensional wave equation
(13.22) is to apply the method of separation of variables. This method usually
provides a solution to a partial differential equation in the form of an infinite
series, such as a Fourier series, for example. We first separate out the time
factor by defining η (r, θ, z, t) as a product of two functions: φ and T

η (r, θ, z, t) = φ (r, θ, z)T (t) , (13.23)

where

φ is a function of spatial coordinates r, θ, and z only.
T is a function of time t only.

Inserting (13.23) into (13.22) and dividing by φ(r, θ, z)T (t) gives

∇2φ

φ
≡ 1
c2

1
T

∂2T

∂t2
, (13.24)

with the left hand side of (13.24) depending on spatial coordinates r, θ, and z
only, and the right hand side depending on time t only. If this equality is to
hold for all r, θ, z and t, it is evident that each side must be equal to a
constant. This constant is identical for both sides and usually referred to as
the separation constant Λ. From (13.24) we thus get two expressions

∇2φ = Λφ (13.25)



584 13 Waveguide Theory

and
∂2T

∂t2
= Λc2T. (13.26)

Equation (13.25) is referred to as the Helmholtz partial differential equa-
tion representing an eigenvalue problem in three dimensions with φ the eigen-
function, Λ the eigenvalue, and ∇2 the Laplacian operator. The Helmholtz
equation (13.25) results in three different types of solution depending on the
value of the separation constant Λ:

1. For Λ > 0 the solutions are exponential functions.
2. For Λ = 0 the solution is a linear function.
3. For Λ < 0 the solutions are trigonometric functions.

The Dirichlet boundary condition of (13.9) can be satisfied only for Λ < 0 and
this will result in trigonometric solutions for function η. We now concentrate
on finding solutions to the wave equation and set Λ = −k2 to satisfy the usual
periodicity requirement. Parameter k is called the free space wave number and
is related to angular frequency ω through the standard relationship

k =
ω

c
, (13.27)

with c the speed of light in vacuum. Incorporating Λ = −k2 into (13.25) and
(13.26) yields the following equations for φ(r, θ, z) and T (t), respectively

∇2φ+ k2φ = 0 (13.28)

and
∂2T

∂t2
+ k2c2T =

∂2T

∂t2
+ ω2T = 0. (13.29)

The solutions for T (t) in (13.29) are either trigonometric or exponential but
we reject the latter on physical grounds. Instead of using real trigonometric
functions we express T (t) as

T (t) ∝ e−iωt, (13.30)

and assume that ω may be either positive or negative.
For the Helmholtz equation given in (13.28) we again use the method of

separation of variables and express φ(r, θ, z) as a product of three functions:
R(r), Θ(θ), and Z(z) to get

φ(r, θ, z) = R(r)Θ(θ)Z(z). (13.31)

Insertion of (13.31) into (13.28) with the scalar Laplacian operator expressed
in cylindrical coordinates as given in (13.22) and division by φ(r, θ, z) =
R(r)Θ(θ)Z(z) gives the following result

1
R

∂2R

∂r2
+

1
rR

∂R

∂r
+

1
r2

1
Θ

∂2Θ

∂θ2
+

1
Z

∂2Z

∂z2
+ k2 = 0. (13.32)
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The first three terms of (13.32) are a function of r and θ alone while the fourth
and fifth terms are independent of r and θ. This is possible only if the sum
of the fourth and fifth term is equal to a constant which we designate as γ2

n.
Equation (13.32) now results in following two equations

1
Z

∂2Z

∂z2
+ k2 = γ2

n (13.33)

and
1
R

∂2R

∂r2
+

1
rR

∂R

∂r
+

1
r2

1
Θ

∂2Θ

∂θ2
+ γ2

n = 0. (13.34)

We now express (13.33) as

∂2Z

∂z2
+ (k2 − γ2

n)Z =
∂2Z

∂z2
+ k2

gZ = 0, (13.35)

and get the following trigonometric solution

Z(z) ∝ e+ikgz, (13.36)

where kg is referred to as the waveguide wave number or the propagation
coefficient defined as

k2
g = k2 − γ2

n. (13.37)

Inserting (13.35) and (13.37) into (13.32) and multiplying the result by R/r2

we get the following expression linking R(r) and Θ(θ)

r2

R

∂2R

∂r2
+
r

R

∂R

∂r
+ γ2

nr
2 +

1
Θ

∂2Θ

∂θ2
= 0, (13.38)

with the first three terms of (13.38) depending on r alone and the fourth term
depending on θ alone. Again, this is possible only if the fourth term is equal
to a constant which must be negative to provide physically relevant solutions.
We thus set the constant equal to −m2 and get the following expression for
the fourth term of (13.38)

∂2Θ

∂θ2
+m2Θ = 0 (m = 0, 1, 2, . . .). (13.39)

Equation (13.39) has the following standard general trigonometric solution
leading to trigonometric or complex exponential functions which serve as
eigenfunctions

Θ(θ) = A cosmθ +B sinmθ. (13.40)

Inserting (13.39) into (13.38) and multiplying the result by R/r2 gives the
following expression for R(r)

∂2R

∂r2
+

1
r

∂R

∂r
+
(
γ2

n − m2

r2

)
R = 0, (13.41)
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representing the Bessel differential equation of order m or an eigenvalue equa-
tion with eigenvalue γ2

n when boundary conditions are imposed on R(r). The
physical conditions imposed on Ez and Bz, and thus on R(r) as well, stipulate
that:

1. R(r) must be finite at r = 0

and

2. R(r = a) must satisfy either the Dirichlet boundary condition R(r)|r=a = 0
of (13.9) or the Neumann boundary condition dR/dr|r=a = 0 of (13.10).

The general solution to the Bessel equation (13.41) of order m consists
of cylindrical functions; among these, given for non-negative integer values
of m, the best known are the Bessel functions of the first kind Jm(γnr)
and Bessel functions of the second kind Nm(γnr) (also known as Neumann
functions).

In Fig. 13.2 we plot the Bessel functions Jm(x) andNm(x) for non-negative
integer values of m ranging from 0 to 4. A few important features of Jm(x)
and Nm(x) are immediately apparent:

Fig. 13.2. Bessel functions of the first kind Jm(x) and Neumann functions of the
first kind Nm(x) for integer values of m for 0 ≤ m ≤ 4. Roots xmn of Jm(x) and
Nm(x) for 0 ≤ m ≤ 4 and 0 ≤ x ≤ 10 are also shown
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1. With increasing x, functions Jm(x) and Nm(x) oscillate about zero with
a slowly diminishing amplitude and a decrease in separation between
successive roots (zeros).

2. The two Bessel functions Jm(x) and Nm(x) possess an infinite number of
roots, usually designated as xmn and defined as those values of x at which
the Bessel functions cross zero, i.e., where Jm(x) = 0 or Nm(x) = 0.

3. For x = 0, the Bessel functions of the first kind are finite; for integer m > 0
all Bessel functions of the first kind are equal to zero, i.e., Jm>0(x)|x=0 = 0
and for m = 0 the zero order Bessel function of the first kind equals to 1,
i.e., J0(x)|x=0 = 1.

4. For x = 0, the Bessel functions of the second kind (Neumann functions)
exhibit a singularity, i.e., lim

x→0
Nm(x) = −∞.

5. Roots xmn of Jm(x) and Nm(x) for 0 ≤ m ≤ 4 and 0 ≤ x ≤ 10 are
indicated in Fig. 13.2.

The general solution to the Bessel differential equation (13.41) is given as

R(r) = CJm(γnr) +DNm(γnr), (13.42)

where C and D are coefficients determined from the initial conditions.
Since the Neumann functions are singular at r = 0, to obtain a physically

relevant solution to (13.41) we setD = 0 in (13.42) to get the following general
solution for R(r)

R(r) = CJm(γnr), (13.43)

where γn is a parameter defined in (13.37) and determined from the boundary
conditions which are of the Dirichlet type, Neumann type or intermediate
type. Combining solutions for R(r), Θ(θ), Z(z), and T (t) given in (13.43),
(13.40), (13.36), and (13.30), respectively, we get the following general solution
of the wave equation (13.22) representing the electric field component Ez and
the magnetic field component Bz

η (r, θ, z, t) = R(r)Θ(θ)Z(z)T (t)

=
∞∑

m=0

∞∑
n=1

Jm (γnr) {Amn cosmθ +Bmn sinmθ} e+i(kgz−ωmnt)

=
∞∑

m=0

∞∑
n=1

Jm (γnr) {Amn cosmθ +Bmn sinmθ} e+iϕ, (13.44)

with m the order of the Bessel function, n the rank order number of the
given root of the Bessel function, and (kgz − ωmnt) usually referred to as the
phase of the wave ϕ. Each pair of integers (m,n) corresponds to a particular
characteristic mode of RF propagation through the uniform waveguide. The
general solution of (13.44) is given as a superposition of all modes for m =
0, 1, 2, . . . and n = 1, 2, 3, . . . .
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13.4 Electric and Magnetic Fields in Uniform Waveguide

Based on (13.44) Ez and Bz, the z components of the electric field vector E
and magnetic field vector B, respectively, can now be expressed in general
terms as follows

Ez (r, θ, z, t) =
∞∑

m=0

∞∑
n=1

Jm (γnr) {Amn cosmθ +Bmn sinmθ} ei(kgz−ωmnt)

(13.45)
and

Bz (r, θ, z, t) =
∞∑

m=0

∞∑
n=1

Jm (γnr) {A′
mn cosmθ +B′

mn sinmθ} e+i(kgz−ωmnt),

(13.46)
where Amn, Bmn, A′

mn, and B′
mn are constants to be determined from initial

conditions, m stands for the order of the Bessel function of the first kind, and
n represents the rank order number of the root of the Bessel function of the
first kind.

Ez of (13.45) and Bz of (13.46) are determined by solving the wave equation
given in (13.22). The r and θ components of E and B, on the other hand, are
calculated from Maxwell equations given for uniform waveguide in (13.6) and
(13.5), respectively, in conjunction with the expressions for Ez of (13.45) and
Bz of (13.46).

The curl operator operating on a vector field A is in cylindrical coordinates
expressed as follows

∇× A = curlA =

⎛
⎜⎜⎜⎜⎜⎝

r̂
r

θ̂
ẑ
r

∂

∂r

∂

∂θ

∂

∂z

Ar rAθ Az

⎞
⎟⎟⎟⎟⎟⎠

=
{

1
r
∂Az

∂θ
− ∂Aθ

∂z

}
r̂

+
{
∂Ar

∂z
− ∂Az

∂r

}
θ̂ +

1
r

{
∂ (rAθ)
∂r

− ∂Ar

∂θ

}
ẑ, (13.47)

where

r̂, θ̂, and ẑ are unit vectors.
Ar, Aθ, and Az are components of vector field A.

Noting from (13.45) and (13.46) that ∂/∂t = −iω, we now use (13.6) in
conjunction with (13.47) to express Er and Eθ as

Er = − c
2

iω
1
r

∂Bz

∂θ
+
c2

iω
∂Bθ

∂z
(13.48)

and

Eθ = − c
2

iω
∂Br

∂z
+
c2

iω
∂Bz

∂r
. (13.49)
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Similarly, (13.5) allows us to express Br and Bθ as

Br =
1
iω

1
r

∂Ez

∂θ
− 1

iω
∂Eθ

∂z
(13.50)

and

Bθ =
1
iω
∂Er

∂z
− 1

iω
∂Ez

∂r
. (13.51)

The next step is to express r and θ components of vector fields E and B as
a function of only the z components Ez and Bz given in (13.45) and (13.46),
respectively. For example, we insert the expression for ∂Bθ/∂z that we obtain
from (13.51) into (13.48) and, recognizing from (13.45) that ∂/∂z = ikg and
noting that k2 − k2

g = γ2
n from (13.37), we get the following expression for Er

Er =
1
γ2

n

{
ikg

∂Ez

∂r
+

iω
r

∂Bz

∂θ

}
. (13.52)

In a similar manner, we determine the expressions for Eθ, Br, and Bθ to get

Eθ =
1
γ2

n

{
ikg

r

∂Ez

∂θ
− iω

∂Bz

∂r

}
, (13.53)

Br =
1
γ2

n

{
− iω
c2

1
r

∂Ez

∂θ
+ ikg

∂Bz

∂r

}
, (13.54)

Bθ =
1
γ2

n

{
iω
c2
∂Ez

∂r
+

ikg

r

∂Bz

∂θ

}
. (13.55)

The r, θ, and z components of the electric and magnetic field vectors E
and B in a cylindrical uniform waveguide are thus determined by first solving
the wave equations (13.20) and (13.21) for Ez and Bz, respectively, and then
applying Ez and Bz in conjunction with Maxwell equations (13.3) through
(13.6) to determine the r and θ components.

13.5 General Conditions for Particle Acceleration

Six conditions that must be met for particle acceleration with radiofrequency
fields in a waveguide are listed below; the first three are general conditions
governing all methods of particle acceleration, the last three are specific to
particle acceleration with radiofrequency fields:

1. The particle to be accelerated must be charged.
2. The electric field used for particle acceleration must be oriented in the

direction of propagation of the charged particle.
3. The charged particle must be accelerated in vacuum rather than in a

dielectric material to avoid deleterious interaction between the accelerated
charged particles and atoms of the dielectric material through which the
particles are moving.
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4. The radiofrequency mode used for particle acceleration must provide a
finite, non-zero value for Ez at r = 0, so as to enable the particle
acceleration along the z axis of the cylindrical waveguide.

5. The radiofrequency mode should satisfy the Dirichlet boundary condition
Ez = 0 at r = a, i.e., Ez|r=a = 0 to obtain particle acceleration along the
z axis of the accelerating waveguide.

6. The radiofrequency mode should produce Bz = 0 everywhere in the waveg-
uide to exclude the interference of the magnetic field with the motion of
the accelerated particle.

Modes satisfying conditions (4), (5), and (6) above are called transverse mag-
netic TMmn modes. They are governed by the Dirichlet boundary condition
on Ez and provide a finite electric field Ez in the direction of particle motion
along the central axis of the cylindrical accelerating waveguide and may thus
be useful for particle acceleration. In contrast, transverse electric TEmn modes
are characterized by the Neumann boundary condition on Bz and provide a
non-zero magnetic field in the direction of propagation and Ez = 0 everywhere.
Obviously, the TEmn modes with their Ez = 0 everywhere characteristic can-
not be used for particle acceleration along the z axis; however, they may be
used for microwave transmission in uniform waveguides.

13.6 Dispersion Relationship

Parameter γn, which appears in expressions for the components of the electric
and magnetic field vectors, is determined from the boundary condition on
R(r) at r = a, where a is the radius of the uniform cylindrical waveguide.
The boundary condition on R(r) in turn follows: (1) either from the Dirichlet
boundary condition of (13.9) on electric field Ez|r=a which stipulates that
Ez|r=a = 0, thus R (r = a) = 0 or (2) from the Neumann boundary condition
of (13.10) on the magnetic field Bz|r=a which stipulates that dBz/dr|r=a = 0,
thus dR/dr|r=a = 0.

For the Dirichlet boundary condition we have

R(r)|r=a = 0 ⇒ Jm(γna) = 0 ⇒ γna = xmn ⇒ γn =
xmn

a
(13.56)

and for the Neumann boundary condition

dR
dr

∣∣∣∣
r=a

= 0 ⇒ d
dr
Jm(γnr)

∣∣∣∣
r=a

= 0 ⇒ γna = ymn ⇒ γn =
ymn

a
, (13.57)

where xmn represents the nth root (zero) of the mth order Bessel function of
the first kind and ymn represents the nth root (zero) of the first derivative of
the mth order Bessel function of the first kind.
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Since we are interested in particle acceleration provided through TMmn

modes, we now consider only the Dirichlet boundary condition. From (13.37)
we express γn as a function of k = ω/c and kg, where k is the free space wave
number and kg is the waveguide wave number or propagation coefficient

γ2
n = k2 − k2

g =
ω2

c2
− k2

g . (13.58)

To satisfy the Dirichlet boundary condition parameter γn must be non-
negative. Merging (13.58) and (13.56) we get the following expression

γ2
n =

(xmn

a

)2

=
ω2

c2
− k2

g , (13.59)

which can be rearranged into the following hyperbolic (ω − kg) dispersion
relationship for a given TMmn mode for a cylindrical waveguide of radius a

ω2 = ω2
c + c2k2

g (13.60)

or
ω =

√
ω2

c + c2k2
g , (13.61)

where ωc stands for the cutoff frequency, the lowest frequency that can prop-
agate through the waveguide for a given m and given n since, as follows from
(13.59),

ω ≥ ωc = ω|kg=0 = c
xmn

a
. (13.62)

From (13.62) we define a cutoff wavelength (λ)c as

(λ)c =
2πc
ωc

= 2π
a

xmn
, (13.63)

such that only waves with frequency ω > ωc and free space wavelength λ <
(λ)c can propagate without attenuation.

In Fig. 13.3 we show a typical ω − kg diagram following the expression
of (13.61). For an arbitrary point P on the hyperbola we define the phase
velocity υph and group velocity υgr of the radiofrequency wave as it propagates
through a uniform waveguide. The line connecting point P and the origin of
the coordinate system forms and angle αph with the abscissa (x) axis, while the
tangent to the hyperbola at point P forms an angle αgr with the abscissa (x)
axis. Therefore, making use of (13.60), velocities υph and υgr can be expressed
as follows

υph =
ω

kg
= tanαph =

c√
1 −
(ωc

ω

)2
(13.64)

and

υgr =
dω
dkg

= tanαgr = c

√
1 −
(ωc

ω

)2

. (13.65)
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Fig. 13.3. Hyperbolic dispersion relationship (ω − kg) for a uniform waveguide.
Point P is an arbitrary point on the dispersion ω − kg curve. Angles αph and αgr

are shown for point P. The asymptotes of the dispersion hyperbola form an angle
arctan c with the abscissa (kg) axis

Fig. 13.4. Phase velocity υph and group velocity υgr, both normalized to c, against
angular frequency ω normalized to the cutoff frequency ωc. For large ω/ωc both
υph/c and υgr/c converge to 1. At all ω/ωc the product (υph/c)× (υgr/c) equals to 1
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Phase velocity vph of (13.64) and group velocity vgr of (13.65), both nor-
malized to the speed light in vacuum c, are plotted in Fig. 13.4 against the
angular frequency ωc. The following characteristics of the hyperbolic disper-
sion relationship (13.61) as well as the phase and group velocities of (13.64)
and (13.65), respectively, are notable from Figs. 13.3 and 13.4:

1. For ω ≥ ωc the wave number kg is real and waves can propagate through
the uniform waveguide. For angular frequencies less than the cutoff fre-
quency ωc the propagation coefficient kg is imaginary and the resulting
modes, referred to as cutoff modes, cannot propagate through the uniform
waveguide.

2. For a finite ω with ω > ωc, as is evident from Fig. 13.4, tanαph = υph > c
and tanαgr = υgr < c.

3. As ω → ∞, both the phase velocity υph and group velocity υgr approach
the speed of light c in vacuum as evident from the following expressions
for υph of (13.64) and υgr of (13.65)

lim
ω→∞ υph = lim

ω→∞
c√

1 −
(ωc

ω

)2
= c (13.66)

and

lim
ω→∞ υgr = lim

ω→∞ c

√
1 −
(ωc

ω

)2

= c. (13.67)

4. As ω → ωc, the phase velocity υph approaches ∞, while the group velocity
υgr approaches 0

lim
ω→ωc

υph = lim
ω→ωc

c√
1 −
(ωc

ω

)2
= ∞ (13.68)

and

lim
ω→ωc

υgr = lim
ω→ωc

c

√
1 −
(ωc

ω

)2

= 0. (13.69)

5. The range of phase velocity υph is from ∞ at ω = ωc to c at ω = ∞, whereas
the range of group velocity υgr is from 0 at ω = ωc to c at ω = ∞, i.e.,

c (at ω = ∞) ≤ υph ≤ ∞ (at ω = ωc) (13.70)

and
0 (at ω = ωc) ≤ υgr ≤ ∞ (at ω = ∞) . (13.71)

This implies that the phase velocity υph of the RF wave propagating in a
uniform waveguide is always larger than c, whereas the group velocity υgr

is always smaller than c.
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6. For all frequencies ω exceeding the cutoff frequency ωc the following rela-
tionship holds between the phase velocity υph and the group velocity
υgr

υphυgr = c2. (13.72)

7. The asymptotes of the hyperbola (13.61) pass through the origin of the
(kg, ω) coordinate system and their angle with the abscissa (x) axis is
equal to arctan c.

Equation (13.60) can be rearranged to give the waveguide propagation coeffi-
cient kg as a function of frequency ω as follows

ckg

ω
=
kg

k
=

√
1 −
(ωc

ω

)2

. (13.73)

A plot of (13.73) is given in Fig. 13.5 showing the behavior of the propagation
coefficient kg as a function of frequency ω. At any given frequency ω only
a finite number of modes can propagate and each mode is characterized by
its own cutoff frequency ωmn

c . Since the propagation coefficient kg is always
less than the free space wave number k, the wavelength λg in the waveguide
always exceeds the free space wavelength λ. The dimensions of the waveg-
uide (for example, radius a) are usually chosen such that at the operating
frequency ωop only the lowest mode can occur, as shown schematically in
Fig. 13.5.

Fig. 13.5. Behavior of the propagation coefficient kg as a function of frequency ω
for a uniform waveguide. Four modes are shown and each mode has its own values
for m and n as well as cutoff frequency ωc
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13.7 Transverse Magnetic TM01 Mode

The most important and the simplest transverse magnetic mode is the TM01

mode for m = 0 and n = 1 with no azimuthal dependence and no roots
(zeros) in Ez between r = 0 and r = a. In the TM01 mode the electric field Ez

of (13.45) simplifies to

Ez = (Ez)0 J0

(
2.405

r

a

)
eiϕ (13.74)

where

(Ez)0 is the amplitude of the electric field Ez.
x01 is the first root (zero) of the zeroth order Bessel function.

Bessel function of the first kind (x01 = 2.405, see Fig. 13.2) resulting in the
following expressions for the cut-off frequency ωc and cut-off wavelength (λ)c,
respectively,

ωc = 2.405
c

a
(13.75)

and
(λ)c = 2π

a

x01
= 2.61a. (13.76)

The other components of the electric field vector E and magnetic field vector
B for the TM01 mode are obtained from (13.52) through (13.55) recognizing
that in this case ∂/∂θ = 0 and Bz = 0 everywhere. A summary of results
for all components of the electromagnetic field is [note: ϕ is the phase of the
radiofrequency wave and ∂J0 (αr) /∂r = αJ0 (αr)]

Er =
1
γ2

n

{
ikg

∂Ez

∂r
+

iω
r

∂Bz

∂θ

}
=
{

ikg

γ2
1

∂Ez

∂r
+ 0
}

= ikg
a

x01
(Ez)0 J1

(x01

a
r
)
eiϕ, (13.77)

Eθ =
1
γ2

n

{
ikg

r

∂Ez

∂θ
− iω

∂Bz

∂r

}
= 0 since

∂

∂θ
= 0 and Bz = 0 everywhere,

(13.78)

Ez = (Ez)0 J0

(x01

a
r
)
eiϕ see (13.45) for m = 0 and n = 1, (13.79)

Br =
1
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n

{
− iω
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1
r

∂Ez

∂θ
+ ikg

∂Bz

∂r

}
= 0 since

∂

∂θ
= 0 and Bz = 0 everywhere,

(13.80)

Bθ =
1
γ2

n

{
iω
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∂Ez

∂r
+
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∂Bz

∂θ

}
=
{

iω
γ2

nc
2

∂Ez

∂r
+ 0
}

=
iω
c2

a

x01
(Ez)0 J1

(x01

a
r
)
eiϕ (13.81)

Bz = 0 (13.82)
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13.8 Relationship Between Radiofrequency Phase
Velocity and Electron Velocity in Uniform Waveguide

In (13.44) the phase of the radiofrequency wave was defined as

ϕ = kgz − ωt, (13.83)

where

ω is the angular frequency of the wave.
kg is the waveguide wave number.
z is the coordinate along the central axis of the cylindrical uniform waveg-

uide.

The angular frequencies of the wave as seen by a stationary observer and by
a moving observer differ from one another and are given as follows:

1. The angular frequency ω seen by a stationary observer (z = const) is
given by

ω =
dϕ
dt
. (13.84)

2. The angular frequency ω′ seen by an observer (or accelerated electron)
traveling with the radiofrequency wave is calculated as follows

ω′ =
dϕ
dt′

= kg
dz
dt′

− ω
dt
dt′

=
dt
dt′

(
kg

dz
dt

− ω

)
=

dt
dt′

(kgυel − ω) , (13.85)

where

t′ is the time measured in the reference frame of the moving observer.
υel is the velocity of the accelerated electron (υel = dz/dt) traveling in the

waveguide.

Since dt/dt′ = γ =
[
1 − (υ/c)2

]−1/2

in relativistic physics and kg = ω/υph

from (13.64), we can write (13.85) as

ω′ = γ(kgvel − kgvph) = γkgvph

[
vel
vph

− 1
]

= γω

[
vel
vph

− 1
]
. (13.86)

which is essentially the relativistic Doppler effect relationship.
For the electron to see continuously an accelerating electric field with a

constant phase ϕ, the angular frequency ω′ in the reference frame of the
electron traveling with the radiofrequency wave must be equal to zero (ω′ = 0).
From (13.86) it is obvious that this is possible only if and when the electron
velocity υel is equal to wave phase velocity υph

υel = υph. (13.87)
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In a uniform waveguide, for a finite angular frequency ω, as shown in
(13.70), the phase velocity of the radiofrequency wave υph always exceeds
the speed of light in vacuum c. On the other hand, the laws of relativistic
mechanics stipulate that the electron velocity υel cannot exceed c and this
implies that an electron accelerated in a uniform waveguide cannot satisfy
the condition (13.87) υel = υph. This leads to the conclusion that uniform
waveguides are not suitable for use in electron acceleration.

13.9 Relationship Between Velocity of Energy Flow
and Group Velocity in Uniform Waveguide

The velocity of the energy flow υen in a waveguide is of interest when the
waveguide is to be used for charged particle acceleration. It is determined by
finding the following ratio

υen =
P̄

Wtot
, (13.88)

where

P̄ is the mean power flowing through a transverse cross-section of the
waveguide.

Wtot is the total electromagnetic energy stored per unit length in the
waveguide.

The mean power P̄ is determined by integrating the Poynting vector S over
the waveguide circular cross section with radius a as follows.

P̄ =
∫
A

SdA =
1
2
Re
∫
A

ET × B∗
T

μ0
dA, (13.89)

where ET and BT are the tangential components of the electric and magnetic
field, respectively, and B∗

T is the complex conjugate of BT. Definition of the
Poynting vector is provided in Sect. 1.30.

We now calculate P̄ of (13.89) using the expressions provided for tangential
electric and magnetic field components in the transverse magnetic TM01 mode
of (13.77) for Er and (13.81) for Bθ (Note: Eθ = 0 and Br = 0) and get

P =
1
2
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}
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= π
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dr. (13.90)

The energy Wmag stored in the magnetic field per unit length is

Wmag =
1

4μ0

∫
A

|BT|2 dA, (13.91)

while the energy Wel stored in the electric field per unit length is

Wel =
ε0
4

∫
A

|ET|2 dA. (13.92)

The two energiesWmag andWel stored per unit length are equal to one another
(Wmag = Wel), so that the total energy Wtot stored in the waveguide per unit
length is

Wtot = Wmag +Wel = 2Wmag =
1

2μ0

∫
A

|BT|2 dA. (13.93)

The relationship between Er and Bθ is calculated using (13.77) and (13.81) to
get
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=
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=
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. (13.94)

The total EM energyWtot stored per unit length calculated from (13.93) using
(13.94) is

Wtot =
1

2μ0

∫
A

|BT|2 dA =
1

2μ0

ω2
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∫
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dr. (13.95)
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The velocity of energy flow υen in the waveguide is now given as

υen =
P̄
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π
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k
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ω
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√
1 −
(ωc
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, (13.96)

where we use P̄ of (13.90) and Wtot of (13.95), and in the last step of (13.96)
we use (13.60) to express kg as a function of ω.

Since the last expression for υen in (13.96) is identical to the expression
for the group velocity υgr of (13.65), one concludes that the velocity of energy
flow υen in a waveguide is equal to the group velocity υgr

υen = υgr. (13.97)

13.10 Disk-Loaded Waveguide

As discussed in Sect. 13.8, uniform waveguides cannot be used for charged
particle acceleration because they propagate radiofrequency waves with a
phase velocity υph that exceeds the speed of light in vacuum c. However,
the theory of radiofrequency wave propagation in uniform waveguides pro-
vides an excellent basis for finding appropriate methods for circumventing
the problem with (υph = υel), the necessary condition for charged particle
acceleration. Since the electron velocity υel cannot be increased beyond the
speed of light in vacuum c, the condition υph = υel can only be satisfied by
decreasing υph in a uniform waveguide below c. This is achieved in practice
by loading a uniform waveguide with periodic perturbations in the form of
disks or irises, as shown schematically in Fig. 13.6 with a comparison between
a uniform waveguide and a disk-loaded waveguide. The separation d between
the disks and the radius b of disk openings are chosen such that propagation
of the TM01 mode with υph ≤ c is achieved in the disk-loaded waveguide
structure.

As an RF wave propagates through a disk-loaded waveguide, it is partially
reflected at each disk, the reflected fraction depending on the relative mag-
nitudes of the wavelength λg and the perturbation parameter (a− b) with a
the radius of the uniform waveguide and b the radius of the disk opening, as
shown in Fig. 13.6. When radius b is comparable to a, i.e., a − b 	 a, the
perturbation caused by the disks is small, the reflection of the radiofrequency
wave at the disk is negligible, and the disk-loaded waveguide behaves much
like uniform waveguide with radius a.
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Fig. 13.6. Schematic comparison between a uniform waveguide and a disk-loaded
waveguide

In general, when λg � (a− b), corresponding to kg 	 (a− b)−1, the
fraction of wave reflection at disks is small. The dispersion relationship of the
disk-loaded waveguide then tends to that of a uniform waveguide (13.61) and
the cutoff frequency ωc at kg = 0 of the disk-loaded waveguide is identical
to that of a uniform waveguide. However, with increasing kg, corresponding
to a decreasing λg since kg = 2π/λg, the fraction of the reflected wave at
each disk steadily increases, and so does the interference between the incident
and reflected wave, until at λg = 2d or kg = π/d purely stationary waves
are setup in each cavity defined by the disks. In this case, the cavities are
in resonance, only stationary waves are present in the cavities, and there is
no energy propagation possible from one cavity to another. This implies that
υgr = 0 and the tangent to the (ω − kg) dispersion relationship at kg = π/d
must be horizontal, in contrast to the uniform waveguide where the tangent
to the dispersion relationship is horizontal only at kg = 0, and then with an
increasing kg its slope steadily rises to its limit of c as kg → ∞.

A typical example of a dispersion relationship for a disk-loaded waveguide
is shown in Fig. 13.7 with the solid curve, while the corresponding hyperbolic
relationship for a uniform waveguide of Fig. 13.3 is shown with the dotted
curve. The asymptotes of the uniform waveguide hyperbola are shown with
dashed lines forming an angle arctan c with the abscissa (kg) axis. For small
kg the two waveguides have identical (ω − kg) diagrams, the same cutoff fre-
quency ωc1 (point 1 in Fig. 13.7) at kg = 0, and the same phase velocity υph

which exceeds the speed of light in vacuum c.
For both the uniform as well as the disk-loaded waveguide the group

velocity υgr is zero at the cutoff frequency corresponding to the propaga-
tion coefficient kg = 0 (point 1 in Fig. 13.7). As kg increases from 0, the group
velocity for uniform waveguide steadily increases until at kg = ∞ it reaches a
value of c. For a disk-loaded waveguide, on the other hand, with kg increasing
from zero, υgr first increases, reaches a maximum smaller than c, and then
decreases until at kg = π/d it reverts to υgr = 0.
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Fig. 13.7. Dispersion diagram ω−kg for a disk-loaded waveguide (solid curves). For
comparison the dispersion hyperbola for a uniform waveguide of Fig. 13.3 is shown
dotted in the background and its asymptotes are shown with dashed lines. The first
pass band for frequencies between ωc1 and ωc2 is shown in grey color. The phase
velocity υph for points between point 3 and point 2 on the disk-loaded dispersion
curve is smaller than the speed of light c in vacuum

The dispersion curve for a disk-loaded waveguide thus deviates from that
of a uniform waveguide and, as shown in Fig. 13.7, exhibits discontinuities at
kg = nπ/d, with n an integer. The discontinuities in frequency ω separate
regions of ω that can pass through the disk-loaded waveguide (pass bands)
from regions of ω that cannot pass (stop bands). Two such bands are shown
in Fig. 13.7: a pass band for frequencies ω between (ωc)1 and (ωc)2 in light
grey color, and a stop band for frequencies between (ωc)2 and (ωc)4.

A closer look at the disk-loaded dispersion relationship curve of Fig. 13.7
shows the following features:

1. In the first pass band [(ωc)1 ≤ ω ≤ (ωc)2]; frequencies in the region between
points 3 and 2 on the dispersion plot have a phase velocity υph smaller
than or equal to c as a result of αph ≤ arctan c. Loading the uniform
waveguide with disks thus decreases the phase velocity below c for certain
angular frequencies ω, opening the possibility for electron acceleration with
radiofrequency microwaves.
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2. Frequency (ωc)2 clearly has a phase velocity υph which is smaller than c;
yet, the frequency (ωc)2 would not be suitable for electron acceleration
despite υph � c because, simultaneously at frequency (ωc)2, the group
velocity of the wave is zero (υgr = 0; tangent to dispersion curve at point 2 is
horizontal). As shown in (13.97), zero group velocity makes energy transfer
from the wave to the accelerated electrons impossible.

3. However, there are frequencies in the frequency pass band between (ωc)1
and (ωc)2, such as ω∗ for point ∗ on the dispersion plot in Fig. 13.7, for
which υph � c and at the same time υgr > 0, and these frequencies are
suitable for electron acceleration.

4. In practice, frequencies which give υph smaller than yet close to c, i.e.,
υph � c, are used for electron acceleration in disk-loaded waveguides. The
group velocities for these frequencies are non-zero but nonetheless very low,
so that for a typical accelerating waveguide the phase velocity is about two
orders of magnitude larger than the group velocity (υph/υgr ≈ 100).

The (ω − kg) dispersion model is similar to the models governing x-ray, neu-
tron, and electron wave propagation in crystals. For example, the dispersion
relationship for a uniform waveguide is analogous to the dispersion curve for a
free electron model in which: (1) an electron moves through a periodic crystal
lattice and (2) all effects of electron interactions with the lattice are ignored.
More refined theories account for periodicity of the lattice as well as for vari-
ations in the strength of electron interactions and arrive at expressions for
electron energy E that exhibits discontinuities when plotted against the wave
number k of the electron. The discontinuities occur at k = nπ/d where n is
an integer and d the lattice constant, and are caused by Bragg reflections of
the wave leading to energy gaps or band gaps. The region between k = −π/d
and k = +π/d is called the first Brillouin zone; and the energy E versus wave
number k diagram is called the Brillouin diagram.

Similarly to the Brillouin (E − k) diagram, the (ω − kg) disk-loaded waveg-
uide dispersion relationship has an infinite number of branches alternating
in frequency between pass bands where propagation is possible and stop
bands with no propagation. However, only the part in the first Brillouin zone
(−π/d ≤ kg ≤ π/d) is used for electron acceleration provided, of course, that
υph ≤ c and υgr > 0.

13.11 Capture Condition

In Sect. 13.7 it was shown that for electron acceleration in an accelerating
waveguide the electron velocity υel should be equal to the phase veloc-
ity υph of the wave. As shown in Fig. 13.7, in a disk-loaded accelerating
waveguide there are certain frequencies for which υph < c but close to
c; however, the electron enters the accelerating waveguide from the elec-
tron gun with an initial velocity υ0 substantially smaller than c. Thus, the
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condition υel = υph cannot be fulfilled at the entrance side to the accelerating
waveguide.

There are two possible solutions to this problem:

1. One option is to lower the phase velocity of the RF wave υph on the
electron gun side of the accelerating waveguide to obtain υ0 ≈ υph and
then gradually increase the phase velocity υph toward c as the acceler-
ated charged particle gains kinetic energy. This approach is referred to as
velocity modulation of the radiofrequency wave.

2. The other solution is to provide sufficiently large amplitude of the electric
field (Ez)0 for the wave to capture the electron at the entrance to the
accelerating waveguide despite its relatively low initial velocity υ0 which is
smaller than the phase velocity of the radiofrequency wave υph.

Of the two, the first solution is more difficult as it involves modulation of
the phase velocity υph by using non-uniform cavities in the entrance sec-
tion of the accelerating waveguide and uniform cavities farther down the
waveguide. Early linac designs contained many cavities with varying inner
diameter, aperture radius, and axial spacing; more recently, only a few cavi-
ties were used for this purpose, and currently, a single half-cavity provides
the phase modulation. The improved understanding of velocity modula-
tion has resulted in a substantial lowering of the required gun injection
voltage from historical levels of above 100 kV to current levels of around
25 kV.

The second solution is based on the calculation of the minimum amplitude
of the electric field [(Ez)0]min which still allows the radiofrequency wave to
capture the electron injected with a relatively low velocity υel from the electron
gun into the accelerating waveguide (capture condition).

We now derive the capture condition using two simplifying assumptions:

1. Wave propagates through the accelerating waveguide with a phase velocity
equal to c (i.e., υph ≈ c)

2. Electric field is in the direction of propagation and has a sinusoidal behavior
in time, such that

Ez = (Ez)0 sinϕ, (13.98)

with (Ez)0 the amplitude of the electric field and ϕ the phase angle between
the wave and the electron, given in (13.44) as:

ϕ = kgz − ωt, (13.99)

where

ω is the angular frequency of the wave.
kg is the waveguide wave number or propagation coefficient.
z is the coordinate along the waveguide axis.
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The rate of change of phase ϕ with time t is from (13.99) given as

dϕ
dt

= kg
dz
dt

− ω = kgυel − kgc =
2πc
λg

(β − 1) (13.100)

with υel = dz/dt, υph ≈ c [assumption (1) above]; kg = 2π/λg where λg is the
RF wavelengthl; and β = υel/c.

The relativistic equation of motion for the electron moving in the electric
field Ez may be written as

F =
dp
dt

=
d
dt
m (υel) υel =

d
dt

meβc

(1 − β2)1/2
= eEz = e (Ez)0 sinϕ, (13.101)

with

F force exerted on the electron by the electric field.
p electron momentum.

m(υel) mass of the electron at velocity υel.
me electron rest mass (0.511 MeV/c2).

Equations (13.100) and (13.101) are now simplified as follows

dϕ
dt

= a (β − 1) (13.102)

and

d
dt

β

(1 − β2)1/2
= b sinϕ, (13.103)

respectively, with the two parameters a and b given as: a = 2πc/λg and
b = e(Ez)0/(mec).

Introducing β = cosα into (13.102) and (13.103) we get, respectively,

dϕ
dt

=
dϕ
dα

dα
dt

= a(cosα− 1) or
dϕ
dt

= a(cosα− 1)
dα
dϕ

(13.104)

and

d
dt

cosα
sinα

=
d cotα

dα
dα
dt

= b sinϕ or
dα
dt

= −b sin2 α sinϕ. (13.105)

After equating the two expressions above for dα/dt, rearranging the terms,
and integrating over ϕ from initial ϕ0 to ϕ and over a from initial a0 to a,
we get

−b
a

ϕ∫
ϕ0

sinϕdϕ =

α∫
α0

cosα− 1
sin2 α

dα =

α∫
α0

cosα
sin2 α

dα

α∫
α0

dα
sin2 α

, (13.106)
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which results in

b

a
[cosϕ− cosϕ0] =

[
− 1

sinα
+ cotα

]α

α0

=
[

cosα− 1√
1 − cos2 α

]α

α0

(13.107)

=

[
−
√

1 − cosα
1 + cosα

]α

α0

=
√

1 − cosα0

1 + cosα0
−
√

1 − cosα
1 + cosα

.

After inserting cosα = β and cosα0 = β0, and recognizing that at the end of
the acceleration β ≈ 1, we obtain

cosϕ0 − cosϕ =
a

b

(
1 − β0

1 + β0

)1/2

=
2π
λge

mec
2

(Ez)0

(
1 − β0

1 + β0

)1/2

, (13.108)

where β0 = υ0/c with υ0 the initial velocity of the electron injected into
the accelerating waveguide from the electron gun. Since the left-hand side of
(13.108) cannot exceed 2, we obtain the following relationship for the capture
condition

(Ez)0 ≥ πmec
2

λge

(
1 − β0

1 + β0

)1/2

=
K

λg

√
1 − β0

1 + β0
, (13.109)

where K = πmec
2/e = 1.605 MV is the capture constant for the electron.

The minimum amplitude of the electric field [(Ez)0]min is thus expressed as
follows

[(Ez)0]min =
K

λg

√
1 − β0

1 + β0
. (13.110)

The capture condition must be satisfied if an electron with initial velocity
υ0 is to be captured by the radiofrequency wave which has a phase velocity
close to c. The well known relativistic relationship between the electron initial
velocity β0 and the electron initial kinetic energy (EK)0 is given as follows
[see (2.7)]

β0 =
υ0

c
=

√√√√√1 − 1(
1 +

(EK)0
mec2

)2 , (13.111)

allowing us to estimate [(Ez)0]min, the minimum amplitude of the radiofre-
quency field, for typical gun injection voltage potentials in the range from
20 keV to 100 keV.
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Figures 13.8 and 13.9 display the capture condition given by the mini-
mum electric field amplitude [(Ez)0]min that the accelerating radiofrequency
S-band field of 2856 MHz with phase velocity υph ≈ c must possess to capture
electrons injected from the linac gun into the accelerating waveguide with
a given initial velocity β0 and initial kinetic energy (EK)0. Figure 13.8 plots
[(Ez)0]min against electron initial velocity β0, Fig. 13.9 plots [(Ez)0]min against
electron initial kinetic energy EK. The lower is the injected electron velocity
υ0 or kinetic energy (EK)0, the higher is the minimum required electric field
amplitude [(Ez)0]min for capture of the injected electrons.

Fig. 13.8. Minimum electric field amplitude
[
(Ez)0

]
min

against initial electron
velocity β0 for the capture condition of (13.110)

Fig. 13.9. Minimum electric field amplitude
[
(Ez)0

]
min

against initial electron
kinetic energy (EK)0 for the capture condition of (13.110)



13.11 Capture Condition 607

For example, assuming λg of 0.105 m, for the S band (2856 MHz), at elec-
tron initial kinetic energy of 20 keV [(β0 = 0.27 from (13.111)] the minimum
required amplitude of the RF electric field [(Ez)0]min is 11.6 MV/m and for
100 keV [(β0 = 0.55 from 13.111)] electrons it is 8.2 MV/m. Since with current
technology electric field amplitudes (Ez)0 of up to ∼20 MV/m are possible,
gun injection voltages of the order of 20 keV are adequate for injection of elec-
trons into modern accelerating waveguides without requiring phase velocity
modulation of the RF accelerating wave.



14

Particle Accelerators in Medicine

This chapter serves as introduction to particle accelerators used in medicine.
Many types of particle accelerator were built for nuclear physics and particle
physics research and most of them have also found some use in medicine,
mainly for treatment of cancer. Two categories of particle accelerator are
known: electrostatic and cyclic.

The best-known examples of electrostatic accelerator are the x-ray tube
and the neutron generator. Three types of x-ray tube (Crookes tube, Coolidge
tube, field emission tube) are discussed in this chapter; neutron generator is
discussed briefly in Sect. 9.6.3. Cyclic accelerators fall into two categories:
linear and circular. Many different types of circular accelerator have been
designed for research purpose and most are also used in medicine, such as the
betatron, microtron, cyclotron, and synchrotron.
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Of all cyclic accelerators, the linear accelerator is by far the most impor-
tant and most widely used in medicine because of its versatility and compact
design. Actually, one can say that modern radiotherapy achieved its suc-
cesses as a result of the advances that were introduced during the past few
years in the linear accelerator technology. In this chapter circular accelerators
are discussed briefly, before the chapter undertakes a detailed discussion of
the practical aspects of linear accelerators used clinically for cancer therapy.
The theoretical aspects of electron acceleration in accelerating waveguides are
discussed in Chap. 13.

14.1 Basic Characteristics of Particle Accelerators

Numerous types of accelerators have been built for basic research in nuclear
physics and high-energy physics, and most of them have been modified for
at least some limited use in radiotherapy. X-ray machine is the simplest
accelerator and is widely used in medicine both for diagnosis of disease in
diagnostic radiology and for treatment of disease in radiotherapy. In addition
to megavoltage linear accelerators which are the most widely used machines
in radiotherapy, other accelerators used in medicine are cyclotrons for pro-
ton and neutron radiotherapy as well as for production of positron emitting
radionuclides for PET studies; betatrons and microtrons for x-ray and electron
beam radiotherapy; and synchrotrons for hadron radiotherapy.

Irrespective of the accelerator type two basic conditions must be met for
particle acceleration:

1. Particle to be accelerated must be charged.
2. Electric field must be provided in the direction of particle acceleration.

The various types of accelerators differ in the way they produce the acceler-
ating electric field and in how the field acts on the particles to be accelerated.
As far as the accelerating electric field is concerned there are two main classes
of accelerators: electrostatic and cyclic.

In electrostatic accelerators the particles are accelerated by applying an
electrostatic electric field through a voltage difference, constant in time, whose
value fixes the value of the final kinetic energy of the accelerated particle. Since
the electrostatic fields are conservative, the kinetic energy that the particle can
gain depends only on the point of departure and point of arrival and, hence,
cannot be larger than the potential energy corresponding to the maximum
voltage drop existing in the machine. The kinetic energy that an electrostatic
accelerator can reach is limited by the discharges that occur between the high
voltage terminal and the walls of the accelerator chamber when the voltage
drop exceeds a certain critical value (typically 1 MV).

The electric fields used in cyclic accelerators are variable and non-conserva-
tive, associated with a variable magnetic field and resulting in some closed
paths along which the kinetic energy gained by the particle differs from zero.
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If the particle is made to follow such a closed path many times over, one
obtains a process of gradual acceleration that is not limited to the maximum
voltage drop existing in the accelerator. Thus, the final kinetic energy of the
particle is obtained by submitting the charged particle to the same, relatively
small, potential difference a large number of times, each cycle adding a small
amount of energy to the total kinetic energy of the particle.

Cyclic accelerators fall into two main categories: linear accelerators and
circular accelerators, depending on particle’s trajectory during the accelera-
tion. In a linear accelerator the particle undergoes rectilinear motion, while in
a circular accelerator the particle’s trajectory is circular. All cyclic accelerators
except for the linear accelerator fall into the category of circular accelerator.

Examples of electrostatic accelerators used in medicine are: superficial
and orthovoltage x-ray machines and neutron generators. In the past, Van
de Graaff accelerators have been used for megavoltage radiotherapy; however,
their use was discontinued with the advent of first the betatron and then
the linear accelerator. For medical use, the best-known example of a cyclic
accelerator is the linear accelerator (linac); all other examples fall into the
circular accelerator category and are the microtron, betatron, cyclotron, and
synchrotron.

14.2 Practical Use of X Rays

Roentgen’s discovery of x rays in 1895 is one of several important discoveries
that occurred in physics at the end of the nineteenth century and had a
tremendous impact on science, technology, and medicine in particular and
modern society in general. Two other discoveries of similar significance are
Becquerel’s discovery of natural radioactivity in 1896 and discovery of radium
by Marie Curie and Pierre Curie in 1898.

Studies in x-ray physics stimulated developments of modern quantum and
relativistic mechanics and triggered the practical use of x rays in medicine
and industry. The use of x rays in diagnosis of disease developed into modern
diagnostic radiology, while the use of x rays in treatment of cancer developed
into modern radiotherapy. Concurrently with these two medical specialties,
medical physics has evolved as a specialty of physics dealing with the physics
aspects of diagnosis and treatment of disease, mainly but not exclusively with
x rays.

On a smaller scale x-ray research generated new research modalities, such
as x-ray crystallography, x-ray spectroscopy, and x-ray astronomy. Scientific
x-ray research to date resulted in 14 Nobel Prizes: eight of these in Physics,
four in Chemistry and two in Medicine, as listed in Appendix I.

14.2.1 Medical Physics

Medical physics is a specialty of physics dealing with the application of
physics to medicine, most generally in three areas: (1) Diagnostic imaging
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physics (∼25 % of total effort); (2) Nuclear medicine physics (∼5 % of total
effort); and (3) Radiotherapy physics (∼70 % of total effort). While nuclear
medicine concentrates mainly on application of unsealed radionuclides for
diagnosis and treatment of disease, the use of x rays forms an important
component of diagnostic radiology as well as radiotherapy. The former uses
x rays in the photon energy range from 50 kVp to 150 kVp produced by
x-ray tubes; the later uses x rays in a much wider energy range extending
from 50 kVp to 25 MV, produced by x-ray machines in the kilovolt range and
linear accelerators in the megavolt range.

14.2.2 Industrial Use of X Rays

X rays for industrial use are produced by x-ray machines or linear accelerators
and cover a wide variety of purposes dealing with safety and quality assurance
issues, such as:

1. Inspection of luggage, shoes, mail, cargo containers, etc.
2. Nondestructive testing and inspection of welds, cast metals, parts of auto-

mobiles and airplanes, iron reinforcement bars, cracks and pipes inside
concrete structures.

3. Food irradiators for sterilization and pest control.
4. Radiation based sterilizators of surgical equipment and blood irradiators.
5. Small animal irradiators for radiobiological experiments.

14.2.3 X-Ray Crystallography

X-ray crystallography is a study of crystal structures through the use of
x-ray diffraction techniques. X rays are very suitable for this purpose because
their wavelength in the 0.1 Å (∼100 keV) to 1 Å (∼10 keV) range is of the
order of typical crystalline lattice separations. An x-ray beam striking a crys-
talline lattice is scattered by the spatial distribution of atomic electrons and
the imaged diffraction pattern provides information on the atomic or molec-
ular structure of the crystalline sample. In 1912 Max von Laue established
the wave nature of x rays and predicted that crystals exhibit diffraction phe-
nomena. Soon thereafter, William H. Bragg and William L. Bragg analyzed
the crystalline structure of sodium chloride, derived the Bragg relationship
2d sinφ = mλ (Fig. 1.8) linking the lattice spacing d with x-ray wavelength λ,
and laid the foundation for x-ray crystallography. The crystal lattice of a
sample acts as a diffraction grating and the interaction of x rays with the
atomic electrons creates a diffraction pattern which is related, through a
Fourier transform, to the electron spectral distribution in the sample under
investigation.

Instrumentation for x-ray diffraction studies consists of a monoenergetic
x-ray source, a device to hold and rotate the crystal, and a detector suit-
able for measuring the positions and intensities of the diffraction pattern.
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Monoenergetic x rays are obtained by special filtration of x rays produced
either by an x-ray tube or from an electron synchrotron storage ring. The
basic principles of modern x-ray crystallography are essentially the same as
those enunciated almost 100 years ago by von Laue and the Braggs; however,
the technique received a tremendous boost by incorporation of computer tech-
nology after the 1970s, increasing significantly the accuracy and speed of the
technique.

14.2.4 X-Ray Spectroscopy

X-ray spectroscopy is an analytical technique for determination of elemental
composition of solid or liquid samples in many fields, such as material science,
environmental science, geology, biology, forensic science, and archaeometry.
The technique is divided into three related categories: the most common of
them is the x-ray absorption spectrometry (also called x-ray fluorescence spec-
trometry), and the other two are x-ray photoelectron spectrometry and Auger
spectrometry. All three techniques rely on creation of vacancies in atomic
shells of the various elements in the sample under study as well as on an
analysis of the effects that accompany the creation of vacancies (e.g., emis-
sion of photoelectron, emission of characteristic line spectrum, and emission
of Auger electron). Like other practical emission spectroscopic methods, x-ray
spectroscopy consists of three steps:

1. Excitation of atoms in the sample to produce fluorescence emission lines
(or photoelectrons or Auger electrons) characteristic of the elements in the
sample. The most common means for exciting characteristic x-ray pho-
tons for the spectroscopic analysis is by use of x rays produced by x-ray
machines; however, energetic electrons and heavy charged particles such as
protons are also used for this purpose. Excitation by electrons is called the
primary or impulse excitation; excitation by photons is called secondary
or fluorescence excitation; excitation by heavy charged particles is called
particle-induced x-ray emission (PIXE).

2. Measurement of intensity and energy of the emitted characteristic lines (or
electrons). All methods for determining x-ray wavelengths λ use crystals as
gratings and are based on the Bragg lawmλ = 2d sinφ where d is the lattice
spacing and m is an integer. The dynamic range of these methods extends
from 20 Å to 0.1 Å corresponding to photon energies of 6 keV to 130 keV,
and the range of detectable elements in an unknown sample extends from
beryllium (Z = 4) to uranium (Z = 92).

3. Conversion of measured data to concentration or mass with the nanogram
range reached with standard spectrometers. The main disadvantage of the
technique is that only a thin surface layer of the order of a few tenths of a
millimeter can be analyzed because of absorption effects of the low energy
fluorescence radiation. This requires a perfectly homogeneous sample for
accurate results.
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While x-ray spectroscopy was initially used to further the understanding of
x-ray absorption and emission spectra from various elements, its role now is
reversed and it is used as a non-destructive analytical tool for the purpose of
chemical analysis of samples of unknown composition.

14.2.5 X-Ray Astronomy

X-ray astronomy is a relatively new branch of astronomy dealing with the
study of x-ray emission from celestial objects, such as neutron stars, pul-
sars, and black holes. The specialty was born in 1962 when Italian–American
astronomer Riccardo Giacconi discovered a cosmic x-ray source in the form
of a compact star located in the constellation of Scorpius. For this discovery
Giacconi received the 2002 Nobel Prize in Physics.

Since the x rays emitted by celestial objects have relatively low energies of
the order of a few kiloelectron volt, they cannot penetrate through the Earth’s
atmosphere to reach the surface of the Earth. Thus, to study these celestial
rays, detectors must be taken above the Earth’s atmosphere. Methods used to
achieve this involve mounting x-ray detectors on rockets, balloons, or satellites.
The x-ray detectors used for this purpose are either special charge-coupled
devices (CCDs) or microcalorimeters.

14.3 Practical Considerations in Production of X Rays

Chapter 4 dealt with general classical and relativistic relationships govern-
ing the emission of radiation by accelerated charged particles, including
bremsstrahlung as the most important means and two more-specialized phe-
nomena: the synchrotron radiation and the Čerenkov radiation. In principle,
all charged particles can emit radiation under certain conditions. In prac-
tice, however, the choice of charged particles that can produce measurable
amounts of radiation of interest in medical physics, medicine, or industry is
limited to light charged particles (electrons and positrons) that can undergo
the following interactions:

1. Rapid deceleration of energetic electrons in targets through inelastic
Coulomb collisions of electrons with nuclei of the target resulting in super-
ficial, orthovoltage, or megavoltage x rays (bremsstrahlung) for use in
diagnosis (imaging) and treatment (radiotherapy) of disease.

2. Deceleration of electrons in retarding potentials resulting in microwave
radiation. This process is used in magnetrons to produce radiofrequency
photons and in klystrons to amplify radiofrequency photons. The radiofre-
quency used in standard clinical linear accelerators is 2856 MHz (S band);
in miniature linear accelerator waveguide (tomotherapy and robotic arm
mounting) it is at 104 MHz (X band).
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3. Deceleration of electrons resulting in bremsstrahlung production in pati-
ents irradiated with photon or electron beams producing unwanted dose
to the total body of the patient.

4. Acceleration of electrons in a linac waveguide (rectilinear motion of elec-
trons) resulting in unwanted leakage radiation.

5. Circular motion of electrons in circular accelerators resulting in syn-
chrotron radiation (sometimes referred to as magnetic bremsstrahlung)
produced in high-energy circular accelerators and in storage rings. When
charged particles pass through transverse magnetic fields, they experi-
ence an acceleration that, according to the Larmor relationship, results in
emission of radiation that is typically of lower energy than bremsstrahlung.
In comparison with synchrotron radiation, the accelerations in production
of bremsstrahlung are random and also much larger. Production of syn-
chrotron radiation is still a very expensive undertaking, as it involves very
expensive and sophisticated circular accelerators.

6. Deceleration of positrons (slowing down before annihilation) in positron
emission tomography (PET) imaging studies of human organs resulting in
unwanted stray radiation.

7. Atomic polarization effects when electrons move through transparent
dielectric materials with a uniform velocity that exceeds the speed of light
in the dielectric material result in visible light referred to as Čerenkov radi-
ation. The efficiency for production of Čerenkov radiation is several orders
of magnitude lower than the efficiency for bremsstrahlung production.

8. High energy electrons striking a nucleus may precipitate nuclear reac-
tions (e,n) or (e,p) and transform the nucleus into a radioactive state
thereby activating the treatment room and also the patient undergoing
radiotherapy treatment.

14.4 Traditional Sources of X Rays: X-Ray Tubes

Röntgen discovered x rays in November of 1895 while investigating “cathode
rays” produced in a Crookes tube. The discovery of x rays was just one of many
important discoveries and advancements in physics that were engendered with
experiments using the Crookes tube. Two other well-known experiments are
Thomson’s discovery of the electron in 1897 and Millikan’s determination of
electron charge in 1913. The Crookes tube thus occupies a very important
place in the history of modern physics.

A typical x-ray machine used in medicine or industry has three basic com-
ponents: (1) X-ray tube; (2) High voltage power supply; and (3) Control
console. The x-ray tube is a vacuum tube that produces x rays by accel-
erating electrons from a source (cathode) to a suitable target (anode) where
a small amount of the electron kinetic energy is transformed into x rays.
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The most important component of an x-ray tube is the electron source.
Three types of electron source are known:

1. Cold cathode stimulated by ionic bombardment in a Crookes x-ray tube
(discussed in Sect. 14.4.1).

2. Hot cathode stimulated by high temperature in a Coolidge x-ray tube
(discussed in Sect. 14.4.2)

3. Cold cathode stimulated by large electric field in a field emission x-ray tube
(discussed in Sect. 14.4.3).

Generation of electrons with ionic bombardment of the cathode at room tem-
perature (cold cathode) was used in Crookes cathode ray tubes as well as in
the early x-ray tubes that are now referred to as Crookes x-ray tubes. Coolidge
introduced the hot cathode design in 1913 and this design, based on thermionic
emission of electrons from a hot cathode, has since thn been the most common
practical electron source. Field emission from a cold cathode stimulated by
a strong electric field has shown promise for use in specialized x-ray tubes;
however, since the efficiency of electron production with field emission cur-
rently cannot match the efficiency of thermionic emission generated by hot
cathodes, field emission electron source is not used in standard x-ray tubes.

Electrons generated by the cathode bombard the target (anode) of an x-ray
tube and a minute fraction of the electrons’ kinetic energy (typically 1 % or
less) is transformed into x rays (bremsstrahlung and characteristic radiation)
and the rest into heat. The anode thus has two functions: (1) to produce
x rays and (2) to dissipate the heat.

The anode material must have a high melting point to be able to with-
stand the high operating temperature and a relatively high atomic number for
adequate x-ray production. Most common target materials for x-ray tubes are
tungsten (also called wolfram) and molybdenum. Tungsten is used in x-ray
tubes operating above 50 kVp and molybdenum for x-ray tubes operating
at 50 kVp and below. Table 14.1 lists the main characteristics of molybde-
num and tungsten of importance for use as target (anode) in an x-ray tube.
Table 14.2 presents the main characteristics of Crookes, Coolidge, and field
emission x-ray tubes.

Table 14.1. Important characteristics of target materials molybdenum and tung-
sten used as target(anode) in standard clinical and industrial x-ray tubes

Target material Molybdenum Mo Tungsten (Wolfram) W

Atomic number Z 42 74
Atomic mass A 95.94 183.84
Melting point (oC) 2617 3422
K absorption edge (keV) 20 69.5
Energy of Kα line (keV) ∼17.5 ∼58.6
Energy of Kβ line (keV) ∼19.6 ∼68.2
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Table 14.2. Main characteristics of the Crookes x-ray tube, Coolidge x-ray tube,
and field emission carbon nanotube (CNT) based x-ray tube

X-ray tube Crookes x-ray tube Coolidge tube Field emission -
carbon nanotube
(CNT)

Source of
electrons

COLD cathode:
bombarded with
positive ions of air
to release electrons

HOT cathode:
thermionic emission
to produce electrons

COLD cathode:
field emission in
strong electric field

Air pressure Intermediate
vacuum
0.005 Pa to 0.1 Pa

High vacuum:
∼10−4 Pa

High vacuum:
∼10−4 Pa

X-ray output Relatively low:
depends on air
pressure inside the
tube

Relatively high:
depends on cathode
temperature

Relatively low:
depends on cathode
design and material

Period of use 1895 to ∼1920 1914 to present Relatively new
design

14.4.1 Crookes Tube and Crookes X-Ray Tube

A Crookes tube is an electric discharge tube invented by British chemist and
physicist William Crookes in the early 1870s. It consists of a sealed glass
tube which is evacuated to an air pressure between 0.005 Pa and 0.1 Pa
(4×10−5 torr and 7.5×10−4 torr) and incorporates two electrodes (cathode
and anode) connected to an external DC power supply.

When high voltage is applied to the tube, electric discharge in the rarefied
air inside the tube ionizes some air molecules. Positive ions move in the electric
field toward the cathode and create more ions through collisions with air
molecules. As positive ions strike the cathode, electrons are released from the
cathode, move toward the anode in the electric field that is present between
the cathode and the anode, and strike the anode.

During the first three decades after the invention of the Crookes tube,
many important experiments were carried out with the tube and physicists
soon established that unknown rays (referred to as cathode rays), originating
in the cathode, were attracted by the anode. However, the exact nature of
the “cathode rays” was not understood until Joseph J. Thomson in 1897
established that they were a new species of particle, negatively charged, and
with mass of the order of 1800 times smaller than that of the hydrogen ion. He
called the new particle electron and succeeded in measuring the ratio between
its charge and mass.
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In November 1895 Wilhelm Röntgen, a German physicist working at the
University of Würzburg, discovered serendipitously that a Crookes tube, in
addition to “cathode rays,” generated a new kind of ray which penetrated
the tube housing and behaved in a very peculiar fashion outside the tube.
For example, the new rays were capable of exposing photographic film and
also had the ability to penetrate opaque objects including hands, feet, and
other parts of the human body. Röntgen named the unknown radiation x rays
and soon thereafter the new rays were introduced in medicine for diagnos-
tic purposes. Röntgen’s discovery ushered in the era of modern physics and
revolutionized medicine by spawning three new specialties: diagnostic imag-
ing and radiotherapy as specialties of medicine as well as medical physics as
a specialty of physics. For his discovery Röntgen received many honors and
awards which culminated in his receiving the first Nobel Prize in Physics
in 1901.

The exact nature of x rays remained a mystery for a number of years until
in 1912 Max von Laue, a German physicist, showed with a crystal diffraction
experiment that x rays were electromagnetic radiation similar to visible light
but of much smaller wavelength. It then became apparent that when the
“cathode ray” electrons strike the anode (target), they undergo interactions
with orbital electrons and nuclei of the target and some of these interactions
result in characteristic and bremsstrahlung photons, respectively, that form
the x-ray spectrum.

For the first two decades after 1895, the x-ray tubes used for clinical work
were of the Crookes tube type; very simple in design but suffering from severe
practical problems related to the magnitude and reliability of the x-ray output.
The situation improved significantly when in 1914 William Coolidge invented
the “hot cathode” tube which turned out to be a vastly superior source of elec-
trons in comparison with the “cold cathode” used in the Crookes type x-ray
tubes. A schematic diagram of a Crookes x-ray tube is shown in Fig. 14.1(a)
and the main characteristics of the Crookes tube are listed in Table 14.2.

Fig. 14.1. Schematic diagram of (a) Crookes “cold cathode” x-ray tube and
(b) Coolidge “hot cathode” x-ray tube
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14.4.2 Coolidge X-Ray Tube

Low x-ray output combined with large output fluctuations and difficulties in
controlling the output were the main drawbacks of Crookes x-ray tubes. In
1914 William Coolidge, an American physicist, introduced a new x-ray tube
design based on a hot cathode which drastically improved the reliability and
performance of clinical x-ray tubes. Almost 100 years later, Coolidge’s hot
cathode idea still provides the basis for design of modern x-ray tubes.

The hot cathode consists of a filament made of a high melting point
metal, typically tungsten (melting point 3422 ◦C) or a tungsten based alloy,
heated to a relatively high temperature to serve as source of electrons. The
hot cathode emits electrons thermionically in contrast to the cold cathode of
the Crookes x-ray tube in which positive air ions striking the cathode trig-
ger the generation of electrons. Another important difference between the
Coolidge tube and the Crookes tube is that the Coolidge tube operates under
high vacuum of the order of 10−4 Pa to prevent collisions between electrons
and molecules of air and also to prevent filament deterioration because of
oxidation.

The main advantages of the Coolidge x-ray tube are its stability and its
design feature which allows the external control of the x-ray output. The hot-
ter is the filament, the larger is the number of emitted electrons. The filament
is heated with electric current; increasing the filament current increases the
filament temperature and this in turn results in an increase in number of
thermionically emitted electrons. This number of emitted electrons is propor-
tional to the number of electrons accelerated toward the anode (tube current)
and this in turn is proportional to the number of x rays produced in the anode
(x-ray output). A schematic diagram of a typical Coolidge x-ray tube is shown
in Fig. 14.1(b) and the main characteristics of the Coolidge tube are listed in
Tables 14.2 and 14.3.

Increasing the high voltage potential between the anode and the cathode
increases the kinetic energy of the electrons striking the target (anode) and
this increases the energy of the emitted x rays.

In general, one can say that the x-ray output of a Coolidge x-ray tube is:

1. Proportional to the tube current for a given anode potential.
2. Proportional to the square of the anode potential for a given tube current.

As a metal is heated, electrons are “boiled off” its surface and form an electron
cloud close to the surface. This space charge effectively prevents new electrons
from leaving the metal. The current density j for the thermionic emission of
electrons from the filament is governed by the filament temperature T and
the work function eφ of the filament material, as given by the Richardson–
Dushman relationship in (1.132) and discussed in Sect. 1.27. With a positive
potential between the cathode (filament) and the anode (target) some of the
electrons of the space charge are accelerated toward the positive anode and
the space charge is replenished by emission from the hot filament.
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Table 14.3. Main characteristics of Coolidge-type x-ray tubes used in diagnostic
radiology and radiotherapy

X-ray tube Diagnostic radiology Radiotherapy

Exposure time Very short (of the order
of 1 s)

Long (continuous
operation)

Tube current Large (up to 1 A) Relatively small
(∼50 mA)

Anode (target) Rotating (up to 104 rpm)
To distribute heat

Stationary (water or oil
cooled)

Anode material Tungsten or
Tungsten/rhenium

Block of tungsten
embedded in copper

Focal spot Point source (as small as
possible)

Relatively large
(diameter of few mm)

Instantaneous energy
input

Large over very short time Relatively small

Average energy input
over long time

Relatively small Large

As the anode voltage increases, the anode current Ia first increases linearly
with anode voltage Ua, until it reaches saturation at very high voltages. The
following observations can be made:

1. In the linear Ia vs Ua region the tube current depends on both the anode
voltage Ua and filament temperature T , and the tube is said to operate in
the space charge limited region.

2. In saturation, all electrons “boiled off” the filament are accelerated toward
the anode, the tube is said to operate in the saturation mode, and the tube
current depends only on the temperature of the filament. The tube current
is said to be “temperature limited” or “filament-emission limited.”

X-ray tubes come in many different forms and in many different designs
depending on the purpose for which they are used; however, the main design
criteria that Coolidge enunciated in 1914, namely high vacuum and hot cath-
ode, are still valid today. Of interest in medical physics are two main categories
of x-ray tube: diagnostic and therapy. The main characteristics of the two
x-ray tube types are given in Table 14.3.

14.4.3 Carbon Nanotube Based X-Ray Tube

The standard source of electrons in x-ray machines, linear accelerators, and
radiofrequencyamplifiers is thehotcathodereferredtoasthefilamentfromwhich
electrons are emitted through the thermionic process (see Sect. 1.27). Coolidge
invented the process in 1913 and Richardson explained it theoretically in 1928.
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In comparison with the original cold cathode x-ray tube design based on
the Crookes tube, the technology of hot cathode revolutionized x-ray tube
design but has not changed much during the past century. Hot cathodes do
have some drawbacks, so that for decades concurrently with improvements
in hot cathode technology, search was on for alternative, more practical, and
cheaper sources of electrons preferably based on cold cathode design.

The most serious drawback of the hot cathode is its required operat-
ing temperature around 1000 ◦C, limiting the choice of filament material to
metals with very high melting point such as tungsten or tungsten alloys. The
high operating temperature enables thermionic electron emission from the fil-
ament but, in comparison with cold cathode, makes the design of the electron
source more complicated, consumes more power, and weakens the filament.

Field emission (see Sect. 1.28.2), which allows emission of electrons from
the surface of a solid under the influence of a strong electric field, seems an
excellent candidate for a practical and efficient cold cathode design. Attempts
in this direction have been made for decades, however, the use of extremely
small metal tips to achieve the large local electric fields always resulted in
electrodes that were unreliable, relatively inefficient, and not durable enough
for routine x-ray tube operation.

In original x-ray tubes using field-emission cold cathodes, the cathode was
a metallic needle with a tip of about 1 μm in diameter. The electron field emis-
sion rate that was obtained with this arrangement, especially at relatively low
voltages used in diagnostic radiology, could not produce sufficiently high tube
currents for most standard radiological examinations. Thus, early attempts to
manufacture field-emission x-ray tubes for clinical use were generally unsuc-
cessful except for: (1) pediatric x-ray tubes where lower tube currents are
acceptable and encouraged so as to limit the radiation exposure of pediatric
patients and (2) chest-radiography x-ray tubes where high tube voltages (up
to 300 kVp) are the norm and the high voltages significantly improve the
field-emission efficiency.

During the past decade, a new generation of carbon based material called
carbon nanotube (CNT) has been developed in nanotechnology laboratories
and showed great promise for use as cold cathode-type electron source. Carbon
nanotubes are ordered molecular structures formed by carbon, yet differ-
ent from the two well-known carbon forms: graphite and diamond. They are
molecular scale tubes with typical diameter of a few nanometers and a height
of up to a few millimeters. The tubes have remarkable electronic properties
and special physical characteristics that make them of great academic as well
as potential commercial interest. They are extremely strong, yet flexible as
well as light and thus hold promise for aerospace applications. Depending on
their structure, they can behave like metal with conductivity higher than cop-
per or like semiconductor potentially useful in design of nanoscale electronic
devices. CNTs are mechanically, chemically, and thermally extremely robust
and, since they also form atomically very sharp tips, they are also very efficient
field emission materials for use as cold cathode electron source in x-ray tubes.
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Miniature x-ray tubes using CNT cold cathode design are already com-
mercially available. They generate electrons at room temperature and provide
controllable as well as stable output currents and respectable life of the cath-
ode. They can be used for “electronic brachytherapy” in medicine where they
replace sealed radionuclide sources and in space exploration for performing
remote mineralogical analyses on solid bodies of the solar system.

Use of cold cathode for high power x-ray tubes in medicine and indus-
try, however, if it happens, is far in the future, since the technology of CNT
production is still in a rudimentary stage and field emission cold cathodes
are currently no match for the standard hot cathode x-ray tube design. The
main characteristics of field emission x-ray tubes are summarized in Table
14.2 and compared with x-ray tubes of the Crookes type (See Sect. 14.4.1)
and Coolidge type (See Sect. 14.4.2).

14.5 Circular Accelerators

With the exception of the linear accelerator, all cyclic accelerators used in
science, industry, and medicine fall into the category of circular accelerators.
Common to all circular accelerators is the circular motion of accelerated par-
ticles with a constant or varying radius. The particles are accelerated by
an appropriate electric field oriented in the direction of motion; however,
they are kept in circular orbit by a strong magnetic field. Because of their
circular motion, the particles are constantly accelerated and emit part of
their kinetic energy in the form of photons (see Larmor Law, discussed in
Sect. 4.2.5). The emitted radiation is referred to as synchrotron radiation or
magnetic bremsstrahlung (Sect. 4.3). Of interest and use in medicine are the
following circular particle accelerators: betatron, cyclotron, microtron, and
synchrotron. Each one of these machines is discussed briefly in this section,
its schematic representation is shown in Fig. 14.2, and its basic characteristics
are summarized in Table 14.4.

14.5.1 Betatron

The betatron was developed in 1940 by Donald W. Kerst as a cyclic elec-
tron accelerator for basic physics research; however, its potential for use in
radiotherapy was realized soon thereafter. In the 1950s betatrons played an
important role in megavoltage radiotherapy, since at that time they provided
the most practical means for production of megavoltage x rays and electron
beams for clinical use. However, the development of linacs pushed them into
clinical oblivion because of the numerous advantages offered by linacs over
betatrons, such as: much higher beam output (up to 10 Gy/min for linacs
vs 1 Gy/min for betatrons); larger field size; full isocentric mounting; more
compact design; and quieter operation.
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(a) Betatron

(b) Cyclotron

(c) Microtron

(d) Synchrotron

Fig. 14.2. Schematic diagrams of various cyclic accelerators used in medicine:
(a) betatron (see Sect. 14.5.1); (b) cyclotron (see Sect. 14.5.2); (c) microtron (see
Sect. 14.5.3); and (d) synchrotron (see Sect. 14.5.4). Vertical cross sections are on
the left, top views on the right
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Table 14.4. Comparison of basic parameters of circular particle accelerators

Circular
accelerator

Particles
accelerated

Radiofrequency (RF)
field

Magnetic
field

Particle
trajectory

Radius of
orbit

Betatron electrons fixed
60 Hz – 180 Hz

variable circle const

Microtron electrons fixed
3 GHz or 10 GHz

const spiral increases
with energy

Cyclotron protons,
ions

fixed,
10 MHz – 30 MHz

const spiral increases
with energy

Synchro-
cyclotron

protons,
ions

variable const spiral increases
with energy

Synchrotron electrons,
protons

variable, p: ∼MHz
e: few 100 MHz

variable circle const

The main features of a betatron are as follows:

1. The machine consists of a magnet fed by an alternating current of frequency
between 50 Hz and 200 Hz. The electrons are made to circulate in a toroidal
evacuated chamber (doughnut) that is placed into the gap between two
magnet poles. A schematic diagram of a betatron is given in Fig. 14.2(a).

2. Conceptually, the betatron may be considered an analog of a transformer:
the primary current is the alternating current exciting the magnet and
the secondary current is the electron current circulating in the vacuum
chamber (doughnut).

3. The electrons are accelerated by the electric field induced in the doughnut
by the changing magnetic flux in the magnet; they are kept in a circular
orbit by the magnetic field present in the doughnut. The changing magnetic
field in the doughnut thus accelerates the electrons and keeps them in their
circular path.

For clinical use betatrons produce either megavoltage x rays or clinical electron
beams. To produce x rays, electrons accelerated in the betatron are made to
strike a thin target embedded in the doughnut and the x-ray beam so produced
is flattened with a flattening filter, typically made of aluminum. A thin target
produces an x-ray beam of the highest possible effective beam energy because
electrons which interact with the target material are all of high energy. The
electrons that traverse the thin target find themselves in a magnetic field and
are swept into the wall of the doughnut before they can hit the flattening filter.
In contrast to the betatron thin target one should note that linac targets are
thick targets by necessity and thus produce less than optimal effective beam
energies. It would be preferable also to use a thin target to produce x-ray
beams in a linac; however, in a linac there is no magnetic field available to
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sweep the electrons transmitted through the target away from the flattening
filter. Since these transmitted electrons would produce unwanted extrafocal
x rays in the flattening filter, one needs a target which is thick enough to stop
all electrons striking it and this unfortunately degrades the x-ray beam so
produced.

To produce clinical electron beams the accelerated electrons are brought
through a window in the doughnut using a special device referred to as a
peeler. Once outside the doughnut, the electron pencil beam traverses a thin
scattering foil which scatters the electrons over a clinically useful field size.

14.5.2 Cyclotron

The cyclotron was developed in 1930 by Ernest O. Lawrence for acceler-
ation of ions to a kinetic energy of a few MeV. The 1939 Nobel Prize in
Physics was awarded to Lawrence for the invention and development of the
cyclotron. Initially, the cyclotron was used for basic nuclear physics research
but has later on found important medical uses in production of radionuclides
for nuclear medicine as well as in production of proton and neutron beams for
radiotherapy.

Lately, the introduction of PET/CT machines for use in radiotherapy
and the increased interest in proton beam radiotherapy have dramatically
increased the importance of cyclotrons in medicine. The PET/CT machines
rely on glucose labeled with positron-emitting fluorine-18 as well as on other
short-lived radionuclides that are produced by proton cyclotrons and are used
for imaging and study of organ function. Proton beam radiotherapy is not
yet widely available because of the relatively large cost involved in the infras-
tructure and maintenance of proton facilities in comparison with megavoltage
x-ray installations.

While current conventional wisdom is that proton beam therapy is at least
as good as modern x-ray therapy, the advantages of protons over x rays have
not been clearly demonstrated yet and the larger cost associated with protons
is difficult to justify. It is agreed, however, that proton beam therapy offers a
clear advantage over x-ray therapy in treatment of many pediatric tumors as a
result of a significantly lower total body leakage dose produced by proton beam
machines. This lower leakage dose translates into a lower rate of secondary
cancer induction, an obviously important consideration in curative treatment
of very young patients.

The salient features of a cyclotron are as follows:

1. In a cyclotron the particles are accelerated along a spiral trajectory guided
inside two evacuated (of the order of 10−6 torr) half-cylindrical electrodes
(referred to as dees because of their D-shape form) by a uniform magnetic
field (of the order of 1 tesla) that is produced between the pole pieces of a
large magnet. A diagram of the cyclotron is given in Fig. 14.2(b).
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2. A radiofrequency voltage with a constant frequency between 10 MHz and
30 MHz is applied between the two electrodes and the charged particle
is accelerated while crossing the gap between the two electrodes. The
frequency of operation is chosen such that protons are accelerated by a
relatively small amount of energy each time they cross the gap between
the dees.

3. Inside the metallic dee electrodes there is no electric field and the particle
drifts under the influence of the magnetic field in a semicircular orbit with
a constant speed, until it crosses the gap again. If, in the meantime, the
electric field has reversed its direction, the particle will again be acceler-
ated across the gap, gain a small amount of energy, and drift in the other
electrode along a semicircle of a larger radius than the former one, result-
ing in a spiral orbit and a gradual increase in kinetic energy after a large
number of gap crossings. Typical potential across the gap between the two
dees is of the order of 150 kV.

The operation of a cyclotron is possible if the time required for the particles
to describe each semicircle in a dee is constant and if the angular frequency ω
of the RF generator is such that the transit time inside one of the dees is equal
to half period of field oscillation. In standard cyclotron operation the Lorentz
force FL keeping the particle in circular orbit is equal to the centrifugal force

FL = qυB =
mυ2

r
, (14.1)

where

q is the charge of the accelerated charged particle.
υ is the velocity of the particle.
B is the magnetic field used for keeping the charged particle in circular orbit

inside the dees.
m is the mass of the accelerated charged particle.
r is the radius of particle orbit during one revolution.

Equation (14.1) can be solved for the angular frequency ω = υ/r and for r to
get the following expressions for ω and r, respectively

ω =
qB
m

= 2πν =
2π
T

= ωcyc (14.2)

and

r =
mυ

qB =
p

qB =
√

2mEK

qB , (14.3)

where p is the momentum of the particle and EK is its kinetic energy. The
angular frequency ω in (14.2) is referred to as the cyclotron frequency ωcyc

of a charged particle with a given ratio q/m in a given magnetic field B. It
does not depend on the velocity υ of the accelerated particle moving in the
constant magnetic field B. However, the radius r of the particle orbit given in
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(14.3) depends linearly on particle velocity. Slow particles move in relatively
small circles, fast particles move in large circles, yet all orbits require the same
period T to complete one revolution in the magnetic field B.

The final kinetic energy EK of the accelerated particles in a cyclotron
depends on the radius R of the dees. The velocity υ of the particle during the
last acceleration across the gap between the dees is from (14.3) given as

υ =
qBR
m

, (14.4)

resulting in the following expression for EK

EK =
mυ2

2
=
q2B2R2

2m
, (14.5)

assuming the validity of classical mechanics for our calculation (m = constant).
The cyclotron operates under the assumption that mass m of the acceler-

ated charged particle in (14.1) is constant and this is true only under classical
conditions where the kinetic energy EK of the charged particle is much smaller
than its rest energy E0. For relativistic charged particles, mass m increases
with particle velocity υ and with kinetic energy EK. This results in a decrease
in cyclotron frequency ωcyc of (14.2) and the particle loses its phase relation-
ship with the constant frequency accelerating RF field. Consequently, electrons
with their relatively small rest mass cannot be accelerated with a cyclotron,
and heavier particles such as protons can only be accelerated to relatively low
final kinetic energies. These kinetic energies of heavy charged particles are no
longer useful for high-energy physics research; however, they are adequate for
production of protons and heavier ions for use in medicine.

For relativistic particles expressions for ωcyc and r of (14.2) and (14.3),
respectively, are written as follows after inserting the relativistic mass γm0

for the mass m to get

ωcyc =
qB
γm0

(14.6)

and

r =
p

qB =
γm0c

2β

qB =
EK

(
1 +

2m0c
2

E2
K

)1/2

qBc , (14.7)

respectively, where γ =
√

[1 − (υ/c)2, β = υ/c, and m0c
2 is the par-

ticle’s rest mass. Equations (14.6) and (14.7) transform into (14.2) and
(14.3), respectively, when we deal with classical mechanics where γ = 1 and
EK 	 m0c

2.
Higher heavy charged particle energies than those obtained with a stan-

dard cyclotron can be achieved with a special cyclotron in which the frequency
of the RF accelerating field is modulated so as to remain in phase with the
decreasing cyclotron frequency despite the increase in particle mass. These
machines are called synchrocyclotron and are used in physics research but
not in medicine.



628 14 Particle Accelerators in Medicine

14.5.3 Microtron

Microtron is an electron accelerator producing electrons in the energy range
from 5 MeV to 50 MeV. It combines the features of a linac (resonant cavity
for acceleration) and a cyclotron (constant magnetic field to keep accelerated
particles in orbit) and is sometimes referred to as electron cyclotron. The
concept of the microtron was proposed by Vladimir I. Veksler in 1944 and
the first prototype unit was built in 1948 in Canada. The machine is used in
modern radiotherapy, albeit to a much smaller extent than linear accelerator.
Electrons are accelerated by a fixed frequency resonant cavity, make repeated
passes through the same cavity, and describe circular orbits in a constant
magnetic field.

Two types of microtron are in use: circular and racetrack. A schematic
diagram of a circular microtron is shown in Fig. 14.2(c).

In the circular microtron the electron gains energy from repeated tran-
sitions through a microwave resonant cavity. After each acceleration in a
resonant cavity, electrons follow a circular orbit under the influence of a con-
stant magnetic field B and return to the accelerating cavity to receive another
boost in kinetic energy. The radius of the trajectory orbit increases with
increasing electron energy. To keep the particle in phase with the microwave
RF power, the cavity voltage, frequency, and magnetic field are adjusted in
such a way that, after each passage through the cavity, the electrons gain an
energy increment resulting in an increase in the transit time in the magnetic
field equal to an integral number of microwave cycles.

The principle of operation of the racetrack microtron is similar to that of
a circular microtron; however, in the racetrack model the magnet is split into
two D-shaped pole pieces that are separated to provide greater flexibility in
achieving efficient electron injection and higher energy gain per orbit through
the use of multi-cavity accelerating structures similar to those used in linacs.
The electron orbits consist of two semicircular and two straight sections.

14.5.4 Synchrotron

Synchrotron is the most recent and most powerful member of the circular
accelerator family. In synchrotron, like in betatron, the particles follow a cir-
cular orbit of constant radius inside a vacuum chamber in the form of an
evacuated circular tube but with a significantly larger radius than in a beta-
tron. Because of its similarity with the betatron, the synchrotron is sometimes
called the betatron for electrons. The evacuated chamber is placed into a mag-
netic field that changes in time to account for the increase in particle mass
with energy. Unlike in betatron and cyclotron, in synchrotron there is no need
for magnetic field within the whole circular orbit of the beam; instead, a nar-
row ring of magnets provides the guiding magnetic field. The particles are
accelerated by an RF electric field which is produced in a resonant cavity
(called resonator) placed at a certain point in the particle circular trajectory.
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The particles pass through the resonant cavity a large number of times and
gain a small amount of kinetic energy during each passage through the cavity.

Both light and heavy charged particles can be accelerated in a synchrotron;
however, most synchrotrons are used for acceleration of protons. The fre-
quency of operation is several MHz for acceleration of protons and several
100 MHz for acceleration of electrons. In order to avoid the need for a wide
range of frequency modulation of the RF field, the particles are usually
injected into the synchrotron after being accelerated to kinetic energy of a
few MeV by means of an auxiliary electrostatic or linear accelerator called the
injector. Synchrotrons are mainly used for high-energy physics research, but
are also used clinically as source for proton beam radiotherapy. A schematic
diagram of a synchrotron is given in Fig. 14.2(d).

14.5.5 Synchrotron Light Source

As discussed in Sect. 4.3, a charged particle accelerated to a very high velocity
in a synchrotron moves in a circular orbit under the influence of a magnetic
field and is thus constantly accelerated. As a consequence of this acceleration,
the particle emits part of its kinetic energy in the form of photons following
Larmor law of (4.18). The radiation so emitted is called synchrotron radiation
or magnetic bremsstrahlung and the radiation energy emitted, as given in
(4.41), is proportional to the fourth power of the particle velocity and is
inversely proportional to the square of the radius of the path.

A cyclic accelerator that keeps particles in a circular orbit such as a syn-
chrotron may be used either for acceleration of charged particles to relativistic
velocities or as source of high intensity photon beams (synchrotron radiation)
produced by relativistic particles circulating in the accelerator. In the first
instance we are dealing with a high energy cyclic accelerator for production of
energetic particles, in the second instance we are dealing with a synchrotron
light source also called a storage ring for production of intense photon beams.

In a storage ring a continuous or pulsed particle beam may be kept circu-
lating for intervals up to few hours and the particles stored can be electrons,
positrons, or protons. Most storage rings are used to store electrons for pro-
duction of intense synchrotron radiation used in studies of various physical,
chemical, and biological phenomena.

Broadband synchrotron radiation in the x-ray energy range that can be
rendered monochromatic just above and just below the K absorption edge
of iodine based contrast agent has been used successfully in cardiac imaging.
The technique is called synchrotron radiation angiography (SRA) and is a
novel tool for minimally invasive coronary artery imaging for detection of in-
stent restenosis. It is based on acquisition and subtraction of two images, one
taken just above the K edge of iodine and one taken just below the K edge of
iodine after intravenous infusion of iodinated contrast agent. SRA is thus a
novel form of the so-called digital subtraction angiography (DSA), an image
subtraction technique based on standard x-ray machines.
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14.6 Clinical Linear Accelerator

During the past few decades medical linear accelerators (linacs). have become
the predominant machine in treatment of cancer with ionizing radiation. In
contrast to linacs used for high-energy physics research, medical linacs are
compact machines mounted isocentrically so as to allow practical radiation
treatment aiming the beam toward the patient from various directions to
concentrate the dose in the tumor and spare healthy tissues as much as pos-
sible. In this section we briefly discuss the practical aspects of clinical linear
accelerators; the theoretical aspects of electron acceleration in accelerating
waveguide are discussed in Chap. 13.

Medical linacs are cyclic accelerators which accelerate electrons to kinetic
energies from 4 MeV to 25 MeV using non-conservative microwave radiofre-
quency (RF) fields in the frequency range from 103 MHz (L band) to 104 MHz
(X band), with the vast majority running at 2856 MHz (S band).

In a linear accelerator the electrons are accelerated following straight
trajectories in special evacuated structures called accelerating waveguides.
Electrons follow a linear path through the same, relatively low, potential
difference several times; hence, linacs also fall into the class of cyclic accel-
erators just like the other cyclic machines that provide curved paths for the
accelerated particles (e.g., betatron and cyclotron).

Various types of linacs are available for clinical use. Some provide x rays
only in the low megavoltage range (4 MV or 6 MV) others provide both x rays
and electrons at various megavoltage energies. A typical modern high-energy
linac will provide two photon energies (e.g., 6 MV and 18 MV) and several
electron energies in the range from 4 MeV to 22 MeV.

14.6.1 Linac Generations

During the past 40 years, medical linacs have gone through five distinct
generations, making the contemporary machines extremely sophisticated in
comparison with the machines of the 1960s. Each generation introduced the
following new features:

1. Low energy megavoltage photons (4 MV to 8 MV):

straight-through beam; fixed flattening filter; external wedges; symmetric
jaws; single transmission ionization chamber; isocentric mounting.

2. Medium energy megavoltage photons (10 MV to 15 MV) and electrons :
bent beam; movable target and flattening filter; scattering foils; dual
transmission ionization chamber; electron cones.

3. High energy megavoltage photons (18 MV to 25 MV) and electrons :
dual photon energy and multiple electron energies; achromatic bending
magnet; dual scattering foils or scanned electron pencil beam; motorized
wedge; asymmetric or independent collimator jaws.
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4. High energy megavoltage photons (18 MV to 25 MV) and electrons :

computer-controlled operation; dynamic wedge; electronic portal imaging
device; multileaf collimator (MLC).

5. High energy megavoltage photons (18 MV to 25 MV) and electrons :

photon beam intensity modulation with multileaf collimator; full dynamic
conformal dose delivery with intensity modulated beams produced with a
multileaf collimator; on-board imaging for use in adaptive radiotherapy.

14.6.2 Components of Modern Linacs

The linacs are usually mounted isocentrically and the operational systems are
distributed over five major and distinct sections of the machine:

1. Gantry
2. Gantry stand or support
3. Modulator cabinet
4. Patient support assembly, i.e., treatment couch
5. Control console.

A schematic diagram of a typical modern S-band medical linac is shown in
Fig. 14.3. Also shown are the connections and relationships among the various
linac components, listed above. The diagram provides a general layout of linac
components; however, there are significant variations from one commercial
machine to another, depending on the final electron beam kinetic energy as
well as on the particular design used by the manufacturer. The length of
the accelerating waveguide depends on the final electron kinetic energy, and
ranges from ∼30 cm at 4 MeV to ∼150 cm at 25 MeV.

The beam-forming components of medical linacs are usually grouped into
six classes:

1. Injection system
2. RF power generation system
3. Accelerating waveguide
4. Auxiliary system
5. Beam transport system
6. Beam collimation and beam monitoring system.

The injection system is the source of electrons, essentially a simple electro-
static accelerator called an electron gun. Two types of electron gun are in use:
diode type and triode type, both containing a heated cathode (at a negative
potential of the order of −25 kV) and a perforated grounded anode. In addi-
tion, triode type gun also incorporates a grid placed between the cathode and
anode. Electrons are thermionically emitted from the heated cathode, focused
into a pencil beam and accelerated toward the perforated anode through which
they drift into the accelerating waveguide.



632 14 Particle Accelerators in Medicine

Fig. 14.3. Schematic diagram of a medical linear accelerator (linac)

The radiofrequency (RF) power generating system produces the high power
microwave radiation used for electron acceleration in the accelerating waveg-
uide and consists of two components: the RF power source and the pulsed
modulator. The RF power source is either a magnetron or a klystron in con-
junction with a low power RF oscillator. Both devices use electron acceleration
and deceleration in vacuum for production of the high power RF fields. The
pulsed modulator produces the high voltage, high current, short duration
pulses required by the RF power source and the electron injection system.

Electrons are accelerated in the accelerating waveguide by means of an
energy transfer from the high power RF field which is set up in the acceler-
ating waveguide and produced by the RF power generator. The accelerating
waveguide is in principle obtained from a cylindrical uniform waveguide by
adding a series of disks (irises) with circular holes at the center, positioned
at equal distances along the tube. These disks divide the accelerating waveg-
uide into a series of cylindrical cavities that for the basic structure of the
accelerating waveguide of a linac.

The auxiliary system of a linac consists of several basic systems that are
not directly involved with electron acceleration, yet they make the acceleration
possible and the linac viable for clinical operation. These systems are: the
vacuum-pumping system, the water-cooling system, the air-pressure system,
and the shielding against leakage radiation.
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The electron beam transport system brings the pulsed high-energy electron
beam from the accelerating waveguide onto the target in the x-ray therapy
mode and onto the scattering foil in the electron therapy mode.

The beam monitoring system and the beam collimation system forms and
essential system in a medical linac ensuring that radiation dose may be
delivered to the patient as prescribed, with a high numerical and spatial
accuracy.

14.6.3 Linac Treatment Head

The linac head contains several components, which influence the production,
shaping, localizing, and monitoring of the clinical photon and electron beams.
Electrons, originating in the electron gun, are accelerated in the accelerat-
ing waveguide to the desired kinetic energy and then brought, in the form
of a pencil beam, through the beam transport system into the linac treat-
ment head, where the clinical photon and electron beams are produced. The
important components found in a typical head of a modern linac include:

1. Several retractable x-ray targets
2. Flattening filters and electron scattering foils (also called scattering filters)
3. Primary and adjustable secondary collimators
4. Dual transmission ionization chambers
5. Field defining light and range finder
6. Optional retractable wedges or full dynamic wedges
7. Optional multileaf collimator (MLC).

Clinical Photon Beams

The clinical x-ray beams are produced in medical linacs with a target/flat-
tening filter combination. The electron beam accelerated to a given kinetic
energy in the accelerating waveguide is brought by the beam transport sys-
tem onto an x-ray target in which a small fraction (of the order of 10 %) of
the electron pencil beam kinetic energy is transformed into bremsstrahlung
x rays. The intensity of the x-ray beam produced in the target is mainly
forward peaked and a flattening filter is used to flatten the beam and make
it useful for clinical applications. Each clinical photon beam produced by
a given electron kinetic energy has its own specific target/flattening filter
combination.

Photon beam collimation in a typical modern medical linac is achieved
with three collimation devices: the primary collimator, the secondary movable
beam defining collimator, and the multileaf collimator (MLC). The primary
collimator defines a maximum circular field which is further truncated with
the adjustable rectangular collimator consisting of two upper independent
jaws and two lower independent jaws and producing rectangular or square
fields with a maximum dimension of 40×40 cm2 at the linac isocenter, 100 cm
from the x-ray target.
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The MLC is a relatively new addition to modern linac dose delivery tech-
nology. In principle, the idea behing an MLC is simple: MLC allows production
of irregularly shaped radiation fields with accuracy as well as efficiency and
is based on an array of narrow collimator leaf pairs, each leaf controlled with
its own miniature motor. The building of a reliable MLC system presents a
substantial technological challenge and current models incorporate up to 120
leaves (60 pairs) covering radiation fields up to 40×40 cm2 and requiring 120
individually computer-controlled motors and control circuits.

Clinical Electron Beams

Megavoltage electron beams represent an important treatment modality in
modern radiotherapy, often providing a unique option in the treatment of
superficial tumors. They have been used in radiotherapy since the early 1950s,
first produced by betatrons and then by microtrons and linacs. Modern high-
energy linacs typically provide, in addition to two megavoltage x-ray energies,
several electron beam energies in the range from 4 MeV to 25 MeV.

Electron beams used clinically are produced by retracting the target and
flattening filter from the electron pencil beam path and (1) either scattering
the pencil beam with a scattering foil or (2) deflecting and scanning the pencil
beam magnetically to cover the field size required for electron treatment.
Special cones (applicators) are used to collimate the electron beams. The
electron pencil beam exits the evacuated beam transport system through a
thin window usually made of beryllium, which, with its low atomic number,
minimizes the pencil beam scattering and bremsstrahlung production.

Dose Monitoring System

In a medical linac an accurate measurement of dose delivered to the patient
is of paramount importance. The dose monitoring system of a medical linac
is based on transmission ionization chambers permanently imbedded in the
linac clinical photon and electron beams. The chambers are used to monitor
the beam output (patient dose) continuously during patient treatment. In
addition to dose monitoring, the chambers are also used for monitoring the
radial and transverse flatness of the radiation beam as well as its symmetry
and energy.

For patient safety, the linac dosimetry system usually consists of two
separately sealed ionization chambers with completely independent biasing
power supplies and read out electrometers. If the primary chamber fails dur-
ing patient treatment, the secondary chamber will terminate the irradiation,
usually after an additional dose of only a few per cent above the prescribed
dose has been delivered. Linacs are also equipped with backup timers. In
the event of simultaneous failute of both the primary and secondary ioniza-
tion chambers, the linac timer will shut the machine down with a minimal
overdose to the patient.
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Field Defining Light, Range Finder,
and Laser Positioning Indicators

Accurate positioning of the patient into the radiation beam is very impor-
tant for modern radiotherapy to ensure the spatial accuracy of dose delivery.
The field defining light, range finder, and laser positioning indicators provide
convenient visual methods for correctly positioning the patient for treatment
using reference marks. The field light illuminates an area that coincides with
the radiation treatment field on the patient’s skin, while the range finder
is used to place the patient at the correct treatment distance by projecting
a centimeter scale whose image on the patient’s skin indicates the vertical
distance from the linac isocenter. Laser positioning devices are used for a
practical and reliable indication of the position of the machine isocenter in
the treatment room.

14.6.4 Configuration of Modern Linacs

At megavoltage electron energies the bremsstrahlung photons produced in
the x-ray target are mainly forward-peaked and the clinical photon beam is
produced in the direction of the electron beam striking the target.

In the simplest and most practical configuration, the electron gun and the
x-ray target form part of the accelerating waveguide and are aligned directly
with the linac isocentre, obviating the need for a beam transport system. A
straight-through photon beam is produced and the RF power source is also
mounted in the gantry. The simplest linacs are isocentrically mounted 4 MV
or 6 MV machines with the electron gun and target permanently built into
the accelerating waveguide, thereby requiring no beam transport nor offering
an electron therapy option, as shown schematically in Fig. 14.4(a).

Accelerating waveguides for intermediate (8 MeV to 15 MeV) and high
(15 MeV to 30 MeV) electron energies are too long for direct isocentric mount-
ing, so they are located either in the gantry, parallel to the gantry axis of
rotation, or in the gantry stand. A beam transport system is then used to
transport the electron beam from the accelerating waveguide to the x-ray
target, as shown schematically in Figs. 14.4(a) and 14.4(b). The RF power
source in the two configurations is commonly mounted in the gantry stand.
Various design configurations for modern isocentric linear accelerators are
shown in Fig. 14.4 and a modern dual energy medical linac equipped with
several imaging modalities for use in image guided radiotherapy (IGRT) and
adaptive radiotherapy (ART) is shown in Fig. 14.5.

Image guided radiotherapy (IGRT) allows the imaging of patient’s anatomy
just before delivery of individual fractions of radiotherapy, thus providing pre-
cise knowledge of the location of the target volume on a daily basis and
ensuring that the relative positions of the target volume and some refer-
ence point for each fraction are the same as in the treatment plan. Full
implementation of IGRT leads to the concept of adaptive radiotherapy (ART)
whereby the dose delivery for subsequent treatment fractions of a course of
radiotherapy can be modified to compensate for inaccuracies in dose delivery
that cannot be corrected for by simply adjusting the patient’s positioning.
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Fig. 14.4. Design configurations for isocentric medical linacs. (a) Straight-through
beam design; the electron gun and target are permanently embedded into the accel-
erating waveguide; machine produces only x rays with energies of 4 MV to 6 MV;
the rf-power generator is mounted in the gantry. (b) Accelerating waveguide is in
the gantry parallel to the isocenter axis; electrons are brought to the movable target
through a beam transport system; the rf-power generator is located in the gantry
stand; machine can produce megavoltage x rays as well as electrons. (c) Acceler-
ating waveguide and rf-power generator are located in the gantry stand; electrons
are brought to the movable target through a beam transport system; machine can
produce megavoltage x rays as well as electrons
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Fig. 14.5. Modern dual photon energy (6 MV and 20 MV) linear accelerator
(Novalis TX, manufactured in collaboration between Varian Medical Systems, Palo
Alto, CA and BrainLAB, Feldkirchen, Germany) equipped with several imaging
modalities for use in image guided radiotherapy (IGRT), adaptive radiotherapy
(ART), gated radiotherapy, and stereotactic cranial as well as extracranial radio-
surgery. The machine incorporates a high definition multileaf collimator as well as
a robotic treatment couch and allows static as well as dynamic intensity modu-
lated treatments. Courtesy of BrainLAB, Feldkirchen, Germany. Reproduced with
Permission

14.6.5 Pulsed Operation of Linacs

All particle accelerators operate in some sort of pulsed operation and the clin-
ical electron linacs are no exception. The major linac components, including
the source of radiofrequency (RF system), electron gun (injection system),
acceleration of electrons in the accelerating waveguide, and production of
bremsstrahlung x rays in the linac target, operate in a pulsed mode with a
relatively low duty cycle.
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Fig. 14.6. Typical pulse sequence for electron arriving at the x-ray target of a
megavoltage linac. The duty cycle δ for the example shown is δ = 2×10−4

In telecommunications and electronics the duty cycle is defined as the
fraction of time during which a particular system is in active state or

δ =
τ

T
, (14.8)

where τ is the duration of the active pulse and T is the period of the periodic
operation.

The operation of particle accelerators must be pulsed because of the large
instantaneous power (of the order of megawatts) that is required to achieve the
desired acceleration. The RF systems, operating at standard linac frequency
of 2856 MHz or at ∼104 MHz for miniature linacs, can supply such high power
only in pulsed operation with a low duty cycle. The pulse repetition rates in
typical clinical linacs range from a few pulses per second (pps) up to a few
100 pps.

Typical clinical linac pulsed operation proceeds as follows:

1. The RF power in the RF system is turned on and it takes about 1 μs to fill
the accelerating waveguide and produce the field required for acceleration
of electrons.

2. The electron gun is then tuned on, electrons are being injected into the
accelerating waveguide for 1 μs to 2 μs, and accelerated toward the target.

3. The electron gun is then turned off and injection of electrons is stopped.
4. The RF system is switched off, the accelerating waveguide is completely

de-excited in about 1 μs through dumping the residual energy into a
dissipative load.

5. The system is ready for the next cycle.

A typical pulse sequence for electrons arriving at the x-ray target of a
clinical linac which is run, for example, in the 10 MV x-ray mode is shown in
Fig. 14.6. The pertinent parameters are as follows:

Pulse repetition rate (rep rate) in pulses per second (pps): ρ = 100 pps
Pulse period: T = 104 μs
Pulse width: τ = 2 μs
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Peak beam current: Ipeak = 50 mA
Nominal potential: U = 10 MV
Charge q carried per pulse: q = τIpeak = (2×10−6 s)×(50×10−3 A) = 10−7 C
Charge deposited in the target per second: qρ = 10−5 C
Duty cycle: δ = τ/T = 2×10−4

Number of electrons arriving per second in the x-ray target:

ne = δIpeake
−1 = 2×10−4 × 50×10−3 A/(1.6×10−19 As) = 6.25×1013 s−1

Average beam current: Ī = δIpeak = 10 μA or Ī = qρ = 10 μA.
Kinetic energy carried by each electron: EK = 107 eV = 1.6×10−12 J

Several interesting conclusions can be drawn from this example:

1. The fraction of the linac active on-time is fairly low considering that during
the pulse duration (period) of 104 μs the linac is active only for 2 μs
and is off for the remaining 9998 μs. Despite this very low duty cycle
of δ = 2×10−4, a clinical linac produces an average dose rate of 1 Gy ·
min−1 to –10 Gy · min−1 at the linac isocenter without difficulty.

2. Because of the low duty cycle, the average beam current in the waveguide
is also very low, so that the actual power consumption by a typical clinical
linac is not excessive.

3. The power P delivered to the linac x-ray target under normal operating
conditions is also relatively low and can be estimated by multiplying the
average beam current Ī = 10−5 A with the nominal potential U = 107 V
to obtain P = 100 W.

4. We can obtain the same result for the power P delivered to the x-ray target
as in point (3) above, if we multiply ne, the number of electrons arriving
per second in the x-ray target with the kinetic energy EK carried by each
electron

P = neEK = (6.25×1013 s−1) × (1.6×10−12 J) = 100 W (14.9)

The power of 100 W delivered to the linac target is obviously much lower
than the power delivered to an x-ray target of an x-ray tube operated in
the diagnostic radiology range of 50 kVp to 150 kVp. For the same photon
beam output, the substantially lower power input into a linac target compared
to an x-ray tube target is a result of the forward-peaked x-ray production
combined with a much higher efficiency for x-ray production in the megavolt-
age energy range in comparison with superficial and orthovoltage x-ray tube
range.

14.6.6 Practical Aspects of Megavoltage X-Ray Targets
and Flattening Filters

Traditionally, the requirements for target properties, established during the
early days of x-ray technology development, were quite straightforward with
two main stipulations:
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1. The targets should be made of high atomic number Z material to maximize
efficiency for x-ray production.

2. Targets should have a high melting point to minimize damage to the target
from the energetic electron beam used for x-ray production.

Tungsten satisfies well both conditions and is thus the material of choice in
most x-ray tubes. With the advent of megavoltage linear accelerators (linacs),
it also seemed prudent to adopt tungsten as the target material in clinical
linacs and the approach worked well for linac energies below 15 MV; however,
at energies above 15 MV high Z targets did not prove optimal, as shown by
research work carried out on a 25-MV linac at the Princess Margaret Hospital
in Toronto in the early 1970s. The hospital had been using a 25-MV betatron
for many years and purchased one of the first commercially available 25-MV
linear accelerators when they became available in 1970.

The new linac incorporated a tungsten target and tungsten flattening fil-
ter for the production of the clinical megavoltage x-ray beam. It was installed
under the assumption that it would provide several improvements over the
betatron (such as, better output, isocentric mounting, quieter operation) and
produce a clinical x-ray beam comparable to that of the betatron when oper-
ated at 25-MV. However, during the linac commissioning process it became
apparent that the linac provided a significantly less penetrating beam than
did the betatron when both machines were operated at 25-MV; actually, the
25-MV linac produced an x-ray beam with tissue-penetrating properties that
matched the betatron beam when the betatron was operated at 16 MV. This
was a significant energy difference considering the extra cost in building a
linac running at 25-MV rather than at 16 MV.

The cause of the discrepancy between the linac beam and the betatron
beam was traced to the target/flattening filter design and atomic number Z in
the two machines. By virtue of its design, the betatron uses a thin target that
inherently produces a more penetrating photon beam in comparison to linac’s
thick transmission tungsten target. Early betatrons also used an aluminum
flattening filter in comparison to linac’s tungsten filter, and aluminum with
its low atomic number will soften the megavoltage x-ray beam less than does
a high atomic number filter.

A thin target may be used in betatrons because the target is immersed
in a strong magnetic field that engulfs the doughnut, keeps the electrons in
circular motion, and sweeps the low-energy electrons transmitted through the
target into the doughnut wall before they can strike the flattening filter and
produce unwanted off-focus x-rays. In linacs the targets are not immersed
in a strong magnetic field so they must be of the thick variety to prevent
electrons from traversing the target and striking the flattening filter where
they would produce extrafocal bremsstrahlung radiation. The 25-MV linac
beam was thus formed with a thick high Z target and a high Z flattening filter,
while the betatron beam was formed with a thin target and a low Z flattening
filter.
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A study of unfiltered linac x-ray beams at machine potentials above
15 MeV has shown that a low Z thick target produces the same quality x-ray
beam as a thin betatron target. Thus, a conclusion can be made that x-ray
targets in this energy range should be made of low atomic number material
to produce the most penetrating photon beam. However, there is a practical
problem with this stipulation: it is difficult to find a low Z target that also has
a high mass density (i.e., engenders a relatively short range of megavoltage
electrons) to make it compact for use in linacs.

For example, the required target thickness for 25-MeV electrons is 1 cm
of lead (Z =82, ρ=11.3 g · cm−3), 0.5 cm of tungsten (Z = 74, ρ= 19.25 g ·
cm−3), or 4 cm of aluminum (Z= 13, ρ= 2.7 g · cm−3). From the atomic
number Z point of view aluminum is an excellent choice of target material;
however, its low mass density precludes its use as a practical target material
in high-energy linear accelerators. In modern high-energy linacs a compro-
mise between low Z requirement and concurrent high-density requirement is
reached by the use of copper (Z = 29 and ρ = 8.9 g · cm−3) rather than
tungsten (Z = 74 and ρ = 19.25 g · cm−3) as target material.

The low Z target recommendation goes against the target high Z require-
ment for maximizing the x-ray production; however, it turns out that in the
megavoltage energy range the x-ray production in the forward direction is
essentially independent of target atomic number and for practical radiother-
apy one uses only photons projected in the forward direction defined by the
electron pencil beam striking the target. The x-ray yield, of course, depends
on the atomic number Z of the target (the higher is Z, the higher is the yield);
however, this yield is stated for the 4π geometry and in megavoltage radio-
therapy one uses only photons projected in the forward direction for which
the yield is independent of Z. It is actually advantageous to have a lower x-ray
yield in directions outside the useful radiotherapy beam, because this lowers
the required shielding against leakage radiation produced in the linac target.

The traditional requirement on a high melting point of the target material
is not as stringent for high-energy linacs in comparison with diagnostic x-ray
tubes. At high photon energies used in radiotherapy, the efficiency for x-ray
production is of the order of 10 % to 20 % rather than below 1 % as is the case
with diagnostic x-ray tubes. Therefore, the electron beam energy deposition
and target cooling is of much less concern in megavoltage linac as compared
to diagnostic range x-ray tubes.

The Toronto target/flattening filter study revealed that depth doses for the
25-MV x-ray beam from the linac could be made identical to those measured
for the 25-MV betatron beam with the use of an aluminum thick target and
an aluminum flattening filter for the shaping of the linac beam. Other beam
energies were also studies and Fig. 14.7 shows the results by plotting percent-
age depth doses against electron kinetic energy in the range from 10 MeV to
32 MeV at various depths in water for four target/ flattening filter combi-
nations using high Z (lead) and low Z (aluminum) for target and flattening
filter material.



642 14 Particle Accelerators in Medicine

Fig. 14.7. Percentage depth dose at various depths in water against electron beam
kinetic energy for various target and flattening filter combinations for megavoltage
linacs. Circular field of 10 cm diametr at an SSD of 100 cm

As evident from Fig. 14.7, the most penetrating x-ray beam was obtained
from a low Z target/low Z flattening filter combination for electron kinetic
energies above 15 MeV and from a high Z target/low Z flattening filter com-
bination for electron kinetic energies below 15 MeV. With both machines
operating at 25 MV, the linac x-ray beam produced with an aluminum target
and aluminum flattening filter exhibited the same depth dose characteristics
as the betatron with its thin target and aluminum flattening filter.

As far as flattening filters are concerned, low atomic number materials are
preferable in the range above 15 MV because, with their lower pair production
cross section, they cause less beam softening than high atomic number materi-
als; however, similarly to the situation with target materials, space constraints
in linac heads limit the practical choices available.
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Aluminum, with its relatively low mass density (ρ = 2.7 g · cm−3), was a
good choice for flattening the betatron beam, since the field size produced by
the machine was limited to a 20 × 20 cm2 field. Modern linear accelerators,
however, deliver fields of up to 40 × 40 cm2 at 100 cm from the target and
these field sizes cannot be supported by aluminum flattening filters because
of the associated required large size of the filter.

The results of the Toronto target/flattening filter study are summarized
in Table 14.5 and show that for linac potential below 15 MV the best tar-
get/flattening filter combination is high Z target and low Z flattening filter,
while at potentials above 15 MV the best target/flattening filter combina-
tion is low Z target and low Z flattening filter. Because of spatial constraints
in linac heads, intermediate atomic number materials provide a reasonable
compromise for choice of flattening filter and target material for megavoltage
linacs. Since the price of a linac increases with its maximum electron beam
energy, it is important to optimize the design of the clinical beam shaping
components to produce the highest effective x-ray energy for a given machine
potential defined by the kinetic energy of electrons striking the target.

Table 14.5. Best and worsts target/flattening filter combinations for megavoltage
linear accelerators

Electron beam BEST target/flattening filter WORST target/flattening filter
kinetic energy combination combination

EK (MeV) Target Flattening filter Target Flattening filter

EK < 15 MeV High Z Low Z High Z High Z
EK = 15 MeV High or Low Z Low Z High Z High Z
EK > 15 MeV Low Z Low Z High Z High Z
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A

Main Attributes of Nuclides Presented
in this Book

The data given in Table A.1 can be used to determine the various decay
energies for the specific radioactive decay examples as well as for the nuclear
activation examples presented in this book. M stands for the nuclear rest
mass; M stands for the atomic rest mass. The data were obtained as follows:

1. Data for atomic masses M were obtained from the NIST and are given
in unified atomic mass units u (http://physics.nist.gov/PhysRefData/
Compositions/index.html).

2. The rest mass of the protonmp, neutronmn, electronme, and of the unified
atomic mass unit u is given by the NIST as follows:

mp = 1.672 621 637×10−27 kg = 1.007276 467 u = 938.272 013 MeV/c2 (A.1)

mn = 1.674 927 211×10−27 kg = 1.008664 916 u = 939.565 346 MeV/c2 (A.2)

me = 9.109 382 215×10−31 kg = 5.485799 094×10−4u = 0.510 998 910 MeV/c2 (A.3)

1 u = 1.660 538 782×10−27 kg = 931.494 028 MeV/c2 (A.4)

3. For a given nuclide, its nuclear rest energy Mc2 was determined by sub-
tracting the rest energy of all atomic orbital electrons (Zmec

2) from the
atomic rest energy M(u)c2 as follows

Mc2 = M(u)c2 − Zmec
2 = M(u) × 931.494 028 MeV/u − Z × 0.510 999 MeV. (A.5)

The binding energy of orbital electrons to the nucleus is ignored in (A.5).
4. The nuclear binding energy EB for a given nuclide was determined using

the mass deficit equation given in (1.25) to get

EB = Zmpc2 + (A − Z)mnc2 − Mc2, (A.6)

with Mc2 given in (A.5) and the rest energy of the proton mpc
2, neutron

mnc
2, and electron mec

2 given in (A.1), (A.2), and (A.3), respectively.
5. For a given nuclide the binding energy per nucleon EB/A is calculated by

dividing the binding energy EB of (A.6) with the number of nucleons equal
to the atomic mass number A of a given nuclide.
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B

Basic Characteristics of the Main
Radioactive Decay Modes

The following decay modes are presented: α decay, β− decay, β+ decay, elec-
tron capture, γ decay, internal conversion, proton emission decay, and neutron
emission decay. For each decay mode the table gives the basic relationship, the
decay energy Q, and the kinetic energy EK of the decay products. P stands for
the parent nucleus or atom; D for the daughter nucleus or atom. M represents
the nuclear rest mass, M the atomic rest mass, me the electron rest mass, mp

the proton rest mass, and mn the neutron rest mass
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Table B.1. Alpha (α) Decay

Basic relationship: [see (11.2)]

A
Z P → A−4

Z−2D + α+Qα (B.1)

Decay energy: [see (11.3) and (11.4)]

Qα = {M(P) − [M(D) +mα]} c2 =
{M(P) − [M(D) + M(42He)]

}
c2

= EB(D) +EB(α) −EB(P) = (EK)α + (EK)D (B.2)

Kinetic energy of α particle: [see (11.7)]

(EK)α =
Qα

1 +
mα

M(D)

≈ AP − 4

AP
Qα (B.3)

Daughter recoil kinetic energy: [see (11.8)]

(EK)D =
Qα

1 +
M(D)

mα

≈ 4

AP
Qα (B.4)

Table B.2. Beta minus (β−) Decay

Basic relationship: [see (11.15)]

A
Z P → A

Z+1 D + e− + ν̄e +Qβ− (B.5)

Decay energy: [see (11.19), (11.25), and (11.26)]

Qβ− = {M(P) − [M(D) +me]} c2 = {M(P) −M(D)} c2

= (Eβ−)max + (EK)Dmax = (Eβ)max

⎧⎪⎨
⎪⎩1 +

mec
2 +

1

2
(Eβ)max

M(D)c2

⎫⎪⎬
⎪⎭ (B.6)

Daughter maximum recoil kinetic energy: [see (11.23)]

(EK)Dmax =
me

M(D)
(Eβ−)max

{
1 +

(Eβ−)max

2M(D)c2

}
(B.7)

Combined energy given to electron/antineutrino

(Eβ−)max = Qβ− − (EK)Dmax ≈ Qβ− (B.8)
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Table B.3. Beta plus (β+) Decay

Basic relationship: [see (11.16)]

A
Z P → A

Z−1D + e+ + νe +Qβ+ (B.9)

Decay energy: [see (11.19), (11.33), and (11.34)]

Qβ+ = {M(P) − [M(D) +me]} c2 = {M(P) −M(D) + 2me} c2

= (Eβ+)max + (EK)Dmax = (Eβ)max

⎧⎪⎨
⎪⎩1 +

mec
2 +

1

2
(Eβ)max

M(D)c2

⎫⎪⎬
⎪⎭ (B.10)

Daughter maximum recoil kinetic energy: [see (11.24)]

(EK)Dmax =
me

M(D)
(Eβ+)max

{
1 +

(Eβ+)max

2mM(D)c2

}
(B.11)

Combined energy given to positron/neutrino

(Eβ+)max = Qβ+ − (EK)Dmax ≈ Qβ+ (B.12)

Table B.4. Electron Capture (EC)

Basic relationship: [see (11.17)]

A
Z P + e− = A

Z−1D + νe +QEC (B.13)

Decay energy: [see (11.42) and (11.43)]

QEC = {[M(P) +me] −M(D)} c2 = {M(P) − [M(D) −me]} c2
= {M(P) −M(D)} c2 = (EK)D + Eνe (B.14)

Daughter recoil kinetic energy: [see (11.45)]

(EK)D =
E2

ν

2M(D)c2
≈ QEC

2M(D)c2
(B.15)

Energy given to neutrino: [see (11.48)]

Eν =

{
−1 +

√
1 +

2(QEC −EB)

M(D)c2

}
M(D)c2 ≈ QEC − EB (B.16)
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Table B.5. Gamma (γ) Decay

Basic relationship: [see (11.52)]

A
Z P∗ → A

Z P + γ +Qγ (B.17)

Decay energy: [see (11.53)]

Qγ = E∗ − E = Eγ + (EK)D = Eγ

{
1 +

Eγ

2M(D)c2

}
(B.18)

Daughter recoil kinetic energy: [see (11.54)]

(EK)D =
E2

γ

2M(D)c2
(B.19)

Energy of gamma photon: [see (11.55)]

Eγ = Qγ − (EK)D = Qγ

{
1 − Eγ

2M(D)c2

}
≈ Qγ (B.20)

Table B.6. Internal Conversion (IC)

Basic relationship: [see (11.56)]

A
ZP∗ → A

Z P+ + e− +QIC (B.21)

Decay energy: [see (11.57)]

QIC = (E∗ − E) − EB = (EK)IC + (EK)D (B.22)

Daughter recoil kinetic energy: [see (11.58)]

(EK)D =
me

M(D)
(EK)IC +

(EK)2IC
2M(D)c2

=
(EK)IC
M(D)c2

{
mec

2 +
1

2
(EK)IC

}

(B.23)

Kinetic energy of internal conversion electron

(EK)IC = QIC − (EK)D ≈ QIC (B.24)
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Table B.7. Proton Emission Decay

Basic relationship: [see (11.63)]

A
Z P → A−1

Z−1D + p +Qp (B.25)

Decay energy: [see (11.64) and (11.65)]

QP = {M(P) − [M(D) +mp]} c2 =
{M(P) − [M(D) + M(11H)]

}
c2

= EB(D) − EB(P ) = (EK)p + (EK)D (B.26)

Kinetic energy of the emitted proton: [see (11.67)]

(EK)p =
Qp

1 +
mp

M(D)

(B.27)

Daughter recoil kinetic energy: [see (11.68)]

(EK)D =
Qp

1 +
M(D)

mp

(B.28)

Table B.8. Neutron Emission Decay

Basic relationship: [see (11.85)]

A
Z P → A−1

Z D + n +Qn (B.29)

Decay energy: [see (11.86) and (11.87)]

Qn = {M(P) − [M(D) +mn]} c2 = {M(P) − [M(D) +mn]} c2
= EB(D) − EB(P) = (EK)n + (EK)D (B.30)

Kinetic energy of the emitted neutron: [see (11.89)]

(EK)n =
Qn

1 +
mn

M(D)

(B.31)

Daughter recoil kinetic energy: [see (11.90)]

(EK)D =
Qn

1 +
M(D)

mn

(B.32)



C

Short Biographies of Scientists Whose Work
is Discussed in This Book

The biographical data were obtained mainly from two sources:

1. Book by William H. Cropper: “Great Physicists: The Life and Times of Leading

Physicists from Galileo to Hawking”’ published by Oxford University Press in

2001.

2. The website: www.Nobelprize.org that contains biographies and Nobel lec-

tures of all Nobel Prize winners in Physics, Chemistry, Physiology or Medicine,

Literature, Peace, and Economic Sciences from 1901 to date.

ANDERSON, Carl David (1905–1991)

American physicist, educated at the California Institute of Technology (Caltech)

in Pasadena (B.Sc. in engineering physics in 1927; Ph.D. in engineering physics

in 1930). He spent his entire professional career at Caltech, becoming Professor

of Physics in 1939, Chairman of the Physics, Mathematics & Astronomy division

(1962–1970), and Professor Emeritus in 1976.

Early in his career Anderson concentrated on studies of x rays, later on on studies

of cosmic rays with cloud chambers that lead to the discovery of the positron in 1932.

Positron was the first known particle in the category of antimatter. Paul A.M. Dirac

enunciated its existence in 1928 with his relativistic quantum theory for the motion

of electrons in electric and magnetic fields. Dirac’s theory incorporated Albert

Einstein’s special theory of relativity and predicted the existence of an antipar-

ticle to the electron (same mass, opposite charge). In 1933 Anderson succeeded in

producing positrons by gamma radiation through the effect of pair production. In

1936 Anderson, in collaboration with his graduate student Seth Neddermeyer, dis-

covered, again while studying cosmic radiation, the muon (μ meson), the first known

elementary particle that is not a basic building block of matter.

In 1936 Anderson shared the Nobel Prize in Physics with Victor Franz Hess, an

Austrian physicist. Anderson received the Prize “for his discovery of the positron”

and Hess “for his discovery of cosmic radiation.”
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AUGER, Pierre Victor (1899–1993)

French physicist who was active as a basic scientist in atomic, nuclear and cosmic ray

physics but also made important contributions to French and international scientific

organizations. The world’s largest cosmic ray detector, the Pierre Auger observatory,

is named after him. Auger is also credited with the discovery in 1925 of radiationless

electronic transitions in atoms that are followed by emission of orbital electrons. The

process is named after him as the Auger effect and the emitted electrons are called

Auger electrons. Lise Meitner actually discovered the radiationless atomic transition

process in 1923, two years before Auger; nonetheless, the process is referred to as

the Auger effect.

AVOGADRO, Amedeo (1776–1856)

Italian lawyer, chemist, physicist, best known for the “Avogadro principle” and

“Avogadro number.” The Avogadro’s principle states that “equal volumes of all

gases at the same temperature and pressure contain the same number of molecules.”

The concepts of gram–atom and gram-mole were introduced long after Avogadro’s

time; however, Avogadro is credited with introducing the distinction between

the molecule and the atom. The number of atoms per gram-atom and num-

ber of molecules per gram-mole is constant for all atomic and molecular entities

and referred to as Avogadro number
(
NA = 6.022×1023 atom/mol

)
in honor of

Avogadro’s contributions to chemistry and physics.

BALMER, Johann Jakob (1825–1898)

Swiss mathematician who studied in Germany at the University of Karlsruhe and

the University of Berlin before receiving a doctorate at the University of Basel. He

then spent his professional life teaching mathematics at the University of Basel.

Balmer is best known for his work on spectral lines emitted by the hydrogen

gas. In 1885 he published a formula that predicted the wavelengths of the lines in

the visible part of the hydrogen spectrum. The formula predicted the lines very

accurately but was empirical rather than based on any physical principles. Several

other scientists subsequently proposed similar empirical formulas for hydrogen lines

emitted in other portions of the photon spectrum (Lymann in the ultraviolet and

Paschen, Brackett and Pfund in the infrared). In 1913 Niels Bohr derived from first

principles the general relationship for spectral lines of hydrogen. The relationship is

governed by n, the principal quantum number, and contains a constant that is now

referred to as the Rydberg constant
(
R∞ = 109 737 cm−1

)
. The spectral line series

for n = 1 is called the Lymann series; for n = 2 the Balmer series; for n = 3 the

Paschen series; for n = 4 the Brackett series; for n = 5 the Pfund series, and for

n = 6 the Humphreys series.
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BARKLA, Charles Glover (1877–1944)

British physicist, educated in mathematics and physics at the University College in

Liverpool from where he graduated in 1898. He worked as research assistant with

Joseph J. Thomson in the Cavendish Laboratory in Cambridge and as academic

physicist at the University of London. In 1913 he was appointed Chair of Natural

Philosophy at the University of Edinburgh and held the position until his death in

1944.

Barklas’s most important research involved studies of the production of x rays

and of their interactions with matter. He is credited with the discovery of char-

acteristic (fluorescent) radiation and the polarization of x rays between 1904 and

1907.

In 1917 Barkla was awarded the Nobel Prize in Physics “for his discovery of the

characteristic Röntgen radiation of the elements.”

BECQUEREL, Henri Antoine (1852–1908)

French physicist, educated at the École Polytechnique in basic science and at the

École des Ponts et Chaussées becoming an ingénieur in 1877. In 1888 he acquired

the degree of docteur-ès-sciences. In 1895 he became Professor of Physics at the

École Polytechnique in Paris, the foremost French “grande école” of engineering,

founded in 1794.

Becquerel was active in many areas of physics investigating polarization of visible

light, naturally occurring phosphorescence in uranium salts, and terrestrial mag-

netism. In 1896, shortly after Wilhelm Röntgen’s discovery of x rays, Becquerel

accidentally discovered natural radio-activity while investigating phosphorescence

in uranium salts upon exposure to light. He observed that when the salts were

placed near a photographic plate covered with opaque paper, the developed plate

was nonetheless fogged. Becquerel concluded that the uranium salts were emitting

penetrating rays that were emanating from uranium atoms. He subsequently showed

that the rays were causing ionization of gases and that, in contrast to Röntgen’s

x rays, they were deflected by electric and magnetic fields.

In 1903 Becquerel shared the Nobel Prize in Physics with Pierre and Marie

Curie. He was awarded the prize “in recognition of the extraordinary services he has

rendered by his discovery of spontaneous radioactivity” and the Curies received their

prize “in recognition of the extraordinary services they have rendered by their joint

researches on the radiation phenomena discovered by Professor Henri Becquerel.”

Becquerel and his work are honored by the SI unit of radioactivity named

Becquerel (Bq). In addition, there are Becquerel craters on the moon and Mars.

BERGER, Martin Jacob (1922–2004)

Austrian-born American physicist, educated at the University of Chicago where

he received his degrees in Physics: B.Sc. in 1943, M.Sc. in 1948, and doctorate in

1951. In 1952 Berger joined the Radiation Theory Section at the National Bureau



660 C Short Biographies of Scientists Whose Work is Discussed in This Book

of Standards (NBS), now National Institute of Science and Technology (NIST) in

Washington D.C. In 1964 he became the Section Chief and later, as well, Director

of the Photon and Charged-Particle Data Center at the NBS/NIST, a position he

held until his retirement in 1988.

Berger is best known for his early work on the transport of gamma rays and

applications of Monte Carlo calculations in complex media involving boundaries

and inhomogeneities. He also worked on charged-particle transport with emphasis on

electrons and protons, and developed algorithms for use in charged particle Monte

Carlo codes. His ETRAN code, first published in the 1960s, became the indus-

try standard for coupled electron-photon transport. Berger, in collaboration with

Stephen Seltzer, also developed cross-section data for electron and heavy charged

particle interactions as well as for electron bremsstrahlung production. He was

also involved in applications of Monte Carlo calculations to important problems

in radiological physics and radiation dosimetry.

BETHE, Hans Albrecht (1906–2005)

German-born American physicist, educated at the Universities of Frankfurt and

Munich. He received his doctorate in theoretical physics under Arnold Sommerfeld

in 1928. For four years he worked as Assistant Professor at the University of Munich,

then spent a year in Cambridge and a year in Rome with Enrico Fermi. He returned

to Germany as Assistant Professor at the University of Tübingen but lost the posi-

tion during the rise of Nazism. He first emigrated to England and then in 1935 moved

to Cornell University in Ithaca, New York as Professor of Physics. He stayed at

Cornell essentially all his professional life, but also served as Director of Theoretical

Physics on the Manhattan project at Los Alamos (1943–1946).

Bethe made important theoretical contributions to radiation physics, nuclear

physics, quantum mechanics, and quantum electrodynamics. He was also a strong

advocate for peaceful use of atomic energy, despite having been involved with

the Manhattan project as well as with the development of the hydrogen bomb.

In collision theory Bethe derived the stopping power relationships that govern

inelastic collisions of fast particles with atoms. With Heitler, he developed the col-

lision theory for relativistic electrons interacting with atomic nuclei and producing

bremsstrahlung radiation in the process. Bethe’s work in nuclear physics lead to the

discovery of the reactions that govern the energy production in stars.

In 1967 Bethe was awarded the Nobel Prize in Physics “for his theory of nuclear

reactions, especially his discoveries concerning the energy production in stars.”

BHABHA, Homi Jehandir (1909–1966)

Indian nuclear physicist, educated in Mumbai (Bombay) and Cambridge (U.K.)

where he first studied engineering and later-on physics and received his Ph.D. in

physics in 1935 studying cosmic rays. He was already well respected in the inter-

national physics community when he returned to India in 1939. He took a post in

theoretical physics at the Indian Institute of Science in Bangalore under C.V. Raman
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and carried out experimental work in cosmic radiation and theoretical work in

mathematics. In 1945 he became director of the newly established Tata Institute

of Fundamental Research (TIFR) in Mumbai and remained in the position until

1966 when he died in an airplane crash.

Under Bhabha’s leadership TIFR became a leading nuclear science institute com-

mitted to peaceful use of nuclear energy. He was very influential in Indian nuclear

policy and developed a close personal relationship with India’s first Prime Minister

Jawaharlal P. Nehru. He was instrumental in getting the Indian Constituent Assem-

bly to pass the Indian Atomic Energy Act and creating the Indian Atomic Energy

Commission.

Bhabha’s important contributions to nuclear physics are recognized by the term

Bhabha scattering which defines position scattering on electrons. He was also elected

Fellow of the Royal Society and his contribution to Indian nuclear science was

recognized in 1967 by renaming the TIFR into Bhabha Atomic Research Centre

(BARC).

BLOCH, Felix (1905–1983)

Swiss-born American physicist, educated at the Eidgenössische Technische

Hochschule in Zürich (ETHZ) and at the University of Leipzig where he received his

doctorate in physics in 1928. During the next few years he held various assistantships

and fellowships that gave him the opportunity to work with the giants of modern

physics (Pauli, Heisenberg, Bohr, and Fermi) and to further his understanding of

solid state physics in general and stopping powers of charged particles in particular.

In 1933 Bloch left Germany and in 1934 accepted a position at Stanford University

where he got involved with experimental physics of neutron momenta and polar-

ized neutron beams. During the war years he worked on the Manhattan project at

Los Alamos and on radar technology at Harvard where he became familiar with

modern techniques of electronics. This helped him upon return to Stanford in 1945

with development of new techniques for measuring nuclear moments that culminated

in 1946 with the invention of the nuclear magnetic resonance (NMR) technique, a

purely electromagnetic procedure for the study of nuclear moments in solids, liquids,

and gases. At Harvard Edward M. Purcell with students Robert Pound and Henry

C. Torrey invented the NMR technique independently and at about the same time

as Bloch.

In 1952 Bloch and Purcell received the Nobel Prize in Physics “for their develop-

ment of new methods for nuclear magnetic precision measurements and discoveries

in connection therewith.” Since the late 1970s NMR provided the basis for magnetic

resonance imaging (MRI), which is widely used as a non-invasive diagnostic imaging

technique.

BOHR, Niels Henrik David (1885–1962)

Danish physicist, educated at the University of Copenhagen where he obtained his

M.Sc. degree in physics in 1909 and doctorate in physics in 1911. Between 1911 and
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1916 Bohr held various academic appointments in the U.K. and Copenhagen. In

1911 he worked in Cambridge with Joseph J. Thomson and in 1912 he worked in

Manchester with Ernest Rutherford. He was a lecturer in physics at the University of

Copenhagen in 1913 and at the University of Manchester between 1914 and 1916. In

1916 he was appointed Professor of Theoretical Physics and in 1920 he also became

the first Director of the Institute of Theoretical Physics (now Niels Bohr Institute)

at the University of Copenhagen. He remained in both positions until his death in

1962.

Bohr was an exceptionally gifted theoretical physicist who made important

contributions to atomic, nuclear, and quantum physics. He is best known for his

expansion in 1913 of the Rutherford’s atomic model into the realm of Planck’s

quantum physics to arrive at a model that is now called the Rutherford-Bohr

atomic model. With four postulates that merged simple classical physics concepts

with the idea of quantization of angular momenta for electrons revolving in allowed

orbits about the nucleus, he succeeded in explaining the dynamics of one-electron

structures and in predicting the wavelengths of the emitted radiation.

Bohr is also known as the author of the principle of complementarity which states

that a complete description of an atomic scale phenomenon requires an evaluation

from both the wave and particle perspective. In 1938 he proposed the so-called liquid

drop nuclear model and in 1939 he succeeded in explaining the neutron fission of

natural uranium in terms of fissionable uranium-235 (an isotope with an abundance

of only 0.7 % in natural uranium) and the much more abundant non-fissionable

uranium-238.

During World War II Bohr worked on the Manhattan project in Los Alamos but

his contribution to the development of atomic weapons was only minor. After the

war he used his considerable credibility and influence to promote peaceful use of the

atomic energy and in 1954 helped found the CERN (Centre Européen de Recherche

Nucléaire) in Geneva, touted as the world’s largest particle physics laboratory and

the birthplace of the worldwide web. In addition to producing his theoretical master-

works, Bohr was also keenly interested in politics and advised Presidents Roosevelt

and Truman as well as Prime Minister Churchill on nuclear matters. Only Albert

Einstein and Marie Curie among scientists of the 20th century have attained such

esteem from physics colleagues, world leaders, and the general public.

In tribute to Bohr’s contributions to modern physics the element with atomic

number 107 is named bohrium (Bh). Bohr received the 1922 Nobel Prize in Physics

“for his services in the investigation of the structure of atoms and of the radiation

emanating from them.”

BORN Max (1882–1970)

German mathematician and physicist, educated at universities of Breslau (1901),

Heidelberg (1902), Zürich (1903), and Göttingen where he received his doctorate in

1907. In 1909 he was appointed lecturer at the University of Göttingen and in 1912

he moved to the University of Chicago. In 1919 he became Professor of Physics at

the University of Frankfurt and then in 1921 Professor of Physics at the University
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of Göttingen. From 1933 until 1936 he lectured at the University of Cambridge and

from 1936 until 1953 at the University of Edinburgh.

Born is best known for his work on relativity in general and the relativistic

electron in particular. He was also working on crystal lattices and on quantum

theory, in particular on the statistical interpretation of quantum mechanics. He is

best known for his formulation of the now-standard interpretation of the probability

density for ψ∗ψ in the Schrödinger equation of wave mechanics.

In 1954 Born shared the Nobel Prize in Physics with Walther Bothe. Born

received his half of the prize “for his fundamental research in quantum mechan-

ics, especially for his statistical interpretation of the wavefunction” and Bothe “for

the coincidence method and his discoveries made herewith.”

BRAGG, William Henry (1862–1942)

British physicist, educated at King William College on Isle of Man and at the Trinity

College at Cambridge where he graduated in 1884. His first academic appointment

was at the University of Adelaide in Australia from 1885 until 1909. In 1909 he

returned to England and worked as Professor of Physics at the University of Leeds

from 1909 until 1915 and at the University College in London from 1915 until 1923.

From 1923 until 1942 he was Director of the Royal Institution in London.

Henry Bragg is best known for the work he carried out in collaboration with his

son Lawrence on the diffraction of x rays on crystalline structures. Von Laue discov-

ered the diffraction of x rays on crystals; however, it was the father-son Bragg team

that developed the discipline of x-ray crystallography based on the Bragg crystal

spectrometer, a very important practical tool in solid state physics and analytical

chemistry.

The 1915 Nobel Prize in Physics was awarded to William Henry Bragg and his

son William Lawrence Bragg “for their services in the analysis of crystal structure

by means of x rays.”

BRAGG, William Lawrence (1890–1971)

Australian-born British physicist, educated at Adelaide University where he gradu-

ated at age 18 with an honors B.A. degree in mathematics. He then entered Trinity

College in Cambridge, continued his studies in mathematics but switched to physics

the second year and graduated in physics in 1912. He first worked as lecturer at

the Cavendish Laboratory in Cambridge but from 1915 spent three years in the

army. He became Langworthy Professor of Physics at the University of Manchester

in 1919. During 1938 he was Director of National Physical Laboratory in Teddington

and then worked in Cambridge as the Cavendish Professor of Experimental Physics

from 1939 until 1954 and as Director of the Royal Institution from 1954 until 1966.

In 1912 William L. Bragg became interested in the great debate on the nature

of x rays: were they waves or particles? Following the experiments of von Laue

and colleagues he developed an ingenious way of treating the phenomenon of x-ray

diffraction on crystalline structures. He pointed out that the regular arrangement
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of atoms in a crystal defines a large variety of planes on which the atoms effectively

lie. This means that the atoms in a regular lattice simply behave as if they form

reflecting planes. The well-known Bragg equation is then expressed as 2d sinφ = nλ,

with d the separation between two atomic planes, φ the angle of incidence of the x-ray

beam, λ the x-ray wavelength, and n an integer. The basis of a Bragg spectrometer

is then as follows. For a known d, an x-ray spectrum can be analyzed by varying φ

and observing the intensity of the reflected x rays that are scattered through and

angle θ = 2φ from the direction of the incident collimated beam. On the other hand,

if mono-energetic x rays with a known λ are used, it is possible to determine various

effective values of d in a given crystal and hence the basic atomic spacing a. With the

knowledge of a one may determine the Avogadro’s number NA with great accuracy.

The 1915 Nobel Prize in Physics was awarded to William Lawrence Bragg and

his father William Henry Bragg “for their services in the analysis of crystal structure

by means of x rays.”

CHADWICK, James (1891–1974)

British physicist, educated at Manchester University (B.Sc. in 1911 and M.Sc. in

1913) before continuing his studies in the Physikalisch Technische Reichanstalt at

Charlottenburg. In 1919 he moved to Cambridge to work with Ernest Rutherford

on nuclear physics research. He remained in Cambridge until 1935 when he became

the Chairman of Physics at the University of Liverpool. From 1943 to 1946 he was

the Head of the British Mission attached to the Manhattan project.

Chadwick is best known for his 1932 discovery of the neutron, a constituent of

the atomic nucleus that in contrast to the proton is devoid of any electrical charge. In

recognition of this fundamental discovery that paved the way toward the discovery

of nuclear fission, Chadwick was awarded the 1935 Nobel Prize in Physics “for the

discovery of the neutron.”

COMPTON, Arthur Holly (1892–1962)

American physicist, educated at College of Wooster (B.Sc. in 1913) and Princeton

University (M.A. in 1914 and Ph.D. in 1916). He worked as physics instructor at

the University of Minnesota, research engineer at Westinghouse in Pittsburgh, and

research fellow at Cambridge University. Upon return to the U.S. in 1920 he worked

as Chairman of the Physics department at the Washington University in St. Louis

and in 1923 he moved to the University of Chicago as Professor of Physics.

Compton is best known for his experimental and theoretical studies of x-ray

scattering on atoms that lead to his discovery, in 1922, of the increase in wavelength

of x rays scattered on essentially free atomic electrons. This effect illustrates the

corpuscular nature of photons and is now known as the Compton effect. As Chairman

of the National Academy of Sciences Committee to Evaluate Use of Atomic Energy

in War, Compton was instrumental in developing the first controlled uranium fission

reactors and plutonium-producing reactors.
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In 1927 Compton was awarded the Nobel Prize in Physics “for the discovery of

the effect that bears his name.” The co-recipient of the 1927 Nobel Prize was C.T.R.

Wilson for his discovery of the cloud chamber.

COOLIDGE, William David (1873–1975)

American physicist and inventor, educated at the Massachusetts Institute of Tech-

nology (MIT) in Boston (B.Sc. in electrical engineering in 1896) and the University

of Leipzig (doctorate in physics in 1899). In 1899 he returned for five years to Boston

as a research assistant in the Chemistry department of the MIT. In 1905 Coolidge

joined the General Electric (GE) Company in Schenectady, and remained with the

company until his retirement in 1945. He served as director of the GE Research

Laboratory (1932–1940) and as vice president and director of research (1940–1944).

During his 40-year career at General Electric, Coolidge became known as a

prolific inventor and was awarded 83 patents. He is best known for his invention of

ductile tungsten in the early years of his career. He introduced ductile tungsten for

use as filament in incadescent lamps in 1911 producing a significant improvement

over Edison’s design for incadescent lamps. In 1913 he introduced ductile tungsten

into x-ray tubes and revolutionized x-ray tube design that at the time was based on

three major components: cold cathode, low pressure gas, and anode (target). The

role of the low pressure gas was to produce ions which produced electrons upon

bombardment of the cold aluminum cathode. This x-ray tube design was based on

the Crookes device for studying cathode rays, and is now referred to as the Crookes

tube. The performance of the Crookes x-ray tube was quite erratic and Coolidge

introduced a significant improvement when he replaced the cold aluminum cathode

with a hot tungsten filament and replaced the low pressure gas with high vacuum.

Coolidge’s x-ray tube design is now referred to as the Coolidge tube and is still used

today for production of superficial and orthovoltage x rays. In the Coolidge x-ray

tube the electrons are produced by thermionic emission from the heated filament

cathode and accelerated in the applied electric field toward the anode (target).

In honor of Coolidge’s contribution to radiology and medical physics through

his hot filament innovation, the highest award bestowed annually by the American

Association of Physicists in Medicine is named the William D. Coolidge Award.

CORMACK, Allen MacLeod (1924–1990)

South African-born American physicist, educated in x-ray crystallography at the

University of Cape Town where he obtained his B.Sc. in 1944 and M.Sc. in 1945.

For a year he continued his studies in nuclear physics at the Cavendish Laboratory

in Cambridge, and then returned to a lectureship in the Physics department at

the University of Cape Town. On a part time basis he assumed responsibilities

for supervising the use of radioactive nuclides in the Groote Shuur hospital, thus

learning about medical physics in a radiotherapy department. In 1956 Cormack took

a sabbatical at Harvard and developed there a crude theory for the x-ray absorption

problem to be used in future CT algorithms. From Harvard he returned to Cape
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Town for a few months and carried out actual experiments on a crude cylindrical

CT phantom. In 1957 Cormack moved to Tufts University in Boston and continued

intermittent work on his tomography idea.

During 1963 and 1964 Cormack published two seminal CT papers in the “Journal

of Applied Physics.” The two papers were largely ignored, but earned him the 1979

Nobel Prize in Medicine and Physiology which he shared with Godfrey N. Hounsfiled

“for the development of computer assisted tomography.”

COULOMB, Charles–Augustin (1736–1806)

French physicist, educated at the Collège des Quatre–Nations in Paris and in Ecole

du Génie at Mézières from where he graduated in 1761 as military engineer. For

20 years after graduation he held various military posts in France and Martinique

related to engineering and structural design. During 1770s he wrote several theo-

retical works in mathematics and produced prize-winning work in applied physics,

most notably on torsion balance for measuring very small forces and on friction.

In the early 1780s he became recognized as eminent scientist, was elected to the

Académie des Sciences, and produced seminal work on electricity and magnetism.

After the French Revolution in 1789 the Académie des Sciences was abolished and

replaced by the “Institut de France” to which Coulomb was elected in 1795. During

the last years of his life he was involved with education as inspector general of pub-

lic education and as such was responsible for setting up the system of lycées across

France. The system is still in use today with the lycée representing the second and

last stage of secondary education and completed with the exit exam referred to as

the “baccalauréat.”

Coulomb is considered the father of the renaissance in French physics and is best

known for the Coulomb law of electrostatics which states that the force between

two electrical charges is proportional to the product of the charges and inversely

proportional to the square of the distance between them. He is also honored by the

SI unit of charge called the coulomb C.

CROOKES, William (1832–1919)

British chemist and physicist, educated in the Royal College of Chemistry in London

where he also served as assistant from 1850–1854. Upon leaving the Royal College,

he first worked as a superintendent at the Radcliffe Observatory in Oxford and then

became a lecturer in chemistry at the Chester College in Chester. In 1880 he moved

to London where he built and equipped his own laboratory and from then on devoted

his life to his versatile research interests carrying out his research projects in his own

private laboratory.

During his professional career Crookes was active as researcher in many areas

of chemistry and physics, as member and officer of various scientific organizations,

and as founder and long-time editor of the Chemical News. He discovered the rare

earth element thallium; carried out pioneering work in the field of radioactivity,

especially on radium; and invented the radiometer for measurement of radiant energy
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and the spinthariscope for counting single alpha particles. He is best known for his

most important invention, the Crookes tube which he invented in the 1870s and

which toward the end of 19th century became a very important device in physics

laboratories around the world for studies of “cathode rays” in particular and atomic

physics in general. Most notable experiments based on the Crookes tube research

are: Röntgen’s serendipitous discovery of x rays in 1895; Thomson’s discovery of the

electron in 1897; and Millikan’s determination of the charge of the electron in 1913.

The Crookes tube not only resulted in one of most important discoveries of all

times, namely the discovery of x rays, it also served as a precursor to modern cathode

ray TV tubes. To recognize the importance of Crookes’s experimental work the

European Physical Society (EPS) established the William Crookes Prize in plasma

physics which is awarded to a mid-career (10 to 20 years post Ph.D.) researcher

judged to have made a major contribution to plasma physics.

CURIE, Pierre (1859–1906)

French physicist and chemist, educated in Paris where, after obtaining his “licence

ès sciences” (equivalent to M.Sc.) at the age of 18, he was appointed a laboratory

assistant at the Sorbonne. In 1882 he was appointed supervisor at the École de

Physique et Chimie Industrielle in Paris and in 1895 obtained his doctorate. In 1900

he was appointed lecturer and in 1904 Professor of Physics at the Sorbonne.

Pierre Curie’s contributions to physics have two distinct components clearly sep-

arated by the date of his wedding to Maria Sklodowska–Curie in 1895. Before that

date, he was involved in crystallography and magnetism discovering the piezoelec-

tric effect as well as showing that magnetic properties of a given substance change

at a certain temperature that is now referred to as the Curie point. To carry out

his experiments he constructed delicate devices that proved very useful in his col-

laborative studies of radioactivity with his wife Marie Curie. After their discovery

of polonium and radium, Pierre Curie concentrated on investigating the physical

properties of radium while Marie concentrated on preparing pure compounds.

Pierre Curie and one of his students are credited with making the first obser-

vation of nuclear power through measuring the continuous production of heat in a

sample of radium. He was also the first to report the decay of radioactive materials

and the deleterious biological effects of radium after producing a radium burn and

wound on his own skin.

In his honor the 1910 Radiology Congress accepted the definition of the curie

(Ci), a unit of activity, as the activity of 1 g of radium–226 or 3.7×1010 s−1. The curie

is still defined as 3.7×1010 s−1, however, subsequent measurements have shown that

the specific activity of radium–226 is 0.988 Ci/g. In tribute to the work of Pierre and

Marie Curie the element with atomic number 96 was given the name curium (Cm).

Pierre and Marie Curie shared the 1903 Nobel Prize in Physics with Henri

Becquerel “in recognition of the extraordinary services they have rendered by their

joint researches on the radiation phenomena discovered by Professor Henri Bec-

querel.” Becquerel was awarded his share of the Nobel Prize “in recognition of the

extraordinary services he has rendered by his discovery of spontaneous radioactivity.”



668 C Short Biographies of Scientists Whose Work is Discussed in This Book

CURIE–SK�LODOWSKA, Marie (1867–1934)

Polish-born French physicist and chemist, educated at the Sorbonne in Paris where

she obtained a “licence ès sciences” (equivalent to M.Sc.) in physical sciences (1893)

and mathematics (1894) and her doctorate in physics in 1903. Curie spent her pro-

fessional life at various institutions in Paris. In 1906 she was appointed lecturer in

physics at the Sorbonne and was promoted to Professor of Physics in 1908.

In 1914 Marie Curie helped found the “Radium Institute” in Paris dedicated to

scientific disciplines of physics, chemistry and biology applied to prevention, diagno-

sis and treatment of cancer. The institute had two divisions: the Curie Laboratory

dedicated to research in physics and chemistry of radioactivity and the Pasteur

Laboratory devoted to studies of biological and medical effects of radioactivity. The

Curie Laboratory was headed by Marie Curie; the Pasteur Laboratory by Claudius

Regaud who is regarded as the founding father of both radiotherapy and radiobiol-

ogy. In 1920, the Curie Foundation was inaugurated to raise funds to support the

activities of the Radium Institute. In 1970 the Radium Institute and the Curie Foun-

dation were merged into the Curie Institute mandated to carry out cancer research,

teaching and treatment.

After obtaining her “licence” at the Sorbonne, Curie, looking for a doctoral

degree subject, decided to investigate the phenomenon of radiation emission from

uranium discovered by Henri Becquerel in 1896. She coined the name “radioac-

tivity” for the spontaneous emission of radiation by uranium and established that

radioactivity was an atomic rather than chemical phenomenon process. She then

investigated if the peculiar property of uranium could be found in any other then-

known element and discovered that thorium is also an element which exhibits

radioactivity. Noticing that some minerals (for example, pitchblende uranium ore)

exhibited a much larger rate of radioactivity than warranted by their uranium or tho-

rium content, she surmised that the minerals must contain other highly radioactive

unknown elements. In collaboration with her husband Pierre Curie, Marie Curie

discovered miniscule amounts of new elements radium and polonium after sifting

through several tons of pitchblende uranium ore. In tribute to the work of Pierre and

Marie Curie the element with atomic number 96 was given the name curium (Cm).

The discovery of the new radioactive elements in 1898 earned Marie Curie a

doctorate in physics and, in addition, both Marie and Pierre Curie shared, with

Henry Becquerel, the 1903 Nobel Prize in Physics “in recognition of the extraordinary

services they have rendered by their joint researches on the radiation phenomena

discovered by Professor Henri Becquerel.”

In 1911 Marie Curie was awarded another Nobel Prize, this time in Chemistry,

“in recognition of her services to the advancement of chemistry by the discovery of

the elements of radium and polonium, by the isolation of radium and the study of

the nature and compounds of this remarkable element.”

Marie Curie’s contribution to science has been enormous not only in her own

work but also in the work of subsequent generations of physicists whose lives she

touched and influenced. She was the first woman to teach at the Sorbonne, the first

woman to receive a Nobel Prize, and the first scientist to have received two Nobel

Prizes.
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ČERENKOV, Pavel Alekseevič (1904–1990)

Russian physicist, educated at the Voronež State University in Voronež in Central

Russia, where he graduated with a degree in mathematics and physics in 1928. In

1930 he accepted a post as senior scientific officer in the Peter N. Lebedev Institute of

Physics in the Soviet Academy of Sciences (now the Russian Academy of Sciences in

Moscow) under the directorship of Sergei I. Vavilov. In 1940 Čerenkov was awarded

a doctorate in physics and in 1953 he became Professor of Experimental Physics. In

1970 he became an Academician of the USSR Academy of Sciences.

Čerenkov is best known for his studies of the visible light emitted by energetic

charged particles which move through a transparent medium with a velocity that

exceeds c/n, the speed of light in the medium, where c is the speed of light in vacuum

and n is the index of refraction. In 1934 Čerenkov and Sergei I. Vavilov observed that

gamma rays from a radium source, besides causing luminescence in solutions, also

produce a faint light from solvents. Their subsequent research lead to two impor-

tant conclusions: firstly, the emitted light was not a luminescence phenomenon and

secondly, the light they observed was not emitted by photons, rather, it was emitted

by high energy electrons released in the medium by photon interactions with orbital

electrons of the medium. The effect is now referred to as the Čerenkov effect (or

sometimes as the Čerenkov-Vavilov effect) and the blue light emitted by energetic

charged particles is called Čerenkov radiation. Ilja Frank and Igor Tamm, also from

the Lebedov Institute, explained the Čerenkov effect theoretically in 1937 showing

that Čerenkov radiation originates from charged particles that move through the

medium faster then the speed of light in the medium. The Čerenkov effect is used

in Čerenkov counters in nuclear and particle physics for determination of particle

energy and velocity.

The 1958 Nobel Prize in Physics was awarded to Čerenkov, Frank, and Tamm

“for the discovery and the interpretation of the Čerenkov effect.”

DAVISSON, Clinton Joseph (1881–1958)

American physicist, educated at the University of Chicago (B.Sc. in 1908) and

Princeton University where he received his doctorate in physics in 1911. He spent

most of his professional career at the Bell Telephone Laboratories. Upon retirement

from Bell Labs he became Visiting Professor of Physics at the University of Virginia

in Charlottesville.

Davisson is best known for his work on electron diffraction from metallic crystals.

In 1927 he was studying elastic electron scattering on a nickel single crystal in

collaboration with Lester H. Germer. When they analyzed the angular distribution

of scattered electrons they discovered that electrons produced diffraction patterns

similar to those produced by x rays. The diffraction patterns were governed by the

Bragg formula with a wavelength λ given by the de Broglie equation: λ = h/p with

h the Planck’s constant and p the momentum of the electron. The experiment, now

known as the Davisson-Germer experiment, confirmed the hypothesis formulated in

1924 by Louis de Broglie that electrons exhibit dual nature, behaving both as waves
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and as particles. George P. Thomson, a physicist at the University of Aberdeen

in Scotland, confirmed the de Broglie’s hypothesis with a different experiment. He

studied the behavior of electrons as they traversed very thin films of metals and

also observed that electrons under certain conditions behave as waves despite being

particles. Thomson’s apparatus is referred to as an electron diffraction camera and

produces a series of rings when a narrow electron beam is made to traverse a thin

metallic foil.

In 1937 Davisson and Thomson shared the Nobel Prize in Physics “for their

experimental discovery of the diffraction of electrons by crystals.”

DE BROGLIE, Louis (1892–1987)

French theoretical physicist, educated at the Sorbonne in Paris, first graduating with

an arts degree in 1909 and then with Licence ès Sciences (equivalent to M.Sc.) in

1913. De Broglie spent the war years 1914–1918 in the army and in 1920 resumed

his studies in theoretical physics at the Sorbonne. He obtained his doctorate in

theoretical physics in 1924, taught physics at the Sorbonne for two years and became

Professor of Theoretical Physics at the Henri Poincaré Institute. From 1932 to his

retirement in 1962 he was Professor of Theoretical Physics at the Sorbonne.

De Broglie is best known for his theory of electron waves based on the work of

Max Planck and Albert Einstein. The theory, presented in his doctorate work, pro-

posed the wave-particle duality of matter. De Broglie reasoned that if x rays behave

as both waves and particles, then particles in general and electrons in particular

should also exhibit this duality. De Broglie’s theory was confirmed experimentally

by Clinton J. Davisson and Lester H. Germer in the United States and by George

P. Thomson in the U.K. The theory was subsequently used by Ervin Schrödinger

to develop wave mechanics.

The 1929 Nobel Prize in Physics was awarded to de Broglie “for his discovery

of the wave nature of electrons.”

DIRAC, Paul Adrien Maurice (1902–1984)

British physicist, educated at the University of Bristol where he obtained his Bach-

elor’s degree in electrical engineering in 1921 and at the St. John’s College in

Cambridge where he received his doctorate in mathematics in 1926. In 1927 he

became a Fellow of the St. John’s College and from 1932 until 1969 he was Lucasian

Professor of Mathematics in Cambridge. In 1969 Dirac moved to Florida to become

Professor of Physics at the Florida State University.

Dirac was an extremely productive and intelligent theoretical physicist, mainly

involved with mathematical and theoretical aspects of quantum mechanics. Quan-

tum mechanics, dealing with dimensions of the order of the atomic size, introduced

the second revolution in physics, the first one being Albert Einstein’s special theory

of relativity that deals with velocities of the order of the speed of light in vacuum.

In 1926 Dirac developed his version of quantum mechanics that merged the

“matrix mechanics” of Werner Heisenberg with the “wave mechanics” of Erwin
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Schrödinger into a single mathematical formalism. In 1928 he derived a relativistic

equation for the electron that merged quantum mechanics with relativity and is now

referred to as the Dirac equation. The equation predicts the existence of an anti-

particle (same mass, opposite charge) to the electron and infers the electron quantum

spin. Dirac also predicted that in an electron/anti-electron encounter the charges

cancel, and the two particles annihilate with the combined mass transforming into

radiation according to Albert Einstein’s celebrated equation E = mc2. Four year

later, in 1932 Carl D. Anderson discovered the anti-electron, a new particle which is

now called the positron. In 1931 Dirac showed theoretically that the existence of a

magnetic monopole would explain the observed quantization of the electrical charge

(all charges found in nature are multiples of the electron charge). No monopoles

have been found in nature so far.

The 1933 Nobel Prize in Physics was awarded to Paul M. Dirac and Erwin

Schrödinger “for their discovery of new productive forms of atomic theory.”

DUANE, William (1872–1935)

American physicist, educated at the University of Pennsylvania and Harvard, where

he received a B.A. degree in 1893 and a M.A. degree in 1895. From 1895 to 1897 he

held the Tyndall Fellowship of Harvard University and studied physics in Göttingen

and Berlin receiving the Ph.D. degree from Berlin in 1897. From 1898 to 1907 he

held a position of Professor of Physics at the University of Colorado. He then moved

to Paris and worked for 6 years with Marie Curie at the Sorbonne on various projects

involving radioactivity.

During his Paris period Duane also got interested in the application of radium

and x rays in medicine and in 1913, when the newly formed Harvard Cancer Commis-

sion was formed, he accepted a job offer of Assistant Professor of Physics at Harvard

and Research Fellow in Physics at the Harvard Cancer Commission. By 1917 he was

promoted to Professor of Biophysics, probably filling the first such position in North

America, and remained with Harvard and the Cancer Commission till his retirement

in 1934. In view of his hospital appointment and significant contributions to imag-

ing and cancer therapy one can conclude that Duane was among the first medical

physicists in North America.

Duane is best known for the Duane-Hunt law that he discovered with his Ph.D.

student Franklin Hunt in 1915. This law states that there is a sharp upper limit to

the x-ray frequencies emitted from a target stimulated by the impact of energetic

electrons. He also established that the Duane-Hunt law could be used as a very

accurate method of determining Planck’s constant h and the ratio h/e, where e is

the charge of the electron. He was also the first to discover that the total intensity

produced by and x-ray target depends linearly on the atomic number of the target.

Duane is one of the most important early contributors to radiation dosimetry

of gamma rays and x rays used in treatment of cancer. He developed the techni-

cal details for measurement of radiation dose with ionization chambers and was

instrumental in gaining national and international acceptance of 1 unit of x-ray

intensity as “that intensity of radiation which produces under saturation conditions
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one electrostatic unit of charge per cm3 of air under standard temperature and

pressure.” Duane’s unit of x-ray intensity was subsequently named roentgen. Dur-

ing his professional career, Duane received numerous awards for his scientific work

and was awarded honorary Sc.D. degrees by the University of Pennsylvania in 1922

and University of Colorado in 1923.

EINSTEIN, Albert (1879–1955)

German-born theoretical physicist, educated at the Eidgenössische Technische

Hochschule in Zürich (ETHZ) from which he graduated in 1900 as a teacher of

mathematics and physics. He did not succeed in obtaining an academic post after

graduating and spend two years teaching mathematics and physics in secondary

schools. From 1902 until 1909 he worked as a technical expert in the Swiss Patent

Office in Bern. In 1905 he earned a doctorate in physics from the University of

Zürich.

Following publication of three seminal theoretical papers in 1905 and submis-

sion of his “Habilitation” thesis in 1908, Einstein’s credibility in physics circles rose

dramatically; he started to receive academic job offers and entered a period of fre-

quent moves and changes in academic positions. In 1908 he became lecturer at the

University of Bern and in 1909 Professor of Physics at the University of Zürich. Dur-

ing 1911 he was Professor of Physics at the Karl-Ferdinand University in Prague

and in 1912 he moved back to Zürich to take a chair in theoretical physics at the

ETHZ. Finally, in 1914 he moved to Berlin to a research position without teaching

responsibilities at the then world-class center of physics at the University of Berlin.

During the Berlin period (1914–1933) Einstein produced some of his most impor-

tant work, became an international “star” physicist and scientist, got involved in

political issues, and traveled a great deal to visit physics colleagues and present

invited lectures on his work. In 1932 he moved to the United States to become Pro-

fessor of Theoretical Physics at the Institute for Advanced Study in Princeton, one

of the world’s leading centers for theoretical research and intellectual inquiry.

Einstein was an extremely gifted physicist and his contribution to modern

physics is truly remarkable. His three papers published in Volume 17 of the “Annalen

der Physik” each dealt with a different subject and each is now considered a master-

piece. The first of the three papers dealt with the photoelectric effect and contributed

to quantum theory by assuming that light under certain conditions behaves like a

stream of particles (quanta) with discrete energies. The second paper dealt with sta-

tistical mechanics and lead to an explanation of Brownian motion of molecules. The

third paper addressed the connection between the electromagnetic theory and ordi-

nary motion and presented Einstein’s solution as the “special theory of relativity.”

In 1916, after a decade of futile attempts, Einstein completed his “general theory

of relativity” based on the “equivalence principle” stating that uniform acceleration

of an object is equivalent to a gravitational field. The gravitational field causes cur-

vature of space-time as observed experimentally by measuring the precession of the

mercury perihelion and the bending by the sun of light from the stars.
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At the end of the Berlin period and during his American period from 1933 until

his death in 1955 Einstein concentrated on developing a unified field theory, unsuc-

cessfully attempting to unify gravitation, electromagnetism and quantum physics.

Throughout his life Einstein was a pacifist detesting both militarism as well as

nationalism. In tribute to Einstein’s contributions to modern physics the element

with atomic number 109 is named einsteinium (Es).

In 1921 the Nobel Prize in Physics was awarded to Einstein “for his services to

Theoretical Physics and especially for his discovery of the law of the photoelectric

effect.”

In recognition of Einstein‘s tremendous contribution to modern physics the year

2005, the centenary of Einstein’s “annus mirabilis,” was proclaimed the world year

of physics, a worldwide celebration of physics and its impact on humanity.

EVANS, Robley (1907–1995)

American nuclear and medical physicist, educated at the California Institute of

Technology (Caltech) where he studied physics and received his B.Sc. in 1928, M.Sc.

in 1929, and Ph.D. under Robert A. Millikan in 1932. After receiving his doctorate

he studied biological effects of radiation as post-doctoral fellow at the University

of California at Berkeley before accepting a faculty position at the Massachusetts

Institute of Technology (MIT) in Boston. He remained an active member of the MIT

faculty for 38 years and retired in 1972 to become a special project associate at the

Mayo Clinic in Rochester, Minnesota.

At the MIT Evans was instrumental in building the first cyclotron in the world

for biological and medical use. He established the Radioactivity Center in the Physics

department at the MIT for research in nuclear physics related to biology, introduced

the first iodine radionuclide for diagnosis and treatment of thyroid disease, and built

the first total body counter to measure the uptake and body burden of radium in the

human body. In 1941 he established one ten-millionth of a gram of radium (0.1μCi)

as the maximum permissible body burden. The standard is still internationally used

and has been adapted for other radioactive substances including plutonium-239 and

strontium–90. Evans’s book “The Atomic Nucleus” was first published in 1955 and

remained the definitive nuclear physics textbook for several decades and is still

considered an important nuclear physics book.

In 1985 Evans received the William D. Coolidge Award from the American Asso-

ciation of Physicists in Medicine in recognition to his contribution to medical physics

and in 1990 he received the Enrico Fermi Award in recognition of his contributions

to nuclear and medical physics.

FANO, Ugo (1912–2001)

American physicist of Italian descent, educated in mathematics and physics at the

University of Torino. He received postdoctoral training from Enrico Fermi at the

University of Rome (1934–1936) and from Werner Heisenberg at the University of

Leipzig (1936–1937). In 1940 Fano started his American career in radiation biology
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and physics at the Carnegie Institution at Cold Spring Harbor. In 1946 he joined the

staff of the National Bureau of Standards (the predecessor of the National Institute

of Standards and Technology) and during his two decades there made outstanding

contributions to radiation physics and basic solid state physics.

From 1966 to 1982 Fano was on staff at the University of Chicago where he

worked in atomic and molecular physics and continued his lifetime interest in radia-

tion physics. He published over 250 scientific papers and made major contributions

in radiation physics and radiation dosimetry. He developed the first general theory

of the ionization yield in a gas; characterized statistical fluctuations of ionization by

the now known Fano factor; developed methods for dealing with the transport of

photons and charged particles in matter; and demonstrated the cavity principle of

radiation equilibrium under general conditions. He was also a big proponent of the

use of synchrotron radiation for spectroscopic studies.

Fano was recognized with many honors, most notably with the Enrico Fermi

Award by the U.S. government; membership in the National Academy of Sciences

of the United States; and several honorary doctorates.

FERMI, Enrico (1901–1954)

Italian-born physicist who graduated from the University of Pisa in 1921. He was a

lecturer at the University of Florence for two years and then Professor of Theoretical

Physics at the University of Rome from 1923 to 1938. In 1938 he moved to the United

States and worked first for four years at Columbia University in New York and from

1942 till his death in 1954 at the University of Chicago.

Fermi is recognized as one of the great scientists of the 20-th Century. He is best

known for his contributions to nuclear physics and quantum theory. In 1934 he devel-

oped the theory of the beta nuclear decay that introduced the neutrino and the weak

force as one of the basic force in nature. The existence of the neutrino was actually

enunciated by Wolfgang Pauli in 1930 and experimentally confirmed only in 1956.

In 1934, while at the University of Rome, Fermi began experiments bombarding

various heavy elements with thermal neutrons. He discovered that the thermal neu-

trons bombarding uranium were very effective in producing radioactive atoms, but

did not realize at the time that he succeeded in splitting the uranium atom. Otto

Hahn and Fritz Strassmann in 1938 repeated Fermi’s experiments and discovered

that uranium bombarded with thermal neutrons splits into two lighter atoms. Lise

Meitner and Otto Frisch explained the process theoretically and named it nuclear

fission.

Upon his move to the United States Fermi continued his fission experiments at

Columbia University and showed experimentally that uranium fission results in two

lighter by-products, releasing several neutrons and large amounts of energy. In 1942

he was appointed Director of the Manhattan project at the University of Chicago

with a mandate to develop an “atomic bomb.” With his team of scientists Fermi

produced the first nuclear chain reaction and developed the atomic bombs that were

dropped on Hiroshima and Nagasaki by the United States at the end of the World

War II.
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In 1938 Fermi was awarded the Nobel Prize in Physics “for his demonstrations

of the existence of new radioactive elements produced by neutron irradiation, and for

his related discovery of nuclear reactions brought about by slow neutrons.”

Fermi’s name is honored by the unit of length that is of the order of the size of

the atomic nucleus (1 fermi = 1 femtometer = 1 fm = 10−15 m). One of the American

national laboratories is named Fermi National Laboratory (Fermilab), and the oldest

and most prestigious science and technology prize awarded in the United States is

the Enrico Fermi Award. A common name for particles with half-integer spin, such

as electron, neutron, proton and quark, is fermion; the artificially produced element

with atomic number Z of 100 is fermium (Fm); and the quantum statistics followed

by fermions is known as the Fermi-Dirac statistics, after its inventors.

FLEROV, Georgij Nikolaevič (1913–1990)

Russian nuclear physicist, educated in physics at the Polytechnical Institute of

Leningrad (now Sankt Petersburg) from where he graduated in 1938. He started

his scientific career at the Leningrad Institute of Physics and Technology and was

involved in basic research in a number of fundamental and applied areas of nuclear

physics. From 1941 to 1952 Flerov, together with Igor V. Kurčatov, participated in

investigations linked with the use of atomic energy for military purposes and nuclear

power industry. From 1960 to 1988 he was the director of the Nuclear Reactions

Laboratory of the Joint Institute for Nuclear Research in Dubna.

Flerov is best known for his discovery in 1940 (in collaboration with Konstantin

A. Petrzak) of the spontaneous fission of uranium–238. With colleagues in Dubna

Flerov carried out research that resulted in the synthesis of new heavy elements

(nobelium No–102, rutherfordium Rf–104, dubnium Db–105), the production of a

large number of new nuclei on the border of stability, and the discovery of new types

of radioactivity (proton radioactivity) and new mechanisms of nuclear interactions.

FRANCK, James (1882–1964)

German-born American physicist, educated at the Univeristy of Heidelberg and the

University of Berlin where he received his doctorate in physics in 1906. He worked at

the University of Berlin from 1911 to 1918 and at the University of Göttingen until

1933 when he moved to the United States to become Professor at Johns Hopkins

University in Baltimore. From 1938 to 1947 he was Professor of Physical Chemistry

at the University of Chicago.

Franck is best known for the experiment he carried out in 1914 at the University

of Berlin in collaboration with Gustav Hertz. The experiment is now known as the

Franck-Hertz experiment and it demonstrated the existence of quantized excited

states in mercury atoms. This provided the first experimental substantiation of the

Bohr atomic theory which predicted that atomic electrons occupied discrete and

quantized energy states.

In 1925 James Franck and Gustav Hertz were awarded the Nobel Prize in Physics

“for their discovery of the laws governing the impact of electron upon an atom”. In
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addition to the Nobel Prize, Franck was also honored by the 1951 Max Planck medal

of the German Physical Society and was named honorary citizen of the university

town of Göttingen.

GAMOW, George (1904–1968)

Ukranian-born American physicist and cosmologist, educated at the Novorossia Uni-

versity in Odessa (1922–1923) and at the Leningrad University (1923–1928) where

he received his doctorate in physics in 1928. After a fellowship with Niels Bohr

at the Institute for Theoretical Physics in Copenhagen and a short visit to Ernest

Rutherford at the Cavendish Laboratory in Cambridge, he returned to SSSR in 1931

to become a Professor of Physics at the University of Leningrad. From 1934 until

1956 he was Chair of Physics at the George Washington University in Washington

D.C. and from 1956 until his death in 1968 he was a Professor of Physics at the

University of Colorado in Boulder. During World War II he was involved with the

Manhattan nuclear weapon project in Los Alamos.

Gamow is best known for his (1928) theory of the alpha decay based on tunneling

of the alpha particle through the nuclear potential barrier. He was also a proponent

of the Big-Bang theory of the Universe and worked on the theory of thermonuclear

reactions inside the stars that is still today relevant to research in controlled nuclear

fusion. His name is also associated with the beta decay in the so-called Gamow-

Teller selection rule for beta emission. Gamow was also well known as an author of

popular science books and received the UNESCO Kalinga Prize for popularization

of science.

GEIGER, Hans (1882–1945)

German physicist, educated in physics and mathematics at the university of Erlangen

where he obtained his doctorate in 1906. From 1907 to 1912 he worked with Ernest

Rutherford at the University of Manchester where, with Ernest Marsden, he carried

out the α-particle scattering experiments that lead to the Rutherford–Bohr atomic

model. He also discovered, in collaboration with John M. Nuttall, an empirical linear

relationship between log λ and log Rα for naturally occurring α emitters with the

decay constant λ and range in air Rα (Geiger–Nuttall law). In collaboration with

Walther Müller he developed a radiation detector now referred to as the Geiger-

Müller counter.

GERLACH, Walther (1889–1979)

German physicist, educated at the University of Tübingen where he received his

doctorate in physics in 1912 for a study of blackbody radiation and the photoelectric

effect. He worked at the Universities of Göttingen and University of Frankfurt before

returning in 1925 to Tübingen as Professor of Physics. From 1929 to 1952 he was

Professor of Physics at the University of Munich.
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Gerlach made contributions to radiation physics, spectroscopy and quantum

physics. He is best known for his collaboration with Otto Stern in 1922 at the Uni-

versity of Frankfurt on an experiment that demonstrated space quantization using a

beam of neutral silver atoms that, as a result of passage through an inhomogeneous

magnetic field, split into two district components, each component characterized by

a specific spin (angular momentum) of the silver atoms.

GERMER, Lester H (1896–1971)

American physicist, educated at Columbia University in New York. In 1927 he

worked as graduate student at Bell Laboratories under the supervision of Clin-

ton T. Davisson on experiments that demonstrated the wave properties of electrons

and substantiated the Louis de Broglie’s hypothesis that moving particles exhibit

particle-wave duality. The electron diffraction experiments on metallic crystals are

now referred to as the Davisson-Germer experiment.

HAHN, Otto (1879–1968)

German chemist, educated at University of Munich and Universiy of Marburg. In

1901 he obtained his doctorate in organic chemistry at the University of Marburg.

He spent two years as chemistry assistant at the University of Marburg, and then

studied radioactivity for one year under William Ramsay at the University College in

London and for one year under Ernest Rutherford at McGill University in Montreal.

In 1905 he moved to the Kaiser Wilhelm Institute (now Max Planck Institute)

for chemistry in Berlin and remained there for most of his professional life. From

1928–1944 he served as the Director of the Institute.

Early in his career in Berlin he started a life-long professional association with

Austrian-born physicist Lise Meitner ; a collaboration that produced many impor-

tant discoveries in radiochemistry and nuclear physics. Hahn’s most important

contribution to science is his involvement with the discovery of nuclear fission. In

1934 the Italian physicist Enrico Fermi discovered that uranium bombarded with

neutrons yields several radioactive products. Hahn and Meitner, in collaboration

with Friedrich Strassmann, repeated Fermi’s experiments and found inconclusive

results. In 1938, being Jewish, Meitner left Germany for Stockholm to escape perse-

cution by the Nazis; Hahn and Strassmann continued with the neutron experiments

and eventually concluded that several products resulting from the uranium bombard-

ment with neutrons were much lighter than uranium suggesting that the neutron

bombardment caused uranium to split into two lighter components of more or less

equal size. Hahn communicated the findings to Meitner in Stockholm, who, in coop-

eration with Otto Frisch, explained the theoretical aspects of the uranium splitting

process and called it nuclear fission. The discovery of nuclear fission led to the atomic

bomb and to modern nuclear power industry.

In 1944 Hahn alone was awarded the Nobel Prize in Chemistry “for his discovery

of the fission of heavy nuclei.” In 1966 Hahn, Strassmann and Meitner shared the

Enrico Fermi Prize for their work in nuclear fission. It is now universally accepted
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that four scientists are to be credited with the discovery of the nuclear fission process:

Hahn, Strassmann, Meitner and Frisch.

HARTREE, Douglas (1897–1958)

British mathematician and physicist, educated in Cambridge where he obtained a

degree in Natural Sciences in 1921 and a doctorate in 1926. In 1929 he was appointed

Professor of Applied Mathematics at the University of Manchester and in 1937 he

moved to a Chair of Theoretical Physics. In 1946 he was appointed Professor of

Mathematical Physics at Cambridge University and held the post until his death in

1958.

Hartree was both a mathematician and physicist and he is best known for apply-

ing numerical analysis to complex physics problems such as calculations of wave

functions for multi-electron atoms. Hartree approached the problem by using the

method of successive approximations, treating the most important interactions in

the first approximation and then improving the result with each succeeding approx-

imation. Hartree’s work extended the concepts of the Bohr theory for one-electron

atoms or ions to multi-electron atoms providing reasonable, albeit not perfect,

approximations to inter-electronic interactions in multi-electron atoms.

HEISENBERG, Werner (1901–1976)

German theoretical physicist, educated in physics at the University of Munich and

the University of Göttingen. He received his doctorate in physics at the University

of Munich in 1923 and successfully presented his habilitation lecture in 1924. During

1924–1926 he worked with Niels Bohr at the University of Copenhagen. From 1927

until 1941 Heisenberg held an appointment as Professor of Theoretical Physics at the

University of Leipzig and in 1941 he was appointed Professor of Physics at the Uni-

versity of Berlin and Director of the Kaiser Wilhelm Institute for Physics in Berlin.

From 1946 until his retirement in 1970 he was Director of the Max Planck Institute

for Physics and Astrophysics in Göttingen. The institute moved from Göttingen to

Munich in 1958.

In 1925 Heisenberg invented matrix mechanics which is considered the first ver-

sion of quantum mechanics. The theory is based on radiation emitted by the atom

and mechanical quantities, such as position and velocity of electrons, are represented

by matrices. Heisenberg is best known for his Uncertainty Principle stating that a

determination of particle position and momentum necessarily contains errors the

product of which is of the order of the Planck’s quantum constant h. The principle

is of no consequence in the macroscopic world, however, it is critical for studies on

the atomic scale.

In 1932 Heisenberg was awarded the Nobel Prize in Physics “for creation of

quantum mechanics, the application of which has, inter alia, led to the discovery of

allotropic forms of hydrogen.”
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HERTZ, Gustav (1887–1975)

German physicist, educated at universities of Göttingen, Munich and Berlin, and

graduating with a doctorate in physics in 1911. During 1913–1914 he worked as

research assistant at the University of Berlin. Hertz alternated work in industry

(Philips in Eindhoven; Siemens in Erlangen) with academic positions at universities

of Berlin, Halle and Leipzig.

Hertz made many contributions to atomic physics but is best known for the

experiment in which he studied, in collaboration with James Franck, the impact of

electrons on mercury vapor atoms. The experiment is now referred to as the Franck-

Hertz experiment and demonstrated the existence of quantized excited states in

mercury atoms, thereby substantiating the basic tenets of the Bohr atomic theory.

In 1925 James Franck and Gustav Hertz were awarded the Nobel Prize in Physics

“for their discovery of the laws governing the impact of an electron upon an atom.”

Hertz was also the recipient of the Max Planck Medal of the German Physical

Society.

HOFSTADTER, Robert (1915–1990)

American physicist, educated at the College of the City of New York (B.Sc., 1935)

and Princeton University in Princeton, New Jersey (M.A. and Ph.D. in physics,

1938). During 1938 he was postdoctoral fellow at Princeton working on photocon-

ductivity of willemite crystals and then a year at the University of Pennsylvania

where he helped to construct a large Van de Graaff accelerator for nuclear research.

During the war years Hofstadter first worked at the National Bureau of Stan-

dards and later at Norden Laboratory. In 1945 he returned to Princeton as Assistant

Professor of Physics and got involved in radiation detection instrumentation, dis-

covering in 1948 that sodium iodide activated with thallium made an excellent

scintillation counter that could also be used as spectrometer for measurement of

energy of gamma rays and energetic charged particles. In 1950 he moved to Stan-

ford University in Stanford, California to become Associate Professor and later on

Professor of Physics carrying out important research work on development of radi-

ation detectors and electron scattering by nuclei using W.W. Hansen’s invention

of electron linear accelerator. Hofstadter’s work on using high-energy electrons to

probe the nucleus resulted in much of the current knowledge on scattering form

factors, nuclear charge distribution and size as well as charge and magnetic moment

distributions of the proton and neutron.

Hofstadter was elected to the National Academies (USA) and was named Cal-

ifornia Scientist of the Year in 1959. In 1961 he shared the Nobel Prize in Physics

with Rudolf L. Mössbauer. Hofstadter received the prize “for his pioneering studies

of electron scattering in atomic nuclei and for his thereby achieved discoveries con-

cerning the structure of the nucleons”, Mössbauer for the discovery of gamma ray

resonance in connection with the effect which bears his name.
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HOUNSFIELD, Godfrey Neubold (1919–2004)

British electrical engineer and scientist, educated at the Electrical Engineering Col-

lege in London from which he graduated in 1951. The same year he joined the

research staff of the EMI in Middlesex. He remained associated with the EMI

throughout his professional career.

Hounsfield made a significant contribution to early developments in the computer

field and was responsible for the development of the first transistor-based solid-state

computer in the U.K. He is best known, however, for the invention of computed

tomography (CT), an x-ray-based diagnostic technique that non-invasively forms

two-dimensional cross sections through the human body. Originally, the technique

was referred to as computer assisted tomography (CAT), now the term computed

tomography (CT) is more commonly used.

Following his original theoretical calculations, he first built a laboratory CT

model to establish the feasibility of the approach, and then in 1972 built a clinical

prototype CT-scanner for brain imaging. From the original single slice brain CT-

scanner the technology evolved through four generations to the current 64 slice body

and brain CT-scanners. Roentgen’s discovery of x rays in 1895 triggered the birth of

diagnostic radiology as an important medical specialty; Hounsfield’s invention of the

CT-scanner placed diagnostic radiology onto a much higher level and transformed

it into an invaluable tool in diagnosis of brain disease in particular and human

malignant disease in general. In 1979 Hounsfield shared the Nobel Prize in Medicine

and Physiology with Allan M. Cormack “for the development of computer assisted

tomography.” Cormack derived and published the mathematical basis of the CT

scanning method in 1964.

Hounsfield’s name is honored with the Hounsfield scale which provides a quanti-

tative measure of x-ray attenuation of various tissues relative to that of water. The

scale is defined in hounsfield units (HF) running from air at –1000 HF, fat at –100

HF, through water at 0 HF, white matter at ∼25 HF, grey matter at ∼40 HF, to

bone at +400 HF or larger, and metallic implants at +1000 HF.

HUBBELL, John Howard (1925–2007)

American radiation physicist, educated at the University of Michigan in Ann Arbor

in engineering physics (B.Sc. in 1949, MSc. in 1950). In 1950 he joined the staff

of the National Bureau of Standards (NBS) now known as the National Institute

of Science and Technology (NIST) in Washington D.C. and spent his professional

career there, directing the NBS/NIST X-Ray and Ionizing Radiation Data Center

from 1963 to 1981. He retired in 1988.

Hubbell’s collection and critical evaluation of experimental and theoretical pho-

ton cross section data resulted in the development of tables of attenuation coefficients

and energy absorption coefficients, as well as related quantities such as atomic form

factors, incoherent scattering functions, and atomic cross sections for photoelectric

effect, pair production and triplet production. Hubbell’s most widely known and

important work is the “National Standard Reference Data Series Report 29: Photon
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Cross Sections, Attenuation Coefficients and Energy Absorption Coefficients from

10 keV to 100 GeV.”

JOHNS, Harold Elford (1915–1998)

Born in Chengtu, China to Canadian parents who were doing missionary work in

China, Johns obtained his Ph.D. in Physics from the University of Toronto and

then worked as physicist in Edmonton, Saskatoon, and Toronto. His main interest

was diagnosis and therapy of cancer with radiation and his contributions to the

field of medical physics are truly remarkable. While working at the University of

Saskatchewan in Saskatoon in the early 1950s, he invented and developed the cobalt-

60 machine which revolutionized cancer radiation therapy and had an immediate

impact on the survival rate of cancer patients undergoing radiotherapy.

In 1956 Johns became the first director of the Department of Medical Biophysics

at the University of Toronto and Head of the Physics division of the Ontario Cancer

Institute in Toronto. He remained in these positions until his retirement in 1980

and built the academic and clinical departments into world-renowned centers for

medical physics. With his former student John R. Cunningham, Johns wrote the

classic book “The Physics of Radiology” that has undergone several re-printings

and is still considered the most important textbook on medical physics.

In 1976 Johns received the William D. Coolidge Award from the American

Association of Physicists in Medicine.

JOLIOT-CURIE, Irène (1897–1956)

French physicist, educated at the Sorbonne in Paris where she received her doctorate

on the alpha rays of polonium in 1925 while already working as her mother’s (Marie

Curie) assistant at the Radium Institute. In 1927 Irène Curie married Frédéric Joliot

who was her laboratory partner and Marie Curie’s assistant since 1924. In 1932

Joliot-Curie was appointed lecturer and in 1937 Professor at the Sorbonne. In 1946

she became the Director of the Radium Institute.

Joliot-Curie is best known for her work at the “Institut du Radium” in Paris,

in collaboration with her husband Frédéric Joliot, on the production of arti-

ficial radioactivity through nuclear reactions in 1934. They bombarded stable

nuclides such as boron-10, aluminum-27, and magnesium-24 with naturally occurring

α particles and obtained radionuclides nitrogen-13, phosphorus-30, and silicon-27,

respectively, accompanied by release of a neutron. The discovery of artificially pro-

duced radionuclides completely changed the periodic table of elements and added

several hundred artificial radionuclides to the list. In 1938 Joliot-Curie’s research of

neutron bombardment of uranium represented an important step in eventual dis-

covery of uranium fission by Otto Hahn, Friedrich Strassmann, Lise Meitner, and

Otto Frisch.

The 1935 Nobel Prize in Chemistry was awarded to Frédéric Joliot and Irène

Joliot-Curie “in recognition of their synthesis of new radioactive elements.”
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JOLIOT, Jean Frédéric (1900–1958)

French physicist, educated at the École de Physique et Chimie Industriele in Paris

where he received an engineering physics degree in 1924. Upon graduation he became

Marie Curie’s assistant at the “Institut du Radium” in Paris. He married Irène Curie,

Marie Curie’s daughter, in 1927 and worked on many nuclear physics projects in

collaboration with his wife. In 1930 he obtained his doctorate in physics and in 1937

he became Professor of Physics at the Collège de France in Paris.

In 1934 Joliot discovered artificial radioactivity with Irène Curiie and in 1939

he confirmed the fission experiment announced by Otto Hahn and Friedrich Strass-

mann. He recognized the importance of the experiment in view of a possible chain

reaction and its use for the development of nuclear weapons. In 1935 Joliot and Irène

Joliot-Curie shared the Nobel Prize in Chemistry “in recognition of their synthesis

of new radioactive elements.”

KERST, Donald William (1911–1993)

American physicist, educated at the University of Wisconsin in Madison where he

received his doctorate in physics in 1937. From 1938 to 1957 he worked through

academic ranks to become Professor of Physics at the University of Illinois. He then

worked in industry from 1957 to 1962 and from 1962 to 1980 he was Professor of

Physics at the University of Wisconsin. Kerst made important contributions to the

general design of particle accelerators, nuclear physics, medical physics, and plasma

physics. He will be remembered best for this development of the betatron in 1940,

a cyclic electron accelerator that accelerates electrons by magnetic induction. The

machine found important use in industry, nuclear physics and medicine during the

1950s and 1960s before it was eclipsed by more practical linear accelerators.

KLEIN, Oskar (1894–1977)

Swedish-born theoretical physicist. Klein completed his doctoral dissertation at the

University of Stockholm (Högskola) in 1921 and worked as physicist in Stockholm,

Copenhagen, Lund and Ann Arbor. He is best known for introducing the relativis-

tic wave equation (Klein-Gordon equation); for his collaboration with Niels Bohr

on the principles of correspondence and complementarity; and for his derivation,

with Yoshio Nishina, in 1929 of the equation for Compton scattering (Klein-Nishina

equation). Klein’s attempts to unify general relativity and electromagnetism by

introducing a five-dimensional space-time resulted in a theory now known as the

Kaluza-Klein theory.

LARMOR, Joseph (1857–1942)

Irish physicist, educated at Queen’s University in Belfast where he received his B.A.

and M.A. In 1877 he continued his studies in mathematics at the St. Johns College

in Cambridge. In 1880 he returned to Ireland as Professor of Natural Philosophy
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at Queens College Galway. In 1885 he moved back to Cambridge as lecturer and in

1903 he became the Lucasian Chair of Mathematics succeeding George Stokes. He

remained in Cambridge until retirement in 1932 upon which he returned to Ireland.

Larmor worked in several areas of physics such as electricity, dynamics, thermo-

dynamics, and, most notably, in ether, the material postulated at the end of the

19th century as a medium pervading space and transmitting the electromagnetic

radiation. He is best known for calculating the rate at which energy is radiated

from a charged particle (Larmor law); for explaining the splitting of spectral lines

by a magnetic field; and for the Larmor equation ω = γB, where ω is the angular

frequency of a precessing proton, γ the gyromagnetic constant, and B the magnetic

field.

LAUE, Max von (1879–1960)

German physicist, educated at the University of Strassbourg where he studied math-

ematics, physics and chemistry, University of Göttingen and University of Berlin

where he received his doctorate in physics in 1903. He the worked for two years at

the University of Göttingen, four years at the Institute for Theoretical Physics in

Berlin, and three years at the University of Munich, before starting his series of Pro-

fessorships in Physics in 1912 at the University of Zürich, 1914 at the University of

Frankfurt, 1916 at the University of Würzburg and 1919 at the University of Berlin

from which he retired in 1943.

Von Laue is best known for his discovery in 1912 of the diffraction of x rays on

crystals. Since the wavelength of x rays was assumed to be of the order of inter-

atomic separation in crystals, he surmised that crystalline structures behave like

diffraction gratings for x rays. Von Laue’s hypothesis was proven correct experimen-

tally and established the wave nature of x rays and the regular internal structure

of crystals. The crystalline structure essentially forms a three-dimensional grating,

presenting a formidable problem to analyze. William L. Bragg proposed a simple

solution to this problem now referred to as the Bragg equation. Von Laue also made

notable contributions to the field of superconductivity where he collaborated with

Hans Meissner who with Robert Ochsenfeld established that, when a superconduc-

tor in the presence of a magnetic field is cooled below a critical temperature, all of

the magnetic flux is expelled from the interior of the sample.

The 1914 Nobel Prize in Physics was awarded to von Laue “for his discovery of

the diffraction of x rays by crystals.”

LAUTERBUR, Paul Christian (1929–2007)

American chemist, educated at the Case Institute of Technology in Cleveland (B.Sc.

in chemistry in 1951) and University of Pittsburgh (Ph.D. in chemistry in 1962).

His first academic position was at Stony Brook University as Associate Professor

and from 1969 until 1985 as Professor of Chemistry. From 1985 until 1990 he was

Professor of Chemistry at the University of Illinois at Chicago and since 1985 he
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is Professor and Director of the Biomedical MR Laboratory at the University of

Illinois at Urbana-Champaign.

Being trained in nuclear magnetic resonance (NMR), Lauterbur started his aca-

demic career in this area. However, in the early 1970s when investigating proton

NMR relaxation times of various tissues obtained from tumor-bearing rats, he

observed large and consistent differences in relaxation times from various parts of

the sacrificed animals. Some researchers were speculating that relaxation time mea-

surements might supplement or replace the observations of cell structure in tissues

by pathologists but Lauterbur objected to the invasive nature of the procedure. He

surmised that there may be a way to locate the precise origin of the NMR signals in

complex objects, and thus non-invasively form an image of their distribution in two

or even three dimensions. He developed the method of creating a two dimensional

image by introducing gradients into the NMR magnetic field, analyzing the charac-

teristics of the emitted radio waves, and determining the location of their source. To

allay fears by the general public of everything nuclear, the NMR imaging became

known as magnetic resonance imaging or MRI.

Lauterbur shared the 2003 Nobel Prize in Medicine with Peter Mansfield “for

their discoveries concerning magnetic resonance imaging.”

LAWRENCE, Ernest Orlando (1900–1958)

American physicist, educated at the University of South Dakota (B.A. in chemistry

in 1922), University of Minnesota (M.A. in chemistry in 1923) and Yale University

(Ph.D. in physics in 1925). He first worked at Yale as research fellow and Assistant

Professor of Physics and was appointed Associate Professor at the University of

California at Berkeley in 1928 and Professor of Physics in 1930. In 1936 he was

appointed Director of the University’s Radiation Laboratory and remained in these

posts until his death in 1958.

The reputation of the Berkeley Physics department as an eminent world-class

center of physics is largely based on Lawrence’s efforts. He was not only an excellent

physicist, he was also an excellent research leader, director of large-scale physics

projects, and government advisor. Lawrence is best known for his invention of the

cyclotron (in 1930), a cyclic accelerator that accelerates heavy charged particles to

high kinetic energies for use in producing nuclear reactions in targets or for use in

cancer therapy. During World War II Lawrence worked on the Manhattan project

developing the atomic fission bomb. His research interests were also in the use of

radiation in biology and medicine.

In 1939 Lawrence was awarded the Nobel Prize in Physics “for the invention and

development of the cyclotron and for results obtained with it, especially with regard to

artificial radioactive elements.” Lawrence’s name is honored by Lawrence Berkeley

Laboratory in Berkeley, Lawrence Livermore National Laboratory in Livermore,

California, and lawrencium, an artificial element with an atomic number 103.
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LICHTENBERG, Georg Christoph (1742–1799)

German physicist and philosopher, educated at the University of Göttingen, where

he also spent his whole professional life, from 1769 until 1785 as Assistant Professor

of Physics and from 1785 until his death in 1799 as Professor of Physics.

In addition to physics, Lichtenberg taught many related subjects and was also

an active researcher in many areas, most notably astronomy, chemistry, and math-

ematics. His most prominent research was in electricity and in 1777 he found that

discharge of static electricity may form intriguing patters in a layer of dust, thereby

discovering the basic principles of modern photocopying machines and xeroradiogra-

phy. High voltage electrical discharges on the surface or inside of insulating materials

often result in distinctive patterns that are referred to as Lichtenberg figures or

“trees” in honor of their discoverer.

Lichtenberg is credited with suggesting that Euclid’s axioms may not be the only

basis for a valid geometry and his speculation was proven correct in the 1970s when

Benoit B. Mandelbrot, a Polish-American mathematician, introduced the techniques

of fractal geometry. Coincidentally, these techniques also produce patterns that are

now referred to as Lichtenberg patterns.

Lichtenberg was also known as a philosopher who critically examined a range

of philosophical questions and arrived at intriguing, interesting and often humor-

ous conclusions. Many consider him the greatest German aphorist and his “Waste

Books” contain many aphorisms and witticisms that are still relevant to modern

societies.

LORENTZ, Hendrik Antoon (1853–1928)

Dutch physicist, educated at the University of Leiden where he obtained a B.Sc.

degree in mathematics and physics in 1871 and a doctorate in physics in 1875. In

1878 he was appointed to the Chair of Theoretical Physics at the University of

Leiden and he stayed in Leiden his whole professional life.

Lorentz made numerous contributions to various areas of physics but is best

known for his efforts to develop a single theory to unify electricity, magnetism

and light. He postulated that atoms were composed of charged particles and that

atoms emitted light following oscillations of these charged particles inside the atom.

Lorentz further postulated that a strong magnetic field would affect these oscillations

and thus the wavelength of the emitted light. In 1896 Pieter Zeeman, a student of

Lorentz, demonstrated the effect now known as the Zeeman effect. In 1904 Lorentz

proposed a set of equations that relate the spatial and temporal coordinates for two

systems moving at a large constant velocity with respect to each other. The equa-

tions are now called the Lorentz transformations and their prediction of increase in

mass, shortening of length, and time dilation formed the basis of Albert Einstein’s

special theory of relativity.

In 1902 Lorentz and Zeeman shared the Nobel Prize in Physics “in recognition

of the extraordinary service they rendered by their researches into the influence of

magnetism upon radiation phenomena.”
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MANDELBROT, Benoit (born in 1924)

Polish-born American mathematician, educated in France at the École Polytech-

nique in Paris and the California Institute of Technology (Caltech) in Pasadena.

Mandelbrot received his doctorate in mathematics from the University of Paris in

1952. From 1949 until 1957 he was on staff at the Centre National de la Recherche

Scientifique. In 1958 he joined the research staff at the IBM T. J. Watson Research

Center in Yorktown Heights, New York and he remained with the IBM until his

retirement in 1987 when he became Professor of Mathematical Sciences at Yale

University.

Mandelbrot is best known as the founder of fractal geometry, a modern inven-

tion in contrast to the 2000 years old Euclidean geometry. He is also credited with

coining the term “fractal.” Man-made objects usually follow Euclidean geometry

shapes, while objects in nature generally follow more complex rules designs defined

by iterative or recursive algorithms. The most striking feature of fractal geometry

is the self-similarity of objects or phenomena, implying that the fractal contains

smaller components that replicate the whole fractal when magnified. In theory the

fractal is composed of an infinite number of ever diminishing components, all of the

same shape.

Mandelbrot discovered that self-similarity is a universal property that underlies

the complex fractal shapes, illustrated its behavior mathematically and founded a

completely new methodology for analyzing these complex systems. His name is now

identified with a particular set of complex numbers which generate a type of fractal

with very attractive properties (Mandelbrot Set).

MANSFIELD, Peter (born in 1933)

British physicist, educated at the Queen Mary College in London where he obtained

his B.Sc. in physics in 1959 and doctorate in physics in 1962. He spent 1962–1964 as

research associate at the University of Illinois in Urbana and 1964–1978 as lecturer

and reader at the University of Nottingham. In 1979 he was appointed Professor of

Physics at the University of Nottingham and since 1994 he is Emeritus Professor of

Physics at the University of Nottingham.

Mansfield’s doctoral thesis was on the physics of nuclear magnetic resonance

(NMR), at the time used for studies of chemical structure, and he spent the 1960s

perfecting his understanding of NMR techniques. In the early 1970s Mansfield began

studies in the use of NMR for imaging and developed magnetic field gradient tech-

niques for producing two-dimensional images in arbitrary planes through a human

body. The term “nuclear” was dropped from NMR imaging and the technique is

now referred to as magnetic resonance imaging or MRI. Mansfield is also credited

with developing the MRI protocol called the “echo planar imaging” which in com-

parison to standard techniques allows a much faster acquisition of images and makes

functional MRI (fMRI) possible.

Mansfield shared the 2003 Nobel Prize in Medicine and Physiology with Paul C.

Lauterbur “for their discoveries concerning magnetic resonance imaging.”



C Short Biographies of Scientists Whose Work is Discussed in This Book 687

MARSDEN, Ernest (1889–1970)

New Zealand-born physicist who made a remarkable contribution to science in New

Zealand and England. He studied physics at the University of Manchester and as

a student of Ernest Rutherford, in collaboration with Hans Geiger, carried out the

α-particle scattering experiments that inspired Rutherford to propose the atomic

model, currently known as the Rutherford-Bohr model of the atom. In 1914 he

returned to New Zealand to become Professor of Physics at Victoria University in

Wellington. In addition to scientific work, he became involved with public service

and helped in setting up the New Zealand Department of Scientific and Industrial

Research. During World War II, he became involved with radar technology in defense

work and in 1947 he was elected president of the Royal Society of New Zealand. He

there returned to London as New Zealand’s scientific liaison officer and “ambas-

sador” for New Zealand science. In 1954 he retired to New Zealand and remained

active on various advisory committees as well as in radiation research until his death

in 1970.

MAXWELL, James Clerk (1831–1879)

Scottish mathematician and theoretical physicist, educated at the University of

Edinburgh (1847–1850) and Trinity College of Cambridge University. From 1856–

1860 he held the position of Chair of Natural Philosophy of Marischal College

of Aberdeen University and from 1860–1865 he was Chair of Natural Philosophy

at King’s College in London where he established a regular contact with Michael

Faraday.

In 1865 Maxwell resigned his position at King’s College and for the following

five years held no academic appointments. In 1871 he became the first Cavendish

Professor of Physics at Cambridge and was put in charge of developing the Cavendish

Laboratory. He remained at Cavendish until his death in 1879.

While at King;s College, Maxwell made his most important advances in the

theory of electromagnetism and developed the famous set of four Maxwell equa-

tions, demonstrating that electricity, magnetism and light are all derived from

electromagnetic field. His work on electromagnetic theory is considered of the

same importance as Newton’s work in classical mechanics and Einstein’s work in

relativistic mechanics.

Maxwell also worked on the kinetic theory of gases and in 1866 derived the

Maxwellian distribution describing the fraction of gas molecules moving at a spec-

ified velocity at a given temperature. Together with Willard Gibbs and Ludwig

Boltzmaun Maxwell is credited with developing statistical mechanics and paving

the way for quantum mechanics and relativistic mechanics.

MEITNER, Lise (1878–1968)

Austrian-born physicist who studied physics at the University of Vienna and was

strongly influenced in her vision of physics by Ludwig Boltzmann, a leading theoret-

ical physicist of the time. In 1907 Meitner moved to Berlin to work with Max Planck
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and at the University of Berlin she started a life-long friendship and professional

association with radiochemist Otto Hahn. At the Berlin University both Meitner

and Hahn were appointed as scientific associates and progressed through academic

ranks to attain positions of professor.

During her early days in Berlin, Meitner discovered the element protactinium

with atomic number Z = 91 and also discovered, two years before Auger, the non-

radiative atomic transitions that are now referred to as the Auger effect. Meitner

became the first female physics professor in Germany but, despite her reputation as

an excellent physicist, she, like many other Jewish scientists, had to leave Germany

during the 1930s. She moved to Stockholm and left behind in Berlin her long-term

collaborator and friend Otto Hahn, who at that time was working with Friedrich

Strassmann, an analytical chemist, on studies of uranium bombardment with neu-

trons. Their experiments, similarly to those reported by Irene Joliot-Curie and Pavle

Savic were yielding surprising results suggesting that in neutron bombardment ura-

nium was splitting into smaller atoms with atomic masses approximately half of

that of uranium. In a letter Hahn described the uranium disintegration by neutron

bombardment to Meitner in Stockholm and she, in collaboration with Otto Frisch,

succeeded in providing a theoretical explanation for the uranium splitting and coined

the term nuclear fission to name the process.

The 1944 Nobel Prize in Chemistry was awarded to Hahn “for the discovery of

the nuclear fission.” The Nobel Committee unfortunately ignored the contributions

by Strassmann, Meitner and Frisch to the theoretical understanding of the nuclear

fission process. Most texts dealing with the history of nuclear fission now recognize

the four scientists: Hahn, Strassmann, Meitner, and Frisch as the discoverers of the

fission process.

Despite several problems that occurred with recognizing Meitner’s contributions

to modern physics, her scientific work certainly was appreciated and is given the

same ranking in importance as that of Marie Curie. In 1966 Meitner together with

Hahn and Strassmann shared the prestigious Enrico Fermi Award. In honor of

Meitner’s contributions to modern physics the element with atomic number 109

was named meitnerium (Mt).

MENDELEEV, Dmitri Ivanovič (1834–1907)

Russian physical chemist, educated at the University of St. Petersburg where he

obtained his M.A. in chemistry in 1856 and doctorate in chemistry in 1865. The

years between 1859 and 1861 Mendeleev spent studying in Paris and Heidelberg.

He worked as Professor of Chemistry at the Technical Institute of St. Petersburg

and the University of St. Petersburg from 1862 until 1890 when he retired from

his academic posts for political reasons. From 1893 until his death in 1907 he was

Director of the Bureau of Weights and Measures in St. Petersburg.

While Mendeleev made contributions in many areas of general chemistry as

well as physical chemistry and was an excellent teacher, he is best known for his

1869 discovery of the Periodic Law and the development of the Periodic Table of

Elements. Until his time elements were distinguished from one another by only
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one basic characteristic, the atomic mass, as proposed by John Dalton in 1805. By

arranging the 63 then-known elements by atomic mass as well as similarities in

their chemical properties, Mendeleev obtained a table consisting of horizontal rows

or periods and vertical columns or groups. He noticed several gaps in his Table of

Elements and predicted that they represented elements not yet discovered. Shortly

afterwards elements gallium, germanium and scandium were discovered filling three

gaps in the table, thereby confirming the validity of Mendeleev’s Periodic Table of

Elements. Mendeleev’s table of more than a century ago is very similar to the modern

21st century Periodic Table, except that the 111 elements of the modern periodic

table are arranged according to their atomic number Z in contrast to Mendeleev’s

table in which the 63 known elements were organized according to atomic mass.

To honor Mendeleev’s work the element with atomic number Z of 101 is called

mendelevium.

MILLIKAN, Robert Andrews (1868–1952)

American physicist, educated at Oberlin College (Ohio) and Columbia University in

New York where he received a doctorate in physics in 1895. He then spent a year at

the universities of Berlin and Götingen, before accepting a position at the University

of Chicago in 1896. By 1910 he was Professor of Physics and remained in Chicago

until 1921 when he was appointed Director of the Norman Bridge Laboratory of

Physics at the California Institute of Technology (Caltech) in Pasadena. He retired

in 1946.

Millikan was a gifted teacher and experimental physicist. During his early years

at Chicago he authored and coauthored many physics textbooks to help and sim-

plify the teaching of physics. As a scientist he made many important discoveries in

electricity, optics and molecular physics. His earliest and best known success was

the accurate determination, in 1910, of the electron charge with the “falling-drop

method” now commonly referred to as the Millikan experiment. He also verified

experimentally the Einstein’s photoelectric effect equation and made the first direct

photoelectric determination of Planck’s quantum constant h.

The 1923 Nobel Prize in Physics was awarded to Millikan “for his work on the

elementary charge of electricity and on the photoelectric effect.”

MØLLER, Christian (1904–1980)

Danish theoretical physicist, educated at the University of Copenhagen where he

first studied mathematics and then theoretical physics. In 1929 he obtained his

M.Sc. degree and in 1933 his doctorate under Niels Bohr on passage of fast electrons

through matter. He first worked as lecturer at the Bohr institute in Copenhagen and

from 1943 until retirement in 1975 he was Professor of Mathematical Physics at the

University of Copenhagen.

Møller began his theoretical physics work in nuclear and high-energy physics and

was influenced by the many eminent physicists who were visiting the Bohr institute

during the 1930s, such as George Gamow, Nevill Mott, and Yoshio Nishima. He made
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important contributions in nuclear and high-energy physics problems combined with

the theory of relativity, most notably in alpha decay, α-particle scattering, electron-

positron theory and meson theory of nuclear forces. He is best known for his work on

electron scattering on atomic orbital electrons which in his honor is termed Møller

scattering.

MÖSSBAUER, Rudolf Ludwig (born in 1929)

German physicist, educated at the Technische Hochschule (Technical University) in

Munich, where he received his doctorate in physics in 1958, after carrying out the

experimental portion of his thesis work in Heidelberg at the Institute for Physics

of the Max Planck Institute for Medical Research. During 1959 Mössbauer worked

as scientific assistant at the Technical University in Munich and from 1960 until

1962 as Professor of Physics at the California Institute of Technology (Caltech) in

Pasadena. In 1962 he returned to the Technical Institute in Munich as Professor of

Experimental Physics and stayed there his whole professional career except for the

period 1972–1977 which he spent in Grenoble as the Director of the Max von Laue

Institute.

Mössbauer is best known for his 1957 discovery of recoil-free gamma ray reso-

nance absorption; a nuclear effect that is named after him and was used to verify

Albert Einstein’s theory of relativity and to measure the magnetic field of atomic

nuclei. The Mössbauer effect involves the emission and absorption of gamma rays by

atomic nuclei. When a free excited nucleus emits a gamma photon, the nucleus recoils

in order to conserve momentum. The nuclear recoil uses up a minute portion of the

decay energy, so that the shift in the emitted photon energy prevents the absorption

of the photon by another target nucleus. While working on his doctorate thesis in

Heidelberg, Mössbauer discovered that by fixing emitting and absorbing nuclei into

a crystal lattice, the whole lattice gets involved in the recoil process, minimizing

the recoil energy loss and creating an overlap between emission and absorption lines

thereby enabling the resonant photon absorption process and creating an extremely

sensitive detector of photon energy shifts.

Mössbauer received many awards and honorable degrees for his discovery; most

notably, he shared with Robert Hofstadter the 1961 Nobel Prize in Physics “for his

researches concerning the resonance absorption of gamma radiation and his discovery

in this connection of the effect which bears his name.” Hofstadter received his share

of the 1961 Nobel Prize for his pioneering studies of electron scattering in atomic

nuclei.

MOSELEY, Henry Gwen Jeffreys (1887–1915)

British physicist, educated at the University of Oxford where he graduated in 1910.

He began his professional career at the University of Manchester as lecturer in

physics and research assistant under Ernest Rutherford.

Based on work by Charles Barkla who discovered characteristic x rays and work

of the team of William Bragg and Lawrence Bragg who studied x-ray diffraction,
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Moseley undertook in 1913 a study of the K and L characteristic x rays emitted

by then-known elements from aluminum to gold. He found that the square root of

the frequencies of the emitted characteristic x-ray lines plotted against a suitably

chosen integer Z yielded straight lines. Z was subsequently identified as the number of

positive charges (protons) and the number of electrons in an atom and is now referred

to as the atomic number Z. Moseley noticed gaps in his plots that corresponded to

atomic numbers Z of 43, 61, and 75. The elements with Z = 43 (technetium) and

Z = 61 (promethium) do not occur naturally but were produced artificially years

later. The Z = 75 element (rhenium) is rare and was discovered only in 1925.

Moseley thus found that the atomic number of an element can be deduced from the

element’s characteristic spectrum (non-destructive testing). He also established that

the periodic table of elements should be arranged according to the atomic number

Z rather than according to the atomic mass number A as was common at his time.

There is no question that Moseley during a short time of two years produced

results that were very important for the development of atomic and quantum physics

and were clearly on the level worthy of Nobel Prize. Unfortunately, he perished

during World War I shortly after starting his professional career in physics.

MOTT, Nevill Francis (1905–1996)

British physicist, educated at Clifton College in Bristol and St. John’s College in

Cambridge where he studied mathematics and physics, received a baccalaureate

degree in 1927, and carried out his first work in theoretical physics studying scatter-

ing of electrons on nuclei. During 1928 he continued his physics studies under Niels

Bohr in Copenhagen and Max Born in Göttingen. He spent the 1929–30 academic

year as lecturer in Manchester where William L. Bragg introduced him to solid atate

physics. In 1930 Mott returned to Cambridge, obtained his M.Sc. degree in Physics,

and continued his work on particle scattering on atoms and nuclei in Rutherford’s

laboratory. His contributions to collision theory are recognized by the description of

electron–nucleus scattering as Mott scattering.

The period from 1933 to 1954 Mott spent in Bristol, first as Professor of The-

oretical Physics and from 1948 as Chairman of the Physics Department. His work

concentrated on solid state physics and resulted in many important publications and

several books. In 1954 Mott became Cavendish Professor of Physics at Cambridge.

He continued his work in solid state physics, concentrating on amorphous semicon-

ductors and producing research for which he shared the 1977 Nobel Prize in Physics

with Philip W. Anderson and John H. Van Vleck “for their fundamental theoretical

investigations of the electronic structure of magnetic and disordered systems”.

In addition to his contributions to experimental and theoretical physics, Mott

has also taken a leading role in science education reform in the U.K. and served on

many committees that dealt with science education.

NISHINA, Yoshio (1890–1951)

Japanese physicist, educated at the University of Tokyo where he graduated in 1918.

He worked three years as an assistant at the University of Tokyo and then spent
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several years in Europe: 1921–1923 at the University of Cambridge with Ernest

Rutherford and 1923–1928 at the University of Copenhagen with Niels Bohr. From

1928 to 1948 he worked at the University of Tokyo.

Nishina is best known internationally for his collaboration with Oskar Klein on

the cross section for Compton scattering in 1928 (Klein-Nishina formula). Upon

return to Japan from Europe, Nishina introduced the study of nuclear and high-

energy physics in Japan and trained many young Japanese physicists in the nuclear

field. During World War II Nishina was the central figure in the Japanese atomic

weapons program that was competing with the American Manhattan project and

using the same thermal uranium enrichment technique as the Americans. The race

was tight; however, the compartmentalization of the Japanese nuclear weapons

program over competing ambitions of the army, air force and the navy gave the

Americans a definite advantage and eventual win in the nuclear weapons competi-

tion that resulted in the atomic bombs over Hiroshima and Nagasaki and Japanese

immediate surrender.

PAULI, Wolfgang (1900–1958)

Austrian-born physicist, educated at the University of Munich where he obtained

his doctorate in physics in 1921. He spent one year at the University of Göttingen

and one year at the University of Copenhagen before accepting a lecturer position at

the University of Hamburg (1923–1928). From 1928 to 1958 he held an appointment

of Professor of Theoretical Physics at the Eidgenössische Technische Hochschule in

Zürich in Zürich. From 1940 to 1946 Pauli was a visiting professor at the Institute

for Advanced Study in Princeton.

Pauli is known as an extremely gifted physicist of his time. He is best remem-

bered for enunciating the existence of the neutrino in 1930 and for introducing the

exclusion principle to govern the states of atomic electrons in general. The exclusion

principle is now known as the Pauli Principle and contains three components. The

first component states that no two electrons can be at the same place at the same

time. The second component states that atomic electrons are characterized by four

quantum numbers: principal, orbital, magnetic and spin. The third component states

that no two electrons in an atom can occupy a state that is described by exactly the

same set of the four quantum numbers. The exclusion principle was subsequently

expanded to other electronic and fermionic systems, such as molecules and solids.

The 1945 Nobel Prize in Physics was awarded to Pauli “for his discovery of the

Exclusion Principle, also called the Pauli Principle.”

PLANCK, Max Karl Ernst (1858–1947)

German physicist, educated at the University of Berlin and University of Munich

where he received his doctorate in physics in 1879. He worked as Assistant Professor

at the University of Munich from 1880 until 1885, then Associate Professor at the

University of Kiel until 1889 and Professor of Physics at the University of Berlin

until his retirement in 1926.
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Most of Planck’s work was on the subject of thermodynamics in general and

studies of entropy and second law of thermodynamics in particular. He was keenly

interested in the blackbody problem and the inability of classical mechanics to pre-

dict the blackbody spectral distribution. Planck studied the blackbody spectrum in

depth and concluded that it must be electromagnetic in nature. In contrast to clas-

sical equations that were formulated for blackbody radiation by Wien and Rayleigh,

with Wien’s equation working only at high frequencies and Rayleigh’s working only a

low frequencies, Planck formulated an equation that predicted accurately the whole

range of applicable frequencies and is now known as Planck’s equation for black-

body radiation. The derivation was based on the revolutionary idea that the energy

emitted by a resonator can only take on discrete values or quanta, with the quan-

tum energy ε equal to hν, where ν is the frequency and h a universal constant now

referred to as the Planck’s constant. Planck’s idea of quantization has been success-

fully applied to the photoelectric effect by Albert Einstein and to the atomic model

by Niels Bohr.

In 1918 Planck was awarded the Nobel Prize in Physics “in recognition of the ser-

vices he rendered to the advancement of Physics by his discovery of energy quanta.”

In addition to Planck’s constant and Planck’s formula, Planck’s name and work are

honored with the Max Planck Medal that is awarded annually as the highest distinc-

tion by the German Physical Society (Deutsche Physikalische Gesellschaft) and the

Max Planck Society for the Advancement of Science that supports basic research at

80 research institutes focusing on research in biology, medicine, chemistry, physics,

technology and humanities.

POYNTING, John Henry (1852–1914)

British physicist, born in Monton near Manchester and educated at Owens College

in Manchester (B.Sc. in 1876) and Trinity College in Cambridge (Sc.D in 1887). He

started his academic career in Manchester (1876–1878) where he met J.J. Thomson

with whom he completed “A Textbook of Physics.” In 1878 he became a Fellow of

Trinity College in Cambridge and for two years worked in Cavendish Laboratory

under J.C. Maxwell. In 1880 he moved to the University of Birmingham as professor

of physics and stayed there for the rest of his professional life.

Poynting was an excellent theoretical as well as experimental physicist. His great-

est discovery was the Poynting theorem in electromagnetism from which comes the

defintion of the Poynting vector. He is also remembered for many other contributions

to physics, such as an accurate measurement of Newton’s gravitational constant;

determination of the mean density of the Earth; discovery of the Poynting-Robertson

effect (small particles in the orbit about Sun spiral into the Sun); and method for

determining absolute temperature of celestial objects.

The Poynting theorem deals with the conservation of energy for the electromag-

netic field and can be derived from the Lorentz force in conjuction with Maxwell’s

equations. The Poynting vector represents the energy flow through a given area for

electromagnetic field and is usually written as a vector product S = E ×B/μ0 where

E is the electric field, B the magnetic field, and μ0 the permeability of vacuum.
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Poynting was held in high esteem by his peers and received numerous awards

for his work. He was President of Physiccal Society and was elected Fellow of the

Royal Society. In 1905 he received the Royal Medal from the Royal Society.

PURCELL, Edward Mills (1912–1997)

American physicist, educated at Purdue University in Indiana where he received his

Bachelor’s degree in electrical engineering in 1933 and Harvard where he received

his doctorate in physics in 1938. After serving for two years as lecturer of physics at

Harvard, he worked at the Massachusetts Institute of Technology on development

of new microwave techniques. In 1945 Purcell returned to Harvard as Associate

Professor of Physics and became Professor of Physics in 1949.

Purcell is best known for his 1946 discovery of nuclear magnetic resonance

(NMR) with his students Robert Pound and Henry C. Torrey. NMR offers an ele-

gant and precise way of determining chemical structure and properties of materials

and is widely used not only in physics and chemistry but also in medicine where,

through the method of magnetic resonance imaging (MRI), it provides non-invasive

means to image internal organs and tissues of patients.

In 1952 Purcell shared the Nobel Prize in Physics with Felix Bloch “for their

development of new methods for nuclear magnetic precision measurements and

discoveries in connection therewith.”

RAYLEIGH, John William Strutt (1842–1919)

English mathematician and physicist who studied mathematics at the Trinity Col-

lege in Cambridge. Being from an affluent family he set up his physics laboratory

at home and made many contributions to applied mathematics and physics from

his home laboratory. From 1879 to 1884 Rayleigh was Professor of Experimental

Physics and Head of the Cavendish Laboratory at Cambridge, succeeding James

Clark Maxwell. From 1887 to 1905 he was Professor of Natural Philosophy at the

Royal Institution in London.

Rayleigh was a gifted researcher and made important contributions to all

branches of physics known at his time, having worked in optics, acoustics, mechan-

ics, thermodynamics, and electromagnetism. He is best known for explaining that

the blue color of the sky arises from the scattering of light by dust particles in air

and for relating the degree of light scattering to the wavelength of light (Rayleigh

scattering). He also accurately defined the resolving power of a diffraction grating;

established standards of electrical resistance, current, and electromotive force; dis-

covered argon; and derived an equation describing the distribution of wavelengths

in blackbody radiation (the equation applied only in the limit of large wavelengths).

In 1904 Rayleigh was awarded the Nobel Prize in Physics “for his investigations

of the densities of the most important gases and for his discovery of the noble gas

argon in connection with these studies.” He discovered argon together with William
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Ramsey who obtained the 1904 Nobel Prize in Chemistry for his contribution to the

discovery.

RICHARDSON, Owen Willans (1879–1959)

British physicist, educated at Trinity College in Cambridge from where he graduated

in 1990 as a student of Joseph J. Thomson at the Cavendish Laboratory. He was

appointed Professor of Physics at Princeton University in the United States in 1906

but in 1914 returned to England to become Professor of Physics at King’s College

of the University of London.

Richardson is best known for his work on thermionic emission of electrons from

hot metallic objects that enabled the development of radio and television tubes as

well as modern x-ray (Coolidge) tubes. He discovered the equation that relates the

rate of electron emission to the absolute temperature of the metal. The equation is

now referred to as the Richardson’s law or the Richardson-Dushman equation.

In 1928 Richardson was awarded the Nobel Prize in Physics “for his work on

the thermionic phenomenon and especially for the law that is named after him.”

RÖNTGEN, Wilhelm Conrad (1845–1923)

German physicist, educated at the University of Utrecht in Holland and University of

Zürich where he obtained his doctorate in physics in 1869. He worked as academic

physicist at several German universities before accepting a position of Chair of

Physics at the University of Giessen in 1979. From 1888 until 1900 he was Chair of

Physics at the University of Würzburg and from 1900 until 1920 he was Chair of

Physics at the University of Munich.

Röntgen was active in many areas of thermodynamics, mechanics and electricity

but his notable research in these areas was eclipsed by his accidental discovery in

1895 of “a new kind of ray.” The discovery occurred when Röntgen was studying

cathode rays (now known as electrons, following the work of Joseph J. Thomson) in

a Crookes tube, a fairly mundane and common experiment in physics departments

at the end of the 19-th century. He noticed that, when his energized Crookes tube

was enclosed in a sealed black and light-tight envelope, a paper plate covered with

barium platinocianide, a known fluorescent material, became fluorescent despite

being far removed from the discharge tube. Röntgen concluded that he discovered an

unknown type of radiation, much more penetrating than visible light and produced

when cathode rays strike a material object inside the Crookes tube. He named the

new radiation x rays and the term is generaly used around the World. However, in

certain countries x rays are often called Röntgen rays. In 1912 Max von Laue showed

with his crystal diffraction experiments that x rays are electromagnetic radiation

similar to visible light but of much smaller wavelength. In tribute to Röntgen’s

contributions to modern physics the element with the atomic number 111 was named

röntgenium (Rg).

In 1901 the first Nobel Prize in Physics was awarded to Röntgen “in recognition

of the extraordinary services he has rendered by the discovery of the remarkable rays

subsequently named after him.”
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RUTHERFORD, Ernest (1871–1937)

New Zealand-born nuclear physicist, educated at the Canterbury College in

Christchurch, New Zealand (B.Sc. in mathematics and physical science in 1894)

and at the Cavendish Laboratory of the Trinity College in Cambridge. He received

his science doctorate from the University of New Zealand in 1901. Rutherford was

one of the most illustrious physicists of all time and his professional career consists

of three distinct periods: as MacDonald Professor of Physics at McGill University

in Montreal (1898–1907); as Langworthy Professor of Physics at the University of

Manchester (1908–1919); and as Cavendish Professor of Physics at the Cavendish

Laboratory of Trinity College in Cambridge (1919–1937).

With the exception of his early work on magnetic properties of iron exposed

to high frequency oscillations, Rutherford’s career was intimately involved with the

advent and growth of nuclear physics. Nature provided Rutherford with α particles,

an important tool for probing the atom, and he used the tool in most of his exciting

discoveries that revolutionized physics in particular and science in general.

Before moving to McGill in 1898, Rutherford worked with Joseph J. Thomson

at the Cavendish Laboratory on detection of the just-discovered x rays (Wilhelm

Röntgen in 1895) through studies of electrical conduction of gases caused by x-

ray ionization of air. He then turned his attention to the just-discovered radiation

emanating from uranium (Henri Becquerel in 1896) and radium (Pierre Curie and

Marie Curie in 1898) and established that uranium radiation consists of at least

two components, each of particulate nature but with different penetrating powers.

He coined the names α and β particles for the two components.

During his 10 years at McGill, Rutherford published 80 research papers, many

of them in collaboration with Frederick Soddy, a chemist who came to McGill from

Oxford in 1900. Rutherford discovered the radon gas as well as gamma rays and

speculated that the gamma rays were similar in nature to x rays. In collaboration

with Soddy he described the transmutation of radioactive elements as a spontaneous

disintegration of atoms and defined the half-life of a radioactive substance as the

time it takes for its activity to drop to half of its original value. He noted that all

atomic disintegrations were characterized by emissions of one or more of three kinds

of rays: α, β, and γ.

During the Manchester period Rutherford determined that α particles were

helium ions. He guided Hans Geiger and Ernest Marsden through the now-famous

α particle scattering experiment. Based on the experimental results Rutherford in

1911 proposed a revolutionary model of the atom which was known to have a size

of the order of 10−10 m. He proposed that most of the atomic mass is concentrated

in a miniscule nucleus with a size of the order of 10−15 m) and that the atomic elec-

trons are distributed in a cloud around the nucleus. In 1913 Niels Bohr expanded

Rutherford’s nuclear atomic model by introducing the idea of the quantization of

electrons’ angular momenta and the resulting model is now called the Rutherford-

Bohr atomic model. During his last year at Manchester, Rutherford discovered that

nuclei of nitrogen, when bombarded with α particles, artificially disintegrate and
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produce protons in the process. Rutherford was thus first in achieving artificial

transmutation of an element through a nuclear reaction.

During the Cambridge period Rutherford collaborated with many world-

renowned physicists such as John Cocroft and Ernest Walton in designing a proton

accelerator now called the Cocroft-Walton machine, and with James

Chadwick in discovering the neutron in 1932. Rutherford’s contributions to mod-

ern physics are honored with the element of atomic number 104 which was named

rutherfordium (Rf).
In 1908 Rutherford was awarded the Nobel Prize in Chemistry “for his inves-

tigations into the disintegration of the elements and the chemistry of radioactive
substances.”

RYDBERG, Johannes (1854–1919)

Swedish physicist, educated at Lund University. He obtained his Ph.D. in mathe-
matics in 1879 but worked all his professional life as a physicist at Lund University
where he became Professor of Physics and Chairman of the Physics department.

Rydberg is best known for his discovery of a mathematical expression that gives
the wavenumbers of spectral lines for various elements and includes a constant that is
now referred to as the Rydberg constant

(
R∞=109 737 cm−1

)
. In honor of Rydberg’s

work in physics the absolute value of the ground state energy of the hydrogen atom
is referred to as the Rydberg energy (ER = 13.61 eV).

SCHRÖDINGER, Erwin (1887–1961)

Austrian physicist, educated at the University of Vienna where he received his doc-
torate in Physics in 1910. He served in the military during World War I and after the
war moved through several short-term academic positions until in 1921 he accepted
a Chair in Theoretical Physics at the University of Zürich. In 1927 he moved to
the University of Berlin as Planck’s successor. The rise of Hitler in 1933 convinced
Schrödinger to leave Germany. After spending a year at Princeton University, he
accepted a post at the University of Graz in his native Austria. The German annex-
ation of Austria in 1938 forced him to move again, this time to the Institute for
Advanced Studies in Dublin where he stayed until his retirement in 1955.

Schrödinger made many contributions to several areas of theoretical physics,
however, he is best known for introducing wave mechanics into quantum mechanics.
Quantum mechanics deals with motion and interactions of particles on an atomic
scale and its main attribute is that it accounts for the discreteness (quantization)
of physical quantities in contrast to classical mechanics in which physical quantities
are assumed continuous. Examples of quantization were introduced by Max Planck
who in 1900 postulated that oscillators in his blackbody emission theory can possess
only certain quantized energies; Albert Einstein who in 1905 postulated that elec-
tromagnetic radiation exists only in discrete packets called photons; and Niels Bohr
who in 1913 introduced the quantization of angular momenta of atomic orbital elec-
trons. In addition, Louis de Broglie in 1924 introduced the concept of wave-particle
duality.
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Schrödinger’s wave mechanics is based on the so-called Schrödinger’s wave equa-
tion, a partial differential equation that describes the evolution over time of the wave
function of a physical system. Schrödinger and other physicists have shown that
many quantum mechanical problems can be solved by means of the Schrödinger
equation. The best known examples are: finite square well potential; infinite square
well potential; potential step; simple harmonic oscillator; and hydrogen atom.

In 1933 Schrödinger shared the Nobel Prize in Physics with Paul A.M. Dirac
“for the discovery of new productive forms of atomic theory.”

SEGRÈ, Emilio Gino (1905–1989)

Italian-born American nuclear physicist, educated at the University of Rome, where
he received his doctorate in physics as Enrico Fermi’s first graduate student in 1928.
In 1929 he worked as assistant at the University of Rome and spent the years 1930–
1931 with Otto Stern in Hamburg and Pieter Heman in Amsterdam. In 1932 he
became Assistant Professor of Physics at the University of Rome and in 1936 he
was appointed Director of the Physics Laboratory at the University of Palermo. In
1938 Segrè came to Berkeley University, first as research associate then as physics
lecturer. From 1943 until 1946 he was a group leader in the Los Alamos Laboratory
of the Manhattan Project and from 1946 until 1972 he held an appointment of
Professor of Physics at Berkeley. In 1974 he was appointed Professor of Physics at
the University of Rome.

Segrè is best known for his participation with Enrico Fermi in neutron exper-
iments bombarding uranium-238 with neutrons thereby creating several elements
heavier than uranium. They also discovered thermal neutrons and must have unwit-
tingly triggered uranium-235 fission during their experimentation. It was Otto Hahn
and colleagues, however, who at about the same time discovered and explained
nuclear fission. In 1937 Segrè discovered technetium, the first man-made element not
found in nature and, as it subsequently turned out, of great importance to medical
physics in general and nuclear medicine in particular. At Berkeley Segrè discov-
ered plutonium-239 and established that it was fissionable just like uranium-235.
Segrè made many other important contributions to nuclear physics and high-energy
physics and, most notably, in collaboration with Owen Chamberlain discovered the
antiproton. Segrè and Chamberlain shared the 1959 Nobel Prize in Physics “for their
discovery of the antiproton.”

SELTZER, Stephen Michael (born in 1940)

American physicist, educated at the Virginia Polytechnic Institute where he received
his B.S. in physics in 1962 and at the University of Maryland, College Park where
he received his M.Sc. in physics in 1973. In 1962 he joined the Radiation Theory
Section at the National Bureau of Standards (NBS), now the National Institute
of Standards and Technology (NIST), and has spent his professional career there,
becoming the Director of the Photon and Charged-Particle Data Center at NIST in
1988 and the Leader of the Radiation Interactions and Dosimetry Group in 1994. He
joined the International Commission on Radiation Units and Measurements (ICRU)
in 1997.
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Seltzer worked with Martin Berger on the development of Monte Carlo codes for
coupled electron-photon transport in bulk media, including the transport-theoretical
methods and algorithms used, and the interaction cross-section information for these
radiations. Their ETRAN codes, underlying algorithms and cross-section data have
been incorporated in most of the current radiation-transport Monte Carlo codes.
Seltzer was instrumental in the development of extensive data for the production of
bremsstrahlung by electrons (and positrons), electron and positron stopping powers,
and a recent database of photon energy-transfer and energy-absorption coefficients.
His earlier work included applications of Monte Carlo calculations to problems in
space science, detector response, and space shielding, which led to the development
of the SHIELDOSE code used for routine assessments of absorbed dose within
spacecraft.

SIEGBAHN, Karl Manne Georg (1886–1978)

Swedish physicist, educated at the University of Lund where he obtained his Doctor-
ate in Physics in 1911. From 1907 to 1923 he lectured in physics at the University of
Lund, first as Assistant to Professor J. R. Rydberg, from 1911 to 1915 as Lecturer
in Physics, and from 1915 to 1923 as Professor of Physics. In 1923 he moved to
the University of Uppsala where he stayed as Professor of Physics until 1937 when
he became a Research Professor of Experimental Physics and the first Director of
the Physics Department of the Nobel Institute of the Royal Swedish Academy of
Sciences in Stockholm. He remained with the Academy till 1975 when he retired.

Siegbahn’s main contribution to physics was in the area of x-ray spectroscopy
and covered both the experimental and theoretical aspects. He made many discover-
ies related to x-ray emission spectra from various target materials and also developed
equipment and techniques for accurate measurement of x-ray wavelengths. He built
his own x-ray spectrometers, produced numerous diamond-ruled glass diffraction
gratings for his spectrometers, and measured x-ray wavelengths of many target ele-
ments to high precision using energetic electrons to excite the characteristic spectral
emission lines.

To honor Siegbahn’s significant contributions to x-ray spectroscopy the notation
for x-ray spectral lines that are characteristic to elements is referred to as Sieg-
bahn’s notation. The notation has been in use for many decades and only recently
the International Union of Pure and Applied Chemistry (IUPAC) proposed a new
notation referred to as the IUPAC notation which is deemed more practical and is
slated to replace the existing Siegbahn notation.

In 1924 Siegbahn received the Nobel Prize in Physics “for discoveries and
research in the field of x-ray spectroscopy.”

SODDY, Frederick (1877–1956)

British chemist, educated at Morton College in Oxford where he received his degree
in chemistry in 1898. After graduation he spent two years as research assistant
in Oxford, then went to McGill University in Montreal where he worked with
Ernest Rutherford on radioactivity. In 1902 Soddy returned to England to work
with William Ramsay at the University College in London. He then served as lec-
turer in physical chemistry at the University of Glasgow (1910–1914) and Professor
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of Chemistry at the University of Aberdeen (1914–1919). His last appointment was
from 1919 until 1936 as Lees Professor of Chemistry at Oxford University.

Soddy is best known for his work in the physical and chemical aspects of radioac-
tivity. He learned the basics of radioactivity with Ernest Rutherford at McGill
University and then collaborated with William Ramsay at the University College.
With Rutherford he confirmed the hypothesis by Marie Curie that radioactive decay
was an atomic rather than chemical process, postulated that helium is a decay prod-
uct of uranium, and formulated the radioactive disintegration law. With Ramsay he
confirmed that the alpha particle was doubly ionized helium atom. Soddy’s Glasgow
period was his most productive period during which he enunciated the so-called dis-
placement law and introduced the concept of isotopes. The displacement law states
that emission of an alpha particle from a radioactive element causes the element to
transmutate into a new element that moves back two places in the Periodic Table of
Element. The concept of isotopes states that certain elements exist in two or more
forms that differ in atomic mass but are chemically indistinguishable.

Soddy was awarded the 1921 Nobel Prize in Chemistry “for his contributions to
our knowledge of the chemistry of radioactive substances, and his investigations into
the origin and nature of isotopes.”

STERN, Otto (1888–1969)

German-born physicist educated in physical chemistry at the University of Breslau
where he received his doctorate in 1912. He worked with Albert Einstein at the
University of Prague and at the University of Zürich before becoming an Assistant
Professor at the University of Frankfurt in 1914. During 1921–1922 he was an Asso-
ciate Professor of Theoretical Physics at the University of Rostock and in 1923 he
was appointed Professor of Physical Chemistry at the University of Hamburg. He
remained in Hamburg until 1933 when he moved to the United States to become a
Professor of Physics at the Carnegie Institute of Technology in Pittsburgh.

Stern is best known for the development of the molecular beam epitaxy, a tech-
nique that deposits one or more pure materials onto a single crystal wafer forming a
perfect crystal; discovery of spin quantization in 1922 with Walther Gerlach; mea-
surement of atomic magnetic moments; demonstration of the wave nature of atoms
and molecules; and discovery of proton’s magnetic moment.

Stern was awarded the 1943 Nobel Prize in Physics “for his contribution to the
development of the molecular ray method and his discovery of the magnetic moment
of the proton.”

STRASSMANN, Friedrich Wilhelm (1902–1980)

German physical chemist, educated at the Technical University in Hannover where
he received his doctorate in 1929. He worked as an analytical chemist at the Kaiser
Wilhelm Institute for Chemistry in Berlin from 1934 until 1945. In 1946 Strassmann
became Professor of Inorganic Chemistry at the University of Mainz. From 1945 to
1953 he was Director of the Chemistry department at the Max Planck Institute.

Strassmann is best known for his collaboration with Otto Hahn and Lise Meitner
on experiments that in 1938 lead to the discovery of neutron induced fission of
uranium atom. Strassmann’s expertise in analytical chemistry helped with discovery
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of the light elements produced in the fission of uranium atoms. In 1966 the nuclear
fission work by Hahn, Strassmann and Meitner was recognized with the Enrico Fermi
Award.

SZILÁRD Leó (1898–1964)

Hungarian born American physicist, educated in engineering first at the Budapest
Technical University and at the “Technische Hochschule” in Berlin. After the basic
training in engineering he switched to physics and received his Ph.D. in Physics in
1923 from the Humboldt University in Berlin. He worked as physics instructor and
inventor at the University of Berlin. In 1933 he moved to Britain where he worked
till 1938 on various nuclear physics and engineering projects in London and Oxford.
His main interests during that time were the practical use of atomic energy and the
nuclear chain reaction process. He received a British patent for proposing that if any
neutron-driven process released more neutrons than the number required to start
it, an expanding nuclear chain reaction would result in a similar fashion to chain
reactions known in chemistry.

In 1938 Szilárd moved to Columbia University in New York City where he was
soon joined by Enrico Fermi who moved to the U.S. from Italy. In 1939 Szilárd and
Fermi learned about nuclear fission experiment carried out by Hahn and Strassmann
and concluded that uranium would be a good material for sustaining a chain reaction
through the fission process and neutron multiplication.

The use of nuclear chain reaction for military purpose became obvious and
Szilárd was instrumental in the creation of the Manhattan project whose purpose
was to develop nuclear weapons for use in the World War II against Germany and
Japan. In 1942 both Szilárd and Fermi moved to the University of Chicago and in
December of 1942 they set off the first controlled nuclear chain reaction and subse-
quently many well-known theoretical and experimental physicists became involved
with the project. Since uranium-235 was one of the two fissionable nuclides of choice
(the other was plutonium) for the bomb, several laboratories around the U.S.A. were
working on techniques for a physical separation of U-235 from the much more abun-
dant U-238 in natural uranium. Atomic bombs became available for actual military
use in 1945; they were used on Hiroshima and Nagasaki in Japan and are credited
with accelerating the rapid surrender of Japan.

In 1955 Szilárd, with Enrico Fermi, received a patent for a nuclear fission reactor
in which nuclear chain reactions are initiated, controlled, and sustained at a steady
observable rate. These reactions are used today as source of power in nuclear power
plants.

Szilárd was very conscious socially and had great concern for the social conse-
quences of science. He believed that scientists must accept social responsibility for
unexpected detrimental consequences of their discoveries. After the military use of
the atomic bombs that caused enormous civilian casualties, Szilárd became a strong
promoter of peaceful uses of atomic energy and control of nuclear weapons.

THOMSON, George Paget (1892–1975)

British physicist, educated in mathematics and physics at the Trinity College of the
University of Cambridge. He spent the first world war years in the British army
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and after the war spent three years as lecturer at the Corpus Christi College in
Cambridge. In 1922 he was appointed Professor of Natural Philosophy at the Uni-
versity of Aberdeen in Scotland and from 1930 until 1952 he held an appointment
of Professor of Physics at the Imperial College of the University of London. From
1952 until 1962 he was Master of the Corpus Christi College in Cambridge.

In Aberdeen Thomson carried out his most notable work studying the passage
of electrons through thin metallic foils and observing diffraction phenomena which
suggested that electrons could behave as waves despite being particles. This observa-
tion confirmed Louis de Broglie’s hypothesis of particle-wave duality surmising that
particles should display properties of waves and that the product of the wavelength
of the wave and momentum of the particle should equal to the Planck’s quantum
constant h. Clinton J. Davisson of Bell Labs in the United States noticed electron
diffraction phenomena with a different kind of experiment.

In 1937 Thomson shared the Nobel Prize in Physics with Clinton J. Davisson
“for their experimental discovery of the diffraction of electrons by crystals.”

THOMSON, Joseph John (1856–1940)

British physicist, educated in mathematical physics at the Owens College in Manch-
ester and the Trinity College in Cambridge. In 1884 he was named Cavendish
Professor of Experimental Physics at Cambridge and he remained associated with
the Trinity College for the rest of his life.

In 1987 Thomson discovered the electron while studying the electric discharge
in a high vacuum cathode ray tube. In 1904 he proposed a model of the atom
as a sphere of positively charged matter in which negatively charged electrons are
dispersed randomly (“plum-pudding model of the atom”).

In 1906 Thomson received the Nobel Prize in Physics “in recognition of the
great merits of his theoretical and experimental investigations on the conduction of
electricity by gases.” Thomson was also an excellent teacher and seven of his former
students also won Nobel Prizes in Physics during their professional careers.
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Roman Letter Symbols

A

a acceleration; radius of atom; apex-vertex distance for a hyperbola;
specific activity; annum (year)

a year (annum)
amax maximum specific activity
a0 Bohr radius (0.5292 Å)
aTF Thomas-Fermi atomic radius
atheor theoretical specific activity
A ampere (SI unit of current)
A vector function
A atomic mass number; Richardson thermionic constant
Å ångström (unit of length or distance: 10−10 m)
A activity
AD daughter activity
AP parent activity
Asat saturation activity
Amax maximum activity

B

b barn (unit of area: 10−24 cm2)
b impact parameter
bmax maximum impact parameter
bmin minimum impact parameter
Bcol atomic stopping number in collision stopping power
B build-up factor in broad beam attenuation
B magnetic field
B boron atom
Brad parameter in radiation stopping power
Bq becquerel (SI unit of activity)
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C

c speed of light in vacuum (3×108 m/s)
cn speed of light in medium
C coulomb (unit of electric charge); carbon atom
C0 collision stopping power constant (0.3071 MeV · cm2 /mol)
Ci curie (old unit of activity: 3.7×1010 s−1 = 3.7×1010 Bq)
CK K-shell correction for stopping power
CM nuclear mass correction factor
Cυ electric field correction factor

D

d day, deuteron
d distance; spacing
D daughter nucleus
D dose; characteristic distance in two-particle collision
Dα−N distance of closest approach (between α particle and nucleus)
Deff effective characteristic scattering distance
Dα−N effective characteristic scattering distance of closest approach between

α particle and nucleus
De−a effective characteristic scattering distance between electron and atom
De−e effective characteristic distance between the electron and orbital electron
De−N effective characteristic distance between electron and nucleus
Dex exit dose
Ds surface dose

E

e electron charge
(
1.6×10−19 C

)
e− electron
e+ positron
e base of natural logarithm (2.7183. . .)
erf(x) error function
eV electron volt (unit of energy: 1.6×10−19 J)
eφ work function
E energy
E electric field
Eab energy absorbed

Eab mean energy absorbed
EB binding energy of electron in atom or neucleon in nucleus
Ecol energy lost through collisions
Ei initial total energy of charged particle
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Ein electric field for incident radiation
EK kinetic energy
(EK)0 initial kinetic energy of charged particle
(EK)crit critical kinetic energy
(EK)D recoil kinetic energy of daughter
(EK)f final kinetic energy
(EK)i initial kinetic energy
(EK)IC kinetic energy of conversion electron
(EK)max maximum kinetic energy
(EK)n kinetic energy of incident neutron
(EK)thr threshold kinetic energy
En allowed energy state (eigenvalue)
E0 rest energy
Eout electric field for scattered radiation
Ep barrier potential
ER Rydberg energy
Erad energy radiated by charged particle
Ethr threshold energy
Etr energy transferred

Etr average energy transferred
Ev photon energy; energy of neutrino

E
PP
tr mean energy transferred from photons to charged particles in pair

production

E
C
tr mean energy transferred from photons to electrons in Compton effect

E
PE
tr mean energy transferred from photons to electrons in photoeffect

Eβ energy of beta particle
(Eβ)max maximum total energy of electron or positron in β decay
Eγ energy of gamma photon
(Eγ)thr threshold energy for pair production
(Ez)0 amplitude of electric field in uniform wave guide

F

f function; theoretical activity fraction; branching fraction in radioactive
decay

f(x) function of independent variable x

fPE mean fraction of energy transferred from photons to electrons in
photoelectric effect

fC mean fraction of energy transferred from photons to electrons in
Compton effect(

fC

)
max

maximum energy transfer fraction in Compton effect
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fPP mean fraction of energy transferred from photons to charged particles
in pair production

fab total mean energy absorption fraction

f tr total mean energy transfer fraction
fspin spin correction factor
frecoil recoil correction factor
fm femtometer

(
10−15 m

)
F fluorine
F force
Fcoul Coulomb force
F (K) form factor
F (x,Z) atomic form factor
FKN Klein–Nishina form factor
FL Lorentz force
Fn neutron kerma factor
F+ stopping power function for positrons
F− stopping power function for electrons

G

g gram (unit of mass: 10−3 kg)
g mean radiation fraction
gA mean in-flight radiation fraction
gB mean bremsstrahlung fraction
gi mean impulse ionization fraction
G granddaughter nucleus
G Newtonian gravitational constant
Gy gray (SI unit of kerma and dose: 1 J/kg)

H

h Planck constant
(
6.626×10−34 J · s), hour

h hour (1 h = 60 min = 3600 s)
H hydrogen
H equivalent dose; hamiltonian operator
Hz unit of frequency

(
s−1
)

� reduced Planck constant (h/2π)

I

I electric current; mean ionization/excitation potential;
beam intensity; radiation intensity

I0 Initial photon beam intensity
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J

j current density; quantum number in spin-orbit interaction
J joule (SI unit of energy)
Jm(x) Bessel function of order m

K

k wave number, free space wave number, Boltzmann constant, effective
neutron multiplication factor in fission chain reaction

kg wave guide wave number (propagation coefficient)
kg kilogram (SI unit of mass)
k (Kα) wave number for Kα transition
kVp kilovolt peak (in x-ray tubes)
k∗ ratio σP/σD in neutron activation
ki initial wave vector
kj final wave vector
K n = 1 allowed shell (orbit) in an atom; Kelvin temperature; potassium
K wave vector
K kerma; capture constant in disk-loaded waveguide
Kcol collision kerma
Krad radiation kerma
Kα characteristic transition from L shell to K shell

L

l length
L n = 2 allowed shell (orbit) in an atom
L angular momentum
L angular momentum vector
� orbital quantum number; distance; path length

M

m meter (SI unit of length or distance)
m mass; magnetic quantum number; decay factor in parent-daughter-

granddaughter decay; activation factor in nuclear activation; integer in
Bragg relationship

me electron rest mass
(
0.5110 MeV/c2

)
me− electron rest mass
me+ positron rest mass
m� magnetic quantum number
mn neutron rest mass

(
939.6 MeV/c2

)
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m0 rest mass of particle
mp proton rest mass

(
938.3 MeV/c2

)
mα rest mass of α particle
m(υ) relativistic mass m at velocity υ
m∗ modified activation factor
M n = 3 allowed shell (orbit) in an atom
Mif matrix element
M mass of heavy nucleus
Mu molar mass constant
MeV megaeletron volt (unit of energy: 106 eV)
MHz megahertz (unit of frequency: 106 Hz)
MV megavoltage (in linacs)
M(Z,A) nuclear mass in atomic mass units
M(Z,A) atomic mass in atomic mass units
Mu muonium

N

n neutron
nm nanometer (unit of length or distance: 10−9 m)
n unit vector
n principal quantum number
n� number of atoms per volume
N n = 4 allowed shell (orbit) in an atom; nitrogen, Newton (SI unit of

force)
Nm(x) Neumann function (Bessel function of second kind) of order m
N number of radioactive nuclei; number of experiments in central limit

theorem; number or monoenergetic electrons in medium
Na number of atoms
NA Avogadro number

(
6.022×1023 atom/mol

)
Ne number of electrons
Nt/m number of specific nuclei per unit mass of tissue

O

O oxygen
OER oxygen enhancement ratio

P

p proton
p momentum
pe electron momentum
pν photon momentum
pi initial particle momentum vector
pf final particle momentum vector
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P parent nucleus
P power; probability

P mean power
Pa pascal, SI derived unit of pressure (1 Pa = 1 N/m2)
Pj probability for photoelectric effect, if it occurs, to occur in the

j subshell
P (ε,Z) pair production function
Ps positronium
PK fraction of photoelectric interactions that occur in the K-shell
P (x) probability density function

Q

q charge
Q charge; nuclear reaction energy; Q value

Q expectation (mean) value of physical quantity Q
[Q] operator associated with the physical quantity Q
QEC decay energy (Q value) for electron capture
QIC decay energy (Q value) for internal conversion
Qα decay energy (Q value) for alpha decay
Qβ decay energy (Q value) for beta decay
Q(x) standard cumulative distribution function

R

r radius vector; separation between two interacting particles, radius
of curvature

r radius vector
rad old unit of absorbed dose (100 erg/g); radian
rem old unit of equivalent dose
re classical electron radius (2.818 fm)
rn radius of the n-th allowed Bohr orbit
r average electron radius
R roentgen (unit of exposure: 2.58×10−4 C/kgair)
RBE relative biological effectiveness
R radial wave function; radius (of nucleus); reaction rate; distance of

closest approach

R mean range
RCSDA continuous slowing down approximation range
RH Rydberg constant for hydrogen

(
109678 cm−1

)
Rmax maximum penetration depth
R0 nuclear radius constant
Rα−N distance of closest approach between the α particle and nucleus in a

non-direct hit collision
R∞ Rydberg constant assuming an infinite nuclear mass(

109737 cm−1
)

R50 depth of the 50 % percentage depth dose in water for electron beam
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S

s second (unit of time)
s spin quantum number
S mass stopping power
S Poynting vector

S mean total mass stopping power
Scol mass collision stopping power

Scol mean collision stopping power
Sin Poynting vector of incident radiation

Sin mean Poynting vector of incident radiation
Sout Poynting vector of scattered radiation

Sout mean Poynting vector of scattered radiation
Srad mass radiation stopping power
Stot total mass stopping power
Sv sievert (SI unit of equivalent dose)
S(x,Z) incoherent scattering function

T

t triton
t time; thickness of absorber in mass scattering power
tmax characteristic time in nuclear decay series or nuclear activation
t1/2 half-life
T temperature; linear scattering power; temporal function
T/ρ mass scattering power
TE transverse electric mode
TM transverse magnetic mode
torr non-SI unit of pressure defined as 1/760 of a standard atmosphere

(1 torr = 1 mm Hg)

U

u unified atomic mass constant
(
931.5 MeV/c2

)
u particle velocity after collision; EM field density
U uranium atom
U applied potential

V

υ velocity
υel electron velocity
υthr threshold velocity in Čerenkov effect
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υen velocity of energy flow
υgr group velocity
υn velocity of electron in n-th allowed orbit
υph phase velocity
υα velocity of α particle
V volt (unit of potential difference); potential operator
V volume; potential energy
VN nuclear potential
VTF(r) Thomas-Fermi potential
VFNS potential energy for finite nuclear size
VYuk Yukawa potential
V volume
ν variance

W

wR radiation weighting factor
wC relative weight of Compton effect
wPE relative weight of photoelectric effect
wPP relative weight of pair production
W transmitted particle in weak interaction; tungsten atom
Wel electric energy stored per unit length
Wif transition (reaction) rate
Wmag magnetic energy stored per unit length
W watt (unit of power)

X

x momentum transfer variable (x = sin (θ/2) /λ); normalized time
x = t/t1/2; horizontal axis in 2D and 3D Cartesian coordinate system;
coordinate in Cartesian coordinate system; abscissa axis

xf particle final position
xi particle initial position
x0 target thickness
x01 first zero of the zeroth order Bessel function (x01 = 2.405)
x mean free path; mean value of variable x
(xD)max maximum normalized characteristic time of the daughter
x1/10 tenth value layer
x1/2 half-value layer
A
Z X nucleus with symbol X, atomic mass number A and atomic number Z
X exposure
X0 target thickness; radiation length

XPE(j) mean fluorescence emission energy



712 D Roman Letter Symbols

Y

y vertical axis in 2D Cartesian coordinate system; coordinate in
Cartesian coordinate system; ordinate axis

Y radiation yield; activation yield
yP normalized activity
(yD)max maximum normalized daughter activity
YD radioactivation yield of the daughter
Y
[
(EK)0 , Z

]
radiation yield

yP normalized parent activity

Z

z atomic number of the projectile; depth in phantom; coordinate in
cartesian coordinate system; applicate axis

zmax depth of dose maximum
Z atomic number
Zeff effective atomic number
Zo transmitted particle in weak interaction



E

Greek Letter Symbols

α

α fine structure constant (1/137); ratio σP/σD; nucleus of helium atom (alpha
particle)

αIC internal conversion factor

β

β normalized particle velocity (υ/c)
β+ beta plus particle (positron)
β− beta minus particle (electron)

γ

γ photon originating in a nuclear transition; ratio of total to rest energy
of a particle; ratio of total to rest mass of a particle

δ

δ polarization (density effect) correction for stopping power; delta particle
(electron); duty cycle for linear accelerators

Δ energy threshold for restricted stopping power

ε

ε eccentricity of hyperbola; normalized photon energy: ε = hν/(mec
2);

Planck energy
ε∗ ratio λ∗

D/λD in nuclear activation
ε0 electric constant (electric permittivity of vacuum): 8.85×10−12

A · s/(V · m)
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θ

θ scattering angle for a single scattering event; scattering angle of projectile
in projectile/target collision; scattering angle of photon in Compton and
Rayleigh scattering

θ2 mean square scattering angle for single scattering

θcer Čerenkov characteristic angle
θmax characteristic angle in bremsstrahlung production; maximum scattering

angle
θmin minimum scattering angle
θR characteristic angle for Rayleigh scattering
Θ scattering angle for multiple scattering

Θ2 mean square scattering angle for multiple scattering

η

η pair production parameter; maximum energy transfer fraction in nuclear
collision; energy boundary between hard and soft collision; fluorescence
efficiency

κ

κ linear attenuation coefficient for pair production

aκ atomic attenuation coefficient for pair production
κ/ρ mass attenuation coefficient for pair production

λ

λ wavelength; separation constant; decay constant; de Broglie wavelength
of particle

λC Compton wavelength
(λ)c cutoff wavelength in uniform waveguide
λD decay constant of daughter
λ∗

D modified decay constant
λmin Duane-Hunt short wavelength cut-off
λP decay constant of parent
Λ separation constant

μ

μ linear attenuation coefficient; reduced mass
μab linear energy absorption coefficient
μeff effective attenuation coefficient
μH reduced mass of hydrogen atom
μm mass attenuation coefficient
μtr linear energy transfer coefficient
μ/ρ mass attenuation coefficient
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μ0 magnetic constant (magnetic permeability of vacuum): 4π×10−7

(V · s)/(A · m)
(μab/ρ) mass energy absorption coefficient
(μtr/ρ) mass energy transfer coefficient

aμ atomic attenuation coefficient

eμ electronic attenuation coefficient
μm unit of length or distance (10−6 m)

ν

ν frequency
νeq photon frequency at which the atomic cross sections for Rayleigh scattering

and Compton scattering are equal
νe electronic neutrino
νorb orbital frequency
νtrans transition frequency
νμ muonic neutrino

ξ

ξ ratio between daughter and parent activities at time t; Thomas-Fermi
atomic radius constant; absorption edge parameter in photoelectric effect

ξj absorption edge parameter for subshell j

π

π pi meson (pion)
π+ positive pi meson (pion)
π− negative pi meson (pion)

ρ

ρ density; energy density
ρ(Ef) density of final states

σ

σ cross section; linear attenuation coefficient; standard deviation
σrad cross section for emission of bremsstrahlung
σC Compton cross section (attenuation coefficient)

σKN
C Klein–Nishina cross section for Compton effect

aσC atomic attenuation coefficient (cross section) for Compton effect

aσR atomic attenuation coefficient (cross section) for Rayleigh scattering

aσTh atomic attenuation coefficient (cross section) for Thomson scattering

eσC electronic attenuation coefficient for Compton effect
σD daughter cross section in particle radioactivation
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σR Rayleigh cross section (linear attenuation coefficient)
σRuth cross section for Rutherford scattering
σTh Thomson cross section (linear attenuation coefficient)

aσ atomic cross section (in cm2/atom)

eσ electronic cross section (in cm2/electron)
[σ(z)]2 spatial spread of electron pencil beam

τ

τ linear attenuation coefficient for photoelectric effect; normalized electron
kinetic energy; mean (average) life

aτ atomic attenuation coefficient for photoelectric effect
τ/ρ mass attenuation coefficient for photoelectric effect

φ

φ angle between radius vector and axis of symmetry on a hyperbola; recoil
angle of the target in projectile/target collision; neutron recoil angle in
elastic scattering on nucleus; recoil angle of the electron in Compton
scattering

ϕ particle fluence
ϕ̇ particle fluence rate

χ

χ homogeneity factor

ψ

ψ wavefunction (eigenfunction) depending on spatial coordinates; energy
fluence

Ψ wavefunction depending on spatial and temporal coordinates

ω

ω fluorescence yield; angular frequency
ωc cutoff angular frequency in accelerating waveguide
ωcyc cyclotron frequency
ωK fluorescence yield for K-shell transition
Ω solid angle
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Acronyms

AAPM American Association of Physicists in Medicine
ACMP American College of Physicists in Medicine
ACR American College of Radiology
AFOMP Asia-Oceania Federation of Organizations for Medical Physics
ALFIM Associaç̊ao Latino-americana de Fisica Medica
ART Adaptive radiotherapy

BNCT Boron Neutron capture therapy
BNL Brookhaven National Laboratory

CAMPEP Commission on Accreditation of Medical Physics Educational Programs
CCPM Canadian College of Physicists in Medicine
CODATA Committee on Data for Science and Technology
CPA Charged particle activation
CPE Charged particle equilibrium
CSDA Continuous slowing down approximation
CT Computerized tomography
CNT Carbon nanotube

DT Deuterium-tritium

EC Electron capture
EFOMP European Federation of Organisations of Medical Physics
EM Electromagnetic
EGS Electron-gamma shower
EE Exoelectron emission

FAMPO Federation of African Medical Physics Organizations
FDG Fluoro-deoxy-glucose
FE Field emission
FNS Finite nuclear size
FWHM Full width at half maximum

HVL Half value layer
HPA Hospital Physicists’ Association
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IAEA International Atomic Energy Agency
IC Internal conversion
ICRP International Commission on Radiation Protection
ICRU International Commission on Radiation Units and Measurements
IGRT Image guided radiotherapy
IMRT Intensity modulated radiotherapy
IOMP International Organisation of Medical Physics
IP Ionization potential

KN Klein-Nishina

LET Linear energy transfer
LINAC Linear accelerator

MC Monte Carlo
MEFOMP Middle East Federation of Organizations for Medical Physics
MFP Mean free path
MLC Multi leaf collimator
MOC Maintenance of certification
MRI Magnetic resonance imaging
MV Megavoltage

NA Nuclear activation
NDS Nuclear data section
NIST National Institute of Standards and Technology
NNDC National Nuclear Data Center
NRC National Research Council
NTCP Normal tissue complication probability

OER Oxygen enhancement ratio

PE Photoelectric
PET Positron emission tomography
PP Pair production

RBE Relative biological effectiveness
RF Radiofrequency
RT Radiotherapy

SAD Source axis distance
SF Spontaneous fission
SI Système International
SEAFOMP Southeast Asian Federation for Medical Physics
SLAC Stanford Linear Accelerator Center
SRA Synchrotron radiation angioplasty
STP Standard temperature and pressure

TCP Tumor control probability
TVL Tenth value layer
TE Transverse electric
TM Transverse magnetic

UK United Kingdom
US Ultrasound
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Electronic Databases of Interest in Nuclear
and Medical Physics

Atomic Weights and Isotopic Compositions

J.S. Coursey, D.J. Schwab, and R.A. Dragoset

The atomic weights are available for elements 1 through 112, 114, and 116, and
isotopic compositions or abundances are given when appropriate.

www.physics.nist.gov/PhysRefData/Compositions/index.html

Bibliography of Photon Attenuation Measurements

J. H. Hubbell

This bibliography contains papers (1907–1995) reporting absolute measurements of
photon (XUV, X-ray, gamma-ray, bremsstrahlung) total interaction cross sections
or attenuation coefficients for the elements and some compounds used in a variety
of medical, industrial, defense, and scientific applications. The energy range covered
is from 10 eV to 13.5 GeV.

www.physics.nist.gov/PhysRefData/photoncs/html/attencoef.html

Elemental Data Index and Periodic Table of Elements

M. A. Zucker, A. R. Kishore, R. Sukumar, and R. A. Dragoset

The Elemental Data Index provides access to the holdings of NIST Physics Labo-
ratory online data organized by element. It is intended to simplify the process of
retrieving online scientific data for a specific element.

www.physics.nist.gov/PhysRefData/Elements/cover.html

Fundamental Physical Constants

CODATA

CODATA, the Committee on Data for Science and Technology, is an interdisci-
plinary scientific committee of the International Council for Science (ICSU), which
works to improve the quality, reliability, management and accessibility of data of
importance to all fields of science and technology. The CODATA committee was
established in 1966 with its secretariat housed at 51, Boulevard de Montmorency,
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75016 Paris, France. It provides scientists and engineers with access to international
data activities for increased awareness, direct cooperation and new knowledge. The
committee was established to promote and encourage, on a world-wide basis, the
compilation, evaluation, and dissemination of reliable numerical data of importance
to science and technology. Today 23 countries are members, and 14 International
Scientific Unions have assigned liaison delegates.

www.codata.org

Fundamental Physical Constants

The NIST Reference on Constants, Units, and Uncertainty.

www.physics.nist.gov/cuu/constants/

Ground Levels and Ionization Energies for the Neutral Atoms

W. C. Martin, A. Musgrove, S. Kotochigova, and J. E. Sansonetti

This table gives the principal ionization energies (in eV) for the neutral atoms from
hydrogen (Z = 1) through rutherfordium (Z = 104). The spectroscopy notations for
the electron configurations and term names for the ground levels are also included.

www.physics.nist.gov/PhysRefData/IonEnergy/ionEnergy.html

International System of Units (SI)

The NIST Reference on Constants, Units, and Uncertainty

The SI system of units is founded on seven SI base units for seven base quantities
that are assumed to be mutually independent. The SI base units as well as many
examples of derived units are given.

www.physics.nist.gov/cuu/Units/units.html

Mathematica

Wolfram MathWorld

Wolfram MathWorldTM is web’s most extensive mathematical resource, provided
as a free service to the world’s mathematics and internet communities as part
of a commitment to education and educational outreach by Wolfram Research,
makers of Mathematica, an extensive technical and scientific software. Assembled
during the past decade by Eric W. Weisstein, MathWorld emerged as a nexus of
mathematical information in mathematics and educational communities. The tech-
nology behind MathWorld is heavily based on Mathematica created by Stephen
Wolfram. In addition to being indispensable in the derivation, validation, and visu-
alization of MathWorld’s content, Mathematica is used to build the website itself,
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taking advantage of its advanced mathematical typesetting and data-processing
capabilities.

mathworld.wolfram.com

Nuclear Data

National Nuclear Data Center

The National Nuclear Data Center (NNDC) of the Brookhaven National Laboratory
(BNL) in the USA developed a software product (NuDat 2) that allows users to
search and plot nuclear structure and nuclear decay data interactively. The program
provides an interface between web users and several databases containing nuclear
structure, nuclear decay and some neutron-induced nuclear reaction information.
Using NuDat 2, it is possible to search for nuclear level properties (energy, half-life,
spin-parity), gamma-ray information (energy, intensity, multipolarity, coincidences),
radiation information following nuclear decay (energy, intensity, dose), and neutron-
induced reaction data from the BNL-325 book (thermal cross section and resonance
integral). The information provided by NuDat 2 can be seen in tables, level schemes
and an interactive chart of nuclei. The software provides three different search forms:
one for levels and gammas, a second one for decay-related information, and a third
one for searching the Nuclear Wallet Cards file.

www.nndc.bnl.gov

Nuclear Data Services

International Atomic Energy Agency (IAEA)

The Nuclear Data Section (NDS) of the International Atomic Energy Agency
(IAEA) of Vienna, Austria maintains several major databases as well as nuclear
databases and files, such as: ENDF – evaluated nuclear reaction cross section
libraries; ENSDF – evaluated nuclear structure and decay data; EXFOR – experi-
mental nuclear reaction data; CINDA – neutron reaction data bibliography; NSR –
nuclear science references; NuDat 2.0 – selected evaluated nuclear data; Wallet cards
– ground and metastable state properties; Masses 2003 – atomic mass evaluation
data file; Thermal neutron capture gamma rays; Q-values and Thresholds.

www-nds.iaea.or.at

Nuclear Energy Agency Data Bank

Organisation for Economic Cooperation and Development (OECD)

The nuclear energy agency data bank of the Organization for Economic Cooper-
ation and Development (OECD) maintains a nuclear database containing general
information, evaluated nuclear reaction data, format manuals, preprocessed reaction
data, atomic masses, and computer codes.

www.nea.fr/html/databank/
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Nucleonica

European Commission: Joint Research Centre

Nucleonica is a new nuclear science web portal from the European Commission’s
Joint Research Centre. The portal provides a customizable, integrated environment
and collaboration platform for the nuclear sciences using the latest internet “Web
2.0” dynamic technology. It is aimed at professionals, academics and students work-
ing with radionuclides in fields as diverse as the life sciences, the earth sciences, and
the more traditional disciplines such as nuclear power, health physics and radiation
protection, nuclear and radiochemistry, and astrophysics. It is also used as a knowl-
edge management tool to preserve nuclear knowledge built up over many decades by
creating modern web-based versions of so-called legacy computer codes. Nucleonica
also publishes and distributes the Karlsruhe Nuklidkarte (Karlsruhe Chart of the
Nuclides).

www.nucleonica.net/unc.aspx

Photon Cross Sections Database: XCOM

M.J. Berger, J.H. Hubbell, S.M. Seltzer, J. S. Coursey, and D. S. Zucker

A web database is provided which can be used to calculate photon cross sections for
scattering, photoelectric absorption and pair production, as well as total attenuation
coefficients, for any element, compound or mixture (Z ≤ 100) at energies from 1 keV
to 100 GeV.

www.physics.nist.gov/PhysRefData/Xcom/Text/XCOM.html

Stopping-Power and Range Tables for Electrons, Protons,
and Helium Ions

M.J. Berger, J.S. Coursey, and M.A. Zucker

The databases ESTAR, PSTAR, and ASTAR calculate stopping-power and range
tables for electrons, protons, or helium ions, according to methods described in ICRU
Reports 37 and 49. Stopping-power and range tables can be calculated for electrons
in any user-specified material and for protons and helium ions in 74 materials.

www.physics.nist.gov/PhysRefData/Star/Text/contents.html

X-Ray Form Factor, Attenuation, and Scattering Tables

C.T. Chantler, K. Olsen, R.A. Dragoset, A.R. Kishore, S.A. Kotochigova, and D.S.
Zucker

Detailed Tabulation of Atomic Form Factors, Photoelectric Absorption and Scat-
tering Cross Section, and Mass Attenuation Coefficients for Z from 1 to 92. The
primary interactions of x-rays with isolated atoms from Z = 1 (hydrogen) to Z = 92
(uranium) are described and computed within a self-consistent Dirac-Hartree-Fock
framework. The results are provided over the energy range from either 1 or 10 eV
to 433 keV, depending on the atom. Self-consistent values of the f1 and f2 compo-
nents of the atomic scattering factors are tabulated, together with the photoelectric
attenuation coefficient τ/ρ and the K-shell component τK/ρ, the scattering attenua-
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tion coefficient σ/ρ (coh + inc), the mass attenuation coefficient μ/ρ, and the linear
attenuation coefficient μ, as functions of energy and wavelength.

www.physics.nist.gov/PhysRefData/FFast/Text/cover.html

X-Ray Mass Attenuation Coefficients and Mass
Energy-Absorption Coefficients

J. H. Hubbell and S. M. Seltzer

Tables and graphs of the photon mass attenuation coefficient μ/ρ and the mass
energy-absorption coefficient μen/ρ are presented for all elements from Z = 1 to
Z = 92, and for 48 compounds and mixtures of radiological interest. The tables
cover energies of the photon (X-ray, gamma ray, bremsstrahlung) from 1 keV
to 20 MeV.

www.physics.nist.gov/PhysRefData/XrayMassCoef/cover.html

X-ray Transition Energies

R.D. Deslattes, E.G. Kessler Jr., P. Indelicato, L. de Billy, E. Lindroth, J. Anton,
J.S. Coursey, D.J. Schwab, K. Olsen, and R.A. Dragoset

This X-ray transition table provides the energies and wavelengths for the
K and L transitions connecting energy levels having principal quantum numbers
n = 1, 2, 3, and 4. The elements covered include Z = 10, neon to Z = 100, fermium.
There are two unique features of this database: (1) all experimental values are on
a scale consistent with the International System of measurement (the SI) and the
numerical values are determined using constants from the Recommended Values of
the Fundamental Physical Constants: 1998 and (2) accurate theoretical estimates
are included for all transitions.

www.physics.nist.gov/PhysRefData/XrayTrans/index.html
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International Organizations

whose mission statements fully or partially address radiation protection, use of
ionizing radiation in medicine, and promotion of medical physics:

American Association of Physicists in Medicine (AAPM)
College Park, MD, USA www.aapm.org

Asia-Oceania Federation of Organizations for Medical Physics
(AFOMP) www.afomp.org

European Federation of Organizations for Medical Physics (EFOMP)
York, UK www.efomp.org

European Society for Therapeutic Radiology and Oncology (ESTRO)
Brussels, Belgium www.estro.be

International Atomic Energy Agency (IAEA)
Vienna, Austria www.iaea.org

International Commission on Radiological Protection (ICRP)
Stockholm. Sweden www.icrp.org

International Commission on Radiation Units and Measurements (ICRU)
Bethesda, Maryland, USA www.icru.org

International Electrotechnical Commission (IEC)
Geneva, Switzerland www.iec.org

International Organisation for Standardization (ISO)
Geneva, Switzerland www.iso.org

International Organisation for Medical Physics (IOMP)
www.iomp.org

International Radiation Protection Association (IRPA)
Fontenay-aux-Roses, France www.irpa,net

International Society of Radiology (ISR)
Bethesda, Maryland, USA www.isradiology.org

Pan American Health Organisation (PAHO)
Washington, D.C., USA www.paho.org

Radiological Society of North America (RSNA)
Oak Brook, IL, USA www.rsna.org

World Health Organization (WHO)
Geneva, Switzerland www.who.int
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Nobel Prizes for Research in X Rays

Year Field Scientists and Justification for Nobel Prize

(1) 1901 Physics Wilhelm Conrad ROENTGEN
“for his discovery of the remarkable rays subsequently
named after him”

(2) 1914 Physics Max von LAUE
“for his discovery of the diffraction of x rays by crys-
tals”

(3) 1915 Physics William Henry BRAGG and William Lawrence
BRAGG
“for their services in the analysis of crystal structure
by means of X rays”

(4) 1917 Physics Charles Glover BARKLA
“for his discovery of the characteristic Roentgen radia-
tion of the elements”

(5) 1924 Physics Karl Manne Georg SIEGBAHN
“for discoveries and research in the field of x-ray
spectroscopy”

(6) 1927 Physics Arthur Holly COMPTON
“for the discovery of the effect that bears his name”

(7) 1936 Chemistry Peter J.W. DEBYE
“for his contributions to our knowledge of molecular
structure through his investigations on dipole moments
and on the diffraction of X-rays and electrons in gases”
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(8) 1962 Chemistry Max Ferdinand PERUTZ and John Cowdery
KENDREW
“for their studies of the structures of globular proteins”

(9) 1962 Medicine Francis CRICK, James WATSON, and Maurice
WILKINS
“for their discoveries concerning the molecular struc-
ture of nucleic acids and its significance for information
transfer in living material”

(10) 1979 Medicine A. McLeod CORMACK and G. Newbold
HOUNSFIELD
“for the development of computer assisted tomography”

(11) 1981 Physics Kai M. SIEGBAHN
“for his contribution to the development of high-
resolution electron spectroscopy”

(12) 1985 Chemistry Herbert A. HAUPTMAN and Jerome KARLE
“for their outstanding achievements in the develop-
ment of direct methods for the determination of crystal
structures”

(13) 1988 Chemistry Johann DEISENHOFER, Robert HUBER and
Hartmut MICHEL
“for the determination of the three dimensional struc-
ture of a photosynthetic reaction centre”

(14) 2002 Physics Raymond DAVIS, Jr., Masatoshi KOSHIBA,
Riccardo GIACCONI
“for pioneering contributions to astrophysics, in partic-
ular for the detection of cosmic neutrinos and discovery
of cosmic X-ray sources”
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Absorption

edge, 338, 340, 383, 402

edge parameter, 343

spectrum, 163
Accelerated charged particle, 191

Accelerating waveguide, 76, 576, 631,
635, 636

Accelerators

circular, 611

clinical, 630
cyclic, 610

electrostatic, 610

linear, 630
particle, 583, 610

Actinide, 160

Actinium, 160

Actinium series, 525
Activation

factor, 536

time, 545

yield, 537
Activation model

depletion, 533

depletion-activation, 547

saturation, 530
Activity, 18, 452, 456, 476

Activity ratio, 467

Adaptive radiotherapy, 25

Air, 408
Alkali earth elements, 161

Alkali elements, 161

Allowed transitions, 179
Alpha decay, 478, 652

of radium-226 into radon-222, 481

tunneling, 66

Alpha particle, 15

Alpha particle mass, 3

Alpha transition, 179
Ampère circuital law, 68

Ampère law, 187, 579

Anderson, Carl David, 657

Angular distribution

of charged particles in pair
production, 361

photoelectrons, 338

of Rayleigh-scattered photons, 333
Angular frequency, 87

Angular momentum, 140, 237

Annihilation

in-flight, 258, 267, 367, 398

photons, 371

quantum, 414
Anode material, 616

Apex of hyperbola, 90

Areas of predominance, 387

Artificial radioactivity, 451, 522

Atom-like structure, 147
Atomic attenuation coefficient, 285, 378

Atomic coefficient dependence on
atomic number, 412

Atomic cross sections, 286

for general pair production, 363

for pair production, 361

for photodisintegration, 374

for photoelectric effect, 338
for Rayleigh scattering, 334
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Atomic emission spectra, 428
Atomic energy level diagram, 182
Atomic excitation, 210
Atomic mass, 25, 26
Atomic mass number, 25
Atomic nucleus, 522
Atomic number, 25
Atomic photoelectric effect, 37
Atomic radius, 156
Atomic shell, 342
Atomic spectrum of hydrogen, 145
Atomic stopping number, 252, 263
Atomic structure, 25
Attenuation coefficients, 280, 286
Auger effect, 182, 183
Auger electron emission, 181
Auger electrons, 14, 178, 182, 269, 341,

355, 410, 414
Auger, Pierre Victor, 658
Average (mean) life, 455
Avogadro, Amedeo, 658
Avogadro number, 3, 7, 26, 28, 105,

129, 453

Backscattering, 306
Balmer, Johann Jakob, 658
Balmer series, 145
Barkla, Charles Glover, 659
Barkla’s designation, 181
Baryon, 9
Basic physical quantity, 7
Bateman equations, 452, 470
Beam collimation, 631
Beam monitoring system, 631
Beam transport system, 631
Becquerel, Henri Antoine, 18, 522, 523,

659
Bell curve, 71
Benoit, Mandelbrot, 226
Berger, Martin Jacob, 659
Beryllium-9, 373, 445
Bessel differential equation, 586, 587
Bessel functions, 586, 587, 590
Beta decay, 483
Beta minus

(
β−) decay, 483, 487, 652

of cesium-137 into barium-137, 491
of cobalt-60 into nickel-60, 490
energy, 488
of free neutron into proton, 488

Beta particle spectrum, 484
Beta plus (β+) decay, 367, 484, 492, 653

of fluorine-18 into oxygen-18, 495
of nitrogen-13 into carbon-13, 494

Beta ray, 14
Beta transition, 179
Betatron, 622
Bethe collision stopping power, 243
Bethe equation, 246, 254, 262
Bethe, Hans Albrecht, 660
Bhabha, Homi Jehandir, 660
Bhabha scattering, 79
Binding effects, 325
Binding energy, 144, 444

effects, 321
method, 374, 574
per nucleon, 31, 32
quantization, 161
of subshell, 343

Biot-Savart law, 189
Bloch, Felix, 661
Blue Doppler shift, 45
BNCT, 430, 441
Bohr model, 140
Bohr one-electron atom, 146
Bohr one-electron atom model, 159
Bohr postulates, 140
Bohr principle, 62
Bohr radius, 142
Bohr radius constant, 4, 105, 122
Bohr, Niels, 138
Bohr, Niels Henrik David, 661
Born approximation, 58, 95, 361
Born collision formula, 58, 61, 93
Born Max, 662
Boron-10, 441
Boron neutron capture therapy

(BNCT), 430, 441
Bound electronic states, 143
Boundary conditions, 583
Brachytherapy, 19
Brackett series, 145
Bragg angle, 48
Bragg law, 164
Bragg peak, 16
Bragg reflections, 602
Bragg relationship, 48, 612
Bragg, William Henry, 663
Bragg, William Lawrence, 663
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Branching, 454
decay, 457, 472
fraction, 472

Bremsstrahlung, 67, 192, 193, 414, 614
collision, 229
interaction, 398
photons, 186
production, 185, 228, 232
radiation, 376
spectrum, 272
tail, 23
targets, 269
X-rays, 576
yield, 258

Brillouin diagram, 602
Broad beam geometry, 281, 288
Build-up factor, 289

Californium-252, 430, 506
neutron source, 446

Californium-256, 506
cancer therapy, 76

Capture condition, 602, 605
Carbon, 408
Carbon dioxide, 29
Carbon nanotubes, 67, 620
Cathode ray, 618
Central-limit theorem, 105, 127
Čerenkov angle, 204
Čerenkov, Pavel Alekseevič, 204, 428,

669
Čerenkov radiation, 203, 428, 614
Čerenkov–Vavilov effect, 204
Chadwick, James, 664
Chain reaction, 522, 560
Characteristic absorber thickness, 282
Characteristic angle, 196, 269, 270

for Rayleigh scattering, 333
Characteristic photon, 181, 182, 341,

410
Characteristic radiation, 179
Characteristic scattering distance, 118,

121, 128
Characteristic time, 459, 461
Characteristic x rays, 164, 178, 269

photons, 414
Charged particle

activation, 575
collisions, 14

moving with uniform velocity, 186
trajectory, 228

Chart of nuclides, 474, 476, 511, 515
Chemical industry, 13
Chemical symbol, 159
Circular accelerators, 611, 622
Circular microtron, 628
Classical electron radius, 4, 129, 255,

362
Classical energy transfer in a head-on

collision, 219
Classical Larmor relationship, 193
Classical particle, 66
Clinical electron beam, 634
Clinical linear accelerator, 630
Clinical photon beam, 633
Cobalt-59, 450
Cobalt-60, 542

source, 450
teletherapy, 450

CODATA, 2
Coefficients of compounds, 404
Cold cathode, 616
Cold neutron, 430
Collision

elastic, 214
endothermic, 214
exothermic, 214
interaction, 238
loss, 230
of two particles, 208

Collision stopping power, 228, 231, 235,
267

constant, 4, 246
equations, 252

Common center-of-mass, 145
Complementarity principle, 62
Compound Coulomb scattering, 126
Compton, Arthur Holly, 664
Compton atomic cross section, 323, 327,

328
Compton component, 395
Compton effect, 14, 278, 376, 379, 411,

415
Compton electron, 113, 205, 306
Compton electronic cross section, 317,

321
Compton energy transfer fraction, 306,

325
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Compton mean energy transfer fraction,
320, 329, 383

Compton scatter fraction, 305
Compton scattering, 379, 387
Compton wavelength, 4, 297
Compton wavelength-shift equation,

297
Computerized tomography, 276
Cone-beam CT, 276
Conservation of angular momentum, 87
Constructive interference, 48
Control console, 615, 631
Control rod, 562
Controlled chain reaction, 32
Controlled fussion, 32
Conversion electron, 14
Coolant, 562
Coolidge x-ray tubes, 63, 619
Coolidge, William David, 619, 665
Cormack, Allan MacLeod, 276, 665
Correction

for electron binding energy, 321
for electron spin, 109
for finite nuclear mass, 145
for finite nuclear size, 114
for recoil of the nucleus, 111

Correspondence principle, 152
Cosmic ray, 526
Coster–Kronig effect, 183
Coster–Kronig electron, 14, 178, 341
Coulomb barrier, 479, 572
Coulomb, Charles–Augustin, 666
Coulomb elastic scattering, 79
Coulomb field, 188
Coulomb force, 117, 237
Coulomb interaction, 77, 84, 193, 228,

376
Coulomb law, 188, 189
Coulomb point source potential, 98
Coulomb potential, 93
Coulomb repulsion, 66
Coulomb repulsion correction, 33
Coulomb repulsive potential, 565
Coulomb scattering, 77, 78
Coupling between initial and final

states, 57
Critical energy, 258
Critical kinetic energy, 257
Crookes tube, 14, 615, 617

Crookes x-ray tube, 617
Crookes, William, 176, 666

Cross section, 286, 527
for neutron capture, 433
for Rutherford scattering, 91

Crystalline plane separation, 48

CSDA range, 260
CSDA range of proton, 262
CT scanner, 276
CT-simulator, 276
Cumulative distribution function, 72

Curie, 18, 453
Curie, Pierre, 451, 475, 522, 667
Curie–Sklodowska, Marie, 451, 475,

522, 668

Curl operator, 588
Curve of stability, 514, 518
Cutoff angle, 103, 105
Cut-off wavelength, 595
Cyclic accelerator, 610, 629

Cyclotron, 443, 523, 572, 575, 625
Cylindrical uniform waveguide, 576

Dalton, 27

Daughter activity, 460
Daughter recoil, 486
Davisson, Clinton Joseph, 669
Davisson–Germer experiment, 48
De Broglie equation, 46

De Broglie, Louis, 670
De Broglie postulate, 53
De Broglie wavelength, 46, 78, 100, 111
Decay, 652–654

chain, 457
constant, 452, 476
factor, 461, 535

Decay energies, 452, 521, 568
in alpha decay, 479

in beta plus decay, 493
in electron capture, 496
in neutron emission decay, 509
in proton emission decay, 506

Decay of iridium-192, 499

Deep-seated tumor, 24
Delbrück scattering, 378
Delta (δ) ray, 14, 414
Density effect correction, 252
Density of final states, 57
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Depletion model, 533, 536–538, 540,
543, 545, 546, 549, 552, 554

Depletion–activation model, 547,
552–554

Derived physical quantity, 7
Deuterium, 15, 147
Deuterium–Tritium (DT) neutron

generator, 443
Deuteron, 15, 30, 211, 373, 565
Diagnostic imaging physics, 612
Diagnostic radiology, 19
Differential atomic cross section

per unit scattering angle, 332
for Rayleigh scattering, 330

Differential cross section, 120
for Mott scattering, 114
for Rutherford scattering, 91, 93, 100

Differential electronic cross section, 309,
310

per unit recoil angle, 313
per unit scattering angle, 312

Differential Klein–Nishina energy
transfer cross section, 315

Differential operator, 54
Differential Rutherford scattering cross

section, 61, 92, 101, 107
Differential Thomson electronic cross

section, 330
Differential wave equation, 581
Diffraction

of electrons, 48
experiment, 618

Digital subtraction angiography, 629
Dirac, Paul Adrien Maurice, 670
Direct hit, 85
Directly ionizing radiation, 11, 13
Dirichlet boundary condition, 580, 584,

586, 590
Discrete allowed electron state, 144
Disintegration (decay) energy, 477
Disk-loaded waveguide, 599, 600
Dispersion

diagram, 601
relationship, 590, 592

Distance of closest approach, 85, 86,
89–91, 103, 105, 107, 108

Doppler shift, 45
Dose, 18
Dose distribution in water

for electron beam, 22
for neutron beam, 21
for pencil electron beam, 132
for photon beam, 21
for proton beam, 23

Dose monitoring system, 634
Doughnut, 624
Drip lines, 474
Dual transmission ionization chamber,

633
Duane–Hunt law, 194, 270
Duane, William, 671
Duty cycle, 639
Dynamic wedge, 633

Eccentricity of hyperbola, 90
Effective atomic number, 156
Effective characteristic distance, 109,

117
Effective charge, 156
EGS4, 206
Eigenfunction, 55
Eigenvalue, 55, 584
Einstein, Albert, 672
Elastic collision, 209
Elastic Coulomb interaction, 78
Elastic scattering, 79, 86, 114, 126, 210,

216, 269, 431
Elastic scattering of charged particle,

116
Electric charge, 8
Electric constant, 3
Electric dipole selection rule, 179
Electrical discharge, 226
Electromagnetic (EM) force, 8
Electron, 9, 13, 78

applicator, 76
Auger, 14
beta particle, 14
binding correction, 324
binding energy, 147
capture, 484, 496, 518, 653
capture decay of beryllium-7 into

lithium-7, 498
charge, 3
Coster–Kronig, 14
delta ray, 14
gun, 576, 635
internal conversion, 14
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megavoltage, 14
mode, 76
pair production, 14
pencil beam, 76
photoelectron, 14
recoil, 14
rest mass, 3
scattering foil, 633
spectrum, 266
spin, 149
super Coster–Kronig, 14

Electron–atom elastic scattering, 120
Electron–atom scattering, 119
Electron beam, 13

depth dose curve, 265
kinetic energy, 266

Electron–nucleus (Mott) scattering, 111
Electron–nucleus scattering, 114, 119
Electron–orbital electron scattering, 119
Electronic attenuation coefficient, 285,

378
Electronic configuration, 155
Electronic cross section, 286
Electronic energy transfer cross section,

321
for Compton effect, 318

Electronic pair production (triplet
production), 356, 411

Electronic transition, 179
Electrostatic accelerator, 609, 610
Electrostatic potential, 97
Elementary charge, 28
Elementary entity, 7
Elution process, 570
Emission

of bremsstrahlung, 210
of gamma ray in gamma decay, 501
of radiation, 185
spectrum, 161, 163

Endoergic reaction, 214, 373
Endothermic endoergic, 373
Endothermic reaction, 214
Energy absorption, 378, 397
Energy distribution of recoil electrons,

315
Energy flow, 597
Energy level, 148, 156
Energy quantization, 143
Energy threshold, 268

Energy transfer
fractions, 382
in head-on collision, 218
mechanism, 377

Energy transfer to charged particles
in Compton effect, 319, 391
in nuclear pair production and triplet

production, 364
in photoelectric effect, 341

Energy transferred, 378
Energy-time uncertainty principle, 62
Epithermal neutrons, 430
Equilibria in parent–daughter activities,

465
Equivalent dose, 18
Equivalent photon energy, 322
Error function, 75
Evans, Robley, 460, 673
Excitation, 165, 414
Excitation potential, 166
Excited state, 178
Exclusion principle, 154
Exoelectron emission, 64
Exothermic reaction, 214
Expectation value, 56
Experiment

Davisson-Germer, 48
Franck-Hertz, 161, 165
Geiger-Marsden, 77, 79, 104, 106, 123
Moseley, 161, 164
Stern-Gerlach, 149
Thomson-Reid, 49

Exponential function, 282
Exposure, 17
External beam radiotherapy, 19, 265,

430

Fano correction, 251
Fano, Ugo, 673
Far (or radiation) acceleration field, 191
Faraday law, 68, 579
Fast neutron beams from cyclotrons,

444
Fast neutrons, 430
Fermi, Enrico, 32, 522, 674
Fermi function, 116
Fermi-Eyges pencil beam model, 132
Fermi second golden rule, 57, 93, 95
Fermium-256, 505
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Fertile nuclide, 557
Field correction factor, 188, 189
Field defining light, 633, 635
Field emission, 63, 65, 66, 621

tunneling, 66
x-ray tube, 616

Field mirror, 76
Filtration material, 272
Fine structure, 152
Fine structure constant, 4, 92, 142, 339,

362
Finite nuclear size, 98
Finite size of the nucleus, 97, 108, 115
First Bohr radius, 172
First half-value layer, 282
Fissile nucleus, 557
Fission, 32, 429, 522

chain reaction, 560
fragment, 522, 557, 559
neutron, 527
product, 557
reaction, 430

Fissionable nucleus, 557
Flattening filter, 625, 633, 639
Flerov, Georgij Nikolaevič, 675
Fluence rate, 552
Fluence rate of neutrons, 530
Fluorescence

efficiency, 343, 344
emission energy, 383
emission line, 613
photon, 182, 341, 343, 349
radiation, 178
x ray, 181
yield, 182, 184, 342–344, 347

Food production, 13
Forbidden line, 179
Forbidden transition, 179, 185
Form factor, 114, 115
Form factor for Rayleigh scattering, 331
Forward planning, 608
Forward scattering, 305
Fourier series, 583
Fourier transform of nuclear charge, 115
Fractal geometry, 226
Franck–Hertz experiment, 161, 165
Franck, James, 675
Free electron, 325, 327
Free space wave number, 584

Frequency pass band, 602
Fuel element, 562
Full-width-at-half-maximum, 373
Fusion, 32, 564
Fusion chain reaction, 564

Galilean transformations, 38
Gamma, 654
Gamma decay, 500
Gamow, George, 676
Gantry, 631
Gantry stand or support, 631
Gauss divergence theorem, 67
Gauss law

for electricity, 68, 579
for magnetism, 68, 579

Gaussian distribution, 105, 127, 135
Geiger, Hans, 676
Geiger–Marsden experiment, 77, 79,

104, 106, 123
General energy transfer in elastic

scattering, 217
Gerlach, Walther, 676
Germer, Lester H, 677
Giant resonance peak, 373
Gluon, 9
Gravitational force, 8
Graviton, 9
Gray, 18
Ground state, 148, 178
Group velocity, 591, 597, 602
Groups, 159

Hadron, 9
Hahn, Otto, 677
Half-life, 454, 456, 531
Half-value layer, 282
Halogen, 161
Hamiltonian operator, 54
Hard collision, 127, 228, 229, 255
Harder relationship, 266
Hartree approximation, 155
Hartree, Douglas, 156, 678
Hartree expression, 156
Hartree multi-electron model

approximation, 156, 159
Head-on collision, 89
Heated filament, 576
Heavy charged particle, 14, 16, 186, 208
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beams, 23

interaction, 211
Heisenberg uncertainty principle, 97
Heisenberg, Werner, 678

Helion, 15
Helmholtz partial differential equation,

584

Hertz, Gustav, 679
High-energy linear accelerator

installation, 373

High LET, 11
High voltage power supply, 615
Hofstadter correction, 114

Hofstadter, Robert, 679
Hot cathode, 616, 621
Hounsfield, Godfrey Newbold, 276, 680

Hubbell, John Howard, 322, 324, 680
Humphreys series, 145
Hydrogen, 147, 408

atom, 143
spectrum, 145

Hyperbola, 84, 117

Hyperbola in polar coordinates, 91
Hyperbolic trajectory, 84, 89

ICRU Report 37, 255, 269
Ideal equilibrium, 460, 536, 569

Image guided radiotherapy, 25
Imaging physics, 19
Impact

excitation, 398
ionization, 398
parameter, 84, 87, 229

Impact parameter, 84, 87
Impulse of force, 87
In-flight annihilation, 258, 267, 367,

398, 399
In-flight annihilation yield, 258
Incident photon energy, 302

Incoherent scattering (Compton effect),
297

Incoherent scattering function, 322, 324

Indirectly ionizing photon radiation
annihilation quanta, 17
bremsstrahlung x rays, 17

characteristic (fluorescence) x rays,
17

gamma rays, 17

synchrotron radiation or (magnetic
bremsstrahlung), 17, 628

Indirectly ionizing radiation, 11, 375
Induced radioactivity, 373
Industrial radiography, 12
Inelastic collision, 209
Inelastic scattering, 210, 432
Inertial frame of reference, 38
Initial condition, 583
Injection system, 631
Insect pest control, 12
Instantaneous power, 638
Intense laser beam, 565
Intensity modulated radiotherapy, 25
Intermediate compound, 208
Intermediate neutron, 430
Internal conversion, 503, 654
Internal conversion factor, 504
Invariant, 215, 358, 359
Inverse photoelectric effect, 271
Inverse planning, 608
Ionization, 414

of an atom, 211
chamber, 276
potential, 64, 157, 166
potential of atom, 161

Ionization/excitation potential, 239, 253
Ionizing radiation, 10, 12

directly/indirectly ionizing, 10
Iridium-192, 472, 542, 550
Isobar, 30, 512
Isobar line, 518
Isocentric mounting, 622
Isocentric source mounting , 450
Isomer, 31
Isotone, 30, 512
Isotone line, 518
Isotope, 30, 512
Isotope line, 518
IUPAC notation, 181, 182, 349

Johns, Harold Elford, 450, 681
Joliot-Curie, Irène, 451, 523, 681
Joliot, Frédéric, 451, 523
Joliot, Jean Frédéric, 682

K absorption edge, 345
K line, 179
K-shell, 349
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binding energy, 157, 347, 352

electron, 361
fluorescence, 349
radius, 157

Karlsruher Nuklidkarte, 474, 512

Kerma, 18
Kerst, Donald William, 622, 682
Kilogram, 27
Klein, Oskar, 682

Klein–Nishina atomic form factor, 310
Klein–Nishina differential atomic cross

section, 325

Klein–Nishina electronic cross section,
328

Klein–Nishina expression, 325
Klein–Nishina relationship, 321, 322

L’Hôpital rule, 461–463, 465, 536
L band, 578

L lines, 179
L-shell vacancy, 349
Lanthanide, 160

Lanthanon, 160
Laplacian operator, 584
Larmor, Joseph, 682
Larmor law, 151, 622, 629

Larmor relationship, 80, 193, 202
Laser positioning indicator, 635
Laue, Max von, 683
Lauterbur, Paul Christian, 683

Law of Biot–Savart, 187
Law of cosines, 60, 300
Law of exponential attenuation, 281

Lawrence, Ernest Orlando, 625, 684
Leakage radiation, 615
Lepton, 9
LET, 11, 20

Lichtenberg figure, 226
Lichtenberg, Georg Christoph, 226, 685
Light charged particle, 13, 186, 208
Light charged particle interaction, 212

Light hydrogen, 15
Linac generation, 630
Linac head, 76

Linac treatment head, 633
Linear accelerator, 450, 611
Linear attenuation coefficient, 280, 378,

412

Linear energy absorption coefficient,
287

Linear energy transfer coefficient, 287
Linear energy transfer (LET), 11

Linear stopping power, 231
Liquid-drop nuclear model, 33
Local (or near) velocity field, 191

Loosely bound electron, 278
Lorentz contraction, 187
Lorentz force, 68, 202

Lorentz, Hendrik Antoon, 685
Lorentz transformations, 38
Low LET, 11

Lucite, 408
Lyman series, 145

M shell, 179
Macroscopic attenuation coefficient, 378

Macroscopic object, 47
Magic numbers, 34, 512
Magnetic bremsstrahlung, 202

Magnetic confinement, 565
Magnetic constant, 3
Magnetic dipole selection rule, 179

Magnetic quantum number, 149
Main structure, 179
Major photon interaction, 409

Man-made (artificial) radionuclide, 526
Mandelbrot, Benoit, 686
Manhattan Project, 522

Mansfield, Peter, 686
Marsden, Ernest, 687
Mass attenuation coefficient, 285, 327,

378, 380, 405
of air, 408
for pair production, 363

for photoelectric effect, 341
of water, 407

Mass coefficient dependence on Z, 412

Mass collision stopping power, 234, 241,
243, 256, 258

Mass energy absorption coefficient, 378,
397, 402, 408

Mass energy transfer coefficient, 393,
397, 405, 408

for pair production, 365
for photoelectric effect, 355
of polystyrene, 407
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Mass radiation stopping power, 234,
258, 275

Mass scattering power, 117, 130, 132,
137

for electrons, 130

Matrix element, 58

Matter wave, 51

Max born postulate, 51

Maximum attainable specific activity,
552

Maximum energy transfer, 241

Maximum energy transfer fraction in
head-on collision, 223

Maximum penetration depth, 261

Maximum possible energy transfer, 239

Maximum range, 260

Maximum recoil energy, 307

Maximum scattering angle, 99, 107,
120, 123

Maxwell equations, 67, 187, 579

Maxwell–Ampère equation, 68

Maxwell–Faraday equation, 68

Maxwell–Gauss equation

for electricity, 68

for magnetism, 68

Maxwell, James Clerk, 687

Mean atomic mass, 26, 515

Mean atomic weight, 407

Mean collision stopping power, 266

Mean effective attenuation coefficient,
289

Mean electron kinetic energy, 266

Mean energy absorbed, 286, 402

in absorbing medium, 378

Mean energy radiated, 398

Mean energy transfer fraction, 384, 402

for Compton effect, 319

for general pair production, 365

Mean energy transferred, 286, 398

to charged part’s, 412

from photon, 287

from photon to charged particles, 393

Mean fluorescence emission, 382

Mean fluorescence emission energy, 342,
349

Mean fluorescence photon energy, 343,
344, 348

Mean free path, 282

Mean ionization/excitation potential,
239, 253

Mean life, 457
Mean molecular mass, 28, 407
Mean photoelectric energy transfer

fraction, 351
Mean photoelectric fluorescence

emission energy, 343
Mean radiation fraction, 397–399
Mean square scattering angle, 117, 124,

127–129
for multiple Rutherford scattering,

105
for multiple scattering, 107
for single Rutherford scattering, 103
for single scattering, 107

Mean stopping power, 266
Measurable quantity, 56, 57
Medical linac, 630
Megavoltage electron, 14
Megavoltage radiotherapy, 275, 611
Meitner, Lise, 32, 522, 687
Mendeleev, Dmitri Ivanovič, 688
Meson, 9, 16
Metastable excited state, 484
Meter convention, 7
Microtron, 628
Microwave propagation, 578
Millikan, Robert Andrews, 689
Miniature x-ray tubes, 622
Minimum possible energy transfer, 238
Minimum scattering angle, 96, 107, 120,

123
Mixture of independent activities, 457
Mo–Tc generator, 570
Moderator, 562
Modulator cabinet, 631
Mole, 7, 27
Molière multiple elastic scattering, 79,

126, 127
Møller, Christian, 689
Møller scattering, 79
Molybdenum-99, 473, 542
Momentum transfer (impulse), 87, 236
Momentum transfer variable, 322, 323
Momentum vector diagram, 89
Momentum-position uncertainty

principle, 61
Monitor chamber, 76
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Monoenergetic x rays, 613
Monte Carlo simulation, 76, 206
Moseley experiment, 161, 164
Moseley, Henry Gwen Jeffreys, 690
Mössbauer effect, 502
Mössbauer, Rudolf Ludwig, 690
Mott differential scattering cross

section, 110, 115
Mott, Nevill Francis, 691
Mott scattering, 79, 108
Multi-electron atom, 152, 154
Multileaf collimator (MLC), 450, 633,

637
Multiple scattering, 79, 126, 127
Multiple-scatter region, 104
Muon, 9, 148
Muonic atom, 147
Muonium, 147

Narrow beam geometry, 280
Natural radioactivity, 475, 478, 522
Naturally-occuring radionuclides, 524
Negative, 16
Neptunium, 505
Neptunium series, 525
Neumann boundary condition, 580, 586,

590
Neutrino, 9
Neutron, 9, 30, 208, 429, 522

activation, 430, 523, 527, 530, 536,
543, 556

activation analysis, 447
beam in medicine, 440
bombardment, 434, 557
capture, 429, 433, 448, 556
dose deposition, 436
drip line, 474
emission, 655
emission decay, 509, 518
excess correction, 33
fluence rate, 561
generator, 443
interaction, 212, 431
interactions with absorber, 430
kerma factor, 435
radiography, 448
rest mass, 3
spectrum, 447

14 MeV Neutron beam, 443

Neutron-rich, 478, 518
Neutron-rich radionuclide, 514
Newton second law of motion, 68
Nishina, Yoshio, 691
NIST, 253, 254, 256, 258, 259, 262, 322,

385, 386, 388, 405, 516
Noble gas, 161
Nominal potential, 639
Non-ionizing radiation, 9
Non-SI units, 8
Normal transition, 181
Normal probability distribution, 71
Normal tissue complication, 25
Normal x ray lines, 179
Normalization condition, 52
Normalization constant, 59, 456
Normalized number

of daughter nuclei, 535
of parent nuclei, 535

Nuclear activation, 526, 527
Nuclear activation with protons, 571
Nuclear binding energy, 31, 214
Nuclear chain reaction, 522, 560
Nuclear chart, 512
Nuclear disintegration, 451
Nuclear excitation, 211
Nuclear excitation of target, 210
Nuclear fission, 32, 434, 557
Nuclear fission chain reaction, 560
Nuclear fusion chain reaction, 560
Nuclear mass, 26
Nuclear mass correction factor, 147
Nuclear medicine, 19
Nuclear medicine physics, 612
Nuclear model, 33
Nuclear pair production, 14, 356, 358,

376, 411
Nuclear photoactivation, 527
Nuclear photoelectric effect, 372
Nuclear power, 563
Nuclear radius, 107
Nuclear radius constant, 33, 78
Nuclear reaction, 16, 429
Nuclear reaction energy, 573
Nuclear reactor, 12, 205, 209, 428, 430,

523, 527, 561
Nuclear recoil correction, 114
Nuclear screening, 361
Nuclear size, 78
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Nuclear structure, 30
Nuclear transformation, 451
Nuclear transmutation, 557
Nucleon, 26, 30
Nucleosynthesis, 505
Nuclide, 30
Number of scattering events, 105, 107

One-electron atom, 143
One-electron structure, 147
Operator, 56
Optical transition, 158, 348
Optically stimulated exoelectron

emission, 64
Orbital angular momentum quantum

number, 149
Osmium-192, 472
Outer shell electron, 158
Outer shell radius, 158
Oxygen, 408
Oxygen enhancement ratio, 20, 22, 443

Pair production, 278, 355, 379, 387, 416
component, 395
electron, 14
mean energy transfer, 383
positron, 14

Parameter, 465
Partial decay constant, 454
Particle acceleration, 589
Particle accelerator, 610

in medicine, 609
Particle scattering, 58
Particle–wave duality, 45, 50, 63, 65
Paschen series, 145
Path length, 260
Patient support assembly, 631
Pauli exclusion principle, 159
Pauli, Wolfgang, 692
Percentage depth dose, 19, 642
Period, 159
Period in periodic table, 159
Periodic table of elements, 158, 511, 514
Permeability of vacuum, 68
Permittivity of vacuum, 68
Pfund series, 145
Phase velocity, 591, 602
Photoactivation, 526
Photodisintegration, 278, 411

Photoelectric component, 393
Photoelectric effect, 14, 37, 278, 336,

376, 379, 386, 411, 414
Photoelectric energy transfer fraction,

342
Photoelectric mass attenuation

coefficient, 345
Photoelectric mean energy transfer

fraction, 383
Photoelectric parameters, 352
Photoelectric probability, 343
Photoelectron, 341, 355
Photoelectron spectroscopy, 181
Photoemission, 63
Photon, 37

collimator, 76
radiation, 17
spectrum, 576

Photoneutron, 372
Photonuclear reaction, 417

photodisintegration, 372
Physical quantity, 6
Physical unit, 6
Pion, 16
Pion stars, 16
Planck constant, 3, 35, 36, 140
Planck energy quantization, 35
Planck law, 45, 53
Planck, Max Karl Ernst, 692
Planetary orbits, 141
Platinum-192, 472
Plum-pudding model, 80
Plural scattering, 127
Plutonium, 505
Plutonium-239, 434, 558
Point-like atomic nuclei, 114
Point-like Coulomb field, 115
Point-like Coulomb scattering source,

109, 115
Polarization correction, 252
Polonium, 451
Polystyrene, 407
Positron emission tomography (PET),

14, 492, 572, 615
Positron–electron annihilation, 367
Positronium, 147, 367
Positrons, 14

annihilation, 367
emission beta decay, 14
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rest mass, 3

Potassium-40, 526
Poynting, John Henry, 693
Poynting theorem, 69
Poynting vector, 69, 192

Practical range, 260
Principal quantum number, 141, 149
Principle of complementarity, 62

Probability density functions, 71, 133
Probability for activation, 530
Probability for Auger effect, 184

Probability for the photoelectric effect,
343

Production of fluorescence radiation,
398

Production of radionuclides, 523
Production of x rays, 614

Projected range, 260
Projectile, 208
Propagation coefficient, 585, 594
Protium, 15

Proton, 9, 15, 30
activation, 523, 527, 572
beams, 13

capture, 572
drip line, 474
emission, 655

emission decay, 506, 518
rest mass, 3

Proton-rich, 478, 514
Pulse

period, 638
repetition rates, 638
width, 638

Pulsed operation of linacs, 637
Purcell, Edward Mills, 694

Quantization of electromagnetic
radiation, 36

Quantum-mechanical particle, 66
Quantum mechanical wave equation, 52

Quantum mechanics, 51
Quantum number, 149
Quantum physics, 35

Quantum uncertainty, 56
Quark, 9
Q value, 214, 217, 373, 441, 444, 445,

477, 527, 573

Racetrack microtron, 628
Radial probability density, 171
Radiation, 11

collision, 229
energy loss, 203
fraction, 288, 397
hazard, 373, 527
intensity distribution, 196
ionizing/non-ionizing, 9
length, 129
loss, 203, 230
low LET (sparsely ionizing)

high LET (densely ionizing), 11
stopping power, 228, 231, 232
units, 17
weighting factor, 18
yield, 257, 259, 399

Radiation quantity, 17
activity, 18
dose, 18
equivalent dose, 18
exposure, 17
kerma, 18
radiation weighting factor, 18

Radioactivation, 526
Radioactivation yield, 531
Radioactive decay, 451

curve, 456
modes, 476

Radioactive equilibrium, 465
Radioactive nuclide, 452
Radioactive series decay, 457, 535
Radioactivity, 451
Radiofrequency power transmission

waveguides, 576
Radiofrequency wave, 595
Radioisotope, 30
Radioisotope generator, 569
Radionuclide, 30, 452
Radionuclide generator, 524, 526, 566,

569
Radionuclides in the environment, 527
Radiotherapy, 13, 16, 76, 612

physics, 612
with fast neutron beams, 442

Radium, 451
Radium-226, 470, 481, 522, 526
Radius

atomic, 156
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Bohr, 142
of Bohr atom, 141
nuclear, 107
of orbits, 148
Thomas–Fermi, 94, 103, 122, 131

Radon-222, 470
Range finder, 633
Range of charged particles, 259
Range of heavy charged particles, 261
Range of light charged particles, 264
Rare-earth, 160
Rayleigh atomic cross section, 334
Rayleigh characteristic angle, 333, 334
Rayleigh, John William Strutt, 694
Rayleigh scattering, 278, 329, 379, 387,

411, 415
RBE, 20, 24
Reactor core, 561
Recoil angle, 301
Recoil correction factor, 112
Recoil electron, 14, 298
Recoil kinetic energy, 486
Recoil of the nucleus, 108
Red Doppler shift, 45
Reduced mass, 146, 148
Reduced Planck constant, 3
Regions of predominance, 387
Relative biological effectiveness, 20
Relative weight

of Compton effect, 386
of pair production, 386
of photoelectric effect, 386
of Rayleigh scattering, 386

Relativistic acceleration, 40
Relativistic Doppler effect, 596
Relativistic Doppler shift, 45
Relativistic effects, 254
Relativistic electric field, 195
Relativistic electromagnetism, 187
Relativistic force, 40
Relativistic kinetic energy, 41
Relativistic Larmor relationship, 195
Relativistic mass, 39
Relativistic physics, 35
Relativistic relations, 39
Relativistic relationships for a head-on

collision, 221
Relaxation length, 282
Resonance

absorption, 502
peak, 374, 433

Rest energy method, 374, 573
Restricted collision stopping power, 267
Retarding potential, 165
Retractable x-ray target, 633
RF power, 638
RF power generation system, 631
Richardson–Dushman equation, 64, 619
Richardson, Owen Willans, 695
Röntgen, Wilhelm Conrad, 18, 176, 276,

695
Root mean square angle

for multiple scattering, 107
for single scattering, 107

Rotatable gantry, 450
Rutherford backscattering spectroscopy,

108
Rutherford–Bohr atomic model, 83,

139, 163
Rutherford–Bohr atomic theory, 165
Rutherford-Coulomb point-source, 108
Rutherford cross section, 107
Rutherford differential cross section, 92
Rutherford electron–nucleus scattering

formula, 114
Rutherford equation, 102, 114
Rutherford, Ernest, 138, 452, 475, 522,

696
Rutherford expression, 109, 237
Rutherford model of the atom, 78, 82
Rutherford relationship, 109
Rutherford scattering, 77, 79, 83, 93,

101, 105, 106, 117, 118, 123, 126,
211

experiment, 106
theory, 117

Rutherford-type Coulomb interaction,
126

Rutherford-type scattering formula, 108
Rydberg constant, 4, 144, 147, 148
Rydberg energy, 4, 143, 146
Rydberg, Johannes, 697

S band, 578
Saturation, 468, 532, 543

activity, 534
model, 530, 534, 536–539, 541, 545,

546, 552, 554
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Scalar Laplacian operator, 584
Scattered photon energy, 302
Scattering, 77

of α particle, 83
Compton, 297
Coulomb, 77
elastic, 79, 86, 114, 126, 210, 216,

269, 431
incoherent, 297
inelastic, 210, 432
Molière, 79, 126, 127
multiple, 79, 126, 127
plural, 127
power, 130, 137
Rayleigh, 329
Thomson, 291

Scattering angle, 60, 81, 84, 87, 301, 302
in Rayleigh scattering, 333

Schottky effect, 65, 67
Schottky equation, 65
Schrödinger equation, 36, 56, 150

ground state of hydrogen, 168
hydrogen atom, 166

Schrödinger, Erwin, 697
Scintillation detector, 276
Screening of nuclear potential, 94
Second half-value layer, 283
Secular equilibrium, 467, 469, 539
Security services, 12
Segrè chart, 474, 476, 511, 515
Segrè, Emilio Gino, 474, 698
Selection rule, 179
Seltzer, Stephen Michael, 325, 698
Semiconductor detector, 276
Separation of variables, 167
Shell, 155

correction, 251
model, 33
structure, 34
vacancy, 178, 342, 410

SI system, 6, 8
SI unit of activity, 453
Siegbahn, Carl Manne Georg, 181
Siegbahn, Karl Manne Georg, 699
Siegbahn notation, 181, 182
Siegbahn spectroscopic notation, 349
Sievert, 18
Sigmoid shape, 75
Silver atom, 150

Small angle approximation, 104
Soddy, Frederick, 475, 699
Soft collision, 228, 230, 255
Spallation, 433
Spatial quantization, 149
Special theory of relativity, 37
Specific activity, 447, 453, 545, 555, 556
Spectroscopic notation, 155
Spectrum of an x-ray beam, 271
Speed of light in vacuum, 28, 35
Spin correction, 114
Spin correction factor, 109
Spin–orbit coupling, 151
Spin–orbit interaction, 151
Spinthariscope, 79
Spiral (helical) CT, 276
Spontaneous fission, 505
Standard atomic weight, 26, 516
Standard deviation, 71, 72, 127
Standard deviation of mean, 133
Standard molecular weight, 28
Standard pair production, 356
Standard pressure, 18
Standard probability density function,

71, 74
Standard temperature, 18
Standing wave, 576
Stark effect, 152
Stationary charged particle, 186
Stationary target, 208
Stern–Gerlach experiment, 149
Stern, Otto, 700
Stokes theorem, 67
Stopping power, 228
Storage ring, 629
Strassmann, Friedrich Wilhelm, 522,

700
Strong charge, 8
Strong force, 8
Sub-shell, 155
Super Coster–Kronig effect, 183
Super Coster–Kronig electrons, 14, 341
Superficial lesion, 13
Superficial tumor, 24
Surface correction, 33
Surface photoelectric effect, 37, 63
Synchrotron, 201, 628

light source, 629
radiation, 201, 614, 622, 629
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Szilárd Leó , 701

Target dose, 24
Tau, 9
Taylor expansion, 44
TE mode, 581
Technetium-99m, 453, 469, 473, 566
Tenth-value layer, 283
The total angular momentum, 151
Theoretical specific activity, 540
Therapeutic range, 260
Thermal neutron, 430, 442, 530
Thermal neutron capture

in hydrogen-1, 438
in nitrogen-14, 437

Thermal neutron interactions in tissue,
437

Thermally stimulated exoelectron
emission, 64

Thermion, 14
Thermionic emission, 14, 63, 64, 165,

619
Thick target, 272, 528, 574
Thin target, 272, 528, 574
Thin x-ray targets, 271
Thomas–Fermi atomic model, 102, 361
Thomas–Fermi atomic potential, 94
Thomas–Fermi atomic radius, 94, 103,

122, 131
Thomas–Fermi atomic radius constant,

94
Thomas–Fermi radius, 107
Thomas–Fermi screening, 96
Thomas–Fermi statistical model, 94
Thomson atomic model, 81
Thomson classical cross section, 4
Thomson differential cross section, 310
Thomson differential electronic cross

section, 292
Thomson electronic cross section, 335,

339
Thomson, George Paget, 701
Thomson, Joseph John, 702
Thomson model of the atom, 80, 135
Thomson “plum-pudding” atomic

model, 82
Thomson–Reid experiment, 49
Thomson scattering, 278, 291, 310
Thomson total atomic cross section, 296
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