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Foreword
(translation)

I was interested by the development of a new edition of the book [1]

“Die Grundstrukturen einer physikalischen Theorie.”

This has been possible, in spite of my old age, thanks to the contributions
of Dr. G. Thurler. Without his indefatigable support and his essential and
fundamental propositions, this new edition would not have been possible.

The new edition clarifies and formulates more precisely the fundamental
ideas of physical theories in order to avoid as much as possible any ambiguities.
One begins theoretical physics with concepts that can be explained with-
out theories. Later, one introduces other concepts by theories known as
“pre-theories.” Thus it does not make sense to introduce concepts such as
“state” without a pre-theory.

The field of physics is thus determined by the basic concepts introduced
without the use of pre-theories. Also, it does not make sense to speak about
the position and speed of an electron at a fixed time.

“Reality” is not however only the reality which is described by physical
concepts. Thus, for example, colors, tones, joy, hate, and love are not physical
concepts.

But the demarcation of the physical concepts, and thus the demarcation
of the field of physics makes it possible to know more clearly, and thus to
describe more clearly in the future, the structure of reality beyond the domain
of physics. The field of life and not that of death should be the goal of mankind.
Thus, I hope that this book can also become another small step for life.

Marburg Günther Ludwig
October 2005



Vorwort

Ich war daran interessiert, bald eine neue Auflage des Buches

,,Die Grundstrukturen einer physikalischen Theorie”

zu entwerfen ( [1]). Daß dies trotz meines hohen Alters möglich wurde, habe
ich Herrn Dr. G. Thurler zu verdanken. Ohne seine unermüdliche Hilfe und
seine wesentlichen Vorschläge auch in haltlicher Art, wäre die Neuauflage nie
Zustande gekommen.

Diese Neuauflage soll die Grundsätzlichen Ideen klären und präziser
formulieren, um möglichst jede Fehlentwicklung physikalischer Theorien zu
vermeiden. Dazu gehört, daß man die theoretische Physik nur mit Begriffen
anfängt, die ohne jede Theorie erklärt werden können. Später führt man dann
mit Hilfe von Theorien (sogenannten Vortheorien) weitere Begriffe ein. So
macht es keinen Sinn, den Begriff ,,Zustand” ohne eine Vortheorie einzuführen.

Der Umfang der Physik ist damit bestimmt durch die ohne Vortheo-
rien eingeführten Grundbegriffe. Ebenso macht es keinen Sinn, von Ort und
Geschwindigkeit eines Elektrons zu einer festen Zeit zu sprechen.

Die Wirklichkeit ist aber nicht die allein mit physikalischen Begriffen
beschriebene Wirklichkeit. So sind z.B. Farben, Töne, Freude, Haß und Liebe
keine physikalischen Begriffe.

Aber die saubere Abgrenzung der physikalischen Begriffe und damit die
saubere Abgrenzung des Bereichs der Physik wird es möglich machen, in
der Zukunft auch die Struktur der über den physikalischen Bereich hinaus-
gehenden Wirklichkeit deutlicher zu erfahren und damit auch deutlicher zu
beschreiben. Der Bereich des Lebens und nicht der des Todes ist das Ziel des
Menschen. So hoffe ich, daß auch dieses Buch eine kleiner Schritt zum Leben
werden kann.

Marburg Günther Ludwig
Oktober 2005



Preface

This book is a revision and expansion of the concept of a physical theory as
developed in [1].

In this book, we introduce the following:

– A concept of basic language; a descriptive language of simple form in
which it is possible to formulate recorded facts. The semantics of this
basic language make it possible to clarify the links between linguistic,
conceptual, and real entities of the application domain of a physical theory.

– A new concept of idealization. We know that practically all mathematical
theories used in the physical theories can only be approximations of the
reality, i.e., that they can be applied to an application domain of a physical
theory only under the assumption of allowing for some degree of approxi-
mation or degree of inaccuracy.

We propose a review (related to the new concepts introduced above) of the
“notion of relations between various physical theories,” and of the “process
allowing to find new concepts” developed in [1].

The analysis presented here will be less of a description of the current state
of physics than a suggestion to modify this state. The authors think that a
solution can be found amongst the many difficult problems of physics such as
the interpretation of physical theories, the relations between various theories,
and the introduction of physical concepts, when the theories are under the
form of an axiomatic basis. The analysis presented here does not claim to
be definitive. It should, on the contrary, encourage the reader to continue the
development of the fundamental ideas of this work. Such a development should
contribute to highlight the durable core and growing strength of physical
knowledge about the real structures of the world, in addition to the process
of the historical development of physics.

If this book was to suggest such a development, it would then have achieved
its goal. The authors also encourage the reader to correct any possible faults
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in the text and are convinced that the correction of such errors will not call
into question the fundamental ideas of this work.

Acknowledgments

The authors wish to express their deep thanks to Natacha Carrara for her
careful re-reading and linguistic revision of the English manuscript.

We are also grateful to Wolf Beiglböck for his competent advice and for
his assistance in the completion of the book.
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Intention of the Book

Motivation and Problem Setting

The aim of this book is to give a description of a method of formulating
physical theories. The reason for the development of such an analysis is that
many obvious ambiguities in physics have shown the necessity of understand-
ing in a critical manner the different formulations of physics, in particular
theoretical physics.

During the edification of a science, “preliminary decisions” intervene which
are not shared by everyone. Consequently, it is desirable to formulate and to
name as well as possible these preliminary decisions, not to reject other ideas
of physics as meaningless or “reasoning errors,” but to show that there is no
construction of a science without preliminary decisions and that the method
proposed here is one possibility for better understanding physics as a science
(at least this is what the authors hope for).

Historically, a science does not begin its development by reflecting on its
foundations. It starts rather with the accumulation and the assimilation of
new knowledge. Its methods are intuitively conceived and applied in a fruitful
way. But at a given time one meets with contradictions. These contradictions
must be clarified if one intends to develop science in a serious way. This is
carried out by seeking to discover the cause of these contradictions. Once
identified, one then tries to specify the methods of the concerned science, so
that these contradictions can be avoided. As long as these contradictions exist,
the methods leading to these contradictions are, at least in the beginning,
provided with warnings that make it possible to avoid them with a certain
prudence.

The appearance of contradictions in physics is such a “common” charac-
teristic of its development that we are almost not aware of the fact anymore.
But it is precisely these contradictions that contribute to the development of
physics, and the greater the contradictions, the greater the success after having
overcome them. The numerous more or less important contradictions between
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the theory and the reality are always new impulses making it possible to im-
prove the physical theories. Two major contradictions in physics were, e.g.,
the divergence between the concept of space–time initially used and the re-
sults of the Michelson’s experiment, leading to the development of the special
relativity theory (see [2, Chap. IX]), and the divergence between the classi-
cal model of the atom and the quantum emission of light (the contradiction
between the corpuscular and undulatory theories), leading to the development
of quantum mechanics.

The contradictions of set theory in mathematics, as well as the contra-
diction existing between the complementary terms “wave” and “corpuscule”
in physics, continue to be the cause of philosophical quarrels about the na-
ture of mathematics and physics, respectively. Although these questions are
interesting and justified, the philosophical discussions contribute only very
little to the improvement of the methods of the concerned sciences. On the
other hand, each particular method of a science presupposes – generally in an
unconscious way – certain philosophical conceptions that influence the struc-
ture of the method. In spite of this, it is not common to refer to philosophical
arguments in order to justify the method; only the “success” of the methods
of the concerned science is preponderant. Thus, all the philosophical doubts
about the mathematical concept of infinity were not able to change anything
in the fast development of the mathematics of infinite systems. All the ques-
tions regarding the objectivity of the world have not prevented experimental
physicists from regarding their results of measurement as objective facts.

One cannot force someone to accept mathematics if, on the basis of presup-
positions of a philosophical nature, he refuses these methods, e.g., the classical
logic. It is also not possible to make someone accept the methods of physics,
just as they are effectively used, if that person refuses a priori the possibility
that one can observe objectively real facts, i.e., if that person does not want to
accept, as a basis of science, the completely normal and unconscious behavior
of men with respect to their usual environment as a world of things objectively
present and of events being held objectively.

Our task will not be to philosophically justify the methods of physics, but
to analyze them, to specify them, and to examine their structures. This does
not mean that there should not be a philosophical reflection about physics
and the methods of physics afterwards. We will try to solve the first part of
this problem by a formalization. The formalization abstracts the contents of
significance in order to precisely fix each step in the “rules of the game.” The
second part will consist in examining the structure of this “game.” Concerning
mathematics, the two aspects of the problem have already been largely dealt
with. In this book, we wish to begin a similar essay for physics. In response to
the objection that until now physics could exist without such an examination
of its methods, one can refer to the example of the set theory in mathematics,
where one first avoided the difficulty by using an intuitive concept of sets until
a more precise analysis of the foundations had become necessary in order to
eliminate the contradictions that appeared.
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One cannot retain as an objection to the “rules of the game” of the physical
methods given hereafter that until now these rules were not always complied
with. But it is precisely in what the improvement consists in, that one can
more precisely realize what will be allowed in physics.

We do not claim to formulate methods definitively, in such a way that
contradictions will never appear again. We know today the problems of such
“proofs of absence of contradiction” of a system. We only hope that the
analysis to which we aspire will show that the methodical rules of the game
are adapted to the “actual” problems of physics.

To summarize, we give names to each of the sets of problems outlined:

– Formal methodology of physics as a description of the “rules of the game”
of physics

– Fundamental physics as an examination of the structure of the system of
the methodical “rules of the game” of physics, and as an examination of
the construction of physics as a whole or, better, of the various possibilities
of construction of physics as a whole

Current State of Art

Concerning the current state of art we refer to the work of Erhard Scheibe
because of the many similarities between his theoretical conception of a
physical theory and the “new form of physical theory” proposed in this
book. In particular, we refer to his two books about the reduction in physics
(see [3,4]), and also to the book Between Rationalism and Empiricism (see [5]),
a representative selection of his writings on the philosophy of physics, in which
other aspects of his theoretical conception are also covered.

Main Ideas of Our Approach

The “new form of physical theory” proposed in this book is based on the
following ideas:

Reality and Facts

The reality is in part constituted of facts stating “basic properties” of objects
and “basic relations” between objects. Only facts related to the “domains
of physics” are taken into consideration. These facts, directly recordable or
indirectly recordable via known theories, called pre-theories, constitute what
we call the physically recordable domain or the reality domain. The directly
and indirectly recordable facts are simply a collection of empirical evidences
suggesting or confirming the existence of more interesting facts hidden behind
them.
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Imagined Realities or Fairy Tales

We usually only observe a small fraction of the facts constituting the object of
our investigation. Facts are like an iceberg; they are mostly submerged under
the surface of immediate experience. The submerged part of these facts must
be hypothesized. As long as a postulated system of hypotheses (asserted by
means of propositions, implying new physical concepts) does not refer to the
facts of reality, we shall speak of imagined realities or “fairy tales.”

Basic Language

Facts stating properties of objects and relations between objects are denoted
by sentences formulated in a natural language of very simple form, called a
basic language. The semantics of the basic language make it possible to clarify
the relations between the linguistic, the conceptual, and the reality levels, i.e.,
between the sentences, the propositions, and the facts.

Application Domain

The restriction of the reality domain to the facts (directly recordable or indi-
rectly recordable via pre-theories) considered a priori is the application domain
of the intended physical theory.

Recording Process

Only facts related to the application domain are considered in the recording
process. These facts are denoted under the form of a collection of sentences
formulated in the basic language. In other words, only facts denoted by sen-
tences using terms that designate property or relation concepts, belonging to
the context related to the application domain, are taken into consideration.

Mathematization Process

Natural sentences formulated in the basic language (related to the application
domain) are transcribed into formal sentences formulated in a mathematical
language. This formal language is that of the standard mathematical theory.

Idealization Process

We know that practically all mathematical theories used in physical theories
can only be approximations of the reality, i.e., they can be applied to an
application domain only under the assumption of allowing for some degree
of approximation or inaccuracy. The standard mathematical theory is then
enriched by mathematical and physical idealizations, in order to obtain an
idealized mathematical theory.
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Axiomatization Process

The idealized mathematical theory becomes especially significant through a
“structuring” axiomatization of the theory. In this structuring axiomatization,
the original objects and relations do not occur independently any more, but
only as links in an overall structure, and the axiomatic system makes assertions
about this overall structure. What is characterized by an axiomatic system is
not a determinate structure, but a species of structures. At the same time,
the same species of structures can, in general, be defined by means of several
different axiomatic systems.

Relations Between Physical Theories

Physics does not consist of only one theory; it is made up of a set of various
theories. It is possible to establish relations between physical theories (with
application domains that are either the same, partially the same, or completely
different). A physical theory can be an approximation of another theory. It is
also possible to build networks of physical theories.

New Physical Concepts

The reality domain can be extended by hypotheses, i.e., by postulated rela-
tions between recordable and nonrecordable (or “imagined”) facts. In terms
of the semantic of the basic language, this is equivalent to (a) defining a new
(class or relation) concept, (b) inventing a new word designating this new
concept, and (c) imagining a new process set up with the purpose of obtain-
ing a real reference to the new concept. In other words, to an extension that
satisfies the semantic relations (of designation, reference, and denotation) cor-
responds an extension of the reality domain, in so far as the new conceptual
entity (which has been hypothesized) refers to a new real entity. As long as
the new concept has no real reference, we will speak of a “fairy tale concept”
at the conceptual level, and simply of a “fairy tale” at the reality level.

Outline of the Book

Chapter 1. Reality

We describe what we call the “reality” related to a physical theory, the goal
of which is to provide a satisfactory understanding of certain aspects of this
reality. In particular, we state what we consider to be a real entity or only a
“fairy tale.”
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Chapter 2. Building of a Mathematical Theory

We outline the formal construction of a mathematical theory. It might appear
superfluous to begin this book with a draft of a formal construction of a
mathematical theory. The intention of this draft is not to give the reader a
precise description of the various possibilities of a construction of mathema-
tics, but simply to elucidate how the three fundamental parts, logic, set theory,
and species of structure, join together for the construction of a mathematical
theory.

Chapter 3. From Reality to Mathematics

We are concerned with the problem of correspondence between the structure
of a part of reality and an idealized mathematical structure that is similar to
the structure of that part of reality. We will not explain or base this structure
on philosophical or other points of view, but by the results of experiments.
The only foundation of a physical theory is the success of the method of
physics that we will describe here in detail. The formulation of this method
is described by considering the transition from reality to mathematics, distin-
guishing three processes: (a) A recording process, which is a formulation of
recorded facts denoted under the form of sentences in a natural language of
very simple form called the basic language of the intended physical theory;
(b) A mathematization process, which is a transcription of natural sentences
formulated in the basic language into formal sentences formulated in a formal
language (expressing the mathematical theory); (c) An idealization process,
which is an enrichment by mathematical and physical idealizations of the
previous mathematical theory.

Chapter 4. Species of Structures and Axiomatic Basis of a PT

We are concerned with the axiomatization of the idealized mathematical
theory. The best way in which to reveal the deep structures of the ideal-
ized mathematical theory is by means of formal analysis which lead to more
precise conceptual entities. One of these formal tools appears to be the set
theory. Our method of viewing the deep structures refers to the metatheo-
retical structuralism approach to structures, where the term “structure” is
understood in the sense of Bourbaki (see [6, Chap. IV]). It should be clear
that the set theory is only the form and not the substance of the theory. In
principle, other methods of analysis could be used, e.g., the “category theory.”

Chapter 5. Relations Between Various PTs

Here we introduce the idea that physics consists not only of one theory, but
it is made up of a set of various theories. Diverse modes of relation between
physical theories are taken into consideration. We also introduce the notion
of physical theories connected within a network.
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Chapter 6. Real and Possible as Physical Concepts

In this last chapter, we provide an answer to the question “How can we state
real facts with the help of a physical theory even if they were not stated before
by direct observations or with the help of pre-theories?”

Throughout Part I, the introduced concepts will be illustrated on the basis of
a simple example, noted Example A: A description of the surface of the earth,
or of a round table. Furthermore, other examples are given in Part II.



Part I

A New Form of Physical Theory



1

Reality

In this chapter, we will be concerned with the reality related to a physical
theory, the goal of which is to provide a satisfactory understanding of certain
aspects of this reality.

1.1 The Structure of Reality

We assume that reality is in part constituted of facts stating “basic” properties
of objects and relations between objects. Furthermore, we assume that the
facts, directly or indirectly (via pre-theories, see Sect. 5.3) recordable, are of
the following form:

– the object a has the property p̃;
– between the objects a1, . . . , an and finite many real numbers α1, . . . , αn,

there is the relation r̃n(a1, . . . , an, α1, . . . , αn).

Only facts related to the “domains of physics” are taken into consideration.
These facts constitute what we call the physically recordable domain, or reality
domain, and is denoted by W .

This reality domain W can be extended by hypotheses. To the facts,
directly and indirectly recordable, is “added” a process set up with the pur-
pose of testing hypotheses by means of experiments, which have the purpose
of providing (at least to a certain extent) a real reference to the postulated
hypotheses, i.e., to provide a real reference to the postulated relations between
the recordable and nonrecordable (or “imagined”) facts.

The directly and indirectly recordable facts are simply a collection of
empirical evidences suggesting or confirming the existence of more interest-
ing facts behind them. Facts are like an iceberg; they are mostly submerged
under the surface of immediate experience. The submerged part of these facts
must be hypothesized. In order to test such hypotheses, relations between the
recordable and nonrecordable facts must be added, by which the recordable
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facts can count as evidence for or against the existence of the nonrecordable
facts.

1.2 The Physical Reality

In our conception of a physical theory, we consider three domains of physical
reality corresponding to particular conceptual levels of a physical theory. In
the case of a particular physical theory, denoted by PTν , we distinguish the
application domain, denoted by Apν

, the fundamental domain, denoted by
Gν , and the reality domain, denoted by Wν . Let us briefly describe these
three domains.

1.2.1 The Application Domain of a PT

The application domain of a particular physical theory PTν , denoted by Apν
,

is the restriction of the reality domain W to the facts that the theory considers
a priori.

The recording of facts can be made directly or indirectly by pre-theories.
It is similar to the reading of a text. The application domain Apν

is limited
by the domain of physical concepts that are to be used for that reading. The
restriction of Apν

by the domain of concepts is essential since there is no
physical theory for the whole of reality. Common (or contextual) domains
of physical concepts have, e.g., the following designations: mechanics, optics,
thermodynamics, electrodynamics, etc.

We shall see later (Sect. 3.1.2) that only facts denoted by sentences using
terms that designate physical concepts, belonging to the context related to
the application domain Apν

, can be recorded.
From a methodological point of view, Apν

is something given a priori
relative to the physical theory PTν . Something which is given a priori is not
implicitly defined, it can only be shown.

By this action of showing, one does not wish to consider only directly
recordable facts, denoted by ρ, but also indirectly recordable facts stated by
other physical theories PTα, PTβ , . . . (but of course not by the physical theory
PTν under examination). For example, an electrical current in a conductor
can be considered as a fact for a PTν , i.e., can be part of the application
domain Apν

, even though it is only by electrodynamics that one can speak of
currents as given facts. The physical theory PTν in consideration, in which
such a current belongs to the application domain Apν

, cannot naturally be
electrodynamic, but a PTν which presupposes electrodynamics in the way
mentioned above (e.g., quantum mechanics). On the other hand, if one wishes
to regard electrodynamics as a PTν , a current does not belong to the appli-
cation domain Apν

. Other “demonstrable” facts such as forces (defined by
mechanics) belong in this case to the application domain Apν

. It is only by
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a PTν (i.e., by the electrodynamics) that a current in a conductor becomes
part of the reality domain W (see, e.g., [2] VIII).

The basis of all observations is the possibility to admit certain facts in an
immediate experience, i.e., without any PTν . For example, in an experiment,
the state of a counter is accepted as a fact and does not need to be analyzed.
One uses no scientific criterion, or even physics, to regard such facts as being
certain.

It is decisive that the question of the justification of regarding such given
facts in an immediate experience as real facts is neither posed nor solved
by physics; it is by the exclusion of this question that physics as such is
possible. The nonphysical question of the recognition of such given facts is not
a question of criterion, but a complicated question of physical, physiological,
psychological, and cognitive processes that we cannot entirely realize, such
as, e.g., the case that this afternoon at the time of our walk a hare crossed
our path. We can base our certainty neither on the depositions of others (who
were not present at the time) nor on photographs (which were not taken) nor
on some other “criteria.” Naturally, physics does not formulate any objection
with regard to the treatment of this question of knowledge of the given facts
in a pre-physical domain.

However, there arises a very interesting and significant question in fun-
damental physics: Is the starting point of the given facts for all of physics
consistent with the physics which is developed by it? This problem of con-
sistency between the physics developed on the basis of given facts and the
“physical representation” that results from the processes of sensory percep-
tion is “described” in more detail in [2, Chap. XVII]. There has existed, at
least until now, no indication that such a consistency between physics and
sensory perceptions is not given.

To summarize, in the definition of the application domain Apν
of a physical

theory PTν , one can already include the reality domains Wα,Wβ , . . . of other
physical theories PTα, PTβ , . . . . We call these PTα, PTβ , . . . pre-theories of
PTν . The definition of the application domain Apν

is thus not trivial. It is a
problem of fundamental physics, which we will only be able to approach later.
This application domain Ap will be further explained in Sect. 3.1.2.

1.2.2 The Fundamental Domain of a PT

The fundamental domain of a particular physical theory PTν , denoted by Gν ,
is the restriction of the application domain Apν

to the facts that the theory
describes.

We know that practically all mathematical theories used in physical
theories can only be approximations of the reality, i.e., they can be applied to
an application domain Apν

only under the assumption of allowing for some
degree of approximation or degree of inaccuracy (see Sect. 3.3).

The fact of having a usable theory depends on the choice of the degree of
inaccuracy allowed. It is necessary to distinguish between two cases:
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– We have no large inaccuracies, and we say that the theory can be applied
as a “good” description of the application domain Apν

;
– We have large inaccuracies, and we say that the theory says practically

nothing about the structure of the reality in such regions.

But why will we then apply this theory onto the total application do-
main Apν

? It is often more useful to apply a theory only on that part of the
application domain Apν

where we can use a small degree of inaccuracy. In
such a region the theory essentially says something about the structure of
reality and will be useful for technical applications. We call such a region (a
part of the application domain Apν

) the fundamental domain Gν . If we can
use “small” inaccuracies in the total application domain Apν

, then Gν ≡ Apν
.

This fundamental domain Gν will be further explained in Sect. 3.3.3.

1.2.3 The Reality Domain of a PT

The reality domain of a particular physical theory PTν , denoted by Wν , is
the extension of the fundamental domain Gν to the facts (related to the new
physical concepts) that the theory describes.

Our task is not only to detect “nonmeasured” realities, but also to detect
new realities.

We have to introduce new words designating new physical concepts in
order to denote these possible or imagined realities. But we do not say how
we can “observe” such possible realities.

How to introduce new physical concepts will be further explained in
Sect. 6.3.

To observe “basic” properties of objects and relations between objects,
we can use immediate observations and “pre-theories,” i.e., only well-defined
methods, before the introduction of a mathematical theory. This problem is
much more difficult than the introduction of new physical concepts. If we
want to determine the factual reference of the new physical concepts, then
we must go back from the extended mathematical theory to a reality domain
Wν ⊃ Apν

. This reality domain Wν will be further explained in Sect. 6.6.

1.2.4 The Reality Domain of all PT s

As we have seen before, only facts belonging to physical domains are taken into
consideration and constitute what we call the physically recordable domain,
or reality domain, and is denoted by W .

We can now add that the reality domain W is the domain of all W s,
i.e., the W s of all PT s. Given that all PT s are not known, W cannot be
established. By finding new PT s, one discovers new W s (e.g., atoms and
elementary particles). The physically recordable domain W remains decisively
limited by the fact that one does not permit all directly ascertainable facts
such as, e.g., that a sound is harmonious or that a violin has a good sound.
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The domain of attainable facts certified for physics has not been established
until this day. This reality domain W will be further explained in Sect. 6.6.

1.2.5 Remarks

The methods of establishing PT s are also applicable to completely different
areas than physics, for example, our theory about the structure of the human
species (see Part II, Example C) or, more interestingly, the application of
Weidlich’s theory to sociological problems (see [7]).

Figure 1.1 represents a summary of the domains of physical reality.

W
reality domain of all PT s

all
directly and indirectly (via pre-theories) physically recordable facts

⋃

ρ, Wα, Wβ , . . .
︸ ︷︷ ︸

Apν

application domain of PTν

restriction of W
to the facts that the PTν a priori considers

⋃

Gν

fundamental domain of PTν

restriction of Apν

to the facts that the PTν describes

⋂

Wν

reality domain of PTν

extension of Gν

to the facts, related to new physical concepts, that the PTν describes

⋂

W ′

︷ ︸︸ ︷

W, Wν

reality domain of all PT s
all

directly or indirectly (via pre-theories) physically recordable facts

Fig. 1.1. Domains of physical reality
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1.3 Fairy Tales

Our task is not only to detect nonmeasured physical realities, but also to
detect new physical realities.

For a particular physical theory PTν , we have introduced the reality
domain Wν as the extension of Gν to the facts related to the new physical
concepts that the physical theory describes.

As long as a postulated system of hypotheses, or a postulated theory
(expressed by means of propositions implying the new physical concepts),
does not refer to the facts of reality, we shall speak of a fairy tale theory “at
the conceptual level” and of an imagined reality or fairy tale “at the reality
level.” In Chap. 6 we will see that in general, one must consider a fairy tale
theory as only physically possible.

There are many such fairy tales, or myths, in quantum mechanics. An
example of such a fairy tale, which has not been established as being real
(at least until now), is the very widespread idea that each microsystem has
a real state that can be represented by a vector in a Hilbert space, e.g., a
Schrödinger wave function.

And yet, to start from the idea of a fairy tale proves to be a very useful way
in which to guess a physical theory, even if one runs the risk of introducing
prejudices into such theories. One has often tried to prescribe principles
to which the imagined facts should suffice, and sought to base these on
philosophical considerations.



2

Building of a Mathematical Theory

In addition to the physical reality (see Sect. 1.2), the mathematical theory,
denoted by MT , is the second most significant part of a physical theory. As
briefly as possible, we will describe the elements necessary for the construction
of a mathematical theory. For a more detailed description, we refer, e.g., to [6].

“Mathematics deals with imagined objects and imagined relations between
these objects.” In order to clarify this assertion, one tries to formalize the
methods and the results of mathematics, i.e., one formally establishes the
structure of a mathematical text in order to clearly indicate what one under-
stands by “terms,” “relations,” “axioms,” “proofs,” “theorems,” etc. Since the
unfolding of these formal methods is very close to what our intuition suggests,
we will restrict ourselves in order to be able to give a concrete meaning to
concepts such as “structure,” “partial structure,” “relation,” etc. Without this
mathematical construction, assertions such as “In a PT , a partial structure
of an MT gives us a picture of a real structure of the reality” would only have
a very vague significance.

It is for this reason that we now take the time to describe the formal cons-
truction of an MT . Since in mathematics this cannot be done in an entirely
homogeneous manner, it is still even less possible to give an overall picture
of the various possibilities of such a formal construction. We have chosen
a possibility that seems the most appropriate to our ends [6], namely the
application of an MT in a PT (see Chap. 3).

2.1 Formal Language

A mathematical theory MT is defined as an assembly of signs comprising
certain rules. That one can define an MT results from the fact that the for-
mulation of all mathematical expressions, i.e., the mathematical language, is
possible with a few very simple rules. Thus, conversely, in a formal manner,
one can define an MT by these rules of language, i.e., the rules for the signs.
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One could call these rules, using a linguistical term, the syntax of the math-
ematical language. Our first task will be thus to describe this “syntax.” We
will describe it as the rules of the game with signs.

The signs that form the mathematical text are on the one hand letters,
and on the other hand, recognizable signs such as, e.g., ∨, ¬, ∈, ⊂. The signs
are joined together under the form of assemblies of signs, where an assembly
is a succession of signs written next to one another. First of all, one intro-
duces rules that must characterize the “well-formed” assemblies according to
the syntax of the mathematical language, and which make it possible, among
these, to distinguish the assemblies that represent “objects” and the assem-
blies that represent “relations.”

This manner of considering a mathematical text is particularly significant
to physics. On the one hand, one wants to denote the facts of the applica-
tion domain Ap into “well-formed relations” formulated in the mathematical
language of MT (see Chap. 3). On the other hand, one also wants the rela-
tions of MT to lead to assertions about the reality domain W (see Chap. 6).
Consequently, it is clearly necessary to lay down the rules according to which
well-formed relations must be formulated in an MT .

To this end, we divide the signs into three categories:

1. The logical signs: ∨, ¬, τ . The sign ∨ means “or,” the sign ¬ means
“not,” and the sign τ means “an object which . . ..” The sense of the
sign τ will be explained more precisely hereafter. These logical signs are
sufficient. Given that a precise development of all the rules is not significant
for us, we will write from now on more concretely: instead of ¬A always
“not A;” instead of ∨AB always “A or B;” instead of ∨¬AB, i.e., instead
of “(not A) or B” always “A ⇒ B,” or in words “A implies B;” and for
“not [(not A) or (not B)]” simply “A and B.”

2. The letters; they always represent objects. Assemblies can also represent
objects.

3. The specific signs of the MT considered as, e.g., the sign ∈ of the set
theory.

Only the assemblies that result from the following rules are allowed in an
MT and are concretely accepted as well-formed assemblies. A characteristic
must be attributed to each specific sign belonging to the third category. This
is a sign, either substantific or relational, i.e., a sign that determines a term
(concretely, an object) or a relation (concretely, an assertion about object(s)).
Each one of these specific signs must still receive a weight, an integer n.

One designates by “terms” of the MT all assemblies that begin with a τ
or a substantific sign, or which consist only of one letter, and one designates
by “relations” of the MT all the other assemblies.

One designates by “formative construction” in an MT a sequence of as-
semblies that have the following property, i.e., for each assembly A of the
sequence, one of the following conditions is satisfied:
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(a) A is a letter.
(b)A is identical to “not B,” B being a relation preceding A in the sequence.
(c) A is identical to “B or C,” B and C being relations preceding A in the

sequence.
(d)A is identical to τx(B), B being a relation preceding A in the sequence

and containing the letter x. To indicate this, we often write B(x) instead
of B. One can concretely interpret this by “x is an object in an assertion
B(x)” (e.g., x ∈ M , i.e., x is an element of the set M). The term τx(B) is
a “privileged” term which, inserted in B(x), satisfies the relation B (e.g.,
τx(x ∈ M) is a privileged element of the set M).

(e) A is identical to sA1 · · ·An, s being a specific sign of the third category,
of weight n, and A1 to An being terms preceding A in the sequence. If s is
a substantific sign, then sA1 · · ·An is a new object constituted of objects
(an assertion over the objects) A1 · · ·An.

2.2 Axioms and Proofs

The rules described up to now are only used to characterize the well-formed
assemblies. Now we must indicate the methods according to which one decides
if an assertion (to speak concretely) is “true.” This is done by the posing of
axioms and by the building of proofs. In mathematics the axioms are, so to
speak, true assertions by definition. If these axioms become assertions on the
reality domain W (see Chap. 6), then the truth of an axiom in PT takes a new
sense with respect to MT . For this reason, we do not want to speak about
“true” and “false” in an MT , as is often the case, since the axioms are posed
and are not the result of an act of knowledge. The “truth” of many axioms
cannot be perceived, since such a truth does often not exist because in an
MT it is possible to pose, instead of the axiom A, the axiom “not A” (as a
“physical” example, see the “axiom of simultaneity,” in [2, Chap. VII], and
its “nonvalidity” in the theory of special relativity, in [2, Chap. IX]).

The posing of axioms is a process of decisive importance for mathematics,
as well as for physics, which requires a general explanation. We distinguish
the explicit axioms and the axiomatic rules below.

An explicit axiom is a relation written according to the rules of Sect. 2.1.
More than one such axiom can be written. In these explicit axioms, some
letters (concretely, indefinite basic objects of the MT ) can appear. They are
called constants of the MT . These explicit axioms concretely represent true
assertions about these basic objects. But one can also say that the basic
objects are implicitly defined by the axioms. In brief, one often gives names
to these basic objects (as an abbreviation for the totality of the axioms posed
for them).

Thus, e.g., a term x (where x is a basic object) denotes an “ordered set”
if an ordering relation is defined on this term with corresponding axioms.
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The axiomatic rules are not relations in the sense of Sect. 2.1, but rules
from which one can obtain new relations starting from relations already
present in the text. Intuitively it must provide “identically true” relations,
i.e., whatever the relations used in the application of an axiomatic rule, one
obtains (intuitively) a “true” relation. We will meet such axiomatic rules,
e.g., in Sect. 2.3, as logical rules (i.e., intuitively as a combination of logically
identical true relations).

The simplest way in which to express the axiomatic rules is to use abbre-
viations for the assemblies. An axiomatic rule can be written as a symbolic
relation constituted of these “abbreviations.” These symbolic relations are
also called implicit axioms. Letters used as abbreviations do not really appear
in the theory since “any” relations resulting from the theory can be used in
their place. A mathematical theory MT then consists of a text of distinct
relations (concretely, “true” or “valid” assertions) that can be obtained using
the following three rules:

1. the explicit axioms themselves;
2. the implicit axioms, if they contain terms and relations built according to

the rules of Sect. 2.1;
3. of a relation B, in the case where the two relations A and “A ⇒ B” appear

previously in the text of the MT .

All of the relations resulting from (1) to (3) (concretely, “true” assertions
compared to the only well-formed assertions in the sense of Sect. 2.1) are
called theorems of MT . For greater practicality, we include all the explicit
axioms to the theorems of MT .

If a well-formed relation (i.e., formed in the sense of Sect. 2.1) cannot be
obtained with the three preceding rules, then it is not a theorem in MT . Let
us note that the fact that the relation A is not a theorem in MT does not
imply that “not A” must be a theorem in MT . This will also be significant
in the development of physical theories and, in particular, in the transition to
more extended theories, and in the appreciation of the “physical reality” of
facts not observed (Chap. 6).

One already introduces here another concept which will become very
significant in a PT . This concerns the comparison of two MT s. A theory
MT2 is said to be “stronger” than a theory MT1 if all of the signs of MT1 are
signs of MT2, all of the explicit axioms of MT1 are theorems in MT2, and all
of the implicit axioms of MT1 are implicit axioms of MT2. It follows that all
the theorems of MT1 are theorems in MT2.

The transition from an MT1 to a stronger MT2 will become of paramount
importance during the construction and the extension of a PT , because the
stronger the MT becomes, the more the PT on which it depends becomes
more expressive.
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2.3 Logics

The first implicit axioms to be introduced are related to logic. Here one decides
to use “normal,” “bivalent” logic and not a polyvalent or other form of logic.
Given that particular relations of an MT become in a PT assertions on the
reality, we thus presuppose this logic for all PT , which will become clearer in
Chaps. 3 and 6.

Attempts to modify logic were tried in mathematics as well as in physics.
Quantum mechanics was used in physics as an argument for the need of a
polyvalent logic, a probability logic with a continuous scale of values having
“true” and “false” as limiting extremes. The fact that we build a quantum
theory with normal logic shows that such a necessity does not exist.

We introduce logic by the following axiomatic rules: If A, B, C are rela-
tions, then the relations

(A or A) ⇒ A, (2.3.1)

A ⇒ (A or B), (2.3.2)

(A or B) ⇒ (B or A), (2.3.3)

(A ⇒ B) ⇒ ((C or A) ⇒ (C or B)) (2.3.4)

are implicit axioms of MT .
If one considers a relation with two possible values, “true” or “false,” and

one attributes to the relation “A or B” the value true if at least one of the
two relations A or B is true, otherwise the value false, and one attributes to
the relation “not A” the value true if A is false, and conversely, then (2.3.1)
to (2.3.4) represent true relations (because “A ⇒ B” means by definition
“(not A) or B,” i.e., “A ⇒ B” is true if A and B are true or A is false).

And yet one should not confuse the logical implicit axioms (2.3.1) to (2.3.4)
with the intuitive association of “true” or “false” to “any” relations A,B, . . ..
However, in Sect. 2.2 we had not introduced the “values” true and false for
relations, but only laid down the rules of proof deriving new relations from
axioms. What one would express intuitively is as follows: In this MT , “A is a
true relation” is replaced by the new expression “A is a theorem in MT .” We
have already outlined above that if A is not a theorem in MT , then it does not
result inevitably that “not A” must be a theorem in MT . It may be thus that
neither A nor “not A” are theorems in MT . It is only in the following way
that the logic introduced by the implicit axioms described above is a normal
logic:

(a) If a relation A, as well as “not A,” is a theorem in MT , then each well-
formed relation B (in the sense of Sect. 2.1) is a theorem in MT . Such
an MT is contradictory and is unusable, since it does not in fact state
anything. We will see in Chap. 3 that such a contradictory MT already
leads to a completely “unusable” PT before one has tested such an MT by
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experiment. For this reason, we eliminate all the contradictory MT . Then
only A or only “not A” can be a theorem in MT .

(b) The following principle of proof by contradiction, often used during proofs,
is also valid: If one adds to MT , as an additional axiom, the relation
“not A,” then one obtains a theory MT ′ stronger than MT (in the sense
of Sect. 2.2); and if MT ′ is contradictory, then A is a theorem in MT .

(c) If A is a theorem in MT , then “A or B” is a theorem in MT .
(d) If B is a theorem in MT , then “A or B” is a theorem in MT .
(e) If “not A” and “not B” are theorems in MT , then “not (A or B)” is

a theorem in MT ; and also if “A or B” is a theorem in MT , then
“not [(not A) and (not B)]” is a theorem in MT , i.e., “not A” as well
as “not B” cannot be theorems in MT .

The two criteria (a) and (b) fix the sense of “not,” and what we briefly
indicate in the new form by bivalent logic.

The criteria (c) to (e) fix the sense of “or,” which replaces the sense of “or”
introduced above in an intuitive way, using the values “true” and “false.” In
short, we say that (c) to (e) fix the “normal” sense of “or.”

In this sense, on the basis of (a) to (e), we say finally that the bivalent
logic is introduced by the implicit axioms (2.3.1) to (2.3.4).

Of course, we will not draw here all the significant consequences for the
technique of mathematical proofs of the implicit axioms (2.3.1) to (2.3.4)
mentioned above (in particular to prove the deductions (a) to (e)). This is not
necessary because the deductions obtained are for the most part “intuitively”
obvious, and the reader is certainly accustomed to applying such logic and the
methods of proof in mathematics. For a detailed description, we refer to [6].
In particular, it is easy to establish the above deductions (a) to (e) using the
deductions mentioned in [6, Chap. I, Sect. 3.]. (a) is proved in [6, Chap. I,
Sect. 3.1], (b) is identical to C 15 of [6, Chap. I, Sect. 3.3], and (c) and (d)
easily result from the implicit axioms (2.3.2) and (2.3.3) mentioned above and
the rule of proof (3) of the preceding section of this book (i.e., Sect. 2.2). (e)
is a consequence of the equivalent relations mentioned under C 24 of [6, Chap.
I, Sect. 3.5], “not (not A) ⇔ A” and “(A or B) ⇔ not [(not A) and (not B)].”

Because of their interest, particularly for the very significant reflection
from the point of view of physics (see Chap. 3 and especially Chap. 6), two
other relations which result from the implicit axioms (2.3.1) to (2.3.4) are
added:

(f) Let A be a relation in MT , and let MT ′ be the theory obtained by ad-
joining A to the axioms of MT . If B is a theorem in MT , then “A ⇒ B”
is a theorem in MT . (Proof: see C 14 of [6, Chap. I, Sect. 3.3]).

(g) Let A(x) and B be relations in MT (x is not a constant of MT ), let T be
a term such that A(T ) is a theorem in MT , and let MT ′ be the theory
obtained by adjoining A(x) to the axioms of MT (x is thus a constant of
MT ′). If B is a theorem in MT ′, then B is a theorem in MT . (Proof: see
C 19 of [6, Chap. I, Sect. 3.3]).
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From the two relations (a) and (b) above, for an MT without contradic-
tion, it results that if neither A nor “not A” are theorems in MT , then one
can add to MT the relations A as well as “not A” as axioms, and in this
manner thus obtain two theories, MT1 and respectively MT2, which are both
stronger than MT and without contradiction. As already mentioned above,
this situation is very significant for physics. In particular, we return to the
discussion of the relation between the Galileo–Newton space-time theory and
the special relativity theory in [2, Chap. IX].

We will not examine here the problems of the “proof” of noncontradic-
tion in an MT . We adopt the point of view that the MT s used are without
contradiction as long as a contradiction is not discovered. In the case where
there would be a contradiction in MT , we would have to change the axioms
in order to eliminate it.

If A and B are relations, we briefly write for the relation “(A ⇒ B) and
(B ⇒ A)”:“A ⇔ B” and we say that “A is equivalent to B.” For any relations,
because of the axioms introduced above, the following equivalences (C) are
valid (as theorems in MT , see [6, Chap. I, Sect. 3.3]):

(A and (B or C)) ⇔ ((A and B) or (A and C)),

(A or (B and C)) ⇔ ((A or B) and (A or C)),

(not (A and B)) ⇔ ((not A) or (not B)), (C)

(not (A or B)) ⇔ ((not A) and (not B)),

(not (not A)) ⇔ A.

If we “formally” regard the sign ⇔ as a sign of equality, and if we put the
sign “∧” instead of “and” and the sign “∨” instead of “or,” then the logi-
cal theorems written above enter formally into the rules of calculation for a
complemented distributive lattice. The fact that

(A ⇒ B) ⇔ [(A or B) ⇒ B]

is a theorem can formally be interpreted so that the sign ⇒ is the order
determined by the lattice operations ∧, ∨, so that also conversely the sign ⇔
becomes formally a sign of equality.

However, there is a completely decisive difference between a complemented
distributive lattice and the logical theorems above. The letters that appear in
the logical relations are not elements of a set, and can in no way be applied
directly to the logical relationship between relations. Relations in MT and
elements of a set are essentially different objects and should not be confused.

In spite of this, the five relations above (C) can be considered as the
most concrete formulation used to introduce the classical logic in MT by the
implicit axioms (2.3.1) to (2.3.4). In what follows, we will always presuppose
the validity of the implicit axioms (2.3.1) to (2.3.4).
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Having introduced the logical sense of “or” and “not” in MT , one must
emphasize that nothing has been said about the manner of logically binding
relations related to facts of reality, because some such relations are first of all
not combinations of signs appearing as relations A,B, . . . in MT (see Sect.
2.1). It is only in Chap. 6 that we will speak of the problem of a relation
between an MT and the reality domain W , and by this also of the problem of
the interpretation of the signs ∨ and ¬ of Sect. 2.1. With regard to the logical
signs, the mathematization process (cor) is not simple; this is seen particularly
with the sign τ introduced in Sect. 2.1, which will be further outlined in this
chapter.

Whereas ∨ and ¬ obtained their sense by the implicit axioms (2.3.1) to
(2.3.4) (concretely as “or” and “not”), we must now give a sense to τ by
axiomatic rules. Previously, we introduced some abbreviations which have an
obvious concrete sense. If R is an assembly containing the letter x, then one
can form the assembly τx(R) which does not contain any x (see Sect. 2.1 and
[6, Chap. I, Sect. 1.1]). If one substitutes x by the assembly τx(R) in R (i.e.,
everywhere where x appears in R), then one obtains a new assembly which we
denote by (∃x)R. The assembly (∃x)R does not contain any x. The assembly
τx(R) is concretely an object which satisfies R. The assembly (∃x)R is thus
R with a “particular object which satisfies R” put in the place of x. We can
also say that “there exists an object which satisfies R.” If R is a relation,
then (∃x)R is a relation (τx(R) is a term), i.e., according to Sect. 2.1, (∃x)R
can appear in MT only if R is a relation. The fact that “there is not an
object which satisfies (not R)” is concretely expressed by “R is valid for all
the objects.” For this reason we shorten “not ((∃x)(not R))” by (∀x)R. If R
is a relation, then (∀x)R is a relation, and it is meaningful in MT .

We now introduce the meaning, corresponding to the intuitive sense, of
(∃x)R by an axiomatic rule.

If R(x) is a relation containing the letter x and if T is a term, then

R(T ) ⇒ (∃x)R(x) (2.3.5)

is an implicit axiom. R(T ) is the relation which results from R(x) if x is
replaced by T . The implicit axiom (2.3.5) thus expresses the fact that there
exists an object which satisfies R if there is a T which satisfies R.

For the details and consequences of the implicit axioms (2.3.1) to (2.3.5)
introduced until now, one can refer to [6, Chap. I, Sect. 4], or one can follow
the method exerted intuitively by using the expressions “there exists” and
“for all.”

However, some theorems will be mentioned without proof, since they will
play a role in Chap. 3.

(α)If R(x) is a theorem in MT and if x is not a constant of MT , then (∀x)R
is a theorem in MT .
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(β)If A(x) and R(x) are relations of MT (x is not a constant of MT ), and
if A(x) ⇒ R(x) is a theorem in MT , then “(∃x)A(x) ⇒ (∃x)R(x)” is a
theorem in MT .

(γ) If A(x) and R(x) are relations of MT , then the relations “(∃x) (A(x) and
not R(x))” and “(∀x)(A(x) ⇒ R(x))” are equivalent.

By introducing the sign τ , the relation (∃x)R,the relation (∀x)R, and the
implicit axiom (2.3.5), we were not so concerned with the establishment of
such theorems as such, but only with showing where these relations intervene
in MT ; however, one does not speak of physics or facts of reality. For this
reason we warn, expressly and with insistence, not to identify blindly the
expressions “there exists” and “for all” with “any forms of everyday assertion”
on reality. To be able to express warnings here, we briefly give some examples
of “common factual assertions” to which one will not give a sense during the
construction of a PT (at least not a directly obvious sense). It must be outlined
that such factual assertions are not used as a basis for the construction of a
PT as is presented in this book.

Such meaningless assertions (at least for the moment) are, e.g., expressions
such as “all ravens are black,” “all electrons have the same mass m,” “all men
are mortal,” etc. Let us take as an example the first expression: “all ravens are
black.” One can easily formalize it into the mathematical shape of Sect. 2.1:
r is a relational sign of weight 1 with the sense “to be raven,” s is a relational
sign of weight 1 with the sense “to be black.” The expression “all ravens are
black” would then be written

(∀x)(r(x) ⇒ s(x)).

But contrary to the everyday expression above, the relational signs r and
s do not have significance, as for the contents (which is the intention) one
cannot introduce the sign ∀ only “formally” as above in MT . Should “all
ravens” also have a factual reference (and not only a formal one)? But what
kind of a reference? What do we mean by “all ravens”? and how can “all
ravens” be shown? In fact, where can “all ravens” be found?

We will never use in the construction of PT expressions such as those
mentioned above, except in forms of shortened expressions, but on which the
logical rules are not applicable!

After this warning, “to not apply blindly forms of logical assertions, and
logical rules of MT to reality,” we continue with the logical construction of
an MT by introducing the relation “to be identical” by a sign in MT , and by
giving it a meaning in MT using axiomatic rules.

Let us introduce as additional sign (for all the MT s which will be used
later), the equality sign “=,” a relational sign of weight 2 with the prescription,
in the sense of Sect. 2.1, that “= AB” is a relation between two terms (i.e.,
two objects) A,B. Instead of “= AB” we write “A = B.” For “not (A = B)”
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we write “A �= B.” We fix the sense of the sign “=” by the following axiomatic
rules:

If R(x) is a relation, and if A and B are terms, then

(A = B) ⇒ (R(A) ⇔ R(B)) (2.3.6)

is an implicit axiom.

If R(x) and S(x) are relations, then

[(∀x)(R(x) ⇔ S(x))] ⇒ [τx(R) = τx(S)] (2.3.7)

is an implicit axiom.

The implicit axiom (2.3.6) expresses the fact that it is “equal” if, in a
relation R(x) which includes the letter x, one replaces x by A or a B identical
to A, i.e., that the relations R(A) and R(B) are “the same” or – more pre-
cisely – they are equivalent. One can also say: Two identical terms A, B also
have the same “property” R. The implicit axiom (2.3.7) is not perceived in so
intuitive a way, since the sign τ (concretely, “an object which...”) is less easy
to grasp in its intuitive content. The implicit axiom (2.3.7) says that for any
x, two identical properties R and S imply that the term (concretely, object)
determined by τ is identical for R as well as for S, i.e., that the process of
selection τ chooses “in the same manner” the identical properties R and S.

For a detailed description of the consequences of this axiom we refer to [6]
I, Sect. 5. Two theorems will be given, without proof, since they will often be
used later and they will also have an importance from the physical point of
view in Chap. 3. Let us begin with a definition:

If the relation

(∀y)(∀x)((R(y) and R(x)) ⇒ (x = y))

is a theorem in MT (it is often said that there exists at most one x such that
R), then R(x) is said to be “single-valued in x” in MT . For each MT which
satisfies the axioms (2.3.1) to (2.3.7) there is the relation

(δ) If R(x) is single-valued in x in MT ,

R(x) ⇒ (x = τx(R))

is a theorem in MT .

And so, conversely, for a term T , the relation

R(x) ⇒ (x = T )
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is a theorem in MT , then R is single-valued in x in MT .
Let us introduce another definition: If R(x) is single-valued in
x and if

(∃x)R(x)

is a theorem in MT , one says “there exists one and only one x such that
R(x),” and that R(x) is “functional” in x in MT . One has then

(ε) If R(x) is functional in x in MT ,

R(x) ⇔ (x = τx(R))

is a theorem in MT .

And if, conversely, for a term T ,

R(x) ⇔ (x = T )

is a theorem in MT , then R(x) is functional in x in MT .

In conclusion, we repeat once again that the fundamental logical axioms of
an MT (as summarized in Sect. 2.3) were not described to deduce as theorems
of an MT the known conclusions in mathematics, but were described to better
distinguish later the sense of these axioms of an MT in a PT (e.g., in Chaps. 3
and 6).

2.4 Set Theory

Given that we presuppose also the set theory, we briefly turn our attention
to the problem of the pose of axioms. We want especially to indicate some
elements which will be significant for the use of these axioms in a PT . The
problems of the use of the set theory in the representation MT of a PT can
only be dealt with later; for this reason, almost no indication on the physical
meaning will be given here for the moment.

In the set theory there appears as a new relational sign: “z ∈ y” (concretely,
“z is an element of y”). As an abbreviation for “(∀z)((z ∈ x) ⇒ (z ∈ y)),”
i.e., for the relation “all the elements z of x are also elements of y,” we briefly
write “x ⊂ y” (concretely, “x is part of y;” or “y contains x” or similar
expressions). For “not (z ∈ y)” respectively “not (x ⊂ y),” we often write
“z �∈ y” respectively “x �⊂ y.”

The relational sign ∈ will become of decisive importance for the use of an
MT in a PT . Concretely, a PT includes assertions about the facts of reality
as elements of a set (see Chap. 3).
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For the set theory, it is decisive that the set is intuitively seen as the
collective whole of all its elements. But, it is precisely this “whole of all”
which is doubtful in physics, as we have already outlined in the introduction
of the logical sign ∀ in MT . For example, the statement “set of all electrons”
is not regarded as meaningful during the construction of a PT , because it is
doubtful that this totality of all electrons exists.

In mathematics, “to collect in a set” is a significant notion of the set theory.
If the set is a collection of its elements, then two sets must be identical if they
have the same elements; for this reason, one requires as a first explicit axiom

(∀x)(∀y)((x ⊂ y and y ⊂ x) ⇒ (x = y)). (2.4.1)

But it is precisely this “collection in a set,” intuitively so obvious, which leads
to contradictions in mathematics when one neglects to take certain precau-
tionary measures.

If we try to join together formally all the x of a determined kind in a
set, this can be carried out as follows: Let R(x) be a relation, we shorten the
relation “(∃y)(∀x)((x ∈ y) ⇔ R(x))” by “CollxR.” If CollxR is a theorem in
MT (the relation R is said to be collectivizing in x in MT ), one says that
the relation R(x) determines a set. y is the “set of all x which satisfies R(x),”
and because of “(∀x)((x ∈ y) ⇔ R)” and “(∀x)((x ∈ z) ⇔ R),” it follows the
equality “z = y.” For the relation “S(y) | (∀x)((x ∈ y) ⇔ R),” there exists
therefore at most one y such that S(y), i.e., according to Sect. 2.3, is single-
valued in y. If (∃y)S(y) is a theorem in MT (i.e. if S(y) is functional in y),
according to Sect. 2.3, then “S(y) ⇔ (y = τy(S))” is also true. Consequently, if
CollxR, i.e., (∃y)S(y), is a theorem in MT , we can denote the set of y such that
S(y) by “τy[(∀x)((x ∈ y) ⇔ R(x))],” for that we write Ex(r) concretely “Ex(r)
is the set of x such that R(x).” The relation “(∀x)((x ∈ Ex(R)) ⇔ R)” is thus
equivalent to CollxR, and the relation R(x) is equivalent to “x ∈ Ex(R).”
Later on, the set Ex(r) will often be written in the usual form “{x | R(x)}.”

But the set Ex(r) “exists” only if CollxR is a theorem in MT . In no case,
for all R(x), is the relation CollxR a theorem in MT . This seems curious,
since there should “always” be, i.e., for each R(x), the “set of x such that
R(x).” Wouldn’t it be easy to conceive of CollxR as an axiom for all R(x)?
All those who have dealt with problems of an “intuitive” set theory know that
such a general condition contains problems. For this reason we will proceed
in a more careful way.

If one considers only the x for which R(x) is true and which are elements
of a set z (z being susceptible to contain elements that do not satisfy R), then
one expects that the x which satisfy R form a subset of z, i.e., CollxR becomes
a theorem in MT . If the relation R still depends on an object y, and if all x
that satisfy the relation R are elements of a set z (which possibly depend on
y), y being fixed, then all x that satisfy R, for at least an element y of a set
u, must form a set, which we require in the implicit axiom
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((∀y)(∃z)(∀x)(R ⇒ (x ∈ z)) ⇒ (∀u)Collx((∃y)((y ∈ u) and R)). (2.4.2)

This will make it possible to obtain, starting from sets, new sets using rela-
tions. But to be able to produce sets we pose the following axioms:

(∀x)(∀y)Collz(z = x or z = y). (2.4.3)

This means that if x and y are objects, then there is a set whose only elements
are x and y. We indicate this by {x, y}. This axiom is very easy to interpret in a
PT as any finite set in which a finite number of x1 · · ·xn are collected together.
But for the MT , the infinite sets (which will be defined later) will be of great
importance. These infinite sets made necessary a concrete axiomatization of
the set theory; but it is not possible to interpret them physically, which we
have already mentioned above, and which we will more precisely discuss in
Sect. 3.2.4.

To continue to develop the set theory, we still need the possibility of intro-
ducing a pair (x, y) of terms (objects) as a new term, i.e., a new object made
up of two individual objects x, y

(∀x)(∀x′)(∀y)(∀y′)((x, y) = (x′, y′) ⇒ (x = x′ and y = y′)). (2.4.4)

The pair (x, y) is different from the set {x, y}! In the pair, according to (2.3.4),
the components x and y are ordered.

(∀x)Colly(y ⊂ x) (2.4.5)

means that “the set of all the subsets of a set x exists.” The last axiom

postulates the existence of an infinite set. (2.4.6)

An infinite set is precisely a set not finite. A finite set is defined by the fact
that the cardinality changes if one adds one element to the set.

Each MT used in a PT is stronger than the set theory, i.e., all the axioms
indicated until now are valid in MT . In what follows, we suppose that each
MT is stronger than the set theory.

With regard to physics – as outlined in Sect. 3.2.4. – one could add to the
set theory a seventh axiom that postulates that “there is no set whose size is
strictly between that of the integers and that of the continuum.” One could
show that this seventh axiom is independent of the precedents. Otherwise,
one could require that each set of an MT is either a set at most countable, or
a subset of an echelon on sets at most countable.

In an MT (stronger than the set theory), starting from n sets (terms)
E1, . . . , En, one can build step by step new sets. We denote by P(E) the
set of all subsets of E, and we denote by E1 × E2 the set of all pairs (x, y)
with x ∈ E1 and y ∈ E2. When one applies a finite number of times the
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operations P and × to E1, . . . , En, one obtains new sets. Such a process,
applicable in a finite number of steps, is called an echelon construction and
the set thus obtained is called an echelon. The sets E1, . . . , En are the base sets
of the echelon construction. We denote an echelon by S(E1, . . . , En), where
the letter S denotes the echelon construction scheme, whereby one obtained
the echelon. If E′

1, . . . , E
′
n are n different sets, then S(E′

1, . . . , E
′
n) is also an

echelon of scheme S, but on the base sets E′
1, . . . , E

′
n.

In MT , let fi be mappings of the sets Ei onto the sets E′
i, i.e., for any

x ∈ Ei one has fi(x) ∈ E′
i, where fi(x) is defined for any x ∈ Ei. From the

mappings fi, one can then very easily build by canonical extension mappings
of E1, . . . , En onto E′

1, . . . , E
′
n. This is carried out step by step:

1. By defining a mapping g of P(E) onto P(E′) starting from a mapping f
of E onto E′ such that, for a subset e ⊂ E, g(e) is defined as the subset
of all f(x) such that x ∈ e.

2. By defining a mapping g of E1 ×E2 onto E′
1 ×E′

2, starting from the map-
pings f1 of E1 onto E′

1 and f2 of E2 onto E′
2, by g(x, y) = (f1(x), f2(y)).

The application of S(E1, . . . , En) onto S(E′
1, . . . , E

′
n) thus obtained is de-

noted by 〈f1, . . . , fn〉S .
If all fi are injective (respectively surjective), then 〈f1, . . . , fn〉S is also

injective (respectively surjective), which one can easily show because this is
valid for each step P or × of the echelon construction scheme S. If fi are
mappings of Ei onto E′

i and gi of E′
i onto E′′

i , one denotes the mapping of Ei

onto E′′
i by gifi. One has then

〈g1f1, . . . , gnfn〉S = 〈g1, . . . , gn〉S〈f1, . . . , fn〉S .

If all fi are bijective (i.e., injective and surjective), with gi = f−1
i , then

〈f1, . . . , fn〉S is also bijective and

(〈f1, . . . , fn〉S)−1 = 〈f−1
1 , . . . , f−1

n 〉S ,

where f−1 is the inverse bijection of f .
If there are several elements s1, . . . , sp of any echelons G1, . . . , Gp, then

one can give oneself an element s = (s1, . . . , sp) of the set G1 × · · · × Gp,
which is also an echelon. If there is a relation R(x1, . . . , xp), one can consider
the relation

R(x1, . . . , xp) and x1 ∈ G1 and . . . and xp ∈ Gp.

Otherwise, one can also take R as a relation of only one x of G = G1×. . .×Gp.

There is the theorem: Collx
(

R(x) and x ∈ G
)

, i.e., R(x) determines in G

a subset H ⊂ G such that {x ∈ H ⊂ R(x) and x ∈ G}.
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This set H was previously denoted by Ex(R(x) and x ∈ G). Later we
will denote this set H by {x

∣
∣ x ∈ G and R(x)} (as already mentioned).

The set H is still an element of P(G), i.e., a relation R can be characterized
by a subset of an echelon or as an element of an echelon. In the same way,
functions, applications, etc. can be characterized by an element of an echelon.
In particular the relations of representation Rµ (see Chap. 3) can thus be
described by a subset rµ of an echelon Sµ on the terms of representation as
base sets or as elements rµ ∈ P(Sµ). One can also naturally consider for all
Rµ the element (r1, r2, . . .) = s of P(S1) × P(S2) × · · ·; and if, conversely,
s ∈ P(S1) × P(S2) × · · ·, then s = (r1, r2, . . .) is equivalent to

r1 ∈ P(S1) and r2 ∈ P(S2) and . . ..

Axioms or theorems, expressible only by the Rµ, transform themselves into a
relation P of s into which enter the base sets.



3

From Reality to Mathematics

In this chapter we will be concerned with the problem of correspondence be-
tween the structure of a part of reality and an idealized mathematical structure
that is similar to the structure of that part of reality. This part of reality will
be called the application domain of the theory, denoted by Ap.

We will not explain or base this structure on philosophical considerations
or other points of view, but by the results of experiments. The only foundation
of the detected structures is the success of the method of physics that we will
describe here in detail. This does not mean that we can detect these structures
only by going for a walk in nature; it is necessary to make experiments, i.e.,
to work with nature and to observe the behavior of nature. Thus the detected
structures can depend on our work with nature. We can explain why we make
a particular experiment, but we cannot explain the structure we have verified
by the result of this experiment.

It would be a big mistake to think that the realities depend only on the
structures given in untouched nature. There are many realities that depend
essentially on our labor, e.g., a car produced in a factory. We can explain the
many structures of this car because we have produced the car, but we cannot
explain the laws of nature that we have used. We can only detect these laws
and what is essential to formulate these laws in the form of mathematical
structures.

The formulation of this method will be founded in this chapter by
describing the transition from reality to mathematics by distinguishing three
processes:

– A first process, called recording process, which is a formulation of recorded
facts denoted under the form of sentences in a natural language of very
simple form (a descriptive language) called the basic language of the in-
tended theory. It must be possible to record these facts without using the
intended theory.

– A second process, called mathematization process, which is a transcription
of natural sentences denoting facts (formulated in the basic language) into
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formal sentences (formulated in a formal language) – the mathematical
language of the theory.

– A third process, called idealization process, which is an enrichment by
idealization of the previous mathematical structures of the theory.

3.1 Recording Process

The first step in the transition from reality to mathematics is a recording
process of facts, denoted by ↔. By this recording process, facts related to the
application domain Ap of the theory are recorded under the form of sentences
formulated in a natural language of very simple form (a descriptive language)
called the basic language of the theory.

In an intuitive way, the presence of such a language ensures us of the
existence of a nonproblematic language from a semantic point of view, i.e.,
a language that has a complete and exclusively empirical interpretation, i.e.,
using only concepts related to direct observations, or indirect observations
with the help of pre-theories.

3.1.1 Basic Language

Despite its potential syntactic–semantic ambiguity and vagueness, natural
language still serves as the foundation of any of the formal languages (see
Sect. 3.2)1. Here we consider a natural language of very simple form, called
basic language, denoted by Bl. In this language, facts of the reality, stating
properties of objects and the relations between objects, are denoted by natural
sentences of the form:

(p) the object a has the property p̃ ;
(r) between the objects a1, . . . , an and finite many real numbers α1, . . . , αn,

there is the relation r̃n(a1, . . . , an, α1, . . . , αn).

Before we can formulate sentences of the form (p) and (r), it is necessary
to establish the objects, their properties and relations. Before we can begin to
develop a physical theory, we must have the possibility of such determinations
of realities without using the intended new theory. This does not mean that
we do not use any theory. On the contrary, for most of the physical theories,
we use so-called pre-theories, i.e., already known theories. We will discuss later
how we can use theories to detect new realities (see Sect. 6.3).

It is clear that we have to begin physics by such theories that do not use
pre-theories, i.e., where we can state realities directly by our senses. But we
do not want to discuss the problem of a construction of the total physics.
1 Later, in Chap. 6, we will extend the basic language Bl to an extended basic lan-

guage, denoted by Blex , by introducing ‘new words’ designating “new concepts.”
By these “new concepts” we detect also - new facts -.
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We are convinced that the domain of physics is determined by the region of
directly observable realities, and by the method of physical theories that we
wish to develop in this book. There are many realities which we do not accept
as directly observable physical realities. This does not mean that we deny the
existence of realities that cannot be detected in a physical way. We will hint
at such realities in some parts of this book.

The method of physical theories developed in this book can also be used
in other domains than simply those of physics if we begin with realities that
are not accepted by physics as directly observable realities (see, e.g., [7]). In
this way we can, e.g., decide that we are not interested in describing the di-
rectly observed sound of a symphony played by an orchestra. The CD of this
symphony is an example of a physical recording of the vibration of the air pro-
duced by the orchestra. To obtain from this CD an impression of the physically
noninteresting sound of the symphony, which is for us the essential value of
the CD, implies the construction of a good hi-fi installation system. However,
the construction of this system requires a good physical and psychological
knowledge.

The above formulation (p) and (r) of sentences of the basic language is
not sufficient; we have to say something more about the possibility that real
numbers can appear in sentences of the form (r). They cannot appear from
direct observations, since we cannot find real numbers in nature. We can
only find whole numbers, e.g., - the number of sheep in a herd -. Therefore
real numbers can only appear by the intermediary of pre-theories. By these
pre-theories it is established which objects are described by real numbers α.
For instance, if we use Newton’s theory of space–time as a pre-theory, we can
construct the description of time by one real number t as describing a time-
point, and a triplet of real numbers (x1, x2, x3) as standing for a spot in space.
The real numbers t, x1, x2, x3 can only be determined by fixing a space–time
reference system.

Thus real numbers in (r) only make sense if one says from which
pre-theory, and in which way these real numbers appear in (r). But it would
be practically impossible to say where a real number appears, and in which
way this real number is defined, e.g., a real number t for the “time” (“time”
defined in the pre-theory). Therefore one presumes, if we use real numbers
in (r), that the definition of these real numbers by pre-theories is known and
marks these definitions by only one word as, e.g., ‘time t’ instead of only ‘t’,
or ‘position x1, x2, x3’ instead of only ‘x1, x2, x3’. Sometimes one removes the
words ‘time’ and ‘position’, and marks the physical sense by only the letters,
e.g., ‘t’ for time and ‘x’ for position. Often the meaning of a real number is
also determined by the position of this real number in (r) (see Sect. 3.1.4).

The introduction of real numbers in physics is a very common practice
which essentially simplifies the mathematical description, so that one some-
times thinks that the physical method is essentially quantitative. But physics
is not only quantitative. How real numbers can be defined in physical theories
will be described later (see Sect. 3.1.1.2).
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A necessary presumption for the possibility of formulating sentences of the
forms (p) and (r) is the possibility to mark an - object - by a letter ‘ai’ (also
by any sign). If we have, e.g., two glass balls, we can mark one glass ball by
‘a’ and the other by ‘b’. This is not trivial. If we have, e.g., introduced by
quantum mechanics as a pre-theory the concept of electrons, we see that we
cannot mark a particular electron by a letter. If we have, e.g., an He-atom
with two electrons, we cannot mark one electron by ‘a’ and the other by ‘b’,
since the hypothesis that we can distinguish the a-electron from the b-electron
is in contradiction to quantum mechanics. However, if we make a collision
experiment between an electron and an H-atom it would be a contradiction
to quantum mechanics to say that the electron leaving the collision is the
same (or is not the same) as the incident electron. The electron leaving the
collision is neither the incident electron nor that which was in the H-atom.

If we can mark certain realities by a letter, we say that these realities are
objects. Electrons are not in this sense objects. A “physical system” consisting
of several electrons and nucleus can be an object if it can be identified using
the total experiment that will be described by the intended theory.

The fact that we restrict the basic language of an intended theory to
sentences of the forms (p) and (r) is essential for the construction of the
method of physics proposed in this book. But since physicists also use other
forms of language that are not very clear and very condensed, so condensed
that people other than physicists can (or better, must) misunderstand this
language, we will give examples of languages that do not belong to the basic
language and that do not describe the correct method of physics.

An example of such a sentence that could be misunderstood is the
following:

‘A ruler in motion is shorter than a ruler at rest’.

Such a sentence makes no sense. If one analyzes it, it is syntactically correct.
Nevertheless, it is semantically incorrect. This sentence is in contradiction
with itself.

In this sentence, the first ruler has the property “to be in motion.” But
what is “in motion”? “In motion” has no “absolute” meaning. It means that
the first ruler is moving “relative to the second ruler.” Also that, the second
ruler is moving “relative to the first ruler.” Therefore, the above sentence
would also say that the second ruler is shorter than the first ruler – a contra-
diction.

The above sentence is an incorrect formulation of the following reality:
We produce by the first ruler two marked spots on the second ruler by the
following process: in the middle of the first ruler we produce a flash of light. If
this flash reaches the two ends of the ruler, it will produce two marked spots
on the second ruler. Then the distance between these two marked spots on
the second ruler is smaller than the second ruler.
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If we produce in the same way two marked spots on the second ruler by a
flash on the second ruler, then these two marked spots on the first ruler also
have a distance smaller than the first ruler.

It is clear that such briefly formulated sentences have nothing to do with
the intended basic language. But there are many other sentences used by
physicists which we do not want to take as sentences of a basic language. We
can only formulate correctly the syntax and the semantics of a basic language
and provide examples.

A very large area of language is the region of language where physicists
speak of fairy tales with the intention of finding a new theory and of finding
new realities (see Sect. 6.3). We make no restrictions to such a language, since
we make no restrictions to finding intuitively new mathematical parts MTΣ

of a physical theory and to finding the picture terms in this MTΣ (see Sect.
4.3). The only interesting question is to know whether this MTΣ , with the
picture terms, is a good representation of the application domain (see Sect.
4.3). Even unconventional ways are permitted if the result is usable.

In physics there are also linguistic formulations which could be used for a
basic language but which are not so suitable for our aim, since they presuppose
more or less some structures of reality that we would like to describe by axioms
of the mathematical part of the theories.

If we have for instance on the table a glass of water, and if we take as an
object a this water, we can formulate as a sentence of Bl:

‘a has the property liquid’.

There are many equivalent linguistic formulations, e.g.,

‘a is liquid’ (liquid as an adjective),

‘a is a liquid’ (liquid as a substantive).

Or another example:

‘a has the property gas’.

There also are other linguistic formulations, e.g.,

‘a is gaseous’,

‘a is a gas’.

We will not take all these possible equivalent formulations in Bl. We will only
take the formulation ‘a has the property liquid’ or ‘a has the property gas’
as sentences of Bl. It appears to us that it brings essential advantages if one
allows only restricted forms of sentences in Bl.
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Another example: We have measured the distance value α between two
objects with the help of a pre-theory of measuring distances. The physicists
use for the majority of time very simple, and therefore also very imprecise,
formulations, as for example,

‘The distance between the objects a1 and a2 has the value α’.

Such a sentence is not correct since there is no exact real number α as a value
of the distance! Therefore we want to allow in Bl only a correct formulation
as, e.g.:

‘Between the objects a1, a2 and the real number α, there is the distance
relation δ(a1, a2, α)’.

There can be different α1, α2, . . . which fulfill this relation!
Therefore it is advantageous if we allow in Bl only a very restricted form

of sentences. This does not mean that we do not allow physicists to speak
amongst themselves in a very vague language, so that people who are not
“insiders” can (or even must) misunderstand this language.

3.1.1.1 The Syntax of the Basic Language

The syntax of the basic language Bl is given by the following postulates:

(i) the sentences are of the forms (p) and (r),
(ii) we can form compound natural sentences made up of sentences by using

the conjunctive word ‘and’,
(iii)we can take the negation of a sentence of the forms (p) or (r) by using

the word ‘not’.

We call (ii) and (iii) the logic of the basic language. It is essential that we do
not allow words such as ‘all’ and ‘there exists’ (or ‘there are’). The logic of
Bl is therefore a very simple one. We will see later that if sentences designate
propositions that have a meaning, then some of these propositions can be
additionally assigned a truth value (see Sect. 3.1.1.2). But the logic of Bl has
nothing to do with this notion of “truth”!

We therefore do not introduce a double negation as, e.g., ‘not : a has not
the property p̃ ’, and therefore we do not also introduce the “axiom” that this
double negation is equivalent to the sentence ‘a has the property p̃ ’.

We also do not introduce the negation of a compound natural sentence
composed of sentences (p) and (r).

The logic of Bl is therefore very weak; it will be fixed later by the
translation of Bl into a mathematical language and by the axioms for the
mathematical logical signs ‘∧’ and ‘¬’ (see Sects. 2.2 and 3.2.1).
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3.1.1.2 The Semantics of the Basic Language

The meaning of the words in a sentence are given by a more or less long
process. This process starts with a meaning of words that we introduce without
a theory, i.e., we introduce words by simple immediate demonstrations as in
the following sentences: ‘this is a desk surface’, ‘this is a stone’, ‘this is a
liquid’, ‘this is a rigid body’, etc.

We will not describe what we allow as having directly demonstrable
meaning. Physics is essentially determined by the domain which we admit
as having directly demonstrable meaning. For example, we do not allow a
direct meaning to words such as ‘weak’, ‘blue’, or ‘weak sound’.

But in physics there are many words the meanings of which is given by
pre-theories (see sect. 5.3). For example, the meaning of the word ‘distance’
is given by a pre-theory. The words used in a basic language must be words
the meanings of which are given without the intended theory.

The semantics of the basic language Bl is given by assigning semantic
relations between linguistic, conceptual, and real entities. The schema given
in Fig. 3.1 summarizes these semantic relations.
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Fig. 3.1. Semantic relations

One can understand that linguistic entities designate conceptual entities.
But how we get relations between conceptual entities and real entities is a very
complicated process: We will not describe the process of obtaining relations by
“immediate reference;” we can only say which of these concepts are used, but
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how we get such concepts is a psychological process which we cannot avoid
by introducing philosophical a priori concepts.

Today we try to reduce all facts described by the basic language Bl to
“digital” facts (not necessarily observed immediately!). These digital facts
have the advantage in that the “negation” of a digital fact is also a digital
fact, so that there are no problems by using the usual logical axioms for
the words ‘not’ and ‘and’. If we have, e.g., a nondigital property p̃, it can
be that we cannot decide whether ‘a has the property p̃ ’ or ‘a has not the
property p̃’, i.e., that we must leave open the fact that ‘a has or has not the
property p̃ ’.

The extended language Blex has the same form as Bl but with the addi-
tional ‘new words’ related to these “new concepts” and - new detected reali-
ties -. Therefore we will try to show in a general form the connections between
the linguistic, the conceptual, and the reality levels.

The connection between the linguistic level and the conceptual level is
very important, especially for the extended language Blex , since one often
uses words the meaning of which is already known, but which have a totally
different meaning in physics. For instance, the word ‘atom’ has (in the Greek
language) the meaning “indivisible;” but an “atom” in physics (i.e., in a Blex)
is divisible in many parts. Therefore, one can make the joke that “an atom is
called atom (i.e., indivisible) because it is not an atom (i.e., it is divisible).”
But there are also many other words in physics (i.e., in a Blex) which are new
and which also have a new meaning (i.e., which stand for a new concept).
How we can detect new realities will be described in detail in Sect. 6.3.

The following descriptions of the connections between the three semantic
levels is also important as a predevelopment for the purpose of recording the
results of physical experiments (the recorded facts) in a database, i.e., how we
can collect the various Ã (introduced in Sect. 3.1.4) as part of this database.

Notes concerning the Sect. 3.1.1.2

We will distinguish real, linguistic, and conceptual entities by enclosing the
real entities in dashes, e.g., the fact - the object a has the property p̃ -;
the linguistic entities in single quotes, e.g., the sentence ‘the object a has the
property p̃ ’; the conceptual entities in double quotes, e.g., the proposition “the
object a has the property p̃ .” We will enclose the semantic meta-propositions
in corners, e.g., � the sentence ‘s’ designates the proposition “p” �.

Basic Properties

Some properties called basic properties are selected. This selection is not
imposed by the reality but is selected by our own free will; it is the choice of
deciding for which region of the reality we intend to make a theory. We want
to exclude from the application domain Ap all objects that do not have at
least one basic property!
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Example A

Throughout Part I, the introduced concepts will be illustrated on the basis
of a simple example, noted Example A, “A description of the surface of the
earth, or of a round table.” In this context, we consider the following:

– Only one property concept “marked spot” denoted by p̃. In the basic
language Bl we will formulate sentences such as ‘the object a has the
property marked spot’.

– Only one relation concept “distance relation between objects” denoted by
r̃. In the basic language Bl we will formulate sentences such as ‘between
the objects a1, a2 and the real number α, there is the distance relation
δ(a1, a2, α)’, where the distance relation δ(a1, a2, α) is obtained on the
basis of a pre-theory of the measurement of distance.

We decide that the property concept “marked spot” is to be taken as a “basic
property.” This means that we want to describe by the intended theory only
such objects that possess the property marked spot.

Relation of Designation

The relation of designation holds between some members at the linguistic
level and their correlates at the conceptual level. This relation of designation
occurs in meta-propositions such as

� the sentence ‘s’ designates the proposition “p” �.

We stipulate that linguistic meaning is a property that a linguistic entity
(i.e., word, sentence) acquires when it happens to designate a conceptual en-
tity (i.e., concept, proposition), in other words, an entity of significance. We
will see that the relation of designation (i.e., the relation taking entities of
significance as values) composed with the conceptual meaning provides the
linguistic meaning.

We assume the principle of semantic compositionality. Roughly speaking,
this principle says for a sentence that

the meaning of the whole depends on the meaning of its parts.

According to this principle, the meaning of the sentence depends on the mean-
ing of the words. In the recording process, the sentences formulated in the
basic language Bl can be considered from a syntactic and semantic point of
view as free from ambiguity. In this case, we admit that

the designation of the whole depends on the designation of its parts.

Nevertheless, the acceptance of this principle does not mean that we adopt
the extreme thesis of semantic atomism. Our view is rather contextual.
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Example A

Considering the sentence as a whole:

– � the sentence ‘a has the property marked spot’ designates the proposition
“a has the property marked spot” �,

– � the sentence ‘between the objects a1, a2 and the real number α, there is
the distance relation δ(a1, a2, α)’ designates the proposition “between the
objects . . .” �.

Relation of Reference

The relation of reference holds between members at the conceptual level
and their correlates at the reality level. This relation of reference occurs in
meta-propositions such as

� the proposition “p” refers to - the object o - �.

Example A

– � the proposition “a has the property marked spot” refers to - the object
a - �,

– � the proposition “between the objects a1, a2 and the real number α, there
is the distance relation δ(a1, a2, α)” refers to - the objects a1, a2, α - �.

If there appear real numbers αi in a relation r̃(a1, . . . , α1, . . .), then they
refer to objects that are defined in the context of a pre-theory, and can be
described by real numbers that are also defined in a pre-theory. For example,
they can refer to marked spots and time-points that are defined in the context
of a pre-theory of Newton’s space–time reference system, and can be described
by real numbers t for time and three rectangular coordinates (x1, x2, x3) which
are also defined in a pre-theory (See Sect. 3.1.3).

Relation of Representation

The relation of representation holds between some members at the conceptual
level and their correlates at the reality level. This relation of representation
occurs in meta-propositions such as

� the proposition “p” represents the fact - f - �.

Example A

– � the proposition “a has the property marked spot” represents the fact -
a has the property marked spot - �,

– � the proposition “between the objects a1, a2 and the real number α,
there is the distance relation δ(a1, a2, α)” represents the fact - between the
objects . . . - �.
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The relations of reference pairs “propositions” to - objects - (each object
as a whole); the relations of representation pairs “propositions” to - aspects
of objects - (i.e., - properties of objects - or - relations between objects -). The
schema given in Fig. 3.2 summarizes these relations.
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Fig. 3.2. Semantic relations of reference and representation

An adequate representation of a whole domain of facts requires a system of
concepts and propositions.

Relation of Denotation

The relation of denotation holds between some members at the linguistic level
and their correlates at the reality level. This relation of denotation is con-
strued as the composition of the relations of designation, and of reference or
representation between the ‘linguistic level’ and the - reality level - via the
“conceptual level”!

Truth of a Proposition

Whether a proposition “p” is true can be decided by a process that the physi-
cists call “observation.” This process can be of “direct observations,” i.e., by
observations that have been made without any theory (e.g., a cup of tea on a
table) and of “indirect observations,” i.e., by using a pre-theory by which we
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decide whether a proposition represents a fact of reality or not. This decision
is made by the methods described in Chap. 6, and which are applied to the
pre-theory. This process also tells us the “imprecision of the observation,” i.e.,
that

– � the proposition “p” is true only with a certain imprecision �,

i.e., that

– � not the proposition “p” is true, but another proposition “p̂” �,
which one gets in Bl by introducing the imprecision, e.g., by replacing a real
number α by an interval J of real numbers. The interval J describes the “error
of measurement.”

3.1.2 Application Domain of a PT

The application domain of a physical theory PT , denoted by Ap, is the domain
of facts (stating properties and relations between objects) which is considered
in the recording process.

At the linguistic level, this domain of facts is denoted under the form of a
collection of sentences formulated in the basic language Bl. At the conceptual
level, this domain of facts is designated under the form of a collection of
propositions. This means that only the facts denoted by sentences, using terms
that designate property or relation concepts belonging to the context related
to the application domain Ap, can be taken into account.

Let us recall that we want to exclude from Ap all objects that do not have
at least one basic property!

Example A

We decide that the property concept “marked spot” is to be taken as a basic
property, i.e., that we want to describe by the intended theory only such
objects which are marked spots. The application domain Ap consists of -
marked spots - and - distance relations between marked spots -.

3.1.3 Recording Rules

By recording rules, we mean rules that ensure us the correspondence
between a fact and its formulation under the form of a sentence in the basic
language Bl.

These recording rules are not made directly. The recording rules are in
fact the relations of denotation described in Sect. 3.1.1. These relations of
denotation are construed as the composition of the relations of designation
and of reference between the ‘linguistic level’ and the - reality level - via the
“conceptual level”!
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3.1.4 Facts Recorded in the Basic Language

The result of the recording process of recorded facts is denoted under the
form of a finite collection of natural sentences, also called a compound natural
sentence or simply text (the term generally used hereafter!) denoted by Ã
formulated in the basic language Bl. Here, it should be distinguished between
recorded facts: (i) stated (the factual truth is stated) and (ii) not stated or not
knowing that they were stated.

Example A

We have a finite collection of sentences such as

‘the object a1 has the property marked spot and the object a2 has the
property marked spot and between a1, a2 and the real number α ∈ J1

there is the distance relation δ(a1, a2, α)’.

The possibility to use in Bl a mathematical relation (i.e., α ∈ J1) is due to
the fact that we use pre-theories. In this way we replace the distance relation
‘δ(a1, a2, α)’ by the distance relation

‘δ(a1, a2, J) : there is a real number α ∈ J with δ(a1, a2, α)’.

In a general manner, we have a finite collection of sentences of the form

(p) ‘the object a has the property p̃ ’;
(r) ‘between the objects a1, . . . , an and finite many real numbers α1, . . . , αn,

there is the relation r̃n(a1, . . . , an, α1, . . . , αn)’.

We have in Sect. 3.1 used the real number α as the symbol of a possible
result of measurement with the help of a pre-theory.

Now it is necessary to say a little bit more about the description of mea-
surements by pre-theories.

In general, we can have more than one kind of measurement. Therefore,
there can be more than one real number in r̃(a1, . . . , α1, . . .). The choice of
pre-theories establishes from which physical reality the various α are measure-
ments. For instance, for a gas in a container we can measure the pressure and
the volume. By the position α1 as the first and the position α2 as the second
in r̃ it will be fixed that α1 is the pressure and α2 is the volume.

It can also be that we have for the description of the results of measurement
not only one real number, but a collection of results of measurement, e.g.,
M = IR × IR × IR for the measurements of the orthogonal coordinates of the
position of an object. The set M must be defined by the pre-theories as a
set with a uniform structure (see Sect. 4.6) by the elements of which can be
described the errors of measurement.
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In order to simplify our description, we will symbolize the results of
measurement only by IR and intervals J for the description of the errors of
measurement.

It will be mentioned that the errors of measurement, described by intervals,
are not necessarily the same for all relations and measurements that appear
in the text Ã!

The next step from reality to mathematics will be to transcribe these
natural sentences into formal sentences, in particular, to transcribe the notion
of a collection of sentences of Bl into the notion of a (mathematical) set.

3.2 Mathematization Process

The second step in the transition from reality to mathematics is a mathema-
tization process, denoted by (cor). By this process, natural sentences formu-
lated in the basic language Bl (related to the application domain Ap) will
be transcribed into formal sentences formulated in a formal language, the
mathematical language of the theory.

3.2.1 The Basic Mathematical Theory

In this paragraph we will describe a formal language, i.e., a mathematical
language in which it is possible to transcribe natural sentences formulated in
the basic language Bl, i.e., natural sentences denoting facts of the application
domain Ap.

As a starting mathematical language, we consider the mathematical lan-
guage MT described in Chap. 2, i.e., “well-formed” assemblies of signs, logic,
and set theory. The mathematical language MT can further contain some
constants and axioms for these constants (but not necessarily!). In order to
obtain a more comprehensive mathematical language responding to our needs
we proceed as follows:

(i) We add to MT two relations: for every property p̃ of Bl, a formal relation
p(x); and for every relation r̃ of Bl, a formal relation r(x1, . . . , xn, α). The
relations p, r are new constants added to MT . (If a relation r̃ contains real
numbers (derived from pre-theories), the corresponding r will contain the
same real numbers.)

With this enrichment,

– the natural sentence of the basic language Bl ‘the object a has the property
p̃ ’ corresponds to the formal sentence of the enriched MT ‘p(a)’;

– the natural sentence of the basic language Bl ‘between the objects a1, a2, . . .,
and the number α, there is the relation r̃(a1, a2, . . . , α)’ corresponds to the
formal sentence of the enriched MT ‘r(a1, a2, . . . , α)’.
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In a similar way, the natural sentences compounded by the connective
words ‘and’ and ‘not’ in Bl correspond to the formal sentences compounded
by the logical signs ‘∧’ and ‘¬’ in the enriched MT .

Thus we get a one-to-one correspondence between the natural sentences
in Bl and the formal sentences in the enriched MT . We also say that
the constants p, r and the logical signs ‘∧’ and ‘¬’ are interpreted by the
mathematization process (cor).

(ii) We add to MT not only constants but also two axioms for these constants.
In Bl some properties are characterized as basic properties. Let p̃1, p̃2, p̃3 be
the basic properties in Bl, and let p1, p2, p3 be the corresponding relations
added by (i) to MT . We then define the relation p0 = p1 ∨ p2 ∨ p3.

The first axiom is the collectivizing axiom

Collxp0(x). (3.2.1)

The relation

∃y(p0(x) ⇔ x ∈ y)

and, briefly,

p0(x) ⇔ x ∈ y

are equivalent. The set y is then uniquely determined by p0(x); we write
y = {x | p0(x)}. Instead of p1(x) ∨ p2(x) ∨ p3(x) we can write x ∈ y.

The second axiom is

{x | p0(x)} is a finite set. (3.2.2)

We can never have a contradiction to this axiom (3.2.2), since we can record
only finitely many facts (stating “basic” properties, or other properties, of
objects and relations between objects), i.e., there can be only finitely many
objects in the text Ã. In some cases, we can “prove” this axiom (3.2.2) by an
experiment, e.g., if y is the set corresponding to a herd of sheep, one can then
count the elements of y. But in physics there are sets in which the number of
elements is so large that we can never count all of these elements since we can
never record “all” of the objects.

In conclusion, we take together the constants p, r and the axioms (3.2.1)
and (3.2.2) under the sign Θ̂. For the theory enriched in this way we write
MT

Θ̂
.
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Example A

We add to MT two new constants p and r: p is a relation of weight 1 noted
p(x), and r is a relation of weight 3 noted r(x1, x2, α) where α is a real
number α ∈ IR and IR is a finite set of real numbers. We have taken p̃ as a
basic property. Therefore, on the basis of the axiom (3.2.1), there is a set M
with

x ∈ M ⇔ p(x).

On the basis of the axiom (3.2.2), M is a finite set.

(We have introduced MT
Θ̂

only in order to show that the “collectivizing”
axiom is the basis of the standard form MTΘ, which we will use in all future
descriptions of physical theories.)

3.2.2 The Standard Mathematical Theory

It is very convenient on mathematical grounds to change a little the definition
of Θ̂ to Θ. Instead of introducing the constants p, r and the axioms (3.2.1)
and (3.2.2), we introduce as Θ constants M0, several s, and the axioms:

M0 is a finite set; (3.2.3)

and for the various s,

s ⊂ M0 (3.2.4)

or

s ⊂ M0 × M0 × · · · × IR × · · · , (3.2.5)

where IR is a finite set of real numbers.
We define the following correspondences between MT

Θ̂
and MTΘ:

{x | p0(x)} corresponds to M0, (3.2.6)

p(a) (for a property p) corresponds to a ∈ s
(for the p corresponding to s), (3.2.7)

r(a1, a2, . . . , α) (for a relation r) corresponds to (a1, a2, . . . , α) ∈ s
(for the r corresponding to s). (3.2.8)

Since we have postulated that all objects a of the application domain Ap

have the property p0, we can add this property p0 to every p(x) and to every
r(a1, a2, . . . , α):
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“p(x) and p0(x);”

and

“r(a1, a2, . . . , α) and p0(x1) and p0(x2) and . . ..”

The above correspondences (3.2.6) to (3.2.8) follow then from the theorems
(see Sect. 2.3)

“p(a) and p0(a)” ⇔ a ∈ {x | p(x)};

and

“r(a1, a2, . . . , α) and ai ∈ {x | p0(x)}” ⇔

(a1, a2, . . . , α) ∈ {(x1, x2, . . . , α) | r(x1, x2, . . . , α)}.

Together with the correspondence between the natural sentences of Bl and the
formal sentences of MT

Θ̂
(see Sect. 3.2.1) we get a correspondence between

the natural sentences of Bl and the formal sentences of MTΘ. For this corres-
pondence we write also Bl (cor) MTΘ.

It is often more convenient not to introduce p0(x) and the corresponding
M0 but to take all basic properties and to introduce for each basic property
a base set M i. Thus, between the natural sentences of Bl and the formal
sentences of MTΘ we have the following correspondences:

– ‘the object a has the basic property p̃i’ corresponds to ‘a ∈ M i’;
– ‘the object a which has the basic property p̃i also has the property p̃’(basic

or not) corresponds to ‘a ∈ s ⊂ M i’ (with s corresponding to “p̃i and p̃”);
– ‘between the object a1, which has the basic property p̃1, and the object

a2, which has the basic property p̃2, there is the relation r̃n(a1, a2, · · ·)’
corresponds to ‘(a1, a2, . . .) ∈ s ⊂ M i1 × M i2 × · · ·’

Thus the mathematization process Bl(cor)MTΘ is well defined also for
this general case where we take all basic properties separately.

As an axiom we only postulate that

all M i are finite sets.

Example A

We add to MT two new constants M and s. On the basis of the axiom (3.2.3),
M is a finite set. On the basis of the axiom (3.2.5), we have

s ⊂ M × M × IR.
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The mathematization process Bl (cor) MTΘ, i.e., the transcription of natural
sentences formulated in the basic language into formal sentences formulated
in the formal language, is given by

‘a is a marked spot’ (cor) ‘a ∈ M ’,

‘the measured distance between a and b is α ± ε’ (cor) ‘(a, b, J) ∩ s �= ∅’.

Here J is the interval α − ε to α + ε.

3.2.3 Enrichment of MTΘ by A

By the mathematization process (cor) we have established a correspondence
between a finite collection of natural sentences (also called compound natural
sentence or simply text) denoted by Ã, formulated in the basic language Bl,
and a finite collection of formal sentences (also called compound formal sen-
tence or simply text) denoted by A, formulated in the mathematical language
MTΘ.

Here, we make the distinction between recorded facts: (i) “stated” (the
factual truth is stated), and (ii) “not stated” or “not knowing that they were
stated.” In Chap. 6 we will give an answer to the question: How can we “state”
real facts with the help of a PT even if they were not stated before by direct
observations or with the help of pre-theories? The text A will only contain
sentences denoting facts that were stated by direct observations or with the
help of pre-theories. Often A does not contain “all”sentences denoting “stated
facts” but only a part of them.

The reason for which we can use mathematics in physics depends on the
fact that in physics we consider only facts that can be denoted in a simple
basic language Bl (see Sect. 3.1.1).

If we add to MTΘ the results of a mathematization process, i.e., the text
A, then we obtain an enriched theory, denoted by MTΘA. The objective signs
a of A are to take as constants in the theory MTΘA. In practice, we will not
take in A “all” results of experiments made until now, but only a part of these
experiments – also different parts as different texts Aη. Most of the time, we
have only in mind that one takes together these parts as one text A. The
formal sentences of A are of the form

a ∈ M

and (3.2.9)

(a1, a2, . . . , α) ∈ s , for an α ∈ J,

where the interval J describes the “error of measurement.” This can also be
written in the form
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(a1, a2, . . . , J) ∩ s �= ∅, (3.2.10)

where (a1, a2, . . . , J) is the set {(a1, a2, . . . , α) | α ∈ J}. Sometimes it can also
be interesting to add, as an experimental result, relations of the form

(a1, a2, . . . , J) ⊂ s ′. (3.2.11)

If s ⊂ M i × · · · ×M j without any real numbers, then (3.2.10) takes the form

(a1, a2) ∈ s

and (3.2.11) the form

(a1, a2) ∈ s ′.

There can never be a contradiction in MTΘA if we have not made mistakes
by recording facts or by writing down A. This follows from the structure of A
since we have only in A relations of the form x ∈ y (for finitely many x and
y) without presuming any other axioms except that “all sets are finite sets.”

The theory MTΘA has a certain analogy with the database of an infor-
mation system in computer science. Indeed MTΘ is similar to the recording
structure of the database and A is similar to the data stored according to that
recording structure.

The theory MTΘ is not a physical theory which can be tested by A. Until
now we did not introduce something that we call “physical laws,” which tell
us something about the structure of the results of experiments, i.e., about the
structure of A. We try to formulate these laws by axioms for the constants
introduced by Θ. This method will be described in Sect. 3.3.

Example A

We add to MTΘ new constants a1, a2, . . . for some recorded marked spots. As
“axioms” we add the recorded and, by (cor), transcribed facts, i.e., sentences
or relations noted by A:

ai ∈ M , . . .

and

(ai, ak, Jik) ∩ s �= ∅ , . . .

Since we have in MTΘ not introduced any axiom for the subset s of M×M×IR,
the theory MTΘA cannot lead to contradictions if we have not made recording
errors.
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We did not introduce, for instance, the axiom that s determines a mapping
M × M → IR! We do not believe that there is one and only one real number
determining the distance between two marked spots.

3.2.4 The Finiteness of Physics

In the context of an application domain Ap, only a finite number of observa-
tions can be made, i.e., only a finite number of facts can be recorded. It follows
that the collections of sentences of Ã and also of A are finite. Thus in A there
can appear only finitely many elements of the set M i, which are constants of
Θ. No observation can establish that these sets M i have more than finitely
many elements. Therefore, observations can never refute an axiom that these
sets are finite.

One could perhaps object that in such cases, where we describe the mea-
sured values by real numbers, it would be necessary to take the infinite set of
real numbers. But this is not necessary since these values are given (on the
basis of pre-theories) not by one precise number, but by an imprecise number;

for example, two numbers α and α + 10−(10(1010)) can never be distinguished.
Therefore, it suffices to take a finite set of real numbers to describe all

observations.
If we use in Θ only finite sets (also finite sets of real numbers) this can

never be refuted by observations.
But we want to describe by Θ not only the recorded facts, but also the

nonrecorded facts, i.e., the total application domain Ap. The finitely estab-
lished number of objects do not prove that in reality there are only finitely
many objects. There are physicists who believe that the fact that all impor-
tant physical theories use mathematics with infinite sets implies that reality
is infinite.
The authors of this book have a completely different belief:

The infinity of the sets used in all important physical theories does not
come from the reality which is described by theories, it comes from
nonrealistic idealizations introduced to simplify the theories. All physical
theories using infinite sets are incorrect if one takes these theories as “ex-
act” descriptions of reality. They are only “similar” to the reality. This
similarity will be described in Sect. 3.3 by introducing ∆.

There are some events in the development of physics which do not prove,
but merely point out, the finiteness of reality that can be described by physics.

In the beginning, Newton’s mechanics described the real space by
Euclidean geometry: infinite in the large and in the small; time was also
described by an infinite set. The velocity of the masses in Newton’s mechanics
has no finite boundary. It seems that Newton already doubted his theory for
long distances.

But it was found that velocity has a finite upper bound described by the
special relativity theory. Later on, by Einstein’s gravitational theory it was
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possible to describe finite space and finite time in the large. In the small, space
and time were left infinite.

Quantum mechanics refuted the belief that there is an infinite chain of pre-
cision. In fact, quantum mechanics can be founded on one axiom of finiteness
as explained, e.g., in [8].

The idealization of infinity in the small of space–time (represented by a
so-called differentiable manifold) seems to be much deeper than it appears,
so that until now it has been impossible to formulate a quantum field theory.
In quantum mechanics, an infinity in the small of space–time corresponds to
unbounded values of energy in the large, a fact that appears wrong when
compared to reality.

All these arguments lead to our axiom in Θ that the introduced sets are fi-
nite, an axiom that can never be refuted by observations. This axiom will
have consequences later also in relation to the sets used in the idealized
theories. But this can be understood only after introducing a new mathe-
matical concept: the concept of species of structures.

3.3 Idealization Process

We know that practically all mathematical theories used in physical theories
can only be approximations of reality, i.e., they can be applied to an appli-
cation domain Ap only under the assumption of allowing for some degree of
approximation or degree of inaccuracy. In this section, we shall proceed to the
enrichment of MTΘ by idealization.

3.3.1 Transition from MTΘ to MT∆

The system Θ of constants added to MT (to get MTΘ) is characterized by
base sets M i and by subsets s ⊂ M i1 × · · · × IR × · · · (see Sect. 3.2.2).

The system ∆ is characterized by the same constants as Θ and by the
following procedure:

– For every base set M i is defined in MT a set Qi,
– For every s ⊂ M i × · · · is defined in MT a subset s ⊂ Qi1 × · · · × IR× · · ·,
– For every Qi and every Qi × · · · × IR× · · · with s ⊂ Qi × · · · × IR× · · · are

defined in MT “inaccuracy sets” Ui respectively Us.

As “inaccuracy set U for a set X” is denoted a set U ⊂ X×X which comprises
the diagonal set D of all pairs (x, x), for which the relation (x, y) ∈ U ⇒
(y, x) ∈ U is a theorem, and for which the later relation (3.3.4) is valid.

We now start to get the axiom for ∆. By this axiom we want to postulate
that the Qi, s are “idealized” picture sets of the “physical” sets M i, s of Θ.
Therefore, we consider mappings
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φi : M i → Qi. (3.3.1)

All mappings of product spaces M i×· · ·×IR×· · · onto Qi×· · ·×IR×· · · which
are generated canonically by the φi and by the identical mapping IR → IR
will be denoted by φ.

If the φi were bijective and if for U the diagonal sets are chosen, then
M i with the s would be isomorphic to the Qi with the s. In practically all
physical theories, bijective mappings φi together with diagonal sets D would
lead to contradictions in MT∆A! We therefore consider the Qi, s as “idealized”
picture sets of the “physical” sets M i, s.

The physicist prefers to use a very restricted language which can only be
understood by insiders, thus risking misunderstanding. For the relation (cor)
of MTΘ to the reality, we will also say that the elements of M i and s are
“physical entities.” The problem of knowing whether the elements of M i and
the relations s can indeed be taken as “real”will be dealt with in Chap. 6.
And we will see that indeed this can be done under certain circumstances.
But physicists often also designate the elements of Qi, s as physical entities
although they are only “imprecise” pictures of the reality.

How can we describe that the φi are only “imprecise” mappings M i → Qi?
At first we postulate that

the φi are injective. (3.3.2)

The postulate (3.3.2) says that the elements of the Qi can distinguish between
different elements of the M i, i.e., that two elements of M i will also have
different pictures.

Since the M i are finite sets the relation (3.3.2) says practically nothing
about the φi, since if (3.3.2) was not valid, then we could replace Qi by a set
Qi × Ri, where the Ri have no influence on the s. Thus (3.3.2) does not say
anything about the reality; it is only a fixing of the mathematical description.

Instead of the surjectivity, we postulate the weaker relation

(φiM i)Ui
= Qi. (3.3.3)

The postulate (3.3.3) says only that there are “mathematically” enough ele-
ments in M i, but not that all elements of M i correspond to “real” objects. But
we presume that M i contains only elements that refer to “real” objects. This
question will be treated in Chap. 6, where we will consider how to describe
what is “real” and not a fairy tale.

We want to express (independently of the φi) that a set (also infinite) X
(the Qi or the s) is an idealization of a finite set. Therefore, we introduce as
an additional condition for the definition of an inaccuracy set U for X

(∃y)
[

y ∈ X ∧ y is finite ∧ (y)
U

= X
]
. (3.3.4)
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Now we can formulate the axiom P∆:

(∃φ1)(∃φ2) · · ·
[
φi : M i → Qi are injective mappings with (φiM i)Ui

= Qi

∧ φs ⊂ (s)Us

∧ φs′ ⊂ (s′)Us

]
. (3.3.5)

Here s′ is the complement of s in M i1 ×· · ·× IR×· · · and s′ is the complement
of s in Qi1 × · · · × IR × · · ·, and

(s)Us
=

{
y

∣
∣
∣ ∃z (z ∈ s ∧ (y, z) ∈ Us)

}
,

(s′)Us
=

{
y

∣
∣
∣ ∃z (z ∈ s′ ∧ (y, z) ∈ Us)

}
.

For such a test ∆, let us look at the following.

Example A

We formulate by ∆ that M, s is “approximately” a two-dimensional Euclidean
geometry:

In MTΘ we define the following sets:

Q = IR × IR

and s as the set

s ⊂ Q × Q × IR

of all (q1, q2, d) with

d(α1, α2;β1, β2) =
√

(α1 − β1)2 + (α2 − β2)2,

where q1 = (α1, β1) and q2 = (α2, β2) with real numbers αi, βi.

We define the following “inaccuracy” set for Q:

U ⊂ Q × Q , Uεr =
{

(q1, q2)
∣
∣
∣ d(q1, q2) < ε

}

∪ Qr × Qr, (3.3.6)

where Qr =
{

q
∣
∣
∣ q ∈ Q and d(q, 0) > r

}

; 0 is the point (0, 0) in IR × IR.

For IR+ we introduce the inaccuracy set
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Uδ
 =
{

(α1, α2)
∣
∣
∣ |α1, α2| < δ

}

∪ IRρ
+ × IRρ

+, (3.3.7)

where IRρ
+ = {α | α ∈ IR+ ∧ α > ρ}. We take δ < ε and � > 2rπ.

These inaccuracy sets generate in a canonical way also an inaccuracy set
Us in Q × Q × IR+. On the basis of the axiom (3.3.5) we have

(∃φ)
[
φ : M → Q is an injective mapping with (φM)U = Q

∧ φs ⊂ (s)Us

∧ φs′ ⊂ (s′)Us

]
. (3.3.8)

If we want to give particular values for the ε, r we must take different appli-
cation domains, one for the round table and one for the surface of the earth:

– For the round table we can choose, e.g., ε = 0.1 mm and r essentially
greater than the radius of the round table, e.g., ten times the radius of the
table.

– For the surface of the earth we can choose, e.g., ε = 10 cm and r = 10 km.
But we can also choose other values. If we choose a bigger r, we must also
choose a bigger ε.

3.3.2 Enrichment of MT∆ by A

The introduction of A to MT∆ is the same as the introduction of A to MTΘ

(see Sect. 3.2.3). The only difference is the axiom (3.3.5) and that therefore
the addition of A can lead to contradictions.

But there arises a major difficulty if we have in some regions of the Qi

“large” inaccuracies as, e.g., Qr × Qr in (3.3.6). We have not introduced
any conditions stating that the “real” part (described by A) does not contain
such objects, the picture of which in Qi is situated in these “large” inaccuracy
regions of Qi. Therefore, we have to distinguish two cases for the inaccuracy
sets U .

The first case is that there are no regions of “large” inaccuracies. We then
have to add A to MT∆ (as in Sect. 3.2.3) and must see whether there is a
contradiction to the axiom (3.2.5). If there is no contradiction to the axiom,
the test of the theory is positive. But what is necessary for this test?

The text A is given by relations of the form (3.2.9), (3.2.10), and (3.2.11).
If we write φa = a, these relations take the form of the following relations:

a ∈ Q,

(a1, a2, · · · , J) ∩ φs �= ∅, (3.3.9)

(a1, a2, · · · , J) ⊂ φs′.
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We have no contradiction to the axiom (3.3.5) if the relations of the form

a ∈ Q,

(a1, a2, · · · , J) ∩ (s)Us
�= ∅, (3.3.10)

(a1, a2, · · · , J) ⊂ (s′)Us

do not lead to contradictions in MT (i.e., without Θ!). Here we have to take
the ai as new constants to MT . For (3.3.10) we write briefly A and MTA for
the mathematical theory MT with the addition of the text (3.3.10). The test
is positive if MTA is without contradiction.

(The relation A was introduced in [1] Chap. 6 by “the principles of impre-
cise mapping” formulated intuitively.)

We conclude that in the first case, it suffices for a test to see whether MTA
is without contradiction.

The second case is that there are regions of “large” inaccuracies as, e.g., in
our example A. Thus it can be that there exists a mapping φ which fulfills the
axiom (3.3.5) and which maps all the a of A in regions of “large” inaccuracies,
so that there is no contradiction between A and (3.3.5). But for such a theory
we do not pretend that the theory describes the reality in a global region, but
only in a subregion of the application domain (which can also be in various
subregions!) where it is possible to use only small inaccuracy sets. How can
we formulate this in the language of MT∆?

We choose one (or some) of the tuples (a1, a2, . . .) ∈ M1 ×M2 ×· · · . Such
a tuple is not only a mathematical symbol, but it is also a part of A, i.e., a
representation of established real objects. We now change the axiom (3.3.5)
by adding between the brackets of (3.3.5) the condition for φ

φ(a1 × a2, · · ·) ∈ Q̂ ⊂ Q1 × Q2 · · · , (3.3.11)

where Q̂ is a part where the inaccuracies are small. Sometimes we choose a
particular element q̂ ∈ Q̂ and write instead of (3.3.11)

φ(a1 × a2, · · ·) = q̂. (3.3.12)

If we do not find by enrichments of A (by the addition of new experiments)
a contradiction with (3.3.5) and (3.3.11) (respectively (3.3.5) and (3.3.12)) we
say that MT∆ describes with small inaccuracies a surrounding of Q̂ (respec-
tively q̂).

It can be that we can use the theory for more than one Q̂ (or q̂).
We will demonstrate this below.
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Example A

In this case we record - marked spots - and the results of measurements of
the - distances between these marked spots -.

We presuppose the knowledge of “how to measure a distance,” i.e., the
knowledge of a pre-theory of measurements of distances, a pre-theory of the
use of such measuring records, but without the geometry of the surfaces.
These pre-theories show that there are no precise measurements. We say that
every measurement has a so-called “error of measurement” describing the
imprecision of the measurement. The result of a measurement of the distance
of two marked spots a, b may be given by the real number α. We then have to
correct this by saying that the value is not exactly α, but can be any number
between α − ε and α + ε, i.e., a number of an interval J .

Now we want to describe the use of our theory MT∆ for the description of
the real application domain of marked spots on the earth, and their measured
distances.

We see by (3.3.6) that in this case we have an example of the “second
case” of Sect. 3.3.2. The region of “large” inaccuracies is given by Qr, and the
point (0, 0) ∈ Q is a “center” of the region Q′

r of “small” inaccuracies. We
choose one a of the marked spots appearing in A. The selected a may be a0

(a0 can be, e.g., a particular marked spot at Greenwich in London). We add
in (3.3.8) the condition

φa0 = (0, 0).

Thus we get the axiom

(∃φ)
[
φ : M → Q is an injective mapping with (φM)U = Q

∧ φa0 = (0, 0)

∧ φs ⊂ (s)Us

∧ φs′ ⊂ (s′)Us

]
. (3.3.13)

A text A consists of relations of the form

a ∈ M and (a1, a2, J12) ∩ s �= ∅

which lead, for a φ satisfying (3.3.13), to relations of the form

φa ∈ Q and (φa1, φa2, J12) ∩ (s)Us
�= ∅. (3.3.14)

(Relations for s′ and s′ are not interesting for us because they are mathemati-
cally irrelevant.) If we write φa = a, we get relations of the form
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a0 = (0, 0) , a ∈ Q and (φa1, φa2, J12) ∩ (s)Us
�= ∅. (3.3.15)

Equation (3.3.15) is only interesting for such an a with a ∈ Q′
r, i.e., for the

surrounding of a0 = (0, 0).
In this example, a mapping φ satisfying (3.3.13) has a very graphic repre-

sentation: the application φ generates a map of the earth onto a sheet of
graph paper. On this map, the surrounding of a0 (Greenwich in London)
represents the distances between various marked spots very well, but very
badly the marked spots situated very far away from a0.

It is well known that we can have many such maps by choosing different
a0.

Because the surroundings of the various a0 are “well” represented by the
various maps, we often only print these surroundings on the graph paper. This
leads us to the problem of the following section (i.e., 3.3.3).

Our example of the marked spots on the surface of the earth appears
artificial. However, there is a very interesting example which is similar to the
example given above:

In the application domain Ap we take space–time marked spots, which are
usually called “events.” In MTΘ we introduce as a constant the set M with
the interpretation

‘a ∈ M ’ corresponds to ‘a is an event’.

We want to give for the Galileo–Newton theory of space–time (briefly GN
theory) the form MT∆. In MTΘ we introduce two relations: s1 ⊂ M ×M × IR
and s2 ⊂ M × M × IR with the interpretations

– ‘(a1, a2, α) ∈ s1’ corresponds to ‘α is a possible value for the spatial dis-
tance of the events a1 and a2’;

– ‘(a1, a2, β) ∈ s2’ corresponds to ‘β is a possible value for the time distance
of the events a1 and a2’.

We assume that we know by pre-theories how to measure these relations.
For MT∆ we add the following terms:

Q = IR × IR × IR × IR as picture term for M ,

s1 = Q × Q × IR as picture term for s1,

s2 = Q × Q × IR as picture term for s2,

where

s1 =
{(

(α1, α2, α3, α4), (β1, β2, β3, β4), d
) ∣

∣

d2 = (α1 − β1)2 + (α2 − β2)2 + (α3 − β3)2
}
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and

s2 =
{(

(α1, α2, α3, α4), (β1, β2, β3, β4), t
) ∣

∣ t2 = β4 − α4

}
.

The choice of the inaccuracy set U for Q is very similar to (3.3.6). We have to
choose not only d(q1, q2) < ε but also t < τ . Instead of Qr in (3.3.6) we take

QrT =
{
q

∣
∣ q ∈ Q and d(q, 0) > r

}
∪

{
q

∣
∣ q ∈ Q and t(q, 0) > T

}
.

If we take for the mapping φ : M → Q the condition that the event a = {a
certain time at the center of mass of our planetary system} is mapped onto
(0, 0, 0, 0) ∈ Q, then we get the space–time system of Galileo, Kepler, and
Newton as a pre-theory for the description of the motion of the planets. This
system is nothing other than a particular “map” of the surrounding of a. For
other regions in the universe it will be better to use other “maps,” and for
the surrounding of a “black hole” we will have no “map.”

3.3.3 Fundamental Domain of a PT

We have seen in Sect. 3.3.2 that the fact of having a useful theory (i.e., that
MT∆A is without contradiction) depends on the choice of the inaccuracy
sets U for ∆. We have also seen that it is necessary to distinguish between
two cases: Either there are or there are not “large” inaccuracies. If there are
no large inaccuracies, we say that the theory can be applied as a “good”
description of the application domain Ap. But if there are large inaccuracies,
we say that the theory says practically nothing about the structure of reality
in such regions where the inaccuracies are large.

Thus, it is more useful to apply a theory only on such a part of the applica-
tion domain Ap where we can use inaccuracy sets U with “small’ inaccuracies.
In such a region, the theory essentially says something about the structure
of reality and will be useful for technical applications. We call such a region
(a part of the application domain Ap) the fundamental domain G. (For the
theories where we could use in the total application domain Ap “small” inac-
curacies we have G ≡ Ap.)

How can we select from Ap a fundamental domain G?

The starting point is not a part of the application domain Ap but a part
of Q1 × Q2 × · · · On the basis of the inaccuracy sets U we choose a part
F ⊂ Q1 × Q2 × · · · for which U describes only “small” inaccuracies. Now,
how do we go from F to the fundamental domain G? At first we must select
a particular mapping φ by a procedure already described in Sect. 3.3.2. We
choose in the application domain Ap particular objects a0 ∈ M i and postulate
that the φ(a0) determines an element in the “middle” of F . Then F = φ−1F
is a part of M1 ×M2 × . . . . An (a1, a2, · · ·) of the application domain Ap lies
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by (cor) in F . If we can show by the theory and by experiments (that is by
A) that (cor) gives (a1, a2, · · ·) ∈ F , then we say that (a1, a2, · · ·) lies in the
fundamental domain G as a part of the application domain Ap, i.e., G(cor)F .

Example A

If we consider as an application domain Ap the marked spots on the surface of
the earth, from Sect. 3.3.2 we see immediately that a fundamental domain G
is given by the surrounding of a particular marked spot (e.g., a marked spot
at Greenwich) from which we get by (cor)φ a “map” with small inaccuracies
relative to the distances.

We also see that it is possible to have more than one fundamental domain
G. Therefore, it is necessary for the application of a theory to give the selected
fundamental domain G. If we apply, e.g., the GN space–time theory, we have
to give the fundamental domain G as described in Sect. 3.3.2, e.g., the space–
time region in our planetary system. The GN space–time theory says nothing
about the global structure of space–time, and Newton had already suspected
that his theory could be wrong for the global structure of the universe.

Example A

In the case of the surface of a round table, we have as the fundamental domain
G the total surface, i.e., the total application domain Ap. The problem with
this example is the following: Which part of M refers to “real” marked spots?
We will return to this problem in Chap. 6.

There will be later additional aspects by which we will restrict the appli-
cation domain Ap to the fundamental domain G (see Sect. 4.8).
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Species of Structures and Axiomatic Basis
of a PT

In the preceding chapter we described the general form of a mathematical
theory in the context of a physical theory. The main task was to clarify the
connection between physical realities and the abstract mathematical theory.
Nevertheless, this explanation was not sufficient to apprehend the structure of
the mathematical theory itself; it was especially not sufficient to see how MT∆

gives the physically decisive conditions to MTΘ. This problem was hidden
behind the selection of the picture terms Qi and sν in MT ; for example, as
picture terms Q = IR × IR for the idealized marked spots, and as relation s

d(α1, α2;β1, β2) =
√

(α1 − β1)2 + (α2 − β2)2

for the idealized distance. In this case we know that the terms Q, d describe
a two-dimensional Euclidean geometry, but we only know this since we have
learned that the terms Q, d constitute the analytic form of this geometry.

This example also shows that the particular values (α1, α2) for an idealized
marked spot have no influence on the physically interpreted part MTΘ. For
instance, if we make the transformation

α′
1 = α1 cos ϕ + α2 sin ϕ,

α′
2 = − α1 sin ϕ + α2 cos ϕ,

from Q to Q′, this has no influence on the “real” marked spots and distances
described by MTΘ.

Thus we get the question: “What are the essential parts of the selection
of the picture terms Qi and sν relative to MTΘ?” In many cases, one speaks
in MT of what we have called in Sect. 1.3 fairy tales. There is also another
question: “By what does one often try to find intuitively the picture terms Qi

and sν?” For these questions we will try to find a suitable form for the MT
in MTΘ. The basis of this purpose is the mathematical concept of a species
of structures.
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4.1 Mathematical Structures

At first we recall the well-known definition of a species of structures:
Let MT be a theory which is stronger than the set theory, let x1, . . . , xn, s,

be letters which are distinct from the constants of MT , and let A1, . . . , Am

be terms in MT (in which none of the letters x1, . . . , xn, s appears). Let S
be an echelon construction scheme (see the end of Sect. 2.4) on n + m terms.
The relation

T (x1, . . . , xn, s) : s ∈ S(x1, . . . , xn, A1, . . . , Am)

is called a typification of the letter s. The term s is called a structure term.
A relation P (x1, . . . , xn, s) is said to be transportable with respect to the
typification T (x1, . . . , xn, s) if bijective mappings lead to equivalent relations,
in other words if MT contains the following theorem:

From

“T (x1, . . . , xn, s) ∧ (f1 is a bijective mapping of x1 onto y1)

∧ . . .

∧ (fn is a bijective mapping of xn onto yn)”

follows the relation

P (x1, . . . , xn, s) ⇔ P (y1, . . . , yn, s′),

where

s′ = 〈f1, . . . , fn, Id1, . . . , Idm〉S(s)

and Idi (1 ≤ i ≤ m) denotes the identity mapping of Ai onto itself. In the
sequel, the relation P will be called an axiomatic relation in order to underline
the fact that this relation will be postulated later as an axiom.

We take as text Σ the following groups of symbols: the letters x1, . . . , xn, s,
the typification T (x1, . . . , xn, s), and the axiomatic relation P (x1, . . . , xn, s).
This text Σ is called a species of structures. The letters x1, . . . , xn are called
the principal base sets, the letters A1, . . . , Am the auxiliary base sets, and the
letter s the structure term of the species Σ.

If one adds the relation “T ∧ P” as an axiom to MT , then one obtains a
theory MTΣ which is stronger than MT . The constants of MTΣ are therefore
the constants of MT and the letters which appear in T or in P , i.e., the letters
x1, . . . , xn, s. The theory MTΣ is called the theory of the species of structures
Σ.
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To summarize: for physical theories we can specify the form of a species
of structures. Every mathematical theory MT , as a part of a physical theory,
will contain the set theory. (It contains therefore also the theories of real and
complex numbers.) The additional element is the structure, which is a text
Σ, given by

1. A certain number of principal base sets and auxiliary base sets x :=
〈x1, . . . , xn〉, A := 〈A1, . . . , Am〉.

2. A finite number of structure terms s := 〈s1, . . . , sp〉
3. with the typification

T (x, s) :
p∧

ν=1

sν ⊂ Sν(x,A),

with p echelon construction schemes Sν .
4. The axiomatic relation

P (x, s) :
q∧

µ=1

αµ(x,A, s)

composed of axiomatic relations αµ.

For this species of structures Σ we write

Σ(x, s) ≡ Σ ( T (x, s) ∧ P (x, s) ),

and for the mathematical theory MT endowed with this species of structures
Σ(x, s) we write

MTΣ(x,s).

It is not difficult to see that we can write this Σ(x, s) also in the general
mathematical form of a species of structures given above. We only have to
introduce instead of the sν one s with the typification

s ∈ P(PS1(x,A) × PS2(x,A) × · · · × PSp(x,A)),

i.e.,

s ⊂ PS1(x,A) × PS2(x,A) × · · · × PSp(x,A),

i.e.,

s := 〈s1, . . . , sp〉 with sν ∈ PSν(x,A),

i.e.,

sν ⊂ Sν(x,A).
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The reason for which we have introduced the concept of species of struc-
tures by the text above is easy to see: Θ of Sect. 3.2.2 and ∆ of Sect. 3.3.1
are such species of structures.

For Θ we have

1. the principal base sets M i and the auxiliary base set IR,
2. the structure term s,
3. with the typifications s ⊂ M i or s ⊂ M i1 × M i2 × · · · × IR × · · ·,
4. without an axiomatic relation P .

For ∆ we have

1. the principal base sets M i as for Θ and the auxiliary base sets IR, IR,
Qi, various s, the Ui and Us,

2. the structure terms s as for Θ,
3. with the typifications s ⊂ M i or s ⊂ M i1 ×M i2 × · · ·× IR× · · · as for Θ,
4. with the axiomatic relation P∆ given in (3.3.5).

Now we want to introduce a relation between two species of structures
which is often used, especially in the mathematical parts of a physical theory.

We consider two species of structures Σ1 and Σ2 with the same principal
base sets, the same auxiliary base sets, the same typification, but with different
axiomatic relations P1 and P2. If P1 is a theorem in MTΣ2 , then we say that
the species of structures Σ2 is richer (or finer) than Σ1, or that Σ1 is poorer
(or coarser) than Σ2. If P1 is a theorem in MTΣ2 and P2 is a theorem in
MTΣ1 , then we say that Σ1 and Σ2 are equally rich, and sometimes also
simply “equal.”

We want to describe a simple example of a species of structures Σ: the
species of “lattice” structures. We take one principal base set x (with no
auxiliary base set). The order relation “<” is defined by a structure term s
with the typification

T (x, s) : s ⊂ x × x,

that is, the relation (y1, y2) ∈ s is noted y1 < y2. In the axiomatic relation
P (x, s), one groups all the axioms for the order relation “<” that one writes
“for a lattice x.” The transition from a set “only” ordered to a lattice, and
then to a distributive lattice is an example of a transition from a species of
structures to a species of structures increasingly richer.

A theory MT can already contain a species of structures Σ. This means,
a term (a set) V of MT is said to be a structure of species Σ on the base sets
E1, . . . , En which are also sets in MT if the relation

“T (E1, . . . , En, V ) ∧ P (E1, . . . , En, V )”
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is a theorem in MT . We will often say that “the base sets E1, . . . , En

are endowed with the structure V of species Σ.” Thus, V is an element
of S(E1, . . . , En, A1, . . . , Am) which satisfies the relation P (E1, . . . , En, V ).
Let W be the subset of all elements W of S(E1, . . . , En, A1, . . . , Am) which
satisfies the relation P (E1, . . . , En, V ). Then it follows that W is the set
of all structures of the species Σ on the base sets E1, . . . , En. For each
theorem B(x1, . . . , xn, s) of MTΣ it follows for any element V of W that
B(E1, . . . , En, V ) is also a theorem in MT .

If f1, . . . , fn are bijective mappings in MT of the base sets E1, . . . , En of
the structure V onto other sets E′

1, . . . , E
′
n, then one has (since the axiomatic

relation P is transportable) that the set V ′, defined by

V ′ = 〈f1, . . . , fn, Id1, . . . , Idm〉S(V ),

is a structure of the same species Σ on the base sets E′
1, . . . , E

′
n.

In MT , let V , V ′ be structures of species Σ on the base sets E1, . . . , En

and E′
1, . . . , E

′
n respectively, and let f1, . . . , fn be bijective mappings of the

base sets E1, . . . , En onto the base sets E′
1, . . . , E

′
n such that

V ′ = 〈f1, . . . , fn, Id1, . . . , Idm〉S(V ),

then (f1, . . . , fn) is said to be an isomorphism of the base sets E1, . . . , En onto
the base sets E′

1, . . . , E
′
n, endowed with structures V and V ′ respectively. In

this case, the structures V and V ′ are said to be isomorphic, and the bijective
mapping f1, . . . , fn is an isomorphism of V and V ′.

If every two structures of the species Σ are isomorphic, then the species
of structures Σ is said to be univalent or categorical; otherwise polyvalent.

4.2 Deduction of Structures

In the preceding paragraph we introduced the notion of species of structures,
and we saw that structures of such a species can exist in MT . Let us examine
now particular structures of species Σ′ in MTΣ .

Let us consider two species of structures Σ, Σ′ in MT characterized as
follows:

– for the species Σ : n principal base sets x1, . . . , xn, m auxiliary base sets
A1, . . . , Am, a structure term s with the typification

T (x1, . . . , xn, s) : s ∈ S(x1, . . . , xn, A1, . . . , Am),

– for the species Σ′ : r principal base sets y1, . . . , yr, p auxiliary base sets
B1, . . . , Bp, a structure term t with the typification

T (y1, . . . , yr, t) : t ∈ S′(y1, . . . , yr, B1, . . . , Bp);
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– nothing is presupposed about the axiomatic relations P of Σ and P ′ of
Σ′!

Then a system of r + 1 terms E1, . . . , Er, V such that

1. V is a structure of species Σ′ on E1, . . . , Er in MTΣ ,
2. the terms E1, . . . , Er, V are intrinsic in MTΣ

is called a procedure of deduction of a structure of species Σ′ from a structure
of species Σ .

A term W (x1, . . . , xn, s) is said to be intrinsic if it is an element of an
echelon set on the base sets x1, . . . , xn, A1 . . . , Am and if, by bijective map-
pings f1, . . . , fn of the base sets x1, . . . , xn onto the base sets x′

1, . . . , x
′
n, the

canonical image of W (x1, . . . , xn, s) becomes W (x′
1, . . . , x

′
n, s′), where s′ is the

canonical image of s.
The procedure of deduction of a structure of species Σ′ from a structure

of species Σ is then determined by the terms

Ej = Ej(x1, . . . , xn, s) (1 ≤ j ≤ r), V = V (x1, . . . , xn, s).

These terms indicate the methods whereby the terms are deduced. It will often
be a mathematical problem to find such a procedure of deduction. In [8], e.g.,
we deduced the Hilbert’s species of structures of space Σ′ from a species of
structures Σ “nearer to physics.”

A reason why we have only taken intrinsic terms for the procedure of
deduction of structures is the following:

We start now from two structures s, s′ of the same species Σ. Let x1, . . . , xn

be the base sets for s, let x′
1, . . . , x

′
n be the base sets for s′, and let (f1, . . . , fn)

be an isomorphism of s onto s′. The system of r+1 terms Ei, V is a procedure
of deduction of a structure V of another species Σ′.

Let, with the echelon construction scheme Ti, the type of Ei be described
by

Ei ∈ P(Ti(x1, . . . , xn, A1, . . . , Am)),

i.e., the terms Ei are subsets of the Ti(· · ·). Since the Ei, V are intrinsic terms,
the mappings

gi = 〈f1, . . . , fn, Id1, . . . , Idm〉Ti (1 ≤ i ≤ r)

of Ei = Ei(x1, . . . , xn, s) onto E′
i = E′

i(x
′
1, . . . , x

′
n, s′) form an isomorphism of

V = V (x1, . . . , xn, s) onto V ′ = V ′(x′
1, . . . , x

′
n, s′).

This applies naturally to the following case: In a theory MT , let W be a
structure of species Σ on the base sets F1, . . . , Fn, let W ′ be a structure of
the same species Σ on the base sets F ′

1, . . . , F
′
n, and let f1, . . . , fn (mappings
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of the base sets F1, . . . , Fn onto the base sets F ′
1, . . . , F

′
n) be an isomorphism

of W onto W ′. If the system of r + 1 terms Ei, V is a procedure of deduction
of structures of the species Σ′, then with

Ei = Ei(F1, . . . , Fn,W ) , V = V (F1, . . . , Fn,W ),

E′
i = Ei(F ′

1, . . . , F
′
n,W ′) , V ′ = V (F ′

1, . . . , F
′
n,W ′),

and with Ei ⊂ Ti(F1, . . . , Fn, A1, . . . , Am) we get that

gi = 〈f1, . . . , fn,Id1, . . . ,Idm〉Ti

is an isomorphism of the structures V , V ′ of species Σ′.
We want to define the equivalence of two species of structures Σ and Σ′.

At first Σ and Σ′ will have the same base sets x1, . . . , xn: Σ(x1, . . . , xn, s)
and Σ′(x1, . . . , xn, t).

There may be in MTΣ a procedure of deduction V of species Σ′

Ei = xi, V = V (x1, . . . , xn, s),

and vice versa there may be in MT ′
Σ a procedure of deduction W of species

Σ

E′
i = xi, W = W (x1, . . . , xn, t).

We say that the species of structures Σ and Σ′ are equivalent relative to
the procedures V (x1, . . . , xn, s) and W (x1, . . . , xn, t) if V = t and W = s, i.e.,
if

V (x1, . . . , xn,W (x1, . . . , xn, t)) = t , W (x1, . . . , xn, V (x1, . . . , xn, t)) = s.

For every theorem A(x1, . . . , xn, s) in MTΣ , the relation A(x1, . . . , xn,W )
is a theorem in MTΣ′ and, conversely, for every theorem B(x1, . . . , xn, t) in
MTΣ′ the relation B(x1, . . . , xn, V ) is a theorem in MTΣ .

From the observations above on isomorphisms by deduced structures, it
follows that in a theory MT ′, if S, S′ are structures of species Σ on the base
sets E1, . . . , En and E′

1, . . . , E
′
n respectively, and if S0, S

′
0 are structures of

species Σ0 equivalent to S and S′ respectively, then (f1, . . . , fn) is an isomor-
phism of S onto S′ if and only if it is an isomorphism of S0 onto S′

0. For
this reason, we make no distinction between the theories MTΣ and MTΣ′ of
two equivalent species of structures. We consider these theories as a single
theory, with a single name, e.g., the theory of species of “topological space”
structures.

The same theory MT endowed with species of structures Σ and Σ′ which
are equivalent is frequently used. As an example, we briefly refer to the theory
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of topological spaces: As MT we take the theory of sets. Let Σ be the species
of structures on the single principal base set x. The typification is

T (x, s) : s ∈ PP(x), i.e., s ⊂ P(x) ,

the structure term s is the set of open sets for which one introduces as an
axiomatic relation

P (x, s) : conditions on open sets.

The set x is called “topological space.” Let Σ′ be the species of structures on
the same single principal base set x. The typification is

T (x, t) : t ∈ P(x × PP(x)), i.e., t ⊂ x × PP(x) ,

the structure term t is the set of all pairs (y, V (y)) with y ∈ x and V (y) is the
neighborhood filter of y for which one introduces as an axiomatic relation

P (x, t) : conditions on systems of neighborhoods.

The set t is called “set of neighborhoods.” In order to show the equivalence
of Σ and Σ′ in this example, one defines

– in MTΣ the set V (x, s) of neighborhoods, i.e., a structure V of species Σ′;
– in MTΣ′ the set W (x, t) of open sets, i.e., a structure W of species Σ.

Then one shows that W (x, V (x, s)) = s. In the same way, one shows that
V (x,W (x, t)) = t, and thus the equivalence of Σ and Σ′.

But in physics, there is a case even more general of the relation
between two species of structures Σ, Σ′ which is of great importance. We
assume that a deduction of a species of structures Σ is given in a theory
MTΣ′ . Let Σ′ be the species of structures characterized by the principal
base sets x1, . . . , xn, the auxiliary base sets A1, . . . , Am, the structure term
s ∈ S(x1, . . . , xn, A1, . . . , Am), and the axiomatic relation P ′(x1, . . . , xn, s).
The deduction of Σ from Σ′ consists in the specification of intrinsic terms

Ej = Ej(x1, . . . , xn, s) (1 ≤ j ≤ r) ,

which are principal base sets of the structure V = V (x1, . . . , xn, s) of species
Σ in MTΣ′ (therefore V (x1, . . . , xn, s) is also an intrinsic term). It could be
that there exists a species of structures Σ1, richer than Σ, such that the
structure V is also a structure of species Σ1. How can one be certain that the
structure V which has been deduced is “only” a structure of species Σ and
“not” a structure of richer species?

For this, we introduce the following condition. The structure V of species Σ
deduced in MTΣ′ is called a representation of Σ in Σ′ if the following condition
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is satisfied: In MTΣ , let y1, . . . , yn be the principal base sets, let A1, . . . , Am

be the auxiliary base sets, let t be the structure term, and let P (y1, . . . , yr, t)
be the axiomatic relation of Σ. We can demonstrate the following theorem:

(∃x1) · · · (∃xn)(∃s)(∃f1) · · · (∃fr)
[
T ′(x1, . . . , xn, s): s ∈ S′(x1, . . . , xn, A1, . . . , Am)

∧ P ′(x1, . . . , xn, s)

∧ fi : yi → Ei(x1, . . . , xn, s) are bijective mappings

with 〈f1, . . . , fr, Id1, . . . , Idm〉St = V (x1, . . . , xn, s)
]
. (4.2.1)

In the notion of representation appears explicitly the deduction

Ej = Ej(x1, . . . , xn, s) (1 ≤ j ≤ r), V = V (x1, . . . , xn, s)

of the species of structures Σ in MTΣ′ .
If V (x1, . . . , xn, s) is a representation of Σ in MTΣ′ and R(y1, . . . , yr, t) a

transportable relation with which the axiomatic relation of Σ can be enriched,
and if we can deduce R(E1, . . . , Er, V ) as a theorem in MTΣ , then we have,
with constants x1, . . . , xn, s not appearing in MTΣ′ :

[
T ′(x1, . . . , xn, s) ∧ P ′(x1, . . . , xn, s)

]
⇒ R(E1, . . . , Er, V )

is a theorem in MTΣ . Moreover, with other constants f1, . . . , fr not appearing
in MTΣ :

(∃x1) · · · (∃xn)(∃s)(∃f1) · · · (∃fr)
[
T ′(x1, . . . , xn, s) : s ∈ S′(x1, . . . , xn, A1, . . . , Am)

∧ P ′(x1, . . . , xn, s)

∧ ¬R(y1, . . . , yr, t)

∧ fi : yi → Ei(x1, . . . , xn, s) are bijective mappings

with 〈f1, . . . , fr, Id1, . . . , Idm〉St = V (x1, . . . , xn, s)
]

⇒ ¬R(E1, . . . , Er, V )

is a theorem in MTΣ . Consequently, the relation

(∃x1) · · · (∃xn)(∃s)(∃f1) · · · (∃fr)
[

T ′ ∧ P ′ ∧ fi are bijective mappings . . .
]
∧ ¬R(y1, . . . , yr, t)
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leads to a contradiction in MTΣ , so that the negation of this relation is a
theorem. Because of (4.2.1) R(y1, . . . , yr, t) is a theorem in MTΣ , i.e., it can
not bring any enrichment compared to the species of structures Σ. Thus, we
have shown that V is not a structure of species richer than Σ. The relation
(4.2.1) can often be proved by taking terms (not necessarily intrinsic terms)
x1, . . . , xn, s and f1, . . . , fn in MTΣ , such that the relation between brackets
of (4.2.1) is a theorem in MTΣ .

Thus, for two equivalent species of structures Σ and Σ′, one sees par-
ticularly well that V (x1, . . . , xn, s) is a representation of Σ in Σ′ and that
W (x1, . . . , xn, t) is a representation of Σ′ in Σ. It is enough to pose Ei(x1, . . .)
= xi and to choose in (4.2.1) yi = xi, fi as identical mappings, and
W (x1, . . . , xn, t) = s, since V (x1, . . . , xn, W (x1, . . . , xn, t)) = t. It follows
that (4.2.1) is also a theorem for W (· · ·) and that W (· · ·) is a representation
of Σ′ in Σ.

A familiar example for a representation of a species of structures Σ is
analytical geometry. As MTΣ′ we choose MT (i.e., we introduce no Σ′ at all).
As a single Mi we take M = IR× IR and as the structure V ∈ P(M ×M × IR)
the set of all (α1, α2;β1, β2, δ) with

δ = g(α1, α2;β1, β2) =
√

(α1 − β1)2 + (α2 − β2)2.

We determine Σ by a principal base set y, a structure term t with the typifi-
cation

T (y, t) : t ∈ P(y × y × IR), i.e., t ⊂ y × y × IR ,

and the axiomatic relation

P (y, t) : saying that t determines a function d : y × y → IR+, and giving
conditions for d that make y a two-dimensional Euclidean space (which is
not given in detail here). (See Sects. 4.3 and 4.4.)

Then V is a structure of species Σ on the principal base set M = IR× IR,
and even a representation of Σ. In this case, the theorem (4.2.1) becomes

(∃f)
[

f : y → M is a bijective mapping

with d(z1, z2) = g(f(z1), f(z2))
]
. (4.2.2)

The proof of this theorem is nothing other than the proof that Euclidean
geometry Σ can be represented by orthogonal coordinates (namely f : y →
IR × IR).
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4.3 Axiomatic Basis and Fairy Tales

We have seen in Sect. 3.3 that the essential physical structures are hidden in
the choice of the picture terms Qi and sν , as terms defined in MT . In the usual
form of physical theories, one considers only MT and the picture terms with-
out the mathematization MTΘ of the connection between mathematics and
reality, and one replaces the mathematization MTΘ by more or less intuitive
methods, similar to the description of “Abbildungsprinzipien” and “Unscharfe
Abbildungsprinzipien” in [1]. The theory MTΣ(Qi,sν) is in any case the central
part, where the so-called physical laws (or better, the idealized physical laws)
are described or hidden. The task will be to change the form of MTΣ(Qi,sν)

in such a way that the idealized physical laws appear as axioms.
What are the reasons for which physical laws are usually hidden in

MTΣ(Qi,sν)? These reasons were already mentioned at the beginning of
Chap. 4: A not very deep reason is that in the mathematical formulation
MTΣ(Qi,sν), the solution of problems is, in most cases, much simpler than in
the form where the physical laws appear as axioms. A much deeper reason is
that in MT , fairy tales can be told about the reality; one can formulate in
MT the description of imagined realities.

This description consists, on the one hand, in a formulation of a mathe-
matical theory (i.e. an MT ) and, on the other hand, in an interpretation by
imagined realities. By such an interpretation one means to show that in MT
some of the deductible picture terms Qi, sν have this real significance, which
they have in MT∆ by (cor) and the mappings φ.

If we take the example of the Boltzmann theory, we have as MT a mathe-
matical description of Newton’s mechanics of N mass points with given forces
between these mass points. The mathematical theory MT can be formulated
without any imagined interpretation in such a way that a mathematician can
investigate this MT with or without any imagined interpretation. If one now
takes the imagined interpretation that the mathematical “mass points” are
“atoms,” i.e., real mass points, then one can intuitively go to the following
terms Qi, sν describing the motion of gas

�(�r, t) = m

∫

f(�r,�v, t) d3�v

as the mass density of gas,
and

�u(�r, t) =
m

�(�r, t)

∫

�vf(�r,�v, t) d3�v

as the velocity of the gas.
Since we will introduce no “a priori” restrictions to the imagined realities,

we will give no other restriction to MT and the terms Qi, sν than that MT
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is of the form MTΣ , and that the terms Qi, sν (and the inaccuracy sets U)
are intrinsic terms relative to Σ. The authors of this book will not give any
prescriptions for the imagined interpretations of the terms introduced by Σ.
We want to leave open MTΣ to any figment of the imagination. We also do not
want to give any “imagined foundation” of the picture terms Qi, sν by fairy
tales. We only presume that the terms Qi, sν are defined in MTΣ as intrinsic
terms. In any case, the physical theory invented by imagination can, at first,
only be tested in the form (MTΣ)∆ as described by (MTΣ)∆A in Sect. 3.3.2.
Whether other terms of (MTΣ)∆ can also be interpreted as picture terms
describing realities will be dealt with later in Chap. 6.

Since we only know that the terms Qi, sν are related to the interpreted (by
(cor)) terms M i, sν , and since we do not want to make any assumption that
the fairy tales are real, we want to seek for MTΣ another form MT

Σ̂
where

the picture terms Qi, sν of MTΣ are replaced by the base terms M̂i and the
structure terms ŝν of Σ̂. We want to find a Σ̂ such that the theory MT∆

(formed with MTΘ and MTΣ) is “the same” as the theory MT
∆̂

(formed
with MTΘ and MT

Σ̂
).

We reach this aim by choosing a Σ̂ such that the terms Qi, sν form a
representation of Σ̂ (as defined in Sect. 4.2):

– The species of structures Σ̂ is characterized by the principal base sets M̂i,
the structure terms ŝν with the typification ŝν ⊂ Ŝν(M̂1, . . .), and the
axiomatic relation P̂ (M̂1, . . . , ŝ1, . . .);

– The species of structures Σ may be characterized by the principal base
sets Xi, the structure terms vν with the typification vν ⊂ Sν(X1, . . .), and
the axiomatic relation P (X1, . . . , v1, . . .).

The terms Qi, sν form a representation of Σ̂ if the relation (4.2.1), i.e.,

(∃X1) · · · (∃v1) · · · (∃f1) · · ·
[

vν ⊂ Sν(X1, . . .)

∧ P (X1, . . . , v1, . . .)

∧ fi : M̂i → Qi(X1, . . . , v1, . . .) are bijective mappings

with 〈f1, . . .〉P ŝν ŝν = sν(X1, . . . , v1, . . .)
]

(4.3.1)

is a theorem in MT
Σ̂

.
To form MT∆ and MT

∆̂
we need inaccuracy sets. We can expect that MT∆

and MT
∆̂

are the “same” only if we take for ∆ and ∆̂ the “same” inaccuracy
sets. We define the “same” inaccuracy sets by the following correspondence:
For bijective mappings fi : M̂i → Qi we say that two inaccuracy sets Û and
U are corresponding sets (relative to the fi) if U is the bijective picture of Û
by the fi. We can therefore add inside the brackets of (4.3.1) the condition
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fi : Û → U are bijective mappings

for corresponding Û , U .
We can now form MT

∆̂
in the same way as MT∆ (replacing the terms

Qi, sν by the terms M̂i, ŝν). The axiom (3.3.5) takes the form

P
∆̂

: (∃φ̂1)(∃φ̂2) · · ·
[

φ̂i : M i → M̂i are injective mappings

with (φ̂iM i)Ûi
= M̂i

∧ φ̂s ⊂ (ŝ)
Ûs

∧ φ̂s′ ⊂ (ŝ′)
Ûs

]
. (4.3.2)

The M̂i and ŝν are auxiliary sets for ∆̂!
We see immediately that if the terms sν over the base M i form a structure

of species ∆̂, then it follows that the terms sν over the base M i form a
structure of species ∆. One has only to choose for the mappings φi : M i → Qi,
the φi = fiφ̂i for which the fi are bijective mappings M̂i → Qi existing
according to the theorem (4.3.1) with (4.3.2). In the same way it follows,
conversely, that a structure of species ∆ is also a structure of the ∆̂. Then we
say that ∆̂ and ∆ are the same species of structures. Thus the tests of MT

∆̂

or MT∆ by A are the same.
We call MT

∆̂
an axiomatic basis of the PT and P̂ the idealized laws of

nature of this PT .
But we have not yet proved that for every MTΣ(Qi,sν) there is an axiomatic

basis MT
Σ̂(M̂i ,̂sν)

. This is the case if the terms sν over the base Qi form a

structure of species Σ̂ and if (4.3.1) is a theorem in MT
Σ̂

. But the terms
sν over the base Qi form a structure of species Σ̂ if the axiomatic relation
P̂ (M̂1, . . . , ŝ1, . . .) transported to the Qi, sν is a theorem in MTΣ (see Sect.
4.1).

The axiomatic relation P̂ transported to the Qi, sν is a theorem in MTΣ ,
and (4.3.1) is a theorem in MT

Σ̂
if we choose, e.g., the relation (4.3.2) as

axiomatic relation P̂ . In the

Example A

we get an axiomatic basis MT
Σ̂

characterized by

1. the principal base set M̂ ,
2. the structure term ŝ,
3. with the typification ŝ ⊂ M̂ × M̂ × IR,
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4. the axiomatic relation P̂ , according to (4.3.1),

(∃f)
[

f : M̂ → Q = IR × IR is a bijective mapping

with fŝ = s
]
,

where s ⊂ Q × Q × IR is the set of all (q1, q2, d)

with d(α1, α2;β1, β2) =
√

(α1 − β1)2 + (α2 − β2)2 (4.3.3)

(see Sect. 3.3.1).

One has to insert in the square brackets that for an Û corresponding to U of
(3.3.6),

fÛ = U .

A fixing of the picture of one a0 (as described in Sect. 3.3.2) can also be
transported to MT

∆̂
. With φ(a0) = (0, 0, 0) we have only to set with φ̂iq0 =

â0 : fi(â0) = (0, 0, 0).

This example reinforces the feeling that the relation (4.3.1) does not give
more insight into the structure of reality, since (4.3.1) only says that the
structure of the application domain Ap is such that one can imagine realities
described by Σ. But there can be many parts of Σ which have no influence on
Σ̂. For instance, one can add in Σ new structures which have no influence on
the Qi, sν . Therefore, there remains the question of knowing if it is possible
to formulate such an axiomatic relation P̂ that tells us something only about
the structure of the application domain Ap, and not about added fairy tales.

4.4 Pure Laws of Nature

The reason for not using fairy tales in the formulation of an axiomatic basis
can be explained very well by the

Example A

of a two-dimensional Euclidean geometry. The mathematical theory MTΣ(Q,s)

is given in this example (see end of Sect. 4.3) by Q = IR× IR, s ⊂ Q×Q× IR,
and the axiomatic relation that s determines a mapping d : Q×Q → IR with

d(α1, α2;β1, β2) =
√

(α1 − β1)2 + (α2 − β2)2. (4.4.1)

An axiomatic basis is given by Σ̂(M̂, ŝ) with the typification ŝ ⊂ M̂ ×
M̂ × IR and the axiomatic relation (4.3.3).
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If we take (4.3.3) as axiomatic relation P̂ , we know that MT
Σ̂(M̂,̂s)

is a

two-dimensional Euclidean geometry. But we want to formulate P̂ in such a
way that it immediately says something about ŝ, so that we can prove later
(4.3.3) as a theorem. Such a system of axioms P̂ can, e.g., begin with the
axioms

1. ŝ determines a mapping M̂ × M̂ → IR+, i.e., a real function d(x1, x2) ≥ 0,
2. d(x1, x2) + d(x2, x3) ≥ d(x1, x3),

and can be extended by additional axioms of a similar form.
In this way we can find a P̂ which “depends” only on M̂ and ŝ, i.e.,

an axiomatic relation where the existence of terms is postulated only if these
terms can be “formulated” by M̂ and ŝ and not by the help of terms formulated
by real numbers (as, e.g., IR × IR). It is not necessary for the formulation of
P̂ to “imagine” terms other than M̂ and ŝ.

We will now try to formulate, in general, a condition for the derived form
of P̂ . Let us denote an axiomatic relation P̂ as physically interpretable (“in
an idealized form”) if P̂ contains an existential quantifier (∃z) only if z is an
element of the echelon set S(M̂1, . . . , ŝ1, . . .) of only the sets M̂i and ŝν and no
other terms. Thus real numbers can only enter in S(M̂1, . . . , ŝ1, . . .) indirectly
by the ŝν : This means that we can have in P̂ only relations of the form

(∃z)
[
z ∈ S(M̂1, . . . , ŝ1, . . .) ∧ · · ·

]
. (4.4.2)

(It is clear that in (4.4.2) z ∈ S(· · ·) can be omitted if after “∧” (and) are
added relations of which z ∈ S(· · ·) can be deduced.)

For an axiomatic basis MT
Σ̂

with a physically interpretable axiomatic
relation P̂ , we call P̂ also the idealized pure laws of nature. Such an axiomatic
basis will be briefly called a simple axiomatic basis.

The advantage of a simple axiomatic basis is that in Σ̂, there appears only
terms which are connected by the mapping φi to the terms M i, sν describing
by (cor) the realities of the application domain Ap. “Imagined” terms do not
appear in Σ̂. But this does not mean that we cannot “add” imagined terms
(i.e., fairy tales) by theorems (and not axioms!) of the form (4.3.1), and there
can be many theorems of this form. For instance, quantum mechanics was
developed in two different ways: firstly, by Heisenberg, Born, and Jordan, and
secondly, by Schrödinger. Even today discussions about what is the “right”
interpretation of quantum mechanics has not been finalized. It cannot be fi-
nalized because it is impossible to decide by belief (or by faith!) which fairy
tale is true. Fairy tales are, e.g., the so-called “hidden variable” theories and
the theory starting from “states” of the systems and a “superposition princi-
ple” where the states are represented by vectors in a Hilbert space, and the
superposition principle by the mathematical relation of the addition of two
vectors. Therefore, a simple axiomatic basis would be very useful since such
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a basis would describe (even in an idealized form) that part of reality about
which we can be sure. Such an axiomatic basis for quantum mechanics is,
e.g., described in [8]. “Hidden variable theories” have to prove that they are
theorems of the form (4.3.1) in this axiomatic basis. These theories do not
claim to prove the reality of such variables; they try to show under which cir-
cumstances “imagined” variables are possible. The theories of “states” claim
that every micro-system “has” a real state described by a vector in a Hilbert
space. Also, if the authors of this book presume that a theorem of the form
(4.3.1) was proved (which we have not seen), they cannot believe in the
reality of these so-called states, especially since such events as, e.g., the
so-called “collapse of wave packets” seems to be unrealistic – a fairy tale.

The problem of the reality of fairy tales of the form (4.3.1) will be
considered in Chap. 6. In the context of theorems of the form (4.3.1) one
finds in literature the notion of “theoretical concepts.” Since we do not be-
lieve in an a priori reality of terms appearing in (4.3.1), we will not introduce
the designation of these terms as theoretical concepts. We will call these terms
only “terms,” and nothing else.

The fact that one often designates such terms with words which seem
to describe realities does not mean anything. For instance, the word “state”
for the vectors in a Hilbert space (in the above-mentioned “state” theory of
quantum mechanics) does not say anything more than the word “vector” since
the word “state” is not defined and can only be “defined” by the well-defined
word “vector” in a Hilbert space. It is a little disappointing if one tries to give
the feeling of reality by this word “state,” a reality in which one must not
believe!

4.5 Change of the Mathematical Form of an
Axiomatic Basis

The mathematical form of an axiomatic basis can often be changed for the
purpose of simplifying the mathematical development of the theories. No
deeper physical comprehension is aimed at.

A change of the mathematical form of the theory MT
Σ̂

which is often
used is the change of the axiomatic relation P̂ . Let Σ̂1 be the species of
structures related to P̂1, and let Σ̂2 be the species of structures related to P̂2.
If P̂2 is a theorem in Σ̂1 and P̂1 is a theorem in Σ̂2, then the theories MT

Σ̂1

and MT
Σ̂2

are the same theories. The choice of a “simple” axiomatic basis

is only one of the various possibilities, i.e., a possibility where P̂ describes
directly the (idealized) physical structure of the application domain Ap. But
it does not mean that this form is such that the practical mathematical work
is simpler! In our first example of a two-dimensional Euclidean geometry we
would certainly prefer to work with the analytic form, i.e., with the picture
term IR×IR. In the case of quantum mechanics we have for a simple axiomatic
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basis a set X of preparation procedures, a set Y of registration procedures,
and a relation s ⊂ X×Y ×IR describing the probability of a registration y ∈ Y
in the case of a preparation x ∈ X (see [8]). Nevertheless, we will work with
the help of Hilbert’s space and the operators in Hilbert’s space (see [8]). A
simple axiomatic basis has in many cases a physical and not a mathematical
advantage; a physical advantage if we are interested in the significance of
the axiomatic relation P̂ as an assertion over structures on the reality (see
Chap. 6).

But we will not speak in this section of “all” the changes of the mathe-
matical form of MT

Σ̂
(without limitation to fantasy). We will only speak of a

particular change of the form of an axiomatic basis by which we lose nothing
of the physical interpretation.

We start with a simple example: Let M̂1, M̂2 be principal base sets of Σ̂
(which are also the picture terms of M1,M2). Let ŝ ⊂ M̂1 × M̂2 be a relation
in Σ̂. The structure term ŝ determines a mapping g : M̂2 → P(M̂1) in the
following manner: For every y ∈ M̂2 is defined the set g(y) of all x with
(x, y) ∈ ŝ. By z = g(M̂2) we get a new structure term z ⊂ P(M̂1). Then the
relation (x, y) ∈ ŝ is equivalent to the relation x ∈ g(y).

We consider the case where g is injective. It suffices that there is no
contradiction between the relation “g injective” and P̂ , because we can then
add “g injective” as an axiom, since this cannot be in contradiction to any A.

If g is injective, the mapping g : M̂2 → g(M̂2) = z is a bijective mapping.
In this case, we can change the theory MT

Σ̂
to MT

Σ̂1
, where Σ̂1 follows from

Σ̂ by replacing M̂2 by z and ŝ by the relation x ∈ z = g(M̂2). The connection
of MTΘ with MT

Σ̂1
is given by the mappings ψ1 : M1 → M̂1, ψ2 : M2 → z,

and the condition that an element (x, y) ∈ s is mapped onto ψ1(x) ∈ (ψ2(y))
U
.

Here (ψ2(y))
U
∈ P(M̂1) is ψ2(y) ∈ z enlarged with the help of an inaccuracy

set U for M̂1. In the new form MT
Σ̂1

we lose M̂2 as base set and replace ŝ by
x ∈ z where z is a new structure term replacing the structure term ŝ of MT

Σ̂
.

The structure term z ⊂ P(M̂1) is a set of partial sets s of M̂1. Therefore
one often calls the elements of z “properties” of the elements of M̂1. Thus we
see that we can replace the “relation” ŝ ⊂ M̂1×M̂2 by a “set of properties” z.
In MT

Σ̂1
the set z is mostly infinite. Therefore the “properties” as elements of

z cannot be introduced as relations of weight 1 in the mathematical language,
because we cannot introduce many infinite constants in this mathematical
language!

The fact that the introduction of MT
Σ̂1

does not change MT∆ will be
proved in a general form. This general form may be given by the following
properties of MT

Σ̂
.

In MT
Σ̂

it may be possible to divide the terms M̂k into two groups M̂µk

and M̂νi
such that there can be defined in MTΣ intrinsic terms gi, the injective

mappings
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gi : M̂νi
→ Tνi

(M̂µk
, . . . , IR) , (4.5.1)

where the Tνi
are echelon sets only over the base sets of the group M̂µk

.
We want to discuss in one step an additional situation (which is not

necessarily the case).
In the theory MTΣ with the picture terms Qi, sν (where Σ can describe

a fairy tale) which form a representation of Σ̂, the gi can be transported as
mappings

g̃i : Qνi
→ Tνi

(Qµk
, . . . , IR) . (4.5.2)

We will later presume that

the g̃i are the identical mappings Qνi
→ Qνi

. (4.5.3)

This implies

Qνi
⊂ Tνi

(Qµk
, . . . , IR) . (4.5.4)

In general (i.e., without (4.5.3) and (4.5.4)) it follows from (4.5.1) that we
can construct a new species of structures Σ̂1 which contains as base terms
only the group M̂µk

. Instead of the terms M̂νi
we introduce in Σ̂1, in addition

to the structure terms ŝν (of Σ̂), the terms gi(M̂νi
) as structure terms. To

define precisely the species of structures Σ̂1, we introduce new letters: instead
of the M̂µk

we write N̂k, instead of the M̂νi
we write ti, and instead of the ŝν

we write t
(0)
ν . The base terms of Σ̂1 are the N̂k, the structure terms are the ti

and t
(0)
ν . As typification of the structure terms we take

t
(0)
ν ⊂ Ŝν(N̂k, Tνi

(N̂k, . . . , IR)) (4.5.5)

with the Ŝν of the axiomatic basis Σ̂ (see Sect. 4.3), but by replacing the M̂µk

by the N̂k and the M̂νi
by the Tνi

(N̂k, . . . , IR) with Tνi
from (4.5.1).

For the typification of the ti we take

ti ⊂ Tνi
(N̂k, . . . , IR) . (4.5.6)

Now we have to introduce the axiomatic relation P̂1(N̂k, ti, t
(0)
ν ) for Σ̂1. We

compose P̂1 with three relations:

– At first we take the axiomatic relation P̂01(N̂k, ti, t
(0)
ν ), which we get from

P̂ (M̂i, ŝν) by replacing the M̂µk
by the N̂k, the M̂νi

by the ti, and the ŝν

by the t
(0)
ν .
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– As second relation we add

t
(0)
ν ⊂ Ŝν(N̂k, ti) , (4.5.7)

which we get from (4.5.5) by replacing the Tνi
(N̂k, . . . , IR) by the ti.

Together with (4.5.6) it follows that we can leave out (4.5.5).
– The third relation is obtained as follows: From (4.5.1) and the first

axiomatic relation P̂01, it follows that there are intrinsic terms ĝi the
injective mappings

ĝi : ti → Tνi
(N̂k, . . . , IR) . (4.5.8)

As an additional axiom we introduce that the ĝi are the identical mappings
ti → ti.

We see immediately that the terms t
(0)
ν over the base N̂k, ti form a represen-

tation of Σ̂. From the axiomatic relation P̂1 and (4.5.1) it even follows that the
terms t

(0)
ν give a representation of Σ̂ in MT

Σ̂1
. Before proving this, we want to

introduce a species of structures ∆̂1 starting from the same MTΘ and taking
as picture terms instead of the terms M̂i of MT

Σ̂
the terms N̂k, ti of MT

Σ̂1
,

and instead of the structure terms ŝν the terms t
(0)
ν (see the introduction

of ∆ in Sect. 3.3.1). If the terms t
(0)
ν over the base N̂k, ti form a represen-

tation of Σ̂ in MT
Σ̂1

, then the two species of structures ∆̂ and ∆̂1 are the
“same” (see Sect. 4.3).

Since the terms N̂k, ti, t
(0)
ν of Σ̂1 are interpreted by ∆̂1, we also call MT

Σ̂1

an axiomatic basis. It is necessary to observe that the picture terms for the
M̂i are not only the N̂k but also the ti! If one does not observe this, one can
make mistakes.

An axiomatic basis MT
Σ̂

is called an axiomatic basis of the first order,
and an axiomatic basis MT

Σ̂1
is called an axiomatic basis of a higher order

since the typification of the ti contains the procedure P.
Now we want to prove that the terms t

(0)
ν over the base N̂k, ti form a

representation of Σ̂ in MT
Σ̂1

, i.e., we have to prove that the relation (4.2.1)
is a theorem in MT

Σ̂
. The relation (4.2.1) has the form

(∃N̂1) · · · (∃t1) · · · (∃t
(0)
1 ) · · · (∃f1) · · ·

[
ti ⊂ Tνi

(N̂k, . . . , IR)

∧ t
(0)
ν ⊂ Ŝν(N̂k, ti)

∧ P̂01(N̂k, ti, t
(0)
ν )

∧ f1, . . . are bijective mappings fµk
: M̂µk

→ N̂k , fνi
: M̂νi

→ ti
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with 〈f1, . . .〉PŜν ŝν = t
(0)
ν

]
. (4.5.9)

To show that (4.5.9) is a theorem in MT
Σ̂

, we only need to set N̂k = M̂µk
, to

set fµk
: M̂µk

→ N̂k as the identical mappings M̂µ → M̂µ, to set fνi
: M̂νi

→ ti

equal to the gi of (4.5.1), and to define the t
(0)
ν by 〈f1, . . .〉PŜν ŝν .

In a similar way, it is possible to prove that the terms gi(M̂νi
), t̃ν

(where

t̃ν = 〈f1, . . .〉PŜν ŝν (4.5.10)

with f1, . . . are identical mappings fµ : M̂µ → M̂µ and fνi
= gi)

over the base M̂µk
form a representation of Σ̂1 in MT

Σ̂
.

Now we want to show how these two species of structures Σ̂ and Σ̂1 and
the relation between these two structures reflect in MTΣ .

We start with the fact that the terms Qi, sν form a representation of Σ̂
in MTΣ , and we assume, according to (4.5.3), that the mappings g̃i are the
identical mappings Qνi

→ Qνi
. Here the terms Qi are divided corresponding

to the M̂k into two groups Qµk
and Qνi

. We want to prove that the terms
Qνi

, sν over the base Qµk
form a representation of Σ̂1.

To begin with we will prove that the terms Qνi
, sν over the base Qµk

form
a structure of species Σ̂1 if the terms sν over the base Qi form a structure of
species Σ̂. This is the case, if the relation

[
Qνi

⊂ Tνi
(Qµk

, . . .)

∧ sν ⊂ Sν(Q1, . . .)

∧ P̂1(Qµk
, Qνi

, sν)

∧ g̃i : Qνi
→ Qνi

are identical mappings
]

(4.5.11)

is a theorem in MTΣ . This follows from (4.5.3) and from the fact that the
terms sν over the base of all Qi form a structure of species Σ̂.

The inverse of this theorem holds: If the terms Qνi
, sν over the base Qµk

form a structure of species Σ̂1, then the terms sν over the base Qi form a
structure of species Σ̂.

To prove this theorem we have to prove in MTΣ the relation

sν ⊂ Ŝν(Q1, . . .) ∧ P̂ (Qi, sν). (4.5.12)

Since the terms Qνi
, sν form a structure of species Σ̂1, the relation (4.5.11) is

a theorem in MTΣ that leads to (4.5.12).
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If the terms sν over the base Qi form a representation of Σ̂ in MTΣ , then
also the terms Qνi

, sν over the base Qµk
form a representation of Σ̂1 in MTΣ .

To prove this, one has to prove that the relation

(∃X1) · · · (∃v1) · · · (∃h1) · · ·
[

vν ⊂ Sν(X1, . . .)

∧ P (X1, . . . , v1, . . .)

∧ hk : N̂k → Qµk
(X1, . . .) are bijective mappings

with 〈h1, . . .〉PTνi ti = Qνi
(X1, . . .)

∧ 〈h1, . . .〉PŜν t
(0)
ν = sν

]
(4.5.13)

is a theorem in MT
Σ̂

(the letters for MTΣ are selected as in (4.3.1)).
Since the terms sν over the base Qi form a representation of Σ̂, we have

the theorem (4.3.1). Since the terms t
(0)
ν over the base N̂k, ti form a structure

of species Σ̂ in MT
Σ̂1

, we can transport (4.3.1) to MT
Σ̂1

:

(∃X1) · · · (∃v1) · · · (∃f1) · · ·
[
vν ⊂ Sν(X1, . . .)

∧ P (X1, . . . , v1, . . .)

∧ f1, . . . are bijective mappings fµk
: N̂k → Qµk

, fνi
: ti → Qνi

with 〈f1, . . .〉PŜν t
(0)
ν = sν

]
. (4.5.14)

If we replace here the fµk
by the hk and the fνi

by the ki, then we get the
relation (4.5.13) from (4.5.14) if we prove kiti = 〈h1, . . .〉PTνi ti.

Since the gi in (4.5.1) are intrinsic terms, for bijective mappings fνi
with

g̃i in (4.5.2) we get the following commutative diagram

Qνi

g̃i−→ Tνi
(Qµk,...)�


fνi

�

〈fνi

,...〉Tνi.

M̂νi

gi−→ Tνi
(M̂µk

, . . .)

(4.5.15)

From (4.5.15) it follows

g̃ifνi
= 〈fνi

, . . .〉Tνi gi.

With (4.5.3) it follows

fνi
= 〈fνi

, . . .〉Tνi gi ,
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which can be transported to MT
Σ̂1

in the form

ki = 〈h1, . . .〉Tνi g̃i.

Since g̃i is on ti the identical mapping, we get

kiti = 〈h1, . . .〉PTνi ti. (4.5.16)

Thus (4.5.13) is proved.
The inverse is also valid: If the terms Qνi

, sν over the base Qµk
form a

representation of Σ̂1, then the terms sν over the base Qi form a representation
of Σ̂.

To prove this, we have to demonstrate that from the relation (4.5.13) as a
theorem in MT

Σ̂1
it follows the relation (4.3.1) as a theorem in MT

Σ̂
. Since

the terms gi(M̂νi
), t̃ν over the base M̂µk

form a structure of species Σ̂1 in
MT

Σ̂
, from (4.5.13) it follows that

(∃X1) · · · (∃v1) · · · (∃h1) · · ·
[

vν ⊂ Sν(X1, . . .)

∧ P (X1, . . . , v1, . . .)

∧ hk : M̂k → Qµk
(X1, . . . , v1, . . .) are bijective mappings

with 〈h1, . . .〉PTνi gi(M̂νi
) = Qνi

(X1, . . . , v1, . . .)

∧ 〈h1, . . .〉PŜν t̃ν = sν(X1, . . . , v1, . . .)
]
.

With fν1 = 〈h1, . . .〉PTνi gi and with the definition t̃ν = 〈f1, . . .〉PŜν ŝν we get
(4.3.1).

We have demonstrated the different mathematical forms MT of the “same”
physical theory PT :

PT ≡ Ap(cor)MT∆ · · · MT .

For all various forms of MT we have the “same” ∆ and thus the “same”
physics. The various forms can make the “work with the PT” more and more
fruitful, i.e., make of the PT a tool increasingly more efficient.

Also, a fairy tale MTΣ is without any restrictions. The only condition is
that one defines in MTΣ the picture terms Qνi

, sν . One gets the physically
essential mathematical theory MTΣ only by these picture terms.

If someone takes a fairy tale MTΣ without the definition of picture terms
Qνi

, sν , he violates the methods of a physical theory established here. This
violation cannot be eliminated by using physically sounding words for some
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of the terms of Σ. We call such an MTΣ without the definition of the picture
terms an “uninterpreted theory” (see also Sect. 4.9).

The next section will not establish additional conditions for the
“method of a physical theory” but will describe some general structures of
this method.

4.6 Inaccuracy Sets and Uniform Structures

In this section we will provide a very useful mathematical method to
describe a set of “possible” inaccuracy sets, i.e., a set out of which we can
seek the best (the smallest) inaccuracy sets for which the theory MT∆ is not
in contradiction with experiment.

Thus the introduction of such a set of possible inaccuracy sets does not
describe a new physical reality, but is only a method for obtaining the best
description of reality by MT∆ when “we fix” the idealized description by the
picture terms of MT .

Let X be a set in MT such that X = Q for a picture set Q, or s ⊂ X
for a picture relation s. In such a set X we have to introduce an inaccuracy
set U ⊂ X × X as described in Sect. 3.3.1. The structure ∆ depends on this
inaccuracy set U . If we want to stress this dependency, we will write explicitly
∆U .

For such a set of possible inaccuracy sets we take a set N ⊂ P(X ×X) for
which the following relations are axioms or theorems of MTΣ :

∅ �= N ⊂ P(X × X), (4.6.1)

U1 ∈ N ∧ U2 ⊂ P(X × X) ∧ U1 ⊂ U2 ⇒ U2 ∈ N , (4.6.2)

U1 ∈ N ∧ U2 ∈ N ⇒ U1 ∩ U2 ∈ N , (4.6.3)

U ∈ N ⇒ D(X) ⊂ U , (4.6.4)

U ∈ N ⇒ U−1 ∈ N (U−1 = {(x, y)|(y, x) ∈ U}), (4.6.5)

U ∈ N ⇒ (∃U1)(U1 ∈ N ∧ U1 ◦ U1 ⊂ U). (4.6.6)

The set N with these relations as axioms is a species of structures of X;
it is called species of uniform structures. We take such a structure as a set of
possible inaccuracy sets. “Possible” means that we can construct with such a
set U ∈ N the theory MT∆U

, and can attempt to see if this theory is not in
contradiction with experiment (i.e., that MT∆U

A is without contradiction).
Why do we take the above axioms as properties of such a set N of possible

inaccuracy sets?
We see immediately that ∆U1 is richer than ∆U2 if U1 ⊂ U2. Thus MT∆U2

A

is without contradiction if MT∆U1
A is without contradiction. Therefore we

take (4.6.2) as a property of N .
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If the inaccuracy sets U1, U2 do not lead to contradictions with experiment,
it does not follow that U1∩U2 does not lead to contradiction with experiment.
Similarly, it does not follow that an inaccuracy set U1 with U1 ◦U1 ⊂ U does
not lead to contradiction with experiment if U does not lead to contradiction
with experiment. Therefore we take (4.6.3) and (4.6.6) as properties of N for
the purpose of formulating methods to obtain smaller and smaller inaccuracy
sets in order to test these smaller inaccuracy sets, and to see whether they
lead to contradiction with experiment.

The property (4.6.4) is obvious since we cannot distinguish an x ∈ X from
itself. The property (4.6.5) is added since we do not want to distinguish by
an inaccuracy set U the pair (x, y) from the pair (y, x) (see the introduction
of an inaccuracy set in Sect. 3.3.1).

In this sense, a uniform structure N of X describes a “procedure” to get
smaller and smaller inaccuracy sets for the purpose of testing whether ∆U does
not lead to contradiction with experiment. But the axioms (4.6.1) to (4.6.6)
give no restriction to the inaccuracy sets U ∈ N , since they are fulfilled by
the set

N0 = {U | U ⊂ X × X ∧ (4.6.4)}. (4.6.7)

The axioms (4.6.1) to (4.6.6) therefore describe not a “real” structure but
only a “physical” structure; a physical procedure to select finer and finer, but
still usable, inaccuracy sets. This procedure can only be done “step by step”
and not with infinitely many elements of N . The description of such a step-
by-step procedure is not yet included in the axioms (4.6.1) to (4.6.6), i.e., we
have to introduce additional axioms for N .

Before we do this, we will make some remarks about the necessary experi-
ments in order to select a usable inaccuracy set; this is the price we pay
for the idealization. This experimental work, of obtaining a survey of the
usable subset of N , is typical in physics and makes physics for some people an
“inexact” science. But this is not the case: the idealization MT is “inexact,”
but it relates by MT∆ (for a particular U) to an exact assertion about reality,
even if this assertion is not “categorical,” i.e., the structure ∆ is in any case,
because of U , not a categorical structure (an “univalent” category, i.e., an
“univalent” species of structures). This does not mean that the reality is not
categorical, but it means that we do not know exactly the structure of the
reality, i.e., that we know only an “interval” of structures which are perhaps
realized. It is clear that this situation is a stimulation to seek a “better” theory
(see Chap. 6).

These considerations could lead to the opinion that the “best” theory
should be a categorical theory, but this is a mistake. The world is not de-
termined by a “part” of the world, e.g., by that part that has taken place
until “now.” A categorical theory would only represent the reality of the “to-
tal” world, but if we knew the “total” reality we would not need any theory
whatsoever. A theory will tell us something about the reality that we have
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not observed. Since as human beings we can decide by our free will over a part
of reality in our future, a physical theory cannot be categorical since a theory
must leave open some “possibilities” about the reality. The question of how
we can read from a theory these “possibilities” will be elaborated in Chap.
6. For the moment, we will only emphasize that we have to expect that the
idealized part MT

Σ̂
of most of the physical theories will not have a categorical

species of structure Σ̂.
(There are only some idealized categorical theories of space–time: “Galileo–

Newton’s theory” is an example of such a categorical theory, but also the
“special relativity theory.” “Einstein’s gravitational theory” is not a categor-
ical theory of space–time since we can, e.g., change this structure a little by
our own free will. Newton’s mechanics is also not categorical since we have at
our disposal the “initial values”).

As we have mentioned above, the aim of introducing N is to select from N
the set of usable inaccuracy sets by experiments. But this selection depends
on the “measuring errors” which come from the pre-theories (see Chap. 6).
If these “errors” are very large, it can be that all elements of N are allowed
as inaccuracy sets; the measuring errors do not allow us to detect where the
idealization of MTΣ deviates from the reality. In this case we often say that
the idealized theory MTΣ is “good enough.”

After these general remarks about the inaccuracy sets and the experimen-
tal work, we will continue to restrict our “reservoir” N of inaccuracy sets. The
biggest reservoir N0 (4.6.7) contains “all” sets which can serve as inaccuracy
sets, but it contains so many sets that it is not possible to seek systematically
and with a positive result a U for ∆U . We have already seen above that we
can test only “step by step.” Therefore this testing is not “fishing in troubled
water” if there is in N a countable subset generating the total N , i.e., if there
is a countable base of N . (For the concept of a countable basis, see [9].) We
therefore restrict the uniform structure N of X by the axiom

there is a countable base of N , (4.6.8a)

which is equivalent to

X is “metrizable” relative to N . (4.6.8b)

(For the concept of metrizable, see [10].) The procedure to look for usable
inaccuracy sets only makes sense if we have a “reservoir” N which fulfills the
axioms (4.6.1) to (4.6.6) and (4.6.8).

Also if these axioms are fulfilled, N can contain elements that are not
usable as inaccuracy sets, since they do not satisfy the property (4.3.4) of
inaccuracy sets. We therefore introduce for N the following axiom:

all U ∈ N satisfy (3.3.4) (4.6.9)
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By (4.6.9) we remove from N all elements that have no use in inaccuracy sets.
This removing does not describe the procedure of searching, but it describes
the “direction” in which we have to cancel the idealization of the set X, i.e.,
it suggests a reflection over the difference between reality and idealization.

If the axiom (4.6.1) is valid, then it follows that the set X endowed with
the uniform structure N is “precompact” (for the concept of precompact,
see [9]).

The uniform structure N of X allows us to complete X to a set X̃ whereby
is defined a canonical mapping i : X → X̃. If

⋂

U∈N U = D(X), then i is
injective and one can identify X with iX, i.e., one can define X as a subset of
X̃. If i is not injective, then there would be elements in X which can “never”
be distinguished by experiments. Therefore we can replace X by iX. For a
physical theory, we therefore always assume that i is injective.

If X is precompact, then X̃ is compact. If X is compact and metriza-
ble, then it is also separable. One has with the metric d(x1, x2) for every
d(x1, x2) ≤ εν a finite set εν-dense in X̃ and therefore a countable set dense
for every ε.

Thus we get the following postulate for picture sets X:

For every such set X is defined a uniform structure N such that X is
precompact (or compact) and metrizable. Then X is also separable.

This postulate includes also the case that X is a finite set. One has only
to take as N the set of all subsets of X ×X which include the diagonal set of
all (x, x).

Also, for the sets IR in s(. . . , IR) which are used for the picture sets of
measurements, we have to choose an N , e.g., by the metric

d(α1, α2) =
∣
∣ arctg(α1/α0) − arctg(α2/α0)

∣
∣

with a fixed number α0.

Example A

The inaccuracy set Uδ
 given in Sect. 3.3.1 is an element of this N generated
by d(α1, α2). With this set N the set IR is precompact.

The completion ĨR of IR is IR plus two elements, one in +∞ and the other
in −∞. It is clear that we have to choose out of this N different inaccuracy
sets U for different s(. . . , IR). Also for the set Q = IR× IR (see Sect. 3.3.1) we
can find a metric (which generates a set N of which (3.3.6) is an element) by
the following procedure (see Fig. 4.1).
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Fig. 4.1. Stereographic projection

Every point (α1, α2) is mapped onto a point P on the surface of a sphere.
As a metric on Q we use the distance of the corresponding points on the
surface of the sphere. With this metric, Q is precompact. Q̃ is the set Q plus
one point in the “infinity” of Q.

But we can also use another metric with another Q̃, taking the mapping
of Fig. 4.2.
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Fig. 4.2. Gnomonic projection

The set N contains the set (3.3.6) as an element. For this set N , the set Q̃ is
the set Q plus different points in “infinity.” But for different directions from
(0, 0) to “infinity” there also different points.

This example demonstrates that the set N selected is not determined by
reality. The set N selected has also something to do with our intention to get
such inaccuracy sets U for which ∆ generates a “good” physical theory.

In our example Q = IR × IR we can also choose a third uniform structure
N , namely, generated by the distance

d(α1, α2;β1, β2) =
√

(α1 − β1)2 + (α2 − β2)2.
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With this metric, Q is not precompact! Therefore, this set N is not so efficient
in seeking usable inaccuracy sets. U from (3.3.6) is an element of N , but this
N contains too many elements to find anything.

Since in many physical theories we use mathematical idealizations endowed
with different uniform structures for the same sets, we will add here some
remarks about this phenomenon.

In most physical theories, the introduction of idealized sets X is con-
nected to the introduction of a metric which tells us what is “small” and
what is “large.” For example, small and large differences of spatial positions,
small and large differences of time, small and large volumes, small and large
velocities, small and large electric fields, etc. The idealizations consist of the
mathematical formulation that this “small” can be made smaller and smaller
without any finite limit, and that this “large” can be made larger and larger
without any finite limit. But the opinion of the authors is such that the ex-
trapolations are not real. They are only fictive extrapolations made because
we do not know how the reality is for small and large regions. To take these
extrapolations as real is therefore only a swindle, by which we try to change
our ignorance into knowledge. Instead of this swindle, we have to choose finite
inaccuracy sets and for this purpose to find a suitable uniform structure N
with such properties as described above.

A way of finding such an N is, e.g., the following method which is often
used:

We choose real functions X → IR which do not change “too fast” in the
small and in the large. We begin with the description of this method step by
step.

At first we consider a set of real functions fλ : X → IR (where λ is an
element of an index set s). We only take functions for which |fλ(x)| < � for
all λ and x, i.e., the fλ maps X onto a bounded region of IR, i.e., onto a
precompact region of IR (precompact relative to the usual uniform structure
of IR). The set of functions fλ will describe how well we can distinguish the
various x by measurements. Indeed the set of functions fλ determines an initial
uniform structure N (see [9]), which describes this distinguability. Since all
fλ map X onto a precompact region, N is precompact (see [9]).

If it is possible to select from the set of the fλ a countable subset fλk
such

that the uniform structure generated by the subset fλk
is the same as the

uniform structure generated by all fλ, then X is metrizable (see [10]). The
following condition is sufficient for such a set of fλk

:

To every fλ and to every ε > 0 there is a fλk
for which |fλ(x)−fλk

(x)| < ε
for all x ∈ X.

This condition is sufficient if we prove that all fλk
(x) are uniformly con-

tinuous for the initial uniform structure generated by the fλk
. This follows

from
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|fλ(x1) − fλ(x2)| ≤ |fλ(x1) − fλk
(x1)|

+ |fλk
(x1) − fλk

(x2)|
+ |fλk

(x2) − fλ(x2)|
≤ 2ε + |fλk

(x1) − fλk
(x2)|.

We will now use this theorem for the consideration of a widespread
mathematical structure in physical theories.

Let p and g be two uniform structures on X. Xp may be X endowed with
the structure p, and Xg may be X endowed with the structure g. We consider
the case where g is finer than p, but the topology generated by g and p may
be equal. Let X̃p and X̃g be the completions of Xp and Xg respectively. Since
g is finer than p, the canonical injection i : Xg → X̃p is uniformly continuous
relative to the structure p and can therefore be continued to i : X̃g → X̃p

(see [9]). By i is then, as an initial uniform structure on X̃g, determined a
uniform structure which coincides on the subset j(X) ⊂ X̃g (with j as the
canonical mapping X → X̃g) with the uniform structure p. X̃p can therefore
also be considered as the completion of X̃g relative to the uniform structure
p. In order not to distinguish in such a case between X, X̃g, X̃p, we take as
picture term X the term X̃g, i.e., we can assume in such cases, for simplicity,
that X = X̃g, i.e., X is complete (and separable) relative to g. Since we
assume that X̃p is separable and the topology of p and g coincides on X, we
also get that Xg is separable.

Since on a compact space the uniform structure is determined by the
topological structure (see [9]), we get that on a compact subset of Xg the
uniform structures g and p are identical, i.e., that every compact subset of Xg

is also complete as a subset of Xp.
Since in physical theories we only have the case that Xg is metrizable, we

want to prove at the end of this section the following theorem.
If Xg is separable and metrizable, then there is a uniform structure p,

for which Xg is precompact, metrizable, and separated, and such that the
topologies of Xp and Xg are the same.

|x, x′| may be the metric of Xg. From the set of all bounded real continuous
functions ϕ : IR → IR with compact support can be selected a countable
subset {ϕµ} such that this subset is dense in the total set relative to the norm
‖ϕ‖ = supα |ϕ(α)| (see [10, Chap. X, Sect. 3, n.3]).

With a denumerable subset {xν} ⊂ Xg, which is dense in Xg, are defined

fνµ = ϕµ(|x, xν |).

By these mappings fνµ : Xg → IR is then defined (proved above) an initial
uniform structure p which is identical to the initial uniform structure defined
by all mappings of the form
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fν = ϕ(|x, xν |),

and p is metrizable and Xp is precompact. It remains to show that g is finer
than p, and that the topologies of Xp and Xg are the same.

Since all mappings fν : Xg → IR are uniformly continuous, the uniform
structure g is finer than p. Therefore the topology of Xg is finer than the
topology of Xp. The topologies are then the same if the identical mapping
Xp → Xg is continuous. A vicinity U of x0 may be defined by |x, x0| < ε; we
seek a vicinity V of Xp with V ⊂ U . To this purpose we chose a ϕ and a δ,
such that from |ϕ(α)− ϕ(0)| < δ follows |α| < ε. By |ϕ(|x, x0|)− ϕ(0)| < δ is
then determined in Xp a vicinity V of x0 with V ⊂ U .

4.7 Do the “Laws of Nature” Describe Realities?

There was a time when one tried to base a physical theory on experimental
facts. For instance it was said that Coulomb’s law could be deduced from
more and more experiments, in other words by conclusive induction. But all
these considerations were not successful. It can only be stated that all (or
at least practically all) of the experiments made until now are, within the
scope of the inaccuracies, not in contradiction with this law. This is nothing
other than what we consider as “the mathematical theory MT∆A is without
contradiction for all A.”

The question of the deduction of physical laws would then mean “Is it
possible to give a method of deduction of MT∆ from MTΘA if A is large
enough?” There are two major difficulties:

1. There is no possibility of deducing from some facts other facts (at least
without using a physical theory; see Chap. 6).

2. There are for given A many possibilities to invent various ∆ such that
MT∆A is without contradiction.

The first difficulty concerns not only the question of the deduction of
physical laws from physical facts, but also the question: “Why do we trust
our physical theories?” The only argument is that we find contentment by
trusting in our physical theories. But without any physical theory one cannot
say anything (starting with a given A) about the next experiment. A deduction
of a theory is impossible. Also, for the simplest case where we have written
down in A many experiments of “dropping a stone from the tower of Pisa”
and recording the fact that they all fell downwards, we cannot deduce that the
next stone will also fall downwards. We can only construct a physical theory
by introducing the mathematical axiom that “all” of the stones will fall down
(here we have used the interpretation of mathematical symbols by (cor)). We
can only guess the axioms and trust our theories.
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An efficient question is thus the following: Is it possible to develop a
method of guessing physical laws, and why do we trust physical laws?

Our answer to this questions is as follows:
If we have a very small application domain Ap and a simple relation, it

is sometimes not difficult to guess from experimental data a mathematical
representation of this relation, e.g., if we consider the pressure p and volume
v of a gas. If one has learned a little about mathematics, one will guess to
represent this relation by “pv = const.” for constant temperature. But this
guessing by only “looking” at the experimental result is impossible for greater
application domains Ap.

If we look at the history of physics, many essential processes of guessing
physical laws had a curious point of departure. One says that Newton was
lying in his garden and saw an apple falling from a tree. This brought him to
the idea that the moon is also falling toward the earth, but only with a much
smaller acceleration. This would have led him to his gravitational theory.

More curiously was the invention of the law of “black radiation” by Planck.
He tried to calculate this law in several ways. In one way he introduced for the
energy of a harmonic oscillator a discrete series of values: nhν (n = 0, 1, 2, . . .
and ν = frequency of the oscillator). He introduced this series with the inten-
tion to let go later h → 0. But he saw that a finite value of h had led to a law
which represented very well the experimental results. This was the starting
point for the development of quantum mechanics!

It is interesting to read the papers of Einstein about his “general relati-
vity theory.” It is interesting to see his way of finding the “natural laws”
of this theory. The way of finding is often not the way of understanding.
Einstein called his theory the general relativity theory; nevertheless, his theory
describes not a general relativity but the absolute metric structure of the four-
dimensional differentiable manifold of space–time.

In a similar way, atoms were called atoms (i.e., indivisible objects); never-
theless, they are divisible.

Quantum mechanics was found in two different ways: the “matrix me-
chanics” of Heisenberg, Born, and Jordan and the “wave mechanics” of
Schrödinger. But what is the correct interpretation of these two mathemat-
ical structures? One of the authors of this book has tried to formulate such
an interpretation by an “axiomatic basis” MT

Σ̂
(in the form of Sect. 4.3)

(see [8]).
Since we have often seen that the way of finding physical theories was

not the way of formulating and interpreting these theories, the authors of
this book are opposed in principle to all restrictions and to any prescriptions.
“Everything” is permitted in the guessing of physical laws.

A physical theory becomes a serious part of science, not in the way of
finding such a theory, but in the way of an exact formulation (in such a way
as we have tried to describe this formulation in Chaps. 3 and 4). It becomes,
in this way, a theory in which we can trust. But why?
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At first it is necessary to believe that the reality, which we try to describe
by a theory, is not an absolute chaos but a structured reality, that the reality
does not have the aim of confusing us. If we speak today of chaos in physical
processes, this “chaos” is structured not only in the way that the process
is determined, but also by what has happened before. If the reality could
confuse us in every respect, we would not be able to live. Without the belief
in a structured reality no craft would be possible; and physics is nothing other
than a further development of crafts by theories and techniques.

Our problem in trusting in a physical theory is the question of whether
a particular invented theory is indeed an approximate description of a real
structure or an error that we have made. Since a theory cannot be deduced
from the reality, we can only compare the theory with the reality. This com-
parison is the one basis on which we can set our trust. But there can also be
a second basis; the structure of the theory itself and the connection of this
structure with the structures of already well-tried theories.

The comparison of a theory with the reality is made by the investigation
of MT∆A as outlined in Sect. 3.3.2. In Sect. 3.3.2 we have only described the
principal method. But can we be convinced that a theory is correct if any
test A is not in contradiction to MT∆? Obviously not. If we take as A the
measured distance between two marked spots, whereby one marked spot is
used for the measurement of one distance, we cannot have a contradiction to
MT∆. This shows that these measurements are suitable for making a relevant
test of the theory.

One has to try to find a “critical” experiment, i.e., an experiment by which
an axiom or a theorem in PT∆ can perhaps be refuted. In our Example A
(applied to a round table) we can, e.g., perform the following experiment.

According to the pre-theory of measurements of distance, we use measuring
tapes. We stretch a measuring tape between two marked spots a and b; the
length of this tape is a measured distance δ(a, b) of the marked spots a, b.
(We do not use a ruler, since the definition of a ruler already presumes the
Euclidean geometry; we also do not use compasses, since this presumes the
definition of a “rigid body.” We do not consider constructions with ruler and
compasses, as Greek mathematicians have formulated in several mathematical
problems.)

We begin the experiment with two marked spots a, b. We take a tape, the
length of which is greater than the distance δ(a, b). We fix the ends of this tape
onto a and b. The tape is not stretched, since the length is greater than δ(a, b).
But we can stretch the tape by joining the middle of the tape to a marked
spot c, so that δ(a, c) = δ(b, c) = α with 2α having the length of the tape.
But there is also a second marked spot d, by which the tape is also stretched,
so that δ(a, d) = δ(b, d) = α (see Fig. 4.3). We can now measure the distances
δ(a, b) and δ(c, d). We define β and γ by 2β = δ(a, b) and 2γ = δ(c, d).
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We can now ask whether these measured values α, β, γ fulfill with a certain
inaccuracy the equation

α2 = β2 + γ2.
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Fig. 4.3. Experiment with marked spots

If this is the case, we have no contradiction in MT∆A. If we repeat this
experiment a few times, starting with other marked spots a, b, and get no
contradiction to MT∆, we are convinced that our theory is correct, i.e., we
trust our theory. We trust it because we do not believe that the reality will
fool us.

We can now repeat the same experiment on the surface of a globe (instead
of the surface of the earth, since on earth it is more difficult to measure
distances, i.e., since we need for the earth a richer theory of measurement of
distances). The result of such experiments is then the following: the equation
α2 = β2 + γ2 is only fulfilled with small inaccuracies if the α, β, γ are small
compared to the greatest distance of two marked spots on the surface of the
globe. We can either introduce large inaccuracies and as a consequence a
smaller fundamental domain G than the total globe, or to form a “better”
theory by instead of using an Euclidean idealization, the idealization of the
geometry of the surface of a sphere (see Sect. 3.3.2).

It is not possible to give a general method for finding and for making
critical experiments; this depends on the selected theorems which we try to
refute and on the expenditure of such an experiment.

But if we also have very rare contradictions in MT∆ with A (contradic-
tions that we cannot repeat systematically) then we do not refute our theory.
We trust our theory because contradictions are very rare; – “practically” im-
possible.

It can also be that we trust a new theory even if we have made no critical
experiments. For example, Einstein believed in his gravitational theory before
any critical experiments, such as the deviation of light by the sun, were made;
he knew that the experiments would confirm his theory! But why?
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Before Einstein’s new gravitational theory there were two other well-tried
theories: the general relativity theory and Newton’s gravitational theory. But
it was not possible to unify these two theories. Einstein succeeded in achieving
this in such a perfect way that his theory could not be wrong.

There is another point of view in which we can also judge a theory. We
believe not only in a structure of the reality but also in the beauty and the
intelligence of this structure.

In any case, we find contentment in developing physical theories. The
essential problems today are not the physical theories, but the question of
knowing what we should do and what we should not do on the basis of a
physical theory.

4.8 Classification of Laws of Nature

In the preceding section we asked ourselves why we believe that a physi-
cal theory describes the reality in such a way that we can trust it. Now we
want to ask what the various axioms of a simple axiomatic basis can tell us
about the reality and, in particular, about the structure of “nature” itself.
These considerations can also provide us with some hints for finding “critical
experiments” as described in Sect. 4.7.

We will not speak about experiments which have already been made but
only about hypothetical experiments. These hypothetical experiments can be
defined purely mathematically. We want to study whether axioms of a simple
axiomatic basis can be tested or perhaps deduced from hypothetical experi-
ments.

A hypothetical experiment is defined by an additional text to MT
∆̂

which
has the same form as A. Such a text, denoted by H, consists of relations of
the form (see Sect. 3.2.3)

xi ∈ M , (x1, x2, . . .) ∈ s, (x1, x2, . . .) ∈ s′ . (4.8.1)

The xi are new constants in the theory MT
∆̂
H. It is clear that we do not use a

text H (4.8.1) which has contradictions in itself. If we know that real errors of
measurement (given by pre-theories) must be larger than the smallest intervals
J (given by pre-theories), then one can also replace (4.8.1) by relations of the
form

xi ∈ M, (x1, x2, . . . , J) ∩ s �= ∅, (x1, x2, . . . , J) ⊂ s′ . (4.8.2)

Our aim is to test the structure Σ̂ by hypotheses H or, more precisely, to test
the axiom P̂ of Σ̂ by possible H. We want not only to test the total P̂ , but
also parts of P̂ . Therefore we consider the following situations:
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Σ̂0 may be the text Σ̂ without the axiom P̂ . R1 may be a transportable
relation in MT

Σ̂0
which is a theorem in MT

Σ̂
, e.g., a part of the axiom P̂ .

Σ̂1 may be the text Σ̂0 plus the relation R1. Since R1 is a theorem in MT
Σ̂

,
the species of structures Σ̂1 is said to be poorer than Σ̂. (If we introduce
no R1, then Σ̂1 ≡ Σ̂0.) R2 may be a transportable relation in MT

Σ̂1
which

is a theorem in MT
Σ̂

, e.g., a part of the axiom P̂ .
Σ̂2 may be the text Σ̂1 plus the relation R2 (i.e., Σ̂0 plus the relation “R1 and

R2”). Since “R1 and R2” is a theorem in MT
Σ̂

, the species of structures
Σ̂2 is said to be poorer than Σ̂, but richer than Σ̂1.

We have the chain Σ̂0, Σ̂1, Σ̂2, Σ̂, where (from the left to the right) the
next species of structures is richer than the one before.

Now we consider the chain of species of structures

∆̂0 , ∆̂1 , ∆̂2 , ∆̂

generated by the chain Σ̂0, Σ̂1, Σ̂2, Σ̂ in the way described in Sect. 4.3. From
the form (4.3.2) for the axioms of the ∆ we see immediately that in this chain
the next species of structures is richer than the previous one.

We introduce the following classification of R2 relative to R1:

We consider only such hypotheses H for which MT
∆̂1

H contains no con-
tradictions. We call such a hypothesis H a “R1-allowed” hypothesis. We call a
relation R2 an “empirically allowed relation relative to R1” if MT

∆̂2
H contains

no contradictions for all “R1-allowed” hypotheses H. We call a relation R2

an “empirically deductible relation relative to R1” if there is a “R1-allowed”
hypothesis H, so that the axiom of ∆̂2 is a theorem in MT

∆̂1
H. We call

a relation R2 an “empirically refutable relation relative to R1” if there is a
“R1-allowed” hypothesis H, so that we get a contradiction in MT

∆̂2
H. R2 not

“empirically allowed” is equivalent to the fact that there is a hypothesis H
such that MT

∆̂2
H contains a contradiction, i.e., R2 is empirically refutable.

What is the physical significance of this classification?

(1) R2 is an empirically allowed relation relative to R1.

In this case the axiom R2 has no influence on the assertion of the physical
theory about the reality. What was allowed by the theory with the axiom R1

is also allowed with the axiom “R1 and R2.” We therefore call R2 a “pure
idealization.” One can add R2, e.g., to simplify the mathematical structure
of Σ̂. The fact that R2 is empirically allowed depends on the used inaccuracy
sets. We say that R2 is an “absolutely pure idealization” if it is empirically
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allowed for all elements of the uniform structures taken from the reservoir of
inaccuracy sets (see Sect. 4.6). Such an absolutely pure idealization was, e.g.,
introduced as an axiom AVid for an axiomatic basis for quantum mechanics
(see [8] III, Sect. 3). Another example can be found in our Example B (see
Part II).

(2) R2 is an empirically refutable relation relative to R1.

In this case the axiom R2 restricts the hypotheses H, which is what we want!
Any hypothesis H which produces contradictions with ∆̂2 is not possible as
an A describing a reality. The aim of the “physical laws” is to restrict the
hypotheses to a hypothesis H which can be “real.” But this aim is more than
the condition that MT

∆̂
A produces no contradiction for the “real” A. There

could also be a hypothesis H which produces no contradiction but cannot be
real! The aim of a physical theory is therefore more than only the condition
of “not being in contradiction to the reality” of Popper.

(3) R2 is an empirically deductible relation relative to R1.

This case is very rare. We have already discussed this problem in Sect. 4.7 of
whether it is possible to deduce a physical law from experiments, i.e., from a
suitable ∆̂. The reason that this case is rare is that R2 contains in most cases
the universal quantifier ∀, while a hypothesis H contains only finite many xi.
Also if a set is finite, one never knows how many elements this set has or if
the xi are “all” the elements!

The only interesting case is therefore the case where R2 is refutable relative
to R1. In this case there is an R1-allowed hypothesis H for which MT

∆̂2
H

contains a contradiction! Why do we not consider the case where we have “no
R1,” i.e., where all hypotheses H are allowed? The reason is that in practically
all theories we do not allow that there are contradictions between the reality
and some axioms (laws) of Σ̂. Therefore we incorporate in R1 all such “laws”
where we do not allow a contradiction to the reality. We call such laws norms.
There are several reasons for introducing norms:

(a) Conceptual reasons: We use in the basic language a concept where this con-
cept includes a structure, the negation of which would contradict the con-
cept. For example, the concept “part of,” used in sentences such as ‘the leg
of a chair is part of the chair.’ This concept includes the “law,” that from
“a is a part of b” and “b is a part of c” follows that “a is a part of c.”
Therefore we introduce in Σ̂, where the picture of this relation may be
symbolized by the sign “<,” the axioms “a < b and b < c ⇒ a < c.” If
we would have written in A a relation contradicting this axiom, we would
not say that the reality contradicts the theory; we would say that we have
made a mistake by the application of the concept “part of.” Therefore we
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incorporate the law “a < b and b < c ⇒ a < c” in R1. This “physical law”
is not a “law of untouched nature” but a “law of a (physical) concept.”

(b) The reality that we want to describe by a physical theory is not only the
“untouched nature” (e.g., a star) but also contains constructions made by
human beings (e.g., a car). There is no physics without craft and modern
techniques. The structure of such constructions is not only determined by
laws of nature, but also decisively by a plan, i.e., by a “required struc-
ture.” These required structures appear in Σ̂ also as axioms, which we call
“norms.”

The first great physical theory, Newton’s mechanics, already contains such
norms. One part of this theory is a space–time theory. How has Newton in-
troduced space and time?

He started with the introduction of an “absolute space” and an “absolute
time.” The absolute space is introduced as an Euclidean three-dimensional
space, the absolute time as a one-dimensional manifold with a transportable
distance of time points. Time can be represented by the set IR (of real num-
bers) with |α − β| as the distance between the times α and β.

This introduction of the absolute space and absolute time is nothing other
than what we have called a “fairy tale.” This fairy tale becomes a physical
theory only by the introduction of terms which can be interpreted by “real
facts,” i.e., by terms which are connected to recordable facts by (cor) and
the mappings φ between MTΘ and MTΣ . These terms were introduced as
“space–time reference systems.”

Before we speak about the reality which will be compared to these mathe-
matically introduced reference systems, we will include some remarks concern-
ing the problem of the reality of an absolute space and of an absolute time.
It may be that Newton believed in these realities. In any case there were
many physicists (practically all) who believed in these realities before the in-
troduction of the special relativity theory. The belief was so strong that there
were many attempts to disprove the special relativity theory and Einstein’s
gravitational theory. Nevertheless, there are practically no physicists today
who believe in the reality of an absolute space and of an absolute time. But
why? This will be one of the problems dealt with in Chap. 6.

What are the realities from which reference systems which have been
mathematically introduced are pictures? Such real reference systems cannot
be found in untouched nature. They are constructions made by human beings:

(a) The mathematical time scale will be the picture of the real scale
of “clocks.” The construction plan of a “clock” is (very briefly speaking) to
repeat the same process and to count the number of these processes. The
main purpose of a clock is the “repetition of the same processes.” The best
realization of the repetition of the “same processes” was obtained by the“clock
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in Braunschweig;” this clock is better than the repetition of the rotations of
the earth.

There are, however, many clocks. In order to obtain “one” time, one has to
fulfill two other norms: the norm of the same unit for all clocks and the norm
of a synchronization of all of these clocks. Only if these norms are fulfilled can
we have a real situation which we can mathematically describe by one time t,
as in classical physics. The main problem is the synchronization, i.e., the norm
which ensures that every pair of two clocks (and therefore all clocks) indicate
the same time when we compare the two clocks together. We know today that
this norm can only be approximatively fulfilled by a set of clocks which do not
move too fast one in relation to the other, and if there is no great gravitational
field. The “one time” in classical mechanics is a norm. Only if this norm is
(approximatively) fulfilled, can we “apply” this classical mechanics. Thus we
get by the “norms” a restriction of the application domain Ap, that is the
fundamental domain G (see Sect. 3.3.3).

We wish to insert here some remarks concerning a concept sometimes used
in the description of physics even though this concept is not a physical concept.
We mean the concept “now.” We say: it is ‘now t-a clock’. This clause cannot
be transcribed by (cor) in a relation in MTΘ because there is no physical
theory. By the word ‘now’ we designate a concept belonging to a subjective
experience in our consciousness. We call this ‘now’ also the ‘present’. Therefore
words like ‘tomorrow’ and ‘yesterday’ do not also appear in physical theories.
They can appear, e.g., if a physicist speaks of his work in a laboratory. There
is in physics no possibility to demonstrate the reality of what “is” real, what
“was” real, and what “can be” real in the future. The word “real” in physical
theories can only be related to a “recording of a time t on a clock.” In physical
theories, there are no parts of sentences with the words ‘was real’ or ‘will be
real’. It can be that such words describe only a subjective experience in our
consciousness.

(b) The space of a real reference system is also a construction determined
by norms.

The first aim of these norms is to obtain a “rigid basis.” If we could swim
like a fish in the ocean, it would be impossible to have a reference system.
We would not know how to construct it. We could swim to the ground in
order to try to construct, starting from this ground, a reference space for the
description of the movement of the water. There is no absolute space that one
could take as a reference space. It could be an interesting question to ask! Is
it possible to develop physics without rigid bodies? And if so, how?

There are many ways in which to construct reference spaces. For instance,
the office or laboratory where we work. But also the reference space that
Kepler has constructed to formulate his laws for the motion of the planets.
But where is the rigid part of this reference space? It is found by the sun and
the fixed stars connected by rays of light.
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There are several systems of construction of a mathematical picture given
for a space reference system (see [11–13]). In these two cases the norms of
construction are such that we obtain an Euclidean space. It is not difficult to
see that these norms cannot be realized for arbitrary high distances. We know
that it is impossible to realize such a space reference system for all the stars
in the universe; that is, the total universe does not belong to the fundamental
domain G of this theory.

The given examples will suffice to explain the following classification
of physical laws: We want to distinguish between “norms” and “laws of
untouched nature.” The norms are taken together into the relation R1, the
other axioms into the relation R2. It would be a misunderstanding to say that
the “norms” have nothing to do with the structure of nature. Norms, when
there is no region where it is possible to realize them, are without significance
as physical laws; that is, the norms make visible structures of nature by the
fact that they can be realized.

In separating the norms R1 from the other laws R2, we can restrict the
application domain Ap to the fundamental domain G in two steps: the first
step consists in using only R1, the second step consists in using “R1 and R2.”
To do this, we can use the method explained in Sect. 3.3.3. We also use for R1

inaccuracy sets so that we get no contradiction to reality, and then exclude
from the application domain Ap the realities where the inaccuracies are very
large. Thus we get a fundamental domain G1 where the norms R1 can be
realized with small inaccuracies. If the total fundamental domain G is smaller
than G1, then we can try to improve R2, if possible, in such a way that the
fundamental domain G is equal to G1.

At the end of this section we would like to say something about the in-
troduction of theoretical terms. As terms of MT

Σ̂
with physical significance,

we have only introduced the picture terms M̂i and ŝν as pictures of the terms
〈M i, sν〉 of Θ. The physical significance of the 〈M i, sν〉 were given by (cor).
After the introduction of MTΣ and MT

Σ̂
, one has often denoted many other

terms with words, which sound physical. We will not introduce such general
theoretical terms. We let terms in MTΣ and MT

Σ̂
be only mathematical

terms. We will later give to some of these terms a realistic significance (see
Chap. 6).

4.9 Skeleton and Uninterpreted Theories

At the end of the description of the method of a physical theory we will
mention a very useful mathematical method for dealing with MTΣ and MT

Σ̂
.

A pure mathematical theory MTΣ (or MT
Σ̂

) becomes a part of a physical
theory by the transition from MTΘ to MT∆ (or MT

∆̂
). The species of struc-

tures Θ has by (cor) a physical interpretation. There is, in general, a lot of
work to be done to elaborate the structure of the MTΣ . For this we do not
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need the connection of MTΣ with MTΘ by MT∆. Moreover, it appears that
for different MTΘ1 and MTΘ2 we can use the same MTΣ .

Therefore, one often develops the structure of a MTΣ using more or less
precisely physical words without introducing an exact definition of these words
by a Θ. But it can be that some of the terms of MTΣ have a precise interpre-
tation, and others not. We will call such a MTΣ a skeleton theory.

The very well elaborated MTΣ of the classical mechanics of mass points
is such a skeleton theory.

The basic structure of MTΣ are the equations of motion for the �ri(t):

mi�̈r = �fi(�r1, �r2, . . . , �rn).

Here, t is the time exactly interpreted and the �ri are the positions exactly
interpreted in a space–time reference system, but without saying in which.
The �fi are functions which will be later interpreted as “forces.” But firstly one
plays with these functions introducing several conditions (i.e., mathematical
axioms) for these �fi. The indices i are interpreted as signs for several “mass
points” without saying whether and where these mass points are in reality.
Mathematicians such as Hamilton and Jacobi have elaborated this skeleton
theory in an admirable way.

Another skeleton theory can be found in thermodynamics. One considers
an n-dimensional state space (x1, . . . , xn) without giving a physical interpre-
tation of these xν , but with the intention that they will be interpreted later.
One introduces the differential 1-form

dA =
∑n

ν=1 fν(x1, . . .) dxν ,

with the interpretation that dA is the picture term for the work which is added
to the systems if the states are changed by dxν . The axiom of this skeleton
theory is: there are three functions U(x1, . . .), T (x1, . . .), and S(x1, . . .) with
the relation

dU + dA = TdS .

One calls U the intrinsic energy, T the temperature, and S the entropy.
The application of this skeleton theory is done by introducing exactly

interpreted states (x1, . . .) and a dA given by pre-theories.
This method of skeleton theories, briefly described, is in total conformity

with our foundation of the method of a physical theory, since the noninter-
preted terms are introduced with the intention that they will later be special-
ized and interpreted.

But there are also descriptions of physical theories which contradict the
method described above. One introduces a fairy tale theory without an inter-
pretation in our sense (i.e., an interpretation as described in Sect. 4.3). This
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means that the connection of mathematical terms with physically sounding
words is enough to obtain a connection between the theory with experimental
results. One has in these theories only an imagined reality without knowing
what this imagined reality has to do with the true reality. Very often we in-
troduce also a priori conditions for the structure of these fairy tales, because
one believes that reality must have these structures.

There is for instance the belief that physics should be founded on quantum
theory, i.e., that one can begin with the description of an intrinsic reality by
quantum theory, and that one can get, from this intrinsic reality, the reality
of a stone that we can see and feel without knowing any physical theory.
One can even find that the meaning of this intrinsic reality is different from
(and perhaps in contradiction to) the subjective reality of a stone that we
perceive with our senses. The authors of this book believe that the reality of
the stone that we can see is the same with or without physics. We learn only
from physics that there are also other realities as, e.g., electrons, protons, etc.
But an electron can be recognized only if we have already recognized, without
physics, the reality of a stone.

In this sense is described the quantum theory in [8] where a theory of
preparation and registration procedures, which is physically interpreted with-
out quantum mechanics (see [8, Chaps. II and III, Sects. 1–4]), is introduced
as a basis of a quantum theory. The axiom AQ in Chap. III, Sect. 5 is then the
connection of these interpreted terms with terms of the Hilbert space theory.
Thus we get an axiomatic basis for the quantum theory, but, because of the
axiom AQ, not a simple one. A simple axiomatic basis is given in [8]. The for-
mulation and interpretation of this axiomatic basis is founded on the reality
of macroscopic events, the preparation and registration procedures, a reality
known before all quantum mechanics.

In contradiction to this description of quantum mechanics there are pure
fairy tales, the reality of which is more than dubious. One tries to base the
theory on “states” of the objects represented by vectors of a Hilbert space
without knowing what the reality of such “states” is. One introduces a “super-
position principle” without saying what the reality of such a “superposition”
is (one cannot superpose two microsystems in order to get a new microsystem
in such a way that one can superpose two waves of water in order to get a new
wave of water). All this would not contradict our method of a physical theory
if one could formulate this fairy tale in a correct mathematical form MTΣ ,
and if one could define in this MTΣ the picture terms for a reality which is
known before quantum mechanics and can be described by a MTΘ. We have
never seen such a formulation.

Firstly, we have not seen a correct mathematical form MTΣ . For instance
one formulates a sentence of the form ‘the microsystem a has at the instant
t the state ϕ’ (or ‘. . . is in the state ϕ . . .’), where ϕ is a vector of a Hilbert
space and t a real number. But such a sentence is not a mathematical one.
In Sect. 3.1 we have formulated what mathematical sentences should look
like. The above sentence can indeed be transcribed into a formal sentence or
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a mathematical form. For example, we introduce a relational sign of weight
3 for this relation between a, t, ϕ and write for the above natural sentence
r(a, t, ϕ). Then we can introduce two sets, a set M , the elements of which
shall be the picture terms of the microsystems, and a set H of vectors of the
Hilbert space. With a ∈ M , t ∈ IR, and ϕ ∈ H, the relation r(a, t, ϕ) can be
replaced by a subset s ⊂ M × IR×H. Then one can introduce the axiom that
s defines a mapping g : M × IR → H. The above natural sentence can then
be transcribed into the mathematical form g(a, t) = ϕ. In this way one could
perhaps formulate a correct mathematical form MTΣ of this fairy tale.

Secondly, we have not seen a correct formulation for the terms (in MTΣ)
which can be compared to the results of experiments, e.g., for preparation and
registration procedures.

Until now this theory is not a correct formulation MTΣ of a fairy tale, as
required in Sect. 4.3.

Instead of such a formulation MTΣ , one finds in this theory very incredible
fairy tales such as the collapse of wave packets (i.e., of states) by measure-
ments. Since this appeared too mysterious, one tried to interpret the vectors
of the Hilbert space as a description of “the knowledge of a subject.” But
such a way out is not necessary since there is no collapse of wave packets in
reality. Do not believe in fairy tales! Consider only the reality of fairy tales in
the form of our investigations in Chap. 6.



5

Relations Between Various PT s

In Chap. 4 we finished formulating the method of one physical theory. It
is only by following this method that we accept a set of sentences (using
physical and mathematical concepts) as a PT . This does not mean that we
do not accept a PT if all the steps are not correctly followed according to
our formulated method. Also, the mathematicians do not need to elaborate
all of the proofs; it suffices that we see only the main steps. The physicists use
mathematics with still greater negligence than the mathematicians, hoping
that mistakes will be detected also by the applications of MT in PT . But if
there is a problem, whether one has made mistakes or not, one can return to
the “correct” method.

But physics consists not only of one theory; it is made up of a set of various
theories. Most physicists think that there should be, at least as an aim (which
can perhaps never be reached), a single theory for all of physics. But this is not
the case in physics today. We have many theories, but not only isolated ones.
Sometimes one theory is “better” than another. But by “better” what does
this mean? One is interested not only in better and better theories, but also
in the “not so good” theories (so-called “approximation theories”) which are
mathematically simpler to elaborate and therefore to apply than the better
theories.

The first aim of this chapter is to formulate more correctly what we mean
by � PTα is a “better” theory than PTβ �.

The second aim is to formulate the relation that a PTα is used as a
“pre-theory” for PTβ . This relation was already used in the formulation of
the basic language Bl of the theory, i.e., by the introduction of some of the
concepts used in this language and in the formulation of recorded facts in the
basic language (see Sect. 3.1.4).
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5.1 Relations Between Two PT s with the Same
Application Domain

We can symbolize the formulation of one theory PTα under the form

PTα ≡ Apα
↔ Blα(cor)MT∆α

in which “↔ Blα(cor)” is the process by which we have connected the mathe-
matical theory MT∆α

with that part of reality which we called the application
domain Apα

. The application domain Apα
is that part of reality which can

be described by the concepts used in the basic language Blα and which only
contains such objects which have at least one of the basic properties (see Sect.
3.1.1.2).

We want to consider at first two theories PTα and PTβ with the same ap-
plication domain Apα

≡ Apβ
. Later we will try to extend these considerations

to more general cases.
Apα

≡ Apβ
is equivalent to the fact that the relations Ã of PTα are also the

relations of PTβ and vice versa. This is equivalent to the fact that Blα ≡ Blβ ,
and that the basic properties are the same. Only ∆α and ∆β can be different.
Also the parts Θα of ∆α and Θβ of ∆β must be the same, i.e., the base sets and
the structure terms of ∆α and ∆β are the same. Only the axiomatic relations
P∆α

of ∆α and P∆β
of ∆β can be different (for the axiomatic relation, see

Sect. 4.1).
The axiomatic relation P∆α

of ∆α is determined by the idealization Σα

and the used inaccuracy sets. We use for Σα the form of an axiomatic basis
(for the axiomatic basis, see Sect. 4.3). Since Θα ≡ Θβ we get that the base
sets and the structure terms of ∆α and ∆β are the same; only the axiomatic
relations Pα of Σα and Pβ of Σβ can be different. Since the base sets and the
structure terms of Σα and Σβ are the same, we also take the same unitary
structures for the “reservoir” of inaccuracy sets. The difference between P∆α

and P∆β
can only be generated by different inaccuracy sets, selected in the

common unitary structure, and by different axiomatic relations Pα and Pβ of
the axiomatic basis Σα and Σβ .

If Σα and Σβ are “equally rich” (see Sect. 4.1), which we write as Σα ≡ Σβ ,
then the difference between Σα and Σβ is only the form of the axiomatic
relations Pα and Pβ , which does not interest us here. For Σα ≡ Σβ we also
say that the idealizations of ∆α and ∆β are the same. The differences between
∆α and ∆β can then be generated only by different inaccuracy sets. If the
inaccuracy sets of ∆α and ∆β are also the same, it follows that ∆α and ∆β

are “equally rich,” written ∆α ≡ ∆β . Then PTα is also equivalent to PTβ ,
written PTα ≡ PTβ .

Here we are no longer interested in equivalent physical theories (such as in
Sect. 4.2 where we investigated different forms of the same physical theories).
We are interested in relations of the form
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� PTβ is “better” than PTα �,

that is, PTβ says more about the structure of the application domain Apα
≡

Apβ
. This is the case if � ∆β is richer than ∆α �. We always presume that we

have no contradiction with experiment. Since Θα ≡ Θβ , the texts Aα and Aβ

are equivalent, which we write as Aα ≡ Aβ . We only consider PTα and PTβ for
which MT∆α

Aα and MT∆β
Aβ are without contradiction for all experiments,

and when we are convinced that they will also be without contradiction for
future experiments (for this “conviction,” see Sect. 5.4).

We define

� PTβ is “richer in content” (briefly “richer”) than PTα �
if � ∆β is richer than ∆α �.

We write this in the form PTβ � PTα.
(A remark concerning the ideas developed in [1]. There, we had used for

“richer in content” the term “more comprehensive” (German word: umfan-
greicher). In a discussion through letters, Prof. Erhard Scheibe has remarked
that the word umfangreicher can be misunderstood. For instance, a concept c1

contains more than a concept c2, e.g., c1 = mammal and c2 = dog. Dr. Scheibe
proposed to use the term “richer in content” (German word: inhaltsreicher)
and we agreed with this proposal.

We see immediately that for Σα ≡ Σβ that � PTβ is richer than PTα �
if the inaccuracy sets for ∆β are smaller than those of ∆α. Therefore one
will try to choose, for given Σα ≡ Σβ , inaccuracy sets as small as possible
without contradictions to experiments, i.e., to Aα ≡ Aβ for “all” experiments.
Therefore, we are mainly interested in the case where Σα �≡ Σβ .

If � Σβ is richer than Σα � and Σα �≡ Σβ , we see immediately that � ∆β is
richer than ∆α � if we use the same inaccuracy sets for the construction of ∆α

and ∆β . Thus � PTβ is richer than PTα � if MT∆β
Aβ is without contradiction

like MT∆α
Aα: the experiments must “decide” whether we have indeed found

in PTβ a richer theory.
An example for this case is the following: The axiomatic relation Pα of Σα

has the form R1 ⇒ R2 as described in Sect. 2.4. The axiomatic relation Pβ

is a generalization of Pα in the sense that the “condition” R1 is canceled, so
that R1 ⇒ R2 is a theorem in MTΣβ

. The axiomatic relation Pβ gives for the
condition R1 the particular relation R2. � MTβ is richer than MTα � since it
also describes structures of reality if the condition R1 is not fulfilled.

Most interesting is another case, where neither � Σα is richer than
Σβ � nor � Σβ is richer than Σα �; the two structures Σα and Σβ contradict
each other.

It may also seem that in this case ∆α contradicts ∆β , but this must not
be the case since we may have used different inaccuracy sets for ∆α and ∆β !
It can be that � Σβ is a “better” idealization than Σα �, i.e., the inaccuracy of
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Σβ can be smaller than that of Σα when compared to reality. Such cases are
very interesting for physics, since one does not have in all interesting physical
theories a Σβ which is a realistic idealization. Therefore we will concentrate
on this case and will try to formulate this “better” by mathematical relations.
We will provide a method for constructing usable inaccuracy sets which will
allow us to compare Σα and Σβ .

We will call the inaccuracy sets used before this construction the initial
sets Uαi and Uβi. These sets are selected as small as possible under the
condition that the so-constructed ∆i

α and ∆i
β are without contradiction to

Aα ≡ Aβ . It can be that neither � ∆i
α is richer than ∆i

β � nor � ∆i
β is richer

than ∆i
α �. Then we seek to construct such inaccuracy sets Uαi and Uβi for

which ∆f
α and ∆f

β can be compared, i.e., for which � ∆f
α is richer than ∆f

β �
or � ∆f

β is richer than ∆f
α �. We postulate that the Uαf , Uβf are larger than

the Uαi, Uβi, so that the ∆f
α, ∆f

β are also without contradiction to Aα ≡ Aβ .
We begin with a question concerning Σα and Σβ . The principal base sets

Mi are the same, the structure terms sνα and sνβ are different, the sνα fulfill
the axiomatic relation Pα, and the sνβ fulfill the axiomatic relation Pβ . We
consider the relations

sνβ ⊂ (sνα)
Ûν

and s′νβ ⊂ (s′να)
Ûν

. (5.1.1)

We try to find inaccuracy sets Ûν (as elements of the reservoir (see Sect. 4.6))
such that (5.1.1) is a theorem. We seek such Ûν which are as small as possible.

To obtain from Σβ the structure ∆i
β , the inaccuracy sets may be Uβi

ν , i.e.,
we have as an axiomatic relation of ∆i

β (see Sect. 3.3.5)

(∃φ1)(∃φ2) · · ·
[
φi : M i → Mi are injective mappings

∧ φsν ⊂ (sνβ)Uβi
ν

∧ φs′ν ⊂ (s′νβ)Uβi
ν

]
. (5.1.2)

From (5.1.1) and (5.1.2) follows the theorem

(∃φ1)(∃φ2) · · ·
[
φi : M i → Mi are injective mappings

∧ φsν ⊂
(
(sνβ)

Ûν

)

Uβi
ν

∧ φs′ν ⊂
(
(s′νβ)

Ûν

)

Uβi
ν

]
. (5.1.3)

We see that
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(
X

Û

)

U
= X

Û◦U
(5.1.4)

with Û ◦ U according to Sect. 4.6.
Thus we get from (5.1.3) that the structure ∆f

α, generated by Σα and the
inaccuracy sets Uαf = Ûν ◦ Uβi

ν , is poorer than ∆i
β , i.e., � PT i

β is richer than
PT f

α �.
This theorem does not contain any relation that specified that Σβ re-

sembles more than Σα the structure of reality. A relation similar to (5.1.1)
(with only α and β permuted) can be proved for an Û which is as large as
Û of (5.1.1). Thus it may seem that it is arbitrary to declare Σα or Σβ as
resembling more the structure of reality. But this would be a deception. The
essential difference lies in the formula (5.1.4). Starting from Σβ with Uβi we
get Uαf = Û ◦ Uβi; starting from Σα with Uαi we get Uβf = Û ′ ◦ Uαi with
an Û ′ which is as large as Û . If Uβi is much smaller than Uαi, then Uαf is
as large as Û and Uαi, and Uβf is much larger than Uαi. If Uβi is very small
compared to Uαi, then Uβf is much larger than Uβi. To get � ∆f

β is richer
than ∆i

α �, we have to change radically the inaccuracy from Uβi to a much
larger Uβf ! This makes physically no sense, since Uβf is much larger than
necessary, as only Uβi is necessary to get no contradiction with experiment.

There will often be the case that Uαi is very large in certain regions. In
these cases we have introduced in Sect. 4.3.3 the fundamental domain G as
a part of the application domain Ap. If Σβ is a better idealization than Σα

in the described sense, i.e., if Uβi is much smaller than Uαi, then we get,
from the definition of G, that Gα must be smaller than Gβ . Sometimes it can
be that Gβ ≡ Apβ

, but Gα is only a part of Apα
≡ Apβ

, and Gα is already
determined by Ûν .

The formulation of the relation between two physical theories given above
may not seem sufficiently precise. But this is the mathematically exact formu-
lation of the intuitive formulation that Σβ resembles the structure of reality
more than Σα. That this mathematical formulation needs the inaccuracy sets,
which cannot be layed down, is a consequence of our physical theories, where
we use the idealizations Σα, Σβ , which are only inaccurate pictures of reality.
Some physicists try to describe this situation in the following way: Σα is
a hypothesis about the structure of reality; we take this Σα as an exact
picture, and if we state later that this is not the case, we try to formulate
a new hypothesis Σβ and take this again as being exact. But we do not know
what we must do if a Σα or Σβ is exact, even if we know in advance that the
hypotheses are all false or, even better, only inaccurate pictures. We prefer the
formulation of the relation between Σα and Σβ , which we have given above.
Since this relation is the essential starting point for all other relations between
physical theories, we will now give some simple examples.

As a first example we take a theory for the equilibrium states of a gas. The
application domain Ap consists of a mole of a particular gas and the values
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of pressure, volume, and temperature in equilibrium. Thus we have for Θ the
set IR × IR × IR with a relation s ⊂ IR × IR × IR where we take the first IR
as the values p of pressure, the second IR as the values V of volume, and the
third IR as the values T of temperature. We take as idealizations MTΣ :

MTΣα
: sα ⊂ IR × IR × IR represents the ideal gas state
equation pV = RT ;

and

MTΣβ
: sβ ⊂ IR × IR × IR represents the van der Waals state
equation (p + a/v2)(V − b) = RT .

Without experiments we cannot know whether one of these two equations
represents “better” than the other the experimental results. But from expe-
riments we know that we must take for IR × IR × IR in MTΣα

much greater
inaccuracy sets to get ∆α than in MTΣβ

to get ∆β , so that MT∆α
and MT∆β

give no contradiction with experiment. Especially for ∆α we have to choose
in IR × IR × IR, for small V and small T , very large inaccuracy sets. Thus we
get that the fundamental domain Gα of the theory PTα is a region where V
and T are not too small, i.e., a not too dense gas for higher temperatures.

Our example of the equilibrium values of p, V, T for a gas is nothing other
than a three-dimensional case of two-dimensional cases well known in experi-
mental physics:

We consider a relation s ⊂ IR × IR and, as an idealization, a relation
s ⊂ IR × IR which represents a real function y = f(x) (see Fig. 5.1).
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Fig. 5.1. Ideal gas (fα) and van der Waals (fβ) curves

We may have two theories, where the first gives the function y = fα(x)
and the second y = fβ(x) (see Fig. 5.1). The little black rectangles repre-
sent the measured values with their intervals J (the rectangles) of “errors of
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measurement.” We see that the function fβ is a “better” idealization of the
measured values than the function fα. How do we describe this “better” ac-
cording to our method, i.e., in a mathematically formulated way?

Figure 5.1 shows that the errors of measurement are so large that we cannot
see the deviations of the idealization fβ from the reality, i.e., we can choose
very small Uβi. Thus Uαf = Û ◦ Uβi ≈ Û is the deviation of fα from fβ , so
that the environment of (fα)

Û
includes fβ . Û describes how much fα deviates

from fβ and (in the approximation of Uβi) how much fα deviates from the
reality. This deviation of fα is much larger than the small deviation of fβ from
the reality, that has not yet been observed by the state of measurement errors
until now. It may be that by future developments we will discover that fβ also
deviates from the reality but much less than fα. In the example, we describe
that the idealization of the surface of the earth by an Euclidean geometry Σα

is not as good as the idealization Σβ by the geometry of the surface of the
globe.

5.2 Relations Between Two PT s with a Common Part of
an Application Domain

What do we mean by the assertion “the application domain Apα
of the theory

PTα is a part of the application domain Apβ
of the theory PTβ”?

The equivalence Apα
≡ Apβ

was characterized by the following: every Ã

of PTα is also an Ã of PTβ and vice versa. Now we define � Apα
is a part of

Apβ
�, briefly Apα

⊂ Apβ
, if every Ã of MTα is also an Ã of MTβ .

This is only the case if Blβ uses all concepts of Blα , i.e., if Blβ uses all
propositions, stating properties of objects and relations between objects, of
Blα . This does not mean that the basic properties of Blα are also basic proper-
ties of Blβ . The properties and relations of Blα can also be logical combinations
by “and” and “not” of those of Blβ . Concerning the basic properties, we
postulate in addition that an object which has a basic property of Blα also
has a basic property of Blβ . How can we formulate all this in the language of
Θα and Θβ?

We postulate as a condition for Apα
⊂ Apβ

: To every property pα(y) of
Θα corresponds a property pβ of MTΘβ

, to every relation rα(x, y, . . .) of Θα

corresponds a relation rβ of MTΘβ
.

In the framework of ∆α and ∆β we can formulate this in the following
way: To every base set Mα of ∆α corresponds a set Eβ of MT∆β

, to every
structure term sα ⊂ T (M1, . . .) of ∆α corresponds a term Uβ ⊂ T (E1, . . .) of
MT∆β

.
This correspondence is defined by the basic languages Blα and Blβ : Eβ

describes in MT∆β
the basic properties of Blα , Uβ describes in MT∆β

the
properties and relations of Blα .
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In Sect. 4.2 we described what was meant by “the terms Uβ over the base
Eβ form a structure of species ∆α in MT∆β

.” We now define

If “the terms Uβ over the base Eβ form a structure of species ∆α in MT∆β
,”

then we say that � MTβ is “richer” than MTα �.

One sees immediately that, in the special case where

Eβ = Mβ and Uβ = sβ (of ∆β) ,

we obtain the case Apα
≡ Apβ

dealt with in Sect. 5.1. Thus the above definition
of a richer PT is a generalization of the definition in Sect. 5.1. But it is not
necessary to repeat all the considerations of Sect. 5.1, since they are essentially
the same, but with ∆α substituted by (Eβ , Uβ). Whether “the terms Uβ over
the base Eβ form a structure of species ∆α in MT∆β

” essentially depends on
the inaccuracy sets (as described in Sect. 5.1).

Instead of repeating the considerations of Sect. 5.1 we will only give some
examples of physical theories:

– MTα describes hydrogen atoms by quantum mechanics, MTβ describes
all atoms (in this case we have to know and to use in MTβ the Pauli’s
exclusion principle, but not in MTα);

– MTα describes atoms, MTβ describes atoms and molecules;
– MTα is a thermodynamic of gases only, MTβ is a thermodynamic of gases

with different phases: gases, fluids, and rigid bodies.

In the development of new theories, one often has a chain of theories
� MTα2 is richer than MTα1 �, � MTα3 is richer than MTα2 �, . . . until
one has reached a general theory MTβ . One then often “forgets” the various
steps of MTα in order to reach MTβ , because one can introduce in MTβ the
various (E,U) instead of ∆α. This is a particular case of the general method to
introduce “approximation theories.” Before we generalize again the concept of
a “richer” theory, it is necessary to consider another relation between physical
theories: � MTγ is a “pre-theory” of MT �.

5.3 Pre-theories

Why do we use pre-theories and not just “one” theory for all physical
problems? There are two reasons. The first is that we do not have a single
theory for all of physics. Also, the authors of this book believe in the “exis-
tence” of this “single theory,” but only as a goal that we have not yet reached
and perhaps never will. The second and most important reason is the in-
tention to formulate theories in such a way that is not too difficult to work
with these theories. As, e.g., Kepler, who was interested in the motion of the
planets, used as a “pre-work” the measurements of Tycho Brahe as a result
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of a space–time theory. He used the space–time positions as determined by a
“pre-theory.” Indeed, practically all physical theories are formulated in such
a way, i.e., pre-theories are used.

The concepts of the basic language Bl of a PT are given either immediately,
by the description of what we observe by sensory perception (i.e., using our
senses), or are defined with the help of pre-theories. Terms of a pre-theory
(not necessarily base terms!) are taken in Bl as designating “known” concepts
used to formulate the properties and relations of the Bl of PT .

This use of pre-theories to get some concepts of the basic language contains
two problems:

1. A general problem. For a PT ≡ Ap ↔ Bl(cor)MT∆ we can take terms
other than only the base and structure terms of ∆ to define new concepts
used in an extension of Bl. This problem is described in Sect. 6.3 where
we ask how we can obtain by MT∆ new knowledge about reality, going
beyond the knowledge of the pre-theories used in Bl.

2. A particular problem. If PTγ ≡ Apγ
↔ Blγ (cor)MT∆γ

is a pre-theory of
PT , we have to select in MT∆γ

the terms which we will use in PT and
define terms by which we designate the related concepts in Bl.

The definition of words is essential for the language of physics and there-
fore for work with physical theories. One can in this way avoid repeating
the history of the experimental measurements of these “new” concepts. For
the use of a PT we can forget “how” we can measure (respectively what we
have measured) the properties and relations of Bl, i.e., how we can get Ã for
this PT .

Let us describe more precisely the connection between the terms designa-
ting concepts in a pre-theory PTγ and the terms designating concepts in the
theory PT . Let ‘hγ ’ be a term, designating a concept “hγ” of MT∆γ

, selected
according to point (2) above. Since we can represent properties and relations
by sets (see Sect. 3.2.2), we will assume that “hγ” is a set.

Let ‘c’ be the new term designating the new concept “c” of Bl correspond-
ing to “hγ .” Let ‘k’ be the new term designating the new concept “k” of Θ
corresponding to “c.” We then get a correspondence “hγ” ↔ “c” ↔ “k” by
which we can change the form of the PT .

We go from a structure ∆ to a new extended structure ∆ex by adding the
base terms, the structure terms, the axioms of ∆γ , and by identifying “k”
with “hγ .” As basic language Blex of this theory we have to use the basic
language Blγ plus that part of Bl which does not use the concepts defined by
PTγ (i.e., not the concept “c” defined above by “hγ” ↔ “c” ↔ “k”).

This new theory PTex with MT∆ex shows how the pre-theory PTγ is work-
ing in PT . But this advantage is outweighed by the disadvantage that in most
cases MT∆ex will be much more complicated than MT∆. Therefore one will
not use MT∆ex for the physical work, but MT∆ or perhaps even, instead of
MT∆, a simpler approximation theory MT∆appr (see Sect. 5.5).
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Since PTex only describes the details of how PTγ is working in PT , PTex

describes all of the real structures which describe PT , but namely only a little
more the working of PTγ in PT . We say therefore that

� PTex is “richer in content” than PT �

and write

PTex � PT .

Such extended MT∆ex are only of interest for the questions dealt with in
Sect. 5.4, and in the context concerning the question of how the totality of all
physical theories is founded on a reality, the description of which is possible
without any physical theory. Until now this problem has not been solved.
Therefore we will give a description of this problem, which we are convinced
can be solved.

There exists the belief that physics cannot be founded on the basis of im-
mediately recognizable realities as, e.g., a stone onto which one has stumbled.
Some people believe that the first impression of a hard and rigid stone was
refuted by physics; that physics detected that the stone is essentially only an
empty space since neutrinos pass this stone with very few exceptions. But this
is a misunderstanding. The stone remains as hard and as rigid as before; what
has changed with physics is our knowledge of reality. Our vision of physics is
that we have to begin with immediately recognizable facts and, on this basis,
learn by physical theories more and more about the reality. We never have to
refute what we have already detected, except when we have made a mistake
in the application of the method of physical theories described here in this
book.

This method is based on immediately recognizable facts, which can be
denoted by sentences using concepts of a basic language, concepts which we
learn by demonstration and not by physical theories. This initial basic lan-
guage is denoted by Bli . The first theories have as a basic language Bli or a
part of Bli . Then one can use these theories as pre-theories for future theories,
and some of these theories can again be used as pre-theories for other theories.

Physics is therefore defined by the choice of Bli and by the method
PT ≡ Ap ↔ Bl(cor)MT∆ of a physical theory PT .

The fact that we use as Bli only a part of those facts that we can describe
without any physical theory is essential for that part of science which we call
physics. The method Ap ↔ Bl(cor)MT∆ can also be applied to the nonphys-
ical part of reality. We have shown this here by Example C (see Part II), and
one can read such applications also in [11]. But what do we choose as Bli?

For instance, the sentence ‘this tree has green leaves’ is certainly a sentence
of the initial language, since the concepts “tree,” “has,” “green,” and “leaf”
have been learnt without any physical theory. Concepts learnt by physical
theories are, e.g., “electron,” “H-atom,” “molecule,” and “electromagnetic
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field.” What is a tree, a leaf, and green “have been learnt from demonstration.”
Nevertheless, we do not use the above sentence for the Bli of physics. So what
do we allow as sentences of Bli?

The choice of concepts has indeed changed during the development of
physics. Even more, one did not formulate the problem of Bli or clear up the
concepts used in Bli , so this has often produced misunderstandings. A famous
misunderstanding was the use of the concept “color” (such as green, red, and
yellow) by physicists (such as Newton) or by artists (such as Goethe, who
also painted pictures). Newton and Goethe have used the same word ‘color’
to designate different concepts. Similarly, there was the misunderstanding in
the use of the word ‘motion’ by Galilei, whose meaning did not have the
same sense as that of the philosophers in the church who used this word to
designate a concept of “change,” which must have a “cause.” Today we have
no difficulty in using the sentence ‘the sun has risen’ with the sentence ‘the
earth is rotating’.

Aware of these complications, one has during the development of physics
reduced more and more the basic language Bli . This step-by-step reduction is
illustrated by various words, describing various parts of physics: the ‘optic’ was
that part which dealt with ‘light’, the ‘acoustic’ was that part which dealt with
‘sound’, the ‘thermodynamic’ was that part where ‘warm’ and ‘cold’ play an
essential role. But all these particular parts disappeared as “particular” parts,
i.e., as parts with particular parts of Bli . These parts were absorbed into other
parts, where in Bli such words as ‘light’, ‘sound’, ‘warm’, ‘green’ and ‘red’,
etc. do not appear. One had reduced Bli and one continues to reduce it today.
We move more and more toward digital events; instead of looking at scales,
one today looks at “numbers.”

We might also mention other concepts which we do not accept as concepts
of Bli . They are the concepts “now,” “past” and “future.” These concepts are
essential in our daily life, but they do not appear in any physical theory!

But there is no doubt that until now we have no exact definition of Bli .
Nevertheless, it seems to cause no essential difficulties between the physicists
about what is ascribed to physics. We have to consider also chemistry as being
a part of physics, since we have no other concepts used in the basic language
Bl of chemistry other than those of physics, and we have the same method of
theories, even if in chemistry the mathematical structure of these theories is
not as elaborated as it is in physics.

The range of physics is determined by Bli and the method PT ≡ Ap ↔
Bl(cor)MT∆ of theories. Since today we have reduced the Bli , we have also
reduced the region W of realities which we can describe by physics. This
reduction does not mean that there are no other realities other than those of
W . On the contrary, we will come back to this problem in Chap. 6 where we
will discuss how we can obtain more and more knowledge about W .
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5.4 Relations Between PT s with Different Application
Domains

One has for instance Newton’s gravitational theory which uses Newton’s
space–time theory as a pre-theory. One feels intuitively that Einstein’s gra-
vitational theory is better, i.e., richer, than Newton’s theory. But Einstein’s
theory changes also the pre-theory of Newton’s theory: the space–time theory
with an Euclidean space and an absolute time. Can we give to this intuitive
meaning a more exact description?

We may have two theories PTα and PTβ where we have the intuitive
meaning that � PTβ is richer than PTα �. But the pre-theories of PTα are not
also pre-theories of PTβ , and so the definition of “richer in content” given in
Sects. 5.1 and 5.2 cannot be applied.

There may be one pre-theory PTγ of MTα which is not a pre-theory of
MTβ . But there may be a pre-theory PTδ of MTβ which is richer than PTγ

in the sense of Sect. 5.1 or Sect. 5.2, or PTβ itself is richer than PTγ , i.e.,
PTδ � PTγ or PTβ � PTγ .

We will discuss at first the case where PTβ � PTγ . Then we can construct
the theory PTαex (as described in Sect. 5.2) by the construction of MT∆γex .
We then have PTαex � PTα (in the sense of Sect. 5.2). (If there are more
than one pre-theory PTγ of PTα, which is not a pre-theory of PTβ , then one
must do the same thing with these theories as shown above with PTγ in order
to obtain PTαex.) Then the theory PTαex only contains pre-theories which
are also pre-theories of PTβ . Thus we can ask whether PTβ � PTαex. We
therefore define

� PTβ is richer than PTα �

and write

PTβ � PTα.

This relation is valid for PTα as Newton’s gravitational theory, and PTβ

as Einstein’s gravitational theory. In this case, PTγ is the pre-theory of
Newton’s space–time theory, and the space–time theory of Einstein is con-
tained in PTβ . We have to formulate the pre-theory PTγ in such a way that
we get PTβ � PTγ . We do this by the formulation of Blγ in such a way that
Blγ is a part of Blβ . As Blγ we introduce the description of local space–time
reference systems, which are initial systems, i.e., systems without forces which
depend on masses. The global connection of these local systems is described
in PTβ and PTγ by an affine connection. The difference is that this affine con-
nection is determined in PTγ by the masses (as described in [14]), and in PTβ

by a four-dimensional metric that fulfills Einstein’s equations. The common
space–time pre-theory of PTγ and PTβ are the local initial systems and their
affine connections; the difference between the two are the axioms for these
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connections in PTγ and PTβ . To show that � PTβ is richer than PTγ �, i.e.,
to show that PTβ describes the reality more precisely than PTα, can only be
demonstrated by experiments. Why many physicists (such as Einstein him-
self) believed without knowing the results of experiments that PTβ � PTα,
whilst others have principally refuted Einstein’s theory PTβ is very amusing,
and shows that arguments other than physical ones can play a decisive role in
deciding subjectively whether one acknowledges a theory or not. Arguments
that acknowledge Einstein’s theory without new experiments are discussed in
Sect. 5.5.

One can generalize the above definition of PTβ � PTα to the case where
not PTβ � PTγ , but where only PTδ � PTγ (see the beginning of Sect. 5.4).
Then one can construct with PTδ the theory PTβex. Then PTβex � PTγ . If
� PTβex is richer than PTαex �, we say that � PTβ is “essentially richer” than
PTα �.

5.5 Approximation Theories

One could perhaps think that most of the efforts of theoretical physicists
consist in finding richer and richer theories. But this is not the case. Most
of the efforts consist in finding “poorer” theories, or so-called approximation
theories. But why do we seek such theories?

Not because they are less rich than a well-known and very good theory!
We seek such approximation theories for mathematical reasons. A very good
theory is often mathematically so complicated that it seems hopeless for sol-
ving particular problems as, e.g., the structure, the binding energy, and the
spectral lines of a molecule.

If we have a good theory PT ≡ Ap ↔ Bl(cor)MT∆, we seek to find
another approximation theory PTappr ≡ Apr

↔ Blr (cor)MT∆appr which
is much simpler for applications in an eventually also reduced application
domain Apr

⊂ Ap, or better in a very reduced fundamental domain Gr ⊂ Apr

and Gr ⊂ G (with G as the fundamental domain of PT ). We seek to find
a much simpler approximation theory PTappr which is less rich than PT :
PTappr � PT , a relation which we have described in Sect. 5.1 to Sect. 5.4.
It is not possible to provide a method for finding a physical theory, neither
for a richer nor for a simpler approximation theory. All the imaginative and
intuitive ideas can be used to create new theories. Therefore we could finish by
describing the relation PTappr � PT since this relation is already described
in Sect. 5.1 to Sect. 5.4.

Let PTα ≡ Apα
↔ Blα(cor)MT∆α

be a given theory where ∆α is known,
i.e., that also the inaccuracy sets for ∆α are known. We seek relative to the
given theory PTα a richer theory PTβ ≡ Apβ

↔ Blβ (cor)MT∆β
. The inaccu-

racy sets for ∆β are to be found by experiment and cannot be deduced from
∆α. If we seek, relative to a given theory PT ≡ Ap ↔ Bl(cor)MT∆, a simpler
approximation PTappr ≡ Apr

↔ Blr (cor)MT∆appr , then the inaccuracy sets
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for ∆ must be very small. Then we have to find the inaccuracy sets for ∆appr.
They must be at least of such a size that � ∆ is richer than ∆appr �, i.e., that
∆ is a structure of the species ∆appr in MT∆. In this case, the inaccuracy
sets for ∆appr could be found mathematically. But the physicists seldom do
this, much to the disappointment of the mathematicians. The principal aim
of physicists is to work with approximation theories in order to obtain good
applications (in the new techniques). Therefore, there is competition (also re-
garding money) for the development of this work: to find richer and richer
theories, and to find richer and richer applications (especially in the domain
of high technology) by the construction of more usable, but not quite so rich,
approximation theories. Amongst the multitude of such approximation the-
ories, we mention only the approximation theories by which we try to get
an insight into the structure of molecules, and also into their behavior when
collisions occur.

Often we use theories that are not so rich, such as approximation theories,
with the aim of later finding a richer and also more complex theory. For in-
stance, if we imagine that Einstein’s gravitational theory PTβ would have been
found before Newton’s gravitational theory, there would have been an urgent
need to develop Newton’s theory as an approximation theory of Einstein’s
theory. Thus we can also read Sect. 5.4 as describing the relation between an
approximation theory and the richer original theory.

But we shall not forget that physics is not only a means for making better
technical developments. If a good technical development is useful for the life
of human beings today, we should also be interested in the structure of the
reality in which we live. Therefore we are also interested in the structure of
the totality of physical theories, a problem which we will try to discuss in the
following section.

5.6 The Network of PT s

In the totality of physical theories, there exists the essential relation � PT1

is richer than PT2 �, denoted by PT1 � PT2. This relation has a similarity
to the mathematical order relation >. But the totality of physical theories is
not a set in the mathematical sense. Nevertheless, we can discuss the relation
� similar to > if we do not use such mathematical relations as ∀ and ∃. We
have to avoid speaking of “all” theories, and we must use expressions such as
“there exists a theory” only if this theory exists today.

The relation � is similar to >, since we have seen previously in Sects. 5.1
to 5.4 that from PT1 � PT2 and PT2 � PT3 follows PT1 � PT3. We call the
totality of physical theories with this relation � the “network of physical the-
ories.” This network is changed if we find new “richer” theories and construct
new “not so rich” approximation theories. The structure of this network is
very interesting but not very well known. Nevertheless, we will try to discuss
some of the features of this network.
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There is at first the question of whether this network is connected, i.e.,
whether one can go from one theory PT1 to another theory PT2 step by step,
with relations �, or whether there are different separate parts within this
network?

One could perhaps think that the network is connected, because we have
for all theories the same initial basic language Bli . But this argument is not
stringent. The language Bli itself may be “not connected” in the following
way: We say that two properties in Bli are connected if it is possible “to go”
from one property to another, step by step, by relations of Bli . If in Bli there
are two separate parts, we can also have two different pre-theories which are
not connected, i.e., where Θ1 has no common part (i.e., common interpreted
part) with Θ2.

We can join together two theories PT1 and PT2 as one PT , by taking
together the structures Θ ≡ 〈Θ1, Θ2〉, and by taking together the axioms
∆ ≡ 〈∆1,∆2〉; we postulate for every PT that this PT is connected in the
following way.

The structure Θ of PT cannot be separated into two parts Θ1 and Θ2, so
that there are no relations s of Θ with a typification s ⊂ M1 ×M2 × · · · such
that M i of Θ1 and Mk of Θ2, and that there are only axiomatic relations of
∆ which contain only relations between M i and s of the same Θ1 or the same
Θ2.

The language Bli does not prevent the fact that there are physical theories
which are not connected.

One can only decide whether the network of physics today is connected
or not by the explicit construction of this network. But this has not been
done until now. Therefore, we can only fix our supposition: We suppose
that physics today (including chemistry) is a connected network. For this
structure, the restriction of the language Bli is essential.

But much more interestingly than the connection of the network of physical
theories is the question of whether the network is (hypothetically) directed.

We say that the network is hypothetically directed if, for two theories PT1

and PT2, a third theory PT3 can be developed (or founded) with PT3 � PT1

and PT3 � PT2.
The supposition that the network of physical theories is hypothetically

directed can be outlined by the following explanation.
It is possible to develop a theory PT for which PT � PTν for all theories

PTν . The richest theory PT is often called a “world formula.” Some people
think that they have already discovered this “world formula.” We do not
believe that this “richest” theory exists. Since we believe that physics is prin-
cipally “finite” (see Sect. 3.2.4), the richest theory PT should be a theory
without idealization, e.g., a purely finite mathematical theory. Perhaps we
will never find this “best” theory PT , but this best theory remains an objec-
tive which we try to approach.
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Steps in this approach procedure are very fruitful. Therefore we will try
to analyze such steps.

We often have the situation given by the diagram of Fig. 5.2.

PT1 PT2

PT3

........................... ..........
........
.........

.....................................
........
.........

Fig. 5.2. Relations between three PT s

Here PT3 can be, e.g., an approximation theory for PT1 and PT2.
Such a situation is, e.g., given by the following: PT3 is Newton’s mechanics

and space–time theory without gravitational forces. PT1 is PT3 plus Newton’s
gravitational law. PT2 is the special relativity theory and mechanics without
gravitation. This was the situation after the discovery of Einstein’s special
relativity theory. Many people tried to unify the two theories PT1 and PT2

by finding a form of gravitational law that is invariant under the special
relativity theory. But the right solution was PT4 as Einstein’s gravitational
theory. Einstein’s solution for PT4 was for many physicists (and also for the
authors of this book) so natural that they believed in this theory without any
knowledge of new experiments, which showed later that indeed PT4 � PT2. If
the world is not stupidly constructed, PT4 has to be the “better” theory, i.e.,
the more realistic theory. With PT4 as Einstein’s theory we have the diagram
of Fig. 5.3.

PT1 PT2

PT3

PT4
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Fig. 5.3. Relations between various space-time theories

The diagram of Fig. 5.2 should be a means for seeking a theory PT4 in
order to obtain the diagram of Fig. 5.3. But it can also be that the history of
physics shows us at first the theory PT4, and that we try afterwards to obtain
the theories PT1, PT2, and PT3 as approximation theories of PT4. If, e.g., at
first we had Einstein’s gravitational theory, it would be necessary to develop
Newton’s theory as an approximation, which is good enough to calculate the
motion of the planets, of the moon, and of our spaceships.
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Real and Possible as Physical Concepts

Since the beginning of our description of the structure of a physical theory in
Sect. 3.2, we started with the application domain Ap as a part of “reality,” as
that part which we can describe by the basic language Bl. Thus we presumed
that we could gain for a PT , by immediate observations and by pre-theories, a
text Ã as a description of a part of Ap; only a part, since for practically all Ap

we have never established “all” the realities of Ap. In Sect. 5.3 we have seen
that with an analysis of the pre-theories we can go back from the language Bl

to a language Bli which does not use any pre-theory. Such application domains
Api

, with languages Bli , are the starting points of all of physics. To a part of
Api

, formulated in a language Bli , corresponds a text Ãi which we “presume”
to be a description of a part of the “reality.” We “presume” such immediately
observed realities and do not base them on philosophical considerations. We
presume, e.g., that there is a “real” cup of tea if we have observed this cup of
tea on a table.

As already mentioned in Sect. 5.3, we do not use in Bli all of the concepts
that we use in everyday language. So we have “excluded from physics” the
concepts of color and sound, but also the concepts of “past,” “present,” and
“future.” Thus, these three concepts are not used in physical theories! We
have in some physical theories only “time scales” as given by clocks, without
introducing a concept specifying which of these “time scale values” is “now”
(the “present” value).

This remark is very important if we compare the physical concept of “real”
with a philosophical one. There are philosophical concepts of “real” for which
the time plays an essential role! In physics we consider something as real
independently of time. It doesn’t matter whether it “was” or it “is” or it “will
be”! The main point of a physical theory is not to have an instrument for
predicting what “will be.” Nevertheless, a physical theory can sometimes be
used to make predictions, and also to state realities at a time where we have
not made observations!
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There is in no PT ≡ Ap ↔ Bl(cor)MT∆ a concept of what we call “now”
in our consciousness. In the text Ã we can only write what we know until
now. In our concept of a physical theory, our “knowledge” is not a part of
MT∆; it intervenes only in testing that MT∆A is without contradiction. Our
knowledge appears only in the additional text A.

There are some who believe that the mathematical theory MT of quan-
tum mechanics describes changes of our knowledge, i.e., that one has to use
concepts such as “I know . . .” for the interpretation of the mathematical part
MT of quantum mechanics. We do not believe this, i.e., we are convinced that
we can also introduce in quantum mechanics an objective concept of “real”
which does not depend on our knowledge: Ã and A only describe the knowl-
edge of an objective reality of a part of Ap, and MT does not depend on the
extent of our knowledge A. See the description of an axiomatic basis MT for
quantum mechanics in [8].

There are many other physicists who believe in the reality of fairy tales if
the used Σ (the fairy tales) generates a theory PT which is not in contradiction
to experiment. But this “to not be in contradiction with experiment” is cer-
tainly not enough to “prove” the reality, i.e., to find a conviction of the reality
of a fairy tale. It is, e.g., not difficult to add to a well-tested theory some fairy
tales without influencing the physical content of the theory. We can, e.g., add
to Einstein’s gravitational theory a fairy tale of a Newton’s space–time struc-
ture, i.e., one Euclidean three-dimensional space and one time scale; then one
can take Einstein’s metric field gµν as a field in this space and time. One can
“believe” that the Newton’s space–time structure describes a “real” structure
(but one hidden to physical measurements) in which the Einstein’s field gµν

describes the behavior of clocks and the motion of bodies (i.e., the “forces”).
A belief in such a “real” “absolute” space–time structure of Newton’s form
cannot be based on philosophy.

There are other historical examples of fairy tales as, e.g., the “ether” as
a body, the elastic motion of which are the light waves. This fairy tale was
abandoned not because of contradictions with measurements of light, but
because the new generation of physicists did not “believe” in the reality of
this ether, and therefore had no desire to work on this fairy tale, which would
have described all experiments about light (a task which is not impossible).

Until today, quantum mechanics has been a rich source (an “Eldorado”?)
for the invention of fairy tales. A well-known fairy tale is the famous search
for “hidden variables.” The word “hidden” means here exactly that these
variables describe no physical reality, i.e., that these variables are only a fairy
tale. But why do some physicists seek such fairy tales? Why are they not
satisfied with a theory formed according to the methods given in this book?

Physicists are not satisfied because they believe in a certain “a priori”
structure of reality, what quantum mechanics (as developed according to the
methods of this book, i.e., as an axiomatic base described in [8]) cannot
provide.
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But there are also other fairy tales in quantum mechanics as, e.g., the fol-
lowing: One begins with two concepts not defined physically but only mathe-
matically: the concept of a “state” defined as a vector of a Hilbert space and
the concept of a “superposition principle” defined by the addition of vectors
in a Hilbert space. This is a typical example of a fairy tale since one covers the
mathematical terms of MTΣ with words (e.g., a state) which have in other
physical theories, such as thermodynamics or Newton’s point mechanics, a
well-defined significance. One tries in this way to give a “feeling” of a signifi-
cance: the words shall have a “similar” significance, without saying in what
this similarity consists. A lot of effort has been made to develop on this basis
a “quantum mechanics,” and not to let oneself be deferred by such incredi-
ble features as the so-called “collapse of wave packets” at the “moment” of a
measurement.

We do not believe in this fairy tale and especially not in the so-called “col-
lapse of wave packets.” Why should we believe in such a thing as being real? A
reason could be the belief in some “a priori” structures of the physical reality.
Another reason could be the desire to make quantum mechanics a description
of an “isolated” reality, i.e., of a microscopic reality independent of the macro-
scopic reality of the surrounding world. Then one hopes that it will be possible
to explain in an inverted direction the macroscopic realities (from which we
started the development of physical theories and which we have called APi) by
this “isolated” microscopic reality. One believes that physics can begin with
such a quantum mechanics describing isolated microscopic realities, and that
one can deduce from such a theory the structure of the total world, especially
the structure that is allowed to take our everyday observations as a method
in which to establish realities. We do not believe in developing physics in such
a way.

According to our method of physical theories we cannot use quantum me-
chanics (as developed in [8]) as a theory of the total world since quantum
mechanics is a statistical theory over the macroscopic effects produced by mi-
croscopic realities, and we cannot have or produce a great number of separate
universes. We also cannot take one universe as a reality that produces effects
in a greater reality. A uniform theory of the total world cannot be a theory of
a “great” number of microsystems nor a purely macroscopic theory as, e.g.,
the famous space–timetheory of Einstein, a theory which only describes the
global interaction between the total universe and a part of this universe. Not
yet solved is the problem of obtaining a detailed description of the interaction
of the total world with a greater and smaller part of this world. Perhaps it is
not possible to obtain such a theory, but we have to take such a theory as the
intended aim of physics, and this intended theory cannot have the structure
of the well-founded quantum mechanics of today.

In any case it is not necessary to believe in such fairy tales of quantum
mechanics such as, e.g., “hidden variables” or “states” of individual systems,
in order to understand quantum mechanics.
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Our criticism concerning the “too fast belief” in the reality of fairy tales
does not mean that fairy tales, or some parts of fairy tales, cannot be real or
cannot be very fruitful (also, if not real) for the development of physics. We
are convinced that there is no method for finding new theories. Intuition and
fairy tales can be very helpful in the development of physics. Bohr’s theory
of the atom as a little planetary system was a fairy tale, but nevertheless
essential to the development of quantum mechanics, and the Heisenberg step
to quantum mechanics consisted in not believing in some parts of this fairy
tale.

For our purpose, to formulate more precisely the method of physical theo-
ries, we have to ask how we can find the real meaning of fairy tales or of parts
of fairy tales. This method of finding new realities beyond Ap does not consist
in philosophical reflections. The only justification of such a method is its re-
sult. After the development of a successful method we can (and should also)
make philosophical reflections. The desired method consists in the formulation
of a way in PT to go back from MTΣ to the reality.

6.1 Closed Theories

We will not begin to develop the intended method in a general manner. We
consider at first a well-tried theory PT ≡ Ap ↔ Bl(cor)MT∆ ↔ MTΣ with
a given ∆, i.e., with fixed Σ and fixed inaccuracy sets for Σ. The species of
structures Σ can be a fairy tale or an axiomatic basis. We consider for such a
theory at first only the problem of the connection of the elements of the terms
M i and sν with the reality; the introduction of new concepts will be treated
in Sect. 6.2.

From the “observed realities” of Ap we get in PT a text Ã formulated in
Bl, and a corresponding text A formulated in MTΘ and MT∆. The fact that
we have a well-tried theory signifies that the text A is not in contradiction to
MT∆. The text A corresponds uniquely to a realistic part of Ap, i.e., to that
part which we have “observed.” We will denote it by Wo(A).

Since we have introduced the axiom that all sets M i of Θ are finite sets, we
can imagine having “all” real objects and “all” real relations of Ap described
under the form of a text Amax, formulated in MTΘ and MT∆. This signifies
that Wo(Amax) ≡ Ap. But for all significant physical theories, we can only
imagine having Amax and Wo(Amax).

We will see that Wo(Amax) is not a given and “fixed reality” but only a
“possible reality.” Wo(A) of a recorded text A is a fixed reality which cannot
be changed; it was “observed.” We cannot also expect that Amax is given. On
the contrary, as human beings, we are often able to change expected realities,
i.e., we are able to influence future realities by our own free will. If, e.g.,
someone would say that something will be so and so, we can make it such
that this something will not be so and so. A text Amax can therefore only
be one of various “possibilities.” Therefore, we cannot expect that a physical
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theory prescribes uniquely the physical reality, it can only give us a selection of
various “possible” realities. A text Amax can only be one possible imagination.

There was however a time in the history of physics when one believed that
all realities were determined by the so-called “initial values,” i.e., that there
was one and only one fixed reality forever. But this was a mistake. There are
various possibilities for the development of the world. An imagined Amax can
only be one of the various possibilities.

Moreover, there are two reasons for which we cannot have observed one
Amax for almost all of the physical theories: the first reason is that for all
significant physical theories, Amax would be too great to be given explicitly;
the second reason is that we cannot make all the necessary recordings since,
e.g., we have either forgotten to do it in the past, or it would be necessary to
make recordings in that region of the world that we call the future.

Therefore, as physicists, we have only the possibility of asking ourselves
whether we can say something about the reality in an Ap without having
“observed” the total Ap. And it is perhaps the main advantage of physics, that
we can indeed say something about reality, even if we have not “observed” this
reality. But what is the method for obtaining assertions about a nonobserved
reality?

At first one could perhaps think that all elements of the M i could refer
to possible real objects in the Ap, and the sν could represent possible real
relations between these objects. But this would be a premature conclusion.
If we took greater sets Qi (respectively for an axiomatic basis: greater sets
M̂i), this could never be detected by contradictions in MTA. This shows that
the Qi (respectively M̂i) can include elements to which there corresponds no
reality! The Qi (respectively M̂i) are “too large.” How can we detect such a
situation? Not by the currently used theory PT , but only by trying to make
richer theories, e.g., in the following way.

Starting from the theory PT with the picture terms Qi (terms in MTΣ),
we take as picture terms smaller Qis

⊂ Qi. We then try to see whether this
new theory PTs is “usable” (i.e., that A does not lead to contradictions). If
PTs is usable, then it also follows that PT is usable. But it can be that “too
small” picture terms Qis

can lead to contradictions with the experiments. But
how do we observe this?

The introduction of the Qis
can be made by choosing intrinsic terms Qis

in MTΣ which are subsets of Qi. These terms Qis
describe “mathematical

qualities.” For example, if we take a round table and choose Q = IR× IR (see
Sect. 3.3.1), then this Q is “too large.” In fact, elements in M , the pictures
of which in Q determine much greater distances than the diameter of the
real table, cannot be excluded. We can then introduce Qs as the set of all
(α, β) ∈ IR × IR with the property α2 + β2 < r2, with r as the measured
radius of the table.

The introduction of Qs for this example is not so difficult, because we can
see that “there are” no marked spots outwards from the table. In other cases
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in physics we cannot “survey” the existence or nonexistence of the objects
corresponding to the elements of Q. In most cases we are in the same position
as that of a blind man in front of a table. A blind man can only try to
mark spots on the table and to perceive (by feeling), but he does not succeed
in marking spots “outwards” from the table. Such experimental features are
indications that we have “too large” picture terms Qi, and that (and how) we
can perhaps find smaller Qis

.
Another example of “too large” picture terms (where it has not been pos-

sible until now to get smaller picture terms) is the “extrapolated quantum
mechanics of macrosystems.”

By “extrapolated quantum mechanics,” we speak of the use of quantum
mechanics on macrosystems (as developed in [8]), i.e., with the same axioms
as for microsystems. In this theory we use the picture terms Q1 and Q2 as
“preparation procedures” and “registration procedures.” These terms are “too
large” for macrosystems (and also for more complicated microsystems). But
how can we gain such a conviction? Not by mathematical deductions, but
by reflections on how one could perhaps “realize” this. Such reflections can
perhaps lead to mathematical formulations for the Q1 and Q2, but we have
not succeeded in obtaining Q1s

and Q2s
. Nevertheless, the physicists have

intuitively developed very good theories for macro systems, e.g., for semicon-
ductors.

For a gas, one can find a first approximation for Q1s
and Q2s

in [2]. The
differences Qi \ Qis

are sets of pictures of typical “fairy objects” for which
there can be no realization.

In addition to the fact that we can have “too large” picture terms Qi,
we can also have too many possibilities for the relations sν , i.e., the real
possibilities of the real relations (corresponding to the sν) are smaller than
those that are allowed by the sν (as the pictures of the sν), i.e., allowed by
the axioms of Σ. The axioms of Σ are too weak, i.e., we can strengthen these
axioms without contradiction to experiments. The structure Σs may be the
structure Σ with the strengthened axioms, i.e., Σs is richer than Σ.

To illustrate the introduction of a richer Σs without contradiction to
experiments, we will briefly discuss some examples.

As a first example, we consider Newton’s point mechanics. The axiom
for the trajectories is Newton’s axiom: m�̈r = �k(�r) (m the mass, �r(t) the
trajectory, �k(�r) the force). All �r(t) are “allowed” with various “initial values”
�r(o), �̇r(o). We are convinced that we cannot introduce a richer Σ without the
possibility of contradictions to experiments. We can deduce in Newton’s theory
a theorem: the energy 1

2m�̇r
2
+ U(�r) does not depend upon time (here U(�r) is

given by �k(�r) = − �grad U). If we now define a new Σ by replacing Newton’s
equation of motion by the energy theorem, we also get a usable theory. But
for this Σ we can strengthen the axioms of Σ by Newton’s equation of motion
to obtain a richer Σs (i.e., Σs as Newton’s theory).
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A second example is thermodynamics without the “second law” (the
entropy law). In this weaker theory, a “perpetuum mobile of the second
kind” would be possible although it cannot be “realized.” That it cannot be
realized, cannot be “proved” by experiments; one can only be convinced of this
impossibility by experimental failures to construct such a perpetuum mobile
of the second kind (similar to the blind man who is convinced that marked
spots “outside of the table” cannot be realized). Σs with the second law is
then richer than Σ without this law.

A third example is electrodynamics with Σ as Maxwell’s equations. This
Σ would be too weak; one has to add the axiom that only retarded potentials
are allowed. We are convinced of this additional axiom since we do not succeed
to broadcast signals in the direction of the past.

We have used in the description of our examples words such as “possible”
and “realizable.” These are not words of the basic language. Thus it may
seem that we have introduced these words by a loophole; but this was not
our intention. On the contrary, we wanted only to describe our intention of
why we define the concept of a “closed theory.” After the introduction of this
concept, we will start to define what we mean by the concepts of real and
possible.

Definition

A usable theory PT is said to be closed if it is not possible to get a richer
and usable theory PTs in one of the following ways: by introducing either
smaller Qis

or richer Σs.

The fact that we only admit these two possibilities as ways in which to
obtain a richer theory PTs is based on the fact that it is not so simple to get
theories that are richer in the general sense of Sect. 5.1. If we succeed in getting
a richer theory in the general sense of Sect. 5.1 we have made a desirable but
also very difficult progress in physics; but nobody can say in advance how
such a “better” theory will look like. It is not so difficult however to get a
richer PTs by following the two methods mentioned above and by making
experiments to see whether such a richer theory can be usable.

Definition

For a closed theory, we call the sets M̂i and ŝν of an axiomatic basis Σ̂ an
idealized inaccurate picture of a possible reality.

(We prefer to take Σ̂ instead of Σ with the Qi and sν , since Σ can contain
some purely fairy tale structures that have nothing to do with reality.)

The above definition defines the use of the word “possible,” relative to
the reality. We mean by this word that we cannot exclude a reality for which
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Σ̂ can be used as a picture. Very often one describes this situation by the
following assertion: The reality obeys the so-called “laws of nature;” and a
closed theory contains “all” the laws of nature for the considered region of
reality (of the intended application domain). We will not use this description
since it contains a certain philosophical interpretation (as, e.g., “obeys the laws
of nature”) and it was one of our purposes to define physics by a “method”
and not by philosophical assumptions. This does not mean that, after using
the “method,” we cannot try to proceed to a philosophical interpretation.
Physics is not intended to answer, e.g., the question “why does a stone fall
to the earth?” but only the question “how does a stone fall to the earth?” It
does not follow that it is forbidden to ask the question “why?” But physics
cannot answer this question. It is essential for physics to introduce a word
such as “possible” which is not based on philosophical but on methodological
considerations. A method is not based on philosophy but depends only on the
success of the method.

We will only give one example of the application of this new word “possi-
ble.” If we use Newton’s mechanics (for mass points flying around the earth) as
a closed theory, we can consider trajectories of these mass points as “possible”
trajectories of satellites.

But how can we decide what is real and not only possibly real? And how
can we detect realities which cannot be formulated in the basic language Bl

of a theory? How can we extend the basic language in order to describe new
detected realities?

6.2 Physical Systems

Until now we have only introduced the concept of an application domain Ap

as that part of reality on which the considered theory PT can be applied, and
therefore also as the basis on which all future concepts of indirectly observed
realities can be founded. In connection with our concept of a closed theory,
the concept of a “physical system” plays a central role. A physical system is
a part of the application domain and therefore a part of reality that can be
observed with the help of MT .

Often the application domain consists of various “separate” parts. We say
that a part is separated if this part is not influenced by other parts of the
world. The total world (the universe) is an example of such a separate part,
since there is no other part which can influence the total world. We could not
have developed such fruitful physics and technology if it was not possible to
describe by physics much smaller parts without the various influences of the
rest of the world.

If it is believed that it is impossible to separate a part of the world in
such a way that it is not influenced by the rest of the world, then it would be
correct since nothing can be separated completely from the rest of the world.
But we can often describe well-defined parts as parts, e.g., a cup of tea on a
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table; or if we want to describe a chemical reaction in a test tube, we do not
need to describe the entire laboratory. If we add milk to our cup of coffee,
then it is not possible to describe that part of the “milk” without the coffee.

The application domain of a PT is a part of reality that can be described
by immediate observations and by pre-theories of the PT . It can consist of
several separate parts of this kind. Our planetary system is such a part which
can be described by astronomical observations and by a pre-theory of space–
time; this part is the application domain of Kepler’s theory (or “Kepler’s
laws”).

The application domain will not be influenced by the rest of the world.
The intended theory PT must not take into account the processes outside
of the application domain. The above-mentioned planetary system is such an
application domain for Kepler’s theory, since space and time can be taken
as unchangeable by the rest of the world and since the influence of other
astronomical objects can be neglected.

One of the essential characteristics of physical theories is that we do not
need to describe the total world. Einstein’s space–timetheory is the first theory
by which we tried to begin with the description of global problems. The main
purpose of physical theories is to try to describe as well as possible “very
little parts of the world,” and our technical successes are based upon these
theories. We are able to do this even though it is impossible to separate
precisely one part of the reality from another. But it is often possible to
describe the influences of the rest of the world on the considered part, by
“given” influences, i.e., by influences that do not depend on the influence of the
considered part. Thus the “given” structure of space–timein Kepler’s theory
of our planetary system can be described without taking into account the
influence of the planetary system on the global structure of space–time. We
say that we can describe the influences of the total world by giving “boundary
conditions.” Also, if we want to describe the planetary system by Einstein’s
theory (as a more comprehensive theory than Kepler’s theory), we can describe
the influence of the rest of the world, e.g., by the “boundary condition” that
stipulates that the space–timehas a given Euclidean structure at infinity.

Definition

A part of reality is called a physical system if the influence of the rest of
the world can be described by given boundary conditions. These boundary
conditions are considered as a part of the physical system.

We will only consider in this chapter application domains that consist of a
number of separate physical systems (even if there is only one system). Such
application domains are very widespread. The fact that we will only consider
such application domains in physical theories will not be a major restriction,
since we can in any case take the total application domain as a single physical
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system. But taking the total application domain as a single physical system
would only complicate the mathematical description in the case where the
application domain consists of many separate physical systems. In the case
of many separated systems, we only need to consider separately each of the
separate physical systems in such a way that the application domain would
be the only system. So we can take for every separate system the same MT∆;
only the observed realities are to be described by different texts A. Thus we
can treat each separate system separately.

�
Only to see more precisely the mathematical description of the total

application domain, we insert here this more complicated form without using
it later.

If there is more than one separate physical system, we have to formulate
the relation that two objects belong to the same physical system. We do this
in Θ by adding subsets uik ⊂ M i × Mk as structure terms: for a ∈ M i and
b ∈ Mk we write for “a, b belongs to the same physical system” the relation
(a, b) ∈ uik. In Σ̂ we introduce corresponding sets uik ⊂ Mi × Mk with the
axioms

(x, y) ∈ uik ⇒ (y, x) ∈ uki,

(x, y) ∈ uik ∧ (y, z) ∈ ukl ⇒ (x, z) ∈ uil.

We define a subset Xa ⊂ M1 ∪ M2 ∪ · · · by

Xa =
{
y

∣
∣ ∃ uik

[
(a, y) ∈ uik

]}

and introduce for the uik (and the corresponding Xa) the axiom

b /∈ Xa ⇒ Xa ∩ Xb = ∅. (6.2.1)

We add in Σ for the sν the axiom

(x, y, z, . . .) ∈ sν ⇒ y ∈ Xx z ∈ Xx, . . . , (6.2.2)

i.e., x, y, z, . . . are elements of the same system.
For every system Xa, we postulate that the terms Mia = Mi ∩Xa,sν form

a structure of species Σ̂, independent of the system Xa.
There also exist much more complicated application domains where (6.2.1)

is not valid. In these cases we cannot avoid considering the total application
domain Ap.

If (6.2.1) is valid, then we can treat every system Xa as an application
domain with the structure Σ̂. If for the total application domain the theory is
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closed, then the structure Σ̂ must not be categorical, since the various systems
Xa cannot be isomorphic!

�

If we now contemplate a Σ̂ and a theory MT
Σ̂

, this theory can only be a
theory of one separate physical system.

6.3 New Concepts in a PT

Our task is not only to detect “nonmeasured” realities, but also to detect new
realities which we did not know before the introduction of Σ̂. Therefore we
have to seek for other concepts than those which are described by the base
sets M̂i and the structure terms ŝν of the axiomatic basis Σ̂.

In Sect. 4.2 we have introduced the mathematical concept of intrinsic
terms. These can be defined in relation to a species of structures Σ, e.g., to the
axiomatic basis Σ̂. Intrinsic terms relative to Σ̂ are not new constants! They
are defined by the base terms M̂i, the structure terms ŝν , and the axiomatic
relations of Σ̂. They are therefore essentially different from the new constants
of a fairy tale Σ as, e.g., if one introduces in quantum mechanics a Hilbert
space as a set of “states” without a definition of what a state is. Such concepts
as “state” are fanciful interpretations, and no one can say whether two people
will give the same meaning to the word ‘state’. In contrast to such imaginary
interpretations, the intrinsic terms are well-defined by the base and structure
terms of Σ̂.

Since we have called the base terms and structure terms of Σ̂ for a closed
theory “pictures of possible realities,” we also call the intrinsic terms of Σ̂
“pictures of possible realities.”

More precisely, intrinsic terms are a “deduction of structures” in MT
Σ̂

(see Sect. 4.2). Such a deduction is a set of intrinsic terms Ek and uµ, such
that the Ek, uµ form a structure of species Σnew. In a physical theory we are
interested in such species of structures Σnew where the typification of the uµ

is of the particular form uµ ⊂ Ek1 × Ek2 × · · · × IR × · · · (see this form in
Sect. 4.1). Then it follows that for a closed theory we can say that the Ek, uµ

are pictures of newly detected “possible objects” with newly defined “possible
relations.” But what is meant by the word “picture”?

Before we discuss this question, we will combine such a Σnew with a Σ
which could possibly be a fairy tale structure. If the Ek, uµ form a structure
of the species Σ and if PT with MT

Σ̂
is a closed theory, then we can say that

we have proved that the fairy tale Σ is more than just a fairy tale, i.e., that Σ
is an intuitively guessed picture of a possible reality. The fact that PT with
MTΣ is a usable physical theory is not enough to believe that the fairy tale Σ
is a picture of a physical reality. This does not mean that in a richer theory
(richer in the general sense of Sect. 5.1) the fairy tale Σ cannot be proved to
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be a description of a possible reality! But before such a proof can be given in
a richer theory, nobody should be forced to believe that the fairy tale is real.

We now have to analyze more precisely what is meant by “the deduced
Ek, uµ describe new detected objects and relations.” To begin with, the Ek, uµ

are only terms defined mathematically. If we want to analyze the description of
possible realities by the Ek, uµ, then we must go back, in Ap ↔ Bl(cor)MT∆,
from MT

Σ̂
by MT∆ to a reality domain W ⊃ Ap.

Let F be one of the terms Ek, uµ, i.e., the term F may be an intrinsic
term in MT

Σ̂
. Then F is a subset of an echelon T (M̂1, . . . , IR) over the base

sets M̂i (and eventually IR) of Σ̂. We then introduce in MTΘ a new constant
F , finite sets IR, and the axiom

F ⊂ T (M1, . . . , IR)

with the echelon construction scheme T identical to that of F . This makes
it thus possible to define a mapping φ : F → T (M̂1, . . . , IR) generated in a
canonical way by the mappings φi : M i → M̂i used under the axiom of ∆
(see Sect. 3.3.1). We then take for ∆ex (∆ extended) the axiom of ∆ extended
by the additional axiom φF ⊂ FU , where FU is the set F increased by the
inaccuracy sets (see Sect. 4.6). Such an axiom ∆ex is not a new condition for
the results of experiments! It is a condition for the new constant F in ∆ex

and it says that F is approximated by the “idealization” F . The question of
knowing which size the inaccuracy set U of F must take will be discussed in
Sect. 6.4.

After the introduction of F we have to invent a new word (designating
a new concept) for this new possible reality described by F . By adding this
new word to Bl we get an extended language Blex. We can then speak about
this new possible reality in the same way as we can speak about reality with
the words of Bl. In particular, we call the new concepts introduced for the
Ek, uµ (the new constants in ∆ex for the intrinsic terms Ek, uµ introduced
above) “classification concepts” for the Ek and “relation concepts” for the uµ

respectively. Such new classification concepts are, e.g., “electron,” “H-atom,”
“neutron,” “proton” but also “temperature” and “entropy.”

It can be that some Ek are sets M̂i (or subsets of the M̂i). Nevertheless, Ek

is a different constant than M̂i! In this way we can also get in Blex different
words for Ek than for M i, even if, e.g., the “pictures” Ek and M̂i of the
different Ek and M i are the same. This sometimes leads to misunderstandings
if, e.g., “preparation procedures” and “micro-objects” such as electrons have
the same “picture.”

By the introduction of new words (designating new concepts) in Blex, we
have only said how we speak about these new possible realities. We have not
said how we can “observe” such new realities. To observe the “basic prop-
erties” (corresponding to the M i) and the “relations” (corresponding to the
sν) we could use immediate observations and “pre-theories,” i.e., only well-
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defined methods before the introduction of the theory MT . Now we have to
discuss how we can obtain from the text Ã an extended text Ãex, where in
Ãex are also used the words of Blex. We have to discuss what we mean, e.g.,
by a sentence of Blex such as ‘we have observed an electron’.

This problem is much more difficult than the introduction of new physical
concepts. We will begin with an analysis of the problem of the “observation”
of new concepts in Sect. 6.4.

We finish this section by giving a simple example for the introduction of
new concepts. We take for this purpose our

Example A

For a round table, Σ̂ is given by the set M of points in a circle of radius r
(the table has a radius of r ± ε), a structure term s ⊂ M × M × IR, and the
axiomatic relation that s determines a distance d : M × M → IR, so that M
is the set of points in a circle of radius r of a two-dimensional Euclidean space.
This theory of the round table is a closed theory. (Σ̂ is in the mathematical
sense not an Euclidean geometry!)

As a new intrinsic term E2 we introduce the subset E2 ⊂ P(M) of “straight
lines” (lying in the circle). As E1 we take E1 = M . As a new relation u ⊂
E1×E2 we take the set u =

{
(x, y)

∣
∣ x ∈ y, x ∈ E1, y ∈ E2

}
(i.e., “x is a point

on the straight line y”). To get MT∆ex , we add to Θ the new constant E2 with
the axiom E2 ⊂ P(M), a relation u ⊂ M×E2, and the axiomatic relation that
the mapping φ : M → M , of the axiomatic relation of ∆, fulfills the relations
φE2 ⊂ (E2)U and φu ⊂ (u)U , where (E2)U , (u)U are the “inaccurate” E2 and
u, i.e., E2 and u enlarged by the inaccuracy sets U .

As new sentences (expressing new propositions) in Blex we introduce the
following correspondences:

for ‘y ∈ E2’ : ‘y is a marked straight line’;

for ‘(x, y) ⊂ u’ : ‘the marked spot x lies on the marked straight line y’.

The fact that a marked straight line is determined by two marked spots
lying on this marked line has to be proved. How this can be done will be
shown in Sect. 6.4.

6.4 Indirect Measurements

If we have detected a trace in a cloud chamber, we can, e.g., conclude that
this trace was produced by an “electron,” i.e., that we have established the
reality of an “electron.” To make such a conclusion we must have a theory
PT where the trace belongs to a text Ã, and with the help of which from the
reality described by Ã we can infer the “reality of an electron.” It is our aim
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to provide the method by which we can make such conclusions and, like every
method, it can only be justified by the success we obtain from working with
it!

To begin with the development of such a method, we will at first describe
the general form of such conclusions.

We have, as described in Sect. 6.3, a theory PT ≡ Ap ↔ Bl(cor)MT∆

which is extended to PTex ≡ Ap ↔ Blex(cor)MT∆ex , where ∆ex has the base
terms M i and Ek, the structure terms sν and uµ, and where the mapping φ
of the axiomatic relation of ∆ex maps M i → Mi, sν → (sν)U , Ek → (Ek)U ,
and uµ → (uµ)U . Here, the Ek, uµ are intrinsic terms of MT

Σ̂
by which a

structure uµ over the Ek of species Σnew is “deduced” from Σ̂.
We have to develop a method by which from a text A (the result of “direct

measurements”) we can infer the “reality” of an extended text in which are
also used the Ek and uµ in the same manner that in A are used the M i and
sν , i.e., a method by which we can “interpret” the directly observed text A
as an “indirect measurement” of a “hypothetical” text in which the Ek and
uµ also appear.

Such an extended text consists of two parts:
(i) The directly measured part A composed of relations of the form

A : a1 ∈ M i, . . .;

(a1, a2, . . . , J1, J2, . . .) ∩ sν �= ∅, . . . (6.4.1)

(the Jl are intervals of IR, a finite set of real numbers),

(ii) The “hypothetical” part H composed of relations of the form

H : y1 ∈ M i, . . . (6.4.2)

(y1, . . . , a1, . . . , ηi . . . , Jk . . .) ∩ sν �= ∅, . . . (6.4.3)

x1 ∈ Ek, . . . (6.4.4)

(a1, x2, y3, ηi, Jk, Jl, . . .) ∩ El �= ∅, . . . (6.4.5)

(x1, x2, . . . , γ1, γ2, . . .) ∈ Uµ, . . . (6.4.6)

(x1, . . . , a1, . . . , y1, . . . , ηi, Jk, Jl, γ1, . . .) ∩ uν �= ∅, . . . (6.4.7)

The text A describes the stated facts by giving to the stated objects signs
aν , and by writing down stated relations by (a1, a2, . . . , J1, J2, . . .) ∩ sν �= ∅.
The Jν are given intervals, given by the experiments.

The text H describes hypothetical objects xν , yν , i.e., the text H does not
say that a reality belongs to a particular letter xν or yν . The text H also
describes hypothetical relations between these hypothetical objects xν , yν ,
the stated objects aν , real numbers (described by hypothetical real numbers
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ηi, γk), and intervals Jν , Jk of real numbers. The Jν are intervals of numbers
ηi stated by experiments written in A. The Jk are intervals of numbers ηi,
intervals specially selected and hypothetically selected. The γν are hypotheti-
cal numbers.

The fact that we have used the numbers ηi which describe objects already
known by the pre-theories (e.g., time and space by Newton’s pre-theory) in
two ways, either as a hypothetical number ηi or as a hypothetical interval Jk,
has to do with the intention of what we want to describe by H.

The numbers ηi describe unknown values of hypothetical objects. The
intervals Jk describe fixed regions of realities or possible realities. We hope to
see how the text A can tell us which of the ηi are allowed, i.e., how the ηi can
be measured indirectly by A. The intervals Jk are “given” and A can only say
whether such a given interval is real or at least possibly real, or is wrong.

(How real numbers appear in physical theories is described in Sect. 4.8.
A known form is, e.g., to use real numbers to describe time and to use triple
of real numbers to describe spots in space; this description presumes that we
have fixed by pre-theories and experiments a so-called “reference system” of
space–time.)

Relations of the form (6.4.5) and (6.4.7) are possible if the El are sets or
subsets of sets of the form M i1 × M i2 × · · · IR × · · ·. It is essential that we
consider relations that connect hypothetical objects with stated objects in the
form of (6.4.5) and (6.4.7).

(In (6.4.1) to (6.4.7) we did not write “possible negations” of relations.
We did this because such negations do not provide us with any new points of
view.)

The main question is whether and how we can state the relations (6.4.2) to
(6.4.7) from the relation (6.4.1) (describing the already stated facts) with the
help of the theory MT

Σ̂ex
. If we have succeeded in proving that the hypotheti-

cal objects xν , yµ and the hypothetical numbers ηi, γk are almost determined
by A, then we say that we have indirectly stated the objects xν , yµ, the number
ηi, γk, and the relations (6.4.3), (6.4.6), and (6.4.7), i.e., that by the direct
measurement A we have indirectly measured H.

To discuss this main question we transport it from MT
Σ̂ex

to MT
∆̂

by
a mapping φ which exists according to the axiomatic relation for ∆ex (see
Sect. 6.3) and the definition of the Ek (given in Sect. 6.3). With φaν =
aν , φxν = xν , and φyν = yν we get from (6.4.1) to (6.4.7) the text

A : a1 ∈ Mi, . . . (6.4.8)

(a1, a2, . . . , J1, J2, . . .) ∩ (sν)U �= ∅, . . . (6.4.9)

H : y1 ∈ Mi, . . . (6.4.10)

(y1, . . . , a1, . . . , ηi . . . , Jk . . .) ∩ (sν)U �= ∅, . . . (6.4.11)

x1 ∈ (Ek)U , . . . (6.4.12)
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(a1, x2, y3, ηi, Jk, Jl, . . .) ∩ (El)U �= ∅, . . . (6.4.13)

(x1, x2, . . . , γ1, γ2, . . .) ∈ (uµ)U , . . . (6.4.14)

(x1, . . . , a1, . . . , y1, . . . , ηi, Jk, Jl, γ1, . . .) ∩ (uν)U �= ∅ . (6.4.15)

If we have in H only relations of the form (6.4.10), (6.4.11), we call H a
hypothesis of the first kind where the Jk are given and fixed. Our question is
then whether from the direct measurements (6.4.8), (6.4.9) we can calculate
the results of possible measurements of the form (6.4.10), (6.4.11). This is a
well-known procedure in physics: to calculate, from direct measurement, not
directly measured realities. For instance of a round table, to calculate, on the
basis of the direct measurement of distances between certain spots, distances
not directly measured between certain spots.

For the general question of how a text A can be considered as an indirect
measurement of H, we begin with the discussion of a mathematical problem:
How A can determine, or at least restrict, the mathematical possibilities of a
hypothesis H. To analyze how A restricts H, we will change, i.e., simplify, the
form of the text (6.4.8) to (6.4.15).

We introduce the following abbreviations:

B ≡ (a1, a2, . . .), Y ≡ (y1, y2, . . .), X ≡ (x1, x2, . . .), (6.4.16)

and

D ≡ (B, Y ), Z ≡ (X,Y ). (6.4.17)

The relations a1 ∈ M1, . . . of (6.4.8) can be taken together in the form

B ∈ Tr(M1, . . .) (6.4.18)
with

Tr(M1, . . .) = M1 × · · · (6.4.19)

The relations (6.4.10) can be taken together in the form

Y ∈ Th(M1, . . .), (6.4.20)

where Th is an echelon construction scheme similar to Tr. Since the Ek are
subsets of echelon sets of the Mi and IR, the relations (6.4.12) with an intrinsic
set E can be taken together in the form

X ∈ E. (6.4.21)
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We can then write MT
Σ̂

A as the theory with the constants Mi, the con-
stant B, and the axiomatic relation

PA ≡ P̂ ∧ B ∈ Tr(M1, . . .) ∧ (6.4.9). (6.4.22)

In this theory MT
Σ̂

A, we consider H as the relation

H ≡ X ∈ E ∧ Y ∈ Th(M1, . . .) ∧ Q(X,Y, Γ,H), (6.4.23)

where Q is the relation

Q ≡ (6.4.11) ∧ (6.4.13) ∧ (6.4.14) ∧ (6.4.15), (6.4.24)

and where H (majuscule letter of η!) is the row of the real numbers (η1, η2, . . .),
and Γ the row of the (γ1, γ2, . . .).

With Z of (6.4.17) we can write (6.4.23) in the form

H ≡ Z ∈ E × Th(M1, . . .) ∧ Q(Z, Γ,H). (6.4.25)

By the relation (6.4.25) is defined in MT
Σ̂

A the intrinsic term

G(A,H) ≡
{
(Z, Γ,H)

∣
∣ H

}
⊂ E × Th(M1, . . .) × IR × IR × · · · , (6.4.26)

where IR × IR × · · · contains as many factors as the rows Γ plus H. The
hypothesis H can then also be written in the form

H ≡ (Z, Γ,H) ∈ G(A,H). (6.4.27)

Our problem is to analyze how A and the fixed intervals Jk of H determine
the set G(A,H). At first, we assert that

By the “direct measurement” A (the “experiment” A) and the fixed Jk,
we “indirectly measure” the hypothesis H with the “inaccuracy” G(A,H).

It is clear that new detected realities cannot be “founded” on such an
assertion. But G(A,H) in (6.4.27) is the short description of the work of
experimental physicists, i.e., of “indirect measurements.” If G(A,H) is very
“large,” the result of the indirect measurement says practically nothing about
the reality.

But how we interpret an indirect measurement will be treated in Sect. 6.5.
Before that we will briefly formulate an often used relation that describes

the seeking of “good” experiments. In this way we do not ask for the calcula-
tions of indirect measurements of relations of the form (6.4.10), (6.4.11). We
want to use these relations for the seeking of direct measurements that are
suitable for obtaining “good” indirect measurements.
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Therefore we now take together the relations (6.4.8) to (6.4.11) as a rela-
tion Ah, and the relations (6.4.12) to (6.4.15) as a relation Hh. We then use
Ah (for fixed numbers ηi) in the same way as the relation A above, i.e., we
consider the theory MT

Σ̂
Ah instead of MT

Σ̂
A and define the set

Gh(Ah,Hh) ≡
{
(X,Γ )

∣
∣ Hh

}
⊂ E × IR × IR × · · · (6.4.28)

and seek for such Ah that Gh is not too large.

6.5 Classifications and Interpretations

We begin our analysis with a simple case: a hypothesis of the first kind. We
have already defined this case in Sect. 6.4. H is of the first kind if it contains
only relations of the form (6.4.10), (6.4.11). Then there is no X (therefore
Z = Y ) and no Γ . The set Gh(A,H) takes the form

Gh(A,H) ≡
{
(Y,H)

∣
∣ H

}
⊂ Th(M1, . . .) × IR × IR × · · · , (6.5.1)

where IR × IR × corresponds to the set H of real numbers.
If there is also no Y , we have the particular case that H contains no hy-

pothetical objects, but only hypothetical relations, i.e., not directly measured
relations! Thus Gh(A,H) is only a subset of IR× IR× . . ., i.e., a set H of real
numbers for which H is valid.

If there is also no H, then there is no set Gh(A,H) but only a relation
H of hypothetical relations between the directly observed objects ai. For this
simplest case we also have the simplest classification:

(a) H is a theorem in MT
Σ̂

A,

(b) ¬H is a theorem in MT
Σ̂

A, (6.5.2)

(c) H and ¬H can be added to MT
Σ̂

A without contradiction.

We have the following equivalences:

(a) is equivalent to “A ⇒ H is a theorem in MT
Σ̂

,”

(b) is equivalent to “A ⇒ ¬H is a theorem in MT
Σ̂

,”

(c) is equivalent to “A ∧ H and A ∧ ¬H can be added to MT
Σ̂

without
contradiction.”

The cases (a), (b), and (c) are only statements of a “mathematical clas-
sification.” We also introduce a “physical classification” which is based on
experiments. Therefore the cases of this classification cannot be “proved” in
the same way as the cases of the mathematical classification. We introduce
the following physical classification:
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(α) H can be added to MT
Σ̂

Aex without contradiction, where Aex is any real
extension of A, i.e., a description of realities that include A;

(6.5.3)
(β) there is an extension Aex which is in contradiction to H.

We also say in the case (α) that “H is certain,” and in the case (β) that
“H is uncertain.”

For a usable physical theory PT , for every Aex the theory MT
Σ̂

Aex is
without contradiction, therefore:

– in the case (a) H is certain,
– in the case (b) H is uncertain,
– in the case (c) H can be both certain and uncertain.

If in the case (c) H is certain, we can then add to MT
Σ̂

A the relation H
without contradiction to all experiments, i.e., by adding to MT

Σ̂
the relation

A ⇒ H, we get a more comprehensive theory which is also usable. If the
theory is closed (see Sect. 6.1), by adding to MT

Σ̂
the relation A ⇒ H, we

should not get a more comprehensive theory; that is, a H certain should also
fulfill (a), i.e., in the case (c) H should be uncertain.

Thus for a closed theory, we have that “(a) and (α) are equivalent” and
“from (b) and from (c) follows (β).”

We make the following interpretations:

– in the case (a) we say that “H describes a reality,” briefly that “H is real;”
– in the case (b) we say that “H does not describe a reality,” briefly that

“H is unreal” or “H is wrong;”
– in the case (c) we say that “H is both possibly real and possibly unreal.”

For these classifications and the following interpretations one could per-
haps wish to have something like a “proof” or a “philosophical foundation.”
But such a foundation is not given by the method of physics as described
here. As in the simplest case, if we say that “a stone falls to the earth,” we
have no other foundation than that it is very likely that the next stone will
also fall to the earth, although we do not know “why” the stone falls to the
earth. Physics describes the reality but does not say why the reality is such as
physics describes it.

We must now extend the above interpretation of H to more and more
complicated cases. At first we take the above described case of a hypothesis
of the first kind, where G(A,H) is a subset of IR × IR × · · ·, i.e., where there
is no Y in (6.5.1). Then we can have the following classification:

(a) G(A,H) �= ∅ is a theorem in MT
Σ̂

A,

(b) G(A,H) = ∅ is a theorem in MT
Σ̂

A, (6.5.4)

(c) G(A,H) �= ∅ and G(A,H) = ∅ can be added to MT
Σ̂

A
without contradiction.
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Similar to the above, we introduce the following classification:

(α) G(A,H) is “certain” if G(A,H) �= ∅ can be added to MT
Σ̂

Aex without
contradiction, where Aex is any real extension of A;

(6.5.5)
(β) G(A,H) is “uncertain” if there is an extension Aex for which “G(A,H) �=

∅” cannot be added to MT
Σ̂

Aex without contradiction.

For a closed theory, we expect that “(a) and (α) are equivalent.”
We make the following interpretations:

– in the case (a) we say that “H is real with an inaccuracy G(A,H);” or
that “H has been indirectly measured, by the direct measurement A, with
an inaccuracy G(A,H);”

– in the case (b) we say that “H is unreal for any H;”
– in the case (c) we say that “H is possibly unreal.”

Most interesting is the case (a), where we get information about the reality
without directly measuring all of the relations. We can obtain such information
because we know that the theory MT

Σ̂
is a description (an imprecise one)

of the reality. For example, we must not directly measure all the distances
between the marked spots ai; the measurement of some distances allows us to
“calculate” (with a certain imprecision) the other distances, because we know
the (imprecise) Euclidean structure of the surface of the table.

For measuring distances, in general one uses (as is well known) a theory
that comprises not only a theory of measurement of distances by measuring
tapes, but also a theory that comprises a geometric optic which allows us
to calculate indirectly many not directly (by a measuring tape) measured
distances.

The indirect measurements are so widespread in physics that such work
is made without thinking about their theoretical base. A lot of effort is made
in order to obtain a high measuring accuracy. But why? An imprecise mea-
surement is also a reality, but it does not say as much as desired about the
intended reality. We have therefore said above for the case (a) that H describes
a reality (i.e., the intended reality) with an inaccuracy G(A,H). If G(A,H)
is too “large,” then we do not get as much information about the reality as
“desired.” One of the essential works of experimental physicists is to seek for
indirect methods of measurement.

If we now go over the general form of a hypothesis of the first kind, we
have to interpret G(A,H) of the general form (6.5.1). At first we have the
classification as in (6.5.4) and (6.5.5); we have only to say how we interpret Y
and H, the hypothetical objects yi, and the hypothetical indirect measurement
results ηi.

We make the following interpretations:
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– In the case (a) we say that (Y,H) ∈ G(A,H) are the results of indirect
measurements, i.e., the yi as indirectly “recorded” objects and the ηk as
indirectly measured results, recorded and measured with the inaccuracy
G(A,H). In this sense G(A,H) is an inaccurate description of a reality.
The description of the reality becomes better and better if G(A,H) �=
∅ becomes smaller and smaller. If G(A,H) is very large, then we have
practically no description of the reality. The accuracy depends upon A.

– in the case (b) we say that “H is unreal;”
– in the case (c) we say that “H is both possibly real and possibly unreal;”

only other experiments than A can decide whether H is real or not.

On the basis of the mapping φi : M i → M̂i (see Sect. 6.3) we can go back
to the hypothesis H (see Sect. 6.4) and introduce a set G(A,H) as the set
of all elements which are mapped onto G(A,H). Thus we can transport the
interpretations onto H:

– in the case (a) we say that “H is real with an inaccuracy G(A,H),”
– in the case (b) we say that “H is unreal,”
– in the case (c) we say that “H is both possibly real and possibly unreal.”

It is not now difficult to transport all of these interpretations to the most
general case of a hypothesis H or H. We will not repeat all of these inter-
pretations. We add only the often used word for a hypothesis H in the case
(a) that we have “detected” the “new” objects xi (resp. xi) instead of the
also used word “recorded.” In such a way we can show that we have detected,
e.g., an “electron,” a “proton,” or a “He-atom” with the help of an axiomatic
basis for quantum mechanics. To prove in the same way that the “quarks” are
real has not been established until now because it appears that we have not
finished finding an axiomatic basis.

To illustrate the mathematical working of the introduction of new con-
cepts, we take again a round table. As MT

Σ̂
we have a circle of a two-

dimensional Euclidean geometry described by a set M of points and a distance
relation s(x, y, η) ⊂ M × M × IR (see Sect. 4.3). As E1, E2 we introduce

E1 = M , E2 = the set of straight lines. (6.5.6)

As relation u we introduce

u = {(y, x) | y ∈ E1, x ∈ E2, y ∈ x}. (6.5.7)

As given recorded A we assume

A: a1 ∈ M , a2 ∈ M , d(a1, a2) ∼ η, (6.5.8)

where d(a1, a2) ∼ η is briefly written for the measurement of the distance
between the two marked spots a1, a2 as appropriate η.
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As H we introduce

H: x ∈ (E2)U ,

a1 ∈ E1 , a2 ∈ E2, (6.5.9)

(a1, x) ∈ (u)U , (a2, x) ∈ (u)U ,

that is, the recorded spots a1, a2 lie approximately on the line x.
The set G(A,H) is then the set of all straight lines x for which a1 and a2

lie approximately on these lines. We see that G(A,H) �= ∅ is a theorem. If
d(a1, a2) is large compared to the inaccuracy set U , the set G(A,H) is only
a neighborhood of one straight line. If d(a1, a2) is smaller than U , the set
G(A,H) contains a total cluster of straight lines around the two spots a1, a2

lying together. We then say that the two spots a1, a2 record a straight line if
they are sufficiently separated.

Later one can state by experiment that a “ruler” can also be used to record
a straight line (e.g., by drawing with the ruler and a pencil a straight line onto
the round table) which is defined as being an element of E2.

This example should only demonstrate a little bit the significance of
G(A,H) as an inaccuracy of an indirect measurement. The aim of experi-
mental physics is to make this inaccuracy G(A,H) as small as possible by
changing the apparatuses, i.e., by obtaining an A which makes G(A,H) as
small as possible. For this purpose we consider the set Gh(Ah,Hh) of (6.4.28)
and have to seek for such new experiments, i.e., new realizations of theoreti-
cal possibilities, so that Gh(Ah,Hh) is small. The intention of this aim is to
make new and better experiments. New and better theories is the intention
of theoretical physics.

But there is also another intention: the realization of possibilities for sol-
ving the problems of our lives. This so-called “technique” has developed many
new methods which have been used to discuss the possibilities of realizations
of hypotheses H; these methods are so many that it is not possible to survey
all of them (which are applied by so-called “specialists”).

At the end of this chapter, we will emphasize again that the interpretation
“H is possibly real” is only meaningful if we have a closed theory. Sometimes
errors are made if we neglect this condition. As an example we will mention
the theories of many atoms as theories of macroscopic bodies.

If we take, e.g., quantum mechanics to describe the motion of tennis balls,
we can come to the conclusion that this theory will not be closed. Such a
conclusion is not based on a mathematical proof; it is an opinion based on
physical experiments, but not of the sort that A is in contradiction with MT∆.
One obtains no contradictions between A and the theory, but only insuperable
difficulties in realizing a “possibility,” as, e.g., that it seems “impossible” to
make similar diffraction experiments with tennis balls as, e.g., with electrons
or neutrons.
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Or, if we take the quantum mechanics of many atoms as a theory of gas,
this theory is not in contradiction with experiment, but not closed. A motion
of a gas is irreversible, i.e., a time-reversed motion to a real motion cannot be
realized, and this cannot be described by quantum mechanics of many atoms.

One can try going further than the quantum mechanics of many atoms to
a closed theory by adding additional axioms for the “realizable” preparation
procedures and “realizable” registration procedures. But we are far away from
a closed quantum theory of macroscopic bodies. Quantum mechanics cannot
be used for the total cosmos since we have no preparation procedures for many
cosmos to imply statistics, and no registration procedures to record outside
of the cosmos. We only have one cosmos.

The realizable preparation procedures for macroscopic bodies (small com-
pared to the cosmos) are determined by the given cosmos. The irreversibility
produced by these realizable preparation procedures seems to be, in this way,
a consequence of the expanding structure of the cosmos. Also, the emission
of light in the direction of time, where the cosmos is expanding, seems not to
be a mere accident.

It still remains an unsolved problem to find a closed theory for macro
systems. Nevertheless, it is astonishing how theoretical physicists can intui-
tively find realizable preparation procedures for many special cases such as,
e.g., for a theory of semiconductors.

6.6 The Reality Domain of a PT

In the previous paragraph we have given an interpretation of the set G(A,H)
relative to the hypothesis H, and have especially said what we mean by “H
is real.” Now we will try to give a survey of the totality of reality which can
be described by a theory PT , and also to look at realities that cannot be
described by physics.

We began in Sect. 3.1.2 with the development of a PT by introducing
the application domain Ap, as the domain of realities which can be stated
without any theory or with the help of pre-theories. Thus, stated facts can be
described by a text Ã formulated in the basic language Bl. The text Ã is a
description of a part of Ap. We can also briefly say (but not very correctly!)
that “Ã is a part of Ap.” In this way we “identify” the text Ã with a part of
the reality.

The text Ã is in this sense not “all” that we know of Ap, and never all of
Ap. If we take together all that we know (which is practically not possible),
we can write for this special Ã: Ãtot. The text Ãtot is in this sense the totality
of all stated facts of Ap. The sense of a PT is not only that Ãtot is not in
contradiction with the mathematical part MT∆ of PT ; the sense is mostly
that we can detect and construct new realities, new realities in Ap which are
not stated by Ãtot, but also new realities as real hypotheses H described by
new concepts in the sense of Sect. 6.3.
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The totality of all these realities, i.e., the reality domain of all PT s (de-
noted by W ) was introduced in Sect. 1.2. The reality domain of a particular
PTν (denoted by Wν) is in this sense a part of W (the reality domain W
is not a fixed reality). We can form a part of W by realizing “possible” hy-
potheses H. The way in which to realize a possible hypothesis can be very
complicated, so that a realization is only possible by working as a team. But
there also arises a new problem as to what we “can” realize and also as to
what we will realize and we should “not” realize. By physics we can only find
what we can realize, but not what we will realize and what we should not
realize.

The reality domain Wν of a PTν increases with the work of physicists and
technicians. But what happens if we find a more comprehensive theory in the
sense of Sect. 5.1? Is it possible that contradictions can arise between the
reality domains of various physical theories? It is not possible, since if PT2

is a more comprehensive theory than PT1, then we can deduce MT∆1 from
MT∆2 , so that a theorem in MT∆1 is also a theorem in MT∆2 . Therefore W2

contains W1. The growth of physics also leads to the growth of the reality
domain.

As explained in Sect. 6.4 one can take some real numbers η in H as “given.”
Then we have the possibility to obtain a detailed reality domain, i.e., we can
interpret G(A,H) not only as an imprecision but also as a set of various
realities for the various “given” values of η (see Sect. 6.4). This signifies a
more detailed description of η that follows directly from the descriptions in
Sect. 6.5.

The most interesting problem is the relation between two theories which
seem to be different, but which are indeed two forms of the same theory.



Part II

Examples of Simple Theories



A

A Description of the Surface of the Earth, or of
a Round Table

This example was used throughout Part I to illustrate some of the concepts
introduced.

The Physical Reality

As a physical system, we take marked spots and distances between marked
spots.

The Basic Language Bl

In this context we consider the following:

– Only one property concept “marked spot” denoted by p̃. In the basic lan-
guage Bl we will formulate sentences such as ‘the object a has the property
marked spot’.

– Only one relation concept “distance relation between objects” denoted by
r̃. In the basic language Bl we will formulate sentences such as ‘between
the objects a1, a2 and the real number α there is the distance relation
δ(a1, a2, α)’, where the distance relation δ(a1, a2, α) is obtained on the
basis of a pre-theory of measurement of distance.

The Application Domain Ap

We decide that the property concept “marked spot” is to be taken as a basic
property. This means that we want to describe by the intended theory only
such objects which are marked spots. The application domain Ap consists of −
marked spots − and − distance relations between marked spots −.
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The Text ˜A

We have a finite collection of sentences, denoted by Ã, such as

‘the object a1 has the property marked spot and the object a2 has the
property marked spot and between the objects a1, a2 and the number α
there is the distance relation δ(a1, a2, α)’.

The Basic Mathematical Theory MT
Θ̂

We add to MT two new constants p and r: p is a relation of weight 1 noted
p(x), and r is a relation of weight 3 noted r(x1, x2, α), where α is a real
number α ∈ IR and IR is a finite set of real numbers. We have taken p̃ as a
basic property. Therefore, on the basis of the axiom (3.2.1), there is a set M
with

x ∈ M ⇔ p(x).

On the basis of the axiom (3.2.2) M is a finite set.

(We have introduced MT
Θ̂

only to show that the “collectivizing” axiom is
the basis of the following standard form MTΘ.)

The Standard Mathematical Theory MTΘ

We add to MT two new constants M and s. On the basis of the axiom (3.2.3)
M is a finite set. On the basis of the axiom (3.2.5) we have

s ⊂ M × M × IR.

The mathematization process Bl (cor) MTΘ, i.e., the transcription of natural
sentences formulated in the basic language into formal sentences formulated
in the formal language, is given by:

‘a is a marked spot’ (cor) ‘a ∈ M ’,

‘the measured distance between a and b is α ± ε’ (cor) ‘(a, b, J) ∩ s �= ∅’.

Here J is the interval α − ε to α + ε.
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The Enrichment of MTΘ by A

We add to MTΘ new constants a1, a2, . . . for some recorded marked spots. As
“axioms” we add the recorded and, by (cor), transcribed facts, i.e., sentences
or relations noted by A:

ai ∈ M , . . .

and

(ai, ak, Jik) ∩ s �= ∅ , . . .

Since we have in MTΘ not introduced any axiom for the subset s of M×M×IR,
the theory MTΘA cannot lead to contradictions if we have not made recording
errors.

The Idealized Mathematical Theory MT∆

We formulate by ∆ that M, s is “approximately” a two-dimensional Euclidean
geometry.

In MTΘ we define the following sets:

Q = IR × IR

and s as the set

s ⊂ Q × Q × IR

of all (q1, q2, d) with

d(α1, α2;β1, β2) =
√

(α1 − β1)2 + (α2 − β2)2

where q1 = (α1, β1) and q2 = (α2, β2) with αi, βi ∈ IR.

We define the following inaccuracy set for Q:

U ⊂ Q × Q, Uεr =
{
(q1, q2)

∣
∣ d(q1, q2) < ε

}
∪ Qr × Qr, (A.1)

where

Qr =
{
q

∣
∣ q ∈ Q and d(q, 0) > r

}
,

and in which 0 is the point (0, 0) in IR × IR.
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For IR+ we introduce the inaccuracy set

Uδ
 =
{
(α1, α2)

∣
∣ |α1, α2| < δ

}
∪ IRρ

+ × IRρ
+, (A.2)

where IRρ
+ = {α | α ∈ IR+ ∧ α > ρ}. We take δ < ε and � > 2rπ.

These inaccuracy sets generate in a canonical way also an inaccuracy set
Us in Q × Q × IR+. On the basis of the axiom (3.3.5) we have

(∃φ)
[

φ : M → Q is an injective mapping with (φM)U = Q

∧ φs ⊂ (s)Us

∧ φs′ ⊂ (s′)Us

]
. (A.3)

If we want to give particular values for the ε, r we must take different appli-
cation domains, one for the round table and one for the surface of the earth:

– For the round table we can choose, e.g., ε = 0.1 mm and r essentially
greater than the radius of the round table, e.g., ten times the radius of the
table;

– For the surface of the earth we can choose, e.g., ε = 10 cm and r = 10 km.
But we can also choose other values. If we choose a bigger r, we must also
choose a bigger ε.

The Enrichment of MT∆ by A

In this case we record – marked spots – and the results of measurements of
the – distances – between these marked spots.

We presuppose the knowledge of “how to measure a distance,” i.e., the
knowledge of a pre-theory of measurements of distances, a pre-theory of the
use of such measuring records but without the geometry of the surfaces. These
pre-theories show that there are no precise measurements. We say that every
measurement has a so-called “error of measurement” describing the impreci-
sion of the measurement. The result of a measurement of the distance between
two marked spots a, b may be given by the real number α. This then has to
be corrected by saying that the value is not exactly α, but can be any number
between α − ε and α + ε, i.e., a number of an interval J .

Now we want to describe the use of our theory MT∆ for the description
of the real application domain of marked spots on earth, and their measured
distances.

We see by (A.1) that we have an example of the “second case” of Sect. 3.3.2.
The region of “large inaccuracies is given by Qr, and the point (0, 0) ∈ Q is a
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“center” of the region Q′
r of “small” inaccuracies. We choose one a appearing

in A. The selected a may be a0 (a0 can be, e.g., a particular marked spot at
Greenwich in London). We add in (A.3) the condition φa0 = (0, 0) .

Thus we get the axiom

(∃φ)
[
φ : M → Q is an injective mapping with (φM)U = Q

∧ φa0 = (0, 0)

∧ φs ⊂ (s)Us

∧ φs′ ⊂ (s′)Us

]
. (A.4)

A text A consists of relations of the form

a ∈ M and (a1, a2, J12) ∩ s �= ∅

which lead, for a φ satisfying (3.3.12), to relations of the form

φa ∈ Q and (φa1, φa2, J12) ∩ (s)Us
�= ∅. (A.5)

(Relations for s′ and s′ are not interesting because they are mathematically
irrelevant.) If we write φa = a, we get relations of the form

a0 = (0, 0), a ∈ Q and (φa1, φa2, J12) ∩ (s)Us
�= ∅, (A.6)

which is only interesting for such an a with a ∈ Q′
r, i.e., for the surrounding

of a0 = (0, 0).
In this example, a mapping φ satisfying (A.4) has a very graphic signifi-

cation: φ generates a map of the earth printed onto a sheet of graph paper.
On this map, the surrounding of a0 (Greenwich in London) represents very
well the distances between various marked spots, but not so well the marked
spots lying very far away from a0.

The Fundamental Domain G

If we consider as an application domain Ap the marked spots on the surface of
the earth, from Sect. 3.3.2 we see immediately that a fundamental domain G
is given by the surrounding of a particular marked spot (e.g., a marked spot
in Greenwich) from which we get by (cor)φ a “map” with small inaccuracies
relative to the distances.
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For the case of the surface of a round table, we have as the fundamental
domain G the total surface, i.e., the total application domain Ap. The problem
with this example is the following: Which part of M refers to marked spots?

The Axiomatic Basis MT
∆̂

We get an axiomatic basis MT
Σ̂

characterized by

1. the principal base set M̂ ,

2. the structure term ŝ,

3. with the typification ŝ ⊂ M̂ × M̂ × IR,

4. the axiomatic relation P̂ , according to (4.3.1),

(∃f)
[

f : M̂ → Q = IR × IR is a bijective mapping

with fŝ = s
]
,

where s ⊂ Q × Q × IR is the set of all (q1, q2, d)

with d(α1, α2;β1, β2) =
√

(α1 − β1)2 + (α2 − β2)2 (A.7)

(see Sect. 3.3.1).

One has to insert in the square brackets that for a Û corresponding to U of
(A.1),

fÛ = U .

A fixing of the picture of one a0 (as described in Sect. 3.3.2) can also be
transported to MT

∆̂
. With φ(a0) = (0, 0, 0) we have only to set (with φ̂iq0 =

â0) fi(â0) = (0, 0, 0).

If we take the axiomatic relation P̂ of (A.7), we know that MT
Σ̂(M̂,̂s)

is a

two-dimensional Euclidean geometry. But we want to formulate P̂ in such a
way that it immediately says something about ŝ, so that we can prove later
(A.7) as a theorem. Such a system of axioms P̂ can, e.g., begin with the
axioms

1. ŝ determines a mapping M̂ × M̂ → IR+, i.e., a real function d(x1, x2) ≥ 0,
2. d(x1, x2) + d(x2, x3) ≥ d(x1, x3),

and can be extended by additional axioms of a similar form.
In this way we can find a P̂ which “depends” only on M̂ and ŝ, i.e.,

an axiomatic relation where the existence of terms is postulated only if these
terms can be “formulated” by M̂ and ŝ and not by the help of terms formulated
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by real numbers (as, e.g., IR × IR). It is not necessary for the formulation of
P̂ to “imagine” terms other than M̂ and ŝ.

The Inaccuracy Sets and Uniform Structures

The inaccuracy set Uδ
 given in (A.2) is an element of the set N generated
by d(α1, α2). With this set N the set IR is precompact.

The completion ĨR of IR is IR plus two elements; one is in +∞ and the
other is in −∞. It is clear that we have to choose out of this N different
inaccuracy sets U for different s(. . . , IR).

Also for the set Q = IR × IR (see Sect. 3.3.1) we can find a metric (which
generates a set N of which (3.3.6) is an element) by the following procedure
(see Fig. A.1).
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Fig. A.1. Stereographic projection

Every point (α1, α2) is mapped onto a point P on the surface of a sphere.
As a metric on Q we use the distance of the corresponding points on the
surface of the sphere. With this metric, Q is precompact. Q̃ is the set Q plus
one point in the “infinity” of Q.

But we can also use another metric with another Q̃, taking the mapping
of Fig. A.2.
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Fig. A.2. Gnomonic projection
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The set N contains the set (A.1) as an element. For this set N , the set
Q̃ is the set Q plus different points in “infinity.” But for different directions
from (0, 0) to “infinity” there are also different points.

This example demonstrates that the set N selected is not determined by
reality. The set N selected also has to do with our intention to obtain such
inaccuracy sets U for which ∆ generates a “good” physical theory.

In our example Q = IR× IR, we can also choose a third uniform structure
N , namely generated by the distance

d(α1, α2, β1, β2) =
√

(α1 − β1)2 + (α2 − β2)2.

With this metric, Q is not precompact! Therefore this set N is not very efficient
in seeking usable inaccuracy sets; U from (A.1) is an element of this N , but
this N contains too many elements for finding usable inaccuracy sets.

The Description of the Reality

If we take as A the measured distances between two marked spots, whereby
one marked spot is used for the measurement of one distance, we cannot have
a contradiction to MT∆. This shows that these measurements are suitable for
making a relevant test of the theory.

One has to try to find a “critical” experiment, i.e., an experiment by which
an axiom or a theorem in PT∆ can perhaps be refuted. In our Example A
(applied to a round table) we can, e.g., perform the following experiment.

According to the pre-theory of measurements of distance we use measuring
tapes. We stretch a measuring tape between two marked spots a and b; the
length of this tape is a measured distance δ(a, b) of the marked spots a, b.
(We do not use a ruler, since the definition of a ruler already presumes an
Euclidean geometry; we also do not use compasses, since this presumes the
definition of a “rigid body.” We do not consider constructions using a ruler
and compasses.)

We begin the experiment with two marked spots a, b. We take a measuring
tape, the length of which is greater than the distance δ(a, b). We fix the ends
of this tape onto a and b. The tape is not stretched, since the length is greater
than δ(a, b). But we can stretch the tape by joining the middle of the tape to
a marked spot c, so that the distance δ(a, c) = δ(b, c) = α, with 2α having
the length of the tape. But there is also another marked spot d, by which the
tape is also stretched, so that δ(a, d) = δ(b, d) = α. We can now measure the
distances δ(a, b) and δ(c, d); we define β and γ by 2β = δ(a, b) and 2γ = δ(c, d).
We can now ask whether these measured values α, β, γ fulfill with a certain
inaccuracy the equation α2 = β2 + γ2.
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Fig. A.3. Experiment with marked spots

If this is the case, we have no contradiction in MT∆A. If we repeat this
experiment a few times, starting with other marked spots a, b, and get no
contradiction to MT∆, we are convinced that our theory is correct, i.e., we
trust our theory. We trust it because we do not believe that reality will deceive
us.

We can now repeat the same experiment on the surface of a globe (instead
of the surface of the earth, since on earth it is more difficult to measure
distances, i.e., since we need for the earth a richer theory of measurement of
distances.) The result of such experiments is then the following: The equation
α2 = β2 + γ2 is only fulfilled with small inaccuracies if the α, β, γ are small
compared to the greatest distance of two marked spots on the surface of
the globe. The way out is either to introduce large inaccuracies and as a
consequence a smaller fundamental domain G than the total globe, or to go
toward a “better” theory by instead of using an Euclidean idealization, we use
the idealization of the geometry of the surface of a sphere (see Sect. 3.3.2).

A Closed Theory

In the case of a round table, if we choose Q = IR × IR (see Sect. 3.3.1),
then this Q is “too large.” Indeed, elements in M , the pictures of which in Q
determine much greater distances than the diameter of the real table, cannot
be excluded. We can then introduce Qs as the set of all (α, β) ∈ IR × IR with
the property α2 + β2 < r2 with r as the measured radius of the table.

The introduction of Qs for this example is not so complicated, because we
can see that “there are” no spots lying outside of the table. In other cases
in physics we cannot “survey” the existence or nonexistence of the objects
corresponding to the elements of Q. In most cases we are in the same position
as that of a blind man in front of the table. A blind man can only try to mark
spots on the table and to perceive (by feeling), but he does not succeed to mark
spots “outwards” from the table. Such experimental features are indications
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that we have “too large” picture terms Qi and how we can perhaps find smaller
Qis

.
In the case of a round table, Σ̂ is given by the set M of points on a circle

of radius r (the table has a radius of r± ε), a structure s ⊂ M ×M × IR, and
an axiom that s determines a distance d : M × M → IR, so that M is the set
of points in a circle of radius r of a two-dimensional Euclidean space. This
theory of the round table is a closed theory. (Σ̂, in the mathematical sense, is
not an Euclidean geometry!)

New Concepts

Our task is not only to detect “nonmeasured” realities, but also to detect new
realities which we did not know before the introduction of Σ̂. Therefore we
have to seek for concepts other than those which are described by the base
sets M̂ and the structure terms ŝ of the axiomatic basis Σ̂.

As a new intrinsic term E2 we introduce the subset E2 ⊂ P(M) of “straight
lines” (lying on the circle). As E1 we take E1 = M . As new relation u ⊂
E1 × E2, we take the set u = {(x, y)

∣
∣ x ∈ y, x ∈ E1, y ∈ E2} (i.e., “x is

a point on the straight line y”). To get a new extended structure MT∆ex ,
we add to Θ the new constant E2 with the axiom E2 ⊂ P(M), a relation
u ⊂ M ×E2, and the axiom that the mapping φ : M → M of the axiom of ∆
fulfills the relations φE2 ⊂ (E2)U and φu ⊂ (u)U , where (E2)U , (u)U are the
“inaccurate” E2 and u, i.e., E2 and u enlarged by the inaccuracy sets U .

As new concepts in Blex we introduce the following correspondences:

– for y ∈ E2 : y is a “marked straight line;”
– for (x, y) ⊂ u : the marked spot x lies on the marked straight line y.

The fact that a marked straight line is determined by two marked spots
lying on this marked line has to be proved.

Classifications and Interpretations of the New Concepts

As MT
Σ̂

we have a circle of a two-dimensional Euclidean geometry described
by a set M of points and a distance relation s(x, y, η) ⊂ M × M × IR (see
Sect. 4.3). As E1, E2 we introduce

E1 = M , E2 the set of straight lines; (A.8)

as relation u we introduce

u = {(y, x) | y ∈ E1, x ∈ E2, y ∈ x}; (A.9)
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and as given recorded A we assume

A : a1 ∈ M , a2 ∈ M , d(a1, a2) ∼ η. (A.10)

where d(a1, a2) ∼ η can be written for “the measurement of the distance
between the two marked spots a1, a2 is approximate to η.”

As H we introduce

H : x ∈ (E2)U ,

a1 ∈ E1 , a2 ∈ E2, (A.11)

(a1, x) ∈ (u)U , (a2, x) ∈ (u)U ,

that is, the recorded spots a1, a2 lie approximately on the line x.
The set G(A,H) is then the set of all straight lines x for which a1 and

a2 lie approximately on these lines. We see that G(A,H) �= ∅ is a theorem.
If d(a1, a2) is large compared to the inaccuracy U , the set G(A,H) is only
a neighborhood of one straight line. If d(a1, a2) is smaller than U , the set
G(A,H) contains a total cluster of straight lines around a1, a2 lying together.
So we say that the two spots a1, a2 record a straight line if they are separated
enough.

Later one can state by experiment that a “ruler” can also be used to record
a straight line, e.g., by drawing with a ruler and a pencil a straight line onto
the round table, which is defined as being an element of E2.



B

A Simplified Example of Newton’s Mechanics

Newton’s mechanics is not a physical theory in our sense, since in general
one has to add a concrete form of the so-called “forces;” therefore, Newton’s
mechanics is a frame theory in the sense of the Sect. 4.9. To make a simplified
example of Newton’s mechanics we choose a particular situation, as simple
as possible, so as not to charge our example with unnecessary mathematical
difficulties.

The Physical Reality

As a physical system we take one material element under the force of a spring.
We will include in the application domain Ap experiments with various mate-
rial elements, but only one spring. Space and time (i.e., the reference systems
used to describe the motion of the material elements) will be given by pretheo-
ries. We will simplify mathematically the space, i.e., by only one coordinate x.
We contemplate only the motion of one marked spot on the material elements.

Simply:

The marked spot of the material element is moving on a trajectory xi(t)
which satisfies the differential equation

miẍi(t) + axi(t) = 0. (B.1)

Here mi denotes the mass of the material element i and a the constant of the
spring. But we do not know by pre-theories what the “mass” is. Therefore, we
cannot take the concept of “mass” into the basic language Bl! So what can
be taken into this basic language Bl?

The Basic Language Bl

Let us recall that facts of the application domain Ap are denoted by natural
sentences of the basic language Bl designating propositions of the conceptual



160 B A Simplified Example of Newton’s Mechanics

system. This means that only facts denoted by natural sentences, using terms
that designate concepts belonging to the conceptual system, can be taken into
account.

In this example the context is characterized by the following properties.

Property p̃1

p̃1 is the property - to be a material element -; usually one says - to be a mass
point -. But the related concept of “mass point” is not very clear since we
do not know what a mass is, and the material element is not a mathematical
point. A material element is a separate part of a rigid material. The property
p̃1 is taken as one of the basic properties.

It must be possible to recognize this material element as being the same
during its motion in the space and time reference system. This reference sys-
tem will be given by a pre-theory, so that we can give the location of the
material element (i.e., of the marked spot on it) at a time by a real number x
(we simplify mathematically the space by one real number) and the time by
a real number t. We can take these numbers as elements of a finite set IR of
real numbers. The so-called “measuring errors,” or better, the imprecision of
these x and t, are given by the measuring methods and the pre-theories.

It is clear that we cannot expect that the x,t of one “experiment” de-
pend on those of another experiment; that is, we must distinguish the various
experiments. But what signifies the word ‘experiment’? The signification of
this word, or the meaning of the related concept “experiment,” will give us a
second basic property.

Property p̃2

As “experiment” we consider the following situation which can also be caused
by other circumstances given in nature. An experiment produces a “free”
motion of a material element. This motion depends on the circumstances by
which the motion was produced; but we will not describe here these circum-
stances. We are only interested in the produced “free” motion; a motion not
influenced by any thing other than the spring. Such free motions may be de-
noted by the word ‘experiment’. p̃2 is the property that “the motion is an
experiment.”

(It is clear that one can have difficulties of stating correctly that the motion
is “free;” one cannot have observed some influences which show that p̃2 is not
valid. But if we are not sure, we do not take this case in the application domain
Ap.)

(A second remark has to be made! A measurement of x,t is not possible
without the influence of other physical realities on the material element, for
example light. The assumptions of a “free” motion and of a measurement of x,t
are contradictory! But from experiment we have that for macroscopic material
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elements, the influence of the measurements can be reduced; for example, we
do not observe that the light is influencing the motion, except if one constructs
very precise systems. If the influence of a measurement is small, we speak of
weak measurements, otherwise, of hard measurements. If, e.g., the material
elements make a hole in another piece of material, this hole is a measurement
of the location of the element at that time when the hole was made.)

The condition of a “free” motion is valid only for a finite time interval,
and we have to describe this in the theory. Thus we introduce into the basic
language Bl the relation

‘r̃1(b, i, x, t)’

corresponding to

‘In the experiment b the spot on the material element i has the (imprecise)
position x at the (imprecise) time t’.

For the description of the time interval, where the motion of the material
element is “free,” we do not introduce here a relation; we will use this feature
later in choosing the inaccuracy sets. We introduce only as a second relation

‘r̃2(b, i)’

corresponding to

‘In the experiment b the material element i is moving’.

The Basic Mathematical Theory MT
Θ̂

To MT four constants are added: p1, p2, r1, r2, where p1, p2 are relations of
weight 1, r1 is a relation of weight 4, and r2 is a relation of weight 2. The
mathematization process (cor) is simple.

The Standard Mathematical Theory MTΘ

To MT four constants are added: two sets M1,M2 and two sets s1 ⊂ M2 ×
M1×IR×IR and s2 ⊂ M2×M1. The mathematization process (cor) is simple.

The Idealized Mathematical Theory MT∆

To MT three constants are added: two sets M1 and M2 and a set m with the
axiom m ⊂ M1 × IR+ such that m determines a mapping m : xsM1 → IR+.
For i ∈ M1 we write simply mi instead of m(i).
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In addition, to MT two constants are added: two sets s2 and s3 with the
axioms s2 ⊂ M2 ×M1 such that s2 determines a mapping σ : M2 → M1, and
s3 ⊂ M2 × IR × IR such that s3 determines a mapping � : M2 → IR × IR.

(To simplify the relations we will set in (B.1) a = 1. We can do this because
we consider only one spring and the number a determines only the units.)

To formulate ∆, we use as picture terms for M1, M2, s2 the sets M1, M2,
s2, and as a picture term for s1 we use s1 ⊂ M2 × M1 × IR × IR:

s1 =
{

(b, i, x, t)
∣
∣
∣ i = σ(b),

x = x(t) with miẍi(t) + xi(t) = 0,

x(0) = α1, ẍ(0) = α2 with (α1, α2) = �(b)
}

.

Because of i = σ(b), it follows that

s1 ⊂ s2 × IR × IR.

Until this point we have only given sets and axioms in MT , i.e., we have only
given a mathematical game without any connection to the reality. Only MTΘ

is related to the reality.
The meaning of M2,s1,s2, i.e., the sense of the conceptual entities and

their reference to reality, is that we will formulate by ∆ that M1, M2, s1, s2

(of Θ) shall be “similar” to the M1, M2, s1, s2 (of MT ) – similar but not
“equal,” i.e., not necessarily isomorphic. For this purpose we enrich Θ to ∆
by using M1, M2, s1, s2 as auxiliary terms for ∆.

To formulate the “similarity,” we add at first new constants φ1, φ2 to MTΘ

with the axioms: φ1, φ2 are mappings

φ1 : M1 → M1, φ2 : M2 → M2.

We especially take the axiom that φ1 and φ2 are bijective and we postulate
the axiom that

φs2 = s2.

With the identical mapping IR → IR we get also a mapping

φ : M2 × M1 × IR × IR → M2 × M1 × IR × IR.

Because of the axiom φs2 = s2, we get that φ is also a bijection of s2 → s2. A
physicist knows that the strong axiom φs1 = s1 leads to contradictions with
experiments. But we postulate at least the axiom that

φs1 ⊂ s2 × IR × IR.
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From this follows that

s1 ⊂ s2 × IR × IR.

Since φs1 = s1 is not possible, we have to choose an inaccuracy set U for
s2 × IR × IR, so that we can postulate the axiom that

φs1 ⊂ (s1)U , φs′1 ⊂ (s′1)U .

Because of the bijection φ : s2 → s2, the inaccuracy set U is only related to
IR × IR. This means that U is given by diagonal elements of s2 × s2 and by
an inaccuracy set U(b,i) for IR × IR for every (b, i) ∈ s2.

The choice of U(b,i) is based on physical experiments. Therefore, we have
to discuss physical experiments, i.e., U(b,i) cannot be deduced from intuition.

At first we exclude from our theory all the cases where we expect great
differences between φs1 and s1, i.e., we pass from the application domain Ap

to a smaller region of applications, to the so-called fundamental domain G of
the theory.

We have already mentioned above that we have to exclude all the times
when the system is not “isolated.” To every experiment b belongs a finite time
interval, where the system is isolated. As this time interval we take the time
between 0 and (for b ∈ M2) Tb, where we have chosen the time t = 0 as the
beginning of this interval. The time Tb is determined by influences from the
surroundings of the system to be described.

But there are two other “times” determined by the system itself, which
make the description of the motion by the theory seem incorrect:

To every b ∈ M2 there is a time Tc where the deviation between the
theory and the reality will be greater and greater, since there are internal
processes in the spring which are not described by the force of the form
(−x), e.g., internal “frictional losses” in the spring.

If the material element moves to great values of x, the description by the
theory is also wrong since in these cases the force of the form (−x) is not
a good description, so that after a certain time, where |x| is too great, the
description of the trajectory by the theory will be wrong:

To every b ∈ M2 there is (by �(b)) a time Td which (for the trajectory
x(t)) will be at first greater than a given X.

To exclude all of the times t ≥ Tb, t ≥ Tc, t ≥ Td from the application
domain Ap of the theory, i.e., to describe the fundamental domain G of the
theory, one can follow several methods. The simplest method is to take s1

only for such t with t ≥ Tb, t ≥ Tc, t ≥ Td and to compare s1 with φs1,
also only for these values of t. For the problem of the comparison of various
theories, it is mathematically more suitable to describe this exclusion of times
by introducing suitable inaccuracy sets U(b,i).
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Let R(b,i) be the set of all t for which t ≥ Tb, t ≥ Tc, t ≥ Td. We choose as
U(b,i) the set

U(b,i) =
{

(x1, t1), (x2, t2)
∣
∣
∣ |x1 − x2| < ε, |t1 − t2| < η

}

∪
[

(R × R(b,i)) × (R × R(b,i))
]

.

(It is clear that one could also choose smaller U(b,i), but we do not wish to do
so.)

The small numbers ε and η have nothing to do with the “measuring er-
rors” of spatial deviation x and time t! These so-called “errors” originate from
the pre-theories and have to be described by “intervals” instead of by exact
numbers! If the errors are large, one can also get a good theory for ε = 0,
η = 0. The numbers ε and η describe the fact that the reality cannot be de-
scribed precisely by a trajectory x(t) which is, in addition, also differentiable;
a mathematical property that has no physical sense.

This example B will also serve to illustrate the investigations of Chap. 6. In
MT the so-called mass mi of the material elements was introduced. Since the
concept of “mass” has no meaning in the context of the application domain Ap,
it is a typical example of an “imagined” concept which refers to an “imagined”
reality, i.e., a fairy tale. The fact that we have a usable theory is not enough
to show that the mi are real; what is of importance is the noncontradiction
with experiments. In Chap. 6 we described that the real (imprecise) numbers
mi do indeed describe a reality.

Another question is the so-called determination of the trajectory by the
“initial values.” This is the case for idealized trajectories x(t), but is it also the
case like in real life? In Chap. 6 we saw that a nondeterministic evaluation can
be described imprecisely by deterministic idealizations, e.g., if the idealized
evaluations are unstable, i.e., if small deviations at the beginning can lead to
too large deviations later on.

The mathematization of the imprecision between the idealizations com-
pared to reality seems to be complicated. But we have only introduced a
mathematical description of those procedures which an experimental physi-
cist has to introduce in order to compare his experimental results with the
“idealized” theory. He does this by a mixture of everyday language and mathe-
matical symbols (e.g., numbers). Our mathematical analysis will not replace
the work of the experimental physicist. Also, a mathematician will not pro-
vide in any case all of the steps of the proof, in the sense of the analysis of
Sect. 2.2.1.

Our intention is only to show in principle that there is a difference between
the reality described in MTΘ and the “idealized” description in MT . This will
be of great importance if we compare different physical theories (see Chap. 5).

This example B could perhaps serve as an argument against our description
of the results of experiments by only finitely many relations in Ã and A. One
could perhaps mean that a “trajectory” x(t) could be measured continuously;
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but this is not the case, since we have no possibility to determine continu-
ously many “time-points.” The modern technical method used to record all
measurements digitally shows very clearly that we always have only finitely
many relations in Ã. Nevertheless, the number of these relations may be very
large.



C

The Structure of the Human Species

It will be shown by this example that the method of mathematization can
also be applied to nonphysical structures. We call a structure a nonphysical
structure if the concepts used in the basic language Bl are “nonphysical”
concepts. Physics is determined not only by the applied method, but also by
used concepts. Many concepts in physics are defined by pre-theories. But all
theories have to start from “first” theories which do not use pre-theories, and
the concepts used in these “first” theories are those which determine “physics.”
The number of these “first” concepts have become smaller and smaller during
the development of physics. Today, concepts such as, e.g., “warm” and “cold,”
“red” and “blue,” “strong” and “weak” are no longer used as “first” concepts.

In this book we do not have to deal with the problem of what are today
considered the “first” concepts from which all other physical concepts can be
defined by theories.

For the structure of human species we introduce in Bl only terms which
designate the following concepts:

We introduce the property concept

“to be human.”

We decide that this concept is a “basic property” concept, i.e., the application
domain Ap is only composed of human beings.

We introduce the quantitative concept

“number of the year.”

We consider that this concept is known from a pre-theory, i.e., we consider the
“the year n” as known, where n is a natural number, e.g., “the year 1983.”

As nonbasic property concepts we introduce
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“to be female,”

“to be male.”

As 2-ary relation concepts we introduce

“to be the mother of,”

“to be the father of,”

“to be born in the year n,”

“to have died in the year n.”

As it is not difficult to formulate MT
Θ̂

, we will immediately describe MTΘ.

The Standard Mathematical Theory MTΘ

We introduce a set M as a constant and postulate the axiom that M is a finite
set. We introduce a set Z as a set of natural numbers n with −N < n < N ,
where N is a very large number, e.g., N = 1010. We introduce as additional
constants the following relations as subsets:

µ ⊂ M ,

ϕ ⊂ M ,

m ⊂ M × M ,

f ⊂ M × M ,

l ⊂ M × Z,

d ⊂ M × Z.

The mathematization process Bl (cor) MTΘ (i.e., the transcription of natural
sentences formulated in the basic language Bl into formal sentences formulated
in the formal language MTΘ) is given by

‘a is female’ (cor) ‘a ∈ ϕ’,

‘a is male’ (cor) ‘a ∈ µ’,

‘a is the mother of c’ (cor) ‘(a, c) ∈ m’,

‘b is the father of c’ (cor) ‘(b, c) ∈ f ’,

‘a was born in n’ (cor) ‘(a, n) ∈ l’,

‘a has died in n’ (cor) ‘(a, n) ∈ d’.
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The Idealized Mathematical Theory MT∆

We now make a particular selection of the theory MT . We introduce in MT
the following constants: a set M and the subsets

µ ⊂ M ,

ϕ ⊂ M ,

m ⊂ M × M ,

f ⊂ M × M ,

l ⊂ M × Z,

d ⊂ M × Z,

where Z is the set of all natural numbers. We postulate the following axioms
in MT :

1. M is countable,

2. µ ∩ ϕ = ∅, µ ∪ ϕ = M ,

3. l and d are mappings M → Z,

4. (a, n1) ∈ l and (a, n2) ∈ d ⇒ n1 ≤ n2,

5. (a1, c) ∈ m and (a2, c) ∈ m ⇒ a1 = a2 and a1 �= c,

6. (a1, c) ∈ f and (a2, c) ∈ f ⇒ a1 = a2 and a1 �= c,

7. (a, c) ∈ m ⇒ a ∈ ϕ,

8. (a, c) ∈ f ⇒ a ∈ µ,

9.
[

(a, c) ∈ m or (a, c) ∈ f
]

and (a, n1) ∈ l and (c, n2) ∈ l

⇒ n1 + 10 < n2,
[

(a, c) ∈ m or (a, c) ∈ f
]

and (a, n1) ∈ d and (c, n2) ∈ l

⇒ n2 < n1 + 1,

10. c ∈ M ⇒ ∃a
[

(a, c) ∈ m
]

,

c ∈ M ⇒ ∃b
[

(b, c) ∈ f
]

.

With this MT we define ∆.

We introduce in MTΘ a constant φ ⊂ M × M , and add an axiom that φ is
an injective mapping φ : M → M .
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The mapping φ cannot be surjective, since M is finite and M must be
infinite because of the axiom (10). The picture {M,µ, . . . , d} is an idealized
picture, since it does not contain the possibility that human beings have de-
veloped from nonhuman beings. As we do not wish to wait until we know the
exact description of the development of the human species, we take the pic-
ture described above as an “imprecise” picture, and describe the imprecision
by the following inaccuracy set for M .

We take a year n0 from which we know that the human species was already
existent, and define in M × M the following set U as an inaccuracy set

U = δ ∪ M0 × M0,

where δ is the diagonal in M × M and

M0 =
{

x
∣
∣
∣ (x, n) ∈ l for an n < n0

}

.

We add the axiom that φM is U -dense in M and the axioms

φµ ⊂ (µ)U , φµ′ ⊂ (µ′)U ;

φϕ ⊂ (ϕ)U , φϕ ⊂ (ϕ′)U ;

φm ⊂ (m)U , φm′ ⊂ (m′)U ;

φf ⊂ (f)U , φf
′ ⊂ (f ′)U ;

φl ⊂ (l)U , φl
′ ⊂ (l′)U ;

φd ⊂ (d)U , φd
′ ⊂ (d′)U .

Thus we get a theory without contradiction to the facts, which can be des-
cribed in the basic language Bl.

This example of a theory is also suitable as an example for the description
of “measuring errors.”

If we have a human being b who was born more than ten thousand years
ago, it is not possible to give the exact year of his birth, i.e., we can only say
that (b, n) ∈ l is valid for an n of an interval J . The years of this interval may
be n1, n2 = n1 + 1, . . . , np = np + 1. Then we can only say that (b, n1) ∈ l, or
(b, n2) ∈ l, or . . ., or (b, np) ∈ l is valid, i.e.,

(∃n)
{

n ∈ J and (b, n) ∈ l
}

.

The “error” interval J can be changed by different measurements. But this
has nothing to do with the inaccuracy set U !
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In this example we can measure by pre-theories the “duration of the life of
b” with much smaller “errors” than the “year of birth.” Here the “duration of
the life of b” is defined as the number n2 − n1 with (b, n1) ∈ l and (b, n2) ∈ d.
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ŝν , 74
Σ̂, 74
MT

Σ̂
, 74



176 List of Symbols

∆̂, 74
MT

∆̂
, 74

P
∆̂

(also write P̂ ), 75
N , 85
∆U , 85
MT∆U , 85
MT∆U A, 85
MT

∆̂
H, 96

∆ex, 113
MT∆ex , 113
PTex, 113
PTex  PT , 114
Bli , 114
PTβ  PTα, 116
∆appr, 117
PTappr, 117
Wo(A), 124
Amax, 124
Wo(Amax), 124
MTA, 125
Qis , 125
PTs, 125
Σs, 126
Ek, 131

uµ, 131
Σnew, 131
F , 132
T (M̂1, . . . , IR), 132
F , 132
T (M1, . . . , IR), 132

φ : F → T (M̂1, . . . , IR), 132

φi : M i → M̂i, 132
FU , 132
Ek, 132
uµ, 132
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