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PREFACE

The 26th Conference on Orbis Scientiae 1997 is the second in this series of high
energy physics and cosmology that took place in the month of December instead of the 
well established tradition where the month of January was the conference date. This
change was due to the increased hotel rates in South Florida. Another change in the
organization of these conferences is the choice of a core topic to take half of the
conference time. The remaining time will be devoted to subjects of direct interest to
participants. In the 1997 Orbis Scientiae we chose “Physics of Mass” as the core topic of
the conference, which took over five sessions. The remaining five sessions were devoted
to those presentations of direct interest to some of the participants.

The Orbis Scientiae 1998 will cover “The Physics of Spin” as a core topic. In
anticipation of the ascending importance of gravity research in the 21st century, for the
core topics for the Orbis Scientiae 1999 and 2000 we suggest “The Status of An Evolving
Cosmological Parameter” and

”

The Nature of Gravity from Big Bang to Flat Universe”,
respectively. These two topics may be expected to lead on to the first conference in the
21st century in which the core topic should be chosen for the Orbis Scientiae 2001 by the
participants. We are pleased to invite the conference participants to send us their choices
of core topics.

The Trustees and the Chairman of the Global Foundation, Inc., wish to extend
special thanks to Edward Bacinich of Alpha Omega Research Foundation for his
continuing generous support including the 1997 Orbis Scientiae. 

Behram N. Kursunoglu
Stephan L. Mintz

Arnold Perlmutter
Coral Gables, Florida

April 1998
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A NEW COSMOLOGICAL PARAMETER SPANNING
THE MICROCOSM AND MACROCOSM

Behram N. Kursunoglu
Global Foundation, Inc., P.O. Box 249055
Coral Gables, Florida 33124-9055

INTRODUCTION. The five most important advances, amongst others, in 
cosmology in the past five decades after Hubble’s observation of the expanding universe, 
and after George Gamow s theory of the Big-Bang creation of the universe, include, in
chronological order: (1) Ralph A. Alpher and Robert Herman’s1 theoretical prediction in
the 1940’s of the cosmic microwave background radiation (CMBR) left over from the
Big-Bang; (2) Arno A. Penzias and Robert W. Wilson’s observation in 1964 in the
residual heat detected as the CMBR; (3) Alan H. Guth’s2 hypothesis in 1979 of an
inflationary universe; (4) the observation in 1992 of microwave anisotropies in the
CMBR as seen through COBE by physicists and cosmologists led by George Smoot3,4;
(5) The recent data on distant light from stars, exploded before the sun was born, gives 
support to the idea of accelerated expansion of the universe which may be destined to
continue forever.

There is, amongst physicists and cosmologists, a consensus that the description of
the universe and the elementary particles before, during, and after Planck-time of 10-43

sec. requires a unified theory of the large and the small, i.e., of cosmology and elementary
particle physics. Aside from the recent developments of quantum gravity, the problem of
overproduction of monopoles in grand unified theories, accounting for the observed
flatness of the universe, the problem of “horizon” were amongst the issues that inspired
Alan Guth in 1979 to hypothesize the inflationary behavior of the universe as an
exceedingly brief glitch to precede all the events in the Big-Bang cosmology.

EQUATION OF STATE. In this paper we show that the theory resulting from the 
non-symmetrization of general relativity does in fact predict a flat universe and the
neutral magnetic charge confinements of monopoles as the constituents of integral spin
particles (bosons of spins 0,1,and 2) and half-integral spin particles like, for example,
quarks and leptons. It was a serendipitous observation of the physical significance of a
relation, which is now more than forty years old5,

qo
2 ro

2 =c4/2G, (1)

that caused the writing of this paper, where c and G represent speed of light and
gravitational constant, respectively, and where ro is a “fundamental length” and qo is the
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energy density, with qo having the dimensions of an electric field. The relation (1) was
the result of correspondence requirement, where in the ro=0 limit the generalized theory
of gravitation reduces to general relativity in the presence of the electromagnetic field
without the electric and magnetic charges. The energy density q0

2 in the region of size ro

(Planck-length size) is of the order of 10114ergs.cm-3 and it represents the energy density at
the beginning of time when the size of the universe was of the order of ro. Thus, what
was obtained more than 40 years ago as a fundamental length ro only now turned out to be
the size, as shown below, of the universe as it evolved from the time of the Big-Bang to
the present time. The fundamental relation (1) does in fact govern the general behavior of
the universe including the process of nucleosynthesis and the elementary particles as
described by the field equations of the theory6 for the 16 non-symmetric hermitian field

gvariables µv = gµv + iq0
−1Φ µv where gµv and Φ µv represent generalized gravitational and∧

generalized electromagnetic fields, respectively. The theory includes also the
supersymmetric transition of the hermitian field variables into the 16 non-symmetric non-
hermitian field variables ∧gµv = gµv+ qo

-1Φ µv ,  both  sets of  corresponding  field equations 
reducing in the limit ro=0, to general relativity .

The relation (1) can be written as an analogue of E = mc2 in its density form by

qo
2= ρo c2, (2)

where ρo = (c2/2G)r0
-2, not to be confused with the function ρ appearing in the field

equations below, says that mass density is proportional to the new cosmological
parameter ro

-2 (=λ ) of the space time. The quantity λ is not related to Einstein’s
cosmological constant which excludes the early universe. At the instant of creation of the
universe from a region of size ro with a curvature ro

-2 (~1066cm-2), mass density ρo
(~1095gr.cm-3), and energy density (10114 erg.cm-3), the corresponding Big-Bang values, as
follows by setting ro=0, are infinite. For the present universe, by replacing ro by rt and qt,
the same relation (1) applies,

qt
2 rt

2 = c4/2G, qt
2= ρt c2, (3)

which is satisfied for the present values of qt
2 ~ 10-8 erg.cm-3, rt ~ 2.58×1010 light years.

The total mass of the universe, as follows from (3), Muc2= ¼/π qt
2 dV=c2 ρtdV =

(c4/2G) rt (r2/r2)dr = (c4/2G)rt which, with rt ~ 2.58×1010 light years, yields the value M u
~8×1022 solar mass. The relation (1) states that as the universe expands, its average

energy density decreases. Furthermore, the relation (2), for two conjugate pairs qt, rt,
yields the ratio Ω in the form

(4)
2Ω =qt

2/qt
2 = ρt/ρt = (rt / rt

2) ≤            1,
o o o

where ρt and ρt0 represent the actual and critical densities, respectively. The size rt o of
the universe corresponding to the critical density may be expected to be less than, or at
most equal to the size rt of the universe for the actual density. The theoretical
justification of the result (4) requires the use of the standard cosmological model of the 
present theory, i.e., one that results from the study of the time-dependent spherically

o
r

4



symmetric field equations. However, for the present considerations the time-independent
spherically symmetric field equations are quite adequate since the equation (1) is valid for
all the solutions of the field equations.

SPHERICALLY SYMMETRIC CASE. The field equations for the 16 hermitian field 
variables for the spherically symmetric case are given7 by

(5)

(6)

(7)

(8)

where

πs = 0,1, Ro
2 - r o

2 = [exp(2ρ) - λ 4 
o] ½ , SB = exp(u)/cos2Γ , <0 <Γ (9)_ _

(10)

(1 1)

and where the constants of integration, λ o2 and 2
o , are identified as functions of electric

l

l
charge and magnetic charge to obtain the Coulomb’s law of force. The approximate
solutions of the field equations for the various lengths the results

exp(ρ) sinΓ = ± λ o2, o
2

= g q-1, λ o2= e q-l

(12)

The singularity at Γ = or exp(ρ) =λ o2 for the function SB is invariant and cannot be
removed by a coordinate transformation, and the definition of λ o2 in (12) shows that
λ o2 < ro

2 and, therefore, the surface of singularity lies inside the region whose horizon has
the dimension of ro . Furthermore, the magnetic charge g differs from the electric charge
e in sourcing a short-range interaction only and that it is a running coupling constant with
a magnetic horizon defined by g(rc)=0, where rc is the short distance beyond which there
is no magnetic charge sourced field, no magnetic charge distribution. The field equations
(5) - (8) at the origin are solved by exp(ρ) = 0, Φ (0) = 0, λ o2 = 0. o

2 = 0, ro2 = 0. With the
function SB assuming arbitrary values. At the current epoch of the universe the parameter

l

ro can be assigned the value of the size of the universe, and therefore, dividing the field
equations by ro and using its evolved value of 1010 light years, we find that the field
equations are satisfied by the flat space-time values

(13)

where the remaining term on the right hand side of thel

5

v = ±1, Φ (rt) = 0, exp (ρ)= β 2,Γ = 0, S = 1 ,



 

2

 

cos = exp(-ρ) (R2 -r
2
) =

o
λ2

o
exp(-ρ

o
) [λ  -4

exp(2ρο) - 1] ½  , -

8

< <

8

,Γ Φ

π
2

-(-1)s 2
o

yield,

r-2
o = -(-1)sg q

2G_
4c



equation (5), because of the small factor 2G__
c4 (~10-49) and the small energy density q2 (~

10-8erg.cm-3), is not affected by the size of the magnetic charge and, therefore, is
negligibly small. Thus, the universe is flat. The solution (13) if used in the line element

dsB
2 = SB COS2Γ dXo

2 - SB
-1dβ 2 -exp(ρ) coshΦ dΩ 02, (14)

where dΩ 02 = dθ 2 + sin2θ dϕ2 , and the variable β is related to the usual radial coordinate
by the definition dr = f dβ , f = v cosΓ , yields the flat space-time metric
ds2 = dx 2

o - dr2 - r2 dΩ 2o . The function SB is defined by

The field equations (5)-(8) being invariant under the transformations

(15)

(16)

have only magnetic dipole solutions with equal and opposite signs of magnetic charges,
i.e.. solutions with magnetic charge distributions, where there is no limitation on the
amount of magnetic charge g. There are in fact no free monopole solutions. A more
general proof of the absence of free monopole is given in reference 6, equation (184).
However, prior to the time 10-43 sec. the primordial Bose-Einstein fluid of monopoles of
all fractional spins and sizes with neutral distribution in an equilibrium state at a
temperature of the order of 1030K could have deviated from the equilibrium state by a
transient gravitational repulsion arising from a singularity, as seen from the definition
(15) of SB, inside the region of the dimension of ro, which could have energized the
explosive creation of the universe, where - λ 2o exp(ρ) λ 2o . The interior singularity is at
exp(ρ)=λ 2o , and SB is the negative in the interval of the singularity.

In the hot region of dimension ro the Bose-Einstein fluid of monopoles and
electric charges is not the only equilibrium state but a super-symmetric transition to
acquire a different neutral distribution of monopoles with a different statistics can be 
obtained uniquely by the transformations.

leading to the field equations 

(17)

(18)

(19)

(20)

(21)

(22)

6

Φ -Φ, g - g,→ →

≤ ≤



where f= v coshΓ , coshΓ =exp(-ρ) (Ro
2 + r o

2), Ro
2+ ro

2 = [exp(2ρ) +λ o4]½ and where Φ 
is now an angle restricted by 0 _< Φ _< . The new gravitational potential

(23)

is a positive function and differs from SB, defined in (15), by the +1 sign in the
denominator versus -1 in that of SB. In this case the neutral magnetic charge distribution
is synthesized in an infinitely layered form of infinite number of monopoles of decreasing

magnitudes with distance and of alternating signs, where Σ gn = 0 with gn representing
the positive or negative magnetic charge in the n-th. layer.
resulting from the cooling of the Bose-Einstein fluid and synthesizing of the monopoles

creates either quarks with spin ½ based on an Ansatz Σ gn
2 = ½ κc, or leptons, will

depend on the interpretation of the generalized Dirac Wave equation obtained from this
theory8. The field equations (19)-(22) also in the limit ro = 0 reduce to the spherically

symmetric field equations of general relativity. In the limit of ro evolving into the value
at the present cosmological epoch we find that the field equations (19)-(22) have the flat
space-time solutions,

8

0
The change of statistics

8

0

φ = π
2 , exp(ρ = r2, Γ = 0, SF = 1 (24)

The fact that the universe began with a structure as described by its primordial size ro and

_

finite energy density qo
2 could be related to temperature fluctuations in CMBR and to the

structure formation in the large. Finally, in view of the present theory’s prediction of the
magnetic charge structure of all matter, luminous or dark, the assumption of the ratio of

ldark matter to luminous matter being proportional to 2
o /λ o2 = g/e = e2

__ = ½ n e2 maynot
be too far off the actual reality of the dark matter cosmology, where we used Dirac’s

__

relation eg = ½ nhc for a free monopole. Alternatively we can obtain the same result
from summing over all fractional spins in

κ

eg kc

(25)

The author wishes to thank Ralph A. Alpher and the late Robert Herman for many 
discussions that have greatly improved this paper. 
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TOP QUARK AND ELECTROWEAK MASS
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Chicago, Illinois

Abstract. We describe a class of models of electroweak symmetry breaking that
involve strong dynamics and top quark condensation. A new scheme based upon
a seesaw mechanism appears particularly promising. Various implications for the
first-stage muon collider are discussed.

TOPCOLOR I

The top quark mass may be large because it is a combination of a dynamical
condensate component, (1 – ε )mt, generated by a new strong dynamics [1],
together with a small fundamental component, εmt, i.e, ε << 1, generated 
by something else. The most obvious “handle” on the top quark for new
dynamics is the color index. Invoking new dynamics involving the top quark
color index leads directly to a class of Technicolor–like models incorporating
“Topcolor”. We expect in such schemes that the new strong dynamics occurs
primarily in interactions that involve tttt, ttbb,-- and bbbb.- -- -

In Topcolor I the dynamics at the ~ 1 TeV scale involves the following
structure at the TeV scale (or a generalization thereof) [2]:

SU(3)1 × SU(3)2 × U(1)Y l × U(1)Y2 × SU(2)L → SU(3)QCD × U(l)EM (1)

where SU(3)1 × U(1)Y 1 (SU(3)2 × U(l)Y2) generally couples preferentially to 
the third (first and second) generations. The U(1)Yi are just strongly rescaled
versions of electroweak U(1)Y .

The fermions are then assigned (SU(3)1, SU(3)2, Y 1, Y2) quantum numbers
in the following way:

(t, b)L ~ (3,1 ,1/3, 0) (t, b)R ~ (3,1, (4/3, –2/3),0) (2)
(v T  ,T)L ~ (1,1,–1,0) ΤR ~ (1, 1,– 2,0) 

(u,d)L, (c,s)L ~ (1, 3 ,0, 1/3) (u,d)R, (C,S)R ~ (1,3,0, (4/3,–2/3))
(v,l)L l = e,µ ~ (1,1,0,–1) lR ~ (1, 1, 0, –2) 

Physics of Mass 
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Topcolor must be broken, which we describe by an (effective) scalar field:

Φ ~ (3,3- , y , –y) (3)

When Φ ) develops a VEV, it produces the simultaneous symmetry breaking

SU(3)1 × SU(3)2 → SU(3)QCD and U(1)Y 1 × U(1)Y 2→ U(1)Y (4)

SU(3)1 × U(1)Y 1 is assumed to be strong enough to form chiral condensates

〈 〉

which will be “tilted” in the top quark direction by the U(l)Y 1 couplings. The

_
bb

theory is assumed to spontaneously break down to ordinary QCD × U(1)Y at
a scale of ~ 1 TeV, before it becomes confining. The isospin splitting that

〈
 

〉tt
_

permits the formation of a condensate but disables the condensate
is due to the U(1)Y i couplings. The b-quark mass in this scheme can arise
from a combination of ETC effects and instantons in SU(3)1. The θ –term in
SU(3)1 may manifest itself as the CP–violating phase in the CKM matrix.
Above all, the new spectroscopy of such a system should begin to materialize
indirectly in the third generation, perhaps at the Tevatron in top and bottom
quark production, or possibly in a muon collider.

The symmetry breaking pattern outlined above will generically give rise
to three (pseudo)–Nambu–Goldstone bosons π ~a, or “top-pions”, near the top
mass scale. This is the smoking gun of Topcolor. [We were led to Topcolor
by considering how strong dynamics might produce the analog of the decay
t → H + b, considered to be a SUSY signature for a charged Higgs-boson H.+

This is an example of “SUSY-Technicolor/Topcolor duality” .] If the Topcolor
scale is of the order of 1 TeV, the top-pions will have a decay constant of
fπ ≈ 50 GeV, and a strong coupling given by a Goldberger–Treiman relation, 
gtbπ 2.5, potentially observable in ~π + t + b– if m ~π > mt + mb.

We assume presently that ESB can be primarily driven by a Higgs sector
→

or Technicolor, with gauge group GTC[3] [4]. This gives the component
of mt. Technicolor can also provide condensates which generate the breaking

O(∈)

of Topcolor to QCD and U(1)Y .

≈ mt | √ 2 f π ≈
_

The coupling constants (gauge fields) of SU(3)1 × SU(3)2 are respectively
h1 and h2 (A A

1µ and A A
2 µ ) while for U(1)Y1 × U(1)Y 2 they are respectively q1

and q2, (B1µ, B2 µ) . The U( 1) Y i fermion couplings are then qi where Y 1 Y2
are the charges of the fermions under U(l)Y 1 U(1)Y 2 respectively.

Topcolor I produces new gauge heavy bosons Z', and “colorons” BA with

-2
Yi

couplings to fermions given by:

Lz´ = g1(Z'. JZ´) LB = g3cotθ (BA . JBA) (5)

where the currents Jz' and JB in general involve all three generations of
fermions

(6)JZ' = –(Jz',1 + Jz´,2) tanθ ' + Jz',3 cotθ '
JB = –(JB,1 + JB,2) tan θ + JB,3 cot θ 

For example, for the third generation the currents read explicitly (in a weak
eigenbasis) : 
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(7)

where λ A is a Gell-Mann matrix acting on color indices. We ultimately demand
cot θ >>  1 and cot θ ' >>  1 to select the top quark direction for condensation.

The attractive Topcolor interaction, for sufficient large κ = g 2
3 cot2 θ /4π, 

would by itself trigger the formation of a low energy condensate, 〈 _
tt +

_
bb〉 ,

which would break SU(2)L × SU(2)R × U(1)Y →U(1) × SU(2)c, where SU(2)c

is a global custodial symmetry. On the other hand, the U(1)Y 1 force is at--tractive in the tt channel and repulsive in the –bb channel. Thus, to make
〈

_
bb〉 = 0 and 〈

_
tt〉 ≠ 0 we can have in concert critical and subcritical values of

the combinations:

(8)

Here Nc is the number of colors and κ1 = g 2
1 cot2 θ '/4π. (It should be men-

tioned that our analyses are performed in the context of a large-Nc approxi-
mation). This leads to “tilted” gap equations in which the top quark acquires
a constituent mass, while the b quark remains massless. Given that both κ
and κ1 are large there is no particular fine _tuning occuring here, only “rough_
tuning” of the desired tilted configuration. Of course, the NJL approximation
is crude, but as long as the associated phase transitions of' the real strongly
coupled theory are approximately second order, analogous rough _tuning in
the full theory is possible. 

TOPCOLOR II

If the above described “Topcolor I” is the analog of Weinberg’s original 
version of the SM, incorporating standard fermions and the Z-boson, then
Topcolor II is the analog of the original Georgi-Glashow model, which incor-
porated no new Z boson, but rather included additional fermions. [This is an
example of “Weinberg— Georgi-Glashow” duality.] The strong U ( 1) is present
in the previous scheme to avoid a degenerate 〈

_
tt〉 with

_
bb〉 However, we can

give a model in which there is: (i) a Topcolor SU (3) group but (ii) no strong
〈

U( 1) with (iii) an anomaly-free representation content. In fact the original
model of [2] was of this form, introducing a new quark of charge –1/3. Let
us consider a generalization of this scheme which consists of the gauge struc-
ture SU(3)Q × SU (3)1 × SU (3)2 × U (1)Y × SU(2)L. We require an additional
triplet of fermions fields (Qa

R) transforming as (3,3,1) and Qa
L transforming

as (3,1,3) under the SU(3)Q × SU(3)1 × SU(3)2.
The fermions are then assigned the following quantum numbers in SU(2) × 

SU(3)Q × SU(3)1 × SU(3)2 × U(1)Y :

(t,b)L (c, s)L ~ (2,1,3,1)
(t)R ~ (1,1,3,l)

(Q)R ~ (1,3,3,1)

Y = 1/3
Y = 4/3;
Y = 0 

(u,d)L ~ (2,1,1,3) Y= 1/3
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(u,d )R (c, s)R ~ (1, 1, 1, 3) 

(l)R ~ (1, 1, 1, 1) 

Y = (4/3, –2/3) (9)
(v,l)L l = e,µ,τ ~ (2,1, 1, 1) Y = – l;

Y = – 2
Y = 2/3;
Y = 0;

b R ~ (1, 1, 1, 3) 
(Q)L ~ (1, 3, 1, 3) 

Thus, the Q fields are electricity neutral. One can verify that this assignment 
is anomaly free.

The SU(3)Q confines and forms a 〈 _
QQ〉 condensate which acts like the Φ 

field and breaks the Topcolor group down to QCD dynamically. We assume
that Q is then decoupled from the low energy spectrum by its large constituent
mass. There is a lone U( 1) Nambu–Goldstone boson ~ Q

–
γ 5 Q which acquires

a large mass by SU(3)Q instantons.

TRIANGULAR TEXTURES

The texture of the fermion mass matrices will generally be controlled by
the symmetry breaking pattern of a horizontal symmetry. In the present case 
we are specifying a residual Topcolor symmetry, presumably subsequent to 
some initial breaking at some scale Λ, large compared to Topcolor, e.g., the
third generation fermions in Model I have different Topcolor assignments than
do the second and first generation fermions. Thus the texture will depend in 
some way upon the breaking of Topcolor [5] [3].

Let us study a fundamental Higgs boson, which ultimately breaks SU(2)L ×
U(1)Y , together with an effective field Φ breaking Topcolor as in eq.(4). We
must now specify the full Topcolor charges of these fields. As an example,
under SU(3)1 × SU(3)2 × U(1)Y 1 × U(1)Y 2 × SU(2)L let us choose:

(10)

The effective couplings to fermions that generate mass terms in the up sector
are of the form 

(11)

Here T = (t, b), C = (c, s) and F = (u,d). The mass m0 is the dynamical
condensate top mass. Furthermore det Φ is defined by

(12)

where in Φrs the first(second) index refers to SU(3)1 (SU (3)2). The matrix
elements now require factors of Φ to connect the third with the first or sec-
ond generation color indices. The down quark and lepton mass matrices are 
generated by couplings analogous to (11). 

To see what kinds of textures can arise naturally, let us assume that the 
ratio Φ /Λ is small, O(ε ). The field H acquires a VEV of v. Then the resulting
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mass matrix is approximately triangular: 

(13)

where we have kept only terms of O( ∋  ) or larger.
This is a triangular matrix (up to the c12 term). When it is written in the

†form ULDU R with UL and UR unitary and D positive diagonal, there automat-
ically result restrictions on UL and UR. In the present case, the elements UL3,i

and U i,3
L are vanishing for i ≠ 3 , while the elements of UR are not constrained

by triangularity. Analogously, in the down quark sector D
L
i,3 = D3,i

L
= 0 for 

i 3 with DR unrestricted. The situation is reversed when the opposite corner
elements are small, which can be achieved by choosing H ~ (1, 1, –1, 0 , 1_

2 ).
These restrictions on the quark mass rotation matrices have important phe-

nomenological consequences. For instance, in the process Bo B0— there are→
potentially large contributions from top-pion and coloron exchange. However,
these contributions are proportional to the product DL

3,2 D 3,2
R . The same oc-

curs in Do – Do– mixing, where the effect goes as products involving UL and
UR off-diagonal elements. Therefore, triangularity can naturally select these
products to be small.

The precise selection rules depend upon the particular svmmetry breaking
that occurs. This example is merely illustrative of the systematic effects that
can occur in such schemes. 

TOP-PIONS; INSTANTONS; THE B-QUARK MASS

Since the top condensation is a spectator to the TC (or Higgs) driven ESB,
there must occur a multiplet of top-pions. A chiral Lagrangian can be written:

(14)

and = (t,b), and Σ = With ∋ = 0 this is invariant
under Hence, the relevant currents
are left-handed, j µ

a = and < > = The Pagels -
Stokar relation, eq.(1), then follows bv demanding that the π ~a kinetic term
is generated by integrating out the fermions, The top-pion decay constant
estimated from eq.(1) using Λ = MB and mt = 175 GeV is f π  50 GeV. The≈
couplings of the top-pions take the form:

fπ

 

√
_
2 pµ δ ab .

_
~πa | j bµ|0

π
a

ψ

 

L γ

 

µ τ

 

a_
2 ψ

 

L

ψ

 

L → eiθa τ

 

a|2ψ

 

L, ~ → π

  

a + θa fπ | √
_
2.

exp(i π
aτa|√

_
2π).ψ

(15)

and the coupling strength is governed by the relation gbt ~π 
The small ETC mass component of the top quark implies that the masses

≈ mt |√
_
2 fπ  .

of the top-pions will depend upon ∋ and Λ. Estimating the induced top-pion
mass from the fermion loop yields: 

(16)
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where the Pagels-Stokar formula is used for f π 
2

(with k = 0) in the last ex-
pression. For

∋ = (0.03, 0.1), MB (l.5, 1.0) TeV, and mt = 180 GeV this
predicts m-π = (180, 240) GeV. The bare value of

∋  generated at the ETC 
scale ΛETC, however, is subject to very large radiative enhancements by Top-
color and U(1)Y 1 by factors of order ( ΛETC/MB)

p ~ 10
1
. where the p ~ O(1).

Thus, we expect that even a bare value of

∋

0 ~ 0.005 can produce sizeable

m π ˜ > mt. Note that will generally receive gauge contributions to it’s mass:
these are at most electroweak in strength, and therefore of order ~ 10 GeV.

Top-pions can be as light as ~ 150 GeV, in which case they would emerge as
a detectable branching fraction of top decay [6]. However, there are dangerous
effects in Z bb

-
with low mass top pions and decay constamnts as small as

~ 60 GeV [8]. A more comfortable phenomenological range is slightly larger
than our estimates, m 300 GeV and ƒπ 100 GeV.

The b quark receives mass contributions from ETC of O(1) GeV, but also an
induced mass from instantons in SU(3)1. The instanton effective Lagrangian
may be approximated bv the ‘t Hooft flavor determinant ( we place the cut-off

at MB):

(17)

where θ 1 is the SU(3)1 strong CP –violation phase. θ1 cannot he eliminated
because of the ETC contribution to the t and b masses. It can lead to induced
scalar couplings of the neutral top–pion [5], and an induced CKM CP–phase,
however, we will presently neglect the effects of θ1.

We generally expect k ~ 1 to 10
-1

as in QCD. Bosonizing in fermion bubble
approximation –qi

L tR ~ where Σ ij = exp yields: 

This implies an instanton induced b-quark mass:

(18)

(19)

This is not an unreasonable estimate of the observed b quark mass, as we
might have feared it would be too large.

TOP SEE-SAW

EWSB may occur via the condensation of the top quark in the presence of
an extra vectorlike, weak-isoscalar quark [7]. The mass scale of the conden-
sate is large, of order 0.6 TeV corresponding to the electroweak scale fπ ≈ 175
GeV. The vectorlike iso-scalar then naturally admits a seesaw mechanism,
yielding the physical top quark mass, which is then adjusted to the experi-
mental value. The choice of a natural ~TeV scale for the topcolor dynamics
then determines the mass of the weak-isoscalar see-saw partner. The scheme
is economical, requiring no additional weak–isodoublets, and therefore eas-
ily satisfies the constraints upon the S parameter using estimates made in 

the large–N approximation. The constraints on custodial symmetry violation,
i.e., the value of the δρ or equivalently, T parameter, are easily satisfied, being
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principally the usual mt contribution, plus corrections that are suppressed by
the see-saw mechanism. 

The dynamical fermion masses that are induced can be written as:

Typically χ–
L

χR is the most attractive channel, and it is possible to arrange
the condensate to be significantly larger than the other ones, such
that m2

xx >> m2
xt > mtx

2 . As a result the phvsical top mass is suppressed by
a seesaw mechanism:

(21)

The electroweak symmetry is broken by the mtχ dynamical mass. Therefore,
the electroweak scale is estimated to be given by

(22)

Thus, υ 174 GeV requires a dynamical mass mtχ ~ 620 GeV for M ~ 5 TeV
(and mtχ = 520 GeV for M ~ 10 TeV). From eq. (21) follows then that a top
mass of 173 GeV requires mχt /mχχ 0.29 . The electroweak T parameter
can be estimated in fermion-bubble large–N approximation as:

(23)

where α is the fine structure constant. Moreover. we obtain the usual Standard
Model result for the S parameter. Requiring that our model does not exceed
the 1σ upper bound on S and T, we obtain mtχ/mχt ≤ 0.55 .

It should be emphasized that these results do not require excessive fine-
tuning. The top-seesaw is therefore a plausible natural theory of dynamical 
EWSB with a minimal number of new degrees of freedom. This model also im-
plies the existence of pseudo–Nambu-Goldstone bosons (pNGB’s). A cursory
discussion of that is given in ref.[7].

OBSERVABLES

There are several classes of possible experimental implications of the kinds
of models we described above that may be relevant to the muon collider. We 
will describe them here briefly as lines to be developed further. These may be
enumerated as follows:

1. µµ– Z': this is the province of high energy machine, since we expect
Mź 0.5 TeV. -

2. µµ– π 
top; the notion that the muon collider can see technipions, or

other PNGB’s, such as top-pions has emerged from discussions in this
workshop, prompted by MacKenzie and myself. Lane has presented the 
multi-scale technicolor signal [4]. 

3. Effects in Z physics involving the third generation, such as Z bb
-

[8].

4. Effects in top-quark pair production at threshold. e.g., see [11] for anal-
ogous case in e+e–

and pp– collider physics.
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5. Induced GIM violation in low energy processes such as K+ π  + vv-; we
discuss this below as an example of a potential signature that can be en-
hanced by Topcolor wrt the Standard Model (this result was anticipated 
in ref[5] before the observation of the single event at Brookhaven E787). 

6. Induced lepton family number violation, e.g. µµ– τµ– .

7. Flavor dependent production effects, e.g. anomalous µµ– bs– , etc.

8. New physics in e.g. µp collisions, such as d(u) + µ– b(t) .

GIM and lepton family number violation arise because of the generational
structure of topcolor. (It is actually more general than topcolor: the mere 
statement than the top mass is largely dynamical implies effects like this) In 
going to the mass eigenbasis, quark (and lepton) fields are rotated, e.g., by
the matrices UL, UR (for the up-type left and right handed quarks) and DL,
DR (for the down-type left and right handed quarks). For example, for the
b-quark we make the replacement

(24)

and analogously for bR. Thus there will be induced FCNC interactions. This
provides constraints and opportunities. Thus, induced effects like µµ– bs–

may be enhanced, and effects like µµ– Tµ– may occur. Since the muon is pre-
sumably closer in affiliation to the third generation than is the electron, such
effects may show up in muon collider physics, but be inaccessible in electron 
linear colliders! Similarly. induced effects like µµ– bs– may be enhanced. 

For the FMC, sensitive probes arise in e.g., K-physics. there is a Z´ induced
contact term at low energies of the form bb

–
vτvτ (this assumes that the τ

is associated with the third generation: nothing fundamentally compels this,
but we shall assume it to be true in the following). The above mass rotation
induces a s

–
dvT v–T which contributes to K+ π +vv– . The ratio of the Topcolor

amplitude to the SM is then 

(25)

where δ 
ds = Dbs

L Dbd
L

× –2Dbs
R Dbd

R
x . The form-factor f+(q2) is experimentally well

known. We expect, |δ ds| ~ λ  10 where λ  is the Wolfenstein CKM parameter.
For Mz´ = 500 GeV and κ 1 = 1 the ratio of amplitudes is about ~ 4.0, and
the branching ratio is between 0.3 to O(10), times the SM result, depending
on the sign of the interference. The recent observation of one event by the
Brookhaven E787 Collaboration [10] makes this an exciting channel in which 
to search for new physics. High sensitivity experiments are possible at the
front-end muon collider with its copious K-meson yields.
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1 INTRODUCTION 

The main objective of this work is to study the anti-de Sitter black holes in 2+1 
dimensions and their supersymmetric generalization. To see that it is related to the

main theme of this Conference, which is Physics of Mass, let us recall our theoretical 
framework for the description of mass : Following Wigner, we identify a particle state 
with an irreducible representation of the Poincaré group. In the same sense, a typical 
black hole may be viewed, asymptotically, as a Poincaré state characterized by its mass 

and spin. So, as long as the Poincaré group retains its role as the asymptotic symmetry 
group of space-time, the notion of mass will retain its invariant meaning. 

The asymptotic symmetry group of space-time must, ultimately, be determined by 
experiments. In particular, if the cosmological constant turns out to be not identically
zero, no matter how small, then the asymptotic symmetry group will change to, say, 

anti-de Sitter (AdS) group. One immediate consequence of such a change is that mass, 

as a Casimir invariant of the Poincaré group, will no longer retain its invariant meaning. 

One must then either replace the notion of Poincaré mass with one of the invariants of, 

say, the AdS group or consider it as a quantity which changes under AdS boosts. In 
2+1 dimensions, the issues discussed above acquire more immediate relevance because 

the only known black hole solution with finite “mass” and “angular momentum” is of 

anti-de Sitter variety [1]. 

2 STATEMENT OF THE PROBLEM 

The traditional way of searching for signs of supersymmetry in black hole solutions 

has been to look for Killing spinors. Some examples of the searches of this kind can 

be seen in, e.g., references [2-6]. The rationale underlying this approach is to proceed 

in analogy with the situation in the bosonic case: Just as the presence of a Killing 

vector signals the presence of an observable associated with an asymptotic symmetry 
group, one might argue that a Killing spinor could signal the presence of some sort 
of asymptotic supersymmetry. One would have to be careful, however, in pushing 
this analogy too far. By definition, a supersymmetric charge transforms as a spinor 
under Lorentz group and is not an observable whereas the corresponding bosonic charge
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could be. More generally, to have an invariant meaning, all asymptotic observables 
must be functions of the Casimir invariants of the corresponding asymptotic (super) 

group. So, if one stops at the level of identifying a Killing spinor, many issues such 
as the supersymmetric quantum numbers carried by the (super)black hole and the 
superpartners of a given black hole, if any, will remain obscure. One way to overcome 

these limitations, is to make use of the notion of a supersymmetric space-time [7].
Before giving its supersymmetric generalization, we must understand the BTZ black 

hole from the point of view of the Chern Simons gauge theory [8,9] coupled to sources

[9-11]. Steps have already been taken in this direction [12,13]. However, a number of
issues need further clarification. Among these are the determination of the asymptotic
observables of the black hole in terms of the properties of the source(s). Our general 
view is that the Chern Simons theory is an explicit realization of the Mach Principle, 
so that in the absence of sources only trivial solutions are possible. Any changes in 
topology must come about due to the presence of sources. To implement this idea, 
we must have a localized source (particle) carrying an irreducible representation of the 

gauge symmetry group [7,11]. This means that for the BTZ black hole, the source is an
irreducible representation of the anti-de Sitter group labeled by its Casimir invariants. 

It is this formulation of the BTZ solution which lends itself to generalization to the 

supersymmetric case. 

3 ANTI-DE SITTER SPACE AND ALGEBRA

The anti-de Sitter space in 2+1 dimensions can be viewed as a subspace of a flat

4-dimensional space with the line element

(1)

It is determined by the constraint

(Xo)2 – (X1)2 – (X2)2 + (X3)2 = l2
(2)

where l is a real constant . The set of transformations which leave the line element

invariant form the anti-de Sitter group SO(2,2). It is locally isomorphic to SL(2, R) ×
SL(2, R) or SU(1,1) × SU(1,1). From here on by anti-de Sitter group we shall mean

its universal covering group.
The AdS algebra consists of the elements MAB satisfying the commutation relations

[MAB, MCD ]=
i
(ηADMBC + ηBCMAD – ηACMBD – ηBDMAC) (3)

With A = (a, 3) and a = 0, 1, 2, we can write the algebra in two more convenient forms: 

(4)

(5)

(6)

(7)

where
η ab = (1,–1, –1)∈ 012 = 1;

Then, the commutation relations in these bases take the form, respectively,

20



The Casimir operators look simplest in the latter basis: 

In the (J,Π ) basis, they have the form,

(8)

(9)

We will use the same symbols for operators and their eigenvalues. 

An irreducible representation of AdS group can be labeled by the eigenvalues of

either the pair ( M, J ) or the pair (j+, j–). For our applications, it is often advantageous
to use a third set of labels which we denote by (H,S). They correspond to the maximal
compact subgroup SO(2) × SO(2) of SO(2,2), which is generated by Jo and Π o. The
labels (H,S) are a natural choice from the point of view of the theory of induced
representations. This can be seen from the comparison with the more familiar situation

in the Poincaré group which can be obtained from anti-de Sitter group in the limit l
From here on, we will use the labels, (j+,j–), (M, J), and (H, S) interchangeably.

The last two are related to each other according to

M = H2 + (S/l)2; J = 2HS (10)

Note that in order for M to assume negative values, H and S must, in general, be 

complex.
To see the relevance of H and S to the BTZ solution, let us express H and S in

terms of the labels M and J by inverting Eqs. (10). We obtain

where

For M > 0 and |J| < lM , H and S are thus proportional to the horizon radii, r±, of

the BTZ black hole [1]: 

r+ = lH; r– = S (13)

4 CONNECTION AND THE CHERN SIMONS ACTION

We begin by writing the connection in SL(2, R) × SL(2, R) basis

(14)

(15)

(16)

(17)
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The covariant derivative will have the form 

Then the components of the field strength are given by 

(11)

(12)

→
∞ .



where Tr stands for trace and

For a simple or a semi-simple group, the Chern Simons action has the form 

(18)

A = AµdX µ
= A + + A–

(19)

We require the 2+1 dimensional manifold M to have the topology R x Σ , with Σ a two-

manifold. So, in our SL(2, R) × SL(2, R) basis we get

the gauge fields transform as 

(20)

In this work, we take the point of view that in a free Chern Simons theory the field 

strengths vanish everywhere. 

Under infinitesimal gauge transformations 

(21 ) 

(22)

(23)

As we have stated, the manifold M has the topology R × Σ with R representing xo.

Then subject to the constraints 

More specifically, 

the Chern Simons action for SO(2, 2) will take the form

(24)

(25)

5 INTERACTION WITH SOURCES 

Following the approach which has been successful in coupling sources to Poincaré Chern 

Simons theory [11], we take a source for the present problem to be an irreducible 
representation of anti-de-Sitter group characterized by Casimir invariants M and J
(or H and S ). Within the representation, the states are further specified by the 
phase space variables of the source ΠA

and qA
, A = 0, 1, 2, 3, subject to anti-de Sitter

constraints.
For illustrative purposes, let us consider first the interaction term for a special case

which is the analog of the Poincaré case [11] with the intrinsic spin set to zero.

(26)

22



where C is a path in M, τ is a parameter along C, and the covariant derivative Dτ is

given by 

The first term in this action is the same as that given in reference [13]. The second 
term ensures that qA(τ) satisfy the AdS constraint. It is not the manifold M over
which the gauge theory is defined but the space of q's which give rise to the classical

space-time. The last two constraints identify the source being coupled to the Chern 
Simons theory as an anti-de Sitter state with invariants j+ and j–. These constraints
are crucial in relating the invariants of the source to the asymptotic observable of the
coupled theory. In this respect, our action differs from that given in reference [13].

Although the word “constraints” was mentioned there in connection with this action,
they were not explicitly stated or made use of in the sequel.

Dτ = ∂τ – iωAB MAB (27)

Using the standard (orbital) representation of the generators 

MAB = i(qA∂B – qB∂A)

ΠCω
AB MABq

c
  =  ωAB

(qA∏B – qB∏A) = ωAB LAB

(28)

(29)

we have

Here LAB are c-number quantities transforming like MAB. Breaking up this expression
into SL (2, R) × SL (2, R) form just as was done MAB, we get

ωAB LAB = A+a L + + A–a La (30)

So, the action I1 can be written as

(31)

In this expression L a
± play the role of (c-number) generalized orbital angular momenta.

If, in addition, the representation carries generalized intrinsic (spin) angular momenta,
then La

± would have to be replaced by J ±
a , respectively, where

(32)

It is now clear how the interaction term I1 can be generalized to the case when
S±

a 0. We simply replace L ±
a with J ±

a in I1 to get

(33)

This action can be expressed in a form in which the SL(2, R) × SL(2, R) structure of

the gauge group is transparent: 

(34)

In this expression J ±
a play the role of c-number generalized angular momenta which

transform in the same way as the corresponding generators and which label the source. 
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If there are several sources, an interaction of the form (35) must be written down for 

each source. 

It is well known that for a Poincaré state with mass m2
> 0, there is a (rest) frame

in which, e.g., the momentum vector takes the form 

(35)

Similarly, in the present case, there is a frame such that when, e.g., J±aJa
±

> 0, we

have

(36)

Combining, the interaction term Is with the Chern Simons action Ics, we get the

total action for the theory;

I = Ics + Is

In this theory, the components of the field strength still vanish everywhere except at 

the location of the sources. So, the analog of Eqs.(24) becomes 

(37)

In particular, when η abJa±Jb± > 0, we get in the special (rest) frame 

(38)

(39)

All other components of the field strength vanish. We thus see that because of the 
constraints appearing in the action (34), the strength of the sources become identified 
with their Casimir invariants. These invariants, in turn, determine the asymptotic 
observables of the theory. Since such observables must be gauge invariant, they are 
expressible in terms of Wilson loops, and a Wilson loop about our source can only 

depend on, e.g., j+ and j–.

6 THE BLACK HOLE SPACE-TIME

To see how the space-time structure emerges from our anti-de Sitter gauge theory, we 

follow the same procedure which led to the emergence of space-time from Poincaré [11]

and super Poincaré [7] Chern Simons gauge theories. For the AdS Chern Simons gauge 
theory, we note from Eq. (1) that the manifold Mq is now an anti-de Sitter space 
satisfying the constraint

qo
2 – q1

2 – q2
2

+ q 
2
3 = l2 = –Λ–1

(40)

where Λ = cosmological constant. In fact, our SL(2, R) × SL(2, R) formulation allows
us to take Mq to be the universal covering space of the AdS space. Moreover, the
source coupled to the Chern Simons action is an AdS state characterized by the Casimir 

invariants (M, J) or, equivalently, (H, S). To parametrize Mq consistent with the above

constraint, consider a pair of 2-vectors,

(41)

(42)

where ƒ = f(r), with r a radial coordinate which for an appropriate f(r) will become

the radial coordinate appearing in the line element for the BTZ black hole. As far the
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constraint (40) is concerned, the functional form of f (r) is irrelevant. The parameters
φ and t/l are both periodic. We will keep φ periodic throughout. However, since we
are taking Mq to be universal covering space of AdS space, we do not have to , and we
will not, identify t with t + 2π l. Computing the line element in terms of the parameters
(t/   l, r, φ  ), we get

(43)

where “prime” indicates differentiation with respect to r.
Anticipating the results to be given below, we note that if we compare this line

element with that of BTZ, we see that it corresponds to an irreducible representation
of the AdS group with J = 0 and M = –1. As we have noted in connection with Eqs.
(11) and (12), for these values of J and M, the invariant H is pure imaginary. This,
in turn, implies that the quantities r ± will also be imaginary. Thus, we can interpret
the line element (43) as a special form of the BTZ line element which has been “Wick 
rotated” into the imaginary axis in the complex H space. In this form, the consequences 
of the residual qauge transformations involving H and S, or r±, which we will perform
below on qA(T) become very similar to those performed in the Poincaré [10,11] Chern
Simons gravity. We must keep in mind, however, that in the end, we must Wick rotate
the results back to the real r± axes.

With this in mind, let us now consider local gauge transformations. Although the
original theory was invariant under SL(2, R) × SL(2, R) gauge transformations, we have
already reduced this symmetry by choosing to work in a gauge in which equation (39)
holds. In fact, the left over symmetry is just SO(2) × SO(2) generated, respectively,
by J0 and II0, or, equivalently, by J±o . So, identifying the parameters φ and t/ l,
respectively, with each SO(2), consider the local gauge transformation

(44)

(45)

(46)

(47)

It leaves ( t / l) invariant. Then, since φ is 2π periodic,

Similarly, consider the gauge transformation

It leaves invariant and leads toφ  

Thus, the periodicity of φ has led to a discrete subgroup group of isometries in the
universal covering space of the AdS space. The parameters for these transformation
tions were chosen to demonstrate the ease with which one can obtain the identifications
necessary for the BTZ black hole. We note, however, that in contrast to the situation
for the Poincaré group, the residual symmetry SO(2) × SO(2) assigns symmetrical

r±l
2π

roles to the invariants (H, S) or (r+, r–) as well as the parameters φ and t / l. To reflect
this symmetrical role, we can perform our gauge transformations on and in the 
following more symmetrical manner: 

(48)
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It then follows that

(49)

Thus, given the previous identifications, the last two expressions do not lead to any
new identifications. We can now write

(50)

(51)
where

It then follows from (48) that after these transformations, we obtain a manifold Mq̂
which can be parametrized as follows:

(52)

From these we can compute the line element. It is given by 

It will now be recalled that the quantities r± appearing in this expression are “Wick
rotated” relative to the corresponding invariants which appear in the BTZ solution. We
must, therefore, rotate them back to the Re r± axes by letting

(54)r± – ir±→

Then, we get 

(55)

Finally, to put this expression in a form identical to that given by BTZ [1], let 

The result is 

(56)

(57)
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It can be seen from Eqs. (52) and (56) that the parametrization leading to this
expression is valid for r < r– and any value of the parameter l. The simplest way of
obtaining suitable parametrizations for all values of l is to observe that parametrization
in terms of circular functions are Wick rotated relative to the BTZ solution. Then,
as can be seen from Eq. (54), when we rotate the Casimir invariants r± back to
their real axes in their respective complex r± planes, as we did in the above example,
we are effectively replacing trigonometric functions by their corresponding hyperbolic 
functions. We emphasize that this replacement leaves the periodicity of the angle φ 
intact since the Wick rotation occurs not in φ but in complex r+ and r– spaces. This
means that we do not need to impose periodicity on φ “by hand” if we wish to use a 
hyperbolic parametrization [1,14] which is advantageous in many instances. 

It is, nevertheless, of interest to see if a parametrization in terms of circular functions 
works for r > r+. Consider the following expressions:

(58)

Then we can get back the BTZ metric of Eq. (57) by computing the line element in 
terms of these parameters, using (54) for inverse Wick rotation, and setting f to

(59)

7 SUPER ANTI-DE SITTER GROUP AND ITS REPRESENTATIONS

The simplest way of obtaining the supersymmetric extension of the anti-de Sitter group 
is to begin with the AdS group in its SL(2, R) × SL(2, R) basis. The N = 1 supersym-
metric form of each SL(2, R) factor is the supergroup OSp(12;R). Thus, one arrives
at the (1,1) form of the N = 2 super AdS group. Its algebra is given by

The Casimir invariants are given by 
(60)

(61)
The spinor indices are raised and lowered by antisymmetric metric ∋αβ defined by
∋12 = – ∋12 = 1. The matrices (σa)β

α, (a = 0,1,2), form a representation of SL (2, R)
and satisfy the Clifford algebra 

More explicitly, we can take them to be: 

(62)

(63)
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Since super AdS group is semi-simple, we can construct its irreducible representa-
tions by first constructing the irreducible representations of OSp(1|2, R). Depending
on which OSp(1|2, R) we are considering, the states within any such supermultiplet are
the corresponding irreducible representations of SL(2, R) Characterized by the Casimir
invariants j+ and j–, respectively. To construct the supermultiplet corresponding to
the “plus” generators in Eq. (60), let us define a Clifford vacuum state |Ω + > by the
requirement that 

(64)
Without loss of generality, we can work in a frame in which the analog of Eq. (40)
holds. Then, the Casimir invariant C+ acting on this state will give

(65)

Thus, as indicated above, the Clifford vacuum |Ω + > is an SL(2, R) state with eigen-
value j+ = C+. The superpartner of this state is the state

(66)

It is easy to verify that this is an SL(2, R) state with Casimir eigenvalue j+ + 1/2.

In this case, the Clifford vacuum |Ω – > is an SL(2, R) state such that
The supermultiplet for the second OSp( 1 2, R) can be constructed in a similar way.

The corresponding superpartner state is given by

(67)

(68)

This is an SL(2, R) state with eigenvalue j– + 1/2. 
We are now in a position to construct the (1,1) super AdS supermultiplet as a direct

product of the two OSp(1|2, R) doublets. Altogether, there will be four states in the
supermultiplet. They will have the following labels:

(69)

We can also label the states in terms of the quantities (H, S) by noting from section 3
that

(70)

Thus, the eigenvalues of (H, S/ l) for members of the above supermultiplet are, respec-
tively, (H, S/l), (H + 1/2, S/ l + 1/2), (H + 1/2, S/ l –1/2), and (H + 1, S/ l). From
these, we can also obtain the expressions for the eigenvalues (M, J) of various states
within the supermultiplet. The corresponding expressions are not as simple or intuitive 
as in the previous two bases. 

8 CHERN SIMONS AND SOURCE ACTIONS FOR THE SUPER ADS GROUP 

The Chern Simons term for simple and semisimple supergroups has the same structure 
as that for Lie groups. The only difference is that the trace operation is replaced by 
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super trace (Str) operation. So, in the OSp(1|2, R) × OSp(1|2,R) basis the Chern
Simons action has the same form as in (20). But now 

(71)

Just as in the non-supersymmetric case, to have a nontrivial theory, we must couple
sources to the Chern Simons action. To do this in a gauge invariant and locally su-
persymmetric fashion, we must take a source to be an irreducible representation of the
super AdS group. As we saw in the previous section, such a supermultiplet consists 
of four AdS states. To couple it to the gauge fields, we must first extend the AdS
canonical variables we used in section 5 to their supersymmetric form:

(72)

Then, the source coupling can be written as 

(73)

The constraints here include those discussed for the AdS group in section 5, and, in
addition, those which relate the AdS labels of the Clifford vacuum to the Casimir 
eigenvalues of the super AdS group. The combined action

I = Ics + Is (74)

leads to the constraint equations 

(75)

where i , j = 1 ,2. Just as in the AdS case in section 5, we can choose a gauge (frame)
in which 

(76)

9 THE EMERGING SUPERSYMMETRIC SPACE-TIME

To display the space-time structure which emerges from our super AdS Chern Simons 
theory, we follow the same procedure which led us to the structure of space time in 
the AdS theory in section 6. There we first parametrized the field space Mq in terms 
of the quantities (t, r, φ ). Then, by fixing the gauge via specific gauge transformations
and performing a Wick rotation, we obtained the BTZ solution. These transformations
involved the Casimir invariants of the AdS state which represented our source. In the 
super AdS case, to have a source coupling which was invariant under (1,1) supersym-
metry transformations, it was necessary that the source be not an AdS state but a 
super AdS state consisting of four AdS states given by Eq. (69). Each one of these 
AdS states is labeled by its own set of invariants (r+, r–) or, equivalently, (M, J ). As
a result, a gauge transformation involving r± for one of these AdS states will not be
appropriate for gauge fixing of all the states of the supermultiplet. Moreover, the BTZ
line element itself carries the labels (M, J) of an AdS state:

(77)

This makes it impossible for a single c-number line element of this type to describe all 
the AdS states of a supermultiplet. 
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The situation here runs parallel to what was encountered in connection with super 
Poincaré Chern Simons theory [7]. There it was pointed out that standard classical 
geometries were not capable describing various features inherent in these geometries and 
that one must make use of nonclassical geometries. Such geometries can be based on 
three elements: 1. An algebra such as a Lie or a super Lie algebra. 2. A line element
operator with values in this algebra. 3. A Hilbert space on which the algebra acts 
linearly. Consider, e.g., the BTZ line element given above. We replace the c-number
quantities (M, J) with Casimir operators and obtain a line element operator. When
this operator acts on one of the AdS states in the Hilbert space of the supermultiplet, 
it creates a classical line element. In this way, we obtain a supermultiplet of space-
times the dimension of which is equal to that of source supermultiplet. Supersymmetry 
transformations are the messengers linking different layers of this multilayered space-
time which we will refer to as a supersymmetric black hole.

This work was supported, in part by the Department of Energy under the contract
number DOE-FGO2-84ER40153. 
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THE CASE FOR A STANDARD MODEL WITH ANOMALOUS U(1)

Pierre Ramond
Institute for Fundamental Theory
Department of Physics, University of Florida 
Gainesville, FL 32611

Abstract

A gauged phase symmetry with its anomalies cancelled by a Green-Schwarz
mechanism, broken at a large scale by an induced Fayet-Iliopoulos term, is a
generic feature of a large class of superstring theories. It induces many de-
sirable phenomenological features: Yukawa coupling hierarchy, the emergence
of a small Cabibbo-like expansion parameter, relating the Weinberg angle to
b – τ unification, and the linking of R-parity conservation to neutrino masses.
Some are discussed in the context of a three-family model which reproduces all
quark and lepton mass hierarchies as well as the solar and atmospheric neutrino
oscillations.

1 Introduction

The commonly accepted lore that string theories do not imply robust relations
among measurable parameters is challenged in a large class of effective low
energy theories derived from string models contain an anomalous U(1) with 
anomalies cancelled by the Green-Schwarz mechanism [1] at cut-off. As empha-
sized by ’t Hooft long ago, anomalies provide a link between infrared and ul-
traviolet physics. In these theories, this yields relations between the low-energy
parameters of the standard model and those of the underlying theory through 
anomaly coefficients. An equally important feature is that as the dilaton gets 
a vacuum value, it generates a Fayet-Iliopoulos that triggers the breaking [2] of 
the anomalous gauged symmetry at a large computable scale. 

Through the anomalous U(1), the Weinberg angle at cut-off is related to
anomaly coefficients [3]. A simple model (41 with one family-dependent anoma-
lous U(1) beyond the standard model was the first to exploit these features 
to produce Yukawa hierarchies through the Froggatt-Nielsen mechanism [5],
and determine the Weinberg angle. It was soon realized that some features 
could be abstracted from the presence of the anomalous U(1): expressing the 
ratio of down-like quarks to charged lepton masses in terms of the Weinberg 
angle [6, 7, 8], the suppression of the bottom to the top quark masses [9], relat-
ing [10] the uniqueness of the vacuum to Yukawa hierarchies and the presence 
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of MSSM invariants in the superpotential, and finally relating the seesaw mech-
anism [11] to R-parity conservation [12].

These theories are expressed as effective low-energy supersymmetric theories
with a cut-off scale M. The anomalous symmetry implies:

• A Cabibbo-like expansion parameter for the mass matrices.

• Quark and charged lepton Yukawa hierarchies, and mixing, including the

• The value of the Weinberg angle at unification.

• Natural R-parity conservation linked to massive neutrinos.

• A hidden sector that contains strong gauge interactions with chiral matter.

An important theoretical requirement is that the vacuum, in which the anoma-
lous symmetry is broken by stringy effects, be free of flat directions associated
with the MSSM invariants, and preserve supersymmetry.

The anomalous U( 1) also provides a possible explanation of supersymmetry
breaking. Since the hidden sector contains a gauge theory with strong cou-
pling, the Green-Schwarz mechanism requires that it have a mixed anomaly as 
well. This implies that the hidden matter is chiral with respect to the anoma-
lous symmetry. As shown by Binétruy and Dudas [13], any strong coupling
gauge theory with X -chiral fermions breaks supersymmetry (even QCD). In the
context of special free-fermion models [14], this mechanism can, with several
Abelian symmetries, produce flavor-independent squark masses [15]. A recent
analysis [16] improves the BD mechanism by showing that the dilaton F-term
does not vanish, providing for gaugino masses and possibly solving the FCNC
problem.

In the following, we present the generic features of this type of model, and
illustrate some in the context of a realistic three-family model.

bottom to top Yukawa suppression. 

2 Applications to the standard model

We consider models which have a gauge structure broken in two sectors: a visible
sector, and a hidden sector, linked by the anomalous symmetry and possibly
other Abelian symmetries (as well as gravity).

Gvisible ×U(1)X × U(1)Y (1) . . . × U(1)Y (M) × Ghidden ,

Gvisible = SU(3) × SU(2) × U(1)Y .

(2.1)
where Ghidden is the hidden gauge group, and

(2.2)
is the standard model. Of the M + 1 extra symmetries,one which we call X, is
anomalous in the sense of Green-Schwarz.

The symmetries, X, Y (a) are spontaneously broken at a high scale by the
Fayet-Iliopoulos term generated by the dilaton vacuum. This DSW vacuum [2]
is required by phenomenology to preserve both supersymmetry and the standard
model symmetries. 

We assume the smallest matter content needed to reproduce the observed 
quark and charged lepton hierarchy, cancel the anomalies associated with the 
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extra gauge symmetries, and has a unique vacuum structure:

• Three chiral families

• One standard-model vector-like pair of Higgs weak doublets.

• Three right-handed neutrinos N—i,

• Standard model vector-like pairs, 

• Chiral fields that are needed to break the three extra U(1) symmetries in 
the DSW vacuum. We denote these fields by θ a.

• Hidden sector gauge interactions and their matter, together with singlet
fields, needed to cancel the remaining anomalies.

3 Anomalies

When viewed from the infrared, the anomaly constraints put strong restrictions 
on the low energy theory. In a four-dimensional theory, the Green-Schwarz
anomaly compensation mechanism occurs through a dimension-five term that 
couples an axion to all the gauge fields. As a result, any anomaly linear in the
X -symmetry must satisfy the Green-Schwarz relations

(XGiGj ) = δi  jC i , (3.1)
where Gi is any gauge current. The anomalous symmetry must have a mixed
gravitational anomaly, so that 

(XTT ) = Cgrav ≠ 0 , (3.2)
where T is the energy-momentum tensor. In addition, the anomalies compen-
sated by the Green-Schwarz mechanism satisfy the universality conditions 

(3.3)

A similar relation holds for CX ≡ (XXX ), the self-anomaly coefficient of the
X symmetry. These result in important numerical constraints, which restrict
the matter content of the model. All other anomalies must vanish:

(G i Gj Gk) = (XXGi ) = 0 . (3.4)

In terms of the standard model, the vanishing anomalies are therefore of the 
following types: 

• The first involve only standard-model gauge groups GSM, with coefficients
(GSMGSMGSM), which cancel for each chiral family and for vector-like
matter. Also the hypercharge mixed gravitational anomaly (YTT ) van-
ishes.

• The second type is where the new symmetries appear linearly, of the 
type (Y (i) GSMGSM). If we assume that the Y(i) are traceless over the
three chiral families, these vanish over the three families of fermions with 
standard-model charges. Hence they must vanish on the Higgs fields: with 
GSM = SU(2), it implies the Higgs pair is vector-like with respect to the
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Y (i). It also follows that the mixed gravitational anomalies (Y (i) TT ) are
zero over the fields with standard model quantum numbers. 

• The third type involve the new symmetries quadratically, of the form
(GSMY (i)Y (j)). These vanish by group theory except for those of the
form (YY (i)Y (j)). In general two types of fermions contribute: the three
chiiral families and standard-model vector-like pairs.

• The remaining vanishing anomalies involve the anomalous charge X.

– With X family-independent, and Y (i) family-traceless, the vanishing
of the (XYY (i) ) anomaly coefficients over the three families is as-
sured: so they must also vanish over the Higgs pair. This means that
X is vector-like on the Higgs pair, This is an important result, as
it implies that the standard-model invariant Hu H d (the µ term) has
zero X and Y(i) charges; it can appear by itself in the superpoten-
tial, but we are dealing with a string theory, where mass terms do
not appear in the superpotential: it can appear only in the Kähler
potential. This results, after supersymmetry-breaking in an induced
µ-term, of weak strength, as suggested by Giudice and Masiero [17].

– The coefficients (XY (i)Y (j)), i j. Since standard-model singlets≠
can contribute to these anomalies, we expect cancellation to come 
about through a combination of hidden sector and singlet fields.

– The coefficient (XXY ). This imposes an important constraint on
the X charges on the chiral families. 

– The coefficients (XX Y (i)); with family-traceless symmetries, they
vanish over the three families of fermions with standard-model charges, 
but contributions are expected from other sectors of the theory.

The building of models in which these anomaly coefficients vanish is highly 
non-trivial. Finding a set of charges which satisfy all anomaly constraints, and 
reproduce phenomenology is highly constrained. In the three-family model it 
will even prove predictive in the neutrino sector. 

3.1 Standard Model Anomalies
In the standard model, we consider three anomalies associated with its three 
gauge groups,

Ccolor = (XSU (3)SU (3)) ; Cweak = (XSU (2)SU (2)) ; CY = (XYY ) ,
(3.5)

when () stands for the trace. They can be expressed [9] in terms of the X-charges
of the invariants of the MSSM

(3.6)

(3.7)

where X ij
[u] is the X -charge of Qiu– j Hu, X ij

[d] that of Qi d– j Hd , X ij
[e] that of

Lie– jHd, and finally X [µ] that of the µ-term HU Hd , where i , j are the family
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indices. Also the mixed gravitational anomaly over the three chiral families is
given by

(3.8)

In theories derived from superstrings, the integer level numbers kcolor and
kweak are equal, resulting in the equality

Cweak = Ccolor . (3.9)
These imply that, as long as these anomaly coefficients do not vanish, the

MSSM Yukawa invariants cannot all appear at tree level, as their X-charges are
necessarily non-zero. This means that not all Yukawa coupIings can be of the
same order of magnitude, resulting in some sort of Yukawa hierarchy. 

More specific conclusions can be reached by assuming that the X charges
are family-independent and the Y (i) are family-traceless. As we have seen, the
µ -term has vector-like charges, X [µ] = 0.

By further assuming that the top quark Yukawa mass coupling occurs at 
tree-level, we have X [u]

33 = X [u] = 0. This implies that the X-charge of the 
down quark Yukawa is proportional to the color anomaly, and thus cannot
vanish: the down Yukawa is necessarily smaller than the top Yukawa, leading to
the suppression of mb over mt, after electroweak breaking! The non-vanishing
of the color anomaly implies the (observed) suppression of the bottom mass
relative to the top mass. 

The second anomaly equation simplifies to 

(3.10)

stating that the relative suppression of the down to the charged lepton sector 
is proportional to the difference of two anomaly coefficients. The data, extrap-
olated to near unification scales indicates that there is no relative suppression 
between the two sectors, suggesting that difference should vanish. Remark-
ably, the vanishing [3] of that combination fixes the value of the Weinberg angle 
through the string of relations 

(3.11)

This happens exactly at the phenomenologically preferred value of the Weinberg
angle: the b – τ unification is related to the value of the Weinberg angle [6]!

The application of the Green-Schwarz structure to the standard model is
consistent with many of its phenomenological patterns. However, more can be
said through a careful study of the DSW vacuum.

4 The DSW vacuum

When the dilaton acquires its vacuum value, an anomalous Fayet-iliopoulos D-
term is generated through the gravitational anomaly. In the weak coupling limit 
of the string, it is given

(4.1)

by
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where g is the string coupling constant. This induces the breaking of X and
Y (i) below the cut-off.

Phenomenology require that neither supersymmetry nor any of the standard
model symmetries be broken at that scale. This puts severe restrictions on the
form of the superpotential and the matter fields [10].

The analysis of the vacuum structure of supersymmetric theories is greatly
facilitated by the fact that the solutions of the vacuum equations for the D-terms
are in one-to-one correspondance with holomorphic invariants. This analysis has
been recently generalized to include an anomalous Fayet-Iliopoulos term.

In order to get a unique determination of the DSW vacuum, we need as many
singlet superfields, θ a, as there are broken symmetries. Only they assume vev’s
as a result of the FI term. They are standard model singlets, but not under X
and Y (a). If more fields than broken symmetries assume non-zero values in the
DSW vacuum, we would have undetermined flat directions and hierarchies.

We assemble the charges in a (M + 1) × (M + 1) matrix A, whose rows
are the X, Y (i) charges of the θ fields, respectively. Assuming the existence of
a supersymmetric vacuum where only the θ fields have vacuum values, implies
from the vanishing of the M + 1 D-terms

(4.2)

For this vacuum solution to exist, the matrix A must have an inverse and the
entries in the first row of its inverse must be positive. The solution to these 
equations naturally provide computably small expansion parameters λ a = < 
|θ a| >0 /M. In the case when all expansion parameters are the same we can
relate their value in terms of standard model quantities 

(4.3)

where α is the unified gauge coupling at unification.
Another important consequence is that there is no holomorphic invariant 

polynomial involving the θ fields alone. Another is that the θ sector is necessarily
anomalous. Indeed, let us assume that it has no mixed gravitational anomalies. 
This means that all the charges are traceless over the θ fields. now the ( M +
1) θ fields form a representation of SU (M + l), and the tracelessness of the
charges insures that they be members of SU (M + 1). So we are looking for 
M non-anomalous symmetries in SU(M + l), which is impossible except for 
M = 1. If two or more of the charges are the same on the θ ’s, we could have 
anomaly cancellation, but then the matrix A would be singular, contrary to the
assumption of the DSW vacuum. Hence this sector will in general be anomalous. 

For a thorough analysis of the vacuum with FY term, we refer the reader to 
Ref. [18, 10]. Here, we simply note two striking generic facts of phenomeno-
logical import. Consider any invariant I of the MSSM. It corresponds [19] to a
possible flat direction of the non-anomalous supersymmetric vacuum. For that 
configuration, all its fields are aligned to the same vacuum value, as required by
the vanishing of the non-anomalous D-terms of the standard model symmetries.
It follows that the contribution of these terms of the anomalous DX will be pro-
portional to its X -charge [20]. In order to forbid this flat direction to appear
alone in the vacuum, it is therefore necessary to require that its charge be of 
the wrong sign to forbid a solution of DX = ξ 2. This implies a holomorphic
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invariant of the form IP (θ a), where P is a holomorphic polynomial in the θ ’s.
The D-term equations are not sufficient to forbid this flat direction together
with θ fields. We have to rely on the F-terms associated with that invariant
polynomial, and its presence is needed in the superpotential. Fortunately, phe-
nomenology also requires such terms to appear in the superpotential. This is
the first of several curious links between phenomenology and the vacuum struc-
ture near unification scales! One can see that the existence of this invariant is
predicated on the invertibility of A, the same condition for the DSW vacuum.

The second point addresses singlet fields that do not get vev’s in the DSW
vacuum. To implement the seesaw mechanism, there must be right-handed
neutrinos, N–i . Since they have no vev, their X-charge must also be of the
wrong sign, which allows for holomorphic invariants of the form N–A P (θ  ), where
A is a positive integer. The case A = 1 is forbidden as it breaks supersymmetry.
Thus A ≥ 2. The case A = 2 generates Majorana masses for these fields in the
DSW vacuum. W scale. To single out A = 2 we need to choose the X charges
of the N–i to be a negative half-odd integers. To implement the seesaw, the
right-handed neutrinos couple to the standard model invariants LiHu, which
requires that XLiHu is also a half-odd integer, while all other MSSM invariants
have positive or zero integers X -charges.

5    A Three-Family Model 

We can see how some of the features we have just discussed lead to phenomeno-
logical consequences in the context of a three-family model [21, 22], with three
Abelian symmetries broken in the DSW vacuum. The matter content of the
theory is inspired by E6, which contains two Abelian symmetries outside of the
standard model: the first U(1), which we call V´, appears in the embedding

E6 ⊂ SO (10) x U(1)v́ (5.1)

The second U(1), called V, appears in

SO (10) ⊂ SU(5) x U(1) v . (5.2)

The two non-anomalous symmetries are 

(5.3)

(5.4)

The family matrices run over the three chiral families, so that Y (1,2) are family-
traceless. Since Tr(YY(i)) = 0, there is no appreciable kinetic mixing between
the non-anomalous U( 1)s. 

The X charges on the three chiral families in the 27 are of the form

(5.5)
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where α, β, γ are expressed in terms of the X-charges of N–i (=-3/2), that of
Qd–Hd (=-3), and that of the vector-like pair ,mass term E–E (= -3).
The matter content of this model is the smallest that reproduces the observed
quark and lepton hierarchy while cancelling the anomalies associated with the
extra gauge symmetries:

• Three chiral families each with the quantum numbers of a 27 of E6. This
means three chiral families of the standard model, Qi, u– i , d– i , Li, and
e–i , together with three right-handed neutrinos N–i , three vector-like pairs
denoted by Ei + D– i and E–i + Di, with the quantum numbers of the 5 +
5 of SU(5), and finally three real singlets Si.–

• One standard-model vector-like pair of Higgs weak doublets. 

• Chiral fields that are needed to break the three extra U(1) symmetries
in the DSW vacuum. We denote these fields by θ a. In our minimal
model with three symmetries that break through the FI term, we just 
take a = 1,2 ,3. The θ sector is necessarily anomalous.

• Other standard model singlet fields.

• Hidden sector gauge interactions and their matter. 

Finally, the charges of the θ fields is given in terms of the matrix

Its inverse

(5.6)

(5.7)

shows all three fields acquire the same vacuum value.
In the following, we will address only the features of the model which are of

more direct phenomenological interest. For more details, the interested reader 
is referred to the original references [21, 22].

5.1 Quark and Charged Lepton Masses
The Yukawa interactions in the charge 2 / 3 quark sector are generated by oper-
ators of the form 

(5.8)

in which the exponents must be positive integers or zero. Assuming that only the 
top quark Yukawa coupling appears at tree-level, a straighforward computation 
of their charges yields in the DSW vacuum the charge 2 /3 Yukawa matrix 

(5.9)

where λ = |θ a |/M is the common expansion parameter.  
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A similar computation is now applied to the charge –1/3 Yukawa standard
model invariants Qid

–
jHd. The difference is that X[d], its X-charge does not

vanish. As long as X [d] ≤ –3, we deduce the charge –1/3 Yukawa matrix

(5.10)

Diagonalization of the two Yukawa matrices yields the CKM matrix 

(5.11)

This shows the expansion parameter to be of the same order of magnitude as
the Cabibbo angle λc .

The eigenvalues of these matrices reproduce the geometric interfamily hier-
archy for quarks of both charges

while the quark intrafamily hierarchy is given by 

(5.12)

(5.13)

(5.14)

implying the relative suppression of the bottom to top quark masses, without 
large tan β . These quark-sector results are the same as in a previously published
model [21], but our present model is different in the lepton sector. 

The analysis in the charged lepton sector proceeds in similar ways. No
dimension-three term appears and the standard model invariant Lie– j Hd have
X -charge X[e] . For X[e] = –3, there are supersymmetric zeros in the (21) and 
(31) position, yielding

Its diagonalization yields the lepton interfamily hierarchy 

(5.15)

(5.16)

Our choice of X insures that X [d] = X[e], which guarantees through the anomaly
conditions the correct value of the Weinberg angle at cut-off, since 

it sets X[d] = –3, so that

(5.17)

(5.18)

It is a remarkable feature of this type of model that both inter- and intra-
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family hierarchies are linked not only with one another but with the value of the
Weinberg angle as well. In addition, the model predicts a natural suppression
of mb /m

T
, which suggests that tan β is of order one.

5.2 Neutrino Masses
Neutrino masses are naturally generated by the seesaw mechanism [11] if the
three right-handed neutrinos N–i acquire a Majorana mass in the DSW vac-
uum. The flat direction analysis indicates that their X-charges must be negative
half-odd integers, with XN– = –3/2 preferred by the vacuum analysis. Their
standard-model invariant masses are generated by terms of the form

(5.19)

where M is the cut-off of the theory. In the ( ij ) matrix element. The Majorana
mass matrix is computed to be 

(5.20)

Its diagonalization yields three massive right-handed neutrinos with masses 

(5.21)

By definition, right-handed neutrinos are those that couple to the standard-
model invariant LiHu, and serve as Dirac partners to the chiral neutrinos. In
our model, 

(5.22)

The superpotential contains the terms

(5.23)

resulting, after electroweak symmetry breaking, in the orders of magnitude (we 
note vu = 〈 〉Hu

0 )

(5.24)

for the neutrino Dirac mass matrix. The actual neutrino mass matrix is gen-
erated by the seesaw mechanism. A careful calculation yields the orders of 
magnitude

(5.25)

A characteristic of the seesaw mechanism is that the charges of the N–i do not
enter in the determination of these orders of magnitude as long as there are
no massless right-handed neutrinos. Hence the structure of the neutrino mass
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matrix depends only on the charges of the invariants LiHu, already fixed by
phenomenology and anomaly cancellation. In particular, the family structure is
that carried by the lepton doublets Li. In our model, since L2 and L3 have the
same charges, it ias not surprising that we have no flavor distinction between
the neutrinos of the second and third family. In models with two non-anomalous
flavor symmetries based on E6 the matrix (5.25) is a very stable prediction of
our model. Its diagonalization yields the neutrino mixing matrix [23]

(5.26)
.-

so that the mixing of the electron neutrino is small, of the order of λ 3c, while the
mixing between the µ and T neutrinos is of order one. Remarkably enough, this
mixing pattern is precisely the one suggested by the non-adiabatic MSW [24]
explanation of the solar neutrino deficit and by the oscillation interpretation of
the reported anomaly in atmospheric neutrino fluxes (which has been recently
confirmed by the Super-Kamiokande [25] and Soudan [26] collaborations).

Whether the present model actually fits both the experimental data on solar
and atmospheric neutrinos or not depends on the eigenvalues of the mass matrix
(5.25). A naive order of magnitude diagonalization gives a µ and T neutrinos of
comparable masses, and a much lighter electron neutrino:

(5.27)

The overall neutrino mass scale m0 depends on the cut-off M. Thus the neutrino
sector allows us, in principle, to measure it.

At first sight, this spectrum is not compatible with a simultaneous explana-
tion of the solar and atmospheric neutrino problems, which requires a hierarchy
between mvµ, and mvT

. However, the estimates (5.27) are too crude: since the
(2,2), (2,3) and (3,3) entries of the mass matrix all have the same order of mag-
nitude, the prefactors that multiply the powers of λ c , in (5.25) can spoil the naive
determination of the mass eigenvalues. A more careful analysis shows that even 
with factors of order one, it is possible to fit the atmospheric neutrino anomaly
as well. A welcome by-product of the analysis is that the mixing angle is actually 
driven to its maximum value. We refer the reader to Ref.[22] for more details. 
The main point of this analysis is that maximal mixing between the second and 
third family in the neutrino sector occurs naturally as it is determined from the 
structure of the quark and charged lepton hierarchies. 

6 R-Parity

The invariants of the minimal standard model and their associated flat direc-
tions have been analyzed in detail in the literature [27]. In models with an
anomalous U(1), these invariants carry in general X-charges, which, as we have
seen, determines their suppression in the effective Lagrangian. Just as there is 
a basis of invariants, proven long ago by Hilbert, the charges of these invariants
are not all independent; they can in fact be expressed in terms of the charges
of the lowest order invariants built out of the fields of the minimal standard
model, and some anomaly coefficients.

The X-charges of the three types of cubic standard model invariants that
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violate R-parity as well as baryon and/or lepton numbers can be expressed
in terms of the X-charges of the MSSM invariants and the R-parity violating
invariant

through the relations
(6.1)

(6.2)

(6.3)

(6.4)

Although they vanish in our model, we still display X [u ] and X [ µ ] = 0, since
these sum rules are more general.

In the analysis of the flat directions, we have seen how the seesaw mechanism
forces the X-charge of N– to be half-odd integer. Also, the Froggatt-Nielsen [5]
suppression of the minimal standard model invariants, and the holomorphy of 
the superpotential require X [u,d,e ] to be zero or negative integers, and the equal-
ity of the Kác-Moody levels of SU (2) and SU (3) forces Ccolor = Cweak , through 
the Green-Schwarz mechanism. Thus we conclude that the X-charges of these
operators are half-odd integers, and thus they cannot appear in the superpoten-
tial unless multiplied by at least one N– . This reasoning can be applied to the 
higher-order operators since their charges are given byR

(6.5)

(6.6)

(6.7)

(6.8)

It follows that there are no R -parity violating operators, whatever their 
dimensions : through the right-handed neutrinos, R-parity is linked to half-
odd integer charges, so that charge invariance results in R-parity invariance.
Thus none of the operators that violate R-parity can appear in holomorphic
invariants: even after breaking of the anomalous X symmetry, the remaining
interactions all respect R-parity, leading to an absolutely stable superpart- 
ner. This is a general result deduced from the uniqueness of the DSW vacuum,
the Green-Schwarz anomaly cancellations, and the seesaw mechanisms. 

7 Conclusion 

The case for an anomalous U(1) extension to the standard model is particu-
larly strong. We have presented many of its phenomenological consequences. 
In a very unique model, we detailed how the neutrino matrices are predicted. 
However much remains to be done: the nature of the hidden sector, and super-
symmetry breaking. Our model only predicts orders of magnitude of Yukawa 
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couplings. To calculate the prefactors, a specific theory is required. Many of the 
features we have discussed are found in the context of free fermion theories [14],
which arise in the context of perturbative string theory. It is hoped that since 
they involve anomalies, these features can also be derived under more general 
assumptions. A particularly difficult problem is that of the cut-off scale. From
the point of view of the low energy, there is only one scale of interest, that
at which the couplings unify, and the Green-Schwarz mechanism, by fixing the
weak and color anomalies, identifies the cut-off as the unification scale. On the
other hand, another mass scale appears in the theory through the size of the
anomalous FI term, and the two values do not coincide, the usual problem of
string unification. It is hoped that the calculation of the Fayet-Iliopoulos term 
in other regimes will throw some light on this problem.

Our simple model has too many desirable phenomenological features to be
set aside, and we hope that a better understanding of fundamental theories will
shed light on this problem. 
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ABSTRACT

We discuss the character of the p-form charges carried by p-brane solutions to su-
pergravity theories. The antisymmetric tensorial nature of these charges gives rise to
a new feature of the Dirac quantisation condition, that there are “Dirac-insensitive”
configurations. Although they constitute only a measure-zero set, the existence of
these insensitive configurations is important because they are needed to understand the
pattern of Dirac conditions in lower dimensions obtained by dimensional reduction.

1. – INTRODUCTION

Let us start from the bosonic sector of D = 11 supergravity,

(1)

In addition to the metric, one has a 3-form antisymmetric-tensor gauge potential A[3]
with a gauge transformation δ A[3] = d Λ[2] and a field strength F[4] = d A [3]. The third
term in the Lagrangian is invariant under the A [3] gauge transformation only up to
a total derivative, so the action (1) is invariant under gauge transformations that are 
continuously connected to the identity.

The equation of motion for the A [3] gauge potential is

(2)

this equation of motion gives rise to the conservation of an “electric” type charge 2

(3)

Another conserved charge relies on the Bianchi identity dF[4] = 0 for its conservation,

(4)
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Charges such as (3,4) can occur on the right-hand side of the supersymmetry algebra,

(5)

Note that since the supercharge Q in D = 11 supergravity is a 32-component Majorana
spinor, the LHS of (5) has 528 components. The symmetric spinor matrices CΓ A , CΓ AB

and CΓ ABCDE on the RHS of (5) also have a total of 528 independent components: 11
for the momentum PA, 55 for the “electric” charge UAB and 462 for the “magnetic”
charge VABDCE.

Now the question arises as to the relation between the charges U and V in (3,4)
and the 2-form and 5-form charges appearing in (5). One thing that immediately
stands out is that the Gauss’ law integration surfaces in (3,4) are the boundaries of
integration volumes 8 , ~ that do not fill out a whole spacelike hypersurface in
spacetime, unlike the more familiar situation for charges in ordinary electrodynamics.
Nonetheless, this does not impede the conservation of (3,4), which only requires that no
electric or magnetic currents are present at the boundaries ∂  M 8, ∂M~ . Before we can
discuss such currents, we need to consider the supergravity solutions that carry charges
like (3,4).

5

M M

An important family of supergravity solutions has the character of static (p + 1)-
dimensional hyperplanes where the U or V charge resides. These may be viewed as
static histories of infinite p-dimensional objects, i.e. p-branes. For solutions of D = 11
supergravity (l), the metric takes the form 

(6)µ = 0,l),..., p m = p + 1 , . . . , D – 1 = 10.

The function H(y) is a harmonic function in the (11– d)-dimensional transverse space,
2H = ∂m ∂m H = 0. Completing the specification of the solution involves making a

choice between two further refinements of the p-brane ansatz: an “electric” case which
follows closely the analogue of the electric field set up by an electrically charged particle
in D = 4 Maxwell theory, or a “magnetic” case which is analogous to the field from a
D = 4 magnetic monopole. The forms of these two ansätze are best compared in terms
of the F[4] field strength,

∆

(7a)
(7b)

with all other independent components vanishing in either case. From (7), we may now
identify the “worldvolume” dimension d = p + 1 in the two cases: del = 3; dmag = 6.

Letting the transverse-space harmonic function H(y) take an isotropic SO(11 – d)
invariant form in the transverse space,

(8)d̃ = D – d – 2 = 9 – d,

where k is an integration constant, one obtains from (3,4) the corresponding elec-
tric/magnetic charges: 

(9a)

(9b)
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ds2  = H
_d-| 4 dxµ dxvη µv +Hd| 9 dy mdy m

{Q, Q}= C(Γ APA +Γ ABUAB + Γ ABCDEVABCDE )  .



where Ω 10 –d is the volume of the unit (10 – d) sphere.
Comparing (9a,b) to the ADM energy per unit p-volume,

~ε = Ω 10– d kd , (10)

one sees that the charges saturate the Bogomol’ny-Prasad-Sommerfield bound on the
energy density in either case: ε = U or ε = V. Thus, the p-brane hyperplane solutions
(6;9a,b) are BPS solutions of the supergravity equations. Any solution carrying a U
or V charge must asymptotically approach the form of the corresponding flat static
solution (6;9a,b), provided the energy difference with respect to (6;9a,b) is finite.

2. – p-FORM CHARGES

Now let us consider the inclusion of sources. The harmonic function (8) has a sin-
gularity which has for simplicity been placed at the origin of the transverse coordinates
ym. Whether or not this gives rise to a physical singularity in a solution depends on the
global structure of that solution. In the electric 2-brane case, the solution does in the
end have a singularity.3 This singularity is unlike the Schwarzschild singularity, however,
in that it is a timelike curve, and thus it may be considered to be the wordvolume of
a δ -function source. The electric source that couples to D = 11 supergravity is the
fundamental supermembrane action,4 whose bosonic part is

(11)

The source strength Qe will shortly be found to be equal to the electric charge U upon
solving the coupled equations of motion for the supergravity fields and a single source
of this type. Varying δ /δ A[3] the source action (11), one obtains the δ -function current

(12)

(13)

This current now stands on the RHS of the A [3] equation of motion:

Thus, instead of the Gauss’ law expression for the charge, one may instead rewrite it
as a volume integral of the source,

(14)

where d8SM N is the 8-volume element on M8 , specified in a D = 10 spatial section of
the supergravity spacetime by a 2-form. The charge derived in this way from a single
2-brane source is thus U = Qe as expected.

Now consider the effect of making different choices of the M8  integration volume
within the D = 10 spatial spacetime section, as shown in Figure 1. Let the difference
between the surfaces M8 and M'8 be infinitesimal and be given by a vector field vN (x).
The difference in the electric chargas obtained is then given by

(15)
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Figure 1. Different choices of charge integration volume “capturing” the current J[3].

where Lv is the Lie derivative along the vector field v. The second equality in (15)
follows using Stokes’ theorem and the conservation of the current J[3].

Now, a topological nature of the charge integral (3) becomes apparent; similar con-
siderations apply to the magnetic charge (4). As long as the current J[3] vanishes on the
boundary ∂M8 , the difference (15) between the charges calculated using the integration 
volumes M8  and M'8 will vanish. This divides the electric-charge integration volumes
into two topological classes distinguishing those for which ∂M8 “captures” the p-brane
current, as shown in Figure 1 and giving U = Qe , from those that do not capture the
current, giving U=0.

The above discussion shows that the orientation-dependence of the U charges (3)
is essentially topological. The topological classes for the charge integrals are naturally
labeled by the asymptotic orientations of the p-brane spatial surfaces; an integration 
volume M8 extending out to infinity flips from the “capturing” class into the “non-
capturing” class when ∂M8 crosses the δ -function surface defined by the current J[3].
The charge thus naturally has a magnitude |Q[p]| = Qe and a unit p-form orientation
Q[p ]/|Q[p ]| that is proportional to the asymptotic spatial volume form of the p=brane. 
Both the magnitude and the orientation of this p-form charge are conserved using the 
supergravity equations of motion. 

The necessity of considering asymptotic p-brane volume forms arises because the
notion of a p-form charge is not limited to static, flat p-brane solutions such as (6,7).
Such charges can also be defined for any solution whose energy differs from that of 
a flat, static one by a finite amount. The charges for such solutions will also appear
in the supersymmetry algebra (5) for such backgrounds, but the corresponding energy
densities will not in general saturate the BPS bounds. For a finite energy difference
with respect to a flat, static p-brane, the asymptotic orientation of the p-brane volume
form must tend to that of a static flat solution, which plays the rôle of a “BPS vacuum”
in a given p-form charge sector of the theory.

In order to have a non-vanishing value for a charge (3) or (4) occurring in the 
supersymmetry algebra (5), the p-brane must be either infinite or wrapped around a
compact spacetime dimension. The case of a finite p-brane is sketched in Figure 2.
Since the boundary ∂M of the infinite integration volume M does not capture the locus 
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Figure 2. Finite p-brane not captured by ∂M, giving zero charge. 

where the p-brane current is non-vanishing, the current calculated using will vanishM
as a result. Instead of an infinite p-brane, one may alternately have a p-brane wrapped
around a compact dimension of spacetime, so that an integration-volume boundary
∂M 8 is still capable of capturing the p-brane locus (if one considers this case as an

infinite, but periodic, solution, this case may be considered simultaneously with that
of the infinite p-branes). Only in such cases do the p-form charges occurring in the
supersymmetry algebra (5) take non-vanishing values.1

3. – p-FORM CHARGE QUANTISATION CONDITIONS

Now we come to the question of what Dirac quantisation conditions arise for p-
form charges. We shall first review a Wu-Yang style of argument6 (for a Dirac-string
argument, see Ref 7) considering a closed sequence W of deformations of one p-brane,
say the electric one, in the background fields set up by a dual, magnetic, p̂-brane. After
such a sequence of deformations, one sees from the supermembrane action (11) that the
electric p-brane wavefunction picks up a phase factor

(16)

where A [p+1] is the gauge potential set up (locally) by the magnetic p̂ = D –p – 4 brane
background.

A number of differences arise in this problem with respect to the ordinary Dirac 
quantisation condition for particles. One of these is that, as we have noted, objects 
carrying p-form charges appearing in the supersymmetry algebra (5) are necessarily 
either infinite or are wrapped around compact spacetime dimensions. For infinite p-
branes, some deformation sequences W will lead to a divergent integral in the exponent 
in (16); such deformations also would require an infinite amount of energy, and so should 
be excluded from consideration. In particular, this excludes deformations that involve 
rigid rotations of an entire infinite brane. Thus, at least the asymptotic orientation of 
the electric brane must be preserved throughout the sequence of deformations. Another 
way of viewing this restriction on the deformations is to note that the asymptotic 
orientation of a brane is encoded into the electric p-form charge, and one should not 
consider changing this p-form in the course of the deformation any more than one should 
consider changing the magnitude of the electric charge in the ordinary D = 4 Maxwell 
case.

1If one considers integration volumes that do not extend out to infinity, then one can construct
integration surfaces that capture finite p-branes. Such charges do not occur in the supersymmetry
algebra (5), but they are still of importance in determining the possible intersections of p-branes5
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We shall see shortly that another difference with respect to the ordinary Dirac quan-
tisation of D = 4 electrodynamics particles will be the existence of “Dirac-insensitive”
configurations, for which the phase in (16) vanishes.

Restricting attention to deformations that give finite phases, one may use Stoke’s
theorem to rewrite the integral in (16):

(17)

=

.-
where Mw is any surface “capping” the closed surface W , i.e. a surface such that
∂ Mw = W ; Φ Mw is the flux through the cap Mw . Choosing the capping surface in two

different ways, one can find a flux discrepancy Φ M1 – Φ M2 = Φ M total  (taking
into account the orientation sensitivity of the flux integral). Then if M total  = M1

“captures” the magnetic p̂-brane, the flux Φ M total will equal the magnetic charge Qm of
the p̂-brane; thus the discrepancy in the phase factor (16) will be exp(iQeQm). Requiring
this to equal unity gives,6 in strict analogy to the ordinary case of electric and magnetic
particles in D = 4, the Dirac quantisation condition

QeQm = 2π n , n ∋Z . (18)

∩

The charge quantisation condition (18) is almost, but not quite, the full story. In de-
riving (18), we have not taken into account the p-form character of the charges. Taking
this into account shows that the phase in (16) vanishes for a measure-zero set of config-
urations of the electric and magnetic branes.1 This is easiest to explain in a simplified
situation where the electric and magnetic branes are in static flat configurations, with 
the electric p-brane oriented along the directions {xM1 . . . x Mp }. The phase factor (16)
then becomes exp(i Qe where σ is an ordering parameter for the
closed sequence of deformations W . In making this sequence, we recall from the above
discussion that one should restrict the deformations so as to preserve the asymptotic
orientation of the deformed p-brane. For simplicity, one may simply consider moving the
electric p-brane by parallel transport around the magnetic p-ˆ brane in a closed loop. The
accrued phase factor is invariant under gauge transformations of the potential A[p +1| . 
This makes it possible to simplify the discussion by making use of a specially chosen
gauge. Note that magnetic p-ˆ branes have purely transverse field strengths like (7b);
there is accordingly a gauge in which the gauge potential A[p +1] is also purely trans-
verse, i.e. it vanishes whenever any of its indices point along a worldvolume direction
of the magnetic p-ˆ brane.

∫°w AM1...MpR ∂

 

xR|∂σ

 

),

Now one can see how Dirac-insensitive configurations arise: the phase in (16) van-
ishes whenever there is even a partial alignment between the electric and the magnetic
branes, i. e. when there are shared worldvolume directions between the two branes.
This measure-zero set of Dirac-insensitive configurations may be simply characterised
in terms of the p and p̂charges themselves by the conditions Q el

[p] ∧ Qmag

[p ]
= 0. For such

configurations, one learns no Dirac quantisation condition. To summarise the overall 
situation, one may incorporate this restriction into the Dirac quantisation condition 
(18) by replacing it by the (p + p̂)-form quantisation condition

^

(19)

which reduces to (18) for all except the Dirac-insensitive set of configurations. 
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4. – KALUZA-KLEIN DIMENSIONAL REDUCTION

The panoply of p-brane solutions to supergravity theories is evident in the form
of the D-dimensional action obtained by Kaluza-Klein dimensional reduction from the
D = 11 theory (1). The D = 11 and reduced metrics are related by8

(20a)

(20b)

where the reduction coordinates are denoted by zi and the dilaton-vector coefficients
determine the Einstein-frame couplings of the dilatonic scalars to the various field

strengths occurring in the D-dimensional reduced action

a→ ,
ai
→ φ→

where the other dilaton vectors in (21) are determined in terms of a→ , ai
→

 by

(21)

(22)

The straight-backed F[n ] field strengths in (21) arise from the reduction of F[4] in D = 11;
the calligraphic F[n ] arise from the field strengths of Kaluza-Klein vectors.

In order to relate the electric and magnetic charges in the various dimensions, we
need to use the reductions of the field strengths and their duals:

(23a)

(23b)

where the forms v, vi , vij and vijk appearing in (23b) are given by

The electric and magnetic charges in D dimensions take the forms 

(24)

(25a)

(25b)

where F̃ = dA, F = F̃ + (Kaluza-Klein modifications) (i.e. modifications involving
lower-order forms arising in the dimensional reduction) and c→  is the dilaton vector 
corresponding to F in the dimensionally-reduced action (21). The term κ (A ) in (25a)
is the analogue of the term 1-2 A [3] ∧ F [4] in (3). From the expressions (23) for the reduced
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Table 1. Relations between Q11 and QD

field strengths and their duals, one obtains the relations between the original charges 
in D = 11 and those in the reduced theory given in Table 1, Li = dzi is the∫
compactification period of the reduction coordinate zi and V = ∫ d11-Dz = Li is
the total compactification volume. Note that the factors of Li cancel out in the various

Π
 

i= 1
1 1 _ D

products of electric and magnetic charges only for charges belonging to the same field
strength in the reduced dimension D.

5. – CHARGE QUANTISATION CONDITIONS AND DIMENSIONAL
REDUCTION

Now we shall tie together the various threads that have run through our story of 
the p-form charges. There are two main schemes for applying dimensional reduction in 
the context of supergravity p-brane solutions. The first of these is in fact just standard 
dimensional reduction, in which the reduction coordinate z is taken to be one of the
worldvolume xµ coordinates, on which p-brane solutions like (3,4) do not depend. Since
this reduces simultaneously a spacetime dimension and a worldvolume dimension, one
ends up with a (p – 1) brane in (D – 1) dimensions, hence this scheme is termed
“diagonal” dimensional reduction.9 Strictly speaking, the reduction procedure is not
quite as simple as just declaring that solutions should be independent of z and checking
that the p-brane solutions properly satisfy this condition: there is also a conventional 
requirement of ensuring that the reduced theory remains in the Einstein frame, as in
(21). Arranging this, however, amounts simply to making a field-redefinition Weyl
transformation.

The second dimensional reduction scheme uses the transverse space of a p-brane
solution.9 Since the isotropic p-brane solution given in (8) is not translationally invari-
ant in its transverse directions, dimensional reduction cannot be directly effected using 
such an isotropic solution. However, any harmonic function H(y) serves to determine
a p-brane solution (6,7), and so one may generalise the SO(D – d) isotropic solutions
to solutions with SO(D – d – 1) × IR symmetry, analogous to lines of charge in or-
dinary Maxwell electrodynamics. It is the translation invariance in the IR direction
that enables one to make a dimensional reduction. Another way to view this proce-
dure is first to note that the single-charge-center solution (8) may be generalised to
two-charge-center solutions (noting that the transverse Laplace equation has multiple
charge-center solutions). Continuing this procedure by adding further charge centers,
one may construct a “deck” of charges, generating an IR translational symmetry in a
transverse direction as is needed for dimensional reduction9. Since this deck-stacking
procedure leaves unchanged the worldvolume directions of the solution, it prepares for 
a reduction from an SO(D – d) × IR invariant p-brane deck in D dimensions down to
an (isotropic) p-brane solution in D – 1 dimensions. Accordingly, this second process
is called “vertical” dimensional reduction9.

Finally, let us consider the various possible schemes for dimensional reduction in the 
presence of a dual electric/magnetic pair of branes. Depending on whether the reduc-
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tion coordinate z belongs to the worldvolume or the transverse space of each brane, we
have four reduction possibilities for the electric/magnetic pair: diagonal/diagonal, di-
agonal/vertical, vertical/diagonal and vertical/vertical. Only the mixed cases preserve
dirac sensitivity in the lower dimension.

This is most easily illustrated by considering the diagonal/diagonal case, for which z
belongs to the worldvolumes of both branes. With such a shared worldvolume direction,
one has clearly fallen into the measure-zero set of Dirac-insensitive configurations with
Qel

[p ] ∧ Qmag
[p ] = 0 in the higher dimension D. Correspondingly, in (D – 1) dimensions one

finds that the diagonally reduced electric (p – 1) brane is supported by an n = p + 1
form field strength, but the diagonally reduced magnetic p̂ – 1) brane is supported by
an n = p + 2 form; since only branes supported by the same field strength can have a
Dirac quantisation condition, this diagonal/diagonal reduction properly corresponds to
a Dirac-insensitive configuration.

^

Now consider the mixed reductions, e.g. diagonal/vertical. In performing a vertical
reduction of a magnetic p̂-brane by stacking up an infinite deck of single-center branes
in order to create the IR translational invariance necessary for the reduction, the total
magnetic charge clearly will diverge. Thus, in a vertical reduction it is necessary to
reinterpret the magnetic charge Qm as a charge density per unit z compactification
length. Before obtaining the Dirac quantisation condition in the lower dimension, it
is necessary to restore a gravitational-constant factor of κ2 that should have appeared
in the quantisation conditions (18,19). As one may verify, the electric and magnetic
charges as defined in (3,4) are not dimensionless. Thus, (18) in D = 11 should properly
have been written QeQm = 2π κ 2

11 n. Accordingly, letting the compactification length
be denoted by L, one obtains a Dirac phase exp(ik –2

D–1 QeQmL) in the D-dimensional
theory prior to reduction. However, this fits precisely with another aspect of dimensional
reduction: the gravitational constants in dimensions D and D – 1 are related by κ 2

D =
Lκ2

D –1 . Thus, one obtains in dimension D – 1 the expected quantisation condition
QeQm = 2π κ2

D–1 n. Note, correspondingly, that upon making a mixed diagonal/vertical
reduction the electric and magnetic branes remain dual to each other, supported by the
same n = p – 1 + 2 = p + 1 form field strength. The opposite mixed vertical/diagonal
reduction case goes similarly, except that the dual branes are then supported by the
same n = p + 2 form field strength.

Finally, under vertical/vertical reduction, Dirac sensitivity is lost upon reduction,
not because of the orientation of the branes, but because in this case both the electric 
and the magnetic charges need to be interpreted as densities per unit compactification
length, and so one obtains a phase exp(iκ–2

D Q eQmL2). Only one factor of L is absorbed
into κ2

D – l , and so one has limL→0L2/κ2
D = 0. Correspondingly, the two dimensionally

reduced branes are supported by different field strengths: an n = p + 2 form for the
electric brane and an n = p + 1 form for the magnetic brane.
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INTRODUCTION

KARMEN, the Karlsruhe–Rutherford Medium Energy Neutrinoexperiment at the

→

 

→
pulsed spallation neutron facility ISIS uses the beam stop neutrinos vµ, ve and v–µ from π +
and µ+ decay at rest to search for neutrino oscillations in the appearance channels vµ ve

and v–µ v–e. The signature for both oscillations is based on charged current neutrino nucle-
ar interaction spectroscopy in a high resolution 56 t liquid scintillator calorimeter. The data
acquired from 1990 to 1995 are equivalent to 9122 Coulomb of protons on target. The

→

KARMEN experiment has found no evidence for v–oscillations in either of the investigat-
ed channels. The limits in sin2 2 θ derived from the analysis of these data are
sin2 2 θ < 4 x 10-2 for thevµ ve channel and sin2 2θ < 8.6 x 10-3 for thev–µ → v–e channel.
Details of the neutrino source ISIS, the detector and experimental results obtained by
KARMEN from 1990–1995 have been published elsewhere 1–2.

This report will focus on a description of the upgrade of KARMEN1 to KARMEN2
which has been carried out in 1996 and first results with the upgrade in operation. (Data
acquisition February – September 1997, 1414 Coulomb of protons on target).
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KARMEN UPGRADE

The sensitivity of the KARMEN1 experiment to neutrino oscillations in the vµ → ve
channel is limited by statistics only because the signature eliminates almost any cosmogenic
background 1–2. On the other hand, the sensitivity in the v–µ → v–e channel is mainly limited
by background consisting of high energy neutrons created by cosmogenic muons in the mas-
sive steel blockhouse. This background can only be eliminated through tagging of the
muons which generate the neutrons in deep inelastic scattering reactions in the steel. The 
detector system has therefore been upgraded with an additional veto layer embedded in the 
walls and the roof of the shielding blockhouse (fig. 1). There is at least 1 m of steel between
the new veto layer and the central detector. Neutrons created outside of the new veto by
un–tagged muons are sufficiently suppressed (1 % of primary intensity), neutrons created 
by tagged muons within the space enclosed by the veto can be identified and discarded. 
The new veto counter consists of 136 slabs of BC–412 (Bicron USA), each 50 mm thick and
650 mm wide; the lengths vary from 3 m to 4 m, the total area is 301 m2 . The veto counter 
system covers 84.3 % of the solid angle. Each module is read out by a set of 4 gain–matched
XP2262 2”–phototubes (Philips) on either end. The scintillator modules are sandwiched 
between boron loaded polythene slabs. Design and position of the veto modules was deter-
mined by extensive Monte Carlo simulations to achieve a maximum in neutron suppression.

Figure 1. Front and side views of the KARMEN detector system inside the shielding blockhouse with Monte 
Carlo simulation of the points of creation of high energy neutrons due to cosmogenic µ, (a+b) before the 
upgrade installation, only 10 % of the simulated events are displayed, (c+d) after the upgrade installation with 
veto rejection enabled, full simulation sample. Neutron production in the roof area above the veto counters is 
not displayed in this figure. 
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FIRST RESULTS

KARMEN2 is taking data since February 1997. The efficiency of the veto counter sys-
tem for cosmic ray muons has been measured to be 99.6 % in very good agreement with the
Monte Carlo expectation of 99.4 %. The analysis of the first data (1414 Coulomb) shows
that the desired background reduction has been achieved. For energies above 20 MeV the
cosmogenic background in the spectra of single prong events (fig. 2a) is now only 3 % of
its previous level. The sequential background (fig. 2b) limiting the sensitivity in the v–µ → –Ve

oscillation channel is reduced to 2 % of its previous level. The irreducible background
below 20 MeV is due to nuclear capture reactions of stopped µ- in the central detector, it
does not contribute to the background in the   oscillation search which is focused on 
the energy range from 20–50 MeV.
The successful suppression of cosmogenic background allows neutrino reactions to be
analysed on an event to event basis. KARMEN2 is now capable of background free neutri-
no spectroscopy. The remaining number of cosmic ray induced background with a signature 
similar to oscillations is only one event per year of data acquisition if the duty 
cycle factor of ISIS is taken into account.

A scan ofthe data for signatures with the veto rejection enabled ends in a null
result. The expected cosmic ray induced background amounts to only 0.26 events, whereas
the total expected background rate including random coincidences and signatures from neu-
trino nucleus interactions is 2.9 events. This means more than 2.31 events due to
transitions can be excluded at the 90 % CL. Oscillations with probability P=l would have
produced 375 event signatures, we therefore deduce a limit in the 2-v mixing amplitudeof
sin2 2 θ < 6.2 x 10-3 (90 % CL.). The corresponding exclusion plot is displayed in figure 3
in comparison with the results of KARMEN1 and the 90 % and 95 % likelihood regions
favoured by the LSND3 experiment for positive evidence of neutrino oscillations. This pre-
liminary result from KARMEN2 is consistent with the result obtained from the KARMEN1
measurements of 1990–1995, it is also not yet in conflict with the positive result of LSND. 

Figure 2. Background suppression for single prong events (a) and sequential signatures (b). Solid lines veto 
rejection disabled, dashed lines veto rejection enabled. 
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Figure 3. KARMEN2 90 % CL. exclusionfor oscillations (1414 C, February-September 1997) and
expected 90 % CL. exclusion after 3 years of measurement, if no signal is seen.

ESTIMATE OF FUTURE KARMEN2 SENSITIVITY

The KARMEN experiment is scheduled to run for another 2 years. Due to the extreme-
ly low level of cosmic ray induced background the sensitivity of KARMEN2 will increase
linearly with measuring time. The expected sensitivity of KARMEN2 (1997-99) if no oscil-
lation is observed is also shown in figure 3. This estimate is based on an accumulated pro-
ton charge of 7500 C (corresponding to 3 ISIS years with 200 µA proton beam intensity and
90 % reliability) and has been tested in an analysis of thousands of Monte Carlo generated
data samples either by maximum likelihood analysis (20-50) MeV or by a basic window
method (36-50 MeV). The improvement in sensitivity with respect to the oscillation limits
extracted from the data taken by KARMEN1 from 1990 to 1995 is almost one order of mag-
nitude. KARMEN2 will then probe the entire parameter space favoured by LSND.
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ATMOSPHERIC NEUTRINO FLUX STUDIES WITH THE 
SUPER-KAMIOKANDE DETECTOR 

Lawrence Wai 

Physics Department
University of Washington
Seattle, WA 98195

Super-Kamiokande Collaboration

INTRODUCTION

Super-Kamiokande (see figure 1) is a cylindrical 50 kiloton ring imaging water
Cherenkov detector. An optical barrier separates the inner volume of water, used for the
basic measurements, from the outer layer, which is used for anti-coincidence of cosmic 
ray muons. The inner cylindrical volume is lined with 11,146 50-cm diameter photo-
multiplier tubes (PMT) which view inwards upon a fiducial volume of 22.5 kilotons
of purified water. The fiducial volume is defined as the region at least 2 meters away
from the surface of the inward facing PMTs. The outer detector is 2.6 meters thick,
instrumented with 1,885 20-cm PMTs, and completely surrounds the inner volume. 

In addition to observing solar neutrinos, the detector is used to measure atmospheric
neutrinos originating in the decays of pions produced in hadronic showers from primary
cosmic rays high in the atmosphere. The flux of atmospheric neutrinos has been studied
in some detail [2]. The basic expectation is that there should be roughly 2 muon
neutrinos for every electron neutrino. The distribution of light in the Cherenkov ring
allows µ /e separation at the 99% level. See figure 2 for an example of a µ -like event in
the detector. 

PRELIMINARY RESULTS ON vµ DISAPPEARANCE

At the time of the writing of this report, the Super-Kamiokande detector has col-
lected 25.5 kiloton-years of analyzed atmospheric neutrino data. The basic results are:

• ratio of µ -like to e-like events significantly smaller than expected (see table 1)

• an upward/downward ratio for µ -like events significantly smaller than expected
(see figure 3)
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Table 1. (µ/e)DATA /(µ /e) MC ratios in Kamiokande and Super-Kamiokande for the
Honda flux. The errors are shown for the null hypothesis. 

Figure 1: A sketch of the Super-
Kamiokande detector. Figure 3: Zenith angle distribution for 

414.2 days of Super-Kamiokande data 
(preliminary result). 

Figure 4: Preliminary confidence region 
obtained from the Super-Kamiokande data 
using the same analysis program used to 
obtain the Kamiokande result. 

Figure 2: An event display of a µ-like
event. The cylindrical surfaces of PMTs 
have been peeled back in this display. 
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A preliminary result using the same analysis program applied to the Kamiokande
data [l] has been obtained for the vµ vT oscillation case,1 shown in figure 4. The
Super-Kamiokande 90% confidence region has a rather flat χ2 dependence, and does
not strongly favor any particular point. However, the average µ-like to e-like ratio fa-
vors a well defined ∆ m2 for sin22Θ = 1, and this point agrees with the overlap of the

→

Super-Kamiokande and Kamiokande confidence regions. 
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NUMERICAL FIELD THEORY ON THE CONTINUUM

Stephen Hahn and G. S. Guralnik
Department of Physics, Brown University
Providence, RI 02912-1843

Abstract

An approach to calculating approximate solutions to the continuum Schwinger– 
Dyson equations is outlined, with examples for φ 4 in D = 1. This approach is 
based on the source Galerkin methods developed by Garcia, Guralnik and Law-
son. Numerical issues and opportunities for future calculations are also discussed
briefly.

1 Introduction

The now conventional technique of numerical calculation of quantum field theory in-
volves evaluating the path integral

(1)

on a spacetime lattice using Monte Carlo integration methods. Monte Carlo methods 
have been successful for an interesting class of problems; however, these techniques have
had little success in evaluating theories with actions that are not manifestly positive 
definite or which have important effects from the details of fermionic interactions be-
yond the quenched approximation. In these cases, we have respectably an algorithmic 
failure or a massive inadequacy of compute power.

We are constructing an alternative computational method which works both on the
lattice and the continuum and which handles fermions as easily as bosons. Furthermore, 
our “source Galerkin” method is less restrictive as to the class of allowed actions. Source
Galerkin tends to use significantly less compute time than Monte Carlo methods but can
consume significantly larger amounts of memory.1 This talk is confined to continuum
applications; examples of lattice calculations have been given elsewhere [2, 7, 6]. While
it is not clear that Source Galerkin can replace Monte Carlo techniques, it appears that
it will be able to solve some problems which are currently inaccessible. 

Our approach begins with the differential equations satisfied by the vacuum func-
tional for a quantum field theory with external sources. For the sake of simplicityZ-

1That is, the iterative process for improving a source Galerkin calculation involves successively
higher-point Green functions, whereas calculation of these correlations in a Monte Carlo scenario is
optional.
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in this talk we will mostly confine our attention to φ 4 interactions although we have 
studied non-linear sigma models and four fermion interactions and have gauge theory
calculations in progress.

The vacuum persistence function Z- for a scalar field φ with interaction gφ 4/4 cou-
pled to a scalar source J(x) satisfies the equation:

(2)

The source Galerkin technique is designed to directly solve functional differential 
equations of this type. Before we proceed to outline a solution technique, it is essential 
to point out that this equation by itself does not uniquely specify a theory [3].

This is dramatically illustrated by considering the special case of the above equation 
limited to one degree of freedom (zero dimensions).

(3)

This is a third order differential equation, and therefore possesses three independent
solutions. It is easy to see that one of the solutions for small g asymptotically approaches
the perturbation theory solution, while the second asymptotically approaches the loop
expansion “symmetry breaking” solution for small for small g and the third solution
has an essential singularity as g becomes small. The situation becomes much more
interesting for finite dimensions where the infinite class of solutions coalesce or become
irrelevant in a way which builds the phase structure of the field theory. Any numerical
study must be cognizant of the particular boundary conditions and hence solution of
the class of solutions that is being studied. Care must be taken to stay on the same
solution as any iterative technique is applied. The solutions discussed in this talk will
be of the conventional nonperturbative sort which correspond to the solutions obtained
from evaluating a path integral with the usual definitions for the region of integration.
These are the solutions that are regular in the coupling, g.

We can for convenience write (2) in the form: 

Êj (j) = 0 (4)Z-

Z-
Z-

The source Galerkin method is defined by picking an approximation *(j) to the solu-
tion (j) such that

Êj *(j) = R (5)Z-

where R is a residual dependent on j and the further requirement that this residual
as small as possible on the average. To give this statement a meaning, we must define
an inner product over the domain of j: i.e. (A,B) ∫≡ dµ (j) A (j)B(j). In addition 
we assume we have a collection of test functions which are members of a complete set)
{ϕ i (j)} The source Galerkin minimization of the residual R is implemented by setting
the parameters of our test function *(j) so that projections of test functions against
the residual vanish so that || *– ||2 → 0 as the number of test functions

The equations defining the quantum field theory are differential equations in the field
sources and spacetime. While it is straightforward to deal with the spacetime problem

Z- Z-
Z-

→ ∞.

by resorting to a lattice, we can deal with the continuum by taking advantage if our 
knowledge of functional integration. We know how to evaluate Gaussian functional
integrals on the continuum: 
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Consequently, we can evaluate integrals of the form:

(6)

(7)

Using this we can define an inner product of sources on the continuum as follows:

(8)
n + m even
otherwise

where we have absorbed a factor of 2 by redefining ∋ . δ  + is defined by

(9)
(10)

In addition to this inner product definition, we need good guesses for approximate
Z-form for * and numerical tools to calculate, symbolically or numerically, various func-

tions and their integrals, derivatives, and so on. For most of our calculations we have
found it very useful to choose a lesser known class of functions, with very suitable
properties for numerical calculation, known as Sinc functions. We take our notation
for the Sinc functions from Stenger [8]:

Some of the identities that Sinc approximations satisfy are given below: 

(11)

(12)

(13)

(14)

(15)

(16)

(17)

These properties, whice are proven and expanded upon greatly in [8], make these func-
tions very easy to use for Galerkin methods, collocation, integration by parts, and
integral equations. 

With the definition of a norm and set of expansion functions, we can postulate an 
ansätz for Z-

(18)

where each Green function, Gn, is represented by a d-dimensional Sinc expansion. For
d = 4: 
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(19)

It is easy to examine this expansion in the case of a free field where we limit the
approximation to the terms quadratic in j(x). While the example is trivial, it shows
that, as always, numerical approximations must be handled with care. Results of this
calculation are shown in Figure 1.

This straightforward expansion works fine for interacting theories with more than
G2 , the computational costs and storage costs become overwhelming: G2n requires
N(2n–1)d storage units. There are many ways that storage costs can be reduced, but in
general these approaches are difficult, not particularly elegant, and eventually reaches a
limit due to the exponential growth in the number of coefficients of the representation.

We can use our knowledge of the spectral representations of field theory and graphi-
cal approaches to introduce a much more beautiful and intuitive approach to producing

Z-candidates for *. We introduce regulated Lehmann representations. These build in
the appropriate spacetime Lorentz structure into our approximations and remove the
growth of operational cost with spacetime dimension shown by our previous naïve de-
composition into complete sets of functions. Any exact two-point function can be 
represented as a sum over free two-point functions. We choose as the basis of our
numerical solutions, a regulated Euclidean propagator structure: 

(20)

(21)

This regulation assures that we never have to deal with infinities in any calculated 
amplitude as long as we keep the cutoff finite. 

This integral can be approximated using Sinc methods 

(22)

Figure 1. Mass, m*, versus distance, x, for two-dimensional free scalar field. Note
breakdown near origin (approximation of δ -function) and at large distance (spatial
truncation). m0  = 0.5.
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Table 1. Convergence of Sinc approximation to integral. (Exact integral calculated
using Maple V, with 40 digits of precision.) x2 = 10, m = 1, Λ 2 = 10.

Figure 2. One dimensional φ 4 mass gap versus coupling (dashed line gives exact from 
Hioe and Montroll, 1975) 

The example in Table 1 demonstrates that we can have as many digits as are necessary
for the calculation, with the associated increase in compute time. For practical pur-
poses, 80 terms is appropriate for most hardware floating-point representations. Thus 
we have a form for a two-point scalar Green function, regulated by the scale Λ 2 with
constant computational cost regardless of spacetime dimension. We can take derivatives 
explicitly or by construction: 

∂2∆ (m; x) = m2∆ (m; x) – δ – (x) (23)

where δ – (x) = e–x2Λ 2/4 

From this representation, we can directly construct a fermion two-point function:

S(m; x) = (γ . ∂ – m)∆ (m; x) (24)

These representations mean that free scalar and free fermion results are exact and 
immediate in any Galerkin evaluation of these trivial cases. Furthermore, because of 
this simplicity, we have the basis for a complete numerical approach to conventional
perturbation theory. 
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2 Results with Lehmann representation: φ  4

We itemize some results obtained using a regulated single propagator with parameters
set by the Source Galerkin method. At lowest order, our ansätz for the generating
functional is 

(25)

Results for this ansätz are given in Figure 2. These results are strikingly accurate and
can matched up essentially exactly with results of Monte Carlo calculations in two and
higher dimensions. 

We can enhance these results by including additional 4 source terms in Z- *. Some 
simple additional terms that we include with weights and masses to be calculated using 
the Source Galerkin technique are the terms of the forms given in Figure 3. The 
effect of adding a fourth order term is shown in Figure 4.

In addition to the illustrations given here, we have examined (ψ,ψ ) 2 in the mean
_

field in two dimensions and have found rapid convergence to the known results from
large-N expansions. It therefore appears that, at least for the simple cases studied, we 
have produced a numerical method which draws on the structural information already
known in general through symmetry and spectral representations which when combined
with Galerkin averaging to set parameters converges with very simple guesses for the
vacuum amplitude to known correct answers produced through other methods of so-
lution including Monte Carlo methods. More complicated gauge problems are under
study.

3 Numerical issues

In this very brief presentation we have avoided discussion of many of the difficult
numerical issues involved in constructing this approach. We note some of these issues 
here without discussion to have on record.

• both interpolative and spectral problems result in medium- to large-scale non-
linear systems; systems solvable using many variable Newton’s method 

• finite storage is the key constraint for interpolative representations, which must
be constrained to two-point ‘connectors’, particularly in high dimensions 

Figure 3. Additional connector-based ansätzen for the four-point function, H, in λ φ 4.
In the bottom row, we have two contact ansätzen on the left, followed by two mediated 
ansätzen.
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• storage is a non-issue for spectral representations (memory use entirely for caching
calculated quantities) 

• both methods are also time-bound to ‘connector’-based representations for higher
point functions 

• time cost from internal loops; however, algorithm can be made parallel via parti-
tioning of sums 

• resolution of elementary pole structures (i.e. differentiating between δ and (p2 +
m2 )– l ) may be addressable with arbitrary precision libraries

• arbitrary precision may also be useful for regulated perturbation calculations 

These numerical issues, and related general numerical techniques for source Galerkin 
are discussed in greater detail in [1, 5, 4].

4 Conclusions

We have discussed a method for numerical calculations for field theories on the con-
tinuum; this method being based on the source Galerkin technique introduced in [2].
The direct approach, using Sinc functions for interpolation, is effective but will ulti-

Figure 4. Comparison of four-H approximation with lowest order and exact answer, in 
one-dimension ( Λ 2 = 70). 
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mately be limited by the finite nature of current computate resources. The Lorentz-
invariant regulated representation derived from Lehmann representation does not suffer
from these limitations, and is applicable to both perturbation- and mean-field-based
ansätzen. This approach has the computational advantages of minimal memory uti-
lization and parallelizable algorithms and also allows direct representation of fermionic
Green functions. Finally, a number of useful peripheral calculations can made using
this appoximate representation: one can calculate diagrams in a regulated perturbation 
theory, as well as calculating dimensionally regularized loops numerically. In general,
this technique of evaluating field theories takes advantage of the symmetries of the
Lorentz group; future work includes the extension of the method to more general in-
ternal groups, such as gauge groups or supersymmetry. 
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LEPTOQUARKS REVISITED

Paul H. Frampton

Department of Physics 
University of North Carolina 
Chapel Hill, NC 27599-3255

DATA FROM HERA 

In the second half of February 1997, the two collaborations H1[1] and ZEUS[2]
working on e+p collisions at HERA: e+(27GeV) + p(820GeV) simultaneously sub-
mitted to Z.Phys. announcements of small-statistics discrepancies from the Standard
Model(SM). The two papers can also be downloaded from the World Wide Web at the
URL: htt p: //info.desy.de/ 

From the Web we may learn much interesting information. For example H1 has
400 members from 12 countries while ZEUS has 430 members from 12 countries.

As for physics, H1 finds 12 events with Q2 > 15, 000GeV2 where the SM predicts
4.71 ± 0.76. Coincidentally, ZEUS finds 2 events with Q2 > 35, 000GeV2 for which the
SM prediction is 0.145 ± 0.013. The probability that these data result from a statistical
fluctuation is 0.5%. This is the same as the probability that four dice thrown together
will roll to a common number.

Another provocative fact, although not as clearcut when H1 and ZEUS are com-
pared, is that these excess high-Q2 events may cluster around a common x value. The
mass M = of a direct-channel resonance would be ~ 200GeV for H1 and perhaps
somewhat higher for ZEUS. 

There are 20 times more data in e+p collisions compared to e–p. For the latter
there has been an ion trapping problem at HERA. The integrated luminosities are
34.3pb–1 of e+p data and 1.53pb–1 of e–p data.

The conservative reaction is that (i) we have been chasing deviations from the SM
for two decades and experience has shown that more precise data always remove the
discrepancy. (ii) instead of extrapolating the QCD to higher Q2 we should make an
overall fit including the new events. Actually (ii) seems unlikely to work because here 
we are dealing with valence quarks, not gluons, with structure functions that are better
known - it is not like the situation for high transverse energy jets at FermiLab where 
the gluon structure functions could be modified to explain the data. 

For the present purposes, we take the experimental result seriously at face value. 
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THEORY RESPONSE

There were 30 theory papers involving 63 theorists in the 10 weeks following the 
HERA announcement which for 14 events corresponds to over 2 papers and 4 theorists
per event! 

The 30 papers, with author(s) and hep-ph/97mmnnn numbers, are listed in chrono-
logical order of appearance in Refs. [3-32], 

These 30 papers break down as follows:

• 1 on consistency of the data.[15]

• 2 on compositeness.[3, 32]

• 5 on contact interactions.[13, 18, 21, 22, 31]

• 9 on R-symmetry breaking squark. [4, 6, 7, 11, 19, 25, 26, 28, 29]

• 13 on light leptoquark. [5, 8, 9, 10, 12, 14, 16, 17, 20, 23, 24, 27, 30]

We see that a new light (~ 200GeV) particle is the most popular explanation with 22
papers out of the 30.

First, I shall review these 30 papers written by theorists in 1997. 

Then I will review my own 1992 paper [33] predicting weak-scale leptoquarks. 
Finally I shall comment on some other experimental constraints up to December

1997.

Consistency of Data 

This is from Drees, hep-ph/9703332. He compares H1 with ZEUS. First look at
the distribution of M(LQ) = One finds 200.3 ± 1.2 GeV (7 events) for H1 and
219.3 ± 5.5 GeV (4 events) for ZEUS. These disagree by 3.4σ but overall uncertainty
in the energy reduces this to 1.8σ, or an 8% chance occurrence.

Next compare the absolute event numbers 7 for H1 and 4 for ZEUS. The integrated
luminosities are 14.2pb–1 for H1 and 20.1pb–1 for ZEUS. Zeus has ”looser” cuts and
the likelihood of this outcome is not higher than 5%.

Combining the two effects (x and # events) gives a 0.5% compatibility between
H1 and ZEUS. This is about the same as the compatibility of the combined HERA 
data with the Standard Model. So the size of statistical fluctuation is comparable! 

Compositeness

Adler (hep-ph/9702378) is the first 1997 theory of the HERA effect. In his ”frus-
trated SU(4)” for preons, the positron interacts with a gluon and makes a transition
to a E+ state, a kind of leptogluon which decays into a e+ and a jet.

Akama, Katsuura and Terazawa (hep-ph/9704327) revive a 1977 model and calcu-
late cross-sections for several different composite states. The conclusion is that certain 
composites are possible: 

• leptoquark, e+*
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while excluded are:

• Z*,q* (by pre-existing mass bounds)

Contact Interactions

A general approach is due to Buchmuller and Wyler (hep-ph/9704317) who parametrize
physics beyond the SM by four-fermion contact interactions; quark-lepton universality, 
absence of FCNC color-independence, flavor-independence and consistency with atomic
parity violation results are imposed. There is then a unique current-current form of
contact interaction: 

(1)

(2)
where:

This contact term shares the U(45) invariance of the standard model when the gauge
and Yukawa couplings vanish.

Rare processes like KL e-µ+ and LEP2 data constrain Λ > 5TeV. The HERA
data require, on the other hand, Λ < 3TeV. So Buchmuller and Wyler conclude that if
there is new physics there must be sizeable breaking of quark-lepton symmetry and/or
new particles.

Nelson(hep-ph/9703379) looks at the atomic parity violation constraints.

Di Bartolomeno and Fabbrichesi(hep-ph/9703375) and Barger, Cheung, Hagiwara 
and Zeppenfeld (hep-ph/9703311) concur that Λ < 3TeV is needed to fit the HERA
data.

Gonzales-Garcia and Novaes (hep-ph/9703346) examine constraints on contact
interactions from the one-loop contribution to Z e+e–.

Leptoquark [R Breaking Squark]

As mentioned above, 22 of the 30 papers in 1997 are in this direction. From here 
on we assume a direct-channel resonance in e+q.

Note that a valence quark is more likely than a sea antiquark because the latter is going 
to give e–p effects conflicting with the data, despite the twenty times smaller integrated
luminosity.

Also: a scalar is more likely than a vector. A vector leptoquark has a coupling
to gluons and would be produced by –qq g at theTevatron. We

expect therefore the leptoquark to be a scalar corresponding to (e+u)5/3 and/or (e+d)2/3 .
There are seven scalar leptoquark couplings to e±q , three of which involve e+q.

All demand that the LQ is an SU(2) doublet:

O = (3)

O´ =

O" =
(4)

(5)
For to explain HERA data, λ 11 ~ 0.05.O
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The branching ratio B(KL e+e–π 0) ≤ 4.3 × 10 –9 implies that λ 11λ 12 ≤
1.5 × 10–4. This means λ12 ≤ 3 × 10–3, an unusual flavor hierarchy.

The rare decays K+ π + vv- and µ eγ also constrain the off-diagonal λ ij.→
The conclusion about the flavor couplings of the leptoquark is:

• The leptoquark scalar needs to couple nearly diagonally to mass-eigenstate quarks.

If one believes in weak-scale SUSY, a special case of scalar leptoquark is an R-
symmetry breaking squark. The quantity R = (–1) 3B+L+2S clearly must be broken 
because e+q has R = +1 and q̃ has R = –1.

In the Superpotential λijkLiLjEk + λijkLiQkDk + λijk UiDjDk, we put λ "ijk = 0 for 
B conservation. Then to explain the data we need λ 1j1 ~ 0.04 where B(q̃ e+d)
is the branching ratio.

Neutrinoless double beta decay (ββ )0v requires λ '111 < 7 × 10–3 which excludes
q̃= ũ.

Can the squark be q̃ = c̃? If so, it implies that the rare decay, K+ π +vv- , being
measured at Brookhaven is close to its current bound, which is interesting.

Finally, if q̃ = t̃ , atomic parity violation implies that |λ '131| < 0.5, so the branching
ratio B can be much less than 1 and still be consistent. 

THE SU(15) POSSIBILITY

The paper[33], published in 1992, predicts light leptoquarks in e–p, the mode in 
which HERA was then running.

Such scalar leptoquarks predicted by SU(15) lie at the weak scale. The situation
can be contrasted with SU(5) grand unification where ”leptoquark” gauge bosons cou-
ple to 5– and 10, are simultaneously ”biquarks”, and hence must have mass ~ 1016GeV.

At the Warsaw Rochester Conference in July 1996, the speakers from HERA and
Tevatron report failure to find leptoquarks so I thought my idea might be wrong. 

Now it is worth spending a few minutes to review SU(15). 
The SU(15) GUT was inspired by the desire to remove proton decay. With:

15 = (u1 ,u2 ,u3 ,d1 ,d2 ,d3 ,u–1 , –u2 ,u–3 , –
d1 , –

d2 , d3 ,e +, v,e–) (6)

three times, every gauge boson has definite B and L which are therefore conserved in 
the gauge sector. 

The symmetry breaking may be assumed to follow the steps: 
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MGUT can be as low as 6 × 106GeV, for MA = Mw. Once we select MA, the other two
scales MB and MGUT are calculable from the renormalization group equations.

In SU(15), the family-diagonal scalar leptoquark is in the 120 representation. The 
content of 120 is shown in [33]. It contains (3, 2)Y=7/6 under SU(3) × SU(2) × U(1).
This SU(2) doublet has the quantum numbers of (e+u.) and (e+d), required to explain
the HERA data. 

The point is that this irreducible representaion contains the standard Higgs dou-
blet so there is every reason to expect the scalar leptoquarks to lie near the weak scale
~ 250GeV. SU(15) predicts further leptoquark and ”bifermion” states at or near the 
weak scale. 

The discovery of light leptoquarks would be evidence as compelling as proton decay 
for grand unification.

BOUNDS ON LEPTOQUARKS FROM OTHER EXPERIMENTS 

Both CDF[34] and D0[35] have found severe constraints for leptoquarks coupling
to e± jet, in the first generation. If the branching ratio to this channel is 100% then D0 
excludes masses M < 225GeV and CDF excludes M < 213GeV. If the branching ratio
to the first generation channel is lower, then the lower limit on the mass is reduced e.g.
for Bqe = 0.5 only M < 176GeV is excluded.

There are other limits from LEP2 but these are less restrictive e.g. excluding
M < 130GeV.

For consistency with the Tevatron data, the first-generation branching ratio must
satisfy Beq < 0.7. 

CONSTRAINTS FROM S AND T 

Extra states beyond the Standard Model tend to increase the values of the pa-
rameters S and T and take us out of agreement with the precision electroweak data. 
However, if there are two doublets of leptoquarks with charges (5/3, 2/3) and (2/3, -
1/3) and if the charge 2/3 states mix then it is possible to obtain negative contributions 
to S and T. 

A second mechanism that gives negative contributions is on the basis of bileptonic
gauge bosons[36]. 

Both of these mechanisms were examined in detail in [37]. In particular, it was 
shown that the SU(15) theory, discussed above, is consistent. This is non-trivial be-
cause the three families of mirror fermions necessary to cancel chiral anomalies give 
∆ S = 3/π, a too-large value. It turns out, however, that because SU(15) contains both
leptoquarks and bileptons, that there is a significant region of parameter space where
S and T are acceptable[37].

SUMMARY

The HERA data may suggest a leptoquark resonance in e+q at about 200GeV,
although the case is not stronger now in December 1997 than it was in early 1997! 
There are at least 50 theory papers analysing this data, many of whch have been 
discussed above. Other exeriments, especially D0 and CDF at Fermilab, restrict the

79



possibility of a first-generation leptoquark with 100% branching ratio to (e+d); lower
branching ratios below 70% may be admissable.

ACKNOWLEDGEMENT

This work was supported in part by the US Department of Energy under Grant 
NO. DE-FG02-97ER41036.

REFERENCES

1. H1 COLLABORATION: Z. Phys. C74, 191 (1997).
2. ZEUS COLLABORATION, Z. Phys. C74, 207 (1997).
3. S.L. Adler, hep-ph/9702378.
4. D. Choudhury and S. Raychaudhuri, hep-ph/9702392. Phys. Lett. B401, 54 (1997)
5. T.K. Kuo and T. Lee, hep-ph/9703255. Mod. Phys. Lett. A13, 2367 (1997).
6. G. Altarelli, J. Ellis, S. Lola, G.F. Guidice and M.L. Mangano, hep-ph/9703276. Nucl. Phys.

B506, 3 (1997) 
7. H. Dreiner and P. Morawitz, hep-ph/9703279. Nucl. Phys. B503, 55 (1997).
8. R. Fiore, L.L. Jenkovsky, F. Paccanoni and E. Predazzi, hep-ph/9703283. Nucl. Phys. B503,

55 (1997) 
9. M.A. Doncheski and S. Godfrey, hep-ph/9703285. Mod. Phys. Lett. A12, 1719 (1997).
10. J. Bluemlein, hep-ph/9703287. Z. Phys. C74, 605 (1997).
11. J. Kalinowski, R. Rueckl, H. Spiesberger and P.M. Zerwas, hep-ph/9703288. Z. Phys. C74, 595

(1997).
12. K.S. Babu, C. Kolda, J. March-Russell and F. Wilczek, hep-ph/9703299. Phys. Lett. 402, 367

(1997).
13. V. Barger, K. Cheung, K. Hagiwara and D. Zeppenfeld, hep-ph/9703331. Phys. Lett. 404, 147

(1997); and hep-ph/9707412. Phys. Rev. D57, 391 (1998).
14. M. Suzuki, hep-ph/9703316.
15. M. Drees, hep-ph/9703332. Phys. Lett. 403, 353 (1997). 
16. J.L. Hewett and T. Rizzo, hep-ph/9703337. Phys. Rev. D56, 1778 (1997). 
17. G.K. Leontaris and J.D. Vergados, hep-ph/9703338. Phys. Lett. B409, 283 (1997).
18. M.C. Gonzalez-Garcia and S.F. Novaes, hep-ph/9703346. Phys. Lett. B407, 255 (1997).
19. D. Choudhury and R. Raychaudhury, hep-ph/9703369. Phys. Rev. D56, 1778 (1997). 
20. C.G. Papadopoulos, hep-ph/9703372.
21. N. Di Bartolomeo and M. Fabbrichesi, hep-ph/9703375. Phys. Lett. B406, 237 (1997). 
22. A.E. Nelson, hep-ph/9703379. Phys. Rev. Lett. bf 78, 4159 (1997). 
23. Z. Kunszt and W.J. Stirling, hep-ph/9703427. Z. Phys. C75, 453 (1997). 
24. T. Plehn, H. Spiesberger, M. Spira and P.M. Zerwas, hep-ph/9703433. Z. Phys. C74, 611

(1997).
25. J. Kalinowski, R. Rueckl, H. Spiesberger and P.M. Zerwas, hep-ph/9703436. Phys. Lett. B406,

314 (1997). 
26. H. Dreiner, E. Perez and Y. Sirois, hep-ph/9703444. In Proceedings of the Workshop, Future 

Physics at HERA, DESY, Hamburg, September 1997. 
27. C. Friberg, E. Norrbin and T. Sjostrand, hep-ph/9704214. Phys. Lett. B403, 329 (1997). 
28. T. Kon and T. Kobayashi, hep-ph/9704221. Phys. Lett. B409, 265 (1997). 
29. R. Barbieri, Z. Berezhiani and A. Strumia, hep-ph/9704275. Phys. Lett. B407, 250 (1997). 
30. I. Montvay, hep-ph/9704280. Phys. Lett. B407, 250 (1997).
31. W. Buchmuller and D. Wyler, hep-ph/9704317. Phys. Lett. B407, 147 (1997). 
32. K. Akama, K. Katsuura and H. Terazawa, hep-ph/9704327. Phys. Rev. D56, 2490 (1997). 
33. P.H. Frampton, Mod. Phys. Lett. A7, 559 (1992). 
34. F. Abe et al. (CDF Collaboration) Phys. Rev. Lett. 79, 4327 (1997).
35. B. Abbott et al. (D0 Collaboration) Phys. Rev. Lett. 79, 4321 (1997).
36. K. Sasaki, Phys. Lett. B308, 297 (1993). 
37. P.H. Frampton and M. Harada, UNC-Chapel Hill Reports IFP-746-UNC(1997) and IFP-748-

UNC( 1997). 

80



THE RELATION OF SPIN, STATISTICS, LOCALITY AND TCP 

O.W. Greenberg1
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Abstract
The spin-statistics theorem has been confused with another theorem, the “spin-locality

theorem.” The spin-statistics theorem properly depends on the properties of asymptotic
fields which are free fields. Ghosts evade both theorems, because they are fields with an in-
definite metric. Either the canonical (anticanonical) commutation relations or the locality of
commutators of observables, such as currents, can serve as the basis of the spin-statistics the-
orem for fields without asymptotic limits, such as quark and gluon fields. The requirements 
for the TCP theorem are extremely weak. 

INTRODUCTION

I have two purposes in this talk[1]. The first is to make clear the difference between the spin-
statistics theorem: particles that obey Bose statistics must have integer spin and particles that
obey Fermi statistics must have odd half-integer spin[2,3], and what I suggest should be called the 
spin-locality theorem: fields that commute at spacelike separation must have integer spin and fields
that anticommute at spacelike separation must have odd half-integer spin[4, 5, 6, 7]. My second 
purpose is to emphasize the weakness of the conditions under which the TCP theorem[10] holds 
and in that way to distinguish it from the spin-statistics theorem and the spin-locality theorem. In 
so doing I amplify Res Jost’s example[11] of a field that has the wrong spin-statistics connection, 
but obeys the TCP theorem. The thrust of this talk is to separate these three theorems that are 
sometimes lumped together. 

SPIN-STATISTICS AND SPIN-LOCALITY

Since the “right” cases of both the spin-statistics theorem and the spin-locality theorem agree, 
I emphasize what fails in each of the theorems for the “wrong” cases. Spacelike commutativity 
(locality) of observables fails for the wrong cases of the spin-statistics theorem. For example, as I

1Supported in part by a Semester Research Grant from the General Research Board of the University of Maryland 
and by a grant from the National Science Foundation
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will discuss in detail in amplifying Jost’s example, for a neutral spin-0 scalar field that obeys Fermi 
statistics, observables, such as currents, fail to be local. By contrast, a neutral spin-0 scalar field 
whose anticommutator is local does not exist-it is identically zero. The obvious corresponding 
wrong cases for spin-1/2 and higher spin have the corresponding failures. 

Spin-statistics: Because the spin-statistics theorem refers to the statistics of particles, its for-
mulation in field theory should involve the operators that create and annihilate particles. These 
operators are the asymptotic fields, the in- and out-fields. Since the asymptotic fields (at least 
for massive particles) are free fields, the proof of the spin-statistics theorem only requires us-
ing the properties of free fields. The assumptions necessary for the proof are (1) that the space 
of states is a Hilbert space, i.e., the metric is positive-definite, (2) the fields smeared with test 
functions in the Schwartz space S have a common dense domain in the Hilbert space, (3) the
fields transform under a unitary representation of the restricted inhomogeneous Lorentz group, 
(4) the spectrum of states contains a unique vacuum and all other states have positive energy 
and positive mass, and (5) the bilinear observables constructed from the (free) asymptotic fields 
commute at spacelike separation (local commutativity of observables). Using these assumptions 
for free fields of any spin, Fierz[2] and Pauli[3] proved that integer-spin particles must be bosons 
and odd half-integer spin particles must be fermions. They used locality of observables as the 
crucial condition for integer-spin particles and positivity of the energy as the crucial condition for 
the odd half-integer case. Weinberg[12] showed that one can use the locality of observables for 
both cases if one requires positive-frequency modes to be associated with annihilation operators 
and negative-frequency modes to be associated with creation operators.

I assume that for non-gauge theories with no massless particles the asymptotic fields are 
an irreducible set of operators. I will show that the conserved observables such as the energy-
momentum operators and, for theories with conserved currents, the current operators, must be a 
sum of the free field functionals of the asymptotic fields, where the sum runs over the independent 
asymptotic fields, including those for bound states if there are bound states in the theory. To see 
this, require–say for the in-fields–

(1)
for the case of the energy-momentum operator and a neutral scalar field. The general expansion
in the in-fields for Pµ is

(2)

and inserting it in Eq.(1) shows that only the constant term and the bilinear free functional of the
in-fields can enter Pµ. The requirement that the vacuum have zero energy eliminates the constant
term. The equation for the bilinear term is

(3)
The integrals over the spacelike surfaces Σ(xi) are independent of the time because of the time-
translation invariance of the Klein-Gordon scalar product. Thus the solution of Eq.(3), 

(4)
leads to the usual result for P µ using ∆(0,x) = 0, ∂0∆(0,x) = –δ(x), and the Klein-Gordon
equation for ∆ (x). Thus the arguments of Fierz, Pauli, and Weinberg for free fields hold in the
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case of interacting theories that have an irreducible set of in- (or out-) fields. For example the 
charge density for a charged spin-zero field is 

(5)



and for a charged spin-one-half field it is

or anticommute

(6)

For a spin-zero field, the commutator of the currents [ j µ( x),jv(y)]– will contain the local dis-
tribution i∆ (x – y) if the annihilation and creation operators obey Bose commutation relations
and the nonlocal distribution ∆(1)( x – y ) if the annihilation and creation operators obey Fermi
commutation relations. For a spin-one-half field, the commutator [j µ(x), jv(y) ] – will contain the
local distribution i S(x – y) if the particle operators obey Fermi rules and the nonlocal distribu-
tion S(1)(x.– y) if the particles obey Bose rules. (Here I assume that the fields are expanded in
annihilation operators for the positive frequency modes and in creation operators for the negative
frequency modes. If a Dirac field is expanded in annihilation operators for both types of modes, 
then the commutator of the field and its Pauli adjoint will be the local distribution i S(x – y), but
the energy operator will be unbounded below.[13])

Spin-locality: For the spin-locality theorem, Lüders and Zumino[4] and Burgoyne[5] replaced
assumption (5) of the spin-statistics theorem by (5' ) that the fields either commute

(7)

(8)
at spacelike separation. Here [A , B]± = AB ± BA. Since in general the fields are not observable,
this is not an assumption about physical quantities. I will call such fields local or antilocal and,
as mentioned above, I will call the theorem the spin-locality theorem. The Lüders-Zumino and
Burgoyne proof shows that if the fields have the wrong commutation relations, i.e. integer-spin
fields are antilocal and odd-half-integer-spin fields are local, the fields vanish. This assumption 
does not relate directly to particle statistics and for that reason this theorem should not be called 
the spin-statistics theorem. Thus the assumptions of the spin-statistics theorem and of the spin-
locality theorem differ; further, the conclusions of the two theorems differ for the case of the wrong
association between spin and either statistics or type of locality.

Ghosts: There is a case in practical calculations in which both the spin-statistics theorem
and the spin-locality theorem seem to be violated: namely, the ghosts of gauge theory. These are 
scalar fields that (1) anticommute at spacelike separation and thus seem to violate the spin-locality
theorem and (2) whose asymptotic limits are quantized obeying Fermi particle statistics and seem 
to violate the spin-statistics theorem. Most discussions of gauge theory rely on path integrals
and don't explicitly consider the commutation or anticommutation relations of ghost fields. N
Nakanishi and I. Ojima[l4] give

where i and j run over the adjoint representation of the gauge group, as the anticommutator
between the ghost and antighost fields. The anticommutators of C as with itself and of C– as with
itself vanish. The arguments used in the proof of the spin-locality theorem show that the two-point
functions 0|C(x)C(y)|0 and 〈0|C – ( x ) C – (y)|0〉 both vanish. Since C and C are hermitian, if the
metric of the space were positive-definite the fields C and C– would annihilate the vacuum and the
fields would vanish. Because the space of states is indefinite, this conclusion does not follow. The 
off-diagonal form of these anticommutators is connected with the fact that the ghost and antighost 
fields create zero norm states. Nakanishi and Ojima take the ghost and antighost fields to be 
independent hermitian fields, so the assumptions of neither the spin-statistics nor the spin-locality
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theorem hold and there is no violation of either theorem.[14] I give the anticommutation relations
of Nakanishi and Ojima for the asymptotic fields for the annihilation and creation operators of
the ghosts and antighosts to illustrate from the particle point of view how these fields evade the
two theorems,

(10)

where other anticommutators vanish, and I used relativistic normalization for the annihilation
and creation operators, 

(11)

and a similar formula for C (as). These two anticommutators go into each other under hermitian
conjugation. The i factors are what allow the anticommutator [C (as) (x), C

– (as) (y)]+ to be –D( x–y )
(for the massless case), rather than a multiple of D(1) (x–y).

Fields without an asymptotic limit: For fields that do not have asymptotic fields, such as
quark or gluon fields, one needs a condition on the fields that can replace the condition on the
asymptotic fields in deriving the spin-statistics theorem. I have argued[l7] that the c-number
equal-time canonical commutation (anticommutation) rules for the fields lead to the commutation 
(anticommutation) relations for the asymptotic fields using the LSZ weak asymptotic limit. This 
suggests that the requirement of local commutativity of observables that is satisfied by asymptotic 
fields by having either Bose or Fermi statistics can be satisfied for fields that do not have asymp-
totic fields by having either the canonical equal-time commutators or the canonical equal-time
anticommutators to be c-numbers. This alternative replaces the alternative of either locality or 
antilocality of the fields of the Lüders-Zumino and Burgoyne theorem. The commutator of cur-
rents at equal times will involve a sum of terms with either equal-time commutators or equal-time
anticommutators of the fields. Since these are c-numbers, they will vanish, except at coincident 
points, only if they have the correct choice of integer or odd half-integer spin. Thus the require-
ment that the observable densities commute at equal times, except at coincident points, again 
leads to the correct association of spin with either c-number canonical equal-time commutators or 
anticommutators.

Gauge theories in covariant gauges have a space of states with an indefinite metric. Since
both the spin-statistics theorem and the spin-locality theorem assume a positive-definite metric, 
we have to understand how these theorems can apply to the particles and fields in gauge theories. 
The qualitative answer is that such gauge theories have a physical space of states (called Hphys  
by Nakanishi and Ojima) that has a positive-definite metric. The space Hphys is the quotient of a
subspace (called vphys by Nakanishi and Ojima) of an indefinite metric space (called v) and the
space of zero norm states (called v0 by Nakanishi and Ojima) and the theorems presumably hold 
in this physical space. 

The local observable point of view allows a very general discussion of the spin-statistics con-
nection based on the principles of locality, relativistic invariance, and spectrum without reference 
to fields. The literature on this point of view can be traced from the book by R. Haag[15] and the 
talk by S. Doplicher[16]. 

T CP 

Now I turn to the TCP theorem[10]. The TCP theorem in Jost’s formulation (given for simplicity
for a single charged field) states that the necessary and sufficient condition for TCP to be a
symmetry of the theory in the sense that there is an antiunitary operator θ such that
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(12)

is that the field φ obey weak local commutativity in a real neighborhood of a Jost point. Weak 
local commutativity is equality of the vacuum matrix elements of a product of fields at points that
are totally spacelike when the order of the fields is inverted, i.e. 

(13)

if all (xi – xj )2 < 0. Jost points are the points where all convex sums of the successive difference
vectors of the points in a vacuum matrix element are purely spacelike. Local commutativity implies 
weak local commutativity, but weak local commutativity is much weaker than local commutativity.
I amplify Jost’s example[11] of a free relativistic neutral scalar field quantized with Fermi statistics, 
repeat Jost’s proof that this field obeys the TCP theorem, and find the Hamiltonian density for 
this field. 

Expand the field in terms of annihilation and creation operators that obey relativistic normal-
izat ion. 

(14)

The annihilation and creation operators obey 

(15)

(16)

The anticommutator of the field is 

(17,

Translate this into position space using 

which is not local. With a vacuum that is annihilated by the annihilation operators, A (k) |0 = 0,〉
this is a theory of free, neutral scalar fermions. This example is nonlocal, but the field does not 
vanish. It obeys the TCP theorem, because its vacuum matrix elements are sums of products of 
two-point vacuum matrix elements and its two-point vacuum matrix elements obey local commu-
tativity from the properties of spectrum and Lorentz invariance. (To further emphasize how weak
a condition TCP invariance is, note that even free quon fields obey TCP.[18])

The Hamiltonian for this free theory is 

(18)

(19)

(20)

(21)

(22)

The result is 

which is the integral of a (nonlocal) energy density, 
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(23)

This energy density is nonlocal in both senses: it is not a pointlike functional of the fields and
it does not commute with itself at spacelike separation. This result for (x) also follows from
Eq.(1). The difference between the spin-0 field quantized with Fermi statistics (the wrong case)
and with Bose statistics (the right case) is that for the wrong case the ∆ (1) (x) distribution enters
rather than ∆ (x), and the zero-time values of ∆ (1) (x) are not local, in contrast to the vanishing
of the zero-time value of D(x) and the locality of its time derivative at zero time.

H

SUMMARY

θ φ (x)θ_1 = φ t(_x)
       θ φ t(x)θ _1 = φ (_x),θ |0 〉= | 0〉 ,

One should distinguish three theorems: The spin-statistics theorem: Given the choice between
Bose and Fermi statistics, particles with integer spin must obey Bose statistics and particles
with odd half-integer spin must obey Fermi statistics. The spin-locality theorem: Given the 
choice between commutators that vanish at spacelike separation and anticommutators that vanish 
at spacelike separation, fields with integer spin must have local commutators and fields with 
odd half-integer spin must have local anticommutators. The TCP theorem: The necessary and 
sufficient condition for the existence of an antiunitary operator θ such that 

is weak local commutativity at Jost points. 
For the spin-statistics theorem, the basis of the theorem is the requirement that observables 

commute at spacelike separation. If the wrong choice is made, observable densities fail to com-
mute at spacelike separation. For fields that don’t have asymptotic fields, the choice is between 
fields whose canonical variables have c-number equal-time commutators and fields whose canonical 
variables have c-number equal-time anticommutators. For the spin-locality theorem, if the wrong 
choice is made, the field vanishes. The TCP theorem can hold even if the field and its particles
have the wrong connection of spin and statistics; clearly it can hold under very general conditions. 
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TESTING A CPT- AND LORENTZ-VIOLATING EXTENSION 
OF THE STANDARD MODEL 
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INTRODUCTION AND BACKGROUND 

The standard model of particle physics is invariant under a variety of continu-
ous symmetry operations, including translations, Lorentz transformations, and gauge 
transformations. The model is also invariant under the action of the product CPT of 
charge conjugation C, parity reflection P, and time reversal T. Indeed, CPT symmetry 
is known to be a characteristic of all local relativistic field theories of point particles 
[1]. It has been experimentally tested to high accuracy in a variety of situations [2]. 
The general validity of CPT symmetry for particle theories and the existence of high-
precision tests means CPT breaking is an interesting candidate experimental signal for 
new physics beyond the standard model, such as might emerge in the context of string 
theory [3, 4, 5]. 

In a talk [6] delivered at the previous meeting in this series (Orbis Scientiae 1997-
I), I discussed the possibility that CPT and Lorentz symmetry might be broken in 
nature by effects emerging from a fundamental theory beyond the standard model. 
String theory, which currently represents the most promising framework for a consistent 
quantum theory of gravity incorporating the known particles and interactions, is a 
candidate theory in which effects of this type might occur. The point is that strings 
are extended objects, so the standard axioms underlying proofs of CPT invariance are 
inappropriate. In fact, it is known that spontaneous CPT and Lorentz violation can 
occur in the context of string theory [3, 7]. 

If the fundamental theory has Lorentz and CPT symmetry and is naturally formu-
lated in more than four spacetime dimensions, then some kind of spontaneous breaking 
of the higher-dimensional Lorentz group presumably must occur to produce an effec-
tive low-energy theory with only four macroscopic dimensions. This situation exists 
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for some string theories, for example. An interesting issue is whether the spontaneous 
breaking generates apparent Lorentz and CPT violation in our four spacetime dimen-
sions. It might seem natural for this to happen, since there is no evident reason why
four dimensions would be preferred in the higher-dimensional theory. However, no
experimental evidence exists for Lorentz or CPT breaking, so if it occurs it must be 
highly suppressed at the level of the standard model. If the standard model is regarded 
as an effective low-energy theory emerging from a realistic string theory, then the nat-
ual dimensionless suppression factor for observable Lorentz or CPT violation would 
be the ratio r of the low-energy scale to the Planck scale, r ~ 10 –17 . Relatively few
experiments would be sensitive to such effects. 

In the previous talk [6], I outlined the low-energy description of effects from spon-
taneous Lorentz and CPT breaking in an underlying theory. At this level, the poten-
tially observable Lorentz and CPT violations appear merely as consequences of the 
vacuum structure, so many desirable properties of Lorentz-invariant models are main-
tained. The low-energy theory acquires additional terms with a generic form [4, 5]. 
More specifically, at the level of the standard model, refs. [8, 9] have identified the 
most general terms that can arise from spontantaneous Lorentz violation (both with 
and without CPT breaking) while maintaining SU(3) × SU(2) × U(1) gauge invari-
ance and power-counting renormalizability. The existence of this explicit extension of
the standard model offers the possibility of quantitative investigations of a variety of 
experimental signals for apparent Lorentz and CPT breaking. 

Some possible consequences of the additional terms in the standard-model exten-
sion were presented at the previous meeting [6]. Among the most interesting quanti-
tative tests of CPT are experiments with neutral-meson oscillations in the K system
[3, 4, 5, 10], the two B systems [5, 11, 12], and the D system [5, 13]. Implications of 
CPT violation in other contexts, such as baryogenesis [14], were also described. 

In the present talk, I provide an update of some developments that have occurred 
in the months since the previous meeting. Possible experimental tests of the QED 
limit of the standard-model extension have been examined [9, 15, 16]. The sensitivity 
of tests of CPT violation in neutral-meson systems has been investigated [10], and 
the first experimental results have been obtained constraining CPT violation in the 
neutral-B system [17, 18]. 

EXTENDED QUANTUM ELECTRODYNAMICS

The general Lorentz-violating extension of the standard model (including terms 
with and without CPT violation), explicitly given in refs. [8, 9], follows from imposing 
two requirements. One is that the form of the additional terms must be compatible with 
an origin from spontaneous Lorentz breaking in an underlying theory. The other is that 
the usual properties of SU(3) × SU(2) × U(1) gauge invariance and power-counting
renormalizability must be maintained. These criteria suffice to keep relatively small 
the number of new terms in the action. A framework for treating the implications of
apparent Lorentz and CPT violation has also been presented in the above works. 

One limit of this extended standard model is an extension of quantum electro-
dynamics (QED) [9]. This is of particular interest because QED is a well-established
theory for which numerous experimental tests exist. Here, I give only the lagrangian
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The CPT-violating terms are 

The Lorentz-violating but CPT-preserving terms are 

for the extended theory of photons, electrons, and positrons, which has a relatively 
simple form. 

The usual lagrangian is 

(1)

(2)

(3)
The coefficients of the various terms can be regarded as Lorentz- and CPT-violating
couplings. The reader is directed to refs. [8, 9] for details of notations and conventions 
as well as for more information about the various terms, including issues such as the
effect of field redefinitions and the possibility of other couplings. 

As mentioned above, many conventional tests of Lorentz and CPT symmetry are 
expected to be insensitive to effects from the additional terms in the extension of QED 
because of the expected small size of the couplings. Nonetheless, certain kinds of
experiment can provide constraints. 

First, consider the fermion sector. One important class of tests consists of Penning-
trap experiments measuring anomaly and cyclotron frequencies with exceptional pre-
cision [19, 20, 21, 22]. These have been investigated in the present context in refs. [15], 
where possible signals are identified, appropriate figures of merit are introduced, and 
estimates are given of limits on Lorentz and CPT violation that would be attainable in 
present and future experiments. A summary of the results of these works can be found 
in a separate contribution to the present volume [16]. As one example, the spacelike
components of the coefficient bµ can be bounded by experiments comparing the anoma-
lous magnetic moments of the electron and positron. The associated figure of merit for 
CPT violation could be constrained to about one part in 10 20 . This is comparable to 
the ratio of the electron mass to the Planck scale at which suppressed but observable 
effects from an underlying theory might be expected. Some interesting constraints on a 
subset of couplings in the fermion sector of extended QED might also arise from high-
precision experiments of various other kinds, including clock-comparison tests [23]. 

Next, consider the photon sector of the QED extension [8, 9]. The CPT-breaking
term with coefficient ( kAF)µ has theoretical difficulties in that the associated canonical 
energy can be negative and arbitrarily large. This suggests that the coefficient should 
vanish, which in turn provides an interesting theoretical consistency check of the model. 
The point is that, even if this coefficient vanishes at tree level, it would typically be 
expected to acquire radiative corrections involving CPT-breaking couplings from the 
fermion sector, which in the present context could cause difficulty with the positivity of 
the theory. However, it has been shown [9] that no such radiative corrections arise in the 
context of the standard-model extension described above. At the experimental level, 
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limits from cosmological birefringence restrict the components of (kAF)µ to 10–42

GeV [24], although there exist disputed claims [25] for a nonzero effect corresponding
to ~ 10–41 GeV.

    <~

  <~

| kAF | 
→

 

In contrast, a nonzero contribution from the CPT-preserving, Lorentz-breaking
term in the photon sector of the QED extension would maintain the positivity of the
total canonical energy density and appears to be theoretically allowed [9]. Moreover,
even if the coefficients (kF)kλ µv vanish at tree level, one-loop corrections from the
fermion sector are induced. It is therefore of interest to examine possible experimental
constraints on this type of term. One irreducible component of (kF)k λ µv is rotation
invariant and can be bounded to 10–23 by the existence of cosmic rays [26] or by other
tests. The remaining components violate rotation invariance and might in principle
be bounded by cosmological birefringence. The attainable bounds are substantially
weaker than those discussed above for the CPT-breaking term because, unlike (kAF)µ ,
the coefficients (kF )kλ µv are dimensionless and so are suppressed by the energy scale of
the radiation involved. Further details about the photon sector of the QED extension
can be found in ref. [9].

NEUTRAL-MESON OSCILLATIONS

Since the last meeting in this series, there have been several developments con-
cerning the possibility of testing the standard-model extension using neutral-meson
oscillations. In what follows, a generic neutral meson is denoted by P, where P K,
D, Bd, or Bs.

Interferometry with P mesons can involve two types of (indirect) CP violation:
T violation with CPT invariance, or CPT violation with T invariance. These are
phenomenologically described by complex parameters ε p and δ p , respectively, that are
introduced in the effective hamiltonian for the time evolution of a neutral-meson state.
Within the context of the standard-model extension, it can be shown that the CPT-
violating parameter δ p depends only on one of the types of additional coupling [10].
Only CPT-violating terms in the lagrangian of the form are relevant, where q
is a quark field and the coupling a q

µ is constant in spacetime but depends on the quark
flavor q. It is also noteworthy that the parameters δp are the only quantities known to
be sensitive to the couplings aµ .

 β µ ≡ γ(1, β )
→

 

To define δ p , one must work in a frame comoving with the P meson. It can be

.
shown that the CPT and Lorentz breaking introduces a dependence of δ p on the boost
and orientation of the meson. Let the P-meson four-velocity be Then,
at leading order in all Lorentz-breaking couplings in the standard-model extension, δp
is given by [10]   

∧∧

   

≡φ φ

 

∆aµ ≡ aq2
µ

_ aq1
µ ,

(4)
In this expression, where q1 and q2 denote the valence-quark flavors 
in the P meson. The quantity is given by tan–1 (2∆ m/∆γ ), where ∆ m and ∆γ 
are the mass and decay-rate differences between the P-meson eigenstates, respectively.
Note that a subscript P is suppressed on all variables on the right-hand side of Eq. (4).

One implication of the above results for experiment is a proportionality between
the real and imaginary components of δp [4, 5]. A second is the possibility of a variation 
of the magnitude of δ p with P, arising from the flavor dependence of the couplings aq

µ
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[5]. Other implications arise from the momentum and orientation dependences in Eq.
(4), which offer the possibility of striking signals for Lorentz and CPT breaking [10].
The momentum and orientation dependences also imply an enhanced signal for boosted
mesons and suggest that published bounds on δ p from distinct experiments could
represent different CPT sensitivities. Experiments involving highly boosted mesons,
such as the K-system experiment E773 at Fermilab [27], would be particularly sensitive
to Planck-scale effects.

The tightest neutral-meson bounds on CPT violation at present are from exper-
iments with the neutral-K system. The possibility exists that relatively large CPT
violation might occur in the behavior of heavier neutral mesons. At the time of the
previous meeting in this series, no bounds existed on CPT violation in the D or B
systems. My talk at that meeting [6] emphasized that sufficient data already existed
to place bounds on CPT violation in the Bd system [12]. Since then, two experimental
groups at CERN have performed the suggested measurement. The OPAL collaboration
has published the result [17] Imδ Bd

= – 0.020 ±0.016 ± 0.006, while the DELPHI collab-
oration has released a preliminary measurement [18] Imδ B d = – 0.011 ± 0.017 ± 0.005.
Other analyses of CPT violation in heavy-meson systems are presently underway.
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INTRODUCTION

The CPT theorem [1] states that local relativistic quantum field theories of point
particles in flat spacetime must be invariant under the combined operations of charge
conjugation C, parity reversal P, and time reversal T. As a result of this invariance,
particles and antiparticles have equal masses, lifetimes, charge-to-mass ratios, and
gyromagnetic ratios. The CPT theorem has been tested to great accuracy in a variety
of experiments [2]. The best bound is obtained in experiments with neutral mesons,
where the figure of merit is

  . (1)

Experiments in Penning traps have also yielded sharp bounds on CPT violation, in-
cluding the best bounds on lepton and baryon systems. Two types of experimental
tests are possible in Penning traps. Both involve making accurate measurements of cy-
clotron frequencies and anomaly frequencies of single isolated particles confined
in the trap. The first compares the ratio for particles and antiparticles. In the
context of conventional QED, this ratio equals g – 2 for the particle or antiparticle. A
second experiment compares values of wc ~ q/m, where q > 0 is the magnitude of the 
charge and m is the mass, and is therefore a comparison of charge-to-mass ratios.

   2wa/wc

wa wa

Experiments comparing g – 2 for electrons and positrons yield the figure of merit
[3, 4] 

(2)
while the charge-to-mass-ratio experiments yield the bound [5]
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(3)

To date, no experiments measuring g – 2 for protons or antiprotons have been
performed in Penning traps because of the difficulty in obtaining sufficient cooling and 
an adequate signal for detection of the weaker magnetic moments. However, proposals 
have been put forward that might make these types of experiments feasible in the 
future [6]. The best current tests of CPT in proton and antiproton systems come from 
comparisons of the charge-to-mass ratios [7], which yield the bound

(4)

It is interesting to note that in the neutral meson experiments which yield the
bound on rK in (1), measurements are made with an experimental uncertainty of
approximately one part in 104. In contrast, measurements of frequencies in Penning
traps have experimental uncertainties of about one part in 109. This raises some
intriguing questions about the Penning-trap experiments as to why they do not provide
better tests of CPT when they have better experimental precision. In the context of 
conventional QED, which does not permit CPT breaking, it is not possible to pursue
these types of questions. Instead, one would need to work in the context of a theoretical 
framework that allows CPT breaking, making possible an investigation of possible
experimental signatures. Only recently has such a framework been developed [8]. 

In this paper, we describe the application of this theoretical framework to ex-
periments on electron-positron and proton-antiproton systems in Penning traps. Our
results have been published in Refs. [9, 10]. 

THEORETICAL FRAMEWORK

The framework we use [8] is an extension of the SU(3)×SU(2)×U(1) standard
model originating from the idea of spontaneous CPT and Lorentz breaking in a more 
fundamental model such as string theory [11, 12]. This framework preserves various 
desirable features of quantum field theory such as gauge invariance and power-counting
renormalizability. It has two sectors, one that breaks CPT and one that preserves 
CPT, while both break Lorentz symmetry. The possible CPT and Lorentz violations 
are parametrized by quantities that can be bounded by experiments. Within this
framework, the modified Dirac equation describing a fermion with charge q and mass
m is given by 

(5)

Here, ψ  is a four-component spinor, iDµ ≡ i∂µ – qAµ, Aµ is the electromagnetic
potential in the trap, and aµ , bµ , Hµv , cµv , dµv are the parameters describing possible
violations of CPT and Lorentz symmetry. The transformation properties of ψ imply
that the terms involving aµ , bµ break CPT while those involving Hµv, cµv , dµv preserve
it, and that Lorentz symmetry is broken by all five terms. Since no CPT or Lorentz 
breaking has been observed in experiments to date, the quantities aµ , bµ , Hµv , cµv, dµv

must all be small. 
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PENNING-TRAP EXPERIMENTS 

We use this theoretical framework to analyze tests of CPT and Lorentz symmetry
in Penning-trap experiments. To begin, we note that the time-derivative couplings
in (5) alter the standard procedure for obtaining a hermitian quantum-mechanical
hamiltonian operator, To overcome this, we first perform a field redefinition at the
lagrangian level that eliminates the additional time derivatives. We also use charge
conjugation to obtain a Dirac equation and hamiltonian for the antiparticle.

To test CPT, experiments compare the cyclotron and anomaly frequencies of par-
ticles and antiparticles. According to the CPT theorem, particles and antiparticles of
opposite spin in a Penning trap with the same magnetic fields but opposite electric fields
should have equal energies. The experimental relations g – 2 = 2wa /wc and wc = qB/m
provide connections to the quantities q and q/m used in defining the figures of merit rg,

r e
q/m, and r p

q/m. We perform calculations using Eq. (5) to obtain possible shifts in the
energy levels due to either CPT-breaking or CPT-preserving Lorentz violation. In this
way, we examine the effectiveness of Penning-trap experiments as tests of both CPT-
breaking and CPT-preserving Lorentz violation. From the computed energy shifts we 
determine how the frequencies wc and wa are affected and if the conventional figures of 
merit are appropriate.

For experiments in Penning traps, the dominant contributions to the energy come
from interactions of the particle or antiparticle with the constant magnetic field of the
trap. The quadrupole electric fields generate smaller effects. In a perturbative calcu-
lation, the dominant CPT- and Lorentz-violating effects can therefore be obtained by
working with relativistic Landau levels as unperturbed states. Conventional perturba-
tions, such as the anomaly, will lead to corrections that are the same for particles and 
antiparticles. CPT- and Lorentz-breaking effects will result in either differences be-
tween particles and antiparticles or in unconventional effects such as diurnal variations 
in the measured frequencies. 

RESULTS

Our calculations for electrons and positrons in Penning traps [9] show that the 
leading-order effects due to CPT and Lorentz breaking cause corrections to the cy-
clotron and anomaly frequencies: 

(6)

(7)
Here, and represent the unperturbed frequencies, while and denote
the frequencies including the corrections. Superscripts have also been added on the 
coefficients bµ , etc. to denote that these are parameters of the electron-positron system.
From these relations we find the electron-positron differences for the cyclotron and 
anomaly frequencies to be

w e
c

±

w e
a

±

(8)

Evidently, in the context of this framework comparisons of cyclotron frequencies to 
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leading order do not provide a signal for CPT or Lorentz breaking, since the corrections
to for electrons and positrons are equal. On the other hand, comparisons of
provide unambiguous tests of CPT since only the CPT-violating term with b3 results
in a nonzero value for the difference

We have also found that to leading order there are no corrections to the g factors
for either electrons or positrons. This leads to some interesting and unexpected results
concerning the figure of merit rg in Eq. (2). With ge– ≈ ge+ to leading order, we find
that rg vanishes, which would seem to indicate the absence of CPT violation. However,
this cannot be true since the model contains explicit CPT violation. Furthermore, our
calculations show that with the experimental ratio is field dependent
and is undefined in the limit of vanishing magnetic field. Thus, the usual relation 
g – 2 = does not hold in the presence of CPT breaking. For these reasons,
the figure of merit rg in Eq. (2) is misleading, and an alternative is suggested. Since
the CPT theorem predicts that states of opposite spin in the same magnetic field have 
equal energies, we propose as a model-independent figure of merit, 

(9)

where are the energies of the relativistic states labeled by their Landau-level
numbers n and spin s. Our calculations show and we 
estimate as a bound on this figure of merit,

E e
n ,s

±

(10)

In Ref. [10], we describe additional possible signatures of CPT and Lorentz breaking.
These include possible diurnal variations in the anomaly and cyclotron frequencies. 
Tests for these effects would provide bounds on various components of the parameters 
c e

µv, d e
µv, and H e

µv at a level of about one part in 1018.
A similar analysis can also be performed on proton-antiproton experiments in

Penning traps. In this context, it suffices to work at the level of an effective theory in 
which the protons and antiprotons are regarded as basic objects described by a Dirac 
equation. The coefficients a p

µ, b p
µ,  H p

µv, c p
µv,d p

µv represent effective parameters, which at
a more fundamental level depend on the underlying quark interactions. Comparisons
of protons and antiprotons in the context of this model yield the results for the proton-
antiproton frequency differences,

A bound on this can be estimated as 

(11)

Assuming an experiment could be made sensitive enough to measure and with a
precision similar to that of electron g – 2 experiments, then the appropriate figure of 
merit would be

wa
p    wa

p

(12)

(13)
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It is apparent that an experiment comparing anomaly frequencies of protons and an-
tiprotons in a Penning trap has the potential to provide a particularly tight CPT
bound. Other signatures of CPT and Lorentz breaking involving diurnal variations in
wa and wc are described in Ref. [10]. These additional signatures provide bounds on
various components of cµv, dµv, and Hµv estimated at about one part in 10 21.

CONCLUSIONS

We find that the use of a general theoretical framework incorporating CPT and
Lorentz breaking permits a detailed investigation of possible experimental signatures
in Penning-trap experiments. Our results indicate that the sharpest tests of CPT sym-
.metry emerge from comparisons of anomaly frequencies in g – 2 experiments. Our
estimates of appropriate figures of merit provide bounds of approximately 10–20 in
electron-positron experiments and of 10–23 for a plausible proton-antiproton experi-
ment, Other signals involving possible diurnal variations provide additional bounds at
the level of 10–18 in the electron-positron system and 10–21 in the proton-antiproton
system. A table showing all our estimated bounds is presented in Ref. [10].
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ABSTRACT

I discuss a method for generating an effective µ parameter and quasi-realistic
generational mass hierarchy based on intermediate scales between MZ and Mstring. Ap-
plication to string models is briefly discussed. Additionally, a method based on the 
singular value decomposition (SVD) of a matrix is presented for determining, en masse, 
a complete basis of D-flat directions in supersymmetric models. 

I. Mass Hierarchy of Standard Model Matter 

The standard model (SM) and its supersymmetric counterpart, the minimal super-
symmetric standard model (MSSM) have resolved many issues regarding the elementary 
particles and their interactions. Formation of these models is of the leading scientific 
accomplishments of this century. Several Nobel awards have been earned for work 
contributing to development of the SM. Yet the SM/MSSM still leaves many issues 
unresolved. In line with the theme of this conference, I would like to address one such
issue related to the Physics of Mass. The topic I will address is the mass hierarchy 
between the three generations of elementary particles. 

With the mass of the top quark now experimentally determined to within about
5% [1], the physical masses of all three generations of up-, down-, and electron-like
particles are known to very good accuracy. These particle masses axe displayed in Table
1. Therein, I have expressed all masses in units of the top mass. This normalization
makes more apparent the approximate mass hierarchy of 10–5 : 10–3 : 1 between the
three generations of MSSM particles. (Notably, mb and mτ are exceptions to this 
pattern.)

In MSSM physics, it is generally assumed that quarks and electrons (and their
supersymmetric partners) gain mass through superpotential couplings to Higgs bosons
H1 and H2,

1
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TABLE I. Fermion mass ratios with the top quark mass normalized to 1. The values of u–,
d–, and s-quark masses used in the ratios (with the t-quark mass normalized to 1 from an assumed

c- and b-quark masses are pole masses. An additional mass constraint for stable light neutrinos is
Σ imvi, < 6 x 10–11 (i.e., 10 eV), based on the neutrino contributions to the mass density of the
universe and the growth of structure.

mu : mc : mt = 3 x 10–6 7x 10–3 : 1
md : ms : mb = 6 x 10–5 1 x 10–3 : 3 x 10–2

me : mµ : mT = 0.3 x 10–5 : 0.6 x 10–3 1 x 10–2

mve : mvµ : mvT = < 6 x 10–11 : < 1 x 10–6 : < 1 x 10–4

where i is the generation number. Effective mass terms appear when the Higgs acquire
a typical soft supersymmetry breaking scale vacuum expectation value (VEV) H1,2 〉 ~

Intergenerational mass ratios can be induced when the associated first and sec-
ond generation superpotential terms contain effective couplings λ that include non-
renormalizable suppression factors,

msoft = (Mz).

(2)

where S is a non-Abelian singlet, MPI is the Planck scale (which is replaced by the
Mstring for string models), and P' is a positive integer. VEVs only slightly below the
Planck/string scale (as might occur through U(1) anomaly cancellation – see Section
III) imply large values of P'1,2 for 10–5 and 10–3 suppression factors. On the other
hand, intermediate scale VEVs (between MZ and Mstring) require far lower values for 
P'

i. In a series of recent papers [2, 3, 4, 5] intermediate scales have been explored and
occurrence of intermediate scales in actual models has been under investigation. 

In the following section, I show how intermediate scales can occur and how, in
theory, they could produce an intergenerational 10–5 : 10–3 : 1 mass ratio. In Section
III string realizations of intermediate scales are discussed The often first step towards 
intermediate scales in string models, removal of a U(1) anomaly, is reviewed. D- and
F-flat directions must cancel the dangerous Fayet-Iliopoulos (FI) term generated by the 
standard anomaly cancellation mechanism when models initially contain an anomalous
U(1) [7, 8]. Section IV introduces, as a tangential topic, a method for generating en
masse a complete basis of D-flat directions.

II. Intermediate Scales from String Models 

One method for inducing an intermediate scale in a phenomenologically viable 
manner involves extending the SM gauge group by an additional U(1)'. Then two SM
singlets carrying respective U(1) ' charges Q1 and Q2 are minimally required. If the
two U(1)' charges are of opposite sign (Q1Q2 < 0), then there is a D-flat scalar field
direction S defined by,2

(3)

1X̂ denotes a generic superfield and X its bosonic component.
2See Section III for a discussion of D and F-flatness. In the absence of an extra U(1)' only a single

uncharged scalar field S1 would be necessary.
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S = S1 cos αQ+S2 sin αQ will also be a renormalizable F-flat direction if (as I assume) S1ˆ
and Ŝ2 do not couple among themselves in the renormalizable superpotential. Consider
the real component of this flat direction, s = √ 2ReS = S1 cos αQ + s2 sin αQ. This 
scalar’s running mass is,

which generates a potential

I will assume that m2 is positive at the string scale and of order msoft ~ (Mz2) ( m2
o

if universality is assumed). However, for various chooses of the supersymmetry break-
ing parameters A0 (the universal Planck scale soft trilinear coupling) and M1/2 (the
universal Planck scale gaugino mass) normalized by the universal scalar electroweak
(EW) scale soft mass-squared parameter m0, Ref. [2] demonstrated that m2 can be
driven to negative values (of EW scale magnitude) by large Yukawa couplings (i) of
S 1 to exotic triplets, W = hD1 D2 S1; (ii) of S

ˆ
1 to exotic doublets and of S2 to exotic

triplets, W = hDD1D2S1 + hLL1L2S2; and (iii) of S1 to varying numbers of additional
SM singlets W = h Σ i =1 Ŝai Ŝbi Ŝ1. m(µ = s)2 can turn negative anywhere between a
scale of µrad = 104 GeV and µrad = 10I7 GeV (near the string scale). This leads to a
minimum of the potential developing along the flat direction and S gains a non-zero
VEV. In the case of only a mass term and no Yukawa contribution to V(s), minimizing
the potential 

(6)

(7)

(where shows that the VEV 〈s〉 is determined by

(4)

(5)

Eqs. (6,7) are satisfied very close to the scale µRAD at which m2 crosses zero. This scale
is fixed by the renormalization group evolution of parameters from Mstring down to the
EW scale and will lie at some intermediate scale.

Location of the potential minimum can also be effected by non-renormalizable
self-interaction terms, 

(8)

where K = 1, 2 ... and α Κ are coefficients. Such non-renormalizable operators (NROs)
lift the flat direction for sufficiently large values of s. Generally, the running mass is
the dominant factor when µRAD << 1012

 GeV even if NROs exist. If they are present, 
the non-renormalizable operators NRO dominate when µ

RAD >> 1012 GeV. NRO con-
tributions to the potential transform (5) into 

(9)

where = CKMPI/α K, with CK = [2K+1/((K + 2)(K + 3)2)]1/(2K) .

s is found to be
When the NRO factor dominates over the running mass effect in (9), the VEV of
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(10)

where msoft = (|m|) = (Mz ) is a typical soft supersymmetry breaking scale.

on the order of the soft SUSY breaking scale: When the running mass dominates
While 〉s〉 is an intermediate scale VEV, the mass MS of the physical field s is still

whereas when the NRO term dominates, 

(11)

(12)

What powers Pi in (2) for first and second generation suppression factors in an
NRO-dominated model could produce a mass ratio of order 10–5 : 10–3 : 1? When 〈s 〉 
takes the form in (10), the suppression factors become

(13)

where the coefficient α K has been absorbed into the definition of the mass scale M ≡ 
/CK. The mass suppression factors corresponding to P' in the range 0 to 5 and K in

the range of 1 to 7 are given in Table 2. This table shows that intermediate scale VEVs
around 8 × 1014 GeV to 2 × 10–15 GeV, resulting from K = 5 or K = 6 self-interactions
terms of S, reproduce the required mass ratio for P '

1 = 2 and P '
2 = 1.

However, unless tan 1, the intragenerational mass ratio of 10 –2 :
10–2 : 1 for mτ, mb, and mt is not realizable from a K = 5 or 6 NRO singlet term. 
for tan β ~ 1, mτ, mb axe too small to be associated with a renormalizable coupling
(P = 0) like is assumed for mt, but are somewhat larger than predicted by P' = 1
for K = 5 or K = 6. Instead, mb and mτ might be associated with a different NRO
involving the VEV of an entirely different singlet. In that event, Table 2 suggests
another flat direction S', (formed from a second singlet pair S '

1 and S '
2 ) with a K = 7 

self-interaction NRO and P' = 1 suppression factor for mb and mτ.

TABLE II. Non-Renormalizable MSSM mass terms via 〈 S 〉. For msoft ~ 100 GeV,
M ~ 3 × 10–17 GeV.
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An intermediate scale VEV 〈S〉 can also solve the µ problem through a superpo-
tential term

With NRO-dominated

(14)

the effective Higgs µ-term takes the form,

(15)

The phenomenologically preferred choice among this class of terms is clearly P = K,
since this yields a K–independent µe f f ~ m s of t .

Intermediate VEVs also provide various means by which neutrinos can acquire
small masses. Some of these processes do not involve the traditional seesaw mechanism.
Very light non-seesaw doublet neutrino Majorana masses

are possible from Majorana doublet superpotential terms

(16)

(17)

The upper bound (corresponding to P"LiLi = 0) on such neutrino masses is around 10–4

eV (using ~ msoft = 100 GeV and M = 3 x 1017 GeV), which is too small to be〈H2〉
relevant to dark matter or MSW conversions in the sun [9].

If Majorana doublet terms are not present, then naturally heavier physical Dirac
neutrino masses

result from Dirac superpotential terms like
(18)

(19)

(with v̂ ∋L̂ the neutrino doublet component and v̂ c a neutrino singlet). For K = 5 the
experimental neutrino upper mass limits given in Table 1 allow > 4, > 3, 
and = 4 (5) corresponds to = 0.9 eV (10 –2 eV), which is in 
the interesting range for solar and atmospheric neutrinos, oscillation experiments, and 
dark matter. 

Neutrino singlets can acquire Majorana masses 

through superpotential terms 

Such masses can be very large or small, depending on the sign of – K.

(20)

(21)
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When bothW (Dir)
Liv

c
i

and W (Maj)
vc

iv c
i

terms are present, the standard seesaw mechanism
can produce light neutrinos via diagonalization of the mass matrix for eqs. (19,21). The
light mass eigenstate is 

(22)

while the heavy mass eigenstate is still to first order mv c
i v c

i
as given by (20). Various

combinations of K, P'Liv c
i

and P
–

vc
i
v c

i
 produce viable masses for three generations of light

neutrinos. For example, with K = 5 and P'Liv c
i = P'i = 2 (1) for i = 1, (2), and with

either P'L3vc
3

= 1 or P'L3vc = P'u3 = 0, the light eigenvalues of the three generations fall
into the hierarchy of 3 x 10–5 eV, 1 x 10–2 eV, and either 1 x 10 –2 eV or 5 eV for
P– v c

i vci = P' Liv c
i

+ 1. This is an interesting mass range for laboratory and non-accelerator
experiments.

III. Anomalous U (1) and Flat String Directions 

In string models, one problem must generically be taken care of before possible
flat directions for intermediate scale VEVs can be investigated. That is, most four
dimensional string models contain an anomalous U(1)A (meaning Tr Q A ≠ 0). Since
the appearance of anomalous U(1) in four-dimensional string models has been discussed
in many prior papers e.g. [10, 3], I will only review the essentials here.

Often in a generic charge basis, a string model with an Abelian anomaly may
actually contain not just one, but several anomalous U(1) symmetries. However, all
anomalies can all be transferred into a single U(1) A through the unique rotation

(23)

with CA a normalization factor. The remaining non-anomalous components of the
original set of {U(1)n} may be rotated into a complete (non-unique) orthogonal basis
{U(1)a}

The Green-Schwarz (GS) relations,

(24)

(25)

and additional generalizations involving QAQaQb, QaQbQc, etc.. guarantee the elimi-
nation of all triangle anomalies except those involving one or three U(1)A gauge bosons.
These relations result from stringy modular invariance constraints and have no paral-
lels in standard field theory. Thus, in a generic field-theoretic model or in a strongly
coupled string model, (23) would not necessarily place the entire anomaly into a single
U(1)A: Tr Qa and Tr Q 3

a may be independent.
The standard anomaly cancellation mechanism [7, 8] breaks U(1)A, while simulta-

neously generating a FI D-term,

(26)

where φ is the dilaton and is the physical four-dimensional gauge coupling.
The FI D-term breaks spacetime supersymmetry unless it is cancelled by appropriate
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VEVs of the scalar components ϕ j of supermultipletsΦ j that carry non-zero anomalous 
charge,

(27)

Constraints are imposed on possible VEV directions Σ j |ϕ j | by D-flatness in the non-
anomalous directions, 

(28)

(29)

along with F-flatness,

In [3] my colleagues and I at Penn developed methods for classifying D- and F-flat
directions in anomalous string models. In [5] we then applied this process to all of the
free fermionic three generation SU(3) x SU(2) models introduced in [6]. We determined
(i) which models have anomaly-cancelling directions that involve only VEVs of non-
Abelian singlet fields, and (ii) since anomaly-free U(1)a are also generally broken along
with U(1)A , which (if any) singlet field anomaly-cancelling flat directions retain a good
hypercharge and at least one additional U(1)' for generating an intermediate scale VEV.

IV. D-Flat Basis From Matrix Decomposition

For the remaining part of my talk, I would like to discuss a new approach I found
for generating a complete basis of D-flat directions. Most often (including in [3, 5])
D-flat directions for the non-anomalous U(1)n are found via their the one-to-one corre-
lation with holomorphic gauge invariant polynomials of fields [11]. Here a D-flat basis
corresponds to a maximal set of independent holomorphic monomials. I have found
an alternate approach involving singular value decomposition (SVD) of a matrix [12].
While the monomial and matrix methods are essentially different langauges for the
same process, the matrix decomposition method generates, en masse, a complete basis
of D-flat directions for non-Abelian singlet states.

The matrix method is based on the mathematical fact that any (M x N)-dimensional
matrix D whose number of rows M is greater than or equal to its number of columns
N, can be written as the product of an M x N column-orthogonal matrix U, an N x N
diagonal matrix W containing only semi-positive-definite elements, and the transpose
of an N x N orthogonal matrix V [12],

DMxN = UMxN · Wdiag
NxN · VT

NxN , for M ≤ N. (30)
This decomposition is always possible, no matter how singular the matrix is. The de-
composition is nearly unique also, up to (i) making the same permutation of the columns 
of U, diagonal elements of W, and columns of V , or (ii) forming linear combinations of
any columns of U and V whose corresponding elements of W are degenerate. If M < N,
then a (N – M) x N zero-matrix can be appended onto D so this decomposition can
be performed: D(M<N),N → D(M=N) ,N.

This decomposition is extremely useful when the matrix D is associated with a set
of M simultaneous linear equations expressed by, 

(31)D· =

where x and b are vectors. (I assume hereon that D has been enhanced by a zero
submatrix if necessary so that M ≥ N.) Eq. (31) defines a linear mapping from
N-dimensional vector space x to M-dimensional vector-space b. When D is singlar
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(corresponding to the M constraints not all being linearly independent) there is a
subspace of termed the nullspace that is mapped to in b-space by D. The dimension
of this nullspace is referred to as the nullity. 

The subspace of that can be reached by the matrix D acting on is called
the range of D and the dimension of the range is denoted as the rank of D. Clearly
rank D + nullity D = N, with rank D ≡ # of independent constraint equations M' ≤
M

In the decomposition of D, the set of the j th columns of U corresponding to the
j th non-zero diagonal components of W form an orthonormal set of basis vectors that
span the range of D. The columns of V whose corresponding diagonal components of
W are zero form an orthonormal basis for the nullspace.

This method is directly applicable to constructing D-flat directions, especially
when only non-Abelian singlet states are allowed VEVs, Let M (MI) denote the number
of (independent) D-flat constraints and N denote the number of fields allowed to take

〈φ〉 j2,

on VEVs. Then the Di,j component of the matrix D is the Q(i)
j charge of the state φ j.

(i takes on the value A for the anomalous U(1)A and values {a = 1 to M – 1) for the
set of non-anomalous U(1)a .) The components of the vector x are the values of
and b has all zero-components except in its row corresponding to the anomalous U(1)A .
The value of b in the anomalous position is –ξ , as defined by eq. (26).

Let D' be the matrix that excludes the row of anomalous charges in D. In this
language, the dimension of the moduli space Mnull of flat directions for the M' M – 1
non-anomalous U(1)a=l to M' is the nullity of matrix D', formed from the M' non-
anomalous D-flat constraints. In other words, the nullity of D' is all VEVs formed
from combinations of states that have zero net charge in each non-anomalous direction.
The dimension of Mnull is in the range

N – M' ≤ dimMnull = N– M'I ≤ N, (32)
where N is the number of states allowed VEVs and M'I is the number of independent
non-anomalous constraints.

For the complete matrix D containing also anomalous constraint, the elements of
the range corresponding to true D-flat directions are those formed solely from linear
cobinations of elements of the nullity of D' that generate an anomalous component
for of opposite sign to that of ξ . The nullspace of D will likewise be formed from
linear combinations of D's nullity elements that generate a zero anomalous component
for The dimension of the D' nullity subset that projects into the range of D, denoted
by dim R , is 1 (since the anomalous constraint must necessarily be independent of
the non-anomalous constraints). An (N – M'I – 1)-dimensional subset of Mnull forms
the nullity of D.

Using this decomposition process to form a basis of D-flat directions requires one

〈φ〉j2

additional projection be applied to the the range and nullity of D, That is, components
of a vector x can only have positive real values if they are to truly represent the norms
of VEVs, So while generically the orthogonal basis elements of nullspace of D',
obtained from V via decomposition of D', will have components with negative values,
we must project onto the sub-space containing only vectors with positive components. 

.

Without having to impose this sign constraint, a D-flat direction is automatically

〈φj〉
2

guaranteed whenever the projection of the nullspace of D' onto the range of D was
not empty. 

There is one important caveat to this. An effective negative can result when

〈φ〉j
2

there are vector-like pairs ofstates (i.e., that carry exactly opposite charges for all U(1)a

and the U(1)A). If the VEVs of these two states are and respectively,,〈φ〉j
2

then each row in D · will contain pairs of terms
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that can be rewritten as

(33)

(34)

where may take on any real value. We can consider an effective as
originating from a single field and thus can reduce the number of columns of D and D'
by one for each vector pair of fields.

As a general rule, the more vector pairs of non-Abelian singlets there are, the more
likely a D-flat (i.e. anomaly cancelling) direction can be formed from the nullspace of
D' composed solely of non-Abelian singlets. Having all states in vector-like pairs is
equivalent to totally relaxing the “positivity” constraint after projecting the nullspace
of D' onto the range and nullspace of D. Then for flat directions to exists, the projection
of the nullspace of D' onto the range of D need only be non-empty.

V. Comments

I have discussed how intermediate VEVs can generate quasi-realistic intergenerat-
tional mass ratios among MSSM quarks and leptons in both string and field-theoretic
models. For string models, usually (near) string scale VEVs must first cancel the FI
D-term contribution from an anomalous U(1)A . Since some non-anomalous U(1)a are
simultaneously broken by the string scale VEVs, which U(1)a might be associated with
intermediate scale VEVs depends on the particular set of (near) string-scale VEVs
chosen. Lastly, a matrix decomposition method for generating D-flat directions was
introduced.
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1 INTRODUCTION

The history of unification of electromagnetic and weak interactions [1] is intimately
connected to the experimental study of Intermediate Vector Bosons. Thanks to the
discovery and precision measurements of the W and Z bosons, what was considered
‘the simplest model’ [2] in the 70’s is now called with deference ‘the Standard Model’
of electroweak interaction. 

It is known since long time [3] that electron-positron colliding beam experiments
are a privileged laboratory to study the exchange of a neutral weakly interacting vector 
boson: a strong resonant peak will appear in the cross section, and the measurement of
its shape parameters allows an unambiguous theoretical interpretation. On the other
hand, pairs of charged bosons are produced in e+e– collisions once the center of mass
energy exceeds the threshold. From this point of view, the LEP experimental program 
represents a great success. 

The Z mass is measured at LEP with a relative precision of ~ 2.10–5 which is at the_
same level of the Fermi constant GF. The achieved precision allows a stringent scrutiny
of the Standard Model, by comparing predictions of the model with measurements of 
various observables. A recent study [4], reported in Table 1, confirms the internal
consistency of the Standard Model, with a few notable exceptions. Details of the Z
mass measurement are given in Section 2. 

The measurement of the charged W boson mass is an important item of the physics 
program of LEP II, with the goal of 30 MeV precision. Since 1996 LEP is running
above the threshold of W+W– pair production, and first results on the W mass are
already available. The progress achieved in this field is summarized in Section 3.

2 THE Z MASS MEASUREMENT 

Large statistical samples and the detailed control of systematic uncertainties, to-
gether with a robust theoretical framework to interpret the data, are the ingredients 
of a precision measurement. 
Physics of Mass 
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Table 1. Summary of measurements included in the combined analysis of Standard
Model parameters. Section a) summarises LEP averages, Section b) SLD results
(sin2 θ eff

lept includes ALR and the polarised lepton asymmetries), Section c) the LEP
and SLD heavy flavour results and Section d) electroweak measurements from pp– col-
liders and vN scattering. The total errors in column 2 include the systematic errors
listed in column 3. The determination of the systematic part of each error is approx-
imate. The Standard Model results in column 4 and the pulls (difference between
measurement and fit in units of the total measurement error) in column 5 are derived
from the Standard Model fit including all data with the Higgs mass treated as a free
parameter.

the LEP energy only.

α(m2z) –1

a) LEP
line-shape and
lepton asymmetries:
mz [GeV]
Γ z[GeV]

[nb]
R
AFB

T polarisation:

qq– charge asymmetry:

mw [GeV]
b) SLD

c) LEP and SLD Heavy Flavour
Ro

b
Roc

A o,c
FB

Ao,b
FB

d) pp– and vN
mw [GeV] (PP– )
1 –m2w /m2z (vN)
mt [GeV] (PP– )

Measurement with Systematic Standard Pull
Total Error Error Model

128.896 ± 0.090 0.083 128.898 0.0

91.1867 ± 0.0020 (a)0.0015 91.1866 0.0
2.4948 ± 0.0025 (a)0.0015 2.4966 –0.7
41.486 ± 0.053 0.052 41.467 0.4
20.775 ± 0.027 0.024 20.756 0.7
0.0171 ± 0.0010 0.0007 0.0162 0.9

0.1411 ± 0.0064 0.0040 0.1470 –0.9
0.1399 ± 0.0073 0.0020 0.1470 –1.0

0.2322 ± 0.0010 0.0008 0.23152 0.7
80.48 ± 0.14 0.05 80.375 0.8

0.23055 ± 0.00041 0.00014 0.23152 –2.4

0.2170 ± 0.0009 0.0007 0.2158 1.3
0.1734 ± 0.0048 0.0038 0.1723 0.2

0.0741 ± 0.0048 0.0025 0.0736 0.1
0.0984 ± 0.0024 0.0010 0.1031 –2.0

0.900 ± 0.050 0.031 0.935 –0.7
0.650 ± 0.058 0.029 0.668 –0.3

80.41 ± 0.09 0.07 80.375 0.4
0.2254 ± 0.0037 0.0023 0.2231 0.6

175.6 ± 5.5 4.2 173.1 0.4
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La Thuile 91
relative precision 
selection 4.10–3

luminosity (exp. ) 7.10–3

luminosity (theor.) 5.10–3

center of mass energy 20 MeV 

The successful operation of LEP from 1990 to 1995 around the Z peak has enabled
the four LEP experiments, ALEPH, DELPHI, L3 and OPAL, to collect 16 . 106 Z
decays.

The Z mass is determined by the measurement of the cross section as a function
of the center of mass energy, In Fig. 1 the measured hadronic cross section as
a function of is shown, with the clear Z resonance. Thus, a detailed knowledge
of detector performances is needed for the event selection efficiency calculation. The 
measurement of luminosity must be well understood, both from the experimental and 
theoretical point of view. Last but not least, it is essential to precisely determine
the center of mass energy. Systematic uncertainties at the time of La Thuile winter
conference in 1991 [5] are compared with current results [4] in Table 2. The improve-
ment achieved in the understanding of systematic uncertainties is really impressive. 
Reduction of the errors by factors 5 to 10 have been reached. 

Orbis Scientiae 97 

0.8.10–3

0.7.10–3

1.1.10–3

1.5 MeV 

In order to achieve these results, luminosity monitors were improved or rebuilt by
the LEP Collaborations, while theoreticians provided a more precise calculation of the
Bhabha cross section for the luminosity determination [6]. The routine implementation
of the resonant depolarization calibration [7] boosted the knowledge of the LEP center

Figure 1. The hadronic cross section measured at LEP as a function of 
the center of mass energy. 
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Table 2. Comprison of systematic uncertainties at the beginning and at the end of
LEP I.



of mass energy, allowing the identification of several subtle systematic effects. Tides,
for example, produce a change of the LEP circumference of 1 mm over 27 Km,
corresponding to a systematic shift of the center of mass energy of MeV. Another
interesting effect more recently discovered involved vagabund currents from electrical
trains travelling above LEP. The return current of these trains, which should go back
to the power supply along the iron railtracks, in part finds its way in the ground around
the railroad. Then, it follows the LEP beampipe which acts as a good conductor. In
Fig. 2 the perfect time correlation found between the voltage measured on rails, the one
on the LEP beam pipe, and the magnetic field near the pipe is shown. Systematic shifts 
of MeV were attributed to this source and could be corrected. The preliminary
estimate of the systematic uncertainty due to the LEP energy calibration is 1.5 
MeV on both the mass and the width of the Z boson [8]. 

A model independent parametrization [9], with radiative corrections properly taken 
into account avoids ambiguities in the theoretical interpretation. The Z line shape can
be, in fact, expressed by: 

Figure 2. From top to bottom: railtrack potential, LEP beampipe 
potential, NMR reading. 
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where:

ALEPH
DELPHI
L3
OPAL
LEP Average 
χ 2/DoF

- The photon exchange term is the known QED result, with a running α (the fine

- The Z exchange term is modulated by a Breit-Wigner factor and at the peak
structure constant). 

(s=m 2z) reads as: 

(2)

Z mass (MeV) 
91188.3 ± 3.1 
91186.6 ± 2.9 
91188.6 ± 2.9 
91184.1 ± 2.9 
91186.7 ± 2.0 

Z width (MeV) 
2495.1 ± 4.3 
2489.3 ± 4.0 
2499.9 ± 4.3 
2495.8 ± 4.3 
2494.8 ± 2.5 

2.0 /3 3.9 /3 

that is the product of the unitary bound for J=1 channel and the branching ratios 
of initial and final state (Γ e/Γ Z, Γ f / Γ z).

- The γ - Z interference term cannot be written in terms of the shape parameters
(mz, Γ z, Γ l, etc.). However, the I f contribution to the cross section is small (0 at the
peak and <_ 0.5% in the range m Z ±Γ z).Thus, I f is fixed to its Standard Model value 
and a small model dependence is introduced.

The described parametrization, derived just using Quantum Field Theory and the 
well established QED theory, gives a precise definition of theactual physical parameters
mz,Γ z ,Γ e,Γ f, with minimal dependence on the Standard Model interpretation.

Radiative corrections to the line shape can be included very precisely [10]. The
electroweak corrections, like the self-energy corrections of vector bosons and virtual W 
and Z loops, are small but contain very interesting physics information ( mt, mH, new
physics). The bulk of these corrections can be naturally absorbed in the definition of 
the physical parameters. Photonic corrections, with the dominant contribution given 
by the initial state bremsstrahlung, are large, compared to the experimental precision 
(the peak cross section is reduced by about 25% and the peak position is shifted by 
about 110 MeV). However they are known at the level of a few 10 –3 precision and 
can be properly taken into account convoluting the non radiative cross section with a
suitable radiator function. 

The measurements of the Z boson mass and width performed by the LEP exper-
iments are summarized in Table 3. The total error on the LEP averages (2 MeV for 
the mass and 2.5 MeV for the width) include the contribution of 1.5 MeV from the 
LEP energy calibration. 

The precision reached by the measurement has also driven new effort on the theo-
retical side in order to test different approaches in the definition of the mass of the Z
boson. In the S-matrix model of the line shape the Z is associated to a complex pole 
in the S matrix [11]. The mass and the width are defined in terms of the pole in the 
energy plane via 

Table 3. Measurement of the mass and width of the Z boson by the LEP Collabo-
rations.
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(3)

which is characterized by an s-independent Z width. The cross section is then:

(4)

The parameters gf , j f and rf are fitted together with the mass and width. In par-
ticular, j f is related to the γ – Z interference. Including the new cross section data
of LEP II significantly helps in constraining this term, thus reducing the correlation
with the fitted mass. A fit to the data using the S-matrix approach yields [4]:

jhad = 0.14 ± 0.12

which should be compared with the Standard Model expectation of 0.22, and

mZ = 91188.2 ± 2.9 MeV.

The agreement between determinations using different theoretical approaches gives
confidence in the current understanding of the mass as a fundamental property of the
Z boson.

3 THE W MASS MEASUREMENT

A precise measurement of the W mass represents an important element in our 
understanding of the Standard Model. A global fit of electroweak observables using
the Standard Model (see Table 1) allows an indirect determination of the W mass.
Its consistency with a precise measurement would further strengthen the confidence
in the Standard Model or open the door to physics beyond it. The current situation is
shown in Fig. 3, in which the 68% CL probability contours corresponding to indirect
determinations and direct measurements are plotted on the W - top mass plane. Also, 
specific models can be tested in the same way. In Fig. 4 the band corresponding to 
the predictions of the Minimal Supersymmetric Standard Model (with the hypothesis
of no new particle found at LEP II) is clearly separated from the one corresponding
to the Standard Model. 

Two experimental tecniques have been exploited so far at LEP for the Mw mea-
surement.

The first one involves the measurement of the W +W– production cross section 
close to the threshold. The optimal sensitivity to the mass is found at =161 GeV,
where LEP provided 10 pb–1 per experiment in 1996. The measured cross section
of W+W– pairs production is shown in Fig. 5. From the cross section measured at
threshold the W mass was determined to be [12]:

mW = 80.40 ± 0.22 GeV (Threshold).

The threshold measurement fitted well in the schedule of increasing LEP energy by
steps. In principle, the method is able to reach the goal precision of 30 MeV. However 
it has the disadvantage of running LEP in a region of small cross section without
exploiting the maximum energy reachable by the accelerator, to the detriment of other 
aspects of the experimental program (e.g. searches of new particles). 
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, ...
Figure 3. Comparison of the indirect determinations of mw and

mt (LEP+SLD+ vN data)(solid contour) and the direct
measurements (Tevatron and LEP II data) (dashed con-
tour). In both cases the 68% CL contours are plotted.
Also shown is the Standard Model relationship for the
masses as a function of the Higgs mass.

The second method works at energies well above the threshold (≥ 170 GeV). At

_
those energies, the cross section has lost most of its sensitivity to the mass, but it
is high (~ 12 pb–1). A significant statistical sample of W can be produced, and
a direct reconstruction of the mass is accomplished through the invariant mass of
its decay products. LEP provided 10 pb–1 to each experiment at =172 GeVin
1996. The 4 jets topology (both W’s decaying hadronically), which accounts for 44%
of the W+W– pairs, is selected by the experiments with efficiency around 70% and

25% background. The major source of background comes from the process e+e– → 
γ /Z → qq(γ ), where the two quarks produce 4 jets in the detector (either by gluon
radiation or misreconstruction). The topology of 2 jets and one lepton (one W decaying 
hadronically, the other semileptonically), which accounts for other 44% of the W+W–
pairs, is selected by the experiments with efficiency around 85% and only few percent
background. The procedure used to determine the W mass from a given event is 
the following. In a 4 jets event, the jets are coupled to form a candidate W, and
the invariant mass is calculated from the reconstructed energy and direction of the 
jets. Two invariant masses per event, m1 and m2, are determined. In a 2 jet - lepton
topology, the neutrino energy and direction is not reconstructed, but can be determined 
from the missing momentum of the event, and invariant masses can still be calculated.
Events where both W’s decay semileptonically, having thus two missing neutrinos, 
do not have enough constraints and are not used. A significant improvement in the 
mass resolution is obtained by using a constrained kinematic fit, namely imposing the 
conservation of energy and momentum of the event (4 constraints fit) and a possible
additional constraint of equal masses m1 = m2 (5 constraints fit). Notice that while in
the 2 jets-lepton topology the assignement of the decay products to the mother W is 
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Figure 4. The W mass range in the Standard Model (solid line)
and in the MSSM (dashed line). The bounds correspond
to the possible situation that no Higgs bosons and SUSY
particles are found at LEP II.

ALEPH
DELPHI
L3

LEP Average 
χ 2 / DoF

OPAL

unique, in the 4-jets case three possible pairings are allowed between the 4 jets, with 
only one being correct. The experiments try to get as much information as possible
from the event by using the two combinations with best χ 2 from the kinematical fit,
or even using all the three possible pairings weighted by an ideogram tecnique. A
collection of invariant mass distributions from the LEP experiments is presented in
Figs. 6-7. An empirical parametrization of the mass distribution ( a Breit-Wigner)
is used to fit the data, and the result is then calibrated from the study of Monte Carlo 
samples with different values of the W mass. Details of the analysis tecniques can be 
found in [13]. Preliminary measurements with the direct reconstruction method using
172 GeV data are presented in Table 4.

mw (GeV) mw (GeV)
2 jets - lepton

80.38 ± 0.43 ± 0.12 
80.51 ± 0.57 ± 0.06 
80.42 ± 0.54 ± 0.08 

80.46 ± 0.24 

4 jets
81.30 ± 0.47 ± 0.10 
79.90 ± 0.59 ± 0.12 
80.91 ± 0.42 ± 0.13 

80.62 ± 0.26 
80.53 ± 0.41 ± 0.10 80.08 ± 0.44 ± 0.15 

0.1/3 5.4/3 

Table 4. Measurements of the mass of the W boson by the LEP Collaborations with
the direct reconstruction method
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Figure 5. The W pair cross section as a function of the center
of mass energy. The data points are the LEP averages.
Also shown is the Standard Model prediction (solid line),
and for comparison the cross section if the ZWW cou-
pling did not exist (dotted line), or if only the t-channel
ve exchange diagram existed (dashed line).

At the current level of statistics, the mass determined from 2 jets-lepton and that
from 4-jets samples are consistent, and are combined to obtain:

mw = 80.53 ± 0.17 ± 0.05 GeV (Direct reconstruction).

This result shows that the sensitivity of the direct reconstruction method is more
than enough to reach the goal of 30 MeV error. In fact, a statistical error of 170
MeV obtained with 10 pb–1 scales below 30 MeV for 500 pb–1 expected at the end of
LEP II. The experimental systematical uncertainties (detectors, fit, etc.) are already
not dominant in the total systematic error, and most of them are of statistical origin
and thus expected to become smaller with increasing statistics. The LEP energy cali-
bration currently contributes with a systematic uncertainty of 30 MeV. The resonant
depolarization method cannot work as well as at LEP I, since the beam polarization
rapidly decreases with increasing beam energy. In fact, the calibration is performed
up to _~ 50 GeV beam energy, and then an extrapolation is needed for higher ener-
gies. However, changes in the optics which allowed calibration at higher energies are
expected to significantly improve the calibration for 1997 data (by a factor at least
two), thus fulfilling the requirement for a final 30 MeV total error on the W mass. The 
measurement with the 4-jets sample is affected by a _~ 100 MeV theoretical uncertainty,
due to Bose-Einstein and colour reconnection effects. In a simplified picture, the width
of the W corresponds to a scale of 0.1 F, to be compared with a scale of 1 F typical of
the hadronization process. Thus, the four quarks from the W decays can ‘talk’ to each 
other modifying the hadronization, and eventually the invariant mass distributions.
However, 100 MeV error is quite conservative. Preliminary measurements performed
by the LEP experiments show no evidence of large Bose-Einstein effects [14]. Also,
large changes in the charge multiplicity of 4-jets events as predicted by some models of 
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Figure 6. Reconstructed W mass distributions at GeV:
ALEPH and L3.
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Tevatron
LEP
World Average

SM indirect determ.
χ 2/DoF

W mass (GeV)
80.41 ± 0.09
80.48 ± 0.14
80.43 ± 0.08

80.329 ± 0.041
0.2/1

Figure 7. Reconstruction W mass distruction at GeV:
DELPHI and OPAL

color recostruction have not been observed [14]. The combined effort of experimental 
and theoretical physicist should bring the systematic uncertainity due to this source 
down to a level which fully exploits the potentiality of the 4-jets channel.

The current world average obtained from measurements performed at the Tevatron 
[15] and from the LEP measurements at threshold and at 172 GeV [12] is compared 
to the indirect determination obtained from the Standard Model fit in Table 5. 

Table 5. Measurements of the mass of the W boson.
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Figure 8. Reconstructed W mass distributions at =183 GeV:
ALEPH and L3.

The 1997 data taking, just ended, has provided 60 pb –1 per experiment at
GeV. In Figs. 8-9 very preliminary mass distributions are presented.

4 CONCLUSIONS

The LEP I program, concluded in 1995, has been a great success. The mass of the
Z boson has been measured with a relative precision of _~ 2 · 10–5, allowing stringent
tests of the Standard Model. The full data sample has been analyzed, and results are
almost final.

The first data collected at LEP II during 1996 have already provided a preliminary
measurement of the W boson mass. The performance of the LEP machine and exper-
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Figure 9. Reconstructed W mass distributions at GeV: 
DELPHI and OPAL. 

iments is consistent with the goal of ~30 MeV total error on mw at the end of LEP_
II.
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INTRODUCTION

From a practical point of view it has been difficult to study weak interactions
in nuclei. At low energies (q2 0) a substantial number of beta decay process are
available. At q2 ~ –m 2

µ both inclusive and exclusive muon capture reactions are 
observed. Above the q2 range of muon capture the situation is much more difficult.
Neutrino reactions in principle would be very valuable but neutrinos are generally
available only over a spectrum thus washing out detail. In addition neutrino reactions
have proven to be very difficult to observe experimentally and carry large error bars.
Inverse beta decays which have been suggested and which could be run over a wide
range of q2 are usually1 obscured by competing competing reactions.

However it has been suggested that polarized parity violating electron scattering
might be useful for studying the weak interaction in nucleons and nuclei1 and more
recently for studying the role of strange quarks in the nuclear medium2 and for
tests of the standard model3. These reactions can be run at fixed incident electron
energies at a number of machines. Furthermore, the asymmetry, the quantity usually
determined can be found under suitable conditions to high accuracy. Thus reactions 
of this kind might be run over a wide range of q2 values than are generally available
currently for studying weak interactions. Also there is evidence that the strange
quark weak current resulting from a term of the form, s- γ µ (1 – γ 5) s might make a 
measurable contribution1 to the asymmetry and so the possibility of obtaining such
a contribution should also be considered. 
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In this paper we consider the reaction,e – + 3 He → e – + 3 He, run with right
handed and left handed polarized electrons. This process is different from many
previously considered in that it takes place on a spin 1/2 nucleus. This, as we shall
see leads to structure in the asymmetry which is not present in scattering from 0+

nuclei' or in the 0+ 1 + transitions usually studied 4. This structure is q2 dependent
in a more complicated way than the simple parabolic structure in q2 seen in the
previously studied cases.

In the section on matrix elements of this paper we shall obtain the matrix ele-
ments necessary to calculate the asymmetry. In the section on results of this paper we
shall obtain the asymmetry and figure-of-merit and plot these quantities for incident
electron energies of 0.1 GeV,0.5 GeV,1.0 GeV,2.0 GeV, 4.0 GeV, and 6.0 GeV. Finally
in the discussion section of this paper we shall discuss our results and determine the
accuracy to which the asymmetry might be determined and present conclusions.

MATRIX ELEMENTS

The quantity which is central in studying polarized parity violating electron
scattering is the asymmetry given by: 

(1)

where L and R indicate left and right handed electron polarization respectively. The
numerator of this quantity contains only parity violating terms which in the lowest
order come from the interference between the one photon exchange and one Z-boson
exchange diagrams. These terms are contained in the square of the matrix element:

with
(2)

(3a)

(3b)
This quantity may be evaluated for left and right handed electrons and the result
subtracted. Only parity violating terms remain and are of the general form:

(4)

where we have exhibited the terms for left handed polarization. The terms for right
handed polarization are similar. In Eqs. (2) and (4) we have put in the familiar
lepton part of the matrix elements. however the hadronic part of these equations is
not so well determined and we must obtain expressions for it.
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In particular we must find explicit expressions for the two nuclear matrix ele-
ments, which occur in Eqs.(2) and (4), namely and additionally

where

· (5) 

As given,Eq.(5) is not complete. This is due to the possibility that there may be
strange quark contributions to the nuclear weak current. This would add a term
to the weak nuclear current of the form s-γ µs. We consider only the vector case
because axial contributions to polarized parity violating electron scattering will be
extraordinarily difficult to detect. In the nuclear medium such strange terms will
manifest themselves as a vector current of the form:

(6)

Thus in addition to the terms in Eq.(5) which consist of the usual I =1 and I= 0
(V 8

µ ) components there are contributions from Eq.(6). These may be be absorbed
into the Vµ of Eq.(5) and will appear as departures from the expected values for the
form factors describing the vector current. We shall mention this point again.

We make use of an elementary particle model treatment. In this model, the 3He
nucleus is treated as an elementary particle5 of spin 1/2 and the nuclear structure
is contained in form factors. This model has given particularly accurate results 6,7 in
describing the muon capture reaction µ_ + 3 He → vµ +3 H. We have previously8,9

used this model in calculating the electroweak processes, e – + 3He → ve + 3H
and v–e + 3He → e+ + 3H for which it produced reasonable results. The matrix
elements in this model are well known5,8 and are given by:

(7a)

(7b)

(7c)

where k stands for 3He or 3H. As noted above, from Eq.(6), the strange contributions
can be immediately incorporated into Eq.(7a).

The nuclear structure for the weak current matrix element is contained in the
four form factors,FV

weak (q 2), F M
weak (q2 ), F A

weak (q2), and F P
weak (q2). Similarly that for 

the electromagnetic current matrix element is contained in the F1 (q2) and F2 (q2)
form factors. It is convenient to combine the vector parts of Eq.(5), making use of
Eqs.(7a) and (7c) to obtain 

(84

(8b)
In which the strange quark current contributions are now also contained. Thus a 
knowledge of these form factors would enable us to evaluate all terms in Eq.(2) and 
hence the asymmetry itself.
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The non-strange quark contributions to the form factors of the weak vector
current matrix element needed above may be obtained from electron scattering data
by making use of the conserved vector current hypothesis in the form [Ii, J em] = V µ,
and [I+, Jµ] = 2J µ

(3) to obtain:

and
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(9a)

(9b)

– (9c)

where i=V,M, and A respectively. The form factors, FV ,FM, and F1,F2 have already
been obtained from electron scattering for values of q2 from zero to –50m 2

π  and are
given by: 

(10a)

(10b)

(11a)

(11b)

for |q2| > 43.0 m2
π  . Again the form factors obtained by electron scattering do not

include strange contributions of the form given in Eq.(6). Therefore the presence of
strange contributions will be seen in deviations from these values in the processes
which we are describing here.

The axial current form factors are not as well known as the vector current form
factors. The two axial current form factors are FA (q2) and Fp(q

2). However,because
cross-sectional terms containing Fp(q2) are also proportional to the charged lepton
mass squared, measurable contributions do not occur for the electron case. Thus we
shall not consider Fp further.

The form factor, FA(q
2), can be determined at q2 = 0 from the beta decay6

,3H → 3 He + e– + v– , which takes place at q2 ~ 0. There is no direct way to
determine the q2 dependence of FA. However a result by Kim and Primakoff 5,10

based upon the impulse approximation but not making use of the actual form of the
nuclear wave functions yields: 

(12)

µ
†

†



The derivation of this result is in the literature 5,10. It was originally derived by Kim
and Primakoff from a nucleons only impulse approximation but they later extended
the calculation to include some exchange current contributions. It has been found that
Eq.(12) works extremely well for muon capture 6,7 in 3He as was previously noted and 
for a large number of other weak processes11,12,13 in which FA is a leading term which
increases our confidence in Eq.(12). As we shall see, the axial current contributions 
to the asymmetry are suppressed and so only under unusual circumstances will we
be highly concerned about the form of FA.

The character of these form factors are all the same and they may be written in 
the form: 

(13)

where i = V,M,A,1,2. The structure of these form factors is extremely important.
At low q2 the cosine squared term in the numerator is approximately one and the
familiar dipole form of these form factors is apparent. At higher q2, these form factors 
all exhibit diffraction minima due to the numerator of Eq.(13). Crucially important
however is the fact that αi and βi are different for F (3)

M , F
V
(3) , F1,and F2. This means

that all of these form factors have different q2 dependences. Because the variation for
large q2 for these form factors is relatively rapid, substantial cancellation can occur
in F V

weak and FM
weak which can experience large changes in their values, becoming 

zero, and then reversing sign as can be seen from Eqs.(8a) and (8b). As we shall see 
this leads to interesting structure in the asymmetry itself.

RESULTS

We now have all information necessary to evaluate the asymmetry as given by 
Eq.(1). The result may be written as:

(14)
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where |M|2
em, is given by:

(15)

As previously noted the axial terms are suppressed in the numerator of the asymmetry
by a factor of g v = –1 + 4 sin2(θ w). This is a small number and normally the axial
part does not make an important contribution to the asymmetry. Because gA = 1, 
there is no suppresion of the vector part of the numerator.

The case considered here is very different from the 0+ or 0+ → 1+ transitions 
normally considered. In these cases there is only one independent form factor. As
a result the q2 dependence attributable to the form factors cancels between the nu-
merator and denominator. Most of the remaining energy dependence also cancels12.
This leaves only the net linear q2 dependence (from the in the numerator divided
by the in the denominator). Our case is quite different. Here there are two inde-
pendent form factors of roughly similar size but with different q2 dependence. Hence
there can be and is substantial cancellation in F V

weak and F weak as can be seen from
Eqs.(8a) and (8b) as we mentioned before. This means that these two form factors
can be positive,zero, or negative and (because Fl and F2 are always positive) that 
A, the asymmetry itself can be positive, negative or zero. This is strikingly distinct
from the 0 + and 0 + → 1 + cases mentioned above.

We plot the asymmetries,A , for incident electron energies of 0.1 GeV, 0.5 GeV,
1.0 GeV, 2.0 GeV, 4.0 GeV, and 6.0 GeV respectively in figures 1,2,3, 4,5, and 6
respectively. The asymmetry is given as a function of the outgoing electron laboratory
angle. In order to be able to plot our results on a logarithmic scale with have plotted
positive values of A with a solid line. We have treated negative values of A by plotting
their absolute values but using a dashed line.

We also plot figures of merit for the above cases making use of the the standard
relation:

(16).
This is done in figures 7,8,9,10,11,and 12 respectively. 

We plot the variation δ A /A for two situations. In figure 13 we plot this number
for an electron scattering angle of 4 degrees as a function of incident electron energy
from 0.1 GeV to 6.0 GeV. We take this angle because it is well inside of the first
minimum for this range of energy. In figure 14 we choose a point in first fluctuation
in A , approximately midway between zero and the first minimum.

Finally in figure 15 we plot the axial contribution to A (i.e. that part containing
F A

weak as a factor) divided by the vector contribution to A (that part not containing 
F A

weak as a factor). We do this only for the 1.0 GeV case but the others cases are 
similar. As expected this ratio is in general near zero except for those angles for
which the asymmetry is small. For these angles, the vector part of A is near zero 
leaving only the axial term. 

For the case we are considering in figure 13, at an angle of 4 degrees , we obtain
the variation in A , i.e. δ A /A , from the F-O-M, with the assumption of a running
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Fig. 1 Plot showing the asymmetry parameter,A,for the reaction e– +3 He →
e – + 3 He as a function of the outgoing laboratory angle for an incident electron 
energy of 0.1 GeV. Positive values of A are indicated by a solid line. For negative 
values the absolute values are given and indicated by a dashed line. 

Fig. 2 Plot showing the asymmetry parameter, A,as in figure 1 for an incident electron
energy of 0.5 GeV. 
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Fig. 3 Plot showing the asymmetry parameter,A,as in figure 1 for an incident electron 
energy of 1.0 GeV. 

Fig. 4 Plot showing the asymmetry parameter,A,as in figure 1 for an incident electron
energy of 2.0 GeV. 
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Fig. 5 Plot showing the asymmetry parameter,A,as in figure 1 for an incident electron
energy of 4.0 GeV. 

Fig. 6 Plot showing the asymmetry parameter,A,as in figure 1 for an incident electron
energy og 6.0 GeV. 
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Fig. 7 Plot of the figure of merit (F-O-M) for the reaction, e – + 3 He → e– + 3 He,
as a function of outgoing laboratory electron energy for an incident electron energy
of 0.1 GeV. 

Fig. 8 Plot of the figure of merit as in figure 7 for an incident electron energy of 0.5 
GeV.
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Fig. 9 Plot of the figure of merit as in figure 7 for an incident electron energy of 1.0 
GeV.

Fig. 10 Plot of the figure of merit as in figure 7 for an incident electron energy of 
2.0 GeV. 
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Fig. 11 Plot of the figure of merit as in figure 7 for an incident electron energy of 
4.0 GeV. 

Fig. 12 Plot of the figure of merit as in figure 7 for an incident electron energy of 
6.0 GeV. 
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Fig. 13 Plot of the quantity δ A /A at an electron scattering angle of 4 degrees for
incident electron energies from 0.1 GeV to 6.0 GeV

Fig.
energies from 0.1 GeV to 6.0 GeV.

14 Plot of the quantity δ A /A near the first zero in A for incident electron
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Fig. 15 Plot of the ratio of the axial contribution to the asymmetry (the part
containg FA

weak over the rest) and indicated by σ A / σ V . The results are given as a 
function of the outgoing electron laboratory angle for an incident electron energy of
1.0 GeV. Only the absolute values are given.

time of 1000 hours, a luminosity,L, of 5 x 10 –38 cm –2 s –1 , and a ∆Ω of 10 msr,by 
making use of a standard14 result,δ A /A = x X ), X = L∆Ω T.

DISCUSSION

We find, as expected, from figures 13 and 14, that the variation in the asymmetry
decreases as the energy of the incident electron increases. Even at 0.1 GeV, the
uncertainty in A is of the order of 7.9 % and by 2.0 GeV it drops to around .51 %.
Because calculations of weak nuclear process in this energy range are probably not 
more accurate6 than 8 to 10 %, a discrepancy of the order of 12 to 15 % due to
strange quark contributions should be determinable. This would be useful as some
estimates for such contributions are at the 20 % level.

A region of interest is obviously in the neighborhood of the first zero of the
asymmetry for the energies that we have studied. The angle at which the zero occurs
decreases as the incident electron energy increases. We have chosen points represen-
tative of this neibhborhood at approximately the half-way point between the first zero
and first minimum. These correspond to angles of 180, 81,37,20,9, and 6.5 degrees
for incident electron energies of 0.1 GeV,0.5 GeV, 1.0 GeV, 2.0 GeV,4.0 GeV, and
6.0 GeV respectively. The values for δ A /A are plotted for this values in figure 14.
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For this figure we have used a T of 2000 hours. We have discussed experiments of
this length with a CEBAF experimentalist and such an experiment is not out of the
question.

From figure 14 it can be seen that the uncertainty in A is too large to learn
anything much for the 0.1 GeV, and 0.5 GeV cases. Useful information on strange
quark contributions to A begins to become possible as early as 1.0 GeV where the
uncertainty in A is of the order of 25%. However the situation is much better at 4 GeV
or higher. At 4 GeV the uncertainty is only 5.65%. Even at 1000 hours of running
time it is only 8 % which as we have noted above would be an acceptable uncertainty
in A. Moreover because the curve for A is steep in the region on either side of the
first zero, the uncertainties in A on either side of a zero are much larger than the
uncertainties in the position of the zero. For example for the 1 GeV case uncertainties
in A of approximately 25 % lead to an uncertainty of only ±.4 degrees in the zero
point angle. By direct calculation it is found that FV

weak is largely responsible for the 
behavior of A near the zeros. This effect is even more striking at higher energies and
could lead to a possible test for strange quark current contributions to F V

weak at the 
12 to 15 % level. If F V

weak can be determined more accurately, contributions at the 8 
to 10 % level from the strange quarks might be observable.

Finally we review what could be learned by observing this reaction at a variety
of incident electron energies. First because there is a non-trivial q2 dependence to
the asymmetry,A, it might be possible to determine the weak vector form factors
and thus to check for discrepancies that might represent strange quark contributions
or possibly other phenomena. At small angles this test can probably be performed
at or below the 10 % level over the entire range of energies considered. In addition
near the zero values for A, FV

weak dominates A and thus a displacement of the angles 
corresponding to these zero values from the expected values might be related to the
strange quark current contributions to FV

weak at the order of 12 % if a high enough 
incident electron energy (at least 4.0 GeV) is used. Although higher energies have a
smaller variation in A, the rapid fluctuations in A might make the experiment more
difficult.

Because q2 values are relatively large in the region of high incident electron
energy, the results might be interesting since we have no direct measurements of
the weak form factors at large q2. We again remark that the charge changing weak
current form factors which are closely related to the neutral current I = 1 form factors
work very well for muon capture but there are no higher q2 tests. For the purpose
of studying the form factors, the predicted structure is useful and unexpected and
occurs at all energies considered. For these reasons experiments on 3He could be
very interesting. 
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ABSTRACTT

We show that six-dimensional supergravity coupled to tensor and Yang-Mills multiplets 
admits not one but two different theories as global limits, one of which was previously
thought not to arise as a global limit and the other of which is new. The new theory has
the virtue that it admits a global anti-self-dual string solution obtained as the limit of the
curved-space gauge dyonic string, and can, in particular, describe tensionless strings. We
speculate that this global model can also represent the worldvolume theory of coincident
branes. We also discuss the Bogomol’nyi bounds of the gauge dyonic string and show
that, contrary to expectations, zero eigenvalues of the Bogomol’nyi matrix do not lead to
enhanced supersymmetry and that negative tension does not necessarily imply a naked
singularity.

1 Introduction

This paper is devoted to certain properties of the six-dimensional gauge dyonic string [1]
and in particular to its global limit in which it becomes anti-self dual. An important special 
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case corresponds to the tensionless string, which has been the subject of much interest
lately [2–13,1], especially in the context of phase transitions [14,11,1,15].1 This global limit
is particularly interesting because one might then expect to be able to find an anti-self-dual
string solution by directly solving the global supersymmetric theory in six-dimensions [11]
describing an anti-self-dual tensor multiplet coupled to Yang-Mills. However, an apparently
paradoxical claim was made in [18] that no such global limit exists. Here we resolve the
paradox, and show that not only does the limit exist but that there are in fact two different
limits, each giving different globally supersymmetric theories. One of these is the theory
constructed in [18], which we shall refer to as the “BSS theory”. The other flat-space theory,
which for reasons described below we shall refer to as the “interacting theory”, appears to
be new, and admits an anti-self-dual string solution which can indeed be obtained as the
flat-space limit of the dyonic string of the supergravity theory.

A surprising feature of the BSS theory constructed in [18] is that there is an asymmetry in
the interactions between the Yang-Mills multiplet and the anti-self-dual tensor multiplet. In
particular, the Yang-Mills multiplet satisfies free equations of motion, whereas the equations
of motion for the tensor multiplet do involve couplings to the Yang-Mills fields. By contrast,
the interactions in the “interacting” theory obtained in the present paper here are more
symmetrical, in that they occur in all the equations of motion. Interestingly, however, the
additional interaction terms of the new theory cancel in the special case of its anti-self-dual
string solution, and so the same configuration is also a solution of the BSS theory. Curiously,
however, it is not tensionless in that theory, and indeed the BSS theory is inappropriate for
describing any tensionless string solution. 

Another intriguing aspect of the gauge dyonic string concerns the counter-intuitive re-
lations between its Bogomol’nyi bound, unbroken supersymmetry and its singularity struc-
ture [1]. We confirm: 

(1) The dyonic string continues to preserve just half of the supersymmetry even in the
tensionless limit, notwithstanding the standard Bogomol’nyi argument that a BPS state
with vanishing central charge leads to completely unbroken supersymmetry.

(2) A solution with negative tension can be completely non-singular, contrary to the 
folk-wisdom that negative mass necessarily implies naked singularities.

Finally, six dimensional global models are also important as fivebrane worldvolume
theories [19–21,18] and as the worlvolume theories of coincident higher-dimensional branes
with six dimensions in common [25,24]. We speculate that the interacting anti-self-dual-
tensor Yang-Mills system is indeed such a worldvolume theory. Hence the global gauge 
anti-self-dual string, and in particular the tensionless string, may also be regarded as a 

1But note that, contrary to some claims in the literature, the tensionless string corresponds to the
(quasi)-anti-self-dual limit of the dyonic string of [16], where the string couples dominantly to the 3-form 
field strength of the tensor matter multiplet, and not the self-dual string of [17] where the string couples 
only to the 3-form field strength of the gravity multiplet. 
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string on the worldvolume. In the case of the tensionless string, in the limit as the size
ρ of the Yang-Mills instanton shrinks to zero, one recovers the global limit of the neutral
tensionless string [16, 1] which is also a solution of the (2,0) theory that resides on the
worldvolume of the M-theory fivebrane. It is curious, therefore, that we find in this limit
that the tension really is zero, as opposed to the infinite tension of the string solution of
the free (2,0) theory [22,23].

2 N = 1 supergravity and the gauge dyonic string

The low-energy D = 6 N = (1,0) supergravity is generated by a pair of symplectic

∋



Majorana-Weyl spinors transforming in the 2 of Sp(2). This theory has the unusual 
feature in that the antisymmetric tensor breaks up into self-dual and anti-self-dual com-
ponents. The basic supergravity theory consists of the graviton multiplet (gµv,ψµ, B +

µv )
coupled to nT tensor multiplets (B –

µv ,χ , φ ) . When nT = 1, corresponding to the heterotic 
string compactified on K3, these multiplets may be combined, yielding a single ordinary
antisymmetric tensor Bµ v.

We are interested, however, in the general case with nT tensor multiplets coupled to an
arbitrary number of vector multiplets (Aµ, λ). Due to the presence of chiral antisymmetric 
tensor fields, there is no manifestly covariant Lagrangian formulation of this theory. Never-
theless, the equations of motion may be constructed, and were studied in [26,27]. With nT

tensor multiplets, there are nT scalars parametrizing the coset SO(1, nT)/SO(nT). This
may be described in terms of a (nT + 1) x (nT + 1) vielbein transforming as vectors of both
SO(1,nT) and SO(nT). Following the conventions of [27], the vielbein may be decomposed
as

(2.1)

satisfying the condition V-1 = ηVT η where η is the SO(1,nT) metric, η = diag(1, –InT).
Below, we use indices r, s, . . . = {0,M} to denote SO(1,nT) vector indices. The composite
SO(nT ) connection is then given by

(2.2)
so that the fully covariant derivative acting on SO(nT) vectors is given by Dµ = ∆

µ  + Sµ.
To describe the combined supergravity plus tensor system, we introduce (nT + 1) anti-

symmetric tensors Bµv transforming as a vector of SO(1, nT). In the presence of Yang-Mills
fields, the three-form field strengths pick up a Chern-Simons coupling

(2.3)

where The constants c form a (nT + 1) x nv
matrix where nv is the number of vector multiplets2 . Note that this coupling of the vector

2For non-abelian gauge fields, instead of having nv independent quantities, there is a single set of c’s for

, so that 

each factor of the gauge group. 
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and tensor multiplets is dictated by supersymmetry and encompasses both tree-level and
one-loop Yang-Mills corrections. Furthermore, the supersymmetry guarantees that there
are no higher-loop corrections. The vielbein is then used to transform the field strengths

into their chiral components H = vT, r and Km = xm,T T so that the (anti-)self-duality

conditions for the tensors become H = *H and Km = — *Km.

With the above conventions, the bosonic equations of motion are

where

(2.4)

(2.5)

and S and P are the 1-forms, S = Sµdxµ, P = Pµdxµ. The symmetric stress tensor is given 

by

(2.6)
For the antisymmetric tensors, Eqn. (2.4) along with the (anti-)self-duality constraint may 
be viewed as the equivalent of the combined Bianchi identities and equations of motion.
Finally, the fermionic equations of motion are

(2.7)

In order to examine the Bogomol’nyi bound, we need the supersymmetry variations for
the fermionic fields:

(2.8)
(given to lowest order). For completeness, the bosonic fields transform according to

(2.9)

144



Careful examination of Eqns. (2.8) and (2.9) reveals the intricate interplay between terms

1_
2

of various chiralities necessary to maintain D = 6 N = (1,0) supersymmetry. In particular,
  is a chiral spinor satisfying P+ = 0 where P±= (1± γ 7 ) is the chirality projection in
six dimensions. As a consequence, H and K satisfy the identities 

(2.10)

which prove to be useful in manipulating Nester’s form below. 

2.1

It was shown in [1] that the equations of motion (2.4) admit a gauge dyonic string solution
carrying both self-dual and anti-self-dual tensor charges. Under an appropriate SO(nT )
rotation, the latter charge can be put in a single tensor component, so that we may focus
on the theory with nT = 1. In this case, corresponding to a compactified heterotic string,
the self-dual and anti-self-dual three-forms in the graviton and tensor multiplets respectively
may be combined together according to

The gauge dyonic string solution

where we have chosen a vielbein

For a simple gauge group, we pick the coupling vector c to be

(2.11)

(2.12)

(2.13)

so that the     Bianchi identity and equation of motion, given in Eqn. (2.4), may be rewritten 
as

(2.14)

The gauge dyonic string is built around a single self-dual SU(2) Yang-Mills instanton 
in transverse space, and is given in terms of three parameters, which are the electric and
magnetic charges Q and P carried by the string, and ρ which is the scale parameter of the 
instanton. Splitting the six-dimensional space into longitudinal µ, v = 0,1 and transverse

∋2 3 45

m, n, . . . = 2,3,4,5 components, the gauge dyonic string solution is given by [1]

where = 1, = 1. The functions H1 and H2 are∋

01

(2.15)
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and are determined by the effect of the instanton source

(2.16)

(2.17)

on the three-form tensor according to (2.14). (Note that tr (F2) = 2Fa
mn Famn.) In partic- 

ular, the charges are thus given by Q = 2 α' ṽ and P = 2 α ' v. The mass per unit length of 
the dyonic string is given by

(2.18)

This expression for the mass, and its relation to the Bogomol’nyi bound, will be examined
in detail in the following section.

In the ρ→ 0 limit, we recover the neutral dyonic string obtained in [16].

3 The Bogomol’nyi bound in six dimensions

It is well known that the six-dimensional N = (1,0) supersymmetry algebra admits a single
real string-like central charge, putting a lower bound on the tension of the six-dimensional 
string. Thus the tensionless string only arises in the limit of vanishing central charge. Before
focusing on the tensionless string, we examine the Bogomol’nyi mass bound in general and
determine the conditions for which it is satisfied.

For a string-like field configuration in six dimensions, we may construct the supercharge
per unit length of the string from the behavior of the gravitino at infinity [28]

(3.1)

where      is the four-dimensional space transverse to the string. We note that in writing 
the supercharge in terms of the gravitino, this expression holds only up to the equations of
motion. It is for this reason that, unlike in the global case, saturation of the Bogomol’nyi
bound alone is insufficient to guarantee that the bosonic background solves the supergravity
equations of motion.

Using Nester’s procedure [29,28,30], we may take the anticommutator of two super-
charges to get

where

(3.2)

(3.3)

is a generalized Nester’s form. Appealing to the supersymmetry algebra, we then see that
the mass and central charge per unit length of the six-dimensional string is encoded in the
surface integral of Nµv . For a string in the 0-1 direction, the ADM mass per unit length 
M of the string is given by the asymptotic behavior of the metric 
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(3.4)

where r2 = yiyi is the transverse radial distance from the string. Using this definition of

the ADM mass, the surface integral of Nester’s form becomes

where the real string-like central charge Z is given by the self dual H charge

(3.5)

(3.6)

This reinforces the close relation between the central charges of a supergravity theory and 

the bosonic charges of the fields in the graviton multiplet.

From the point of view of the supersymmetry algebra, the left hand side of Eqn. (3.2) is 

non-negative for identical (commuting) spinors = Since γ 0 γ 1 has eigenvalues ±1, this

gives rise to the Bogomol’nyi bound 

GM 2|Z | , (3.7)

with saturation of the bound corresponding to (partially) unbroken supersymmetry. How-

≥

ever an issue has arisen over the necessary conditions for this bound to apply. In particular,

it has been noted that the gauge dyonic string [1] may have a tensionless limit without 

naked singularities when the instanton size in the gauge solution is sufficiently large. Cor-

responding to Eqn. (3.7), this tensionless string has vanishing central charge and is hence

quasi-anti-self-dual. Nevertheless, examination of the Killing spinor equations indicates 

that it still breaks exactly half of the supersymmetries, in contrast to the expectation that 

M = 0 yields completely unbroken supersymmetry. In terms of singular four-dimensional

solutions, this breakdown of the Bogomol’nyi argument has also been discussed in [31,32]. 

In order to address the issue of where the Bogomol’nyi expression may break down, 

we take a closer look at the Witten-Nester proof of the positive energy theorem [33,29]. 

Following [28], the charges at infinity may be related to the divergence of Nester’s form: 

(3.8)

Proof of the Bogomol’nyi bound is then a matter of reexpressing this divergence in a man- 

ifestly non-negative form. Straightforward but tedious manipulations allow the divergence 

of Nester’s form to be rewritten in terms of the supersymmetry variations of the fermionic 

fields given in Eqn. (2.8). Starting with 

(3.9)

it is apparent that the H equations of motion must enter the calculation. Working through 

these equations then gives the final result
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(3.10)

We wish to point out that this is an exact expression, where only kinematics has been used

in rewriting the divergence. The last two lines are related to the self-dual H equation of

motion (in Bianchi identity and divergence form respectively), and hence vanish on-shell.

In addition to the expected terms, this divergence has the unusual feature in that the full

stress tensor Tµv arising from the supersymmetry manipulations is modified by the inclusion

of an antisymmetric contribution

(3.11)

where Tµv , given in (2.6), is the symmetric stress tensor appearing in Einstein’s equation.

In particular, this antisymmetric component, which arises as a consequence of the N =

(1,0) supersymmetry algebra in six dimensions [34], is related to the fact that the classical

equations of motion, Eqns. (2.4), are actually inconsistent in such a manner as to cancel the

effects of the gauge anomalies when loop corrections are taken into account [35,36]. As a

result, the equations violate Bose symmetry in a way that would be impossible if they were

derivable from a Lagrangian. There exists a Lagrangian, at least in the case nT = 1, which

automatically leads to Bose symmetric equations but which lacks gauge invariance [14]. As

discussed in [35,36], these two formulations are related to the difference between consistent

and covariant anomalies. It is interesting to note, however, that the gauge dyonic string

solves both sets of equations, since the Bose non-symmetric terms vanish in this background.

We are now in a position to examine the conditions under which the Bogomol’nyi bound,

Eqn. (3.7), may hold. Based on the rewriting of the Bogomol’nyi equation in terms of a

volume integral, it is apparent that the mass bound will hold provided the divergence

µ Nµv is positive semi-definite over the entire transverse space This gives rise to the

following three conditions: i) the supergravity equations of motion must be satisfied3, ii)

Witten’s condition must hold globally so the gravitino variation is non-negative, and iii)

the Yang-Mills contributions from both the gaugino variation and the correction T'µv to

the stress tensor must be non-negative. While the first condition is straightforward, the

other two require further explanation. Witten’s condition [33] is essentially a spatial Dirac

equation, = 0, where i = 1, . . . , 5. While this condition may be satisfied for a well

behaved background, it is also important to ensure that such spinors are normalizable on

all of so that the divergence integral is well defined. In particular, this normalizability

3Only Einstein’s equation and the H equation of motion are relevant for the Bogomol’nyi calculation.
Note that when we refer to Einstein’s equation, we do not include the correction T'µv which is accounted for 
separately.
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condition apparently breaks down in the presence of naked singularities, as we subsequently 

verify for the gauge dyonic string solution. This leads us to believe that Witten’s condition 

is essentially equivalent to demanding that the background contains no naked singularities.

We now turn to the conditions that need to be imposed on the Yang-Mills fields. Look-

ing at the gaugino variation in Eqn. (3.10), it is natural to impose the condition that all

components of the nV dimensional vector vrc r are to be non-negative. Since the nT scalars

encoded in the vielbein vr act as gauge coupling constants, this condition simply states

that the Yang-Mills fields must have the correct sign kinetic terms. Starting from a weakly

coupled point in moduli space, it is apparent that the only way to generate a wrong sign

term is to pass through infinite coupling. Since this corresponds to a phase transition [14],

driven by tensionless strings [13,11,1], it indicates that the Bogomol’nyi results need to be

applied with care when discussing the strong coupling dynamics of six dimensional strings. 

Since the Yang-Mills fields lead to a modification of the stress tensor, it is also necessary

to require that T'µv enters non-negatively into the divergence of Nester’s form. For a string-

like geometry in the 0-1 direction, this condition is equivalent to demanding that –T'00 ≥

|T' 01 | ≥ 0, which is automatically satisfied for gauge fields living only in transverse space

(again provided vr cr is non-negative). To see this, note that for µ, v = 0,1 we may write

(3.12)

and use the instanton argument, tr( F ± *4F)2 ≥ 0, to show that the T' conditions are

satisfied. Therefore as long as the Yang-Mills fields vanish in the longitudinal directions of

the string-like solution, no further condition is necessary. It is perhaps not coincidental that

this vanishing of the gauge fields on the string also renders unimportant the inconsistency

of the classical equations of motion. 

3.1

It is instructive to see how the Bogomol’nyi equation breaks down in the various limits of 

the gauge dyonic string. For this string background, given by (2.15), the supersymmetry 

variations of the fermions, (2.8), become 

Supersymmetry of the gauge dyonic string

(3.13)

where +
2

1_
2 (1+γ –01 ) is a projection onto the chiral two-dimensional world-sheet of the=

string-like solution (overlined symbols indicate tangent-space indices). This indicates, as

noted in [1], that the Killing spinor equations are solved for spinors satisfying∋

(3.14)
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On the other hand, the fermion zero modes are given by spinors surviving the projection,

namely Note that for the zero modes there is no further condition on ∋.

Based on the above supersymmetry variations, we may explicitly calculate the divergence

of Nester’s expression. Since this expression obviously vanishes for Killing spinors, we only

concern ourselves with the fermion zero modes. For simplicity in working with the derivative

term entering δ ψ m, we assume a simple scaling so that is given by

where is a constant spinor. Working out the divergence then gives

(3.15)

(3.16)

where the last line holds for α ≠ and is in fact a total derivative, which is not surprising

considering the origin of this expression. Substituting in the explicit function A (r), we then

find

(3.17)

which is independent of α as expected. Combining this with + Z] = 0 appropriate to

Killing spinors then gives an explicit derivation of the Bogomol’nyi bound,

(3.18)

for the gauge dyonic string.

So far we have not addressed the issue of what conditions are necessary to ensure the

validity of the Bogomol’nyi bound. While the equations of motion are satisfied by construc-

tion, both Witten’s condition and the positivity of the gauge function are not guaranteed.

Examining first Witten’s condition, we find

(3.19)

Therefore, for Killing spinors, we choose α = as noted previously in order to satisfy

Witten’s condition. On the other hand, we must choose α = for the case of the fermion

≤

zero modes. Provided there are no naked singularities, this value of α gives rise to a well-

behaved integral, so that there is no problem satisfying Witten’s condition. However this 

is no longer the case whenever there are naked singularities. To see this, we note that such 

naked singularities develop whenever 2Pe–φ o – p2 or 2Qe φ o –p 2 so that e –2A vanishes

for some r2 ≥  0 [1]. Convergence of the volume integral near the singularity then requires

α (or α < for the case Pe –φ o = Qe φ o) which clearly indicates the incompatibility

of Witten’s condition with normalizable fermion zero modes whenever naked singularities 

are present. 

Note that for any value of the mass given by Eqn. (3.18), it is always possible to avoid 

naked singularities in the gauge dyonic string by choosing a sufficiently large instanton 
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size ρ .Therefore evasion of the Bogomol’nyi bound, Eqn. (3.7), is possible even without

singularities. Whenever M < 0 we may see that the breakdown in Bogomol’nyi occurs

because the Yang-Mills couplings have the wrong sign (this is already obvious because M

itself is related to the gauge coupling at infinity). A quick check shows that this breakdown

is also present for the tensionless (M = 0) quasi-anti-self-dual string where there is an exact

cancellation between the contributions from the graviton and tensor multiplet fields and

the wrong sign Yang-Mills fields. As shown below, this cancellation continues to hold when

examining the energy integral for the tensionless string in the flat-space limit.

4 The flat-space limit

If the charges P and Q are such that P = Qe 2φ o , the anti-self-dual 3-form field strength and

the dilaton decouple, i.e. K m
µvP

= 0, φ = φ 0 . In other words, the matter multiplet decouples

in this case, and we recover the self-dual string of [17]. On the other hand if P = – Qe2φ o,

the dyonic string becomes massless, as can be seen from (2.18). At first sight, one might

think that in this case the self-dual 3-form Hµvp and the metric of the gravity multiplet 

would be decoupled. However, this is not in fact what happens. This can easily be seen

from the fact that the metric (2.15) does not become flat: indeed the 1/r2 terms cancel

asymptotically, as they must since the solution is now massless, but the metric still has

non-vanishing asymptotic deviations from Minkowski spacetime of order 1/r4 Similarly,

the self-dual 3-form Hµvp falls off as 1/r4 On the other hand, the fields K m
µvp

and φ – φ 0

fall off as 1/r2 at large r. For this reason, the dyonic string in this limit should more

appropriately be called quasi-anti-self-dual [1], rather than anti-self-dual. However, the

solution becomes anti-self-dual asymptotically, since the self-dual part of the 3-form falls

off faster by a factor of 1/r2.

The above discussion suggests that it should be possible to take the flat-space limit of

the N = (1,0) supergravity theory, and the quasi-anti-self-dual solution, where Newton’s

constant is set to zero. In fact, as we shall show below, there are actually two distinct limits 

that can be taken, yielding two inequivalent flat-space theories. To show this, we shall first

construct the flat-space limit of the more general N = 1 supergravity coupled to an arbitrary

number of anti-self-dual fields K m
µvp . To do this, it is convenient to re-introduce Newton’s 

constant in the supergravity theory, by rescaling the fields of the tensor multiplet in the

following manner.

(4.1)

while the fields of the Yang-Mills multiplet have not been rescaled, the coupling constants 

cr are naturally dimensionless in the global limit, and hence must be rescaled according to
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(4.2)

Note that P m
µ kP m

µ under the rescalings. As a result of this rescaling, the equations of

motion for the supergravity fields become

(4.3)

where now H , indicating that in the limit κ 0 we may consistently

set the gravity fields to their flat-space backgrounds,

(4.4)

Note that the terms proportional to c0 (the coupling of Yang-Mills to the self-dual H) enter

at O(κ ). This suggests the possibility that two different limits can arise; one where c0 /κ is

held fixed, and the other where c0 is non-vanishing and held fixed, as goes to zero. This

may be made more transparent by examining the Yang-Mills equation of motion

(4.5)

from which we see that the O(κ0) terms survive only in the second limit, whilst the equation

is of order κ in the first limit. Before proceeding with the flat-space limits, we note that the 

constrained vielbein matrix V simplifies greatly in the κ. 0 limit, and the nT degrees of

freedom can be parametrized by scalar fields φ m defined by . The other

components of V simply become v0 = 1 and xmM = δ mM. The two flat-space limits arise as

follows:

Flat-space limit with c0/K fixed:

In this limit, it is natural to define c̃ 0 = c0/κ before taking the flat-space limit. We

see that there are now no κ-independent terms in (4.5), and we obtain a Yang-Mills equa-

tion that includes interactions with the anti-self-dual matter multiplets. We find that the

complete set of flat-space equations is

(4.6)
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Note that the anti-self-dual field strengths are given by

(4.7)

where = AdA + A 3. The supersymmetry transformation rules in this flat-space limit

become

(4.8)

The energy-momentum tensor for this flat-space theory may be obtained simply by 

applying the same limiting procedure to the right-hand side of the Einstein equation of

the original supergravity theory, given in (4.3). By this means we obtain the flat-space

expression

(4.9)
This is the theory that we refer to as the “interacting theory”. It is interesting to note 

that the bosonic equations of motion of (4.6) can be derived from the Lagrangian 

(4.10)

where K is taken to be unconstrained, with its anti-self-duality being imposed only after 

having obtained the equations of motion. 

Flat-space limit with c0 held fixed:

The situation is different when c0 is non-vanishing and is held fixed when κ goes to

zero. As can be seen from (4.5), the leading-order terms in the Yang-Mills equation are

now independent of κ, and in fact there are now no interactions with the anti-self-dual

multiplets in the κ 0 limit. All equations of motion, and supersymmetry transformation

rules, remain the same as in the previous c0 ~ κ limit with the exception of the Yang-Mills

equations and the gaugino equation, which are now source-free and given by 

(4.11)

Note however that the energy-momentum tensor, again obtained from the right-hand side 

of the Einstein equation in (4.3) by applying the limiting procedure, is now simply given by 

(4.12)

In the case of a single self-dual tensor multiplet, this is the theory that we refer to as the 

“BSS theory”. 
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A word of explanation is in order here. Firstly, it should be noted that this energy-
momentum tensor arose as a term of order κ in the Einstein equation, rather than the 
usual order κ2 for matter fields. Consequently the Yang-Mills contribution dominates the 
O ( κ2 ) contributions from the tensor multiplets, and so they are absent in this flat-space
limit. Indeed, it is evident that if one were to add “standard” contributions for the fields of
the tensor multiplets, one would find that the resulting energy-momentum tensor was not
conserved upon using the equations of motion. Effectively the tensor multiplets describe
“test fields” in a Yang-Mills background, whose energy-momentum tensor is negligible in
comparison to that of the Yang-Mills field. For the same reason, they do not affect the
Yang-Mills equation. The energy-momentum tensor (4.12) would cease to be appropriate
in a configuration where the Yang-Mills field was zero, since now the previously-neglected
matter contributions would become important. This rather pathological feature of the 
BSS theory is reflected also in the fact that it cannot be described by an analogue of the
Lagrangian (4.10), owing to the inherent asymmetry between the occurrence of interaction
terms in the matter and Yang-Mills equations. 

A number of further comments are also in order. Firstly, it should be emphasised that
the higher-order fermi terms are not included in the equations of motion and supersymmetry
transformation rules (4.6) and (4.8); they were not included in [26,27], and indeed they have
only recently been computed [37]. (See also [36,38].) Nevertheless, one can see on general
grounds that the inclusion of the higher-order terms in the supergravity theory will not 
present any obstacle in the taking of the two inequivalent flat-space limits. Alternatively,
the higher-order completion of the supersymmetry transformations may be determined in
either of the flat-space theories by demanding the closure of the supersymmetry algebra on
the fermi fields. For the interacting theory the supersymmetry transformation rules for the
bosons remain unchanged, while the complete transformation rules for the fermions are 

and agree with the flat-space limit, of the transformations in the supergravity theory [37]. On
the other hand, in the BSS theory the gaugino variation remains unmodified, and only δχm

picks up a higher-order correction (identical to that of the interacting theory). Note that it
is straightforward to see that this must be the case, since the lowest-order transformation for
the Yang-Mills multiplet, (4.8), already closes on the source-free gaugino equation of motion,
(4.11). So in fact we see that the only difference in the supersymmetry transformation rules
in the two flat-space limits is in the higher-order terms in the gaugino variation, consistent
with the difference in the equations of motion for the Yang-Mills multiplet between the two
limits.

The complete gaugino transformation rule in the interacting theory is somewhat unusual, 
in that it contains a possibly singular denominator, (which was also noted in
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[36,37]). As in the supergravity situation, this singular denominator is just a manifestation
of the strong coupling singularity already present in the lowest-order Yang-Mills equations.
This form of the denominator also shows up in the complete equations of motion, given for
the fermi fields in the interacting theory by4

where the primes in the last line indicate the quantities involved in the trace. (Recall that
there can be different cm constants for each factor in a semi-simple group.) Note that α is
an arbitrary parameter that is not fixed by the supersymmetry algebra [37], and appears
to be related to the gauge anomaly (see [37] for a more complete discussion). 

We also note that the flat-space limit when c0 is non-vanishing and held fixed, if we
specialise to the case where there is only a single anti-self-dual multiplet, coincides with
the BSS theory, constructed in [18]. It was argued in [18] that this theory could not be
obtained as a κ → 0 limit of the supergravity theory, on the grounds that the Chern-Simons
form ω enters the 3-form field strengths in (2.3) with a factor of κ (after restoring Newton’s
constant, as in (4.2)), and thus it would disappear in the flat-space limit. However, while
this is indeed the case for the self-dual field of the gravity multiplet, the potentials Bm

µv

for the anti-self-dual matter fields also acquire factors of with the net result that the
Chern-Simons terms are of the same order, and hence they survive in the κ → 0 limit,
as we saw in (4.7) above. The non-standard dimensions of the energy-momentum tensor
(4.12) is a reflection of the need for a dimensionful free parameter, which was also seen
in [18]. Finally, we remark that the more general flat-space theory we obtained in the limit
where c0 ~ κ, does not conflict with the results in [18] which found only the free Yang-
Mills equations (4.11), since in [18] it was assumed that the kinetic term for the Yang-Mills
multiplet was described by the standard superspace free action. Note also that the BSS
theory can be obtained from the interacting flat-space theory by taking k to zero after
making the following rescalings of the fields of the interacting theory: 

(4.15)

together with the rescaling cm → kcm. Thus the interacting flat-space theory encompasses
the BSS theory as a singular limiting case. 

Let us now consider the flat-space limit of the quasi-anti-self-dual dyonic string solution
(2.15) of the supergravity theory. This solution is massless, and hence from (2.18) it follows

4While these equations of motion were obtained by taking the flat-space limit of [37], they equally well 
follow from closure of the supersymmetry algebra, (4.13). 
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that the magnetic charge is related to the electric charge by P = –Qe2φ0.  Consequently,
the parameters c 0 = ( Q + P )/32 and c1 = ( Q – P )/32 are given by 

(4.16)

In the flat-space limit, where in particular φ was rescaled by κ, we see that c0 =
prior to sending κ to zero, and hence we are in the regime of the “interacting theory”,
corresponding to the first of the two limits discussed above. We find that the flat-space 
solution is given by 

(4.17)

Note that φ0 no longer has physical significance as a coupling constant, and it can be
eliminated by making a constant shift of φ. 

Since this solution has been obtained as the flat-space limit of a tensionless string, we 
expect that it should have vanishing energy. This might at first sight seem surprising, since 
it is described by a non-trivial field configuration. However, a straightforward calculation
of T00 given by (4.9) yields 

(4.18)

where the first term in the second line comes from the (equal) contributions from K and φ, 
and the second term comes from F. It is easily verified that while T00 itself is non-vanishing,
the integral T00 r3 dr is equal to zero. Clearly the Yang-Mills field is giving a negative 
contribution to the energy, in precisely such a way that the total energy is zero. This is
the flat-space analogue of the cancellation that occurs in the supergravity theory, with its
associated subtleties in the Bogomol’nyi analysis, which we discussed at the end of section 3. 

It should be emphasised that the vanishing energy of the flat-space tensionless string
occurs for arbitrary scale size ρ of the Yang-Mills instanton. However, if we consider instead
the neutral tensionless string, which can be achieved by setting ρ = 0 so that the instanton
is not present, then the expression (4.18) becomes T00 = 4Q 2 /r6 , whose integral over the
transverse space diverges at the core of the string. Thus the Yang-Mills instanton in the
gauge-dyonic string can be viewed as a regulator for the total energy. 

There are also massive string solutions to the interacting flat-space theory, which can
also be obtained as flat-space limits of the curved-space gauge dyonic string. They arise
by taking the ADM mass, as given by (2.18), to be non-zero and of the form m0 κ. Upon
taking the κ → 0 flat-space limit, this gives a solution of the same form as (4.17), but with
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φ shifted by the constant m
0 . From (4.18), this gives an extra term in T00 which gives rise

to an energy m0 per unit length for the flat-space string.
It is interesting to note that while the flat-space limit of the tensionless string always

results in the c0 ~ κ limit of the interacting theory, the final solution itself, as given in 
(4.17), also satisfies the equations of motion of the BSS theory, where c0 is held fixed in 
the flat-space limit5. To see this, we note that for a bosonic background, only the Yang-
Mills equation differs between the two flat-space theories. In particular, both Yang-Mills 
equations may be expressed as Dµ Fµv = Jv, where the current is

(4.19)

for the first theory, and vanishes for the latter. Because of the form of the solution, (4.17), we
see that Jµ identically vanishes, and hence the background is indeed a solution to both flat- 
space limits. Furthermore, examination of the BPS conditions arising from (4.8) indicates 
that Jµ = 0 for any string-like background preserving half of the supersymmetries. It 
should be remarked, however, that when interpreted as a solution to the c0 fixed flat-space 
limit, the string no longer has vanishing energy per unit length, since in this case the stress 
tensor (4.12) has only a positive contribution from the Yang-Mills instanton. Thus only 
the interacting theory from the first flat-space limit, (4.6), provides a suitable description 
of the tensionless string in flat space. 

Finally, we note that by taking the divergence of (4.19), we obtain 

(4.20)

indicating that the current is not conserved classically. Thus the inconsistency of the su- 
pergravity theory, which we discussed in section 3, survives in the “interacting” flat-space 
limit. Nevertheless since, as for the gauge dyonic string in curved space, Jµ vanishes iden- 
tically for the global gauge string, this classical inconsistency does not spoil the solution.
On the other hand, since the BSS theory is free of this inconsistency it is possible that such 
a classical inconsistency, necessary for anomaly cancellation in the quantum theory, is an 
integral part of a fully interacting theory. 

We have not paid much attention in this paper to the question of gravitational anomalies 
which is always an important issue when dealing with chiral theories. In particular, we 
have for simplicity ignored the presence of hypermultiplets. A coupled supergravity-matter 
theory which is initailly free of gravitational anomalies theory will not remain so when the 
gravity multiplet is switched off because the contributions from the gravitino and self-dual 
2-form, necessary for the anomaly cancellation, are no longer present. Naively, of course,
one could argue that gravitational anomalies are no longer of any concern in the flat space 
limit. However, it may be that subtleties arise when one tries to take the global limit of a 

5The solution (4.17) has also been obtained in the BSS theory by directly solving its first-order BPS
equations [39].
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worldvolume theory which relies for its anomaly freedom on anomaly inflow from the bulk. 
This is deserving of further study. 

In conclusion, we note that six-dimensional global models are also important as fivebrane 
worldvolume theories [19–21,18]. In the absence of Yang-Mills fields, the (1,0) multiplet 
is the only one available to describe the worldvolume theory of the D = 7, N = 1 five-
brane solution found in [40]. Six-dimensional global models also arise from configurations 
of higher-dimensional branes with six worldvolume dimensions in common. Indeed, the 
brane configurations yielding (1,0) theories with tensor multiplets, vector multiplets and 
hypermultiplets have been identified in [24,25], although no field equations were written 
down. Here we speculate further that the interacting anti-self-dual-tensor Yang-Mills sys- 
tem given in this paper (together with hypermultiplets where necessary) is the appropriate 
one to describe these global models. The global gauge anti-self-dual string, and in particular 
the tensionless string, could then be regarded as strings on the worldvolume. 

Note added

Global D = 6, (1,0) models of the type discussed in this paper have recently been shown 
to arise from configurations of NS fivebranes, Dirichlet sixbranes and eightbranes [41] 
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ABSTRACT
In view of the observed strong hierarchy of the quark and lepton masses and of the

flavor mixing angles it is argued that the description of flavor mixing must take this
into account. One particular interesting way to describe the flavor mixing, which,
however, is not the one used today, emerges, which is best suited for models of quark
mass matrices based on flavor symmetries. We conclude that the unitarity triangle
important for B physics should be close to or identical to a rectangular triangle. CP
violation is maximal in this sense.
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The phenomenon of flavor mixing, which is intrinsically linked to C P –violation,
is an important ingredient of the Standard Model of Basic Interactions. Yet unlike
other features of the Standard Model, e. g. the mixing of the neutral electroweak 
gauge bosons, it is a phenomenon which can merely be described. A deeper under-
standing is still lacking, but most theoreticians would agree that it is directly linked 
to the mass spectrum of the quarks _ the possible mixing of lepton flavors will not
be discussed here. Furthermore there is a general consensus that a deeper dynamical
understanding would require to go beyond the physics of the Standard Model. In this
talk I shall not go thus far. Instead I shall demonstrate that the observed properties 
of the flavor mixing, combined with our knowledge about the quark mass spectrum, 
suggest specific symmetry properties which allow to fix the flavor mixing parameters 
with high precision, thus predicting the outcome of the experiments which will soon 
be performed at the B–meson factories.
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In the standard electroweak theory, the phenomenon of flavor mixing of the
quarks is described by a 3 x 3 unitary matrix, the Cabibbo-Kobayashi-Maskawa
(CKM) matrix1,2. This matrix can be expressed in terms of four parameters, which
are usually taken as three rotation angles and one phase. A number of different
parametrizations have been proposed in the literature2,3,4,5. Of course, adopting a
particular parametrization of flavor mixing is arbitrary and not directly a physics
issue. Nevertheless it is quite likely that the actual values of flavor mixing para-
meters (including the strength of C P violation), once they are known with high
precision, will give interesting information about the physics beyond the standard
model. Probably at this point it will turn out that a particular description of the
CKM matrix is more useful and transparent than the others. For this reason, let me
first analyze all possible parametrizations and point out their respective advantages
and disadvantages.

In the standard model the quark flavor mixing arises once the up- and down-
type mass matrices are diagonalized. The generation of quark masses is intimately
related to the phenomenon of flavor mixing. In particular, the flavor mixing para-
meters do depend on the elements of quark mass matrices. A particular structure
of the underlying mass matrices calls for a particular choice of the parametrization
of the flavor mixing matrix. For example, in it was noticed6 that a rather special
form of the flavor mixing matrix results, if one starts from Hermitian mass matrices
in which the (1,3) and (3,1) elements vanish. This has been subsequently observed
again in a number of papers7. Recently we have studied the exact form of such a de-
scription from a general point of view and pointed out many advantages of this type
of representation in the discussion of flavor mixing and CP-violating phenomena5,
which will be discussed later.

In the standard model the weak charged currents are given by

(1)

where u, c, ..., b are the quark mass eigenstates, L denotes the left-handed fields,
and Vij are elements of the CKM matrix V. In general Vij are complex numbers,
but their absolute values are measurable quantities. For example, |Vcb | primarily
determines the lifetime of B mesons. The phases of Vij, however, are not physical,
like the phases of quark fields. A phase transformation of the u quark (u u e iα ),
for example, leaves the quark mass term invariant but changes the elements in the
first row of V (i.e., Vuj Vuj e–i α ). Only a common phase transformation of all
quark fields leaves all elements of V invariant, thus there is a five-fold freedom to
adjust the phases of Vij.

In general the unitary matrix V depends on nine parameters. Note that in the
absence of complex phases V would consist of only three independent parameters,
corresponding to three (Euler) rotation angles. Hence one can describe the com-
plex matrix V by three angles and six phases. Due to the freedom in redefining the
quark field phases, five of the six phases in V can be absorbed, and we arrive at the
well-known result that the CIKM matrix V can be parametrized in terms of three
rotation angles and one CP-violating phase. The question about how many different 
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ways to describe V may exist was raised some time ago8. Recently the problem was
reconsidered and brought in connection with the mass hierarchy5.

In our view the best possibility to describe the flavor mixing in the standard
model is to adopt the parametrization discussed in ref. (5). This parametrization
has a number of significant advantages. In the following part I shall show that this
parametrization follows automatically if we impose the constraints from the chiral
symmetries and the hierarchical structure of the mass eigenvalue9,10,11. We take
the point of view that the quark mass eigenvalues are dynamical entities, and one
could change their values in order to study certain symmetry limits, as it is done
in QCD. In the standard electroweak model, in which the quark mass matrices are
given by the coupling of a scalar field to various quark fields, this can certainly be
done by adjusting the related coupling constants. Whether it is possible in reality
is an open question. It is well-known that the quark mass matrices can always be
made hermitian by a suitable transformation of the right–handed fields. Without
loss of generality, we shall suppose in this paper that the quark mass matrices are
hermitian. In the limit where the masses of the u and d quarks are set to zero,
the quark mass matrix M̃ (for both charge +2/3 and charge –1/3 sectors) can be
arranged such that its elements M̃ i 1 and M̃ 1i (i = 1,2, 3) are all zero 9,10 Thus the
quark mass matrices have the form

(2)

The observed mass hierarchy is incorporated into this structure by denoting the
entry which is of the order of the t-quark or b-quark mass by Ã with Ã C̃ , |B|. It
can easily be seen (see, e.g., ref. (12) that the complex phases in the mass matrices
(1) can be rotated away by subjecting both M̃u and M̃d to the same unitary trans-
formation. Thus we shall take B̃ to be real for both up- and down-quark sectors. As
expected, CP violation cannot arise at this stage. The diagonalization of the mass
matrices leads to a mixing between the second and third families, described by an
angle θ ˜ . The flavor mixing matrix is then given by

(3)

where s̃ sin θ ˜ and c̃ cos θ ˜ . In view of the fact that the limit mu = md = 0 is≡
not far from reality, the angle θ is essentially given by the observed value of |V cb|
(= 0.039 ± 0.002)13,14; i.e., θ ˜ = 2.24° ± 0.12°.

At the next and final stage of the chiral evolution of the mass matrices, the 
masses of the u and d quarks are introduced. The Hermitian mass matrices have in 
general the form: 

(4)

with A C, |B| E, |D|, |F|. By a common unitary transformation of the up- and
down-type quark fields, one can always arrange the mass matrices Mu and Md in
such a way that Fu = Fd = 0; i.e., 
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(5)

This can easily be seen as follows. If phases are neglected, the two symmetric mass
matrices Mu and Md can be transformed by an orthogonal transformation matrix
O, which can be described by three angles such that they assume the form (5). The
condition Fu = Fd = 0 gives two constraints for the three angles of O. If complex
phases are allowed in Mu and Md, the condition Fu = F*u = Fd = F *d = 0 imposes
four constraints, which can also be fulfilled, if Mu and Md are subjected to a common
unitary transformation matrix U. The latter depends on nine parameters. Three of
them are not suitable for our purpose, since they are just diagonal phases; but the
remaining six can be chosen such that the vanishing of Fu and Fd results.

The basis in which the mass matrices take the form (5) is a basis in the space
of quark flavors, which in our view is of special interest. It is a basis in which the
mass matrices exhibit two texture zeros, for both up- and down-type quark sectors.
These, however, do not imply special relations among mass eigenvalues and flavor
mixing parameters (as pointed out above). In this basis the mixing is of the “nearest
neighbour” form, since the (1,3) and (3,1) elements of Mu and Md vanish; no direct
mixing between the heavy t (or b) quark and the light u (or d) quark is present (see
also ref. (15). In certain models (see, e.g., ref. (16), this basis is indeed of particular
interest, but we shall proceed without relying on a special texture models for the
mass matrices.

A mass matrix of the type (5) can in the absence of complex phases be diago-
nalized by a rotation matrix, described by two angles only. At first the off-diagonal
element B is rotated away by a rotation between the second and third families (angle
θ 23); at the second step the element D is rotated away by a transformation of the
first and second families (angle θ 12). No rotation between the first and third families
is required. The rotation matrix for this sequence takes the form

where c12 cos θ 12, s12 sin θ 12, etc. The flavor mixing matrix V is the product of
two such matrices, one describing the rotation among the up-type quarks, and the
other describing the rotation among the down-type quarks:

(6)

(7)

The product Ru
23 (Rd

23 )–1 can be written as a rotation matrix described by a single
angle θ . In the limit mu, = md = 0, this is just the angle θ ˜ encountered in eq. (6). The
angle which describes the R u

12 rotation shall be denoted by θ u; the corresponding
angle for the Rd

12 rotation by θ d. Thus in the absence of C P-violating phases the
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flavor mixing matrix takes the following specific form:

(8)

where cu, cos θ u, su sin θ u, etc.

We proceed by including the phase parameters of the quark mass matrices in
eq. (5). It can easily be seen that, by suitable rephasing of the quark fields, the 
flavor mixing matrix can finally be written in terms of only a single phase ϕ as
follows:

(9)

Note that the three angles θ u, θ d and θ in eq. (12) can all be arranged to lie in the 
first quadrant through a suitable redefinition of quark field phases. Consequently all 
su, sd, s and cu, cd, c are positive. The phase ϕ can in general take values from 0 to
2π ; and CP violation is present in the weak interactions if ϕ  0, π and 2π. 

This particular representation of the flavor mixing matrix is the main result of
this paper. In comparison with all other parametrizations discussed previously 2,3, it
has a number of interesting features which in our view make it very attractive and 
provide strong arguments for its use in future discussions of flavor mixing phenome-
na, in particular, those in B-meson physics (see also refs. (17, 18)). We shall discuss 
them below. 

a) The flavor mixing matrix V in eq. (12) follows directly from the chiral expansion 
of the mass matrices. Thus it naturally takes into account the hierarchical structure 
of the quark mass spectrum. 

b) The complex phase ϕ describing C P violation appears only in the (1.1), (1,2), 
(2,1) and (2,2) elements of V, i.e., in the elements involving only the quarks of the
first and second families. This is a natural description of C P violation since in our
hierarchical approach C P violation is not directly linked to the third family, but
rather to the first and second ones, and in particular to the mass terms of the u and
d quarks.

It is instructive to consider the special case Su = Sd = S = 0. Then the flavor
mixing matrix V takes the form 

(10)
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This matrix describes a phase change in the weak transition between u and d,
while no phase change is present in the transitions between c and s as well as t and
b. Of course, this effect can be absorbed in a phase change of the u- and d-quark
fields, and no CP violation is present. Once the angles θ u, θ d and θ are introduced,
however, CP violation arises. It is due to a phase change in the weak transition bet-
ween u' and d', where u' and d' are the rotated quark fields, obtained by applying
the corresponding rotation matrices given in eq. (9) to the quark mass eigenstates 
(u': mainly u, small admixture of c; d': mainly d, small admixture of s).

Since the mixing matrix elements involving the t or b quarks are real in the repre-
sentation (9), one can find that the phase parameter of B o

q -B– o
q mixing (q = d or s),

dominated by the box-diagram contributions in the standard model19, is essentially
unity:

(11)

In most other parametrizations of the flavor mixing matrix, however, the two 
rephasing-variant quantities (q/p)Bd and (q/p)Bs take different (maybe complex)
values.

c) The dynamics of flavor mixing can easily be interpreted by considering certain 
limiting cases in eq. (9). In the limit θ 0 (i.e., s 0 and c 1), the flavor mixing→
is, of course, just a mixing between the first and second families, described by only 
one mixing angle (the Cabibbo angle θ c1).
It is a special and essential feature of the representation (9) that the Cabibbo angle 
is not a basic angle, used in the parametrization. The matrix element Vus (or Vcd) is
indeed a superposition of two terms including a phase. This feature arises naturally 
in our hierarchical approach, but it is not new. In many models of specific textures 
of mass matrices, it is indeed the case that the Cabibbo-type transition Vus (or Vcd)
is a superposition of several terms. At first, it was obtained by one of the authors 
in the discussion of the two-family mixing 20.

In the limit θ = 0 considered here, one has |Vus| = |Vcd| = sin θ C SC and

(12)
This relation describes a triangle in the complex plane, as illustrated in Fig. 1, 

which we shall denote as the “LQ– triangle” (“light quark triangle”). This triangle 
is a feature of the mixing of the first two families (see also ref. (20)). Explicitly one 
has (for s = 0): 

(13)

Certainly the flavor mixing matrix V cannot accommodate C P violation in this 
limit. However, the existence of ϕ seems necessary in order to make eq. (16) com-
patible with current data, as one can see below. 

Abbildung 1: The LQ–triangle 
in the complex plane. 
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d) The three mixing angles θ , θ u and θ d have a precise physical meaning. The angle
θ describes the mixing between the second and third families, which is generated 
by the off-diagonal terms Bu and Bd in the up and down mass matrices of eq. (9).
We shall refer to this mixing involving t and b as the “heavy quark mixing”. The
angle θ u, however, primarily describes the u-c mixing, corresponding to the Du term
in Mu. We shall denote this as the “u-channel mixing”. The angle θ d primarily des-
cribes the d-s mixing, corresponding to the Dd term in Md; this will be denoted as
the “d-channel mixing”. Thus there exists an asymmetry between the mixing of the 
first and second families and that of the second and third families, which in our view 
reflects interesting details of the underlying dynamics of flavor mixing. The heavy 
quark mixing is a combined effect, involving both charge +2/3 and charge –1/3 
quarks, while the u- or d-channel mixing (described by the angle θ u or θ d) proceeds
solely in the charge +2/3 or charge –1/3 sector. Therefore an experimental deter-
mination of these two angles would allow to draw interesting conclusions about the
amount and perhaps the underlying pattern of the u- or d-channel mixing. 

e) The three angles θ , θ u and θ d are related in a very simple way to observable
quantities of B-meson physics.
For example, θ is related to the rate of the semileptonic decay B D*lvl ; θ u is
associated with the ratio of the decay rate of B (π, p)lvl to that of B D*lvl ;
and θ d can be determined from the ratio of the mass difference between two Bd
mass eigenstates to that between two Bs mass eigenstates. From eq. (9) we find the 
following exact relations: 

and

(14)

(15)

These simple results make the parametrization (9) uniquely favorable for the study 
of B-meson physics.

By use of current data on |Vub| and |Vcb|, i.e., |Vcb| = 0.039 ± 0.00213,14 and
|Vub|Vcb| = 0.08 ± 0.0214, we obtain θ u = 4.57° ± 1.14° and θ = 2.25° ± 0.12°. Taking
|Vtd| = (8.6 ± 2.1) x 10 –314, which was obtained from the analysis of current data on
B

o
d -B

– o
d mixing, we get |Vtd/Vts| = 0.22±0.07, i.e., θ d = 12.7°±3.8°. Both the heavy

quark mixing angle θ and the u-channel mixing angle θ u are relatively small. The 
smallness of θ implies that Eqs. (11) and (12) are valid to a high degree of precision 
(of order 1 – c 0.001).

f) According to eq. (12), as well as eq. (11), the phase ϕ is a phase difference bet-
ween the contributions to Vus (or Vcd) from the u-channel mixing and the d-channel
mixing. Therefore ϕ is given by the relative phase of D d and Du in the quark mass 
matrices (4), if the phases of Bu and Bd are absent or negligible.

The phase ϕ is not likely to be 0° or 180°, according to the experimental va-
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lues given above, even though the measurement of C P violation in K0-K– 0 mixing19

is not taken into account. For ϕ = 0°, one finds tanθc = 0.14 ± 0.08; and for
ϕ = 180°, one gets tan θ C = 0.30 ± 0.08. Both cases are barely consistent, with the
value of tan θC obtained from experiments (tan θ c |Vus|Vud| 0.226).

g) The C P-violating phase ϕ in the flavor mixing matrix V can be determined 
from |Vus| (= 0.2205 ± 0.0018)19 through the following formula, obtained easily from
eq. (8):

(16)

The two-fold ambiguity associated with the value of ϕ , coming from cos ϕ =
cos(2π – ϕ ), is removed if one takes sin ϕ > 0 into account (this is required by 
current data on C P violation in Ko-K

- o mixing (;.e., K). More precise measurements 
of the angles θ u and θ d in the forthcoming experiments of B physics will reduce 
the uncertainty of ϕ to be determined from eq. (19). This approach is of course
complementary to the direct determination of ϕ from C P asymmetries in some 
weak B-meson decays into hadronic C P eigenstates 21.

Considering the presently known phenomenological constraints (see e.g. Ref.22)
the value of ϕ is most likely in the range 40° to 120°; the central value is ϕ 81°.
Note that ϕ is essentially independent of the angle θ , due to the tiny observed value 
of the latter. Once tan θ d is precisely measured, one shall be able to fix the magni-
tude of ϕ to a satisfactory degree of accuracy. 
h) It is well–known that C P violation in the flavor mixing matrix V can be
rephasing–invariantly described by a universal quantity 23:

In the parametrisation (9), reads 

(17)

(18)
Obviously ϕ = 90° leads to the maximal value of Indeed ϕ = 90°, a particularly 
interesting case for CP violation, is quite consistent with current data. In this case 
the mixing term Dd in eq. (5) can be taken to be real, and the term Du to be ima-
ginary, if Im(Bu) = Im(Bd) = 0 is assumed. Since in our description of the flavor
mixing the complex phase ϕ is related in a simple way to the phases of the quark 
mass terms, the case ϕ = 90° is especially interesting. It can hardly be an accident, 
and this case should be studied further. The possibility that the phase ϕ describing
CP violation in the standard model is given by the algebraic number π /2 should be 
taken seriously. It may provide a useful clue towards a deeper understanding of the 
origin of CP violation and of the dynamical origin of the fermion masses. 

In ref. (5) the case ϕ = 90º has been denoted as “maximal” CP violation. It 
implies in our framework that in the complex plane the u-channel and d-channel
mixings are perpendicular to each other. In this special case (as well as θ 0), we 
have

(19)

To a good approximation (with the relative error ~ 2%), one finds S2
C ; S2

u + S2
d .
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i) At future B-meson factories, the study of C P violation will concentrate on mea-
surements of the unitarity triangle. 
The unitzarity triangle (a) and its rescaled counterpart (b) in the complex plane.

Su, + Sc + St = 0, (20)
where Si VidV*ib in the complex plane (see Fig. 2(a)). The inner angles of this 
triangle. are denoted as 19.

In terms of the parameters θ , θ u, θ d and ϕ , we obtain 

(21)

(22)

To an excellent degree of accuracy, one finds α ϕ . In order to illustrate how ac-
curate this relation is, let us input the central values of θ , θ u and θ d (i.e., θ = 2.25°. 
θ u = 4.57º and θ d = 12.7°) to eq. (22). Then one arrives at ϕ − α 1° as well 
as sin(2 α ) 0.34 and sin(2 β ) 0.65. It is expected that sin(2 α ) and sin(2 β ) will
be directly measured from the C P asymmetries in Bd π + π – and Bd J/ψ Ks→ →
modes at a B-meson factory.

Note that the three sides of the unitarity triangle (21) can be rescaled by |Vcd| . In
a very good approximation (with the relative error ~ 2%), one arrives at 

Equivalently, one can obtain 

(23)

(24)

where sα sin α , etc. Comparing the unitarity triangle with the LQ–triangle in Fig. 
1, we find that they are indeed congruent with each other to a high degree of accu-
racy. The congruent relation between these two triangles is particularly interesting, 
since the LQ–triangle is essentially a feature of the physics of the first two quark 
families, while the unitarity triangle is linked to all three families. In this connection 
it is of special interest to note that in models which specify the textures of the mass 
matrices the Cabibbo triangle and hence three inner angles of the unitarity triangle 
can be fixed by the spectrum of the light quark masses and the C P -violating phase
ϕ .

j) It is worth pointing out that the u-channel and d-channel mixing angles are 
related to the so-called Wolfenstein parameters23 in a simple way: 

(25)
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where λ ≈ sc measures the magnitude of Vus. Note that the C P-violating parameter
η  is linked to ϕ through

(26)

in the lowest-order approximation. Then ϕ = 90° implies η 2 ≈ ρ (1 – ρ), on the
condition 0 < ρ < 1. In this interesting case, of course, the flavor mixing matrix can
fully be described in terms of only three independent parameters.

k) Compared with the standard parametrization of the flavor mixing matrix

V the parametrization (9) has an additional advantage: the renormalization-group

evolution of V, from the weak scale to an arbitrary high energy scale, is to a very

good approximation associated only with the angle θ . This can easily be seen if one

keeps the t and b Yukawa couplings only and neglects possible threshold effect in

the one-loop renormalization-group equations of the Yukawa matrices
24
. Thus the

parameters θ u, θ
d and ϕ are essentially independent of the energy scale, while θ does

depend on it and will change if the underlying scale is shifted, say from the weak
scale (~ 10

2
GeV) to the grand unified theory scale (of order 10

16
GeV). In short,

the heavy quark mixing is subject to renormalization-group effects; but the u- and
d-channel mixings are not, likewise the phase ϕ describing C P violation and the

LQ–triangle as a whole.

We have presented a new description of the flavor mixing phenomenon, which

is based on the phenomenological fact that the quark mass spectrum exhibits a cle-
ar hierarchy pattern. This leads uniquely to the interpretation of the flavor mixing
in terms of a heavy quark mixing, followed by the u-channel and d-channel mixings. 
The complex phase ϕ , describing the relative orientation of the u-channel mixing
and the d-channel mixing in the complex plane, signifies C P violation, which is a 
phenomenon primarily linked to the physics of the first two families. The Cabibbo 

angle is not a basic mixing parameter, but given by a superposition of two terms 

involving the complex phase ϕ . The experimental data suggest that the phase ϕ ,
which is directly linked to the phases of the quark mass terms, is close to 90°. This 

opens the possibility to interpret CP violation as a maximal effect, in a similar way

as parity violation. 

Our description of flavor mixing has many clear advantages compared with other 
descriptions. We propose that it should be used in the future description of flavor
mixing and C P violation, in particular, for the studies of quark mass matrices and
B-meson physics. 

The description of the flavor mixing phenomenon given above is of special in-

terest if for the U and D channel mixing the quark mass textures discussed first in20

are applied (see also
5
). In that case one finds25 (apart from small corrections)
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The experimental value for tan Θ u given by the ratio Vub/Vcb is in agreement with

the observed value for (mu/mc )
1/2 ≈ 0.07, but the errors for both ( mu /mc )

1/2
and

Vub /Vcb are the same (about 25%). Thus from the underlying texture no new infor-

mation is obtained.

This is not true for the angle Θ d, whose experimental value is due to a large
uncertainty.: Θ d = 12.7° ± 3.8°. If Θ d is given indeed by the square root of the quark
mass ratio md /ms , which is known to a high accuracy, we would know Θ d and the-

refore all four parameters of the CKM matrix with high precision.

As emphasized in ref. (5), the phase angle ϕ is very close to 90°, implying that 

the LQ–triangle and the unitarity triangle are essentially rectangular triangles. In
particular the angle β which is likely to be measured soon in the study of the reac-

tion B° J/ψ Ks° is expected to be close to 20°. 

It will be very interesting to see whether the angles Θ d and Θ u are indeed gi-
ven by the square roots of the light quark mass ration md/ms and mu/mc, which
imply that the phase ϕ is close to or exactly 90°. This would mean that the light 

quarks play the most important rôle in the dynamics of flavor mixing and CP vio-
lation and that a small window has been opened allowing the first view accross the 

physics landscape beyond the mountain chain of the Standard Model.
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1 Introduction
The least well quantified parameters of the Standard Model (SM) are the masses of 
light quarks and the p and η parameters in the Wolfenstein representation of the CKM 
mixing matrix. A non-zero value of η signals CP violation. The important question is 

whether the CKM ansatz explains all observed CP violation. This can be addressed 
by comparing the SM estimates of the two CP violating parameters and against 
experimental measurements. The focus of this talk is to evaluate the dependence of 
these parameters on the light quark masses and on the bag parameters BK, B6

1/2 , and

B8 
3/2. I will therefore provide a status report on the estimates of these quantities from

lattice QCD (LQCD). 

Since this is the only talk presenting results obtained using LQCD at this conference, 

I have been asked to give some introduction to the subject. The only way I can 
cover my charter, introduce LQCD, summarize the results, and make contact with

phenomenology is to skip details. I shall try to overcome this shortcoming by giving 

adequate pointers to relevant literature. 

2 Lattice QCD 
LQCD calculations are a non-perturbative implementation of field theory using the 

Feynman path integral approach. The calculations proceed exactly as if the field theory 

was being solved analytically had we the ability to do the calculations. The starting 

point is the partition function in Euclidean space-time

z = (1)
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where S is the QCD action

(2)

and M is the Dirac operator. The fermions are represented by Grassmann variables ψ 
and ψ – These can be integrated out exactly with the result 

(3)

The fermionic contribution is now contained in the highly non-local term det M, and

the partition function is an integral over only background gauge configurations. One

can write the action, after integration over the fermions, as S = Sgauge + Squarks =
(DetMi) where the sum is over the quark flavors distinguished

by the value of the bare quark mass. Results for physical observables are obtained by

calculating expectation values 

(4)

where is any given combination of operators expressed in terms of time-orderedO
Oproducts of gauge and quark fields. The quarks fields in are, in practice, re-expressed

in terms of quark propagators using Wick’s theorem for contracting fields. In this way 

all dependence on quarks as dynamical fields is removed. The basic building block for 
the fermionic quantities, the Feynman propagator, is given by

(5)

where M –1 is the inverse of the Dirac operator calculated on a given background field.

A given element of this matrix is the amplitude for the propagation of a

quark from site x with spin-color i, a to site-spin-color y, j, b.
So far all of the above is standard field theory. The problem we face in QCD is how

to actually calculate these expectation values and how to extract physical observables 
from these. I will illustrate the second part first by using as an example the mass and

O

 

decay constant of the pion.

O f Oi

 

Consider the 2-point correlation function, where  the op-
→→

erators are chosen to be the fourth component of the axial current = = A4 =

as these have a large coupling to the pion. The 2-point correlation function 
then gives the amplitude for creating a state with the quantum numbers of the pion

;
 

out of the vacuum at space-time point 0 by the “source” operator the evolution of

.

 
this state to the point via the QCD Hamiltonian; and finally the annihilation by 

the “sink” operator at The rules of quantum mechanics tell us that will 

create a state that is a linear combination of all possible eigenstates of the Hamiltonian 

that have the same quantum numbers as the pion, i.e. the pion, radial excitations of 
the pion, three pions in J = 0 state, . . .. The second rule is that on propagating for
Euclidean time t, a given eigenstate with energy E picks up a weight e-Et. Thus, the
2-point function can be written in terms of a sum over all possible intermediate states 

-

(6)

To study the properties of the pion at rest we need to isolate this state from the sum 

over n. To do this, the first simplification is to use the Fourier projection as it
restricts the sum over states to just zero-momentum states, so En Mn. (Note that
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it is sufficient to make the Fourier projection over either or The second step to 
isolate the pion, i.e. project in the energy, consists of a combination of two strategies.
One, make a clever choice of the operators to limit the sum over states to a single 
state (the ideal choice is to set equal to the quantum mechanical wave-function of

the pion), and two, examine the large t behavior of the 2-point function where only

the contribution of the lowest energy state that couples to is significant due to the 

exponential damping. Then

Oi

Oi

Oi

Oi Of.)

(7)

The right hand side is now a function of the two quantities we want since =

Mπ fπ. In this way, the mass and the decay constant are extracted from the rate of
exponential fall-off in time and from the amplitude. 

Let me now illustrate how the left hand side is expressed in terms of the two basic 
quantities we control in the path integral – the gauge fields and the quark propagator.

Using Wick contractions, the correlation function can be written in terms of a product 
of two quark propagators SF ,

(8)

This correlation function is illustrated in Fig. 1. It is important to note that one

recovers the 2-point function corresponding to the propagation of the physical pion 
only after the functional integral over the gauge fields, as defined in Eq. 4, is done. 
To illustrate this Wick contraction procedure further, consider using gauge invariant_
stands for path-ordered. After Wick contraction the correlation function reads 

non-local operators, for example using where P 

(9)

and involves both the gauge fields and quark propagators. This correlation function 
would have the same long t behavior as shown in Eq. 6, however, the amplitude will

be different and consequently its relation to fπ will no longer be simple. The idea of
improving the projection of on to the pion is to construct a suitable combination of

such operators that approximates the pion wave-function.

O

To implement such calculations of correlation functions requires the following steps.

A way of generating the background gauge configurations and calculating the action S
associated with each; calculating the Feynman propagator on such background fields; 

constructing the desired correlation functions; doing the functional integral over the
gauge fields to get expectation values; making fits to these expectation values, say as a 

function of t as in Eq. 6 to extract the mass and decay constant; and finally including

any renormalization factors needed to properly define the physical quantity. It turns 

out that at present the only first principles approach that allows us to perform these 

steps is LQCD. Pedagogical expose to LQCD can be found in [l, 2, 3, 4], and I shall 

only give a very brief description here. 

Lattice QCD – QCD defined on a finite space-time grid – serves two purposes. One,
the discrete space-time lattice serves as a non-perturbative regularization scheme. At 

finite values of the lattice spacing a, which provides the ultraviolet cutoff, there are no
infinities. Furthermore, renormalized physical quantities have a finite well behaved limit 
as a 0. Thus, in principle, one could do all the standard perturbative calculations
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using lattice regularization, however, these calculations are far more complicated and 

have no advantage over those done in a continuum scheme. The pre-eminent utility of

transcribing QCD on the lattice is that LQCD can be simulated on the computer using 
methods analogous to those used in Statistical Mechanics. These simulations allow 

us to calculate correlation functions of hadronic operators and matrix elements of any 
operator between hadronic states in terms of the fundamental quark and gluon degrees 

of freedom following the steps discussed above. 
The only tunable input parameters in these simulations are the strong coupling 

constant and the bare masses of the quarks. Our belief is that these parameters are 
prescribed by some yet more fundamental underlying theory, however, within the con-

text of the standard model they have to be fixed in terms of an equal number of exper-

imental quantities. This is what is done in LQCD. Thereafter all predictions of LQCD 

have to match experimental data if QCD is the correct theory of strong interactions. 

A summary of the main points in the calculations of expectation values via simula-

tions of LQCD are as follows. 

• The Yang-Mills action for gauge fields and the Dirac operator for fermions has to
be transcribed on to the discrete space-time lattice in such a way as to preserve 

all the key properties of QCD– confinement, asymptotic freedom, chiral symmetry,
topology, and a one-to-one relation between continuum and lattice fields. This 
step is the most difficult, and even today we do not have a really satisfactory 
lattice formulation that is chirally symmetric in the mq = 0 limit and preserves
the one-to-one relation between continuum and lattice fields, i.e. no doublers. In

fact, the Nielson-Ninomiya theorem states that for a translationally invariant, local,
hermitian formulation of the lattice theory one cannot simultaneously have chiral 

symmetry and no doublers [5]. One important consequence of this theorem is that, 
in spite of tremendous effort, there is no viable formulation of chiral fermions on 

the lattice. For a review of the problems and attempts to solve them see [6, 7, 8]. 

A second problem is encountered when approximating derivatives in the action by 
finite differences. As is well known this introduces discretization errors propor-

tional to the lattice spacing a. These errors can be reduced by either using higher 
order difference schemes with coefficients adjusted to take into account effects of 

renormalization, or equivalently, by adding appropriate combinations of irrelevant 

Figure 1. A schematic of the pion 2-point correlation function for local and non-local

interpolating operators.
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operators to the action that cancel the errors order by order in a. The various 

approaches to improving the fermion and gauge actions are discussed in [9, 10, 11].

Here I simply list the three most frequently used discretizations of the Dirac action 
– Wilson [12], Sheikholeslami-Wohlert (clover) [13], and staggered [14], which have 

errors of O(a), O(α sa) – O(a2
) depending on the value of the coefficient of the clover

term, and O(a2
) respectively. The important point to note is that while there may

for finite a, improvement of
the action is very useful but not necessary. Even the simplest formulation, Wilson’s

original gauge and fermion action [12], gives the correct results in the a = 0 limit. 

It is sufficient to have the ability to reliably extrapolate to a = 0 to quantify and 
remove the discretization errors. 

• The Euclidean action S = for QCD at zero chemical po-
tential is real and bounded from below. Thus e– S

in the path integral is analogous

to the Boltzmann factor in the partition function for statistical mechanics systems, 

i.e. it can be regarded as a probability weight for generating configurations. Since S
is an extensive quantity the configurations that dominate the functional integral are 

those that minimize the action. The “importance sampled” configurations (configu-

rations with probability of occurrence given by the weight e–S
) can be generated by

setting up a Markov chain in exact analogy to say simulations of the Ising model.

For a discussion of the methods used to update the configurations see [l] or the 
lectures by Creutz and Sokal in [2].

• The correlation functions are expressed as a product of quark propagators and path
ordered product of gauge fields using Wick contractions. This part of the calculation

is standard field theory. The only twist is that the calculation is done in Euclidean
space-time.

• For a given background gauge configuration, the Feynman quark propagator is a
matrix labeled by three indices – site, spin and color. A given element of this
matrix gives the amplitude for the propagation of a quark with some spin, color, 

and space-time point to another space-time point, spin, and color. Operationally, 

it is simply the inverse of the Dirac operator. Once space-time is made discrete and 
finite, the Dirac matrix is also finite and its inverse can be calculated numerically. 

The gauge fields live on links between the sites with the identification Uµ =

i.e. the link at site x in the µ direction is an SU(3) matrix Uµ

denoting the average gauge field between x and x + and labeled by the point

x + /2. Also Uµ(x,x – ) The links and propagators can be
contracted to form gauge invariant correlation functions as discussed above in the
case of the pion.

^

∧µ

 

Uµ (x _ µ , x).
∧∧µ )  

e iag Aµ (x+µ /2) (x, x +µ)∧
  (x, x + µ∧ )

• On the “importance sampled” configurations. the expectation values reduce to sim-
ple averages of the correlation functions. The problem is that the set of background 

gauge configurations is infinite. Thus, while it is possible to calculate the correla-
tion functions for specified background gauge configurations, doing the functional 

integral exactly is not feasible. It is, therefore, done numerically using monte carlo 

methods. 

The simplest way to understand the numerical aspects of LQCD calculations is to 

gain familiarity with the numerical treatment of any statistical mechanics system, for 
example the Ising model. The differences are: (i) the degrees of freedom in LQCD 

are much more complicated – SU(3) link matrices rather than Ising spins, and quark 

propagators given by the inverse of the Dirac operator; (ii) The action involves the 

highly nonlocal term Ln Det M which makes the update of the gauge configurations 
very expensive; and (iii) the correlation functions are not simple products of spin vari-
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ables like the specific heat or magnetic susceptibility, but complicated functions of the 
link variables and quark propagators. 

The subtleties arising due to the fact that LQCD is a renormalizable field theory 
and not a classical statistical mechanics system come into play in the behavior of the

correlation functions as the lattice spacing a is varied, and in the quantum corrections 
that renormalize the input parameters (quark and gluon masses and fields) and the 
composite operators used in the study of correlation functions. At first glance it might 

seem that one has introduced an additional parameter in LQCD, the lattice spacing a,
however, recall that the coupling α s and the cutoff a are not independent quantities
but are related by the renormalization group 

(10)

where ΛQCD is the non-perturbative scale of QCD, and β
0 = (11 – 2nf /3)/16π2

and
β 

1 = (102– 38nf /3)/(16π2
)

2
are the first two, scheme independent, coefficients of the 

β -function. In statistical mechanics systems, the lattice spacing a is a physical quantity

–the intermolecular separation. In QFT it is simply the ultraviolet regulator that must 

eventually be taken to zero keeping physical quantities, like the renormalized coupling, 

spectrum, etc, fixed. 
The reason that lattice results are not exact is because in numerical simulations

we have to make a number of approximations. The size of these is dictated by the 
computer power at hand. They are being improved steadily with computer technology, 
better numerical algorithms, and better theoretical understanding. To evaluate the 
reliability of current lattice results, it is important to understand the size of the various 

systematic errors and what is being done to control them. I, therefore, consider it
important to discuss these next before moving on to results. 

3 Systematic Errors in Lattice Results 
The various sources of errors in lattice calculations are as follows. 

Statistical errors: The monte carlo method for doing the functional integral em-

ploys statistical sampling. The results, therefore, have statistical errors. The current 

understanding, based on agreement of results from ensembles generated using different 
algorithms and different initial starting configuration in the Markov process, is that the
functional integral is dominated by a single global minimum. Also, configurations with 

non-trivial topology are properly represented in an ensemble generated using a Markov 

chain based on small changes to link variables. Another way of saying this is that the 

data indicate that the energy landscape is simple. As a result, the statistical accuracy 
can be improved by simply generating more statistically independent configurations 

with current update methods. 
Finite Size errors: Using a finite space-time volume with (anti-)periodic bound-

ary conditions introduces finite size effects. On sufficiently large lattices these effects 
can be analyzed in te rms of interactions of the particle with its mirror images. Lüscher 
has shown that in this regime these effects vanish exponentially [15]. Current esti-

exponentially with increasing L.
Discretization errors: The discretization of the Euclidean action on a finite dis-

crete lattice with spacing a leads, in general, to errors proportional to a, α sn a, a2
, . . ..

The precise form of the leading term depends on the choice of the lattice action and 

mates indicate that L 3 fermi and Mπ  L 6 the errors are 1%, and decrease
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operators [16]. For example, lattice artefacts in the fermion action modify the quark

≈
propagator M –1

at large p from its continuum form. Numerical data show that the

coefficients of the leading term are large, consequently the corrections for 1/a 2GeV
are significant in many quantities, 10-30% [17]. The reliability of lattice results, with 
respect to O(a) errors, is being improved by a two pronged strategy. First, for a given 
action extrapolations to the continuum limit a = 0 are performed by fitting data at a 

number of values of a using leading order corrections. Second, these extrapolations are 

being done for different types of actions (Wilson, Clover, staggered) that have signifi-

cantly different discretization errors. We consider the consistency of the results in the 

a = 0 limit as a necessary check of the reliability of the results. 

Extrapolations in Light Quark Masses: The physical u and d quark masses 
are too light to simulate on current lattices. For 1/a = 2 GeV, realistic simulations
require L/a 90 to avoid finite volume effects, i.e. keeping M̃ π  L 6 where M̃π  
is the lightest pseudoscalar meson mass on the lattice. Current best lattice sizes are
L/a = 32 for quenched and L/a = 24 for unquenched. Thus, to get results for quantities
involving light quarks, one typically extrapolates in mu = md from the range ms/3 –

2ms using simple polynomial fits based on chiral perturbation theory. For quenched
simulations there are additional problems for mq ms /3 as discussed below in the item

on quenching errors.

Discretization of heavy quarks:  Simulations of heavy quarks (c and b) have
discretization errors of O(ma) and O(pa). This is because quark masses measured in

lattice units, mca and mb a, are of order unity for 2GeV 1/a 5GeV. It turns
out that these discretization errors are large even for mc. Extrapolations of lattice

data from lighter masses to mb using HQET have also not been very reliable as the
corrections are again large. The three most promising approaches to control these errors

are non-relativistic QCD, O(a) improved heavy Dirac, and HQET. These are discussed

in [19, 20, 21]. There will not be any discussion of heavy quark physics in this talk.
Matching between the lattice and the continuum schemes (renormaliza-

tion constants): Experimental data are analyzed using some continuum renormal-

ization scheme like MS— so results in the lattice scheme have to be converted to this 
scheme. The perturbative relation between renormalized quantities in say MS— and the 
lattice scheme, are in almost all cases, known only to 1-loop. Data show that the O(α s2 )
corrections can be large, ~ 10 – 50% depending on the quantity at hand, even after im-
plementation of the improved perturbation theory technique of Lepage-Mackenzie [18].

Recently, the technology to calculate these factors non-perturbatively has been devel-
oped and is now being exploited [22]. As a result, the reliance on perturbation theory 

for these matching factors will be removed. 
Operator mixing: The lattice operators that arise in the effective weak Hamil-

tonian can, in general, mix with operators of the same, higher, and lower dimensions
because at finite a the symmetries of the lattice and continuum theories are not the 

same. Perturbative estimates of this mixing can have an even more serious problem

than the uncertainties discussed above in the matching coefficients. In cases where 
there is mixing with lower dimensional operators, the mixing coefficients have to be

known very accurately otherwise the power divergences overwhelm the signal as a 0.→
In cases where there is mixing, due to the explicit chiral symmetry breaking in Wilson

like actions, with operators of the same dimension but with different tensor structures, 

the chiral behavior may again be completely overwhelmed by the artefacts. In both of

these cases a non-perturbative calculation of the mixing coefficients is essential. 
Quenched approximation: The fermionic contribution, Ln det (M), in the Boltz-

mann factor e –S
for the generation of background gauge configurations increases the
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computational cost by a factor of 10
3

– 10
5
. The strategy, therefore, has been to ini-

tially neglect this factor, and to bring all other above mentioned sources of errors under 

quantitative control. The justification is that the quenched theory retains a number
of the key features of QCD – confinement, asymptotic freedom, and the spontaneous 

breaking of chiral symmetry – and is expected to be good to within 10 – 20% for a
number of quantities. One serious drawback is that the quenched theory is not uni-
tary and χ PT analysis of it shows the existence of unphysical singularities in the chiral

limit. For example, the chiral expansions of pseudoscalar masses and decay constants
in the quenched theory are modified in two ways. One, the normal chiral coefficients

are different in the quenched theory, and second there are additional terms that are
artefacts and are singular in the limit mq = 0 [23, 24]. These artefacts are expected
to start becoming significant for mq ms /3 [25, 26]. Thus, in quenched simulations

one of the strategies for extrapolations in the light quark masses is to use fits based on 
χ PT, keep only the normal coefficients, and restrict the data to the range ms/ 3 – 2ms

where the artifacts are expected to be small. In this talk I shall use this procedure to

“define” the quenched results. 

The above mentioned systematic errors are under varying degrees of control de-

pending on the quantity at hand. Of the systematics effects listed above, quenching

errors are by far the least well quantified, and are, to first approximation, unknown.
Of the remaining sources the two most serious are the discretization errors and the 
matching of renormalized operators between the lattice and continuum theories. An 
example of the latter is the connection between the quark mass in lattice scheme and 
in a perturbative scheme like MS .— We shall discuss the status of control over these
errors in more details when discussing data.

4 Light Quark Masses from χ PT
The masses of light quarks cannot directly be measured in experiments as quarks are
not asymptotic states. One has to extract the masses from the pattern of the ob-
served hadron spectrum. Three approaches have been used to estimate these – chiral 

perturbation theory (χ PT), QCD sum-rules, and lattice QCD. 
χ PT relates pseudoscalar meson masses to mu , md , and ms . However, due to the

presence of an overall unknown scale in the chiral Lagrangian, χ PT can predict only

two ratios amongst the three light quark masses. The current estimates are [27, 28, 29] 

These ratios have been calculated neglecting the Kaplan-Manohar symmetry [30]. The
subtle point here is that the masses µi extracted from low energy phenomenology are

related to the fundamental parameters mi, defined at some high scale by the underlying

theory, as µi = mi + β * det M/m iΛ χ SB ,where the second, correction, term is an
instanton induced additive renormalization. For the u quark, the magnitude of this term

is roughly equal to the χ PT estimates of µu for β 2 [31]. Consequently, using χ PT,
one cannot estimate the size of isospin breaking from low energy phenomenology alone. 

At next to leading order, only one combination of ratios (Q2
= (ms – m 2

)/ (m2

d – m 2

u )
as defined in [29]) can be determined unambiguously from χ PT. Even if one ignores the

Kaplan-Manohar subtlety (such an approach has been discussed by Leutwyler under
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the assumption that the higher order terms are small [29]) one still needs input from 

sum-rules or LQCD to get absolute values of quark masses.

5 Light Quark Masses from LQCD
The most extensive and reliable results from LQCD have been obtained in the quenched 

approximation. In the last year the statistical quality of the quenched data has been

improved dramatically especially by the work of the two Japanese Collaborations CP-

PACS and JLQCD (see [32] for a recent review). Simultaneously, the lattice sizes have

been pushed to 3 fermi for the lattice spacing in the range 0.5 – 0.25 GeV –1 . In
Fig. 2 we show the CP-PACS data obtained using Wilson fermions. To highlight the 

statistical improvement we show data at β = 6.0 from the next best calculation (with 
respect to both statistics and lattice size) [33]. 

To reliably extrapolate the lattice data to the continuum limit one needs control over

discretization errors and over the matching relations between the lattice scheme and the 

continuum scheme, say MS. — The first issue has been addressed by the community by 
simulating three different discretizations of the Dirac action – Wilson, SW clover, and

staggered – which have discretization errors of O(a), O(α s (a)a), and O(a2) respectively.
The second issue, reliability of the 1-loop perturbative matching relations. is being 
checked by using non-perturbative estimates. 

For Wilson and SW clover formulations, the internal consistency of the lattice calcu- 
lations can be checked by calculating the quark masses two different ways. The first is

based on methods of χ PT, i.e. the calculated hadron masses are expressed as functions

of the quark masses as in χ PT, This method. based on hadron spectroscopy, is labeled
HS for brevity. In the second method, labeled WI, quark masses are defined using the 
ward identity An example of such checks is shown in

_
 

Fig. 2. The solid lines are fits to the HS and WI estimates using the Wilson action 
and on the same statistical sample of configurations. The very close agreement of the
extrapolated values is probably fortuitous since the linear extrapolation in a, shown in 

Fig. 2, neglects both the higher order discretization errors and the O(α s (a)2) errors in 
the 1-loop perturbative matching relations. The figure also shows preliminary results 
for the same WI data but now with non-perturbative Z’s. The correction is large, note

the large change in the slope in a, yet the extrapolated value is 4 MeV. The final 
analysis using non-perturbative Z’s will be available soon, and it is unlikely that the 
central value presented below will shift significantly.

∂µψγ5γµψ = (m 1 + m 2)ψγ5ψ.

Lastly, in the quenched approximation, estimates of quark masses can and do depend 
on the hadronic states used to fix them. The estimates of m— given below were extracted
using the pseudoscalars mesons, i.e . pions, with the scale a set by Mρ . Using either the
nucleon or the ∆ to fix m— would give ~ 10% smaller estimates. Similarly, extracting 

ms using MK gives estimates that are ~ 20% smaller that those using MK or Mφ as

shown below. While these estimates of quenching errors are what one would expect 
naively, we really have to wait for sufficient unquenched data to quantify these more 
precisely.

A summary of the quenched results in MeVat scale µ = 2 GeV, based on an analysis 

of the 1997 world data [32], is 

The difference in estimates between Wilson, tadpole improved (TI) clover, and stag-
gered results could be due to the neglected higher order discretization errors and/or 

due to the difference between non-perturbative and 1-loop estimates of Z’s. This un- 
certainty is currently 15%. Similarly, the 20% variation in ms with the state≈   ≈
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Figure 2. Linear extrapolation of m— versus a(Mρ) for Wilson fermions using HS and WI
methods. The WI data corrected by using non-perturbative estimates for the matching 

constants are also shown. 

used to extract it, MK versus MK* (or equivalently Mφ ) could be due to the quenched

approximation or again an artifact of keeping only the lowest order correction term in 
the extrapolations. To disentangle these discretization and quenching errors we again 
need precise unquenched data. 

Thus, for our best estimate of quenched results we average the data and use the

spread as the error. To these, we add a second uncertainty of 10% as due to the 

determination of the scale 1/a (another estimate of quenching errors). The final results,

in MS — scheme evaluated at 2 GeV, are [32] 

—m = 3.8(4)(4) MeV

ms = 110(20)(11) MeV. (11)

The important question is how do these estimates change on unquenching. The 1996 

analyses suggested that unquenching could lower the quark masses by 20% [34, 35], 
however, as discussed in [32] I no longer feel confident making an assessment of the 
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Table 1. Values and bounds on m— and ms, in MS—_
scheme at 2 GeV, from sumrule

reference m– (MeV)

[39] 1989 = 6.2(0.4) 

[36] 1995 = 4.7(1.0) 
[38] 1995 = 5.1(0.7) 

[37] 1995 
[40] 1996 

[41] 1997 
[42] 1997 
[43] 1997 = 4.9(1.9) 

[45] 1997 

[47] 1997 

3.8 – 6

[46] 1997 3.4 
4.1 – 4.4

analyses.

ms (MeV)
= 138(8) 

= 144(21) 

= 137(23) 
= 148(15) 

= 91 – 116 
= 115(22) 

118 – 189

88(9)
104 – 116

magnitude of the effect. The data does still indicate that the sign of the effect is 
negative, i.e. that unquenching lowers the masses. An estimate of the size requires 

more unquenched data. 
To end this section let me comment on a comparison of the quenched estimates

with values extracted from sum-rules as there seems to be a general feeling that the 

two estimates are vastly different. In fact the recent analyses indicate that the quenched 

lattice results and the sum-rule estimates are actually consistent. A large part of the 

apparent difference is due to the use of different scales at which results are presented. 
Lattice QCD results are usually stated at µ = 2 GeV, while the sum-rules community 
uses µ = 1 GeV, and the running of the masses between these two scales is an 30% 

effect in full QCD. This issue is important enough that I would like to briefly review 
the status of sum-rule estimates. 

6 Sum rule determinations of m— and ms

A summary of light quark masses from sum-rules is given in Table 1. Sum rule calcula- 

tions proceed in one of two ways. (i) Using axial or vector current Ward identities one 
writes a relation between two 2-point correlation functions. One of these is evaluated 
perturbatively after using the operator product expansion, and the other by saturating 
with intermediate hadronic states [36, 37]. The quark masses are the constant of pro-

portionality between these two correlation functions. (ii) Evaluating a given correlation 

function both by saturating with known hadronic states and by evaluating it pertur- 
batively [38]. The perturbative expression depends on quark masses, and defines the 

renormalization scheme in which they are measured. The main sources of systematic 
errors arise from using (i) finite order calculation of the perturbative expressions, and 
(ii) the ansatz for the hadronic spectral function. Of these the most severe is the sec- 

ond as there does not exist enough experimental data to constrain the spectral function 

even for µ < 2 GeV. Since there are narrow resonances in this region, one cannot match 

the two expressions point by point in energy scale. The two common approaches are 

to match the moments integrated up to some sufficiently high scale (finite energy sum 
rules) or to match the Borel transforms. The hope then is that the result is independent 
of this scale or of the Borel parameter. 

Progress in sum-rules analyses has also been incremental as in LQCD. The per- 
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turbative expressions have now been calculated to O(α 3s ) [40], and the value of Λ (3)
QCD

has settled at 380MeV. A detailed analysis of the convergence of the perturbation

expansion suggests that the error associated with the truncation at O(α 3
s ) is 10% for

µ 2 GeV [40].
Improving the spectral function has proven to be much harder. For example, Colan-

≈

gelo et al. [41] have extended the analysis of ms in [37, 40] by constructing the hadronic
spectral function up to the first resonance (K* (1430)) from known Kπ phase shift data.
Similarly, Jamin [42] has used a different parametrization of the Omnes representation

of the scalar form factor using the same phase shift data. In both cases the reanalysis 
lowers the estimate of the strange quark mass significantly. The new estimates, listed 
in Table 1, are consistent with the quenched estimates discussed in Section 5. 

One can circumvent the uncertainties in the ansatz for the spectral function by de-

riving rigorous lower bounds using just the positivity of the spectral function [44, 45,

46, 47]. Of these the most stringent are in [47] which rule out m— < 3 and ms < 80 MeV
for µ 2.5 GeV. The bounds, however, have a significant dependence on the scale µ as

evident by comparing the above values to those in the last row in Table 1, and the open 
question is how to fix µ, i.e. the upper limit of integration in the finite energy sum rules 

at which duality between PQCD and hadronic physics becomes valid? Unfortunately,

this question cannot be answered ab initio. 

7 Implications for
The Standard Model (SM) prediction of can be written as [48]

∋'| ∋

 

(12)

where Mr = (158MeV/(ms + md))2 and all quantities are to be evaluated at the scale
mc = 1.3GeV. Eq. 12 highlights the dependence on the light quark masses and the bag 
parameters B6

1/2 and B8
3/2 . For the other SM parameters that are needed in obtaining 

this expression we use the central values quoted by Buras et al. [48]. Then, we get
A = 1.29 x 10 –4, C0 = –1.4, C6 = 7.9, C8 = –4.0. Thus, to a good approximation
' ∝/ ∋∋ Mr.

Conventional analysis, with ms + md = 158MeV and B 6
1/2 = B

8
3/2 = 1, gives

≈
 

3.2 10 
–4

. The uncertainties in the remaining SM parameters used to determine 

A, c0, c6, and c8 in Eq. 12 are large enough that, in fact, any value between –1 × 10 –4

and 16 × 10 –4 is acceptable[48]. Current experimental estimates are 7.4(5.9) × 10 –4

from Fermilab E731 [49] and 23(7) × 10 –4 from CERN NA31 [50]. So at present there is
no resolution of the issue whether the CKM ansatz explains all observed CP violation.

≈

 

The new generation of experiments, Fermilab E832, CERN NA48, and DA Φ NE

KLOE, will reduce the uncertainty to 1 × 10 –4 . First results from these experiments 

should be available in the next couple of years. Thus, it is very important to tighten 
the theoretical prediction. 

As is clear from Eq. 12, both the values of quark masses and the interplay between 
B6

1/2
and B8

1/2 will have a significant impact on The lower values of quark masses 
suggested by lattice QCD analyses would increase the estimate. The status of results 
for the various B-parameters relevant to the study of CP violation are discussed in the 

next section.

/' ∋∋
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8 B-parameters, BK, B6, B7
3/2 , B 8

3/2

Considerable effort has been devoted by the lattice community to calculate the various
B-parameters needed in the standard model expressions describing CP violation. A 

summary of the results and the existing sources of uncertainties are as follows. 

8.1 BK

The standard model expression for the parameter which characterizes the strength,
of the mixing of CP odd and even states in KL and Ks, is of the form [51]

∋
 

(13)

where Φ is a known function involving Inami-Lim functions and CKM elements. This 
relation provides a crucial constraint in the effort to pin down the p and η parame-
ters in the Wolfenstein parameterization of the CKM matrix [32] . The quantity BK

parameterizes the QCD corrections to the basic box diagram responsible for K 0 – K0—
mixing. This transition matrix element is what we calculate on the lattice. 

The calculation of BK is one of the highlights of LQCD simulations. It was one of
the first quantities for which theoretical estimates were made, using quenched chiral 
perturbation theory, of the lattice size dependence. dependence on quark masses, and

on the effects of quenching [33, 54, 26, 55]. Numerical data in the staggered formulation 

(which has the advantage of retaining a chiral symmetry which preserves the continuum 
like behavior of the matrix elements) is consistent with these estimates in both the sign 
and the magnitude. Since all these corrections have turned out to be small, results for 

BK with staggered fermions have remained stable over the last five years.
Three collaborations have pursued calculations of BK using staggered fermions.

The results are BK (NDR,2 GeV) = 0.62(2)(2) by Kilcup. Gupta. and Sharpe [55].
0.552(7) by Pekurovsky and Kilcup [56]. and 0.628(42) by the JLQCD collaboration[57]. 
Of these, the results by the JLQCD collaboration are based on a far more extensive 

analysis. The quality of their data are precise enough to include both the leading O(a2)

discretization corrections. and the O(α 2
s ) corrections in the 1-loop matching factors. 

Their data, along with the extrapolation to a = 0 limit including both factors, are 
shown in Fig. 3. I consider theirs the current best estimate of the quenched value. 

The two remaining uncertainties in the above estimate of BK are quenching errors 

and SU (3) breaking effects (all current results have been obtained using degenerate 
quarks mu = md = ms, with kaons composed of two quarks of mass ~ ms/2 instead of

ms and md). There exists only preliminary unquenched data [58] which suggest that
the effect of sea quarks is to increase the estimate by 5%. Lastly, Sharpe has used≈
χ PT to estimate that the SU(3) breaking effects could also increase BK by another

4 – 8% [26]. Confirmation of these corrections requires precise unquenched data which 
is still some years away. 

In a number of phenomenological applications what one wants is the renormalization 

group invariant quantity B̂K defined, at two-loops, as

(14)

Unfortunately, to convert the quenched JLQCD number, 0.628(42), one has to face the 
issue of the choice of the value of α s and the number of flavors nf. It turns out that

the two-loop evolution of BK is such that one gets essentially the same number for the
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Figure 3. JLQCD data for BK (NDR,2 GeV), and their extrapolation to the con-
tinuum limit keeping both the O(a2) discretization corrections, and the O(α  2s ) in the
1-loop matching factors for two different discretizations of the weak operator. The
extrapolation of the data without including the O(α  2s ) corrections are shown by the
dashed lines. 

quenched theory, 0.87(6) for nf = 0 and α  s(2GeV ) = 0.192, and 0.84(6) for the physical
case of n f = 3 and α  s(MT) = 0.354. One might interpret this near equality to imply
that the quenching errors are small. Such an argument is based on the assumption
that there exists a perturbative scale at which the full and quenched theories match.
Since there is no a priori reason to believe that this is true, my preference is to double
the difference and assign a second error of 0.06, an estimate also suggested by the
preliminary unquenched data and the χ PT analysis. With this caveat I arrive at the
lattice prediction 

(15)

8.2 and its relation to BK

The ∆ S = 2 operator responsible for the K0 – K0— transition belongs to the
same 27 representation of SU(3) as the ∆ S = 1, ∆ I = 3/2 operator

At tree level in χ PT, one gets the relation [59, 60]

(16)

So one way to calculate BK is to measure + + on the lattice and then use
Eq. 16. The motivation for doing this is that, for Wilson-like lattice actions, isO4
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only multiplicatively renormalized due to CPS symmetry [61], whereas the ∆ S = 2 
operator mixes with all other chirality operators of dimension six. Using 1-loop values 

for these mixing coefficients has proven inadequate, though the recent implementation

of non-perturbative estimates has made this situation much better [62]. 

The first lattice calculations of the ∆ I = 3/2 part of the K+ amplitude

[63, 65] gave roughly twice the experimental value, even though the BK extracted

from this “wrong” amplitude “agrees” with modern lattice estimates. The important_
i.e.

 
question therefore is how reliable are the χ PT relations between 
and and between and ,
does one or both fail?

〈π+π0|O4|K
+)|lattice

〈K0|O∆S=2|K0〉〈π+π0|O4|K
+〉|lattice 〈π+π0|O4|K

+〉|physical

,

There are three sources of systematic errors in lattice calculations of 

that could explain the contradiction. The calculation is done in the quenched approxi-

mation, on finite size lattices, and with unphysical kinematics (in the lattice calculation
the final state pions are degenerate with the kaon since mu = md = ms, and are at
rest). Of the three possibilities, the last is the most serious as it gives a factor of two 

even at the tree-level

〈π+π0|O4|K
+〉

(17)

This tree-level correction was taken onto account in [63, 65]. The source of the remain-

ing discrepancy by a factor of two was anticipated by Bernard as due to the failure 

of the tree-level expression [64]. Recently, Golterman and Leung [59] have calculated 
the 1-loop corrections to Eq. 17. This calculation involves a number of unknown O(p4)

chiral coefficients of the weak interactions and thus has a number of caveats. However, 
under reasonable assumptions about the value of these O(p4) constants, the corrections 
due to finite volume, quenching, and unphysical kinematics all go in the right direction, 

and the total 1-loop correction can modify Eq. 17 by roughly a factor of two. On the

other hand the modification to the connection with BK at the physical point is small.
The JLQCD Collaboration [66] has recently updated the calculations in [63, 65]. By 

improving the statistical errors they are able to validate the trends predicted by 1-loop
χ PT expressions. Thus one has a plausible resolution of the problem. I say plausible 

because the calculation involves a number of unknown chiral couplings in both the 
full and quenched theory and also because of the size of the 1-loop correction. The 

conclusive statement is the failure of χ PT for the relation Eq. 17.
The other relevant question is what bearing does the analysis of Golterman and

0

_  

Leung [59] have on the calculations of other B-parameters. In the calculation of BK,
based on measuring the transition matrix element as discussed in sec-

tion 8.1, χ PT has been used only to understand effects of finite volume and chiral logs.
These are found to be small and the data show the predicted behavior. Based on this 
success of χ PT we estimate that the two remaining errors – quenching and the use of
degenerate quarks – are each 5% as suggested by 1-loop χ  PT. On the other hand,

in present calculations of B6, B7
3/2 , and B8

3/2 χ PT is used in an essential way, i.e. to

relate to Second, the calculations are done for unphysical 
kinematics, i.e. the final state pion is degenerate with the kaon. It would be interesting 

to know the size of the one-loop corrections to these relations. 

〈π+π0 |O |K+〉 〈π+|O|K+〉

〈K0 |O∆ S = 2|K 〉

8.3 B
7
3/2 and B 8

3/2

using  tree-levelAssuming the  reduction of 

χ PT is reliable, the lattice calculations of B 7
3/2

and B
8
3/2 are as straightforward as 
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Fermion Action 

(A) Staggered [55] 
(B) Wilson [67] 
(C) Tree-level Clover [62] 

(D) Tree-level Clover [62] 

those for BK. There are three “modern” quenched estimates of B7
3/2

and B8
3/2

which
supercede all previous reported values. These, in the NDR-MS 

—
scheme at 2 GeV, are 

where I have also given the type of lattice action used, the β ’s at which the calculation 
was done, the lattice scale 1/ a at which the results were extracted, and how the 1-loop

matching constants Z were determined. 
The difference between estimates (C) and (D) is the use of non-perturbative versus 

perturbative Z’s. Thus (D) is the more reliable of the APE numbers. The agreement

between (B) and (C), in spite of the difference in the action, is a check that the numerics 

are stable. All three of these results suffer from the fact that these calculations were 

done at β = 6.0 (l/ a 2 GeV) and there does not yet exist data at other β needed to 

do the extrapolation to the continuum limit. 

Z β 1/aGeV B7
3/2 B8

3/2

1-loop 6.0, 6.2 a 0 0.62(3)(6) 0.77(4)(4)
1-loop 6.0 2.3 0.58(2)(7) 0.81(3)(3)
1-loop 6.0 2.0 0.58(2) 0.83(2)

Non-pert. 6.0 2.0 0.72(5) 1.03(3) .

The result (A) does incorporate an extrapolation to a=0, but with only two beta

values. For example, B
8
3/2 = 1.24(1) and 1.03(2) at β = 6.0 and 6.2 respectively. Due 

to the large slope in a2, such an extrapolation based on two points should be considered 
preliminary. Lastly, one needs to demonstrate that corrections to 1-loop Z's are under

control.

8.4 B6

The recent work of Pekurovsky and Kilcup [56] provides the best lattice estimate for 
B6. Their results B6 = 0.67(4)(5) for quenched and 0.76(3)(5) for two flavors have the

following systematics that are not under control. The calculation is done for degen-

erate quarks, mu = md = ms and uses the lowest order χ PT to relate to
There is no reason to believe that higher order corrections may not be as

or more significant as discussed above for The second issue is that the 1-loop per-

turbative corrections in the matching coefficients are large. Lastly, there is no estimate
for the discretization errors as the calculation has been done at only one value of β. 
Thus, at this point there is no solid prediction from the lattice.

〈π |O|K+〉
〈ππ|O|K+〉

O4.

 

9 Conclusions 
In view of the new generation of ongoing experiments to measure with the proposed 

accuracy of 1 × 10–4, it is very important to firm up the theoretical prediction. The 

standard model estimate depends very sensitively on the sum ms + md and on the
interplay between the strong and electromagnetic penguin operators, i.e. B

6
1/2 and

B8
3/2. Quenched lattice results for (ms + md)(2 GeV) are settling down at 115(25)

MeV, and preliminary evidence is that unquenching further lowers these estimates. 

The calculations of B6
1/2

and B8
3/2

are less advanced. Hopefully we can provide reliable 
quenched estimates for these parameters in the next year or so. Thereafter, we shall 
start to chip away at realistic full QCD simulations.

/' ∋∋
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PARTICLES AS BOUND STATES IN THEIR OWN POTENTIALS

R. P. Woodard

Department of Physics 
University of Florida 
Gainesville, FL 32611

1. INTRODUCTION: A PARABLE OF POLITICAL CORRECTNESS

I wish to speak out against a form of bigotry. The prejudice in question might be
termed, integro-centrism, and it consists of the belief that asymptotic series may con-
tain only non-negative, integer powers of the expansion coefficient. Not only is this
exclusionary against non-integer powers and logarithms, it even discrimates against 
sign-challenged integers! I shall also argue that integro-centrism may be imposing a
kind of cultural genocide on quantum gravity and on the problem of mass.

Imagine that you are the asymptotic expansion f̃ (g) of some quantum field theo- 
retic quantity f (g). Without succumbing to negative stereotypes we can assume you
have the following form:

(1.1)

We can also assume that the φn(g) are elementary functions which have been arranged
in a (value-neutral) order such that:

(1.2)

Finally, the fact that you are asymptotic means that the difference between f (g) and
the sum of your first N terms must vanish faster than your N-th term as g goes to
zero:

(1.3)

In the Ward and June Cleaver world of conventional perturbation theory the
coefficient functions would be integer powers — φn(g) = g n —. and their coefficients
could be obtained by taking derivatives of the original function f (g):

(1.4)

Suppose, however, that you are leading an alternate lifestyle which includes logarithms 
or fractional powers. For example, you might have the form: 

(1.5)
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Although your actual first order correction is small for small g , an integro-centric
bigot would claim it is logarithmically divergent: 

(1.6)

And he would compute the higher terms to consist of an oscillating tower of increas- 
ingly virulent divergences:

(1.7)

His frustration with your non-conformism might provoke him to abandon the quan- 
tum field theory behind f (g) in favor of some yet-to-be-specified model in a peculiar
dimension. He might even take to making optimistic pronouncements about our abil- 
ity to exactly solve this model, and hence its correspondence limits of Yang-Mills and
General Relativity, in 5-10 years (3-8 years from now, and counting).

Aside from poking fun at the political and scientific prejudices of my colleagues
this paper does have some serious points to make. The first of these is that there is
no reason why the perturbative non-renormalizability

1–5
of General Relativity nec-

essarily implies the need for an alternate theory of quantum gravity. It has long been
realized that the problem could derive instead from the appearance of logarithms or 
fractional powers of Newton's constant in the correct asymptotic expansion of quan- 
tum gravity.

6–9
To underscore that this would not be without precedent I devote

Section 2 to a discussion of the analogous phenomenon in two simple systems from
statistical mechanics. 

The second point I wish to make is that the breakdown of conventional perturba-
tion theory in quantum gravity is likely to be associated with ultraviolet divergences. 
The idea is that gravity screens effects which tend to make the stress tensor divergent. 
If so, it must be that the divergence returns when Newton’s constant goes to zero, 
which means the correct asymptotic series must contain logarithms or negative pow- 
ers. There is no doubt that this does occur on the classical level. Arnowit, Deser and 
Misner found an explicit example in the finite self-energy of point charged particles.

10

Section 3 is devoted to a brief review of their result.
So far I have been discussing old stuff. Although many people have suspected

that quantum gravity regulates ultraviolet divergence
6–9

no one has been able to
make anything of the idea for want of a non-perturbative calculational technique. Di- 
vergences do evoke an infinite response from gravitation, but only at the next order 
in perturbation theory. What is needed is a way of reorganizing perturbation theory 
so that the gravitational response has a chance of keeping up with divergences. The 
main point of this paper is that I have found such a reorganization, at least for the 
special case of certain types of matter self-energies. 

I begin the derivation in Section 4 by writing down an exact functional integral 
representation for the mass of a charged, gravitating scalar in quantum field theory. 
In Section 5 I show that this expression reduces, in the classical limit, to the point
particle system studied by ADM,

10
with an extra term representing the negative

pressure needed to hold the point charge together. In Section 6 I return to the orig-
inal, exact expression, and show how it can be rearranged to give an expansion in 
the number of closed loops which do not include a least some part of the incoming 
and outgoing matter line. Further, the 0-th order term in this new expansion has 
the simple interpretation of computing the binding energy of a quantum mechanical 
particle which moves in the gravitational and electromagnetic potentials induced by 
its own probability current. This is the origin of the title. 

Gravitational attraction must overcome electrostatic repulsion in order for a par- 
ticle to bind to its own potentials. In Section 7 I obtain the unsurprising result that 
this can only happen for a scalar which has a Planck scale mass. In the final section 
I argue that substantially lighter masses may be obtainable for particles with spin. 
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2. TWO EXAMPLES FROM STATISTICAL MECHANICS

Exotic terms occur in many familiar asymptotic expansions. Consider the loga- 
rithm of the grand canonical partition function for non-interacting, non-relativistic
bosons in a three dimensional volume V:

(2.1)

Here nQ is the quantum concentration, µ is the chemical potential, and β = (kBT )
–1

.

Near condensation one has 0 < –βµ 1 so it should make sense to expand In (Ξ) for 
small βµ. Straightforward perturbation theory corresponds to the following expan- 
sion:

(2.2a)

(2.2b)

Although the = 0 and = 1 terms are finite, the sum over k diverges for 2. 
The divergences we have encountered do not mean that higher corrections are

large, just that they are not as small as (βµ)
2
. One sees this by expanding the second 

derivative around its integral approximation:

ll l ≥

 

Integration reveals the true asymptotic expansion: 

(2.3a)

(2.3b)

(2.3c)

(2.4)

The oscillating series of ever-increasing divergences in the perturbative expansion 
(2.2b) has resolved itself into a perfectly finite, fractional power. 

Logarithms can also invalidate perturbation theory. Consider the canonical par-
tition function for a non-interacting particle of mass m in a three dimensional volume 
V:

(2.5a)

(2.5b)

When the rest mass energy is small compared to the thermal energy it ought to make
sense to expand in the small parameter x ≡ βmc2

. But straightforward perturbation 
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theory fails again:

(2.6a)

(2.6b)

It seems as though the term of order x3 vanishes, and that the higher terms have
increasingly divergent coefficients with oscillating signs. In fact the x3

term is non-
zero, and the apparent divergences merely signal contamination with logarithms:

(2.7)

3. THE ADM MECHANISM

Arnowitt, Deser and Misner showed that perturbation theory also breaks down
in computing the self-energy of a classical, charged, gravitating point particle.

10
It is

simplest to model the particle as a stationary spherical shell of radius charge e and
bare mass m0. In Newtonian gravity its energy would be:

(3.1)

It turns out that all the effects of general relativity are accounted for by replacing E
and m0 with the full mass:*

The perturbative result is obtained by expanding the square root: 

(3.2a)

(3.2b)

(3.3)

and shows the oscillating series of increasingly singular terms characteristic of the pre-
vious examples. The alternating sign derives from the fact that gravity is attractive.
The positive divergence of order e2

/  evokes a negative divergence or order Ge4
/

3
,

which results in a positive divergence of order G2e6
/ 5, and so on. The reason these

terms are increasingly singular is that the gravitational response to an effect at one
order is delayed to a higher order in perturbation theory.

The correct result is obtained by taking to zero before expanding in the coupling
constants e2

and G:

(3.4)

* It should be noted that Arnowitt, Deser and Misner rigorously solved the constraint equations of 

general relativity and electrodynamics, and then used the asymptotic metric to compute the ADM

mass
10

They also developed the simple model I am presenting.
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Like the examples of Section 2 it is finite but not analytic in the coupling constants e2

and G. Unlike the previous examples, it diverges for small G. This is because grav-
ity has regulated the linear self-energy divergence which results for a non-gravitating
charged particle. 

One can understand the process from the fact that gravity has a built-in tendency 
to oppose divergences. A charge shell does not want to contract in pure electromag-
netism; the act of compressing it calls forth a huge energy density concentrated in 
the nearby electric field. Gravity, on the other hand, tends to make things collapse, 
especially large concentrations of energy density. The dynamical signature of this 
tendency is the large negative energy density concentrated in the Newtonian gravita-
tional potential. In the limit the two effects balance and a finite total mass results. 

Said this way, there seems no reason why gravitational interactions should not 
act to cancel divergences in quantum field theory. It is especially significant, in this 
context, that the divergences of some quantum field theories — such as QED — are 
weaker than the linear ones which ADM have shown that classical gravity regulates.
The frustrating thing is that one cannot hope to see the cancellation perturbatively. 
In perturbation theory the gravitational response to an effect at any order must be 
delayed to a higher order. This is why the perturbative result (3.3) consists of an 
oscillating series of ever higher divergences. What is needed is an approximation 
technique in which the gravitational response is able to keep pace with what is going 
on in other sectors. 

A final point of interest is that any finite bare mass drops out of the exact result
(3.4) in the limit 0. This makes for an interesting contrast with the usual pro-
gram of renormalization. Without gravity one would pick the desired physical mass,
mp , and then adjust the bare mass to be whatever divergent quantity was necessary
to give it:

Of course the same procedure would work with gravity as well:

(3.5)

(3.6)

The difference with gravity is that we have an alternative: keep m0 finite and let the
dynamical cancellation of divergences produce a unique result for the physical mass.
The ADM mechanism is in fact the classical realization of the old dream of computing 
a particle’s mass from its self-interactions.

4. MASS OF A CHARGED GRAVITATING SCALAR IN QFT 

The purpose of this section is to obtain a conveneient functional integral repre-
sentation for the standard quantum field theoretic definition of a particle’s mass as 
the pole of its propagator. For simplicity I will consider a charged, gravitating scalar, 
the Lagrangian for which is: 

The symbol “S.T.” denotes the gravitational surface term needed to purge the La-
grangian of second derivatives: 

(4.1b)

If we temporarily regulate infrared divergences and agree to understand operator 
relations in the weak sense then it is possible to write the operators which annihilate 
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outgoing particles and create incoming ones as simple limits:* 

where the energy is:

(4.2a)

(4.2b)

(4.3)

Consider single particle states whose wave functions in the infinite past and future
are ψ  respectively. The inner product between two such states can be given the
following expression:

± ,

(4.4)

One way of computing the mass is to tune the parameter m in the energy (4.3) to
the precise value for which expression (4.4) assumes the form: 

(4.5)

This agrees with the usual definition of the mass as the pole of the propagator.

line of (4.4) which we can write as a phase: 
A somewhat more direct way of computing the mass is to focus on the second 

(4.6)

Dividing by the time interval and then taking it to infinity we obtain the energy: 

(4.7)

Note that by using this method we avoid the problem of infrared divergences. These 
affect only the field strength renormalization, not the mass. 

It is straightforward to write the phase as a functional integral:

(4.8)
The next step is to integrate out the scalar. In the presence of an arbitrary metric 
and electromagnetic background its kinetic operator is: 

(4.9)

We can use this operator to express the scalar-induced effective action: 

(4.10a)

* The notation employed in these formulae is standard: Z is the field strength renormalization, the

Wronskian is 0 , and a tilde over the scalar field denotes its spatial Fourier transform.
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and the scalar propagator in the presence of an general background: 

(4.10b)

With these objects the phase can be reduced to a functional integral over only metrics 
and vector potentials: 

(4.11)
Contact is made with particle dynamics by writing the general propagator in 

Schwinger form: 

(4.12)

One then regards the exponent as the Hamiltonian of a first quantized particle and 
the expectation value is converted into a functional integral in the usual way. We 
can give this a reparameterization invariant form by regarding the proper time as the 
unfixed part of the einbein e( τ ) in = 0 gauge: 

(4.13)

Integrating out the canonical momenta and absorbing any ordering terms into the 
measure gives: 

(4.14)

One now makes the change of variables defined by the reparameterization which 
changes the gauge condition to: 

(4.15)

The integral over the einbein is done using the functional equivalent of the identity:

The final form is:

(4.16)

(4.17)

where χ 0
(τ ) is understood to be defined by (4.15).

Substituting (4.17) into (4.11) gives the following expression for the phase:

(4.18a)
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where the particle action is: 

(4.18b)
It should be noted again that various ordering corrections have be subsumed into the
measure. Also note, again, that χ 0(τ) is the non-dynamical function (4.15).

5. THE CLASSICAL LIMIT 

The purpose of this section is to show how the classical limit of ξ relates to
the ADM

10
mechanism discussed in Section 3. This is crucial to seeing that the 

reorganization of of perturbation theory I shall propose in the next section in fact
manifests the gravitational regulation of ultraviolet divergences at lowest order.

We can forget about the scalar-induced effective action Γφ because it is a quantum
effect. What is necessary for our purposes is to solve the classical field equations
derived from the action:* 

(5.1)

The boundary conditions for the metric and the vector potential come from the 
asymptotic in and out vacua. Those for the particle are: 

(5.2a)

We can save ourselves a small amount of effort by instead imposing: 

(5.2b)

and then boosting up to (5.2a). If (5.2b) is used one finds the classical limit of the 
phase by evaluating the action at the solution: 

One then divides out the time interval and takes the asymptotic limit:

,

 

(5.3a)

(5.3b)

Although gravity does regulate this problem, just as it did for that of ADM,
10

 

some of the intermediate expressions will be singular unless the point particle is 
smeared out. ADM resolved this issue by converting the particle into a spherical 
shell of radius in isotropic coordinates. I shall do the same, but I face the additional 
problem, which they did not, of keeping the system static for all time. I shall accord-
ingly employ a perfect fluid regularization in which the point particle is converted 
into a swarm of particles labelled by an internal vector σ:→   

The particle’s action goes to that of a perfect fluid:

(5.4)

(5.5)

* The same technique has been used, in the context of 2-body scattering, by Fabbrichesi, Pettorino, 

Veneziano and Vilkovisky
11..
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with number density n(x) given by µ (σ)
→

and pressure p (x) given by Π         (σ):→                   

:

 

(5.6a)

(5.6b)

I shall follow ADM in taking the mass density to be that of a spherical shell: 

(5.7a)

(5.7b)

however, I shall impose a negative internal pressure: 

to hold the shell together. Duff has shown that this does not affect the ADM mass.12

The function f ( ) is a non-dynamical constant to be determined shortly.∋

The manifest spherical symmetry and the assumed time translation invariance of
this problem suggest that we look for a solution of the form:

The solution for A(r) has the form A(r) = α (r)/B(r) with: 

The two other functions work out to be: 

(5.8a)

(5.8b)

(5.8 c )

(5.9a)

(5.9b)

(5.9c)

The parameters in relations (5.9a-c) have been represented as lengths according to 
the standard convention of geometrodynamics: 

The necessary internal pressure constant f (  ) works out to be:∋

(5. 10 a)

(5.10b)

(5.11)
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Since the solution is static the action must be a constant multiplied by the time 
interval. However, this constant turns outs not to be minus the ADM mass but 
rather a sort of enthalpy reflecting the presence of the pressure in the perfect fluid 
regularization of the particle action: 

(5.12a)

(5.12b)

The energy U and the pV term can be evaluated for any ∋ . They have the following 

simple forms: 

(5.13)

In the limit 0 the energy just gives the ADM mass (3.4). The pV term remains 
finite in this limit, but neither does it vanish. Its physical interpretation seems to be 
that gravity is not sufficient to hold the charge together. This means the calculation 
is not really consistent. I shall do better shortly, but do not let this obscure two 
important facts:

→∋

 
(1) Contact has been established, modulo the pV term, between the standard quan-

tum field theoretic definition of mass and the classical ADM calculation of the 
self-energy of a gravitating, point charged particle. 

(2) Even with the pV term, gravity has suppressed what would otherwise be a diver-
gent result. 

6. QUANTUM MECHANICAL INTERPRETATION 

The purpose of this section is to introduce the promised reorganization of con-
ventional perturbation theory. The starting point is the expression (4.18a) obtained 
for the phase at the end of Section 4: 

(6.1)

The second line of this expression can be interpreted as the amplitude for a quantum 
mechanical particle to go from a delta function at t = t –:

to a plane wave at t = t +:

Let us denote the associated action as: 

(6.2a)

(6.2b)

(6.3)

I define the 0-th order term in the reorganized perturbation theory to be the stationary 
phase approximation to the functional integral over metrics and vector potentials with 
the following action: 

(6.4)

To see what diagrams this term captures it is simplest to identify the ones it 
misses. No closed scalar loops are included since the scalar-induced effective action 
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Γφ was excluded from (6.4). This does not mean there are no scalar lines at all. 
Owing to the presence of Sprop there must be a single, continuous scalar line in all
the included diagrams. Any number of graviton and gauge lines can be attached
to this line. However, the restriction to stationary phase means that we include no
closed gauge and/or graviton loops which do not include some portion of the single, 
continuous scalar line. So the 0-th order term I have defined consists of all diagrams
with a single, continuous scalar lane and no closed loops which do not include this 
line. One can imagine that the next order term consists of diagrams with one closed 
loop external to the in-out line, and so on. 

It is obvious from the way I have defined it that the 0-th order term constitutes 
a gauge invariant resummation of an infinite subset of diagrams. It is also obvious 
this 0-th term contains the classical limit considered in the previous section. Further, 
it will be rendered less singular, not more, by the inevitable quantum spread of 
the particle. All of this implies that the 0-th term just defined must manifest the 
gravitational suppression of divergences. 

The physical interpretation of the 0-th order approximation to ξ is the phase 
developed by a quantum mechanical particle moving in the potentials generated by 
its own probability current. Whether or not there is any chance of being able to 
compute it depends upon which of the following two possibilities is realized: 

(1) The particle cannot form bound states in its own potentials; or 

(2) The particle can form bound states in its own potentials. 

In case (1) we are left with a complicated, time dependent scattering problem which
seems to be intractable. However, many simplifications are possible in case (2). 

If bound states form one can forget about the asymptotic wavefunctions (6.2a-b).
In the limit of infinite time separation the phase will be dominated by the lowest 
energy state. Further, one need only compute Sprop[g, A ] for a class of metrics and
vector potentials which is broad enough to include the eventual solution. In the scalar 
problem we could immediately reduce from nine functions of xµ to a static, spherically 
symmetric system characterized by only three functions of a single variable: 

(6.5a)

(6.5b)

Finally, variational methods can be usefully applied. If one simply guesses the wave- 
function, assuming static potentials, and then minimizes the total energy, the result 
will be an upper bound on the true 0-th order mass. Note, in this context, that any 
finite result would be awe inspiring. 

7. QUANTUM MECHANICS IN REISSNER-NORDSTROM

The purpose of this section is to ascertain which of the two cases pertains to a 
charged, gravitating scalar: can it bind to its own potentials or not? We can immedi- 
ately specialize to the static, spherically symmetric potentials (6.5a-b). Modulo the 
effects of operator ordering, the Hamiltonian is: 

(7.1)

Assuming the particle is bound, we can invoke Birkhoff's theorem to fix the 
potentials outside most of the particle's probability density: 

(7.2a)

(7.2b)
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(7.2c)

The various parameters have been expressed as lengths in the usual geometrodynam-
ical convention: 

(7.3)

however, it should be noted that M is at this stage undetermined. We can also assume 
that the momentum is dominated by uncertainty pressure: 

(7.4)

where LP is the Planck length. 

of the probability density is:
H

 
≡

 
If we geometrodynamicize the Hamitonian ( GH), then its form beyond most

At large r this becomes:

(7.5)

(7.6)

One consequence of (7.3) is that the ratio Q/LP goes like the square root of the fine
structure constant, whereas the M0 /LP is the ratio of m0 to the Planck mass. It
follows that any particle which is relevant to low energy physics must obey: 

(7.7)

In this case we see that the Hamiltonian falls off asymptotically, suggesting that no 
reasonably light bound state can form. 

It is not really consistent to use the external potentials in the interior but doing 
so fails to reveal an inner region of binding. In isotropic coordinates the singularity 
occurs at r0 = ( Q – M)/2. Specializing to a point just slightly outside gives only 
another repulsive Hamiltonian: 

(7.8)

It seems fair to conclude that any charged scalar bound states would necessar-
ily have Planck scale masses. On the other hand, setting Q = 0 in (7.6) seems to 
suggest that the chargeless scalar can form a bound state. Expression (7.8) suggests 
that quantum uncertainty pressure protects it from collapse, unlike the neutral scalar 
studied classically by ADM. 10

8. DISCUSSION 

I have proposed a gauge invariant reorganization of conventional perturbation 
theory in which gravitational regularization is a 0-th order effect. The existence of 
any new technique deserves comment because it might be thought that the possi-
bilities for one have been pretty well exhausted by now. A new expansion must be 
in terms of some parameter, such as the dimension of spacetime 13 or the number of 
matter fields, 14 and there simply aren't any plausible parameters that have not been 
tried.

The secret of my expansion is that it does not conform to the usual rules which 
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require the parameter to appear in the Lagrangian. I have instead exploited a param-
eter which depends, to some extent, on the thing being computed. This parameter is 
the number of closed loops which are external to continuous matter lines that come 
in from the asymptotic past and proceed out to the asymptotic future. Not all pro-
cesses have such lines. However, the technique can be used on those that do, and any 
evidence for the non-perturbative viability of quantum General Relativity would be 
interesting.

Of particular interest are the self-energies of matter particles. The classical com-
putation of ADM, 10 summarized in Section 3, suggests that this is a natural setting 
for conventional perturbation theory to break down. If quantum gravity regulates 
ultraviolet divergences as classical gravity certainly does then the asymptotic expan-
sion must contain inverse powers or logarithms. 

I was able to reexpress the standard definition of the pole of the propagator in 
terms of the new expansion. The 0-th order term has the physical interpretation of the 
phase developed by a quantum mechanical particle moving in the potentials induced 
by its own probability current. If these potentials cannot form bound states one has 
an intractable scattering problem. However, the 0-th term is eminently calculable if 
there are bound states. In this case the lowest energy state dominates. One can also 
assume that the potentials are static, and that they possess simplifying symmetries. 
If nothing else works, it is always possible to obtain an upper bound on the mass 
through variational techniques. 

The explicit analysis of Section 7 indicates that there is probably not a charged 
bound state scalar of less than about the Planck mass. However, it does seem possible 
that light neutral scalars can form. Adding spin complicates the gravitational and 
electrodynamic potentials enormously. It also adds a new parameter in the form of 
the spin-to-mass ratio a. It may be very significant that, whereas the charge param-
eter completely dominates the mass, the spin-to-mass ratio is larger by almost the 
same ratio. For an electron one finds: 

(8.1)

so it is not unreasonable to expect large spin-dependent forces. The physical inter-
pretation for this is that different portions of a rapidly spinning body see one another 
through enormous relative boosts. What is a minuscule matter density in our frame 
can therefore seem overwhelming from the instantaneous rest frame of a spinning 
observer.* So there is some hope for getting light fermionic bound states. 
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ENHANCED SYMMETRIES AND 
TENSOR THEORIES IN SIX DIMENSIONS 

L. Dolan
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Chapel Hill, North Carolina 27599-3255, USA

INTRODUCTION

The IIB superstring compactified on R6 × K3 is a D = 6 theory with N =
(2,0) spacetime (local) supersymmetry, which at generic points in the K 3 moduli
space has the massless spectrum of a supergravity multiplet with Spin(4) content

(3,3) + 5(1,3) + 4(2 ,3) and 21 tensor supermultiplets (3,1) + 5(1,1) + 4(2, 1), see 
[1,2]. Recently there has been evidence of a new type of quantum theory in D = 6
that is probably not a field theory [3,4 ] .

To construct this theory, again consider the type IIB superstring on R6 × K 3,

but this time not at a generic point but at a point in K3 moduli space where a 2-cycle
becomes small and a θ parameter 0, for example at an A1 enhanced symmetry 
point of the ADE possibilities.[5,6] This D = 6 theory with N = (2,0) spacetime

→
 

(global) supersymmetry, has a massless spectrum of 1 tensor multiplet. The spectrum 
also includes a not very heavy (tension ~ BPS string which couples to B –µv ,
the two-form with self-dual field strength, existing in the tensor multiplet. (The
IIA superstring on R6 × K 3 at an A1 enhanced symmetry point changes a D =
6,N = (1,1) vector supermultiplet ((2,2) + 4(1,1) + 2(2,1) + 2(1, 2)) to an SU(2)
multiplet. Instead, here the weakly coupled type IIB on R6 × K3 at an A 1 enhanced
symmetry point develops a non-critical string, that is a string that propagates without 
gravity.) [7–9]

)_
gs

∋

The same theory is constructed from the world-volume theory of two parallel 
almost coincident fivebranes in M theory (or two parallel almost coincident NS five-
branes in IIA). So we see that a 5-brane action and a compactified-to-six-dimensions

string theory both describe the same physics, ie the physics on the six-dimensional

hyperplane. This observation ties together brane theories and and M-theory/string

conipactifications.

Since further compactification of this system to D = 5 is then T-dual to IIA 

on R6 × K 3 at an A1 singularity ×S1, there must be a corresponding two parallel 
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fivebrane picture in IIB. In this case, rather than a tensor theory with a non-critical
string in D = 6, we have an enhanced gauge symmetry, that is a D = 6 non-abelian
vector multiplet. This is as follows. Two parallel D fivebranes in type IIB have a
world-volume theory given by D = 6, N = (1,1) with a U(2) vector supemultiplet, 

and gauge coupling = After an S-duality transformation this is two parallel 

NS fivebranes in IIB with the same world volume theory but now the gauge coupling is 
= M 2

s , since(gs and a Weyl rescaling of the coordinates xµ is performed in

the Yang Mills action). Now the gauge coupling is independent of the string coupling 
gs, and the theory becomes D = 6, N = (1,1) with an SU(2) vector supermultiplet
in the limit gs = 0.

We note that the world-volume theory of one M-theory fivebrane is a D = 6
theory with N = (2,0) spacetime (global) supersymmetry and 1 tensor supemulti-
plet, where the five massless scalars are the fluctuations in the directions transverse 
to the fivebrane. There is no massless graviton on the fivebrane, since the graviton

propagates in the bulk, ie in all eleven dimensions. 

In order to compare the above constructions with features of conformal field 
theory (cft), we first consider the (perturbative) partition functions of the IIA and 
IIB superstrings compactified on R6 × K3, in the T 4 /Z2 orbifold limit. This results 
in the same massless spectrum as for a generic point in the K3 moduli space. We 
then note the similarity in form of the partition function to that which occurs when
we replace the T 4 /Z

2
conformal field theory with that of the tube metric conformal 

field theory [10–12] , which has central charge c = 6 and corresponds to the tranverse 
degrees of freedom of the NS fivebrane. This latter partition function uses the Ak+l

modular invariant of the ADE classification[13] , built from level k, SU (2) character 
formulae. Since k = nH – 2, where nH is the number of parallel NS fivebranes, we can 
compare this cft with the cft on the Higgs branch of a D = 2 system with nH (nV)

hyper (vector) supermultiplets with c = 6(nH – nV). Although a cft description is
believed to break down at a point of enhanced symmetry, ie as the nH fivebranes
coincide, it is interesting to look at the role of the tube metric cft, which describes 
some non-perturbative fivebrane

 

phenomena.

≤

  

≤ A i
n , A I

s , ψ i
r , ψ I

r ; A i
n , AI

s , ψ i
r , ψ I

r ; 1 ≤ i, ≤ 4~ ~ ~ ~

PARTITION FUNCTION FOR TYPE II ON R6 × T 4/Z 2

We compute explicitly[14] type II strings on R6 ×T4/Z2, where T4/Z2 is the Z2
orbifold limit of K3. In the light-cone description, the left and right-moving modes 
are each taken to be described by 8 bosonic and 8 fermionic worldsheet (primary) 
fields: and 5 I, 8, where the superscript 

ˆi refers to the transverse spatial degrees of freedom, the superscript I to the internal .
ones, and the subscripts s, r each correspond to either integer or half-integer modding 

depending on the sector. The partition function or one loop contribution to the 

vacuum to vacuum amplitude in D space-time dimensions is 

(1)

where Λ f is the partition function for the fermionic and internal bosonic degrees of 

freedom,

(2)
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i.e. the spectrum of a theory will consist of a set of sectors Ω , characterized by the 
modding of the internal bosons (s Z, untwisted), (s Z + twisted), and of
the fermions (r Z, untwisted Ramond (R) or twisted Neveu-Schwarz (NS)), and
(r Z+ untwisted NS or twisted R). The quantities δα and the projection operators
Pα,β are discussed below. The integration region = {τ : |τ| > 1 |Rer| < is a 
fundamental region for the modular group that is generated by τ τ + 1, τ 
and L̃0 , L0  refer to left, right movers.

→→
 

_ 1_
τ ;

}
,

,

1_
2

1_
2

1_
2

∈

∈
∈

∈

    

To define the orbifold choose a complex basis for the internal fermions, for ex-

Then the Z 2 transformation θ acting on the internal fermions in

terms of the number operator F = (where 

so that θ = (–1)F ; and similarly θ acts on the internal bosons by
Oscillators with space-time indices are invariant under θ , and D = 6. 

A sector α is labelled by a twelve-dimensional vector whose components are 0 
for NS and 1 for R:

θAI
s θ _1 = _ A I

s .
:  f i

0 f j
0  := _ : f

_
j

0 f i
0  :), Σ i=1,2;r : f i

r f
_

i_ r :
f 2 = 1_

√ 2 (h7 _ ih 8).
_ f 1 = 1_

√ 2 (h5 + ih6 ),  f
_

1 = 1_
√2 (h5 _ ih 6), f 2

=
1_

√ 2 (h7 + ih 8), ample  for the  left-movers:

(3)

This vector corresponds to boundary conditions of left- and right- modes separately 
described by 4 real and 2 complex fermions. 

The set of states on which the theory is unitary is specified by states that survive 
projections defined by number operators which generalize the GSO projection. The 

projections are defined by requiring the parity of the number operators, Nβ  defined
in (9), to take on definite values ε(α,β) on any state in the sector α , i.e.

(4)

where each (α,β ) is either ±1. The (perturbative) spectrum of a model is specified 
by a set of sectors Ω , together with a set {(–1) Nβ : β Ω} of parity operators, and 

their values (α,β) on the sectors α Ω    ∋

∋

 ∈
∈

.

Eq. (2) can be expressed as a sum over spin strutures: 

(5)

where K is the number of basis vectors which generate Ω . We denote the trace in 
eq.(2.5) by { a, β} , so that, without the factor of 2 – K – 1 , the sum is 

where

(7)
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and and are the the twelve-component vectors describing the sectors 
α and β respectively, i.e. the components are 0 for NS and 1 for R [see for example 

(2.8)]. and f(w) are given by (2.14), and δ a = where δ a = 1 if

the states of the sector a are space-time bosons and δ a = –1 if the states are space-
time fermions. A consistent (perturbative) string theory is such that under modular 

transformations the integrand of (1) is invariant.

δ L
a δR

aΘ [ρ
µ

i
i ] (0|τ)

(ρα
i , ρ

α
j )    (µ~ i

β ,  µ j
β ) 

~

 

The type II string on R6 x T4 /Z2 has eight sectors, whose fermion boundary 

condition vectors (3) are given by 

(8)

where {φ  ,b0,b0b2,b2} are the sectors that have untwisted bosons, and the Z2

twisted sectors are written as { b0 b1 , b1 , b1 b2 , b0 b1 b2}. For this theory, the eigen-

values (α,β) of the parity operators are given in Table 1, where λ,ρ, µ,v take

values ±l, and different choices of λ,  ρ, µ, v do not change the theory. Ta-
ble 1 is derived by requiring modular invariance for the part of Λ given by 

maining values of ε(α, β) using ε(α,βγ) = ε( a, β) ε( a, γ ) , which follows from (4). 

In the fermionic picture, we define the parity of the number operator Nβ acting
on the sector a by

δa  ∋(a, β) tr α{w
_ L

~
0
_ 1_

2w L 0 _ 1_
2 (_ 1) N β },Σ α, β  {φ,b0,b0b2,b2}

1_
8  ∋ 

∋

(9)

where F is a vector whose components are the operators Fj = Σ r. : f j
r f

- j
– r : for

complex fermions and for real fermions, and r is modded according to

the boundary condition of the “j  th” fermion in the sector α.    
∞Σ r≥ 0ψ j

_ rψ j
r

(10)

and the sums F̃j and Fj distinquish left and right movers, but the pair f
–

and f
denotes a complex fermion which is either wholly left moving or right moving. In 

Table 1 

and then computing the re- 



general, the projection operators are defined by 

The functions in (7) have =  e  
2 π  i τ  

and

(11)

(12a)

(12b)

(12c)

Collecting the contributions from the different (non-zero) spin structures, we have for 
type II strings on R6 x T4 /Z 2 that

(13a)

(13b)

In (13b), the factors (1 – 1 – 1 + 1) are all space-time boson contributions, while 
in lines 3 and 4 each the factors (2 – 2) contribute 2 from space-time bosons and 
(-2) from space-time fermions. In line 1, the lattice theta function θ  Γ 4,4(τ – ,τ) =

ΣpL ,pR

∋Γ 4,4 w 1_
2 p w 1_2

p2
2
R is defined for any even, self-dual eight-dimensional LorentzianL

_
 

lattice Γ 4,4, and is modular invariant. 

MASSLESS SPECTRA

In this section we give the massless spectra in these theories, using the projection 
operators (11), rather than directly using facts about the cohomology and moduli 
space of K3. Our procedure insures that the spectrum at a given mass level agrees 
with the coefficient of a suitable power of ww  in (13). The partition function (13)

_
 

describes a precise set of states on which the theory is known to satisfy (perturbative) 

unitarity.

The massless spectrum of the Type IIA superstring on R6 x T4 /Z2 is given in
term of representations of the D = 6 lightcone little group Spin(4) SU(2) × SU(2)

which form D = 6, N = (1,1) spacetime supersymmery multiplets. The supergravity 

multiplet is 

(3,3) + (3,1) + (1,3) + 4(2,2) + (1,1) + 2(3,2) + 2(2,3) + 2(2,1) + 2(1,2). (14 a)
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It couples to 20 vector supermultiplets with spin content: 

(2,2) + 4(1,1) + 2(2,1) + 2(1,2). (14 b)

The Ramond ground states in D = 6 for the type IIA superstring on R6 × T4

or R6 x T4 /Z2 corresponds to the spin content: 

F1 = even    |(2, 1)〉 Left

(15)

Using (5), we find the massless states in the untwisted RR sector have spin content

8(2,2). These eight vectors are from 2|(2, 1)〉 Left x 2|(1,2) 〉 Right and 2)(1,2)〉 Left ×
2((2,1))Right. Similar arguments show the R-NS sector contains massless states 

2(2,3) + 10(2,1) given by 2|(2,1)〉Left ⋅ ψ J_ 1_
2

|0〉 and 2|(1, 2)〉 Left × ψ j_ 1_
2

|10〉 ; the

NS-R sector contains 2(3,2) + 10(1,2); and the four twisted sectors contain 16
massless vector supermultiplets: given by 4 |16 〉 and | (2,1) 〉 Left × | (1,2) 〉 Right × |16〉 ,
2× | (1,2)〉 Right × |16)〉, |(2,1) Left × 2 × |16〉 , where |16〉 is the degeneracy of the ground

state of the twisted bosonic operators  Ã1
s , AJ

8
[15 ]

.

For the type IIB superstring, the analog of (15) is 

(16)

So for the Type IIB superstring on R6 × T4/Z2 the partition function is the same 
(2.15) as for IIA on R6 × T4/Z2 , the number of massless states is the same, but 
the Spin (4) representations are now form D = 6, N = (0,2) supermultiplet: the

supergravity multiplet 

is coupled to 21 tensor supemultiplets: 

(3,3) + 5(3,1) + 4(3,2)

(1,3) + 5(1,1) + 4(1,2).

(17a)

(17b)

Frorn the projections (2.13), the boundary values (2.8), Table 1, and (16), it follows 

that the massless states in the untwisted sectors are: (3,3) + (1,3) + (3,1) + 17(1,1) 

from NS-NS, 2|(1,2) 〉 Left × 2|(1,2)〉 Righ t +2|(2, 1 ) 〉  Left ×  2|(2,1 )〉  Right = 4(1,3)+ 4(3 , 1)+
8(1,1) from RR, and 4(3, 2) + 20(1, 2) from R-NS and NS-R. In the twisted sectors,

the massless spectrum is 64(1,1) from b0b1 , 16(1,1) + 16(1,3) from b1 , 64(1, 2) from

b1b2 and b0b1b2. The supergravity multiplet and 5 of the tensor multiplets come from 
the untwisted sector, and 16 tensor uiultiplets come from the twisted sector. 

4. Partition function for tube metric conformal field theory

The partition function for the type II superstring on R6 × W4, for W4 constructed
from a level k, SU(2) Wess-Zumino-Witten model, a Liouville boson with background

charge Q = – and four free fermions, is given by,   _____
k+2
 2
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√
√

×

F1 = odd         |(1, 2)〉 Left

F3 = even    |(1, 2)〉 Right

F3 = odd          |(2, 1)〉 Right

F1  = even        |(1, 2)〉Left

F1  = odd          |(2, 1)〉Left

F3 = even        |(1, 2)〉Right

F3 = odd          |(2, 1)〉Right



where the diagonal modular invariant

(18)

(19)

is in correspondence with su(2 + k), i.e. A k+1 in the ADE classification[13] of modu-
lar invariant combinations of level k affine SU(2) characters. An irreducible highest 
weight representation of an affine algebra ĝ is an infinite-dimensional tower of irre-
ducible representations of the finite-dimensional algebra g, and is classified by its

highest weight. Allowed highest weights for level k affine SU(2) are λ =2l + 1, where
l is the spin of the SU(2) representation at the top of the tower, and 0 < l < k_

2
 . 

The character formula, which counts the states in a given irreducible represen-
tation of the level k affine SU(2) is 

The invariant 

(20)

is defined for k > 0. For k = 0,

= 1 since

using the Jacobi triple product identity for η 3.

k even, are discussed in [13] .

η 3 (τ) 

 

1____w 1_
s Σ n z∋ (4n  + 1)w 2n

2 +n = 1x 0,1 (τ) =
Z k (τ, τ) = Σ k + 1

λ = 1 xk , λ (τ)xk , λ(τ)
Z0 (τ, τ) = x0,1 (τ) x 0,1 (τ)

is

The other ADE modular invariants, for example those corresponding to D k_
2 +2,

A modular invariant partition function for the type II superstring on R6 ×W4/Z2

where

transforms under modular transformations as 

(21)

(22)

(23)
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and Zk, [ 0
0

](τ – ,τ ) = Zk(τ – ,τ ) in (19). We note that (21) is identical to (13) when the

.
 

internal bosons AI are replaced with Liouville and WZW modes J o, J i

CONCLUSIONS

The partition functions (18) and (21) are constructed from the Ak + 1 modular
invariant Zk (τ – , τ ) and related twisted expressions (22). These correspond to excita-
tions of a type II fundamental string in a background described by degrees of freedom
transverse to the NS fivebrane. The incorporation of exact results on Liouville cft 
may modify which states survive in this theory, and hence their gauge symmetry 
properties. We note the occurrence of the A k+ 1 modular invariants, and contrast this
theory with a type II compactification[7_9] described by a 2D supersymmetric gauge 

theory leading to a D = 6, N = (1,1) theory with massless spectrum of 1 SG mul-
tiplet, 19 U(1) and l SU(2) vector supermultiplets. A deeper understanding of how 
the conventional type II cft breaks down in this case, due to massless solitons, may

guide us to a more economical description of how string theory picks the vacum. It 
is believed that the appearance of these massless non-perturbative BPS states may be 
an important mechanism for the way in which nature incorporates gauge symmetry 
in string theory. 
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ABSTRACT
We consider the N = 2, Nf = 2 Seiberg-Witten dual theory with two 

bare quark masses. We find that it is possible to have an arbitrary large 

mass ratio. 
Recently, a great deal of progress was made in dual theories fostered by 

Seiberg and Witten who provided the exact vacuum structure and spectrum 

of four dimensional N = 2 Supersymmetric SU(2) QCD with matter [1,2]. 
We are interested in the hierarchy of quark masses in an N = 2, Nf = 2 

(f= flavor) Seiberg Witten toy model with two bare masses. In order to

motivate the equation of family of curves for Nf = 2, that parametrize the 
modular space of the quantum vacau, we briefly outline its derivation. 

The low energy effective Lagrangian involves the N = 2 vector multiplet 

A that contains gauge fields Aµ , two Weyl fermions λ,ψ  and a scalar φ . In 
terms of N = 1 supersymmetry, the fields are vector multiplet Wα  (Aµ,λ )
and chiral multiplet Φ(φ, ψ) . The Lagrangian and Kahler potential can be 

written in terms of a prepotential (A) that is an arbitrary holomorphic 
function of complex variables. The scalar component of the N = 2 vector 

multiplet A is a. The metric on the moduli space parametrized by a is

(ds)2=Imτ (a)dada–

The τ(a) is a holomorphic function, and = τ (a). Define aD = then
(ds)2 = ImdaDda– . The tree and one loop contribution to is

follows from singularity structure and monodromy. 

From aD and oneloop for large a, one has

*Talk given at International Conference on Orbis Scientiae 1997-II, December, 1997, 
Miami Beach, Florida 
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that is not a single valued function. Put u = 2a2, and the monodromy is 
determined by drawing a circle or closed loop around a point u on the u
plane at large u,

Then,

or

Consider magnetic coupling [3, 4] 

where τ D = 4πi | g 2
D (aD)(a )

or

when θ D = 0. Since the scale µ here is aD

Define hD (A ) = ∂F_
∂  AD

, AD = dual vector multiplet , and scalar component

of AD is aD , then

hence

In the N = 2 gauge theory, the central charge Z is

where τcl ~ θ_
2π + 4πi_

g 2
,

the dyon is M > Z|.
ne and nm are integers. The BPS bound as the mass of 

For later convenience,
 √ 2| 

__
 

Note is the mass of the monopole and duality symmetry is a ↔ aD,
ne nm, τ ↔ = τ  D . The contribution of monopole to BPS bound is

aDnm. The full duality group is SL(2, Z) under which a, aD transform as
a doublet.
√

_
2
↔
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Take a massless monopole at u0

Near u0( = Λ2),

where

Let u circle around u0 in the u plane,

or

hence

When the three monodromies are taken in counter clockwise direction where
from a base point a large loop that includes those that include u0 and –u0 ,
the monodromies obey 

so

The pair of singularies ±u0 is required by the Z2 symmetry u → –u. The
transformation of functions around a complex singularity are monodromies 
and the matrices are called monodromy matrices. Note 

Duality transformation has freedom to shift A D by a constant, and

duality implements SL(2, Z) generator S.
A natural physical interpretation of singularities in u plane is that some 

additional massless particles are appearing at a particular value of u [5].
What particle becomes massless to generate the singularity? The massless 
particle that produces a monodromy M satisfies,
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monopole.

dyon.

There is no simple solution. 
The moduli space M of quantum vacua is the u plane with singularities. We 

described the u plane punctured at the singularities –Λ 2, Λ 2 and ∞ with 

their monodromy matrices. 
The family of curves of the moduli space can be parametrized by the 

cubic equation 

For every u, there is a genus one Riemann surface-torus determined by the 

equation above with discriminant 

The previously found M_Λ  ,MΛ  ,M0 are obtained in Refs. [1] and [2]. The 

x plane has 4 branch points at x = – Λ 2 ,Λ 2 ,u, The branch points are 
joined pair wise by two cuts along – Λ 2 to Λ 2 and u to∞ in x plane.

Consider the toy model massive Nf = 2, with masses m l and m2. The

most general structure of the curve is

.∞

 

where

and t, a, b, c are constants to be determined. 

ment of charges for the parameters and x and y are
The U(1)R charge (global phase rotation) is conserved, where the assign-

Define λ 2 such that when m2 is large low energy Nf = 1 is finite Λ 31  =  m 2 λ 2

2

m2 
2

2  

,
λ →→ ∞ 0.

Then, we obtain a =  b = 0 and c = – and
1_
4

1_
64  

To find t, put m2 = 0, u = m 2
1 in discriminant ∆ , put coefficients of the

  .
 

1_
64leading term in m 8

1 in ∆ equal to zero, and get t = Then the equation 

with s = Λ 2/8 is 
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We are interested in examining the possible mass heirarchy in this Nf = 2
model. Define m1 = M + D, m2 = M – D so µ2 = m1m2 = M 2

– D
2
.

We determined the ∆ with masses µ2 and m2. Then, m2 is replaced by 

m2 = µ2 + (m2 – µ2). The µ2 part leads to the previous equal mass case and
the coefficient of (m2 – µ2) = 2D2 leads to the constraint. We find

with a constraint 

If D = 0, µ 2 = m 2 and the equal mass result is obtained [2, 6].

If D ≠ 0, we get

Consider u near the double zero of ∆ = 0,

then we find 

When m1 > 0,m2 > 0, we require

M 2 > D 2 M 2 > 0 D2 > 0 

and not e 

Large mass ratio is possible. For = 2 u_
s

Consider next the two other zeros of ∆ 

then
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u_
s  = 1 + ∋,∋  > 0, s = Λ2/8

m1

m2

__ = 32 1
27 ∋
 __ _

For



For = 3 ml = m2 = Λ /2 and a large mass ratio is
not possible. For = 4, 

We verify that the relation u/s is in the strong coupling regime for all of 

the preceding values [7]. The weak coupling regime satisfies Λ 2 u. For the

case of double zeros, u/s = 1 + or u/ Λ 2 1/8 or Λ 2 ~ 8u so Λ 2 u is not

satisfied. The case of µ = 1/2(u + s)/ Λ , Λ 2 = 8u/3 so again Λ 2 u is not
satisfied.   

<<
<<
<<

The problem with Nf = 3, 3 masses ma,mb, and mc is being studied
with G. Cleaver. 

M2 = 42.6 D2 = 0 

m1/m2 3.≈
  u_

s
u_
s

The author wishes to thank B. Kursunoglu and A. Perlmutter for their 
hospitality in Florida and G. Veneziano for his hospitality at Cern, and G. 

Cleaver for valuable discussions. 
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INTRODUCTION

CP violation has been known to exist for 35 years and understanding its origin 

is an intrinsically important goal [1]. Experimental evidence comes from two sources 

- mixing and decay of K° mesons and the observed baryon anti-baryon asymmetry

of the universe. Experimentally most results come from K° decays and, after many

years of careful measurement, we know those ratios expected to be zero if C P were

conserved, of amplitudes for K °L and K °S decay to π + π – (η +–) and to π ° π°  (ηoo) to be

similar (~ 2.3 × 10–3 e44° ), and the CP violating asymmetry δ for semi-leptonic decays

to lepton (anti-lepton) to be of the same order (3.3 × 10–3.)

No clear evidence for direct CP violation exists. Measurements of the ratio of 

parameters and which describe the CP violation in K° mixing and decay cannot

rule out the possibility that is zero (a non zero would be evidence for direct CP
violation.) This could mean that the violation occurs entirely in the mixing through a 

∆Y  = 2 “superweak” interaction [2]

'
'

 

'∋∋
∋∋

 
If CPT is conserved, cosmological matter/anti matter asymmetry requires, amongst 

other things, a CP violation mechanism [3]. The standard model provides such a 

mechanism, but it is unlikely that this will account for a large enough effect [4]. It is 

certainly a possibility therefore that in the B decay experiments discussed here which

will confront the standard model predictions, large discrepancies will be found. 

The B meson is another system which should provide information on the CP phe-

nomenon. The B° ‘in particular exhibits mixing just as the K° does, but predomi-

nantly through intermediate t quark states. The standard model predicts a large, time 

dependent CP violation in rare B° decays to CP self conjugate states arising from 

interference between decay and mixing. Up to the present, it has not been possible

to observe this effect. The Ba
–
Bar experiment at SLAC, is one which plans to use a

dedicated asymmetric B factory principally for that purpose. 

In the next section, the standard model of CP violation and how measurements of 

B meson decays may be used to confront it are briefly discussed. Next the main strat-

egy to be used at the B factories, where decays of substantial samples of B° mesons
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are to be used to determine the CP phases of the model, is discussed. The rationale 

for asymmetric machines and the experimental method is then described and in section 

5 the experimental facilities are outlined. Finally, a summary of the CP reach of the 

Ba
–
Bar experiment and what it may reveal is given.

TESTING THE STANDARD MODEL OF CP VIOLATION

CP conservation would require that transitions B f and B– f
–

occur at equal

rates. If two weak processes with amplitudes A, A', weak phases δ w , δ 'w  and strong

phases δ s , δ 's respectively contribute to the transition, then since, under CP, the weak

Hamiltonian becomes Hermitian conjugated reversing the sign of the weak phases, 

but not the strong phases the rates for the transition and its CP conjugate become 

respectively

→→

whereφ s = δ s – δ's and φ w = δ w – δ w We concluded that CP violation occurs (Γ ≠ Γ –
)

in a transition if there are at least two processes contributing to it; they have different 

weak phases (φw≠ 0) AND different strong phases (φ s ≠ 0).The violation is maximum

when A = A'.
In the standard model, the CKM quark mixing matrix V qq', which connects elec-

troweak and mass eigenstates [5], provides a simple and elegant prediction for CP
violation in both decay and mixing amplitudes as well as in their interference for Kº
and Bº mesons. Weak vertices are described at the quark level by charged currents 

As V qq', is a unitary, 3 x 3 matrix, it is defined by three real quantities and a complex

phase. This phase is observable - it cannot be eliminated from the weak currents

making up a Lagrangian by simply re-phasing the quark fields q. Factors of V at 

Feynman vertices for weak processes therefore impart different “CKM phases” to the 

amplitude appropriate for each process and so lead to CP violation.

A test of this model is to check that V is unitary, and that the CKM phases

which it introduces correctly account for any observed CP asymmetries. One of the 

six unitarity conditions is that 

It is common to write the V matrix in the Wolfenstein variables [6] λ, η and ρ which

come from an expansion of the matrix elements in powers of λ - the cosine of the 

Cabbibo angle. In this representation the phase of V *cd Vcb is nearly zero and the unitarity

condition may be represented graphically as in fig 1 

The angles of this triangle are identified as 

In the standard model ρ and η are highly correlated. Data from Kº decay (ε), 
B and charm decays which measure |Vub | and |Vub |/|Vcb |, and from Bo

d – Bo
d mixing

and calculations of hadronic matrix elements have been combined to determine their 

—
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Figure 1. The Unitarity Triangle. 

values. From the best estimates of ρ and η we infer that α~ 90°, β ~ 17º and γ ~ 73°

[7, 8]. Direct measurement of the angles of the triangle have so far been inaccessible to 

experiment.

Asymmetric B Factory tests of the standard model account of CP violation centre

upon attempts to overconstrain the triangle, by measuring α, β , γ in addition to im-

proving measurement of CKM matrix elements, to see if the triangle closes. 

THE MAIN STRATEGY - CP AND DECAY OF NEUTRAL B MESONS.

In decays of B° mesons to final states f accessible both to B° and to B°— , mixing

plays an important role. Interference between the two paths 

leads to “mixing induced” CP violation. When the decays are dominated by a single 

amplitude D then D(B° f) and D– (B°— f ) have opposite weak phases and identical→→
strong phases so that measurement of the CP violation yields a measurement of the

weak phases independent of strong interactions. When f is a CP self conjugate state,

then D and D
—

have the same magnitude and CP violation is maximised.

The mixing has a well defined time dependence, and a readily calculated C K M
phase so that a known, time dependent CP asymmetry between B° and B°

—
should be 

observable and provide a means to measure the phase of D.

Mixing Induced Time Dependent Asymmetry 

B°B°— mixing is dominated by the process in figure 2 whose weak phase is δ m .
Mesons born at time t = 0 as pure states |B° > or |B°—

> evolve as particle- antiparticle

mixtures:

where

Figure 2. Dominant Process in B°– B°— Mixing
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and suffices 1 and 2 refer to CP odd and even eigenstates |B1 >, |B2 >.

It is then possible to compute the decay rates Γ +f (B° f ) and Γ
_
f (B°

— f ) and the→→
time dependent asymmetry: 

(1)

(2)

(3)

It is important to note that only the time dependence of the asymmetry is observ-

able. If integrated over a large time period, the expression in (2) vanishes. 

Decay dominated by single amplitude to CP self conjugate state

Decay amplitudes for B° and B°—
mesons to a final state f which has CP quantum

number η f = ±l are simply related -

If in addition, a SINGLE amplitude with weak phase δ d and strong phase δ s dominates

the decay then the ratio rf = η f e – 2i (δ m+δ d). The asymmetry then takes the simple form

(4)

Such decays therefore provide the best measurement of weak phases since the time 

dependent asymmetry (4) is independent of strong interaction effects. It is only neces-

sary to measure the amplitude of the sin ∆ mt term to measure φ w and so δ d .
In such decays, there is no cos ∆ mt term. Experimentally, detection of such a term 

would indicate that other decay amplitudes were significant. 

Determination of β 

This situation is closely realised in the decays of type B° J/ψK°S in which the

dominant tree level diagram (see figure 3) and the relatively weak penguin process 

have the same CKM phase. The weak phase φ w in (4) is made up of the CKM
phase δ dJK

for this diagram, the phase δ B
m for B° mixing and a further phase δ K

CP which

allows for the fact that K°
S is not a CP eigenstate (we assume that K° mixing of CP

eigensytates occurs predominantly through a box diagram with intermediate c quarks).
These phases combine to give 

Figure 3. Tree diagram for B° J/ψ K°.→
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With the approximation Vtb 1 and that V cbV *cd is almost real, this leads to φ w = –β. 
Therefore, measurement of the time dependent asymmetry (4) for this decay mode can 

provide a direct determination of β = – φ,,.  

≈

Determination of α 

Decays B° π +π – provide information on α. The tree and penguin diagrams

however (figure 4) have different CKM phases. If we could neglect the penguin process 
then this and B° mixing would combine to introduce a phase factor φ w where

Then, since Vtb and Vud are both 1, φ w α.   ≈  ≈
So the time dependent asymmetry for this decay provides a direct measurement of

φ w = α but only if we assume the tree process is the dominant one. 
A recent result from CLEO suggests that the penguin process may be quite impor-

tant [9]. It is observed that decays of this type (ππ, ρπ, etc.) are suppressed relative

to the decays to Kπ (or K*π) which would not be expected if the tree process were

dominant. These authors also note that the upper limit on the B° π +π – branching

ratio is also rather small (< 2 x 10–5 ).

→

In this case < f |T|B° > is the sum of tree and penguin terms, each with its own

strong and weak phase, and the ratio rf in the asymmetry (2) is no longer independent

of the strong phases. Experimentally, it would be observed that the asymmetry has

both sin ∆ mt and cos ∆ mt terms, their coefficients giving information on the magnitude 

and phase of rf .
To unambiguously determine α requires knowledge of the relative strengths and 

strong and weak phase differences between the tree and penguin processes which have

different isospin content. Methods which exploit the isospin relations between decay 

rates in other charge states: 

have been discussed as a means to bound the value of α. [10].

Determination of γ 

Measurement of this angle should present the greatest experimental challenge. De-

cays which provide information on it include 

Figure 4. Main tree and penguin diagrams for B° π +π –.→
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in which the time dependent asymmetry (4) ∝ sin φ  w where φ W = –γ. This would
require operation of the B factories at higher energy (at the (5S)) than for the other

modes, and is not planned in the first years of operation.
ϒ

Other information could be obtained from precise measurements of the rates for: 

With sufficient accuracy, these could be used to extract γ from triangular relations 

between their amplitudes [11]. 

Use of other decay modes.

Decays to CP eigenstates proceed through Cabbibo suppressed channels and have 

small branching ratios. It is possible to use additional related channels [12] such as 

Use of the states with excited mesons will require the added complication of angular 

analysis to project out the helicity components which are CP eigenstates. Neverthe-

less, it is likely that the effective branching ratios available could increase by a factor 

of about five using these modes. 

THE ASYMMETRY EXPERIMENT

To make these asymmetry measurements, it is necessary to produce large samples

of B and B– mesons, to be able to “tag” them as particle or anti particle and to be able 

to measure the time evolution of their rare decays to CP eigenstates. 

The asymmetric production of B’s through the reaction 

was suggested [13] as a way to accomplish these goals. At SLAC, the asymmetry was 

chosen such that the e+e-collisions produce (4S) with a βγ = 0.56, and these then

decay to B°B°—
approximately 12% of the time. The BB

—
continue to move as a

coherent p–wave system in the laboratory z direction at βγ = 0.56. Bose symmetry

[14] prevents either B° from mixing into B°—
until one of the B’s decays (at time tTag = 0)

and is tagged using either K or lepton to identify it as a B° or B°
—

.
The other B gets its identity as B° or B° at this time but may already have decayed. 

The evolution time t ∆ z (which may be < 0 as in the example illustrated in figure

5) is recorded if the decay is to a CP eigenstate and so the B° – B°
—

asymmetry is

measured as a function of t and using (4), a value for φ w is determined.

≈ϒ

 

∝

1

1e- momentum is larger than the e+. At the (4S) mass the continuum to signal ratio is 3 and 

a clean sample of B’s is identifiable. B+B–
and B°B—° decays occur at approximately equal rates.
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Figure 5. Tagging and timing B° decays.

In decays to J/ψ K° final states, this angle is expected to be equal to – β, and no 

cos ∆ mt term as in (2) is expected. This provides a valuable constraint on both the 

data and on the underlying theory. Useful checks can be made by comparing four

classifications of events. Those with a B° tag and t > 0 should have an A CP with

identical time dependence as those with a B°—
tag and t < 0 and the Bo tags with t < 0

should be identical to B°—
tags with t > 0.

A further check on the data can be made. The time averaged asymmetry should be 

zero.

A Few Experimental Technicalities 

A limitation on the experimental precision arises from the uncertainty of the mea-
surement of ∆ Z crucial to the t dependence of A CP. Also, for the B° decay modes

considered, the measured asymmetries are diluted by background B under each signal 

S by a factor ~ Further, tagging (using charge of e±, µ± or K±) is not

possible in all cases, and mis-tagging is inevitable too due to both detector imperfec-

tions and to contrariness of nature itself

S/(S + B)
________

√

a)

b)

c)

Cascade decays b c l give lepton l opposite charge from b l; 
Double charm decay B DDs X give wrong charges 

Cabbibo suppressed D decay gives wrong sign K
Estimates of all these effects have been made using a simulation of the detector and 

the reconstruction software [15].

→
→

→→

B FACTORIES AND Ba
–
Bar

SLAC’s new asymmetric B factory PEP II uses the old PEP accelerator as a high en-

ergy ring (HER) for storage of 9 GeV/c e– from the linac.A new low energy ring (LER)

will be built on top of this to provide (also from the linac) storage of 3.1 GeV/c e+ .
The design luminosity of the machine - 3 × 1033 cm–2 s –1should provide ~ 30 fb –1 per

year of operation accomplished in part by use of a large number of e+ and e– bunches,

1 cm long and 126 cm apart, crossing each other at 0°. 

At this luminosity, the machine can produce 3 × 10
7 B°B°—

pairs (withβγ  = 0.56 in

the laboratory) per year, and is projected to start operation in Spring 1999 when the 

integrated luminosity at CLEO is expected to be ~ 10 f b–1. Upgrades to operate at

the (5S) and at luminosity 1034 cm–2 s–1
 are envisaged. PEP II will produce collisions

in May 1998, about a year before physics begins, and it is hoped that a great deal will

be learned about how to reduce the backgrounds which such a high luminosity may 

produce before Ba
–
Bar is rolled in.

ϒ
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Figure 6. The Ba
–
Bar detector. 

At KEK, the accelerator is being built with a slightly smaller asymmetry (βγ = 0.47) 

and a luminosity of 1034 cm–2 s–1 . This machine is scheduled for completion for Spring

1999 and detector BELLE will be ready at that time. 

The Detector, Ba
–
Bar  

Ba
–
Bar  , shown in figure 6 has been designed for the asymmetry experiment outlined. 

Important considerations were the ability to measure ∆ t, i.e., the separation between

Bº decay vertices with precision small compared to βγ CTB° ( 250 µm); to identify and

fully reconstruct all exclusive CP eigenstates to which a Bº decays - including those 

with neutral particles; and the ability to perform good tagging.

≈

The vertex detector is made from five layers of double sided Si strip detectors and

is placed within 3.2 cm of the interaction region. The B ππ (ρπ) decays place
particularly difficult constraints on particle identification. Distinction between π ± and

K ±
at momentaup to 4.5 GeV /c led to the use of a new kind of ring imaging device - the

DIRC [17] - which provides 4 σ separation at the highest momenta. Identification and 

measurement of π º and γ at a wide range of momenta is supplied by a CsI calorimeter 

and of K °L and µ± by the iron flux return (IFR) instrumented with resistive plate

chambers.
Good tagging is provided by the DIRC, CsI calorimeter and IFR which provide 

lepton/hadron identification in the lower momentum region where tagging is most im-

Table I Ba
–
Bar ’ s Anticipated CP Reach (per 30 f b–1 )

φ w CP State Br. Ratio ≠ reconstructed ∆ sinφ w

J/ψ Kºs 0.5 × 10 
–3

0.41 1106 0.098 
β J/ψ KºL 0.5 × 10 

–3
0.33 712 0.16

J/ ψ K*º 1.6 × 10
–3

0.39 307 0.19

D+D– 6 × 10
–4

0.25 248 0.21
β D*+ D*– 7 × 10 

–4
0.15 485 0.15 

J/ψK*º 8 ×10 
–4

? ? ~ 0.15 

β Combined 0.059 
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portant, and a 40 layer, state of the art drift chamber provides momentum resolution of 

less than 1% at all momenta, and dE/dx information for separation of charged particle 

species in the tagging momentum range. 

PEP and BaB
–

ar Schedule

The HER at PEP has already provided the e – beam current required and much has 

been learned about dealing with the backgrounds. The LER is built and is on schedule 

for collisions in May 1998. 

The magnet and coil have been delivered to SLAC and the IFR is almost complete. 

All subsystems are on schedule for installation by year end 1998, roll in to PEP in 

February 1999. 

SUMMARY

Estimates for the uncertainties in β which might be achieved in a year of running at 

the nominal luminosity ( i.e., an exposure of 30 f b–1 ) have been made using a simulation 

of the BaB
–
ar  detector and of our ability to reconstruct and identify the relevant events. 

The estimates obtained were reoirted in the BaB
–
ar  technical design report [15] and 

are summarised for the most important channels in Table I These measurements of 

β should begin to emerge in the year 2000 and should provide an important test for 
the unitarity triangle. If β 17° as expected [8] then this measurement will have 

an uncertainty of ~ 3 – 4°. Of course, a measured value far from this would be of 

considerable importance, and would cast doubt on the origin of CP violation in the 

standard model, at least without the need for extensions to it. 

Independent results on β may emerge on the same time scale from BELLE at 

KEK, and perhaps also from CDF at Fermilab when their Run II data are analysed. 

Uncertainties in both cases are expected to be similar. Another fixed target experiment 

at HERA is also planned for this time period and could yield important data on β. 
Estimates for uncertainty in sin 2 α were also made in reference [15] at about 0.1. At 

the time, the expected branching ratio was ~ 1.2 x 10–5 and the penguin contribution 

thought to be small - both assumptions which may now appear optimistic [9]. These 

difficulties affect all experiments alike, and it appears that definitive information on 

α or for that matter γ will probably require several years longer given the small cross 

sections and the precision required. 

In any event, it does appear that after 35 years, more experimental evidence for CP
violation may be at hand. 
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Abstract
Evidence for the Kuiper Belt (of cometary material just past Neptune) and the 

processes that shape it are briefly reviewed. A summary of selected estimates of 
its mass is given. A two-sector model for the belt is summarized. A limit is placed 
on the amount of mass that could be present in the Kuiper Belt in the form of 
objects with sizes around a centimeter, from survival of the Pioneer 10 spacecraft’s 
propellant tank during a dozen years in the belt. Work in progress on the belt’s IR 
signal is reviewed: A useful formula is given for the IR signal from dust particles 
as a function of albedo, radius and heliocentric distance. Preliminary results are 
given for limits on the sector masses, in the two-sector model, as a function of time 
since last passage of the Sun through a giant molecular cloud. Possible indication 
for the time since such passage and possible support for the existence of a more 
massive outer sector are found in preliminary results for the ratios of the IR signal 
in the four different COBE DIRBE bands. 

INTRODUCTION

One may see a similarity between the current growing realization that an additional 

component of the Solar System (SS) has been discovered and the discovery of the cosmic 
background radiation (CBR) a generation or so ago. Today we are in a similar position 

of trying to understanding the growing collection of data on the Kuiper Belt (KB). Just 

as the CBR provides a snapshot of the universe at recombination, the KB can show us 

the planetesimals from which the planets were formed. Figure 1 shows the major features 

of the Solar System. Note that the unit of distance is the astronomical unit (AU), the 
distance from the Sun to Earth. The spherically symmetric Oort cloud, which is the 
home of most comets, stretches between about 10 3.3 and 10 

5
AU from the Sun. We know 

the Oort cloud is spherically symmetric because the distribution of long period comets 
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Figure 1. Selected Solar System components. 
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(over 200 years) is. The KB is roughly a wedge with full opening angle on the order of 

30 – 45 degrees. It is the reservoir for comets traveling close to the plane of the ecliptic 

with periods under about 200 years. Comets are of around 1 to 10 km in diameter. The 

order of magnitude of the number of Oort cloud comets that have come to the inner Solar 

System and been seen and recorded is 10 3 and that of Kuiper comets come to the inner 

SS, 10 2 (the total number that have come to the inner SS over 4 Gyr is probably 10 7 –108

time these estimates). Comet composition is roughly that of “dirty snowballs,” ice (water, 
CO 2, N 2 , etc.) plus dust from supernovae. Over time, complicated organic molecules 

are made in comets as cosmic rays knock out electrons causing chemical reactions. 

The two minute summary of the origin of the Oort cloud and the Kuiper Belt (Levy 
and Lunine, 1993) is as follows: Stars are formed from collapse of denser regions (cores) 
of giant molecular clouds (GMCs) which can have masses on the order of 10 5 M (solar
masses), sizes of 100 parsec or more, and densities of 10 3 protons/cm3 or more. Newly 

forming stars develop dusty disks for about 10 7 years. Dust aggregates into centimeter-

sized bodies, perhaps by Van der Waal forces, and then into kilometer-sized bodies called 
planetesimals. Planetesimals coalesce by gravitational forces and computer simulations 

show that, generally, one of the larger planetesimal in a zone tends to rapidly accumulate 
a large fraction of the others, thereby making a massive core. If the core is massive 
enough (10 Earth masses, M ,  or more) hydrogen and other gases are gravitationally 
captured thereby making a giant gaseous planet, providing the core mass is achieved be-
fore the star’s T-Tauri phase (a few 10 6 years) when a stellar wind blows away the stellar 
nebula. Growth of the planetesimals and the core requires low eccentricities so that col-
lisions will have low relative velocities and result in adhesion rather than fragmentation. 

Development of the core also requires sufficient mass to make collisions frequent enough. 
After formation of the massive gaseous planets, nearby orbits of planetesimals have 

been shown by computer modeling to become unstable with relatively short time scales 
and most planetesimals in such orbits are ejected from the SS. In some cases the pertur-
bation caused by the planets falls short of ejecting the body. It is these failed ejections 
that populate the Oort cloud. The KB, on the other hand, is composed in part of plan-

etesimals formed in a region insufficiently dense for aggregation to planets and sufficiently 

beyond the last planet for orbits to be stable. It also contains planetesimals scattered by 
the giant planets into stable KB orbits. 

⊗

KUIPER BELT EVIDENCE, EVOLUTION AND PROPERTIES 

Edgeworth (1943, 1949) and Kuiper (1951) independently postulated a belt of planetary 
material past the orbit of Neptune. Both argued that there was no reason to expect that 
the solar nebula should end abruptly at Neptune rather than continuing to decrease in 

density of solid material – with, perhaps. surface density falling as

⊕

 

Σ (R) = Σ 0 R –2

(1)

with R being the heliocentric distance. Such a variation could mean as much as 20 M
in the region 30 – 50 AU. There does not seem to have been a great deal of attention 
paid to their work until the 1980’s when computer based statistical studies of planetary 

perturbations of comet orbits showed that planetary perturbations could not explain the 

so-called Jupiter family of comets – short period and low inclination – on the basis of 

an initially spherically symmetric distribution of Oort cloud comets. It was realized that 

the KB was the natural reservoir for such comets. 
It was not until 1992, however, that a KB object was found (Jewitt and Luu, 1993) 

with the Keck telescope in Hawaii. At present, a few dozen such objects, with sizes in 
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the range over 100 km, have been found by Jewitt and Luu and other observers. The size 

estimate is based on an assumption of an albedo on the order of α = 0.04. In about two-
thirds of the cases there is some follow-up orbit information. Space based observation in 

1995 with the Hubble Space Telescope yielded “statistical detection” of twenty-five 10 km 
objects (Cochran et al., 1995). The method employed would be natural in high energy 
physics. A Kuiper Belt object (KBO) is found if it appears in several pictures taken 
several hours apart in pixels separated by the proper distance for an object moving with 

the velocity appropriate to an orbit in the KB. The problem is that there is background 
of cosmic rays which, although random, is sufficiently high that one expects coincidences 
appropriate to mimicking KBO velocities. Cochran et al. (1995) cleverly determined the 
background by analyzing their data for retrograde KBOs, of which of course none are 

expected. Since they found about 25 retrograde KBOs, but about 50 prograde ones and 
since cosmic ray coincidences should be the same in the two cases (in which case the 
probability is only 10 –3 for the prograde and retrograde populations to be the same), 
they were able to report discovery of about 25 real KBOs - but without knowing which of 
the 50 are the real ones and without much orbit information. This is similar to the way 

COBE detected a statistical signal of CMB fluctuations but no given CMB fluctuation 
they saw could be assumed to be real. Such “observations” are different than the norm 
in astronomy, since the time of the cave person, which is based on assigning definite 
coordinates to astronomical object (“that one, over there just to the left of the branch”). 
Cochran et al. took further data in August 1997, under analysis at the time of this talk, 

which may confirm their earlier result. At issue is not so much the presence of 10 km 
KBOs but zeroing in on the relative number of 10 and 100 km KBOs which is important 
for understanding the distribution with size in the belt and its total mass. 

Although the material in the KB dates from the formation of the Solar System, it is 

not pristine in the sense that the belt turns out to be a hotbed, relatively speaking, of 

activity. There are at least six relevant processes: 
(i) Dynamical depletion. Computer modeling of solar orbits in the presence of plan-

etary perturbations, beginning with the pioneering work of Holman and Wisdom (1993) 

and Levison and Duncan (1993) have now reached the stage at which the stability of a 
test body in a specific orbit over the age of the Solar System can be tested. Results of 

Duncan et al. (1995) show that, because of the perturbing effects of the planets, there 

are no stable (test mass) orbits in the inner Solar System and that it is necessary to 

go (in semimajor axis) to 42 AU before the first appear. Further in the region out to 

around 50 many orbits are unstable. Thus we expect the near portion of the KB to be 

rather depleted. The orbits in this region that are stable tend to be resonant ones. For 

example in the popular 2:3 mean motion resonance, the planetesimal makes 2 circuits 

while Neptune makes 3 and has perigees 180º away from Neptune on the average, thereby 

minimizing the planet’s perturbing effect. Pluto’s orbit is in the 2:3 resonance. 

(ii) Collisional Erosion. One of us (Stern, 1995) pointed out the Jewitt and Luu 
observations imply relatively large inclinations for KBOs and hence erosive collisions, 
not adhesive ones, so that we know that KBOs have been eroding for most of the history 

of the Solar System. 
(iii) Interstellar Medium (ISM) Erosion. The KB or at least its outer region is con-

stantly subjected to particles with relatively high velocity (15 km/s) from the ISM. When 
the Sun passes through a molecular cloud, perhaps every few × 108 years or so, a much 
higher flux impacts on the whole KB. One of us (Stern, 1990) has calculated that such 
passage results in loss of up to 10 meters of material from each comet (perhaps 10 

–3
the

total KB mass). The debris and other dust is driven out of the Solar System. Thus we 
can say that the outer Solar System is cleaned and (polished) periodically. 
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Table 1. Some limits and estimates of Kuiper Belt mass since 1964

⊕

Reference KB Mass Location Method 

Whipple (1964) < 10 – 20 40-50 Effect on Uranus and Nep-

Hamid et a1.(1968) <  0.5 

Kuiper (1974) 3 35-50 Remainder from planet 

Fernandez (1980) 1 35-50 Sufficient to solve short 

Anderson and < 5 inner edge Pioneer 10 acceleration 
Standish (1986) at 35 anomalies

Duncan et al. 0.06, each Uranus -Nep Mappin approach, scatter -
(1988,89) -tune; 35-50 ing by Uranus and Neptune

Ip and Fernan- > 0.002 ; ~ 0.2 30-200 Earth sized “planetoid scat-
dez (1991) if no planetoids tering”model

Dyson (1994) 0.5 35-50 “Optimistic” update of
Kuiper (1951) 

Anderson et al. < few 35-50 Neptune orbit determinaton 
(1995) as improved by Voyager 2

Weissman (1995) > 0.004 34-45 Review

Jewitt and > 0.003 in 30-50 Direct observation
Luu (1995) 100 km objects 

Cochran 0.03 in comet < 40 Statistical detection 
et al. (1995) sized objects 

Stern (1996) IRAS data

Anderson et al <0.1 in cm 35-65 Pioneer10 survival
(1998b) sized objects 

(in M ) (in AU) 

tune orbits 

Motions of periodic comets 

formation

period comet problem 

out to 40 

1.1 45-1000

Backman (1995) ; < 10–5 in dust 35-100 COB E-DIRBE/

(iv) Poynting-Robertson Effect. Because sunlight, in the rest frame of a body in solar 
orbit, is preferentially incident from the forward direction but is reradiated isotropically 

there is constant loss of angular momentum causing objects to spiral inward toward the

Sun (see Burns, et al., 1979). The time for such loss increases linearly with object radius 
but is less than the age of the SS for KB objects less than about a centimeter 

(2)

where ρ is the density and a the radius in cgs, R the heliocentric distance in AU, and α 
the albedo, of the object. L is the Sun’s luminosity, and tPR is in years.

For particle radius a less than a few microns, radiation 

pressure, which drives particles out of the Solar System is more important than the 

Poynting-Robertson effect. 
(vi) Cosmic Rays. Cosmic rays and solar UV play a major role in belt characteristics. 

The chemical reactions they cause darken Kuiper materials (after the polishing GMC 
passage). It takes on the order of 10 8 years to darken a meter thickness of material to 

albedo α = 0.04 (Johnson, 1990). While more detailed study is needed, for the purpose 

of the present work we assume that the KB is cleared of objects of radius less than 

(v) Radiation Pressure. 
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10 meters by GMCs, and that larger objects and collision fragments are darkened from 

albedo α = 0.5 to α = 0.04 in 10 8 years.

Other than Poynting-Robertson and radiation pressure, these processes are not well 
understood. The work below is a step toward such understanding. It also illustrates 
how improved knowledge of the size distribution and IR characteristics of the small body 

population can shed light on those processes. For example improved IR data and collision 
modeling might tell us how long ago the Sun last passed through a GMC. 

THE MASS OF THE KUIPER BELT 

In Table 1 we present a sampling of KB mass estimates with apologies to all those whose 

estimates have been omitted. We note that the estimate of some of us (Anderson et 

al., 1995) was based on improved ephemerides for outer planets from Voyager flybys 
but was only a rough estimate of an upper bound because the precise work addressed 

only bounds on spherically symmetric distributions of non luminous matter interior to 
Neptune’s orbit. The technique used could, however, be readily extended to a disk or 

wedge exterior to Neptune. One feature of the table is the wide range of the estimates. 

Another is the fact that some refer to total mass and others to mass in objects in some 
size range. 

Note that if we assume a number distribution in object size of the form n(a) ~ a –γ. 
the dividing line between mass dominance by large objects and by small is a– 4. a–γ 

with γ = 3.5 is the equilibrium distribution that is maintained under collisions in which 

either the cross section is independent of velocity or all bodies have the same velocity 

(Dohnanyi, 1969; Tanaka, 1995) The equilibrium value γ = 3.5 is insensitive to whether 

collisions are adhesive or fragmenting and the nature of the fragment size distribution

function. As data improves we will learn the value of γ in various size ranges and thereby 
be able to test collision models. 

The estimates of Backman et al. (1995) and Stern (1996a) of dust mass are based on 

the IR signal in the plane of the ecliptic. Their work includes models for dust production 
and removal over the age of the Solar System which permit estimates on the order of a 

third of an Earth mass for total KB mass. Preliminary results reported below build on 

these works but extend them by considering (i) the dependence of the IR signal on the 

time since last passage through a GMC and (ii) constraints for the IR signal on the two 

sector KB model addressed just below.

⊕

 
One of us (Stern, 1996a) and Stern and Colwell (1997) have devised a two sector 

model of the KB. In brief, these works note that the current large inclinations observed 
for KBOs imply erosive collisions. They compute that for the adhesive collisions needed 
to build up observed 100 km KBOs the KB must have had much smaller inclinations 
and significantly more mass (on the order of 20 M in the 30 – 50 AU region) at the 
time of KBO formation. Assuming KBO formation at the time of planet formation the 
inner sector of the KB would subsequently have lost considerable mass from dynamical 
and collisional erosion. It likely would have had significant inclination (and eccentricity) 
increase if, as is believed (Malhotra, 1995), Neptune migrated 5–10 AU outward (from 
angular momentum considerations in the course of planetesimal ejection). The migration 

would pump up eccentricities and inclinations in part by capture into “mean motion 

resonances” with Neptune -orbits like that of Pluto designed to avoid perturbing close 
approaches to Neptune. The outer sector would not have suffered the dynamical depletion 
from Neptune and would have suffered less collisional erosion because of reduced density 

and lower velocities. Hence it could have much larger mass, approaching that of Eq. (1). 
Below we take the dividing line between the inner and outer sectors as 70 AU for the 
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purpose of this paper but it is surely not sharp and could be located as much as 20 AU 

closer or farther. For the numerical computation we take the outer bound of the outer 
sector to be at 120 AU. In fact it should be located at a distance such that the density 
of early Solar System dust was too low to build up kilometer-sized planetesimals. Better 

estimates of this distance are needed. Before addressing the IR signal, however, we turn 

to an eyewitness account of the nature of the KB. 

PIONEER 10 BOUND ON KUIPER BELT MASS

Pioneer 10, launched in 1972 (and contact with it turned off in 1997), is unique among 
human-made objects in having spent nearly a dozen years operating in the KB. Pioneer 

11 and Voyagers 1 and 2 also explored the outer Solar System but were diverted out of 
the plane of the ecliptic before reaching the KB. We limit the mass of the KB from the 
simple fact that Pioneer 10 was not observed to be damaged. We apply the well known 

collision formula. 

Nc = σ n v t (3)

where: we take Nc = 4 so as to have a 2 sigma effect from no collision; t is the decade 

in the KB; v is the relative velocity between the object and Pioneer which, because 
orbital velocities are low, is essentially Pioneer’s 12 km/s (2.5 AU/yr) velocity; and 

σ is the area of Pioneer in which damage would be noticed. Much of Pioneer's cross 
section was designed not to be affected by small body collisions; in particular, its large 

antenna is made of mesh so that a small body just passes through. In addition most of 
the 18 on-board experiments were off for all or most of the time in the belt. We were 
conservative and considered only one Pioneer 10 component, its on-board propellant 
tank which was known not to have been penetrated. We assumed, after conversations 
with experts and consultation with the hypervelocity impact literature that a kilojoule 

of energy was needed to penetrate the tank (and the thin foil in front of part of it), This 
corresponds to a minimum mass of about 0.02 gm while Eq. (3) corresponds to a particle 
density, n < 10 –17 cm–3 . The result is a limit of less than about 0.06 M in 0.02 gm 
objects (Anderson et al., 1998b).

⊕

 

COBE DIRBE KUIPER BELT CONSTRAINTS 

The Cosmic Background Explorer (COBE) satellite carried a Direct IR Background Ex-

periment (DIRBE) with four relevant bands (60, 100, 140, and 240 microns). Measure-
ments were taken in the plane of the ecliptic which can be used to give high upper bounds 
on the IR signal of the KB. If one subtracts known IR sources such as the Asteroid Belt 

one gets lower upper limits, although model-dependent ones, on the Kuiper Belt IR sig-
nal. These values, drawn from Backman et al. (1995) for the high (unsubtracted) and 

low (subtracted) limits for the four DIRBE bands are (17.0, 7.5, 6.0, 3.5) and (0.3, 1.0, 
2.5, 2.0) respectively, where the figures in the parentheses for the four bands in the two 

cases are in Megajansky per steradian (MJy/sr = 10 
–20

Wm–2 Hz
–1

sr
–1

).
To calculate KB limits from the IR signal we need: (i) the IR signal from a body with 

radius a, albedo α, and heliocentric distance R; and (ii) a model for the dust distribution 

in the belt, we address these in turn. 

(i) IR signal. The IR signal from N bodies with ( a, α, R) spread over inclination 
(–θ , + θ) is

(4)
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where

and

The temperature T is found from energy balance 

(5)

(6)

(7)

Eq. (6) takes account of the fact that emission is inhibited for wavelength greater 

than the size of the emitting object. No factor is needed on the left hand side of Eq.(7) 

because sunlight is dominated by the sub micron optical region but sub micron particles

don’t remain long enough to play a role in the IR budget. Because of the

∋ -factor, Eq.

(7) gives an integral equation for T. We found the following numerical approximation to

the solution

∋

(8)

(9)

(10)

(11)

Equations (4-11) can be used to find “model independent” limits on the amount of KB 

(R, a, α) material and hence, by integration, model dependent limits on a distribution

over these parameters (Anderson et al., 1998a). This work, which began as a project for

an energetic SMU undergraduate, contains the numerical values for the Bn.
(ii) Dust model. We consider a simplified dust model in which, after solar GMC pas-

sage, dust is made afresh by collisions of aC = 5 km radius comets. We assume such col-

lisions result in complete fragmentation obeying the a –7/2 rule ( dND/da = noa –7/2 ) dis-

cussed above. We assume that the 5 km comets are uniformly distributed over (–θ, +θ) 
with θ = e– where e– is the average KBO eccentricity (the relation is that of equipartition 

of energy of excitation from common circular orbits). Finally, we assume the number 

density of comets, nC(R) falls off as R –2
as discussed above. We can then write for the 

comet collision rate

with nC, the number of comets given by

(12)

(13)

where R1 andR2 are the inner and outer sector radii and MT and mC total sector and 

individual comet masses respectively. We take the relative velocity between two colliding 

comets to be vC (R) to be 

(14)
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where e– is the average eccentricity and velocity is given in km/s. The result of combining 

both contributions (i) and (ii) above for the net sector IR signal is 

(15)

where I1 is given by Eq.(4) and τ is the minimum of the time since last GMC passage 

and the Poynting-Robertson time. 

Interesting preliminary numerical results from Eq.( 15) include the two listed below. 

For these we assume that the subtraction of known IR sources to go from the high con-

straints to the low constrains is correct and draw consequences from the low constraints 

by treating them a first as upper bounds on the KB IR signal and then consider the 

possibility that they represent precisely the KB signal. 

(i) In Figure 2, we show the limits on the inner (40–70 AU) and outer (70–120 AU) 

sector masses as a function of time since last GMC passage. The kinks at 2 × 10
8

years

are related to the fact we have taken the albedo to be 

(16)

with tD, the characteristic time for radiation to lower albedo taken as 2 × 108 years. The

limit on the outer sector is about 5 times larger than that on the inner. The larger volume 

and lower temperatures in the outer sector give a larger mass bound for the outer sector. 

The magnitude of these effects is limited by the fact that larger Poynting-Robertson time 

increases the fraction of dust particles produced that are retained. 

These limits can be compared with the Eq. (1) result of continuing the surface mass 

density Σ(R) past Neptune. Using 48 M⊕ of solids between R=5 and 35 AU gives about 

20M⊕ between 35 and 70 AU and about 14 between 70 and 120. We see the outer sector 

at 2 × 108 years is bounded about a factor of 5 below the simple extrapolation of Eq.  

(1) while the inner is bounded by a factor of 40. The result is that there certainly must 

be a “Kuiper gap” in the inner sector compared to Eq. (1) extrapolation. Whether past 

70 AU or so the density increases toward the extrapolation from R< 35 AU is still to be 

seen. Below is some indication that this may be the case. 

(ii) Figures 3 and 4 show intensities in the 4 COBE DIRBE bands. Each assumes: 

(a) one sector (the inner in Figure 3 , the outer in Figure 4) dominates the IR signal; 

(b) enough sector mass to saturate the most constraining, among the 4 bands, of the 

low constraints in the first paragraph of this section; and (c) that the low constraints 

are IR signal values, not just limits. The band intensity limits, if interpreted as KB 

signals, imply relatively high ratios between the three longer wave length bands and the 

60 micron one (3, 8, 7). We see first from both Figures 3 and 4 that we need the time 

since last GMC passage to be greater than 10 8 years to get the ratios ratios above one. 

We can, however go further. Assuming the signal comes from the inner belt implies ratios 

to the 60 micron band of roughly (2, 2.5, 1.5) while assuming it comes from the outer 

belt implies (3, 4.5, 3) for time of about 3.5 × 108 years or more in both cases. The outer 

belt ratios are closer to the “data” possibly providing some support for the prediction of 

an outer KB sector more massive than the inner one. An alternative to this conclusion 

would be that the 60 micron KB signal is significantly lower than even the low constraint. 

CONCLUSIONS

A new component of the Solar System, the Kuiper Belt, has just been discovered and is 

now open for exploration by everyone’s pet technique. Because it is made from original 

solar nebula material subjected only to limited weathering effects over the last 4.5 × 109
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Figure 2. Upper mass bounds for inner and outer sectors (preliminary). 



Figure 3. Band intensities for inner sector (preliminary). 

2
4
7



Figure 4. Band intensities for outer sector (preliminary). 



years, its exploration is going to teach us a lot about the original nebula, the weathering, 

and whether, today, adhesive or erosive processes dominate. We have been able to place a 

limit on its mass, out to about 65 AU, in cm-sized objects (about 0.1 M ) from survival 

of the Pioneer 10 space craft. We have also studied limits on the sector masses in a 

two sector model of the KB as a function of time since the Sun last passed through a 

molecular cloud with preliminary results as given in Figure 2. We have some indication, 

from this preliminary study, that saturation of the constraints on the IR signal resulting 

from subtracting from the IR signal observed by COBE of the asteroid belt component 

is consistent with a picture in which the outer sector is more massive than the inner.

⊕
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NOTE ADDED 

At the January, 1998, meeting of the American Astronomical Society, Hauser et al. (1997) 

presented a new analysis of the COBE DIRBE data in which they find evidence for a non-

zero Cosmic Infrared Background (CIB) in the 140 micron and 240 micron bands as well 

as limits on the CIB at other DIRBE wavelengths. Because the KB is not included in the 

model used to subtract the Solar System contribution to the IR signal, the implications 

of these results for (limits on) the KB IR signal are not obvious. However the outcome 

of reanalysis with KB inclusion or other appropriate procedures is likely to be further 

lowering of bounds on the KB IR signal and hence of bounds on the mass of the Kuiper 

Belt such as those presented here. 
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Abstract

1. Introduction 
Proton stability has played an important role in the development of unified models of

particle interactions. Thus, for example, the ordinary SU(5) model[1] was ruled out 

by the data on the decay mode p e + π 0. In this talk we give a brief review of

the constraints on SUSY GUT models generated by the proton stability constraint. In

supersymmetric grand unification one has several sources of baryon and lepton number 

violation which can contribute to proton decay. These include lepto-quark mediated 

proton decay which is generic to all grand unified models, and proton decay generated 

by dimension 4 and dimension 5 baryon and lepton number violating operators in 

SUSY theories. We will also discuss the simultaneous constraints that proton stability 

and dark matter place on the SUSY spectrum and event rates[2]. We shall see that 

these constraints are remarkably strong and some of the predictions of these models 

can be tested in the near future at the upgraded Tevatron. 

We begin by discussion of proton decay mediated by lepto-quark exchange. The 

dominant mode in this type of exchange in minimal SU(5) is p e+ π 0 . A recent

analysis gives for this mode in SUSY SU(5) the result[3]

→

while the current experimental limit on the decay mode is[4] 

It is expected that in the future Super K will reach for this mode the limit[5] 

(1)

(2)

(3)

Thus the e+ π 0 mode in SUSY SU(5) may be on the edge of detection if Super-K can

reach its maximum sensitivity. 
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As already mentioned in SUSY GUTS one has in addition to the baryon and lepton 

number violation arising from lepto-quark exchange also baryon and lepton number 

violation arising from dimension 4 and dimension 5 operators. The dimension 4 inter- 

actions that violate B & L are interactions of the type 

(4)

(5)

Here nucleon decay can occur at a rapid rate via squark exchange and suppression 

requires

(6)

In the MSSM one eliminates this type of fast p decay via the discrete R symmetry 

(7)

Such a symmetry could be a left over piece of a continuous global R symmetry. 

However, in this case the symmetry would not be preserved by gravitational inter-

actions and worm holes could generate dangerous dimension 4 operators[6]. To guard 

against dangerous terms of this type one needs to promote global symmertries to gauge 

symmetries[7]. One hopes that the correct string model will contain the appropriate 

symmetry of this type. 

We discuss next the B & L violating dimension 5 operators. In the minimal super- 

symmertic standard model (MSSM) one can write many dimension 5 operators that 

violate B & L number, such as QQQL, ucucdcec, QQQH1, QucecH1, etc[8]. All of 

these operators contribute to p decay only at the loop order. Of these only the first 

two arise in the minimal SU(5) GUT models and generate observable p decay. We 

shall discuss the minimal model in detail shortly. Normally most SUSY/string models 

will exhibit p instability via dim 5 operators. It is possible to derive a simple condition 

that allows one one to test if p decay via dimension five operators will be suppressed. 

Thus in SUSY/string models one has in general that the Higgsino mediated p decay is 

governed by 

(8)

H1 ,H
-

1 represent the Higgs triplets that couple with matter (J and K- ), and MijJ
is the 

Higgs triplet mass matrix. The condition for the suppression of p decay is then given 

by [9] 

(M–1 )11 = 0 (9) 

Now a suppression of this type can arise either via discrete symmetries or via non- 

standard embeddings. In general SUSY/string models (except for flipped SU(5) ×U(1)

models[10]) do not have a natural suppression, and suppression requires a doublet- 

triplet splitting. There are many mechanisms discussed in the literature for doublet- 

triplet splitting. These include the fine tuning mechanism to achieve Higgs doublet-

Higgs triplet splitting, the sliding singlet mechanism which holds for SU(n) with 

n 6, the missing partner mechanism, method of VEV alignment, Higgs as pseudo-

Goldstones, and use of more than one adjoint in the breaking of the GUT group. In our 

discussion below we shall assume that one of these mechanisms is operative to achieve 

the desired doublet- triplet splitting.

≥

2. p Decay in Minimal SU(5) 
We discuss now the case of minimal SU(5). The p decay interactions in minimal SU(5) 

are governed by[11, 12] 
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(10)

After breakdown of the GUT symmetry and integration over the Higgs triplet fields 

the effective dimension five interaction below the GUT scale which governs p decay is 

given by 

(11)

(12)

where LL
5 (LLLL) and LR

5 (RRRR) are dim 5 operators, V is the CKM matrix and fi

are related to quark masses by 

Pi are the inter-generational phases 

The dominant p decay modes involve pseudo-scalar bosons and leptons 

(13)

(14)

(15)

(16)

(17)

Their relative strength depends on quark masses, CKM factors, and on the 3rd gener- 

ation enhancement factors y tK are discussed in ref.[12]. Using the analysis of this work 

we can deduce a rough hierarchy of the branching ratios 

(18)

This hierarchy can be negated in special situations. For example, it is known that if 

there are large cancellations between the second and the third generations then the 
–v π mode can become dominant[12]. It is also argued recently that in certain SO(10) 

scenarios one can achieve relatively large branching ratios for the lπ modes[13].

For the minimal SU(5) supergravity model[14] the decay width of p –viK+ mode

is given by 

Here β p is defined by 

where lattice gauge analysis gives for this quantity the result[15] 

(19)

(20)

(21)

The remaining factors in the decay width formula are as follows: A contains the quark 

mass and CKM factors 

(22)
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where ms,mc are the quark mass factors, Vij are the CKM factors, and AL (AR ) are

the long (short) RG suppression factor in evolution from the GUT scale down to the

electro-weak scale. The quantities Bi are the dressing loop functions

(23)

Here the first (second) term in the bracket is the contribution from the second (third)

generation exchange in the dressing loops. Finally the factor C in the decay width

formula is the chiral Lagrangian factor and is given by

(24)

where fπ is the pion decay constant with the value fπ  = 139MeV , D=0.76, F= 0.48,

mB = 1154 MeV and mK is the kaon mass and mN is the nucleon mass. The result of

the p lifetime analysis must be compared with the current limits on the p lifetime and

the limits that one expects will be achievable in the future. For the p → v– K+ decay

mode the current limit is[4]

One expects that at Super K[5] one will be sensitive to lifetime of 

p-vK Lifetime in SUGRA 

(25)

(26)

Figure 1. The maximum τ (p v–K) lifetime in Minimal SUGRA from ref.[2]. The curves

are for naturalness assumption on m0 of 1 TeV (solid), 1.5 TeV (dot-dashed) and 2 TeV

(dashed). The horizontal solid line is the current experimental lower limit and the dashed

horizontal line is the limit expected from Super K

→
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and it is possible that at ICARUS[16] one will be sensitive up to τ (p v– K+) = 1034yr.

A recent analysis of the proton life time in minimal SU(5) supergravity unification

with and without p dark matter constraints was in given in ref.[2]. We discuss the

results of that analysis here. We consider first the analysis without dark matter con-

straint. Here the maximum proton lifetime in minimal SU(5) is given in Fig. 1 for

three different assumptions on the naturalness limit on m0; i.e., of 1 TeV, 1.5 TeV,

and 2 TeV. The analysis shows that Super K will exhaust a significant part of the

parameter space for the naturalness assumption of m0 = 1 TeV. For the case when

the naturalness limit on m0 is 1.5 TeV, Super K will exhaust the parameter space for

gluino masses larger than 750 GeV while no restrictions on the gluino mass will result 

for a naturalness limit on m0 of 2 TeV or larger[2].

3. Non-minimal Extensions 

Similar generic results hold for SU(N)(N> 5), SU(3)3, etc. However, significant_

modifications can occur because of possible problems with the unification of Yukawa 

couplings vs proton stability. For example, in SO(10) models one needs typically a 

large tanβ, i.e., tanβ ~ 50 to get b-t-τ unification. Under this constraint the mass

scale necessary to suppress p decay to the current experimental value is

(27)

For tanβ ~ 50 one requires a GUT mass of 2.5 × 10
17

for the suppression of p decay

to the current experimental lower limit. However, a mass scale this large upsets the 

consistency of the unification of gauge couplings with the LEP data and one needs 

large threshold corrections to get agreement with experiment[17, 18, 19].

Next we discuss the effects of quark-lepton textures on p decay. As is well known

the usual GUT models give poor predictions for quark-lepton mass ratios and one needs 

textures to achieve the correct mass hierarchies[20, 21]. In the context of supergravity 

unified models textures can arise from higher dimensional operators given by Planck 

scale correcions. A minimal model of such textures leads to an upward correction to 

the p v– K lifetime by a factor of 3 ~ 5[22].→  

Cosmological Constraints 
Next we discuss the effects of neutralino dark matter constraints[23] on the maximum

proton life time. The quantity of interest in the computation of dark matter is Ωχ 01 =

ρχ 0
1 /ρ c where ρχ 0

1
is the neutralino matter density and ρ c is the critical matter density

needed to close the universe

(28)

where h0 is the Hubble parameter H0 in units of 100 km/sec.Mpc. The number density

for χ 1 obeys

(29)

(30)

At the “freeze-out” temperature Tf when the annihilation rate becomes smaller than 

the expansion rate the χ 01 decouple from the background and integration from Tf to

the current temperature gives for Ωχ 0
1 h2 ( Ωχ 0

1 = ρχ 0
1

/ρ c)

(31)
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(32)

Tγ is the current background temperature, (Tχ 01 T/γ)3 is the reheating factor, Nf is

number of massless degrees of freedom at freezeout, and x f = kTf /mχ 1. Assuming

inflationary scenario (Ω = 1), a baryonic component Ω B 0.1, hot (HDM) and cold

(CDM) dark matter in the ratio Ω HDM : Ω CDM = 1 : 2, and 0.5 h 0.75 one has

≤
 ≤   ≤

(33)

The effect of including the relic density constraint on the maximum p decay lifetime

into the v– K+ mode is given in Fig. 2[2]. Here one finds the remarkable result that the

maximum p lifetime into the v– K+ is reduced by a factor up to 10-30 with the inclusion

of the dark matter constraint for gluino masses greater than about 500 GeV (see Table

1 taken from ref.[2] ). Further, this reduction appears to be essentially independent

of the naturalness limit on m0. The reason for this independence of the naturalness

limit on m0 is due to the fact that the relic density constraint requires a small value

of m0 i.e., (mo 200) GeV, for gluino masses in this mass range. However, an m0

value this small does not lead to sufficient suppression for p decay to be consistent

with experiment. This result is similar to the case of no-scale models which also has 

problems with p stabilty[24].

≤

The analysis of Fig. 2 is for the case of universal boundary conditions for the soft 

SUSY breaking parameters at the GUT scale. An analysis of maximum p lifetime with

non-universality boundary conditions has also been carried out. The non-universalities

investigated were those in the Higgs sector and in the third generation sector. For

the analysis here we shall discuss only the non-universalities in the Higgs sector. It is

found convenient to parametrize the non-universalities in this sector by δ 1 and δ 2 such

that [25] 

(34)

where a reasonable range for δ 1 and δ 2 is given by |δ i| 1 (i=1,2). In Fig. 3 an analysis

of the maximum p decay lifetime for the case δ 1 = 1 = –δ 2 is given[2]. One finds that

the results in this case are similar to those for the case of Fig. 2. In both cases one

finds that the gluino mass must lie below 500 GeV to be achieve consistency with the

current constraints on p lifetime and dark matter. For the case δ 1 = –δ 2 = 1 one finds

that the maximum p lifetime also falls below the current experimental limits except

for a small gluino mass range. 

An analysis of event rates expected in dark matter detectors under the combined 

relic density and p stability constraints has also been carried out[2]. Here one finds 

that the maximum and minimum event rates with the inclusion of proton stability 

constraints lie in a narrow range. The analysis shows that the inclusion of p decay

constraint reduces the maximum event rates by a significant amount and one needs 

more sensitive detectors[26], more sensitive by a factor of 10 3–4 than the detectors cur- 

rently available[27] to detect dark matter in models with relic density and p stabilty 

constraints.

4. Unmasking Planck Effects 
Proton decay can play an important role in disentangling Planck scale effects from 

GUT effects. As has been discussed extensively in the literature Planck corrections 

bring in a field dependence in the gauge kinetic energy function, i.e., the gauge kinetic 

energy has the form 

(35)

where for SU(5) one may write[28]
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(36)

Here Σ are the adjoint scalars and c parameterizes Planck physics [c=O(1)]. Now in 

the R-G analysis of the gauge coupling constants α i one finds that the GUT threshold

effects and the Planck scale effects are comparable[29]. One may see the comparable 

size of the effects by examining the R-G equations for the gauge coupling constants 

in the region Q ~ MG where the one loop evolution equations for the gauge coupling

constants are given by 

(37)

Here the last term gives the contribution from the Planck scale corrections where 

ni = (–1,–3,2) for the subgroups i=( U (l), SU (2) L ,SU (3)c) and < Σ > = M. It is

easily seen that one may absorb the Planck effects into the GUT thresholds by rescaling

and obtain an evolution equation in the region Q ~ MG of the form

(38)

Thus we see that the renormalization group analysis at this level cannot distinguish

between the GUT thresholds and the Planck scale corrections. However, p decay

depends on the unscaled GUT parameters. Thus p decay can unmask Planck effects

and remove the GUT-Planck confusion. Thus one can use the renormalization group

analysis along with p decay to compute the size of the Planck scale correction c. One

finds[29]

(39)

Effects of relic density constraint

Figure 2. Analysis of the maximum τ(p v– K) life time with relic density constraints for

minimal supergravity model. The solid curve is for the naturalness assumption of m0 1

TeV and the dashed curve is for the naturalness assumption of m0 5 TeV (from ref.[2]).

≤
  ≤
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Effects of relic density constraint

Figure 3. Analysis of the maximum p decay lifetime with (dashed) and without (solid) relic 

density constraint (0.1 Ω h2 0.4) for the case δ 1 = 1 = –δ 2 for the case when the

naturalness constraint on m0 is 1 TeV. (from ref.[2])

and

(40)

5. Conclusions 
One can probe a majority of the parameter space of the minimal SUGRA model within 

the naturalness constraint of m0 1 TeV, and mg- 1 TeV if the Super-K and Icarus 

experiments can reach the expected sensitivity of 2 x 1034 y for the v– K+ mode[2]. With

the inclusion of dark matter constraints one finds that the gluino mass must lie below 

500 GeV within any reasonable naturalness constraint to satify the current lower limit 

on the v– K+ mode. The simultaneous p stability and dark matter constraints will be 

tested in the near future in p decay experiments. The predictions on the constraints on 

the sparticle spectrum can be tested in large measure at the upgraded Tevatron using 

the trilepton and other signals[30, 31, 32]. Of course, the minimal model will be tested 

in full at the LHC. 
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LARGE N DUALITY OF YANG-MILLS THEORY ON A TORUS 

Zachary Guralnik

Joseph Henry Laboratories 
Princeton university 
Princeton, NJ 08544

1. Introduction

The purpose of this talk is to present some evidence suggesting the existence of a

GL(2,Z) duality of confining large N gauge theory which resembles T-duality of a string

description. We will study SU(N)/ZN Yang-Mills theory on a spacelike torus T2 × R d–2 ,

with magnetic flux m through the torus. Supersymmetry will play no role in our discussion.

Unlike Olive Montonen duality, too much supersymmetry certainly ruins the conjecture, 

which depends critically on confinement. We will consider the t’Hooft large N limit with 

g 2N and m/N fixed, and focus almost entirely on the planar (free string) limit.

Two generators of the conjectured GL(2,Z) are trivial and manifest even at finite

N. One of these takes m to m + N, and is a symmetry because the magnetic flux m is

only defined modulo N [1]. The other trivial generator corresponds to parity and takes

m to –m. If N and m could also be exchanged, one would obtain GL(2,Z). Such an

exchange duality, often referred to as Nahm duality [2][3], has been studied in the context 

of maximally supersymmetric Yang-Mills theory [4]. However for exact duality of the

theory, it appears one must consider a non-commutative deformation of the Yang-Mills

theory [5][6], in part because exchange of N and m does not make sense in the case m = 0.

This difficulty does not arise in our conjecture, for which the modular parameter is not 

τ = m /N, but instead 

(1.1)

where A is the area of the torus and Λ is the string tension. GL(2,Z) is generated by
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(1.2)

Since m and N are integers, the last generator makes sense for non-zero Λ 2A only if N is

taken to infinity. In this limit becomes a continuous parameter.
m_
N

In section 2 we will attempt to motivate the conjecture by discussing some qualitative

properties of confining Yang Mills which are consistent with T-duality of a string descrip-

tion. The GL(2,Z) we propose resembles string T-duality after identifying with a two

form modulus in the string theory. 

m_
N

If this duality exists, then large N pure 4 d QCD on R4 is dual to a large N 2 d QCD on 

R2 with two adjoint scalars. There is some qualitative evidence for this which we discuss

in section 3. The two dimensional description makes possible some rigorous tests of duality 

which can me made in the future. 

In section 4 we discuss the status of the conjecture for pure two dimensional QCD

on T2, for which the large N partition function is calculable. In this case the partition 

function is indeed a function of the modular parameter τ = +i A, with λ = g2N. The

partition function is almost but not exactly modular invariant. A very simple modification

removes the anomaly. It may be that T-duality relates theories in the same universality 

class as QCD, but is not a self duality of conventional QCD.

λ_
2π

m_
N

There are domains in which the proposed GL(2,Z) takes weak coupling to weak

coupling, and should therefore be visible perturbatively. This includes the limit in which 

Λ 2AN 2/m2 << 1. In section 4 we construct an explicit map which relates theories with

the same greatest common divisor of N and m in the limit of vanishing coupling. This

map treats as a modular parameter. Under τ – the area is mapped linearly instead 

of being inverted. It is in this sense that our proposed duality differs from Nahm duality, 

which exchanges rank and flux but inverts the area.

m_
N

1_
τ

 

2. Duality and confinement 

It has been suspected for some time that confining Yang Mills theories may have 

a string description [7]. Pure two dimensional QCD is known to be a string theory 

[8] [9][10][11]. In higher dimensions the situation is less clear, although some progress 

has been made [12]. In this section we will assume that a string description exists, and 

discuss some qualitative features of a confining large N Yang-Mills theory on T2 × Rn

which suggest that this string theory may have a T-duality. For a review of T-duality in 

the context of critical strings, the reader is referred to [13]. 

The T-duality group for compactifications on T2 includes a GL(2,Z) subgroup for 

which the modular parameter is τ = B + i Λ 2A. B is a flat two form background on T2, A
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is the area of T2, and Λ is the string tension. It is convenient to use complex coordinates

1_
τ

and define w = w1 + iw2 where wi are the string winding numbers, and P = P1 + iP2

where Pi are the integer string momenta. The generator τ – is accompanied by the

exchange w P. Parity takes τ →  – τ - , w → w- and P → P
- . The remaining generator, 

τ τ + 1, is accompanied by P → P + iw. This momentum shift arises because the 

canonical string momentum P has a contribution iBw arising from the two form term in 

the world sheet action, 2π ∫Σ B. The GL(2,Z ) invariant energy of a multiplet of mass M

is given by 

(2.1)

Now consider an electrically confining Yang-Mills theory on T2 × Rn with the time

direction lying in Rn. The energy of an t’Hooft electric flux [1] on a large (square) torus

is given by the confining potential eΛ 2 This energy is equal to that of a Kaluza Klein 

mode on a torus with the area inverted, A' = 1/( Λ 4 A). This is consistent with T-duality

for vanishing B if one identifies the electric flux with the string winding number. A more 

difficult question is whether the energy of an electric flux on a small torus is equal to the 

energy of a kaluza klein mode on a large dual torus. This question will be discussed in the 

next section. 

One must also identify the quantity in the Yang Mills theory corresponding to the two 

form modulus B. This quantity should be continuous and periodic. A natural candidate 

is where m is-the SU(N) magnetic flux, which is defined only modulo N. becomes

a continuous parameter in the N limit. With this identification, the standard two 

form contribution to the canonical string momentum Pi = Bijw j + . . . has the form one 

expects when written in terms of  Yang-Mills variables; Pi = ej + . . ..mij
N

___

,m_
N

This last point is actually somewhat subtle since the SU(N) fluxes are defined in 

terms of twisted bounbdary conditions rather than integrals of local operators. Therefore 

the fluxes do not contribute to the Yang Mills momentum in any direct way. The U(N)

theory does not have this difficulty, but we will not consider it because it has free massless 

photon having nothing to do with the QCD string. Nevertheless it would seem natural, 

albeit somewhat arbitrary, to divide the Yang Mills momentum Pi YM into a contribu-

tion coming from global structure (ie fluxes), and a contribution pi from everything else; 

PiYM = ej +pi, for –N/2 < m < N/2 so that pi is well defined. One can then define

a momentum Pi = e j + pi having the same transformation properties as the string 

momentum under τ τ + 1 and parity.

m__ij
N

mij
N

___

 

3. D = 4 D = 2 duality↔

If the conjectured duality exists, there is a remarkable consequence for electrically 

confining large N Yang Mills theories on Rd. One can obtain Rd from R d–2 × T2 by

making the torus very large. Under inversion of the area of the torus (for m = 0), one 

obtains a dimensionally reduced theory. Thus duality would imply that large N pure QCD 
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in 4 dimensions is equivalent to Large N QCD with two adjoint scalars in 2 dimensions. 

In fact this two dimensional model has been used to approximate the dynamics of pure

QCD in 4 dimensions QCD [14][15][16]. The adjoint scalars in this model play the role 

of transversely polarized gluons. In [16] the spectrum of this two dimensional model, 

computed by discrete light cone quantization, was compared to the glueball spectrum of 

pure 4-d QCD computed using Monte-Carlo simulation. The degree of numerical accuracy 

allows only crude comparison, however the spectra have some qualitatively agreement. 

Perhaps in the N limit the agreement is more than just qualitative.→ ∞  
If such an equivalence exists, duality must map the QCD scale nontrivially. The mass

gap is only proportional to the QCD scale, defined in terms of the running coupling, if 

the torus is very large. In general the mass gap, or string tension Λ , depends on both 

the QCD scale Λ QCD4 and the area of the torus. Let us fix the mass gap and take the 

size of the torus to infinity. Λ QCD4 on the small dual torus with area A can be found by 

matching the dimensionless running coupling of the two dimensional reduced theory to the 

4 dimensional running coupling at the Kaluza Klein scale; 

(3.1)

The notion that large N can generate extra dimensions is not novel. The 2-d, 4-

d equivalence we suggest here is similar to Eguchi Kawai reduction [17], although our 

discussion pertains to the continuum theory. Assuming the proposed duality exists, the 

momentum in the two hidden dimensions of the reduced theory must correspond to the 

electric flux on the vanishingly small torus in the unreduced theory. More precisely, the 

hidden momentum should be related to the length of a string wrapped around the small

torus, pi = ei Λ 2 , which is held fixed as A 0. For SU(N)/ZN. The flux ei is

defined [l] by considering certain large gauge transformations T̂i which leave the boundary

conditions on the torus invariant. Such gauge transformations correspond to elements of 

SU(N) satisfying 

(3.2)

N
where Rs is the radius of a cycle of the small (square) torus. T̂i is a “small” gauge 

transformation leaving physical states invariant. The electric fluxes are defined by the T̂ i

eigenvalues, exp(2 π i . To see what ei becomes in the reduced theory, consider a Wilson 

loop around the i’th cycle of T 2. Under a large gauge transformation

 ).ei_
N

(3.3)

(3.4)

Here X i are the adjoint scalars of the reduced theory. If hidden momenta exist in the 

2-d theory, they should be the generators of the transformation (3.4). Since N such

transformations give the identity map, we wish ultimately to interpret them as translations

.
 

∞→around a large discretized hidden torus which becomes continuous as N
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A problem arises because the naive reduced SU(N)/ZN theory,

(3.5)

is not a finite theory and requires a mass counterterm. It also does not have a symmetry 

corresponding to (3.4). It is tempting to consider a U(N) theory instead, in which case the 

naive reduced theory has a continuous U(1) x U(1) symmetry. However in this case there

is a free photon and no mass gap. States charged under the U(1) × U(1) have energies

inconsistent with (2.1). Therefore we will only consider the SU(N) theory. For Rs finite

but small compared to an effective action which is ZN × ZN symmetric may be written

in terms of the SU(N) Wilson loops hi = exp(iRsXi );

1_
Λ

(3.6)

The naive reduced action is recovered by writing hi = 1 + exp(iRsXi ) + . . . and taking

R, 0 with Xi fixed. The metric of this sigma model is proportional to 1/ R2
s, which 

corresponds to the area of the hidden torus on which ZN × ZN acts as a translation.

Note that a mass counterterm proportional to Σ i Trhi is prohibited by the ZN × ZN

symmetry.

The truth of our conjecture depends on whether the ZN × ZN symmetry is sponta-

neously broken below a critical R,. The two dimensional theory can only generate extra 

dimensions as N if Rs > R c
s The ZN × ZN symmetry is proposed to correspond

to translations symmetry on the dual torus, which should not be spontaneously broken. 

From experience with finite temperature deconfinement transitions, one might expect 

that ZN x ZN should be broken for sufficiently small R,. In our case, symmetry breaking

would not be interpreted as deconfinement, since the order parameters are spacelike wilson 

loops, rather than a timelike Wilson loop*.

→ ∞

The question of whether symmetry breaking occurs at finite Rs is closely tied to the 

question of whether the limit we wish to take exists. This limit is N followed by 

Rs 0, while tuning LQCDI to keep the mass gap fixed. If ZN can be thought of as a

→ ∞  

→ ∞

continuous U(1) in the N limit, then the broken phase would have a goldstone boson.→ ∞
If the reduced theory has a gap in the large N limit, then there can not be any symmetry 

breaking. Furthermore if a string description remains valid for small Rs, one would not 

expect symmetry breaking in the N limit. If the symmetry were broken, states with 

different ZN x ZN charges, or “hidden momenta,” would become degenerate and condense.

The hidden momenta are identified with eiRs Λ 2. eiRs is the minimum length of a QCD

string wrapping e i times around a cycle of the small torus. Since e i is defined modulo N,

the minimum length can be at most ( N – 1) Rs. If N is infinite, then the minimum length 

is unbounded and can be held fixed as Rs 0 by scaling ei like 1/Rs. For fixed string→

* In the finite temperature theory, the Wilson loop wrapped around the Euclidean time direc-

tion is an order parameter of the deconfining phase transition [18]. In this case, the ZN symmetry

is unbroken in the confining phase. 
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tension Λ one would expect wrapped strings with arbitrarily large minimum lengths to be 

heavy, in which case they could not condense. 

The absence of symmetry breaking at infinite N would mean that the vacuum has 

zero electric flux. Introducing even the minimum amount of flux, or a singly wrapped 

string, would lead to an energy in excess of the mass gap. Λ possible explanation for this 

behavior is that the string spreads in the non-compact direction as Rs 0.

Showing that the ZN × ZN symmetry is unbroken in the large N limit is essential

for demonstrating that a dual torus exists. One must also show that the spectrum of the

Rs 0 theory has four dimensional Lorentz invariance. This may be testable numerically 

using the two dimensional description. Having found candidates for momentum in the 

hidden directions, it may also be possible to see if a four dimensional Lorentz algebra 

exists. However we leave these tests for the future.

→

4. Modular invariance in two dimensions

In this section we consider pure Euclidean SU(N) Yang-Mills theory on T2 in the

t’Hooft large N limit. While this theory has no dynamics, we can use it to test the 

conjecture that the t’Hooft twist and the area combine into a modular parameter (1.1). 

The partition function of this theory on a surface of arbitrary genus is known in terms of 

a sum over representations of SU(N) [19][20]. On a two torus, the partition function on 

a lattice with twisted boundary conditions may be easily computed using the heat kernal 

action. The result is 

(4.1)

C2 (R) is the quadratic casimir in the representation R. χ R (Dm ) is the trace of the element

Dm in the center of SU(N) corresponding to t’Hooft twist m. In a representation whose

Young Tableaux has nR boxes,

(4.2)

To compute the large N expansion of the partition function, we repeat the calculations

of [9], for the case of nonvanishing twist. The expansion is obtained by considering 

composite representations 
–
SR obtained by gluing the Young Tableaux of a representation 

R with a finite number of boxes onto the right of the complex conjugate of a representation 

S with a finite number of boxes. The quadratic Casimir of such a representation in the 

expansion is

1_
N

 

1_
N

Furthermore,

Therefore the free energy at leading order is 

266

(4.3)
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(4.5)

where ρ (n) counts the number of representations with n boxes. This sum is computed just

as in [8], giving 

where η is a Dedekind eta function, and 

(4.6)

(4.7)

with g2N = λ. Thus the complexification of the area generated by modular transformations 

corresponds to a non-zero t’Hooft twist. Upon completing this work we became aware that 

M. Douglas has also made this observation using a Jevicki-Sakita boson description of 2-d

QCD on the torus [21]. As noted in [22][21] the free energy is almost, but not exactly 

invariant under inversion of the area. The eta function has the modular properties 

A simple modification of the partition function, 

(4.8)

(4.9)

is modular invariant. The extra term exponential in the area has the form of a local 

counterterm ∫ Although the theory is superrenormalizable, such a counterterm

is known to arise [23]. On the other hand, the factor poses a problem for modular

invariance, since it is non local. Nonetheless the deviation from modular invariance is very 

simple and we feel deserves better understanding. The two dimensional QCD string has 

at least an “approximate” T-duality.

λA√
___.  det g  ∫   √

____

5. Exchange of rank and twist 

The GL(2,Z) we have proposed treats as a modular parameter as long as one
m_
N

only acts with τ –1/τ in the region Λ 2AN 2/m2 << 1. In this domain the area is→  

mapped linearly and is never inverted. If this duality exists, it should be possible to see it 

perturbatively in this region. In this section we discuss an attempt to construct a classical 

GL(2,Z) under which N and m transform as a doublet. We are only able to prove the

validity of the map we construct for the limit of vanishing coupling. If it does extend to 

finite coupling, it has the correct qualitative property that the area of the torus is mapped 

linearly rather than being inverted. While the results of this section are very far from 

quantitative rigor, we feel they are at least suggestive. The map we propose will take an 

SU(N)/ZN theory with flux m, or an (N,m) theory, into a (p,0) theory where p is the

greatest common divisor of N and m. GL(2,Z) is then generated by inverting this map

to get other theories with the same greatest common divisor.
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We begin by reviewing the definition of magnetic flux for SU(N)/ZN Yang-Mills on

a torus. Following t’Hooft [1], translations around a cycle of the torus are equivalent to 

gauge transformations: 

(5.1)

where ai are the periodicities of the torus. For adjoint matter, one has the following 

constraint:

(5.2)

where mij is an integer, and is taken as the definition of nonabelian magnetic flux. We 

consider the case of Yang Mills on T2 × Rn. We will drop the indices ij, and the magnetic 

flux m will often be referred to as the twist. Note that m is defined modulo N, so that 

the generator of SL(2,Z) which takes m m + jN is a manifest symmetry. We shall 

assume the timelike direction lies in Rn. In A0 = 0 gauge we choose the following twisted 

boundary conditions

→

 

where

(5.3)

(5.4)

The phases θ and θ ' are chosen so that Q and P have determinant 1. Q and P satisfy

(5.5)

The constraints imposed by twisted boundary conditions can be solved to find the 

independent perturbative degrees of freedom. To this end we shall work in momentum 

space. Since QN = 1, the gauge potentials are periodic in x1 on the interval [0, Na1 ]. To 

find the periodicity in x2 , one looks for the minimal power to which one must raise Pm to

get 1. Writing the pair ( N,m ) as (p α ,p/β) where α and β are relatively prime, one finds 

that this power is α. Therefore the gauge potentials are periodic in x2 on the interval 

[0,α a2]. The fourier modes of the gauge field strength Fn1 ,n2 satisfy the twisted boundary 

conditions,

and

Making use of the algebra (5.5) a general solution of (5.6) is 

(5.6)

(5.7)

(5.8)

where Mn1,n 2 is a diagonal N x N matrix which is traceless when n1 = 0 modN. Note

that if m vanished there would be N – 1 degrees of freedom for each fourier mode with 
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n1 = 0modN and N degrees of freedom for all the others, rather than N2 – 1 degrees of

freedom for every fourier mode. This is because the (non-gauge invariant) momentum in 

the x1 direction of the torus is fractional in units of Heuristically, in going to a more 

conventional gauge with U1 = U2 = I, the fractional modes become integral and fill out 

the Lie algebra.

   .1_
N

Now consider arbitrary m. The second constraint (5.7) gives 

(5.9)

Conjugating M by Pm shifts the elements of M cyclically by an amount m. Thus we find

that the number of independent elements of Mn1,n2 is p, the greatest common divisor of

N and m;

(5.10)

where M'n is a diagonal p × p matrix. It is now easy to construct a candidate for the gauge

field of the dual theory with rank p and vanishing magnetic flux, or a ( p,0) theory. We 

define the dual field strength as 

(5.11)

where P' is the p × p shift matrix. The diagonal phase factor φ is chosen so that the dual 

field strength is real. F'–n = F This is general solution of the constraint 

where Q' is the p × p matrix

(5.12)

(5.13)

Therefore F' is a candidate for a field strength on a dual torus with the twisted boundary 

conditions given by U'1 = Q' and U'2 = I, which corresponds to vanishing magnetic flux. 

The action of the ( N, m ) theory is 

Written in terms of the proposed dual field strength this becomes 

(5.14)

(5.15)

However, for duality to hold, we must be able to define a dual gauge potential which solves 

the Jacobi identity and gives the correct measure in the path integral. Let us define the 
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The dual gauge potential the same way we defined the the dual field strength. Then the 

map between the ( N.m) gauge potential and the dual ( p,0) gauge potential is linear, so 

one might expect that the measure maps correctly. We will scale the fields such that the 

coupling constant appears only in the interaction terms. If one neglects the the [Aµ, Fαβ] 

terms, it is easy to check that the Jacobi identity is preserved by the map, provided that 

that the periodicities of fields on the original torus are the same as those on the dual torus. 

In other words Na1 = N'a'1 = p a' 1 and α a2 = α 'a2 = a' 2 Working in a Hamiltonian 

formulation, one can easily check that the Hamiltonian, commutation relations, and Gauss 

law constraint of the ( N.m ) theory at zero coupling map to those of the ( p, 0) theory at 

zero coupling. 

At finite coupling however, the Jacobi identity is no longer satisfied. It is violated by

terms involving the difference between the N × N shift matrix P and α copies of the p × p

shift matrix, 

(5.16)

These matrices differ by a finite number of ones in the limit that p Thus it is very.  →  ∞
tempting to neglect the difference. However when these matrices are raised to a power 

of order p, the difference is not always negligible. This occurs when n1 is of order p.

We can not discard such modes from the action, since they may correspond to a finite

gauge invariant physical momenta. It may be possible that this discrepancy is negligible 

at leading order in some weak coupling expansion, however we will not attempt to prove 

this.

6. Conclusion 

We have given evidence that large N confining Yang Mills theories on tori may have 

an SL(2,Z) duality which appears to be T-duality of a string description. The existence

of such a duality would be quite useful, since it relates non compact 4 dimensional theories 

to more numerically tractable 2 dimensional theories. It should be interesting to study the 

two dimensional gauged sigma model of (3.6)It may be possible to explicitly test whether 

this model generates two extra dimensions in the large N limit. The extent to which the 

duality we propose is exact is not known, however at least in two dimensions, it seems to 

have a very mild anomaly. Perhaps duality only relates theories in the same universality 

class as QCD, and does not act on conventional QCD. 
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Abstract

The effects of non-universal scalar soft breaking masses are examined within the 

framework of gravity mediated supergravity GUT models with R-parity invariance. For 

the domain tan β 25, cosmological constraints on the amount of cold dark matter pre-

dicted require that m0 200 GeV for a gluino mass of mg̃ 450 GeV . Thus sleptons

and squarks will generally be light for mg̃ 450 GeV. Also, significant corrections to 

the gaugino mass scaling relations can occur for mg̃ 450 GeV . Using estimates of the

accuracy expected for measurements of the cosmological parameters by the Planck sat-

telite, two models are examined. For the Λ CDM model, one finds that m g̃ 540 GeV ,

and that terrestial CDM detector event rates can be significantly reduced or enhanced 

depending on the sign of the non-universal corrections. For the vCDM model, we 

find mg̃ 720 GeV and gaps (forbidden regions) can occur at m g̃ 500 GeV and

m g̃ 600 GeV for one sign of the non-universal corrections.

~_
~_

INTRODUCTION-SUPERGRAVITY MODELS 

The matter that we see in the universe [ie. quarks and leptons] or speculate to 

exist [Higgs, massive neutrinos (possible hot dark matter, HDM), neutralinos (possible

cold dark matter, CDM)] appear to exist at relatively low energies, i.e. below 1 TeV.
One line of theoretical thought is that the principles that determine the existence and 

numerical values of these masses resides, however, at a much higher mass scale, perhaps 

the Planck scale, We consider here supergravity grand unified models with R-parity

invariance (GUT models) where supersymmetry is broken in a hidden sector by gravity 

with gravity the messinger field transmitting this breaking to the physical sectors 1,2.

While these models do not predict the value of the Yukawa coupling constants, they do 

relate the supersymmetry (SUSY) breaking scale with the electroweak breaking scale,

and hence produce relations between the masses of SUSY particles. 
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The simplest GUT model involves four soft breaking parameters: m0 (the scalar

soft breaking mass), m1/2 (the gaugino soft breaking mass), A0 (the cubic soft break-

ing parameter) and tanβ = 〈 H2  〉 /〈 H1  〉 (where 〈 H1,2  〉  are the VEVs of the two Higgs
doublets required by SUSY). In addition, there is a Higgs mixing parameter µ, which

enters into superpotential as µH1H2. However, the renormalization group equations3

(RGE) lead to the spontaneous breaking of SU(2) x U(1) at the electroweak scale and 
determine µ up to its sign in terms of Mz and the other parameters. Thus one finds 

at scale Q MZ~_

(1)

where mH1,2 are the running Higgs masses with loop corrections. Over most of the

parameter space, µ2/M 2
z is large, leading to scaling relations for the gauginos χ0

i (neu-

tralinos),χ ±i (charginos) and g̃ (gluino): (where mg̃

and α G 1/24 is the GUT coupling constant). Also 

mχ o
1

. Corrections to these relations are O(M 2
z /µ).

mχ+
2 ≅ mχ0

3,4 >>
2mχ0

1
≅ χ +

1 ≅ χ
0
2 ≅  ( 1_

3
_ 1_

4 )mg

≅

However, one may have non-universal soft breaking at MG. We will assume in the
following that the first two generations of squarks and sleptons have a universal mass 

m0 (to suppress flavor changing neutral currents) and also assume as above that the

gaugino mass, m1/2, is universal. Non-universality may occur, however, in the Higgs and
third generation masses which we parametrize at MG as follows: 

and

addition there may be separate cubic soft breaking parameters A0t, A0b, Aoτ (We note
that for any GUT group that contains an SU(5) subgroup with matter in the usual 

10 + 5 
–

representations, δ 3 = δ 4 = δ 5, δ 6 = δ 7 and A0b = A0r,.)
| δi | ≥ 1, m0, mg ≤

 
1 TeV ,

 
|

 
At /m 0 | ≤ 7

m 2
lL = m 2

0 (1 +  δ7).

m 2
H 1.2 = m 2

0 (1 + δ1

,

2),
= m 2

0 (1  + δ5), m2
dR = m2

0 (1 + δ6)m 2
u R

= m 0
2 (1 + δ4), m 2

eRm 2
qL = m 2

0 (1 + δ3),

In the following we will assume (At is the 
t-quark cubic parameter at Q = Mz) and tanβ 25. The last condition means that

to a good approximation δ 5 ,δ 6 δ 7 , A0b A0 τ may be neglected (though these parameters 

≥

would be important for larger tan β). The RGE then give 4

Here qL is the squark doublet (tL, bL), lL the lepton doublet, etc. In

(2)

where D0 1 – m t
2

/(200sinβ) 2  , AR At – 0.613 mg̃ , Cg̃ is given in Ibañez at a1.3

and S0 = TrYm2 (Y = hypercharge and m2 are the scalar (mass)2 at Q = MG ). D0 = 0
is the t-quark Landau pole ( AR is the residue). For mt = 175 GeV , one has D0 0.23. 
Since D0 is small, and t 2 is mostly large, we see that µ2 depends approximately on 

the combination δ  δ 2–(δ 3 + δ 4 ). Thus δ > 0 decreases µ2  , and δ < 0 increases µ2 .

Accelerator data now has eliminated a considerable amount of the parameter space, i. 

e. from mt 175 GeV one has At/m0 – 0.5 and the b s + γ data eliminates most
of the At/µ < 0 domain 5.

→ 

≅

≅

≅

   

COSMOLOGICAL CONSTRAINTS 

Supergravity models with R-parity invariance automatically predict the existence 
of dark matter i.e. the lightest supersymmetric particle (LSP) which is absolutely 
stable. Over almost all the parameter space, the LSP is the χ 01 . One of the suc-
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cesses of supergravity GUTS is that for a significant part of this parameter space, it 
predicts a relic density for the χ 0

1
in accord with current astronomical CDM measure-

ments: 0.1 Ω DCM h2 0.4, where H = (100h) km/s Mpc is the Hubble constant, 
Ω i = pi/pc, pi = density of matter of type “i”, and pc = 3H 2 /8π GN. Future astronom-
ical measurements by the MAP and Planck sattelites (and many balloon and ground 
based experiments) will greatly narrow this Ω CDMh 2 window. We consider first, as

an example, the Λ CDM model and assume for the CDM Ωχ 01 = 0.4, a baryonic (B)

partΩB = 0.05, a vacuum energy (cosmological constant) of ΩΛ = 0.55 and a Hubble 

constant of h = 0.62. (The above numbers are consistent with current astronomical 

measurements.) The errors with which the Planck sattelite can measure the above 
quantities have been estimated 6, and from this we find 7 Ωχ 0

1
h 2

= 0.154 ± 0.017,
which shows the accuracy of future determinations of the amount of cold dark matter. 

In calculating Ωχ 0
2

h 2 , one finds two domains: 

(i) mχ 01 60 GeV (m g̃ 450 GeV ). Here rapid annihilation of χ 01 in the early universe
can occur through s-channel Z and h-poles allowing m0 to get large and still satisfy
the above astronomical bounds on Ωχ 0

1
h2 . Thus this regions can have heavy sfermions.

(ii) mχ 01 60 GeV (m g̃ 450 GeV ). Here the t-channels fermion pole diagrams dom-

inate the annihilation requiring m0 to be small ( m0 < 200 GeV) to get sufficient 
annihilation to satisfy the astronomical bounds. Thus sfermions will in general be 
light.

The above ideas are illustrated in Fig. 1 which is a scatter plot of the ẽR as a

function of mg̃, as one scans the other SUSY parameters (with δ i = 0). One sees
that for mg̃ 450 GeV, mẽR can get quite large (since m0 can be large), but for
mg̃ > 460 GeV, m ẽR should lie below 100 GeV . Thus in this model, the ẽR should
be accesible to LEP200 if mg̃ is large, but for mg̃ < 450 GeV the ẽR would not be

observable even at the LHC (though the gluino would then be accessible to the upgraded 

Tevatron). Results similar to this hold with non-universal soft breaking. Deviations 

Λ CDM-SUGRA (1σ )Model

Figure1. Scatter plot for mẽR vs. mg̃ for δ i = 0 as other parameters are varied for Λ CDM
model.
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from scaling of the gaugino masses are O(M 2
Z /µ). For δ < 0, where by Eq.(2) µ2 is

reduced, one may have significant breakdown of scaling when m g̃ 450 GeV. [Above

450 GeV these effects are suppressed since then m0 is small and non-universal terms 
are scaled by m2

0
 in E4(2).] Similarly, for δ > 0 the scaling relations are better obeyed, 

since µ2 is increased. 
Terrestial dark matter detector event rates generally increase (decrease) as µ2 de-

creases (increases). This effect is shown in Fig.2 where maximum and minimum detector
event rates for a Xe detector are plotted as a function of mg̃ for the case δ i = 0 (solid),

δ 2 = –1 = –δ 1 [and hence δ < 0] (dotted) and δ2 = 1 = –1 [or δ > 0] (dashed).
One sees there is a significant decrease particulary in the minimum event rates, for 
δ > 0, and an increase for the δ < 0 case. Also, all the curves show a maximum 

allowed gluino mass of about 540 GeV  (arising from the maximum value of Ωχ 0
1
h2

of
0.188 at the 2 sigma level). For the δ < 0 case, one also has minimum gluino mass of

400 GeV.
As a second model, we consider a mixed dark matter vCDM with hot dark matter 

(HDM) arising from possible massive neutrinos. We assume here Ω v = 0.2, Ωχ 0
1

= 0.75, 

Ω B = 0.05 and h = 0.62. Using 6,8 to estimate the expected Planck sattelite accuracy

for these quantities, we obtain 7 Ωχ 01 h 2
= 0.288 ± 0.013. Here one finds a larger 

range for mg̃ ie. mg̃ 720 GeV (since (Ωχ 01 h 2
)max is larger), with mẽR 120 GeV

for mg̃ > 500 GeV (though the ẽ R can be quite heavy for mg̃ 450 GeV). A heavy
gluino would imply for this model that the selectrons would be observable at the LHC, 

though they would not necessarily be observable if mg̃ 450 GeV . The most striking
effect for this model, however, is the appearance of forbidden regions of mg̃ (or mχ 01 )
appearing at mg̃ 500 GeV and mg̃ 600 GeV . Fig.3 shows the appearance of these

gaps in the Xe detector event rates for δi = 0 and Fig.4 for δ 2 = –1 = – δ 1 . Note 
that the gap at mg̃ 500 GeV widens for the non-universal case of Fig.4 (but in fact

disappears eventually when δ 2 becomes positive). 

Figure 2. Maximum and minimum event rates for a Xe detector as a function ofmg̃ with
µ > 0 for 1 std band of the Λ CDM model with δ 1 = 0 = δ 2 (solid), δ 2 = –1 = – δ 1 (dotted),

δ 2 = 1 = – δ 1 (dashed) 7 .
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Figure 3. Maximum and minimum event rates for a Xe detector as a function of mg- with
µ > 0 for the 1 std band of the vCDM model with δ i = 0 7 .
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Figure 4. Same as Fig. 3. with δ 2 = –1 = –δ 1 7
.

CONCLUSIONS

The possibility of non-universal soft breaking masses tends to complicate the predic-
tions of supergravity GUT models. Fortunately, we've seen that some of these predic-

tions are sensitive only to a combination of soft breaking parameters δ = δ 2 – (δ 3 + δ 4).
Cosmological data concerning the existence of cold dark matter produce further con-
straints on the parameter space. Thus in order to obtain the amount of CDM seen, 

m0 must be small for mg̃ 450 GeV, but can be large for mg̃ 450 GeV . Thus one
expects sleptons and squarks to be relatively light for mg̃ 450 GeV , but may be heavy
for light gluinos, and further non-universal effects arising from the µ 2 parameter will 

be small for mg̃ 450 GeV since they are scaled by m2
0 there.

Future sattelite and balloon experiments are expected to determine the cosmological 
parameters to good accuracy. Using the expected accuracy, we've exemined two models, 
the Λ CDM model and the vCDM model. In the former, we found that mg̃ is expected
to lie below about 540 GeV. In the latter, remarkable gaps (forbiden regions) can 

occur in m g̃ at m g̃ 500 GeV and m g̃ 600 GeV . Both models are sensitive
to non-universal soft breaking. Thus cosmological constraints should be an important 
tool for disentangling the nature of SUSY breaking.

  ~_   ~_
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