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Preface

This textbook has its roots in a course that was first given by Gary Goldstein and
me at Tufts University in 1971. Both of us are theoretical physicists, with Gary
focusing on the study of elementary particles and me focusing on condensed matter
physics, which is the study of the fundamental behavior of various types of matter
– superconductors, magnets, fluids, among many others. However, in addition, we
both have a great love and appreciation for the arts. This love is fortunately also
manifested in our involvement therein: Gary has been seriously devoted to oil
painting. I have played the violin since I was seven and played in many community
orchestras. I am also the founder and director of a chorus. Finally, I am fortunate to
have a brother, Perry Gunther, who is a sculptor and my inspiration and mentor in
the fine arts.

It is common to have a course on either the Physics of Music or the Physics
of Color. Numerous textbooks exist, many of which are outstanding. Why did we
choose to develop a course on both music and color? There are a number of reasons:

1. The basic underlying physical principles of the two subjects overlap greatly
because both music and color are manifestations of wave phenomena. In
particular, commonalities exist with respect to the production, transmission, and
detection of sound and light. Our decision to include both music and color
was partly due to the fact that some wave phenomena are relatively easy to
demonstrate for sound but not for light; they are experienced in every day life.
Examples include diffraction and the Doppler effect. Thus, the study of sound
helps us understand light. On the other hand, there are some wave phenomena
– common to both sound and light – that are more easily observed for light.
An example is refraction, wherein a beam of light is traveling through air and is
incident upon a surface of glass. Refraction causes the beam to bend upon passing
into the glass. Refraction is the basis for the operation of eyeglasses. And finally,
there are wave phenomena that are easily observable for both sound and light.
Interference is an example.
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viii Preface

Two stereo loudspeakers emitting a sound at the same single frequency
produce dead (silent) regions within a room as a result of the interference
between the two sound waves produced by the two loudspeakers; the colors
observed on the CDs of the photo in the frontispiece are a result of the
interference of light reflected from the grooves within the CDs.

2. The production of music and color involves physical systems, whose behavior
depends upon a common set of physical principles. They include vibrating
mechanical systems (such as the strings of the violin or the drum, vibrating
columns of air in wind instruments and the organ), electromagnetic waves such
as light, the rods and cones of the eye, and the atom. All manifest the existence of
modes and the phenomena of excitation, resonance, energy storage and transfer,
and attenuation.

CDs “produce” sound through a series of processes that involve many distinct
physical phenomena. First, the CD modulates a laser beam that excites an
electronic device into producing an electrical signal. The laser light itself is a
manifestation of electric and magnetic fields. The electrical signal is used to
cause the cone of a loudspeaker to vibrate and produce the motion in air that
is none other than the sound wave that we hear.

3. The course that led to the writing of this book offers us the opportunity to study a
major fraction of the basic principles of physics, with an added important feature:
Traditionally, introductory physics courses are organized so that basic principles
are introduced first and are then applied wherever possible. This course, on the
other hand, is based on a motivational approach: Because of the ease of observing
most phenomena that is afforded by including both light and sound, we are able
to introduce the vast majority of topics using class demonstrations.

We challenge ourselves by calling for a physical basis for what we observe.
We turn to basic principles as a means of understanding the phenomena. A study
of both subjects involves pretty nearly the entire gamut of the fundamental laws
of classical as well as modern physics. (The main excluded areas are nuclear and
particle physics and relativity.)

Ultimately, our approach helps us appreciate a central cornerstone of physics – to
uncover a minimal set of concepts and laws that is adequate to describe and account
for all physical observations. Simplification is the motto. We learn to appreciate how
it is that because the laws of physics weave an intricate, vast web among physical
phenomena, physics (and science generally) has attained its stature of reflecting
what some people refer to as “truth” and, much more significantly, of having an
extraordinarily high level of dependability.

The prerequisites for the associated course are elementary algebra and a fa-
miliarity with the trigonometric functions. The only material in the textbook that
requires a higher level of mathematics is the appendix on the Transformation of
Color Matching Functions (Appendix I) from one set of primaries to another –
the analysis requires a good understanding of matrices. I have never included this
appendix in my course; it is available for those who might be interested in it.
The level of the textbook is such as to produce questions as to whether a student
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without inclinations to major in the sciences can handle the material. It has been my
experience in teaching the associated course at Tufts University for over 35 years,
that very few such students have failed to do well in the course. In the Fall, 2009
semester, in particular, the 15 students who took the course were all majoring in the
Arts, Humanities, or Social Sciences or as yet had not declared a major. The average
score on the Final Exam was a respectable 73%, with a range from 61% to 94%.

When I have taught the course using this textbook, I have often had to omit the
section on Polarized Light for want of time. Sections that can be skipped without
loss of continuity for the remaining material are marked with a double asterisk (**).

Note on problems and questions: Whether you are reading this book in con-
nection with a course you are taking or reading it on your own, I strongly urge
you to take the questions and problems in the book very seriously. To test your
understanding and to measure your level of understanding, you have to do problems.
In all my more than 50 years of studying physics, I have never truly appreciated a
new subject without doing problems.

There are many fine books already available that cover either the physics of sound
and music or the physics of light and color. Some of these books go into great depth
about a number of the subjects, way beyond the depth of this book. For example,
you will not find details on the complex behavior of musical instruments in this
book. The book by Arthur Benade, listed in the Appendix of references D, is a great
resource on this subject, even though it is quite dated. And, you will not find in-
depth coverage of the incredibly rich range of light and color phenomena that is
treated in the wonderful book by Williamson and Cummins. Their section on oil
paint is outstanding. Instead, you should look on this book as a resource for gaining
an in-depth understanding of the relevant concepts and learning to make simple
calculations that will help you test hypotheses for understanding phenomena that
are not covered in this book. You will be able to read other books and articles on
the web empowered with an understanding that will help you appreciate the content.
One of the problems raging today (2011) is the proliferation of information. Ah yes,
you can look up on the Web any topic in this book. Unfortunately, a huge fraction of
the information is incorrect or unreliable.1 How can you judge what you read? The

1Recently, the SHARP Corporation announced that it was going to make available a color monitor
and TV that has four primary colors among the color pixels, in contrast to the three primaries
currently used. As a result, it claimed that the number of colors available would approach one
trillion. (See their website: http://www.sharpusa.com/AboutSharp/NewsAndEvents/PressReleases/
2010/January/2010 01 06 Booth Overview.aspx) Yet you will learn in Chap. 14 that human vision
can differentiate only about ten million colors. Therefore, even if the Sharp monitor were able to
produce one trillion colors, viewers would not be able to benefit from this great technology. We can
still ask what can possibly be the gain in adding a yellow primary? Is their chosen color yellow for
the fourth primary the best one to choose to improve our color vision? See Chap. 14 for information
on this question. Websites abound dealing with the significance of Sharp’s new technology; this
book will help you analyze and judge what you read.

http://www.sharpusa.com/AboutSharp/NewsAndEvents/PressReleases/2010/January/2010_01_06_Booth_Overview.aspx
http://www.sharpusa.com/AboutSharp/NewsAndEvents/PressReleases/2010/January/2010_01_06_Booth_Overview.aspx
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only solution is for you to accumulate knowledge and understanding of the basics
and to criticize what you read.2
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Questions Discussed in This Book

1. Why is the sky blue and the setting sun red?
2. How does the rainbow get its colors?
3. How is it that all light is a mixture of the colors of the rainbow? Yet the color

brown is not simply a mixture of these colors?
4. How is it that sound can bend around corners?
5. Does light bend around corners?
6. What simple mathematical relationships form the bases of the musical scales of

most of the world’s cultures? Are these relationships unique?
7. Are there three primary colors?
8. What are the colors white, black, gray, and brown?
9. How is the eye like a camera?

10. How is it that the ear can perceive two distinct musical tones, yet the eye
perceives a mixture of two colors as a single color?

11. How can we get color from purely black and white images?
12. How does the brain determine the direction of a source of sound?
13. What is noise?
14. Why does the trumpet sound different from the violin?
15. What is a mirage?
16. Why do stars seem to twinkle?
17. How do color prints, color slides, and color TV work?
18. Can a soprano really break glass?
19. Why does a flutist have to retune his or her flute a while after having begun

playing?
20. How is sound transmitted electrically?
21. How does the ear provide us with a sense of pitch?
22. Can a fish hear a fisherman talking?
23. Why do some automobiles rattle at a speed of about 55 mph?
24. How can we hear sounds which are not in the air? How is this phenomenon

related to the blue color of the ocean?

xiii



xiv Questions Discussed in This Book

25. How can a person hear a clock ticking at a frequency of one tick per second,
while it is said that the lowest frequency that can be heard is about 20 cycles
per second?

26. How can we estimate the speed of an overhead propeller-driven airplane from
the sound it emits?

27. How does the vibrato of a violin help improve our perception of consonance
among groups of notes?

28. Why does it become more difficult to perceive a sense of pitch as we play ever
lower-pitched notes on a piano?
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Chapter 1
Introductory Remarks

Why should someone be attracted to a book on the Physics of Music and Color?
For those people who are well versed in both the sciences and the arts, the question
would very likely not arise. But for those who are well versed in but one of these
areas, the relationship between the two is probably unclear, if not a total mystery.
Let us consider two contrary attitudes to the role the study of physics can make with
regards to our sense of the world about us. One is by the great poet Walt Whitman,
and the other by the renowned physicist Richard Feynman (Fig. 1.1).

Here is Walt Whitman’s attitude toward Astronomy. His poem “When I Heard
the Learn’d Astronomer” is sardonic:

When I heard the learn’d astronomer,
When the proof, the figures, were ranged in columns before me,
When I was shown the charts and diagrams, to add, divide, and measure them,
When I sitting heard the astronomer where he lectured with much applause in the
lecture-room,
How soon unaccountable I became tired and sick,
Till rising and gliding out I wander’d off by myself,
In the mystical moist night-air, and from time to time,
Look’d up in perfect silence at the stars.

I wonder whether Whitman would have reacted the same way to the documentary
film on the work of Louis Leakey, who discovered the remains of Australopithecus
bosei, a prehistoric form of man that was dated to have existed about one and
three-quarter million years ago. Leakey has been described as having worked per-
sistently but unrewardingly for 28 years at the site, before the discovery was made.

There is a scene wherein Leakey is standing on a hilltop overlooking the Olduvai
Gorge in Kenya. The terrain is devoid of greenery, in fact, lifeless in appearance.
Still, Leakey passionately paints word images of the life of the prehistoric people
who lived and died in that valley as if they were alive that very day the filming
took place. Upon what information were these images based? Merely upon dry
pieces of bone and artifacts, most of which would barely be noticed by the average
passerby.

L. Gunther, The Physics of Music and Color, DOI 10.1007/978-1-4614-0557-3 1,
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Fig. 1.1 Whitman and Feynman (Whitman photo from http://en.wikipedia.org/wiki/Walt
Whitman; Feynman photo credit: Tom Harvey)

The same can be said of the work of astronomers, astrophysicists, and cosmolo-
gists. They have provided us with the images of our solar system, our galaxy, and
our Universe, revealed the detailed workings of the stars, charted their life history,
and deduced a possible history of the Universe starting with the Big Bang theory –
but only after painstaking patient mathematical analysis of astronomical data, an
activity that is fuelled by irresistible curiosity, and by egos too!

Still, one need not know any physics to be a successful professional musician
or artist, although currently, many artists are making use of physics in their
work. The musician must understand the relationships among the various elements
that make for a great musical composition, such as musical notes. The musician
understands that in some, oftentimes mysterious way, our perception of the specific
relationships among these elements exists at various levels, from the subconscious
to the conscious levels, so as to produce a sense of esthetic beauty and a variety
of emotional responses. There is an obvious underlying degree of order among
these elements. The same can be said for the visual artist with respect to a great
work of art.

What turns some people off from science? Is it boredom with the subject matter
or boredom that is due to an inability to appreciate the content of science? Is there
a fear that science will remove the element of mystery, upon which much of our

http://en.wikipedia.org/wiki/Walt_Whitman
http://en.wikipedia.org/wiki/Walt_Whitman
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Fig. 1.2 A photograph of the Langlois Bridge outside Arles (photo credit: stock.xchng)

pleasure of music and art is based? Consider the viewpoint of the great physicist
Richard Feynman, as quoted from his book What Do You Care What People
Think?:

I have a friend who’s an artist, and he sometimes takes a view which I don’t agree with.
He’ll hold up a flower and say, “Look how beautiful it is”, and I’ll agree. But then he’ll
say, “I, as an artist can see how beautiful it is. But you, as a scientist, take it all apart and it
becomes dull.” I think he’s nutty.

First of all, the beauty that he sees is available to other people – and to me, too, I believe.
Although I might not be refined aesthetically as he is, I can appreciate the beauty of a flower.
But at the same time, I see much more in the flower than he sees. I can imagine the cells
inside, which also have a beauty. There’s beauty not just at the dimension of one centimeter;
there’s also beauty at a smaller dimension.

There are the complicated actions of the cells, and other processes. The fact that the
colors in the flowers have evolved in order to attract insects to pollinate it is interesting;
that means that insects can see the colors. That adds a question: Does this aesthetic sense
exist in lower forms of life? There are all kinds of interesting questions that come from a
knowledge of science, which only adds to the excitement and mystery and awe of a flower.
It only adds. I don’t understand how it subtracts.

The fact is that in many ways, the work of the physicist is similar to that of
the impressionistic painter. While people marvel at the visual relationships in art,
physicists marvel, in addition, at conceptual relationships in theories that describe
natural phenomena as revealed by experimental and theoretical analysis.

Consider the Langlois bridge at Arles, France, as shown in the photograph in
Fig. 1.2. As seen in the photograph, the bridge normally would not attract much
attention to people. Yet Googling this bridge results in quite a number of hits. Many
people take the trouble to go out of their way to visit this bridge. Why is this so?
Because the painter van Gogh produced a number of paintings of this bridge. A print
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Fig. 1.3 A painting of the Langlois Bridge by van Gogh (photo source: http://www.wallpapers-
free.co.uk/background/paintings/vincent van gogh/the-langlois-bridge-at-arles/)

of one of these paintings is shown in Fig. 1.3. The photograph indicates that the
bridge and its surroundings have probably deteriorated quite a bit since van Gogh
produced his paintings. Thus, we cannot expect a photographer to be dishonest in
presenting a bridge without the color it once had. However, there is an important
reason for the interest and attraction in van Gogh’s painting.

I suggest the following as a modest response to this question: The human mind
cannot absorb and integrate all the information that is transmitted to it by the senses.
Nature is too complicated. Van Gogh chose certain elements of the visual field and
emphasized them with well-chosen strokes of the brush. Viewing the painting helps
you to become more sensitive to and more aware of these elements, so that once
you have been “impressed” by the painting, bridges and streams will forever appear
very different to you, certainly more alive and vibrant. Thus, I expect that my having
appreciated impressionistic paintings for many years have reduced the difference
between the visual reality and the painting.

Here is an experiment that I recommend for the reader that confirms this idea for
me: Stare at the photograph for about 15 s. Then close your eyes and work to picture
the photograph in your mind. Do the same for the painting. When I do so, I find that
I can much more easily visualize the painting than I can visualize the photograph,
indicating that the reduced focused information in the painting is the reason for this
experience. And the particular reduced information selected by the artist makes an
intense ‘impression’ upon us that the photograph cannot provide.

http://www.wallpapers-free.co.uk/background/paintings/vincent_van_gogh/the-langlois-bridge-at-arles/
http://www.wallpapers-free.co.uk/background/paintings/vincent_van_gogh/the-langlois-bridge-at-arles/
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Fig. 1.4 Ravel and Einstein (photo credits: Ravel – http://en.wikipedia.org/wiki/File:Maurice
Ravel 1912.jpg; Einstein – http://commons.wikimedia.org/wiki/File:Albert Einstein violin.jpg)

NOTE: My comments are not at all intended to demean the art of photography!
The photograph of Feynman at the beginning of this chapter is an example of
how a good photographer can capture a moment like nothing else can. One look
at this photograph leaves you with a permanent memory of a piece of Feynman’s
appearance and personality.

What can the study of Physics contribute? Music has significance only as change
in TIME, with sound being the only element. On the other hand, for the most part
over the ages, artists have focused on static representations of the visual world about
us – that is, on SPACE alone. Only in the past century, have visual artists included
change in time of the visual field; SPACE and TIME have been united (Fig. 1.4).

It is interesting to consider how Albert Einstein viewed the relationship between
science and art or music1:

“All great achievements of science must start from intuitive knowledge. I
believe in intuition and inspiration. . . . At times I feel certain I am right while not
knowing the reason.” Thus, his famous statement that for creative work in science,
“Imagination is more important than knowledge.” But how, then, did art differ
from science for Einstein? Surprisingly, it was not the content of an idea, or its

1Based on the journal article, Physics Today, March 2010 issue, with quotes from Alice Calaprice’s
The Expanded Quotable Einstein. [Princeton University Press, Princeton, N. J., 2000].

http://en.wikipedia.org/wiki/File:Maurice_Ravel_1912.jpg
http://en.wikipedia.org/wiki/File:Maurice_Ravel_1912.jpg
http://commons.wikimedia.org/wiki/File:Albert_Einstein_violin.jpg
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subject, that determined whether something was art or science, but how the idea
was expressed. “If what is seen and experienced is portrayed in the language of
logic, then it is science. If it is communicated through forms whose constructions
are not accessible to the conscious mind but are recognized intuitively, then it
is art”.

Musicologists and composers would well disagree with Einstein with respect to
the absence of logical organization in a great piece of music! Consider, for example,
an exchange between the composer, Maurice Ravel and the French violinist Andre
Asselin who asked Ravel about the role of inspiration in Ravel’s Sonata for Violin
and Piano. Ravel replied as follows: “Inspiration – what do you mean? No – I don’t
know what you mean. The most difficult thing for a composer, you see, is choice –
yes, choice.”2 For me, “choice” represents logical analysis in musical composition –
analysis that is necessary for composing a great original piece of music.

In order to appreciate the difference between science and art, consider the
following: Imagine yourself standing next to a stream of water in the woods.
Consider how we observe a stream flowing with our eyes. We can observe waves
moving along the surface of the water. The painter provides us with focused static
content. Cartoons can provide us with dynamical representations of our experience
but they typically fall short in being convincing in accuracy. Videos can do a better
job. Yet both cartoons and videos are two dimensional. How can we extend the
focused static information provided by the painter to a focused dynamical level?
Physics provides this extension for us. Moreover, the physicist seeks to determine
the RELATIONSHIPS that connect all physical phenomena; it is the revelation of
these relationships that excites a physicist.

The physicist would seek to understand questions like:

• How does light produce the image of the trees and the bridge on the water?
• What tension must there be in the cables and stresses in the wood to keep the

sections at rest. This information can lead to information about how the cable is
responding to the tension and how the wood is responding to these stresses. We
can compare this study to the interest we have as to how various psychological
stresses affect one’s emotional state. Scientific study of the wood gives the wood
a life of its own.

• What is the nature of the water waves on the stream? How can we characterize
their shape and how they evolve, move, and disappear?

• Given that the waves are produced by breezes and wind, what is the relationship
between the wind characteristics, such as the wind velocity, and the waves and
surface textures produced?

• What determines the apparent color of any object and whether the surface of the
object is shiny or dull?

2Taken from A Ravel Reader: Correspondence, Articles, Interviews, by Arbie Orenstein,
(Columbia University Press, New York, 1990).
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These are not questions that would necessarily bore an artist. If one learns to
synthesize one’s knowledge, analysis, through a familiarity with Physics, can only
add to one’s appreciation of nature.

Often people are turned off by the heavy mathematical analysis that dominates
Physics and is its essential language. Yet music and mathematics have been
inseparable throughout history. Most significantly, it was recognized long ago that
pleasurable music is connected with ratios of small integers. This fact is exemplified
by the ancient Chinese Legend of the Huang Chung (meaning “yellow bell”), the
earliest known account of which is due to Leu Buhwei (226 BC). This legend is
believed to be over 3,000 years old.

1.1 The Legend of the Huang Chung

Emperor Huang Ti one day ordered Ling Lun to make pitch pipes. Ling Lun needed
a mathematical recipe for their construction both to end up with pleasing sounds and
to be able to have an instrument that could be played along with other instruments.
So Ling Lun went from the West of the Ta Hia country to the north of Yuan Yu
mountain (see Fig. 1.5). Here Ling Lun took bamboos from the valley Hia Hi. He
made sure that the sections were thick and even, and he cut out the nice sections.
Their length was 81 lines, that is, about 9 in.

He blew them and made their tone the starting note, the huang chung, of the scale.
(The huang chung had the same pitch as Ling Lun’s voice when he spoke without
passion.)

He blew them and said: “That is just right.” Then he made 12 pipes. With what
notes? Well, he heard Phoenix birds singing at the foot of the Yuen Yu mountain.
From the male birds he heard six notes and from the female birds he heard six notes.

Fig. 1.5 Bamboo from the
Ta Hia country
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Fig. 1.6 Generating the
Chinese scale from the huang
chung generator

These are the lengths of the pipes. (Our current notation for the notes is added for
reference purposes.)

Male Pipes:
F G A B C# D#
81 72 64 57 51 45

Female Pipes:
C D E F# G# A#
54 48 43 38 34 30

• F is the “huang chung” (yellow bell)
• G is the “great frame”
• A is “old purified”
• C is the “forest bell”
• D is the “southern tube”

What is the basis for these numbers? Here is the recipe for the Chinese scale as
recorded in China:

“From the three parts of the ‘huang chung generator’ reject one part, making the
‘inferior generator’ (hence equal to 2/3 of the huang chung generator). Next, take
three parts of the new (i.e. inferior) generator and add one part, making the ‘superior
generator’ (hence equal to 4=3 of the inferior generator). . . ,” and so forth.

The lengths of the pipes are based on repeated applications of the factor 2=3 and
4=3 on the basic length of the huang chung generator. THUS:

The coincidence between what was considered esthetically pleasing musically
and the role of ratios of small integers and hence mathematics, or as the sixth century
AD Roman philosopher Boethius put it, the coincidence between “sensus and ratio”
(senses and reason) had a significant, meaningful effect on people. The pre-Socratics
began a tradition of lack of trust in the senses as not providing truth about reality.
Truth is obtained from thought. Thus, one should not trust the senses to produce an
acceptable version of the musical interval called the “fifth”; one should use an exact
ratio of 3:2 of string lengths or pitch pipe lengths.3 It should not be surprising that
people would be very curious as to why the two – mathematics and music – should
be connected. The answer must necessarily lie in mathematics and physics and their
ramifications in the nature of the human body and mind (Fig. 1.6).

3How interesting it is that in recent times, a large fraction of society abhors the possible squelching
of the senses by excessive thought.
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Fig. 1.7 Waveform of Adon Olam, by Salomon de Rossi. (a) Segment (2 min 38 s) of waveform.
(b) One-tenth second segment from the above

Later on, armed with some background physics, we will try to provide answers
to this question. In particular, in the context of the Legend of the Huang Chung,
we will discuss the possible choices of the pipe lengths. In Chapter 11, TUNING,
INTONATION, AND TEMPERAMENT: CHOOSING FREQUENCIES FOR MUSICAL

NOTES, we will demonstrate that within the framework of the level of complexity of
the classical music of these past few hundred years, the desire for an omnipresence
of ratios of small integers, which is connected with consonant musical intervals,
cannot possibly be satisfied for purely mathematical reasons.

In our study of the Physics of music and color, we will study the nature of sound
and light. Analysis will be our focus. Many people find too detailed an analysis
destructive to our ability to appreciate music and art. Interestingly, analysis within
the framework of music and art proper seems to be acceptable. Fortunately, analysis
leads to a richer synthesis. I hope that the reader will discover that analysis within
the framework of Physics enriches our experience and need not be destructive either.

In order to analyze sound and light, we must learn how to characterize sound and
light. The sound of music is by far the easier of the two because it is characterized
by a series of events in time. The sound that strikes our ears can be represented
simply by a graph. We see in Fig. 1.7a a graph of the wave of a short piece of music,
2:38 min in duration, composed by the Italian Renaissance composer Salomone
de Rossi for five voices. It is difficult to see the details of the graph because of
the extreme compression. To appreciate the content, Fig. 1.7b provides us with a
magnification of an excerpt lasting about one-tenth of a second.4

Such a graph might seem to trivialize human experience. Alternatively, one might
be amazed at how such a simple graph can fully represent something so powerful!
The human mind is wonderful.

4The graph represents the output of a single loudspeaker; for stereophonic sound, we would simply
need two such graphs.
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Art is by far more complex and varied. Typically, it is two- or three-dimensional
(2D and 3D) and is static in time. Modern art includes dynamic visual works too. In
this book, our study of the place of Physics as it relates to art will be extremely
limited. We will study the nature of light and its relation to our perception of
color. We will not go much beyond 2D images, with a focus on simple patches
of uniform color and interactions between neighboring patches. A 2D image on
a plane can be characterized by specifying the color at each point on the plane.
The color can be specified in terms of what is referred to as the spectral intensity.
We will learn that the spectral intensity gives more information than is necessary.
A simpler though incomplete characterization of color makes use of a three-
primary representation. One must specify the intensity of each of three primaries
at each point on the image.

Will this text enable you to account for the esthetic pleasures of music and art?
Perhaps, only to a small degree. Is there in fact such a connection? I certainly believe
so, though I do not expect such a connection to be fully clarified in my lifetime.
Perhaps, it never will be. However, I will be satisfied if our study of the Physics of
Music and Color reveals new vistas of sound and light, so that your world experience
of music and color will be greatly enriched.



Chapter 2
The Vibrating String

The subject of this text is music and color. Music is produced by musical
instruments, some occurring naturally – such as the songs of birds – and others
produced by man-made instruments – such as stringed instruments, wind instru-
ments, and the percussive instruments of drum sets. Color is produced by sources of
light such as natural sunlight and by man-made sources such as the floodlights for a
stage.

Essentially, music and color are subjective manifestations of the corresponding
objective physical phenomena – sound and light, respectively. Both sound and light
are examples of wave phenomena. If we can understand the nature of waves along
with the multitude of phenomena associated with waves, we will become more
aware of much of the richness of our human experiences with sound and light and
hence music and color.

There are many types of waves. We can observe the wave nature of some types
of waves with our own eyes – such as waves along a vibrating string or waves on the
surface of the ocean. On the other hand, the wave nature of many important waves
are invisible; examples are sound waves and light waves. It is therefore reasonable
for us to begin our study with waves along a string – the fundamental component of
all stringed musical instruments.

2.1 Waves Along a Stretched String

Suppose that we have a long string and stretch it. The string is depicted as the upper-
most solid line in Fig. 2.1. The tension in the string keeps the string straight. Next,
we disturb the string by pulling the string upward a bit at a particular point along the
string. The shape of the disturbance is a small triangle. What will happen next? The
disturbance will move along the string as shown in the figure at one milli-second
(1 ms) intervals: We set the time t equal to 1, 2, 3, 4, and 5 ms. Each of the vertical
dotted lines marks a position along the string at a sequence of one-meter (1 m)
intervals. We note that after each 1-s interval, the disturbance progresses a distance

L. Gunther, The Physics of Music and Color, DOI 10.1007/978-1-4614-0557-3 2,
© Springer Science+Business Media, LLC 201
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Fig. 2.1 A pulse traveling down the length of the stretched string

Fig. 2.2 The motion of a point – marked by a dot along the string

1 m to the right. Thus, the disturbance moves at a speed of 1 m/ms. This value is
equivalent to 1,000 m/s. Note that this speed is quite large; in common units it is one
kilometer per second (1 km/s), which is equivalent to 0:6 miles/s. Nevertheless, this
value is close to the speed of a disturbance moving along a typical violin string.

A localized disturbance of this sort is called a pulse and is a simple example of
wave propagation. The speed of the pulse is called the wave velocity. Later on in
the chapter, we will investigate what determines the wave velocity for a stretched
string.

We can easily show that the string itself does not move at a speed of 1 km/s, or
1,000 m/s, nor does the string itself move to the right. In order to see this, suppose
we focus our attention on a single point along the string, say the point marked with a
dot, shown in Fig. 2.2. We note that while the pulse is moving to the right, this point
along the string has moved downward! We say that the wave is transverse, here
meaning perpendicular. Suppose next that the height of the pulse is one millimeter
(1 mm) (not drawn to scale above). Then the average speed of this point is 1 mm/s,
a value much less than the wave velocity.

How can we account for the motion of the pulse? Think of the old familiar
“telephone game,” wherein we have a string of people. The first person whispers
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Fig. 2.3 Schematic of a
loudspeaker

a message to the second person. The second person whispers the perceived message
on to the third person, and so on. The last person announces the message received
and the first person reveals the original message. One hopes that the message will
not be garbled!

In the case of the string, the initial material of the pulse along the string pulls
upward on the neighboring string material. The neighboring material pulls upward
on its neighboring material, and so on, leading to the propagation of the pulse.

How does this description relate to other types of waves? The most important
wave in the context of music is of course a sound wave – the focus of Chapter 3,
THE VIBRATING AIR COLUMN. Sound waves can propagate through a variety of
media – such as air or water or a solid. Let us try to produce such a wave: Imagine
what would happen if you were to move your hand forward suddenly. You would
compress the air immediately in front of your hand. That compressed region of air
would compress the air immediately in front of it. This process will continue as in
the case of a pulse propagating along a stretched string. You will have produced a
sound pulse. The wave is said to be longitudinal, meaning that the motion of the
air is along the same direction as the direction of propagation of the disturbance.
Unfortunately, you cannot move your hands fast enough to hear this pulse.

If you were to be able to move your hand forward and backward at a rate that
exceeds 20 times per second, you would in fact produce an audible sound. Your
hand would be acting essentially like a loudspeaker, as shown in Fig. 2.3. At the
left, we see the gray cone of the loudspeaker moving forward and backward. There
are two positions shown – one as a pair of solid brown curves, the other as a pair of
dotted brown curves. The sequence of three dotted pseudo-vertical curves represent
the sound wave traveling through the air.

2.2 A Finite String Can Generate Music!

Consider now a guitar string strung on a guitar. The string considered in the previous
section was assumed to be infinite; this string is finite with ends that are held fixed.
See the uppermost line segment in Fig. 2.4, where we represent a string of length



14 2 The Vibrating String

Fig. 2.4 A pulse traveling back and forth along a string with fixed ends

l D 80 cm. We will assume that the wave velocity is v D 400 m/s. Imagine what
would happen to a pulse that is sent down the string, starting at one end, as in
Fig. 2.4. The width of the pulse is exaggerated – the width is understood to be much
less than a centimeter, so that it can be ignored in the calculations below.

Let us determine how long it will take for the pulse to reach the opposite end. We
will use the relation

Speed D Distance

Time
OR Time D Distance

Speed
: (2.1)

We will carry out the calculation using symbols – t for time, l for distance, and v
for speed. We must be careful when we are given quantities that use different units
for a given quantity. This issue is exemplified by the current situation, where we
have a distance of 80 cm and a speed of 400 m/s. Thus both the centimeter and the
meter are used for the dimension of length. In order to use (2.1), we must use the
same unit of length for both quantities. We will choose to use the meter for both,
recognizing that we could also use the centimeter for both without any error.

Since 1 m D 100 cm, the distance is 0.80 m. We then obtain

t D l

v
D 0:80 m

400 m=s
D 0:0020 s D 2:0 ms: (2.2)
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We note in the figure that the pulse reaches the opposite end in 2.0 ms. The pulse
is then reflected back to the left along the string.

Look closely at the shape of the reflected pulse. Notice that the shape of the pulse
is “reversed” in two ways: First, the original pulse approached pointing upward;
the reflected pulse is pointing downward. Second, notice that the original pulse is
steeper on the right side compared to the left side; on the other hand, the reflected
pulse is steeper on the left side.

What will happen next? The pulse will reach the left end and be reflected back
to the right. The same reversals as above will take place once again. The pulse is
reversed from pointing downward to pointing upward; the steeper edge is reversed
from being steeper on the left side to being steeper edge on the right side. The end
result is a pulse that is exactly the same as the original pulse! The time for the round
trip will be 2 � 2:0 ms D 4:0 ms.

Such a round trip is generally referred to as a cycle. Ultimately, the pulse will
move back and forth, with one round trip every 4.0 ms. This time interval is called
the period, with the symbol T . Thus,

T D 2l

v
D 2.0:80/

400
D 4 � 10�3 s D 4 ms: (2.3)

The number of cycles per unit time is called the frequency, with the symbol f .
In the current case, we have

f D one cycle per 4 ms D 1 cycle

4 � 10�3 s
D 250 cycles per second � 250 cps: (2.4)

An alternative term for the cycle per second as a unit of frequency is the Hertz,1

which is abbreviated as H z. Thus, one cycle per second D 1 cps D 1 Hertz D 1 Hz.
Note that the frequency and the period are inverses of each other:

f D 1

T
: (2.5)

In the above case, 250 Hz D 1=.4 ms/.
One should note that there are many ways that the string could be excited. The

most important example for a guitar is the pluck, which is shown in Fig. 2.5. The
pluck is produced by pulling the string aside at one point and then releasing it from
the rest. The figure shows the subsequent motion of the string.

We note that the time for a full cycle, the period T , is again 4 ms. The
corresponding frequency is 250 Hz.

1Named after Heinrich Hertz (1857–1894). Hertz was a great physicist who first demonstrated the
existence of electromagnetic waves, which will be discussed later in this book.
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Fig. 2.5 The progressive wave along a plucked string

2.3 Pitch, Loudness, and Timbre

If you pluck a string, a sound is produced. You can identify several attributes of
that sound. There is a definite pitch. Pitch designates the musical note to which the
string is tuned. For example, the so-called G string of the violin (which is tuned to
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the G below middle C on the piano) produces the pitch G. If you loosen the string,
by turning the tuning peg, you will immediately notice that the pitch will change –
it will become lower. If you tighten the string, the pitch will become higher.

A second attribute of the sound is its loudness . By giving the string a bigger
pull when you pluck it, you can produce a louder sound. Furthermore, the loudness
decreases after the initial pluck, until the sound is inaudible.

The third attribute is what we identify with the quality of the sound produced by
the particular instrument – the timbre. Timbre is one of the factors that enables you
to distinguish the G played on the violin from an equally loud G played on a piano
or a trumpet or any other instrument. You can vary the timbre of the plucked string
itself by changing the point at which you pluck as follows: first pluck the string near
its center and listen carefully to the quality of the sound. Then pluck the string very
near one end, trying to produce the same loudness. The pitch will be the same but
there will be a slightly different timbre to the sound. When plucked near the end,
the resulting sound has a slight high-pitched ring or “twang,” which is not present
in the sound produced by plucking near its center. Similarly, if a narrow pulse is
cycling back and forth along the string, a sound will be produced having the same
pitch but different timbre. A bowed string produces a wave that moves back and
forth the length of the string with a different characteristic shape; yet again, we will
hear a sound with the same pitch.2

We have not been very precise, at this point in defining pitch, loudness, and
timbre. To be more precise, you must first understand what physical phenomena
give rise to the “perceptual” qualities we have discussed.

2.4 The Relation Between Frequency and Pitch

Recall that in discussing pitch, we said that if the string being plucked was loosened,
the pitch would become lower. Imagine loosening the string of Fig. 2.5 and then
plucking it, so that at the moment of release it has exactly the same shape as that in
the first frame of the figure. However, it will take more time to complete one cycle.
The period will increase, with a consequent decrease in the number of oscillations
per second; that is, the frequency will decrease. This is in agreement with (2.5).

Let us suppose that the string is loosened just enough to increase the period
to 5 ms. Then the new frequency is f D 1=0:005 second per cycle D 200 cps D
200 Hz.

How much loosening does this change require? To answer this question, we need
a quantitative measure of the “tautness” or tension of the string and how that tension
is related to frequency. We will return to this question in Sect. 2.8. What we want
you to consider at the moment is the qualitative result of this little experiment.

2The sound of the violin is strongly affected by the other physical components of the instruments,
along with their respective vibrations.
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Loosening the string decreases the frequency of the oscillations, as it lowers
the pitch. Correspondingly, tightening the string increases the frequency and raises
the pitch. So there is a relation between the physical quantity, frequency, and the
psychological attribute, pitch. This relationship is the basis for the tuning of musical
instruments. In Chap. 10, we will note that the loudness of a note also affects the
sense of pitch.

The strings of a piano are tuned to a definite set of frequencies. First, one sets the
A above the middle key on a piano – referred to as “middle-C” – at a frequency
of 440 Hz. The “middle C” on a piano is set at a frequency of approximately
262 Hz. The lowest C is set correspondingly to a frequency of approximately 33 Hz,
and so on.

We see that one way to produce different frequencies is to vary the tension. Are
there other ways? If we combine (2.3) and (2.5), we obtain the relation

f D v

2`
: (2.6)

We will see later in the chapter that an increase in the tension produces an
increase in the wave velocity. As a consequence, according to (2.6) the frequency
will increase and so will the pitch. We will also see later that changing the nature
of the string itself will change the wave velocity. Finally, we see that decreasing
the length of the string will increase the frequency. All three factors are used to
produce the huge range of frequencies of a piano – from 27.5 Hz to �4;186 Hz.3

Various stringed instruments are tuned accordingly. For example, in order that
the A string on the violin be in tune with the corresponding A string on the piano,
their frequencies should be equal.

Why the particular frequency of 440 Hz is chosen for the “A” is a matter of
history. In fact, this frequency has been rising steadily over the past 200 or more
years, so much so that in Bach’s time it is believed to have been about 415 Hz. Why
the notes of the Western scale have the frequencies to which we have just alluded
will be the subject of Chapter 11, TUNING, INTONATION, AND TEMPERAMENT:
CHOOSING FREQUENCIES FOR MUSICAL NOTES. The development of scales is a
fascinating story of the interdependence of scientific understanding and esthetics.

2.5 The Wave Motion of a Stretched Rope

It is difficult to study the motion of the strings of musical instruments without
special equipment because the wave velocities and the frequencies are very large.
It is possible to check the relation (2.6) by performing a simple, but illustrative
experiment. Get a long piece (2 or 3 m) of heavy rope or clothesline or a long tightly

3The lower frequency is precisely four octaves (a factor of 24 D 16 below 440 Hz), while the latter
frequency corresponds to tuning according to equal temperament. (See Chap. 11)
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Fig. 2.6 Exciting a long
rope. (drawing by Gary
Goldstein)

wound spring (as used to close screen doors). Secure one end to a fixed point – say
a doorknob on a closed door. Pull the free end so that the rope is stretched loosely
to its full extent, as shown in Fig. 2.6a. Estimate the length, `, of the stretched rope.

You are going to set up wave motion of the rope by shaking the held end up
and down while using your wrist as a pivot, as shown in Fig. 2.6b. By shaking very
slowly at first and gradually increasing the rate of shaking, you will soon reach a
rate that sets up a wave of the form shown in Fig. 2.6c. The whole rope will be
oscillating up and down at that rate. Notice that once you set up that motion, it is
easy to maintain the motion. It is as if the system has “locked in” to that mode of
oscillation.

While maintaining the motion of Fig. 2.6c, use the seconds hand on your wrist
watch to determine the period. (You might have a friend to assist you.) This can
be done easily by counting, say ten cycles and observing how many seconds have
elapsed. Remember that a cycle is completed when the rope has returned to some
initial configuration, so whenever it reaches the lowest point in its motion it has
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completed a cycle. If, for example, the rope completes ten cycles in 8 s, the period
would be 8=10 s. The frequency would be 10=8 D 5=4 Hz.

Next, let the rope return to rest. It is important not to vary the tension, so do not
change your position. Now you are going to set up a disturbance in the rope of the
form shown in Fig. 2.6d. This is accomplished by very quickly jerking your hand
up and down while quickly returning to the starting position. It is best to keep your
hand as rigid as possible. Observe what happens. The short disturbance or pulse
moves rapidly to the end of the rope, is reflected, and returns to your hand upside
down. If your hand remains rigid the pulse will reflect at your hand, turn right side
up and move to the far end again. The pulse might make many round trips before it
disappears. You have set up a traveling wave. (A pulse travels across the string.)

Note that any particular segment of rope material moves up and down, while the
wave pattern, the pulse in this case, moves down the length of the rope. These two
directions are perpendicular to each other. The waves are transverse.

Now time the pulse by measuring the time required for the pulse to complete
several round trips. For example, if the pulse makes five round trips in 4 s, then the
time for a single circuit would be 4=5 s or 0:8 s. If you are careful, you will find that
the time required for one round trip is the same as the period of oscillatory wave
motion that you determined before, for the standing wave.

Measuring the length of the stretched rope will then enable you to determine the
velocity of propagation for the traveling wave. In our example, the round trip time
and the period were 0:8 s. If the rope were 2 m long, a round trip would be 4 m and
the velocity of propagation would be 4 m=0:8 s D 5 m=s. Determine the velocity for
your rope, using (2.3).

2.6 Modes of Vibration and Harmonics

One might ask whether the string can be excited so as to produce a vibration
that does not have a frequency of 250 Hz. The answer is yes. In the course of
demonstrating this fact, we will describe what are referred to as the modes of
vibration of the string.

Now that you have become familiar with working the rope you can learn how to
excite its modes of vibration. Start by exciting the same standing wave that you did
before (Fig. 2.6c). Count the cycles rhythmically while the rope is oscillating. That
is, say the numbers out loud every time the rope reaches bottom – “one-two-three-
four-one-two. . . ”. Now start shaking your hand at twice the original tempo. You will
have doubled the rate of oscillations and hence the frequency. The rope will “lock
into” a different mode of oscillation. It will now appear as in Fig. 2.7a. The period
of this oscillation is one-half the period of the preceding oscillation, wherein a pulse
is traveling back and forth along the rope, as in Fig. 2.6.

For the sake of identification, we call the mode of Fig. 2.6c the fundamental
mode or the first harmonic of the string. The mode of oscillation you are now
producing is called the second harmonic (Fig. 2.7a). While the rope is oscillating
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Fig. 2.7 Higher harmonics of the vibrating string (drawing by Gary Goldstein)

in this mode, notice that near the midpoint the rope is hardly moving at all. This
point at which no motion occurs is called a node. For the second harmonic, there is
one node between the end points, whereas the fundamental mode (Fig. 2.6c) had no
nodes between the end points.

Observe also that there are two points along the rope which achieve the greatest
displacement from equilibrium (either above or below), one at about 1=4 the
distance from your hand, the other at 3=4 the distance. These points along the
rope at which the maximum displacement occurs are called antinodes. The second
harmonic has two antinodes, whereas the fundamental mode has one antinode at the
midpoint of the rope (see Fig. 2.6 again).

Now, by shaking your hand at triple the rate for the fundamental mode you can
excite the mode shown in Fig. 2.7b, the third harmonic. This is somewhat harder to
excite than the preceding mode, but once you get near the right rate of shaking, the
rope will respond very strongly and will “lock in” to that mode. The third harmonic
has three times the frequency of the fundamental. You will observe that there are
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Table 2.1 Harmonics

Mode Frequency No of nodes No of antinodes

Fundamental f1 0 1
D 1st harmonic

2nd harmonic f2 D 2f1 1 2
3rd harmonic f3 D 3f1 2 3
4th harmonic f4 D 4f1 3 4
5th harmonic f5 D 5f1 4 5
6th harmonic f6 D 6f1 5 6
nth harmonic fn D nf1 n � 1 n

two nodes in this mode – one at 1=3 the distance to the fixed end, the other at 2=3

that distance. There are three antinodes.
You should now see the pattern. By exciting the fourth harmonic (Fig. 2.7c),

which has a frequency four times the fundamental frequency, you will produce a
mode having three nodes and four antinodes. (It is appreciably harder to excite this
mode; the higher modes are progressively more difficult.) The fifth harmonic would
have a frequency five times the fundamental frequency, and the wave pattern would
have four nodes and five antinodes. We summarize this information in Table 2.1.

The frequencies of the harmonics are written as multiples of the fundamental
frequency f1. We have included a general mode, the nth harmonic, where n

symbolizes any integer (1, 2, 3, 4, . . . ). Letting n D 7, for example, tells you that
the 7th harmonic has frequency 7f1, .7 � 1/ D six nodes and seven antinodes.

From all of the preceding you now see that the rope, or a stretched string, has
many different modes of vibration. These modes of vibration have frequencies
which are integral multiples of the fundamental frequency – the modes are
harmonic. Then the periods for each of the modes will be different from one another.
Recall, however, that the time required for a traveling pulse to make a round trip
(Fig. 2.6d) was equal to the period of oscillation of the rope in the fundamental mode
(Fig. 2.6c). Therefore, the relation between wave velocity, length, and frequency
(2.6) should be rewritten to show explicitly that the fundamental frequency is
involved.

We have

f1 D v

2`
: (2.7)

For the other harmonics, the frequencies are multiples of the fundamental
frequency, so

f2 D 2f1 D 2 � v

2`

f3 D 3f1 D 3 � v

2`

f4 D 4f1 D 4 � v

2`
(2.8)
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and so on. This series is summarized by writing the frequency of nth harmonic, fn,
as

fn D n f1 D n � v

2`
: (2.9)

The fact that the rope or stretched string can be set into oscillation in many
different modes will be of continual importance. It forms the basis for much of
the subsequent discussion.

Notice that the wave patterns for these modes do not move either to the right or to
the left. We refer to such a wave as a standing wave. In contrast, the wave described
initially in this chapter that moves along an endless string is called a traveling wave.
We will discuss such waves more fully in the next section.

We close this section by introducing other widely used terms – the overtone
and the partial. By definition, the first overtone is the second harmonic; the second
overtone is the third harmonic; and so on. The term partial is used to refer to one of
the modes of a musical instrument whether or not the frequencies form a harmonic
series. An example is the sound of a gong, whose mode frequencies do not form a
harmonic series.

2.7 The Sine Wave

The shape of the pattern along a string that is vibrating in one of its modes is very
specific – being the curve produced by plotting the trigonometric sine function. In
addition, if we plot the displacement of any point along the string vs. time, we will
obtain a graph of the sine function. In fact, of all periodic curves in nature, the sine
curve is very unique in its physical ramifications, as we will see many times in the
course of our study of sound and light and therefore of music and color. Thus, we
now turn to an examination of the sine curve.

You probably have paid attention to how various radio stations are identified. For
example, a popular radio station for classical music in the Boston area is WCRB
102.5FM. The number 102:5 stands for a frequency of 102;500;000 Hz. (The letters
‘FM’ stand for ‘frequency modulation’, which is a special means of transmitting
information using waves; it will be discussed later in the text.) Or, as another
example, you might have heard that most current symphonic orchestras are tuned
to a frequency of 440 cycles per second. What these numbers fully represent is the
subject of this section.

Let us begin by returning to the long stretched string. Suppose that you were to
take hold of the string and move it up and down repeatedly at a constant rate in time.
If the pattern of your motion is repeated again and again, we say that the pattern is
periodic. As an example, let us display the pattern of motion for the most important
such motion; it is called a sine wave pattern. See Fig. 2.8.

The graph displays the displacement of the hand as it varies in time. Note that
there is a pattern that extends over a 1-s interval. It is repeated three times over the
entire 3 s interval. This interval is called the period or the motion. The maximum
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Fig. 2.8 Sine wave of displacement vs. time

Fig. 2.9 Sweeping hand of a clock defining a sine wave

displacement is 1 cm and is called the amplitude of the motion. The pattern is
sinusoidal and represents the sine function of trigonometry. Let us review the
nature of the sine function.

You might recall that the sine of an angle is the ratio of the “side opposite” to the
hypotenuse of a right triangle. Thus,

sin � D b

c
: (2.10)

We can produce a graph of the sine function by a simple method involving the
constant circular motion of the seconds hand of a clock. The seconds hand sweeps
around, making a full circle every 60 s. Let us measure the vertical position of the
tip of the hand as it sweeps around. We do this by first drawing a base line across
the face passing through the center and the 3 and 9 o’clock marks, as shown in
Fig. 2.9. Suppose the hand extends 5 cm from the center. Then the vertical position
of the tip, relative to the base line, will vary from the lowest point (at the 6 o’clock
mark) of �5 cm, to the highest point (at the 12 o’clock mark) of C5 cm. When the
hand points at 11 o’clock, for example, as shown in Fig. 2.9, the vertical position
will be C4.3 cm.
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Fig. 2.10 Clock defining one cycle of a sine wave

Fig. 2.11 Vertical position of clock hand vs. time elapsed

Now we will plot the vertical position as the hand sweeps around, starting at the
9 o’clock position when the vertical position is 5.0 cm. Five seconds later, the hand
will be at 10 o’clock and the vertical position will be C2.5 cm. Then in 5 s more, the
hand will be at 11 o’clock and the vertical position will be C4.3 cm, and so on. The
procedure of plotting the vertical position as a function of time elapsed is illustrated
in Fig. 2.10, for the first 60 s; we obtain one cycle of the sine wave. Continuing this
plotting gives the curve in Fig. 2.11.

The form of the curve repeats exactly every 60 s, when the hand has returned to its
initial position. If we continued plotting the vertical position of the hand indefinitely,
the curve would continue on repeating itself indefinitely (or until the clock stopped).
The full curve is the sine function. It is periodic in that it repeats itself indefinitely.
Note that the angle changes steadily, going through a full circle of 360ı in 60 s.
Thus, the rate of change of the angle is 360ı/min, or 6ı/s. Then, the value of the
sine function after 5 s will be sin 30ı D 0:5. The result is a vertical position equal to
0:5.5:0/ D 2:5 cm.

Although we have obtained this curve by a particular procedure, its significance
is far more general. Being a graphical representation of a function, it represents a
mathematical prescription: Given some numerical value of the variable, the sine of
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that variable has a definite numerical value. The variable may represent a time (as in
the example we have used), or it may represent a position along a string, or it may
represent an angle. What is important is the shape of the curve and its periodicity.

The particular sine function of Fig. 2.10 can be characterized by two numbers.
The first of these is the maximum height of the curve, called the amplitude, which
is 5 cm for this case. The second is the length of one cycle, which is a time interval of
60 s for this example. When the variable is time, the length of one cycle, its duration,
is the period of the motion. We will soon consider examples of sine functions
representing some vertical position as a function of distance rather than time. In that
circumstance the length of one cycle will be a distance and is called the wavelength.

2.8 The Simple Harmonic Oscillator

While the sine curve is central to the behavior of the modes of a vibrating string, it
shows itself in a simpler way in the behavior of a simple harmonic oscillator (SHO
for short). The SHO is a system that is fundamental for understanding all vibrating
systems and therefore deserves significant attention. It consists of a spring having
negligible mass that is attached at one end to some fixed support and a rigid object
that has the essential mass of the system – referred to as the mass of the SHO – at
the other end. See Fig. 2.12.

When isolated, an SHO will come to rest at its equilibrium state, in which the
spring is neither stretched nor compressed. To displace the mass from its equilibrium
position, a force must be applied. That force F is proportional to the displacement
y from the equilibrium position of the mass, as shown in Fig. 2.12b, in which a
downward displacement corresponds to positive y, while an upward displacement
corresponds to a negative y. Because the graph of y vs F is a straight line, we say
that the relation between y and F is linear. We have

Displacement / Force: (2.11)

Fig. 2.12 The Simple Harmonic Oscillator
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Mathematically we write

y D 1

k
F D F

k
; (2.12)

where the constant k is known as the spring constant or the force constant. The
relation is known as (Robert) Hooke’s Law.

If the force is measured in lbs and the displacement in inches, the spring constant
is expressed in lbs-per-in, which will be written as “lbs/in.” In this text, the force
will often be expressed in Newtons (abbreviated as N ) (one Newton is about 4.5 lbs)
and the displacement will be expressed in meters. Then the spring constant will be
expressed in Newtons per meter, or N/m.

Sample Problem 2-1

Suppose it takes a force of 5 N to stretch a given spring 2 m. Find the
spring constant.

Solution
The spring constant is given by

k D F

y
D 5

2
D 2:5 N=m: (2.13)

Note that if that same spring is stretched by a force equal to 10 N, the
displacement will be

y D F

k
D 10

2:5
D 4 m: (2.14)

Doubling the force leads to a doubling of the displacement.

If the mass is pulled from its equilibrium position as in Fig. 2.12 and released, it
will oscillate in time at a certain frequency.

The linear relation between y and F is unique in leading to two characteristics:

1. A sinusoidal displacement in time, as shown in Fig. 2.13
2. A frequency that is independent of the amplitude of oscillation

Let us imagine suspending a mass to a spring and letting it oscillate. We see
in Fig. 2.13 that the displacement of the mass exhibits a sine wave pattern. Its
amplitude is 2 cm. The period is 2 s. The corresponding frequency is f D 1=T D
1=2 D 0:5 Hz.

In fact, the two characteristics of oscillatory motion automatically imply a linear
relation. Real springs do not obey Hooke’s Law precisely, as shown in Fig. 2.14.
However, they do so approximately for small enough displacements.
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Fig. 2.13 Displacement of an SHO vs. time

Fig. 2.14 Displacement vs. force for a real spring

2.8.1 The Vibration Frequency of a Simple Harmonic Oscillator

The spring constant and the mass of an SHO determine its vibration frequency. We
will see later that the fundamental frequency of a vibrating string is proportional to
the square root of the ratio of a restoring force to a mass. This qualitative relationship
holds for an SHO too. It can be shown that the frequency of vibration of the SHO is
given by4

f D 1

2�

r
k

m
Frequency of SHO: (2.15)

The spring constant reflects the restoring force.
In using this formula, we are not free to express the units of k and mass

independently. The choice of units must be consistent. Thus, if we express the spring
constant in N=m, the mass must be expressed in kilograms (abbreviated as “kg”).
Then the frequency we obtain is expressed in H z.

4This expression for the frequency as well as the fact that the motion is sinusoidal can be derived
rigourously mathematically using a combination of Hooke’s Law F D kx and Newton’s Second
Law of Motion F D ma, where a is the acceleration of the mass. Eliminating the force leads
to a direct relation between the displacement and the acceleration: x D ma=k. This subject is
discussed in Appendix E. In Appendix F, you can see how the sinusoidal motion evolves by using
a technique of Numerical Integration.
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Sample Problem 2-2

Suppose that an SHO has a spring constant equal to 25 N/m and a mass
of 500 g. Find the frequency and period of vibration of the SHO.

Solution
We must first express the mass in kg: 500 g D 0:500 kg. Then

f D 1

2�

r
k

m
D 1

2�

r
25

0:500
D 1:1 Hz: (2.16)

Correspondingly, the period of vibration is given by

T D 1

f
D 2�

r
m

k
Period of SHO: (2.17)

so that T D 1=1:1 D 0:9 s.

We note that generally, the frequency increases if the spring constant increases
and/or the mass decreases. However, if the spring constant is doubled or the mass
is halved, the frequency is not doubled. Instead, it is increased by a factor of

p
2:

Taking off from the previous numerical example, suppose that the spring constant
is 50 N/m and the mass is 0.500 kg. A simple calculation leads to a frequency of
1.6 Hz, which equals

p
2 multiplied by the frequency of the previous example.

We can obtain an estimate of the amplitude of the velocity – the maximum
speed – of an SHO over the course of one oscillation. It is on the order of the
average speed. The latter is simply the total distance traveled by the mass in one
cycle divided by the period. Thus, with A D amplitude

Average speed D 4A

T
D 4Af: (2.18)

The actual velocity amplitude is 2�Af , which is a bit greater, as it should be.

2.9 Traveling Sine Waves

The modes of vibration of a string of fixed length are such that there is a pattern that
remains stationary except for oscillations in the overall amplitude. The pattern does
not move to the right or the left. To the contrary, a wave that progresses in one or the
other direction is referred to as a traveling wave. Here is a simple way to produce a
traveling sine wave.
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Fig. 2.15 Traveling wave produced by an SHO

Suppose that we attach the mass of an SHO to the end of a long stretched string.
The mass is set into oscillation with an amplitude of 2 cm, as above. In Fig. 2.15, we
see the mass at an instant when it has its maximum upward displacement of 2 cm.
To its right, we see the sinusoidal pattern of the wave along the string. Note that this
curve represents the actual material of the string at this instant in time. Furthermore,
whereas the displacement of the oscillator is sinusoidal in time, the pattern of
the string is sinusoidal in space.

We have assumed that the wave velocity is 4 m/s. As a consequence, during one
cycle of oscillation lasting 2 s, the wave moves along the string a distance x D vt D
4.2/ D 8 m. Each cycle that has its left end in contact with the mass is replaced by
another such cycle. The three cycles along the string were produced by three cycles
of oscillation of the mass. The period in space is called the wavelength and is here
equal to 8 m.

We see that the sinusoidal wave in space is characterized by the following four
parameters:

1. The amplitude A – here equal to 2 cm
2. The wave velocity v – here equal to 4 m/s
3. The wavelength � – here equal to 8 m
4. The period T – here equal to 2 s

Clearly, we have a simple relation among the velocity, the wavelength, and the
period:

v D �

T
: (2.19)

The frequency and period are inverses of each other: f D 1=T . Therefore, we
have the relation

�f D v: (2.20)

Notice that this equation can be rewritten as � D v=f . As a consequence, for a given
velocity, the wavelength decreases as the frequency increases. Alternatively, if the
frequency is constant and the velocity decreases, the wavelength must decrease.
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Fig. 2.16 Spacing vs. speed of cars in traffic

This latter result can be understood in terms of the following traffic situation.
Suppose a line of cars is traveling along a one-lane road over a long time so that
the traffic flow is stationary. The number of cars passing a given point must then
be constant so that there is neither a pile up of cars someplace nor any buildup of
empty space. Then, if the cars speed up, they must be further apart. Similarly, if the
cars slow down, the space between the cars must decrease. A consequence of this
decrease in space and the need for safety is that the cars usually slow down even
more. Figure 2.16 illustrates how the spacing between neighboring cars decreases
when the speed decreases. The rate at which cars pass point P is 30=15 D 2 cars per
second, which is equal to the rate at which cars pass point Q, that is, 20=10 D 2 cars
per second.

2.9.1 Applications

1. In the case of the standing wave, we recall that � D 2`. Then, as we have already
shown.

v D 2 f̀1 or f1 D v

2`
:

2. The audible range of frequencies is from 20 to 20,000 Hz. In the case of a
traveling sound wave in air, with v D 340 m/s, the corresponding range of
wavelengths is

max� D 340=20 D 17 m to min� D 340=20;000 D 0:017 m D 1:7 cm:

3. As we will see in Chapter 5, ELECTRICITY, MAGNETISM, AND ELECTRO-
MAGNETIC WAVES, light is a visible electromagnetic wave having a range of
frequencies from 4:0 � 1014 Hz to 7:0 � 1014 Hz. In the case of a light wave
traveling in vacuum, the wave velocity is given the symbol c and is equal to
3:0 � 108 m/s. The corresponding range of wavelengths is

max� D 3:0 � 108

4:0 � 1014
D 7:5 � 10�7 m D 750 nm
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to

min� D 3:0 � 108

7:0 � 1014
D 430 nm:

2.10 Modes of Vibration: Spatial Structure

The modes of vibration of a stretched string are related to traveling sine waves. Later
on in this chapter we will see that when two sine waves of the same wavelength
head toward each other, they superpose to produce a standing wave with the same
wavelength. The standing waves of the modes of vibration are portions of sine
waves. An examination of their shapes reveals the relationship between these shapes
and the corresponding wavelengths. In Fig. 2.17 we show the first six harmonics of
the vibrating string. The patterns display the extreme shapes at two times, one-half
cycle apart.

The second harmonic is a full cycle of a sine wave. Thus, the length of the string
is equal to the wavelength. The fundamental (first harmonic) is a half cycle, so that
the length is equal to one-half of a wavelength.

The wavelength for the fundamental is

�1 D 2`: (2.21)

Fig. 2.17 Modes of vibration of the stretched string
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For the second harmonic, the shape of the string encompasses a full cycle of a
sine wave, so the second harmonic has a wavelength

�2 D �1

2
D `: (2.22)

In the third harmonic mode, the string has the form of one and one-half cycles of
a sine wave. Thus

�3 D 2

3
` or

3

2
�3 D `: (2.23)

Lastly, the fourth harmonic has the wavelength

�4 D 1

2
`: (2.24)

This sequence of wavelengths can be rewritten in a way that allows us to
generalize these examples:

�1 D 2`

1
D 2`

�2 D 2`

2
D `

�3 D 2`

3
D 2

3
`

�4 D 2`

4
D 1

2
`: (2.25)

Written in this way it is obvious that the fifth harmonic will have wavelength
� D 2`=5, and so on. For the nth harmonic, then, we will have the relation

�n D 2

n
`: (2.26)

Now recall that according to (2.9) the frequency for the nth harmonic is given by
nv=2`. The formula for the frequency is then

fn D v

�n

: (2.27)

We can write this equation also as

�nfn D v: (2.28)

The equation becomes identical to (2.10), which applies to the two sine waves
that when added together produce the standing wave.
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We can appreciate this process if we realize that when we excite a standing
wave by shaking one end of the string, we send a sine wave down the string.
This wave is reflected off the other fixed end. Upon reflection, we have a second
sine wave with the identical wavelength traveling back toward the hand. This sine
wave adds together with the sine wave that we are sending with our hand to produce
the standing wave.

2.11 The Wave Velocity of a Vibrating String

It is well known to players of string instruments that the pitch and hence fundamen-
tal frequency of a string increases with increasing tension. This fact is connected
with the increase in the wave velocity with increasing tension. Similarly, one
notices that for given string material, the pitch of a string decreases with increasing
string thickness. This fact is connected with the decrease in the wave velocity with
increasing mass of string, for given length of string. This section is concerned with
the parameters that determine the wave velocity and the precise relationship among
them.

It turns out that the wave velocity depends upon two parameters that characterize
the string. First, we have the Tension , with the symbol T . The tension acts to
restore the string to its equilibrium shape and favors a greater wave velocity. The
second parameter is the mass per unit length, with the Greek letter � as a symbol.
This parameter is also called the linear mass density. The mass of an SHO reflects
its resistance to having its velocity change – that is, being accelerated. Similarly,
the linear mass density of a string reflects the string’s resistance to having any point
along the string undergo a change in velocity. This set of changes is what constitutes
a wave. Just as an increase in the mass of an SHO decreases its vibration frequency,
an increase in the linear mass density decreases the wave velocity.

We will now discuss these two parameters in greater detail.
Let us turn our attention to tension. This parameter is measured in units of force

such as the “pound” (lb) or the Newton(named after Isaac Newton ), abbreviated
as N. (The two are related as follows: 1 lb D 4:5 N.) A common device for measuring
tension is a “spring scale”.5 On average, a string of a stringed instrument is under a
tension of about 50 lbs (thus about 200 N). We will later show that the total tension
of the strings of a piano is on the order of 70,000 lbs!

The physical parameter force has direction as well as magnitude. Thus, for
example, the gravitational force of the earth on a person is downward, toward the
center of the earth. On the other hand, tension has no directionality. This fact is
illustrated in the following Fig. 2.18, wherein a string is being pulled on by two
spring scales, one to the right and one to the left.

5If you attach a spring to one end of a string that is under tension, the tension is proportional to the
consequent displacement of the spring.
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Fig. 2.18 String pulled from two directions

Both scales read a force of 100 lbs. This implies that the right scale pulls on the
string with a force of 100 lbs to the right, while the left scale pulls on the string
with a force of 100 lbs to the left. These two forces cancel each other out, so that
the net force acting on the string is zero and the string can remain stationary in this
situation.

The resulting tension, T , in the string might not be obvious: It might seem that
the two applied forces add to produce a tension of 200 lbs. In fact the tension is
100 lbs. We write

T D 100 lbs: (2.29)

Note

The Nature of Tension
How can we understand the above enigma, that the tension is not

200 lbs? We will be able to answer this question by examining what
the tension represents. Hence, let us imagine two people facing each
other with their right arms outstretched and clasping each other’s hand.
Call them, Richard and Lisa. Richard’s shoulder pulls his arm with a
force of 10 lbs and so does Lisa’s shoulder pull her arm with a force
of 10 lbs. Richard’s hand pulls Lisa’s hand toward him with a force of
10 lbs and correspondingly, Lisa’s hand pulls Richard’s hand toward
her with a force of 10 lbs. We say that there is a tension of 10 lbs at the
point where the two hands are clasped.

Now let us turn to the string in Fig. 2.18. We consider two segments
of this rope, labeled L and R, respectively, shown at the top of
Fig. 2.19(a), whose boundary is marked by the letter “P”. At the bottom
of Fig. 2.19(a) we focus on segment L, noting the two forces acting on
this segment that balance each other – 100 lbs by the scale to its left and
100 lbs by the R segment to its right. [In fact, the L segment pulls on the
R segment towards L with a force of 100 lbs and correspondingly, the
R segment pulls on the L segment towards R with a force of 100 lbs.]
Since the point P is arbitrary, the tension is uniform all along the string
and is said to be 100 lbs.
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a b

Fig. 2.19 Hanging rope

This is not so for a string with weight that is hanging from a support,
as seen in Fig. 2.19(b). At any point along the string, the tension equals
the weight of string below that point. Thus, the tension vanishes at the
bottom end and equals the total weight of the string at the top end,
where the string is supported. Question: If the string weighs 8 oz, what
is the tension at the midpoint of the string?

We now turn to the linear mass density. Suppose we have a spool of string and
cut off a meter length of string and find that it has a mass of 5 g. Then the linear
mass density of the string in the spool is 5 g=m D 0:005 kg/m. A 2-m length of
such a string would have a mass of 10 g. As a result, the linear mass density will
be 10 g/2 m D 0.005 kg/m. The result is that there is no change in the linear mass
density. Generally, for a length of string ` with a mass m, we have the relation

� D m

`
: (2.30)

The linear mass density of the string of the spool is independent of the length of the
string.

We are now ready to reveal the relation between the wave velocity and the two
parameters, T and �. It is given by

v D
s

T
�

(2.31)

which is the wave velocity along a string.
Note that the wave velocity involves a square root of a force-like parameter

(here T ) divided by a quantity which reflects mass or inertia (here �):

Wave velocity D
s

Force-like parameter

Mass-like parameter
: (2.32)

The force-like parameter is usually referred to as the restoring force.
This result is universal for all types of waves.
In this case, tension is the restoring force.
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Now we can see fully how the fundamental frequency depends upon the three
parameters of a vibrating string – the length, the tension, and the linear mass density.
Using (2.6) and (2.31), we obtain

f D v

2`
D

q
T
�

2`
: (2.33)

Thus, we have found that the fundamental frequency is proportional to the
square root of the tension, inversely proportional to the square root of the linear
mass density, and inversely proportional to the length.

Sample Problem 2-3

Suppose that a violin string has a length of 33 cm and a linear mass
density of 6 g/m, and has a fundamental frequency of 440 Hz. Find the
wave velocity, the mass of the string, and the tension in the string.

Solution
v D 2f ` D 2.440 Hz/.0:33 m/ D 290 m=s

m D �` D 6 � 10�3 � 0:33

D 1:98 � 10�3 kg D 1:98 g:

To obtain the tension is a bit more complicated because it appears
within a square root:

v D
s

T
�

so that

v2 D T =�

and

T D �v2 D .0:006 kg=m/.290/2 D 506 N:

2.11.1 Application of the Above Relations to the Piano

We will now review in a bit of detail the methods whereby the huge range of
frequencies (and hence pitches) of piano strings, from 27.5 to 4,186 Hz, can be
obtained:

To increase the pitch, one can

• Increase the tension
• Decrease the linear mass density, or
• Decrease the length
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We can obtain an idea of the total tension on the block of metal that supports the
strings as follows:

From the relation

v D
s

T
�

;

we obtain T D �v2.
In order to estimate the average wave velocity, we will use the relation v D 2Rf .

Since the average frequency is about 500 Hz and the average length of the strings
is about 0.5 m, we obtain v � 2.0:5/.500/ D 500 m/s. Now for the linear mass
density, which in kg=m is the mass in kilogram of a 1 m length of string. That
mass is the product of the mass density (8 g=cc D 8;000 kg/m3 for the steel of most
piano strings) and the volume of 1 m of string. From observation, the strings have
an average radius of about 0.5 mm. The above volume V is thus 1 m times the area
of a circle of radius 0.5 mm. Since 1 mm D 10�3 m, we obtain

V D .1 m/�R2 D .1 m/.0:5 � 10�3 m/2 D 8 � 10�7 m3:

Hence, � � 8;000.8 � 10�7/ D 6:4 � 10�3 kg/m3 D 6:4 g/m3. The average
tension is then

T D �v2 � .6 � 10�3/.500/2 D 1;500 N � 300 lbs:

This is the average tension in a single string. Most keys have a few strings (i.e.,
there is more than one string per note), so that the total number of keys is about 230.
Our estimate for the total tension is then 230 � 300 D 69;000 lbs.

We have seen that the wave velocity of a vibrating string involves a characteristic
force parameter (the tension) and a mass parameter (the linear mass density). We
will next see how the behavior of an SHO can help us understand the expression for
the wave velocity of a vibrating string. The SHO has a force parameter (the spring
constant) and a mass that together determine its vibration frequency.

2.12 The Connection Between an SHO
and a Vibrating String��

What has the SHO in common with a vibrating string? To simplify our analysis, we
will examine the vibration of a string that is pulled aside at its midpoint and then
released and allowed to vibrate.

We have seen that an SHO is characterized simply by a mass that is displaced and
experiences a restoring force proportional to its displacement. The entire length of
string is the corresponding mass. There is variable displacement all along the length
of the string; so the system is more complicated. As an approximation we will let
the displacement of the midpoint correspond to the displacement of the SHO. (See
Fig. 2.20.)
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Fig. 2.20 The plucked string
vs. the SHO

It can be shown that for small displacements, the restoring force on the string is
proportional to the displacement. “Small” means displacement much less than the
length of the string. A simpler description of this restriction is that the slope of the
string during vibration must be very small. The result is

F D 4y

`
T D 4T

`
y: (2.34)

That is, the restoring force is given by the tension T reduced by a factor .4y=`/,
which is typically much less than unity. [For example, a guitar string of length
650 mm might vibrate with an amplitude of but a few mm.] Alternatively, we can
express this relation as

F D 4T
`

y: (2.35)

We see that the restoring force is proportional to the displacement y, as in the
case of an SHO. This is the essential reason that a string vibrates sinusoidally. The
effective spring constant is defined by the relation F D ky. Thus, it is given by

k D 4T
`

: (2.36)

Sample Problem 2-4

Suppose that a string has a tension equal to 200 N and a length equal to
33 cm.D0:33 m). Find the effective spring constant.

Solution

k D 4T
`

D 4.200/

0:33
D 2;400 N=m:
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Sample Problem 2-5

Suppose that the previous string is displaced at its midpoint by a
distance of 1 mm.D1=1;000 m). Find the restoring force.

Solution

F D kx D .2;400/.0:001/ D 2:4 N:

We can now combine the exact expression (2.17) for the period of an SHO with
our expression (2.36) for the spring constant of the plucked string so as to obtain an
expression for the period of a plucked string.

TSHO D 2�

r
m

k
along with k � 4T

`
(2.37)

to obtain

TSHO � 2�

r
m

4T =`
D �

r
m`

T : (2.38)

Finally we are ready to obtain an approximate expression for the wave
velocity along a string:

vapprox D 2`

TSHO
D 2`

�

q
m`
T

: (2.39)

Substituting � for the ratio m=`, we obtain:

vapprox D 2

�

s
T
�

wave velocity along a string: (2.40)

Why the difference between the two equations for the wave velocity, (2.31) and
(2.40), amounting to a ratio of 2=��0:6? The spring constant is the ratio of force to
displacement. The displacement of an SHO is well defined with a specific value. In
contrast, for a string, the displacement varies from zero at the ends of the string to its
maximum value at the string’s center. As a consequence, we have overestimated the
average displacement and underestimated the effective spring constant. This leads
to an overestimate of the fundamental period.6

6The exact expression for the fundamental period of a plucked string is

T D 2

r
m`

T
: (2.41)
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2.13 Stiffness of a String

So far, we have assumed that the vibrating string is completely flexible. No force
is necessary to bend the string. The term stiffness is used to characterize the force
necessary to bend a string.

The physical parameter that determines stiffness is the same as that which
determines the force necessary to stretch a string. It is called Young’s modulus.
Why is this so? Because when a string is bent, one side of the string is stretched
while the other side is compressed. This can be seen in Fig. 2.21, where a string of
length L D �R is bent into a semi-circle. The thickness of the string is R2 � R1.
The outer perimeter has a length �R2, while the inner perimeter has a length �R1.
While the outer perimeter is stretched by an amount �.R2 � R/, the inner perimeter
is compressed by an amount �.R � R1/. Thus, the difference in the perimeters is
�.R2 � R1/, or � times the thickness.

Note: The shape of the wave for the vibrating stiff string in the nth partial is
sinusoidal even in the presence of stiffness. It is a portion of a sine wave having
a wavelength

� D 2`=n: (2.42)

While we will not discuss Young’s modulus because the subject is beyond the scope
of this text, we can see qualitatively what effect stiffness might have on the wave
velocity along a string and more importantly on the frequency spectrum of the
modes.

First, we expect that stiffness contributes to bringing the string back from a
curved shape toward a straight shape. It is a restoring force . Therefore, we expect
that the wave velocity will increase. Next, as the wavelength decreases, the degree
of bending increases. Therefore, we expect the wave velocity to increase with
decreasing wavelength – or alternatively, to increase with increasing frequency.7

Fig. 2.21 A thick string bent
into a semi-circle

7Mathematically, the wave velocity can be expressed as

v D
s

T
�

C B
��2

; (2.43)
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Finally, since the wavelength is inversely proportional to n, the effect of stiffness
increases with increasing n. In fact, it can be shown that the frequency of the nth
partial is given by

fn D n

q
T
�

2`

p
1 C Bn2; (2.45)

where B is a number that is inversely proportional to the square of the length of the
string.8 Thus, the longer the string, the smaller the effect of stiffness. Relatively, the
longer a string, the easier it is to bend it. Therefore, for a given mode, longer strings
have less of an effect due to stiffness. Also, the constant is proportional to the fourth
power of the radius of the string. As a result, thicker strings are stiffer, as we would
expect. Typically, the constant B is much less than unity, so that the effect is small
for n D 1. On the other hand, for large n the effect will be much more significant.
Alternatively, we can write

fn D nf0

p
1 C Bn2: (2.46)

Here, the parameter f0 D v=2` D p
T =�=.2`/ is the fundamental frequency

f1 in the absence of stiffness. Note that the fundamental frequency is different in
the presence of stiffness: Instead, f1 D f0

p
1 C B. The equation for fn shows us

plainly that the frequency spectrum is no longer a harmonic series.
To gain a sense of the order of magnitude of the constant B, we find that for a

steel wire of radius 1 mm and a length of 1 m, under a tension of 100 Newtons,
B D 0:008. For the fundamental mode, the correction to the frequency is less than
1%. However, as the mode number increases, the correction increases too, and not
proportionately. We can see the effect dramatically in the graph of Fig. 2.22. The
dark curve represents the spectrum with stiffness, while the straight line in magenta
represents the spectrum without stiffness included.

Note that the effect on the first two modes is not great. For the third mode,
the corresponding frequencies are 1,500 and 1,600 Hz, respectively – a significant
difference. For the fifth mode, the difference is dramatic: 2,500 vs. 3,000 Hz.

where B is a constant. If the tension is absent, as is the case for a suspended rod of metal – e.g.,
one prong of a tuning fork – the speed of transverse vibrations is given by

v D
s

B
��2

: (2.44)

We see from this equation that the ratio B=�2 is the restoring force. Sometimes this force is referred
to as the bending force. This is the equation for the speed of transverse waves along a solid rod.
The rod also exhibits longitudinal sound waves, which will be discussed in the next chapter.
8Explicitly, B D .�Y=T /.�a2=2`/2 , where a is the radius of the string and Y is Young’s modulus.
Young’s modulus determines how much of an elongation �` results from tension. Thus, if a string
is under a tension T , the relative change in its length is given by �`=` D T =.�a2Y /.
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Fig. 2.22 Frequency of modes for string with (dark curve) and without stiffness (magentacurve)

2.14 Resonance

Consider the process of exciting a mode of vibration of a string. It requires that you
move the end of the string up and down at a frequency equal to the frequency of that
mode. If your hand moves at a frequency that is different from a mode frequency, the
degree of excitation of the mode will not be great. However, the closer the frequency
match is, the greater the ultimate amplitude of the excited mode.

We say that there is a resonance between the two systems – your hand and
the string – when there is a frequency match, or practically speaking, close to a
frequency match, so that there is a high degree of excitation.

For a simple example of resonance, consider two SHOs having an identical
frequency f . We connect them with a fine string as shown in Fig. 2.23. Clearly,
either SHO can excite vibrations in the other through the coupling between them.

Digression on the Modes of Two Coupled SHOs

Suppose that both SHOs are released from rest with the same initial displacement.
Clearly, they will oscillate up and down at their common mode frequency f ,
because the coupling between them will be inactive. We say that the SHOs oscillate
in phase. Now, suppose that the two SHOs are released from rest with the same
initial amplitude but NOW with displacements in opposite directions. The two
SHOs will oscillate up and down, always in opposite directions. We say that they
oscillate out of phase. In this case, there will be strong coupling between the two
SHOs.

What we have described above are the two modes of a pair of coupled SHOs.
They are depicted in Fig. 2.24. The IN-PHASE mode has a frequency fin D f ,
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Fig. 2.23 Resonance between two coupled SHOs

Fig. 2.24 Two modes of two coupled SHOs

while the OUT-OF-PHASE mode has a frequency fout that is slightly larger. The
difference �f between these two frequencies increases with increasing coupling
between the strings and vanishes in its absence.

It can be shown that any particular motion of the two SHOs can be expressed
as a sum of the two modes. A very interesting example is the following:

Suppose that both SHOs are released from rest, with the left SHO displaced
downward by an amount A from its equilibrium position, while the right SHO
is kept in its equilibrium position. We see that the initial condition is a sum of
the initial conditions described above for the two modes. As a consequence, the
subsequent motion is a sum of the in-phase and the out-of-phase modes, with
equal amplitudes A=2 of each in the sum. The resulting subsequent motion is quite
interesting. (We neglect attenuation, for simplicity.)
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Fig. 2.25 Exchange of oscillation between two coupled SHOs

The left SHO will begin oscillating with an amplitude A. In time, that amplitude
will decrease, while the right SHO will begin to oscillate. The amplitude of the left
SHO will eventually momentarily vanish, while at the same time, the amplitude
of the right SHO will equal A: The left SHO will have passed its energy (initially
potential energy) entirely onto the right SHO!

Subsequently, the roles will be reversed, with the right SHO passing its energy
back to the left SHO. Ultimately, the two SHOs will exchange energy sinusoidally
at an exchange frequency fex that is exactly equal to the frequency �f ! The
time dependence of the displacements of the two oscillators is shown in Fig. 2.25.
The black curve represents the oscillation of the left SHO, while the blue curve
represents the oscillation of the right SHO. Two cycles of exchange are shown. Note
how the left SHO comes to rest at the time 0.5 units, where the right SHO has its
maximum oscillation.9

2.15 General Vibrations of a String: Fourier’s Theorem

Suppose that you do not move a string up and down at exactly any of the mode
frequencies. The string will vibrate; however, the pattern of vibration will not
resemble any one of the modes unless there is a near frequency match. Furthermore,
a plucked string does not vibrate with the pattern of any of the modes, even though
the pattern vibrates periodically at the fundamental frequency! How is the general
vibration of a string related to the various modes of vibration? The answer

9Note that a musical instrument can have a few vibrating components, such as does the violin – the
two components being a vibrating string and a vibrating wooden plate. It can be desirable to have
mode frequencies of the components match: the original source of vibration – as from a bowed
string – might not transfer the vibration into the air efficiently. The second component – here the
wooden plate – might be able to do so efficiently. With efficient transfer of vibration to the air,
the second component will not fully return the vibration back to the original source and the above
annoying phenomenon will be reduced.
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Fig. 2.26 Summing two sine waves

lies in a mathematical theorem due to Jean Baptiste Joseph Fourier, a French
mathematician who lived from 1768 to 1830. Here is Fourier’s Theorem in words:

Any pattern can be expressed mathematically as a sum of sine waves, the amplitudes of
each sine wave in the sum being unique.

This theorem is analogous to one of the most important theorems in number
theory that any number can be expressed as a product of prime numbers. (For
example, 60 D 2 � 2 � 3 � 5. The representation of the number by such a product
is unique. In particular, the number of times that any prime number appears in the
product is unique.) And so it is with the amplitudes of the various sine waves in the
sum which represents the pattern.

Given a particular pattern, there are mathematical as well as electronic means for
obtaining the unique mixture of sine waves associated with the pattern, a process
known as Fourier analysis. Each individual sine wave is referred to as a Fourier
component. To specify a Fourier component, we need to know three factors: its
frequency, its amplitude, and its relative phase.

The set of frequencies in the mixture of sine waves is called the Fourier
spectrum or simply the frequency spectrum. The amplitudes of the sine waves in
the sum are called Fourier amplitudes. The “sum” is obtained by a straightforward
graphical sum of the curves representing the waves. For example, in Fig. 2.26 we
exhibit the sum of two Fourier components A and B, with the resultant SUM.
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Fig. 2.27 Summing two sine waves with different phase relation from above

The relative phase refers to the relative positions of the waves. To appreciate the
significance and importance of the relative phase, in Fig. 2.27 we exhibit the sum of
the same two Fourier components as Fig. 2.26, except that component B has been
shifted by a quarter of a wavelength so as to produce component C.

The reverse process of adding the given mixture of sine waves corresponding to
a specific pattern so as to produce that pattern is called Fourier synthesis.

Generally, the frequency spectrum will include all frequencies, from zero to
infinity. This is not the case for a finite vibrating string. Here, Fourier’s theorem
leads to the result that any pattern of vibration is a sum of the modes of vibration of
the string, with a unique set of amplitudes for each mode in the sum. Hence, in this
case the Fourier spectrum is a harmonic series.

There is a corollary to Fourier’s theorem that is central to understanding the basis
for obtaining a sense of pitch from musical instruments:

The Fourier spectrum of any periodic wave – and hence any sound wave that
has a well-defined single pitch – must be a harmonic series with a fundamental
frequency equal to the frequency of the periodic wave.
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Fig. 2.28 VIOLIN wave and frequency spectrum

As a consequence, the frequency spectrum for the modes of vibration of
a musical instrument that produces a well-defined pitch must be a harmonic
series. In contrast, the frequency spectrum of a gong, a tuning fork, or a drum is
not a harmonic series. Unless one excites one mode alone of these instruments, the
sound produced will be perceived to have more than one sense of pitch. This fact is
exhibited in the spectra of some musical instruments. In Fig. 2.28, we see the wave
and spectrum of a short segment of sound from a violin. We can see the peaks at the
harmonics with a fundamental frequency of about 280 Hz. Note the variation in
the envelope of the wave, corresponding to varying loudness. More interesting are
the numerous spikes surrounding the main peak. These partially reflect the vibrato,
which is briefly discussed below. In contrast, we see in Fig. 2.29 the wave and
spectrum of a segment of sound from a flute. The absence of much contribution
from harmonics above the second is evident.10

NOTE: We must remember that the spectrum for any given instrument varies,
depending upon how a note is played by the musician.

10The waves and spectra were produced using mp3s of instrumental sounds downloaded into the
program AmadeusPro.
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Fig. 2.29 FLUTE wave and frequency spectrum

Note

The sound of a violin exhibits characteristics that are analogous to the
two most important modes of communicating audio signals with radio
– AM (amplitude modulation) and FM (frequency modulation).11

Consider the central fundamental frequency of the above violin wave
– 380 Hz. Let us suppose that the envelope of the wave oscillates at
a frequency of 2 Hz. This is the amplitude modulation frequency.
An AM radio wave of WEEI in Boston, MA, has a frequency of the
carrier wave of 550 kHz. This frequency corresponds to the 380 Hz of
the violin. If the station wants to transmit an audio signal of 400 Hz, the
amplitude modulation frequency is 400 Hz.

11See the extremely informative applet on this website (2-15-2011): http://engweb.info/courses/
wdt/lecture07/wdt07-am-fm.html#FM Applet You can vary the modulation frequency as well as
the amplitude of modulation and observe the changing wave form as well the resulting frequency
spectrum.

http://engweb.info/courses/wdt/lecture07/wdt07-am-fm.html#FM_Applet
http://engweb.info/courses/wdt/lecture07/wdt07-am-fm.html#FM_Applet
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Now let us turn to the frequency modulation, which is strongly
produced by vibrato12: The fundamental frequency of the violin is
determined by the position of a finger on the violin string that restricts
the length that is free to vibrate. If the violinist rocks the finger back
and forth on the string at a frequency of 5 Hz, the length that is free to
vibrate will oscillate at this frequency and the sound will be frequency
modulated at this frequency.13 In the case of FM radio, an FM radio
wave from WCRB-FM in Boston would have a carrier frequency of
89.7 MHz; the audio signal of 400 Hz would be the FM modulation
frequency.

NOTE: The general term for the frequency of a mode of vibration of a system is
the partial. The first partial is always equivalent to the fundamental frequency. For
a vibrating string without stiffness, the set of partials forms a harmonic series.

In order to illustrate the results of a Fourier analysis of a vibrating system,
consider the vibration of a string that is plucked at its midpoint, as shown previously
in Fig. 2.14. It can be shown using mathematical analysis that the pattern of vibration
is a sum of all the odd modes of vibration of the string. Suppose that at some
instant the amplitude is �2=8 at its midpoint. The shape of the string is triangular.
The amplitudes A1, A2, A3, . . . of the sine waves that reproduce this pattern are
given by:

Fundamental: A1 D 1

3rd harmonic: A3 D �1

9

5th harmonic: A5 D 1

25

General odd harmonic: An D .�1/.n�1/=2

n2
; where n D 1; 3; 5; : : :

We illustrate this result in Fig. 2.30, where we show how adding sine waves
produces a triangular wave pattern. The black curve is the desired triangular wave.
The blue curve is the first harmonic – n D 1 or the function sin.�t/. The red curve

12We realize that vibrato is what gives the violin its sweet tone. However, vibrato is probably a very
important factor in a number of other specific ways: For example, see Sect. 10.7 for a discussion of
the fusion of harmonics and Sect. 11.7, wherein we discuss the important role that vibrato certainly
plays in allowing us not to be affected by the impossibility of performing combinations of musical
pure tones that are consistently consonant.
13It can be shown that the resulting frequency spectrum consists of a central peak at 380 Hz along
with side peaks at frequencies, 380˙5 D 375 and 385, 380˙10 D 370 and 390, and 380˙15 D
365 and 395, . . . . The weight of these side frequencies falls off as we move to greater distances
from the fundamental and depends upon the amplitude of the rocking motion.
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Fig. 2.30 Sum of Fourier components to produce a triangular wave

is the sum of the first and third harmonics – n D 1 and n D 3 – that is, the function
sin.�t/ � .1=9/ sin.3�t/. We see that these two terms alone are within about 10%
of reproducing the triangular wave. The green curve is the sum of the first, third,
and fifth harmonic.

2.15.1 Frequency of a Wave with Missing Fundamental

It is probably obvious that a wave that includes the fundamental in its spectrum has
the frequency of the fundamental. For example, the frequency of a mixture 100, 200,
and 500 Hz is 100 Hz. However, consider the mixture 200 and 500 Hz. What is the
frequency in this case?

Suppose we focus our attention on the displacement of a specific point along a
vibrating string. According to Fourier’s theorem, its wave pattern in time is a sum
of sine waves, all of which are members of the harmonic series of the string’s mode
spectrum. It can be shown that the pattern is always periodic, with a frequency
equal to the largest common denominator (LCD) of all the frequencies in the
Fourier spectrum. For this last example, the LCD is 100 Hz, which is the frequency
of wave, even though the fundamental 100 Hz is missing. We can appreciate this
result as follows: During one cycle of oscillation over the period of 1=100 D 0:01 s
there will be exactly two cycles of the 200 Hz component and five cycles of the
500 Hz component.
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2.16 Periodic Waves and Timbre

We can now appreciate a major factor that distinguishes the timbre of one musical
instrument from another: Two instruments that are producing the same steady
musical note are producing periodic patterns having the same frequency. It is this
frequency that determines the pitch of the note. However, the two sets of relative
amplitudes of the Fourier components are different. This difference is one of the
important factors that distinguishes the timbres of musical instruments.

There are two other factors that contribute to our ability to distinguish one
instrument from another when the notes are not steady but have a beginning and end;
they are the attack and the decay parts of the note, which are depicted in Fig. 2.31.
The variation of the amplitude – defining with the growth and final decay – is called
the envelope. It is given by the pair of dashed curves in the figure.

Experiments have shown that in the absence of differing envelopes, it is often
difficult to distinguish the sounds of different instruments.

2.17 An Application of Fourier’s Theorem to Resonance
Between Strings

When a string is disturbed, generally a mixture of modes is excited. The Fourier
amplitudes depend upon the manner in which the string is excited. This fact has
important ramifications with regards to resonance between strings: Consider two
strings, one tuned to 440 Hz and the second to 660 Hz. (These two frequencies
correspond to the fundamental frequencies of the respective strings.) The frequency
spectra are:

440 Hz string: 440, 880, 1,320, 1,760, . . .
660 Hz string: 660, 1,320, 1,980, 2,640, . . .

Fig. 2.31 The attack, decay, and envelope of a wave
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Fig. 2.32 Piano keyboard

We see that the third harmonic of the 440 Hz string and the second harmonic of
the 660 Hz string have the same frequency. Thus, a general excitation of the 440 Hz
string can strongly excite the second harmonic of the 660 Hz string or, a general
excitation of the 660 Hz string can excite the third harmonic of the 440 Hz string.

Can you find a second matching pair of frequencies for the above strings?
Discuss resonance between a 440 Hz string and a second string tuned to its octave
at 880 Hz.

Resonance among the strings of a stringed instrument enriches tone quality. It
therefore provides us with a partial explanation as to why good intonation of a string
player – that is, playing notes “in tune” – improves tone quality. Conversely, by
becoming more aware of the resonant response among strings, a string player can
improve intonation.

Home Exercise with a Piano

If you have a piano available, you can observe the resonances discussed above as
follows. Let us refer to the piano keyboard depicted in Fig. 2.32:

You will note that there is a pattern of the keys that repeats itself. Each cycle
of keys is called an octave, with the white keys labeled from A through G. Focus
on the key labeled C . This C is called “middle-C”. The A above middle-C is the
key that is first tuned by a piano tuner, presently usually at a frequency of 440 Hz.
We will call this key A � 440. The A above it, being one octave above, is tuned
at double this frequency. The E above A � 440 is tuned at a frequency that is
close to 660 Hz. (See Chapter 11, TUNING, INTONATION, AND TEMPERAMENT:
CHOOSING FREQUENCIES FOR MUSICAL NOTES for more details on the choice of
frequencies.)

Now, hold the A � 880 key down so as to free the string from a damper which
prevents it from vibrating. Next, give the A � 440 key a sharp, “staccato” blow, so
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Fig. 2.33 Wound piano strings

that the A � 440 tone will sound long enough as to excite the A � 880 string, but
short enough so that you can eventually hear the sound of the A � 880 string. To
confirm that you are hearing a sound produced by the A � 880 string, release the
A � 880 key so as to dampen that string’s vibration.

Repeat the above by exchanging the roles of the two strings. Next, repeat all of
the above with a second pair of strings – say, the A � 440 and E � 660 strings.

Note

Let us now recall that stiffness causes the frequency spectrum of a string
not to be a harmonic series. The effect is strongest for the thick strings
of a piano at the low end, where increased thickness is necessary to
produce the low frequencies. As a result, stiffness reduces the degree
of resonance among these strings. In order to reduce the effect of
stiffness, these strings are constructed out of a central core of steel that
is surrounded by a coil, as seen in Fig. 2.33.

In an effort to reduce the mismatch of common harmonics, pianos are stretch
tuned – a feature discussed further in a problem of Chap. 11. Furthermore, it
is interesting to note that while we tend to regard resonance as a desirable
characteristic, the reduced resonance in a piano is often regarded as an attractive
feature of the sound of a piano.
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2.18 A Standing Wave as a Sum of Traveling Waves

A standing wave is not a traveling sine wave since it is moving neither to the right
nor to the left. According to Fourier’s theorem, a standing wave must be a sum
of sine waves. In fact, it is a sum of two sine waves having the same wavelength
and amplitude but traveling in opposite directions. This fact is depicted in Fig. 2.34.
Diagrams (a)–(e) one-eighth of a cycle apart. Each diagram depicts the position of
the two component sine waves and their sum. The figure reflects a special property
of sine waves: The sum of two sine waves having the same wavelength is a sine
wave having the same common wavelength. The amplitude of the resultant
sine wave depends upon the amplitudes of the components and their relative
phase. In our case, the components have exactly the same amplitude. In (a), the
components are in phase and the resultant wave has an amplitude that is double that
of the components. In (c), the components are out of phase so that the components
cancel each other. Note that while the displacement vanishes everywhere in (c), the
string does have an instantaneous velocity. This situation can be compared to the
SHO whose mass is passing through the equilibrium position.

We can now understand how we are able to set up a standard wave along a string
of finite extent: With our hand, we propagate a sine wave down the string. The
reflected wave is a sine wave traveling in the opposite direction, which when added
to the original wave forms a standing wave! (Of course, the observed standing wave
is only a portion of an infinite standing wave.)

2.19 Terms

• Amplification
• Amplitude analyzer
• Antinode
• Attenuation
• Bending force
• Centi- 10�2

• Chladni plate
• Cycle
• Damping
• Direction of propagation
• Dispersion
• Dispersive
• Displacement
• Dissipation
• Equilibrium state
• Excitation

• Force constant (or ‘spring con-
stant’) k

• Fourier Analysis
• Fourier component
• Fourier spectrum
• Fourier Synthesis
• Fourier theorem
• Frequency f
• Fundamental mode
• Fusion of harmonics
• Giga- 109

• Gong sound
• Harmonic
• Harmonic series
• Hertz (Hz) (a unit of frequency)
• Integral multiples
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Fig. 2.34 Standing wave from two traveling waves
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• Kilo- 103

• Largest common denominator
• Linear mass density �

• Longitudinal wave
• Medium for wave propagation
• Mega- 106

• Micro- 10�6

• Milli- 10�3

• Nano- 10�9

• Newton (N) (a unit of force)
• Nodal line
• Node
• Octave of notes oscillation
• Overtone
• Period T
• Periodic wave (in time or space)
• Phase relation
• Pitch
• Pluck

• Pulse
• Resonance
• Restoring force
• Simple harmonic oscillator (SHO)
• Sinusoidal
• Sonometer
• Spectrum
• Standing wave
• Stiffness
• Stretch tuning
• Stroboscope
• Tension T
• Timbre or tone quality
• Transverse wave
• Travelling wave
• Tuning fork
• Wave propagation
• Wave velocity v

2.20 Important Equations

x D vt: (2.47)

f D 1

T
: (2.48)

f1 D v

2`
; f2 D 2

v

2`
D v

`
; f3 D 3

v

2`
; : : : : (2.49)

�f D v: (2.50)

Linear mass density:

� D m

`
: (2.51)

v D
s

T
�

: (2.52)

Hooke’s Law:
F D ky: (2.53)

Frequency of a Simple Harmonic Oscillator:

f D 1

2�

r
k

m
: (2.54)
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General form of the wave velocity:

v D
s

Restoring force

Mass density
: (2.55)

2.21 Problems for Chap. 2

1. Suppose you see a flash of lightning and then hear the sound of its thunder 5 s
later. Assuming a speed of light equals 3 � 108 m/s and a speed of sound equal
to 340 m/s:

(a) Estimate the distance between you and the lightning flash.
(b) How long did it take for the light of the lightning flash to travel from the

lightning to you?

2. Consider a violin string of length 31.6 cm. Waves travel on this string with a
velocity of 277 m/s.

(a) What is the largest period a wave can have if it is to be accommodated by
the string as a standing wave?

(b) Waves of other periods can also exist as standing waves on the string. What
are some of these periods

3. Suppose that there are two strings, with one string excited at the fundamental
and the other excited at the second harmonic. Both are vibrating at 800 Hz with
the same internodal distance of 0.45 m.

(a) Draw a diagram depicting the two strings at the same scale.
(b) Show that the wave velocity v is the same for the two strings and calculate

its value.

4. Let us assume that a musical instrument has strings of length 76 cm. The player
can press the string against the “fingerboard” so as to reduce the length of string
that is free to vibrate. Suppose that when the string is fingered a distance of 8 cm
from one end, leaving a length of 68 cm free to vibrate, the string vibrates with
a frequency of 300 Hz.
Where would the finger have to be placed to obtain a frequency of 311 Hz?

5. How many antinodes does a string vibrating in its fifth overtone have?
6. What is the fundamental frequency of a string that has five antinodes when

vibrating at 450 Hz?
7. Ernst Chladni, who lived from 1756 to 1827, studied the vibrations of a

metal plate by sprinkling sand on its surface and exciting one of its modes
of vibration. A mode is distinguished by having nodal lines, along which
the displacement of the metal plate vanishes. The frequency spectrum is
not a harmonic series. Generally, vibrations of the plate are composed of
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Fig. 2.35 Chladni plate

superpositions of many modes. Excitation of a single mode is facilitated by
bowing the plate with a violin bow at some position along the edge and holding
the plate at another position along the edge. If the plate is held horizontal,
the sand particles dance around as the surface vibrates, being tossed into the
air wherever there are vibrations and ultimately settling close to nodal lines.
(Where you bow cannot be a node. Why so?) Such plates – in the context of its
modes – are called Chladni plates.

A pattern of sand on a square Chladni plate is shown in the Fig. 2.35. This
pattern could result from

(a) Bowing the plate at A and holding it at B
(b) Bowing the plate at C and holding it at B
(c) Bowing the plate at A and holding it at C
(d) Bowing the plate at C and holding it at A
(e) Bowing the plate at B and holding it at C

8. A pendulum swings back and forth at 20 Hz. Find its period and frequency.
9. (a) What characteristic of the relation between the displacement of an SHO

and an applied force is central to its behavior and distinguishes it from
other oscillators?

(b) Specify at least two characteristics of the oscillation of a SHO that make it
unique.

10. (a) Suppose an SHO has a spring constant of 32 N/m and mass of 500 g. Find
its vibration frequency.

(b) How must the mass be changed so as to double the frequency; to halve the
frequency?

(c) How must the spring constant be changed so as to double the frequency;
to halve the frequency?

11. A simple harmonic oscillator (SHO) has a period of 0:002273 s. What is the
frequency of the oscillator?

12. A telephone wire electrician needs to determine the tension in a 16 m segment
of wire that is suspended between two poles. The wire is known to have a linear
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mass density of 0.2 kg/m. He plucks the wire at one end of the segment and
finds that the pulse returns in 8 s.

(a) Find the wave velocity.
(b) Find the tension.

13. A piano wire of length 2 m has a mass of 8 g and is kept under a tension of
160 N.

(a) Find the wave velocity along the wire.
(b) To double the wave velocity:

i. The tension can be changed to .
ii. The mass can be changed to .

14. (a) A tightrope walker tends to avoid walking at a pace equal to a multiple of
the fundamental frequency of the tightrope. Explain why.
Describe what would happen if he were to do so.
Now suppose that the tightrope is 25 m long, has a mass per unit length of
0.2 kg/m, and has a tension of 2,000 N.

(b) Calculate the speed of wave propagation along the rope.
(c) Calculate the rope’s fundamental frequency and its two lowest overtone

frequencies.
15. (a) What is stiffness in a string?

(b) Does it exist in the absence of tension?
(c) How does stiffness affect the frequency spectrum of a vibrating string?
(d) Because of their longer strings, grand pianos need less stretch tuning than

upright pianos. Give two reasons why this is so.
16. Express the wavelength of a standing wave in terms of the distance between

nodes. Now do so in terms of the distance between antinodes.
17. (a) Find the wavelength of a sound wave in water (with a wave velocity of

1,400 m/s) that has a frequency of 10 kHz.
(b) Find the frequency of a light wave in vacuum that has a wavelength of

0.5 �m (D5 � 10�7 m).
18. (a) Suppose that a guitar string is plucked at its midpoint. Which Fourier

components CANNOT be excited?
(b) Repeat the previous question when the string is plucked at a point 1/3 from

one end.
19. Explain how a vibrating 440 Hz string can cause a 550 Hz string to vibrate.
20. Find the frequency and period of a periodic wave whose only Fourier compo-

nents are equal to the following:

(a) 500 Hz, 1,000 Hz.
(b) 500 Hz, 800 Hz, and 1,000 Hz.

21. What is special about the Fourier frequency spectrum of a periodic wave?
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Fig. 2.36 Four different sinusoidal waves
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22. Using (2.26), (2.27), and (2.43), derive equation (2.45).
23. In Fig. 2.36 are depicted the displacement vs. time of four wave patterns,

labeled A–D:

(a) What are the respective amplitudes of patterns A and B?
(b) Which two waves differ only in phase?
(c) What is the frequency of pattern A?



Chapter 3
The Vibrating Air Column

While the vibrating strings of guitars and violins are plainly visible, the sound that
they produce in air is invisible. We often associate sound with air because we are
used to hearing sounds that reach our ears from the air. We also learn that in the
absence of air, sound cannot propagate – movies with sound propagating in outer
space, not withstanding. The fact that air is so transparent is not the issue here.
Sound travels through liquids such as water and solids such as steel, as well as other
gases such as air; nevertheless, we cannot see sound propagating through liquids or
solids either. So, what is sound? That is the first subject of this chapter. Once we
understand the nature of sound, we will go on to study the modes of vibration of air
that is contained in pipes, that is, air columns. These are the basic components for
all wind instruments, such as the recorder, flute, and trumpet.

3.1 The Air of Our Atmosphere

Many people think that we cannot see air, not realizing or forgetting that the
sky is blue because the air of the atmosphere scatters sunlight. (See Chapter 8,
PROPAGATION PHENOMENA, for more details on the origin of the blueness of our
sky.) Yet we know that air reveals its presence in the force of blowing wind. To gain
a better understanding of the physics and power of invisible and tenuous air, we
will begin our study by characterizing air under normal conditions at sea level – in
particular, at “standard temperature and pressure” (which is abbreviated as “STP”),
that is a temperature of 0ıC and a pressure of “one atmosphere”.

• Air has weight, represented by a mass density � of 1.3 kg/m3. Thus, a room
having dimensions of 5 � 5 � 2:5 m, corresponding to a volume of 62.5 m3, has a
mass of 62:5 � 1:3 D 81 kg, corresponding to a weight of 81 kg � 2:2 lbs=kg D
180 lbs!

• Air consists of a mixture of various molecules, mostly nitrogen (�79%), oxygen
(�20%), water vapor (of varied percentage in relation to the relative humidity),

L. Gunther, The Physics of Music and Color, DOI 10.1007/978-1-4614-0557-3 3,
© Springer Science+Business Media, LLC 2012
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and carbon dioxide. These nonspherical molecules have a mean diameter of
about 6 Ångstroms, abbreviated as 6 Å. (1 Å D 10�8 cm or, equivalently,
1 cm D 100 million Å.) In one cubic centimeter (cc) there are about 2:7 � 1019

molecules. We say that the number of molecules per unit volume (also referred
to as the number density) is about 2:7�1019 per cc (written as 2:7�1019/cc). In
contrast, water has about 1023 molecules/cc. (For comparison sake, the number
of stars in the entire observable universe is estimated at 1022.)

• The average distance between a molecule of air and a nearest neighbor molecule
is about 34 Å. Its molecular diameter (�3:5 Å) is much smaller by a factor of
about ten. As a result, it can be shown that on the average a molecule has to
travel a relatively great distance, �670 Å, about a 100 times its own diameter,
before it collides with another molecule. This distance is referred to as the mean
free path . Thus, most of air is empty!1

It is difficult to imagine the minuscule dimensions of molecules. Therefore, to
get a sense of the proportions involved, suppose that a molecule has a diameter on
the order of a football player – say a sphere one yard in diameter. Now imagine a
checker board laid out without boundaries, with each side being 10 yards; there
would be an infinite number of squares. Next, place one football player randomly
within each square. On the average, the nearest neighbor to a football player will
then be 10 yards, just ten times the diameter of one player. Finally, imagine that
one football player starts running in a straight line and in a random direction.
How far would the player have to run on the average till he runs into another
player? The answer is 100 yards – which is the square of their nearest neighbor
distance apart divided by the diameter of a football player.2 For a gas in a three-
dimensional volume, with all molecules moving about randomly, the mean free
path is about (distance between nearest neighbors)3=(diameter)2.3

• Gas molecules are in constant random motion, with an average speed of about
300 m/s (�1,100 km/h �1,000 ft/s). This speed happens to be close to the speed
of sound in air.

• If most of the space in air is devoid of molecules, how then can the air sustain a
sound wave that requires the propagation of density variations through the air?
What is the level of interaction between molecules of air. One measure is the rate
of collisions between molecules: In 1 cm3 of air there are on the order of 1028

collisions between molecules per second.

1Another way to appreciate this observation is to note that if we were to take a volume of air and
compress it so that all the molecules are just touching each other, the volume would be reduced by
a factor of 103 D 1;000.
2The following website ([12-26-2010] http://comp.uark.edu/�jgeabana/mol dyn/) has an anima-
tion that shows a collection of particles moving in a square chamber. You can choose the number
and size of the particles. You can also run the animation slow enough to be able to follow a single
molecule to see how far it travels before colliding with another molecule.
3The exact expression for the mean free path is .

p
2 � � number density � diameter2/�1. Also,

note that if we were to distribute football players in a three-dimensional array of boxes, each side
being 10 yards. the mean free path turns out to be about 1,000 yards or a bit over one-half of a
mile!

http://comp.uark.edu/~jgeabana/mol_dyn/
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Fig. 3.1 Force by air on hand

• We barely notice the presence of air but easily note that we need its oxygen to
survive. Yet air is not inert even when the wind is not blowing. There is air
pressure: A value of one atmosphere pressure corresponds to a pressure of
105 N/m2 �15 lbs/sq-in; that is, every square inch of flat surface experiences a
force of 15 lbs, whatever its orientation, be it horizontal, vertical, or otherwise.
Mathematically, we write

p D F

A
: (3.1)

Alternatively, we write:

Force D Pressure � Area or F D pA: (3.2)

Thus, for example, consider the palm of my hand, which has an area of
�30 sq-in. See Fig. 3.1. When held horizontal, the top of my palm experiences a
force of 30 � 15 D 450 lbs downward, while the bottom experiences a force of
450 lbs upward. These two forces cancel each other, so that I do not have to put
any effort into preventing my hand from being moved by the air.

My abdomen has dimensions on the order of 1500 by 1200, corresponding to
an area of 180 sq-in. The force of the air on my abdomen is therefore about
180 � 15 D 2;700 lbs! Why don’t I feel this tremendous force? Why doesn’t my
hand get crushed? The reason is that there is pressure within the tissues of my
hand, and within my nerve cells in particular, that prevents any crushing from
taking place. Furthermore, my nerves function in such a way that this normal
background pressure of one atmosphere does not produce any sensation. Imagine
if it were otherwise!! We will see that there is a background noise impinging upon
our ears; but we are simply insensitive to it.

• What is the source of the force associated with air pressure? It is the rapid rate at
which molecules of air collide with a surface, as depicted in Fig. 3.2. In fact, there
are about 1023 collisions per second on each square centimeter of area. To help
you sense the nature of this force, imagine rain drops from a torrential rainstorm
striking your hand at a rapid rate. You would feel the force they exert; but that
force would normally be much less than 15 lbs/sq-in: While the drops have much
greater mass than does a molecule, the collision rate of the rain drops would be
much less than that for the air molecules (Fig. 3.2).
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Fig. 3.2 Molecules colliding
with wall

Fig. 3.3 (a) A chamber of air
fitted with a piston. (b) The
piston compresses the air in
the chamber

a b

• At a given temperature, the pressure is proportional to the density. In Fig. 3.3,
we depict a chamber of air fitted with a piston. Outside the chamber is air at one
atmosphere pressure. In Fig. 3.3a, the air in the chamber has a pressure of one
atmosphere.

The force on the piston from the outside air to the left of the piston then
balances the force of the air inside the chamber. In Fig. 3.3b, the air in the
chamber has a pressure of 1:3 atm. The density of air in this chamber is 30%
greater than the density of air in the chamber of Fig. 3.3a. (Note the difference in
density of shading.) In this second case, the force on the piston from the inside is
greater than the force from the outside and the piston would tend to move to the
left, corresponding to a reduction in the air density and hence the pressure within
the chamber. The difference in pressure acts as a restoring force.4

3.1.1 Generating a Sound Pulse

Consider again the chamber as in Fig. 3.3a. What would happen if the piston was
moved suddenly to the right and held fixed in position? (See Fig. 3.4.)

The air in front of the piston will be compressed locally, thus increasing the
pressure locally. The nonuniformity in pressure will lead to a tendency for the

4Here is a beautiful animation that displays the collisions of molecules on a piston. (12-26-2010,
http://wilsonspirit.com/) You can vary the number of molecules in the chamber. You can move the
piston so as to change the volume so as to change the collision rate with the piston as well as
the pressure. Finally, you can vary the temperature so that the speed of the molecules varies. A
shortcoming of the animation is that it omits intermolecular collisions.

http://wilsonspirit.com/
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Fig. 3.4 A sudden move of the piston creates a pulse

compressed region to expand outwardly to the right. The net result will be that a
compression pulse will move to the right as depicted in Fig. 3.4 to the right. This
pulse will strike the opposite end of the chamber and be reflected back, followed by
repeated cycles back and forth. In time, because of attenuation (see Sect. 4.8), the
pulse will spread out in width and diminish in amplitude, eventually disappearing.
The final state will be a chamber with air at a uniform density and pressure,
corresponding to the current reduced volume of the chamber.

3.1.2 Digression on Pushing a Block of Wood

When you start pushing a block of material at one of its ends, you might assume that
all of the material begins to move at once. The fact is that it takes time for the entire
piece of material to respond to your push. Your initial push produces a compression
pulse that travels through the block at the speed of sound. Eventually, this pulse is
spread out, so that the block moves as a whole. If the block is made of a hard wood
such as oak and the pulse is traveling in a direction parallel to the fibers, the speed
of sound and hence the pulse is �4,000 m/s. If the block is 10 cm long, the pulse
takes 0:10=4;100 D 0:00003 s D 30 microseconds .30 �s/ to travel the length of
the block.

3.2 The Nature of Sound Waves in Air

We can now understand what the essence of a sound wave is: A sound wave
represents the propagation in a material of a nonuniformity in the density.
Nonuniform pressure provides the restoring force toward the equilibrium state of
uniform density. As an example, suppose that the above piston undergoes sinusoidal
motion – that is, simple harmonic motion (SHM) – at a frequency f . In Fig. 3.5, we
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Fig. 3.5 A sinusoidal wave in air produced by a piston oscillating sinusoidally

depict the resulting sinusoidal sound wave that propagates down the chamber. This
motion can be produced by attaching a vibrating tuning fork to the piston. Regions
having a high density and pressure are called condensations, while regions with
low density and pressure are called rarefactions.

Note that the action of the piston is similar to that of the cone of a loudspeaker,
which vibrates in some pattern time. If the cone vibrates sinusoidally, it produces a
sinusoidal wave in space. Generally, the pattern in time produces a sound wave with
a corresponding pattern in space.

Since the motion of air in a sound wave is in the same direction as the direction
of propagation of the wave. The wave is said to be longitudinal, in contrast to the
transverse waves along a stretched string.

Indicated too in the figure are the wavelength � and the wave forms at various
fractions of the period T D 1=f . After a time interval of one period, the wave
progresses a distance of one wavelength.

Equations (2.23) and (2.24) of Chap. 2 hold:

v D �

T
D �f: (3.3)

The normal person can hear pure sinusoidal sounds having a frequency ranging
from about 20 to 20,000 Hz.5

5As a person gets older and/or subjects himself/herself to loud sounds such as rock music, the
upper limit goes down. In the author’s testing of students from 1973 to 2000, the limit for most
students has dropped from about 22,000 to about 18,000 Hz.
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Let us calculate the corresponding range of wavelengths of audible sound
traveling in air. We will use the velocity of sound at a temperature of 15ıC – 340 m/s.
For the minimum frequency of 20 Hz, we obtain

� D v

f
D 340

20
D 17 m: (3.4)

The wavelength corresponding to a frequency of 20,000 Hz is just 20;000=20 D
1;000 times smaller, that is 17 mm D1.7 cm.

3.3 Characterizing a Sound Wave

A sound wave can be characterized by the change in pressure from the ambient
equilibrium pressure, which is usually about one atmosphere. The amplitude of the
variation of the change in pressure is called the sound pressure. (See Fig. 3.6.)
The softest sound that can be heard has a sound pressure of only one-ten-billionth
(10�10) of an atmosphere! A sound can produce pain if the sound pressure is one-
ten-thousandth (10�4) of an atmosphere. Thus, the ratio of the largest sound pressure
tolerable to the smallest discernable is 10�4=10�10 D 106, or a million to one!
Alternatively, a sound wave can be characterized by the change in mass density
from the equilibrium density. We then refer to the sound density of the wave.

One can also characterize a sound wave by the displacement of the air, although
this is not done in practice. The corresponding range of displacements is incredibly
small – ranging from 0:1 Å (about 1/30th the size of an atom (!)), to 1/100th of a
millimeter (about twice the length of a bacterium).

Fig. 3.6 Sound pressure
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Note

Sound waves in liquids and solids are essentially the same as sound
waves in a gas such as air. The major difference lies in the density of
material: Solids and liquids are typically about 1;000 times more dense
than air at STP. Nevertheless, we will see that the velocity of sound is
about the same order of magnitude for all materials.

3.4 Visualizing a Sound Wave

Suppose that we have a sound wave and we want to be able to visualize its
corresponding wave pattern. A neat way to do so is summarized in Fig. 3.7.

The figure begins on the left with a source of sound – the signal source – that
is produced by a generator of an electric signal that corresponds to the sound wave.
One possible signal source is a microphone into which we might sing. Another can
be a wave generator, which is an electronic device that produces periodic electric
signals having a frequency that we can control. The periodic pattern of the signal
is usually a sine wave. (Other patterns include a sawtooth wave and a rectangular
wave. The names have obvious meanings.) Next, the electric signal from the source
is fed into both an amplifier and an oscilloscope. The purpose of the amplifier is
to increase the amplitude of the signal manyfold, so that the resulting signal can
drive the loudspeaker. The oscilloscope gives us a visual image on the screen of the
pattern of the periodic electric signal. This visual image ideally represents the wave
pattern of the sound wave that we hear produced by the loudspeaker.

Fig. 3.7 Studying a sound
wave
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3.5 The Velocity of Sound

What determines the velocity of sound? Recall that generally, the wave velocity of
all types of waves depends upon the square root of the ratio of an effective restoring
force and an effective mass. In the case of a sound wave, that effective mass is the
mass density �, which is expressible in kg=m3. (For example, the mass density of
water is 1 g/cc D 1,000 kg/m3, while the mass density of air at STP is 0.3 kg/m3.)
The restoring force for a sound wave is known as the bulk modulus, which has the
symbol B: This parameter tells us the relative decrease in volume of a sample in
response to an increase in the pressure. In some situations, the temperature remains
fixed during the process; in others, the sample is insulated and the temperature will
usually rise. For small relative changes in volume, the relative change in volume
�V=V is generally proportional to the change in pressure �p. (This is the analog
of Hooke’s Law: displacement of spring / force.) We write

�V

V
D ��p

B
: (3.5)

The minus sign is inserted because an increase in the pressure leads to a decrease
in the volume. The ratio �V=V is referred to as the relative change in the volume.
By multiplying by 100, we obtain the percent change.

As the volume increases at fixed amount of matter, the mass density decreases.
Correspondingly the relative change in mass density �, given by ��=�, is

��

�
D C�p

B
: (3.6)

We see that the (�) sign of equation (3.6) is simply replaced by a (C) sign.

Note

In the case of air, the bulk modulus is about equal to the pressure itself,
so that �V=V � � �p=p. Thus, a 1% increase in pressure leads to
about a 1% decrease in volume. On the other hand, the bulk modulus of
liquids and solids is much greater than that for gases: It requires a much
greater increase in pressure to produce a given reduction in the volume
of a liquid or solid; air is much more compressible. For example, the
value of the bulk modulus for water is 20;000 atm, while for steel it
is 1;400;000 atm! Thus, to produce a 1% decrease in the volume of a
sample of water requires an increase in pressure of 20;000 � 0:01 D
200 atm, while for a sample of steel a pressure of 1;400;000 � 0:01 D
14;000 atm is required!

Down at the deepest depths of ocean, the pressure is about 1,000 atm, so that the
density of the water is increased by a factor of �p=B D 1;000=20;000 D 1=20,
corresponding to 5%.
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One can show that generally the velocity of sound is given by

v D
s

B

�
: (3.7)

In using this equation, it is essential to express both B and D in terms of a
consistent set of units, such as N=m2 and kg=m3, respectively.

Recall from Chap. 2 that the wave velocity for a stretched string is the square root
of the ratio of a force parameter (that restores the string to its straight line shape)
and a mass parameter. Here, the bulk modulus B is the associated with the increase
in pressure when the air is compressed; it reflects the effective restoring force. The
mass density � is the mass parameter.

Let us then calculate the speed of sound in water. We recall that the mass density
of water is 1 g/cm3=1,000 kg/m3 and that 1 atmD105 N/m2, so that B D 20;000 �
105 N/m2. Thus,

v D
s

20;000 � 105

1;000
D 1;400 m=s: (3.8)

You can carry out a similar calculation for air (B D 1:4 atm, � D 1:3 kg/m3) and
for steel (B D 1;400;000 atm and � D 7;900 kg/m3).

3.5.1 Temperature Dependence of Speed of Sound in Air

The speed of sound in a gas increases with increasing temperature. At 0ıC, the speed
is 332 m/s. To obtain the approximate speed for a temperature between � � 50ıC
and � C 50ıC, simply add 0:61 multiplied by the temperature in ıC. Thus,

v
�m

s

�
D 332 C 0:61 � Temperature .ıC/: (3.9)

For example, at a temperature of 20ıC, the speed of sound is

v D 332 C 0:61 � 20 D 332 C 12 D 344 m=s:

The relative change is 12=332 D 0:04, or 4%. Consider the effect on a pitch
pipe, which is set to produce a single musical note. We will see in the next section
that the frequency of the sound produced by a pitch pipe is proportional to the wave
velocity. Thus, the frequency will increase by close to 4%. In Chap. 11, we will
see that this change in frequency corresponds to about 3=5 of a semitone interval.
Thus, a musical note of A will change to a note close to A#. For this reason, wind
instrumentalists must tune their instrument as their breath heats up the air within –
if at all possible.
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3.6 Standing Waves in an Air Column

Consider a long pipe, that is, one whose diameter is much less than its length `,
and which is open at both ends to the outside air. The pipe is thus filled with air, so
that we have a column of air. It is possible to excite modes of vibration, standing
waves, in a column of air.6 These standing waves are the source of sound as a result
of the variations of the pressure that the air column exerts on the air outside the
column. A standing wave consists of a sinusoidal pattern of the sound pressure,
whose amplitude oscillates sinusoidally in time, as in the case of a standing wave
along a stretched string. In essence, air rushes in and out of the two ends of the pipe.
See Fig. 3.8.

The air displacement has an antinode at an open end of a pipe. A small amount
of air rushes in and out of the pipe. In addition, because of the huge volume of
outside air, the outside air acts like a cushion that prevents the pressure at an opening
from being different from that of the outside air. The sound pressure has a node at
an open end of the pipe.

In the case of the fundamental mode, there is no motion of air at the center.
That is, the displacement has a node at the center. Correspondingly, the density and,
hence, pressure are maxima there. In other words, the sound pressure and density
have an antinode at the center. The variation of the sound pressure with position in
the pipe is thus the same as that for the displacement of a vibrating string with fixed
ends, as seen in Fig. 3.9.

Analysis of the standing wave vibrations of a pipe leads to the same formula for
the fundamental frequency as that for the string, namely

f1 D v

2`
; (3.10)

where v is the wave velocity, here the speed of sound in air.
Looking beyond the fundamental mode, the mode frequency spectrum is a

harmonic series, as with the string (see (2.26)):

f1 D v

2`
; f2 D 2

v

2`
D v

`
; f3 D 3

v

2`
; f4 D 4

v

2`
D 2v

`
; : : :

(3.11)

Fig. 3.8 Motion of air in a pipe for the fundamental

6We have restricted our attention to pipes with a relatively small diameter only because in this case
the frequency spectrum of the modes is a harmonic series. The larger the ratio of the diameter to
the length, the greater the deviation of the spectrum from a harmonic series.
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Fig. 3.9 Wave patterns of the
sound pressure and sound
density for the first three
harmonics of an open pipe

or

fn D n
v

2`
; n D 1; 2; 3; 4; : : : (3.12)

Sample Problem 3-1

Consider a person playing a flute that is open at both ends, having a
length of 60 cm, with air at a temperature of 20ıC. Find the fundamental
frequency.

Solution
Recall that we found that the speed of sound air at 20ıC is 344 m/s.
Hence

f1 D v

2`
D 344

2.0:60/
D 287 Hz:

Now suppose that the temperature increases to 30ıC by virtue of a person’s warm
breath. The 10ı increase in temperature leads to an increase of the speed of sound
by 0:6.10/ D 6 m/s, that is, to 350 m/s. The new fundamental frequency is then

f1 D 350=2.0:60/ D 292 Hz:
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Alternatively, the calculation can be carried out in this illuminating way: The
change in the frequency is given by �f and can be expressed as

�f D �v

2`
; (3.13)

where �v is the change in the speed of sound. Then

�f1

f1

D �v=2`

v=2`
D �v

v
: (3.14)

This equation tells us that the relative change in the frequency is equal to the
relative change in the speed of sound. Correspondingly the percent changes are
equal. In our problem, the relative change in speed is 6=344 D 0:017, so that the
relative change in the frequency is also 0:017. The original frequency is 287 Hz.
Hence the change in frequency is 0:017.287/ D 4:9 Hz and the new frequency is
287 C 4:9 D 292 Hz.

What is the benefit of going through this alternative approach? It is the following:
The relative change in frequency, here 0:017, holds for any pipe, whatever its
length, as well as for any particular mode. Thus, we need not know the original
length of the pipe to determine the effect of a temperature change. Furthermore, as
we will see in Chap. 11, the relative change in frequency is directly related to the
change in pitch. For example, a change of 6% corresponds to a half tone.

An aside: An increase in temperature will also lead to an increase in the length
of the pipe. The actual increase depends upon the material out of which the pipe
is made. That increase is minuscule. For steel, it amounts to a relative change of
only one part in 100;000 per ıC, or one part in 10;000 (0:01%) for the temperature
increase of 10ı in our above problem. This increase in length would by itself lead
to a decrease in the frequency because the frequency is inversely proportional to
the length. However, that decrease is imperceptibly small.

Sample Problem 3-2

What should the length of a pipe be to obtain a fundamental frequency
of 20 Hz, with air at 20ıC?

Solution
We first note that

f1 D v

2`
�! ` D v

2f1

: (3.15)

Thus, given a speed of 344 m/s, we obtain

` D 344=2.20/ D 8:6 m � 28 ftŠ
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Fig. 3.10 A pulse along a
string fixed at both ends

3.6.1 Standing Waves in a Closed Pipe

One could use a 28 ft organ pipe to produce a 20 Hz note. However, often such a
length is quite unwieldy. How can one avoid it? The solution lies in using a pipe
which is open at one end but closed at the other. We will refer to such a pipe as a
closed pipe, even though one end of such a pipe is open. We will refer to a pipe that
is open at both ends as an open pipe.

At the closed end of a closed pipe, the air cannot move. Therefore, the displace-
ment of air flow has a node. On the other hand, the density has a maximum variation
and therefore has an antinode. Analysis leads to the result that the fundamental
frequency of a closed pipe is half that for an open pipe of the same length.

Below we present a simple way of understanding this result. It is based on the
way in which a pulse of sound is reflected off an open end and a closed end of a
pipe. The fundamental frequency is the same as the frequency of a pulse that moves
back and forth down the length of a pipe.

We start by considering a pulse along a taut string, that is fixed at both ends. See
Fig. 3.10. The figure depicts the displacement of the string at various times. We note
that the direction of the displacement is reversed upon reflection off an end. A cycle
requires but two traversals of the pulse along the length of the string.

Examine the figure very carefully. You will note that the reflected pulse has a
pattern that differs from the incident pulse in two ways: First, the pulse is flipped
upside down. Second, the steeper side of the incident pulse is on the right, while the
steeper side of the reflected pulse is on the left. Thus, the front of the incident pulse
remains the front of the reflected pulse.

The distance traveled by the pulse in one cycle is 2`. The corresponding
frequency is then

f D v

2`
: (3.16)

Now we return to the behavior of a pulse in a pipe. When a condensation travels
down a pipe and reaches an open end, the air rushes out and the reflected wave
is a rarefaction. If the condensation reaches a closed end, the reflected wave is a
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Fig. 3.11 A pulse along a
pipe open at both ends

condensation. On the other hand, when a rarefaction travels down a pipe and reaches
an open end, the air rushes in, so that the reflected wave becomes a compression.
If the rarefaction reaches a closed end, the reflected wave is a rarefaction. (See
Fig. 3.11.) Thus, the spectra of a taut string fixed at both ends and an open pipe
are both harmonic series.

The distance traveled by the pulse in one cycle is 2` so that the frequency is

f D v

2`
: (3.17)

On the other hand, when a sound pressure pulse is reflected off a closed end,
its character is not changed. A condensation is reflected as a condensation and
a rarefaction is reflected as a rarefaction. The result is that a cycle requires four
traversals and the fundamental frequency is half that of the open pipe. See Fig. 3.12.

Correspondingly, for a given frequency, we would need only half the length of
pipe, or 14 ft for our problem.

The distance traveled by the pulse in one cycle is 4` so that the frequency is

f D v

4`
: (3.18)

The frequency spectrum of a closed pipe can be shown to consist of all the odd
harmonics of the fundamental frequency, that is

f1 D v

4`
; f2 D 3

v

4`
; f3 D 5

v

4`
; f4 D 7

v

4`
; : : : (3.19)

Thus, for a 14-ft pipe and sound velocity of 345 m/s, the fundamental frequency
will be 20 Hz. The overtones will be

3 � 20 D 60 Hz; 5 � 20 D 100 Hz; 7 � 20 D 140 Hz; : : :
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Fig. 3.12 A pulse along a
pipe open at one end but
closed at the other

Table 3.1 Summary of pipe
properties and their
behavior

Parameter Open end Closed end

Sound pressure Node Antinode
Sound density Node Antinode
Displacement Antinode Node

Fig. 3.13 Wave patterns of the sound pressure, sound density, and displacement for the fundamen-
tal and the first overtone for both the open pipe and the closed pipe

In Table 3.1, we summarize the conditions that hold at the boundaries of a
vibrating air column for the three parameters: sound pressure, sound density, and
displacement of fluid.

In Fig. 3.13, we display two graphs for each of the following: the fundamental
and the first overtone, for both an open pipe and a closed pipe. One graph displays
the variation of sound pressure ps and change in density �s due to the sound wave;
the other graph displays the displacement y of the gas.
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3.6.2 End Correction for Modes in a Pipe

The formulas that we have exhibited for the frequencies of modes in open and closed
pipes are in fact approximations that hold to the extent that the length ` of a pipe is
much longer than its radius R, that is, when ` � R. A better approximation is to
replace the length ` in the formulas so as to include so-called end corrections: For
each open end, we add 0:3R to `.

For a closed pipe, which has one open end, the frequencies are

f1 D v

4.` C 0:3R/
; f2 D 3

v

4.` C 0:3R/
; : : : : (3.20)

However, for an open pipe, which has two open ends, the frequencies are

f1 D v

2.` C 0:6R/
; f2 D 2

v

2.` C 0:6R/
; : : : : (3.21)

3.7 Magic in a Cup of Cocoa��

Suppose you make yourself a cup of cocoa, mixing the cocoa powder in with hot
water. You stir well and then tap the top of the cup. You will hear a sound with
a well-defined pitch. Now you tap the top repeatedly. You will find that as time
progresses, the pitch of the sound rises steadily so much so that the final maximum
pitch corresponds to more than double the original frequency. If you stir the cocoa
you can repeat the above procedure with the same consequences. The question is
why does this happen?

We can quickly guess that the sound corresponds to a mode of vibration of sound
within the volume of cocoa. This can be checked by noting that the empty cup
produces no sound in the range of the sound above. The frequency depends upon the
shape of the volume – which does not change – and the velocity of sound. Therefore,
we surmise that the effect of stirring the cocoa lowers the velocity of sound.
Two possibilities present themselves: Either the stirring mixes up microscopic
particles of undissolved cocoa or the stirring produces microscopic bubbles of air
within.

Let us focus first on the cocoa particles as a possible explanation. We recall that
the sound velocity depends upon the ratio of the bulk modulus and the mass density.
This ratio must therefore change by a factor of 4 to account for a doubling of the
frequency! The particles would increase the average density of liquid, thus lowering
the sound velocity; that is a good sign. However, the concentration of particles is
small. (Remember that you typically put into the cup about two tablespoons in
8 oz of water and the cocoa powder is fluffy so that it takes up much less than two
tablespoons.) Therefore, the effect of increased density is much too small to account
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for the observations. Moreover, the relatively higher bulk modulus compared to that
of water, would increase the sound velocity. We therefore conclude that the stirring
up of cocoa particles is not the explanation.

We next focus on the possibility that stirring produces microscopic air bubbles,
which eventually rise and leave the cup. Their presence would lower the average
density and therefore raise the frequency – but only by a small amount because of
their low concentration. However, they have a much lower bulk modulus, by a factor
of about 100,000! Furthermore, when a sound wave is compressing the cocoa over
a typically volume of about h̃alf a wavelength, the fractional change in volume is
extremely small. As a consequence, all of this reduction in volume can be taken up
by the small volume of bubbles even if the bubbles take up a small fraction of the
original volume. The effective bulk modulus of the cocoa is then dominated by the
bubbles. It can be shown that all we need is a volume of bubbles equal to one part
in 1,000 to change the frequency by a factor of 2!

With all this descriptive and semi-quantitative analysis, how can we be confident
that we have arrived at the correct explanation? The answer is that a detailed theory
leads to quantitative agreement with experimental observations. This is the final test
in our hypothesis.

3.8 Terms

• Adiabatic change
• Ångstrom
• Atmospheric pressure
• Boundary condition
• Bulk modulus
• End correction
• Isothermal change

• Open-closed pipe
• Open-open pipe
• Pressure (force per area)
• Sound density change
• Sound pressure
• Standard temperature and pres-

sure (STP)

3.9 Important Equations

Pressure defined:

p D F

A
: (3.22)

Fundamental relation between wavelength, frequency, and wave velocity:

� D v

f
(3.23)
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Bulk modulus defined:

�V

V
D ��p

B
: (3.24)

Speed of sound in an isotropic material:

v D
s

B

�
: (3.25)

Speed of sound in air:

v
�m

s

�
D 332 C 0:61 � temperature .ıC/: (3.26)

Frequency spectrum for a pipe that is open at both ends:

f1 D v

2`
; f2 D 2

v

2`
D v

`
; f3 D 3

v

2`
; : : : : (3.27)

or

fn D nv

2`
; n D 1; 2; 3; 4; : : : : (3.28)

Frequency spectrum for a pipe that is closed at one end:

f1 D 1
v

4`
; f2 D 3

v

4`
; f3 D 5

v

4`
; f4 D 7

v

4`
; : : : : (3.29)

3.10 Problems for Chap. 3

1. Find the force acting on an area of dimensions 300�400 at the bottom of the deepest
part of the Pacific Ocean, at 10;000 m.D 10 km/, where the water pressure is
1,000 atm.

2. What is the “sound pressure”?
3. What is the effective restoring force with respect to the velocity of a sound wave?
4. Find the mass and weight (in lbs.) of the volume of air in a room with the

dimensions 4�5 � 6 m.
5. The ear is most sensitive to sinusoidal sounds (“pure tones”) having a frequency

of about 3,000 Hz. Calculate the wavelength of a sound wave with this frequency
if the wave is traveling in air with a sound velocity of 340 m/s. Calculate the
wavelength if the sound wave is traveling in water with a speed of 1,400 m/s.

6. Calculate the sound velocity in steel, whose bulk modulus is 1:4 � 106 atm and
mass density is 7,900 kg/m3.
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7. An open cylindrical pipe is 0.05 m long. If you ignore the end correction factor,
what would be the frequency of the fundamental and the first overtone? Assume
a temperature of 15ıC. Repeat the above for a closed (half-open, half-closed)
pipe.

8. A pipe is sounded at room temperature (20ıC). It is observed that in the range
1,000–2,000Hz, the pipe can be made to oscillate only at the frequencies 1,000,
1,400, and 1,800 Hz.

(a) Is the pipe an open or a closed pipe?
(b) Based on your answer, what is the length of the pipe?

9. The Helmholtz Resonator
Have you ever blown over the top of an open soda bottle? The sound is like a
hoarse human voice. The bottle is acting like a Helmholtz resonator, named
after Hermann von Helmholtz7 who first studied this device. A real bottle with
air within has many modes of vibration associated with the motion of air –
standing waves that are analogous to waves in a pipe. On the other hand, the
so-called Helmholtz resonator refers to a very specific mode wherein the air that
is concentrated in the mouth of the bottle moves into and out of the bottle. It is
analogous to the so-called air resonance of a violin that involves air moving into
and out of the interior of the body of a violin through its f-holes.

We see in Figs. 3.15 and 3.16 an actual Helmholtz resonator followed by a
schematic of a simple model of a Helmholtz resonator.

The actual shape of the bottle is not relevant; all that matters is that there is
a narrow mouth whose volume is much less than the volume V of the bulk of
the bottle. The mass of air that oscillates is highlighted in a dark gray shade. The
air in the narrow mouth of the bottle acts as the mass of the oscillator, while the
bulk of the air in the bottle acts as the spring constant. Note that the body of air
within a stringed instrument such as a violin acts like a Helmholtz resonator. The
corresponding mode of vibration is called the main air resonance of the stringed
instrument.

Three geometrical parameters determine the frequency: the volume V of the
body of air; the area A of the mouth; and the length `. The fourth parameter is the
speed of sound in air, v. If the radius of the mouth is much less than the length `

of the mouth, the frequency of a Helmholtz resonator is given by

f D v

2�

r
A

V `
: (3.30)

7We will see Helmholtz’s name later in the text in connection with his study of hearing. He is the
inventor of the ophthalmoscope that is used to examine the interior of the eye. He is also famous
for his major contribution in the development of the Principle of Conservation of Energy, to be
discussed in Chap. 4.
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Fig. 3.14 Hermann von
Helmholtz (photo credit:
http://en.wikipedia.org/wiki/
Hermann von Helmholtz)

Fig. 3.15 An actual
Helmholtz resonator (photo
credit: http://en.wikipedia.
org/wiki/ Hermann von
Helmholtz)

For a derivation of this result see below.

(a) Suppose that a bottle has a volume of one liter D 1000 cm3, a mouth area of
2.4 cm2, and a mouth length of 3.0 cm. Given a speed of sound 340 m/s, find
the frequency.

(b) The mouth for a violin are its f-holes. Suppose that their combined area is
5.0 cm2 and that the thickness of body ` of the wood is 3.0 mm. Finally,
suppose that the volume of the body is 1,800 cm3. Given a speed of sound
340 m/s, find the frequency. (Note that the Helmholtz formula assumes rigid
walls; the flexibility of the walls of a violin reduces the actual frequency from
the value calculated from the formula.)

http://en.wikipedia.org/wiki/ Hermann_von_Helmholtz
http://en.wikipedia.org/wiki/ Hermann_von_Helmholtz
http://en.wikipedia.org/wiki/
http://en.wikipedia.org/wiki/
Hermann_von_Helmholtz
Hermann_von_Helmholtz
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Fig. 3.16 A schematic
of a model of a Helmholtz
resonator

3.10.1 Derivation of the Helmholtz Formula

The mass m that oscillates is given by

m D �A`; (3.31)

where � is the mass density of the air. We show in the figure this mass having moved
upward by a small amount y.

In equilibrium, the pressure inside the bottle is equal to the pressure outside the
bottle. The force downward on this mass is balanced by the force upward by the
air inside the bottle. As a result of the motion of the mass upward, the pressure in
the bottle is reduced, resulting in a net force downward – or a restoring force for the
displaced mass. Since this force will be found to be proportional to the displacement,
the system obeys Hooke’s Law and the mass oscillates like an SHO. Further details
follow below.

The volume of the air in the bottle properly increases by V D Ay. This increased
volume leads to a decreased pressure, given by (3.5):

�p D �B
�V

V
D �B

r
Ay

V
: (3.32)

As a consequence, there is a net force on the mass m given by

F D �pA D �BA2

V
y: (3.33)

Comparison with Hooke’s Law, F D �ky, where k is the spring constant, shows
that the oscillator of the Helmholtz resonator has a spring constant given by

k D BA2

V
: (3.34)
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Using the equation for the frequency of an SHO

f D 1

2�

r
k

m
: (3.35)

we obtain a frequency

f D 1

2�

r
k

m
D 1

2�

s
BA2=V

�A`
D 1

2�

s
B

�

r
A

V `
: (3.36)

Equation (3.7), v D p
B=�, leads to

f D v

2�

r
A

V `
: (3.37)





Chapter 4
Energy

We are all aware that electricity is needed to operate an audio amplifier. We
casually say that we cannot get something for nothing. We pay the electric company
an amount that is based on the number of kilowatt-hours of electricity used.
In fundamental physics terms, electricity is a form of energy that is needed to
power and operate an amplifier. The expenses of the electric company include the
production of electrical energy from other forms of energy and the transmission of
this form of energy from the electrical generator plants to your home.

Amplifiers are rated by the number of watts output per channel. The Watt is a
unit of power, which expresses the rate of energy exchange. A certain fraction of
this output of energy is associated with the sound waves emitted by the loudspeakers
of the audio system. We can make similar observations regarding light bulbs, which
are powered by electricity.

The output from a loudspeaker is not the only factor that determines how loud a
sound we hear. Our distance from the loudspeaker matters too. The closer we are to a
speaker, the louder the sound. This statement is merely a qualitative one: Loudness
is a subjective parameter; not only does it depend upon the individual, but also it
cannot be given a numerical value. Nevertheless, there exists an objective physical
parameter, intensity, that can be used as a reproducible reference standard and is
directly associated with loudness. Intensity reflects the concentration of power
over space.

In describing vibrations of strings and pipes, we assumed for simplicity that
once excited, vibrations would last forever. We recognize that in real systems,
vibrations will die out unless they are sustained by excitation from without. This
phenomenon of attenuation is fortunate: for example, in its absence our ears would
be overwhelmed by all the sounds that have been produced in the past! Nevertheless,
it is reasonable to ask where all the “action” connected with sound has gone. It could
not merely disappear.

We sometimes ask this question in the context of money flow. Money changes
hands. Money is often converted from one currency to another. Were it not for
the printing of money by governments (and counterfeiters) the amount of money
would remain constant. Similarly, we observe changes of various sorts in physical
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systems. Is there something about these systems that is nevertheless constant and
would allow us to make a check on our measurements so that we can discover
possible errors in the measurements. The answer is yes. Generally, the physical
quantity known as energy is a measuring stick for keeping our accounts straight,
as we will see. In the context of sound that dies out, the energy associated with
the sound is replaced by what is known as thermal energy. In this chapter, we will
study the physical parameter called energy, along with its related parameters, power,
intensity, and attenuation. These parameters are necessary for providing us with an
objective means of characterizing sound and light, so that we can better understand
and appreciate our subjective experience.

4.1 Forms of Energy and Energy Conservation

Over the past 15 years or so, there has been much talk of an energy crisis. People
talk about the need to conserve energy. And yet, there is a fundamental principle
of physics known as the Principle of Conservation of Energy, that is, energy
is automatically conserved, whatever we do! How can we reconcile these two
contradictory claims?

The answer is simple: there are many different forms of energy. One can assign
a numerical value to the amount of energy present among the various forms. The
Conservation of Energy Principle states that whereas the amounts of each form of
energy can change, the sum total of all forms of energy is constant. In other words,
any amount of a given form of energy that is lost is replaced by a net increase
in amounts of the other forms. Two systems can exchange energy; in the exchange
process, the forms of energy may change. Nevertheless, whatever energy one system
gains the other system must lose. The call to conserve energy is really a call to
conserve those forms which are important to us.

We will be using the Joule as the preferred unit of energy in order to make
direct use of the fundamental equations of physics. The “Joule” is named after
James Prescott Joule, who identified heat as a process whereby thermal energy
is transferred between one material and another. There are a number of units of
energy in common use, depending upon the context. Some are listed in Table 4.1
along with their conversion to Joules. (Recall our comments earlier in the text on
the need to use a consistent set of units.)

Table 4.1 Units of energy Units of energy Number of joules

Joule (J) 1

Kilowatt-hour (kWh) 3:6 � 106 D 3;600;000

Food calorie D kilocalorie
(kcal or Cal) 4;200

British thermal unit (BTU) 4:0

Erg (erg) 1:0 � 10�7

Electron-volt (eV) 1:6 � 10�19
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4.1.1 Fundamental Forms of Energy

1. Kinetic Energy (KE) – energy associated with the motion of a massive object

KE D 1

2
mv2; (4.1)

Here m is the mass of the object and v is the speed.

Sample Problem 4-1

A 10-tonne truck (1 tonne D 1;000 kg � 2;200 lbs) is moving at a speed
of 10 m/s (1 m/s D 3.6 km/h � 2:2 mph). What is its KE?

Solution

KE D 1

2
.10 � 1;000/.10/2 D 100;000 J D 100;000 J:

Sample Problem 4-2

What if the speed of the truck is doubled to 20 m/s?

Solution
Because KE is proportional to the square of the speed, the KE is
quadrupled to

1

2
.1;000/.20/2 D 400;000 J:

Sample Problem 4-3

Find the KE of a 100,000 tonne oil tanker that is moving at a speed of
2 m/s.

Solution

KE D 1

2
.10;000 � 1;000/.2/2 D 20;000;000 J:
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2. Potential Energy (PE) – energy associated with changing configurations of
objects. This definition is bound to be obscure. Examples will help.

(a) Potential energy of a stretched or compressed spring
The amount is given by

PE D 1

2
ky2; (4.2)

where k is the spring constant and y is the displacement. Note that the PE is
positive whether the spring is stretched (y > 0) or compressed (y < 0).

Sample Problem 4-4

Find the PE of a spring which has a spring constant 25 N/m and
a displacement of 2 cm.

Solution

PE D 1

2
.25/.0:02/2 D 0:005 J:

Sample Problem 4-5

Find the PE of the spring of the previous problem if the
displacement is doubled to 4 cm.

Solution
Because the PE is proportional to the square of the displacement,
the PE is quadrupled to 4 � 0:005 D 0:020 J.

(b) Gravitational Potential Energy Suppose I lift an object and then release it
from rest, allowing it to fall. It will accelerate, picking up kinetic energy. We
regard the increased elevation as increasing the potential energy of the object
in connection with the force of gravity of the earth. This potential energy is
replaced by kinetic energy as the object falls.

A change in elevation results in a change in PE, which we symbolize by
�PE. Theory leads to the relation

�PE D Weight � .Change in elevation/: (4.3)

If we let w be the weight and h the change in elevation we have

�PE D wh: (4.4)

For example, if an object of weight 200 Newtons (�44 lbs) is raised by
3 m, its PE increases by 200 � 3 D 600 J.
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Fig. 4.1 Climbing a mountain (photo credit: http://vceoes.wikispaces.com/file/view/rock
%2520climbing.jpg/41719235/rock%2520climbing.jpg)

Now suppose that a person weighing 150 lbs climbs a mountain, with an
increase in elevation of 4,000 m. See Fig. 4.1 to give you a feeling for this
activity.

What is his increase in PE? The stress on his body would lead us to believe
that the PE change must be enormous. To the contrary, we will find that the
total energy expended in climbing is many times greater than the change in
PE. The process is incredibly inefficient.

To solve this problem, we need to relate a weight in lbs to a weight in
Newtons. Our starting point will be the fact that a mass of 1 kg is equivalent to
a weight of 2.2 lbs. Why are mass and weight related? What is the difference
between the two?

Mass is a measure of the quantity of matter. It is independent of where
an object is located. On the other hand, the weight of an object is the force

http://vceoes.wikispaces.com/file/view/rock%2520climbing.jpg/41719235/rock%2520climbing.jpg
http://vceoes.wikispaces.com/file/view/rock%2520climbing.jpg/41719235/rock%2520climbing.jpg
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of gravity by the earth on the object. You may have heard reference to the
weight of an object when situated on the surface of the moon or another
planet. We would then be referring to the force of gravity of these bodies
on the object. For example, a 60-pound object on earth weighs 10 lbs on the
moon. Thus, the weight of an object depends upon the body exerting the force
of gravity. Isaac Newton showed that the weight of an object is proportional
to its mass m. The proportionality constant is the acceleration that an object
would experience in falling in the absence of air resistance. Such a fall is
referred to as “free fall.” The acceleration under free fall is referred to as the
“gravitational acceleration constant” and is given the symbol g. Its value is

g D 9:8
m

s2
D 32

ft

s2
: (4.5)

Then we write
weight D w D mg: (4.6)

The change in PE due a change in elevation is then given by

�PE D mgh: (4.7)

Sample Problem 4-6

Find the change in PE if a 10 kg object is raised by an elevation
of 2 m.

Solution

�PE D mgh D 9:8.10/.2/ D 196 J:

Back to the Mountain Climbling Problem
We need to express the weight 150 lbs in Newtons. To obtain the conver-

sion, we can use the two corresponding values m D 1 kg and w D 2:2 lbs. A
mass of 1 kg has a weight of

w D mg D 1 � 9:8 D 9:8 Newtons D 2:2 lbs:

Therefore
1 Newton D 22=9:8 D 0:22 lbs:

or
1 lb D 4:5 N:
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Therefore
150 lbs D .150=0:22/ N D 4:5 � 150 D 680 N:

The change in PE of the mountain climber is then

�PE D wh D 680 � 4;000 D 2;700;000 J:

Thus, we have come up with the amount of PE needed for the climb but most
readers have little sense as to what this number 2,700,000 J means. We need
to express the PE in units that are more familiar. We will do so later on in the
chapter when we discuss the food calorie.

(c) Later on in this text, we will discuss the force between electric charges. There
is an electrostatic potential energy associated with this force that depends
upon the distance between the charges.

3. Electromagnetic Radiation – This form of energy will be discussed further in
Chapter 5, ELECTRICITY, MAGNETISM, AND ELECTROMAGNETIC WAVES. For
the time being, we should note that it is this form of energy that the Sun transmits
to us on earth and that is our utterly basic source of energy.

4.1.2 “Derived” Forms of Energy

The reader might wonder why electrical energy or nuclear energy was not included
in the list of fundamental forms of energy. The reason is that these terms refer to
energy that constitutes a mixture of what physicists regard as fundamental forms of
energy. We list some examples below:

• Chemical Energy – energy associated with the KE and PE that is directly
connected with the interaction of atoms in their binding together to form
molecules.

• Electrical Energy – energy associated with the KE of electrical charge in electric
currents or chemical energy stored in electric batteries. By means of chemical
reactions, the chemical energy in a battery can be harnessed so as to produce
electrical energy.

• Nuclear Energy – energy associated with the KE and PE of protons, neutrons,
and lesser known particles, that is directly connected to their binding together to
form the nuclei of atoms.

• Thermal Energy – energy associated with the random positions and velocities
of atoms and molecules in a macroscopic body. Both kinetic energy and potential
energy contribute to thermal energy.

Objects of all sizes can have kinetic energy and/or potential energy. Objects that
are visible are referred to as macroscopic bodies. Taken together, the kinetic energy
and potential energy of a macroscopic body is referred to as Mechanical Energy.
That is,

Mechanical Energy D Kinetic Energy C Potential Energy
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A macroscopic body consists of a huge number of atoms that move at velocities
with great speeds and in random directions. In addition, the atoms interact with
each other. As a consequence, there is kinetic energy and potential energy at the
microscopic (here, atomic) level. This energy is called thermal energy. An increase
in thermal energy is accompanied by an increase in the temperature. The common
term for thermal energy is heat.

Consider a standing wave in a pitch pipe. As time progresses, the sound emitted
from the open ends carries away energy. At the same time, the standing wave within
the pipe loses amplitude and wave energy due to attenuation – the wave energy is
replaced by thermal energy.

4.1.3 The Energy of Cheerios

Cheerios cereal has 110 Cal per oz. This means that when one oz. of Cheerios is
digested, the chemical changes provide the body with 110 Cal of energy in a form
that can be used by muscles to provide the body with mechanical energy. In fact,
most of the chemical energy is replaced by thermal energy.

The chemical changes that take place in association with this process occur at the
molecular level. Studies reveal that the typical change in the energy of a molecule
is on the order of a few electron volts (eV ). From this fact it is possible to estimate
the number of molecules of Cheerios in an ounce of Cheerios. See Problem 4.2, at
the end of the chapter.

Sample Problem 4-7

Remember the mountain climber whose PE rises by 2,700,000 J in
climbing an elevation of 4,000 m. What is the weight of Cheerios that
she has to eat to supply this PE, assuming 100% efficiency?

Solution

Weight of Cheerios D 2;700;000 J

.110 Cal=oz/.4;200 J=Cal/
D 5:8 oz: (4.8)

Only a few bowls of Cheerios are necessary! It is amazing how little Cheerios
would be needed if the conversion from chemical to PE were 100% efficient. We
see that mountain climbing is incredibly low in efficiency. Most of the additional
food one must consume is wasted and goes into thermal energy.

Diet-conscious people have a tendency to read carefully the number of calories
per gram for every food they encounter. The fact is that the variation is not very
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great once we take into account the fractions that are fat, protein, or carbohydrate.
This is so because there is very little variation in the Cal=g for pure samples of
these foods:

• Pure oils: 9 Cal/g�270 Cal/oz
• Pure protein or carbohydrate: 4 Cal/g�120 Cal/oz

Thus, digesting a gallon (D 128 fluid oz �128 oz weight) of oil provides
128 � 270 D 35;000 Cal of thermal energy plus mechanical energy. Since digestion
produces essentially the same chemical changes in oil as does burning – which
represents a chemical reaction of a substance with oxygen (called oxidation) –
burning one gallon of oil produces 35,000 Cal of thermal energy, which can be used
to produce mechanical energy and/or electrical energy.

Question: How many gallons of oil would provide the energy needed to make that
mountain climb?

A heat engine is a device that “extracts” mechanical energy or electrical energy
from thermal energy. The Second Law of Thermodynamics informs us that a
complete conversion from thermal energy to mechanical energy and/or electrical
energy is impossible. Current heat engines do not even provide us with the
maximum that this law provides. To get an idea about what is currently realized,
consider that typical electric power plant is about 40% efficient. Suppose it were
to burn oil to run the heat engine. Note that from one gallon of oil we obtain
35;000 Cal D 1:5 � 108 J D 40 kWh of thermal energy. This means that burning
one gallon of oil can produce about 0:40 � 40 kWh D 16 kWh of electrical energy.

4.2 The Principle of Conservation of Energy, Work, and Heat

Suppose that the above 10-kg object is released from rest at its elevation of 2 m from
ground level. According to the Principle of Conservation of Energy, the object will
accelerate downward, acquiring KE as it loses PE. Its loss in PE is compensated
for by its increase in KE. When it reaches ground level, its KE must equal 196 J.
We can therefore calculate its speed just before it hits the ground as follows:

We set

KE D 1

2
mv2 D 196 J:

Then

v2 D 2KE=m D 2

�
196

10

�
D 39:2:

Thus
v D p

39:2 D 6:3 m=s:
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It is because one can retrieve KE in this way that the word “potential” is used to
refer to the latent nature of PE.

We have indicated that the changes in the chemical energy of the food, known as
metabolism, are the origin of the increase in PE associated with a person’s raising an
object. We say that the person does work in raising the object. In the framework of
physics, work is a process whereby energy is transferred from one body to another
through the application of a force and the motion of the body. The changes in
chemical energy allow the person to exert that force and move the body.

On the other hand, when the temperature of a person’s body rises above the
temperature of the surroundings, thermal energy will be transferred from the person
to the surroundings. This heat transfer is a second process whereby energy is
transferred from one body to another.

4.3 Energy of Vibrating Systems

4.3.1 The Simple Harmonic Oscillator

A vibrating SHO has both KE and PE. Generally, its total vibrational energy E is
given by

E D KE C PE D 1

2
mv2 C 1

2
ky2: (4.9)

As the SHO vibrates, the displacement and speed are constantly changing, so
that the respective amounts of KE and PE are constantly changing. Nevertheless,
the total energy is constant. This result is a simple confirmation of the Conservation
of Energy Principle. Let us apply the equation to an SHO which is vibrating with an
amplitude A and a period T . In Fig. 4.2, we display the displacement as well as the
velocity, as they vary with time over one cycle.

The displacement y varies from �A to CA. The velocity ranges from �vm to
Cvm. We will refer to vm as the velocity amplitude; it is the maximum speed.

In Fig. 4.3, we display the PE and KE vs. time over a cycle. Note that when the
SHO is in its equilibrium configuration, the kinetic energy is a maximum while
the potential energy is zero. On the other hand, when the SHO is farthest from
its equilibrium configuration, the kinetic energy is zero while potential energy is a
maximum. Also, we see that the PE and KE both vary from zero to E, in just such
a way that their sum is the constant E.

Now we will see how we can relate the displacement amplitude A to the velocity
amplitude vm. Initially, the object is at rest, so that there is no KE. All the energy
resides in PE:

E D PE D 1

2
kA2: (4.10)
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Fig. 4.2 Displacement and velocity of an SHO vs. time

Fig. 4.3 Kinetic energy
and potential energy of an
SHO vs. time

On the other hand, when the object is at the equilibrium position (y D 0), one
quarter of a cycle later, there is no PE. All the energy resides in KE:

E D KE D 1

2
mvm

2: (4.11)

The two expressions for the total energy E, (4.6) and (4.7), are equal, so that

E D 1

2
mvm

2 D 1

2
kA2

mvm
2 D kA2: (4.12)

Thus,

vm D
r

k

m
A D 2�fA D 2�

A

T
: (4.13)

Now recall that in Sect. 2.8 we estimated the velocity amplitude as 4A=T ; this is
the average speed during a cycle. The ratio of the two expressions is 2�=4 � 1:6.
We expect the maximum speed to exceed the average speed!
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Sample Problem 4-8

Find the maximum speed (velocity amplitude) and total energy of an
SHO which has a spring constant of 100 N/m, a mass of 250 g, and an
amplitude (displacement amplitude) of 20 cm.

Solution

vm D
r

k

m
A D

r
100

0:25
.0:2/ D 4:0 m=s

E D 1

2
kA2 D 1

2
.100/.0:2/2 D 2 J:

4.3.2 Energy in a Vibrating String

Let us consider all of the processes occurring when a string is plucked. In doing
so, we will keep track of the various forms of energy involved:

• In plucking a string you do work in order to pull the string aside. That work
involves a transfer of energy from your body (stored in the form of the food that
you have eaten) to PE of the string.

• You then release the string. As it whips back toward the equilibrium, straight
configuration, it picks up speed, hence KE, and necessarily loses PE. As the
string vibrates, the amount of KE and PE oscillates, with the sum being a
constant, as long as we can neglect attenuation.

• As the string moves through the air, it does work on the air in setting the air in
motion. Sound waves are produced! The sound waves carry away energy in the
form of KE and PE. Thus, the energy of the vibrating string must decrease. Its
vibration is said to attenuate. Attenuation takes place also because of internal
friction forces within the string, as its shape keeps on changing due to the
vibration. This attenuation gives rise directly to an increase in the thermal
energy of the string. The sound waves that are produced also attenuate, being
replaced by increased thermal energy of the air.

• At any stage, the sum total of all forms of energy – your body’s chemical and
thermal energy, the string’s vibrational and thermal energy, the sound wave
energy and thermal energy of the air – is a constant.
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4.3.3 Energy in a Sound Wave

A sound wave has the same two forms of energy as an SHO or a vibrating string:
kinetic energy – associated with the motion of the medium, such as air – and
potential energy – associated with condensation or rarefaction of the medium. To
understand the origin of its potential energy, it is useful to note that it takes work
to compress a volume of gas, so that its potential energy is thereby increased.
Correspondingly, a compressed gas has the potential to do work on its surroundings.
Conversely, in rarefying a volume of gas, the potential energy of the gas is
decreased. Work would have to be done on the gas to compress it, so as to remove
the rarefaction.

For all three of the above systems, as time moves on, the two forms of energy,
potential and kinetic, vary the same way, as depicted in Fig. 4.3.

4.4 Power

Consider a traveling wave which is infinite in extent. There is no interest in the total
energy in the wave since the total energy is infinite. We can instead deal with the
amount of energy in a given length of traveling wave. The energy per unit length
of a traveling wave is proportional to the square of the amplitude,1 as in the case of
an SHO. Furthermore, the same expression holds for the energy per unit length of a
standing wave of a vibrating string or vibrating pipe.

Generally, energy is proportional to the square of the amplitude:

Energy / .Amplitude/2 (4.14)

It is often more interesting to focus on the rate at which energy is carried by
the wave past a given point along the string. This rate is equal to the rate at
which energy would be given to the string by your hand (as in Fig. 2.5) in sending
the traveling wave down the string, that is, the POWER input to the string. Why?
Because whatever energy you pump into the string with your hand must pass the
given point along the string.

We define “power” as

Power D Energy

Time interval
or P D E

�t
: (4.15)

1We can estimate the energy per unit length as follows: a unit length has a mass m D �.1/ D �.
Its average speed should be a bit less than the maximum velocity vm. Thus, its KE should be a bit
less than .1=2/mvm

2 D .1=2/�vm
2. This turns out to be the exact answer; it includes the PE too.

Of course, KE D PE D constant.
Recall that vm D 2�fA (see (4.8)). Thus, the energy per unit length is proportional to the

square of the amplitude A, as in the case of the energy of a standing wave.
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What energy E is used in this expression for power? We list some examples
below:

• Energy transferred in the case of work
• Energy delivered in the form of electrical energy
• Energy passing a given point along the string
• Energy lost due to dissipation, which involves the production of thermal energy

As we noted at the beginning of this chapter, a basic unit of power is the watt,
named after James Watt, who contributed important improvements in the design of
the steam engine:

One Watt D One Joule per second

1 W D 1 J=s: (4.16)

Another common unit of power is the horsepower (hp):

1 hp ' 746 W: (4.17)

It is important for us to be clear as to what “power” represents in physics. When
we talk about how “powerful” a person is, we are most often referring loosely to the
force that person can exert; for example, how heavy an object that the person can
carry. “Force” is different from “power.” The rate at which the person can increase
the potential energy by lifting them would express the person’s power in physics
terms.

Example 4-1

The human heart does quite a bit of work over the course of a 75-year
lifetime in pushing blood through a person’s body – enough to raise
a typical battleship 10 m upwards, if the energy could be harnessed!
The energy transferred to the blood amounts to about 20 billion Joules.
However, this work is done over such a long period of time that the
equivalent power is quite small:

Since one year D 3 � 107 s,

75 years D 75 � 3 � 107 s D 2 � 109 s:

Thus, the power of the human heart is given by

E

�t
D 20 � 109

2 � 109
D 10 W:
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Example 4-2

A 100-W light bulb consumes 100 J/s of electrical power. The electrical
energy is converted to light energy, as well as thermal energy. In fact,
only a few percent of the total is light energy.

Example 4-3

Only a small fraction of the electrical power fed into a loudspeaker is
converted to sound wave power. Most of the electrical energy is lost
to thermal energy. According to Cambridge Sound Waves Inc., their
loudspeaker had an efficiency of a mere 0:4%. That is, 1 W of electrical
power produces only 0.004 W of sound power.

Example 4-4

The horsepower unit of power is based on a study of the performance
of a real horse. In fact, horses can generate many horsepower. It is
not difficult for a person to generate one hp of work. This would be
accomplished by a person weighing 155 lbs by running up a hill and
increasing his/her elevation at a rate of 3.6 ft/s. It is understood that the
entire 1 hp is going into an increase in gravitational potential energy.

Power of Various Sources of Sound

In Table 4.2, we present the sound power produced by a number of musical
instruments. Except for the cases so indicated, the maximum power is given. The
range of powers is quite extraordinary, the ratio of the largest to the smallest value
being 70=0:0000038 � 2 � 107, or 20 million to one! It is no small wonder that our
auditory system can be responsive to such a large range.

4.5 Intensity

Loudness and brightness are subjective, psychological experiences. They cannot
be quantified and are not scientific parameters. They both reflect the physical
parameter called intensity that is applied to both sound and light. For a given
frequency spectrum, we can generally expect loudness and brightness to increase
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Table 4.2 Power of sound
sources

Source of sound Power (W)

Orchestra of 75 instruments 70

Bass drum 25

Trombone 6

Piano 0:4

Average sound power of an
orchestra of 75

0:09

Flute 0:06

Clarinet 0:05

French horn 0:05

Average speech 0:000024

Softest violin passage 0:0000038

with increasing intensity. Intensity characterizes how concentrated the flow of
energy is in space. Specifically, intensity is the rate at which energy passes through
a unit area. We write

Intensity D Power

Area

I D P

A
(4.18)

which has the common units W=m2 and W=cm2.
The problems below should make the definition of intensity clear.

Sample Problem 4-9

Find the intensity of my voice, with a power of 10�3 W, which is
traveling down a pipe of radius 2 cm.

Solution

A D �r2 D �.2 � 10�2/2 D 1:3 � 10�3 m2

I D P

A
D 10�3

1:3 � 10�3
D 0:8 W=m2:
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Sample Problem 4-10

Find the intensity of a straight laser beam, with a power of 20 mW D
20 � 10�3 W and a beam diameter of 1 mm (D 10�3 m).

Solution
We have

A D �.diameter/2=4 D �.10�3/2=4 D 7:9 � 10�7 m2;

so that

I D P

A
D 20 � 10�3

7:9 � 10�7
D 2:5 � 104 W=m2:

Fact: The intensity of sunlight just above our atmosphere is known as the solar
constant and is given by 1,400 W/m2.

4.6 Intensity of a Point Source

Let us turn our attention back to the sun. We can measure the solar constant by
placing a light detector in a satellite just above our atmosphere. An interesting
question is: what is the rate at which light energy is emitted by the sun, that is,
the luminosity of the sun? The solar constant is related to the luminosity and the
distance from the earth to the sun. We expect the intensity of sunlight to increase
with increasing luminosity and to decrease with increasing distance from the sun.
We now discuss the precise relationship between the three parameters.

To an excellent approximation, the sun emits light in all directions with the
same intensity. We say that it is an isotropic source.2 An isotropic source has the
following important characteristics:

1. The intensity outside the source does not depend upon the radius of the source.
In fact, because the radius can shrink to any size whatever without a change in
intensity, an isotropic source is often referred to as a point source.

2. The intensity of a point source depends only upon the distance d from the center
of the source and its power P , and not upon the direction from the source.
Specifically, the intensity is inversely proportional to the square of the distance d .

I D P

4�d 2
: (4.19)

2The mere existence of sunspots tells us that the emission of light from the SUN cannot be perfectly
isotropic.
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Fig. 4.4 Point source

We now provide a proof of (4.19): suppose that the source has a power P . Now
consider a spherical surface of radius d , centered at the point source. The rate P at
which energy leaves the source equals the rate at which energy flows through the
sphere. Finally, the energy flows radially through this surface.

In Fig. 4.4, we have a point source at the center of a spherical surface. The power
P is the rate at which energy is emitted from the source. The rate at which energy
crosses the sphere must be P also since we have a steady state situation. The area
A of the spherical surface is 4�d 2. Equation (4.19) follows by direct substitution
from (4.18).

Sample Problem 4-11

Estimate the light intensity of a 100-W light bulb having an efficiency
of 3% at a distance of 1 m from the bulb by treating it as a point source.

Solution
light power = P D 0:03 � 100 D 3 W with d D 1 m,

I D P

4�d 2
D 3

4�.1/2
D 0:24 W=m2:

Sample Problem 4-12

The sun is 150 million km away from the earth. Find the light power
emitted by the sun.

Solution
Recall that the sun’s light intensity at the earth is 1,400 W/m2. Thus,

P D 4�d 2 � I D 4�.150 � 106 � 103/2 � 1;400 D 4:0 � 1026 W:
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Sample Problem 4-13

Suppose a loudspeaker emits sound power at 0.004 W, isotropically in
the forward direction alone. Estimate the sound intensity at a distance
of 2 m.

Solution
As an approximation, we can replace the area 4�d 2 by 2�d 2. Then

I D P

2�d 2
D 0:004

2�.2/2
D 1:6 � 10�4 W=m2:

4.7 Sound Level and the Decibel System

The range of intensities of sound that a person would perceive as sound – that is,
would detect and yet feel no pain – is enormous: from �10�12 W=m2 to �1 W=m2.
We will refer to this range of intensities as the “range of audible sound.” The ratio
of the highest to lowest intensities is 1012 D a trillion to one. Furthermore, the
loudest sound does not feel a trillion times louder than the quietest perceivable
sound. Also, doubling the sound intensity produces a change in loudness which
most people would describe as being much less than a doubling in the loudness.
Sound intensity thus does not give us a qualitative sense of loudness.3

Because of the above facts, an alternative way of expressing sound intensity
was devised, called the sound level, or sometimes sound pressure level, which
is abbreviated “SL.” The unit for sound level is the decibel, abbreviated dB, in
honor of Alexander Graham Bell, who is credited with inventing the telephone.
In order to appreciate this system, we need to first review the important properties
of logarithms.

4.7.1 Logarithms

The logarithm is a mapping of numbers in that the logarithm replaces any number
by another number. (In mathematics, a mapping is often referred to as a function.)

3The range of sensitivity and tolerance of vision to light intensities is also understood to be about
twelve orders of magnitude, from �10�10 W=m2 to �100 W=m2.
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The function depends upon the choice of base, which we choose to be ten. Some
simple examples follow:

1=1;000 ! log.1=1;000/ D log 10�3 D �3

1=100 ! log.1=100/ D log 10�2 D �2

1=10 ! log.1=10/ D log 10�1 D �1

1 ! log 1 D 0

10 ! log 10 D 1

100 ! log 100 D 2

1;000 ! log 1;000 D 3:

Generally, 10n ! log 10n D n. So much for the logarithm of powers of ten.
For integers between 1 and 10 we have:

log 2 D 0:30

log 3 D 0:48

log 4 D 0:60

log 5 D 0:70

log 6 D 0:78

log 7 D 0:85

log 8 D 0:90

log 9 D 0:95:

The logarithm of a number between one and ten can be calculated mathematically
and is available in tables and from pocket calculators.

General mathematical properties of logarithms:

log xy D log x C log y

log x=y D log x � log y Note: log.1=y/ D log 1 � log y D 0 � log y D � log y

log xy D y log x

If z D log x; x D 10z:

Examples of the logarithm of some numbers that illustrate the use of these
mathematical properties:

log 40 D log.4 � 10/ D log 4 C log 10 D 0:60 C 1 D 1:60

log.3 � 1011/ D log 3 C log.1011/ D 0:48 C 11 D 11:48:
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4.7.2 Sound Level

We will now define a quantity that is an objective complement of the sound intensity.
We define the sound level, SL, as follows:

SL D 10 log
I

10�12
: (4.20)

Let us see how we calculate the sound level.

Example 4-5

I D I0 D 10�12 W=m2:

SL D 10 log
I

I0

D 10 log 1 D 0 dB:

The intensity 10�12 W=m2 is called the reference level, being the
lowest intensity that can be heard and corresponding to a SL of 0 dB.

Example 4-6

I D 0:1I0 D 10�13 W=m2, so that I=I0 D 0:1:

SL D 10 log.0:1I0/ D 10 log.0:1/ D 10.�1/ D �10 dB:

A sound level can be negative!

Example 4-7

I D 1 W=m2,

SL D 10 log
�
1=10�12

� D 10 log
�
1012

� D 10 � 12 D 120 dB:

We note that the range of audible sound is from �0 to �120 dB. This is not to
imply that there are not people who can hear a sound that has a negative sound level.
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4.7.3 From Sound Level to Intensity

We know how to calculate the sound level from the intensity. Suppose that we know
the sound level and we want to calculate the corresponding intensity. We can invert
equation (4.20) so that:

I D 10�12CSL=10: (4.21)

Sample Problem 4-14

Suppose that the sound level is, say, 85 dB. What is the corresponding
intensity?

Solution

I D 10�12CSL=10 D 10�12C85=10 D 10�12C8:5 D 10�3:5

D 3:2 � 10�4 W=m2: (4.22)

We next describe how changes in intensities are related to changes in sound
level. 4

Sample Problem 4-15

A sound intensity is doubled, from I to 2I . Find the change in SL.

Solution
The change in SL is given by

SL � �SL D 10 log

�
2I

I0

�
� 10 log

�
I

I0

�

D 10Œlog.2I / � log I0� � 10Œlog I � log I0�

D 10 log

�
2I

I

�
D 10 log 2 D 10.0:30/ D 3 dB:

4An excellent website for appreciating changes in sound levels is http://www.phys.unsw.edu.au/�
jw/dB.html.

http://www.phys.unsw.edu.au/~jw/dB.html
http://www.phys.unsw.edu.au/~jw/dB.html
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Note

The change in SL is independent of the initial intensity I ; it depends
only upon the ratio of intensities. Generally,

�SL � SL2 � SL1

D 10 log
I2

10�12
� 10 log

I1

10�12
D 10 log

I2

I1

: (4.23)

Equation (4.23) can be “inverted”: Suppose that we know the change
in sound level �SL and want to know the corresponding ratio of
intensities. We have

I2

I1

D 10.�SL=10/: (4.24)

Sample Problem 4-16

The sound level is increased by 10 dB. By what factor has the intensity
increased?

Solution
Let I1 D initial intensity and I2 D final intensity. We seek I2=I1, given
that �SL D 10 dB. According to (4.23),

10 log

�
I2

I1

�
D �SL D 10;

so that

log

�
I2

I1

�
D 1:

Thus, I2=I1 D 10.
If �SL D 25 dB,

I2

I1

D 10�SL=10 D 1025=10 D 102:5 D 316:

We close this section by pointing out that we have assumed that the wave has a
specific frequency, and hence wavelength. What happens if we have a more complex
sound wave. An example is a wave that is produced by more than one source. The
source might produce waves that have a definite fixed phase relation. In this case,
we say the wave is coherent. Otherwise the wave is said to be incoherent. We will
discuss these situations in Chap. 7.
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4.8 Attenuation

Up to this point, we have assumed for simplicity that once a wave is established it
will last forever. In fact, we know from experience that waves die out spontaneously.
The technical term for this process is attenuation, or damping. In the case of a
string, attenuation is mainly due to the force of the surrounding air on the string.
In order to compensate for attenuation so as to keep a string vibrating, an external
excitation force on the string must be maintained. Attenuation of sound is due to the
very same intermolecular forces that sustain the wave itself. Energy is conserved
in the process of attenuation through the production of thermal energy. This aspect
of attenuation is referred to as dissipation. In this section we will discuss how we
characterize attenuation numerically.

4.8.1 Attenuation in Time

We will first deal with attenuation in time of a mode of vibration. We will focus
on the amplitude of the vibration. Its attenuation is exponential and is depicted in
Fig. 4.5.

The black curves above and below the sinusoidal blue curve together comprise
the envelope. The envelope above represents the attenuated amplitude and is shown
as a specific quantitative curve in Fig. 4.6 below.

Let us define the attenuation time T as the time it takes for the amplitude to
be reduced in half. In the figure, we have an initial amplitude of 8 units and we
have an attenuation time of 2 s. We note that after 2 s, the initial amplitude has been
cut in half – to 8=2 D 4. After an additional 2 s, amounting to a total of 4 s elapsed,
the amplitude is reduced by additional factor of 2 – to 4=2 D 2, and so on.
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Fig. 4.5 Attenuated sine wave
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Fig. 4.6 Amplitude vs. time
due to attenuation

Question: What will be the amplitude in the above example after 6 s? After 8 s?
After 10 s?

The attenuation time is different for each mode. Generally, the higher the
frequency is, the stronger will be the attenuation, so that the shorter will be the
attenuation time. This fact explains why when a string is excited in a haphazard
manner and the vibrations are allowed to attenuate, eventually one sees a pattern
of vibration very close to that of the fundamental mode, which has the lowest
frequency. Similarly, when striking a tuning fork, one often hears the fundamental
frequency, which is usually the desired frequency, masked by an overtone frequency.
Eventually, only the fundamental frequency is heard, because the fundamental mode
attenuates slowest.

We can make this point clearer from the following mathematical digression.
Suppose that only the first and second modes are excited, with initial amplitudes
A1 D 16 units and A2 D 64 units, respectively. Suppose further that the respective
attenuation times are T1 D 2 s and T2 D 1 s. In the table below, we provide the two
amplitudes, A1 and A2, at a number of times after the initial time.

Time period (s) A1 – number of units A2 – number of units

0 16 64

2 16=2 D 8 64=22 D 64=4 D 16

4 16=22 D 16=4 D 4 64=24 D 64=16 D 4

6 16=23 D 16=8 D 2 64=26 D 64=64 D 1

10 16=25 D 16=32 D 1=2 64=210 D 64=1;024 D 1=16

We see that while the ratio of the initial amplitudes A1=A2 was 1 W 4, after 10 s it
is 8 W 1. The fundamental dominates.
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Fig. 4.7 The change in the frequency spectrum of a tom–tom with time (photo source: The Science
of Musical Sound, by John R. Pierce (Scientific American Books, New York, 1983))

The behavior summarized above can be seen clearly in Fig. 4.7, wherein we see
a depiction of how the spectrum of the sound of a tom–tom changes with time after
the tom–tom is struck.

What we see is a set of many sound spectra taken one after another. Each
spectrum runs from right to left. The earliest spectrum, at the rear of the set, has
a series of many peaks, each peak reflecting the excitation of a particular mode of
the tom–tom. As time progresses, each peak decreases in amplitude. However, we
see that the higher the frequency of a mode, the faster the mode dies out. Toward
the end, only the peak of the fundamental is observable, albeit with quite a small
amplitude.

Note

We should be aware that it takes some time interval over which
the sound is sampled to obtain a single spectrum. The time interval
must be well chosen: if it is not much longer than the period of the
fundamental, the peak of the fundamental would be washed out and not
be clearly discernable. If the interval is comparable to and longer than
the attenuation times, the above spectra would not accurately reflect the
attenuation at a given point in time.
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Fig. 4.8 Response of an SHO vs. frequency – black low attenuation; blue high attenuation

The ear must also be carrying out an analysis that takes into account
this dilemma: to produce a sense of pitch, a pure tone must last long
enough to contain many oscillations. Its duration must be much longer
than the period. To hear a sense of pitch, the ear must be sampling the
sound over such a long duration of time. (That is one reason why it is
difficult to have a sense of pitch of a percussive sound having a very low
frequency and therefore a very long period.) On the other hand, since
we do sense changing pitches, the sampling time must be shorter than
the interval of time over which the pitch is changing in order to discern
that changing pitch.

4.8.2 Resonance in the Presence of Attenuation

In Chap. 2 we noted that we have resonance when we have system A disturbed by
another system B in a periodic way at a frequency equal to the frequency of one
of the modes of system A. It might have seemed that resonance requires an exact
equality of frequencies. This is not the case. Any amount of attenuation reduces
the required degree of equality. In Fig. 4.8, we see the response of an SHO to an
external force of frequency f. We see that the resonance at f D fSHO, corresponding
to x D 1, is sharper for lower attenuation. In this case, if you want a significant
response, the frequency f must be relatively very close to the frequency of the SHO.
At a higher attenuation, you can get a greater response even with a great mismatch.
It can be shown that the width of the peak is on the order of the inverse of the
attenuation time.
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Fig. 4.9 Amplitude vs. distance from source due to attenuation

There are situations when you want to drive an SHO and avoid the resonance so
that you can have a uniform response with respect to a specific range of frequencies.
This is the case in a loudspeaker which has an SHO connected to the cone that
vibrates so as to produce sound waves. Note that with modest attenuation, as we
see in the blue curve, the response is constant for low frequencies. Thus, for a
loudspeaker, you would want the frequency of the SHO to be considerably above the
range of audible sound 20 kHz and an attenuation time that is a bit greater than the
frequency so that you can avoid the resonance but leave a significant response in
the audible range.

4.8.3 Attenuation of Travelling Waves: Attenuation in Space

Suppose a steady source produces a sinusoidal wave travelling in one direction5,
such as a wave along a string or a sound wave down a very long pipe. In the absence
of attenuation, the amplitude of the wave will be constant along the length of the
wave. However, because of attenuation, the waveform will have an ever decreasing
amplitude, as shown in Fig. 4.9.

The envelope of the waveform describes an attenuation of the amplitude in space.
Numerically, the envelope is characterized by the attenuation length, which is the
distance along the wave over which the amplitude decreases by a factor of 2. The
stronger the attenuation, the shorter the attenuation length.

5It is essential to keep in mind that even in the absence of attenuation, the intensity of a wave
that is emitted by a point source will decrease according to the “inverse square law” of (4.19).
Attenuation will produce an additional contribution to the decrease in the intensity with increasing
distance from the point source.
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Fig. 4.10 Attenuation vs. relative humidity and frequency

Typically, the attenuation constant ˛L is used to characterize the attenuation
of sound through a medium. It is inversely proportional to the attenuation length.6

In Fig. 4.10,7 we see graphs of the attenuation constant of sound in air vs. relative
humidity for various frequencies of sinusoidal sound waves.

In Fig. 4.10, you will find the degree of attenuation of sound in air. Each curve
is associated with a different frequency. The relative humidity is indicated on the

6We have ˛L D ln 2=.attenuation length/.
7The graph was produced using the standard ISO 9613-1:1993.
See http://www.iso.org/iso/catalogue detail.htm?csnumber=17426. I obtained the formula from
the website (2-2-2011): http://www.sengpielaudio.com/AirdampingFormula.htm.
I am grateful to Eberhard Sengpiel for his help.

http://www.iso.org/iso/catalogue_detail.htm?csnumber=17426
http://www.sengpielaudio.com/AirdampingFormula.htm.
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horizontal axis. The attenuation constant ˛L is specified on the left vertical axis.
On the right vertical axis, you will find indicated a quantity referred to as the
attenuation, which we indicate by the symbol ˛. This measure of attenuation
describes the attenuation of the sound level as opposed to the amplitude. (It is
clear from the figure that this unit of attenuation is proportional to the attenuation
constant.8) The attenuation ˛ refers to the drop in sound level in dB per kilometer.
Therefore, if the sound travels through a distance x, the change in sound level is
given by

�SL D �˛x: (4.25)

How do we use this equation? Suppose that the attenuation ˛ D 20 dB/km and that
the sound travels through a distance of 5 km. Then the change in sound level will be

�SL D �˛x D �20.5/ D �100 dB: (4.26)

The peaks in the individual curves indicate that for a given frequency, adding
moisture to the dry air first leads to an increase in the degree of attenuation (hence,
a decrease in the attenuation length) and that further increases in moisture lead to a
decrease in the degree of attenuation. Also, for a given relative humidity, the degree
of attenuation increases with increasing frequency. (Recall the increase in the
degree of attenuation of modes with increasing mode frequency.)

The problems below will explain how we use the graph.

Sample Problem 4-17

Suppose we have a sound wave of frequency 5,000 Hz (D 5 kHz) and
the relative humidity is 20%. Suppose further that the initial intensity
I1 is 10 W/m2. Find the intensity I2 after a distance of 1 m, after 10 m,
and after 100 m.

Solution
According to Fig. 4.10, the curve for a frequency of 5 kHz gives an
attenuation of about 100 dB/km. One meter equals 0.001 km, so that
the reduction in SL is

�SL D �100 � 0:001 D �0:1 dB: (4.27)

8Analysis leads to: [attenuation constant in m�1] = Œ0:00005 ln.10/� � Œattenuation in dB/km� D
0:00012Œattenuation in dB/km�.
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Thus,

�SL � 10 log.I2=I1/ D �0:1: (4.28)

According to (4.24),

I2

I1

D 10��SL=10 D 10�0:01 D 0:98; (4.29)

so that

I2 D 0:98I1 D 0:98 � 10 D 9:8 W=m2: (4.30)

For a distance of 10 m D 0:01 km, we have

�SL D �100 � 0:01 D �1 dB: (4.31)

so that

�SL � 10 log.I2=I1/ D �1; (4.32)

and

log.I2=I1/ D �0:1: (4.33)

Thus,

I2

I1

D 10�0:1 D 0:79; (4.34)

and
I2 D 0:79I1 D 0:79 � 10 D 7:9 W=m2: (4.35)

After 100 m D 0:1 km, we have

�SL D �100 � 0:1 D �10 dB: (4.36)

�SL � 10 log.I2=I1/ D �10: (4.37)

or

log.I2=I1/ D �1: (4.38)

Thus,

I2=I1 D 10�1 D 0:1 (4.39)

and

I2 D 0:1I1 D 0:1 � 10 D 1 W=m2: (4.40)
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Sample Problem 4-18

Suppose that the attenuation is 10 dB/km. Find the distance x travelled
by the wave such that the intensity drops by a factor of 2.

Solution
We set

10 log.I2=I1/ D �.10 dB=km/x.in km/;

where I2=I1 D 1=2. Since log.1=2/ D � log 2, we have �10 log 2 D
�10x or

x D log 2 D 0:3 km D 300 m:

Note

The attenuation of light in common glass is not negligible, amounting
to on the order of 10,000 dB/km or 10 dB/m. Thus, in passing through
a 1 m thickness of such glass, the light intensity will be reduced by
a factor of 10. Fiber optics communication has depended upon the
development, since around the year 1970, of glasses having an extraor-
dinarily low attenuation of about 0:1 to 1 dB/km! The transition from
wired connection to optical fiber connection resulted in an increase in
the speed of communication by a factor of about ten.

Note that a 1-dB drop corresponds to a drop in intensity by a factor
of 100:1 D 1:3.

4.9 Reverberation Time

If you produce a sound in a room, the sound you hear might resound like an echo.
Such is often the case for a large empty room. On the other hand, if the room is
small and/or is loaded with furniture, the sound dies out so fast that we tend to label
the room as being dead to sound. Sound produced in an open field is quite dead.
What is the process that determines the resulting character of the sound?

The sound produced by a source bounces off the surfaces of the room. Eventually
the sound will die out – mostly because it passes on into these surfaces. How long a
sound lasts is characterized by the reverberation time .� RT/.9 It is defined as the

9For more information on the reverberation time, see the website: http://www.yrbe.edu.on.ca/�
mdhs/music/oac proj97/music/reverb.html. You will be able to calculate the reverberation time of
a room given the volume of the room and the area and absorption constant of each surface within
the room.

http://www.yrbe.edu.on.ca/~mdhs/music/oac_proj97/music/reverb.html
http://www.yrbe.edu.on.ca/~mdhs/music/oac_proj97/music/reverb.html
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time it takes for the sound intensity in the room to drop by a factor of one million.
The corresponding drop in the sound level is

�SL D 10 log.106/ D 60 dB:

Over the course of an interval of two reverberation times, the intensity will drop by
a factor of (one million)2 = one trillion.

Very long reverberation times produce an echo effect; very short reverberation
times produce a dead space. In the design of auditoria or music rooms, one will
design the space so as to produce a reverberation time that suits one’s preference.
Typically, a reverberation time on the order of one second is desired.

Sabine’s Law: When a sound wave is incident upon a surface, a certain fraction of
the intensity is reflected while the remainder is transmitted into the surface. If the
surface is very thick, all of the transmitted sound will be absorbed. On the other
hand, a wall might be so thin that some of the sound intensity passes through on
into the air or other material on the other side of the wall. Often, this second fraction
alone is referred to as the transmitted sound. For walls in a room, one often refers to
the sum of both absorption and transmission as absorption.

Suppose now that a sound is produced in an empty room. The room has walls,
floor, and ceiling. Each of these surfaces will reflect a certain fraction of sound. The
fraction that is not reflected is called the absorption coefficient – with symbol ˛.
(This symbol should not be confused with the symbol ˛L used for the attenuation
coefficient.) The absorption coefficient depends upon the frequency of the sound
wave and the surface material.

Suppose that all the surfaces have the same absorption coefficient and that
the total surface area is A. It can be shown that the reverberation time RT is
approximately given by

RT D 55:2
V

v˛A
: (4.41)

Here v is the sound velocity in air. If v D 340 m/s,

RT D 0:16
V

˛A
; (4.42)

where V is expressed in m3, A is expressed in m2, and the reverberation time is
expressed in seconds. This equation is referred to as Sabine’s Law. Note that the
greater the volume of a room the longer the reverberation time. On the other hand,
increasing the absorption coefficient or the surface areas decreases the reverberation
time.

Usually a room has surfaces with different absorption coefficients. Then, with
the surfaces having areas A1, A2, A3, . . . , and absorption coefficients ˛1, ˛2, ˛3, . . . ,
the factor ˛A in (4.41) and (4.42) is replaced by the sum

˛A � ˛1A1 C ˛2A2 C ˛3A3 C � � � : (4.43)
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Table 4.3 Chart of absorption coefficients

Material 128 Hz 256 Hz 512 Hz 1,024 Hz 2,048 Hz 4,096 Hz

Draperies hung straight, in
contact with wall, cotton
fabric, 10 oz. per square
yard

0:04 0:05 0:11 0:18 0:30 0:44

Rock wool (1 in.) 0:35 0:49 0:63 0:80 0:83 –
Carpet on concrete (0.4 in.) 0:09 0:08 0:21 0:26 0:27 0:37

Carpet, on 1=800 felt, on
concrete (0:400)

0:11 0:14 0:37 0:43 0:27 0:27

Concrete, unpainted 0:010 0:012 0:016 0:019 0:023 0:035

Wood sheeting, pine
(0.8 in.)

0:10 0:11 0:10 0:08 0:08 0:11

Brick wall, painted 0:012 0:013 0:017 0:020 0:023 0:025

Plaster, lime on wood studs,
rough finish (1=2 in.)

0:039 0:056 0:061 0:089 0:054 0:070

Acoustic tile, suspended from the ceiling, has an absorption coefficient close to
unity:

Suspended
acoustic tile

125 Hz 250 Hz 500 Hz 1;000 Hz 2;000 Hz 4;000 Hz

0:76 0:93 0:83 0:99 0:99 0:94

Table 4.3 is a chart with absorption coefficients for a variety of materials and for
various frequencies.

Source: http://www.sfu.ca/sonic-studio/handbook/Absorption Coefficient.html

4.10 Terms

• Attenuation constant
• Attenuation length
• Attenuation time
• Brightness
• British Thermal Unit (BTU)
• Calorie or food calorie(Cal)
• Chemical energy
• Decibel scale
• Dissipation
• Electrical energy
• Electromagnetic energy
• Electron-volt (eV)

• Energy
• Envelope of an attenuated wave
• Exponential behavior
• Gravitational potential energy
• Heat transfer intensity
• Joule (J)
• Kilowatt-hour (kWh)
• Kinetic energy
• Loudness
• Nuclear energy
• Point source [=isotropic source]
• Potential energy

http://www.sfu.ca/sonic-studio/handbook/Absorption_Coefficient.html
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• Power
• Principle of conservation of

energy
• Reference level reverberation time
• Sound level

• Stroboscope
• Thermal energy
• Weight
• Work
• Watt (W)

4.11 Important Equations

Kinetic energy:

KE D 1

2
mv2: (4.44)

Potential energy of a simple harmonic oscillator:

PE D 1

2
ky2: (4.45)

Change of gravitational potential energy with change of elevation:

�PE D weight � change of elevation D �PE D wh D mgh: (4.46)

Intensity defined:

Intensity D Power

Area

I D P

A
: (4.47)

Intensity of a point source:

I D P

4�d 2
: (4.48)

Sound level defined:

SL D 10 log
I

10�12
: (4.49)

�SL � SL2 � SL1 D 10 log
I2

I1

: (4.50)

Change in sound level with change in intensity re-expressed:

I2

I1

D 10.�SL=10/: (4.51)
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Change in sound level with distance due to attenuation:

�SL D �˛x; (4.52)

where ˛ is in dB/km and x is in km.

4.12 Problems for Chap. 4

1. Estimate the number of Calories, Joules, and kiloWatt-hours (kW-h) in a gallon
of oil.

2. One ounce of Cheerios provides about 100 Calories of food energy through
chemical changes. On the average, one molecule of Cheerios provides about
5 eV of food energy. From this information, estimate the number of molecules
in an ounce of Cheerios. (You will need to make use of the number of eV there
are in a Calorie.)

3. How many lbs: of Cheerios would one have to eat to provide the mechanical
energy output of about 25-billion J of a human heart in a 75-year lifetime?

4. What are the two basic modes of transfer of energy from one system to another?
5. When a person is said to be “powerful enough to lift a 200 lb. object,” is one

referring to the person’s “power” according to the way that term is used in
physics? Explain.

6. Calculate the power delivered by a jet engine that increases the kinetic energy
of a jet plane from zero to 40 billion Joules in 5 min. (40 billion Joules of KE
corresponds to a mass of 1;000 tonnes (1 tonne D 1,000 kg Š 2,200 lbs) moving
at 300 m/s (Š 1; 000 km/h).)

7. A loudspeaker delivers 0.002 W of sound power down a tube of diameter 4 cm.
Calculate the sound intensity travelling down the tube.

8. A stroboscope is a device that produces a series of flashes of light having an
extremely short duration in time .�s/ but very large energy, with a variable
frequency, that can range from about one flash per second to tens of thousands
of flashes per second. Consider a particular stroboscope – model MVC-4100 –
manufactured by the Electromatic Equipment Corporation. The corporation
provides the following specifications for this model on its website:
(http://www.inspectionstroboscope.com/prods/MVC-4000?PHPSESSID
=7933e3da79f0401c1e54c9ea5d0e8367)

Input energy per flash: 5.41 J; duration of a pulse of electrical: 30 �s (D 30
microseconds); radiometric light output (light energy per flash): 0.210 J.

(a) Calculate the average electric power delivered in a single flash over the
duration of a pulse of electric energy.

(b) Calculate the efficiency in the production of light energy from electric
energy.

http://www.inspectionstroboscope.com/prods/MVC-4000?PHPSESSID
=7933e3da79f0401c1e54c9ea5d0e8367
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9. Calculate the light intensity at the earth from a star that is 100 light years away
(1 light year D 9:5 � 1015 m) and emits light with a power equal to that of our
sun (4:0 � 1026 W).

10. (a) If the sound intensity from an isotropic source is 0:2 W/m2 at a distance of
1 m, what will the sound intensity be at a distance of 2 m?

(b) Calculate the sound level (in dB) corresponding to each of the two
intensities of part (a). What is the corresponding change in sound level?

11. (a) What is the “solar constant”?
(b) The atmosphere absorbs sunlight. Suppose that as a result during some

period the sunlight intensity on the surface of the earth is one-half the solar
constant. Suppose further that we have an array of solar cells on a roof with
dimensions 10 m by 6 m facing directly toward the sun. Finally assume
that for every 100 J of incident sunlight energy the cells produce 15 J of
electrical energy. (Their efficiency is then 15%.) Calculate the electrical
power output of the array.

12. Describe in detail, using all the physical principles we have covered so far, how
the sound emitted by a tuning fork varies in time after it has been struck hard.

13. (a) What is the “attenuation time”?
(b) What is the “attenuation length”?

14. Suppose that a ball is released from rest at a meter above a hard floor. It bounces
back up and reaches a height of one-half meter. Now suppose that it keeps
bouncing, with each bounce leading to a maximum height that is one-half the
previous height.

After how many bounces will the maximum height be one Å above the floor?
(One Å D 10�10 m.)

The significance of 1Å is that this elevation is about equal to the size
of a molecule, so that a bounce disappears within the typical motion of the
molecules. For all intents and purposes, the ball has stopped bouncing.
Hint: Let n D number of bounces. Find an expression for the height after
n-bounces and take the log of that expression.

15. If the amplitude of vibration of an SHO decreases from 8 to 4 cm in 1 min, what
will be its amplitude after 2 min? After 3 min?

16. The following is a fascinating application of attenuation time. We will consider
a pipe that is excited in a particular mode. On the one hand, we recall that the
assumption is that the ends are nodes for the sound pressure. In the section on
standing waves, it was assumed that pulses are totally reflected from the ends.
If this were exactly so, the pipe would not produce a sound wave outside the
pipe, so that we would not hear the excited pipe!

In fact, the ends are not nodes precisely and sound is emitted from an
open end any time a pulse reaches that end. In order to produce a sound
associated with a particular mode, we need a compromise, a balance between
reflection and emission of sound into the air outside. The pertinent transmission
coefficient T is defined as the fraction of sound energy that is emitted when a
wave reaches an open end.
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(a) Now imagine a wave moving back and forth in the pipe. With each
incidence on an open end, a fraction T of sound intensity is lost. In order
for the mode to be well defined and be heard with a clear frequency, it is
necessary that there be many oscillations with negligible attenuation.
What condition does this place on the transmission coefficient?

(b) Suppose that the wavelength is much larger than the diameter of the pipe.
It can be shown that the transmission coefficient is approximately given by
the ratio of the square of the circumference to the wavelength, that is

T D
�

2�R

�

�2

: (4.53)

Does the transmission coefficient increase or decrease with higher frequency?
Now consider a flute of radius one centimeter played at a frequency of

440 Hz. Calculate the corresponding transmission coefficient.
17. If the frequency of sound increases, the attenuation length will:

decrease / increase / remain the same.

18. If the humidity of air increases, the attenuation length will:

decrease / increase / remain the same / all three of the previous choices are
possible.

19. What range of intensity is associated with a negative sound level?
20. Suppose the light intensity drops by a factor of 4 in passing through 1 m of a

certain glass.

(a) What is the corresponding drop in dB?
(b) What drop would there be in passing through four meters of glass?

21. (a) Use Fig. 4.10 of the text to determine the attenuation of sound in dB/km of
2 kHz sound in air at 20% humidity.

(b) If a sound wave of frequency 2 kHz is travelling in a straight line through
the air, what would the change in sound level be and by what factor would
the intensity drop in traversing a distance of 2 km?

22. Choose a room with which you are familiar. You will have to know a bit about
the materials out of which the walls, floor, and ceiling are made. If you are
not sure, make a guess. (Most walls in homes are made of gypsum. Ceilings
are usually made of gypsum. Sometimes they are made of acoustic tile, which
have a higher absorption coefficient.) Then go to one of the websites below
and estimate the RT (reverberation time) for that room. Discuss your result in
relation to the sound quality of the room.

(a) A simple website to use to calculate the reverberation time (RT) for a room.
But you obtain the RT for each of a set of frequencies, one at a time
http://www.saecollege.de/reference material/pages/Reverberation%20
Time%20Calculator.htm

http://www.saecollege.de/reference_material/pages/Reverberation%20
Time%20Calculator.htm
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(b) This website calculator is a bit more cumbersome for inserting data but
gives you RT for a number of frequencies after one click. http://www.
atsacoustics.com/cgi-bin/cp-app.cgi

(c) This site has audio files so that you can hear the difference among various
reverberation times: http://www.armstrong.com/reverb/main.jsp

23. Suppose that a room is a cube with sides of length 3 m. Compare the RT with a
larger cubic room with sides of length 4 m, i.e. find the ratio of the RTs. Note
that both the volume V and the total area A increase. Would you have expected
RT to increase or decrease? Explain.

24. Suppose that the absorption coefficient were unity (˛ D 1). Then any sound
wave incident on a wall would be completely removed from the room. The
reverberation time would have no meaning since any sound created in the room
would be completely lost in a time at most equal to the time it takes for a
sound wave to cross the room. The sound intensity would drop suddenly from
its initial value to zero in this time. And yet, the Sabine formula, (4.41), leads
to a finite reverberation time. Obviously, the formula is in error and can only
be an approximation. It can be shown that Sabine’s formula holds only when
˛ � 1.

A more accurate formula is identical to Sabine’s formula except that ˛ is
replaced by � ln.1 � ˛/. Here, ln is the natural log (or log to the base “e”).
Thus, (4.42) is replaced by

RT D 0:16
V

� ln.1 � ˛/ � A
: (4.54)

Note that if ˛ D 1, this formula leads correctly to RT D 0, since ln.0/ D �1.
Thus, according to this formula, it takes no time for the sound to die out.

Question: Suppose that a sound wave were traveling across a room of the shape
of a cube of side L. How long would the wave take to travel directly from one
side to the other and back? Compare this time to the RT as expressed in (4.41).
Remember that the formula includes the six sides of the cube. What is the ratio
of the two expressions: how many round trips would take place in a RT?

In fact, the Sabine formula assumes many traversals of the sound wave
before the sound intensity drops significantly. Such behavior requires an
absorption coefficient that is much less than unity.

http://www.atsacoustics.com/cgi-bin/cp-app.cgi
http://www.atsacoustics.com/cgi-bin/cp-app.cgi
http://www.armstrong.com/reverb/main.jsp




Chapter 5
Electricity, Magnetism, and Electromagnetic
Waves

We have mentioned that light is an electromagnetic wave with a frequency that lies
in a particular range: �4 � 1014 to �7 � 1014 Hz. But what is an electromagnetic
wave? To answer this question, we will need to study electricity and magnetism.
The principles of this branch of physics are the basis of operation of the various
electronic instruments used in sound reproduction, such as radio transmitters and
receivers, amplifiers, microphones, and speakers. There is an interesting further
relevance: The atom often serves as a primary source of light and is the receiver
of light in our eyes. How the atom performs these functions and how the atom is
held together depend upon the laws of electricity and magnetism. We experience
numerous manifestations of electricity which are not dependent upon technological
developments: They were known by mankind before the age of science. Most
powerful and majestic are thunder and lightning, which involve enormous currents
of electric charge flowing from thousands of feet above, down to the earth’s surface.
Static electricity is another manifestation. It is said that Thales of Miletus was
the first to note around 600 BC that amber rubbed with fur attracts straw. In the
magnetism arena, many of us are familiar with “lodestone,” which is the rock
mineral “magnetite” in a magnetized state. Lodestone is capable of attracting iron
and, for centuries, served as a compass for guiding sailors out at sea.

5.1 The Fundamental Forces of Nature

We note that electricity and magnetism are manifested in an obvious way by forces,
the so-called electric force and magnetic force. These two fundamental forces in
nature were originally incorrectly believed to be unrelated to one another. Subse-
quently, as we shall see later in this chapter, they were found to be so interrelated
that they are together referred to as one force, the “electromagnetic force.” Other
fundamental forces include the “gravitational force,” the “nuclear force,” and the
“weak force.” (Interestingly, physicists have a goal to see whether all these forces
are manifestations of only one all encompassing and more fundamental force.)

L. Gunther, The Physics of Music and Color, DOI 10.1007/978-1-4614-0557-3 5,
© Springer Science+Business Media, LLC 2012
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Fig. 5.1 Isaac
Newton – Portrait by Sir
Godfrey Kneller in 1702
(source: http://en.wikipedia.
org/wiki/File:Sir Isaac
Newton by Sir Godfrey
Kneller, Bt.jpg)

Until this century, the force of gravity was the best understood of all forces,
thanks to the “Universal Theory of Gravitation” that was expounded by Isaac
Newton (1642–1727) (Fig. 5.1).

Below we highlight the main features of Newton’s Theory of Gravitation.

1. Matter has a quantifiable attribute called mass. (Common units of mass are the
gram (g) and the kilogram (kg).) Mass gives a body inertia (resistance to having
a change in velocity) and is also the source of the gravitational force.

2. The gravitational force between two bodies can be determined in terms of the
force between two point masses. These are idealized bodies which take up
no space. Given the force between two point masses, one can determine the
force between any two real bodies which take up space. The most important
aspects of this force are that it is always attractive, with each body attracting the
other toward its respective self with a force of the same magnitude, and that its
magnitude decreases with increasing separation between the bodies.

3. While Isaac Newton successfully used his theory to account for the motion of
the planets about the sun and the moon about the earth as well as the motion
of projectiles such as bullets which are flying through the air near the earth’s
surface, he was deeply perplexed about how one object could exert a force on
another with only empty space between them. We are referring here to what is
called the action-at-a-distance enigma.

It is important to realize that this issue must be regarded as a philosophical one,
being outside the realm of science. Ultimately, the goal and the measure of success
of a scientific theory is found in terms of its ability to provide relationships among
measured physical quantities, rather than its ability to explain why the phenom-
ena take place. “Why” questions essentially seek underlying, more fundamental
principles that can be applied to the specific phenomenon at hand. Thus, we might

http://en.wikipedia.org/wiki/File:Sir_Isaac_
http://en.wikipedia.org/wiki/File:Sir_Isaac_
Newton_by_Sir_Godfrey_Kneller,_Bt.jpg
Newton_by_Sir_Godfrey_Kneller,_Bt.jpg
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ask why the sky is bright with the answer being that the molecules of the air scatter
sunlight. But why do the atoms scatter light? Well, because they are comprised of
electric charges, which experience a force from the light and so on. The sequence of
questions must ultimately end when we reach the most fundamental level of theory
that encompasses all phenomena below it. At that point, “why” questions cease to
have meaning. Of course, physicists are never content to conclude that they have
definitely reached the most fundamental level. They are always open to revelations
of the new.

We will see in this chapter that the action-at-a-distance question did lead to
the introduction of the concept of the “force-field,” which, while it may not have
satisfyingly addressed the action-at-a-distance question, has been extremely useful
in the development of physics.

5.2 The Electric Force

In the late 1700s, experimental studies of the force between electrically charged
bodies led to a theory for the electric force which is similar to the theory for
gravitational forces. It is embodied in “Coulomb’s Law.” We summarize the theory
below:

1. Bodies can have an attribute called electric charge.
There are two types of charge – referred to as positive charge and negative

charge. Letting q1 and q2, respectively, be the numerical values of the charges of
two bodies, we find that the force is:

• Repulsive if q1 and q2 have the same sign (hence either both positive or both
negative).

• Attractive if q1 and q2 have opposite signs.

This summary is exhibited in Fig. 5.2:
2. The action-at-a-distance issue is manifest with electric forces too. How can

two electric charges affect each other when they are not, so to speak, touching?

Fig. 5.2 Forces between
electric charges – two
positive, two negative and one
positive with one negative
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In fact, a study of the force on your body by another object along with the
structure of atoms and the electric forces therein that are in fact responsible for
this force reveals that the force on your body does not involve contact between
the charges therein.

5.3 Electric Currents in Metal Wires

We begin this section by summarizing some important information about all matter
on earth. Matter consists of atoms. These in turn consist of nuclei and electrons.
The electron has a negative electric charge. The nucleus consists of a tightly bound
collection of protons and neutrons. Protons have a positive charge. Neutrons,
while being a charged structure, have no net electric charge – they are “electrically
neutral.” An ion is a neutral atom which has gained or lost electrons and thus is
electrically charged.

Roughly, materials can be divided into two categories with respect to electrical
behavior: The first category consists of the insulators. While they have electric
charge, the charges are bound and cannot move freely within the material. In a
sample of the second category – consisting of conductors – there are charges that
are free to move throughout the material. Metals are a specific type of conductor.
The atoms of a metal are ionized: Atoms have lost some electrons, which are
then free to move about a solid array of positive ions. The former, the so-called
free electrons (also called conduction electrons), move about randomly at speeds
averaging about 1,000 km/s! An electric current in a metal wire represents a net
flow of free electrons. We might refer to this flow on a large scale as a macroflow
of free electrons. For comparison sake, the so-called flow of a river is a macroflow
of water: Water molecules in a river are in random motion, with speeds on the order
of a kilometer per second, even when the river as a whole is still. The flow of a river
reflects an average motion in some specific direction that is added to the background
random motion (Fig. 5.3).

One can compare the motion of the charges to that of a pinball in a pinball
machine; the pinball moves helter–skelter, nevertheless making overall progress
down the board.

The direction of an electric current is the same as the direction of motion of
the positive charges, but opposite to the direction of the negative charges. If both
signs of charge are present and moving, we must subtract the contribution of the
negative charges from that of the positive charges. (See Fig. 5.4.) In the case of a

Fig. 5.3 Random motion of
electrons in a wire



5.4 The Magnetic Force 131

Fig. 5.4 Electric current in a
wire

Fig. 5.5 Electrons flowing
from the negative terminal to
the positive terminal of a
battery

current in a metal wire, there is no contribution from the positive ions. That is, only
the conduction electrons contribute to the current and the current is opposite to the
direction of the conduction electrons.

The common electric battery drives current from the positive terminal through
the wire and back into the negative terminal of the battery, as shown in Fig. 5.5.
Thus, electrons flow through the wire from the negative terminal to the positive
terminal.

5.4 The Magnetic Force

Originally, magnetic forces were confined to magnetized bodies, called magnets.
We note that a sample of magnetic material need not be magnetized. Magnetite is a
naturally occurring magnetic material which when magnetized is called lodestone.
A sample of iron can be magnetized by a piece of magnetite. The earth as a whole
acts as if it has a huge mass of magnetized material. Typically, a pair of magnetized
bodies exert forces on each other which tend to orient the bodies in a certain
direction with respect to each other.

To the eye, a magnetized body appears isotropic. In order to appreciate what this
implies, consider the rotation of a magnet having a spherically shaped body. If the
magnet were rotated, you would not notice any change in its appearance. In fact,
at an invisible level, the body is actually anisotropic. Its magnetic behavior can
be characterized by picturing the body as having an axis with a north pole and a
south pole, as seen below in the sample of magnetite. Thus, as far as its magnetic
properties are concerned, one could easily detect that the magnet had been rotated.
We indicate the north and south poles of a sample of magnetite and a bar magnet
in the figure below. N represents the north pole, while S represents the south pole
(Fig. 5.6).
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Fig. 5.6 Magnetite and a bar
magnet

Fig. 5.7 The earth’s
magnetic south pole indicated
by the small white circle in
northern Canada

Fig. 5.8 Horseshoe magnet

The magnetic south pole of the earth is shown in Fig. 5.7 to be in northern
Canada.1

Finally, a bar-like magnet can be bent into a horseshoe magnet so as to produce
strong magnetic forces between its poles (see Fig. 5.8).

1The north magnetic pole is diametrically opposite, in the southern hemisphere, close to New
Zealand. During this century, it has moved on average 10 km/year.
See the Wikipedia article (12-26-2010): http://en.wikipedia.org/wiki/Magnetic declination.
Also: http://obsfur.geophysik.uni-muenchen.de/mag/news/e nmpole.htm.

http://en.wikipedia.org/wiki/Magnetic_declination.
http://obsfur.geophysik.uni-muenchen.de/mag/news/e_nmpole.htm.
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5.5 Magnetic Forces Characterized

1. As with electric forces, action-at-a-distance is manifest.
2. Like poles repel; unlike poles attract (Fig. 5.9).
3. Two freely suspended bar magnets tend to rotate so as to line up with parallel

axes (Fig. 5.10).
4. A non-magnetized material can be magnetized through the presence of an

already magnetized body. When the bar magnet is removed, the degree of
magnetization may diminish, sometimes to an undetectable level (Fig. 5.11).

What happens to a bar magnet when it is cut in half? One might be inclined to
guess that we end up with one half being a north pole and the other a south pole. To
the contrary, we end up with two shorter bar magnets, each with a north pole and a
south pole, as seen in the Fig. 5.12.

This result should be contrasted with what happens when a bar of electrically
polarized material is cut in half. In Fig. 5.13, we see what happens to a bar of metal
that is polarized by a neighboring point electric charge. Each half of the bar is
charged, one positively, the other negatively. If the point charge is removed, the
two halves remain charged. On the other hand, if a bar of insulating material is so
polarized and halved, the two halves are not charged. In the presence of the point
charge, each half will be polarized; while, if the point charge is not present when
the bar is halved, neither half is charged or polarized.

Fig. 5.9 Attracting and
repelling poles

Fig. 5.10 Suspended magnets rotate so that axes align
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Fig. 5.11 Polarizing an unmagnetized piece of iron

S N

S N

S N

Fig. 5.12 Splitting a bar magnet creates two bar magnets

Fig. 5.13 Results of splitting polarized materials: metals vs. insulators
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5.6 Is There a Connection Between Electricity and Magnetism?

In 1820, Hans Oersted (Fig. 5.14) is reported to have been lecturing his class on
this issue with the following demonstration, exhibited in Fig. 5.15.

A compass needle was placed close to an electric wire that was connected to a
switch and a battery. In advance of closing the switch and thus turning on a current
through the wire, he told his class that it was obvious that there would be no effect
on the wire. Alas, he was wrong! The needle tended to be oriented in a particular
way, as depicted in Fig. 5.16.

Fig. 5.14 Hans Oersted
(source: http://en.wikipedia.
org/wiki/Hans
Christian Ørsted)

Fig. 5.15 Electric current
exerting a force on a magnet

http://en.wikipedia.org/wiki/ Hans_Christian_
http://en.wikipedia.org/wiki/ Hans_Christian_
http://en.wikipedia.org/wiki/ Hans_Christian_
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Fig. 5.16 Orientation of
compasses around a
current-carrying wire

We depict the wire oriented perpendicular to this page. A number of compass
needles are suspended along a circle with the wire at its center. Current is in a
direction out of the page. In equilibrium, the axis of each compass needle is tangent
to the circle.

Note

We will use the symbol ˇ to indicate a direction out of the page.
It represents the head of an arrow. We will use the symbol ˝ to indicate
a direction into the page. It represents the tail of an arrow.

We are inclined to conclude that in being able to orient a bar magnet, an
electric current acts like a magnet.

The ability of a wire carrying an electric current to orient a magnet can be
exhibited very nicely using iron filings. (These are elongated bits of iron, around a
millimeter or less long.) In the figure below, iron filings have been distributed on the
surface of a piece of cardboard. The cardboard is held horizontal (so that the filings
will not fall off) and a wire carrying an electric current is passed through its center.
The electric current magnetizes the filings, so that they provide us with a distribution
of a huge number of bar magnets on the piece of cardboard. The alignment of the
filings shows up clearly in the figure (Fig. 5.17).

The details of how specific shapes of wires carrying a current affect magnets was
determined experimentally by André Ampère. See Fig. 5.18.
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Fig. 5.17 Iron fillings aligning in the direction of the magnetic field

Fig. 5.18 André Marie
Ampère (source: http://en.
wikipedia.org/wiki/Andrej
Ampere)

Another significant discovery by Ampere was that two wires carrying a current
exert a force on each other. No magnet is required. We can appreciate this result
better by examining further Oersted’s discovery that a current-carrying wire exerts
a force on a magnet. We will see below that a magnet exerts a force on a current-
carrying wire.

http://en.wikipedia.org/wiki/Andre|
http://en.wikipedia.org/wiki/Andre|
_Ampere
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Fig. 5.19 Tug of war between a man and a horse. How does the horse win?

5.6.1 Action–Reaction Law and Force of Magnet
on Current-Carrying Wire

We can learn something entirely new about magnets and electric currents using
Newton’s Third Law of Dynamics. It is often referred to as the Law of Action
and Reaction and states that

a force of one body on a second body is always automatically accompanied by
a force of the second body on the first.

This law is often difficult to comprehend; it is baffling and seems to contradict
our intuition about forces. For example, if I push on a wall with a force of, say,
10 lbs, the wall must be concurrently pushing on me with a force of 10 lbs. Thus,
as a further example, we arrive at the remarkable fact that it is impossible for a
horse to push on me with a force that is greater than the force I exert on it! It is
then reasonable to wonder how a live healthy horse can win a tug-of-war. To solve
this dilemma, we turn to Fig. 5.19, wherein the forces on each of the participants is
exhibited.

We note that both the horse and I experience forces by the ground: The ground
pushes upward on the horse and on me, forces that overcome the downward force of
gravity. The ground supports our weights. However, in addition, the ground provides
a tangential force that tends to prevent us from slipping. Yet there is a limit to how
much tangential force the ground can exert before we slip. While the force of the
horse on me is exactly equal to the force I exert on the horse, the horse is capable of
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Fig. 5.20 Forces acting on a compass near a wire

Fig. 5.21 A compass aligns
in the opposite direction
when the current is flowing
into the page

experiencing a much greater force of the ground on it than the force of the ground
on me. As a result, I will slip before the horse does and I will lose the competition.

What do we learn from the above? according to Newton’s Third Law,

a magnet must also exert a force on a wire carrying a current!

A clarifying way to exhibit this second force is with the following configuration
(Fig. 5.20).

Note

The force is perpendicular to both the direction of the current and the
North–South axis of the bar magnet.

Now suppose that the direction of the current in the wire is reversed. Then:

1. The compass needles in Fig. 5.16 will tend to be oriented in the reverse direction
as seen in Fig. 5.21.

2. The force of the wire on the poles of a bar magnet are reversed in direction
(Fig. 5.22).

A very important configuration of electric current in a wire is the solenoid. This
consists of a wire wound like a helix (Fig. 5.23).

Note that reversing the direction of the current or the orientation of the helix
clockwise or counter clockwise) exchanges the poles of the solenoid. For example,
we might have a solenoid as seen in Fig. 5.24.

Henceforth, we will represent the solenoid by a set of parallel line segments as
illustrated in Fig. 5.25.
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Fig. 5.22 Forces by a current-carrying wire on a bar magnet

Fig. 5.23 A solenoid

Fig. 5.24 A solenoid with
reversed winding

Fig. 5.25 Simplified figure
of a solenoid

Experiments show that a long solenoid behaves very much like a bar magnet,
with the poles as indicated in the above figure. As such, it is often referred to as an
electromagnet – a device that owes its magnetization to an imposed electric current.
When the current is turned off, the magnetization vanishes. In contrast, a piece of
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Fig. 5.26 A schematic of a loudspeaker

lodestone or a piece of iron that has been magnetized by a magnet and has retained
its magnetization even after the magnet is removed is called permanent magnet.

5.7 The Loudspeaker

The solenoid provides the basis for the operation of a loudspeaker (represented in
Fig. 5.26) as follows. A solenoid is attached to the cone of the speaker. The sound
pattern is fed into the solenoid by an electric signal from the amplifier. The amount
of displacement of the solenoid and cone depends upon a balance between the force
of the neighboring permanent magnet on the solenoid and the force of a spring (not
shown in the figure) which tend to pull the solenoid toward an equilibrium position.

The strength of the magnetic force on a solenoid can be increased greatly by
inserting a cylinder of iron into the core of the solenoid. Such a unit is used in
buzzers, bells, and the telegraph apparatus.

5.8 The Buzzer

In Fig. 5.27, we depict a buzzer. When the switch is closed, an electric current flows
through the solenoid and attracts the iron plate.

Once the iron plate loses contact with the pointer, electric current ceases to flow
through the solenoid and the iron plate drops back into its original position, thus
allowing current to once again flow through the solenoid. This cycle is repeated at a
high frequency, thus producing the sound of the buzzer. If the plate is attached to a
hammer that can strike a bell-shaped piece of metal. The buzzing sound is replaced
by the sound of a ringing bell.
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Fig. 5.27 A schematic of a buzzer

Fig. 5.28 Electric motor

5.9 The Electric Motor

The “electric motor” also makes use of the interaction between a permanent magnet
and a solenoid electromagnet (Fig. 5.28).

A coil of wire is wound around a cylinder and placed between the poles of a
permanent magnet. An electric current is caused to flow through the coil, which acts
like a solenoid. The magnetic force on the coil causes the cylinder to rotate so that
the “poles” of the solenoid line up with those of the permanent magnet. But by the
time the poles line up, the cylinder has “rotational inertia,” so that it cannot come
to a dead halt. Instead, it moves on. As so far described, there would be a force that
would tend to reverse the sense of rotation of the solenoid. Instead, the so-called
brushes of the motor cause the current in the coil to reverse its direction, so that the
poles are oppositely aligned and the cylinder is caused to rotate further in the same
sense. This sequence is repeated again and again as the motor rotates.
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Fig. 5.29 Force between two
current-carrying wires

5.10 Force Between Two Wires Carrying an Electric Current

What happens if two wires carrying an electric current are in each other’s
neighborhood?

They exert forces on each other too! The details were explored by Ampère in
1820, within months of Oersted’s discovery. The experiment is depicted in Fig. 5.29.
We see that if two parallel wires carry respective currents in the same direction, the
wires attract each other. (Like attract, in contrast to electric charges!) If the currents
are antiparallel, the wires repel each other, as you would expect.

The force between the two wires is not an electric force since the wires are
electrically neutral. Instead, physicists concluded that electric currents behave
magnetically, not only with respect to their interaction with permanent magnets, but
also with respect to their interaction with each other. We do not need permanent
magnets to observe magnetic forces. Eventually, experimental and theoretical
studies revealed that even permanent magnets owe their magnetism to small,
microscopic electric current loops made by electrons within the material. The
conclusion was that

All magnetic phenomena are due to electric currents.

5.11 The Electromagnetic Force and Michael Faraday

The next major advance in electricity and magnetism was made by Michael
Faraday; see Fig. 5.30. in the 1830s through his discovery of the induced elec-
tromotive force (EMF). Generally speaking, an EMF refers to a means whereby
electric charges are given an electric force which enables them to move through
a material against the presence of internal friction, called electrical resistance.
Faraday’s discovery led to the technologically revolutionary source of EMF called
the “electric generator”.

Before Faraday’s discovery, electric currents were produced by attaching wires
to an electric battery (called a “pile” in England and France, albeit with different
pronunciations.) A battery was made by putting together a pile of discs of dissimilar
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Fig. 5.30 Michael Faraday
(source: http://en.wikipedia.
org/wiki/Michael Faraday)

Fig. 5.31 A battery lighting up a light bulb

metals such as copper and zinc, arranged like a sandwich, with sheets of insulator
in between the metal discs. In driving currents through wires, a battery is said to
produce an EMF (Fig. 5.31).

Faraday discovered that if one moves a magnet through a loop of metal wire,
an electric current will flow around the loop (Fig. 5.32).

An induced EMF is said to drive current around the loop.
If the direction of motion of the magnet is reversed, the direction of the current

in the loop is reversed as depicted in Fig. 5.33.
What do you think happens if you reverse the orientation of the magnet?
Suppose now that the magnet is stationary and the loop is moved to the left. The

relative motion is the same as in Fig. 5.32. The result is the same (Fig. 5.34).
Only the relative motion of the magnet with respect to the loop is relevant.
Given the above observations, electric current was eventually identified as

constituting moving fundamental charges, such as electrons in a metal. Oersted’s

http://en.wikipedia.org/wiki/Michael_Faraday
http://en.wikipedia.org/wiki/Michael_Faraday
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Fig. 5.32 Faraday induction of a current in a metal loop by a moving magnet
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direction of
induced current - Iind

loop of wire

Fig. 5.33 Reversing the direction of motion of the magnet reverses the current direction

observation that a wire with an electric current experiences a force in the presence
of a magnet can then be understood on the basis of the principle that:

A moving electric charge experiences a
magnetic force in the presence of a magnet.

The fact that an electric current is induced to flow in a wire that is moving in the
presence of a magnet can be understood on the basis of this same principle since the
wire has electric charges which experience a magnetic force:

Consider a metal wire that is being pulled to the right so as to move between
the poles of a magnet as shown in Fig. 5.35a. There will be an induced current
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S N

direction of
induced current - Iind

loop of wire

magnet is stationary,
loop moves to the left

Fig. 5.34 A moving loop with a stationary magnet

a b

Fig. 5.35 Force on a current-carrying wire by a magnet

flowing upward. We see in the microscopic view presented in Fig. 5.35b that the free
electrons experience a downward force, perpendicular to the direction of motion
of the wire, and move downward so as to produce the upward current. On the
other hand, the positive ions experience an upward force but remain close to their
equilibrium positions and do not contribute to the current.

However: From the viewpoint of a second observer who sees the wire stationary
and the magnet moving, there is no moving charge and hence no magnetic force.
This second observer describes the situation in terms of a changing magnetic field
because the second observer observes a moving magnet. Accordingly, the charges in
the wire experience an electric field, and therefore an electric force, in accordance
with Faraday’s Law.2

2The reader who is extremely probing of this process will note that even for the second observer,
the electrons in the wire are moving in association with the induced current. As a consequence,
the second observer (as well as the first observer) predict that there will be an additional force – a
magnetic force for both observers. This force on the electrons turns out to be directed to the left.
As a result, an external force must be applied on the wire to prevent it from acquiring a motion to
the left.
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In the above example, the basic physical principle that accounts for the EMF
depends upon the state of motion of the observer with respect to the wire and the
magnet. In one case the basis is an electric force, while in the other case the basis is a
magnetic force. (For an observer with respect to whom both the wire and the magnet
are moving, both a magnetic force and an electric force must be used as a basis!)

Stated differently, the question as to whether a magnetic force and/or an electric
force is present is meaningless in the absence of a specification of an observer along
with a specification of the state of motion of that observer. We will refer to this
aspect of observation as the Relativity of Description.3

We see then that Faraday’s Induced EMF
follows from Oersted’s observations.

We should note another interesting aspect of the above system: The electrons
must overcome electrical resistance as they flow through the wire. This resistance
produces thermal energy. Where does this energy come from? Analysis reveals that
to maintain the motion of the wire, a force must be exerted on the wire. This force
provides the necessary energy.

5.12 Applications of Faraday’s EMF

The microphone is essentially a loudspeaker in reverse (Fig. 5.36).
A diaphragm is attached to a solenoid. Sound waves impinge on the diaphragm,

setting the diaphragm and solenoid in motion. A neighboring magnet induces an
EMF in the solenoid which is passed on to an amplifier. The electrical signal from
the amplifier can be used to drive a speaker or make a recording.

The Electric Generator is essentially a motor in reverse.

3This is an application of the Principle of Relativity. We experience one of its consequences
when we sit in a subway train and watch a second train moving relative to us while having poor
visibility of any other objects such as a train station. We wonder whether it is our train or the second
train that is moving with respect to the tracks. For another common example of this principle,
imagine yourself in a car stopped at a red traffic light on an upgrade. You see beside yourself a
second car that is slowly moving forward. You then check whether your brake pedal is securely
pressed because you worry whether it is in fact your car that is slowly moving backward. In this
situation, until you discern the state of motion of the road or some other objects beside the road
relative to yourself, you are finding it difficult to decide which of the two cars is actually moving
with respect to the road. Now imagine yourself in a spaceship in outer space. You look out the
window and see a second spaceship moving past you. Which of the two spaceships is moving,
you might ask. Such a question has no answer. You can say that the second spaceship is moving
with respect to yours, or vice versa. Or, you might decide to investigate the state of motion of both
spaceships with respect to the earth and find that both are moving with respect to the earth! It is
clear that the state of motion, that is, the velocity of an object is a relative one; it depends upon the
observer.
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Fig. 5.36 A microphone

Fig. 5.37 An electric
generator using an
electromotive force

A cylinder has a coil of wire wound around it. The cylinder is rotated by an
external force – say a waterfall or steam engine. The presence of the poles of a
permanent magnet produces an EMF in the coil, which is used to run electrical de-
vices. Electric companies use huge generators to “produce electricity.” “Producing
electricity” refers, in fact, to providing electric power needed to maintain the EMF
used by devices hooked up to the companies electric lines (Fig. 5.37).

5.13 A Final “Twist”

We have realized that permanent magnets can be replaced by wires carrying a
current; notably, a solenoid with a current behaves like a magnet. Thus, we can
produce an EMF in a coil by moving a solenoid relative to the coil. Basically, the
source of the EMF can be regarded as simply a magnetic force.

Consider the following alternative: Instead of moving the solenoid, change the
current in the solenoid. It turns out that this change will also produce an EMF in the
coil!
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Fig. 5.38 Induction by a wire loop on another wire loop

In the figure below, we depict two wire loops close to each other. The left loop
is connected to a switch and a battery. The second loop is connected to a light bulb.
When the switch is closed the light bulb lights up briefly (Fig. 5.38).

What has happened is that initially there was no current in the first loop. After
the switch is closed, the current in the first loop changes to some stationary value,
albeit usually over a very short period of time, perhaps a hundredth of a second. It is
only during this short period of changing current that the second coil experiences an
EMF. In the graphs, we depict the variation in time of both the current in the solenoid
and the induced EMF in the adjacent loop. The current does not rise instantaneously
once the switch is closed. In this example, it is seen to take about 4 ms (milliseconds)
to reach its final value. Also, notice that there is an induced EMF only when the
current in the solenoid is changing in time, with a peak value at around 3/4 ms.
The induced EMF is proportional to the slope of the graph of the current vs. time
(Fig. 5.39).

What is the basic principle behind this phenomenon? It certainly is not a
magnetic force, since no charges are moving initially in the second solenoid. No
magnet is moving, so that it does not seem to be a Faraday EMF of the sort
we introduced earlier. We have noted that, in the presence of a solenoid carrying
a current, we can produce an EMF in a second solenoid either by moving one
solenoid with respect to the other or by changing the current in the first solenoid.
An interesting question is:

Are these two methods related?
If so, what is the unifying principle behind them?

5.14 Action-at-a-Distance and Faraday’s Fields

In an effort to explain how electric and magnetic forces can act at a distance, Faraday
proposed the existence of an “electric field” and a “magnetic field”.

What is a field? To answer this question we will cite some familiar examples.
Weather reports provide us with the value of temperature, pressure, and wind
velocity at various points on a map. All three parameters are “fields”. The first two



150 5 Electricity & Magnetism

Fig. 5.39 Changing current in one coil inducing an EMF in the second coil

are specified by numbers alone, such as 20ıC or 30ıC for temperature, and 29 in.
mercury or 31 in. mercury for pressure. Wind velocity is specified by a direction as
well as a number, and is an example of a “vector field.” As we will shortly see, both
electric and magnetic fields are vector fields.

Below is an example of the symbol used on weather maps to provide both
direction and magnitude for wind velocity (Fig. 5.40).

Meaning of the symbols: The wind velocity at Boston’s Logan Airport is
15 knots � 17 mph NW. The wind velocity in Springfield center is 20 knots �
23mph NE.

5.15 The Electric Field

According to Faraday, an electric charge is accompanied by an electric field which
“fills” (i.e., is present) throughout space. Below we depict a positive point charge
with its electric field (Fig. 5.41).
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Fig. 5.40 Wind velocity map

Fig. 5.41 Electric field
of positive charge

The direction of the field at the base (the heavy dot) of the arrow is indicated by
the direction of the arrow. All arrows point directly away from the point charge. The
length of an arrow is proportional to the magnitude of the field at the corresponding
point. We note that the magnitude decreases with increasing distance from the point
charge and is the same for equal distances. For a negative point charge, the arrows
point toward the charge (Fig. 5.42).
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Fig. 5.42 Electric field lines of point charges – a positive charge on the left and a negative charge
on the right

Fig. 5.43 Electric dipole field

We will represent the electric field by the symbol E. An alternative way to
represent the electric field on a map is to use continuous “electric field lines”. See
Fig. 5.42.

Here, it is the relative closeness of the field lines that indicate the magnitude of
the electric field at various locations in space. Remember that in fact a charge exists
in three-dimensional space, so that the figure above shows the field lines in a plane
running through three-dimensional space.

While the magnitude of the electric field in some region of space is proportional
to the density of the field lines (how close together the lines are), the direction of the
field at a point on a field line is along the tangent to the field line at that point (see
Fig. 5.43, where the field E at point P is indicated).

If there are many charges present, the total electric field in space is a superposi-
tion, that is sum, of the contributions of each charge taken separately.
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Fig. 5.44 Electric field of a sheet of charge

Fig. 5.45 Electric field of two charged sheets

Below are examples of the electric fields of interesting charge configurations.

1. A positive and a negative point charge, side by side – called a “electric dipole.”
See Fig. 5.43.

2. An infinite sheet with a uniform distribution of positive charge. See Fig. 5.44.
3. Two infinite sheets with positive and negative uniform charge distributions,

respectively. The electric field is confined between the sheets. See Fig. 5.45.

What is the significance of the electric field? The field represents the potential of
the charges associated with it to exert a force on an additional charge, say q, placed
in the field. Thus, the force EF (note the arrow on the symbol, since force is a vector)
on q due to the changes producing the field EE is given by:

EF D q EE; (5.1)

where EE is the electric field at the location of the charge q.
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Comment: The electric field of a charge may be likened to the halo drawn by artists
above a saintly person or a hero to indicate the potential of the person to influence
others in a spiritual or holy way.

The electric field can be regarded as a modification of the space between two
charges and thus deals with the philosophical action-at-a-distance issue: The electric
force between two charges is mediated by the electric field. But is the electric field
a real thing? What properties would give it reality? In my opinion, physics cannot
answer such a question:
The essential goal of physics is to establish a theoretical framework for
describing in a quantitative way what we decide to and are able to measure.
That framework makes use of models, concepts, and images. However, its
ultimate content is a set of mathematical equations, which we call laws. The
laws are as simple and all-encompassing as possible, and provide relationships
among measurable quantities.

5.16 The Magnetic Field

Now we turn to magnetic phenomena: A magnet or a current-carrying wire is
understood to fill space with a magnetic field, which has a specific magnitude
and direction at every point in space. We will represent the magnetic field by the
symbol EB . There exists a prescription for determining the magnetic field for a given
permanent magnet or a current-carrying wire – a prescription which is beyond this
course. Below, we have sketched the magnetic field for a number of cases.

1. Bar magnet as seen in Fig. 5.46.
Note that the magnetic field lines pass through the bar magnet itself. Also note
the similarity of the pattern with the electric field lines of an electric dipole.

2. An infinite straight wire with current. Here current is directed out of the paper.
See Fig. 5.47.

Note

The relation between the magnetic field and the current has a
complex form and is referred to as Ampère’s Law in honor of its
discoverer , who was mentioned earlier in this chapter. Essentially, the
magnetic field EB is proportional to the current I that produces it.
Thus,

EB / I: (5.2)

3. A long solenoid with tightly wound coils. Compare the field line configuration
with that of a bar magnet. See Fig. 5.48.

4. A horseshoe magnet. See Fig. 5.49. Here we have drawn only the field outside
the magnet. Noteworthy is the closeness of the magnetic lines between the poles:
The field is most intense in this region. Also, between the poles the field lines
tend to be straight.
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Fig. 5.46 Bar magnet

Fig. 5.47 Magnetic field of a straight wire
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Fig. 5.48 Magnetic field of a solenoid

Fig. 5.49 Magnetic field of a horseshoe magnet

Note: Generally, in contrast with the electric field lines described so far, magnetic
field lines are “closed” – that is, they have no beginning or end. This fact can be
shown to be connected with their being produced by moving electric charge, rather
than by what physicists refer to as “magnetic charges.” It is also connected with
the fact that when a permanent magnet is split in two, we end up with two whole
magnets, both with north and south poles. (See Fig. 5.12.) Later we will discuss
electric fields that have closed field lines.

How can we determine the direction of the magnetic field at some point in
space? The answer is simple. A bar magnet experiences a torque (twisting force)
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Fig. 5.50 Compass needles line up with the field

Fig. 5.51 Magnetic force on a point charge

in the presence of a magnetic field which lends it to line up with its South to North
direction parallel to the direction of the magnetic field. Thus, the bar magnet tends to
line up tangent with a magnetic field line. We can therefore use compass needles to
determine the direction of the magnetic field. In Fig. 5.50, we depict the orientation
of several compass needles in a given magnetic field.

5.17 Magnetic Force on a Moving Charge

Point charge: Generally, the force is perpendicular to both the velocity � of the
charge and the magnetic field B at the location of the charge. Also, the force
vanishes if the velocity is parallel to the magnetic field EB .

In Fig. 5.51, we depict the force on a positive charge with various velocity
directions with respect to a magnetic field. (If the charge is negative, the direction of
the force is reversed.) Note that the force EF is perpendicular to the plane determined
by Ev and EB .
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Fig. 5.52 Magnetic force on
a wire

For the simple case that the velocity is perpendicular to the magnetic field, that
is, Ev ? EB:

F D qvB: (5.3)

In Fig. 5.52, we depict a wire that is carrying a current in the presence of a
magnetic field that is perpendicular to the wire. (Note that a current in the upward
direction can be produced by positive charges that are moving upward and/or
negative charges moving downward.)

5.18 Force Between Two Parallel Wires Carrying Currents

Each wire produces a magnetic field which, in turn, accounts for a magnetic force
on the other wire. With some rather painful analysis, it can be shown that

• The wires attract each other if the currents are in the same direction.
• The wires repel each other if the currents are in opposite directions.

The Analysis: In Fig. 5.53 we depict two wires that are carrying currents in the same
direction. Let us label the wires #1 and #2, respectively. To find the force of wire #1
on wire #2, we need to find the magnetic field EB1 due to wire #1 at the position of
wire #2. We will label this field EB1 at 2. Now let us focus our attention on point P

on wire #2.
From the direction of B1 at 2 and of I2, we can determine the force F1 on 2 of

wire #1 on wire #2 as being to the left. Thus we see that wire #2 is attracted by
wire #1.

5.19 Generalized Faraday’s Law

Recall that an EMF is produced when a wire is moving in the presence of a
magnet – whether it be permanent or otherwise. This result can be understood as
being associated with a magnetic force on an electric charge which is moving in the
presence of a magnetic field. However, the EMF produced in a stationary wire, in
the presence of a moving magnet or in the presence of a second wire which carries a
current which changes in time, cannot be attributed to a magnetic force. In this case,
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Fig. 5.53 Magnetic force between two long current-carrying wires

a new principle is needed. This principle is embodied in Faraday’s Law, which can
expressed as follows:

Any change in a magnetic field with respect to time is accompanied by an
induced electric field.

In more concrete mathematical terms:

EE / ��B

�t
: (5.4)

That is, there is an induced electric field EE that is proportional to the rate of
change (symbolized by the Greek letters �) of the magnetic field EB with respect to
time. The reason for inserting a minus sign will be clear later.

This induced electric field can drive electric charges through a wire that may be
present. Thus, in these cases,

the EMF is attributed to an electric force!

A number of very important observations are in order:

1. We have seen that a current-carrying wire produces a magnetic field. Thus, it
is absolutely clear that changing the current will change the magnetic field and
hence produce an electric field.

Now, suppose a magnet is moving relative to me at some constant velocity v.
The magnetic field at some fixed location will change, so I will observe the
presence of an electric field. However, suppose you move with the magnet, at
the same velocity v with respect to me, so that it is motionless relative to you.
You will therefore observe no change in the magnetic field at any of your fixed
locations and so you will not observe an electric field!
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Thus, the observation of an induced electric field – even the very question
of its existence – depends upon the state of motion of the observer. It is not
appropriate to ask whether there is an induced electric field. All we can say is
that there is an EMF as far as all observers are concerned. How this EMF is
accounted for depends upon the state of motion of the observer.

2. Consider again the situation when a wire loop and magnet are moving with
respect to each other. There will be a current induced in the loop with a magnitude
which is usually very close to being independent of the state of motion of the
observer4.

Now consider two specific observers: One is at rest with respect to the magnet
and observes a moving loop, while the second observer is at rest with respect
to the loop and observes a moving magnet. Both observe an induced current.
However, they account for the induced current in two different ways: The first
observer accounts for the current in terms of a magnetic force due to the charges
in the wire loop moving in a constant magnetic field. For this observer, there is
no electric field. On the other hand, the second observer accounts for the current
in terms of an electric force due to an electric field that is brought about by the
moving loop leading to a changing magnetic field.

3. We see that the question of the existence of an induced electric field depends upon
the state of motion of the observer. So it is with a magnetic field. Consider, for
example, that someone who observes an electric charge moving with a constant
velocity v will perceive the presence of a magnetic field. Someone else, moving
at the same velocity v as the charge, does not observe a moving charge and hence
must account for the consequent observations without the presence of a magnetic
field from the charge.

You might feel upset that the question of the existence of an electric or a
magnetic field can depend upon the state of the observer. However, we all have
to deal with this apparent dilemma in asking the question as to whether an object
at rest on the surface of the earth has kinetic energy. With respect to an observer
at rest on the earth, the object has no kinetic energy. However, a person at rest
with respect to the sun would say that the object is moving around the sun along
with the earth and has kinetic energy. Thus, the amount of kinetic energy that an
object has depends upon the observer.

4. The two ways of producing an EMF are used in two designs for a microphone
depicted below. Both designs work! Microphone (1) works on the basis of a
magnetic force on charges in the solenoid. Microphone (2) works on the basis of
a electric force on charges in the solenoid (Fig. 5.54).

5. Let us use the following symbols to indicate the state of motion of an observer,
represented by an eyeball.

4Einstein’s Theory of Special Relativity does predict a dependence of the current on the state of
motion of the observer. The dependence is small when velocities are much less than the speed of
light in vacuum (3 � 108 m/s).
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Fig. 5.54 Two designs for a microphone

Fig. 5.55 Symbols denoting
the state of motion of an
observer

In Fig. 5.55 are the two different situations which we have just discussed in
pictorial form.

Case I: A permanent magnet is in the presence of various observers (Fig. 5.56).
How these observers account for their observations depends upon the relative
velocity of the observer and the magnet.

Observer #1 accounts for his/her observations in terms of both a magnetic
field and an electric field EE1. The magnet produces a magnetic field by virtue of
its being a magnet. It produces an electric field because of its motion with respect
to the observer.

Observer #2 accounts for his/her observations in terms of a magnetic field
alone since the observer and the magnet are moving at the same velocity with
respect to the paper and hence have no relative velocity.

Observer #3 accounts for his/her observations in terms of both a magnetic
field and an electric field EE3 which is different from EE1. Note that the velocity v0
is at an angle with respect to the velocity v.
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Fig. 5.56 Three observers of a magnet

Fig. 5.57 Two different observers of two moving charges

Figure 5.53

Case II: An electric charge is in the presence of various observers. How these
observers account for their observations depends upon the relative velocity of the
observer and the charge (Fig. 5.57).

Observer #1 accounts for her observations in terms of an electric field alone:
Both charges are at rest with respect to this observer. Thus, according to this
observer, they exert only an electric force upon each other.

Observer #2 accounts for his observations in terms of both an electric field
and a magnetic field. There are both an electric and a magnetic field due to the
upper charge. Therefore, the lower moving charge experiences both an electric
force and a magnetic force. One can reverse the roles of the two charges.

SUMMARY: Moving permanent magnets, moving electromagnets (wires with
electric current), and stationary electromagnets with a changing electric current – all
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produce a change in the magnetic field and therefore an induced electric field. If a
loop of wire is present, this electric field can drive an electric current and people
refer to the presence of an “induced EMF.” It is important to realize that the induced
electric field is present whether or not a loop of wire is present!

5.20 What Do Induced Electric Field Lines Look Like?

Below we show some examples.

1. Moving bar magnet or solenoid.
In Fig. 5.58, I have drawn closed electric field lines on a rectangular surface.
The direction of “rotation” of these lines is connected with the change � EB in the
“B-field” being to the right. Thus, we would get the same direction of the induced
electric field to the left of a bar magnet which is moving to the left, as shown in
Fig. 5.59. Here, the negative magnetic field is to the right, but the magnitude of
the magnetic field is increasing, so that the change � EB in the magnetic field is to
the right.

We can represent the above schematically in a very much simplified Fig. 5.60.
Note that if EB is pointing to the right and its magnitude is decreasing, EB is
pointing to the left.

2. Stationary solenoid with a changing current.
Home exercise: Describe EEind to the right and left of the solenoid.

Fig. 5.58 Induced electric field from a moving magnet

Fig. 5.59 Induced electric field from moving magnet – reversed direction
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Fig. 5.60 Changing magnetic field leads to an electric field

3. Long straight wire with a changing current.
Note that the change in current �I produces a change in the magnetic field � EB ,
which is said to induce the presence of an induced electric field EEind.

4. Short segment of wire with a changing current.
Because the wire is infinite in length in case (3), the lines of Eind are parallel
straight lines. In the present case, � EB is concentrated around the wire segment
so that EEind is also concentrated. We can also see how EEind has closed.

5.21 Lenz’s Law

Notice that in both figures – Figs. 5.61 and 5.62 – the induced electric field produced
by a changing current is in a direction opposite to that of the change in current, as far
as positions along the wire are concerned. Thus, Eind opposed the change in current.
The result is that to change the current in a wire, work has to be done to overcome
the consequence-induced electric field. That is why extra power is needed while an
electric motor is being started up.

Notice too, how the sense of rotation of loops is related to the direction of straight
arrows: The relation between Eind associated with � EB (determined by Faraday’s
Law) is different from the relation between EB and the current I which produces that
magnetic field. (Here a changing current �I is producing a changing � EB .) This
difference is reflected by the minus sign in Faraday’s Law:

EEind / �� EB
�t

: (5.5)

The above behavior reflects what is referred to as Lenz’s Law. It states that
The current induced by a changing magnetic field produces a magnetic field

that opposes the change in magnetic field.

Let us examine a few experiments to see how Lenz’s Law applies.

Figure 5.32: Here we see a magnet moving toward a loop of wire. The magnetic field
is thereby increased to the right. The induced current has a direction that produces
a magnetic field to the left along the axis. This figure corresponds to Fig. 5.58. To
the right of the latter figure, we see the induced electric field lines labeled EE. If a
loop of wire was present along an electric field line loop, there would be an induced
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Fig. 5.61 Changing current
leads to an induced electric
field

Fig. 5.62 Changing current
in a short wire leads to an
induced electric field

current around the loop, as seen in Fig. 5.32. This induced current will produce a
magnetic field to the left, thus opposing the increased magnetic field to the right.

Figure 5.61: Here, the change in current, �I , produces a changing magnetic field,
�B . In turn, this changing magnetic field produces the induced electric field, EEind.
This induced electric field produces an induced current (over and above the original
current �I ). This additional contribution to the current is in the same direction as
the electric field and thus in a direction opposite to the changing current �I .

NOTE: Lenz’s Law is not an independent, new law. It merely accentuates the
significance of the minus sign in Faraday’s Law. It is an extremely useful tool
for predicting the net qualitative result of Faraday’s Law without having to carry
out complete mathematical calculation. Furthermore, it has extremely important
consequence regarding the stability of electromagnetic systems: Let us suppose that
the sign in Faraday’s Law was a PLUS sign. Let us consider a ring of metallic wire.
It has a huge number of free (mobile) electrons that are moving at incredible speeds
in random directions. On average, in equilibrium, their currents essentially cancel
and we end up with an essentially vanishing net current. However, these individual
currents do not exactly cancel. As a consequence, there are always fluctuating
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changing net currents. With a PLUS sign, a changing current would produce an
electric field that will increase that current in the same direction. We would have a
positive feedback. The current can be shown to increase exponentially! The system
would be unstable. The actual NEGATIVE sign provides a negative feedback and
always brings the system back toward its equilibrium vanishing net current.

5.22 The Guitar Pickup

We will now discuss the design of a guitar pickup that makes use of magnetic
polarization. It is based on the following phenomenon: Materials such iron or steel
or nickel can be magnetized so as to form a permanent magnet, as described above.
These materials are said to be magnetic materials. (Aluminum or copper cannot
be magnetized and are said to be nonmagnetic materials.) Magnetic materials
also exist in nonmagnetized states – witness a steel paper clip that you buy
from the store. However, if a piece of magnetic material is placed in the vicinity
of a magnet, the piece can become temporarily magnetic – the technical term is
magnetically polarized. Often, when the magnet is removed, the piece will return
to its nonmagnetic state, so that its magnetic state is dependent upon the presence of
the other magnet. A guitar pickup depends upon a return to the non-magnetic state.

In Fig. 5.63, we depict details of a practical design for a common guitar pickup.
The permanent magnet polarizes the steel string. The solenoid experiences the
magnetic fields of both the permanent magnet and the magnetically polarized
vibrating string. When the string vibrates, the magnetic field of the polarized string
changes in time, resulting in an induced EMF in the solenoid pickup coil. The
induced EMF that is passed on to the amplifier will have a pattern in time that
mirrors that of the velocity of the string.

Fig. 5.63 Guitar pickup using magnetic polarization and a Faraday EMF
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5.23 Maxwell’s Displacement Current

Faraday’s Law describes how a change in the magnetic field with respect to time
is accompanied by an induced electric field. Around 1860, James Clark Maxwell
(Fig. 5.64) discovered that a change in electric field with respect to time must be
accompanied by an induced magnetic field. The rate of change of EE with respect
to time is known as the displacement current. In simplified form, we have:

EBind / C� EE
�t

: (5.6)

There is a situation where such a relation would not be surprising: A moving
point charge will be associated with a magnetic field and an electric field which
changes with respect to time as shown in Fig. 5.65.

Fig. 5.64 James Clerk
Maxwell (source: http://en.
wikipedia.org/wiki/James
Clerk Maxwell)

Fig. 5.65 Electric and
magnetic fields of a moving
charge

http://en.wikipedia.org/wiki/James_Clerk_Maxwell
http://en.wikipedia.org/wiki/James_Clerk_Maxwell
http://en.wikipedia.org/wiki/James_Clerk_Maxwell
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Fig. 5.66 Magnetic field from an electric current

Fig. 5.67 Induced magnetic field due to changing electric field – the Displacement Current

However, this latter magnetic field is the one usually associated with Ampère’s
Law. In order to appreciate the difference between an “Amperian” magnetic field and
one associated with the displacement current (and therefore to appreciate Maxwell’s
contribution), we will consider instead the following two situations:

1. Let us study more closely a metal wire carrying a current. Positive ions are
stationary, electrons account for current, and the metal remains electrically
neutral. Outside the wire, all we have is a magnetic field (Fig. 5.66).

2. Now suppose that a segment of wire is removed while the EMF which drives
current through the wire continues to “pump” electrons in from the right and
draw them off from the left. The ends of the wire will accumulate respective
positive and negative charge, and we will have a changing electric field in the
space between the two ends (Fig. 5.67).

We observe a magnetic field EBind in the gap region not due to a current,
but rather due to a changing electric field, the displacement current � EE=�t .
Maxwell’s great contribution was that more generally, a changing electric
field must be accompanied by a magnetic field. The resulting relation led to
his deduction that there exists an electromagnetic disturbance which we call
electromagnetic waves and that light is an example of such a wave.
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5.24 Electromagnetic Waves

Now we are ready to see how Faraday’s Law and Maxwell’s Displacement Current
can generate an electromagnetic wave pulse.

Consider first the propagation of a pulse on a long string under tension. The
equilibrium state is a straight string. Figure 5.68 shows the string at some early
stages after it is being plucked at its center.

Next we turn to the propagation of an electromagnetic wave pulse. Here the
equilibrium state is absence of an electromagnetic wave. For a wave in vacuum,
there is nothing. We can start the pulse by having a localized electric field EE1. (One
way to do this is by giving an electric charge a sudden jerk – in our example, a
downward jerk on a positive charge.) This represents a change in the electric field, so
that a magnetic field EB1 is generated (via the mechanism of Maxwell’s Displacement
Current). See Fig. 5.69, where the change in field is observed at a position just below
the charge. In turn, EB1 generates a second contribution to the electric field, EE2 (via
Faraday’s Law). Then, in turn, EE2 generates EB2, and so on. See the figure below.

If we add � EE1 and � EE2, we obtain an electric field which, along the horizontal
axis, has a direction and qualitative magnitude shown in Fig. 5.70.

This process actually takes place continuously in time and space. The result is
that an electromagnetic wave pulse propagates outwardly from the source.

Maxwell himself derived specific mathematical equations to express the laws of
electricity and magnetism. These equations have an infinite number of solutions
which describe combinations of motion of electric charge and electric and magnetic
fields. Most significantly, Maxwell showed that there exists a class of solutions
which describe the propagation through space of electric and magnetic fields as
a so-called electromagnetic wave. Maxwell’s analysis provides mathematical rigor
behind our description above. In Fig. 5.71 we depict an electromagnetic wave
traveling to the right.

Fig. 5.68 Propagation of a pulse along a stretched string
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Fig. 5.69 Generating an electromagnetic field – stage 1

Fig. 5.70 Generating an
electromagnetic field –
stage 2

Fig. 5.71 Electromagnetic field – detail
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The direction of both the electric and magnetic fields is perpendicular to the
direction of propagation. Hence, an electromagnetic wave is said to be transverse.
In addition, the electric field and the magnetic field are perpendicular to each other.

What is the wave velocity for these EM waves?
Remember the two relevant equations:

EEind / �� EB
�t

EBind / C� EE
�t

: (5.7)

In these equations, there appear two constants of proportionality involving two
constants:

The permeability of free space and the permittivity of free space.
Maxwell found that the wave velocity of electromagnetic waves – c – is given by:

c D 1

.Permeability of free space � Permittivity of free space/1=2
(5.8)

The permittivity of free space is analogous to the mass density and the
permeability of free space is analogous to the inverse of the effective force in
(2.27).

When Maxwell evaluated this expression, he obtained

c D 3:0 � 108 m=s:

This value is just the measured value for the speed of light in vacuum and
confirmed his identification of a light wave as an electromagnetic wave. Can you
imagine how Maxwell might have felt at this discovery!

Comment: The fact that Maxwell’s equations have EM waves as solutions without
the need for electric charge means that the waves are self-sustaining: We do not
know of EM waves which were not originally produced by charge. But once the EM
waves are produced, the charges may be removed afar. This self-sustaining feature
is dependent upon the existence of Maxwell’s Displacement Current.

A dramatic example of this self-sustaining property occurs in the phenomenon
of electron–positron pair annihilation. When these two fundamental particles are
close to each other, they have a high probability of both disappearing and being
entirely replaced by EM radiation.

Heinrich Hertz (Fig. 5.72) is given credit for being the first to detect EM waves
and being able to identify them as such in the framework of the then commonly
accepted set of electromagnetic phenomena. A schematic drawing of his apparatus
is shown in Fig. 5.73; a photograph of the actual apparatus is shown in Fig. 5.74.
In the experiment, a high voltage source produced a spark across a gap in a circuit.
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Fig. 5.72 Heinrich Hertz
(source: http://en.wikipedia.
org/wiki/Heinrich Hertz)

Fig. 5.73 Generating an electromagnetic field from an electric spark

Across the room was a metal ring with a gap. A spark jumped across the ring’s gap
in response to the original spark.5

The first spark involves a changing electric current which produces a changing
magnetic field. Here it is a � EB which is the initial source of the EM pulse. Only an
EM wave could account for the great distance traveled by the EM disturbance with
such small attenuation.

In time, a wide variety of disturbances, produced under different circumstances,
have been identified as EM waves. The only difference among them is the range
of frequencies. See Fig. 5.75.

5Figure 5.74 of Hertz’s apparatus was generously provided by John Jenkins, who directs the Spark
Museum. For more details about the museum, see its website at: http://www.sparkmuseum.com.

http://en.wikipedia.org/wiki/Heinrich_Hertz
http://en.wikipedia.org/wiki/Heinrich_Hertz
http://www.sparkmuseum.com.


5.24 Electromagnetic Waves 173

Fig. 5.74 Heinrich Hertz’s apparatus for the detection of electromagnetic waves (photo provided
by John Jenkins)

Fig. 5.75 Names of electromagnetic waves for various ranges of frequencies (source: http://en.
wikipedia.org/wiki/Electromagnetic radiation)

http://en.wikipedia.org/wiki/Electromagnetic_radiation
http://en.wikipedia.org/wiki/Electromagnetic_radiation
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5.25 What Is the Medium for Electromagnetic Waves?

Aside from EM waves, all the waves we have discussed so far in the course involve
the disturbance of a medium:

• Taut string
• Tuning fork
• Sound in air gas, liquid, or solid
• Surface wave on a liquid such as water
• Vibrating Chladni plate or wooden plates of a stringed instrument

Note

Physicists understandably were convinced that EM waves must also
involve the disturbance of a medium. They called this as yet undiscov-
ered medium the “ether.” However, all efforts to reveal the existence
of the “ether” failed. The question was settled in 1905 by Einstein’s
“Theory of Special Relativity.”

This theory allows us to describe all observations in terms of a theory
in which a medium for the propagation of EM waves, the ether, plays
no role and may be regarded as nonexistent. The stupendous details,
ramifications, and consequences of the Theory of Special Relativity are
beyond the scope of this course. You are encouraged to read a layman’s
account of the theory. Suffice it to say that nuclear weapons and energy
were a couple of “by-products.”

In satisfying his need to understand the enigmas regarding electric
and magnetic fields, Einstein presumably had no foresight as to the
awesome consequences of his studies. In fact, the possibility of a
nuclear bomb was regarded by most physicists as absurd, even into the
1930s.

Should physicists stop thinking? Some, perhaps many people, feel
so. I do not want to belabor this issue much here. I would, nevertheless,
encourage you to think about an entirely different area for the sake of
comparison because the area is seemingly more benign to us:

About 100 years ago, Sigmund Freud ushered in the modern age
of psychology. People have benefitted greatly from this development.
However, psychiatry gave birth to the age of manipulation of the masses
with highly sophisticated methods of propaganda and advertising. Most
glaringly, the Nazi horrors, including tens of millions dead directly due
to WWII and about 12 million exterminated victims of the holocaust,
by far exceeds the losses to humankind, at least, so far, due to nuclear
weapons. Should we stop studying psychiatry and psychology?
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5.26 The Sources of Electromagnetic Waves

According to the laws of electromagnetism which were formulated by Maxwell,
EM waves are produced by accelerating charge. Recall that acceleration is the
measure of the rate of change in velocity. Thus, a charge that is moving at a constant
velocity and therefore is not accelerating, does not produce EM waves, even though
an observer uses both electric and magnetic fields to account for the forces produced
by the moving charge.

We say that an accelerating charge “radiates” EM waves or emits EM radiation.

Example 1: If a charged particle is oscillating sinusoidally like a simple harmonic
oscillator, EM waves will be emitted having a frequency equal to that of the
frequency of oscillation. This is the principle behind the operation of radio and
TV antennas. Electric charge is “pumped” in and out of the antenna. The electric
current runs up and down the antenna. Compare this motion with that of air in the
fundamental mode of a sound wave is a semi-closed tube! (Fig. 5.76).

Example 2: Velocity is specified by its speed and its direction. Acceleration
represents a changing velocity, whether the speed is changing and/or the direction is
changing. A charge that is moving around a circular path at constant speed still has
an ever-changing direction. Therefore, it is accelerating. As a consequence, it will
emit EM waves. Not surprisingly, perhaps, the waves have a frequency equal to the
frequency of revolution of the charge. See Fig. 5.77.

Example 3: Resonance between two electrically charged simple harmonic
oscillators.

In Fig. 5.78, we have depicted two SHOs whose masses have electric charge and
whose frequencies of oscillation are identical. Suppose that the left SHO is set into
oscillation. It will emit EM waves which reach the SHO to the right. At the position
of the right SHO we have an electric field (associated with the EM waves) which
oscillates up and down sinusoidally. It therefore produces a sinusoidal force on the

Fig. 5.76 Generating a radio
wave
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Fig. 5.77 EM field from a
circulating charge

Fig. 5.78 Resonance between two charged SHOs

right charge at a frequency which equals the “natural” frequency of oscillation of
the SHO and so causes the right charge to oscillate with a relatively large amplitude.
We have a resonant response.

Summary of Electricity and Magnetism

Electromagnetic phenomena are ultimately manifested by forces between electric
charges. These forces can be determined, in principle, by the state of the charges
alone. Thus,

1. Two charges exert an electric force on each other that is determined by their
relative position.

2. Two charges that are both moving exert a magnetic force on each other that
depends upon both their position and their relative velocity.
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These forces can also be understood in terms of electric and magnetic fields, a
concept introduced by Michael Faraday. Thus,

1. A charge produces an electric field
2. A moving charge produces a magnetic field
3. A charge experiences an electric force in the presence of an electric field
4. A moving charge experiences a magnetic force in the presence of a magnetic

field
5. An accelerating charge produces a combination of electric and magnetic fields

referred to as an electromagnetic wave. Light is an example of an electromagnetic
wave

Added note: The question of whether electromagnetic waves are real is not a
question within the domain of Physics; it is a philosophical question. However you
choose to think of an electromagnetic wave, it is a mathematical quantity that can
be used to determine the behavior of electric charges.

5.27 Terms

• Action–reaction
• � -ray
• AmpJere0s Law

(relating current to magnetic field)
• Compass
• Conductor
• Electrically polarized
• Electric battery
• Electric charge
• Electric force
• Electric current
• Electric field
• Electric generator
• Electric motor
• Electromagnetic energy
• Electromagnetic field
• Electromagnetic force
• Electromagnetic wave
• Electromotive force (“EMF”)
• Electron-volt (eV)
• Electroscope
• Faraday’s law of induction
• Free electrons
• Galilean principle of relativity

• Gravitational force
• Induced EMF
• Insulator
• Lenz’s law
• Loudspeaker
• Magnet
• Magnetic field
• Positive and negative charge
• Magnetic force
• Power
• Magnetite (or “lodestone”)
• Maxwell displacement
• Metal
• Microphone
• Microwave
• Neutral (electrically)
• Newton’s third law
• North and south pole of a magnet
• Nuclear force
• Optical fiber
• Relativity of description
• Solenoid
• Weak force
• X-rays
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5.28 Important Equations

Electric force:
F / qE: (5.9)

Magnetic force:
F / qvB: (5.10)

Ampére’s Law:
B / I: (5.11)

Faraday’s Law:

E / � �B

�t
: (5.12)

Maxwell’s Displacement:

B / C �E

�t
: (5.13)

5.29 Problems for Chap. 5

1. What is an “electromagnet”?
2. Where is the magnetic N-pole of the earth? (Approximately?)
3. What was Oersted’s discovery?
4. Draw the electric field lines of an electric dipole.
5. Draw the magnetic field lines of a bar magnet.
6. Magnetic field lines are: always closed / may be closed / never closed.
7. Electric field lines are: always closed / may be closed /never closed.
8. State Faraday’s Law.
9. How do the following work? motor; generator; loudspeaker.

10. Describe the operation of a microphone with two different designs, using
fundamental physics principles.

11. Describe a situation which illustrates the Principle of Relativity in electricity
and magnetism.

12. Describe a situation wherein the presence of when a electric field depends upon
the motion of the observer.

13. Describe a situation wherein the presence of a magnetic field depends upon the
motion of the observer.

14. What is Maxwell’s Displacement Current?
15. Electromagnetic radiation is produced when an electric charge is behaving in

what way?
16. Calculate the wavelength of microwaves in a microwave oven having a

frequency of 2,500 MHz. On the basis of your answer, discuss the effect on
cooking of the nodal lines of a standing wave that could set up in the microwave
oven.



Chapter 6
The Atom as a Source of Light

We have noted that according to Maxwell’s theory of electromagnetism, light is
nothing but a visible electromagnetic (EM) wave that has a frequency in the narrow
range �4 � 1014 Hz to �7 � 1014 Hz. The corresponding range of wavelengths is
4,000–7;000 Å. Furthermore, EM waves are produced and emitted by accelerating
electric charge. There are two interesting questions that immediately confront us:
(1) We accept the premise that animal eyes evolved so as to be sensitive to sunlight.
Still, what characteristics of animal eyes makes them sensitive to this particular
narrow range of frequencies? (2) What are the physical characteristics of the sun
that causes sunlight to be concentrated in a particular range of frequencies?

The answer to the first question is connected with the fact that the eye uses
conglomerates of atoms, that is, molecules, as detectors of EM waves. This chapter
therefore focuses on the atom as a source and receiver of EM waves. The answer
to the second question has to do with the fact that the sun is a body that is
in equilibrium, with a surface temperature of about 5;800ı above absolute zero
(that is 5;800 Kelvin / 5;800 K D 6;073ıC). That there is a connection between
temperature and frequency must be surprising to the beginning student of physics;
as we will see later on this chapter, the connection stems from their common link
with energy.

6.1 Atomic Spectra

Matter is constantly emitting EM radiation and absorbing EM radiation which
strikes it. Ordinarily this EM radiation is invisible and of low intensity. However,
when matter is heated up from room temperature, it emits EM radiation which
becomes more intense and eventually, in a certain range of temperatures, becomes
visible. When dilute gases of atoms are heated up sufficiently, as they are in a star,
we can see EM radiation which comes directly from the star’s atoms. That radiation
reflects the behavior of a single atom. The frequency spectrum of radiation around
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Fig. 6.1 Prism analyzing
white light (source: http://
en.wikipedia.org/wiki/File:
Dispersive Prism Illustration
by Spigget.jpg)

the visible range can be determined using a diffraction grating or a prism. (How
these devices work will be discussed in Chaps. 7 and 8, respectively.)

The experimental setup is depicted in Fig. 6.1, wherein a beam of light from a
light bulb is passed through a slit so as to produce a narrow column beam. This
column beam is passed through a prism, out of which comes a column beam that
is fanned out spatially. The higher the frequency, or the lower the wavelength, of a
Fourier component of the incoming beam is, the more is it deflected away from the
incoming direction. (See Sect. 8.7 in the text, which shows how this effect is a result
of dispersion and refraction.) This outgoing beam is incident upon a screen, which
can be viewed and analyzed.

Because the incoming beam is close to being white light, the spectrum will be a
continuous rainbow spectrum. In Fig. 6.2, we exhibit the image that is produced on
the screen by a beam of light emitted by various gases of atoms which have been
heated up to a very high temperature (thousands of Kelvins) or has been subjected
to a very high electric voltage. Because a column beam has been analyzed, each
component shows up as a line. For this reason, scientists make reference to the line
spectrum of an atom, which can be compared to the sound spectrum of a musical
instrument. See Fig. 6.2 for the line spectra of hydrogen and of iron.

We see that the frequency spectrum of an atom is discrete, as opposed to the
spectrum of sunlight, which is continuous. Each atom has its own unique spectrum,
which can serve as its “fingerprint” for identification purposes. This fact allows us
to determine which atoms and molecules are present in outer space, such as in stars,
quasars, and interstellar gases.1

1The following website (12-29-2010) enables you to see the emission spectrum of elements shown
in the periodic table. http://chemistry.bd.psu.edu/jircitano/periodic4.html.

http://
en.wikipedia.org/wiki/File: Dispersive_Prism_Illustration_by_Spigget.jpg
en.wikipedia.org/wiki/File: Dispersive_Prism_Illustration_by_Spigget.jpg
http://chemistry.bd.psu.edu/jircitano/periodic4.html
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Fig. 6.2 Spectra of hydrogen and iron (source: http://en.wikipedia.org/wiki/Emission spectrum)

6.2 The Hydrogen Spectrum of Visible Lines

The following are the frequencies of the visible spectral lines of hydrogen, which is
the simplest element:

f1 D 4:57 � 1014 Hz

f2 D 6:17 � 1014 Hz

f3 D 6:91 � 1014 Hz

f4 D 7:32 � 1014 Hz:

The fundamental question is: What is the theoretical basis for these spectra?
To appreciate the meaning of the above question, let us review the case of the

vibrating string with fixed ends. The frequency spectrum is a harmonic series:

f1; f2 D 2f1; f3 D 3f1; : : : :

What counts essentially are the ratios of the frequencies of the overtones to the
fundamental frequency, 1 W 2 W 3 W 4 W : : :. The fundamental frequency sets the
scale for the whole spectrum. Recall that we can express the frequency spectrum as
follows:

fn D nf1 where n D 1; 2; 3; : : : : (6.1)

We showed that this spectrum follows from the fact that the modes of vibration of
a string have periods which are an integral fraction of the time that it takes for a pulse
to make a round trip along the length of the string. Since according to Maxwell’s
theory, the source of EM radiation is accelerating charge, a reasonable hypothesis
to account for atomic spectra would be that:

1. The charges in an atom have modes of vibration associated with atomic forces.
In order to determine the modes an as yet unknown model of the atom would be
needed.

http://en.wikipedia.org/wiki/Emission_spectrum
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2. Each particular frequency in the frequency spectrum of an atom is associated
with a particular mode of vibration. In order to understand this idea, recall the
charged SHO of Sect. 5.26 and exhibited in Fig. 5.78.

Unfortunately, no one could find a model for an atom that accounted for
the observed atomic spectra. A hint was provided in 1884 by Johann Balmer,
who discovered that the observed visible spectrum of hydrogen, that is, the four
frequencies given above, was fitted well with the following complicated formula:

fn D 3:29 � 1015 Hz �
�

1

4
� 1

.n C 2/2

�
: (6.2)

Thus, for example,

f1 D 3:29 � 1015 Hz �
�

1

4
� 1

.1 C 2/2

�
D 4:57 � 1014 Hz: (6.3)

Two points must be stressed: First, it can be proved that any finite set of numbers
(here four numbers) can be fitted precisely with any one of an infinite number of
formulas such as (6.2).2 Second, Balmer’s formula had no theory to give it physical
significance when it was first presented. It was purely empirical.

Formulas similar to Balmer’s were later found to fit the observed spectral lines of
hydrogen that lie in both the ultraviolet region (i.e., just above the visible frequency
range) and in the infrared region (i.e., just below the visible frequency range). Later,
Neils Bohr gave Balmer’s formula a theoretical basis. As we will shortly see, the
formulas did provide Bohr with a clue to his theory in which it involved a difference
between two numbers (the two terms between the brackets of (6.2)).

It is interesting to note that after Maxwell showed that there must exist a
displacement current contribution to the magnetic field, and identified light as an
electromagnetic wave, it was believed that the existing set of fundamental laws of
physics was complete; that is, the laws could in principle account for all observations
thus far and henceforth to be made.3 This set of laws, along with the accompanying
concepts, is referred to as classical physics. Unfortunately, as far as atomic spectra
were concerned, no one succeeded in finding a model for an atom that accounted
for the observed spectra. In fact, it ultimately became clear that classical theory

2As an example, the set of numbers, f1; 2; 4g, can be represented by 2n�1 or by Œn.n � 1/=2 C 1�,
where n D 1; 2; and 3, respectively.
3The term “in principle” means that one merely had to solve the mathematical equations and
one would find that the theory would be confirmed by experiment. In practice, there are many
phenomena that require the solution of equations that are too difficult and complicated to solve, so
that the theory cannot be tested. However, unsolvability does not imply that the equations and the
theory that they represent are incorrect.
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Fig. 6.3 Electron orbits in
the Rutherford model

was inadequate and would have to be modified or improved so as to account for
phenomena at the atomic level. Thus, limitations of mathematical solvability were
not the issue here.

In 1911, on the basis of experiments of alpha particles scattered by atoms of
gold, Ernest Rutherford proposed a model for the atom in which a collection
of negatively charged electrons revolve in planetary-like orbits about a positively
charged nucleus. The radius of the electron orbits is on the order of Ångstroms.
(1 Å D 10�10 m.) The nucleus is relatively utterly minuscule, with a diameter that
is about 1=100;000 that of the atom as whole and therefore occupying only about
one part in .1=100;000/3 D .1=1;000;000;000;000;000/ D one-thousand-trillionth
of the volume of the atom as a whole. Since the electrons are regarded as being
much smaller than the nucleus, most of an atom’s volume is empty space! We see
a reflection of Rutherford’s model, expanded upon by Bohr, in the common symbol
for an atom (Fig. 6.3).

There was a major difficulty with the Rutherford model in the context of Classical
Physics in which the atom is unstable.

Suppose an electron is orbiting a nucleus at some radius. Because of its accelera-
tion, the electron will emit EM radiation having a frequency equal to the frequency
of revolution. Also, the radiation has energy, so that the orbiting electron must lose
energy, which here is a sum of kinetic energy (KE) and potential energy (PE).
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Since the radius of the orbit decreases with decreasing energy, the electron will
spiral into the nucleus. Furthermore still, since the frequency of revolution decreases
with decreasing radius, the radiation will have an ever continuously decreasing
frequency. And finally, classical theory predicts that an electron that starts out at
a radius of 1Å would spiral into the nucleus in about one-billionth of a second!
Thus, an atom would collapse and thus be quite unstable.

Two responses were reasonable at this point in the search for a theory of the
atom:

1. One could search for a new model while keeping the classical laws.
2. One could keep the basic Rutherford model but find new laws.

6.3 The Bohr Theory of the Hydrogen Atom

When there is disagreement with experiment, indicating a need for revised laws,
physicists try hard to preserve as much of the essence of existing laws. Such was
the case when, in 1913, Neils Bohr proposed a theory of the hydrogen atom that
incorporated the Rutherford model but combined classical laws with a modification
that restricted the orbits (Fig. 6.4).

We can summarize the theory as follows:

1. According to classical theory, the electron orbits are ellipses, with any size or
degree of flatness (referred to as “eccentricity”) being possible. Circular orbits
can have any radius. Bohr proposed that only certain discrete orbits are possible.
We exhibit Bohr’s discrete concentric circular orbits in Fig. 6.5.

Fig. 6.4 Neils Bohr (source:
http://en.wikipedia.org/wiki/
Niels Bohr)

http://en.wikipedia.org/wiki/Niels_Bohr
http://en.wikipedia.org/wiki/Niels_Bohr
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Fig. 6.5 Bohr orbits of the
hydrogen atom

In Bohr’s theory, the radii are equal to the following multiples of the so-called
Bohr radius, which is equal to about 0:53Å, and to which we will give the
symbol a0:

r D a0; 4a0; 9a0; 16a0; : : : :

Generally, r D n2a0; where n D 1; 2; 3; : : : : (6.4)

The allowed orbits correspond to certain allowed energies:

E D �13:6 eV; �3:4 eV; �1:5 eV; �0:85 eV; : : :

or generally, E D �13:6 eV=n2, where n D 1; 2; 3; : : : : (6.5)

Note that while the energies are negative, the energies of the orbits increase
(are less negative) with increasing radius. We will see that the only importance
of these energies is the difference between pairs of energies, so that their being
given negative values is inconsequential.

2. Next we consider Bohr’s theory of emission of EM radiation. According to
Bohr, this takes place not because of the acceleration of charge, but rather in
association with transitions of the electron from one orbit to another of lower
energy. A transition from the n D 2 orbit to the n D 1 orbit is depicted in Fig. 6.6.

A transition from one orbit to another of lower energy is accompanied by the
emission of a specific discrete amount of EM radiation. This unit of EM radiation
is called a photon, which is represented by the wiggly arrow in the figure. By the
Principle of Conservation of Energy, the photon must have an energy equal to
that lost by the atom.

Thus, photon energy equals energy lost by an atom or

Eph D Ei � Ef (6.6)

which is also called the photon emission condition.
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Fig. 6.6 Transitions in the
Bohr model that lead to
emission of EM radiation

The emission takes place without the need of an interaction of the atom with
an external system. The process is therefore referred to as spontaneous emission.
In (6.6), Ei and Ef are the initial and final energy of the atom, respectively. For
example, if the atom makes a transition from the n D 2 orbit to the n D 1 orbit,
the emitted photon has an energy

Eph D .�3:4 eV/ � .�13:6 eV/ D 10:2 eV:

What are the characteristics of a photon?

(a) A photon has a specific frequency. In fact, monochromatic (sine wave) EM
radiation of a given frequency f consists of a collection of photons having
the same frequency.

(b) A photon has a specific energy related to its frequency via the Planck
Relation:

Energy of photon D Eph D hf: (6.7)

In (6.7), h is a universal fundamental constant of nature known as Planck’s
Constant – named after Max Planck. It has the value

h D 4:1 � 10�15 eV per Hz: (6.8)

Thus, suppose that the radiation has a frequency f D 5:0 � 1014 Hz. Then,

Eph D 4:1 � 10�15 � 5:0 � 1014 D 2:0 eV:

The condition of (6.7) for photon emission then reads

hf D Ei � Ef: (6.9)

Therefore, the emitted photon has a frequency given by

f D Ei � Ef

h
: (6.10)
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Fig. 6.7 A photon wave packet

Sample Problem 6-1

Find the frequency of the photon emitted by a hydrogen atom
that makes a transition from the n D 2 orbit to the n D 1 orbit.

Solution
The energy of the photon is

Eph D E2�E1 D .�3:4/�.�13:6/ D 13:6�3:4 D 10:2 eV:

So that its frequency of the photon is

f D Eph=h D 10:2

4:1 � 10�15
D 2:5 � 1015 Hz:

This frequency is in the invisible ultraviolet region.

(c) A photon also has an associated wavelength, which is related in the usual
way to the frequency:

� D v

f
D c

f
: (6.11)

(d) A photon usually is localized in space, both longitudinally, in the direction
of its motion, and transversely. We will describe only the longitudinal extent,
which we will refer to as the length of the photon. A photon that is emitted
by an atom is about ten million oscillations in extent. Such a finite segment
of a sine wave is generally called a wave packet and is depicted in Fig. 6.7.

Sample Problem 6-2

Find the wavelength and the length of a photon of frequency
5:0 � 1014 Hz and ten million (107) oscillations in extent?

Solution
From (6.11), we have a wavelength

� D c

f
D 3:0 � 108

5:0 � 1014
D 6:0 � 10�7 m:
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Fig. 6.8 A sequence
of quantum transitions
representing the collapse
of the atom

So that the length is given by

Photon length D Number of oscillations � Wavelength

D 107 � 6:0 � 10�7 D 6 m:

Note

The spatial extent of a photon is connected with the time it takes
for the atom to emit the photon, which is typically on the order of
10�8 s: Thus, since the period is the inverse of the frequency,

Photon emission time D Number of oscillations � Period

D 107 � 1

f
D 107

5 � 1014
D 2 � 10�8 s:

3. The spiraling of an electron into the nucleus according to Classical Theory is
replaced by consecutive spontaneous transitions of the atom from one orbit to
another orbit of lower energy, as shown in Fig. 6.8. The process is usually referred
to as spontaneous emission, in contrast to stimulated emission, to be discussed
later in this chapter.
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Fig. 6.9 Absorption of a
photon by an atom

4. The stability of the atom against total collapse is provided by the existence of the
orbit having the lowest energy, the n D 1 orbit. This orbit is referred to as the
ground state.

5. It is observed that an atom will absorb monochromatic EM radiation only if its
frequency is equal to one of the frequencies in the emission spectrum. That is,
the absorption spectrum is the same as the emission spectrum. According to
Classical Theory, absorption of EM radiation is understood to result from the
force of the electric field of EM radiation that is incident upon the electrons of
an atom and thus transfers its energy to the electrons. Preferential absorption
of certain frequencies is due to resonance (see Sect. 2.16): The incoming EM
wave has a frequency equal to one of the modes of vibration of the collection of
interacting charges in the atom.

According to the Bohr Theory, absorption occurs when a photon is incident
upon an atom and has an energy equal to the difference between the energy of
the initial orbit and the energy of an orbit of higher energy. See Fig. 6.9.

According to the Principle of Conservation of Energy, we must have

Eph � hf D Ef � Ei (6.12)

which is also known as the photon absorption condition.
Thus, for absorption of a photon of frequency f to take place,

f D Ef � Ei

h
: (6.13)

Sample Problem 6-3

What must the frequency of a photon be for it to be absorbed by a
hydrogen atom that starts out in the n D 2 orbit and is to make a transition
to its n D 3 orbit?

Solution

Eph D E3 � E2 D .�1:5/ � .�3:4/ D 1:9 eV

f D Eph

h
D 1:9

4:1 � 10�15
D 4:6 � 1014 Hz:
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Note

An atom in the n D 3 orbit can make a spontaneous transition to
the n D 2 orbit and simultaneously emit a photon of the same
energy and frequency. It is clear from 6.10 and 6.13 why, in the
framework of the Bohr Theory, the absorption spectrum is the same
as the emission spectrum.

6.4 Quantum Theory

The Bohr Theory accounted for the atomic spectrum of hydrogen very well. But it
failed to quantitatively account for the spectrum of any other atom except those
having only one electron, such as a Helium atom that has lost one of its two
electrons. Ultimately the Bohr Theory was supplemented by a more comprehensive
theory called quantum theory.

Recall that according to the Bohr Theory, an electron orbits a nucleus as do the
planets about the Sun. However, this picture is not substantiated by experiments.
Then what is the path of an electron? We will be describing the behavior of electrons
in an atom that defies our understanding of the way particles should behave.
Quantum Theory is precise in accounting for our observations. Most significantly,
it predicts that

No experiments can allow us to describe how electrons move about.4

Instead, we account for experimental observations in terms of the atom’s being
in one of a set of so-called quantum states, whose significance will be elucidated
below:

Suppose an atom is known to be in a certain quantum state. Rather than knowing
the precise orbit of the electrons, quantum theory provides us with the relative

4This statement is likely to strike the uninitiated reader as being preposterous since it implies that
Physics cannot answer questions that are fundamental to its own ultimate purpose. Originally,
Physics provided us with two components for describing the behavior of the physical world:

1. Accounting for our observations
2. Providing us with a picture as to what systems look like. With respect to the solar system, the

Laws of Physics allow us to predict where we will find a planet at any instant of time; and, we
can draw pictures and produce cinema simulations of a planet in orbit

According to Quantum Theory, we have to give up the second component. We cannot predict
where an electron will be nor can we draw any picture describing its motion. The electron cannot
be described in terms of anything we have observed with our eyes. The electron is what it is,
unknowable in our terms. There is an interesting comparison in the Torah, where it is written:
Moses said to God, “Suppose I go to the Israelites and say to them, ‘The God of your fathers has
sent me to you,’ and they ask me, ‘What is his name?’ Then what shall I tell them?” God said to
Moses, “I AM WHO I AM”. This is what you are to say to the Israelites: ‘I AM has sent me to you.’
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Fig. 6.10 Electron probability clouds (source: http://en.wikipedia.org/wiki/File:HAtomOrbitals.
png)

probability for finding an electron at various locations, called the probability
density. The probability density for some of the quantum states of the hydrogen
atom is depicted in Fig. 6.10.5

It is very important to note that while a classical mode of vibration has a specific
frequency of vibration, a quantum probability mode has a specific energy. At the
simple level of description provided by the Bohr theory, the Quantum Theory of
absorption and emission of EM radiation is essentially the same as that of the Bohr
Theory except that quantum states are not associated with well-defined orbits of
electrons. We have merely to replace the word orbits with the term quantum state in
our text.

The reader might ask how a discipline can discover by reasoning internal unto itself its
own limitations? A full discussion of this issue is beyond the scope of this text. My best
recommendation is that you view the video of Richard Feynman lecturing on Probability and
Uncertainty, The Quantum Mechanical View of Nature. You can see the lecture by Feynman on
this website (1-12-2011):
http://www.clicker.com/web/richard-feynman-the-messenger-series/Probability-and-
Uncertainty:-The-Quantum-Mechanical-View-of-Nature-404149/.

The lecture is contained in the book by Richard Feynman entitled The Character of Physical
Law [MIT Press, Cambridge, MA, 1967].
5The numbers to the right of the figure correspond to the quantum numbers n D 1, 2, and 3. You
see one probability density for n D 1, two for n D 2, and three for n D 3. Absent are two others
for n D 2 and five others for n D 3. Thus, in the place of Bohr’s one state for each n, there is one
state for n D 1, four for n D 2, and nine for n D 3.

http://en.wikipedia.org/wiki/File:HAtomOrbitals.png
http://en.wikipedia.org/wiki/File:HAtomOrbitals.png
http://www.clicker.com/web/richard-feynman-the-messenger-series/Probability-and-Uncertainty:-The-Quantum-Mechanical-View-of-Nature-404149/
http://www.clicker.com/web/richard-feynman-the-messenger-series/Probability-and-Uncertainty:-The-Quantum-Mechanical-View-of-Nature-404149/
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Fig. 6.11 The “Iron Corral”: 48 iron atoms on a copper surface, with a standing wave of
probability density; Standing surface wave in a mug of water (sources: Corral: From M. F.
Crommie, et al, Science 262, 218 (1993); Reprinted with permission from AAAS; photo of water
surface by Konstantinos Metallinos)

In Fig. 6.10, the brighter the region, the more likely is it to find an electron in
that region. Notice that the patterns of these probability densities bear a remarkable
resemblance to the patterns of the modes of vibration of a brass plate. For this
reason, we will also refer to these quantum states as probability modes.

At the top of the figure is the probability cloud for the ground state. While the
Bohr theory describes this state as a classical orbiting electron at the Bohr radius,
quantum theory and experiment describe the electron as not having a well-defined
orbit. To the incredible contrary, the electron is most likely to be found at the origin.
The second and third rows display probably clouds corresponding to n D 2 and
n D 3, respectively.

Currently, it is possible to lay down a number of atoms on a substrate made of
other atoms, arranged in a pattern of choice. One such example is shown in Fig. 6.11.
We see 48 atoms of iron arranged in a circle – known as a quantum corral. Each
peak represents the probability distribution of electrons on a single iron atom. An
added delight is the presence of concentric crested rings, which represent a standing
wave of probability density! Note the similarity with a surface wave of water that is
produced by placing a mug of water in a sink and turning on the garbage disposal. If
you count the crests, you can determine which circularly symmetric mode is being
excited.

Quantum Theory provides us with a mathematical means (that is far beyond
the scope of this text to present) of correctly determining the quantum states of
all atoms, molecules, and, indeed, macroscopic samples of matter containing huge
numbers of atoms, that is, solids, liquids, and gases. Quantum theory can account
for the properties of all materials.6 Ultimately, quantum theory enables us to explain
such questions as to why, at room temperatures, copper is solid, is opaque with a

6The theory provides us with equations that need to be solved to calculate the material properties.
In practice, these equations are so complex that they can be solved only approximately. However,
any discrepancy between calculated values and observed values is accountable by the approxima-
tion of the calculation and not any shortcomings of the theory.
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Fig. 6.12 Energy level diagram

shiny orange appearance, is pliable, and conducts electricity well, while water is
liquid, is transparent and colorless, and conducts electricity very poorly.

The quantum theory of the emission of EM radiation can be summarized as
follows:

1. Any system has a set of Quantum States (Probability Modes), each with a specific
energy.

2. Emission of EM radiation occurs via a transition from one quantum state to
another having a lower energy, accompanied by the emission of a photon. One
might regard a quantum state as a probability mode.

3. Absorption of EM radiation is the reverse process: A photon of frequency f is
absorbed by an atom making a transition from one quantum state to another of
higher energy.
For both emission and absorption, the photon energy and hence frequency is
accounted for by the change in energy of the system, as in the Bohr Theory of
the hydrogen atom. as given by (6.9), (6.10), (6.12), and (6.13).

4. Among all the states of any system, there exists a state having the lowest energy.
This state is called the ground state. The states with higher energy are called
excited states.

5. Sometimes more than one quantum state has the same energy. We then refer
to this set of states as a quantum energy level, or simply, energy level.
(In particular, even the so-called ground state can consist of more than one state.)
The set of energies of an atom is referred to as the system’s energy spectrum, in
analogy with the frequency spectrum of a vibrating system.

It is useful to summarize an energy spectrum in the form of an energy level
diagram (Fig. 6.12). Such a diagram is depicted below for a fictitious energy
spectrum that has, to simplify our discussion, integer values of energy when
expressed in electron volts. The system is in its first excited level, as indicated by
the large dot.
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Fig. 6.13 Transitions from the ground state

Fig. 6.14 Transitions to
lower levels for a three level
system

Normally, that is at room temperature, essentially all atoms are in their ground
states. An atom can make a transition to an excited state by absorbing energy
through a collision with another atom. Transitions from the ground state to one or
the other of two excited states are shown in Fig. 6.13. Here, E1 is the ground state
energy.

Once in an excited sate, an atom can spontaneously make a transition to a state
having a lower energy. Each such transition is accompanied by the emission of a
photon. Thus, referring to the fictitious energy level diagram of Fig. 6.12, with the
atom initially in the second excited state, three transitions can take place, with (a)
and (b) being consecutive ones (Fig. 6.14).

Photons having three different energies and frequencies can be emitted, corre-
sponding to the three possible quantum transitions (a)–(c), as follows:

1.
hfa D E3 � E2 D �5 � .�7/ D 2 eV

fa D 2

h
D 2

4:1 � 10�15
D 5 � 1015 Hz:

2.
hfb D E2 � E1 D �7 � .�10/ D 3 eV

fb D 3

h
D 3

4:1 � 10�15
D 7 � 1014 Hz:

3.
hfc D E3 � E1 D �5 � .�10/ D 5 eV

fc D 5

4:1 � 10�5
D 1:2 � 1015 Hz:
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Fig. 6.15 Resonance between two atoms

Photons (a) and (c) are in the ultraviolet regime. Photon (b), being at the boundary
between the visible and ultraviolet regimes, is barely visible.

Question: Suppose there are four quantum states. How many transitions are possible
from the third excited state? Beware; there are more than four!

Resonance can occur between two identical atoms via the emission of a photon
by one atom and the subsequent absorption of that photon by a second atom. This
process is depicted on the following pair of energy level diagrams, depicted in
Fig. 6.15.

Compare this process with that of the two charged SHOs in Sect. 8.9. In the
classical case, resonance requires the equality of the frequency of the respective
modes of the two systems. For quantum systems, resonance requires the equality of
the difference in energy between a pair of energy levels.

Recall now that we mentioned in our introductory remarks that animal eyes are
sensitive to EM radiation because of the behavior of atoms. We need to expand a bit
on this remark: The eye is sensitive to a broad band of wavelengths. If individual
atoms were the visual sensors in the eye, the absorption spectrum would consist of
a small number of spectral lines in the visible regime and the absorption spectrum
would be far from continuous. Instead, molecules are used that have a band of a
great many excited states, all with energies above the ground state that correspond
to visible photons. Absorption with an energy band is quite continuous.7 We can
surmise that evolution produced visual sensors that are sensitive to light from the
Sun. As we will see below, the spectrum of sunlight is centered in the visual region
of animal eyes.

6.5 Complex Scenarios of Absorption and Emission

We have discussed absorption and emission of photons as two independent pro-
cesses. We now describe a number of scenarios that are more complex, involving
both absorption and emission.

7See Sect. 14.12 for more details.
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Fig. 6.16 Rayleigh scattering in an energy diagram

Fig. 6.17 Resonance fluorescence in an energy diagram

6.5.1 Rayleigh Scattering

The simplest obvious complex scenario is the absorption of a photon by an atom (or
a general quantum system such as a molecule) followed by the emission of a photon
with the same energy. The atom makes a transition from an initial state “i” to an
excited state “f” and then returns to the initial state “i”. Thus we have “i” to “f” and
back to “i”. We see this process depicted in Fig. 6.16.

The photon emitted is coherent (has a definite phase relation) with the incident
photon. When we have a huge rate of photons incident on many such atoms, the
overall process is observed as the scattering of a light beam – hence the insert of the
term “scattering” in the name Rayleigh scattering. Since the outgoing photon has
the same energy as the incoming photon, the scattering is regarded as being elastic.
It was Lloyd Rayleigh who identified this type of scattering of sunlight as being
responsible for our blue skylight – at the time when quantum theory was not yet
formulated.

6.5.2 Resonance Fluorescence

Another possibility is that the atom remains in the excited state for an unpredictable
time – the atom is described as being in the excited state. Some time later, the
atom makes a transition back to the initial state. This phenomenon is referred to
as resonance fluorescence (Fig. 6.17).

6.5.3 General Fluorescence

The last scenario we discuss here is general fluorescence . In this case, we have
absorption of a photon by a molecule from an initial state to an excited state.
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Fig. 6.18 General fluorescence in an energy diagram

After an unpredictable time, the molecule gives up its internal energy to the
environment and makes a transition to a state of lower energy. Concurrently, or
shortly thereafter, the molecule makes a transition to a state of lower energy along
with emission of a photon. See Fig. 6.18. The thick dashed arrow represents the
process whereby a part of the excitation energy is replaced by forms of energy such
as vibrational or thermal energy. If the time for emission of a photon is relatively
long – as long as hours – the phenomenon is referred to as phosphorescence. This
process occurs when the intermediate state from which the final transition to the
ground state occurs has a long lifetime.8 A familiar example is the result of shining
ultraviolet radiation on a rock and observing visible radiation (light) afterwards.

The energy given up to the environment can simply be an increase in thermal
(heat) energy. In the case of the cones of the retina of an eye, some or all of the
energy given up goes into the nerve impulse that travels down the optic nerve. See
Chap. 12 on The Eye.

6.5.4 Stimulated Emission

Consider an atom that is in an excited state. We know that it can make a transition to
a state of lower energy along with the emission of a photon having an energy given
by the difference of the energies of the two states. We mentioned that the process is
called spontaneous emission. Now imagine that initially the atom is in the above
excited state and that a photon of the above energy is incident on the atom. The
incident photon can then induce the transition to the lower state, with the emission
of a photon. We will then have two photons of the same energy. See Fig. 6.19 in
which we see depicted an incident photon of energy hf equal to the energy difference
�E between two atomic states.

At first you might think that nothing has been gained. We could view the process
as a simple combination of spontaneous emission that occurs coincidently with the
passage of a photon of the same energy past the atom. The actuality is that the two
photons are now correlated: they are in phase and therefore said to be coherent.

Stimulated emission is at the heart of the Laser. A beam of photons is created by
excitation via electric discharge and subsequent de-excitation with photon emission.

8Note that typically the average time for a atomic transition is on the order of 10 nanoseconds
(10�8 s).
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Fig. 6.19 Stimulated emission

Fig. 6.20 Spectrum of a Helium–Neon laser (source: http://wapedia.mobi/en/Laser)

The photons travel down the length of the laser and contribute to photon production
via stimulated emission from excited atoms that have not yet been de-excited
spontaneously. Many round trips produce the clusters of coherent photons.

Lasers have very special characteristics. First, the spectrum of the laser beam is
extremely sharply peaked, as we see in Fig. 6.20 for a Helium–Neon laser. Second,
the laser beam consists of many clusters of photons in each of which all photons are
in phase (coherent) with respect to each other. Photons of different clusters aren’t in
phase. We say that the laser beam is highly coherent.9 On the other hand, light from

9See the website http://hyperphysics.phy-astr.gsu.edu/hbase/optmod/qualig.html for more details
about lasers.

http://wapedia.mobi/en/Laser
http://hyperphysics.phy-astr.gsu.edu/hbase/optmod/qualig.html
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most common light sources, such as an incandescent bulb or a fluorescent bulb,
is quite incoherent. The phases of the photons are randomly distributed because
they are emitted in an uncorrelated way. For example, fluorescent light is a result of
a huge number independent atomic transitions from many atoms.

6.6 Is Light a Stream of Photons or a Wave?

Until we discussed the Bohr Theory of the atom, we treated light as a wave –
which is a continuous disturbance. However, in the context of the Bohr Theory
or Quantum Theory of absorption or emission of radiation by an atom, we stated
that the radiation can only be absorbed in discrete, indivisible “quanta” of radiation
called photons. These are the so-called particles of light. Which picture is correct?
How can they both be correct?

Controversy as to whether light was a beam of discrete particles or a wave was
significant in Newton’s day �300 years ago. Newton himself believed in the particle
theory. His contemporary, Christian Huyghens professed the wave theory of light
and is responsible for much of what we know about wave propagation today.

The argument regarding the nature of light propagation seemed close to being
settled in the 1830s, when Young performed the first wave “interference” exper-
iments10 which clearly demonstrated the wave nature of light. Further support
for the wave theory came from the demonstration that the speed of light in an
“optically dense medium” (e.g., glass) is smaller than that in vacuum: The particle
theory predicted the contrary. Finally, Maxwell had produced a theory of light as
an electromagnetic wave and Hertz confirmed some of its predictions. It became
accepted that light propagated as a wave and not as a stream of particles.

Unfortunately the controversy was not yet settled. In the last decades of the
nineteenth century, results of studies of the spectrum of EM radiation emitted by
ovens heated to high temperatures – so-called Black Body radiation experiments –
disagreed with the predictions of classical laws. This led Max Planck, around 1901,
to propose that EM radiation is emitted and absorbed in discrete multiples of hf –
first called quanta and then later called photons. Nevertheless, Planck believed
that EM itself was not quantized. Rather, it was quantized only in the process
of emission or absorption. Einstein emphasized that since all means of detecting
radiation involve absorption, and the absorption process is quantized, we might as
well regard the radiation itself as being quantized, that is, consisting of a beam of
quanta. We have already seen how, at the beginning of the twentieth century, the
quantum theory of the atom and EM radiation invoked particle attributes to light.

Thus, we see that some experiments indicate that EM radiation propagates as a
wave while others indicate that light is propagated as a stream of particles. Which is

10See Chap. 7 for details.
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the correct description, one might understandably ask? At the level of this text, the
question will, unfortunately, have to remain unanswered. All we can say for now
is that light, or EM radiation, exhibits both wave-like properties and particle-like
properties. No experiment has ever, nor, most physicists believe, will ever, be able
to reveal the “true” nature of EM radiation in terms of common, familiar concepts.
The bewildering wave-particle nature of light is akin to that of the electron.

6.7 The Connection Between Temperature and Frequency

We are now prepared to explain why it is that the frequency spectrum of the Sun
is concentrated in the visible region. We mentioned above the role that the study of
blackbody radiation played in the development of the quantum theory of radiation.
In Fig. 6.21, we see the spectrum of blackbody radiation graphed against wavelength
(not frequency) for various absolute temperatures (T D ıC C 273). (The graph

Fig. 6.21 Blackbody frequency spectrum (source: http://en.wikipedia.org/wiki/File:Wiens law.
svg)

http://en.wikipedia.org/wiki/File:Wiens_law.svg
http://en.wikipedia.org/wiki/File:Wiens_law.svg
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refers to the incoming flux, which is proportional to the intensity.) Notice how the
curves change as the temperature increases.11

First, we note that the height of the peaks increases with increasing temperature.
This is so because it is a general property of matter that energy increases with
increasing temperature. In the case of black body radiation in particular, the average
energy of the photons is proportional to the absolute temperature T . According
to the Planck equation, frequency is proportional to the energy �E D hf . As
a consequence, the average frequency of the photons increases with increasing
temperature.

Now let us turn to the position of the peak. Note that it moves toward
lower wavelengths as the temperature increases. Here is the explanation: As the
temperature increases, the frequency at the peak increases. The wavelength at the
peak decreases correspondingly because of its inverse relation with the frequency:
f D c=�.

Correspondingly, the frequency associated with the peak increases with increas-
ing temperature, being proportional to the temperature T .12

The decreasing peak wavelength with increasing temperature is associated with
the changing color of materials that are heated up. For example, as a flame gets
hotter, its color changes from red (at the low frequency end of the visible spectrum)
to white (a broad spectrum centered around the middle of the visible spectrum) and
finally to blue (at the high frequency end of the visible spectrum). (See Chaps. 13
and 14 for details regarding the connection between color and the frequency
spectrum.) Notice that the spectrum of the Sun is very close to that of blackbody
radiation at a temperature of 6,000 K, which is the surface temperature of the Sun.
This connection between color and frequency and temperature enables astronomers
to determine the temperature of distant matter in outer space.

One of the most outstanding applications of our knowledge of blackbody
radiation is in the connection with the 3 K blackbody radiation of the Big Bang.
Its discoverers, Penzias and Wilson, had detected unexpected radiation that they
attributed to noise (random radiation) from the Earth. Ultimately, this radiation was
shown to be associated with radiation produced as a result of the Big Bang. The
first step in this identification was their fitting the spectrum of this radiation to a
blackbody curve as shown above and fitting the temperature to 3 K. Coincidentally,
cosmologists, who study the origin and evolution of the Universe, had already
predicted the existence of such radiation with an estimated temperature of 3 K. This
result gives support to the validity of Einstein’s theory of Gravitation – General

11Regarding Fig. 6.21 you can see the Black Body curve for any chosen temperature as well as the
corresponding color of the spectrum using the following physlet: (12-29-2010): http://ephysics.
physics.ucla.edu/physlets/eblackbody.htm.
12The interested reader can carefully check from the curves that the wavelength at the peaks is
inversely proportional to the absolute temperature.

http://ephysics.physics.ucla.edu/physlets/eblackbody.htm
http://ephysics.physics.ucla.edu/physlets/eblackbody.htm
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Relativity. Recent penultimately precise measurements of the variation of the
temperature with direction in the sky have led to further significant cosmological
information.

Our study of the world of atoms and light has enabled us to see how physics
weaves an intricate web of concepts and establishes quantitative relationships
among various physical parameters, such as frequency, wavelength, temperature,
energy, pressure, displacement, and time. We can appreciate why physicists feel
that they are obtaining a knowledge of the ultimate truths about the Universe.

6.8 Terms

• Absolute temperature
(Example: 100 KD100 Kelvins)

• Absolute zero temperature
• Atomic spectra
• Black body radiation
• Bohr radius – a0

• Bohr Theory of the hydrogen atom
• Classical physics vs. modern physics
• Diffraction grating
• Discrete spectrum
• Empirical formula
• Energy level
• Energy level diagram
• Ground state

• Line spectrum
• Photon
• Photon absorption
• Photon emission
• Planck relation
• Planck’s constant
• Probability density
• Probability mode
• Quantized process
• Quantum state
• Quantum theory
• Spectral analysis
• Wave packet

6.9 Important Equations

Planck relation:
Eph D hf: (6.14)

Photon emission:

f D Ef � Ei

„ : (6.15)

Photon absorption:

f D Ei � Ef

„ : (6.16)
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6.10 Problems for Chap. 6

1. What are the frequencies and wavelengths of all photons that would be
ultimately emitted by an atom that has energy levels with the following
energies: 3, 2, and 0 eV?

2. What key feature of Balmer’s formula was used by Bohr in his theory of the
hydrogen atom? Explain.

3. What does the term “empirical” mean? Why was Balmer’s formula merely
empirical?)

4. What catastrophe plagued the Rutherford model within the context of classical
theory? How does the Bohr Theory deal with this catastrophe?

5. Determine the frequency and wavelength of a photon having an energy of 1 J;
of 1 keV.

6. Determine the energy of a microwave photon of frequency 2,500 MHz.
7. Read problem (8) in Chap. 4 that deals with the stroboscope.

Estimate the number of photons emitted by the stroboscope in a single flash.
8. What is the length of a photon whose frequency is 7 � 1014 Hz if it consists of

100 oscillations?
9. Describe resonance between two atoms according to quantum theory.

10. Given that the wavelength at the peak of the black body intensity curve
(Fig. 6.21) is 4;300 Å at a temperature of 7,000 K, calculate the corresponding
wavelength at a temperature of 5,000 K using the relation: peak photon
frequency / absolute temperature. Compare your result with that taken from
Fig. 6.21.

11. Suppose that a 100 Watt yellow light bulb has an efficiency of 3% for producing
visible light. (That is, only 3% of the input electric power is converted into
light). An observer looks directly at the bulb at a distance of 10 m from the
bulb.

(a) Assuming that the light is isotropic, what is the intensity of the light
incident on the eye?

(b) Estimate the area of the pupil of an average human eye.
(c) Neglecting reflection and absorption by the pupil of the eye, determine the

power of the light entering the eye through the pupil.
(d) How much visible light energy enters the eye in one second?
(e) For simplicity, suppose that all the visible light entering the eye has a

wavelength of 6;000 Å. What is the frequency of the EM radiation?
(f) How much energy does a single photon of this radiation have?
(g) How many photons enter the eye in one second?

12. Lawrence Livermore National Laboratories reported making a laser that could
produce a laser pulse that had a peak power of about one petawatt
(D1015 watts) and that lasted for about one-half picosecond (D 0:5 � 10�12 s).
(See the website 12-26-2010: https://www.llnl.gov/str/Petawatt.html).

(a) Calculate the total energy of one pulse.

https://www.llnl.gov/str/Petawatt.html
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(b) Given an intensity of 700 Giga (109) Watts/cm2 during the pulse, calculate
the area of the laser beam.

(c) How long would a 100-W light bulb have to burn to produce the same
energy? Note how the laser concentrates in many ways: frequency with
respect to spectral intensity, intensity with respect to area, phase with
respect to coherence and here, energy with respect to time.

(d) If the wavelength of the laser light were 530 nm, how many photons are
there in a single pulse?



Chapter 7
The Principle of Superposition

Suppose there are two sources of waves of a given type. For example, there may be
two loudspeakers emitting sound waves or two accelerating charges emitting EM
waves. What is the resultant wave? Or, suppose that two pulses are sent down a
string, one after the other, so that the second pulse “collides” with the first one after
the first one has been reflected from the opposite end. What happens as a result
of this collision? Such questions are answered by the principle of superposition,
which states that:

The wave that results from two independent sources – the so-called resultant
wave – is a simple sum of the two waves that would in turn be produced by the
respective sources if each were present alone.

This principle will be illustrated by numerous applications in this chapter.

7.1 The Wave Produced by Colliding Pulses

In Fig. 7.1, we depict the wave pattern at five different times that results from a
“collision” of two pulses that are traveling in opposite directions along a string. The
solid curve represents the observed wave. Initially we see the two pulses far apart.
In the next figure, we see the two pulses having just begun to overlap – we might say
they are “colliding.” The two individual pulses are shown as dashed curves, as they
would appear if they were present alone, each without the other. What is actually
observed is the solid curve, which is a sum of the two dashed curves. Notice how, in
the third curve of Fig. 7.1, the displacement vanishes everywhere along the string.
There is no potential energy at this instant. What has happened to the energy that
was in the pulses? All of the energy of the wave resides in kinetic energy. Finally, we
see how the two pulses survive the collision intact, moving away from each other,
as if the collision had not taken place.

Below, in Fig. 7.2, is a second example of two colliding pulses – here square
pulses. They have the same amplitude and move past each other at the same speed
of 1 unit/s. We see the resulting wave at four different times. At t D 1 s, they are

L. Gunther, The Physics of Music and Color, DOI 10.1007/978-1-4614-0557-3 7,
© Springer Science+Business Media, LLC 2012
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Fig. 7.1 Collision of two
pulses
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Fig. 7.2 Collision of two square pulses

about to “collide.” At t D 2 s, we see how each of the pulses would look if each was
travelling alone. However, the actual wave is obtained by adding the two graphs.
There is complete cancellation in the middle segment. The resultant is shown as the
orange graph. At t D 3 s and thereafter, the two pulses are seen retreating from each
other as if neither were affected by the other.

7.2 Superposition of Two Sine Waves of the Same Frequency

By itself, a sine wave is characterized by its amplitude and either its period in time or
its wavelength in space. However, when two sine waves are to be added, the relative
position of their peaks matters too. Recall from Chap. 2 that this characteristic is
called the phase difference, or equivalently, the relative phase.

In Fig. 7.3, we see three sine waves having the same period in time (1 s) and the
same amplitude, but a non-zero relative phase with respect to each other. We simply
say that they are out of phase or have different phases.

Clearly, since the crests of wave A coincide with the troughs of wave B , the
waves will cancel each other when added. Thus A C B D 0.

Generally, the relative positions of the waves can be expressed in fractions of a
cycle or as an angle ranging from 0ı to 360ı, with 360ı representing a full cycle.

Thus, relative to wave A:

• Wave B is 1=2 cycle or 180ı ahead or behind A.
• Wave C is 1=4 cycle or 90ı ahead of A.

NOTE: Two waves with no phase difference are said to be in phase.



208 7 The Principle of Superposition

−1

−0.5
0

0.5

0.5

1

1

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

1.5 2

0.5 1 1.5 2

0.5 1 1.5 2

0.5 1
t

t

t

t

1.5 2

−1

−0.5

0

0.5

1

A

B

C

A+C

Fig. 7.3 Superposition of two sine waves

Note

Sine waves have the following amazing property that we mentioned in
Chap. 2 and that we will review in greater detail here:

Two sine waves having the same period add up to a sine wave of
the same period.

The amplitude of the resulting sine wave depends upon the
amplitudes of the component sine waves and their relative phase.

Thus, we see in Fig. 7.3 that the sum of waves A and C is a sine wave
with the same period as A and C.

Note

Above, we have described the superposition of two sine waves as they
vary in time. The behavior is purely mathematical. Thus, if we have two
sinusoidal patterns in space, we can apply the above results by replacing
the word period by the wavelength.
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Let A1 and A2 be the amplitudes of the respective components and A the
amplitude of the sum or resultant amplitude. If the components are in phase, the
resultant amplitude is given by

A D A1 C A2: (7.1)

Note that if the two amplitudes are equal, the resultant amplitude is double the
individual amplitude.

If the components are 180ı out of phase, the resultant amplitude is given by1

A D jA1 � A2j: (7.3)

Thus, referring to the figure on the previous page, waves A and C are out of
phase and have the same amplitude. If added, they would therefore cancel and we
would be left with no wave at all!2

7.3 Two Source Interference in Space

Consider the resultant traveling wave from two point sources3, S1 and S2 respec-
tively, which emit sine waves of the same frequency (and hence wavelength), with
amplitudes A1 and A2, respectively. We will assume here that the waves start out
from S1 and S2 in phase. In Fig. 7.4, we have captured an instant when the two
waves have a crest at their respective sources. The two sets of concentric circles
represent the crests of the two component waves.

The key to determining the resultant wave at any particular position P in space
lies in the difference between the respective distances from the point to the two
sources – which we will refer to as the path difference.

In the figure, where two circles cross, the path difference is a multiple of the
wavelength. At such points, the component waves arrive in phase. Then we have

1Generally, the amplitude is given by

A D
q

A2
1 C A2

2 C 2A1A2 cos .�1 � �2/: (7.2)

Note that the phase difference is �1 � �2. You can plug into this expression the two phase
differences, �1 � �2 D 0 or 180ı , to reproduce the special cases – in phase or out of phase.
2For a general phase difference � (which ranges from 0ı to 360ı), and when the two source am-
plitudes are equal, the total amplitude is given by

A D 2 cos2 �

2
:

3A real source takes up space. A point source is a term used for a source that is so localized that
we can regard it as taking up no space.
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Fig. 7.4 Two point sources

Fig. 7.5 Point where waves arrive in phase

what is called constructive interference. The path difference satisfies the equation,
with an infinite sequence

S2P � S1P D 0; �; ��; 2�; �2�; : : : : (7.4)

which is condition for constructive interference. Here, SP refers to the distance
between two points, S and P .

Such a point P is shown in Fig. 7.5. We see two sine waves leaving the sources in
phase. The distances to the point P are S1P D 5C1=4 wavelengths and S2P D 6C
1=4 wavelengths. (They leave the source with a value of zero and end up at a peak.)
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Fig. 7.6 Point where waves arrive out of phase

Since the components are sinusoidal in time, their resultant sum is sinusoidal.
The resultant amplitude is given by A D A1 C A2 (7.1).

Now consider the opposite extreme, wherein the path difference is a multiple of
� plus an additional half wavelength (Fig. 7.6). (The path difference is said to be an
odd-half-integer number of wavelengths.) The two sine waves, which started out
in phase, arrive out of phase at point P . We have destructive interference and the
amplitude at point P is given by A D A1 � A2, as seen in (7.3). In particular, if the
component amplitudes are equal, the resultant amplitude vanishes.

The condition for destructive interference4 is

S2P � S1P D �

2
� �

2
; � C �

2
D 3

�

2
; �3

�

2
; : : : (7.5)

which is condition for destructive interference.
In Fig. 7.7, we depict the curves in space all along which there is constructive

interference. These curves are called hyperbolas by mathematicians. The two
sources are a distance d apart. Far away from the two point sources, the curves
approach straight lines, indicated by the dotted lines, at various angles � with respect
to the axis. They are labeled m D 0; 1; 2; : : : corresponding to the path differences
0; �; ��; 2�; �2�; : : :.

The angles satisfy the equations:

sin �1 D �

d

sin �2 D 2
�

d

sin �n D n
�

d
; (7.6)

where sin � is the trigonometric sine function.
Each angle specifies an order of interference.

4When A1 D A2, and for general path differences, the resultant amplitude is given by 2A cos2 �=2,
where the phase difference � D 2�.S2P � S1P /=�. Compare this expression with (7.1).
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Fig. 7.7 Hyperbola curves along which there is constructive interference

Sample Problem 7-1

Suppose that � D 6 � 10�7 m and d D 15 � 10�7 m. Find all of
the angles of constructive interference.This ratio �=d D 0:4 of the
wavelength to the separation of sources is shown in Fig. 7.7, where d is
equal to four units on the y-axis.

Solution
We have

sin �1 D �

d
D 6

15
D 0:4;

so that �1 D 24ı, corresponding to the 1st order.
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Fig. 7.8 Two slit interference

Also,

sin �2 D 2
�

d
D 2 � 0:4 D 0:8;

so that �2 D 53ı, corresponding to the 2nd order.
Note that �2 ¤ 2�1.

Next, note that according to our (7.6),

sin �3 D 3
�

d
D 3 � 0:4 D 1:2;

which is impossible, since the sine of an angle cannot be greater than
one. The equation cannot be satisfied, and thus, m D 2 is the highest
order present.

One might ask how we can produce two sources that start out in phase since
two independent sources typically do not have a known and controllable phase
relation. Here is one commonly used method: We start with a single source of light,
preferably light from a laser. Laser light is an intense beam of monochromatic light
that is an ensemble of a many clusters; each cluster has a huge number of photons
that are in phase with one another. We say that the light is extremely coherent. The
beam of light is projected onto an opaque surface that has two parallel slits. These
slits produce our two sources starting out in phase with each other, as seen in
Fig. 7.8. We then view the light projected on a distant screen.



214 7 The Principle of Superposition

Fig. 7.9 Wave incident upon an opaque plane with two slits

The image on the screen consists of a strip with varying brightness. Analysis
predicts that the brightness will vary along the screen as shown in the figure below.
We note the set of vertical lines representing bright light. These lines are referred
to as fringes. According to (7.6), the closer the two sources are (the smaller d is),
the greater the angles �1;2;3;::: are and the further apart will be the fringes on the
screen.

Sample Problem 7-2

Suppose that a sound wave of wavelength 1 m is incident on a surface
with two holes that are 1.5 m apart, as depicted in Fig. 7.9. You are
to determine whether the waves arriving at point P are in phase or
completely out of phase. The distance of point P from the surface
is 2 m.

Solution
We cannot use a simple formula for the path difference. We must
calculate it in association with this particular problem. Thus, the shorter
path (from the upper hole) – call it `1 is simply 1-m. The second path
has a distance `2 equal to the hypotenuse of the right triangle, namely

`2 D
p

1:52 C 22 D 2:5 m: (7.7)

Since the wavelength is 1-m, the path difference [`2 � `1] is two and
one-half wavelengths. Therefore, the waves arrive completely out of
phase and we have destructive interference.
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Fig. 7.10 Interference of a radio wave by a neighboring car in traffic

Sample Problem 7-3

Look at Fig. 7.10. It represents the following scenario: Waves from an
FM radio station at point S with a carrier wave frequency of 100.1 MHz
are received by a radio in a car A that is 5 km away. In addition, a
neighboring car B that is a distance of 3 m from car A reflects the radio
waves from the radio station toward car A, so that car A’s radio receives
two interfering waves. The indirect wave travels along the path S to B
and then from B to A.

IMPORTANT INFORMATION: When the radio wave reflects
off car B, the phase of the wave is flipped by one-half cycle.

Determine whether the waves, the direct wave, and the indirect wave
arrive in phase.

Solution
We first calculate the wavelength of the carrier wave. We have

� D c

f
D 3:00 � 108

100:1 � 106
D 3:00 m: (7.8)

Next we calculate the path difference. We have `1 D 5 km D 5;000 m.
The second path length is the sum of the hypotenuse and the vertical
leg of the right triangle (D3 m). The hypotenuse is given by

p
.5;000/2 C 32 � 5;000 m: (7.9)

Therefore, the second path length is `2 � 5;003 m. Finally, the path
difference is �3 m and equal to the wavelength. Without the flipped
phase due to reflection, the waves would arrive in phase. With the flip,
the waves arrive OUT of PHASE and we have destructive interference.

As the cars move along, there will be evolving relative positions that
will result in the two waves having varied phase relations.
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7.3.1 Sound Level with Many Sources

In Chap. 4, we saw how the sound level is defined in terms of the intensity. Suppose
that the wave has many sources. What is the resulting sound level? What matters
is the intensity. The intensity depends upon whether the sources are coherent. Two
waves are said to be coherent if they have a definite phase relation. In this case we
also say that the sources are coherent.

Consider first two coherent sources that have the same frequency and produce
two individual waves that have equal amplitude and are in phase at some location in
space; we have constructive interference. In this case, we know that the amplitude
is doubled. Consequently, the intensity is quadrupled! How can we obtain four
times the intensity instead of the doubling we would expect? Are we gaining energy
from nowhere, thus violating the principle of conservation of energy? The resolution
of this dilemma is that there are other places in space where we have destructive
interference. There, the intensity vanishes. Thus, on the average, the intensity is
double the intensity of one source.

The result is that the sound level is increased by 10 log.4/ D 6 dB at points of
constructive interference. If we have n-coherent sources that produce waves that are
equal in magnitude and are all in phase, the sound level is increased by 10 log.n2/ D
20 log.n/dB.

Next, suppose that we have two sources that are incoherent and produce the same
intensity at some location in space. The result is that the total intensity is doubled,
so that the sound level is increased by 10 log.2/ D 3 dB. With n-incoherent sources,
each with the same intensity at some location in space, the intensity is multiplied by
a factor of n, so that the sound level is increased by 10 log.n/dB.

As an application, suppose that we have a string orchestra with 100 instruments
each producing a sound level of 1 dB at some location. The resulting sound level
will be .1 C 10 log.100// D 21 dB.

7.3.2 Photons and Two-Slit Interference

We learned in Chap. 6 that while light propagates as if it were a continuous wave, in
fact the wave characteristics represent the distribution of photons in space. The lack
of continuity is reflected by the fact that if we have an ultra-low intensity of light, so
that there is an ultra-low density of photons, one can use a photon detector to look
for photons. The detector always detects individual photons. It never detects part of
a photon. If two detectors are in different locations, only one of the detectors detects
a particular photon.

Let us consider a two-slit experiment with a light beam of such low intensity
that only one photon at a time can be found between the two slits and the screen.
The result is that the photons will impinge on the screen in a random fashion but be
distributed according to the interference pattern we observe with a high intensity of
light.
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We can place two detectors in the apparatus, one behind each of the slits. The
result is that only one or the other detector registers that a photon has passed through
a slit. It would seem fair to say that a photon exits one slit or the other – never both
slits at a time; it does not split into two pieces. The question is how the photons can
land on the screen with a pattern of interference.

It is beyond the scope of this book to discuss the answer to this question here.
My goal is only to try to entice you, to get you to think and wonder. For a detailed
discussion of this experiment, I recommend that you to see the Feynman video
referred to in Sect. 6.4.

7.4 Many-Source Interference

We will now discuss the interesting behavior of various ensembles, each of which
has many sources that are arranged in a periodic manner in a plane or in three-
dimensional space. There are cases where the sources are not point sources.
Nevertheless, it can be shown that if each of the multitude of sources is spread out
while the sources are identical, the result is an interference pattern that is distributed
in space the same way as if the sources were point sources.

7.4.1 Gratings

Suppose now that we have a long line of point sources, all of the same wavelength
and equally spaced at a distance d (Fig. 7.11). At any given point in space, the
resulting wave in time is a superposition of many sine waves. Again the resultant
wave will be sinusoidal in time.

It can be shown that far away from the sources, the curves of constructive
interference are again straight lines satisfying the same (7.6) as with two sources.
The difference is that the regions of brightness are much more sharply defined. Thus,
in the case of a light wave, projection on a screen gives a brightness pattern shown
in the figure below.

Fig. 7.11 Interference from a linear array of many sources that are equally spaced
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Fig. 7.12 Diffraction grating (photo by Leon Gunther)

We can produce a similar result without using point sources by having a light
beam pass through or reflect off of a diffraction grating: In the first type, the
grating consists of a plate of transparent material, such as glass or plastic, which
has a surface upon which identical and equally spaced parallel grooves have been
engraved. In the second type, parallel grooves are coated with a reflecting material
such as silver. Such is the case with a compact disc (CD), which has closely and
equally spaced concentric circles of holes that characterize the digital storage of
information, be it audio or data storage. White light that is incident on the surface
of the CD is reflected off the grooves, with interference of light depending upon
the wavelength – hence leading to the rainbow of colors. Whether the gratings
transmits light or reflects light, we essentially have an array of identical, equally
spaced sources. See Fig. 7.12.

For a grating, instead of having a periodic array of point sources, we have a
periodic array of identical extended sources: It can be shown that in this case,
we obtain the same arrangement of fringes as we would from point sources except
that the shape of each fringe is modified according to the wave coming from each
groove. The same holds true for the interference pattern discussed below for a two-
dimensional mesh and for a crystal.

7.4.2 Diffraction Through a Mesh��

Let us pass a light beam through silk screen, which is a piece of “mesh” material
that is a weave of threads arranged in two mutually perpendicular parallel arrays.
The result is an interesting interference pattern shown in Fig. 7.13.

In the figure there are two silk screens above, labeled L and R; below them are
two diffraction patterns, labeled (a) and (b), that were produced by the two lasers
that were set side by side and can be seen through the silkscreens. The number of
threads per inch is greater on the right (R); correspondingly, the distance between



7.4 Many-Source Interference 219

Fig. 7.13 Diffraction through a mesh (photo by Konstantinos Metallinos)

neighboring threads is smaller. One might think that each spot is produced by a
single hole in the mesh through which the laser beam passed. This is not the case
at all; each spot is produced by light that has passed a number of holes in the silk
screen. Without looking at the answer in the footnote, can you determine how the
pairs are matched up? L with (a) R with (b) or the converse?5

Finally, notice that the number of spots is limited. If the holes were infinitesimal
in diameter, the light coming through a single hole would exhibit strong diffraction –
See Sect. 8.1 on diffraction. Then the hole would act like a point source. In this case,
the spots would go on far the right, left, above, and below. With a finite size hole,
the angle of spreading (in radians), due to diffraction of the outgoing wave, is on the
order of the wavelength divided by the diameter d of a hole. (See (8.1).) As a result,
the number N of spots along a line can be shown to be given by

N � Spacing d between adjacent holes

Diameter of a hole
: (7.10)

5Image (a) was produced by the screen labeled R and (b) by the silk screen labeled L. The reason
is analogous to the fact that in two source interference, the closer the sources, the further apart are
the fringes on a distant screen.
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Fig. 7.14 Crystal lattice structure of sodium chloride (source: http://en.wikipedia.org/wiki/
Sodium chloride)

7.4.3 X-ray Diffraction of Crystals

We have just made the transition from a linear array of sources to a two-dimensional
array of sources, the mesh material. We now move on to three dimensions (3D): In
a crystal, atoms or groups of atoms are arranged in a periodic array in 3D space, as
depicted by the model of a sodium chloride crystal in Fig. 7.14.

Suppose that we cast a beam of monochromatic EM waves on the crystal. We will
get an interference pattern that is determined by the crystal structure. The outgoing
wave is strong only in certain directions. One requirement is that the wavelength �

be on the order of or less than or about equal to the spacing d between neighboring
atoms (the distance between a large ball and a small ball). This distance is typically
on the order of Ångstroms.

In the case of sodium chloride, d D 5:63=2 D 2:82 Å. We would then need a
wavelength � < 2:82 Å D 2:82�10�10 m. The corresponding frequency of the EM
wave is then f D c=� D .3 � 108/=.2:8 � 10�10/ D 1:1 � 1018 Hz, a frequency in
the X-ray region.

The intensity pattern produced on a screen by X-rays scattering off a crystal of
sodium chloride is shown in Fig. 7.15.6

6The figure is the black–white inversion of the original, so as to enhance the appearance of the
pattern of spots.

http://en.wikipedia.org/wiki/Sodium_chloride
http://en.wikipedia.org/wiki/Sodium_chloride


7.5 Beats 221

Fig. 7.15 X-ray diffraction pattern of a sodium chloride crystal (source: http://faculty.fullerton.
edu/cmcconnell/304/X-Ray Crystallography.htm)

7.5 Beats

Suppose we superimpose two sine waves having nearly the same frequency. Below
we see one sine wave that has ten cycles in a 1 s interval, while a second sine
wave has nine cycles during that 1 s interval. Their frequencies are 9 and 10 Hz,
respectively. Notice how the two waves are in phase initially. Halfway, at one-half
second, the waves are out of phase. The first wave has gone through five oscillations,
while the second has gone through but four and a half oscillations. At the end
of the entire interval, the first has gone through ten oscillations and second nine
oscillations. It takes 1 s for them to be in phase again so that 1 s is the beat period
(Fig. 7.16).

The wave pattern is that of a sine wave modulated by an envelope that oscillates
at a frequency of 1 Hz, which is the difference between the two input frequencies.
(Compare the pattern with that of the coupled SHOs, in Fig. 2.24.)

This phenomenon is called beating. The peaks in amplitude are called beats. The
frequency of the envelope is called the beat frequency. Generally, it can be shown
that if f1 and f2 are the two respective input frequencies, then the beat frequency is
given by

fB D jf2 � f1j: (7.11)

http://faculty.fullerton.edu/cmcconnell/304/X-Ray_Crystallography.htm
http://faculty.fullerton.edu/cmcconnell/304/X-Ray_Crystallography.htm
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Fig. 7.16 Beats

Note the absolute value sign, since the beat frequency is a positive quantity and its
value does not depend upon which of the two frequencies is the greater one.

This result can be obtained from trigonometric identities.7

7

cos.a C b/ D cos a cos b � sin a sin b: (7.12)

Now let f D .f1 C f2/=2. This is the average of the two frequencies. Assume also that f2 > f1.
The result does not depend upon which frequency is greater. Notice that

f1 D f � fB=2: (7.13)

and
f2 D f C fB=2: (7.14)

We can then show that

cos.2�f1 t/ C cos.2�f1 t/ D 2 cos.�fB t / cos.2�f t/: (7.15)

The significance of this equation is that the resulting wave is a sine wave with frequency f

modulated by a sine wave having the beat frequency.
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Sample Problem 7-4

What is the beat frequency if the two input frequencies are 440 and
442 Hz, respectively?

Solution
fB D 442 � 440 D 2 Hz

Sample Problem 7-5

A tuning fork whose fundamental is 440 Hz produces a beat frequency
of 5 Hz when its sound is added to the sound of a violin A-string. What
can one say about the frequency of the A-string?

Solution
We only know the absolute value of the difference between the two
input frequencies. Thus, the violin string’s frequency is either 435 or
445 Hz.

The phenomenon of beating has a number of applications. We will mention three of
them here:

1. The tuning of stringed instruments requires high level of accuracy in matching
the frequency of a string with a standard frequency source (such as a tuning fork)
and/or with the frequency of other strings. Beating provides a means to attain the
required accuracy.

2. In Chap. 8, we will discuss how beating is used by radar detectors to measure the
speed of an automobile.

3. If a laser beam is passed through a medium consisting of a transparent liquid that
has large molecules or very small sub-micron size particles in suspension, the
outgoing beam will have a frequency component that is very slightly shifted from
the input frequency. That shift reflects valuable information about the properties
of the medium. The shift can be determined by beating an unaffected portion of
the input laser beam with a portion that has been shifted. See Fig. 7.17, where a
typical experimental setup is depicted. We note that the material has shifted the
frequency of the laser beam from f1 to f2.

Four mirrors are used to direct the laser beams. Splitting and combining
are accomplished by using three half-silvered mirror: There are two outgoing
beams, one that has been reflected by the mirror and the other that has passed
straight through the mirror. They each have an intensity equal to half the incident
intensity. What is remarkable is that a beat frequency of about 15 Hz can be
detected as against a laser beam frequency that is on the order of 6 � 1014 Hz.
This represents a sensitivity of two parts in 100 trillion!
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Fig. 7.17 Using beats to study materials

7.6 Terms

• Beat frequency
• Beats
• Constructive interference
• Destructive interference
• Diffraction grating
• In phase
• Order of interference

• Out of phase
• Path difference of two waves
• Phase difference
• Principle of superposition
• Relative phase
• Resultant amplitude
• Resultant wave

7.7 Important Equations

For constructive interference:

S2P � S1P D 0; �; 2�; : : :: (7.16)

Angles for constructive interference:

sin �1 D �

d
; sin �2 D 2

�

d
; : : :: (7.17)

Angles for destructive interference:

S2P � S1P D �=2; � C �=2 D 3�=2; 2� C �=2 D 5�=2; : : :: (7.18)

Beat frequency:
fB D jf2 � f1j: (7.19)
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7.8 Problems for Chap. 7

1. Fig. 7.18 shows two specially shaped pulses traveling along a string, repre-
sented by thick lines segments. The blue pulse is moving to the left, while the
red pulse is moving to the right. Eventually they pass through each other on the
string. List below which of the five figures – .a/–.e/ – represents the shape of
the string at some future time.

2. Fig. 7.19 shows waves that are passing through two slits in the barrier. The solid
lines are crests, and the dashed lines are troughs. Therefore, at points A, B, and
C, there will be

(a) Constructive interference, and the water will be still.
(b) Constructive interference, and the water will be in motion.
(c) Destructive interference, and the water will be still.
(d) Destructive interference, and the water will be motion.
(e) Alternating constructive and destructive interference, so the water will be

in motion.

a b

c d

e

Fig. 7.18 “Colliding” waves

Fig. 7.19 Two slit interference
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Fig. 7.20 Interference of light from a star

3. Suppose that a light wave of wavelength 4 � 10�7 m is incident upon a pair of
slits that are separated by a distance of 14 � 10�7 m. Determine the angles of
all the orders of interference of the outgoing wave.

4. A two-slit interference pattern of light is observed on a screen which is at a
distance of 4 m from the slits. The slit separation is 0:2 mm, while the distance
between neighboring fringes is 0.9 cm. Find the wavelength of the light.

5. A certain star is situated at point S , a distance 1014 km from the earth. An atom
in the star emits a light wave of wavelength 4;000 Å, and this wave is detected
at two locations on earth – points A and B in Fig. 7.20.
A and B are 200 km apart and form a triangle with the star. The signals at points
A and B are added together.

Do they add constructively or destructively? Explain using a calculation.

Note

You will need to use the following approximation: Given a right
triangle, with legs a and b, where a � b, the hypotenuse c is
given approximately by

c Š b C a2

2b
:

6. A piano tuner finds that two strings produce a beat frequency of 3 Hz, when one
of the strings has a known frequency of 440 Hz. What can the tuner conclude
about the frequency of the second string?

7. (a) Suppose that you want to determine your heart’s pulse rate. You are seated
next to a digital clock that is blinking at a rate of one blink per second. You
cannot read the change in time. You find that when the clock has blinked 11

times, your heart has beat 13 times.
Determine your pulse rate.8 We will now see how we can increase our

accuracy even when we never observe a beat coincide with a blink of the
clock:

8The technique used in this problem is a simple application of the technique that Galileo is
conjectured to have used to study the motion of a ball down an inclined plane. See the applet
on the website (2-11-2011): http://www.joakimlinde.se/java/galileo/.

http://www.joakimlinde.se/java/galileo/.
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Fig. 7.21 Heart beats vs. clock blinks

In Fig. 7.21 we see marks representing the blinks of the clock, starting
from the first blink at the initial time at t D 0. Below these marks are small
marks representing the beats of my heart; we have assumed that the first
beat is at t D 0.

(b) Suppose that we estimate that the events (blinks and beats) coincide at 4 s.
What would be the corresponding estimate of my pulse?

(c) Suppose that we estimate that the events coincide at 7 s. What would be the
corresponding estimate of my pulse?

(d) Suppose that we estimate that the events coincide at 11 s. What would be
the corresponding estimate of my pulse?

(e) In fact, the marks were made using one-half inch spacings for the clock
blinks and one centimeter spacings for the beats of my heart. What would
be my pulse on this basis?
Notice how the results of parts (b)–(d) approach this last actual value.

(f) In the above example, a pair of events eventually coincides after 11 s. It is
possible that a pair of events will never coincide.
Can you determine the condition on the frequencies of the two sequences of
events that is necessary for events to eventually coincide?

This exercise and study has the purpose of giving us a bit of insight into
the nature of the phenomenon of beats. Whether or not the events of two
periodic sequences do coincide as displayed above, the formula for the beat
frequency holds:

fB D jf1 � f2j: (7.20)

(g) What is the beat frequency for the two sequences above?
8. A diffraction grating has 5,000 lines per cm. Determine the angles of the various

orders of the interference pattern produced by a light beam having a wavelength
of 4:4 � 10�7 m.

9. Add graphically the two waves in each of the two figures, (a) and (b), in
Fig. 7.22.
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Fig. 7.23 Two spherical sources

10. In Fig. 7.23, we exhibit a drawing of two sources that are emitting waves having
the same wavelength. The two sets of concentric circles are the crests. The equal
spacing between neighboring circles equals the wavelength. Note the light rays
that radiate from the region between the two sources. One such ray is horizontal,
being the perpendicular bisector of the line joining the two sources. Note that
all of the crossings between a pair of circles emitted by the two sources lie
along the bright rays. These crossings are points of constructive interference.
The bright rays are separated by dark rays; we have destructive interference
along these rays. Both sets of rays are straight lines far from the sources.

You are to study the second and fourth orders of interference shown in the
figure as follows. Lengths should be measured using a ruler.

(a) Determine the distance between the two sources.
(b) For each order, draw a line from the midpoint between the sources along

the center of the corresponding bright rays (at the crossings of the circles)
where the rays are straight.

(c) For each order, determine the angle that each ray makes with the horizontal.
You might choose to measure the slope by completing a right triangle. The
angle is the inverse tangent of the slope.

(d) For each order, use (7.6) to determine the wavelength. Compare the value
you obtain with the value you measure directly from the figure.





Chapter 8
Propagation Phenomena

Up until this point in the text, we have been focusing our attention on the sources of
sound waves and light waves. The Principle of Superposition of Chap. 7 dealt with
the waves produced by more than one source. In this chapter, we deal with effects on
waves when they are not propagating through a single homogeneous medium that is
infinite in extent. The phenomena to be studied are:

• Diffraction, which refers to the way waves bend around obstacles.
• Reflection of waves off interfaces between two media (such as sound off a wall

or light off a mirror or rough surface).
• Refraction, which refers to the way waves behave when they are transmitted

(pass on) from one medium to another (such as light from air to glass or
sound from air to water). The operation of lenses, which are used in eyeglasses,
microscopes, and telescopes, relies on the phenomenon of refraction.

• Scattering of waves by a tenuous distribution of obstacles, such as light off air
molecules.

• Doppler Effect, which characterizes the effect on the frequency of a sine wave that
is observed by a receiver that is moving with respect to the source of the wave.

It is important to keep in mind that the above phenomena are exhibited by all
types of waves, including sound waves, EM waves, and waves propagating along
the surface of a liquid, such as ocean waves. This is not true for polarization of
electromagnetic waves, which reflects the fact that light is a transverse wave whose
effective displacement, the electric field, can be in any direction perpendicular to
the direction of propagation.

8.1 Diffraction

In order to study the phenomenon of diffraction, we will focus our attention on the
simplest possible wave in three-dimensional space, the plane wave. A plane wave
moves in a straight line. As a result, in filling three-dimensional space, a single crest
occupies an entire plane, as seen in Fig. 8.1.

L. Gunther, The Physics of Music and Color, DOI 10.1007/978-1-4614-0557-3 8,
© Springer Science+Business Media, LLC 2012
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Fig. 8.1 Wave crests

Fig. 8.2 Plane wave incident
upon a hole

Suppose that a plane wave is incident on an opaque sheet of material. In the
sheet we cut a round hole of diameter d . What will be the nature of the wave that
progresses on the opposite side of the hole (Fig. 8.2)?

If the wave consisted of a beam of particles streaming along, we would observe
a beam with a circular cross-section having a sharp boundary (Fig. 8.3):

Our normal experience with light agrees with this prediction. However, care-
ful observation reveals this prediction to be false, or at least, in these normal
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Fig. 8.3 Wave going through
a hole with negligible
diffraction – side view

Fig. 8.4 Schematic of a wave going through a hole exhibiting diffraction

circumstances, only approximately true. What we actually observe is a “fanning
out” of the beam. This phenomenon is referred to as diffraction and is exhibited in
Fig. 8.4.

The angle � in the figure is called the diffraction angle. It depends upon the
wavelength � and the diameter d of the hole. Suppose that we express the angle �

in radians. Then for small � such that � � d , it can be shown that

� � �

d
: (8.1)
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Fig. 8.5 Image produced as a
result of diffraction by a hole

Recall that 2� radians equals 360ı, so that one radian is about 57ı. Thus, an
angle � that is about 1ı or less is much less than one radian.1

Notice that the larger the wavelength is, the greater is the amount of
diffraction.

Also, the smaller the hole is the greater the amount of diffraction.
If the beam is cast on a screen, the image will consist of a set of concentric

circles, as shown below in Fig. 8.5.
While the boundary fades away asymptotically to zero at infinity, the essential

image does have a size, with a diameter given by

dim � d C 2�
L

d
; (8.4)

where L is the distance from the hole to the screen.

1It is interesting to note that the above relation is similar to the expression for the angle for first
order constructive interference for two sources of waves. (See (7.6).) As long as the angle � is
much less than one radian,

sin � � �; (8.2)

where � on the right-hand side is expressed in radians. Then the equation for the angle for first
order interference becomes

�

d
D sin �1 � �1: (8.3)

In this last equation, the parameter d refers to the distance between two sources, whereas in
this chapter d refers to the diameter of a hole.
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A sharp image, free of diffraction, would have dim D d . The increase of the
diameter by an amount 2�L=d increases with increasing wavelength and decreasing
hole diameter.

The diffraction profile described above also holds for the very beam of light
emitted by a laser. Such a beam is typically regarded as being straight and of
essentially constant cross-section as it propagates. In fact, it fans out as in Fig. 8.4.

Suppose that the laser beam has a wavelength of 600 nm (D 600�10�9 m; “n” D
nano D �10�9) and a diameter d when it leaves the laser of 1 mm. In the table
below, we list the calculated beam diameter for various distances from the laser
along the beam.

When d D 1 mm

L (cm) 2L=d (mm) dim D d C 2L=d (mm)

1 0:012 1:012

100 (D 1 m) 1:2 2:2

With an initial beam diameter of 1 mm, there is a significant broadening of the
beam, with the beam more than doubling in diameter at a distance of 1 m from the
laser.

Consider now a more common sized beam, with an initial diameter of 10 cm and
the same wavelength.

When d D 10 cm

L (cm) 2L=d (mm) dim D d C 2L=d (mm)

1 0:00012 1:00012

100 (D 1 m) 0:012 1:012

Since diffraction broadening is only a few percent or less of the total image
size, it is no wonder that we are not aware of diffraction effects of light.

We now turn to an interesting question: Suppose we have a source of light
with the above frequency and we wish to cast an image with the smallest possible
diameter on a screen that is a given distance of 2 m away, by varying the diameter
d of the source. Without detailed thought, one might think that there is no limit to
how small an image we can make. We merely have to shrink d down to as small a
value as we want. However, diffraction broadening increases with decreasing source
diameter, and at some point this broadening dominates the image diameter, as we
can see from the table below:

d (mm) 2L=d (mm) dim D d C 2L=d (mm)

3 0:8 3:8

2 1:2 3:2

1 2:4 3:4

0:5 4:8 5:3
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Fig. 8.6 The diameter of the image, dim, vs. the diameter of the source, d

We see that as the source diameter is decreased, the image diameter first
decreases and then increases. In Fig. 8.6, we present a graph of dim vs. d.

Notice that dim has a minimum value for a certain value dmin of the source. It can
be shown that dmin corresponds to the source diameter and diffraction broadening
being equal; that is, d D 2L=d. Solving this equation for d, we obtain

d 2
min D 2�L

dmin D
p

2�L (8.5)

for a minimum image diameter.
The corresponding minimum image diameter is given by twice dmin:

minimum image diameter � min dim D 2
p

2�L: (8.6)

Sample Problem 8-1

Find the minimum possible image size for the values � D 600 nm D
6 � 10�7 m and L D 2 m.

Solution
We obtain

min dim D 2
p

2 � 6 � 10�7 � 2 D 3:10 mm

which corresponds to a source diameter of 1.55 mm.



8.1 Diffraction 237

Fig. 8.7 Diffraction by a small slit

Fig. 8.8 Diffraction around an edge (source of photo: http://dlmf.nist.gov/7.SB1)

When the source diameter is less than the wavelength, the wave beyond the hole
is “fanned out,” producing the spherical waves of a point source. In Fig. 8.7, we see
two images: to the left a small slit, to the right a minute slit with slit width much
less than the wavelength.2 Oscillations with respect to the direction from the slit are
apparent in the first case, but not in the second case.

Diffraction effects are also relevant when one half of space is blocked off by a
wall or a mountain, as seen in Fig. 8.8.

In the schematic drawing, we see a light wave incident downwards towards the
viewer below. A screen (the black rectangle in the schematic drawing) is set up to

2The figures were produced with applet on the website (2-11-2011): http://www.falstad.com/
ripple/.

http://www.falstad.com/ripple/
http://www.falstad.com/ripple/
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Fig. 8.9 Diffraction by a
razor blade (source: Photo
courtesy of Harvard Natural
Sciences Lecture
Demonstrations. Copyright
2011, President and Fellows
Harvard College, All Rights
Reserved)

block the light behind the screen. In the absence of diffraction, there would be a
sharp shadow. The schematic figure shows how the wave proceeds into the shadow
region behind the screen. The image to the right in Fig. 8.8 is taken at a distance
of about one wavelength from the screen. A sharp boundary is depicted by the
dotted line, with a value y D 2.0. Instead, light extends a bit into the shadow region.
In addition, along the negative x-axis, the intensity oscillates, with a maximum
intensity above y D 2 at the maxima of the oscillations. As indicated in the schematic
drawing, the further away we are from the screen, the more will the light extend into
the shadow region.

In Fig. 8.9, we see an actual photograph of the shadow of a razor blade. The
blurriness due to diffraction is quite evident.

Questions to ponder:

1. Which voices will be heard better through a crack in a door, high-pitched or
low-pitched ones?

2. Which radio waves will be more easily picked up at large distances over hilltops,
AM or FM waves?

8.1.1 Scattering of Waves and Diffraction

Consider a plane wave incident upon an object as shown in Fig. 8.10. The object
acts as an obstacle to the wave. There are the extreme cases. Let d be the diameter
of the object. Then,

1. � � d : The obstacle produces a sharp shadow, with mild diffraction effect
that increases with increasing distance. We can see that the wave is “collapsing”
around the sphere.

2. � � d : The incident wave is barely affected by the obstacle. The obstacle
produces a weak “scattered wave.” This case is exhibited in Fig. 8.11.
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Fig. 8.10 Shadow created by a spherical object – wavelength comparable to the diameter of the
object

Fig. 8.11 Schematic of a wave scattered by an object with diameter much smaller than the
wavelength

The two cases above that are represented schematically in the above figures
are shown in Fig. 8.12 produced by a simulation of a surface wave in water.3

Note that in (a) there is strong blockage yet we can easily see the effects of
diffraction; in (b) there is strong diffraction, so that the wave is barely affected
by the presence of the object. Still, if you look carefully you should see the weak
spherical scattered wave.

Home exercise: Observe the effect your body has on large ocean waves.

The above discussion allows us to understand why it is that ordinary laboratory
microscopes that use light for illumination cannot allow us to clearly see objects
that are on the order of the wavelength of light (�5 � 10�7 m or less). Diffraction
produces blurry boundaries. We can also appreciate why AM radio waves can
“cross” mountains more easily than FM radio waves, which have a higher frequency
and hence a smaller wavelength.

3The figure was made from the applet on the website (2-5-2011): http://www.falstad.com/ripple/.

http://www.falstad.com/ripple/
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Fig. 8.12 The scattering of a wave: (a) object diameter a few times the wavelength; (b) object
diameter much smaller than the wavelength

8.1.2 Why Is the Sky Blue?

Our sky is blue because of the scattering of sunlight by the molecules of air of the
atmosphere. How can we understand this phenomenon? After all, the diameter of
air molecules is on the order of a few Ångstroms, while the wavelength of light is
much greater � � 5;000 Å. That amounts to a ratio of about 1,000 to 1. As a result,
diffraction effects are very strong so that one would expect that very little scattering
of light by a single molecule would take place. (See Fig. 8.11.) The sky is bright on
account of the sum of scattering by a vast number of molecules.4

We can now understand why the sky is blue. A detailed analysis was provided
about 100 years ago, when Lord Rayleigh (alias John William Strutt) showed that
the intensity of scattered light behaves like:

Iscatt / 1

�4
(8.7)

which gives the relationship between the intensity of scattered light and the
wavelength of the light.

We should expect the degree of scattering to increase with decreasing wavelength
since there will be decreasing diffraction. As a consequence, the violet end of
the visible spectrum, which has the shortest wavelength, is scattered most. For

4Interestingly, one can show that if the density of air molecules was to be perfectly uniform,
this sum would result in no net scattering; the sky would be perfectly transparent! It is the
modest degree of nonuniformity of the density that is responsible for the scattering. In fibre optics
communication, the glass is so pure, that is, free from impurities and inhomogeneities, that it is the
small degree of nonuniformity in the molecular density associated with the random thermal motion
of the molecules, that is responsible for the small attenuation in the fibres.
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a numerical comparison, we will calculate the ratio of the scattered light for a
wavelength � D 4 � 10�7 m (violet) to that for � D 7 � 10�7 m (red):

Now sunlight is whitish, consisting of a mixture of wavelengths which extends
from the infrared to the ultraviolet. Since the violet end of the visible spectrum is
scattered most, scattered sunlight looks bluish. On the other hand, when we look
directly at the sun through the atmosphere or observe the horizon in the west at
sunset, we are seeing light which has started out white (from the sun) and has had
the violet end of the spectrum removed most by scattering. Such light looks reddish.
(See Chapter 14, THEORY OF COLOR VISION, for details on color perception.)

8.2 Reflection

The characteristics of a wave that is reflected off an object can be, surprisingly, quite
complicated, whether it be a light wave, sound wave, ocean wave, or any other wave.
We will discuss three relatively simple cases; they can be described in terms of the
appearance of a surface under the reflection of light: shiny surface (like a mirror),
dull surface, and sparkling surface.

Let us first consider the reflection of light off a painted wall. Some walls are
dull; others, with a concentrated enamel paint are shiny. What is the physical
difference between the two surfaces? We know that rubbing a surface often polishes
the surface, meaning that the surface is made shiny. We recognize that polishing
involves making a surface smoother. But how smooth must a surface be to be shiny?
How do we characterize smoothness?

The central factor is what we will refer to as the length scale of roughness,
with a symbol `r. The smaller this length is, the smoother a surface is. The degree
of shininess is obtained by comparing this length to the wavelength � of the light.
(Recall that the range of wavelengths of light � is about 4;000 	 7;000 Å.)

We can describe the surface of the wall with varying degrees of detail. The
surface might be smooth to the touch, so that without close scrutiny, we would
simply describe the surface as being smooth. However, if we examine the surface
with a microscope, we might be able to see bumps on the order of 0:1 mm in size.
We would say that the length scale of roughness `r is about 0:1 mm. In this case,
� � `r and the surface will appear dull. Examination will reveal that a beam of
light is reflected from the wall in many random directions. We have what is referred
to as diffuse reflection (Fig. 8.13).

Note

If a laser beam casts a spot on a dull wall, everyone in the room can see
the spot, since there exists a ray that reaches the observer’s eye.

In the case of a wall painted with enamel paint, the length scale of roughness is
on the order of a wavelength, so that the surface is shiny. When the length scale of
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Fig. 8.13 Diffuse reflection off a rough surface

Fig. 8.14 Reflection by a smooth surface

roughness is much smaller than a wavelength, the surface acts like a mirror and we
have what is referred to as specular reflection or mirror reflection. A given ray of
light produces a single reflected ray as exhibited in Fig. 8.14.

We see that an incident ray of light produces a reflected ray, with the angle
of incidence �i equal to the angle of reflection �rfl. Notice that these angles are
measured relative to a line perpendicular to the interface. This line is called the
normal, since the word “normal” means perpendicular.

Suppose that two viewers, labeled V1 and V2, respectively, look at a point source
through a mirror. The point source emits rays in all directions, but each viewer
receives through their own eye only a small set of rays concentrated around the
respective rays in Fig. 8.15:

In the figure, S is the point source while I is the apparent position of S – as seen
by V1 and V2. I is said to be the mirror image of S . Note that SM D IM and
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Fig. 8.15 Two observers, each receiving its own respective set of reflected waves from the
source S

Fig. 8.16 The rays of light
from a hand and from a leg
that reflect from a mirror into
the eye

that SMI is perpendicular to the interface. The arrowed line segments represent
the actual rays traveling toward the viewers. The key result is that the viewers’
brains will interpret the incoming rays as coming from S and perceive the source
as actually being at I . Since the source is not really at I , the image is said to be a
virtual image.

In Fig. 8.16, we see a person standing in front of a mirror. The particular rays
that reflect off a hand and off a leg and which strike the mirror and reach the eye (as
dashed lines) are indicated. The visual system, whose main components are the eye
and the brain – the eye-brain system – assumes that the ray left a point on the leg
of the image (as a fine-dashed line).

Note that if a laser beam is reflected off the wall under specular reflection, only
an eye – regarded approximately as having an iris the diameter of one ray of light –
that is in line with the single reflected ray will be able to see the light.

Consider now a light beam incident on a dull painted wall. Its dullness reflects
the fact that you can see an image of the light beam on the wall no matter where you
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Fig. 8.17 Magnified surface
of sand

stand. This situation indicates that the reflection is diffuse, as shown in Fig. 8.13.
Since the light has a wavelength lying between 4 � 10�7 and 7 � 10�7 m, to have
specular reflection the length scale of roughness must be on the order of 10�7 m or
more.

In sum, if � � `r, we have diffuse reflection; while if � � `r, we have specular
reflection.

These results hold for the reflection of any type of wave off a surface. Ex-
amples are sound waves off walls, a concert audience, or wall tapestry, as well
as radio waves off a forest of trees or suburban houses. Since the smallest
wavelength of audible sound (corresponding to the largest audible frequency) is
� D v=f D (340 m/s)/(20,000 Hz) D 0.17 m D 170 mm, we see that audible sound
waves reflect specularly off walls. (See also the problems at the end of the chapter.)

8.2.1 A Complex Surface: A Sand Particle

Let us consider how we would regard a flat surface of sand, flat on a scale of
centimeters, as depicted below. We know that the sand consists of a multitude of
sand particles, of varied shapes and sizes. The range of particle diameters certainly
does not exceed a value on the order of 1 mm. Depending upon the sample of sand,
it may not fall below 0.1 mm.

For our purposes, a grain of sand has at least three important length scales:
First, there is the size (average diameter) `g of the grain of sand. Next, if one

looks closely at the grain of sand, one would find the surface rough and bumpy,
as seen in Fig. 8.17. The second length scale is the average size of the bumps on
the grain’s surface, `r in the above figure. This is the length scale of roughness.
Finally, there is the size `a of the individual atoms, at the Ångstrom level. Certainly,
`g > `r � `a. We will assume, for simplicity, that `g � `r; that is, the bumps are
much smaller than the grain size.
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Fig. 8.18 Surface of a grain of sand – magnified

Let us now discuss the reflection of light off the surface of the sand depicted in
Fig. 8.18. Certainly, � is much smaller than the size of a grain. As a consequence,
the surface of the sand appears rough. Furthermore, the wavelength � of the light
is much greater than the average atomic diameter `a. [`a � 5000 Å.] The only
remaining question is how � compares with the size of the bumps, `r. If � � `r, the
particle surface will appear shiny and the sand as a whole will sparkle. Otherwise,
the sand will appear dull at all levels.

Questions:
How would sound waves reflect off an audience of people?
How would AM or FM radio waves reflect off a forest of trees or a suburban
neighborhood of homes?

8.3 Reflection and Reflectance

Suppose that a fisherman is standing at the edge of a lake and is concerned that if
he talks the fish will hear him. To answer this question, we need to determine what
fraction of sound energy that is incident on the surface of the water is transmitted
into the water. Or, suppose that a light beam is propagating in a transparent medium
and is incident upon a second transparent medium, how does the intensity of the
transmitted beam compare to the intensity of the incident beam?

In Chapter 4, ENERGY, we discussed absorption and attenuation of waves as
they propagate in a medium. Often one talks about the fraction of an incident wave
that is reflected, transmitted, and absorbed. When a sound wave traveling in air
is incident upon a dense material such as acoustic tile, we focus on absorption as a
process rather than transmission. For our purposes, we will disregard the details of
what happens to a transmitted wave once it enters the second medium.

The ratio of the intensity of the reflected wave to the intensity of the incident
wave is referred to as the reflectance with a symbol R; the ratio of intensities of the
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Fig. 8.19 Reflectance and transmittance of an incident wave

transmitted wave and the incident wave is referred to as the transmittance, with a
symbol T . The incident wave is replaced by the reflected and the transmitted waves.
Thus,

R D Irfl

Iinc

T D Itrans

Iinc
: (8.8)

Since the total intensity must equal the total resulting intensity. That is,

Irfl C Itrans D Iinc: (8.9)

Alternatively,
R C T D I: (8.10)

In answering these questions, we will restrict ourselves, for simplicity, to a plane
wave that is incident perpendicularly on a plane surface. See Fig. 8.19. (When the
angle of incidence is not 0ı, the results are too complicated for us to discuss here.)

8.3.1 The Reflectance for a Light Wave

The reflectance of light at an interface between two transparent materials depends
upon what is called the index of refraction, which is given the symbol n. In vacuum,
the speed of light is c D 3:00 � 108 m/s. In a transparent medium it is given by

v D c

n
: (8.11)

Clearly, n D 1 in a vacuum. In a medium, the speed of light is less than c, so that
n > 1.
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Below, we list the values of the index of refraction for some materials:

Material Index of refraction n

Air (STP) 1.0003 (The denser the air, the greater the index of refraction)
Water 1:33 � 4=3

Diamond 2.42
Crown glass 1.52
Flint glass 1.66

Unless otherwise stated, we will set n D 1 for air as an excellent
approximation.

The reflectance R of a light wave is determined solely by the respective indices
of refraction, n1 and n2 of the two media. It is given by:

R D
�

n1 	 n2

n1 C n2

�2

: (8.12)

Note

If n1 D n2, then R D 0. There is no reflected wave if the indices are
equal – even if the two materials are otherwise quite different! Only the
indices of refraction determine the reflectance.

Note

The reflectance is the same whether the incident ray is in medium
#1 or in medium #2.

The basis for this result can be seen as follows:
The result of interchanging media can be determined by interchanging the

symbols n1 and n2 in (8.12). The value for the reflectance does not change since

.n1 	 n2/2

.n1 C n2/2
D .n2 	 n1/

2

.n2 C n1/2
:

This result will be shown to hold for the reflection of sound waves, too. (See
below.)

Sample Problem 8-2

Find the reflectance for light at an air–water interface, given that n1 D 1

and n2 D 4=3.
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Solution

R D
�
1 	 4

3

�2
�
1 C 4

3

�2
D
"

	 1
3

7
3

#2

D
�

	1

7

�2

D 1

49
� 0:02:

Thus only 2% of the energy is reflected. Most of the energy is
transmitted.

Note

Without being quantitative, we will say something about the case
when the incident wave is not perpendicular to the surface. The
reflectance increases as the angle of incidence increases. Check this
by examining reflection off a surface. Note that the shininess is dramatic
if you view a surface at a grazing angle even if the surface is dull!

Problem for the reader: Using the relation v D c=n, show that the reflectance for
an EM wave is given by

R D
�

v2 	 v1

v2 C v1

�2

; (8.13)

where v1 and v2 are the wave velocities of the respective media.

8.3.2 The Reflectance for a Sound Wave

Here the different mass densities �1 and �2 must be taken into account:

R D
�

�2v2 	 �1v1

�2v2 C �1v1

�2

: (8.14)

Note that the interchange subscripts in the expression leaves the reflectance
unchanged as in the case of light waves. Note too that (8.13) for light waves can
be obtained from (8.14) by assuming that the media through which light propagates
all have the same mass density.

In (8.14), the product “�v” is called the impedance of the medium. The typical
symbol for the impedance is Z, so that

Z � �v: (8.15)
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Then we can write:

R D
�

Z2 	 Z1

Z2 C Z1

�2

: (8.16)

Sample Problem 8-3

Find the reflectance for an air–water interface at STP, given that

Air: Z D �v D 1:3 kg=m3 � 345 m=s D 450 kg=m2 s
Water: Z D �v D 1;000 � 1;500 D 1:5 � 106 kg=m2 s.

Solution
Substitution into (8.14) leads to R D 0:999. Thus, only 0:1% of the
sound energy is transmitted! On the basis of this result, a fish should
have difficulty hearing a person who is on the shore talking.

Sample Problem 8-4

How many dB corresponds to 0:1%?

Solution
�SL D 10 log.0:001/ D 	30 dB.

8.4 Refraction

Suppose that a plane wave is traveling in one medium and is incident upon an
interface of this medium with a second medium through which the wave can
propagate. Examples include light in air that is incident upon an air/glass interface,
or a sound wave in air, incident upon an air/water interface.5 We have both a
reflected wave and a transmitted wave. We focus here on the transmitted wave.

In Fig. 8.20, we exhibit a wave incident on an interface. Notice that the
transmitted wave is not in the same direction as the incident wave. This change
in direction is called refraction. Of greatest interest is the relationship between the
angle of incidence �i and the angle of refraction �r.6

5We are used to referring to the interface between air and water as the surface of water. However,
how should we refer to the boundary between water and oil? The word interface is a neutral term,
clearly superior to the term surface.
6Not to be confused with the angle of reflection �rfl.
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Fig. 8.20 Refraction at the interface of two media

In 1621, Willebrord Snell discovered a relationship between these two angles for
light beams. They are related by the indices of refraction of the two media.

ni sin �i D nr sin �r: (8.17)

Applications of this law follow below:

Sample Problem 8-5

Given ni D 1, �i D 60ı, and nr D 4=3, what is �r?

Solution
We have 1 � sin 60ı D .4=3/ sin �r, so that sin �r D .3=4/ sin 60ı D
0:650. We then obtain

�r D arcsin.0:650/ D 40:5ı:

Sample Problem 8-6

Given ni D 4=3, �i D 40:5ı, and nr D 1, what is �r?

Solution
It should be clear from Snell’s Law that �r D 60ı. This example
describes the path of the ray of the previous problem when reversed
in direction! See Fig. 8.21.
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Fig. 8.21 Refraction for two opposite directions of a ray of light

Note

It follows generally from Snell’s Law that if an incident ray were to
have the direction of the original refracted ray, the resulting refracted
ray would be in the direction of the original incident ray.

Comments

1. Suppose �i D 0ı, then �r D 0ı: Thus, an incident ray which is perpendicular to
the interface is not refracted.

2. If ni > nr, the beam is refracted away from the normal. If ni < nr, the beam is
refracted toward the normal.

8.5 Total Internal Reflection

Consider the following problem.

Sample Problem 8-7

Given that ni D 4=3, nr D 1, and �i D 60ı, find �r.

Solution
From Snell’s Law, nr sin �r D ni sin �i so that

1 � sin �r D .4=3/ sin 60ı D 1:15:
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This last equation leads to sin �r having to be equal to 1:15, which is impossible;
this equation has no solution since the sine of an angle cannot be greater than unity.
Then, what does it mean to have an equation (Snell’s Law) that has no solution?

What happens is that we have no transmitted refracted beam. We have what
is called total internal reflection. Generally, refraction is always accompanied
by reflection; the fraction of the intensity that is reflected vs. the fraction that is
refracted depends upon the two indices of refraction and the angle of incidence. In
this case, there is no transmitted, refracted ray.

Total internal reflection can happen only if the index of refraction of the medium
of the incident ray is greater than the index of refraction of the medium of the
transmitted ray. Thus, a ray incident from air onto an air–water interface cannot
be totally reflected. This conclusion should be evident from Snell’s Law:

As �i is increased, so is �r. But �r > �i. Therefore, �r will reach 90ı before �i

does. And, if �i were to be further increased, there is no solution to Snell’s equation.
Then we would obtain

sin �r D .ni=nr/ sin �i > 1

sin �i > nr=ni:

The angle for which this last inequality is replaced by an equality is called the
critical angle, which we give symbol �c. It satisfies the equation

sin �c D nr

ni
: (8.18)

In sum, we have total internal reflection when the angle of incidence exceeds the
critical angle. For this situation to be possible, we must have ni > nr.

For a water–air interface (with the incident ray in the water), we obtain a critical
angle of 48:6ı:

sin �c D 1=.4=3/ D 3=4

�c D arcsin.3=4/ D 48:6ı:

NOTE: Even when there is a refracted ray, there is a reflected ray. In the case of
total internal reflection, there is no refracted ray.

8.6 The Wave Theory of Refraction

There were two theories of light presented to account for refraction: Newton’s was
based on a particle theory, while Christian Huyghens’ theory of refraction was
based on his wave theory of propagation (Fig. 8.22).
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Fig. 8.22 Christian
Huyghens (source: http://
upload.wikimedia.org/
wikipedia/commons/thumb/0/
03/Christiaan-huygens4.jpg/
170px-Christiaan-huygens4.
jpg)

Fig. 8.23 Refraction
of waves

Here is Huyghens theory: We assume that a wave is traveling in medium #1
and is then transmitted into medium #2, in which the wave velocity is smaller.
The most important thing to note is that the frequency of a wave is unchanged
upon transmission.7 As a result the wavelength is smaller in medium #2, as seen
in Fig. 8.23. The result also follows from the equation � D v=f , with reduced wave
velocity and constant frequency.

7To see this, suppose that we have observers at points P and Q, in the two respective media. The
wave proceeds in a continuous manner. Thus, the rate f1 at which crests pass point P must equal
the rate f2 at which crests pass point Q. Thus, we will replace the two symbols f1 and f2 by the
common symbol f .

http://upload.wikimedia.org/wikipedia/commons/thumb/0/03/Christiaan-huygens4.jpg/170px-Christiaan-huygens4.jpg
http://upload.wikimedia.org/wikipedia/commons/thumb/0/03/Christiaan-huygens4.jpg/170px-Christiaan-huygens4.jpg
http://upload.wikimedia.org/wikipedia/commons/thumb/0/03/Christiaan-huygens4.jpg/170px-Christiaan-huygens4.jpg
http://upload.wikimedia.org/wikipedia/commons/thumb/0/03/Christiaan-huygens4.jpg/170px-Christiaan-huygens4.jpg
http://upload.wikimedia.org/wikipedia/commons/thumb/0/03/Christiaan-huygens4.jpg/170px-Christiaan-huygens4.jpg
http://upload.wikimedia.org/wikipedia/commons/thumb/0/03/Christiaan-huygens4.jpg/170px-Christiaan-huygens4.jpg
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Fig. 8.24 Detailed schematic of the Huyghen’s wave theory of refraction

Next, we see that the two triangles, ABC and ABD, in the offset are similar
(Fig. 8.24).

Finally, recall that �1 D v1=f and �2 D v2=f , where v1 and v2 are the wave
velocities in the two respective media. Then,

sin �1

sin �2

D
v1

f

v2

f

: (8.19)

or
sin �1

sin �2

D v1

v2

: (8.20)

This last equation is a general expression for the refraction of waves. Note that
it makes no reference to the index of refraction. In fact, it can be applied to sound
waves as well as light waves. For example, consider the following problem:

Sample Problem 8-8

A sound wave in air is incident at an angle of 10ı on a water–air
interface. Find the angle of refraction.

Solution
We have vi Š 340 m/s and vr D 1;400 m/s. Thus,

sin �r D vr

vi
sin �i D .1;400=340/ � sin 10ı D 0:72:

so that
�r D 46ı:
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We now return to light waves and derive Snell’s Law from (8.20) above: We
have

vi D c

ni
and vr D c

nr
: (8.21)

so that
sin �1

sin �2

D
c
n1

c
n2

D n2

n1

: (8.22)

This is Snell’s Law in an algebraically rearranged form.

Note

For “refraction” of a beam of particles, it can be shown that (cf. (8.20))

sin �1

sin �2

D v2

v1

: (8.23)

Then, if �2 < �1, we also have v2 > v1. That is, a beam should be refracted
away from the normal on passing from air into glass. The experimental finding
about 150 years ago, that for light waves the opposite is true (i.e., v2 < v1), gave
further confirmation (after the interference experiments described in Chap. 7) that
light propagates as a wave.

8.7 Application to Mirages

On a very hot day, the ground will be heated up to temperatures greatly exceeding
the temperature of the air above. As a consequence, the air close to the ground will
be hotter than the air above. The hotter air has a lower density than the cooler air
above and hence has a lower index of refraction. Now imagine a ray of light that
originates from a region where the index of refraction is larger than that at ground
level and that propagates downward toward the ground. We can have an occurrence
of total internal reflection. The light ray can strike someone’s eye, thus producing
an effect that is referred to as a mirage. This phenomenon is exhibited in Fig. 8.25.

Fig. 8.25 A mirage
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According to Snell’s Law applied to refraction at the boundary between two
homogeneous media, the product n � sin � is the same for the two media in which a
ray travels. In the case of the hot air, the index of refraction varies continuously. It
can be shown that Snell’s Law applies too in the same form: The product n � sin �

is constant all along the path of the ray, where � is measured from the vertical.
The angle � corresponding to a point along the dotted ray in Fig. 8.25 is measured
relative to the vertical.

The ray will continuously become ever more horizontal as it propagates and the
index of refraction decreases. If it becomes absolutely horizontal (i.e., � D 90ı),
thereafter it will propagate upward. The ray experiences total internal reflection.8

8.8 The Prism

In Fig. 8.26, we depict a transparent prism, with a ray of light incident on one face
and a refracted ray leaving a second face.

Note in the figure how the directions of the two refracted beams, one inside the
prism and the other outside the prism, are each determined with respect to their
respective normals, being toward the normal #1 for the first one, since the ray is
going from air into the prism and away from the normal #2 for the second one in
going from the prism into the air.

Fig. 8.26 Schematic of a prism

8It is often thought that the ray described above originates from the sun. A bit of analysis shows
that this is impossible: In outer space n D 1, so that n � sin � D sin � � 1. At the turning point,
� D 90ı, so that n � sin � > 1. The only way we can have total internal reflection is for the ray to
originate from light scattered by the atmosphere.
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8.9 Dispersion

In the case of waves along a taut string, without stiffness, any wave pattern will
propagate along the string without any change in shape, to the extent that attenuation
can be neglected. Furthermore, all patterns propagate at the same velocity (for a
given tension). The same holds true for sound waves and light waves in vacuum.

However, in the case of a light wave in a medium such as glass or plastic, or even
air to a very small extent, only sine waves propagate without a change in shape.
This fact is directly connected to another characteristic of such waves: The wave
velocity of a sine wave depends upon the wavelength and hence the frequency.

For example, in the case of light propagating through light flint glass9

v D 1:88 � 108 m=s @ � D 434 nm;

while

v D 1:91 � 108 m=s @ � D 768 nm:

The variation in wave velocity with wavelength is referred to as dispersion.
A wave having this property is said to be dispersive. Generally the degree
of variation is relatively small. Nevertheless, it is significant enough as to be
responsible for the colors of the rainbow, which is produced when sunlight passes
through microscopically small drops of water in the sky.

Light waves traveling in a medium and waves propagating along the surface of a
liquid, such as ocean waves, are dispersive. Waves traveling along a string without
stiffness, sound waves, and light waves in vacuum are nondispersive. Waves along a
string that has stiffness are dispersive. The very significant importance of dispersion
in fiber optics is discussed in Sect. 8.9.2.

8.9.1 Effect of Dispersion on a Prism

The speed of light in a medium depends upon the wavelength. Therefore, the index
of refraction and the degree of refraction depend upon frequency.

In the figure, we see that for this prism, violet light is refracted more than red
light. Alternatively stated, refraction decreases with increasing wavelength.

Question: How does the speed of light depend upon wavelength for this prism?

Compare this behavior with diffraction, which increases with increasing wave-
length. However, we must note that the behavior of the prism depicted here is

9Reference: Handbook of Chemistry and Physics, 65th edition, (Chemical Rubber Comp., Boca
Raton, FL, 1984).
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Fig. 8.27 Prism splitting colors as a result of dispersion

dependent upon the particular material that the prism is made of: I know of no
physical principle that does not allow for an increase of refraction with increasing
wavelength.

Here is a useful application of dispersion. As was pointed out in Chapter 6,
THE ATOM AS A SOURCE OF LIGHT, the prism can be used to carry out a
spectral analysis of a beam of light. (See Fig. 6.1.) If the incident beam is not
monochromatic, each monochromatic component in the mixture will leave the prism
at a different angle, as shown schematically in Fig. 8.27.

8.9.2 Effect of Dispersion on Fiber Optics Communication

Recall that the attenuation of a sine wave depends upon its frequency. Therefore, as
a wave propagates in the presence of attenuation, its Fourier components attenuate
at different rates. The tone quality of a sound wave depends upon the ratio of its
Fourier amplitudes. As a result, not only does the intensity and overall loudness
decrease as the sound wave propagates, its tone quality changes too.

The shape of a wave is determined only by the ratio of the amplitudes and
the phase relations among the Fourier components. (If attenuation rates were the
same for all frequencies, the ratio of the amplitudes would remain constant and
the shape would not change.) From the above, we conclude that attenuation will
change the shape of the waves.

What about the effect of dispersion? The amplitudes of the Fourier components
do not change as a result of dispersion. However, since each Fourier component
travels at a different speed, the peaks of each component will shift one relative to
another. That is, the relative phases of the Fourier components will change as the
wave propagates. As a result, dispersion causes the shape of a wave to change.

We are now in a position to understand why dispersion can cause a serious
problem in fiber optics communication: Analog communication of sound converts
the sound wave into an electric voltage whose variation in time is the same as the
pattern of the sound wave. Fiber optics communication, on the other hand, transmits
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Fig. 8.28 Spreading of a pair of pulses due to dispersion

information by sending a sequence of light pulses down a glass fiber. The pattern
of the sound wave is represented by a corresponding sequence of time intervals
between the pulses. This system is an example of digital communication.

As a sequence of pulses travels down the glass fiber, the amplitudes of the pulses
are attenuated due to the intrinsic properties of the glass. This is a problem that
has to be dealt with in fiber optics communication. Fortunately, in Chap. 4 we
noted that current attenuation is at a very low level of about 0.1 dB/km. There
is a more serious problem. The glass fiber has a significant degree of dispersion.
As a consequence, the shape of any non-sinusoidal wave will change its shape as
it propagates along the fiber. In particular, a pulse will either become broader or
become narrower. It happens that the pulses produced in fiber optics communication
become broader. In time, pulses proceeding along a long fiber will become so
broad as to overlap with their neighbors to such an extent that they cannot be
distinguished as individual pulses. The information contained therein will become
non-discernible. See Fig. 8.28.

In order to deal with this problem, special devices are inserted in sequence along
the fiber. They read the broadened pulses before they are indistinguishable and
replace each pulse with a re-emitted narrower pulse. The original is “reconstituted.”
Thus the information contained therein is preserved.

8.10 Lenses

There are two major types of lenses, the converging lens and the diverging
lens. They are commonly used to correct a person’s vision or serve as the major
component in cameras, telescopes, microscopes, and film and slide projectors. The
human eye itself has a lens. (See Chap. 12 for its unique characteristics.)

8.10.1 The Converging Lens

Consider what would happen if a plane wave was incident on a pair of prisms as
arranged below (Fig. 8.29):

We have here represented an incident plane wave by a series of parallel rays
because different parts of the wave strike different parts of the system. Diffraction
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Fig. 8.29 A pseudo-converging lens from two prisms

effects are completely neglected in this section. Note how the corresponding rays
exit parallel to each other.

A converging lens is a refined version of the above system, consisting of two
faces which are sections of spheres of relatively large radius. This large radius
corresponds to the lens being rather thin.10

A converging lens has the remarkable property that all incoming rays parallel to
the axis of the lens essentially converge at a single point on the axis, call the focal
point, labeled F . We see this property in Fig. 8.30.

The distance between the center of the lens and the focal point is called the
focal length, with the symbol f . The greater the index of refraction, the more the
convergence and the smaller the focal length.

8.10.2 Lens Aberrations

• In the previous paragraph, I stated that all rays “essentially converge to a single
point.” The reason is that convergence to a single point is never perfect for an
actual lens. The lack of perfect convergence is called spherical aberration, and
decreases with decreasing lens thickness. This unavoidable property of a lens is
shown in Fig. 8.31, where we see what actually happens.

The degree of aberration is much reduced for rays that are incident close to
the axis, as seen in Fig. 8.32.

• Since the index of refraction depends upon the wavelength of the light – the
phenomenon referred to as dispersion – a beam of white light cannot be focused

10Another term for a converging lens is a convex lens, since both sides of the lens are convex. The
diverging lens, discussed later, is also called a concave lens. There also exist lenses that are concave
on one side and convex on the other. If these are possibilities for consideration, one must remove
any unambiguity by referring to a biconvex lens, or a biconcave lens, or a convex-concave lens.
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Fig. 8.30 Rays parallel to the axis meet at the focal point in an ideal lens

Fig. 8.31 Spherical aberration of a converging lens

Fig. 8.32 Spherical aberration – weak for rays near the axis
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Fig. 8.33 Chromatic aberration

at a point even if spherical aberration was absent: The various monochromatic
components of the beam will be focused at different points, as we observed in the
context of the prism. We can simply say that the focal length of a monochromatic
beam is dependent upon the wavelength. This defect in the lens is referred to as
chromatic aberration. We see chromatic aberration exhibited in Fig. 8.33. The
incoming beam is a mixture of two monochromatic components, one red and the
other cyan. They happen to be such as to produce a white beam when mixed.
They are said to be complements. (See Chap. 14, where color vision is discussed
in detail.)11

Note

We will neglect aberration effects in the following discussion. The
neglect of spherical aberration is referred to as the thin lens
approximation.

Now suppose we have a point source S of light located to the left of a lens.
The wave crests from a point source are spheres so that the wave is referred to as

11Polycarbonate is a material often used for eye lenses because of its strong shatter resistance and
light weight. It has a drawback in having stronger chromatic aberration than glass. The so-called
Abb Ke number is used as a material’s level of dispersion. The larger the number, the lower the level
of dispersion. Thus, while crown glass has an Abb Ke number of about 55, polycarbonate has a value
of about 32. See Wikipedia (1-6-2011): http://en.wikipedia.org/wiki/Abbe number.

http://en.wikipedia.org/wiki/Abbe_number
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Fig. 8.34 Image of an object using a converging lens

a spherical wave. The wave will therefore be represented by many rays directed
radially outward, as seen in Fig. 8.34. Most rays never strike the lens and go their
merry way. However, a fraction pass through the lens.

The remarkable property of an ideal (aberrations neglected) lens is that all rays
from S , which pass through the lens, cross at the same point I – called the image
point. I is said to be the image of S .

Spherical aberration will blur the image. Chromatic aberration will produce
a different image point for each component of monochromatic light from the
source point. White light from the source point that has a continuum of all visible
wavelengths will produce a line segment with a rainbow of colors.

Here is a simple way to determine the position of the image: A very important
ray in lens analysis is the parallel ray, SP . It will be refracted so that it passes
through the focal point at F . Another important ray in lens analysis is the central
ray SC, which goes through the center of the lens, unrefracted. These two rays –
shown in blue – cross at the image point I . Thus, knowing the paths of these two
rays determines the position of the image point.

Note

Every source point has its own unique image point. Source points
and image points are said to be in one-to-one correspondence. This
is the fundamental property of a thin lens.
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Fig. 8.35 Geometric analysis: real image of a converging lens

8.10.3 Image Produced by a Converging Lens

Now suppose that an object is located at some distance from the lens, d0. You will
note a blue point labeled F’ to the left of the lens. This point is a focal length distance
from the lens. It is significant that I placed the object more than a focal length
distance from the lens; you will soon understand the significance of this placement.
See Fig. 8.35. We call this distance the object distance. We assume that the object
is very thin and is lined up perpendicular to the axis:

We can locate the image of the “head” of the object at O using two special rays.
They are the central ray and the parallel ray. The remaining image points of the
extended object produce a vertical image as shown, at the image distance di – all
pairs of points being in a one-to-one correspondence. Also indicated in the figure
are the height of the object ho and the height of the image hi.

Note

We assume that the lens is so thin that its thickness is negligible
compared to the object distance or image distance. This unfortunately
is not reflected in the figures of the text!

Using elementary trigonometry, we can derive a relation among the object
distance do, the image distance di, and the focal length f . The relation is called
the thin-lens equation:

1

do
C 1

di
D 1

f
: (8.24)
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Note

1. If a screen is placed at the position of the “image,” a clear image
will appear on the screen. The image is said to be a real image. Any
other placement of the screen will produce a blurred image.

2. Note that if someone were to be looking at the object through the
lens, it would appear to be as the image shown in Fig. 8.35.

3. As the object approaches the focal point of the lens, that is, as do

approaches f , it can easily be shown from the thin lens formula that
di approaches infinity.

Sample Problem 8-9

Given f D 2 cm and d0 D 4 cm, find di.

Solution
We have 1=4 C 1=d0 D 1=2 so that

1

di
D 1

2
	 1

4
D 1

4

di D 4 cm:

Sample Problem 8-10

Given f D 2 cm and d0 D 2:1 cm, find di.

Solution
We have 1=di D 1=2 	 1=2:1 D 0:024 or di D 1=0:024 D 42 cm.

Sample Problem 8-11

We next consider an object that is located less than a focal length
distance from the lens: do < f . Given f D 2 cm and d0 D 1 cm, find di.

Solution
We have 1=di D 1=2 	 1=1 D 	1=2, so that di D 	2 cm.

The negative value for di means that the image is on the same side of the lens as the
object.
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Fig. 8.36 Geometric analysis of the converging lens producing a virtual image

What is the meaning of this result? In this situation, all rays from an object point
which pass through the lens appear to be coming from a single point behind the lens.
See Fig. 8.36. The dashing of two of the line segments indicates that in fact there is
no light ray along these segments. The perception by the visual system (consisting
of the eye and brain) is based on the existence of these virtual rays.

The image is said to be a virtual image: No image will appear on a screen placed
at the image position. In this arrangement, the image is larger than the object and
the converging lens is serving as a magnifying glass.

In the first two problems, the object distance was to the left of the focal point,
which results in the image being an inverted and real image. In the third problem,
the object was between the focal point and the lens, which results in the image being
an upright and virtual image.

8.10.4 Magnification

How does the size of the image compare to the size of the object?12 Let us redraw
Figs. 8.35 and 8.36 as simple figures to highlight the plane geometry. For both the
real image [Fig. 8.37] and the virtual image [Fig. 8.38] we find the following:

Let ho be the height of the object and hi be the height of the image. The ratio
of the two is called the magnification, with a symbol M. Since the two triangles
4CAO and 4CBI are similar, we have

12In Appendix G, we discuss magnifying power, which is a related though distinct property of
a lens and instruments such as the telescope and microscope that consist of a series of lenses.
Magnifying power represents the ability of an optical instrument to increase the image size on
the retina that is produced by an object. In order to appreciate this material, it is necessary to
understand how the eye works, as discussed in Chap. 12.



8.10 Lenses 267

Fig. 8.37 Simplified geometric analysis: real image of a converging lens

Fig. 8.38 Simplified geometric analysis: virtual image of a converging lens

M � hi

ho
D
ˇ̌̌
ˇ di

do

ˇ̌̌
ˇ : (8.25)

The absolute value takes into account the case when the image distance di is
negative.

Numerical examples:

For problem 1, M D j4=4j D 1.
For problem 2, M D j42=2:1j D 20.
For problem 3, M D j 	 2=1j D 2.

The Real Image of a Converging Lens as a Secondary Object

To an observer who is to the right of the real image of a converging lens, all rays
from an object, which have gone through the lens, appear to be coming from the
real image. For this reason, if you look through a converging lens at an object that is
at a distance from the lens greater than the focal length so as to produce a real
image, you will see an inverted image that appears closer to you than the lens.
(There is a requirement that the rays of the image reach your eye.) This property
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Fig. 8.39 Schematic representation of a telescope (not to scale)

of lenses is manifest for any series of lenses in sequence. Together, the set of lenses
form what is referred to as a single compound lens. The eye itself has a number of
interfaces between two media, as we will see in Chap. 12. At each interface, we have
refraction. The image produced by each interface becomes the object of the next
interface. Other examples of compound lenses are microscopes and telescopes.13

The microscope is discussed in some detail in the Appendix on the Magnifying
Power of an Optical System.

The use of a compound system of lenses in a telescope reveals a bit of ingenuity:
We saw above that a magnifying glass, consisting of a single lens, requires that
the object distance of the object be very close to the focal length. For a distant
object, the magnifying glass therefore fails to magnify. However, we can place a
second lens in front of the magnifying glass in a position such that the image of
this second lens is at an appropriate close position to the magnifying glass. Then
the magnifying glass can serve its original function and magnify the distant object.
The two lenses together constitute a telescope! See Fig. 8.39. We see the original
black object, upright at the far left. The first lens produces a small inverted gray
image between the two lenses. The position of this image is determined by the
pair of red rays. The blue rays show us how to determine the final inverted image
that is produced by the second lens to the far right. The dashed segments are the
continuations of these rays into a region where there are actually no light rays at all.
An eye-brain situated to the right of the second lens will believe that the object is
located at the final inverted image that is located a bit to the right of the object. For
an actual telescope, the object is very far away from the telescope – perhaps light
years away – while the images are in the vicinity of the telescope.

13To determine the ultimate position of the image produced by a compound lens, one must apply
the thin lens equation sequentially. For the effect of each lens, one must make sure to use the
distance from that lens of the image produced by the previous lens as the object distance of that
current lens. In the case of eyeglasses, the distance of the eyeglasses from the eyes is so small that
one usually can assume that the eyeglasses are coincident with the center of the compound lenses
of the eyes.
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Fig. 8.40 A crude diverging lens using prisms

8.10.5 Reversibility of Rays: Interchange of Object and Image

If we examine the thin lens formula (8.24), we note a symmetry in the two
distances, the object distance and the image distance: For a given focal length, if
the object has the position of the image, the image must have the original position
of the object. Alternatively, if a ray leaves the object and passes through the lens, it
must pass through the image position. Conversely, if this ray is reversed in direction
at the image position, it will pass through the lens and then pass through the object
position. This behavior is referred to as reversibility. Note how reversibility is
manifest for the single refraction of a ray at an interface between two materials
owing to the symmetry in Snell’s Law.14

8.10.6 The Diverging Lens

The diverging lens is a refinement of the following arrangement of two prisms
(Fig. 8.40):

14Reversibility is manifest in the orbit of a planet about the Sun: If a planet was stopped dead in
its tracks and its path reversed so that at that point the original direction is reversed while the
speed is the same, the planet would retrace its path into the past, where it came from. What
we would observe could be seen by taking a movie of the planet’s motion and then running
the movie backward. Reversibility is manifest in the basic laws of physics. The consequence is
that every sequence of events has a possibility of occurring. Yet, there are movie scenes that are
hilarious if they are run backward. Why? Because the reversed sequence is regarded as impossible.
(Imagine someone shown jumping off a ladder onto the ground. . . . Now reverse the sequence.)
Such sequences are referred to as being irreversible. One of the challenges of physics is to
understand how such extremely unlikely, irreversible sequences are never seen and yet have a
possibility of occurring.
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Fig. 8.41 The focal point of a diverging lens

Fig. 8.42 Geometric analysis: the virtual image of a diverging lens

Look at Fig. 8.41. Note that incident parallel rays emerge so as to appear to be
coming from a common point, the focal point F of the lens. Note that now the focal
point is on the same side of the lens as the source of light – to the left of the lens.

Next, in Fig. 8.42, we display the image of an object as produced by a diverging
lens. Images are always erect and virtual and appear on the same side as the object,
both between the lens and the focal point.
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The thin lens equation can still be used, with the focal length f in the equation
set equal to a negative number! The image distance parameter di obtained is always
negative, indicating that the image is on the same side as the object, to the left of
the lens. Furthermore, jdij < do always. This indicates that the magnification M is
always less than unity. Thus, the image is always smaller than the object.

Sample Problem 8-12

Given a diverging lens with a focal length of 	2 cm, and an object
distance, d0 D 3 cm, find the image distance and the magnification.

Solution
We have

1

di
D 1

f
	 1

do

D 1

	2
	 1

3
D 	1

2
	 1

3
D 	5

6
:

so that di D 	6=5 cm.
The magnification is given by M D jdi=doj D .6=5/=3 D2=5 D 0:4.

8.10.7 Determining the Focal Length of a Diverging Lens

We can determine the focal length of a converging lens by measuring the distance
from the lens to the image of a far off source or by comparing the image distance
with the object distance. Unfortunately, a diverging lens produces no real image,
so that it is not immediately clear how its focal length can be determined. We will
outline a method of doing so that uses a second, converging lens in tandem with the
diverging lens, as shown in the complex Fig. 8.42:

The position of virtual image (#1) is obtained as follows: We draw the red ray
from the top of the object parallel to the axis. The second red ray is determined by
connecting its origin at the top of the diverging lens back toward the focal point at F .
The first blue ray passes through the center of the diverging lens; its intersection with
the second red ray continued to the focal point F determines the position of the top
of image (#1).

This first, virtual, image serves as an effective object for the converging lens. We
find the position of the ultimate image (#2) as follows: We draw the black parallel
ray from the top of image (#1) to the top of the converging lens. This ray is continued
through the focal point F 0 of the converging lens. We draw a second central ray from
the top of image (#2); its intersection with the previous ray determines the position
of the bottom of the final image (#2). The figure shows a third red ray from the
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Fig. 8.43 Setup for determining the focal length of a diverging lens

converging lens to image (#2). The three red rays together form one actual path
that starts from the object and ends up at the ultimate image. Another actual path is
represented by the two blue rays. Can you determine a third actual path?

These facts are reflected in Fig. 8.43. We use .	fd/ and .	di/ for the distances
in the figure and (8.26) below because both are negative.

We can measure the parameters d0, `, fc, and d 0
i that are shown in the figure. The

object distance of the converging lens is given by .	dI C `/, so that

1

	di C `
D 1

fc
	 1

d 0
i

: (8.26)

We must solve this equation for the parameter di. Next, since we now know do and
di, fd can be determined from the lens equation applied to the diverging lens:

1

fd
D 1

do
C 1

di
: (8.27)

8.11 The Doppler Effect

Have you ever paid attention to the sound of a car racing past you while you stand
at the side of a highway? The whirring sound is noisy; nevertheless one can discern
a distinct pitch. This pitch steadily decreases as the car approaches and then recedes
away. This effect is due to the Doppler effect. The Doppler effect occurs whenever
there is relative motion between a source of waves and an observer of the waves,
whatever the type of wave.
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If the source emits a sine wave of frequency f , the observed frequency f 0 differs
from the source frequency f . The ratio f 0=f depends upon the motion of both
the source and the observer as well as their relative positions. We will discuss two
simple cases in detail:

1. Source and observer approaching head-on
2. Source and observer receding directly away from each other

The Doppler effect of waves of a disturbed medium, such as sound waves or waves
on the surface of a liquid, is distinctly different from the Doppler effect of EM
waves, which can propagate through a vacuum, without the presence of a medium.

It happens that in case the relative velocity u of the source and observer is
small compared to the wave velocity v, the equations for the Doppler effect are
approximately the same for both sound waves and EM waves in vacuum. If we let
�f � f 0 	 f D change in frequency, we have

�f

f
� u

v
: (8.28)

8.11.1 Doppler Effect for Waves in a Medium

Consider the Doppler effect of sound waves in air. The source and/or the observer
could be moving with respect to the air. We will see below that the observed
frequency depends upon the motion of the source and the observer with respect
to the medium. Since there is no medium for the propagation of light, the formulas
below are not relevant for light. We will discuss two simple cases.

Case (i): The source Is at Rest, While the Observer Is Moving with Respect
to the Medium

A point source of sine waves will emit a wave with wave crests that are concentric
spheres, as shown in Fig. 8.44. The distance between neighboring spheres is equal
to the wavelength .

The wave crests are traveling at a speed v with respect to the air. They therefore
approach the observer with a speed

v0 D v C u: (8.29)

Therefore, the observed frequency is given by

f 0 D v0

�
D v C u

�

D v

�

�
1 C u

v

	
: (8.30)
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Fig. 8.44 A moving observer in the presence of a stationary source of sound waves

Since v=� D f , we have

f 0 D f
�
1 C u

v

	
: (8.31)

If the observer is moving away from the source, the resulting formula can be
obtained simply by replacing Cu by 	u above:

v0 D v 	 u

f 0 D f
�
1 	 u

v

	
: (8.32)

Example 8-1

f D 1;000 Hz; u D 34:0 m=s; v D 340 m=s:

We have u=v D 0:1.
Then if motion is toward:

f 0 D 1;000.1 C 0:1/ D 1;100 Hz:

If motion is away:

f 0 D 1;000.1 	 0:1/ D 900 Hz:
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Fig. 8.45 The waves from a source moving at two different speeds

Case (ii): The Source Is Moving, While the Observer Is at Rest

Crests travel at the wave velocity with respect to the medium. However, because of
the motion of the source, the wave crests are not concentric spheres. In the direction
of motion of the source, the wavelength is decreased, while behind the source, the
wavelength is increased. In Fig. 8.45, we see two sources, one (a) moving at a speed
u < v, the other (b) at a speed u > v.

Since the observer is at rest with respect to the medium, the crests move at a
speed v with respect to the observer. As a result, we can show that

�0 D �
�
1 	 u

v

	
and f 0 D v

�0

so that f 0 D f

1 	 u

v

: (8.33)

By letting u ) 	u, we obtain

f 0 D f

1 C u

v

: (8.34)

Example 8-2

Given f D 1;000 Hz, u D 34:0 m/s, and v D 340:0m/s, find f 0 for the
source moving away and coming toward you.

We have u=v D 0:100, so that

– If toward: f 0 D 1;000=.1 	 0:1/ D 111 Hz
– If away: f 0 D 1;000=.1 C 0:1/ D 909 Hz
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Notes:

1. It is interesting to compare the above numerical results. We have u D 0:1v, so
that speed u � v. We can see that the frequencies f 0 do depend upon which of
the two, the source or the observer, are moving with respect to the medium.

2. There is a mathematical catastrophe in the formula (8.33) for the case when
the source is moving toward the observer at a speed which exceeds the wave
velocity. In this case, we see that the frequency is negative and so is meaningless.
(Moreover, when the source is moving at the wave velocity itself, the expression
for the frequency diverges (f ) 1)!) What happens, in fact, is that there is a
shock wave and no wave is perceived! Clearly, there cannot be a wave in front of
a source if the source is moving faster than the wave would move. This situation
is shown in Fig. 8.45b.

There are numerous interesting phenomena connected with shock waves. We will
discuss a few below.

1. When a jet plane accelerates through the speed of sound (known as Mach one),
thus breaking the sound barrier, the production of the shock wave is accompanied
by a loud sound. This sound was regarded as a great nuisance when commercial
jet planes were first introduced.

2. The triangular trailing pattern of a boat moving along the surface of a lake is
a beautiful example of a shock wave. One can sometimes observe swarms of
minuscule, miniature insects swimming in a jagged manner along the surface
of a pond leaving a feathery, impressionistic pattern of waves. Without these
miniature shock waves, the insects would barely be noticeable!

3. The production of a shock wave is the principle behind the whip. A whip is
made with a long piece of leather whose diameter is tapered. In cracking a whip,
a pulse is sent down the length of the whip from the thicker end. Now recall
that the wave velocity along a taut string increases with decreasing linear mass
density. (The process is complicated by a change in the tension too.) As the pulse
proceeds, the wave velocity increases. By the time the pulse reached the tip of
the whip, the wave velocity exceeds the speed of sound in the air. The resulting
shock wave is responsible for the “crack” of the whip!15

4. When a charged particle, such as an electron, is moving through a medium at
a speed faster than the speed of light in that medium, light is given off within
the conical trail of a shock wave of electromagnetic radiation. This light is
called Čerenkov radiation.16 See Fig. 8.46, wherein we see the blue Čerenkov
radiation from charged fundamental particles moving in a nuclear reactor.

15See http://www.hypography.com/article.cfm?id=32479 for a summary of recent research on the
cracking of a whip. Also, see the following website for a discussion of how shock waves are the
clue behind the trick for cracking a piece of wood with one’s bare hand: http://www.worldkungfu.
com/whip.html#WHIPS.
16The letter Č is pronounced like “ch” in “cheer.”

http://www.hypography.com/article.cfm?id=32479
http://www.worldkungfu.com/whip.html#WHIPS
http://www.worldkungfu.com/whip.html#WHIPS
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Fig. 8.46 Blue Čerenkov light from a high flux isotope reactor (source: http://en.wikipedia.org/
wiki/Cherenkov radiation)

8.11.2 Doppler Effect for Electromagnetic Waves in Vacuum

Cases (i) and (ii) above cannot have meaning here because there is no medium. Only
the relative velocity of the source and observer can matter. The correct formulas are
obtained using Einstein’s Theory of Special Relativity. They are (remember that
v D c):

f 0 D

vuuuut1 ˙ u

c

1 
 u

c

: (8.35)

We use the upper signs if the source and observer are moving toward each other; we
use the lower signs if the two are moving away from each other. The examples will
make this point clear.

Example 8-3

f D 1;000 Hz, u D 3:00 � 107 m=s, so that u=c D 0:100.

If away:

f 0 D 1;000

r
1 C 0:100

1 	 0:100
D 1;106 Hz:

http://en.wikipedia.org/wiki/Cherenkov_radiation
http://en.wikipedia.org/wiki/Cherenkov_radiation
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If toward:

f 0 D 1;000

r
1 	 0:100

1 C 0:100
D 905 Hz:

Note

Suppose that we compare the results for EM waves with those for
sound waves that neglect the effects of special relativity. We see that
(8.35) is the square root of the product (hence the geometric mean) of
the corresponding two expressions that hold for a medium, one when
the observer alone is moving (8.31) and one when the source alone is
moving (8.33). A similar relation holds when the source and observer
are moving away from each other. The geometric mean of two numbers
always lies between the two numbers.

Note

For small relative velocities (u=v � 1), the expression for f’ is approxi-
mately the same whether we have a moving source or moving observer
with sound waves or EM waves in a vacuum.

8.11.3 Applications of the Doppler Effect

In the problems at the end of the chapter, the reader will be shown how the Doppler
effect can be used:

1. Have you ever wondered how police can determine the speed of vehicles using
radar? See Problem 8.20 to learn how the Doppler effect and beats are involved.

2. Recall that we mentioned that astronomers and cosmologists have discovered
that the Universe is expanding. How can they know this? They make use of the
well-known spectra of atoms, whose wavelengths are known upward of eight
significant figures. The determination of the velocity of a star or galaxy with
respect to the earth can made by measuring the shift in its atomic spectra. If
a star is moving away from the earth, the frequency is lowered, so that colors
change toward the red end of the visible spectrum. We have what is referred to as
a redshift. An example is shown in the figures below from Palomar Observatory.
In Fig. 8.47, we see the quasi-stellar radio source (quasar) 3C273.17 It appears
as a large bright star. In Fig. 8.48, the light spectrum from the quasar is shown
above the spectrum of a stationary source of hydrogen and helium. The spectral

17This quasar is estimated as having a mass equal to about one-billion solar masses.
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Fig. 8.47 Quasar 3C273 (source: http://en.wikipedia.org/wiki/3C 273)

Fig. 8.48 Spectrum of the quasar (source: http://chandra-ed.harvard.edu/3c273/quasars.html)

lines labeled H˛ , Hˇ , and H� are seen to be shifted to the right in the figure,
corresponding to larger wavelengths. Calculations indicate that the quasar is
moving away from the earth at about one-seventh the speed of light.

Note that in addition to a redshift due to a Doppler effect, there is also a
gravitational redshift, which is akin to the slowing down of an object when we
throw it up into the air.

http://en.wikipedia.org/wiki/3C_273
http://chandra-ed.harvard.edu/3c273/quasars.html
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8.12 Polarized Light��

In this section, we will be discussing the nature of polarized light. It is of
importance not only for fundamental physics reasons and practical applications but
also because some artists make use of polarized light in their art creations. We have
mentioned that a simple EM wave is transverse, with a direction of displacement
that is determined by the direction of oscillation of the electric field. In Fig. 8.49, we
see both the electric field and magnetic field as they vary in space at some moment
in time. The wave is propagating in the direction k.

Light that is emitted from typical light sources consists of a mixture of waves
having a random distribution of electric field orientations. We say that the light is
unpolarized and will indicate this state by the symbol shown in Fig. 8.50.

Fig. 8.49 Light as an electromagnetic wave (source: http://en.wikipedia.org/wiki/Wave#
Electromagnetic waves)

Fig. 8.50 Symbol for
unpolarized light

http://en.wikipedia.org/wiki/Wave#Electromagnetic_waves
http://en.wikipedia.org/wiki/Wave#Electromagnetic_waves
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Fig. 8.51 Calcite-based polarizer

Fig. 8.52 Polaroid-based polarizer

8.12.1 How Can We Obtain a Beam of Polarized Light?

There are numerous ways to obtain a beam of polarized light. Laser light is
polarized. So is the light from excited atoms whose quantum states have been
properly selected. Below are two ways that are easily produced in a classroom.

The first material is Calcite. If an unpolarized beam of light is passed through
a single crystal of calcite which is properly cut, we get two, physically separated,
polarized beams, polarized perpendicular to each other (see Fig. 8.51).

Each component in the unpolarized incoming beam is decomposed by the calcite
into two specific mutually perpendicular polarized components. The directions of
these components depend upon the orientation of the crystal; they are indicated by
the circle symbols on each of the two outgoing beams. As a consequence, if we
view a single dot through the above calcite crystal, we will see two dots, with the
light from one dot polarized horizontally and the other vertically. The property of
a material that enables it to split a beam into two polarized components is called
birefringence.

Second, Polaroid is a plastic material, discovered by Edwin Land, which can
produce a polarized beam from an unpolarized one by absorbing a component of
polarization, as shown in Fig. 8.52:

In contrast to the calcite, there is a single outgoing beam whose direction of
polarization depends upon the orientation of the sheet of Polaroid. Ideally, the
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Fig. 8.53 30ı Polarizer

outgoing beam would have one-half the intensity of an incoming unpolarized
beam: We would write I2 D I1=2. Polaroid is not ideal. However,

in the discussion that follows,
we will assume that the polarizers are ideal.

8.12.2 Series of Polarizers

A light beam can pass through a series of polarizers. Below, we will consider a
number of examples that indicate how polarizers affect light beams.

It will be useful to use the following notation:
The direction of the axis of polarization of both the polarizers and the beams

will be specified by its angle with respect to the vertical, as observed with the beam
coming toward the viewer. The angle will be indicated using the following symbols:

For the state of a beam we will use a circle; for the orientation of a polarizer we
will use a square. The choice of how to specify the angle is indicated in Fig. 8.53.

Note

If the angle was specified with respect to a viewer that observes the
beam in the direction in which the beam is traveling, the sign of the
angle must be reversed. Thus 30ı must be replaced by 	30ı.18

We will let I0 be the incident intensity and I1, I2, . . . be the intensities at various
subsequent stages.

In Fig. 8.54, we depict what happens to an unpolarized beam of intensity I0 after
passing through two sequential polarizers set at angles 0ı and 45ı, respectively:

We note that an angle of 45ı between the beam and the polarizer axes leads to a
reduction in beam intensity of one-half. What about other angles?

18To avoid errors, it is essential that you compare the sign convention used by a book or an article
on polarization to the one we use in this text.
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Fig. 8.54 Two polarizers in series

Fig. 8.55 General series of two polarizers

Here are two rules you need to know about the action of ideal polarizers:

1. Whatever the state of the incoming beam, the outgoing beam has the State
of Polarization of the Polarizer (Fig. 8.55).

2. The following general relation between the incoming intensity I1 and the
outgoing intensity I2:

I2 D I1 cos2.�2 	 �1/: (8.36)

This equation is referred to as Malus’ Law.

In the applications that follow, we will use the following exact values for the cosine
so that, for example, we do not end up with a figure like 0:49 when the exact answer,
1=2, is significant.

cos 45ı D 1p
2

; so that cos2 45ı D 1

2

cos 30ı D
p

3

2
; so that cos2 30ı D 3

4

cos 60ı D 1

2
; so that cos2 60ı D 1

4
:

8.12.3 Ideal vs. Real Polarizers

Polaroid does not behave as an ideal polarizer. Some light is reflected off a piece of
real polarizer material. In addition, real polarizers absorb some light. In Fig. 8.56, we
depict the transmittance (the fraction of the incident intensity that is transmitted)
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Fig. 8.56 Real vs. ideal polarizer

Fig. 8.57 Polarizer Example 1

vs. the relative angle � , for both the ideal polarizer and a typical real polarizer. We
note that transmittance is not unity when the angle is zero. Thus, the polarizer
absorbs energy even for the component of the incoming beam that is parallel to the
axis of polarization. Also, the outgoing beam is not zero for an angle of 90ı. This
fact indicates that the outgoing beam is generally incompletely polarized.

8.12.4 Sample Problems

We now turn to some examples to illustrate how we apply the two basic rules.

Example 1 In the situations shown in Fig. 8.57, the intensities of the beams are
indicated in the figures themselves since they are relatively simple to determine
from our discussion above.
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Fig. 8.58 Series of polarizers for Example 2

Fig. 8.59 Setup for Example 3

Fig. 8.60 Polarization of reflected light

Example 2 In Fig. 8.58

I1 D I0 cos2 30ı D 3

4
I0

and

I2 D I1 cos2.45ı 	 15ı/ D 3

4
I0 � 0:93 D 0:70I0:

Example 3 In Fig. 8.59, �1 	 �2 D 90ı, so that the outgoing intensity is zero.

8.12.5 Partial Polarization of Reflected Light

Light that is reflected off a surface is partially polarized along an axis that is
perpendicular to the plane determined by the incident and reflected rays, as shown
in the Fig. 8.60.

This phenomenon can be used to determine the axis of polarization of an isolated
polarizer, as follows: Look at an unpolarized beam of light that is reflected off a
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Fig. 8.61 Polarization of scattered light

flat surface (not a mirror!) through the polarizer, as in the above figure. Rotate the
polarizer until the image on the surface is brightest. Then the axis of polarization
of the polarizer is currently horizontal. The phenomenon also demonstrates that the
polarizer material is not isotropic as one would at first assume.

We have here an explanation for why Polaroid sunglasses are so useful for cutting
down the glare of sunlight reflecting off lake and ocean surfaces. By looking at a
shiny floor through a piece of Polaroid, one can see the varying degrees of shininess
as one rotates the Polaroid.

8.12.6 The Polarization of Scattering Light

We pointed out in Sect. 8.1 that the atmosphere scatters light preferentially toward
higher frequencies; as a result the sky is blue. Another interesting property of
scattered light is that it is partially polarized along an axis which is perpendicular to
the plane determined by the incoming and scattered rays. The polarization is a result
of the variation of the intensity of the scattered waves with incident polarization,
being a maximum for a polarization that is perpendicular to the page. The geometry
is depicted in the Fig. 8.61. (Compare the geometry here with that of partially
polarized reflected light.)

Can you see why Polaroid sunglasses are not useful for cutting down the glare of
a bright sky in all situations?

8.12.7 The Polarizer Eyes of Bees

The eyes of bees each have a circular array of eight polarizers whose axes are
oriented at angles 360ı=8 D 45ı apart, as shown in the figure below. As a result,
there are varied degrees of transmission of the polarized sunlight from the sky. From
the intensity pattern of the polarizers, the bee is able to determine the orientation of
its body with respect to the sun and hence its beehive! A bee has a built-in analog for
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Fig. 8.62 The Frisch Experiment of the polarizing eyes of bees

a magnetic compass. This deduction is based on experiments pioneered by Karl von
Frisch, wherein he changed the polarization of the light seen by bees and observed
the bees changing their direction of flight in response. Figure 8.62 is a schematic
of what the bees eyes see in response to a change in their orientation. The figure is
based upon the discussion of Karl von Frisch in his book, The Dance Language and
Orientation of Bees, Belknap Press of Harvard University Press, Cambridge, MA,
1967.

8.12.8 Using Polarization of EM Radiation in the Study
of the Big Bang

According to cosmologists, our Universe evolved with a Big Bang from an
extremely dense concentration of energy about ten billion years ago. It has been
expanding ever since. A mere 400; 000 years after the start of the Big Bang, the
radiation that filled the entire Universe became decoupled from the matter in the
Universe as Black Body radiation It thus contains a record of the situation at
the time of decoupling. Currently, the radiation is at a temperature of 3 K. This
“3 K” radiation has experienced much scattering from one region to another and is
therefore polarized. The variation of temperature and direction of polarization of the
universe is exhibited in Fig. 8.63, taken from the website http://map.gsfc.nasa.gov/
m mm.html. Colors indicate “warmer” (red) and “cooler” (blue) spots. The white
bars show the “polarization” direction of the oldest light.

Will the currently expanding Universe expand forever or will it eventually reach
a maximum expansion and then collapse? This is probably the most important
question not yet resolved (in the year 2008). Detailed information such as is
provided by the above figure will help answer this question.

8.12.9 Optical Activity

Certain materials have the remarkable property that when a polarized light beam
passes through the material, the axis of polarization of the beam is rotated. Such

http://map.gsfc.nasa.gov/m_mm.html
http://map.gsfc.nasa.gov/m_mm.html
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Fig. 8.63 Variation of temperature and polarization in various directions from the earth (source:
http://en.wikipedia.org/wiki/Big Bang)

Fig. 8.64 Rotation of the axis of polarization by an optically active material

materials are said to be optically active. Thus, in Fig. 8.64 we have an example of a
rotation by 14ı:

Generally, the angle of rotation, �� , is proportional to the distance ` of material
through which the beam passes: �� / `.

If �� is positive, corresponding to a clockwise rotation, the material is said to be
right handed. Examples of such materials are: solutions of dextrose sugar, quartz,
and camphor.

If �� is negative, corresponding to a counterclockwise rotation, the material is
said to be left handed. Examples of such materials are: solutions of levulose sugar
(also called “fruit sugar” or fructose), nicotine, menthol, and turpentine.

Note

Corn syrup, sold as KARO syrup, is a mixture of dextrose and levulose;
it is a right-handed material.

It can be shown that for a material to be optically active, its molecular structure
must be such as to differ from its mirror image. Generally, a system that differs
from its mirror image is said to be chiral. Systems whose mirror images differ from
each other are said to possess chirality. The molecule and its mirror image are called
enantiomorphs.

http://en.wikipedia.org/wiki/Big_Bang
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Fig. 8.65 Enantiomorphs

In the figure below, we exhibit two molecules that have the same set of four
atoms, A,B,C, and D. Atoms A and C are in the foreground, while atom D is in
the rear. They are mirror images of each other. Note that they are different in that
one cannot be rotated into the other, as is the case with our right and left hands
(Fig. 8.65).

Notes:

1. The mirror image of a material is left handed and vice versa. As an example,
consider glucose: dextrose is simply D-glucose. The “D”, for “dextrorotatory”,
means that dextrose rotates the polarization clockwise as you look at the
polarized beam; dextrose is also said to be “right handed.” L-glucose is the
corresponding mirror image, “L” referring to its being “levorotatory,” that is “left
handed” or counterclockwise rotating.

2. The constant of proportionality in the relation �� / ` is called the specific
rotatory power, for which we will use the symbol � . Thus

�� D �`: (8.37)

3. Rotatory power depends upon the wavelength of the light. Also, for solutions,
it depends upon the concentration of the solution, being proportional to the
concentration. Consequently, the concentration of a solution can be determined
from the angle of rotation that the solution produces on a polarized beam that is
passed through it.

In Table 8.1 we present the specific rotary power of quartz and of a water solution
of sucrose (commonly known as cane sugar). In the first case, the specific rotary
power is expressed in degrees rotation/cm. In the case of a solution, optical rotation
depends upon how much sugar is in the solution so that specific rotatory power is
expressed in degrees rotation/cm per unit concentration of 1 g/cm3. Thus,

� D � 0 � c; (8.38)

where sigma0 is the specific rotation per unit concentration and c is the concentration.
Notice the negative specific rotary power of levulose, corresponding to a

counterclockwise optical rotation.
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Table 8.1 Table of specific rotatory powers – optical activity and the asymmetry of biological
systems

Material Wavelength of light (nm) Specific rotary power � or � ’

Quartz 410 � D 475ı per cm
Quartz 589 � D 217ı per cm
Sucrose in water solution 410 � 0 D 15ı per cm per g/cm3

concentration
Sucrose in water solution 589 � 0 D 6:5ı per cm per g/cm3

concentration
Levulose in water solution 546 � 0 D �10:5ı per cm per g/cm3

concentration

Sample Problem 8-13

Suppose that 589 nm polarized light is passed through 5 mm of quartz.
Through what angle will the axis of polarization be rotated?

Solution

�� D �` D 217 � 0:5 D 109ı:

Sample Problem 8-14

Suppose that 410 nm light is passed through 30 cm of a solution of
sucrose in water having a concentration of 50 g/l. Through what angle
will the axis of polarization be rotated?

Solution
One liter D1,000cm3, so that 1 g/lD1 g/103 cm3 D 10�3 g/cm3. The
specific rotatory power is given by

� D 150 � 50 � 10�3 D 0:750 per cm: (8.39)

Then the angle of optical rotation is given by

�� D �` D 0:75 � 30 D 23ı: (8.40)
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Fig. 8.66 An interactive pair of appropriate enantiomorphs vs. a noninteractive pair

8.12.10 Our Chiral Biosphere

Our entire biosphere relies on the chemical interactions within a huge system
of optically active molecules. Only one member of each enantiomorphic pair is
represented in this system. Some are dextrorotatory while others are levorotatory.
A mirror image of representative members of our biosphere will not react at all or
not react correctly with the system of molecules of our biosphere.

In Fig. 8.66 we see two schematics of a pair of molecules approaching each
other, an ABCD molecule and a BDEF molecule. The configuration of the ABCD
molecule is the same in both schematics. However, the BDEF molecule is repre-
sented by the mirror image enantiomers. Consider the left schematic. We see the
following pairs of atoms lined up next to each other such that an interaction can
take place: AD, CF, and DE. On the other hand, in the right schematic this pairing
cannot take place simultaneously: we see the pairing AF, CD and DE. As a result
there is no chemical interaction.

For example, L-glucose is not digestible. Levulose, which is L-fructose (com-
monly referred to as “fructose” or “fruit sugar”) is digestible, while its mirror image,
D-Fructose, is not. It is interesting to note that the asymmetry of the molecules of
our biosphere is matched and may be connected with the asymmetry of our bodies
(e.g., the heart is on the left side).

19In principle, one could have an entire biosphere of animals and plants looking
outwardly absolutely identical to ours, except that the chiral molecules are mirror
images of ours. Yet, any attempted mating between a member of our biosphere and
a member of the opposite sex of the mirror image biosphere would be unsuccessful.

19The strikingly different chemical properties of enantiomorphs has played an extremely important
role in pharmaceuticals. I will present two different scenarios, one which led to wonderful
pharmaceutical benefits and the other to more expensive and probably unnecessary medications.
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A fascinating question arises: Why is it that only one of the two systems of
mirror image biospheres are found on earth? Why is life on earth homochiral? If
life arose in many places on earth independently, one would expect equal probability
for the two types of biospheres to have developed. Are there external factors – e.g.,
polarization of electromagnetic radiation from outer space (there is such a thing as
“circularly” polarized electromagnetic waves which might have been effective) or
other cosmic radiation with a handedness (distinguishing left from right) – which
might have favored our type of biosphere over its mirror image?

A number of explanations have been put forward. One goes like this: An analysis
of the way two systems of mirror image biospheres would evolve indicates that
certain sorts of competition between the two systems will result in an instability
of the ratio of the populations of the two systems: A small inequality in the two
populations – e.g., population of system A greater than population of system B

leads to the eventual extinction of the system with an initially lower population.
Thus, it may well be that long ago the earth had our present biosphere along with its
mirror image biosphere. The mirror image biosphere became extinct and we were
left with ours alone. You can see how this idea might raise more questions than it
answers.

Recently, it has been shown20 that a combination of unpolarized light and a
magnetic field can produce an excess of one enantiomorph over another starting
with a nonchiral medium. This phenomenon is believed to be a possible explanation
for the homochirality of life on earth. Much further research remains to be done to
give this possibility strong support.

(1) The first scenario is represented by thalidomide. Among its early uses was its treatment of
morning sickness in pregnant women. Unfortunately, the drug was prone to producing severe birth
defects and was withdrawn from the market. Subsequently, it was found that one of its enantiomers
is responsible for the birth defects, while the other provides the desired pharmaceutical effects.
Separating out the desired enantiomer made the drug available for numerous diseases and medical
issues. (2) The second scenario is the role of patents in the pharmaceutical industry. Consider,
Prilosec, which is a drug used to treat heartburn. When the patent owned by the pharmaceutical
company AstraZeneca ran out, the company produced a form that had the pure drug-effective
enantiomer and called this new drug Nexium. The company was able to obtain a new patent on the
drug and sell it at a much higher price than Prilosec. I have researched the web for many studies that
compared the two drugs and have yet (1-16-2011) to find one that reported a significant difference
in their effectiveness – that is, more than a few percent in whatever way improvement can be
measured. You can read information on this subject on the following websites (1-29-2011):

http://en.wikipedia.org/wiki/AstraZeneca#Nexium;
http://en.wikipedia.org/wiki/Esomeprazole#cite note-12;
http://www.medscape.com/viewarticle/481198 8.

In spite of the negative responses toward AstraZeneca’s actions, you should always be on
the lookout for contrary opinions about the Nexium-Prilosec controversy. Beware about the
significance of a claim that drug A is more effective than drug B. The comparative effectiveness
might mean, in simple terms, that A is 5% more effective than B. If so, A might be 90% effective
while B might be 85% effective. The ratio is a mere 1.05. On the other hand, the respective
effectivenesses might be 10$ and 5%, in which case A is twice as effective as B!
20See the two articles in the June 22, 2000 issue of the science journal NATURE.

http://en.wikipedia.org/wiki/AstraZeneca#Nexium
http://en.wikipedia.org/wiki/Esomeprazole#cite_note-12
http://www.medscape.com/viewarticle/481198_8
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8.13 Terms

– Angle of incidence
– Angle of reflection
– Angle of refraction
– Birefringence
– Central ray
– Chromatic aberration
– Concave lens
– Converging lens
– Convex lens
– Diffraction grating
– Diffraction
– Diffraction angle
– Diffuse reflection
– Dispersion
– Diverging lens
– Doppler effect
– Fiber optics communication
– Focal length
– Handedness of our biosphere
– Image
– Image distance
– Image point
– Impedance
– Index of refraction
– Length scale of roughness – lr
– Lens

– Lens axis
– Magnification
– Magnifying glass
– Minimum image diameter
– Mirage
– Mirror image
– Object distance
– Object point
– One-to-one correspondence
– Parallel ray
– Plane wave
– Prism
– Real image
– Reflectance
– Reflection of a wave
– Refraction
– Scattered wave
– Scattering of a wave
– Snell’s Law
– Specular reflection
– Spherical aberration
– Thin lens approximation
– Thin lens equation
– Transmittance
– Virtual image
– Wave crests

8.14 Important Equations

Condition for specular reflection:

� � `r: (8.41)

Condition for diffuse reflection:
� � `r: (8.42)

Speed of light in a medium of index of refraction n:

v D c

n
: (8.43)
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Snell’s Law:
n1 sin �1 D n2 sin �2: (8.44)

Generalized law for refraction:

sin �1

sin �2

D v1

v2

: (8.45)

Equation for the critical angle for total internal reflection:

sin �c D n1

n2

: (8.46)

Thin lens equation:
1

dO
C 1

dI
D 1

f
: (8.47)

Magnification vs. object/image distances:

M � hI

hO
D
ˇ̌̌
ˇ dI

dO

ˇ̌̌
ˇ : (8.48)

Reflectance vs. indices of refraction:

R D
�

n2 	 n1

n2 C n1

�2

: (8.49)

Reflectance in terms of the wave velocities:

R D
�

v2 	 v1

v2 C v1

�2

: (8.50)

Approximate equation for the Doppler effect:

�f

f
� u

v
: (8.51)

8.15 Questions and Problems for Chap. 8

1. When the dimensions of scattering particles are smaller than the wavelength of
blue light, (CHOOSE ONE)

(a) Red light is scattered more effectively than blue light.
(b) Both red and blue light are scattered about equally and better than green

light.
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Fig. 8.67 Light ray reflecting
off two perpendicular mirrors

(c) Both red and blue light are scattered about equally but not as well as green
light.

(d) Blue light is scattered more effectively than red light.

2. (a) Red light diffracts:more/less: than blue light.
(b) A soprano’s voice diffracts more/less: than a bass’s voice.

3. The animal called the bat is not blind.21 However, it hunts at night and makes
use of echo-location, wherein an ultrasonic series of pulses are emitted and
their reflection used to locate a prey.

(a) Why must the wavelength of the sound be much smaller than the object
size for the bat to have a clear “image” of the object?

(b) Estimate the minimum frequency of sound necessary for the bat to
discriminate objects with a resolution on the order of 1 mm.

4. What two physical phenomena account for the ability of a prism to analyze
light?

5. Will an FM radio wave with frequency 89.3 MHz be reflected specularly or
diffusely off a field of corn?

6. A laser beam starts out on earth with a diameter of 2 mm. Find the diameter
of the image of the laser beam on the moon, a distance 400,000 km away. The
laser’s wavelength is 6;300 Å.

7. A laser beam is to produce the smallest possible image on a screen 1/,km away.
Its wavelength is 5;500 Å. What should the size of the aperture be? What will
be size of the image?

8. A light ray is reflected off two mirrors that are at right angles with respect
to each other. Prove that the reflected ray is parallel to the incident ray. See
Fig. 8.67.

21See Wikipedia (1-11-2011): http://en.wikipedia.org/wiki/Bat.

http://en.wikipedia.org/wiki/Bat
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Fig. 8.68 A device that
produces an infinite series of
images (source: http://www.
youtube.com/watch?v=
VTONKZkaVX4&NR=1&
feature=fvwp)

9. A person is standing at a distance of 5 ft from a mirror. What is the apparent
distance of the person’s image from the person?

10. A popular device for producing an image of an infinite series of replications of
actual objects uses a mirror plus a sheet of glass that is coated so as to have a
very low transmission. We see one of these devices in Fig. 8.68. The only lights
that are actually present are those on a circle near the perimeter. All the other
concentric circles of lights are virtual.

Use physical principles to account for the infinite series of images as well as
the fact that the images appear to be increasingly distant.

11. When light passes through a color filter, there is both reflection at the interface
between air and the filter when the light strikes the filter from the air as well
as reflection at the second interface where the light leaves from the filter and
enters the air.

Suppose that the index of refraction of the filter material is 1.5.

(a) Show that the reflectance R at the first interface is 1/25 or 4%.
(b) Find the reflectance at the second interface.22

22In fact, the light that strikes the second interface is partially transmitted into the air. The part
that reflects back from the second interface toward the first interface is also partially reflected
back from the first interface toward the second interface. The light can be represented as making
an infinite number of attempts to “escape” from the filter into the air through the second interface.
The resultant ultimate transmission out into the air is a bit more than the square of the transmittance
through one interface, in this case a bit more than 92%.

http://www.youtube.com/watch?v=VTONKZkaVX4&NR=1&feature=fvwp
http://www.youtube.com/watch?v=VTONKZkaVX4&NR=1&feature=fvwp
http://www.youtube.com/watch?v=VTONKZkaVX4&NR=1&feature=fvwp
http://www.youtube.com/watch?v=VTONKZkaVX4&NR=1&feature=fvwp
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12. Consider a steel rod that is struck at one end so as to produce a sound wave that
travels down the rod. When the sound meets the other end, which is an interface
between the steel rod and the air, there is reflection and transmission. Calculate
the reflectance and transmittance at the steel-air interface. The sound impedance
Z of air is given by Z D �v D .1:3 kg=m3/.340 m=s/ D 440 kg=m2 	 s.
The sound impedance of steel is Z D �v D .8;000 kg=m3/.5;000 m=s/ D
4 � 107 kg=m2 	 s.

13. Let Itrans D transmitted intensity and Iinc D incident intensity. Then the
transmittance T and reflectance R are given by:

T D Itrans

Iinc
D 1 	 R: (8.52)

(a) Express the transmittance of a light wave in terms of the indices of
refraction. See Sect. 8.3.1.

(b) Express the transmittance of a sound wave in terms of the impedances.
(c) Suppose that my voice produces a sound level of 40 dB at the surface of

a lake.

i. What is the reflectance? Assume a normally incident sound wave – so
that you can use the results of (a) and (b) above.

ii. Find the sound level of the transmitted sound.

14. (a) Prove that the reflectance R of light can be expressed as:

R D
�

v2 	 v1

v2 C v1

�2

: (8.53)

Note that this expression can be rewritten in terms of the ratio v2=v alone:

R D
�

v2=v1 	 1

v2=v1 C 1

�2

: (8.54)

(b) Prove that the reflectance for sound can be written as:

R D
"

Z2

Z1
	 1

Z2

Z1
C 1

#2

: (8.55)

Only the ratio of the impedances, Z � �v, appears in the relation.

15. For flint glass, the critical angle is 37ı. Thus,

(a) Light incident on the glass from the air with an incident angle larger than
37ı will be totally refracted.
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Fig. 8.69 Refraction through
a slab of glass

Fig. 8.70 Dispersion with
two prisms in tandem

(b) Light incident on the glass from the air with an incident angle larger than
37ı will be totally reflected.

(c) Light incident on the air from the glass with an incident angle larger than
37ı will be totally reflected.

(d) Light incident on the air from the glass with an incident angle smaller than
37ı will be totally reflected.

(e) Light incident on the glass from the air with an incident angle smaller than
37ı will be totally reflected.

16. Prove that when a light ray is refracted twice by a block of glass with parallel
faces (see Fig. 8.69), that the outgoing ray is parallel to the incoming ray.

17. We know when a ray of white light is incident upon a prism, dispersion will
lead to an outgoing beam with a rainbow of colors, each component wavelength
traveling in a different direction. Suppose that a ray of white light is incident
upon a pair of prisms in tandem, as shown in Fig. 8.70. Describe the outgoing
beam of light.

18. A light ray, traveling in water, is incident on a water-glass interface at an angle
of incidence of 30ı. Find the angle of refraction if the index of refraction of the
glass is 1:5.

19. Find the critical angle for total reflection of a light wave in a glass having an
incident of refraction of 1.7 at an interface with air.

20. Find the critical angle for total reflection of a sound wave in air incident on a
water surface.
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Fig. 8.71 Ray diagram of a lens

Fig. 8.72 Air lens in water

21. Fig. 8.71 is a diagram of an object (the vertical black rectangle) that is to the
left of a lens (the vertical gray rectangle).

We see two rays that leave the top of the object and strike the lens at two
positions along the lens. The parallel ray (a) is shown passing through the focal
point. The second ray (b) is not completely shown.

(a) Is the lens converging or diverging?
(b) Complete the diagram by showing where the image is formed and then

showing where ray (b) progresses to the right of the lens.
(c) Is the image real or virtual?
(d) Suppose that the object distance is 0.5 jf j, where f is the focal length.

Determine the image distance in terms of f .

22. Fig. 8.72 shows a biconvex air lens under water. It consists of a balloon in the
shape of a convex lens and filled with air.
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Fig. 8.73 Eyeball underwater looking up toward the surface of a swimming pool

Where would the image of the object arrow be located? To answer this
question, think of the way a light beam will be refracted in passing from water
into air and from air into water.

(a) Between the object arrow and the focal point, F

(b) Between the focal point, F , and the lens
(c) On the right side of the lens
(d) To the left of the object arrow
(e) There would be no image for this type of lens

23. Suppose that a piece of opaque material is placed just in front of the lens of a
slide projector, thus blocking the light emanating from the top half of the lens.
Describe the effect on the image on the screen. Choose from the following:

(a) The top half of the image be removed.
(b) The bottom half of the image be removed.
(c) Neither of the above be true. (Describe very qualitatively what one should

observe).

HINT: Use the fact that there is a one-to-one correspondence between an object
point and an image point. In fact, the image point is produced by the set of all
rays that leave an object point and pass through the lens.

24. Suppose that you look at an object through a diverging lens having a focal
length of 	4 cm. The object is placed at a distance of 7 cm from the lens. Find
the image distance. Is the image erect or inverted? Real or virtual?

25. Suppose that a person of 5 ft height is at a distance of 25 ft from a convex lens
having a focal length of 0.4 ft. Find the image distance and the image height. Is
the image real or virtual? Erect or inverted?

26. Suppose that you are submerged in a pool of water with an absolutely calm
surface. Above the surface the room is full of light. The walls and floor are
perfectly black, so that they absorb all light completely, and do not reflect any
light back into the water. What will you see when you look up at the surface?
(You will not see a fully lit surface.)

HINT: Use reversibility of rays that are refracted. Consider the paths of all rays
of light that emanate from the eye and can emerge from the water into the air
above (Fig. 8.73).
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27. On a road, John drives toward Marsha tooting his horn. Marsha immediately
notices that

(a) John looks slightly bluer than normal.
(b) John looks slightly redder than normal.
(c) The horn is pitched a little higher than normal.
(d) The horn is pitched a little lower than normal.

28. The atomic spectrum of hydrogen is observed in the light coming from a star. If
the star was not moving (relative to the earth), the red line would be observed
to have a wavelength of 6;560Å. Instead, the observed wavelength is 6;562Å.

(a) Is the star moving toward or away from the earth?
(b) Find the speed u of the star relative to the earth, assuming it is moving along

a line joining it to the earth. You may assume that u � c and therefore
use (8.28).

29. A train is moving toward you at a speed of 100 km/h while sounding a whistle
having an intrinsic frequency of 600 Hz.

(a) Using a sound velocity of 340 m/s and the small speed approximation
(8.28), calculate the frequency of sound that you will perceive.

(b) Repeat the above if the train is moving away from you.

30. Here is how a radar device is used to determine the speed of a car: The device
sends a radar signal of frequency 10 GHz (D 1010 Hz) toward the car. Given
that the car is moving directly toward the source, the car receives a Doppler
shifted frequency f 0 with respect to the car. In turn, the car becomes a source
in sending back radar waves to the device. Since the car is moving toward
the device (which has a radio transmitter and a radar receiver), the frequency
observed (measured) by the receiver will be a Doppler shifted frequency f 00 of
f 0. We have two Doppler shifts. Given that u << c, we can use (8.28) except
that we must double the shift. Thus, we obtain

�f D f 00 	 f D .f 00 	 f 0/ C .f 0 	 f / D 2u

c
f: (8.56)

Now suppose that f 00 and f produce a beat frequency of 2,000 Hz.
Find the speed of the car.

31. The Doppler effect of ultrasound is used to determine the flow velocity of blood
in a blood vessel; this is especially useful in determining whether there is a
blood clot impeding flow in an artery of a leg.

(a) Assuming that the sound velocity in the body is about 1,500 m/s and
that one needs a resolution of an image to be about 1mm, what should
the minimum wavelength of the ultrasound be and the corresponding
frequency?
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Fig. 8.74 Sequence of three polarizers

Fig. 8.75 Sequence of nine polarizers

(b) Suppose that the frequency used is that obtained in the previous problem.
Assume also that the beat frequency is 1 Hz between the frequency of the
incident sound and the frequency of the reflected sound. Determine the
velocity of the blood in the artery if the blood is flowing directly toward
the source of sound.

32. (This is a complex algebraic problem.) A train passes you by while sounding a
whistle whose frequency varies from 550 to 500 Hz. That is

f 0
toward D 550 Hz

f 0
away D 500 Hz:

Assume that the speed of sound in air is 340 m/s.

(a) Find the speed of the train – assumed constant.
(b) Find the frequency f of the whistle.

Hint: Show that
f 0

towards

f 0
away

D 1 C u=v

1 	 u=v
: (8.57)

Then show that

u

v
D

f 0

towards
f 0

away
	 1

f 0

towards
f 0

away
C 1

: (8.58)

33. (a) Fill in the circles and determine the intensities for the sequence of polarizers
in Fig. 8.74.

(b) Repeat for the following sequence of nine polarizers, determining only the
final state of the beam (Fig. 8.75).

(c) Can you see how one could use ideal polarizers to rotate the axis of
polarization by 90ı without any loss in intensity? Explain.

34. Suppose you are walking due West down a street at sunset (Fig. 8.76).
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Fig. 8.76 Polarizing of light reflected off a puddle of water

Determine the direction of the axis of partial polarization of sunlight which
you see

(a) Reflected off the window of a store
(b) Reflected off the water puddle on the sidewalk
(c) Scattered by the atmosphere directly above you

35. Polarized light of wavelength 410 nm is passed through a distance of 7 mm of
quartz. Find the angle through which the axis of polarization is rotated.

36. This problem shows us how optical activity can be used to quickly determine
the concentration of a solution of chiral molecules.

Polarized light with a wavelength of 589 nm is passed through a distance
10 cm of a solution of sucrose in water. The axis of polarization is found to be
rotated by an angle of 19ı. Determine the concentration of sucrose.

37. The following problem is not a trivial one at all. You are presented with this
problem mainly to get you thinking about it so that you can appreciate how
difficult the problem is:

Suppose that you were establishing communication with an extraterrestrial
being. You describe yourself in broad terms and succeed to establish that you
have an organ (your heart) that pumps fluid (blood) through your body. You
now want to indicate that the heart is essentially on the left side of your
body. How might you establish the difference between left and right using only
radio communication and thus without identification of and reference to various
celestial bodies? Might your ability to refer to celestial bodies help?





Chapter 9
The Ear

SOUND

Insects one hears
and one hears the talk of men –
with different ears

Haiku by Masaoka Shiki (1867–1902)

We have studied the nature of sound and how sound waves are produced and
propagate through media. However, the focus of this text is sound as experienced by
people. Sounds of insects, of men, of a multitude of sources, reach our ears, perhaps
providing us with our principle means of communication with the outside world.
How can we hear these sounds “differently”? What happens to the sound that enters
our ears? What is the essence of hearing? What is the source and explanation for the
pleasure we have in hearing beautiful music or for the annoyance at hearing loud
or dissonant noise? Many a reader might hope that science can arrive at answers to
such questions. Unfortunately, science is severely limited in this domain.

Hearing begins with the ears and ends with the brain. The ear is the organ that
is used to gather a sound wave and convert the waveform of the sound wave, as
faithfully as possible, into nerve signals that travel to the brain to be analyzed and
interpreted. Our mode of hearing is determined in most instances by the manner
in which the brain analyzes the auditory nerve signals it receives. In addition, the
brain has been shown to have the remarkable capacity to alter the physical state of
the ear and hence its manner of converting sound into nerve signals. In any case,
the physical distinction between the brain and the ears exists: The poetical “ears” in
Shiki’s Haiku include the brain, while the physicist’s “ears” do not.

This chapter is concerned with the physics of the human ear – that is, the
physical processes whereby the ear converts a sound wave into nerve signals. We do
not discuss how the brain analyzes these nerve signals. This subject is beyond the
scope of this text. Briefly, the ear can be compared to a highly sensitive microphone,
capable of responding to a range of frequencies from 20 to 20;000 Hz and to a
range of intensities spanning 12 orders of magnitude, with a high efficiency and
extremely low level of distortion. A knowledge of how the ear functions enables
one to partially understand how what we hear is related to the sound incident
upon our ears. This is the subject of Chap. 10. In particular, we will be able to
qualitatively account for the response characteristics of the ear and our ability to
discriminate pitch. Most significantly, in Chap. 10, we will be able to provide a

L. Gunther, The Physics of Music and Color, DOI 10.1007/978-1-4614-0557-3 9,
© Springer Science+Business Media, LLC 2012

305



306 9 The Ear

qualitative basis for the existence of consonant and dissonant musical intervals and
the related perception of combination tones which are certain sounds that a person
can hear even though they are not present in the sound wave incident upon the ear.

9.1 Broad Outline of the Conversion Process

Figure 9.1 is a drawing of the human ear. The pinna, or outer ear, serves to funnel
a sound wave into the auditory canal. The wave travels down the canal, at the end
of which it sets the tympanic membrane (also referred to as the eardrum) into
motion. The eardrum in turn sets a system of three bones – the ossicles – into motion.
At the other end of the ossicles is the footplate, which is the base of the stapes (also
referred to as the stirrup). (See Fig. 9.5 for more details.) In fact, the footplate
covers the hole shown in the snail-shaped cochlea. This hole, the oval window,
leads into the inner chamber of the cochlea that is filled with a fluid – the cochlear
fluid – that is set into motion by the vibrations of the footplate. The cochlea contains
the neural sensors that transmit the information about the sound to the brain.

Fig. 9.1 The human ear (source: John B. Palmer, Anatomy for Speech and Hearing, 2nd ed.,
(Harper & Row, 1972))
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Fig. 9.2 Ossicles – details (source: courtesy of Russ Dewey)

Fig. 9.3 Photo of replica
of the Ossicles (photo: Leon
Gunther)

In Fig. 9.2 we see a drawing of the ossicles, while in Fig. 9.3 we see a closeup
photograph of a plastic replica of the actual ossicles alongside a centimeter ruler.

To view the replica directly with your eyes can be quite breathtaking: These
bones, which are an essential instrument for transmitting the wonderful sounds we
hear, over an incredible range of intensities and with great fidelity, are puny and
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Fig. 9.4 Cochlear implant (source: Lahey Medical Center Journal, Burlington, MA)

delicate. Equally amazing is the strong evidence that the three bones evolved from
a combination of parts of the gills of a fish and the jawbones of reptiles.1

In Fig. 9.4 we see a schematic of the entire ear, along with a cut away to see inside
the cochlea. This figure was produced for the purpose of showing how a cochlear
implant works. See later in this chapter for more information.

1Here is an excerpt from the website http://museum.utep.edu/archive/biology/DDossicles.htm:
“Hearing is a wonderful thing, able to translate vibrations of air into sound. Numerous desert
creatures rely on sound more than on sight, for many are nocturnal, only active during the dark
hours. Part of the great sensitivity in mammals is due to the three small bones in our middle ears, the
auditory ossicles. These transmit and amplify the vibrations of the ear drum, conveying them to the
inner ear. What’s fascinating from an evolutionary viewpoint is their origins. Studies of embryos
and fossils trace their origin far back in time. The ossicle next to the inner ear, the stapes, can be
traced back to part of a gill arch in a very distant fish ancestor. The other two ossicles, the malleus
and incus, are derived from bones that, in our reptilian ancestry, formed the joint between skull and
lower jaw, as they do today in modern reptiles. After incipient mammals evolved a new jaw joint,
those bones were in perfect position to be incorporated into a hearing device in evolution’s favorite
avenue–jury-rigging structures for new roles.”

http://museum.utep.edu/archive/biology/DDossicles.htm
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One may well wonder why so many steps are involved in the conversion process
from sound to nerve signals. Why has not the ear evolved so that an incident sound
wave will be incident directly upon the oval window? The primary reason is that of
a very poor matching of the impedances of the air and the cochlear fluid.

The impedance Z is the product of the mass density � and the speed of sound v.
Thus,

Z D �v: (9.1)

It determines the resilience of a medium to being disturbed by a change in the
external pressure. In Sect. 8.3.2, we discussed its relevance in the reflection of sound
at an interface between two media: When a sound wave is traveling in one medium
and is then incident upon an interface with a second medium, a certain fraction of
sound energy will be reflected and a certain fraction will be transmitted. In (8.14)
and (8.16) of Chap. 8, we have an expression for the reflectance R in terms of the
impedances. With Z D �v, we have

R D
�

Z2 � Z1

Z2 C Z1

�2

: (9.2)

When the two impedances are equal, the reflectance vanishes and there is total
transmission. Correspondingly, given that the transmittance T is given by

T D 1 � R (9.3)

a bit of algebra leads to

T D 4Z2Z1

.Z2 C Z1/2
: (9.4)

This equation can be rewritten in a different algebraic form that is illuminating. If
we divide both numerator and denominator by Z2

1 , we obtain

T D 4Z2=Z1

.Z2=Z1/2 C 1
: (9.5)

Thus we see that the ratio of the two impedances determines the transmittance.
We already observed that the reflectance vanishes when the two impedances are
equal, so that their ratio is one. For all other ratios, larger or smaller than one, the
transmittance is less than one. The closer the ratio of the respective impedances of
the media is to one, the closer will the transmittance be to unity. For example, a ratio
of 1

2
(or 2) leads to a fraction 8=9 transmitted. The ratio for cochlear fluid to air is

about 3;300 W 1, which results in only a fraction of about one part in 1;000 of the
sound energy transmitted, corresponding to a decrease in sound level of 30 dB.

We will see how the eardrum and the middle ear serve to increase the fraction of
sound transmitted to the cochlear fluid.
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9.2 The Auditory Canal

The auditory canal is a crooked tunnel (not as straight as Fig. 9.1 would suggest)
one of whose functions is to protect the delicate eardrum from injury. It also serves
as a resonator which aids in reducing the fraction of sound reflected back into the
air. For an approximate calculation of its resonance frequencies, it is adequately
represented by an open-closed tube, with a length of about 2.7 cm and a diameter of
about 7 mm. Suppose we assume that the temperature in the canal is 30ıC (which
lies between room temperature and a body temperature of 38ıC). In Problem 9.1,
it is shown that the speed of sound at this temperature is 346 m/s and that the
fundamental frequency f1 of the tube is 3,200 Hz. The overtone frequencies are
3f1 D 9;600 Hz, 5f1 D 16;000 Hz, . . . .

It has been shown that the fundamental resonance provides an amplification of
the intensity by a factor of 3�10 for frequencies between 2 and 5 kHz. It is therefore
no mere coincidence that the ear as a whole is most sensitive to sound waves with a
frequency of about 3 kHz (see Sect. 10.1).

9.3 The Eardrum

Before we go into detail, it is important to remember that it is the difference between
the pressure on the outside, exposed side of the eardrum and the pressure within the
ear, that leads to the net force on the eardrum. This difference is the sound pressure.
The pressure within the ear is ideally maintained at the ambient pressure – that is,
the pressure in the absence of the sound wave and therefore normally about one
atmosphere. This is achieved by air inside of the ear being contiguous with the
outside air via the Eustachian tube. (See Fig. 9.1.)

The eardrum is a very delicate membrane that serves to gather up sound energy
and transmit it further on into the ear. It is oval in shape, having dimensions of
approximately 9 mm by 12 mm. It also provides the major means of overcoming the
mismatch of impedances by virtue of the fact that its area is about 15 times that
of the oval window. As a result of the eardrum alone, the sound pressure acting on
the oval window would be about 15 times that acting on the eardrum by the sound
wave.

This effect can be understood qualitatively by considering the relative ease with
which we can push a nail into the ground as opposed to pushing a block of wood
into the ground. The force available is the same in both cases. However, we get a
greater pressure by the nail on the ground because the area of contact between the
nail and the ground is much smaller than the area of contact between a block of
wood and the ground. (See Fig. 9.5.)
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Fig. 9.5 Abstract diagram of the eardrum. (a) Although you have the same force, it is easier to
push the nail into the ground, since it can assert more pressure. (b) The force of the sound wave is
concentrated to a small area before entering the ossicle

9.4 The Ossicles

The ossicles, which are depicted in Fig. 9.2, consist of a set of three bones, known
as the hammer, anvil, and stirrup (or, respectively, as the malleus, incus, and stapes,
in medical terminology).

They serve as a further means of increasing the fraction of sound transmitted
into the cochlear fluid. This increase is accomplished through the principle of lever
action. Furthermore, they somewhat protect the inner ear from damage due to loud
sounds. Obviously, they are inadequate in protecting the hearing of those who enjoy
listening to loud rock bands. My own testing of students over a period of more than
30 years reveals a dramatic decrease in the highest frequency that can be heard.
Around 1975, most students heard frequencies exceeding 20,000 Hz. By the year
2000, I have found that few students can hear frequencies above 18,000 Hz.

Consider the 7-ft seesaw illustrated in Fig. 9.6. A child of weight 40 lbs is seated
to the left at end position, while a woman of weight 100 lbs is seated to the right
at position B . The fulcrum (or pivot) at F is located at a position 2 ft from end
B (i.e., BF D 2 ft), so that the distance AF is 5 ft. The ratio FB=FA is known as
the mechanical advantage, which we will denote with the letter r. In the example
above, the mechanical advantage is thus 2:5. In the case of the human ear, it has
been reported to be only about 1:3. Generally, we have

FB

FA

D AF

BF
D r (9.6)

which is known as Archimedes’ Principle of Lever Action.2

2Archimedes, who receives credit for this discovery, is purported to have stated, “Give me a long
enough stick, a place to stand, and a pivot, and I’ll move the earth!” The language here is quite
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Fig. 9.6 A child and a woman on a seesaw

Fig. 9.7 Trigonometry
of a lever

Lever action also leads to another essential means of increasing the fraction of
sound energy transmitted to the cochlear fluid. A displacement of point A leads to a
displacement of point B in ratio of the mechanical advantage r. (See Fig. 9.7.) This
fact follows from simple trigonometry.

In the example of the seesaw, if end A is pushed down a distance of 5 in., the
woman at B will move up a distance of only 2 in. In general, the ratio of the
respective displacements, AA0 and BB 0, at two ends of a lever is equal to the ratio r
of the distances of the fulcrum from the two ends:

AA0

BB 0 D AF

BF
D r: (9.7)

Since the ratio of the forces, FB=FA, is equal to 1:3 for the ear, the ratio AA0=BB 0
is equal to 1:3 also, by virtue of (9.6). Thus, if the air pushes the point at which the
hammer of the ossicles is connected to the eardrum by a distance of 1 nm (about
three or four diameters of a single atom!), the footplate will move a distance of only
about 1=1:3 � 0:77 of a nanometer.

loose. In fact, we need no such fancy system to move the earth. We do so every time we jump up
into the air or walk or run – albeit by a minuscule unobservable amount.
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Note that the product of the force and displacement on one end is equal to the
same product for the other end:

FA AF D FB BF : (9.8)

In the example above, we have

40 lbs � 5 ft D 100 lbs � 2 ft: (9.9)

9.5 Improving on the Impedance Mismatch: Details��

We will outline the basis for improving on the impedance mismatch. The expression
for the transmittance in (9.5) in terms of air and fluid can be written as:

T D 4Za=Zf

.Za=Zf/2 C 1
: (9.10)

The transmittance is low because Za � Zf. We have pointed out that two factors
play a role in increasing the transmittance – the ratio of the areas of the eardrum and
the oval window, Ad=Aw, and the mechanical advantage, r, of the lever arm of the
ossicles. An analysis to be outlined below leads to an effective increase in the ratio
of the two impedances:

Za

Zf
! r2 Ad

Aw

Za

Zf
: (9.11)

For the ear, the ratio of impedances is then increased by a factor of .1:3/2.15/ � 25,
and therefore from 1=3;300 to 1=130. The corresponding transmittance is 0:03 with
a reduction of the sound level by 15 dB instead of the 30 dB reduction without the
eardrum and ossicles.

In Fig. 9.8, we see a simplified but concrete description of the process. An
incident wave of intensity Ii strikes the eardrum with area Ad. A reflected wave
has an intensity Ir. The eardrum has a displacement equal to that of the air at
the eardrum, Da, represented by the red arrow to the right. We see a schematic of the
ossicles that provide lever action, with the fulcrum represented by the black dot. The
result is a displacement Df of the fluid, which moves with the oval window. The oval
window has an area Aw. It is the intensity of the sound wave that is transmitted into
the fluid, which I have indicated with a direction to the right even though the oval
window is moving to the left at the instant shown in the figure.

Let us begin by discussing the effect of having different areas. The transmittance
ultimately tells us what fraction of energy of the incident wave is transmitted – or
alternatively what fraction of power P is transmitted. Thus,

T D Pt

Pi
: (9.12)
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Fig. 9.8 Schematic of the operation of the ossicles

If the incident wave falls directly on the boundary with a second medium, the two
media have a common area and

T D Pt

Pi
D ItA

IiA
D It

Ii
: (9.13)

Since the areas are different, we will have

T D Pt

Pi
D ItAw

IiAd
: (9.14)

Instead of conservation of energy being represented by It C Ir D Ii, we have

Pt C Pr D Pi: (9.15)

When a wave in a medium is incident upon a boundary with another medium, the
amplitude of the displacement of the waves in the media must be equal at the
boundary. In Fig. 9.8, the displacements Da and Df are the respective amplitudes
of the displacement of air and fluid, respectively. With direct contact of the eardrum
with the oval window of the cochlea, we would need

Da D Df: (9.16)

However, as a result of the lever action:

Da D rDf: (9.17)
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Next, if there is a reflected wave, the wave in the first medium consists of two
displacement amplitudes added together – one from the incident wave and one from
the reflected wave. We have

Da D Di � Dr: (9.18)

Note the minus sign because the reflected wave is reversed in direction as when a
wave reaches the end of a closed pipe. (See Sect. 3.1.)

The only remaining relation that is needed to derive the final result in (9.11) is
the following relation between the intensity and the amplitude of displacement:

I D 1

2
.2�f /2ZD2: (9.19)

9.6 The Cochlea

The cochlea (or inner ear) is shaped like a snail. (See Fig. 9.1.) It is by far the most
complicated part of the ear. No more than about one-half centimeter in width and
almost entirely buried within a bony mass of the skull, it makes use of an intricate
apparatus whereby the final conversion of the sound wave into nerve impulses is
made. It also achieves a partial frequency analysis, which contributes to our ability
to discriminate pitch.

The cochlear chamber is a spiral about 35 mm in length. Within is contained but
a few drops of a liquid which has about the same density (1.03 g/cm3) as water and
about twice the ‘thickness’ (technically referred to as the viscosity) of water. In
Fig. 9.9, we see a schematic of the interior of the full length of the cochlea if it were
uncoiled. The center of the coil would be at the left. The chamber is divided into
three sub-chambers – the scala vestibuli, the scala tympani, and the scala media.
Only the first two are shown in this figure, for simplicity. Between the chambers
is the basilar membrane. It has a width that varies from 0.08 mm near the oval
window to 0.5 mm near the helicotrema. The basilar membrane serves as one of
the two partitions between the three chambers.

In Fig. 9.10, we see a cross section across the length of the cochlea. This figure
reveals greater details, including Reissner’s membrane, which is the partition
between the scala tympani and scala vestibuli. The basilar membrane is set into
motion by the motion of the cochlear fluid. It contains nerve endings within hair
cells, which, through the motion of the basilar membrane, are stimulated into
producing nerve signals that travel to the brain through the auditory nerve.

Experiments have revealed that when sound is exciting the ear, the oval window
and round window move nearly in opposite directions (are nearly half a cycle out of
phase). This indicates that the cochlear fluid moves essentially en-masse – that is,
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Fig. 9.9 Cochlea chamber, omitting the full complexity of the upper chamber (source: Roederer,
op. cit.)

Fig. 9.10 Details of the cochlea (source: Roederer, op. cit.)

that there is negligible compression of the fluid. Thus, with negligible delay, while
the oval window is moving to the right, the fluid in the scala vestibuli is moving to
the right, fluid is flowing downward through the helicotrema and to the left in the
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Fig. 9.11 Cochlea membrane wave with the envelope of the pulse

scala tympani, and the round window is moving to the left. Directions are, of course,
reversed when the oval window is moving to the left.3

Extensive experiments have been performed so as to study the detailed motion
of the fluid and the basilar membrane when the footplate is set into oscillation. The
pioneer in this field of research was Georg von Békésy, who received the Nobel
Prize in Medicine in 1961 for his work.4 The picture that has evolved follows:

As was pointed out above, the fluid in the scala tympani moves in a direction
opposite to that of the fluid in the scala vestibuli. The moving fluid exerts a frictional
force on the membrane, in opposite directions on the two sides of a given point
on the membrane. As a result, the membrane is displaced in a direction normal to
the membrane. In effect, the fluid sets up a transverse vibrational motion of the
membrane.

In Fig. 9.11, the dashed curves represent the shape of the membrane at a number
of different stages of a complete sinusoidal cycle of motion of the stirrups.

Curves 1–3 correspond to moments when the stirrup is moving to the left, while
curves 4–6 correspond to moments when the stirrup is moving to the right. The
solid curve is the envelope, which is the smallest smooth curve within which are
contained all the curves representing the shape of the membrane at all stages of a
complete cycle.

The basilar membrane is lined with two rows of hair cells, which are connected
to nerve fibers. (See Fig. 9.12.) Physiology of the Ear, A.F. Jahn and J. Santos-
Sacchi Editors [Raven Press, N.Y. 1988] These fibers merge to form the auditory
nerve, which leads to the brain. In the absence of sound, the nerve fibers emit
impulses to the brain spontaneously and randomly.

If a sound is present, the relative motion of the basilar membrane is such as to
produce a bending of the hair cells. This leads to an increase in the rate at which
impulses are emitted by the nerve fibers and the perception of sound.

3The physical basis for the fact that the fluid moves essentially en-masse is that the wavelength of a
sound wave in the cochlear fluid ranges from 75 mm to 75 m for audio frequencies, and is therefore
at least twice the length of the cochlear chamber.
4See Georg von Békésy, Experiments on Hearing (McGraw-Hill Co., Inc., N.Y.,1960) which is an
extensive treatise on the subject. His work has been of utmost importance in treating people with
hearing difficulties.
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Fig. 9.12 Scanning electron micrograph of hair cells. Sensory epithelium of the organ of Corti.
D Deiter’s cells, IHC inner hair cells, OHC outer hair cells, P pillar cells (source: courtesy of
Andrew Forge, University College of London Ear Institute)

As the sound intensity increases, two changes occur which lead to an increase
in the rate at which impulses are emitted. First, the amplitude of the motion of the
basilar membrane increases, resulting in an increase in the rate of impulse emission
by each nerve fiber. Second, the envelope of the motion of the basilar membrane
widens, resulting in an increase in the number of hair cells which are significantly
bent and whose nerve impulse emission rate is increased. The increased rate of
impulse emission results in an increase in the loudness of the sound.

9.6.1 Summary

We have seen how the eardrum and a set of three bones, which are far from beautiful
in appearance nor simple in structure, serve to significantly increase the sound
wave energy transmitted to the cochlea. Their beauty lies in their utter detail in
the presence of puny size. As one grows older, these bones tend to become calcified
(i.e., have excess calcium) and lose their flexibility at their joints. Consequently, the
ossicles become an impediment to hearing and an operation is sometimes performed
to allow the sound wave to bypass the ossicles and flow directly to the oval window.
A person then suffers a severe hearing loss because the sound wave has to be
transmitted to the air behind the eardrum and then on to the oval window; therefore
one loses the benefits of the ossicles as discussed above. An alternative is to have
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a microphone produce an amplified electronic signal that excites the nerves using a
wire that is inserted into the cochlea. The device is called a cochlear implant. See
Fig. 9.4. See comment on their operation later on in this chapter.

9.7 Pitch Discrimination

A sense of pitch requires an ability to discriminate frequencies – technically referred
to as pitch discrimination. Specifically, tones of different frequency must affect
the ear and/or brain differently. All nerve impulses are alike. As a result, there are
only two ways in which auditory signals can be differentiated: first, by the specific
nerve fibers which are transmitting the impulses and second, by the way the pattern
of nerve impulses transmitted to the brain varies in time. There is strong evidence
that the ear makes use of both approaches. The first approach is referred to as the
Place Theory of Pitch Perception. We will refer to the second approach as the
Rhythm Theory of Pitch Perception. Since both are operative, it is misleading,
though unfortunately common, to refer to them as competing theories.

We begin with a discussion of the Place Theory of Pitch Perception, an idea that
was first developed by Hermann von Helmholtz (Fig. 9.13).5 Helmholtz pictured
the basilar membrane as similar to a harp, consisting of a set of strings under tension,
stretched transverse to the length of the membrane about a century ago.

The strings differed in length and in tension, and therefore differed in their
fundamental frequencies. Then, a sound of definite frequency would excite only
those strings having a fundamental frequency or an overtone frequency which is very
close to the frequency of the sound wave. Very few strings would be excited, so that
we would have a one-to-one correspondence between the sound frequency and the
small set of strings excited. That one-to-one correspondence would be transmitted
to the brain by the nerve fibers which were assumed connected to the individual
strings, one-to-one, hence providing us with a sense of pitch.

Experiments by von Békésy and others showed that Helmholtz’s idea was not
far from the truth. In particular, von Békésy studied how the shape of the envelope
of the waves (see Fig. 4.9) traveling along the basilar membrane varies with the
frequency of pure tones. This variation in the shape of the envelope is depicted in
Fig. 9.14.

We note that for frequencies above about 50 Hz, the envelope has a peak at some
point along the membrane. The higher the frequency, the narrower the peak and

5Hermann Ludwig Ferdinand von Helmholtz (1821–1894), German physicist, anatomist, and
physiologist. He worked on acoustics, hydrodynamics, electrodynamics, thermodynamics, me-
teorology, optics, non-Euclidian geometry and philosophy of natural sciences. He is known for
his invention of the first ophthalmoscope, used by physicians to look into one’s eye. In 1847 he
formulated (independently of Julius Robert Mayer and Joule) the law of conservation of energy.
Very often more than one scientist independently makes essentially the same discovery about the
same time. Egos can lead to competition, arguments, public battles, and disappointment. Even the
great Newton tried to blot out the name of Gottfried Wilhelm Leibniz for the latter’s co-discovery
(along with Newton) of the differential and integral calculus in mathematics . See the sad but
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Fig. 9.13 Hermann Ludwig
Ferdinand von Helmholtz
(source: http://en.wikipedia.
org/wiki/Hermann von
Helmholtz)

Fig. 9.14 Human basilar membrane response for various frequencies (figure based upon von
Békésy, op. cit.)

the closer the peak is to the stirrup (stapes). In particular, it has been shown that
the distance xp of the peak from the far end of the membrane at helicotrema is
approximately proportional to the logarithm of the frequency.

In Chap. 11, it will be shown that pitch is essentially proportional to the
logarithm of the frequency. Therefore, the distance xp is proportional to the pitch.
Since those hair cells and attached nerve fibers which lie in the peak are most
strongly stimulated, a sense of pitch is transmitted to the brain.

fascinating history of Mayer’s work and his frustration from lack of recognition in the following
website: http://www.uh.edu/engines/epi722.htm.

http://en.wikipedia.org/wiki/Hermann_von_Helmholtz
http://en.wikipedia.org/wiki/Hermann_von_Helmholtz
http://en.wikipedia.org/wiki/Hermann_von_Helmholtz
http://www.uh.edu/engines/epi722.htm


9.7 Pitch Discrimination 321

Fig. 9.15 Ernst Mach
(source: http://en.wikipedia.
org/wiki/Ernst Mach)

There are deficiencies with the above theory. Our sense of pitch is very keen.
We can discriminate frequencies which differ by only about 1%. On the other hand,
the peak of the envelope is wide compared to the size of a hair cell, so that it is
difficult to understand how the brain can discriminate between two envelopes which
differ by only about 1%. The situation gets progressively worse as we get to lower
frequencies. In fact, there is hardly any peak for frequencies below 50 Hz. Two
solutions to these difficulties have been suggested6:

1. The first is an application of Mach’s Law of Simultaneous Contrast in Vision,
due to Ernst Mach7 (Fig. 9.15) to hearing.

2. The second is the Rhythm Theory of Pitch Perception.

6There is a third factor that we mention here without details. Recently, Dennis Freeman has
conducted research that reveals that the tectorial membrane (see Fig. 9.10) plays a considerable
role in amplifying the effect of the frequency-dependent envelope in pitch discrimination. See
MIT’s Technology Review, Volume III, number 1, page M16.
7Ernst Mach (1838–1916), Austrian physicist and philosopher. The basis of Mach’s natural
philosophy was that all knowledge is a matter of sensations, so that what people call “laws of
nature” are only summaries of experience provided by their own fallible senses. He discovered
that if a body moves through the air at a speed faster than the speed of sound, it must produce a
shock wave. The so-called Mach number is the speed of a body relative to the speed of sound.
Thus, a speed of “Mach 3” is equal to three times the speed of sound in air.

http://en.wikipedia.org/wiki/Ernst_Mach
http://en.wikipedia.org/wiki/Ernst_Mach
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9.7.1 Some Mathematical Details on Pitch vs. the Peak
of the Envelope��

What of Helmholtz’s strings? Recall (see Chap. 2) that the fundamental frequency
of a string is given by f1 D v=2R D .T =�/1=2=2R, where, in particular, T is the
tension. Tension, if present in the membrane, is too small to be measurable to date.
It appears that the only (or primary) restoring force is the stiffness (i.e., resistance to
stretching), so that f1 D v�.stiffness/1=2. In fact, Békésy showed that the logarithm
of the stiffness was approximately proportional to the distance xp; that is,

xp / log.stiffness/: (9.20)

Now suppose we ignore the coupling along the membrane and treat the membrane as
a set of rods of equal length and cross-section but of varied stiffness to bending. The
fundamental frequency of vibration f1 of the rods can be shown to be proportional
to the square root of the stiffness:

f1 / stiffness1=2; (9.21)

so that
stiffness / f1

2: (9.22)

It follows that
xp / log.f1

2/ D 2 log.f1/: (9.23)

Thus the distance xp is proportional to the logarithm of the fundamental frequency of
the string and therefore to the sense of pitch. Finally, we can qualitatively account for
the experimental results of Fig. 9.11 using this simple model of uncoupled strings,
thus qualitatively confirming Helmholtz’s original picture.

The variation in the width of the membrane (from about 0.1 mm at the stirrup to
about 0.5 mm at the helicotrema) will further increase the variation of the frequency
f1 with xp. This effect does not make the model invalid. Calculations using models
of real membranes with the above varied stiffness and width confirm the basic
validity of the above model.

9.7.2 Mach’s Law of Simultaneous Contrast in Vision

Mach’s Law of Simultaneous Contrast in Vision is based on the hypothesis
(confirmed by experiment) that the nerve fibers emanating from different receptors
on the retina of the eye (see Chap. 12) are not entirely independent. It is well
known that a nerve impulse emitted by a receptor inhibits other receptors that



9.7 Pitch Discrimination 323
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Fig. 9.16 Input and output of a string of six coupled receptors

are in its immediate vicinity from emitting nerve impulse. Consider then a simple
situation wherein half of a region of mutually inhibiting receptors on the retina is
uniformly stimulated by light, while the other half is stimulated at a lower intensity.
In Fig. 9.16, we display the input and output of a string of six receptors. The inputs
are 100 units for the first three and 50 units for the next three. The outputs are
determined by the following inhibition: The output is equal to the input minus one-
fifth the sum of the inputs of the two neighboring receptors. Thus, the output of the
third receptor equals 100 � .100 C 50/=5 D 70. The output of the fourth receptor
equals 50 � .100 C 50/=5 D 20.

We notice how the output exhibits a relative enhancement to the left of the
boundary between the two regions (between #3 and #4) and a reduction to the right
of that boundary. Without inhibition, the ratio of the outputs of the two neighboring
receptors at the boundary is 100=50 D 2. With inhibition, the ratio of the outputs of
the two neighboring receptors at the boundary is 70=20 D 3:5. Thus, the contrast
between the two regions is increased at their boundary. Figure 9.17 illustrates the
effect of the Law of Simultaneous Contrast in Vision quite dramatically in the so-
called Mach bands. The darkness seems to increase dramatically close to the left
side of a given rectangle. In fact, each given band is uniform.

If we assume that the auditory nerves on the basilar membrane interact in the
above inhibitory manner, it can be shown that the peak in the wave envelope leads
to a pattern along the membrane of the variation of the rate of nerve impulses which
is more sharply peaked.

Mechanical explanations have also been proposed for a sharpening of the
response curve. They are based on the idea that it is the relative displacement of
the basilar membrane that produces a bending of the hair cell and a consequent



324 9 The Ear

Fig. 9.17 Mach bands

stimulation of the nerve fibers. That is, a hair cell is stimulated to produce nerve
impulses not on the basis of the degree of bending itself but rather on the basis of
the variation of the degree of bending along the membrane.8

9.7.3 Rhythm Theory of Pitch Perception

We now turn to the Rhythm Theory of Pitch Perception. This theory is based on
the experimentally proven fact that an increase in the nerve impulse rate occurs
only during that part of a cycle of motion of the basilar membrane when the basilar
membrane is moving toward the tectorial membrane. If a sinusoidal sound wave
of frequency f is incident upon the ear, there will thus be an alternation at a
frequency f between periods when the rate increases and periods when the rate
does not increase. This situation is depicted in Fig. 9.18, wherein the vertical spikes
of Fig. 9.18 represent the instants when a nerve impulse is emitted. We see from the
figure that there is a resulting periodicity in the rate at which nerve impulses are
emitted, which provides us with a sense of pitch.

What is the resulting basic understanding of pitch discrimination by the ear?
The above Place Theory accounts for pitch discrimination of frequencies above
about 4,000 Hz. Both the Place Theory and the Rhythm Theory are operative for
frequencies between about 50 Hz and about 4,000 Hz. For frequencies below about
50 Hz, only the Rhythm Theory is operative. Over the years, there have been
alternative theories; nevertheless, they are in essence enhancements of the above
theories. Finally, we should note that a cochlear implant bypasses the outer and
middle ears in having sound impinge upon a microphone which sends an electronic

8An analogy can be drawn between the time variation of the displacement, velocity, and
acceleration of an automobile on the one hand, and the spatial variation along the length of the
basilar membrane of its displacement, its degree of bending, and the above variation of the
degree of bending, on the other hand.
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Fig. 9.18 Rhythm theory with nerve spikes (source: Roederer, op. cit.)

signal down a wire into the cochlea; this signal excites the nerves at the site of the
hair cells. The individual wires, with corresponding sites in the cochlea, can number
about five to ten. Therefore, there is quite limited pitch discrimination.

9.8 Terms

– Auditory canal
– Basilar membrane
– Cochlea
– Eardrum (tympanic membrane)
– Fulcrum
– Hair cells
– Law of Simultaneous Contrast
– Lever action

– Mach bands
– Mechanical advantage
– Ossicles
– Oval window
– Pitch discrimination
– Place theory of pitch perception
– Rhythm theory of
– Pitch perception
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9.9 Problems for Chap. 9

1. Mechanical vibrations are transformed to nerve impulses in the

a. Middle ear
b. Eustachian tube
c. Auditory canal
d. Semicircular canals
e. Cochlea

2. The correct order in which mechanical vibrations pass through the parts of the
ear is

a. Eardrum, cochlea, hammer, stirrup, and oval window
b. Eardrum, hammer, anvil, stirrup, and cochlea
c. Eardrum, Eustachian tube, oval window, and round window
d. Eardrum, anvil, Eustachian tube, and organ of Corti
e. Eardrum, cochlea, basilar membrane, and middle ear

3. What is the function of the ossicles of the ear?
4. What are the two theoretical mechanisms for pitch discrimination provided by

the ear? Describe them in detail.
5. What are “Mach bands” and how do they relate to theories of pitch discrimina-

tion?
6. A mother of weight 120 lbs wants to balance herself against the weight of her

child whose weight is 40 lbs. They are seated on opposite ends of a seesaw whose
overall length is 12 ft. See Fig. 9.6. Where should she place the fulcrum? Start by
determining the ratio of the distances from the fulcrum to each of the two of
them.

7. Below is a table that is meant to illustrate the effect of Simultaneous Contrast. We
have a set of inputs for a string of 14 receptors. The inputs are meant to represent
the envelope of the wave that is travelling along the basilar membrane, with a
broad peak at the ninth receptor.
Calculate the respective outputs of the receptors using the recipe discussed in
the text. That is, if we let In be the input to receptor n and On be the output from
receptor n,

On D In � .InC1 C In�1/=5: (9.24)

Produce two graphs – one for the input vs. the receptor number (1–14) and one
for the output vs. the receptor number (1–14). Draw them, one below the other
to emphasize the difference. Your result should indicate an enhancement of the
peak of the response.

Receptor 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Input 20 22 24.5 26 29 33 37 40 42 39 36 33 31 30
Output



Chapter 10
Psychoacoustics

In the last chapter, we learned about the last step in the trail from the source of sound
to the brain via nerve signals from our ears. All these steps have been describable
in what we refer to as physical terms and are objective. And yet we do not know
in physical terms what it means when we say, “I hear a sound”. This last step has
eluded explanation and clarification. What is the physical nature of pain? Perhaps
we are asking the wrong questions. Perhaps we are limited by language, which is
after all a product of our conscious experience, and are therefore looking for the
answer to a question that has no meaning and therefore is, shall we say, invalid as a
question.1

The physicist knows how to characterize a sound uniquely. And yet, how people
describe a given sound that is heard varies from one individual to another. Of course,
a report must make use of the language of the person in relation to his/her own
personal experience. Two people learn to associate the color red with a certain
sensation they experience. What their individual experiences are, we do not know.
Both may report that a given color is red, but what they actually experience may
differ. We may both agree that two tones have the same or different pitch, but will
never know the extent to which our perceptions of the sounds are similar.

In spite of the above difficult issues, we can ask people certain questions
regarding their perceptive response to various sounds. For example: Which of two
sounds is louder? Or, which of two sounds has a higher pitch? Or, sing a tone
with a frequency of 440 Hz, recognizing that their ability to do so depends upon
their previous exposure to this tone. Tests of individuals by psychologists have
resulted, as you would expect, in a broad distribution of responses. Nevertheless,
psychologists have summarized their results in terms of normal responses, and
it is in these terms that we will discuss some of the characteristics of human

1Such a situation exists in the regime of phenomena for which the specific nature of Quantum
Theory is manifest. We have found, for example, that it is impossible to describe an atom in terms
of images that we have amassed for describing the world at the macroscopic level. For further ideas
into the issue of the nature of perception and what it means to think or feel, see the fascinating book
by Daniel Dennett Consciousness Explained, [Penguin Press, UK, 1992].

L. Gunther, The Physics of Music and Color, DOI 10.1007/978-1-4614-0557-3 10,
© Springer Science+Business Media, LLC 2012
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psychoacoustics, which is the study of the relationship between the objectively
characterizable sound incident upon a human ear and the corresponding perception
of the sound.2

Note

Before we get into the subject I need to point out that the subjects cov-
ered in this chapter are extremely limited in relation to the incredibly
wide range of areas of study of psychoacoustics. The chapter focuses
on a few subjects: (1) measures of loudness vs. intensity and frequency;
(2) “combination tones”: a phenomenon wherein we hear frequencies
that are not actually present in the sound incident upon our ears due
to the nonlinear response of our ears; (3) duration of a note needed
for pitch discrimination; and (4) “fusion of harmonics”: The sound
of a musical instrument generally has a large ensemble of harmonics.
Nevertheless, we do not hear the individual harmonics; rather, the sound
appears to have one source.
Both in this chapter on psychoacoustics and in Chap. 14 on color vision,
which is a branch of psycho-optics, we will focus on the basic elements
of sound and color, respectively: the musical note, with its multitude of
timbres and the color patch. We represent them in Fig. 10.1 for us to
focus our minds on these elements.3

It is interesting to compare these two images. The color patch displays a
hue (red, green, . . . .), saturation (degree of paleness), and brightness –
the details about which you can read about in Chap. 14. On the other
hand, the note symbol on the staff of a musical score has by itself only
the content of the frequency chosen for the “A,” which is currently
typically 440 Hz. This component of information is the analog of the
hue of the color patch. However, the actual sound produced by a
musician has a huge range of timbres, vibratos, and dynamics that
can each be varied throughout the duration of the note played. It is
reasonable to compare these components of the note with the relatively
small range of degrees of saturation. On the other hand, the level
of research being carried out with respect to a color patch is many
orders of magnitude greater than that for the performance of individual
notes. In parallel is the relative ease we have in remembering the
appearance of a color patch in comparison with the characteristics of
a performed note. Perhaps, we will learn how to pay more attention to
these varied sound characteristics and find a clearer, more precise way
to characterize their differences.

2The following Wikipedia website is a useful resource of links to many psychoacoustic phenom-
ena: http://en.wikipedia.org/wiki/Psychoacoustics.
3The note is an A with a typical frequency of 440 Hz and a color patch with the color that the
composer-pianist Alexandre Scriabin associated with the note A.

http://en.wikipedia.org/wiki/Psychoacoustics.
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Fig. 10.1 A musical note
– an A440 – representing an
element of a piece of music;
a color patch – representing
an element of color

10.1 Equal Loudness Curves

For normal hearing, increasing the intensity always increases loudness. What is the
quantitative relationship between intensity and loudness? To answer this question
would require, for example, that we be able to clearly determine when one sound
is twice as loud as another, a requirement that is impossible to meet. There are less
demanding questions one could investigate. For example, if a person is exposed to
two sounds of different frequency but equal intensity, they generally report that their
sense of loudness of the two sounds differs. The person can then be asked to match
the loudness of one tone by varying the intensity of the second tone. Back in the
1930s, extensive tests were carried out and resulted in the “so-called equal loudness
curves.” A more recent set of curves is shown in Fig. 10.2. We begin by discussing
the significance and highlights of these curves.

We note that the vertical axis is marked “intensity level” (what we have referred
to as the “sound level”) in dB, while the frequency is marked along the horizontal
axis. Points P and Q refer to two tones at frequencies of 100 and 400 Hz,
respectively, and lie along the same equal loudness curve. According to the curve,
100 Hz at 68 dB will sound equal in loudness as 400 Hz at about 57 dB.

The phon, symbol �, is a unit used to label the equal loudness curves. Suppose
that a sound of given frequency has a certain intensity I (with a corresponding sound
level – SL). To determine the number of phons for that sound, we look along the
corresponding equal loudness curve for the intensity and SL for a frequency of
1,000 Hz. The number of phons for the given sound is equal to the SL for a frequency
of 1,000 Hz.

For example, the two points P and Q both lie along the equal loudness
curve labelled “60 phons” (on the 1,000 Hz vertical axis). They correspond to the
frequencies 100 and 400 Hz, respectively. The number “60” refers to the sound
level of a 1,000 Hz sound at the given loudness. Zero phons corresponds to the
threshold of hearing for all frequencies while 120 phons corresponds to the threshold

For the reader who is interested in a more comprehensive discussion of psychoacoustics, I
highly recommend the book by Juan Roederer, Introduction to the Physics and Psychophysics of
Music – 4th ed. [Springer-Verlag, New York, 2008].
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Fig. 10.2 Equal loudness curves (source: H.E. White and D. H. White, Physics and Music, (Holt,
Rinehart, and Winston, Philadelphia, 1980))

of pain. The solid curves correspond to individuals at age 20, while the dashed
curves correspond to individuals at age 60. We note that the hearing loss due to old
age lies mostly in the high frequency range of 2,000 Hz and above.4

The most outstanding qualitative feature of the equal loudness curves is that
the ear is most sensitive to frequencies lying between about 1,000 and 4,000 Hz.
Typically, the maximum sensitivity lies at about 4,000 Hz. This fact accounts for the
following interesting aspects of music: First, while the bass drum has a power that
can far exceed the power output of any other instrument in an orchestra, it does not
drown out the orchestra because of its low frequency range. Second, professional
singers, who must project a loud sound in spite of the relatively low range of
their voices (especially that of basses and baritones) and a lack of amplification

4There is a revised international standard (ISO 226 2003) to be found on the following website
(1-22-2011): http://en.wikipedia.org/wiki/FletcherMunson curves. I kept the older figure below
because it includes the effect of aging. One reason for the difference are improved testing
procedures.

http://en.wikipedia.org/wiki/Fletcher�Munson_curves.
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in the performance hall, as can be the case in opera, can do so by singing with
what is called a squillo. Effectively, their voices contain a high amplitude of higher
harmonics lying in the above range – from 2,000 to 4,000 Hz if possible. In the Estill
method of voice development and theory, the squillo is referred to as twang.

Finally, we should note that the region characterized by the equal loudness curves
is bounded at the bottom and at the top. At the bottom, we have the curve referred to
as the threshold of hearing. For each frequency, we see the lowest possible intensity
that is audible. The upper boundary is called the threshold of pain, above which
sound is regarded as being “painful” and masks a sense of pitch. These threshold of
hearing is discussed in greater detail in Appendix H.5

10.2 The “Sone Scale” of Expressing Loudness��

It is well recognized that doubling the intensity corresponds to much less than a
doubling of the sensation. Therefore, intensity is a very poor measure of loudness.
The scale of sound level, which is logarithmic in the intensity, better represents
our sense of loudness in which doubling the sound level reflects more accurately
a doubling of the loudness than does a doubling of the intensity. However, this
improvement over-compensates the inaccuracies of using the intensity as a measure
of loudness. To obtain an even more accurate measure of loudness, the phon is
sometimes mapped onto another parameter called the sone, which we will represent
by the letter s.

The relation between the sone and the phon is shown in Fig. 10.3 as well as being
represented in Table 10.1. Note that the vertical scale is not linear; it is logarithmic.
All segments, running from 1 to 10 or from 10 to 100, and so on, are equal in length
in the graph. Over the course of each segment, the loudness increases in sones by a
factor of 10 (rather than adds to the loudness in sones by a fixed number).

The solid curve on the graph represents the sone value for all values of phons.
The mathematical relation between sones and phons for � > 40 phons is given by

s D 2
��40

10 : (10.1)

This relation produces a straight line in the figure, which is continued by a dashed
curve for � < 40 for comparison with the actual behavior for this regime.

For � < 40,
s D .�=40/2:86 � 0:005: (10.2)

We will restrict our discussion to the simple regime when � > 40 phons. The
behavior is based on the observation of psychoacousticians that any increase in

5You can test your own hearing within the limitations of your level of training by using the applet
on this website (1-22-2011): http://www.phys.unsw.edu.au/jw/hearing.html.

http://www.phys.unsw.edu.au/jw/hearing.html.
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Fig. 10.3 Sones vs. phons; table relating sones to dynamics (loudness) symbols in musical scores
(source: Sengpielaudio, (2-1-2011): http://www.sengpielaudio.com/calculatorSonephon.htm)

Table 10.1 Phons vs. sones Phon level 40 50 60 70
Loudness in sones 1 2 4 8

the number of phons by ten doubles the loudness in sones. Thus, the loudness
in sones will double if the number of phons increase from 40 phons to 50 phons or
from 50 phons to 60 phons. The loudness in sones will quadruple of the number of
phons increases from 30 phons to 50 phons. See a sample of values in Table 10.1.

It can be shown that the mathematical relation between the sone level and
intensity is given by6

s D
�

I 0

I 0
40

�0:3

: (10.3)

Here I 0 is the intensity of a tone at 1,000 Hz that is equal in loudness to that of the
given tone. I 0

40 is the intensity of a 1,000 Hz tone that has a sound level of 40 dB, that
is, 10�8 W/m2. The sone level increases more slowly than linearly but more rapidly
than logarithmically with respect to the intensity I 0.

6The number 0.3 in the equation is actually an approximation for log 2 D 0:3010: : :.

http://www.sengpielaudio.com/calculatorSonephon.htm
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Note

Both the number of phons and the sound level in sones that correspond
to a given sound wave depend not only upon the intensity, but also upon
the frequency!

The relationships described above are quite complicated. Therefore, we will present
as an example the following situation: Let us consider a sound of frequency 200 Hz
and sound level 30 dB. According to Fig. 10.2, the sound corresponds to about
23 phons. From (10.1) we find that the loudness is

s D 2
.23�40/

10 D 2�1:7 D 0:31 sones: (10.4)

Suppose that we want a sound that is doubly loud, that is s D 2�0:31 D 0:62 sones.
Let us determine the required number of phons.

s � 2
��40

10 D 2 � 0:31 D 2 � 2
.23�40/

10 : (10.5)

Then we have

2 D 2
��23

10 ; (10.6)

so that .� � 23/=10 D 1 and � D 33 phons.
Note that we could obtain this result more directly by recalling that doubling

the loudness in sones requires an addition of 10 phons to the phon level. Then we
require � D 23 C 10 D 33 phons.

To repeat,

Generally, in order to double the loudness, measured in sones,
one must add 10 phons to the phon level.

Sample Problem 10-1

What is the sound level corresponding to the above 200 Hz sound
having 33 phons?

Solution
From Fig. 10.2, we find SL D 37 dB.

Note that the change in sound level is from 30 to 37 dB, corre-
sponding to a change of 7 dB and an increase in intensity by factor
of 10�SL=10 D 100:7 D 5. In sum, in order to double the loudness of
this particular sound, one must increase the intensity by a factor of 5.

The above results for a specific frequency of 200 Hz are summarized in
Table 10.2. (The results generally depend upon the frequency.)
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Table 10.2 Comparison: intensity, sound level (SL), phon level �, and
loudness in sones of a 200 Hz pure tone

Intensity I in W=m2 Sound level SL Phon level Loudness in sones

10�9 30 23 0.31
5 � 10�9 37 33 0.62

10.3 Loudness from Many Sources7

Suppose that we have a number of sound sources. We address the question of how
we would compute the resulting SL and the loudness in sones. To simplify the
discussion, we will discuss only two sound sources; the generalization to more than
two should be obvious.

There are a number of cases that distinguish the results:

1. The two sources have the same frequency and are coherent – that is, have a
definite relative phase at the wave level. In this case, we determine the resulting
amplitude as discussed in Chap. 7. Squaring the total amplitude gives us the
resulting intensity, from which we can calculate the resulting phon level and then
the resulting number of sones.

As a simple example, we will consider two such sources that have the
same frequency of 1,000 Hz, the same amplitude, and are in phase. The total
amplitude is twice each. Therefore, the intensity is quadrupled, resulting in an
increase of 6 dB and hence 6 phons because the frequency is 1,000 Hz. Therefore,
the loudness in phons will change from � to � 0 D � C 6. From (10.1), we see
that the loudness in sones will increase by a factor of 26=10 D 20:6 � 1:52.

2. The two sources are independent and have different frequencies. Let �f be the
magnitude of the difference in the two frequencies. In this case, there are two
subcases that depend upon the two frequencies. We need to consider the critical
bandwidth, which refers roughly to the range of frequency differences such that
the two pitches cannot be distinguished.

(a) Suppose that �f < critical bandwidth. Then we find the intensity of each
of the individual sources. We add the intensities to obtain the total intensity.
We then calculate the corresponding number of phons for the total intensity
based on the average frequency. And finally, we calculate the number of
sones based on this phon level. Example: As in the previous example, we
assume that the frequencies are both close to 1,000 Hz and that both have
one sone, which corresponds to 40 phons. If we double intensity, we add
3 phons, which results in a total of 40 C 3 D 43 phons. Therefore, the
resulting loudness in sones is s D 2.43�40/=10 D 20:3 D 1:23 sones.

7See the website (1-9-2011): http://home.tm.tue.nl/dhermes/lectures/SoundPerception/05Loud
ness.html.

http://home.tm.tue.nl/dhermes/lectures/SoundPerception/05Loud
ness.html
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(b) Now suppose that �f > critical bandwidth. This case is simple, we simply
add the number of sones. In the above example, we obtain 2 sones.

Sample Problem 10-2

Consider a swarm of 1,000 mosquitos, each producing a sound with
SLD10 dB. Let us estimate the resulting sound level SL and the
loudness in sones.

We can easily obtain the sound level since �SL D 10 log 103 D 30 dB.
Therefore, the resulting sound level is 30 C 10 D 40 dB.

To determine the loudness, sones is more complicated since we need to
take into account the frequency spectrum of the sound. For simplicity,
we will represent the spectrum by the most prominent frequency, which
is about 300 Hz. From Fig. 10.2, we see that one mosquito’s sound
amounts to � D 0 phons. This corresponds to a loudness of 2�40=10 D
1=16 sone. To compute the total loudness, we note from Fig. 10.2 that
40 dB at 300 Hz corresponds to about 42 phons. Thus, we obtain

s D 2.42�40/=10 D 20:2 � 1:1 sones: (10.7)

Note

To close this section, we should note the following:
The intensity and the sound level are both objective measures of
loudness.
On the contrary, the phon level and the loudness in sones are subjective
measures of loudness in the sense that they are based on the results of
testing the hearing of a number of individuals.

10.4 Combination Tones and the Nonlinear Response
of the Cochlea

The phenomenon discussed in this section is quite unusual in which it is responsible
for the perception of tones, the so-called combination tones. They are not at all
present in the sound wave incident upon one’s ears and may partially account for
one’s sense of musical consonance. In hi-fidelity terminology, it is responsible for
harmonic distortion. In the early days of radio, it was a favorable characteristic
of poor audio speakers: The radio could not respond well to low frequencies (say,
about <400 Hz), so that the fundamental and possibly some overtones of a low-
pitched tone of a musical instrument might be missing or very weak in the electrical
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Fig. 10.4 Spring system

signal which excited the speaker. However, because of the nonlinear response of
the speaker, the higher harmonics would cause the speaker to produce a tone with
the missing fundamental and overtones included as components. The result might
be likened to enriched, bleached flour.

To understand nonlinear response, it is helpful to first appreciate linear
response, which we have thus far taken for granted. (Read Chap. 2 on the SHO,
as a preparation for what follows.) Consider the spring illustrated in Fig. 10.4. A
downward force is applied to the spring, which consequently increases in length by
an amount y in Fig. 10.4.

If the spring were pushed upward by a force of the same magnitude, the spring
would move upward by the same displacement, y. If the force is doubled, the
displacement y will be doubled. Generally, the distance is proportional to the force.

Displacement y / F or y D F

k
; (10.8)

where k is the spring constant. If we graph (10.8), we obtain a straight line.
Positive forces represent downward forces – hence a stretching of the spring and
increasing y. Negative forces represent upward forces – hence a contraction of the
spring and decreasing y. Because of the straight line graph, one says that the spring
responds linearly to an external force. (The displacement is on the y-axis while
the force is on the x-axis). The technical term describing this behavior is that there
is linear response. (Alternatively, one says that “the response of the spring to the
force is linear.”)
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Fig. 10.5 Nonlinear displacement of a spring in response to a force

Suppose the force varies sinusoidally in time with a frequency f . Then the
response, y, is just a sine wave multiplied by the constant 1=k, and is therefore
a sine wave of the same frequency f but with a different amplitude. Generally,
whatever the pattern of variation of the force with time will be reproduced by the
displacement.

Consider the process of a sound wave incident upon a microphone that is
connected to an amplifier that is, in turn, connected to a loudspeaker. If there is
linear response throughout, the pattern of the incident sound wave in time will be
reproduced by the electrical signal from the microphone, by the electrical signal
from the amplifier, and finally by the sound coming out of a loudspeaker. Thus,

linear response is associated with fidelity!

Now consider the response of a real spring as depicted in Fig. 10.5. The curve is not
a straight line. The response is said to be nonlinear.8

In Table 10.3, we list a number of systems upon which a force or an analog
of a force, a so-called generalized force is exerted. The quantity that measures the
response of the system to the generalized force is listed in the right-hand column.

We now consider a special case known as quadratic nonlinear response. In this
case, the displacement is proportional to the .force/2, or

y D bF 2; (10.9)

where F is the force and where b is a constant of proportionality.

8It is important to note that for small enough forces, the response of a real spring is essentially
linear. That is, we can assume that the displacement of the spring is proportional to the force
to a good approximation. Thus, the so-called ideal spring is an abstraction whose behavior is
approached by a real spring for small forces. It is a remarkable fact that the bulk of physical
theories and concepts are based on abstract models of the real world which assume linear response
as an approximation, with deviations from linearity being second order effects which may or may
not be essential to the phenomena of interest. Furthermore, the Principle of Superposition, which
was discussed in Chap. 7, is dependent on a linear response of the system. Thus, to the extent that
the response is nonlinear, this principle breaks down.
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Table 10.3 Various systems – generalized force vs. the response

System Generalized force Response

Spring Force on spring Displacement of spring
Stereo receiver Amplitude of radio wave Electrical voltage output of

stereo receiver
Speaker Electrical voltage input to speaker Displacement of the diaphragm

of the speaker
Wishbone Pull on a wishbone Change in the angle between

the “legs” of the wishbone

Fig. 10.6 A sine wave; the square of a sine wave

Suppose now that the force F is a pure sine wave of frequency f , as in Fig. 10.6.
According to (10.9), the displacement will be the square of a sine wave and hence
is always positive. The two functions, a sine wave and the square of a sine wave, are
depicted in Fig. 10.6.

In Fig. 10.6, we see that the force F (the upper curve) is periodic and has twice the
period of the square of the force F 2 (the lower curve). Alternatively, F 2 has double
the frequency of F.9 If the force has a frequency of 400 Hz, the output will be 800 Hz.
If the response is a sum y D aF C bF 2, the output will be two frequencies, 400
and 800 Hz.

We get a more interesting result if the force is a mixture of two Fourier
components, say, with frequencies f1 and f2. Let us represent the component forces
by the symbols F1 and F2, respectively. Then the total force F is given by the sum
of F1 and F2:

F D F1 C F2;

9This result is obtained from the trigonometric identity is sin2 � D 1=2 � .1=2/ cos 2� .
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Fig. 10.7 Two sine waves, with f2 � f1, and the cross term of the square of their sum

while the square of F is given by

F 2 D .F1 C F2/
2 D F 2

1 C F 2
2 C 2F1F2:

According to our preceding result, F 2
1 has a frequency component of 2f1, while

F 2
2 has a frequency component 2f2. Finally, we need to know the frequency

composition associated with the product F1F2.
It can be shown10 that the product 2F1F2 has two components, with frequencies

.f2 � f1/ and .f2 C f1/, respectively.
We can make this result somewhat plausible by considering the case when

f2 � f1. Then, in the product F1F2, the factor F1 produces an envelope of the sine
curve F2. The behavior of F1, F2, and the product 2F1F2 are depicted in Fig. 10.7.

The pattern 2F1F2 is that of the beating of two components, with a beat
frequency

fB D .f2 C f1/ � .f2 � f1/ D 2f1:

In sum, if y / bF 2 and F D F1 C F2, y has Fourier components with frequencies

2f1; 2f2; .f2 C f1/; and .f2 � f1/:

Let us finally consider a second example of nonlinear response, wherein the
displacement is proportional to cube of the applied force: y D cF 3, with c as a

10The result is based on the trigonometric identity: 2 sin �1 � sin �2 D cos.�2 ��1/�cos.�2 C�1).
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Tone f2
(Varying Frequency)

Tone f1
(Fixed Frequency)

Frequency of

Varying Tone

Frequency of
Tone Sensation

Difference Tone

fC1= f2 − f1

fC2= 2f1 − f2

fC3= 3f1 − 2f2

f1 2f12 f1
3

Fig. 10.8 Frequencies of combination tones (source: Roederer, op. cit.)

constant. Then, if F D F1 C F2, it can be shown that y has components with
frequencies f1, f2, 3f1, 3f2, 2f1 � f2, 2f2 � f1, 2f1 Cf2, and 2f2 Cf1. (The reader
can try to guess what result would obtain if y / F 4.)

Now that we have discussed how various nonlinearities in response are man-
ifested by the outputs of two sine waves, we now summarize how nonlinearity
manifested in the ear:

When a sound, having a mixture of two components, with frequencies f1 and f2,
is incident upon the ear, tones having pitches corresponding to

fc1 D f2 � f1

fc2 D 2f1 � f2

fc3 D 3f1 � 2f2 (10.10)

can be heard – in addition to the tones corresponding to the frequencies f1 and f2.
These are the frequencies of the combination tones. Their existence indicates that
the response of the ear is nonlinear. See Fig. 10.8, wherein these frequencies are
graphed as a function of f2, with f1 kept fixed.

Experiments show that the basilar membrane within the cochlea responds
nonlinearly to the fluid forces acting upon it. The fluid does respond linearly to
the pressure exerted by the footplate at the oval window. Ultimately, the basilar
membrane responds nonlinearly to the sound pressure p at the outer ear.
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Now the sound pressure can be written as the sum of two components,
corresponding to the two frequencies, f1 and f2:

p D p1 C p2: (10.11)

The above perceived frequencies indicate that the response of the ear to the sound
pressure is given by the sum

y D ap C bp2 C cp3 C ep5; (10.12)

where a, b, c, and e are constants. The first term accounts for the perception of the
tones corresponding to f1 and f2, the second to .f2 � f1/, the third to .2f1 � f2/,
and the fourth to .3f1 � 2f2/. A difficult question to answer is why the remaining
frequencies, such as f2 Cf1 or 2f2 Cf1, which are expected according to the above
response relation between y and p, are not perceived.

10.5 The Blue Color of the Sea and Its Connection
with Combination Tones

In Chap. 8, we discussed how the scattering of light by the air is responsible for our
being able to see the blue sky. Certainly, when we look down into the sea, scattering
of the light is responsible for our being able to see its blueness. We might therefore
conclude that the preferential scattering of short wavelengths is the most important
reason for the blue color of the sea. Evidence to the contrary is indicated by the fact
that if you view sunlight from within the sea looking upward, the light will be blue –
in contrast to the red appearance of the setting sun. The primary source of the blue
color of the sea is the absorption by water of light in the red region of the visible
spectrum. Figure 10.9 exhibits the blueness of water from above the surface as well
as from below. The deeper you are in the water, the bluer the light will be because
of the increased absorption of red.11

Interestingly, it was difficult to understand how water could exhibit strong
absorption in this range of wavelengths since there are no corresponding energy
level differences among the quantum states of water.12 There are vibration modes
in the infrared region; they are the key to the explanation. It turns out that the
vibration of the atoms in a water molecule do not obey Hooke’s law precisely. There
is a nonlinearity in the interatomic forces. As a result, the spectrum of frequencies
includes combination modes – analogous to the combination tones that we hear due
to the nonlinear response of the ear! It has been shown that the strong absorption

11If you look down into the sea, the light you see is scattered light. However, the effect of
preferential scattering toward the blue is more than compensated for by the preferential absorption
in the red.
12See Chap. 6 for a review of the connection between absorption and energy level differences.
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Fig. 10.9 (a) Moraine Lake, Bannf, Canada (b) Egypt Orange Spine Unicorn fish in the Red Sea
(sources: (a) http://en.wikipedia.org/wiki/File:Moraine Lake-Banff NP.JPG (b) Photo by Sami
Salmenkivi, http://seafishes.wordpress.com/category/family/surgeonfish/)

Fig. 10.10 Key vibration
modes – �1 and �3 –
responsible for the blueness
of the sea (source: Martin
Chaplin, http://www.lsbu.ac.
uk/water/vibrat.html#2)

in the red is due to two modes of vibration – commonly labeled �1 and �3 – that
produce a fourth order combination mode with frequency fc D f1 C 3f3 in the red
low wavelength region. These vibration modes are exhibited in Fig. 10.10.

10.6 Duration of a Note and Pitch Discrimination

How long must a single note be played for you to be able to have a clear sense of its
pitch? Imagine a pianist playing a series of notes extremely rapidly – say at 32 notes
per second. The duration of a single note is a mere 1/32 of a second. In case you
have not done so, I suggest that you play a series notes on the piano by striking the
keys sharply. See what happens as you move downward to ever lower notes. I am
sure that you will find that it gets very difficult to sense the pitch when you play the
very lowest of notes. Why is this so?

The answer to this question has to do with the frequency. Imagine if the frequency
is but 20 Hz. Then with a duration of � D 1=32 s, there will be but 20/32 D 5/8
oscillation. It is unreasonable that one can have any sense of pitch in this case. We
would expect that the duration must be such that the number of oscillations is at
least on the order of two or three.

In general, the number of oscillations N over a time interval � is given by
�=period. Since f D 1=period, N D f � . For example, if the frequency is 440 Hz

http://en.wikipedia.org/wiki/File:Moraine_Lake-Banff_NP.JPG
http://seafishes.wordpress.com/category/family/surgeonfish/
http://www.lsbu.ac.uk/water/vibrat.html#2
http://www.lsbu.ac.uk/water/vibrat.html#2
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Fig. 10.11 Minimum Duration j� in ms to discriminate a pitch vs. frequency on a log scale
(source: Courtesy of Jouni Hiltunen, http://www.acoustics.hut.fi/teaching/S-89.3320/KA6b.pdf)

and the time interval is 1/100th of a second, the number of oscillations is
N D f � D 440 � 0:01 D 4:4.

For a given time interval, the lower the frequency, the poorer is our sense of pitch.
As a consequence, it is often difficult to perceive clearly the pitch of the notes at the
far lower end of the piano. We can express the minimum duration as

� D N

f
D NT; (10.13)

where T is the period.
We see how the necessary duration is inversely proportional to the frequency.

We see a comparison of the Fig. 10.11 experimental results of Matti Karjalainen
with the expectation – the dotted curve – according to this formula with N D 2.
Note that the horizontal axis is actually the logarithm of the frequency.13 The rise in
the minimum duration for very high frequencies is not explainable on the basis of
our simplified approach.

Note

A related question is how precisely a device can measure the frequency
of a sine wave of finite duration � . The answer is that the uncertainty in
frequency �f is given by

�f � f

N
D 1

�
: (10.14)

13The expected curve is then � / 10�b log f , where b is a constant. We can see the exponential
behavior of the dotted curve.

http://www.acoustics.hut.fi/teaching/S-89.3320/KA6b.pdf
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Thus, if you are measuring a frequency of 400 Hz and you sample the
sound for 10 s, you can typically rely on the result to within 1/10 Hz.
Thus you might obtain a reading of 400.1 Hz – and therefore a result
with four significant figures.

10.7 Fusion of Harmonics: A Marvel of Auditory Processing

We take for granted that when a musical instrument plays a note, we will hear the
sound of but one source of sound. We have already learned in Chap. 2 that the
frequency spectrum of the periodic wave of a musical instrument is a harmonic
series, with the frequency of the wave. We have also learned that the timbre of an
instrument is partly determined by the relative amplitudes and phases of the Fourier
components associated with the instrument. On the other hand, more than three
decades ago, I began to use a device made by the PASCO corporation for producing
an electronic signal consisting of a periodic wave having up to nine harmonics,
with a fundamental of 440 Hz. Such a device is called a synthesizer. The electronic
signal was fed into an amplifier, which was connected to a loudspeaker. All listeners
reported that they could hear the individual harmonics in the sound. Each harmonic
was audibly separated, as if the harmonic had come from a separate source of sound.
What is the difference between the wave produced by the Pasco synthesizer and the
sound wave produced by a musical instrument? There is no visible characteristic
on an oscilloscope trace that indicates a difference. Perhaps there is a significant
difference that is too small to see on the trace with one’s eyes.

We will discuss in this section the fact that the brain processes the sound so that
we do not hear the individual harmonics. This process is referred to as fusion of
harmonics.14;15

14I have been greatly helped in my attempt to weed out the known understandings of fusion by
two audio-psychologists: Alan Bregman of McGill University, Brian Roberts of Aston University
(Birmingham, England) and Oliver Knill of Harvard University. Alan Bregman is the author of a
book entitled Auditory Scene Analysis [MIT Press, Cambridge, 1994], in which he discusses how
the brain processes and ensemble of sound inputs and organizes them according to sources. In
particular, he explains how the brain is able to focus on one source of sound and ignore or become
almost oblivious to other concurrent sources. As a result, we are able to hear one person speak in
the midst of a dense crowd at a party.
15For a resource of introductory material and references on this subject see: (1-2-2011):
http://jjensen.org/VirtualPitch.html#use.

A more general concept than fusion of hamonics is the concept of virtual pitch. It takes into
account the tendency of the brain to choose a pitch to be perceived even of frequency spectrum
is not perfectly in a harmonic series and there is ambiguity. The concept of virtual pitch is
attributed to Ernst Terhardt. See his publications: Pitch, consonance, and harmony, Journal
of the Acoustical Society of America, 55 #5 1974. p.1061-1069, and Calculating Virtual Pitch,

http://jjensen.org/VirtualPitch.html #use.
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Fusion in the Taste of Food
It might be unclear to some readers what I mean by fusion of a mixture of harmonics.
We can get some idea of fusion by considering the taste of a homogeneous dish of
food. I recall many years ago, finding Lobster Cantonese an extremely delicious
dish. When I first attempted to prepare the dish myself, I was amazed to learn
that the essential ingredients were lobster and garlic. How well I knew the taste
of garlic and yet how surprised I was that garlic was an essential ingredient in the
recipe. Somehow, the blend of garlic and lobster produced a taste all its own – that
of Lobster Cantonese – with the flavor of neither ingredient standing out. And so
it seems to be with most superb dishes – as long as they are prepared properly.
As another example, we can consider curries. Most are such that the ingredients
are individually recognizable; there are fortunately some that have a wonderful
homogenized flavor all their own. And so it seems to be with the fusion of a mixture
of harmonics from a musical instrument!

It is interesting to consider and to try to perceive what the world of music would
be like in the absence of fusion: The sound of a musical instrument would be
heard as an ensemble of harmonics that would be superimposed with those of other
musical instruments. We would lose our ability to separate out the sounds of the
ensemble of instruments. Vibratos might lose their sweetness of tone. And so on.

Fusion of Harmonics is responsible for the rich beauty of musical instruments.

Here are some important interesting questions to be investigated:

1. What accounts for the ubiquitous fusion of the sound produced by musical
instruments?

2. What are the conditions under which a sound wave with a superposition of
harmonics will be fused and will be perceived as having a single source? Factors
that seem to be important include:

(a) The frequency of the fundamental studies indicate that the lower the funda-
mental frequency, the greater is the degree of fusion.

(b) The number of harmonics present and their relative amplitude.

Hearing Research 1 1979. p.155-182. Below are references to fascinating illusory responses to
sequences of complex sounds:

(1) Shepard’s Staircase, wherein a sound seems to be ever decreasing in pitch but is actually
cycling around like M.C. Escher’s staircase. For an incredibly hilarious representation of this
illusion see (1-21-2011): http://www.flixxy.com/escher.htm. To listen to Shepard’s staircase see
(1-21-2011):
http://www.cycleback.com/sonicbarber.html
Reference: Shepard, R.N. (1964). Circularity in judgments of relative pitch, J. Acoust. Soc.
Am., 36, 2346-2353.
(2) Diana Deutsch (1-21-2011):
http://www.philomel.com/musical illusions/octave.php
Included are a number of sound files that allow you to listen to illusions.

http://www.flixxy.com/escher.htm.
http://www.cycleback.com/sonicbarber.html
http://www.philomel.com/musical_illusions/octave.php
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(c) The presence of “proportional modulation,” sometimes referred to as “paral-
lel modulation.” Consider frequency modulation, which is characterized by
two parameters. There is a rate at which the frequency is modulated – label
it fm. Next, there is an amplitude of variation of the frequency – label it
�f . Proportional frequency modulation would involve each harmonic being
modulated with the same frequency of modulation fm but with a variation fa

in proportion to the harmonic number n.
Here are some possibly relevant sources of frequency modulation:

Acoustic stringed instrument
A major source of frequency modulation is vibrato. A small periodic
variation in the length of string that is free to vibrate will lead to proportional
variation in each of the harmonics. Here is another possible source of
frequency modulation, small as it may be: Normally we think of the
vibrating string as having two fixed ends. However, the transmission of sound
waves involves the string moving the bridge. Therefore, the string is not
absolutely fixed at the bridge. Therefore, the string’s length and its tension
are modulated.

Wind instrument such as a flute
Here too – there is a modulation of the frequency due to the vibration of the
mouth of the musician.

3. Are there strong variations in the auditory processing of people such that sounds
that are fused for some people are not fused for others. It is reported that some
people can sometimes distinctly hear the individual harmonics produced by a
musical instrument.

10.7.1 Mathematica File

Below we provide a Mathematica file for producing a variety of waves that can be
heard using the PLAY command of Mathematica. The reader can use this file to test
his/her auditory processing a superposition of proportionally frequency modulated
harmonics. When you run the commands, a window will appear that allows you to
listen to the wave form.

SYMBOLS:

Text: fn D central frequency for a given harmonic, n D 1; 2; 3; ::: [f2 D 2 f1, ...,
f6 D 6 f1]
� �f D maximum change in frequency
hn D ıf n=f n D modulation index
An D amplitudes
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We begin with all modulation indices hn � �f =f n the same:
h D f v=f 1:

INPUT LINES
f1 D f
f D 440
f2 D 2*f
f3 D 3*f
f4 D 4*f
f5 D 5 f
f6 D 6 f
fv D 10
phi D f*t C (fv/(2 Pi f))*Cos[2 Pi f * t]
phi2 D f2*t C (fv/(2 Pi f2))*Cos[2 Pi* f2 * t]
phi3 D f3*t C (fv/(2 Pi f3))*Cos[2 Pi* f3 * t]
phi4 D f4*t C (fv/(2 Pi f4))*Cos[2 Pi* f4 * t]
phi5 D f5*t C (fv/(2 Pi f5))*Cos[2 Pi* f5* t]
phi6 D f6*t C (fv/(2 Pi f6))*Cos[2 Pi* f6* t]
A1 D 1
A2 D 1
A3 D 1
A4 D 0.01
A5 D 0.01
A6 D 0.001

INPUT COMMAND
Play[ A1*Sin[2 *Pi* phi] C A2*Sin[2* Pi * phi2] C A3*Sin[2* Pi * phi3] C
A4* Sin[2* Pi * phi4] C A5* Sin[2* Pi * phi5] C A6*Sin[2* Pi * phi6], t, 0, 5,
SampleRate ! 40000]

Next, the modulation indices are proportional to the harmonic:
hn D n � f v=f 1

INPUT LINES
phi D f*t C (fv/(2 Pi f))*Cos[2 Pi f * t]
phi2a D f2*t C (fv/(2 Pi f))*Cos[2 Pi* f2 * t]
phi3a D f3*t C (fv/(2 Pi f))*Cos[2 Pi* f3 * t]
phi4a D f4*t C (fv/(2 Pi f))*Cos[2 Pi* f4 * t]
phi5a D f5*t C (fv/(2 Pi f))*Cos[2 Pi* f5* t]
phi6a D f6*t C (fv/(2 Pi f))*Cos[2 Pi* f6* t]

INPUT COMMAND
Play[ A1*Sin[2 *Pi* phi] C A2*Sin[2* Pi * phi2a] C A3*Sin[2* Pi * phi3a] C A4*
Sin[2* Pi * phi4a] C A5* Sin[2* Pi * phi5a] C A6*Sin[2* Pi * phi6a], t, 0, 5,
SampleRate ! 40000]
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10.8 Additional Psychoacoustic Phenomena

We summarize below additional psychoacoustic phenomena not covered in this text:

1. The variation of pitch with loudness: Our sense of pitch varies with loudness.
This phenomenon reflects a dramatic difference between a subjective perception
and an objective input. We see the results of experiments of this phenomenon in
Fig. 10.12.16 The central features of the graphs are the following: At about 2 kHz,
pitch does not depend upon loudness. Below 2 kHz, the pitch decreases with
increasing loudness, while above 2 kHz it decreases with increasing loudness.
Note that when musicians tune their instruments for the purposes of having a
shared tuning, they share their notes at a low sound level.

2. Just noticeable difference in frequency as a function of frequency: How
different can two sounds be with respect to frequency and still be distinguishable?

3. Just noticeable difference of loudness as a function of frequency: How different
in loudness can two sounds be and still be distinguishable?

4. Second order beats, also referred to as mistuned consonances, result in a sense
of beating between the corresponding harmonics of the two tones.

5. masking: One sufficiently intense tone of a certain frequency will mask a second
tone having a different frequency and much lower intensity.

6. A psychoacoustic basis for consonance.

The reader is encouraged to read other resources that describe the incredibly rich
experiences connected with both psychoacoustics and auditory processing. A recent
outstanding book at a layman’s level is This is Your Brain on Music, by Daniel

Fig. 10.12 Change in pitch with respect to sound level (source: Based upon Hearing Research,
vol. 1, p. 162, (1979), “Calculating Virtual Pitch”, Ernst Terhardt, with permission from Elsevier)

16This website has sound bites that allow you to hear the change of pitch with increasing intensity.
(1-21-2011):
http://www.santafevisions.com/csf/demos/audio/412 dependence pitch intensity.htm.

http://www.santafevisions.com/csf/demos/audio/412_dependence_pitch_intensity.htm.
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Levitin [Penguin Group, New York, 2006]. Another book at a higher level is Tuning,
Timbre, Spectrum, Scale, by William A. Sethares [Springer-Verlag, London, 2nd
edition]. To appreciate the latter book, the reader should first study Chap. 11 on
musical scales. And finally we mention Musicophilia: Tales of Music and the Brain,
by Oliver Sachs [Alfred A. Knopf, New York, 2007].

10.9 Terms

– Aural harmonics
– Combination tone
– Difference tone
– Equal loudness curve
– General force

– Harmonic distortion
– Linear response
– Masking
– Nonlinear response
– Phon

10.10 Important Equations

Mathematical relation between the sone and the phon:

s D 2
��40

10 : (10.15)

Combination tones:

.f2 � f1/; .2f1 � f2/; .3f1 � 2f2/:

10.11 Problems for Chap. 10

Five pure tones (which we will call A, B, C, D, and E) are sounded with the physical
characteristics shown in table above. Use the equal loudness curve in the text to
answer the following three questions.

Tone Frequency (H z) Intensity (W=m2)

A 1,000 1:0 � 10�10

B 100 1:0 � 10�10

C 100 1:5 � 10�7

D 10,000 1:5 � 10�8

E 15,000 9 � 10�8
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1. For a normal young ear, which tone is probably the loudest?

(a) A
(b) B
(c) C
(d) D
(e) E

2. For a 60-year-old person, which tone or tones are probably inaudible?

(a) B
(b) E
(c) B and E
(d) A, B, and E
(e) A, B, D, and E

3. For a normal young ear, which tone or tones sound equal in loudness to
tone C?

(a) B
(b) D
(c) E
(d) D and E

4. (a) What is the phon level of a 60 dB sound at 100 Hz?
(b) What is the sound level in dB of a 10,000 Hz sound of 20 phons?
(c) What is the loudness in sones corresponding to 80 phons?
(d) How many phons corresponds to a loudness of 1/4 sone?

5. (a) What are the frequencies of the significant combination tones produced
by two tones having frequencies 500 and 750 Hz?

(b) What is the hypothesized physical basis for the perception of combination
tones?

6. Consider a sound of frequency of 400 Hz and sound level of 40 dB.

(a) What is the number of phons?
(b) Find the loudness in sones.
(c) Suppose that we want to double the loudness in sones of the sound. Find

the required number of phons and the sound level.

7. Suppose that we have one million bees, each producing a sound of frequency
200 Hz and a sound level of 15 dB. The determination of the loudness of the
total sound produced is the object of this problem.

See Sample Problem 10.3.

(a) Find the corresponding phon level of the sound from one bee.
(b) Find the corresponding loudness in sones of the sound from one bee.
(c) Find the corresponding sound level in decibels and the loudness in phons

of the sound of one-million bees.
(d) Find the corresponding loudness in sones of the sound of one million bees.
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8. Again referring to Sample Problem 10.3, note that when the two sources with
about the same frequency have one sone each, the resulting sone level was
about 1.1 sones, which is less than the two sones resulting had the frequencies
not been close. Yet, we should note that this value of 1.1 depended upon the
frequency being 1,000 Hz, for which a change in SL equals a change in phons.

(a) Explain why, for the change in sones to exceed two, the frequency must be
such that a change in SL of 3 dB amounts to a change of at least 10 phons.

(b) Study the equal loudness curves in Fig. 10.2 and see whether there is any
such frequency.

9. Here is a problem that professionals who produce musical recordings must
contend with. It is also an issue that affects all music we hear, whether live
or from recordings.

For simplicity, suppose that we mix two pure tones, one at 200 Hz and the
other at 1,000 Hz. We want them to have the same loudness. We mix at a level
that the 1,000 Hz tone has a level of 20 phons.

(a) Determine the sound level of the 200 Hz tone?
(b) Now suppose that the intensity of both tones is increased by a factor of

100. Determine the resulting sound level and the phon level of each tone,
noting that the latter are now unequal.

10. Most people would regard the moth as being quite primitive and helpless against
attacks by a predator. However, it has been known for over 50 years that moths
have auditory perception using eardrums and a few sensory cells that can detect
an impending attack by predator bats. Recently,17 it was reported that a moth’s
eardrum is not static but adjusts itself to the changing sound from bats. Bats use
ultrasound to locate their prey and, of course, to avoid obstacles in their path.
The range of frequencies of a bat during general flight is usually in the range
of 20–40 kHz. This is a range of frequencies for which the moth’s eardrum is
most responsive in its resting state.

However, there are two interesting changes in bat and moth behavior in the
course of a predatory attack.

Explain the physical principles that account for these changes.

(a) When homing in on prey, a bat’s frequency is increased to a much higher
range, up to about 80 kHz.

(b) When a bat is approaching a moth, the increased sound intensity leads the
moth’s eardrum to become stiffer.

17http://www.sciencedaily.com/releases/2006/12/061218122629.htm.

http://www.sciencedaily.com/releases/2006/12/061218122629.htm.




Chapter 11
Tuning, Intonation, and Temperament:
Choosing Frequencies for Musical Notes

Imagine yourself seated in a concert hall, anticipating the beginning of a symphony
orchestra performance. The musicians are all seated. The concertmaster rises and
calls to the oboist to sound the “A,” which will be the standard pitch that all others
will use to tune their instruments. In advance the oboist has tuned the oboe to the
standard frequency chosen by the orchestra, which is usually a frequency of 440 Hz.
The winds and brass and tympani tune their instruments accordingly.

Next, the strings tune their A-strings to the oboe’s “A.” Following that, the strings
tune their other three strings accordingly. For example, the violins tune the “E,”
which is a musical “fifth” above the “A,” played simultaneously with the “A.” The
violinist strives for the maximal beauty of a resonance between the two strings.
Tests reveal that the ratio of the two frequencies is very close (within a fraction of a
percent) to fE=fA D 3 W 2. The violinist continues in a similar manner with the “D”
a fifth below the “A” and then the “G” a fifth below the “D.” The frequency ratios –
high to low string – again will be close to 3:2. The harpist has already tuned the
harp’s 47 strings to the standard frequency for the A, but in advance and while on
stage so as to avoid changes that might result from moving the harp. Upon hearing
the oboe, the harpist might have to quickly make fine adjustments.1

If a piano is to be played, its 230 strings (!) would have been previously tuned
to the standard “A” before the time of the performance. The pianist will not have an
opportunity to make any changes during the concert.

1A harpist acquaintance of mine, Judith Ross, told me the following: “Harpists are always nervous
about the tuning. I tune a little higher than 440, even though the oboe blows 440, because the
violins always seem to tune or go sharp. And I’m used to adjusting as I go. When I play in the pit
for shows, I’m constantly re-tuning during the dialogues. I’ve even replaced broken strings during
dialogues. In orchestral concerts if I hear something wacky, I try to tune the offending string(s) as
inconspicuously as possible. Stravinsky is believed to have said that ‘Harpists spend 90% of their
time tuning their harps and 10% playing out of tune.’” Here is a source of this quote (1-23-2011):
http://en.wikiquote.org/wiki/Igor Stravinsky.

L. Gunther, The Physics of Music and Color, DOI 10.1007/978-1-4614-0557-3 11,
© Springer Science+Business Media, LLC 2012
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Once tuned, the musicians will perform the concert by producing strings
of notes with frequencies that are limited by their respective instruments. Of
course, musicians will frequently have to make adjustments of the tuning of their
instruments during a concert due to changes that are wont to take place – such as
temperature changes, changes in the tension of a string that might not have been
stabilized when first tuned, and so on. The string players will have liberty to choose
notes that involve shortening the length of string that is free to vibrate by varying
the placement of their fingers on the strings. Winds and brass can choose notes
by covering holes on the instrument or changing the length of the pipe in the case
of a trombone. The frequency can be moderately varied by the winds and brass
by changing the way the mouth blows into the instrument or covering the end of
the instrument in the case of the brass. The harpist and pianist cannot make such
adjustments.

Those notes that cannot be changed significantly are referred to as fix tuned.
A piano is an entirely fix tuned instrument. The strings, winds, and brass are only
partly fix tuned.

The whole process of tuning an orchestra is a grand display of majesty, reflecting
the goal and ability of a group of people to get together to produce an extremely
well-organized act of cooperation leading to the heavenly sound of the music of a
symphony orchestra.

The focus of this chapter is to study the complex aspects of the choice of
frequencies that are played once given a standard “A.” This choice has two
components: First is the intended frequency, which we refer to as temperament or
tuning. Second is the actual frequency in a performance. The latter is best referred
to as intonation and can reflect either intended choice, where choice is possible, or
a mistaken, unintended outcome. “Bad intonation” refers to a disagreeable resulting
pitch. Above all, in this chapter we will learn about the central role of numerology
in the process of choosing frequencies and of the fact that a compromise cannot
be avoided in an attempt to maximize consonance. Total consonance in its usual
meaning can be shown to be impossible mathematically!

Since music is sound and sound consists of waves, what are the waves that
music is made of? The focus in this text is on music that has a definite pitch. And,
as we have seen, pitch is, for the most part (but not entirely), determined by the
frequency of a periodic wave.2 Given that the audible range of frequencies spans
�20 Hz to � 20;000 Hz, a musical composition could call for musical notes whose
fundamental frequencies span this entire range, continuously. Instead, cultures
have produced musical compositions which make use of certain discrete sets of
frequencies. These sets are called musical scales.

To some extent, the choice of frequencies is analogous to the set of colors of
paints that a painter places on his/her palette, putting aside the fact that a painter
uses the set of colors to produce a continuum of other colors by mixing the base set

2Note that I refer here to a “periodic wave” , not a sinusoidal wave that is associated with a “pure
tone”.
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Fig. 11.1 Frequency palette

in various proportions. See Fig. 11.1, in which we exhibit this analogy with a set of
frequencies corresponding to a pentatonic scale (to be discussed below) laid out on
a palette.

The pentatonic scale is found throughout the world. The two other most
common musical scales are the diatonic scale and the chromatic scale, which
are used in the Western world. We will discuss only these three. Also, we will use
the symbols and terminology of Western music. The key question that any serious
musician must deal with is:

What should be the frequencies of the musical notes?

The goal of this chapter is to study the bases for the choices in tuning or the choice
of the frequencies. We will begin with a discussion of musical scales, which are the
backbone of what is referred to as tonal Western music. We then briefly discuss
Pythagorean tuning, which is one of the oldest mathematically defined tunings
in Western music. We then move on to Just tuning and discuss its drawbacks.
Finally, we discuss the most widely used tempered tuning – equal temperament.
In Problem 14 of this chapter, we discuss Werkmeister I(III) temperament, which
was one of a number of temperaments that were popular in the Baroque era (ca. first
half of the eighteenth century).

11.1 Musical Scales

Every scale has a key note, which is the first note of the scale: A musical
composition tends to be drawn to that note so strongly that almost invariably, the
last note of a Western composition is the key note. The composition tends to feel
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incomplete and produces a certain tension unless this is so.3 To be specific, we will
assume that we are dealing with a scale that has “C” as its key note. We say that the
“scale is in the key of C.”

Most fundamental in determining the discrete set of frequencies chosen for a
scale is the octave: Two frequencies which are in a 2:1 ratio are said to be an octave
apart. They sound much alike. Some people cannot tell them apart. Once we choose
a certain frequency for so-called middle-C on the piano, we can generate an infinite
set of other frequencies that are octaves apart. Consequently, the entire spectrum of
notes consists of a series of identical octaves of notes. We will use the symbol C4 to
denote middle-C. (See Fig. 11.2 of a piano keyboard.) The frequencies indicated
are those associated with the A above middle-C set at 440 Hz and the other notes
tuned with equal temperament , which will be discussed in detail in this chapter.

Suppose, for simplicity, we choose fC4 D 250 Hz. Then an octave above C4 is
C5, with fC5 D 2 � 250 D 500 Hz. Continuing on, we obtain

fC6 D 2 � fC5 D 4 � fC4 D 1;000 Hz

fC7 D 2;000 Hz

fC8 D 4;000 Hz

: : :

Moving downward, we obtain fC3 D .1=2/fC4 D 125 Hz, . . . etc. The question is:
How should we fill in the notes with discrete frequencies between a C and its octave
above, C5?

Note

Once this range is filled in, all other notes are determined by octave
relationships, as above. In this connection, we should note that the term
octave has an additional meaning: It is also used to refer to the set of
notes spanning from a given note to its octave note above. Thus, we
may also refer to the octave of notes ranging from C4 to C5 or from C5

to C6.

Moving from one note to another is referred to as taking steps – e.g., making a
semitone step.

Considering all the fuss we will be making about tuning and intonation in theory,
how do instrumentalists actually tend to choose their frequencies? There has been
much study of this last question; unfortunately, the question is beyond the scope of
the text.4

3In fact, some composers intentionally end on a note other than the key note so as to leave the
listener in a state of tension!
4For further details, see the classic text on the psychology of music: Seashore, Carl Emil,
1866–1949. Psychology of music, by Carl E. Seashore. New York, Dover Publications [1967]
ML3830.S32 P8 1967.
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Fig. 11.2 Piano keyboard
with a corresponding musical
staff. Shown to the right of
each key is the frequency
according to equal tempered
tuning, which will be
discussed later on in this
chapter (source: http://www.
vibrationdata.com/piano.htm,
courtesy of Tom Irvine)

A0 27.5 A0# 29.135

A1# 58.270

C1# 34.648
D1# 38.891

F1# 46.249
G1# 51.913

A2# 116.54

C2# 69.296
D2# 77.782

F2# 92.499
G2# 103.83

A3# 233.08

C3# 138.59
D3# 155.56

F3# 185.00
G3# 207.65

A4# 466.16

C4# 277.18
Middle C

D4# 311.13

F4# 369.99
G4# 415.30

A5# 932.33

C5# 554.37
D5# 622.25

F5# 739.99
G5# 830.61

A6# 1864.7

C6# 1108.7
D6# 1244.5

F6# 1480.0
G6# 1661.2

A7# 3729.3

C7# 2217.5
D7# 2489.0

F7# 2960.0
G7# 3322.4

B0 30.868

B1 61.735

C1 32.703
D1 36.708
E1 41.203
F1 43.654
G1 48.999
A1 55.000

B2 123.47

C2 65.406
D2 73.416
E2 82.407
F2 87.307
G2 97.999
A2 110.00

B3 246.94

C3 130.81
D3 146.83
E3 164.81
F3 174.61
G3 196.00
A3 220.00

B4 493.88

C4 261.63
D4 293.66
E4 329.63
F4 349.23
G4 392.00
A4 440.00

B5 987.77

C5 523.25
D5 587.33
E5 659.25
F5 698.46
G5 783.99
A5 880.00

B6 1979.5

C6 1046.5
D6 1174.7
E6 1318.5
F6 1396.9
G6 1568.0
A6 1760.0

B7 3951.1

C7 2093.0

C8 4186.0

D7 2349.3
E7 2637.0
F7 2793.8
G7 3136.0
A7 3520.0

http://www.vibrationdata.com/piano.htm
http://www.vibrationdata.com/piano.htm
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11.2 The Major Diatonic Scale

The notes of the diatonic scale in the key of C are C, D, E, F, G, A, B, C’. They are
represented by the white keys on a piano keyboard (Fig. 11.3).

The musical interval expresses the relationship between the pitches and hence
frequencies between a pair of notes. Musical intervals have the following names:

– C to C’: Octave
so called because there are eight notes in the diatonic scale.

– Intervals between neighboring notes in the diatonic scale are either semitones or
whole tones.

– A semitone is also called a minor second.
Examples: E-F and B-C

– A whole tone is also called a major second.
Examples: C-D, D-E, G-A, and A-B

– Minor thirdD1-1/2 whole tonesD3 semitones
Examples: D-F and A-C

– Major thirdD2 whole tonesD4 semitones
Examples: C-E and G-B

– FourthD2-1/2 whole tonesD5 semitones
Examples: C-F, D-G, and A-D

– FifthD3-1/2 whole tonesD7 semitones
Examples: C-G, G-D, and D-A

– Minor sixthD4 whole tonesD8 semitones
Examples: B-G and E-C

– Major sixthD4-1/2 whole tonesD9 semitones
Examples: C-A and G-E

Fig. 11.3 Piano keyboard
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– SeventhD5-1/2 whole tonesD11 semitones
Examples: C-B

Thus, in relation to the base note of C, the notes of the diatonic scale in C
major are

– D: 2 semitones or one whole tone ... major second
– E: 4 semitones or 2 whole tones ... major third
– F: 5 semitones or 2-1/2 whole tones ... fourth
– G: 7 semitones or 3-1/2 whole tones ... fifth
– A: 9 semitones or 4-1/2 whole tones ... major sixth
– B: 11 semitones or 5-1/2 whole tones ... seventh
– C: 12 semitones or 6 whole tones ... octave

The essential question now, as before, is the following: How should the frequencies
associated with the notes in the diatonic scale be chosen? This choice is referred to
as tuning. We will discuss in detail the three most important tunings, Pythagorean
Tuning, Just Tuning, and Equal Tempered Tuning.

The fact that a choice is open to us and must be made might seem foreign to
someone who regards music as having a certain natural state of existence. Let it be
known that even primitive peoples were aware of the necessity of making a choice.
Reread the tale of the Huang Chung in Chap. 1, as a reminder. Most people are mere
“consumers” of the music performed by musicians and are not aware of the details
that musicians have to dabble with. Musicians, in turn, have to rely upon the still
more diligent studies of others.

The most important fact that must be recognized is that

musical intervals correspond to frequency ratios.

This fact can be understood from the following exemplary situation: Suppose that
we choose a certain frequency for fG to be the fifth above the chosen frequency
fC D 250 Hz, say 375 Hz, as in the case of so-called Just tuning. Then the pair of
octaves above these two notes, C’ and G’, must also be a fifth apart.

Now, since fG0 D 2fG D 750 Hz and fC 0 D 2fC D 500 Hz, fG0=fC 0 D
2fG=2fC , or

fG0

fC 0

D fG

fC

D 3

2
:

The ratio 3/2 defines the Just interval for a fifth. Alternatively, consider the sequence
of notes, C-E-G. C-E is a major 3rd, while E-G is a minor 3rd. Together, they add
up to the musical interval of a fifth, corresponding to C-G. We write

major third C minor third D fifth

This fact is exhibited in Fig. 11.4.
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Fig. 11.4 Adding of the
major third and the minor
third to a fifth

This equation is reflected by the following mathematical equation:

fE

fC

� fG

fE

D fG

fC

: (11.1)

We thus see that it is

1. The ratio of frequencies that defines the musical interval
2. Adding intervals amounts to multiplying by frequency ratios

We have arrived at the following stage in our study of tuning: We first choose
the frequency of one note – say middle C. All octaves are determined by the
unchangeable ratio 2:1. Then, since musical intervals correspond to frequency
ratios, our task is to decide what the frequency ratios should be corresponding to
the musical intervals introduced previously.

11.3 Comments Regarding Western Music

Before we discuss the three most important tunings, we would like to note some
important aspects of Western music. We have indicated that compositions of
Western classical music are drawn strongly toward the key note: When we are away
from the key note, we feel a pull toward it. Interestingly, the pull is strongest when
we are close to a key note. It is true that other notes are pulling too: Most strongly
is the fifth above the key note. (The G in the key of C.) Next in strength are the
major third (the E) and the minor third (the E-flat). (Those knowledgeable about
musical theory will note that which is the stronger of these last two depends upon
whether the key is a major one or a minor one.) Next in strength is the fourth-above
the C (in this case, the F). (This author must grant that some people feel that the
fourth above is stronger than the major and minor thirds.) And finally, we have the
major and minor sixths.

The pulling effect is associated only partly with our sense of consonance
between the key note and each of the above notes – its opposite being dissonance.
I suggest that this is so in spite of the fact that consonance is associated with a
satisfying sound when two notes are played together: The key note is always stored
in the memory bank of our brain and other notes are compared with it, whether or
not the key note is sounded.

This desire for consonance plays a role in determining the tuning. The relevant
question then is: What properties of a musical interval tend to produce a sense of
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Fig. 11.5 Steps of fifths C G D A

5th 5th 5th

consonance? Often it is said that a sense of consonance guides the tuner. But what
characteristics are actually associated with consonance?5 One definite characteristic
traditionally is a sense of the richness of tone that is associated with resonance. To
see how resonance is relevant, we will consider the tuning of a viola.

First, the A string (which is the A above middle C) is tuned to some standard
or reference frequency. These days, that frequency is taken to be a value between
440 and 444 Hz. In Bach’s time, it may have been as low as 415 Hz! This frequency
seems to be steadily increasing, reflecting an ever-increasing preference for bright
sounds.

Next, the remaining strings are tuned so as to be fifths apart, as indicated in
Fig. 11.5:

Now, suppose that the D is set at a frequency that is exactly 2=3 that of A, as in
the case of Pythagorean or Just tuning. For concreteness, let fA D 441 Hz. Then
fD D 294 Hz.

When the D-string is excited, the harmonics of 294 Hz are generally present.
These are: 294 Hz, 2 � 294 D 588 Hz, 3 � 294 D 882 Hz, . . .

When the A-string is excited, the harmonics of 441 Hz are generally present.
These are: 441 Hz, 2 � 441 Hz D 882 Hz, . . .

Note the match between the third harmonic of the D and the second harmonic of
the A. A consequence is resonance between the vibrating strings. If the D and A are
played together, this resonance enriches the tone quality. (A fascinating question is
the extent to which there is a resonance taking place in the ear and possibly in the
brain.6) It is interesting to note that it is much more difficult to adjust by ear two
pure tones to a 3:2 ratio of frequencies. There is no sharp maximum of consonance
at this ratio. Highly accurate tuning can, however, be accomplished by listening to
the combination tones produced in the hearing process. (See Chap. 10.)

Generally, it is found that pairs of notes sound most consonant when their
frequencies are in a ratio of small integers, an observation that leads us to Just
tuning, which will be treated in Sect. 11.5. However, we will first study the simpler
Pythagorean intonation.

5Of course, if the tuner has perfect pitch (i.e., has an internal sense of what the pitch of an isolated
note is without the need of a reference sound such as tuning fork), then consonance may not be a
factor. We should want to understand better the nature of perfect pitch in this context.
6See The Physics of Musical Sounds by C.A. Taylor (The English Universities Press, London,
1965), Introduction to the Physics and Psychophysics of Music by Juan G. Roederer, (The
English Universities Press, London, 1973), and On the Sensations of Tone, by Hermann L.F. von
Helmholtz (originally published in German in 1877, reissued in English by Dover, N.Y., 1954).
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11.4 Pythagorean Tuning and the Pentatonic Scale

Pythagorean tuning is based on assigning a frequency ratio of 3 W 2 to the fifth and
treating all the remaining intervals as subservient to the fifth, as follows. We start by
choosing the frequency fC4 . Then, we determine the frequencies for the notes that
arise as we ascend and descend in a series of fifths:

NOTE

F3 ! C4 ! G4 ! D5 ! A5 ! E6 ! B6

2=3 1 3=2 .3=2/2 .3=2/3 .3=2/4 .3=2/5

Note how in descending down by a fifth from C4 to F3, we multiply by 2=3. The
reason is that in doing so we must divide by 3=2, which is equivalent to multiplying
by 2=3.

We will discuss only the five notes C, D , F, G, and A. These notes form a
pentatonic scale, which is the essential scale in many parts of the non-Western
world.7 The process of determining the remaining frequencies that are needed to
form the diatonic and chromatic scales is a mere continuation of the process we will
demonstrate below.

What we want are the frequencies in the octave starting with C4. They are
determined by a process called reducing to the octave the above frequencies, as
follows: fF4 D 2fF3 , fD4 D .1=2/fD5 , fA4 D .1=2/fA5 .

Thus, using 2.2=3/ D 4=3, .1=2/.3=2/2 D 9=8, and .1=2/.3=2/3 D 27=16, we
obtain the pentatonic scale in Pythagorean tuning (see Fig. 11.6).

On the last line, we have indicated the intervals between neighboring notes. For
example, for the interval between D and F, we have:

fF

fD

D
fF

fC

fD

fC

D
4
3
9
8

D 4

3
� 8

9
D 32

27
: (11.2)

We note the results for the following Pythagorean intervals in Pythagorean tuning:

Whole tone (C-D) : 9=8

Minor third (D-F) : 32=27

Fig. 11.6 Construction of
the pythagorean scale

7An easy way to hear this scale is to play the five black keys of the piano in order, starting with
whatever first note you wish.
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Major third (F-A) : 81=64

Fourth (C-F) : 4=3

Major sixth (C-A) : 27=16

We note that the two intervals of a third (the minor third and the major third) each
involve a ratio of rather large integers. As such, these intervals do not sound very
consonant in the traditional sense.

11.5 Just Tuning and the Just Scale

Just tuning sets a priority on ratios of small integers for the frequency ratios of two
musical intervals, the Fifth – 3=2, and Major third – 5/4.

As we pointed out above, these two musical intervals are the central ones in
Western classical music. We will now see how this choice for the two intervals is
used to generate the Just notes.

As in the case of generating the Pythagorean scale, we start by choosing the
frequency fC of the key note C. From thereon, we are interested only in the ratio of
the frequency of interest to this frequency. Let us lay out the notes of the diatonic
scale with the following notation. We obtain the E and G straightforwardly, since
C-E is a major third and C-G is a fifth. See Fig. 11.7.

We can obtain A by descending from E to A by a fifth and then reducing to the
octave by ascending by an octave. This involves the product

2

�
2

3

��
5

4

�
D 2

�
5

6

�
D 5

3
:

See Fig. 11.8.
We can obtain the F by descending from A by a major third, thus obtaining the

ratio .4=5/.5=3/ D 4=3. See Fig. 11.9.

Fig. 11.7 Obtaining G from
C in Just tuning

Fig. 11.8 Obtaining A from
C in Just tuning
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Fig. 11.9 Obtaining F from
C in Just tuning

Fig. 11.10 Obtaining D from
C in Just tuning

Fig. 11.11 Full Just diatonic
scale

We can obtain the D by ascending from G by a fifth and then descending by an
octave. The product is .1=2/.3=2/.3=2/ D .1=2/.9=4/ D 9=8. See Fig. 11.10.

Finally, we can obtain the B by ascending from E by a fifth. The product involved
is .3=2/.5=4/ D 15=8. The full Just diatonic scale is shown in Fig. 11.11.

Intervals between neighboring notes are indicated on the last line. They are
obtained by taking ratios of the corresponding pair of ratios. For example,

fF

fE

D
fF

fC

fE

fC

D
4
3
5
4

D 4

3
� 4

5
D 16

15
: (11.3)

The basic music intervals in Just tuning are listed below:

Semitone 16/15 Fifth 3/2
Whole tone 10/9 and 9/8 Minor sixth 8/5
Minor third 6/5 Major sixth 5/3
Major third 5/4 Seventh 15/8
Fourth 4/3

We obtained the minor third, 6=5, from the interval E-G as follows:

fG

fE

D
fG

fC

fE

fC

D
3
2
5
4

D 3

2
� 4

5
D 6

5
: (11.4)

We obtained the minor sixth, 8=5, from the interval A-F’, in a similar way.
In Fig. 11.12 is a chart that lays out the important intervals in Just tuning in a

clear way.
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Fig. 11.12 Chart of important Just intervals

11.6 The Just Chromatic Scale

The Chromatic Scale includes all the so-called sharps and flats of the notes of the
diatonic scale in the key of C. These are, respectively, semitones above and below
the corresponding notes. Thus, C # is a semitone above C, and Bb is a semitone
below B.
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Fig. 11.13 Building the Just chromatic scale

To obtain the notes with sharps and flats involves a procedure of ascending and
descending by major thirds, as shown on the next page.

Note that fG# ¤ fAb , fA# ¤ fBb . Such pairs of notes are called enharmonic
equivalents. On a piano, they are not distinguishable since they are produced by the
same key. The interval between the above pairs is 125=128 D 0:9755:

fG#

fAb

D 25=16

8=5
D 125

128

fA#

fBb

D 225=128

9=5
D 125

128
:

We obtain the same ratio for the enharmonic equivalents, fE=fF b and fBbb =fA.
The detailed construction of the Just chromatic scale is laid out in Fig. 11.13.

It is interesting to note the inclusion of double sharps and double flats, which are
necessary for some scales.

Many musicians, who are not constrained in playing with a fixed tuned instru-
ment such as the piano, will distinguish between enharmonic equivalents. As a
violinist, this author happens to have a strong tendency to do so.
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11.7 Intrinsic Problems with Just Tuning

Just intervals have the beauty of rich consonance. Unfortunately, for fundamental,
mathematical reasons, they are impossible to realize fully in a composition, as we
will observe in the following three examples.

1. In the key of C, D-F is a minor third and yet has a frequency ratio of
.4=3/=.9=8/ D 33=27 instead of the standard Just minor third of 6=5. Thus,
there are two different minor thirds in the scale. The ratio 32=27 is rather harsh
and defeats the goal of Just tuning. We would hope that this interval could be
avoided; unfortunately, mathematical analysis shows this to be impossible.

2. Suppose a violinist tunes the strings with fifths having 3=2 frequency ratios.
Recall that the A-string is A4. Then fE5 D .3=2/fA4 and fD4 D .2=3/fA4 .

Now, suppose that the violinist plays a B4 so as to be a Just interval with
respect to E5, which is a fourth above. Then fE5=fB4 D 4=3 or

fB4 D 3

4
fE5 D

�
3

4

��
3

2

�
fA4 D

�
9

8

�
fA4:

We now compute the interval between this B4 and the D4 below:

fB4

fD4

D
9
8
fA4

2
3
fA4

D 27

16
:

This interval is the major sixth in Pythagorean tuning. It differs from the Just ma-
jor sixth of 5=3 by a small amount, the interval being equal to .5=3/=.27=16/ D
80=81.

The interval 81=80 is well known, being referred to as the syntonic comma.
While it is equivalent to only about one-fifth of a semitone, it is large enough to
make the interval 27=16 noticeably dissonant. We will see the syntonic comma
a number of times in this chapter since it is ubiquitous in the mathematics of
tunings.8;9

Our result is summarized in Fig. 11.14.
Alternatively, one could choose to play the major sixth between the D and

the B as a Just major sixth, that is, 5=3. But then, the interval of a major fourth

8It is interesting to calculate the ratio 80=81 using a pocket calculator. The ratio consists of a
repeated set of integers – called a “repeated decimal.” Amazingly, each digit from 1 to 9 appears
once and only once. The reader should also calculate other ratios, such as 31=81 or 13=81.
9The syntonic comma is often mistaken for the Pythagorean comma. The latter is the interval
that we obtain if we start with a base frequency and increase it by a product of twelve fifths,
each with a ratio of 3=2. Thus, if we start with the note F, we would obtain the series of notes:
F ) C ) G ) D ) A ) E ) B ) F # ) C # ) G# ) D# ) A# ) E#.
E# is enharmonic with F and is very close to being seven octaves above (not below as we might
expect) the original note F by a factor of .3=2/12=27 � 1:0136::: . This number is the Pythagorean
comma.
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Fig. 11.14 Syntonic comma
reflected by the ratio 27/16

Fig. 11.15 Problematic
sequence of notes

between the B and the E would be Œ.3=2/.3=2/�=.5=3/ D 27=20, rather than
the Just ratio of 4=3. The ratio between these two numbers is .27=20/=.4=3/ D
81=80, the syntonic comma.

We see then that it is absolutely impossible to perform pieces fully with just
intervals between all pairs of significant notes. Furthermore, the errors are
significant.

Now note that we have pieces wherein the violinist has to play these three
notes, D, B, & E in rapid sequence, with open D and E strings desired, or worse
yet, with the pair DB followed immediately by the pair BE. There would be
too little time for the violinist to move the finger for the B to produce two Just
intervals. We see that the violinist would have to compromise a bit and to make
the two intervals sound acceptable. On the other hand, there is a natural help
here: if the violinist plays the B with a vibrato,10 the desired consonances are
not badly affected by the lack of Just intervals.

3. As we progress through a piece of music, we might choose to have the interval
between every neighboring note be a Just interval. If we do so, we may follow
such a path that there is no guarantee that we return to the frequencies of the
initial notes. An example of such a problematical sequence of notes is seen in
Fig. 11.15.

Consider the intervals between neighboring notes:

– D to G above: perfect fourth
– G to E below: minor third
– E to A above: perfect fourth
– A to D below: fifth

With Just intervals between neighboring notes, we obtain

fD D fD � 4

3
� 5

6
� 4

3
� 2

3
D 80

81
fD ¤ fD:

10See Sect. 2.15.
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Fig. 11.16 Major D scale

If Pythagorean intervals are used, the above problem is avoided; however, their
major and minor thirds are less consonant than corresponding Just intervals.

Note that the above sequence, DGEA, is the theme of the first movement of
Ralph Vaughan-Williams’ Symphony #8. It is an interesting fact that the resulting
A, as determined above, has a ratio of 40/27 with respect to the opening note of D
instead of 3/2, and results in a psychoacoustic tension that is musically exciting.

Homework: Check this last statement by calculating the same product using
Pythagorean intervals. Recall that the Pythagorean minor third is the ratio 32/27.

Note

I have been told that a Mozart opera was analyzed in the above
manner to see whether the final keynote had any shift relative to
the opening note. One would expect shifting by 80/81 or 81/80 to
occur many times in a long piece. Upward shifts by 81=80 and
downward shifts by 80=81 would not be expected to cancel if they
were random, much as when a drunkard carries on a random walk:
Starting from the center of the top of a mesa, we would certainly
expect the drunkard to eventually fall off. Amazingly, after the entire
length of the Mozart opera, there was no shift at all! This result
probably reflects well of the quality of Mozart’s music.

4. Let us now examine the Diatonic Major scale in the key of D, using the
frequencies that were determined earlier based on the key of C. We need two
sharps from the chromatic scale, F # and C #. The result we obtain is depicted in
Fig. 11.16.

Note that the last semitone is equal to 27=25, rather than 16=15. The ratio of
the two numbers is .27=25/=.16=15/ D 81=80, the syntonic comma.

In order to handle such a change, harpsichords used to be repeatedly tuned,
according to the key of the piece being performed and in the manner by which we
constructed the scale for the key of C, above. In order to avoid this labor, equal-
tempered tuning was introduced. We discuss this tuning in the next section.

11.8 Equal Tempered Tuning

In Equal Tempered Tuning, the octave is divided into 12 equal semitone intervals.
The gain is that the problems of Just tuning are removed. The loss is that resonances
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Table 11.1 A comparison of some intervals in Just vs. equal tempered
tuning

Interval Just (J) Equal tempered (ET)

Semitone 16=15 D 1:066 : : : 21=12 D 1:059 : : :

Whole tone 9=8 D 1:125, 10=9 D 1:11 : : : 22=12 D 1:122 : : :

Minor third 6=5 D 1:2 23=12 D 21=4 D 1:189 : : :

Major third 5=4 D 1:25 24=12 D 21=3 D 1:26 : : :

Fourth 4=3 D 1:333 : : : 25=12 D 1:335 : : :

Fifth 3=2 D 1:5 27=12 D 1:498 : : :

Minor sixth 8=5 D 1:6 28=12 D 22=3 D 1:587 : : :

Major sixth 5=3 D 1:666 : : : 29=12 D 23=4 D 1:68 : : :

Octave 2 2

and consonances are not as strong as they are in Just tuning. Consonant intervals
such as the fifth or the major third are harsher. The greatest gain, perhaps, is that
fixed tuned instruments such as the piano do not have to be retuned for each key
change. Furthermore, single compositions that have changes of key can be played
in a consistent manner on fixed tuned instruments, that is, without biasing one key.11

For equal tempered tuning, all we need is to determine the frequency ratio
corresponding to a semitone. Label it with the symbol r . Since there are 12
semitones to the octave, we must have

r12 D 2

r D 21=12 D 1:05946 : : : :

For comparison sake, the Just semitone is 16=15 D 1:066 : : : and is therefore
slightly larger. To compensate for this increased value within the octave, Just tuning
has a whole tone interval, 10=9 D 1:1111 : : :, which is less than the equal tempered
whole tone (D two semitones) interval of

r2 D 22=12 D 21=6 D 1:12246 : : : :

On the other hand, recall that Just tuning uses two different whole tones; the other
Just whole tone interval of 9=8 D 1:125 is greater than r2.

Table 11.1 compares the important intervals in Just (J) and Equal Tempered (ET)
tuning.

11Bach’s Well-Tempered Clavier, a collection of 48 short pieces, two for each of the pos-
sible keys (including only those with at most one sharp or flat), was famous in promoting
what is referred to as one of the numerous well tempered tunings. According to Anton
Kellner (http://plaza.ufl.edu/wnb/baroque temperament.htm#German) Bach’s temperament was
not at all equal tempered. One possibility is that it was similar to one of the tunings of
Andreas Werkmeister (1645–1706) (http://en.wikipedia.org/wiki/Werckmeister temperament).
See the problem on Werkmeister tuning at the end of the chapter.
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11.9 The Cents System of Expressing Musical Intervals

To express intervals that are smaller than a semitone in a quantitative way, so as
to reflect very small changes of pitch, the equal tempered semitone, r D 21=12, is
divided into one hundred (100) units, called Cents, as follows:

100 cents D 1 ET semitone

1,200 cents D 1 octave

Generally, in the cents system the interval between two frequencies, f2 and f1, is
given by:

C � 1;200

log 2
log

f2

f1

: (11.5)

where the unit of the parameter C is the number of cents in the interval.12

We have here an explicit, mathematical expression for the musical interval as a
function of the corresponding frequency ratio.13

12This equation can be written in a simpler form using the logarithm to the base 2 instead of the
current base 10:

C D log2

f2

f1

: (11.6)

13“Musical instrument digital interface” (MIDI) is a protocol for allowing various devices, such
as musical instruments and computers, to communicate musical scores. It gives a numerical value
to all notes based on the frequency. The value is clearly closely related to our sense of pitch and is
given by

p D 69 C 12 log2

f

440
: (11.7)

Note that p D 69 is associated with A440. The number 69 was chosen so that the C below A440
will have the value p D 60. In addition, for each semi-tone in ET p changes by unity:

�p D 12 log2

f2

f1

D 12 log221=12 D 1: (11.8)

A related objective measure of pitch is the mel scale defined by the equation

m D 1;000

log 2
log

�
f

1;000
C 1

�
: (11.9)

Note that m D 1;000 mels at a frequency of 1,000 Hz and zero mels at 0 Hz.
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Discussion and applications of this equation follow in the examples below.

Sample Problem 11-1

Calculate the number of cents in an ET semitone.

Solution
We have

f2

f1

D 212: (11.10)

C D 1;200

log 2
log 212 D 1;200

log 2
� 1

12
� log 2 D 100 cents:

Sample Problem 11-2

What is the frequency ratio corresponding to 1 cent?

Solution
Since a ratio of 21=12 corresponds to 100 cents, we have

f2

f1

D �
21=12

�1=100 D 21=1;200 ' 1:00058:

As a check, we note that

C D 1;200

log 2
log 21=1;200

D
�

1;200

log 2

��
1

1;200

�
log 2 D 1 cent:

Sample Problem 11-3

By how many cents do the Just and equal tempered fifth differ?

Solution
For the J-fifth, we have

C D
�

1;200

log 2

�
log.3=2/ Š 702 cents:

while for the ET-fifth (7 semitones) we have precisely C D 700 cents.
Therefore, the ET-fifth is 2 cents (�2=100 D 1=50 or 2% of a

semitone) smaller than the J-fifth.



11.10 Debussy’s Six-Tone Scale 373

We now demonstrate how adding intervals in cents corresponds to multiply-
ing ratios.

Suppose that we have three frequencies, f3 > f2 > f1. We know that the interval
f1 ! f3 must equal the sum of the two intervals f1 ! f2 and f2 ! f3. This fact
is reflected mathematically as follows. Let:

C21 D Interval for the frequency ratio
f2

f1

C32 D Interval for the frequency ratio
f3

f2

C31 D Interval for the frequency ratio
f3

f1

;

so that we can then add them to become

C32 C C21 D 1;200

log 2
log

f3

f2

C 1;200

log 2
log

f2

f1

: (11.11)

or

C32 C C21 D 1;200

log 2

�
log

f3

f2

C log
f2

f 1

�
: (11.12)

or

C32 C C21 D 1;200

log 2
log

f3

f1

D C31: (11.13)

That is, C32 C C21 D C31.
The cents system is convenient for expressing in a precise quantitative way

musical intervals. Below, we exhibit a table that compares the three tunings
discussed in this chapter with respect to the musical interval from C to various notes
in the chromatic scale. Frequency ratios are given as well as the number of cents.

11.10 Debussy’s Six-Tone Scale

Given the power of impressionistic music, such as the music of Claude Debussy or
Maurice Ravel, it is worth mentioning Debussy’s six-tone Scale. These scales give
the listener a powerful sense of the mystical. Why this is so is not clear. There are
two scales:

F G A B C # D#

F # G# A# C D E

Each scale consists of ET whole-tone intervals. They are often played juxtaposed
against each other.
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11.11 Terms

– Building a musical scale
– Cent
– Cents system of expressing musi-

cal intervals
– Chromatic scale
– Consonance
– Diatonic scale
– Dissonance
– Enharmonic equivalents
– Equal tempered tuning
– Fifth
– Fix tuned instrument
– Flat
– Fourth
– Intonation
– Just temperament
– Just scale
– Key note
– Major second
– Major sixth
– Major third
– Minor second

– Minor third
– Minor sixth
– Musical interval
– Musical scale
– Musical staff
– Octave
– Pentatonic scale
– Pythagorean comma
– Pythagorean temperament
– Pythagorean scale
– Semitone
– Seventh
– Sharp
– Six-tone scale (of Debussy)
– Syntonic comma
– Temperament
– Tuning
– Vibrato
– Well tempered tuning
– Werkmeister temperament
– Whole tone

11.12 Important Equations

– Objective numerical expression of the musical interval between two frequencies,
f1 and f2

f2

f1

.

– Frequency ratio for musical intervals in equal tempered intonation:

frequency ratio D 2n=12; (11.14)

where n is the number of semitones.
– Equation defining cents in relation to frequency ratio

C � 1;200

log 2
log

f2

f1

: (11.15)
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11.13 Problems for Chap. 11

1. One tone is produced with a frequency of 150 Hz. The tone three octaves higher
is produced with a frequency of (choose one).

(a) 300 Hz
(b) 450 Hz
(c) 600 Hz
(d) 900 Hz
(e) 1,200 Hz

2. (a) How many semitones are there in each of the following intervals: major
second, minor third, major third, fourth, fifth, minor sixth, major sixth,
octave?

(b) What are the frequency ratios of the above intervals in equal tempered
tuning?

(c) Show that the sum of a major sixth and a minor third is an octave by adding
up the number of semitones for each interval. Check whether the product of
the corresponding frequency ratios is two for Pythagorean tuning, as shown
in the table of musical intervals Table 11.2.

3. (a) What advantages does equal tempered tuning have over Just tuning?
(b) What advantages does Just tuning have over equal tempered tuning?

4. Suppose the note A above middle-C is tuned at 440 Hz.

(a) To what frequency should the E above be tuned to produce a Just fifth in
the key of C? Note that the third harmonic of the A will equal the second
harmonic of the E, so that there will be resonance.

(b) To what frequency should the E above be tuned so as to produce an equal-
tempered fifth?

(c) In the latter case, what will be the beat frequency between the third
harmonic of the A and the second harmonic of the E?

5. We learned that in Just tuning, there are two different frequency ratios for a
whole tone. Show that the ratio of these two ratios is a syntonic comma, 81/80.

6. The tritone is a sum of a perfect fourth and a minor second and can be regarded
as half of a full octave. The interval is famous for its association with horror
and gloom. Calculate the corresponding frequency ratio in both Just tuning and
equal temperament.

7. The six strings of a guitar are tuned to the following notes, in order of increasing
pitch:

E – A – D – G – B – E”

so that the two E’s – E and E” – are two octaves apart.

(a) What are the intervals (by name) D-G and G-B?
(b) Suppose all the above intervals are set as JUST intervals. What will be the

frequency ratio – fE00=fE? (It will not be 4 W 1!)
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Fig. 11.17 Guitar frets

(c) By how many cents does fE00=fE differ from 2,400 cents (corresponding to
two octaves)?

(d) Show how the use of equal temperament eliminates this discrepancy.

8. The frets on a guitar are set so as to produce equal tempered frequencies as
shown in Fig. 11.17.

Let `0 be the length of the “open” string (without any fingers on the frets).
Let `n be the length of string that is free to vibrate corresponding to the nth note
above that of the open string. The length `1 is shown in Fig. 11.17. We see in the
figure how the spacing between neighboring frets decreases as the frequency is
increased.

Show that the length `n is given by

`n

`0

D 2�n=12: (11.16)

This function is mathematically similar to the exponential decay in the attenu-
ation of a wave. Note that

log `n D log `0 � n
log 2

12
: (11.17)

As a result, a plot of the logarithm of the length ` vs. n will yield a straight line
with a slope given by �.log 2/=12.

9. One summer, at a day camp of two of my grandchildren, we were sitting
outdoors on a lawn that was close to a small airport. Suddenly a propeller-
driven airplane passed directly overhead. We could hear a distinct tonality to
the whirring sound that varied from one note to another that was a major third
below.

Use this information to estimate the speed of the airplane.
HINT: Refer to Problem 32 in Chap. 8.
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Table 11.3 Table of intervals in Just tuning in the key of D – J(D)

NOTE f=fC in J(C) Frequency in J(C) f=fD in J(C) Frequency in J(D)

C 1 264
D 9/8 297 1 297
E 5/4 10/9
F 4/3
F # 45/25
G 3/2
A 5/3
B 15/8
C 0# 25/12
D’ 9/4 2

10. Suppose that the following musical passage is played with Just intervals
between neighboring notes:

Major second 9=8 Minor third 6=5 Major third 5=4

Fourth 4=3 Fifth 3=2

C ! E ! A ! B ! E 0 ! A ! F ! D ! C

(a) Find the frequency ratios for all the neighboring notes –

fE

fC

;
fA

fE

;
fB

fA

;
fE

fB

; � � �

(b) Show that the ratio of the frequency of the last C to the first C in the passage
is equal to 80=81 = inverse of the syntonic comma.

(c) Evaluate 80=81 using a pocket calculator, exhibiting all decimal places in
your answer.

(d) To how many cents does a syntonic comma correspond?

11. Let J(C) represent Just tuning in the key of C, as displayed in table of musical
intervals and in Fig. 11.13. Suppose that we choose the frequency of the C, as
fC D 264 Hz. This choice corresponds to a frequency of 440 Hz for A-440 in
J(C). Suppose further that we have tuned a harpsichord in J(C) in order to play
a piece in the key of C and then want to play another piece in the key of D.

A central question is: How will the frequencies of the strings compare to
what we would need to have them tuned to J(D), that is, Just tuning in the key
of D? You will use the table below to exhibit the results of your study.

(a) In order to answer this question, first calculate the actual frequencies in
J(C) for the notes in the diatonic scale in the key of D: These notes are D
E F # G A B C 0# D’. Note that in the table, the ratios of the frequencies
are exhibited, as taken from Table 11.2. You should fill in the third column
with these frequencies of Table 11.3. The frequencies can be determined
by multiplying fC D 264 Hz by the corresponding ratios in the second
column.
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(b) Fill in the fourth column with the ratio of each these frequencies to the
frequency fD D 297 Hz: 1, 10/9, ....

(c) You will next obtain the frequencies in J(D) using fD D 264 Hz � .9=8/ D
297 Hz. All you have to do is to multiply 297 by the correspond ratios in the
second column – that is, 1, 9/8, ... 15/8, 2. Enter the resulting frequencies in
the fifth column.

The differences between the corresponding frequencies in J(D) and J(C)
help us to appreciate the problem in using Just tuning in situations where
one wants to play a piece of music within which the key changes.

12. Suppose a car is moving toward you and produces a Doppler effect on its tooted
horn corresponding to a Just semitone (f 0=f D 16=15). Determine how fast
the car is moving.

13. Stretch Tuning of Pianos
In Chap. 2, we learned that the frequency spectrum of a string is not a harmonic
series on account of stiffness. In particular, the frequency of the nth mode is
given by14

fn D n

q
T
�

2`

p
1 C Bn2: (11.18)

An important consequence is that the harmonics of a given piano string will
not be consonant with some of the harmonics of other strings, as discussed in
Chap. 2 and we will lose resonance. Of course, the use of equal temperament
tuning already destroys this resonance except for the set of octaves of a given
note.

Consider for simplicity the A-440 string and the string an octave above,
which we will refer to as A-880. All tunings assign a fundamental frequency of
f 440

1 D 440-Hz for the A-440. Moreover, all of the standard tunings discussed in
this chapter would assign a frequency of 880 Hz to the A-880. The combination
of these two frequencies will produce a consonant sound. On the other hand,
the first overtone of the A-440 will be slightly higher than 880 Hz on account
of stiffness.

14In detail, the constant B is given by

B D �a2Y

T

��a

2`

	2

; (11.19)

where a is the radius of the string (assumed to be a solid cylinder), Y is Young’s modulus of the
string’s material, T is the tension, and ` is the length of the string. Readers who have a background
in the basic physics of elasticity will recognize that the ratio .T =.�a2Y // is the fractional increase
�`=` in the length of the string due to the tension.
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(a) Show that the frequency of the first overtone of A-440 in the presence of
stiffness is given by

f 440
2 D 880

p
1 C 4Bp
1 C B

: (11.20)

Note that if A-880 is tuned to this frequency, we would sacrifice the
resonance in our hearing a 2:1 ratio of frequencies for resonance between
the two strings, A-440 and A-880. Such is the case in stretch tuning of
pianos.

(b) Calculate this frequency if B D 0:008.
(c) What would be the beat frequency between 880-Hz and this frequency?
(d) Calculate the interval C in cents for the two frequencies f 440

2 above and
880-Hz.

Now let us examine the next octave above A-440, namely, A-1760. We
have two choices to make if we want to achieve resonance between the
three strings under consideration thus far: We could tune A-1760 to so as to
have a frequency equal to the second overtone of A-440 or we can choose a
frequency equal to the first overtone of A-880.

(e) Explain why these two choices lead to different frequencies. You can
simplify your response with formulas if you assume that the A-440 and
A-880 string have the same value of the constant B.

(f) Suppose that we apply one of the above stretch tunings for each of the
11 notes in the octave lying between A-440 and A-880. Will such a
stretch tuning lead to resonances between corresponding harmonics of two
different notes in the octave?

14. Recently, because of the development of electronic keyboards and pianos,
one can change the frequencies of the notes in a small fraction of a second.
As a result, access to temperaments used centuries ago that have a different
sound (some might say more consonant sound) is available and is attractive
to some musicians. Many expensive keyboards and pianos now provide these
temperaments. In this problem, you will learn about one of these temperaments
Werkmeister I(III) Temperament. It is based on the Pythagorean tempera-
ment.

(a) Consider the sequence of notes starting with C and increasing by fifths: C,
G, D, A, E, B, F #; C #; G#. Thus, G# is eight fifths above C.

Find the frequency fG# in proportion to C in Pythagorean tuning by
multiplying by factors of (3/2) and reducing to the octave.

(b) Note that the interval C-E (a major third) is a series of four fifths followed
by a reduction down by two octaves. The Pythagorean ratio is .3=2/4=22 D
81=64 and differs significantly from the more consonant (5/4) of Just tuning.

Show that the ratio of these two ratios is the syntonic comma (81/80).
(c) Werkmeister I(III) temperament was introduced by Andreas Werkmeister.

It “well-tempers” Pythagorean temperament most of all to produce a
Just major third. To do so, Werkmeister makes a compromise. Instead of
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producing the Pythagorean scale by multiplying by a sequence of ratios
(3/2), he multiplies an additional ratio of .80=81/1=4 for each fifth. The ratio
.81=80/1=4 is referred to as a quarter comma; thus, each multiplication by
(3/2) is accompanied by a reduction by a quarter comma.

Show that the result is that the interval between C and E is a Just major
third.

Note that the intervals between C and notes other than E are no longer
Just. In particular, the interval of fifth between C and G is not equal to the
“sacred value” of 3/2 of Just Temperament. Rather, it is reduced by a quarter
comma, or .80=81/1=4.

(d) Evaluate the correction factor .80=81/1=4 and express it in cents.
(e) Consider the sequence of notes starting with C and decreasing by four

intervals of a fifth each: C, F, Bb; Eb , Ab .
Find the frequency fAb in proportion to C in Pythagorean tuning by

dividing by factors of (3/2) and reducing to the octave. Note first that the
resulting fAb is a Just interval above C. Note, too, that fAb ¤ fG# . (You can
show that this inequality persists with Werkmeister I(III) temperament.)

15. Flutists often have a tendency to sway when they play. We might wonder
whether this motion can have a serious effect due to the Doppler effect. To
answer this question, we need to know how much of a shift in frequency
is tolerable. Tests reveal that a good listener can detect a frequency shift of
about 3.5 Hz for an A440. This is the just noticeable difference of pitch vs.
frequency. (Experienced ears can do better.)

Determine the velocity that will lead to a Doppler shift of 3.5 Hz.





Chapter 12
The Eye

The human eye carries out its function of converting information contained in
light to nerve impulses which are sent to the brain in a manner which, to a great
extent, parallels the operation of a camera. This fact is illustrated in Fig. 12.1 on the
following page. Scientific American article by George Wald, in the August, 1950
issue.

The principle structures of the eye are the:

– Cornea – it acts like a primary lens
– Iris – it provides a variable aperture
– Lens – it provides a variable focal length
– Retina – it acts like camera film in responding to light by producing nerve

impulses which are sent to the brain down the optic nerve

The eye serves to provide:

1. A two-dimensional representation of a scene, including both light intensity and
a sense of color as a function of position in space

2. A sense of distance of light sources from our eyes – that is, depth perception

12.1 The Cornea and Lens

To appreciate fully this chapter, you should have a good understanding of the
material on lenses in Chap. 8. The lens and cornea act as a compound lens system
with variable effective focal length f . The effective image distance of the eye-lens
system, die, is fixed because the positions of the lens and retina are fixed. This
effective distance is about 24 mm. According to the lens equation (see (12.1) below),
the farther an object is, that is, the larger the object distance do is, the larger must
be the focal length. At infinite object distance, the effective focal length f will be a
maximum and equal to the image distance die, that is about 24 mm. Conversely, the
closer an object is, the smaller must be the focal length. Surprisingly, we will see

L. Gunther, The Physics of Music and Color, DOI 10.1007/978-1-4614-0557-3 12,
© Springer Science+Business Media, LLC 2012
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Fig. 12.1 The camera and eye compared (source: George Wald. Reproduced with permission.
c� (1950) Scientific American, Inc. All rights reserved.)

that the normal requirement of being able to see objects, whose distance ranges from
as close as a foot or so all the way to infinity, do not require a very large variation in
focal length. As usual, the focal length, object distance do, and image distance die

must satisfy the lens equation, which we write as

1

f
D 1

do
C 1

die
: (12.1)
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In order to increase the focal length, ciliary muscles, which act on the lens, must
relax (not tighten) so as to flatten the lens. The process of varying the focal length
is known as accommodation. Accommodation thus provides for a range of focal
lengths, from some minimum, min f to some maximum, max f.

A myopic (or near-sighted) eye has a difficulty accommodating to great
distances. It has a maximum focal length, max f , which is less than die. As a
result, the maximum object distance, max do that can be brought into focus is not
at infinity, as one would wish. Using the lens formula we obtain:

1

max do
D 1

max f
� 1

die
: (12.2)

To see near objects, the focal length of the eye must be decreased so that the lens
must have a larger “bulging.” The ciliary muscles are tightened to reduce f . A
hyperopic (far-sighted) eye has a minimum focal length, min f , which is so large
that the closest an object can be to the eye, and still be brought into focus on the
retina, is too great for the person’s needs. That closest distance, min d0 � dnp, is
called the near point. We have:

1

dnp
D 1

min f
� 1

die
: (12.3)

Sample Problem 12-1

An eye has a retina that is 24.0 mm from the eye lens. It focuses an
object that is 2.00 m away and has a height of 40 cm.

Find the focal length of the eye lens and the height of the image on the
retina.

Solution
We have

1

do
D 1

f
� 1

die
(12.4)

with do D 200 cm, die D 200 cm, and ho D 40 cm.
Then

1

do
D 1

200 cm
� 1

2:4 cm
D 0:422 cm�1 (12.5)

so that f D 2:37 cm.
Note that f is extremely close to the image distance because of the
large object distance. Also, relatively large changes in object distances
do not require significant changes in the focal length.
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Now we turn to the image height.
We do not need to know the focal length to determine the magnification.
It is determined by the object distance and the image distance.
Thus

hi D M ho D
ˇ̌
ˇ̌ di

do

ˇ̌
ˇ̌ ho D 2:4 cm

200 cm
40 cm D 0:48 cm D 4:8 mm: (12.6)

Note

It is useful to appreciate the slight ambiguity of the near point: As a
home exercise, estimate the near point of each of your eyes separately,
as well as when used together. I suggest that you hold text in front of
you having various font sizes. How different are the results?

As one ages, min f tends to increase because of increasing stiffness in the lens.
This stiffening involves a process of crystallization of the lens material.

Note

For the myopic eye, min f < max f < die, while for the hyperopic
eye, min f is too large for practical purposes.

For an excellent applet that explains myopia and hyperopia, go to the website
(accessible on 6/13/06) http://webphysics.davidson.edu/physlet resources/dav
optics/Examples/eye demo.html.

The lens is an excellent filter in the ultraviolet (UV) region of the spectrum.
However, filtering extends into the violet end of the visible region. Thus, the
fraction of incident light that is transmitted drops from close to 100% for 700 >

� > 500 nm, to 15% for � D 400 nm, to 0:1% for � D 365 nm. (See Chap. 13 for
further discussion on the transmittance, also called the transmission coefficient.)
Thus, people whose lens has been removed because of cataracts experience a new
world of vision in the UV.

12.2 The Iris

Experts claim that the human eye can see a steady light intensity, without suffering
pain or eye damage, that spans about 12 orders of magnitude. (This range compares
well with the span of 12 orders of magnitude of the ear.) To help the eye deal with
such a huge range, the iris varies the aperture area from 0.02 to 0.3 cm2. This
function of the iris is analogous to the role of the ossicles of the ear in protecting the
ear from excessively loud sounds by restraining their mobility.

http://webphysics.davidson.edu/physlet_resources/dav_optics/Examples/eye_demo.html
http://webphysics.davidson.edu/physlet_resources/dav_optics/Examples/eye_demo.html
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12.3 The “Humorous” Liquids of the Eye

The volume of the eye between the cornea and the lens is filled with a water-like
liquid called aqueous humor. One of its purposes is to nourish the eye in place of
blood, which would be opaque to light. Fluid is constantly flowing into and out of
the chamber containing aqueous humor. Unfortunately, the pressure in the fluid can
become excessive, resulting in the dangerous disease known as glaucoma.

The volume within the eye between the lens and the retina is filled with a
gelatinous material called vitreous humor. Its consistency is close to that of egg
white. Both humors serve to keep the eye’s size and shape firm. Their index of
refraction is about 1.3, in comparison with the index of refraction 1.4 of the lens.
There is therefore refraction at the two lens-humor interfaces.

Clearly, both humors should remain as clear as possible so as not to block light
rays heading for the retina. Fortunately, because many light rays emanating from a
point source of light enter the eye on their way to being focused on a corresponding
position on the retina, strands of material floating within the vitreous humor do not
necessarily severely disturb the image produced on the retina.1

12.4 The Retina

A photograph of the retina is shown in Fig. 12.2, taken using an ophthalmoscope.
This figure is a copy taken from the beautiful book by R. L. Gregory entitled Eye
and Brain, (McGraw-Hill, New York, 1978). The retina contains a layer of two types
of light-sensitive cells together referred to as light receptors. These are the rods and
the cones, so called because of their respective shapes. In Fig. 12.3 we see a beautiful
electron microscope image of rods and cones. They are capable of responding to the
absorption of a single photon of light by producing a nerve impulse that is sent
down a nerve fiber. Typically, though, a few photons are necessary to produce such
excitation.

Near the middle of Fig. 12.2, we see a yellow region about 2 mm � 1:5 mm
across, within which the optic nerve fibers pass through the retina, so that there
are no rods or cones. This region produces a blind spot in our vision, which we
usually don’t notice. Towards to left of the yellow region is a dark orange region
called the macula, with its even darker fovea at the center. The fovea is about one-
millimeter in diameter. Fig. 12.4 is a schematic drawing of a section of the retina.

1In order to appreciate this fact: If you have an opportunity to be present when slides are being
projected onto a screen by a slide projector, place some fingers over the lens and notice that your
fingers do not cast a shadow on the screen; instead, the image on the screen is simply dimmed
nonuniformly.
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Fig. 12.2 The human retina
(source: “Phenx Toolkit”,
funded by the National
Human Genome Research
Institute, https://www.
phenxtoolkit.org/)

Fig. 12.3 Electron microscope image of rods and cones (source: http://users.rcn.com/jkimball.
ma.ultranet/BiologyPages/V/Vision.html$, courtesy of David Copenhagen; produced by David
Copenhagen, Scott Mittman, and Maria Maglio)

https://www.phenxtoolkit.org/
https://www.phenxtoolkit.org/
http://users.rcn.com/jkimball.ma.ultranet/BiologyPages/V/Vision.html$
http://users.rcn.com/jkimball.ma.ultranet/BiologyPages/V/Vision.html$
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Fig. 12.4 Rods and cones in a section of the retina (source: GREGORY, Richard; EYE AND
BRAIN. c� 1990 Princeton University Press, Reprinted by permission of Princeton University
Press)

Note the amazing fact that the nerve fibers leading to the optic nerve leave the retina
within the vitreous humor, and thus lie in the path of incoming light. In contrast to
invertebrates, vertebrates have this so-called inverted retina.

The following are some of the important characteristics of rods and cones:

Rods:

1. There exists one type of rod, with a peak frequency sensitivity at around 500 nm
(greenish). As we will see in Chap. 14 on color vision, there being one type is
connected with their not being used for color vision.

2. The rods are about 1,000 times more sensitive than the cones.
This property is connected with their providing for night vision, referred to

technically as scotopic vision.
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Fig. 12.5 Rough sketch of the distribution of rods and cones in the retina

3. Rods have a relatively long recovery time – about 25 min. That is, once they have
been excited and have transmitted a nerve impulse, they require about 25 min
to return to a receptive state. This property is connected with the observation
that light temporarily bleaches rods from a purple color to a transparent state
indicative of their inability to absorb light. The light-sensitive material in rods is
called rhodopsin or visual purple and was extensively studied by George Wald,
who received the Nobel Prize for his work.

4. About 120 million in number, rods are distributed mostly peripherally to the
centrally located fovea, which has a diameter of about 1 mm. (See Fig. 12.5.)

Cones:

1. The cones provide for color vision by the existence of three types of cones.
They have peaks in their sensitivity as a function of frequency at the following
respective wavelengths: � � 440 nm (blue), � � 520 nm (green), and � � 570 nm
(orange). The three types are often called blue cones, green cones, and red
cones, respectively. Genes for each type of cone have recently been isolated
at Johns Hopkins University. How the three provide for color vision will be
described later, in Chap. 14.

2. About six million in number, cones are concentrated in the region of the fovea. It
is estimated that about 64% are red cones, 32% are green cones, and 2% are blue
cones.

3. Cones provide for day vision or photopic vision.
4. As with all nerves, when a cone is excited and emits a nerve impulse, it takes

time for it to be able to respond again. This time is referred to as the recovery
time. Cones have a relatively short recovery time. Recovery time is responsible
for after images. In Fig. 12.6 is a reproduction of a famous painting of the flag
of the USA. The reader should stare at the center of the flag for about 30 s, with
minimal eye motion. Then the reader should look to the side at a blank part
of the page. The original red, white, and blue colors will appear. They are the
complementary colors discussed in Chap. 14 to the colors in Fig. 12.6. This
phenomenon results from fatigue of the cones corresponding to the color of a
region.

In Fig. 12.7, we see the distribution along a line running from the top to the bottom of
the eye that runs through the fovea and the blind spot at the exit to the optic nerve.
From Figs. 12.5 and 12.7, it is clear that the rods provide for excellent peripheral
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Fig. 12.6 Complement
of the US flag

but poor head-on scotopic (night) vision. On the other hand, the cones provide for
excellent head-on but poor peripheral photopic (day) vision. See Fig. 12.7.

12.5 Dark Adaptation

Suppose that you are in a well lit room and then suddenly turning off the lights. Most
of us are familiar with the experience that we do not immediately see well. Our eyes
need some time to adjust and increase their sensitivity to low light intensities. This
adjustment is called dark adaptation. A minor reason is the need for our pupils to
dilate – but that response is relatively fast – about 10–20 s.2 Full adaptation, that is
maximum sensitivity, is achieved by the cones in about 7 min, that by the rods in
about 1 h. The reason is the fatigue of the rods and cones, which will be discussed
in Chap. 14.

12.6 Depth Perception

Depth perception is apparently achieved by two primary means, both depending
upon the use of two eyes:

1. Convergence: In order to produce the same field of vision on the two retinas, the
two eyes must be turned through different angles. See Fig. 12.8. That difference
decreases with increasing distance of the object.

2See Wikipedia (1-28-2011): http://en.wikipedia.org/wiki/Pupillary light reflex and M.H. Pirenne,
Vision and the Eye, (Associated Book Publshers, London, 1987).

http://en.wikipedia.org/wiki/Pupillary_light_reflex
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Fig. 12.7 Distribution of rods and cones (source: M.H. Pirenne, Vision and the Eye, (Associated
Book Publshers, London, 1987))

2. Disparity of eye position: Because of the physical separation of the two eyes
(by about 6.3 cm according to R. L. Gregory’s Eye and Brain, the two retinas
necessarily end up receiving images which are slightly shifted with respect to
one another. This shift is interpreted by the brain in terms of the distance to the
light source. Stereoscopes use this phenomenon to produce a sense of depth: The
light coming from a given two-dimensional image – as on a photo – is split into
two identical beams of light, with one beam incident upon one eye and the other



12.8 Problems for Chap. 12 393

Fig. 12.8 Depth perception via convergence of eyes

upon the second eye. The beams are such that they are incident with different
positions with respect to the two eyes, thereby reproducing the disparity of eye
position of a real 3D scene.

12.7 Terms

– Accommodation
– Aqueous humor
– Ciliary muscles
– Compound lens
– Cones – blue, green, and red
– Convergence and disparity
– Cornea
– Day vision
– Depth perception
– Fovea
– Hyperopia (far-sightedness)

– Iris
– Lens
– Light receptors
– Myopia (near-sightedness)
– Near point
– Night vision
– Optic nerve
– Retina
– Rods
– Transmittance
– Vitreous humor

12.8 Problems for Chap. 12

1. (a) Roughly what is the value of the effective focal length of the eye?
(b) What is the light-sensitive layer in the eye called?
(c) What is myopia and how is it corrected?
(d) What is hyperopia and how is it corrected?
(e) What is the area of the retina called that has the greatest visual acuity?
(f) What function does the crystalline lens of the eye have?
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(g) For what object distances is the eye focused when relaxed – near or far?
(h) What is the near point?
(i) Why does the eye have a blind spot?
(j) What are rods and cones? Which are numerous?
(k) Which type of receptor cell does the fovea contain?
(l) Which is more sensitive to light, photopic or scotopic vision? By how much

more?
(m) List two methods of binocular depth perception.

2. The greatest amount of refraction in the lens system of the eye occurs when the
light

(a) Passes through the middle of the lens
(b) Passes from the vitreous humor to the aqueous humor
(c) Passes from air into the vitreous humor
(d) Enters the cornea

3. The old saying “at night, all cats appear gray” has the following scientific
basis:

(a) At low light levels, all cones are stimulated, so every object appears white
or off-white.

(b) At low light levels, the cones are not stimulated, and rods cannot distin-
guish colors.

(c) At night, only the fovea reacts to light.
(d) In low light levels, the lens transmits only blue light, which we interpret as

gray.
(e) At night, the optic nerve only reacts to light and dark.

4. Can an eye be both near-sighted and far-sighted? Explain.
5. Explain why in dim light objects appear more distinct if they lie off to the side

of the field of vision.
6. Why do you suppose the eye’s lens must have a bulging much greater than it

would need if it were suspended in air, to provide its focal length?
7. Suppose that the image distance from the effective lens to the retina is

2.25 cm.

(a) Find the focal length of the eye lens when viewing an extremely distant
object.

(b) Suppose that the eye now views an object a distance 30 cm away from the
eye. Do you expect the focal length to increase or decrease? Calculate the
focal length.

8. Suppose that an eye has a range of object distances which can be brought into
focus from 40 to 200 cm. Assuming that die D 24 mm, calculate this eye’s range
of focal lengths.

9. Consider an object with a height of 2 m. Estimate the minimum distance it can
have from the eye so that its image can be cast entirely on the fovea.
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10. The author had his eyes checked on December 8, 2005. The prescription for his
left eye read �0:25 for far vision and �0:25 C 2:25 D 2:00 for near vision.
These numbers refer to what is known as the diopter value. The diopter value
D is a measure of the strength of a lens. Mathematically

D � 1

f
; (12.7)

where f is the focal length expressed in meters. Thus, for far vision I need a
diverging lens with a focal length

flens D 1

D
D 1

�0:25
D �4:00 m: (12.8)

Let us now again assume that the fixed image distance in my eye is 24 mm.

(a) Calculate the focal length ffar needed by my eye to bring into focus objects
at infinity without any corrective help.

(b) The focal length with my corrective lens is determined by the maximum
focal length of my eye max feye and ffar as follows. If we neglect the
fact that the corrective lens is held outside the eyeball and assume as an
approximation that it is coincident with the center of the eye lens, it can be
shown that the effective focal length of the combination of the two lenses
is obtained by adding the inverses of the respective focal lengths:

1

ffar
D 1

flens
C 1

max feye
: (12.9)

Expressed in terms of diopters, we have direct addition:

Dfar D Dlens C min Deye: (12.10)

Calculate Dfar and min Deye.
(c) Calculate min feye.
(d) The maximum focal length of my eye used for near vision can be

determined by the desired near point, which we choose here to be dnp D
25 cm, and the focal length of the corrective lens. First calculate the needed
focal length without correction:

1

fnear
D 1

dnp
C 1

24 mm
: (12.11)

(e) Next calculate

Dnear D Dlens C max Deye: (12.12)
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(f) Finally calculate min feye.
It is useful to mark off on a line the positions of the eye-lens, ffar, fnear,

max feye, and min feye.

11. A tree of height 5 m is a distance 10 m away from you. How high is the image
of the tree on your retina if your lens-to-retina distance is 24 mm?

12. Suppose we treat the human eye as having a uniform index of refraction of 1:37.
What fraction of light intensity, incident directly at the eye, is transmitted into
the eye from air?

13. The effective focal length of a particular person’s eye is 22 mm when the lens
is relaxed. The effective lens-to-retina distance is 24 mm.

(a) Is the person near-sighted or far-sighted?
(b) To bring distant objects into focus, a diverging lens is used.

Assuming that the corrective lens is adjacent to the eye: Determine the focal
length of the lens so that it will produce a virtual image of an infinitely distant
object, such that the virtual image will serve as an object which the eye will
focus on the retina in the relaxed-lens state.

14. It has been reported that the density of rods on the retina can be as high as
160,000 per mm2. On this basis, assuming that the rods are touching each other,
estimate the diameter of a single rod. To do so, imagine the rods distributed as
squares on a checkerboard, each square having a side d , which will represent
the diameter. Then write down an expression relating d to the density. How
many squares, each of area d 2 would there be in an area of 1 mm2?



Chapter 13
Characterizing Light Sources Color Filters
and Pigments

13.1 Characterization of a Light Beam

If we are to be able to understand the way the eye transmits nerve impulses, we
need to be able to characterize accurately the light that is incident upon the eye.
Obviously, the light generally casts an image with great variation in detail, with
respect to both color and intensity. In this chapter, we will restrict ourselves to an
image that consists of a field of uniform color and intensity. Such an image can be
produced by having a light beam be cast upon and then reflected by a white screen.
Therefore, we will focus our attention upon the characterization of a light beam.1

A complete characterization of a light beam and hence its source would include
a specification of the wave pattern, that is, the magnitude of the electric field, as it
varies in space and time, as well as the state of polarization. In this chapter, we will
ignore the state of polarization of the beam. The reason is that our goal is to relate
the physical characteristics of a beam with color perception. And, polarization plays
little role in this regard.

For the purposes of characterizing the color and brightness alone, a spectral
analysis is sufficient. That is, all we have to know is the intensity of all the Fourier
(monochromatic) components in the visible region of the electromagnetic (EM)
spectrum. A specification of the intensity with respect to frequency is called the
spectral intensity, and will be symbolized by I.�/ – A Fourier analysis of the
wave pattern determines the spectral intensity. In practice, the spectral intensity of
a light beam can be determined by a prism or by a diffraction grating. In the figure
below, a light beam is shown passing through a diffraction grating. Equation (13.2)
provides us with a relationship between the angle � and the wavelength. Therefore,
the spectral intensity of the light is measured by a light meter set at various angles � .

1See S. J. Williamson and H. Z. Cummins, Light and Color, (John Wiley and Sons, New York,
1983), for a more detailed treatment of this subject.

L. Gunther, The Physics of Music and Color, DOI 10.1007/978-1-4614-0557-3 13,
© Springer Science+Business Media, LLC 2012
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Fig. 13.1 Diffraction by a grating

In order to simplify our discussion, we will be concrete by specifying the line
spacing of the grating as 10,000 lines per centimeter (see Chap. 8). The line spacing
d is equal to .10;000/�1 cm D 1,000 nm. The first order diffraction pattern has the
angle � related to the wavelength via the equation:

sin � D �

d
D � .nm/

1;000
: (13.1)

Alternatively, we could write

� .nm/ D 1;000 sin �: (13.2)

The symbol � .nm/ means that the use of (13.1) or (13.2) requires that the
wavelength be expressed in nanometers (nm).

We will restrict the wavelength � to the range 400–700 nm (the approximate
visible range). Then sin � ranges from 0:40 to 0:70 and, correspondingly, the angle
� ranges from 23:6ı to 44:4ı.

In Fig. 13.1, the light meter is set at 40ı. It therefore measures the intensity of the
spectral component having a wavelength of � D .sin 40ı/.1;000/ D 643 nm.

Examples of some spectral intensities are exhibited below:

1. Monochromatic light, with a wavelength of 580 nm is represented by a spike.
See Fig. 13.2. Absolutely monochromatic light is a nonexistent ideal. If a
quantum system were to have a transition from one state to another that leads
to absolutely monochromatic light and if it were initially in the lower of the
two states, the quantum system would not absorb any incident light that is not
absolutely monochromatic light of precisely the same wavelength.

2. Neon laser light; see Fig. 13.3
The spectral intensity of the laser light has a peak at 632.8 nm. The bandwidth
��, shown in the figure, gives us a measure of how monochromatic the light is.
It is usually defined as the difference between the two wavelengths for which
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Fig. 13.2 Absolute
monochromatic yellow

Fig. 13.3 Quasi-monochromatic red

I.�/ is equal to one-half the maximum value of I.�/. Laser light is very highly
monochromatic in which �� is a minuscule fraction of the wavelength �max at
which I.�/ is a maximum. For He–Ne laser light, �� D 0:002 nm. Clearly ��

is highly exaggerated in the above figure.
The color sensations produced by monochromatic light spans the huge range

of colors of the rainbow. These color sensations are called spectral colors.
For simplicity, the spectral colors are grouped according to certain ranges of
wavelengths. For example, the term spectral red refers to a monochromatic light
that is red in color. The groups are listed in the table below:

� .nm/ Spectral color

400–420 Violet
420–455 Indigo
455–490 Blue
490–575 Green
575–585 Yellow
585–650 Orange
650–720 Red
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Fig. 13.4 Double Blue slide and corresponding spectral intensity (source: Courtesy of Rosco, Inc,
Stamford, CT)
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Fig. 13.5 Mist Blue slide and corresponding spectral intensity (source: Courtesy of Rosco, Inc,
Stamford, CT)

According to this table, neon laser light would be labeled orange. Boundaries
between color-labeled regions are not unanimously agreed upon!

It is important to note that certain color sensations cannot be produced by
monochromatic light. They include: white, magenta, cyan (turquoise), brown,
and gray. These will be further discussed in Chap. 14.

3. In Fig. 13.4 is an example of a broad spectral intensity that produces a distinct
bluish color sensation. Note that quite a bit of monochromatic light in the red
region is present.
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Fig. 13.6 White light
spectrum

4. The pale blue color in Fig. 13.5 requires a much broader spectral intensity than
the previous one in Fig. 13.4.

5. A spectral intensity that is a constant, that is, the same, for all visible wavelengths
is referred to as pure white and is shown in Fig. 13.6. Another term for this
spectrum is equal energy spectrum, for obvious reasons. Such a spectrum will
appear white.

As we move from a spectral blue to a broad spectrum blue to a pale blue,
and on to pure white, the color sensation becomes less distinct. We say that the
color becomes less saturated. A spectral color has maximum saturation. A pale
blue is a low saturated blue, with “blue” referred to as the hue. It can be simply
produced by adding white light to a saturated blue light. Similarly, pink is low
saturated red.

So far, we have characterized our psychological perception of a light source
according to hue and saturation. Hue has so far been associated with a peak
frequency in the spectrum. The third characteristic of a light source is its
brightness, which is a subjective characteristic related to the overall intensity
of the light source. The range of light intensities that can be seen without pain is
from �10�10 W/m2 to �100 W/m2 and therefore spans 12 orders of magnitude,
as in the case of sound.

The following table summarizes the psychological perception characteristics
with the physical characteristics of light and sound:

Psychological Physical

Light Hue Central frequency
Saturation Band width or white admixture
Brightness Intensity

Sound Pitch Fundamental frequency
Timbre Admixture of overtones
Loudness Intensity
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Fig. 13.7 Linear mass density of a pencil line

13.1.1 Spectral Intensity vs. Intensity

Question: What is the significance of the value of the spectral intensity at a specific
wavelength? Is it the value of the intensity at that wavelength?

Let us consider a line on a paper, 3 cm long, made by a pencil with variable
thickness. See Fig. 13.7.

There is no mass at a given point along the line. There is only mass for a line
segment. We see a graph that plots the linear mass density of the material that
constitutes the line. The total mass is 4 mg. There are 2 mg between the origin
and the point 2 cm. This value is obtained by multiplying the linear mass density,
1 mg/cm by the length of 2 cm. Similarly, we obtain a mass of 2 mg for the segment
that is 1 cm long with a linear mass density of 2 mg/cm. The reader will note that
generally, the mass can be calculated by determining the area under the graph. Each
unit area is a milligram. If we have a continuously changing thickness, the total mass
will be the area under the curve of mass density vs. position.

Similarly, there is no intensity associated with the value of the spectral intensity
at a given point. The spectral intensity is an intensity density being equal to
the intensity per interval of wavelength. To be a bit more explicit – a range of
wavelengths from �1 to �2 has a total intensity that is equal to the area under the
curve of the spectral intensity vs. wavelength between these two wavelengths.

Sample Problem 13-1

In Fig. 13.8, we see a plot of a particular spectral intensity. Note
that the unit of spectral intensity in the plot is 1 W/m2 per nm. The
wavelength difference between ticks on the plot is 100 nm. What is the
total intensity?



13.2 Color Filters 403

Fig. 13.8 Spectral intensity

Solution
We see two cross-hatched rectangles. From 400 to 500 nm, we have a
spectral intensity of 1 mW/m2 per nm, so that the area of this rectangle
is 300 units, corresponding to 300 mW/m2 D 0:3 W/m2. With the same
analysis, we obtain an intensity contribution of 0.2 W/m2 from the 500
to 700 nm. The total intensity is therefore 0.5 W/m2.

13.2 Color Filters

A color filter is transparent to light, with a fraction of the intensity transmitted
that is dependent upon the wavelength. Color filters function by a process of
selective absorption – that is, the more a spectral component is absorbed, the less
is transmitted.

If a light beam of spectral intensity I.�/ is passed through a color filter, the
outgoing beam has a spectral intensity I.�/0 that is given by the product of the
transmittance T .�/ and the incoming spectral intensity:

I 0.�/ D T .�/I.�/: (13.3)

The transmittance can be expressed as a fraction (less than one) or a percentage. The
process is exhibited in Fig. 13.9.
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Fig. 13.9 Transmittance
of a material

Fig. 13.10 Transmittance
of a red filter

Note

If the incoming intensity is pure white, the outgoing beam will have
a spectral intensity that is proportional to the transmittance. Thus, to
produce the blue and pale blue colors in the previous figures requires
filters with transmittances that are proportional to the respective spec-
tral intensities.

An example of the transmittance of a red filter is shown in Fig. 13.10.

Homework: Sketch T .�/ for a green filter.

Note

We do not have filters that transmit highly monochromatic light.
To obtain highly monochromatic light from a white source (or non-
chromatic source), a prism or a diffraction grating is used. In this
capacity, these devices are referred to as monochromators.

Note

One might ask, “What happens to the incident light that is not transmit-
ted through a filter?” The answer is that the remaining part of the light
is represented by reflected light as well as light that is absorbed by the
material out of which the filter is made.
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Fig. 13.11 Two identical
filters

Note

Question: Does the value of the transmittance at a specific value of the
wavelength have a direct significance experimentally? The answer is
affirmative: The transmittance at a given wavelength is the fraction of
incident monochromatic light at that wavelength that is transmitted.

13.2.1 Stacking Filters (Filters in Series)

When two filters are laid one on top of the other, in series, we say that they are
stacked. The transmittance of a series of two filters is obtained by multiplying the
two respective transmittances.

Thus,

T .�/ D T1.�/T2.�/: (13.4)

Note that the order in which the filters are stacked is not relevant!
To illustrate an application of this formula, we will examine a process whereby an

incoming beam of white light has its spectral intensity increasingly narrowed (hence
made increasingly saturated) by a series of two identical filters, so that T1.�/ D
T2.�/. See Fig. 13.11.

The length and color of the arrows in the figure are meant to show that on
passing through a filter, the outgoing light has a reduced intensity and an increased
saturation. This effect can be achieved by using one filter as follows: We simply have
the light that passes through the single filter reflect off a mirror or a diffuse reflecting
white surface and then pass through the filter a second time. (The term white here
means that all frequencies are reflected to an equal extent.) See Fig. 13.12.

Let us consider a simple numerical example to illustrate the increase in
saturation by a series of two identical filters. Suppose that T1.�/ and T2.�/ are
given by the following:

T1.�/ D T2.�/ D T .�/ D
�

0:8 for 500 nm < � < 600 nm
0:3 otherwise

:
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Fig. 13.12 Light through a filter, reflected back through the filter

Fig. 13.13 Graphical
representation of the
transmittance in the above
example

Fig. 13.14 Net transmittance
for the sequence of two
identical filters

This transmittance is shown in Fig. 13.13.

T .�/2 D
�

0:64 for 500 nm < � < 600 nm
0:09 otherwise

:

The resulting net transmittance is shown in Fig. 13.14.
We see that the resulting transmittance is more sharply peaked. A series of

identical filters or a single thick filter can be used to make a white beam more
monochromatic. However, note that the price paid is reduced intensity.
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Fig. 13.15 Two filters
together filtering out all light

Fig. 13.16 Cyan filter

Example Two: We consider a series of two filters, one a red filter and the other a blue
one. We see that wherever T�R.�/ is nonzero, T�B.�/ is zero, and conversely. Thus,
the net transmittance, T .�/ D T�R.�/T�B.�/ vanishes for all visible wavelengths.
See Fig. 13.15.

That is, the two filters remove all light!
To further simplify our discussion, we will use the following symbols to refer to
various general colors:

W: white G: green M: magenta BN: brown
R: red B: blue C: cyan BK: black
O: orange V: violet P: purple Y: yellow

In order to indicate the effect that a filter has on a beam of light, we will use the
symbols in Fig. 13.16. Their significance should be self-explanatory.

We can use a prism to determine the transmittance of a filter as shown below for a
typical yellow filter. See Fig. 13.17. First, let us recall that yellow is a spectral color.
As such, we might expect to see one outgoing yellow beam. Instead, we would see
two outgoing beams, green and red.

This analysis reveals that the filter does not transmit spectral yellow. Instead, it
transmits the two colors, red and green. We will label such a filter with an asterisked
Y: Y*, to distinguish it from a spectral yellow filter. From the above, we learn that
the eye sees yellow when a mixture of red and green light is incident on the eye. We
will explain this phenomenon in Chap. 14, where we will discuss a theory of Color
Vision.
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Fig. 13.17 Yellow beam and a prism

Fig. 13.18 Addition of red
and green to give yellow:
R
L

G � Y

The most significant conclusion of these observations, a conclusion that has
widespread validity, is that there is

NO one-to-one correspondence between the multitude of spectral intensities
I.�/ and multitude of color sensations.

In fact, every color will and can be produced by an infinite number of spectral
intensities.

Now suppose that we cast a circular beam of light onto a white screen that scatters
light diffusely. Such an image is called a color patch. If we cast two color beams
onto the screen, and have the patches overlap, our eyes will see the light from both
beams that has scattered diffusely from the screen into our eyes. Our eyes will then
receive the sum of the two light intensities. In particular, overlapping patches from
a red filter and a green filter will look like a yellow patch! See Fig. 13.18.

The sum of red light and green light appears yellow as with the production of
yellow with the yellow filter Y*. The process reflects a synthesis, from a mixture
of spectral green and spectral red, of a color that is essentially indistinguishable2

from the sensation produced by a spectral yellow. This synthesis is the reverse of
the analysis carried out by the prism on the light transmitted by the yellow filter.

2The word essentially is inserted here because light from a single monochromatic source will
always be more saturated than light from a mixture of monochromatic sources, as we will learn in
Chap. 14.
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Fig. 13.19 Action of red
pigment

Most people are surprised at the above observation of mixing red and green to
produce yellow. They expect the same result as is produced by mixing red and green
paints. In that case, red added to green equals a brown. In the next section, we will
discuss the behavior of pigments, which are the basic ingredients of paints.

13.3 Pigments

What determines the color of opaque objects? Clearly, the transmittance of a filter is
mirrored by the ability of the filter to absorb selectively. Similarly, an opaque object
absorbs selectively and has a corresponding wavelength-dependent reflectance.
Pigments are materials that are extremely selectively absorptive. They can color
a material when present in very dilute concentrations. They are most commonly
used in paints. Here are examples with a simplified account:

1. RED pigment absorbs all but red and reflects red. See Fig. 13.19.
2. GREEN pigment absorbs all but green and reflects green.
3. BLUE pigment absorbs all but blue and reflects blue.
4. Y� pigment absorbs B and reflects R and G.
5. Y� pigment mixed with B pigment absorbs B, R, and G – so absorbs all!

Thus, Y� pigment mixed with blue pigment should appear black according to our
simple description. Most often, such a mixture appears green.

Paints behave like the pigments described above. How they are prepared so as to
have the desired absorption–reflection characteristics is fascinating.3

13.4 Summary Comments on Filters and Pigments

1. Both filters and pigments function by a process of selective absorption.
2. With a filter, we observe transmitted light.
3. With pigment, we observe reflected light.

3The following are suggested for further reading: Light and Color in Nature and Art, by
S. Williamson and H. Cummins, (J. Wiley and Sons, N.Y., 1983), Light and Color, by
R. D. Overheim and D. L. Wagner (J. Wiley and Sons, N.Y., 1982), and Seeing the Light,
by D. Falk, D. Brill, and D. Stork (Harper and Row, N.Y., 1986).
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Fig. 13.20 Comparison of addition and subtraction of spectral intensities (source: Charles
Poynton and Garrett Johnson, Color science and color appearance models for CG, HDTV, and
D-Cinema; ACM Digital Library, c� 2004 http://dl.acm.org/citation.cfm?id=1103903, reprinted
with permission)

4. When the color patches of light beams are overlapped, spectral intensities are
added and we have additive mixing.

5. When color filters are stacked or pigments are mixed, spectral absorptions are
added and we have subtractive mixing.

Figure 13.20 illustrates very nicely the difference between the two processes,
addition and subtraction. Results for both types of mixing are summarized in
Fig. 13.21.

13.5 Terms

– Additive mixing
– Bandwidth of a spectrum
– Color filter
– Color
– Additive mixing
– Bandwidth of a spectrum
– Color patch
– Equal energy spectrum
– Hue

– Monochrometer
– Monochromatic light
– Pigment
– Saturation
– Spectral color
– Spectral intensity
– Subtractive mixing
– Transmittance

http://dl.acm.org/citation.cfm?id=1103903
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Fig. 13.21 Mixing of colors. (a) Additive mixing. (source: http://upload.wikimedia.org/wiki
pedia/commons/thumb/c/c2/AdditiveColor.svg/1000px-AdditiveColor.svg.png); (b) Subtractive
mixing. (source: http://upload.wikimedia.org/wikipedia/commons/thumb/1/19/SubtractiveColor.
svg/1000px-SubtractiveColor.svg.png)

13.6 Important Equations

Transmitted intensity:

I 0.�/ D T .�/I.�/: (13.5)

Transmittance for two stacked filters:

T .�/ D T1.�/T2.�/: (13.6)

13.7 Problems for Chap. 13

1. What are the physical characteristics of a light source that are, respectively,
related to the following:

(a) Hue
(b) Saturation
(c) Brightness

2. When white light is passed through two identical stacked filters having a strong
degree of monochromaticity, which of the three attributes of the outgoing beam
change considerably in comparison with passage through one of the filters?

(a) Hue
(b) Saturation
(c) Brightness

3. In Fig. 13.22 are sketched the transmittances of two filters, T1.�/ and T2.�/,
respectively.

(a) What colors do these filters individually produce?

http://upload.wikimedia.org/wiki
pedia/commons/thumb/c/c2/AdditiveColor.svg/1000px-AdditiveColor.svg.png
http://upload.wikimedia.org/wikipedia/commons/thumb/1/19/ SubtractiveColor.svg/1000px-SubtractiveColor.svg.png
http://upload.wikimedia.org/wikipedia/commons/thumb/1/19/ SubtractiveColor.svg/1000px-SubtractiveColor.svg.png
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Fig. 13.22 Two-maxima
spectrum

Fig. 13.23 White light enters a yellow and magenta filter

(b) If the filters are stacked, sketch the resulting transmittance. What is the
corresponding color?

(c) Suppose a white beam is passed through each of the filters and the beams
are projected onto a screen so as to produce two overlapping patches. What
is the color of the patch? Sketch the spectral intensity of the reflected light.

4. (a) In mixing blue and yellow (Y�) lights, one can produce light.
(b) In mixing blue and yellow (Y�) pigments, one can produce

pigment.
(c) Explain why your answers to parts (a) and (b) are different.

5. Complete Fig. 13.23.



Chapter 14
Theory of Color Vision1

In Chap. 13, we saw that one can characterize a light source in terms of its spectral
intensity. We now turn to the question as to the relationship between the objective
characteristics of a light and the subjective perception of the light. We have
already identified three attributes of one’s visual perception – hue, saturation,
and brightness. The first two are the attributes that, together, are referred to as
the color. Thus, our goal is to establish the relationship between the spectral
intensity and these three attributes. We will first summarize this relationship as it
was determined through years of testing many individuals. Then we will discuss
how this relationship can be understood in terms of the biophysical behavior of the
visual apparatus, the rods of the retina.

Before we begin, some important comments are in order. What does it mean to
say that I see the color blue and that you agree with me? Do we experience the same
sensations? Does the color blue look the same to you as it does to me? Some thought
reveals that no one can tell what another person’s actual sensation and experience is
in connection with the color blue. We could say the same thing about any sensation
or feeling that we have. For example, I know what I myself experience when I say
that I feel cold or I feel sad. But I cannot tell what any other person’s experience is
like when they refer to these experiences with the same words. If someone says that
they feel cold, I might observe behaviors that are commonly displayed by people
who feel cold – shivering, for example. Observing such behaviors support and/or
give me confirmation that a person is experiencing a cold feeling and lead me to
assume that their experience is the same as mine.

If I cannot tell what another person’s experience is like, based on how they
describe in standard verbal terms, what can I be essentially sure of? One possibility
is the following: people have a multitude of experiences. These experiences
are mapped onto a language of words. Ideally, this mapping is in one-to-one

1In addition to the elementary book,Light and Color by Overheim and Wagner (op, cit. in
Chap. 13), the reader is referred to the advanced texts: T. N. Cornsweet’s Visual Perception
(Academic Press, N.Y., 1970) and Y. Le Grand’s Light, Color, and Vision (Dover, N.Y., 1957).

L. Gunther, The Physics of Music and Color, DOI 10.1007/978-1-4614-0557-3 14,
© Springer Science+Business Media, LLC 2012

413



414 14 Theory of Color Vision

correspondence, as with the object and image of a lens. In this case, a one-to-one
verbal mapping has the property that

no given experience can be expressed using more than one
specific verbal description, AND, no specific verbal description

can be used to describe more than one given experience.

As far as color perception is concerned, we can enumerate a multitudinous set of
color sensations that have been shown to be in one-to-one correspondence with a
corresponding set of physical characteristics of light sources. Thus, all people with
normal vision and a rich exposure to the visual world will use the word red to refer
to a certain set of visual sensations. Furthermore, they can distinguish the sensation
of “red” from other colors like “green” or “blue.” More generally, they have
established, from experiences in childhood and onward, a vocabulary to describe
their sensations of color in response to various inputs of light. This correspondence
is shared by all people with normal vision. On the other hand, there are people with
various kinds of color blindness. Most common is the inability to distinguish red
from green. That is, two light sources, which produce the sensations of red and green
in people with normal vision, appear to have the same color. Color blind people have
a different mapping than people with normal vision. Our first goal is to describe the
mapping for people with normal vision. We will then discuss some of the character-
istics of color blindness and give a physiological explanation for the phenomenon.

The ultimate purpose of this chapter is to show how any color can be specified
in terms of two numbers that correspond to a choice of three spectral primaries.
Such a reliable specification of color is essential for the communication of color
among interested individuals and for the reproduction of color by mixing various
color sources. Examples are paints, color monitors, color printers, and fabrics. In
fact, it is possible for someone to “discover” a color among the infinite number of
possible colors, a color that happens to be extremely pleasing or exciting to most
people.2 Such a color can then be patented!

14.1 A Simplified Version of the Three-Primary Theory

The observation that any color might be produced by adding together three primary
colors is well known.3 This idea is the basis for color television and was used by
the pointillist painters, such as, Seurat, to produce a rich color painting by using

2It should be recognized that any particular individual is limited in their ability to discriminate
one color from another. There are Just Noticeable Differences in Color in analogy with Just
Noticeable Differences in Frequency. Therefore, a particular individual can discriminate among
only a finite number of distinct colors.
3We will discuss the modern developments in the field of color. The history of the science of
color vision started with Isaac Newton, who in the 1600s proposed that there are seven primaries
that can be mixed in appropriate proportions to produce any color sensation. The basis of the
proposal was Newton’s studies of the decomposition of white light by a prism into its rainbow of
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dots of three colors alone. We will begin this chapter by discussing a very simplified
version of the three-primary theory of color vision. This version recognizes only six
hues. Later, we will refine it with the chromaticity diagram , which reflects much
more accurately the true nature of color vision, treating the full range of hues and
degrees of saturation. It turns out that the ideal three-primary theory is quite good
in reflecting human color vision. Finally, we will see how the three-primary theory
is connected with the existence of three types of cones, the red cone , green cone,
and blue cone. We will also see how these three cones can provide us with the three
basic attributes of our visual sense: hue, saturation, and brightness. Recently, in
1986, genes for these three cones were identified at Stanford University by Jeremy
Nathans, thus establishing a physiological basis for the primary color theory.

According to the Three-Primary Theory of Color Perception, there exists a set of
three spectral colors which have the following property:

Any visual sensation can be produced
by an appropriate mixture of these sources.

We will henceforth label these spectral sources as R, G, and B . We must keep
in mind that the choice of these primaries is not unique, and that the names and
symbols merely indicate that the choices of primaries that work well tend to be in
the respective regions of color, that is, red, green, and blue.

To introduce the ideas of the Three-Primary theory, we will neglect saturation
and consider only six hues: R, G, B, Y, C, and M. The three non-primary hues can
be produced from mixtures of the primaries as follows:

Let the symbol ˚ represent the addition of two light sources. Thus, for example,

Yellow D Red C Green
Alternatively we will write Y D R ˚ G

Cyan D Blue C Green
Alternatively we will write C D B ˚ G

Magenta D Blue C Red Alternatively we will write M D B ˚ R

White D Blue C Green C Red Alternatively we will write W D B ˚ G ˚ R

R, G, and B are referred to as additive primaries, in which they can produce the
remaining basic hues, Y, C, and M, along with white (W).

Within the framework of this simplified set of hues,

– A C-filter filters out R
– A Y-filter filters out B
– A M-filter filters out G

colors. He identified the color of an object as an attribute of the response of the eye to various
wavelengths of light that are reflected off the object as opposed to the idea that the color “resides”
in the object itself. The proposal that there are three primaries is due to Thomas Young (1807).
Many other scientists helped develop the basic principles of color mixing – in particular, James
C. Maxwell, who provided a theoretical basis for electromagnetic waves, as discussed in Chap. 5.
In 1860, Maxwell produced the first, albeit crude, set of color-matching functions, which will be
discussed in detail in this chapter. For an excellent history of studies of color vision, see Deane
Judd in the publication: NATIONAL BUREAU OF STANDARDS: VOL. 55, p. 1313, (1966).
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Suppose that we pass white light through these filters, C, Y, and M. Furthermore, let
the symbol � represent the removal of the component that follows the symbol from
the component that precedes it. Then we can write:

C D W � R

Y D W � B

M D W � G:

When stacked in series, C, Y, and M filters act as subtractive primaries, in which
they can produce the remaining basic hues, R, G, and B, along with black (BK): Let
us introduce the symbol ˇ to indicate that two filters are in series. Thus, C ˇ Y

represents C and Y in series. Then C ˇ Y D W ˇ R ˇ B D G.

Homework: Explain why B ˇ Y D BK , C ˇ M D B , Y ˇ M D R, and C ˇ Y ˇ
M D BK .

The three subtractive primaries form complementary color pairs with the additive
primaries, in which the addition of a pair of such colors produces WHITE:

B ˚ Y D W

G ˚ M D W

R ˚ C D W

Next, we want to move on to consider the full set of colors perceived with normal
vision. This set is infinite in number.

14.2 Exploration of Color Mixing with a Computer

It is quite an experience to see how a mixture of primaries can produce a vast set of
colors. You can do so in a simple way by using Paintbrush, which is available with
either a PC or a MAC. Typically this program comes with any purchased PC. In the
case of a MAC, you can obtain a free download from the apple.com website.

Your first step is to gain access to a window that displays a box whose color
is determined by a set of the three numbers corresponding to the admixture of the
primaries of your monitor. I suggest that you choose the setting that provides 8-bit
Truecolor. The number eight means that there are 28 D 256 possible values for
the intensity of each primary, the values being given by 0, 1, 2, 3,. . . 255. The total
number of possibilities is then 256 � 256 � 256 D 16; 777; 216. Here is how you
can access the palette of colors: In the PC version, you should click on colors/edit
colors. In the MAC version you should click on Tools/Font/Colors. I will refer to
the MAC version in what follows. In Fig. 14.1, you can see two of the windows that
should appear.
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Fig. 14.1 Color mixing with paintbrush in a Mac computer – RGB sliders on the Left, color wheel
and intensity slider on the right

At the very top you will see a small color wheel to the far left, followed by three
color sliders.

Choose RGB sliders. Here you can choose the sets of three numbers that are
associated with the color in a computer. I will use the bold letters R, G, and B here
to refer to these values. Be forewarned that the unbolded letters R, G, and B will refer
to another set of numbers used later on in this chapter – the so-called tristimulus
values. The two sets of three numbers are both used to specify the color but are not
the same! Unfortunately, you will find both sets of symbols used interchangeably in
the literature, so that you will have to make sure that you are certain about which
set the symbols represent. Another important fact to keep in mind is that the actual
color you will see on a monitor or produced by a printer by a given set of monitor
color coordinates R, G, and B will vary considerably. As a result, there is incredibly
extensive literature on the problems of matching colors.

Experiment by moving the sliders and observing the changing values RGB and
the corresponding color in the box at the top. Next, choose a set RGB and switch to
the color wheel. In this window, you will see a circle on the left filled with colors.
Note the small “pointer circle” someplace within the colored circle. It characterizes
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Table 14.1 Preucil circle
of colors

Ordering Hue region Formula

R � G � B Red–yellow hPreucil circle D 60ı � G�B
R�B

G > R � B Yellow–green hPreucil circle D 60ı � �2 � R�B
G�B

�
G � B > R Green–cyan hPreucil circle D 60ı � �2 C B�R

G�R

�
B > G > R Cyan–blue hPreucil circle D 60ı � �4 � G�R

B�R

�
B > R � G Blue–magenta hPreucil circle D 60ı � �4 C R�G

B�G

�
R � B > G Magenta–red hPreucil circle D 60ı � �6 � B�G

R�G

�

the color. Color refers here to hue and saturation. The position of the pointer circle
is characterized by its distance from the center of the color circle and by its angle
with respect to a direction to the right. The two numbers are the polar coordinates
of its position. The angle determines the hue, ranging from red to magenta, as the
angle moves around from 0ı to 360ı. Thus, RED is at 0ı, GREEN is at 120ı, and
BLUE is at 240ı.

The angle is determined by the RGB values according to the formula introduced
by Frank Preucil.4 Table 14.1 provides the equations needed to calculate the angle.
Next you can control the degree of saturation. By moving the pointer circle radially
inward, you will see how the color becomes more pale: red becomes a pink, blue
becomes pale blue, and so on. Lowering the saturation decreases your ability to
distinguish among various hues. Ultimately, you will reach white at the center.

By moving the vertical slider at the right up and down, you can change the overall
intensity while maintaining the color. Doing so will not change the hue. However,
as you lower the intensity all the RGB coordinates will be reduced. The question is
whether they are reduced in the same proportion. Check this out by switching back
and forth between the circle window and the RGB slider window. A good place
to start is with RGB set initially to full brightness white: RDGDBD255. As you
reduce the intensity, you should find the RGB values reduced in proportion, so that
they are always equal.

In Fig. 14.1, we see the two windows with an orange patch having RGB
coordinates f248; 133; 27g, corresponding to 243 units of red primary, 128 units
of green primary, and 2 units of blue primary. The actual colors seen will vary from
monitor to monitor because of the varying mapping systems between computer color
coordinates and intensities. If you now move the intensity slider downward toward
decreasing intensity, you would find that the orange looks brown. Thus we learn that
brown is not a specific color in the sense that we are using the term; rather, it is the
color orange with low intensity. I am reminded of how a slice of bread that starts
out with a very pale yellow color turns brown as it is toasted. Toasting increases the
level of absorption of light so that the intensity of reflected light decreases. When
the toast is fully burned, it absorbs a great fraction of the light and looks black.

4Frank Preucil, Color Hue and Ink Transfer Their Relation to Perfect Reproduction, TAGA
Proceedings, p 102–110 (1953).
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14.3 Introduction to the Chromaticity Diagram

Recall that our perception of a light source has three distinct characteristics, hue,
saturation, and brightness. Hue and saturation together constitute what we will call
the color of the light – technically referred to as the chromaticity of the light source.
Thus,

Chromaticity = Hue + Saturation

In Sect. 14.1, we ignored brightness and saturation and recognized only six hues.
Here we neglect brightness and consider the full range of chromaticities.

The results of tests on people with normal vision – those who are not classified
as color blind – are summarized in what is known as a Chromaticity Diagram.
It reflects the observation that two numbers alone are sufficient to specify the
chromaticity of a light source:

For any spectral intensity I.�/, one can calculate the values of these two
numbers, referred to as color coordinates. They are given the symbols r and g.

We can easily appreciate why the chromaticity diagram can be of great interest
and use to the student of color vision, purely for academic reasons as well as
for medical reasons. However, the diagram is also invaluable to artists, to stage
designers, as well as to designers of cloth for clothing. Imagine how useful it is to
be able to refer to any color precisely by telephone or mail by merely specifying
two numbers, say 0:2023; 0:4285.

Before we continue, it is important to keep in mind the following: Our discussion
will assume normal color vision. Color blindness will be discussed later in this
chapter in a dedicated section.

We cannot tell how the visual sensation of a particular chromaticity varies from
person to person. We are taught from an early age to make associations between the
set of words we use for various colors and the colors of objects that we observe.5 As
far as I know, children with normal vision do not have problems with learning how
to differentiate colors. They seem to agree about what names to give to the colors
they ascribe to objects.

However – this is the central fortunate observation – experiments have shown
that when people with normal vision are asked to look at two color patches of light
and asked whether they are the same, there is a strong agreement in their responses.
If a pair of color sources appear different for one observer, they appear different for
the other observer, and conversely. Because of this observation, in the late 1920s
and early 1930s, pioneers in color specification carried out extensive experiments to
quantify color perception. The two who stood out were W. David Wright and John
Guild.6

5It should be clear from our study of color in Chap. 13 that physicists are far from inclined to get
involved with the age old philosophical question as to whether a color resides in a colored object.
Or, whether the color of an object is merely perceived.
6Wright, William David (1928). “A re-determination of the trichromatic coefficients of the
spectral colours”. Transactions of the Optical Society 30: 141–164. Guild, John (1931). “The
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14.4 Metamers

It is found that an infinite number of different spectral intensities can produce
the same color sensation. Any two spectral intensities producing the same color
sensation are said to be metamers. Alternatively, two spectral intensities that
have the same pair of color coordinates r and g are metamers. An example of
such a pair of metamers is shown in Fig. 14.2 According to the figure on the
right, we expect the common color to be bluish. One would hardly guess so
from the figure on the left! [The figure was produced using the applet on the
following wonderful website: http://www.cs.brown.edu/exploratories/freeSoftware/
repository/edu/brown/cs/exploratories/applets/spectrum/metamers guide.html].

As we will see, the fact that two numbers are sufficient to label a metamer is
connected with the fact that chromaticity is specified by two characteristics – hue
and saturation. In fact, they are specified by a pair of numbers. We have an infinite

Fig. 14.2 Metamers: Two distinct spectra that produce the same color sensation

colorimetric properties of the spectrum”. Philosophical Transactions of the Royal Society of
London (Philosophical Transactions of the Royal Society of London. Series A, Containing Papers
of a Mathematical or Physical Character, Vol. 230) A230: 149–187.

http://www.cs.brown.edu/exploratories/freeSoftware/repository/edu/brown/ cs/exploratories/applets/spectrum/metamers_guide.html
http://www.cs.brown.edu/exploratories/freeSoftware/repository/edu/brown/ cs/exploratories/applets/spectrum/metamers_guide.html
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number of spectral intensities as well as an infinite number of pairs of numbers
that specify the chromaticity. Mathematicians would say that the infinite set of all
possible spectral intensities are mapped onto an infinite set of pairs of numbers.7;8

14.5 A Crude Chromaticity Diagram

The existence of metamers for the mathematician implies that the mapping between
spectral intensity and perceived color is not one to one. It has been found that

1. Most, but not all, chromaticities can be produced by an appropriate mixture of
three primary sources of light.

2. The choice of the three primary sources is arbitrary in which all choices leave
out some set of unmatchable chromaticities.

3. However, the fraction of chromaticities which are matchable is maximized if the
three primary sources are monochromatic.

Interestingly, we will see that

A set of monochromatic primaries cannot be mixed to match any other
monochromatic color.

We will assume here that the primaries chosen are monochromatic.
Let us suppose that three primaries can be mixed to match the visual sensation of

any given spectral intensity I.�/. The mixture is specified by the intensities of each
of the three primaries, namely, IR, IG, and IB. We will now see how these three
functions can determine the three parameters of color perception: hue, saturation,
and brightness.

We can understand how this might be possible as follows:

� The total intensity, I D IR C IG C IB, associated with I.�/ is a measure of
brightness.

7In the late 1800s, the mathematician Georg Cantor pioneered the study of levels of infinity and
introduced a clearly defined method of comparing these levels. The lowest order of infinity is the
number of integers, given the symbol @0. The next order of infinities is the set of real numbers,
given the symbol C. It can be shown that C D 10@0 . As surprising as it may seem, Cantor was
able to show using his method of comparing infinities that C is also the number of points in a finite
area. This infinity is the infinite number of chromaticities. The number of spectral intensities is
the number of ways you can draw a continuous graph along a finite axis. This number is an even
higher infinity than C and can be shown to be equal to @C

0 . See the Wikipedia article (1-8-2011):
http://en.wikipedia.org/wiki/Georg Cantor.
8Here is a wonderful website that enables you to play around with pairs of spectral intensities,
each independently and see their respective color patches. You can then produce metamers galore.
http://www.cs.brown.edu/exploratories/freeSoftware/repository/edu/brown/cs/exploratories/
applets/spectrum/metamers guide.html.

http://en.wikipedia.org/wiki/Georg_Cantor.
http://www.cs.brown.edu/exploratories/freeSoftware/repository/edu/brown/cs/exploratories/
applets/spectrum/metamers_guide.html.
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� The three fractions

r 0 D IR

IR C IG C IB

g0 D IG

IR C IG C IB

b0 D IB

IR C IG C IB
: (14.1)

can characterize the hue and saturation, that is, the chromaticity.
We must have r 0Cg0Cb0 D 1. Therefore, only two of these three fractions are

independent. For example, if you know r 0 and g0, b0 is determined to be (1-r’-b’).
The convention is to specify r 0 and g0. They determine the two characteristics,
hue and saturation.

Expressed succinctly, associated with any spectral intensity I.�/ is a pair
of numbers, the color coordinates .r 0; g0/, which characterize fully the color
sensation of the spectral intensity.

Suppose that the three intensities have the values of 1, 2, and 4, respectively, in some
arbitrary units. The choice is irrelevant as far as chromaticity is concerned since only
the ratios are relevant.9 The total intensity is 1 C 2 C 4 D 7 units and determines
the brightness.

The three fractions are r 0 D 1=7, g0 D 2=7, and b0 D 4=7, which add up to unity.
The first two fractions, here 1=7 and 2=7, are used to specify the chromaticity. The
third is automatically determined: b0 D 1 � 1=7 � 2=7 D 4=7.

Since two numbers specify a point in a plane, we can specify the chromaticity
by a point in a plane. Furthermore, since the sum of the two numbers cannot exceed
one, it can be shown that the point must lie within or on the boundary of the triangle
shown in Fig. 14.3.

Note that at the corners of the triangle, we have the corresponding pure, fully
saturated primaries, R, G, and B, respectively.

It happens that to match white , one needs to add a mixture of primaries such that
the intensity of the R-primary is much greater than that of the other two primaries,
G and B . As a result, white (W ) will lie extremely close to the R-corner at .1; 0/,
as shown in Fig. 14.3. The chromaticity diagram then has the undesirable feature
of having the region of rapid variation of hues strongly concentrated in this corner,
with very little variation occurring elsewhere. This feature is removed in the actual
chromaticity diagram by using a different unity of intensity for each primary. This
change in the diagram will be discussed in the next section.

9If a given spectral intensity is increased uniformly for all wavelengths by the same factor, it
has been found from studies of human subjects that the color coordinates do not change. This
observation amounts to saying that color is independent of brightness or, analogously, that pitch is
independent of loudness.
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Fig. 14.3 The color
coordinates are restricted to
the triangle in the diagram

Ideally, monochromatic colors would lie along the two line segments, joining “B”
to “G” and “G” to “R,” respectively. The line segment from “B” to “R” is called the
line of purples. None of these purple colors is represented by monochromatic
light. In more common terms: these colors are not part of the rainbow of colors.
Magenta is such an example.

Unfortunately, experiments reveal that it is impossible to match all colors with
a sum of three primaries. Any such addition cannot be fully saturated. In the next
section, we will describe the diagram and the information it contains more fully. In
the section following, we will show how one calculates the color coordinates for a
given spectral intensity.

14.6 A Chromaticity Diagram of Practical Use

The chromaticity diagram we will now discuss is a detailed version of the diagram
described in the previous section. It is based on the experimental results obtained by
Wright and Guild using the following three monochromatic primaries:

�B D 436 nm, �G D 546 nm, and �R D 700 nm.

Here is why these wavelengths were chosen. The wavelengths of the first and second
primaries are quite specific: They correspond to two highly monochromatic spectral
lines produced by an electrical discharge excitation of mercury vapor. On the other
hand, at the time of the experiments, an intense monochromatic source of a spectral
line in the red region was not available. At the same time, it fortunately happens
that color vision is not extremely discriminating in the red region. Thus, an intense
source of a red primary, albeit with a not too small spread of wavelengths, could
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be obtained from an intense light source passing through a red filter with a peak
transmittance near 700 nm. In spite of this primary not being highly monochromatic,
the primary is labeled with this wavelength.

For any given spectral intensity I.�/, there is a method – to be discussed later
in this section – for calculating the corresponding color coordinates, also called
chromaticity coordinates. These two numbers specify the chromaticity of that
spectral intensity. The set of all possible color coordinates corresponds to the entire
set of possible colors that a person with normal vision can perceive.

Note

– All spectral intensities that yield the same set of color coordinates
appear to have the same color and are therefore metamers.

– Had a different set of primaries been used, the color coordinates
corresponding to a given spectral intensity would change. However,
if the color coordinates are the same for two metamers using one
choice of primaries, the color coordinates will be the same for any
other choice of primaries. The reason is that the color coordinates for
one choice of primaries are in a one-to-one correspondence with the
color coordinates with any other choice of primaries. How the two
sets are related will be discussed qualitatively later in this chapter.

– A set of primaries need not all be monochromatic. We will see
that choosing monochromatic primaries is highly useful, as will
be explained later in this chapter. In Appendix I, we show in
mathematical detail how you can calculate one set of coordinates
from another.

14.6.1 The Units for the Admixture of the Three Primaries

In the simplified discussion of Sect. 14.1, the chromaticity was expressed in terms
of the intensities of the primaries, where the intensities were all expressed in the
same units, say 1 W/m2. It happens to be more convenient, though not necessary, to
express the amount of each primary present using different units for each primary.
The units are chosen so that10

1 Red unit ˚ 1 Green unit ˚ 1 Blue unit D 1 unit of white:

10There is an arbitrariness as to the choice of white. Some standard sources say sunlight at noon
will do. Most commonly, equal energy white is chosen, corresponding to I.�/ D constant.
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In order to produce equal-energy white (W) with the Wright-Guild primaries, we
need the following ratios of intensities:

1:000 for R W 0:019 for G W 0:014 for B:

Thus, to produce equal energy W we can mix

1:00 W=m2 of R ˚ 0:019 W=m2 of G ˚ 0:014 W=m2 of B:

Let us now introduce the following symbols:

1 Red unit � uR D 244 W=m2

1 Green unit � uG D 0:019 � 244 D 4:63 W=m2

1 Blue unit � uB D 0:014 � 244 D 3:41 W=m2:

Then

– An intensity of 100 W/m2 of R is equal to 100=uR D 100=244 D0:41 Red units.
– An intensity of 100 W/m2 of G is equal to 100=uG D 100=4:63 D21:6 Green

units.
– An intensity of 100 W/m2 of B is equal to 100=uB D 100=3:41 D29:3 Blue units.

It is important to realize that only the ratios of the chosen unit intensities matters.
This is because we are matching only the color and not the intensity. We have chosen
to use unit intensities that are greater than those of Williamson and Cummins by a
factor of 244 to simplify their relationship to the so-called color-matching functions
to be introduced later.

14.6.2 Tristimulus Values

There exists a prescription – to be described in detail later – for calculating the
number of units of each of the three primaries which, when added, will match a
given spectral intensity. These three numbers are called Tristimulus Values and
will be labeled R, G, and B , respectively.

In particular, if R, G, and B are equal, such as R D 2, G D 2, and B D 2,
we have a white chromaticity. The corresponding intensities of the three primaries
would be (for the primaries 436, 546, and 700 nm):

IR D 2 � 244 D 488 W=m2

IG D 2 � 4:63 D 9:26 W=m2

IB D 2 � 3:41 D 6:82 W=m2:
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14.6.3 Color Coordinates

We define the color coordinates, as follows:

r D R

R C G C B

g D G

R C G C B

b D B

R C G C B
: (14.2)

Note that r C g C b D 1 so that b D 1 � r � g; thus, r and g determine b.

Note

For equal energy white, I.�/ D constant , B D G D R. Then, b D
g D r D 1=3. W will then be at the center of the chromaticity diagram,
not in the corner close to R, as in Fig. 14.3.

In Fig. 14.4, we exhibit a schematic representation of the chromaticity diagram
based on the primaries. All chromaticities are represented by color coordinates
.r; g/ within the horseshoe-shaped perimeter of the chromaticity diagram. The
monochromatic primaries have color coordinates at the respective corners of the
triangle: Thus R is at (1,0), G is at (0,1), and B is at the origin (0,0).

The reader should note that the actual diagram that corresponds to these
primaries differs considerably from this schematic diagram. It is shown in Fig. 14.5.

Note how large a fraction of colors is unmatchable in the green region. Also
shown is the boundary of the CIE-1931 XYZ chromaticity space, which will be
discussed in Sect. 14.9.

14.6.4 On the Significance of the Chromaticity Diagram

The following are important characteristics of the chromaticity diagram:

1. All monochromatic (spectral) sources are represented by color coordinates
which lie along the curved, upper part of the horseshoe perimeter.

2. The straight line at the lower boundary, called the line of purples, represents
mixtures of the two monochromatic sources 400 and 700 nm.

3. Any point that lies outside the triangle formed by the points .0; 0/, .1; 0/, and
.0; 1/, will involve a negative color coordinate. Examples of such chromatici-
ties are:

r D 0:60; g D 0:42; b D 1 � r � g D �0:02

r D 0:60; g D �0:02; b D 1 � r � g D C0:42

r D �0:13; g D 0:46; b D 1 � r � g D C0:67:
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Fig. 14.4 Schematic chromaticity diagram

What is the meaning of a negative color coordinate, given that there is no
meaning to a negative intensity? First of all, it implies that any chromaticity
with a negative color coordinate cannot be produced by a mixture of the three
primaries.

Definition: The gamut of colors of a given set of primaries is defined as that
set of colors that can be matched by a mixture of those primaries. Thus, the
gamut of colors for the above primaries have color coordinates that lie within
the above triangle.

For a full answer as to how one interprets a negative color coordinate, let
us consider the particular example above, with r D �0:13, g D 0:46, and
b D C0:67. This point lies on the boundary of spectral colors and corresponds
to monochromatic � D 480 nm, which is a monochromatic cyan.
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Fig. 14.5 Wright-guild chromaticity diagram along with the CIE 1931 chromaticity space

Fig. 14.6 Matching a color having a negative color coordinate

(Note that all monochromatic spectra have one negative color coordinate,
except for a primary that happens to be monochromatic.)

These numbers mean that:

0:46 units of G ˚ 0:67 units of B �
1 unit of monochromatic .� D 480 nm/ ˚ 0:13 units of R:

The matching is indicated in Fig. 14.6.
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Fig. 14.7 Color coordinates
for a mixture of two sources

We cannot produce monochromatic cyan by mixing green primary with blue
primary. Instead, such a mixture matches a monochromatic cyan that has been
desaturated by the addition of some red primary.

4. Pure, equal energy white is at the center of the horseshoe, with the color
coordinates (1/3, 1/3). Recall that this is so because of the particular choice
of the unit intensities of the primaries. (White is usually labeled with the letter
E, for equal energy. We have labeled it with the letter “W”.)

5. The closer a point is to the perimeter of the horseshoe, the more saturated is the
color.

6. Mixing two incoherent sources of light.
Suppose that we have two incoherent sources, with spectral intensities I.�/.1/

and I.�/.2/. Incoherence means that the two sources consists of wave packets
that have a random distribution of phase relations. Therefore, the total intensity
of the light is a sum of the intensities of the individual sources.

They have sets of tristimulus values .R1; G1; B1/ and .R2; G2; B2/ and
color coordinates .r1; g1/ and .r2; g2/, respectively. Now suppose that the eye
receives these two sources. What will be the color coordinates .r; g/ of the
resulting color? The result is quite simple. The coordinates .r; g/ lie along the
line joining the two sets of coordinates .r1; g1/ and .r2; g2/, with the position
dependent upon the relative strengths of the two sources. See Fig. 14.7.

Since the sources are incoherent, the net spectral intensity received by the
eye is the sum of the two spectral intensities.

I.�/ D I1.�/ C I2.�/: (14.3)
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The strengths of the two sources, which were alluded to above, are measured
by the sum

S1 D R1 C G1 C B1 and S2 D R2 C G2 C B2:

They are qualitatively related to the brightness of the sources.
In the next section, we will see how the tristimulus values and color

coordinates are obtained from a given spectral intensity using a specific relation.
Because the relation is linear, we have the simple result for the tristimulus
values and strength of the mixture:

R D R1 CR2; G D G1 CG2; B D B1 CB2; and S D S1 CS2: (14.4)

The color coordinates will then be

r D R

S
; g D G

S
; and b D B

S
: (14.5)

Given that r1 D R1=S1 and g1 D G1=S1, we obtain

r D R1 C R2

S
D S1

S
r1 C S2

S
r2

g D G1 C G2

S
D S1

S
g1 C S2

S
g2:

(14.6)

The color coordinates .r; g/ can be shown to lie along the line joining the
two sets of color coordinates, .r1; g1/ and .r2; g2/. The position along the line
segment depends upon the weights S1=S and S2=S .

It can also be shown that

AC

AB
D S2

S
and

BC

AB
D S1

S
: (14.7)

Thus, if the strengths are equal, with S1 D S2, then AC D AB=2 and .r; g/ is at
the midpoint between .r1; g1/ and .r2; g2/. Generally, the greater the admixture
of, say, I.�/.2/, the closer will the point C be to the point B .

The result is similar to a seesaw (see Sect. 9.4): In order to balance two
unequal weights, one places the fulcrum at a position such that the ratio of
the distances from the fulcrum to the two weights is inversely proportional to
the ratio of the two weights. The formulas apply, with the strengths replaced by
the weights.

7. Complementary Colors
Any two points within the horseshoe which are on a line segment passing
through W and which are on opposite sides of W are complements of
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Fig. 14.8 Complements
exhibited in a chromaticity
diagram

Fig. 14.9 Determination of
the hue and saturation of a
color

each other. This idea is illustrated in Fig. 14.8. Here, points P and Q are
complements because an appropriate mixture of P and Q produces W .

8. It is clear that except for the three monochromatic primaries themselves, no
monochromatic color coordinates lie along a line that joins two primaries.
As we previously stated:
The only fully saturated (i.e., monochromatic) chromaticities that can be
produced by the full addition (without negative color coordinates) of the
three primaries are the primaries themselves!

9. A numerical characterization of color – HUE and PURITY
The hue and degree of saturation of a color C are given numerical values as
follows, using Fig. 14.9.
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Draw a line from W , through C – at .r; g/ – to the perimeter of the horseshoe
curve.

Then the hue is defined in terms of the wavelength of point H . This
wavelength is referred to as the dominant wavelength of C .

The point C 0 does not have a dominant wavelength. Its hue is defined in terms
of its complement, as follows. We extend the line from C 0 to the perimeter of
spectral colors, reaching the point H 0. The point H 0 is the complement of H 0
since

H 0 C H 0 � W: (14.8)

H 0 is referred to as the complementary hue of C 0. The hue of C 0 is defined as
the complement of the hue whose wavelength lies at H 0.

The degree of saturation is expressed as the purity of the color. It is defined
as follows:

p � % purity D C W

HW
� 100%: (14.9)

Note, in particular, that:

(a) p D 0 at W .
(b) p D 100% for a monochromatic and hence a fully saturated color.
(c) Special case: Point C 0 is associated with the point H 0 on the line of purples.

Then the purity is calculated using the point H 0 in (14.9). The hue is defined
as discussed above.

10. What happens to the hue and purity of a filter if white light passes through two
identical filters in sequence – as discussed in Sect. 13.2 of Chap. 13? First we
expect the hue to be close in value to the hue of a single filter. Second, since
the saturation increases, the purity should increase. Suppose that we express
the purity as a fraction less than unity instead of as a percentage. Then, very
crudely, the new purity will be approximately the square root of the purity of
the single filter. Thus, a purity of 64% will lead to a purity of approximatelyp

0:64 D 0:80, or 80%.

14.7 The Calculation of Color Coordinates

In this section, we show how one calculates the color coordinates for a given spectral
intensity. The method is based on a table of color-matching functions shown in
Table 14.2. Here,we display the color-matching functions, r.�/, g.�/, and b.�/ for
the Wright–Guild primaries �B D 435:8 nm, �G D 546:1 nm, and �R D 700:0 nm.

Let us isolate the color-matching functions for the primaries themselves. See
Table 14.3. Note that the array of numbers is “diagonal.” That is to say, the only
nonzero numbers lie along a diagonal. The nonzero values for a given primary
correspond to the wavelengths of the corresponding primaries.

The unit intensities were chosen so that they are the inverses of the corresponding
color-matching functions in Table 14.3. See Problem 14.18.
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Table 14.2 Table of
color-matching functions for
the Wright–Guild primaries:
435.8 nm, 546.1 nm, 700 nm
(source: C.I.E. Publication
No. 15, Colorimetry, 1971)

� (nm) r.�/ g.�/ b.�/

380 0.00003 �0.00001 0.00117
390 0.0001 �0.00004 0.00359
400 0.0003 �0.00014 0.01214
410 0.00084 �0.00041 0.03707
420 0.00211 �0.0011 0.11541
430 0.00218 �0.00119 0.24169
440 �0.00261 0.00149 0.31228
450 �0.01213 0.00678 0.3167
460 �0.02608 0.01485 0.29821
470 �0.03933 0.02538 0.22991
480 �0.04939 0.03914 0.14494
490 �0.05814 0.05689 0.08257
500 �0.07173 0.08536 0.04776
510 �0.08901 0.1286 0.02698
515 �0.09398 0.153839 0.018589
520 �0.09264 0.17468 0.01221
530 �0.07101 0.20317 0.00549
540 �0.03152 0.21466 0.00146
550 0.02279 0.21178 �0.00058
560 0.0906 0.19702 �0.0013
570 0.16768 0.17087 �0.00135
580 0.24526 0.1361 �0.00108
590 0.30928 0.09754 0.00079
600 0.34429 0.06246 �0.00049
610 0.33971 0.03557 �0.0003
620 0.29708 0.01828 �0.00015
630 0.22677 0.00833 �0.00008
640 0.15968 0.00334 �0.00003
650 0.10167 0.00116 �0.00001
660 0.05932 0.00037 0
670 0.03149 0.00011 0
680 0.01687 0.00003 0
690 0.00819 0 0
700 0.0041 0 0

Table 14.3 Values of the
color matching functions for
the spectral primaries
themselves (435.8, 546.1,
and 700.0 nm)

� (nm) r.�/ g.�/ b.�/

435.8 0 0 0.293
546.1 0 0.215 0
700 0.00410 0 0
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Comments

With

– R Red-units ˚ G Green-units ˚ B Blue-units matches the chromaticity of I.�/

but not necessarily the brightness of I.�/.
– Referring to the second, third, and fourth columns of the table, we note that

Sum of r.�/ Š Sum of g.�/ Š Sum of b.�/:

The reason that this is so is that if I.�/ were the same (a constant) for all �,
corresponding to equal energy W , we must obtain R D G D B (A table with
more �’s listed will lead closer to equality).

– How is the boundary of the chromaticity determined? The color-matching
functions themselves have a special significance: Consider a monochromatic
source of light, with wavelength �. Then the corresponding color-matching
functions, r.�/, g.�/, and b.�/, determine the color coordinates .r.�/; g.�//

of the monochromatic source of wavelength �, since I.�/ is nonzero only for the
particular wavelength � of interest. Thus, for the wavelength �

r.�/ D r.�/

r.�/ C g.�/ C b.�/

g.�/ D g.�/

r.�/ C g.�/ C b.�/
: (14.10)

As we move from one wavelength to another, the color coordinates fr.�/; g.�/g
produce the curve that forms the boundary of the horseshoe of the chro-
maticity diagram.

THUS, the three color coordinates for a given wavelength are nothing
but the tristimulus values for a monochromatic spectral intensity with the
corresponding wavelength. Now let us recognize that a single source, with
a given spectral intensity, is equivalent to adding an infinite number of in-
dependent monochromatic sources involving generally all wavelengths and
with variable intensity, according to the given spectral intensity. Then, the
calculation of the tristimulus values amounts to adding the corresponding
tristimulus values for all wavelengths as superpositions of the primaries and
weighted by the spectral intensity.

Notice that for any set, one of the three color coordinates is zero or negative.
Except for the primaries themselves, the zeros in the table are actually slightly
negative, yet too small to exhibit fully in the table. This property reflects the
fact that the primaries cannot possibly be added to produce a match with a
monochromatic source.
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Consider the values of the three color-matching functions for a given wave-
length �: r.�/; g.�/, and b.�/. They have the property that the addition

r.�/units of R ˚ g.�/units of G ˚ b.�/units of B:

matches (i.e., produces the same color sensation as) a monochromatic source
with wavelength �.

It is very important to note our use of the symbol ˚ denoting physical addition
of sources rather than the plus sign that denotes numerical addition of intensities.
For, it is NOT necessarily true that

r.�/Red-units ˚ g.�/Green-units ˚ b.�/Blue-units

D intensity of the matched monochromatic source!:

This last comment does not hold for the monochromatic primaries themselves.
Why?

Note in particular, that for � D �R, g.�R/ D 0 and b.�R/ D 0. Thus, the
tristimulus value and the color coordinate of the red primary is given by

R D r.�R/Red-units D .0:00410/.244 W=m2/ D 1:00.

Similar relations hold for the other two primaries.

G D g.�G/G-units D 0:215 � 4:64 D 1:00

B D b.�B/B-units D 0:293 � 3:42 D 1:00:

These numbers should be exactly equal. They are not so because of round off
errors.

– In the problem set for this chapter, you will complete the above table for butter,
thereby obtaining the tristimulus values, R, G, and B, for butter. You will then
calculate the color coordinates using (14.2).

14.7.1 Color Coordinates of Butter

Let us see how we use this table to produce the color coordinates of butter.
Study Table 14.4. In the column labeled I.�/ is the spectral intensity for the light
reflected by butter upon which equal energy WHITE light is incident (also based on
Williamson and Cummins). (I have reduced the number columns for simplification
at the expense of accuracy.) The three columns to the right of this one have obvious
labels: For example, r.�/ I.�/, is the product of the second column and the fifth
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Table 14.4 Analysis of butter (source: based on Williamson and Cummins, op. cit., Sects. 3–5)

�(nm) r.�/ g.�/ b.�/ I.�/ r.�/I.�/ g.�/I.�/ b.�/I.�/

400 0.00030 �0.00014 0.01214 56 0.01680 �0.00784 0.67984
420 0.00211 �0.00110 0.11541 46 0.09706 �0.05060 5.30886
440 �0.00261 C0.00149 0.31228 36 �0.09396 C0.05364 11.24208
460 �0.02608 0.01485 0.29821 32 �0.83456 0.47520
480 �0.04939 0.03914 0.14494 34 �1.67926 1.33076
500 �0.07173 0.08536 0.04776 35 �2.51055 2.98760
520 �0.09264 0.17468 0.01221 49 �4.53936 8.55932
540 �0.03152 0.21466 0.00146 63 �1.98576 13.52358
560 C0.09060 0.19702 �0.00130 72 C6.52320 14.18544
580 0.24526 0.13610 �0.00108 75 18.39450 10.20750
600 0.34429 0.06246 �0.00049 78 26.85462 4.87188
620 0.29708 0.01828 �0.00015 78 23.17224 1.42584
640 0.15968 0.00334 �0.00003 78 12.45504 0.26052
660 0.05932 0.00037 0 78 4.62696 0.02886
680 0.01687 0.00003 0 77 1.29899 0.00231
700 0.00410 0 0 77 0.31570 0

total 0.94564 0.94654 0.94136 R D 82.1117 G D 57.8520

column. On the bottom line are the sums of the numbers in the respective columns.
In symbolic form, we have

R D SUM over � of products r.�/ I.�/

G D SUM over � of products g .�/ I.�/

B D SUM over � of products b .�/ I.�/:

(14.11)

14.8 Using a Different Set of Primaries

In the Color Vision experiments, one often uses three primaries that are not
monochromatic. Examples would be primaries from color filters or from the pixels
used in a computer or a color TV monitor.

How can we determine the color coordinates corresponding to this new set
of primaries? The new set of color coordinates will certainly be different from the
first set. Must we repeat the same tests on individuals that were used to create the
above table? Or, can we use the above table to create a new table that can be used
to determine the color coordinates for the new set of primaries just as we did for the
original primaries?

It turns out that the original table of color-matching functions contains all the
information we need to know to deal with the new primaries: The spectral intensities
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Table 14.5 Values of the color-matching
functions for the wavelengths of the primaries
of stiles and burch based on the primaries of
Wright–Guild (Table 14.2)

� (nm) r.�/ g.�/ b.�/

444.44 0.01832 0.01036 0.30849
526.32 �0.07897 0.19269 0.00796
645.16 0.12975 0.00228 �0.00002

of the new primaries determine a transformation between two sets of primaries
that allows us to calculate each member of the new table of color-matching
functions. This transformation consists of nine numbers. If the new primaries are
also spectral, these nine numbers can be calculated from nine numbers taken from
the color-matching table: the three color-matching functions of each of the three
new primaries taken from the table of the old primaries. See Table 14.5.11 We have
chosen the set of primaries that were used by Stiles and Burch to produce a table
of color-matching functions for these primaries by studying the vision of a group
of people with normal vision, as did Wright and Guild.12 All of the primaries are
monochromatic. �B0 D 444:44 nm, �G0 D 526:32 nm, and �R0 D 645:16 nm.

The details are presented in Appendix I. I found that both the Wright–Guild
primaries and Stiles–Burch primaries lead to a chromaticity diagram with a large
region requiring negative red coordinates. By playing around with other choices of
the negative monochromatic primary, I arrived at a set that does extremely well in
producing small regions of negative color coordinates. The wavelengths are:

�B00 D 436 nm, �G00 D 515 nm, and �R00 D 700 nm.

The horseshoe perimeter of the chromaticity diagram for these primaries is shown
in Fig. 14.10.

14.8.1 General Features of a Different Set of Primaries

In Fig. 14.11, we exhibit the position of the color coordinates of the new set of
primaries – here not spectral primaries! – based on the chromaticity diagram of
the first set of primaries. Note that, to be general, we have chosen primaries whose
coordinates are not on the perimeter of the horseshoe; therefore, the primaries are
not monochromatic.

11The values in this table were obtained by interpolation, using Table 14.2.
12See Stiles, Walter Stanley & Birch, Jennifer M. (1958), N.P.L. colour matching investigation:
final report. Optica Acta 6: 1–26. See also the website: http://cvrl.ioo.ucl.ac.uk/database/text/cmfs/
sbrgb2.htm.

http://cvrl.ioo.ucl.ac.uk/database/text/cmfs/sbrgb2.htm.
http://cvrl.ioo.ucl.ac.uk/database/text/cmfs/sbrgb2.htm.
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Fig. 14.10 Horseshoe
perimeter for the primaries
436, 515, and 700 nm

Fig. 14.11 Gamut of colors
for the new primaries in the
chromaticity diagram of the
original spectral primaries

Note that the gamut of colors for the new primaries is defined by triangle
R0G0B 0. It is clear that by not using spectral primaries, we reduce the number of
colors in the gamut of colors. Furthermore, if the new primaries are spectral, the
gamut would change: some colors matchable by the old primaries would not be
matchable by the new primaries, and vice versa.

Next, we lay out the new color coordinates for all colors of interest in the r’–g’
plane. Some thought will make it clear that the positions of the color coordinates
of the new primaries with respect to the new primaries themselves will lie at the
vertices of the triangle, as in Fig. 14.12.

There is a nice way to understand and appreciate the significance of the above
transformation. Now imagine the original color coordinates laid out with respect to
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Fig. 14.12 Gamut of colors
for the new primaries – the
shaded triangle – within the
full gamut of colors bounded
by the horseshoe perimeter

a set of r–g axes drawn on a piece of elastic material. The above transformation
amounts to distorting the elastic material by a combination of rotation, and
stretching and/or compressing. In particular, the color coordinates of the new
primaries would move to their respective corners of the triangle.

It can be shown that the only chromaticities that can be matched by the full
addition (i.e., with no subtractions) of primaries are located within the triangle
formed by the points R0, G0, and B 0. One strives to choose primaries that at least
have W included, as shown in the figure and as saturated as possible. With all other
factors being equal, it is best to choose primaries that are monochromatic.

14.9 The Standard Chromaticity Diagram of the C. I. E.13

In principle, any set of primaries can be used to produce a table of color-matching
functions that maps any color onto a set of color coordinates. To the extent that the
experiments used in testing the color vision of a group of people have been carried
out with care, all reflect color vision reliably and contain the same information!
Any set can be used to establish a standard table for labeling a color. All tables of
color-matching functions map onto one another in a one-to-one correspondence.
It was decided early on with the advent of the results of Wright and Guild to
establish a universal standard table of color-matching functions, the C.I.E. table,
that is independent of any set of primaries that one might choose to use. The table
maps any spectral intensity onto a set of CIE tristimulus values – labeled X, Y,
and Z.

13Commission Internationale de l’Éclairage. See Wikipedia (1-6-2011): http://en.wikipedia.org/
wiki/CIE 1931 color space.

http://en.wikipedia.org/wiki/CIE_1931_color_space.
http://en.wikipedia.org/wiki/CIE_1931_color_space.
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In place of the color-matching functions r.�/; g.�/, and b.�/, we have the color-
matching functions x.�/; y.�/, and z.�/.

Note

– The mapping was chosen so that all tristimulus values are positive.
– The tristimulus value Y has the specific significance of providing

the luminance of the spectral intensity. Luminance is based on
the variation of brightness with wavelength with fixed intensity. It
corresponds to the phon level of sound.14

In line with the definition of luminance, the color-matching function
y.�/ is chosen to be proportional to the relative sensitivity of the eye
with respect to wavelength.

– On the other hand, the tristimulus values do not represent any linear
measure of the intensity of any primary. They cannot since they are
not specific to any set of primaries.

– The color coordinates that replace the set r D R/(R C G C B),
g D G/(R C G C B), and b D G/(R C G C B) are x D X/(X C Y C Z),
y D Y/(X C Y C Z), and z D Z/(X C Y C Z). Obviously, only two
color coordinates specify a color since z D 1-x-y. And none (x, y,
or z) are negative.

– The coordinates x D y D z D 1=3 represents equal energy white.
– When both the RGB values and the XYZ values are determined by a

given spectral intensity, there is a straightforward transformation to
obtain one set from the other without having to specify the spectral
intensity from which they were calculated. (Remember that we have
metamerization so that neither set of tristimulus values determines a
specific spectral intensity!)

The result is the standard C.I.E. chromaticity diagram. See Fig. 14.13. The C.I.E.
Color Matching Functions are found in Table 14.6.

The first such set of C.I.E. color-matching functions and chromaticity diagram
were obtained from the Wright–Guild data. However, the results of later improved
testing has led to modified C.I.E. standards.

14Recall from Chap. 10 that the loudness in phons is not directly related to the perceived loudness;
the latter is measured by the sone level, which we learned is proportional to I 00:3 where I’ is a scaled
intensity that takes into account the equal loudness curves. Similarly, the perceived brightness
for a given wavelength is not proportional to the intensity. The actual perceived brightness with
respect to intensity is expressed by the lightness L� wherein approximately, L� / Y ˇ, where ˇ

is an exponent. Some sources claim that ˇ D 0:3. (See (1-12-2011): http://en.wikipedia.org/wiki/
Lightness (color)). However, others point out that the value varies depending upon whether the eye
has adapted to the level of light intensity and that it can vary from about 0.4 for the dark adapted
eye to about 0.5 for the light adapted eye.

http://en.wikipedia.org/wiki/Lightness_(color)
http://en.wikipedia.org/wiki/Lightness_(color)
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Fig. 14.13 Standard CIE chromaticity diagram (source: http://upload.wikimedia.org/wikipedia/
commons/6/60/Cie Chart with sRGB gamut by spigget.png)

Note that the horseshoe region is shifted and distorted, but lies entirely within
the first quadrant. In the same figure, we see a black curve representing the colors
for the spectra of black body radiation at various temperatures, labeled from 2,000
to 25,000 K. (See Sect. 6.7 on black body radiation for more details.) Note that the
temperature of the sun – 6,000 K – is close to white in color.

We also see a highlighted triangle. At the corners are the color coordinates of
what are referred to in the figure as the primary illuminants. Those shown in the
figure are the sRGB primaries, which are the standard used in many color monitors.
We note that the gamut of colors (the triangle) produceable with the sRGB primaries
is limited. The region that is most omitted is toward the “green corner.” It happens

http://upload.wikimedia.org/wikipedia/commons/6/60/ Cie_Chart_with_sRGB_gamut_by_spigget.png
http://upload.wikimedia.org/wikipedia/commons/6/60/ Cie_Chart_with_sRGB_gamut_by_spigget.png
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Table 14.6 Table of color-matching functions – C.I.E. 1964 (source: http://www-cvrl.ucsd.edu/
cmfs.htm)

� (nm) x� y� z� �.nm/ x� y� z�

390 0.0023616 0.0002534 0.0104822 565 0.793832 0.98238 0
395 0.0072423 0.000769 0.032344 570 0.878655 0.955552 0
400 0.0191097 0.0020044 0.0860109 575 0.951162 0.915175 0
405 0.0434 0.004509 0.19712 580 1.01416 0.868934 0
410 0.084736 0.008756 0.389366 585 1.0743 0.825623 0
415 0.140638 0.014456 0.65676 590 1.11852 0.777405 0
420 0.204492 0.021391 0.972542 595 1.1343 0.720353 0
425 0.264737 0.029497 1.2825 600 1.12399 0.658341 0
430 0.314679 0.038676 1.55348 605 1.08917 0.593878 0
435 0.357719 0.049602 1.7985 610 1.03048 0.527963 0
440 0.383734 0.062077 1.96728 615 0.95074 0.461834 0
445 0.386726 0.074704 2.0273 620 0.856297 0.398057 0
450 0.370702 0.089456 1.9948 625 0.75493 0.339554 0
455 0.342957 0.106256 1.9007 630 0.647467 0.283493 0
460 0.302273 0.128201 1.74537 635 0.53511 0.228254 0
465 0.254085 0.152761 1.5549 640 0.431567 0.179828 0
470 0.195618 0.18519 1.31756 645 0.34369 0.140211 0
475 0.132349 0.21994 1.0302 650 0.268329 0.107633 0
480 0.080507 0.253589 0.772125 655 0.2043 0.081187 0
485 0.041072 0.297665 0.57006 660 0.152568 0.060281 0
490 0.016172 0.339133 0.415254 665 0.11221 0.044096 0
495 0.005132 0.395379 0.302356 670 0.0812606 0.0318004 0
500 0.003816 0.460777 0.218502 675 0.05793 0.0226017 0
505 0.015444 0.53136 0.159249 680 0.0408508 0.0159051 0
510 0.037465 0.606741 0.112044 685 0.028623 0.0111303 0
515 0.071358 0.68566 0.082248 690 0.0199413 0.0077488 0
520 0.117749 0.761757 0.060709 695 0.013842 0.0053751 0
525 0.172953 0.82333 0.04305 700 0.00957688 0.00371774 0
530 0.236491 0.875211 0.030451 705 0.0066052 0.00256456 0
535 0.304213 0.92381 0.020584 710 0.00455263 0.00176847 0
540 0.376772 0.96199 0.013676 715 0.0031447 0.00122239 0
545 0.451584 0.98220 0.007918 720 0.00217496 0.00084619 0
550 0.529826 0.99176 0.003988 725 0.0015057 0.00058644 0
555 0.616053 0.99911 0.001091 730 0.00104476 0.00040741 0
560 0.705224 0.99734 0 735 0.00072745 0.000284041 0

that in this region, the eye is poor at seeing color differences with respect to changes
in color coordinates. The white for sRGB primaries has coordinates labeled by
“D65” and is close to a black body radiation of temperature 6,500 K. Note that the
coordinates are not x D y D 1=3. Instead, they are x D 0:3127 and y D 0:3291,
which are supposed to correspond to the color of the sky in Europe at midday.

We will now see how Fig. 14.13 is mapped onto Fig. 14.5. The corners of the
right triangle (incompletely shown) in Fig. 14.13, with coordinates, x D 1; y D 0,
x D 0; y D 1, and x D 0; y D 0, correspond to the points labeled Cr, Cg, and Cb,

http://www-cvrl.ucsd.edu/cmfs.htm
http://www-cvrl.ucsd.edu/cmfs.htm
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respectively, in Fig. 14.5. The line from Cb to Cr corresponds to the line segment
along the x-axis, from x D 0 to x D 1, along which y D 0 and has therefore
Y D 0. The line Y D 0 corresponds to zero luminosity and is referred to by the
term alychne.

14.10 From Computer RGB Values to Color��

We have noted that a computer stores colors using the RGB coordinates. In this
section, we will discuss how these coordinates are used to determine the XYZ
coordinates of a color pixel. In turn, the XYZ coordinates determine the visual
chromaticity and intensity produced by the pixel. Our focus will be on color
monitors. However, the essential issues raised apply to color printers as well. We
will assume the use of 24-bit color.

We begin by presenting the parameters that characterize a particular color
monitor.

– The chromaticity of each of the three primaries – this is expressed in terms
of their fxyg coordinates, resulting in six numbers that are used to carry out
a transformation between the two sets of coordinates. For the so-called sRGB
primaries, they are fxr D 0:64; yr D 0:33g, fxg D 0:30; yg D 0:60g, and
fxb D 0:15; yb D 0:06g.

– The chromaticity – hence the fxyg coordinates – of the color corresponding to
R D G D B, which provide us with two more numbers for the transformation.
The intensities of light for each primary are related to the tristimulus values so
as to produce the chosen white. Typically, the chosen white is not equal energy
white. For the so-called sRGB primaries we have fxw D 0:3127; yw D 0:3291g;
this white, with the name D65, corresponds to the color of blackbody radiation at
a temperature of 6500 K and is reported to be close to the color of a clear midday
sky in Western Europe.

– The last parameter – the � value – reflects the fact that the tristimulus values
fRGBg are not necessarily proportional to the computer’s respective fRGBg
values. The history of this situation is complex. A good approximation to the
relationship is what is referred to as a simple power law:

R D
 

R
255

!�

, G D
 

G
255

!�

, B D
 

B
255

!�

: (14.12)

Note that this scaling of the tristimulus values results in a range from zero to
unity, so that maximum luminance or brightness is achieved with a value of unity.
Note too that if � were unity, we would have proportionality; however, typically
its value lies between 1 and 3. A reason for the nonlinearity is that the cathode
ray tubes (CRTs) that produce color have a light intensity I that is far from
linear with respect to the strength of the electric signal – the so-called voltage
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V – that is responsible for the light. Approximately, I / V � . The fRGBg values
are approximately proportional to the voltage, thus resulting in (14.12).15

Common values of gamma are 1.8 or 2.2 . For PCs, the value is usually � D
2:2. MAC monitors have fluctuated between both values.

Note

There are important consequences of nonlinear mapping from fRGBg
to RGB.

– Suppose that all RGB values are multiplied by a constant c. Then
we can see from (14.12) that all values of RGB are multiplied by the
constant c� . For example, let R change to 2R. Then

R D
 

R
255

!�

!
 

2R
255

!�

D 2�

 
R

255

!�

D 2�R: (14.13)

We then have no change in the chromaticity because all three RGB
values change by the same factor.16

– The effect of nonlinearity is dramatic when we do not add fRGBg
values in the same proportion. For example, suppose that we add
R2 D 150 to R1 D 100 and double the G and B values from 100 to
200. We will have R D 100 C150 D 250, so that the resulting value
of R will be

R D
 

250
255

!�

: (14.14)

The result is that R will change by a factor different than that of G
and B, so that the chromaticity will change: R changes by a factor
2:5� vs. a factor of 2� for G and B. This result is not surprising;
we expect the chromaticity to change. On the other hand, more
importantly, while R1 C R2 D R, R1 C R2 ¤ R:

R1 C R2 D
 

100
255

!�

C
 

150
255

!�

¤
 

250
255

!�

D R: (14.15)

See the last problem at the end of the chapter for an interesting effect
of gamma nonlinearity.

15The subject of gamma and its related gamma correction is very complex. As a result, it
is extremely difficult to find resources that are reliable. Articles abound with contradictory
information. For what I consider a very reliable reference I highly recommend Charles Poynton,
Video and HDTV, [Morgan Kaufmann Publishers and Elsevier Science, San Francisco, 2003].
16Tests of some monitors have revealed that their three RGB values do not have the same value of
gamma. In this case, the chromaticity will change.
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Suppose that you want to see the color associated with a given spectral intensity on
a color monitor. A straightforward way to do so is to find the tristimulus values for
the associated primaries and chosen white point, and then obtain the computer RGB
values.

In Table 14.7, we present the color-matching functions for sRGB with a D65
white point.17 Once you obtain the sRGB tristimulus values, you can proceed to
calculate the color coordinates fr,g,bg, as we have seen earlier in the chapter. Finally,
we can use the equations inverse to those of (14.12) to obtain the RGB values. They
are given by

R D 255 r1=� G D 255 g1=� B D 255 b1=� : (14.16)

14.11 How Many Colors Are There?

The answer to this question depends upon how we define colors. Whatever the
choice, we have to be able to assign a numerical value. We cannot be vague here.
In the final analysis, we need to make use of our knowledge of the chromaticity
diagram as well as color vision studies. Thus, it is very important to avoid
making rapid conclusions. Recently (April, 2010) the Sharp Electronics Corporation
announced to the public that it is offering a four primary color monitor. This
monitor will certainly increase the range of colors that the monitor will be able
to display over that of a three primary color monitor. There are various reports as to
how many more colors will be displayable. Most of the blogs are full of nonsense
because the authors do not know enough about color vision.18

So let us start to examine the question very slowly. Here are some possible
choices of what we can mean by countable colors.

– The number of spectral intensities. We have pointed out that this number is a high
level of infinity – labeled by mathematicians as @C

0 .
– Number of chromaticities (sets of color coordinates, each ranging continuously

from 0 to 1). This number is also infinite but at a lower level of infinity. The
mathematical infinity for the number of points in a finite area (the horseshoe of
the chromaticity diagram) is @0.

– The number of colors that are visually distinguishable – estimated at about
26,000.

17The table was produced by using transformation matrices between the CIE table of color-
matching functions and the RGB coordinates for the sRGB primaries.
18For example, in the website (1-12-2011): http://www.gizmag.com/sharp-4-primary-color-tvs-
enables-trillion-colors/13823/
we read: “By adding yellow to the colors red, green and blue, the televisions are capable of
rendering nearly all the colors a human eye can discern.”

http://www.gizmag.com/sharp-4-primary-color-tvs-enables-trillion-colors/13823/
http://www.gizmag.com/sharp-4-primary-color-tvs-enables-trillion-colors/13823/
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– The number of sets of RGB of color coordinates stored in a computer and
associated with colors on a monitor. The settings are variable on a given monitor.
For a three color, 24-bit monitor setting, we have 28 D 256 (8-bits) different
values for each color, R, G, and B , ranging from 0, 1, 2, : : : , 255. The total
number of combinations is then 256�256�256 D 224 D 16; 777; 216.19 Another
option is 36-bit color, which translates to a total of 212 D 4096 settings for each
of R, G, and B, giving a total of 236 �70-billion total number of settings.
This number corresponds to the number of different possible tristimulus values
produced by a monitor – but not the number of chromaticities.

– The number of different chromaticities produced by a given color monitor. This
number can be calculated too. See the sample problem below.

Sample Problem 14-1

Why is the number of colors as defined in the context of color monitors
not the same as the number of colors we would deduce using our
definition of color?

Solution
We defined color in terms of hue and saturation but did not include
brightness or intensity. On the other hand, the 16,777,216 different
values of RGB of a monitor determine hue, saturation, and luminance
(which is an objective measure of brightness). For our future discussion,
to avoid any mistake as to usage, we will refer to hs colors as
determined by hue and saturation; on the other hand, we will refer to
hsb colors as determined by hue, saturation, and brightness.

A crude estimate of the number of color coordinates we obtain from
the RGB values of a monitor is to treat them as tristimulus values.
(For technical reasons, the tristimulus values are not proportional to
the monitor’s RGB values.)

The number of different hs colors according to our definition of
color would be the number of distinct fractions rDR/(RCGCB) and
gDG/(RCGCB). We expect this number to be certainly less than
16,777,216, but still on the order of a few million. Bruce Boghosian
estimated this number at about 14 million and then computed it to be
exactly 13,936,094.

19Adding a fourth color with 8-bits will increase this number by a factor of 256, so that
we would have over four billion different combinations! In a recent (May, 2010) web-
site of the SHARP Corporation, it was claimed that their monitor would produce tril-
lions of colors. It is incomprehensible to understand how they can arrive at such a num-
ber. See SHARP website: http://www.sharpusa.com/AboutSharp/NewsAndEvents/PressReleases/
2010/January/2010 01 06 Booth Overview.aspx.

http://www.sharpusa.com/AboutSharp/NewsAndEvents/PressReleases/2010/January/ 2010_01_06_Booth_Overview.aspx.
http://www.sharpusa.com/AboutSharp/NewsAndEvents/PressReleases/2010/January/ 2010_01_06_Booth_Overview.aspx.
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Fig. 14.14 Colors produced by three primaries on a 15-bit color monitor with RGB parameters
having values from zero to 31 each – instead of the common zero to 255 each

In Fig. 14.14, we see the color coordinates produced by all possible combinations
of R D 0 to 31, GD0 to 31, and BD0 to 31 in a chromaticity diagram. The monitor
then has 15-bit color. The triangle represents the gamut of colors by the primaries
of the monitor. There are 32 � 32 � 32 D 215 D 32; 768 colored dots placed within
the black triangular background of the figure. Each colored dot represents a possible
producible color. Note that there are “avenues” of regions where colors cannot be
produced!

Finally, we arrive at the ultimate way to count colors – what matters as far as
color vision is concerned – what we see!

While the number of hsb colors and hs colors produced by a 24-bit monitor is in
the millions, the question remains as to whether we can distinguish among all these



450 14 Theory of Color Vision

colors. In concrete terms, we can have the two sets of color coordinates (r,g) in the
chromaticity diagram, one for each of two colors, so close together that we cannot
tell the colors apart.

Consider two points in the CIE Chromaticity Diagram that correspond to the
spectral intensity of blackbody radiation at two different temperatures, 2,000 and
3,000 K. (See Sect. 6.7.) For this author, the two colors are barely distinguishable
in the figure. I have concluded that the two colors in the figure do not represent the
actual colors represented by the color coordinates. You can check whether this is so
for you by varying the color coordinates (R,G,B), each ranging from 0 to 255, on
your color monitor and determining how well you can discriminate colors.

For any point in the diagram, we can draw a small ellipse such that all points
within the ellipse produce colors that are not distinguishable. We see a number of
such ellipses in Fig. 14.15 below drawn on the standard CIE Chromaticity Diagram.
The ellipses are drawn ten times their actual size.20

It is possible to draw a set of ellipses that fills the horseshoe with minimal
overlap. The total number of these ellipses will be a good measure of the number of
distinguishable colors. It is often stated that the number of distinguishable colors
is on the order of ten million.21 However, this number refers to the number of hsb
colors, which takes into account varying brightness, and not hs colors. According to
recent studies, the number of distinguishable hs colors is on the order of 26,000.22; 23

In Fig. 14.16, we see a chromaticity diagram based on the monochromatic
primaries 415, 515, and 700 nm.24 I will refer to this diagram as the lRGB gamut.

The red triangle has corners at the points (0,0), (1,0), and (0,1). Thus all
the hs colors that can be matched with these monochromatic primaries have
coordinates that lie within this triangle. Only a small fraction of all colors lies
outside this triangular gamut. The monochromatic colors lie on the blue perimeter.
Also displayed are the color coordinates for a standard set of primaries known as
sRGB. They lie at the corners of the black triangle. If you look closely you will
note that the gamuts are displayed on a grid. There are 100 horizontal lines and 100
vertical lines passing through the red triangle. The number of squares in the triangle
is therefore 1002=2, or 5,000. Since there are about 26,000 distinguishable hs colors,
a single square is associated with about five distinguishable hs colors.

20Note that the ellipses are largest in the green region, indicating that the eye does not discriminate
changes in chromaticity as well. On the other hand, the ellipses are much smaller towards the blue
region. We can see this variation in discrimination in the CIE chromaticity diagram of Fig. 14.13.
21See D. B. Judd and G. Wyszecki (1975), Color in Business, Science and Industry, Wiley Series
in Pure and Applied Optics (3rd ed.). New York: Wiley-Interscience. p. 388.
22J. M. Linhares, et al., J Optical Society of America, volume 25, p. 2918 (2008).
23This number is just under 20 times the number of distinguishable pitches of pure tones, which
has been found to be about 1,400. See Wikipedia (1-7-2011): http://en.wikipedia.org/wiki/Pitch
(music).
24In Appendix I, I show how this set of primaries is close to producing the largest possible gamut
of colors.

http://en.wikipedia.org/wiki/Pitch_(music).
http://en.wikipedia.org/wiki/Pitch_(music).
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Fig. 14.15 Ellipses representing the area of colors that are indistinguishable from the color at the
center of each respective ellipse – drawn ten times to actual scale (source: http://en.wikipedia.org/
wiki/File:CIExy1931 MacAdam.png, attributed to David MacAdam)

Current advertisements of color monitors brag about their gamut of colors – all
points lying within the black triangle – in terms of the sRGB standard. A company
might claim that their monitor has a gamut of 117% of the sRGB standard. From the
fact that the human eye can distinguish about ten million hsb colors, it is reasonable
to assume that the 16.8 million monitor values of RGB in the sRGB gamut can
produce essentially all the distinguishable colors that lie within the sRGB gamut.

We note that the sRGB standard is quite poor in the green area. If only the green
primary at the top were moved along the line from R to G all the way up toward the
perimeter, the gamut would be a good fraction of the optimum lRGB gamut!

http://en.wikipedia.org/wiki/File:CIExy1931_MacAdam.png
http://en.wikipedia.org/wiki/File:CIExy1931_MacAdam.png
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Fig. 14.16 sRGB coordinates (at the corners of the black triangle on a Chromaticity Diagram with
monochromatic primaries 436,515, and 700 nm. The blue dots along the horseshoe perimeter are
monochromatic colors

So how would the addition of a fourth primary in a color monitor increase the set
of distinguishable colors? The answer is dealt with in Problem 14.23a.It should be
clear that the number of distinguishable hsb colors is not increased by even a factor
of 256.

14.11.1 Limitations of a Broadened Gamut of a Monitor

We recognize that Sharp’s four-color monitor will broaden the gamut of colors that
can be produced. However, can it faithfully reproduce a broader gamut of colors?
Suppose that an image or video shown by the monitor was produced by a camera
with a smaller gamut? How would the monitor handle the input? What might be the
gain?25 To answer these questions, we need to know how the camera handles a color
that lies outside its gamut. The typical response of the camera is to replace a color
outside its gamut by another that has the same hue but lies at the boundary of the

25I am grateful to Raymond Soneira for communication on this subject. You are invited to see his
extremely informative website (1-27-2011): http://www.displaymate.com/eval.html.

http://www.displaymate.com/eval.html.
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gamut. As a result, the output will be a color that has no relation to how saturated the
original color was. Sharp’s monitor cannot reproduce a replication of the original;
all it can do is to increase the saturation of the color by an amount not determined
by the original color. Our conclusion is that the Sharp monitor can enrich the color
of the image but not faithfully.

14.12 A Simple Physiological Basis for Color Vision

We mentioned that there are three different types of cones, or receptors of light.26

The genes for the three cones have been identified in the laboratory.27 They were
originally hypothesized to exist as a means of understanding the results of color
matching that are summarized in the chromaticity diagram.

We suppose that the three types of cones are distinguishable by their different
spectral response curves, that is, the curves that describe how the rate at which each
the individual type of cone produces nerve impulses depends upon the wavelength of
a monochromatic source. These response curves are proportional to the respective
absorption spectra of the respective pigments in the cones: Thus, R-cones have
R-pigment, G-cones have G-pigment, and B-cones have B-pigment.

The absorption spectrum tells us how the fraction of monochromatic incident
light intensity that is absorbed depends upon the wavelength �. The presumed
spectra are shown in Fig. 14.17.28 The dashed curve is the absorption of the rods.
“S” stands for “short wavelength,” “M” stands for “medium wavelength,” and “L”
stands for “long wavelength.”

Note that all the curves have a maximum value of 100. This is because the curves
represent the variation of each cone with respect to wavelength; the actual relative
absorption of one cone to another is quite different. Absorption by the blue cone is
far weaker than the other two.

Consider, for example, the absorption spectrum of the L-cones. The curve has a
peak at � D 564 nm. Notice how broad the peak is; the width is on the order of
150 nm, corresponding to about 150=440 D 0:34, or 34% of the wavelength at the
peak. Recall, however, that the width of a spectral line produced by a single atomic
or molecular transition is very narrow. For atomic transitions, the width is on the
order of one part in ten million of the frequency of the photon emitted.29

26For more details, see http://en.wikipedia.org/wiki/Retina and http://webvision.med.utah.edu/
sretina.html.
27See the article by Jeremy Nathans, who first identified the genes: Scientific American, volume
260, pp. 42–49 (1989).
28The figure is based on Bowmaker J.K. and Dartnall H.J.A., “Visual pigments of rods and cones
in a human retina.” J. Physiol. 298: pp501–511 (1980).
29If we plot the absorption spectrum as a function of the frequency, we would obtain a peak for the
L-cone that has a width in frequency that is about 34% of the frequency at the peak.

http://en.wikipedia.org/wiki/Retina
http://webvision.med.utah.edu/sretina.html.
http://webvision.med.utah.edu/sretina.html.
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Fig. 14.17 Absorption by the three color pigments in the retina (source: http://en.wikipedia.org/
wiki/photoreceptor cell)

Fig. 14.18 Absorption of a
photon by a molecule in a
cone

The reason that the absorption peak is so broad in the case of pigment is that the
energy level diagram consists of a band of excited states. See Fig. 14.18. There are
many excited states that correspond to a large number of transitions. Each transition
has its own narrow absorption peak. Since these peaks overlap, the sum total of the
peaks produces a single broad peak in the absorption spectrum.

When photons of light impinge upon a pigment molecule that is in its ground
state (see Chapter 6, THE ATOM AS A SOURCE OF LIGHT, for a review of this
subject), it has the possibility of exciting the molecule into one of the many quantum
states that lies in the energy band. Now any system that is excited from its ground
state by absorption of photons has the process of photon emission available to it as
means of returning to its ground state. However, additional processes are available
to it for a return to the ground state.30

30See a full discussion of this subject in the section “Complex Scenarios of Absorption and
Emission” in Chap. 6.

http://en.wikipedia.org/wiki/photoreceptor_cell
http://en.wikipedia.org/wiki/photoreceptor_cell
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For example, a molecule in a gas can return to its ground state from an excited
state by transferring its excitation energy to another molecule during a collision with
that molecule. However, in the case of a molecule of cone pigment, in the process of
returning to its ground state, excitation energy is used to produce a nerve impulse.

In the figure, �E is the difference between the energy of the ground state and the
middle of the band of energy levels. It is equal to hf , where h is Planck’s constant
and f is the frequency (Dc=�). This frequency corresponds to the wavelength
� � 430 nm, where � D c=f .

Sample Problem 14-2

Find the photon frequency and �E corresponding to � D 430 nm.

Solution
We have

f D c

�
D 3 � 108

430 � 10�9
D 7:0 � 1014 Hz

�E D hf D .6:6 � 10�34 J-s/.7:0 � 1014 Hz/ D 4:6 � 10�19 J:
(14.17)

The response of the cone, in emitting nerve impulses, is proportional to its
absorption spectrum. In practical terms:

nerve impulse rate of a cone at � /
spectral absorption at � � intensity I.�/ incident upon the cone

We are now in a position to present a simplified theory of a physiological basis for
accounting for the chromaticity diagram. We introduce the following symbols:

Let

NR.�/ � nerve impulse rate of R-cone:

and

SR.�/ � response function of R-cone for monochromatic �:

The response functions SR.�/, SG.�/, and SB.�/ are proportional to the absorption
spectra shown in Fig. 14.17.

Then

NR.�/ D SR.�/ � I.�/: (14.18)
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Similarly for G and B we write:

NG.�/ D SG.�/ � I.�/

NB.�/ D SB.�/ � I.�/: (14.19)

Now suppose that we have a general non-monochromatic source with spectral
intensity I.�/. The spectral intensity tells us what the intensity is for each of the
component wavelengths. For each component wavelength, we can compute the
numbers NR.�/, NG.�/, and NB.�/. We next add up the set of these numbers for
each primary. Thus obtaining the total nerve impulse rate emitted by each of the
three cones:

NR D Sum of NR.�/0s

NG D Sum of NG.�/0s

NB D Sum of NB.�/0s: (14.20)

This is analogous to the mathematical process we carry out to obtain the tristimulus
values R, G, and B. The response functions replace the color-matching functions.

According to the simple theory of color vision, the signals NR, NG, and NB are
analyzable as distinct signals, so that they can be processed and interpreted by the
brain to produce the following perceptions:

Brightness / NR C NG C NB: (14.21)

Hue and saturation are determined by the fractions

nR D NR

NR C NG C NB

nG D NG

NR C NG C NB

nB D NB

NR C NG C NB
: (14.22)

These three fractions reflect the color coordinates of the chromaticity diagrams. We
do not expect the color coordinates, r, g, and b to be proportional to the respective
fractions. However, we do expect that they will increase together: if one increases,
so should the other.31

31In mathematics, we say that r is a monotonically increasing function of nR, and so on.
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Fig. 14.19 Transmittance of parts of the eye on the way to the retina (note the log scale of the
transmittance, which indicates an even sharper drop than is shown) (source: Based upon a figure in
the article by W. Ambach, et al., Documenta Ophthalmologica, Volume 88, pp. 165–173, !994)

Comment: It is important to keep in mind that testing of color vision involves light
that must pass through various components of the eye on its way to the retina. All
these components – the cornea, aqueous humour, lens, and vitreous humour – have
a transmittance that falls off toward the ultraviolet, low wavelength range. Thus,
we have

Iretina.�/ D Teye.�/ � Iincident.�/;

where Teye.�/ is the total transmittance of all these parts. The responses of the cones
is to the ultimate light incident upon the cones, Iretina.

In Fig. 14.19, we see the transmittance of the individual parts.32

NOTES: The natural filtering out of UV radiation is beneficial in protecting the
retina. With age, filtering increases but unfortunately moves into the visible region.
Finally, cataract surgery, which involves removal of the lens, reduces UV filtering,
and increases potential damage to the retina. We can see that the lens serves to
remove wavelengths from about 300 to 400 nm.

32Omitted is the absorption of the macula, which contains the fovea. See the Wikipedia site
(1-26-2011): http://en.wikipedia.org/wiki/Macular degeneration, wherein it is pointed out that
while “the macula comprises only 2.1% of the area of the retina . . . almost half of the visual cortex
(in the brain) is devoted to processing macular information.”

http://en.wikipedia.org/wiki/Macular_degeneration
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14.13 Color Blindness

We will briefly discuss the simplest kind of color blindness, that of the dichro-
mats.33 Such color-blind individuals are missing one cone. If the green cone is
missing, the condition is called deuteranopia and the individual is referred to as
a deuteranope. If the red cone is missing, the condition is called protanopia and
the individual is referred to as a protanope. And finally, for the rarest dichromacy,
tritanopia, the blue cone is missing. Having only two cones, the dichromat cannot
perceive the full range of colors associated with normal vision. They can still
perceive the three characteristics – hue, saturation, and brightness; however, they
can perceive only two hues.

It is reasonable to wonder how anyone could tell what colors they perceive. How
can we know if a person is color blind? How can we compare the mappings of
their sensations with the mappings under normal vision? The answer is that there
are individuals who have color blindness in one eye and normal vision in the other,
referred to as unilateral dichromats: These individuals can make a mapping of the
vision of their color blind eye onto the vision of their normal eye.

Below are some of its interesting features that are revealed from testing unilateral
dichromats:

1. Their chromaticity diagram is reduced to a line.
2. There being but two pigments, a point on the line represents the fractional

response to light of a single pigment, say the B-pigment.
3. Equal energy white is toward the middle of the line segment. This white sensation

can be produced by a single monochromatic source that has a wavelength of
about 495 nm!

4. Protanopes and deuteranopes perceive a line of colors ranging from blue
to yellow. See Fig. 14.20. They cannot distinguish among various shades of

Fig. 14.20 Chromaticity
diagram for Deuteranopes –
the Blue-White-Yellow Line

33See the following website for a wonderful resource on color blindness (1-12-2011):
http://en.wikipedia.org/wiki/Color blindness It includes a fascinating set of figures that displays
how the rainbow of colors appears for various types of color blindness. It also discusses anomalous
dichromacy, wherein there are three cones, but one of them is defective. See also the website
(1-12-2011): http://en.wikipedia.org/wiki/Evolution of color vision in primates for material on
the evolution of color vision in primates through mutation. Most interesting is the article’s claim
that a remote ancestor of the primates was a tetranope, in having four different types of cones.

http://en.wikipedia.org/wiki/Color_blindness
http://en.wikipedia.org/wiki/Evolution_of_color_vision_in_primates
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Fig. 14.21 Protanope: spectral sensitivities of the blue and green cones and the image of the
rainbow of colors. (source: Dr. Jay Neitz and Dr. Maureen Neitz; http://www.neitzvision.com/
content/excuseme.html)

red, yellow, and green.34 The reader is referred to the references listed at the
beginning of the chapter in footnote 1 for further details.

In Fig. 14.21, we see at the top the spectral sensitivities of the blue and green
cone of a protanope. At the bottom is shown how a protanope would see a
rainbow of colors. Note the gray band close to 500 nm; at the center of the band
is a low intensity white.

You can test your own vision using the Ishihara Test for color blindness,
shown in Fig. 14.22. The dots in the pattern and in the background are metamers
for some observers but not for others. Individuals with normal vision see the
number 26. Deuteranopes see only the number 2, while protanopes see only the
number 6.

14.14 After-Images

Suppose that we produce a color patch of blue light over a white background
in Fig. 14.23. Thus, when the blue light is removed, we will have white light
everywhere.

34See the websites http://www.neitzvision.com/content/home.html and http://www.handprint.com/
HP/WCL/color1.html#dichromat for details.

http://www.neitzvision.com/content/excuseme.html
http://www.neitzvision.com/content/excuseme.html
http://www.neitzvision.com/content/home.html
http://www.handprint.com/HP/WCL/color1.html#dichromat
http://www.handprint.com/HP/WCL/color1.html#dichromat
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Fig. 14.22 Ishihara test for color blindness (source: http://en.wikipedia.org/wiki/File:Ishihara 9.
png)

Fig. 14.23 Blue light on a
white background

If you stare at the patch, without moving your eyes much, for about 30 s and
then stare at a blank area, there will appear a patch of yellow light in place of the
blue patch. The yellow patch is referred to as the after-image of the blue patch. Our
model of color vision can account for the phenomenon as follows.

When a cone pigment absorbs light and emits nerve signals, the pigment becomes
“fatigued” – that is, it has a reduced ability to respond further to light by emitting
nerve impulses. Such a process of fatigue also occurs in rod pigment, whose ground
state color of purple is bleached (i.e., turned to white). The recovery time – that
is, the time needed to regain full sensitivity – is only about 1-1/2 min for cones, in
contrast to about 25–30 min for rods.

http://en.wikipedia.org/wiki/File:Ishihara_9.png
http://en.wikipedia.org/wiki/File:Ishihara_9.png
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Fig. 14.24 Complement of
the US flag

What happens in the above experiment is that the blue patch fatigues the blue
receptor cones that lie on the image area of the retina. Upon removing the blue
light, that retinal area suddenly receives white light. Since the rate of emission of
nerve impulses from the blue cones is less than normal, the bluish component of
incident white light is reduced, leaving its complement, yellow.

Interestingly, if you look carefully at a blue patch, you may notice a yellow halo
around its boundary. A detailed explanation appears to be lacking. Nevertheless, this
phenomenon is one of many that indicate that there is interference between the nerve
impulses emitted by neighboring cones. A related phenomenon is the appearance of
Mach bands, which are described and discussed in Chap. 10 in the context of pitch
perception of sound. A second source of the halo may be the after-images produced
by the erratic, so-called saccadic movements of the eye. (See R. L. Gregory, op. cit.)

14.14.1 Questions for Consideration

1. What after-images would result from removing the following patches from a
white background?

(a) A yellow patch?
(b) A green patch?
(c) A black patch?

2. Stare at the complementary image of the US flag in Fig. 14.24. Identify the pairs
complementary colors. For this exercise, I suggest that you choose a specific star
and focus your attention on it. Doing so will help you keep your eyes fixed and
improve on the effect of fatigue.
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14.15 Terms

– Additive primary
– After-image
– Blue cone
– Chromaticity
– Chromaticity diagram
– Green cone
– Hue
– Metamer
– Primary colors
– Purity
– Color coordinate
– color-matching functions

– Color-blindness
– Complementary colors
– Deuteranope
– Deuteranopia
– Dominant wavelength
– Recovery time
– Red cone
– Saccadic movement
– Saturation
– Subtractive primary
– Tristimulus values
– Unilateral dichromat

14.16 Important Equations

Color coordinates in terms of the intensities of the primaries used to produce the
color:

r 0 D IR

IR C IG C IB

g0 D IG

IR C IG C IB

b0 D IB

IR C IG C IB
: (14.23)

Color coordinates based on the tristimulus values R, G, and B that are calculated
from the spectral intensity:

r D R

S

g D G

S

b D B

S
; (14.24)

where
S D R C G C B: (14.25)
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Color coordinates for a light source that is a mixture of two incoherent light sources:

r D R1 C R2

S
D S1

S
r1 C S2

S
r2

g D G1 C G2

S
D S1

S
g1 C S2

S
g2; (14.26)

where for the first source

r1 D R1

S1

g1 D G1

S1

b1 D B1

S1

S1 D R1 C G1 C B1 (14.27)

and similarly for the second source.
Color coordinates for monochromatic light of wavelength �:

r.�/ D r.�/

r.�/ C g.�/ C b.�/

g.�/ D g.�/

r.�/ C g.�/ C b.�/
: (14.28)

14.17 Problems on Chap. 14

1. Discuss briefly how an infant might be taught to distinguish among the colors
of objects. How does the infant get to appreciate what the significance of color
is as distinct from among the other various attributes that an object can have?

2. (a) The complement of magenta is .
(b) The complement of cyan is .

3. The chromaticity diagram shows (choose one)

(a) The relative response of each type of cone to various wavelengths of light
(b) A comparison of how rods and cones react to light
(c) A way of plotting all colors in terms of two variables
(d) All the colors that are complementary pairs
(e) Which three colors are the additive primaries

4. (a) What color is complementary to blue?
(b) What is subtractive mixing of colors? What are the primaries of subtractive

mixing?
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(c) What are metamers?
(d) What kind of color mixing do you suppose color television uses?
(e) What are the two attributes of color?
(f) What colors have zero saturation?

5. When we view a magenta light (choose one)

(a) Blue and red cones in the retina are stimulated.
(b) Blue and green cones in the retina are stimulated.
(c) Red and green cones in the retina are stimulated.
(d) Magenta cones in the retina are stimulated.
(e) Since green is the complementary color to magenta, only green cones in the

retina are stimulated.

6. A deuteranope (choose one)

(a) Sees all objects as shades of red and green.
(b) Cannot distinguish between red and green.
(c) Has lost all red and green vision and sees the world in shades of blue.
(d) Is nearsighted for red light and farsighted for green light, or vice versa.
(e) Reverses reds and greens.

7. There is evidence that some women are tetrachromats, meaning that they
have four different color cones instead of three. How could you test for
tetrachromacy?

8. (a) On a schematic chromaticity diagram such as Fig. 14.4, draw the triangle
within which lie all colors that have a purple hue. We can refer to these
colors as the set of purple colors.
HINT: The point W is at one of the corners of the triangle.

(b) Does this definition of purple colors depend upon the choice of primaries?
9. There are animals that have more than three color receptors; that is, they have

more than three different cones. Animals with four different cones, such as
doves, are called tetrachromats. Interestingly, there is evidence that some
women have four receptors – those, in particular, who have the recessive gene
for a dichromat. See the following website for more information:
http://www.freerepublic.com/forum/a3a24199b1ef8.htm

Given what we have discussed about color perception for both dichromats
and trichromats, discuss what changes you might expect for tetrachromats.
Consider the range of perception of colors, in particular. How many primaries
might one need to match any perceived color? How about the ability to
discriminate between two spectral intensities? Might one expect improvement?

10. Might two people be found to need two different sets of color coordinates to
match a given spectral intensity?

11. In practice, the primaries of various devices, such as color monitors in
producing light that leaves the monitor or of color printers that print color
images, are not spectral. Furthermore, the actual sets of primaries varies from
monitor to monitor and from printer to printer.

http://www.freerepublic.com/forum/a3a24199b1ef8.htm
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(a) Comment on the consequences for the reliable reproduction of color images.
(b) How might we deal with this situation? What we would we have to know

about each of the sets of primaries used in the various devices in relation to
a standard such as the C.I.E. table of color matching functions?

(c) Name some other devices involving color reproduction that would require
analysis in order to determine the relation between the image produced and
the input of light.

12. Two monochromatic sources, D and E, are projected onto a screen, so as to
appear equally bright. A photocell indicates that their intensities are 100 units
and 10 units, respectively. Qualitatively compare the eye sensitivities to the
two sources.

13. Suppose that for a certain set of primaries,

0:1 W=m2 of B ˚ 0:1 W=m2 of G ˚ 1:0 W=m2 of R

produces a match with W (white). Suppose also, that we choose 1 W/m2 to be
the unit intensity for all three primaries.

(a) What would be the color coordinates of W?
(b) Why would such a choice not be practical?

14. Complete Table 14.4 of color-matching functions so as to determine the color
coordinates of butter.

15. Use the schematic chromaticity diagram in Fig. 14.4 for the following problem:
Four units of R, two units of G, and two units of B are mixed together.

(a) Find the color coordinates of the mixture.
(b) Find the dominant wavelength and purity of the mixture.
(c) Describe the color.
(d) Find the dominant wavelength of the complementary hue of this chromati-

city.

16. Consider a table of color-matching functions such as the one we are using that
is based on the spectral primaries �B D 435:8 nm, �G D 546:1 nm, and �R D
700:0 nm.

(a) What would be the effect on the tristimulus values of a given spectral
intensity if the values of all of the color-matching functions were doubled?

(b) What would be the effect on the color coordinates of a given spectral
intensity if the values of all of the color-matching functions were doubled?

(c) What would be the effect on the color coordinates of a given spectral
intensity if the values of all of the color-matching functions were multiplied
by any given number beside two?

17. For this problem you will need to open the Java applet on Metamers:
metamers java jnlp.jnlp. You can find it in the Powerpoint for Chapter 14 or the
following website from which the applet was downloaded:
http://www.cs.brown.edu/exploratories/freeSoftware/repository/edu/
brown/cs/exploratories/applets/spectrum/metamers java browser.html.

http://www.cs.brown.edu/exploratories/freeSoftware/repository/edu/
brown/cs/exploratories/applets/spectrum/metamers_java_browser.html.
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Note that the graph is a plot of the spectral intensity vs. frequency and not
wavelength.

(a) Produce with the mouse two different spectral intensities that are orange in
hue and are metamers. Print out the result of your applet and hand it in as
part of the homework set.

(b) Recall that in Chap. 8 we learned that the origin of the blueness of the sky
is that scattering of sunlight is inversely proportional to the fourth power
of the wavelength. As a consequence, the spectral intensity at 400 nm is
.7=4/4 � 9 times that of the intensity at 700 nm. In the applet, produce with
your mouse a spectral intensity that increases from the red end to the blue
end by about nine-fold and thus produce the resulting color patch. While
we realize that the spectral intensity increases as the fourth power of the
frequency, you need not be fussy about the precise shape of the spectral
intensity. Print out your result as part of the homework set.

18. Suppose that the two spectral intensities, I1.�/ and I2.�/, are metamers and we
add the spectral intensity I3.�/ to each, resulting in two new spectral intensities

I 0
1.�/ D I1.�/ C I3.�/ and I 0

2.�/ D I2.�/ C I3.�/: (14.29)

Are these two new spectral intensities metamers? To answer this question,
consider how the resulting color coordinates would compare. Remember how
these numbers are obtained by adding the color-matching functions together.

19. Check that the color-matching functions for the primaries, as shown in
Table 14.3, are the inverses of the corresponding unit intensities. For example,

r.�R/ D 1

uR
: (14.30)

Show that this must be so for a mixture of unit intensities to produce equal
tristimulus values.

20. The goal of this problem is to produce the chromaticity diagram for the
primaries corresponding to the color-matching functions in Table 14.4.

Note

You will need this diagram to analyze the results of the Color Lab!!

(a) Use Table 14.4 to determine the color coordinates r.�/, g.�/ for monochro-
matic sources of wavelength �. See (14.6).
HINT: Note that for monochromatic a 400 nm source, I.�/ vanishes for
all but 400nm. Setting I400 nm D I , we obtain R D 0:00030 I , G D
�0:00014 I , and B D 0:01214 I , from which one can obtain r400, g400,
and b400.
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Fig. 14.25 Spectral intensity
for Problem 14.21

(b) Plot the coordinates (r.�/, g.�/) on graph paper and connect the points,
thereby obtaining the horseshoe-shaped perimeter of the chromaticity
diagram corresponding to Table 14.4. Label the points on the perimeter with
the corresponding wavelengths.

21. (a) Determine the tristimulus values and the color coordinates of the spectral
intensity depicted in Fig. 14.25.

(b) Determine the dominant wavelength and the purity using Fig. 14.13 and
(14.9), respectively.

22. On a Chromaticity diagram, draw the region within the horseshoe that has hues
that must be expressed in terms of their complement.

23. (a) Consider Fig. 14.16, which displays the primaries of sRGB in an lRGB
chromaticity diagram. Suppose you wanted to add a fourth primary to these
three primaries. We would have a four-primary color set for producing
colors. Note that it is perfectly fine to have four primaries as sources of light
even though a normal eye has only three different cones. Approximately
where would you put the color coordinates so that the gamut of colors
that lies within the resulting quadrangle encompasses the largest gamut
of colors? It should be clear that the color of this fourth primary would not
be yellow! The SHARP Corporation claims that in its four-color monitor, it
has added a Yellow primary. Perhaps the other three primaries are far from
sRGB.

(b) The added fourth point will define a second triangle. Explain why the
additional primary adds only colors that lie within this triangle.

(c) Explain why for any point within the quadrangular gamut, there is more
than one way to produce a color by mixing the four primaries. The factor of
256 to the monitor-count of colors will thus be redundant.

(d) An additional redundancy is produced by the fact that the density of points
in the gamut will be much greater than the density in the three-primary
gamut. Give an argument as to why the number of distinguishable colors
should be increased by only about 50% at best.

24. Suppose that the spectral intensity of Problem 14.21 is produced by white light
passing through a filter. That is, the above spectral intensity is the transmittance
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Fig. 14.26 Color photograph
of Alim Khan – using three
black and white filtered
photographs (source: http://
en.wikipedia.org/wiki/File:
Mohammed Alim Khan
cropped.png. The original
photographer was Sergey
Mikhaylovich
Prokudin-Gorsky.)

of the filter. (See Sect. 13.2.) In order to increase the saturation of the light
beam, two identical such filters are stacked (i.e., are placed back to back).

(a) What is the resulting transmittance of the stacked filters? Exhibit your
answer as a graph of transmittance vs. wavelength.

(b) Determine the tristimulus values, the color coordinates, the dominant
wavelength, and the purity of the spectral intensity. Indicate roughly on a
copy of Fig. 14.4 or a rough sketch thereof, how the color has been modified
by the stacking process. Has the stacking resulted in an increase in the
saturation?

25. Suppose you are adding two color patches so as to produce various shades
of red, from white to pink. You have one source of red light that is close to
being monochromatic and you want to use the minimum intensity possible of
the second source. Which hue should that second source have? Choose the best
answer below. Explain your answer.

(a) White
(b) Blue
(c) Cyan

26. Before the advent of color film photography, photographers learned to re-
produce color by the following trick: The scene of the photograph was
photographed three times in black and white, each with a different filter – red,
green, and blue. The three negatives were then overlapped so as to produce a
single color photograph. We see one of these photographs of Mohammed Alim
Khan in Fig. 14.26. Here are the three black and white photographs of filtered
light in Fig. 14.27.

Explain how this process works.

http://en.wikipedia.org/wiki/File:Mohammed_Alim_Khan_cropped.png.
http://en.wikipedia.org/wiki/File:Mohammed_Alim_Khan_cropped.png.
http://en.wikipedia.org/wiki/File:Mohammed_Alim_Khan_cropped.png.
http://en.wikipedia.org/wiki/File:Mohammed_Alim_Khan_cropped.png.
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Fig. 14.27 Three black and white color filtered photographs that produce the color photograph of
Alim Khan (source: Anandajoti Bhikkhu)

27. What color is the after-image of a bright green light? Why?
28. In Sect. 14.14.1, it was suggested that you focus on a specific star of the US flag

to enhance the effects of fatigue. Comment on why focusing might be of help
in producing a clear after-image.

29. In Fig. 14.28, we see two colored discs.
The upper disc consists of a checkerboard of two colors. The lower disc has

a uniform color. If one were to stand far enough away from the figure , the
upper disc will appear uniformly colored and indistinguishable from the lower
one. The basis for this phenomenon is that the distance between neighboring
squares in the image of the upper disc on the retina is comparable to or less than
the limit of resolution of the retina. If the cones behave independently of one
another, the limit of resolution should be about equal to the distance between
neighboring rods. In fact, as we have noted, rods communicate with each other,
so that the distance between cones can be expected to be a bit smaller than the
limit of resolution.

Exercise:

(a) Measure the distance between neighboring squares in the upper disc.
(b) Look at the figure from a distance and determine the minimum distance at

which the upper disc has a uniform color.
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Fig. 14.28 Two discs that
appear alike at a great
distance (source: Courtesy,
Tom N. Cornsweet, Visual
Perception, (Academic Press,
1970) )

(c) Assuming that the distance from your lens to your retina is 2.5 cm,
determine the distance between neighboring squares in the image on your
retina. Is the value reasonable?

(d) When the upper disc appears uniform in color, it is of interest to compare
the intensity of light that a cone receives from a set of squares in comparison
to the intensity of light it receives from an equal area of the uniformly
colored disc.

Explain why it should be expected that the effective color coordinates
should be the respective sums: If we let r1; g1 and r2; g2 be the color
coordinates of the respective squares, then the color coordinates of the color
perceived at a distance should be f.r1 C r2/; .g1 C g2/g.
Start by explaining why the intensity of light incident on the cones is
effectively .I1 C I2/=2.

(e) Use the results of (14.15) in Sect. 14.10 to show that if the color patches
match at a distance when viewed with one monitor, they will not necessarily
match when viewed with another monitor. The same holds true for color
printing.

(f) Finally, consider the question of viewing the figures from a printed copy.
If the patches match when viewed with one light source reflected off the
page, will there necessarily be a match if you use a different light source
having a different spectral intensity?

30. From spectral intensity to monitor color – the Blue Sky
The purpose of this problem is to give you experience in producing the color

on your monitor that corresponds to a given spectral intensity. You will focus on
the spectral intensity of sunlight that is scattered by a clear sky. We learned in
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chapter 8 that theory predicts that the spectral intensity is inversely proportional
to the fourth power of the wavelength. Thus, we write I.�/ / 1=�4. The goal is
to produce the corresponding color on your monitor, as discussed in Sect. 14.10.
You will need to choose a value for gamma. If you cannot determine gamma
for your monitor, use the value of 2.2 to complete the problem.

EXCEL is a great tool for carrying out this calculation. You can produce an
Excel file of any table in this book by a number of ways. One way is to copy
the table as a pdf file. Then you can convert the pdf to an Excel file with various
programs. For a MAC, you can use “AnyBizSoft PDF to Excel for Mac.” For
Windows you can use Nitro’s ”PDF to Excel Converter.” Alternatively, you can
download any table from this book from my website: https://wikis.uit.tufts.edu/
confluence/display/physics/gunther.

Note that the color on your monitor is likely to have a low brightness
compared to what we are used to seeing in the sky. You can resolve this problem
by dividing each of the color coordinates fr, g, bg by b. You will obtain a new
set of numbers – fr/b, g/b, 1g – which you will substitute into (14.16). As a
result, we will have B D 255.

https://wikis.uit.tufts.edu/confluence/display/physics/gunther.
https://wikis.uit.tufts.edu/confluence/display/physics/gunther.




Appendix A
Symbols

– Å Ångstrom
– ˛ Attenuation per distance in dB per km
– � Gamma (used to characterize ultra high frequency electromagnetic

radiation)
– � Wavelength
– T Tension of string
– � Linear mass density
– � Loudness in phons
– � Mass density
–  Optical activity (angle of rotation of axis of polarization per distance

through medium)
– � Angle
– �c Critical angle for the absence of refraction
– �inc Angle of incidence of a ray of light
– �rfl Angle of reflection of a ray of light
– �rfr Angle of refraction of a ray of light
– a Acceleration
– a0 Bohr radius (�0:53Å)
– A Area or amplitude of a wave or of oscillation
– b Blue color coordinate
– b.�/ Blue color coordinate for monochromatic light of wavelength �

– B Bulk modulus or magnetic field or blue tristimulus value of a spectral
intensity

– Bind Induced magnetic field
– c Speed of light in vacuum
– C Musical interval in cents
– d Distance from a point source or distance between two sources of a wave
– dB Decibel
– die Image distance for an eye (distance from the center of the effective lens

of the eye and the retina)
– dim Diameter of an image as a result of diffraction
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– di Image distance for a lens
– dmin Minimum diameter of an image as a result of diffraction
– dnp Near point of vision
– do Object distance for a lens
– E Energy or electric field
– EM Electromagnetic
– Ef Final energy of a quantum system
– Eind Induced electric field
– Ei Initial energy of a quantum system
– Eph Energy of a photon
– f Frequency or focal length of a lens
– fB Beat frequency
– fn Frequency of the nth mode
– F Force
– g Green color coordinate
– g.�/ Green color coordinate for monochromatic light of wavelength �

– G Green tristimulus value of a spectral intensity
– h Planck’s constant (�4:15 � 10�15eV=H z)
– hi Height of image
– ho Height of object
– I Intensity or electric current
– I.�/ Spectral intensity
– IB Intensity of blue primary
– IG Intensity of green primary
– IR Intensity of red primary
– k Spring constant
– KE Kinetic energy
– L Horizontal distance from source(s) of a wave
– ` A length variable, not specific
– m Mass
– M Magnification of an object by a lens
– max do Maximum object for the eye
– max f Maximum focal length of the eye
– min f Minimum focal length of the eye
– n Index of refraction
– NB Signal to the brain from the blue cones
– NG Signal to the brain from the green cones
– NR Signal to the brain from the red cones
– p Pressure
– P Power
– PE Potential energy
– q Electric charge
– r Radius or red color coordinate
– r.�/ Red color coordinate for monochromatic light of wavelength �

– R Reflectance or red tristimulus value of a spectral intensity
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– RT Reverberation time
– s Loudness in sones
– S Sum of tristimulus values (S D R C G C B)
– SL Sound level in dB’s
– t Time or time interval
– T Period or transmittance
– T .�/ Transmittance of a filter as a function of wavelength
– v Speed or velocity
– V Volume
– x Displacement
– y Displacement of an SHO
– Z Impedance





Appendix B
Powers of Ten: Prefixes

– 103 one-thousand kilo as in kilogram (kg) or kilometer (km) or kilohertz
(kHz)

– 106 one-million mega as in megahertz (MHz) (frequency for WGBH FM
radio waves is 89.7 MHz)

– 109 one-billion giga as in gigahertz (GH z) (the frequency of microwaves in
microwave ovens is 2.5 GHz)

– 10�2 one-hundredth centi as in centimeter (cm)
– 10�3 one-thousandth milli as in millimeter (mm)
– 10�6 one-millionth micro as in micrometer (�m); 1�m � 1micron (mono-

chromatic red light has a wavelength of �0:7 �m)
– 10�9 one-billionth nano as in nanometer (nm) D 10 Ångstroms D 10 Å (the

size of an atom is typically a few tenths of a nanometer)
– 10�12 one-trillionth pico as in picogram (pg) or picosecond (ps) (a bacterium

has a mass of about 250 pg; there exist chemicals such that merely 1 pg
can be fatal(!); fiber optics signals can be made as short as a ps in
duration)

Note that a cube, 1 cm on a side, has a volume of 1 cm3 D(10 mm)3 D1,000 mm3.

Problem: Suppose that an elemental device storing each BIT of a computer hard
drive has a volume of 1 nm3, with the bits stored in a compact way. Suppose, too,
that the total volume occupied by the bits is 1 cm3. How many bits are stored by this
hard drive?
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Appendix C
Conversion of Units and Special Constants

Constants
� D 3:14159:::

e D 2:7183:::

c D 2:998::: � 108 m/s speed of light in vacuum
h D 4:14 � 10�15 eV per HzD 6:63 � 10�34 J per Hz Planck’s constant

Length
1 Ångstrom (Å) D 10�8 centimeter (cm)
1 micron .�/ D 10�6 meter (m) D 10�4 cm
1 cm D 0:39370 inch (in)
1 in D 2:540 cm
1 foot (ft) D 30:480 cm
1 mile (mi) D 5280 ft D 1.61 kilometer (km)

Time
1 day (d) D 86,400 s
1 year (yr) D 3:15 � 107 s

Speed
1 mph D 0.448 m/s
1 m/s D 2.23 mph

Area
1 sq-in D 6.4516 sq-cm
1 sq-ft D 929.03 sq-cm

Volume
1 liter (lit) D 1,000 cu-cm
1 gallon D 3.785 lit

Angle
1 radian (rad) D 57.3 degrees (deg)
1 deg D 60 minutes
1 minute (min) D 60 seconds (s)
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Force
1 Newton (N) D 0.224 pound (lb)

Weight equivalents (symbol
:D) on the Earth’s surface

(one unit is for a mass, the other is for a force; as a result, a one kilogram mass
will weigh less on the moon.)
1 lb

:D 454 gram (g)
1 kilogram (kg)

:D 2.2 lb
1 ounce (oz)

:D 28.350 gram (g)

Pressure
1 atmosphere (atm) D 1:0 � 105 Pascals (Pa) D 14:7 lb/sq-in

Energy
1 joule (J) D 10,000,000 ergs
1 electron-volt (eV)D 1:6 � 10�19 J
1 calorie (cal) D 4.19 joule
1 Calorie D 1 kilocalorie (kcal) D 1000 cal D 1 food calorie
1 foot-pound (ft-lb) D 1.3549 J
1 British Thermal Unit (Btu) D 252.00 cal D 778 ft-lb

Power
1 horsepower (hp) D 746 watts (W)
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Appendix E
A Crude Derivation of the Frequency
of a Simple Harmonic Oscillator**

We start with the three Laws of Dynamics that Isaac Newton (1642–1727) proposed
to account for the observed motion of the planets about the sun, the motion of the
moon about earth, and the motion of projectiles (like bullets or baseballs) just above
the earth’s surface. To these three laws, he had to add his law for the gravitational
force.

Newton’s First Law: If an object experiences no net force, its velocity will remain
constant, be it zero or otherwise.

Newton’s Second Law: If an object does experience a net force, its velocity will
change, being reflected by a rate of change of velocity with respect to time – the
acceleration – that is given by

a D F

m
or F D ma: (E.1)

Note that acceleration is to velocity as velocity is to position:

Velocity D Change in position

Time interval

Acceleration D Change in velocity

Time interval
: (E.2)

Newton’s Third Law: When an object exerts a force on a second object, the
second object automatically must be exerting a force on the first object with a force
of equal magnitude but opposite in direction.

Thus, if I am pushing on a wall with a force of 450 N (�100 lbs), the wall is
pushing back on me with a force of 450 N. Likewise, if the mass of an SHO is
pulling on the spring with a force F downward, the spring is exerting a force F on
the object upward.
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We can now combine Hooke’s Law with Newton’s second and third laws as
follows: Because the force on the massive object of an SHO is opposite to the
direction of the displacement, we insert a minus sign and write Hooke’s Law as

F D �ky Hooke’s Law: (E.3)

In this equation, F is the force on the object. It is called the restoring force of
the SHO because it tends to bring the object back toward the equilibrium position.
Since F D ma,

ma D �ky or a D � k

m
y: (E.4)

This equation can be analyzed mathematically. The analysis reveals that once
the position and velocity is given at some time, the initial time, the motion is
determined forever after. This characteristic of Newtonian dynamics is referred to
as determinism. In particular, the equation can be shown to lead to the sinusoidal
behavior of the SHO.1

Now we return to our expression for the period T . During the first quarter cycle,
the total displacement is A, while the speed changes from zero to a maximum value
vm. The average speed over 1=4 of a cycle is given by

hvi D Displacement

Time interval
D A

.T=4/
D 4A

T
: (E.5)

Since the maximum speed is smaller that the average speed, we will use the
estimate:

vm � 2hvi: (E.6)

Thus,

vm D 8A

T
: (E.7)

Next, the average acceleration over 1=4 of a cycle is given by

hai D change of velocity

time interval
D vm

.T=4/
D 4vm

T
: (E.8)

The maximum acceleration can be obtained from (E.4) by setting y D A.

1The reader might be interested in carrying out the exercise in the appendix to this chapter,
entitled “Numerical Integration of the Equation of Motion of an SHO.” In simple terms, the
initial displacement y determines the initial acceleration a through (E.4). The initial acceleration
determines the change in the velocity v from its initial value and hence its value soon after. The
initial velocity determines the change in the displacement and hence the displacement soon after.
This cycle is repeated on and on to yield the displacement, velocity, and acceleration for all future
times.
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We ignore the minus sign since we are interested only in magnitudes. We then
obtain

am D k

m
A: (E.9)

We estimate that am � 2hai. Thus, we obtain

k

m
A D am � 2hai D 8

vm

T
D 64A

T 2
: (E.10)

We finally arrive at the approximate relation

T 2 � 64
m

k
: (E.11)

so that

T 2 � 64
m

k
T � 8

r
m

k
: (E.12)

This result compares very favorably with the exact relation T D 2�
p

m=k.
The two expressions differ only by the numerical prefactor, 2� vs. 8, respectively.

Their ratio is 2�=8 � 0:8. Most important is the agreement between the two
expressions with respect to the mass m and the spring constant k.





Appendix F
Numerical Integration of Newton’s Equation
for an SHO**

This mathematical procedure for analyzing Newton’s equation of motion (the
Second Law) for an SHO shows us dramatically one of the most important
characteristics of classical physics, namely, that nature is such that if we are given
all the information about a system at some instant of time, the behavior of the system
in the future is fully determined. In the case of the SHO, the initial position x and
velocity v of the mass of the SHO determine the future behavior of x and of v. We
call this property determinism.

We seek to show how the equation

a D � k

m
y (F.1)

generates a sinusoidal function of time. For simplicity, we will set k/m D 0.1/s2, so
that

a D �0:1y; (F.2)

where y is in meters and a is in m/s per second. This value of k/m can be shown to
correspond to a period of oscillation equal to 2�

p
10 Š 19:9 s.

We will drop the units in what follows. We will assume that initially, when the
time t D 0,

y0 D 0 and v0 D 1:00 e.g., v D 1 m=s: (F.3)

We have put a subscript 0 next to the letters, so as to refer to t D 0.
Now suppose we want to know y and v after 1 s. Recall that

Velocity D Change of Displacement

Time interval
: (F.4)

This will be strictly so only if the velocity is constant. Otherwise, the expression
gives us the average velocity over the 1-s time interval.
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490 F Numerical Integration of Newton’s Equation for an SHO

Because 1 s is small compared to the period (though not very much smaller),
the velocity does not change very much in 1 s. Then the above equation becomes a
reasonable first approximation, albeit a crude one.

We then have (with a subscript 1 referring to a time t D l s):

v0 Š y.at 1 s/ � y0

1 s
D y1 � y0: (F.5)

or

y1 Š y0 C v0 D 0 C 1 D 1: (F.6)

Next, we seek the velocity v1 after 1 s. Recall that

Acceleration D Change in velocity

Change in time
: (F.7)

This will be strictly so if the acceleration is a constant. Otherwise, the expression
gives us the average acceleration over the 1-s interval. However, if the acceleration
does not change much during that interval, we can use (F.7) as an approximation.

The initial acceleration can be expressed approximately as

a0 Š v1 � v0

1 s
D v1 � v0; (F.8)

so that
v1 Š v0 C a0: (F.9)

But
a0 D � y0

10
D 0; (F.10)

so that
y2 Š y1 C v1: (F.11)

Similarly, after 2-s

v1 D v0 � y0

10
D 1 � 0 D 1; (F.12)

and
v2 D v1 C a1 D v1 � y1

10
: (F.13)

After 3-s:
y3 Š y2 C v2; (F.14)

and
v3 Š v2 � y2

10
: (F.15)

etc.
You see how knowledge of y and v at any time allows you to find y and v 1 s

later. This process is known as numerical integration.
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Fig. F.1 Resulting plot of the displacement: a crude numerical integration

For homework:

a. Make a table, listing y and v after 1 s, 2 s, etc., at least up to the time when
you obtain 1 � 1=2 oscillations. Round off all numbers to the nearest hundredth.
Prepare your table as follows:

Time (s) y (m=s) v (m=s2)

0 0 1.00
1 1.00 1.00
2 2.00 0.90
3 2.90 ?
4 ? ?

WARNING: Any error you make is propagated on to the numbers which follow.
So, be careful.

b. Make a graph of your results for both y vs. t and v vs. t . Compare your results
with the plots shown.

Above is a plot of the displacement vs. the time n (Fig. F.1).
Next we plot the velocity vs. time n (Fig. F.2).

c. Note that because of the approximations made, the numerical integration is
unstable. That is, the displacement y oscillates with ever increasing amplitude.
The displacement ultimately diverges to infinity.
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Fig. F.2 Resulting plot of the velocity: a crude numerical integration

An Improved Approximation

Let n be the time in seconds. That is, n D 1 refers to 1 s, n D 2 refers to 2 s, etc.
Our previous approximation can be expressed as

yn Š yn�1 C vn�1 (F.16)

and
vn Š vn�1 C an�1 (F.17)

along with

a Š �yn

10
: (F.18)

This last equation is exact.
We obtain a much better approximation if we use the following approximation,

which replaces (F.16) and (F.17):

yn Š yn�1 C vn�1 C vn

2
(F.19)

and

vn Š vn�1 C an�1 C an

2
: (F.20)
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Fig. F.3 Resulting plot of the displacement: an improved numerical integration

Question: What do you suppose is the basis for these equations?
These equations, along with an D �yn=10, may be solved for yn and vn. They

lead to:
yn Š 0:95yn�1 C 0:98vn�1 (F.21)

and
vn Š 0:95vn�1 � 0:096yn�1: (F.22)

Tabulate and graph these equations. Use the initial conditions

y0 D 0 and v0 D 1:00:

Just to show you how the above equations work. We have:

y1 D 0:95y0 C 0:98v0 D 0 C 0:98 D 0:98 (F.23)

v1 D 0:95v0 � 0:096y0 D 0:95 � 0 D 0:95 (F.24)

y2 D 0:95y1 C 0:98v1 D 0:95.0:98/ C 0:98.0:95/ D : : : (F.25)

v2 D 0:95v1 � 0:096y1 D : : : : (F.26)

Compare your results with the plots below. Then repeat the above with the initial
values: y0 D 1:00 and v0 D 0:0.

Below are plots of the displacement vs. the time n and of the velocity vs. time n.
(Figs. F.3 and F.4).
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Fig. F.4 Resulting plot of the velocity: an improved numerical integration

Problems with Numerical Integration and Oscillators

1. In this problem, you will check the independence of the frequency of an SHO
with amplitude. To do so, use the initial conditions y0 D 0 and v0 D 4:00. Use
the refined set of equations to produce a plot of the displacement vs. time and
compare.

2. In this problem you will study an oscillator whose restoring force is not Hooke’s
Law. Instead, let the force be proportional to the cube of the displacement. Thus,
the acceleration is now given by

a D �0:1y3: (F.27)

Find the displacement vs. time for the two initial conditions used for the SHO.
For both Hooke’s Law (linear restoring force) and the cubic restoring force,

the force increases with increasing displacement. However, the cubic restoring
force increases faster with increasing displacement. This leads to a suggestion:
Before obtaining your graphs, try to predict whether the frequency for a “cubic
oscillator” should increase or decrease with increasing amplitude.



Appendix G
Magnifying Power of an Optical System**

In Chap. 8, we introduced the parameter magnification of a lens as the ratio of the
optical image size of a lens to the object size. If we have a compound lens system,
such as a telescope or a microscope, the magnification would be the ratio of the final
optical image size to the input object size. On the other hand, the ultimate purpose
of an optical instrument such as a magnifying glass (a single converging lens), a
telescope, or a microscope is to increase the size of the image of the object on the
retina over the size of the image on the retina in the absence of the instrument.1 The
maximum possible ratio for an optical instrument is referred to as the magnifying
power, to which we will assign the symbol M:

M D Image on the retina with the instrument

Image on the retina in the absence of the instrument
: (G.1)

By increasing the image size on the retina, we have two effects:

(1) The object appears to be larger.
(2) The details of the object are clearer: there is increased resolution.

We can increase the magnifying power by bringing the eye closer to what we
will refer to as the ultimate eye object for the eye as a compound lens. Without the
instrument in place, the ultimate eye object is the object itself. With the instrument
in place, the ultimate eye object for the eye is the final image produced by the
instrument.

We can maximize the image on the retina, with or without the instrument in place
by having the ultimate eye object be at the near point of the eye.2 This is the closest
that an object can be to the eye and still be in focus. For the so-called normal eye,
this distance is about 25 cm and this value is usually used as a standard in evaluating
optical instruments.

1Note that while a lens might produce a large optical image, this image might be so far away from
the eye as to lead to a smaller image on the retina!
2See Chap. 12 for details.
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Another way to increase magnifying power, that is accessible for a magnifying
glass and a microscope, but not typically for a telescope, is to vary the distance of
the object from the eye.

G.1 Image with the Naked Eye and with a Magnifying Glass

In Fig. G.1, we see the image at R produced on the retina by a specific object at O

of height ho when the object is at the near point dnp. The small dot with a label C is
the center of the eye-lens system. The angle � is referred to as the angle subtended
by the center of the lens of the object. Clearly, this angle is a direct measure of the
height of the image on the retina, since the distance die is fixed. We also exhibit the
central ray (dashed) from the object to the retina when the object is further from the
eye than the near point; we see clearly that the image height hie is reduced.

If we try to increase the image on the retina by moving the object closer to the
eye, we have the problem of not being able to bring the image into focus. However,
by inserting a converging lens between the object and the eye, we can maintain the
angle � and therefore the desired image height and yet be able to bring the image
into focus by having the image produced by this lens be located at the near point.
This image becomes the ultimate object for the eye-lens system. See Fig. G.2.

In Fig. G.3, we see the magnifying glass up against the eyeball. We also see the
image of the magnifying glass, which becomes the ultimate eye object (in black),
placed at the position of the near point. For comparison, we see the actual object
repositioned in blue at the near point, where it would have to be placed in the
absence of the magnifying glass to be seen clearly. Thus, we can appreciate the
ability of the magnifying glass to “magnify” in the applied sense. Essentially, the
magnifying has enlarged the ultimate eye object located at the near point from
ho to hi.

The magnifying power of the magnifying glass is given by

M D ho=do

ho=dnp
D dnp

do
(G.2)

Fig. G.1 The image on the retina for various object distances with the naked eye
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Fig. G.2 Magnification of the potential image on the retina by a lens

Fig. G.3 Magnifying glass up against the eyeball

Sample Problem 7-1

1. Show that the magnifying power of a magnifying glass that is held
up against the eye is given by

M D dnp

f
C 1; (G.3)

where f is the focal length of the magnifying glass.

Solution
We use the thin lens equation to obtain an expression for the object
distance do in terms of f and the near point distance dnp. Noting
that

di D �dnp; (G.4)
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we obtain
1

do
D 1

f
� 1

di
D 1

f
C 1

dnp
: (G.5)

Substituting into (G.2) we obtain

M D dnp

do
D dnp

�
1

f
C 1

dnp

	
D dnp

f
C 1: (G.6)

1. Show that the magnifying power is given by

M D hi

ho
: (G.7)

Solution
left to the reader.

2. (a) Assuming that dnp D 25 cm, calculate the magnifying power for
two values of the focal length: 25 cm.

Solution
From (G.6) we have

M D dnp

f
C 1 D 25

25
C 1 D 2: (G.8)

(b) Determine the focal length necessary to produce a magnifying
power of 40�.

Solution
We have

M D 40 D dnp

f
C 1 D 25

f
C 1: (G.9)

Then
25

f
D 40 � 1 D 39 (G.10)

from which we obtain

f D 25

39
D 0:64 cm: (G.11)
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G.2 The Microscope

While the purpose of a telescope is to produce magnification of a typically huge
object that is extremely far away, the purpose of a microscope is to produce
magnification of an extremely small object that can be brought extremely close to
our eyes. For both devices there are two lens systems, with the final lens serving as
a magnifying glass.

Figure G.4 is a schematic of a microscope. The first lens of a microscope is
referred to as the objective. It has an extremely small focal length fob that allows us
to bring the lens very close to the microscopic object. The second lens, with a focal
length fe, is the eyepiece or ocular, situated close to our eye.

We see that the objective of the microscope produces a real image that is situated
just within the focal length of the eyepiece. We have magnification by the objective:
This first image is much larger than the object. Next, the eyepiece serves as a
magnifying glass of the first image, producing a virtual image that is the ultimate
“object” of the eye itself. One can obtain maximum magnification by having the
ultimate object located at the near point of the eye, as shown in the figure.

The overall magnification of the microscope is the product of the magnification
of the objective and the magnifying power of the eyepiece:

Mmicroscope D di

d0

�
dnp

fe
C 1

�
: (G.12)

Since di � fob, according to the thin lens formula,

1

do
D 1

fob
� 1

di
� 1

fob
: (G.13)

Fig. G.4 Schematic of a microscope
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Thus, d0 � fob and we can rewrite the above magnification as

Mmicroscope �
�

dnp

fe
C 1

�
di

fob
: (G.14)

Unfortunately, there is a problem that we have to confront: People do not all have
the same near point! Therefore, with the above design, the location of the image of
the objective would have to vary from individual to individual. How can we design
a microscope that takes this fact into account?

The answer is that we can change the design of a microscope so that the image of
the objective is at the focal point of the eyepiece. In this case the final image moves
to infinity, which is visible to any “reasonable eye.” In this case, it can be shown that
the magnifying power of the eyepiece changes:

M D
�

dnp

fe
C 1

�
) dnp

fe
: (G.15)

Since typically dnp is only somewhat greater than fe, this change is not too great.
The overall magnification of the microscope will then be

Mmicroscope � dnp

fe

di

fob
: (G.16)

G.3 Problems on Magnifying Power

1. Assuming that dnp D 25 cm, calculate the magnifying power for two values of
the focal length: 2.5 cm.

2. The magnifying power is defined as a standard in terms of the near point of
25 cm. However, in practice, the near point depends upon the individual.

Suppose that a magnifying glass is labeled as having a magnifying power
of 10�. The author of this book has settled down to a stable near point of 59 cm.

Calculate the effective magnifying power for my eyes by first solving (G.6)
for the focal length of the magnifying glass.



Appendix H
Threshold of Hearing, Threshold of Aural Pain,
and General Threshold of Physical Pain**

If we look carefully at the set of equal loudness curves in Chap. 10, we find two
curves that bound the curves from above and below. The curve at the top is referred
to as the threshold of hearing; the curve at the bottom is referred to as the threshold
of pain. The former represents the minimum intensity of a pure tone that can be
heard as a function of frequency. The latter corresponds to intensities that produce a
sense of pain as opposed to sound. We will refer to this latter curve as the threshold
of aural pain so as to distinguish it from a threshold of a more general sort of
physical pain that one might experience in a body structure such as one’s leg or
back and normally find annoying. This curve is therefore a boundary between two
types of sensation.1 See Fig. H.1.

We will begin our discussion by characterizing a bit the threshold of hearing in
physical terms. We have pointed out in Chap. 3 that sound corresponds to a variation
of pressure in a medium. In the case of air, this pressure is produced by a huge rate
of collisions of molecules of air against a surface. At a pressure of one atmosphere,
there are about one trillion–trillion (1; 000; 000; 000; 000; 000; 000; 000; 000) col-
lisions each second on an eardrum, which has a surface area of about 1 cm2. The
sound that we hear reflects a difference in the forces on the two sides of an eardrum.

In Fig. H.2, we see the results of a computer simulation of the pressure
fluctuations. To the left we see the positions of an ensemble of dots representing
molecules within a box. To the right is plot vs. time of the pressure produced by the
collisions of the molecules with the surface of the walls of the box.

In Fig. H.3, we depict the force on a sub-microscopic area of an ear drum due to
these collisions over a short interval of time. Each spike represents a collision of a
single molecule in the air, lasting about one-trillionth of a second.2 In Fig. H.3a we

1The closest analogous threshold for a large body part that I can think of the boundary between a
tickle and an ache.
2In order to get a feeling as to what the number one trillionth is, suppose we were to cover an
area the size of a football field with the dots over the letter “i” in this print. There would be about
one-trillion such dots. Therefore, each dot takes up one-trillionth of the area of a football field.

L. Gunther, The Physics of Music and Color, DOI 10.1007/978-1-4614-0557-3,
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Fig. H.1 Hearing thresholds enclosing the set of equal loudness curves

Fig. H.2 Computer simulation of the fluctuations of the pressure on a surface (source: http://
webphysics.davidson.edu/applets/Molecular/Pressure.html)

see the force on the outside of the eardrum, while in Fig. H.3b we see the force on
the inside of the eardrum. The latter force is shown downward in a negative direction
to represent the fact that the above two forces have opposite directions.

In Fig. H.3c we see the two forces together on one graph. Because each collision
is so minuscule in its effect and because this rate over the entire eardrum is so
huge, we experience a force that is uniform over the surface of the eardrum and is
extremely steady over time. To appreciate this fact, imagine a short time interval
of 100 trillionths of a second. Imagine that there were 100 collisions during this

http://webphysics.davidson.edu/applets/Molecular/Pressure.html
http://webphysics.davidson.edu/applets/Molecular/Pressure.html
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a

b

c

Fig. H.3 Force due collisions of individual molecules on an eardrum

Fig. H.4 A segment of adjacent collisions

time interval and that they were spread uniformly over this time interval. The spikes
would then touch each other, as shown in Fig. H.4.

In fact, during an interval of 100 trillionths of a second there are 100 trillion
collisions, not merely 100. Imagine how dense the spikes actually are! It is then
easy to appreciate why the force is extremely close to being constant in time.

Because of the discreteness of the collisions, the force produced is not exactly
zero or constant in time. In Fig. H.3, representing the collisions over an extremely
minute area of an eardrum, we see that in that short time interval there are 13
collisions on the outside along with 14 collisions on the inside, making a difference
of one collision. The situation for the force on an entire eardrum is different. Over
a period of about 1 s, we might have a total of about one trillion–trillion collisions
on each side of the eardrum. The difference in the number of collisions will be on
the order of one part in one trillion – that is the still huge number of one trillion
collisions! The resultant variation in the overall pressure is referred to as pressure
fluctuations.3 As a result, even when there is no sound wave present, the forces
on the two sides of an eardrum do not cancel each other. How does this net force
compare to the force that is necessary to produce an audible sound?

In principle, with sufficient aural sensitivity, we should well wonder whether we
can hear the individual collisions of molecules! In fact, the sensing apparatus for
hearing is designed so that we cannot hear these collisions. Their presence is in

3For comparison sake, imagine rain drops colliding with a window pane and pitter patter sound
they produce. Now imagine what would happen if the density of raindrops were to increase greatly
and their rate of collision increases greatly. Ultimately, we would describe the sound produced as
a steady continuous sound.
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fact mirrored in the fluctuations of nerve impulses mentioned in Chap. 10. We hear
sounds that produce nerve impulses that are over and above these fluctuations.

Still, we would like to get back to the question as to how the fluctuations compare
to the sounds that are at the threshold of hearing. It is not too difficult to calculate
the sound that is produced as a result of the variation of the force on the eardrums
as a result of the discreteness of the collisions. There is a frequency spectrum to this
force that ranges from zero frequency to a frequency corresponding to the duration
of a single collision (�one-trillionth of a second) – therefore, to a frequency of
about one-trillion Hz. The sound is a uniform mixture of frequencies (as in the case
of white light) and is often referred to as white noise. It is not straightforward, if at
all possible to compare the resulting intensity with the intensities corresponding
to the threshold of hearing among the equal loudness curves since these curves
correspond to sounds having single frequencies. Ideally, one should test people for
their threshold of hearing white noise. The best I can think of doing is to calculate
the total intensity of the white noise over a range of audible frequencies – say
in the most audible range of 1,000–3,000Hz. The result is a total intensity of about
10�12 W=m2, equal to the threshold of hearing at 2,000 Hz. Thus, it is likely that the
sensitivity of the ear is as small as possible, being close to being able to hear the
collisions of individual molecules of air on the ear drums! The inaudible sound due
to the randomness of the collisions is referred to as background noise. Our entire
nervous system is wired up so that normally we do not sense the background noise
that tends to excite our nerves.4

What is the pressure at the threshold of hearing? It is a minimum at a frequency to
which we are most sensitive: about one-ten-billionth of an atmosphere at a frequency
of about 3,000 Hz. Georg von Békésy, in his study of cats’ ears, found that at the
threshold, the eardrum has an amplitude of about one-tenth of an Ångstrom, a size
that corresponds to about one-tenth the diameter of a single molecule!

What about pain in general? Recently, I visited a physiatrist to deal with back
pain that had developed over the past few months – another one of my many
episodes. The main issues were whether the source of the pain was due to a relatively
simple problem of sprained ligaments or strained muscles or a more serious problem
of a herniated disc of the spine, or an even more serious disease such as cancer. The
fact was that I had no recollection of having had any incident that might have done
damage to my back.

My visit to his office informed me of a fascinating phenomenon of the human
body. The brain can reset the level of background noise that can produce a sense
of pain. My physiatrist’s diagnosis to my backache was simple: I am getting old!
My discs are wearing down. Old MRIs of my back were evidence that my level of
deterioration might well be belated in life since they revealed at my then current age
of 55 the back of a 40 year old. What should be my response? I will paraphrase his

4The same situation holds for vision. The eye is capable of detecting the incidence of only about
100 photons over a period of a few seconds. Any greater sensitivity could lead to problems due to
noise within the nervous system for vision.
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response. “Simple,” he said. “Stop worrying about your back. People are fortunate
to have a unique organ in the brain called the amygdala. One of its functions is to
control the response in your brain to nerve impulses that can generate sensations of
pain. When we have a steady or continual input of such impulses, the amygdala can
change the brain’s response to these sources of pain by causing the nervous system
to treat them as our new level of background noise! And, if we are fully fortunate,
we will eventually not sense any pain. If you dwell upon the pain, you will weaken
the amygdala’s ability to perform this function and therefore prolong your pain. So
ignore the pain and move on with your life.”





Appendix I
Transformation Between Tables
of Color-Matching Functions for Two
Sets of Monochromatic Primaries**

In Chap. 14, we provided a Table 14.2 of color-matching functions – henceforth
referred to as TCMF – that was produced by Judd and Wyszecki by studying the
color vision of a set of individuals with normal color vision for a specific set of
primaries, �B D 435:8 nm, �G D 546:1 nm, and �R D 700:0 nm. The table consists
of three columns of numbers, r.�/, g.�/, and b.�/ – the color matching functions.
What if we have a different set of monochromatic primaries? How should we mix
these primaries so as to produce the same colors? In this appendix, we will derive a
set of nine numbers that will allow us to determine a corresponding TCMF – starting
with the original TCMF – that should allow the same set of individuals to match a
spectral intensity using any other set of monochromatic primaries. We will label
their wavelengths as f�0

R, �0
G, and �0

Bg.
In the TCMF, there are 16 different wavelengths for each of the three primaries.1

One might assume that each of the set of 3 � 16 D 48 numbers of the new TCMF
depends upon the entire set of 48 numbers of the original TCMF. We would then
need 48 � 48 D 2;304 numbers to specify the relationship between the two TCMFs.
We will see shortly that in fact, only 3 � 3 D 9 numbers are sufficient to determine
the relationship.2 The nine numbers are exhibited in the following three equations:

r 0.�/ D URRr.�/ C UGRg.�/ C UBRb.�/

g0.�/ D URGr.�/ C UGGg.�/ C UBGb.�/

b0.�/ D URBr.�/ C UGBg.�/ C UBBb.�/: (I.1)

1We realize that there are an infinite number of possible wavelengths spanning the range 400–
700 nm. Our table essentially samples a given spectral intensity at a discrete values simply for
convenience. In fact, our table was taken from another that had double the number of wavelengths,
with values halfway between the values in our table. For ideal sampling, we would need color-
matching functions for the continuum of visible wavelengths. The tristimulus values would be
integrals: R D R

r.�/I.�/d�, G D R
g.�/I.�/d�, and B D R

b.�/I.�/d�.
2In fact, if we do not care about maintaining a specific requirement on the unit intensities, we need
only eight numbers.
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The nine numbers are represented by the symbols URR, UGR, UBR, URG,UGG,
UBG, URB, UGB, and UBB. They are commonly exhibited as an array of numbers,
together forming what is referred to as a matrix. A common symbol for a matrix is
U, here shown for the letter U. The matrix U is exhibited below.3

0
@URR UGR UBR

URG UGG UBG

URB UGB UBB

1
A:

The essential reason for this extraordinary simplification is physiological: color
vision is based on a single set of three receptors with three corresponding indepen-
dent nerve impulse rates, as opposed to such a set for each possible set of primaries.
This fact will be demonstrated in the last subsection of the appendix.

Explicit Expression for the Transformation Matrix U

We will later show that the transformation matrix U can be expressed in terms of a
sub-matrix obtained from the TCMF.

Suppose that the wavelengths of the second set of primaries is given by �R0 , �G0 ,
and �B0 .

Then this sub-matrix, here symbolized by V, is given by:

0
@VRR VRG VRB

VGR VGG VGB

VBR VBG VBB

1
A �

0
@r.�R0/ g.�R0/ b.�R0/

r.�G0/ g.�G0/ b.�G0/

r.�B0/ g.�B0/ b.�B0/

1
A:

Note, for example, that VRG D g.�R0/.
We will show that

U˛ˇ D V �1
˛ˇ =u0̌ : (I.4)

3For those who are familiar with matrices, we will rewrite (I.1) in a simpler form. We introduce
two vector functions, .�/ and 0.�/. They represent the color-matching functions for the respective
two sets of primaries have the following components:

cR.�/ D r.�/; cG.�/ D g.�/; cB.�/ D b.�/

c0

R.�/ D r 0.�/; c0

G.�/ D g0.�/; c0

B.�/ D b
0

.�/: (I.2)

We will use subscript notation, with subscripts ˛; ˇ; ::: D R; G; orB . Then (I.1) can be written as

c0

˛.�/ D X
ˇDR;G;B

U˛ˇcˇ.�/: (I.3)
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where the unit intensities are given by

u0̌ D
X

˛DR;G;B

V �1
˛ˇ ; (I.5)

so that

U˛ˇ D V �1
˛ˇX

DR;G;B

V �1
ˇ

(I.6)

I.1 Application of the Transformation: Determining
an Ideal Set of Primaries

We have tried to determine an ideal set of primaries starting with the TCMF
produced by Judd and Wyszecki for the primaries 436, 546, and 700 nm. Our goal
is to minimize the total area that encompasses negative primaries. The process we
will use involves a bit of trial and error. We first note that a change of primaries can
be looked at as taking a piece of rubber on which we draw the TCMF and stretching
it in various directions so that the points corresponding to the desired primaries
lie at the corners of the triangle entirely encompassing positive color coordinates.
The TCMF is best seen as a whole through the corresponding chromaticity diagram
encompassed by the horseshoe perimeter. See Fig. I.1.

Fig. I.1 The Horseshoe perimeter for the Judd and Wyszecki primaries 436, 546, and 700 nm



510 I Transformation of Primaries

Fig. I.2 The horseshoe perimeter for the primaries 436, 510, and 700 nm

We notice that the bulge to the upper left represents a large region having negative
red coordinates. Consequently, this choice of monochromatic primaries is far from
ideal in enabling one to match colors entirely with positive color coordinates. On
the other hand, the perimeter from the green primary to the red primary is extremely
close to being straight, so that there is an extremely small region having a negative
blue primary coordinate. Finally, the red primary is at the end of the perimeter while
the extreme blue end of the perimeter, – at 400 nm – is extremely close to the blue
primary, so that we have an extremely small region having a negative green primary
coordinate.

Since the extreme left end, with the greatest negative red coordinate, corresponds
to a wavelength of about 510 nm, it is reasonable to study a new set of primaries,
with the green primary at a wavelength of 510 nm and with the same red and blue
primaries. The resulting horseshoe is shown in Fig. I.2.

The improvement is dramatic. We have significantly reduced the area with a
negative red coordinate. However, we now have a significant region with a negative
blue coordinate. We therefore experiment with a green primary a bit closer to
the original 546 nm, hoping that the reduction in the region with a negative blue
coordinate will not lead to a significant region with a negative green coordinate.
We next switch to a green primary of 515 nm. The resulting horseshoe is shown
in Fig. I.3. The area of negative blue primary is now about the same as the area
of negative red primary. With mathematical optimization techniques we could,
perhaps, make further improvements; nevertheless, we will stop here and accept
what we have now.

Procedure

We now summarize the procedure for obtaining the new TCMF, specifically for the
set 436, 510, and 700 nm. We first extract out of the original TCMF of Judd and
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Fig. I.3 The horseshoe
perimeter for the primaries
436, 515, and 700 nm

l(nm)
700

R
0.0041
−0.089 −0.21 −0.2655

1.2655
0.409
0.591

0

0

0 1
0.027

243.9
168.82 7.776

4E-17
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10.1286

0

0 0

0

0

0 0

0

G B

u’ =

R

412.72 7.776 0.7902

G B R G B

510
436

Fig. I.4 Matrices for transforming from the Judd-Wyszecki primaries 436, 546, and 700 nm to the
primaries 436, 510, and 700 nm

Wyszecki that is found in Williamson and Cummins those rows having to do with
the new primaries.4 We arrive at the 3 � 3 sub-matrix V that is shown in light blue
in Fig. I.4. The wavelengths 700 and 510 nm are present in the TCMF. However,
the wavelength 436 nm of the blue primary, which is the same for both the original
and the new primaries, is absent. That is not a problem for us since the red and
the green color coordinates of the blue primary must be identically zero. The blue
color coordinate can be obtained by interpolation between the wavelengths 420 and
440 nm.

Note that while the original TCMF was organized with the wavelengths running
from 400 nm at the top to the highest at 700 nm, we have rearranged the three
wavelengths in reverse order so that we have R, G, and B running from top to
bottom.

We next produce the inverse of the matrix V, shown in yellow using the Excel.5

The unit intensities of the new primaries are shown in magenta and are the respective

4This text has only wavelengths that are multiples of 20, while the original TCMF found in
Williamson and Cummins has all multiples of 10.
5We highlight a 9 � 9 block of cells. We then type in the command line: =MINVERSE(C7:E9),
where (C7:E9) identifies the matrix V to be inverted – here C7 is the cell ID of VRR and E9 is the
cell ID of VBB. Of course, your cell IDs might be different.
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sums of the columns above. Finally, we see the transform matrix, U, in light green.
It is the ratio, cell by cell, of the matrix V divided by the unit intensity corresponding
to the column. Note that the sum of each of the three columns of U is unity.

I.2 Proof of Equations (I.1) and (I.6)

Let us begin by understanding better the content of the tables. The color of a
spectral intensity is produced by mixing sources of the set of given primaries.
Physiologically, the three tristimulus values calculated for that spectral intensity are
NOT simply proportional to the corresponding rates at which nerve impulses are
sent to the brain by the cones. In Chap. 14, we introduced the following functions:

The response functions SR.�/, SG.�/, and SB.�/ are the respective rates at which
the cones, R, G, and B emit nerve impulses per unit intensity of wavelength �.

The nerve impulse rate for a given spectral intensity I.�/ are: NR.�/ D
SR.�/I.�/, NG.�/ D SG.�/I.�/, and NB.�/ D SB.�/I.�/:

For a given spectral intensity, the total nerve impulse rates from the respective
cones are given by 6

NR D
X

�

SR.�/I.�/

NG D
X

�

SG.�/I.�/

NB D
X

�

SB.�/I.�/; (I.8)

where the right-hand sides are sums over all the wavelengths.
To produce a match by mixing the primary sources, the sources have to produce

the same set of nerve impulse rates. Therefore, we next need to obtain expressions
for how these rates depend upon the primary sources. We note that generally each of
the three primaries produces nerve impulse rates from all three cones. We therefore
introduce the following nine quantities:

6See Chap. 14. With matrix and vector notation, we have

N˛ D X
�

S˛.�/I.�/: (I.7)
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SRR D Nerve impulse rate of the R-cones per unit intensity of R-primary

SRG D Nerve impulse rate of the R-cones per unit intensity of G-primary

SRB D Nerve impulse rate of the R-cones per unit intensity of B-primary

SGR D Nerve impulse rate of the G-cones per unit intensity of R-primary

SGG D Nerve impulse rate of the G-cones per unit intensity of G-primary

SGB D Nerve impulse rate of the G-cones per unit intensity of B-primary

SBR D Nerve impulse rate of the B-cones per unit intensity of R-primary

SBG D Nerve impulse rate of the B-cones per unit intensity of G-primary

SBB D Nerve impulse rate of the B-cones per unit intensity of B-primary: (I.9)

The nine quantities can be treated as a 9 � 9 matrix S, exhibited below:

0
@SRR SGR SBR

SRG SGG SBG

SRB SGB SBB

1
A:

The nerve impulse rates depend upon the tristimulus values, R, G, and B and the
matrix S:

NR D R SRR C G SRG C B SRB

NG D R SGR C G SGG C B SGB

NB D R SBR C G SBG C B SBB: (I.10)

We can now use the equations from Chap. 14 for the dependence of the tristimulus
values on the color-matching functions, namely,7

R D
X

�

r.�/I.�/

G D
X

�

g.�/I.�/

B D
X

�

b.�/I.�/: (I.12)

7In matrix notation, we can define the vector representing the three tristimulus values as
C˛ D .R; G; B/. Then

C˛ D X
�

c˛.�/I.�/: (I.11)
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These expressions, substituted into (I.10), provide us with an expression for the
nerve impulse rates in terms of the matrix S. Both this set of equations and the
set of (I.9) in terms of the functions SR.�/, SG.�/, and SB.�/ must hold for any
spectral intensity and therefore must hold for any specific wavelength. This fact
will allow us to show how visual physiology reduces the number of independent
variables necessary to relate matching with one set of primaries with matching by
another set of primaries, as expressed by (I.1).

To clarify the above, let us join the first equations (I.9) and (I.10) and all three
equations of (I.12). We obtain

NR D
X

�

SR.�/I.�/ D R SRR C G SRG C B SRB

D
X

�

r.�/I.�/ SRR C
X

�

g.�/I.�/ SRG C
X

�

b.�/I.�/ SRB: (I.13)

We obtain a similar equation for NG and NB. Ultimately, we have for each
wavelength8

SR.�/ D r.�/SRR C g.�/SRG C b.�/SRB

SG.�/ D r.�/SGR C g.�/SGG C b.�/SBG

SB.�/ D r.�/SBR C g.�/SBG C b.�/SBB: (I.15)

There are, correspondingly, nine quantities for the second set of primaries, the
matrix S

0 as well as the second set of color-matching functions, r 0, g0, and b0. We
also have a set of equations parallel to (I.15):

SR.�/ D r 0.�/S 0
RR C g0.�/S 0

RG C b0.�/S 0
RB

SG.�/ D r 0.�/S 0
GR C g0.�/S 0

GG C b0.�/S 0
GB

SB.�/ D r 0.�/S 0
BR C g0.�/S 0

BG C b0.�/S 0
BB: (I.16)

8With matrix notation we have

S˛.�/ D X
ˇDR;G;B

S˛ˇcˇ.�/: (I.14)
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Therefore,9

r 0.�/S 0
RR C g0.�/S 0

GR C b0.�/S 0
BR D r.�/SRR C g.�/SGR C b.�/SBR

r 0.�/S 0
RG C g0.�/S 0

GG C b0.�/S 0
BG D r.�/SRG C g.�/SGG C b.�/SBG

r 0.�/S 0
RB C g0.�/S 0

GB C b0.�/S 0
BB D r.�/SRB C g.�/SGB C b.�/SBB: (I.18)

We see above that the two matrices, S and S
0, determine the relationship between the

two sets of color-matching functions and that the relationship is identical for each
wavelength. The algebra of matrices leads to an expression for the transformation
matrix U of (I.1) that involves the so-called inverse matrix of the matrix S

0:

U D SS
0�1

: (I.19)

For those who are not familiar with these symbols, we will exhibit one of the matrix
elements of U:

URG D SRRS 0�1
RG C SRGS 0�1

GG C SRBS 0�1
BG : (I.20)

Here, for example, S 0�1
RG is the RG element for the matrix S

0�1.

Note

When the two sets of primaries are identical, we expect the transforma-
tion matrix to yield the same TCMF as the original TCMF so that U

should be the so-called identity matrix. Then all the diagonal elements
(URR; UGG, and UBB ) are unity while the remaining six elements
vanish. Equation (I.19) confirms this result since in this case S D S

0

We will next prove (I.4)

U˛ˇ D V
�1
˛ˇ =u0̌ ; (I.21)

where the parameters u0̌ are the unit intensities for the second set of primaries,
given by

u0
R D V �1

RR C V �1
GR C V �1

BR (I.22)

with corresponding expressions for the other two unit intensities.

Thus, the second TCMF is determined
by the 9 � 9 sub-matrix V of the original TCMF.

9 X
ˇDR;G;B

c0

ˇ.�/S 0

˛ˇ D X
ˇDR;G;B

cˇ.�/S˛ˇ (I.17)
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Proof

First let us recall (I.1), which we rewrite here:

r 0.�/ D URRr.�/ C UGRg.�/ C UBRb.�/

g0.�/ D URGr.�/ C UGGg.�/ C UBGb.�/

b0.�/ D URBr.�/ C UGBg.�/ C UBBb.�/: (I.23)

In Chap. 14, we pointed out that if we sum any color-matching function, r.�/, g.�/,
or b.�/ over all of the wavelengths, we must obtain the same number so that a
constant spectral intensity will produce equal energy white. This fact obviously
holds true for the second set of primaries too, except that the constant common
to the three sums can be different. We now recall that if we were to multiply every
color-matching function in a TCMF by the same number, all tristimulus values are
multiplied by that number but the color coordinates are unchanged. We therefore
are free to choose the sums to be equal for the two different sets of primaries.

If we carry out this sum in each of the above three equations, we will obtain the
following three equations for the transformation matrix10:

URR C UGR C UBR D 1

URG C UGG C UBG D 1

URB C UGB C UBB D 1: (I.25)

Next, we recall that (see Problem 19 in Chap. 14)

r.�R/ D 1

uR
; g.�G/ D 1

uG
; b.�B/ D 1

uB
(I.26)

with the remaining functions, e.g., r.�G), vanishing.
Let us introduce the matrix C defined by

C D
0
@r.�R/ r.�G/ D 0 0

0 g.�G/ 0

0 0 b.�B/

1
A:

10The three equations can be expressed in matrix notation asX
˛

U˛ˇ D 1 (I.24)

for all ˇ.
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Similarly, we have a corresponding matrix for the second set of primaries, �0
R, �0

G,
and �0

B, we have

r 0.�0
R/ D 1

u0
R

; g0.�0
G/ D 1

u0
G

; b0.�0
B/ D 1

u0
B

(I.27)

with the remaining functions, e.g., r.�G), vanishing. We also define the matrix

C
0 D

0
@r 0.�0

R/ r 0.�0
G/ D 0 0

0 g0.�0
G/ 0

0 0 b0.�0
B/

1
A D

0
@1=u0

R 0 0

0 1=u0
G 0

0 0 1=u0
B

1
A :

According to (I.1), we have

C 0
RR D r 0.�0

R/ D 1

u0
R

D URRr.�0
R/ C UGRg.�0

R/ C UBRb.�0
R/

C 0
GG D g0.�0

G/ D 1

u0
G

D URGr.�0
G/ C UGGg.�0

G/ C UBGb.�0
G/

C 0
BB D b0.�0

B/ D 1

u0
B

D URBr.�0
B/ C UGBg.�0

B/ C UBBb.�0
B/: (I.28)

These equations can be rewritten so as to exhibit the matrix V:

C 0
RR D VRRURR C VRGUGR C VRBUBR

C 0
GG D VGRURG C VGGUGG C VGBUBG

C 0
BB D VBRURB C VBGUGB C VBBUBB: (I.29)

These equations can be expressed as a multiplication of matrices:

C
0 D VU: (I.30)

or

C 0̨
ˇ D

X
DR;G;B

V˛ Uˇ: (I.31)

We know so far only the matrix V. We can obtain the unit intensities (u0̨ ) as follows.
First, we solve (I.31) for the matrix U:

U D V
�1

C
0: (I.32)

In matrix element form, we have

U˛ˇ D
X

DR;G;B

V �1
˛ C 0

ˇ D V �1
˛ˇ =u0ˇ: (I.33)
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Next we recall (I.25). It can be written as

X
˛DR;G;B

U˛ˇ D 1 (I.34)

for all ˇ. Therefore,
u0̌ D

X
˛DR;G;B

V �1
˛ˇ : (I.35)

Finally we have our expression for the transformation matrix U in terms of the sub-
matrix of the original TCMF, (I.6):

U˛ˇ D V �1
˛ˇX

DR;G;B

V �1
ˇ

: (I.36)

I.3 Problems on the Transformation of TCMFs

1. Suppose that the matrix V has only diagonal matrix elements. We say that the
matrix is a diagonal matrix.

Explain why the matrix U is diagonal, with all its matrix elements equal to
unity. What does this imply about how the new set of primaries is related to the
old set?

2. Below is the TCMF produced by Stiles and Burch (See Chap. 14) for the
primaries �B0 D 444:44 nm, �G0 D 526:32 nm, and �R0 D 645:16 nm (Table I.1).

(a) According to the theory of color vision we have presented the data collected
by the two groups, Stiles and Burch vs. Judd and Wyszecki, should be
consistent. For example, if we were to apply our transformation matrices
to the TCMF of Stiles and Burch, we should obtain the TCMF of Judd and
Wyszecki.

Carry out this process and compare the TCMFs. Beware that the two
might differ by a constant factor that multiplies all the coordinates. Why
is this so? On the other hand, the color coordinates do not depend upon such
a constant factor, so compare the horseshoe perimeters.

(b) Derive the transformation matrix U for the set of primaries 436, 520, and
700 nm that is based on the Stiles and Burch TCMF.

Find the TCMF for this second set of primaries and the corresponding
horseshoe perimeter.

Compare this perimeter with the one we derived by a transformation from
the Judd and Wyszecki TCMF of the set of primaries 436, 546, and 700 nm.
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Table I.1 Table of color-matching functions based on
the spectral primaries 444.44, 526.32, and 645.16 nm

� (nm) r.�/ g.�/ b.�/

400 0:0089 �0:0025 0:04

410 0:035 �0:0119 0:1802

420 0:0702 �0:0289 0:467

430 0:0763 �0:0338 0:6152

440 0:0561 �0:0276 0:8778

450 �0:0044 0:0024 1:0019

460 �0:097 0:0636 0:9139

470 �0:2235 0:1617 0:7417

480 �0:3346 0:2796 0:472

485 �0:3776 0:3428 0:3495

490 �0:4136 0:4086 0:2564

500 �0:4452 0:5491 0:1307

510 �0:414 0:7097 0:058

520 �0:2845 0:8715 0:02

530 �0:0435 0:9945 0:0007

540 0:3129 1:0375 �0:0064

550 0:7722 1:039 �0:0094

560 1:271 0:9698 �0:0097

570 1:8465 0:8571 �0:0087

580 2:425 0:6953 �0:0073

590 2:9151 0:5063 �0:00537

600 3:1613 0:336 �0:00357

610 3:1048 0:1917 �0:00208

620 2:7194 0:0938 �0:00103

630 2:17 0:0371 �0:00044

640 1:5179 0:0112 �0:00014

650 1:007 0:000078 0

660 0:5934 �0:001988 0

670 0:3283 �0:002006 0

680 0:1722 �0:001272 0

690 0:0853 �0:000683 0

700 0:0408 �0:000337 0

3. Prove that the tristimulus values C 0̨ for a second set of monochromatic primaries
is related to the tristimulus values C˛ of the first set by the equation

C 0̨ D
X

ˇ

U˛ˇCˇ: (I.37)

4. (a) Prove that the sum S D
X

˛

C˛ is independent of the set of monochromatic

primaries.
(b) Prove that the color coordinates satisfy the equation

c0
˛

C 0̨ D c˛

C˛

: (I.38)





Appendix J
Hommage to Pierre-Gilles de Gennes:
Art and Science**

In July 2007, I came to know that the physicist Pierre-Gilles de Gennes had passed
away on May 18, 2007. I received the news with deep sadness since de Gennes was
my supervisor when I was a young Post-Doc at the Laboratory of the Physics of
Solids in Orsay, France, in the academic year 1966–1967, and I had crossed paths
with him many times since then. While only 7 years older than me, he had already
achieved fame as a leader of a group of physicists studying superconductivity. De
Gennes had a great influence on all those working in the field of Condensed Matter.
Whatever subject he touched, he transformed. Frequently he attacked problem areas
for which physicists and chemists felt that they had reached the limits thought
possible conceptually. De Gennes discovered sets of concepts that produced a new
exciting level of activity of research in the fields (Fig. J.1).

One meeting I had with him stands out in my memory: I was working on a
problem and was stuck because of not knowing one of the essential parameters
of the problem. de Gennes listened to me attentively with all due patience. He
then proceeded to ask me one simple question, which I will recall with clarity:
“What is the approximate wavelength of the electrons in bismuth in comparison
to the roughness of the surface of the sample.” The reader need not understand the
meaning of the question. It was the utter simplicity and directness of his question
that mattered. For that question was all I needed to hear for me to proceed to
complete my study. Our meeting was very brief and yet extremely productive.

Of what relevance is this encounter to this book, in which our goal is to appreciate
the connection between physics and the arts? It is that some people have an
extraordinary gift to see order and simplicity in the complex. De Gennes was one of
those who applied this ability to many fields, whose numerous familiar applications
depend upon the results of his research. This ability to create order from a suspended
blank state of our normal awareness is manifest in artists as well. De Gennes is
quoted as describing the deep influence that the painter Pablo Picasso had on his
own scientific studies. To appreciate this point, I am including an excerpt of one of
a number of obituaries written after his death. For details see: http://www.nature.
com/nature/journal/v448/n7150/pdf/448149a.pdf.

L. Gunther, The Physics of Music and Color, DOI 10.1007/978-1-4614-0557-3,
© Springer Science+Business Media, LLC 2012
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Fig. J.1 Pierre-Gilles de
Gennes (source: http://
authors.library.caltech.edu/
5456/1/hrst.mit.edu/hrs/
materials/public/DeGennes/
DeGennesintro fr1252.htm)

The obituary makes reference to a film on Picasso that left a great mark on
de Gennes’ research as a physicist. You can view an excerpt of this film on the
following YouTube site: http://www.youtube.com/watch?v=5tn5uTTCRCg.

Excerpt of an Obituary of de Gennes by Françoise Brochard-Wyart

“Chacun en nous a son trésor d’images entrevues dans un instant mais jamais
oubliées. Un exemple pour moi: Picasso peignant grands traits blancs sur une vitre
et filmé par Clouzot. Tout ce que j’ai essayé de dessiner laborieusement plus tard
est né de ces moments.”

“Every one of us has a treasure of images caught in glimpses but never forgotten.
A personal example: Picasso painting white lines on glass using large strokes, filmed
behind the glass by Clouzot. Everything that I tried painting laboriously later was
born from such glimpses.”
(Pierre-Gilles de Gennes, from L’émerveillement by Thibaut de Wurstemberger,
Saint-Augustin, 1998.)

With his strikingly simple yet pioneering ideas, Pierre-Gilles de Gennes drew
“white lines in large strokes” that defined the physics of soft matter – liquid crystals,
polymers, colloids, and surfactants. He died on 18 May.

Educated at the École Normale Supérieure in Paris during 1951–1955, de Gennes
learned theoretical physics from the greatest masters of his time. He obtained his
Ph.D. in 1957 while at the French Atomic Energy Commission, specializing in
magnetism and neutron scattering. During a stay at the University of California,
Berkeley, in 1959, he studied with the solid-state physicist Charles Kittel, who
taught him how to communicate ideas in physics using plain language, so avoiding
the use of daunting equations....

De Gennes fostered a collective research effort that is scarcely imaginable today.
Papers were signed not with the names of individuals, but with the name of the
group. Theoreticians would spend half their time contemplating liquid crystals

http://authors.library.caltech.edu/5456/1/hrst.mit.edu/hrs/materials/public/DeGennes/DeGennesintro_fr1252.htm
http://authors.library.caltech.edu/5456/1/hrst.mit.edu/hrs/materials/public/DeGennes/DeGennesintro_fr1252.htm
http://authors.library.caltech.edu/5456/1/hrst.mit.edu/hrs/materials/public/DeGennes/DeGennesintro_fr1252.htm
http://authors.library.caltech.edu/5456/1/hrst.mit.edu/hrs/materials/public/DeGennes/DeGennesintro_fr1252.htm
http://authors.library.caltech.edu/5456/1/hrst.mit.edu/hrs/materials/public/DeGennes/DeGennesintro_fr1252.htm
http://www.youtube.com/watch?v=5tn5uTTCRCg
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under the microscope and discussing practical experiments. Researchers would
often arrive in the morning to find a note from de Gennes that would launch them in
yet another ground-breaking direction. Calling on his vast knowledge of physics, de
Gennes drew analogies between different fields. For example, he realized that laws
developed to describe superconductivity phenomena could be used to understand
phase transitions in liquid crystals.
...
De Gennes pursued his research with extraordinary imagination, insatiable curiosity,
and an ability to grasp facts rapidly. But he also gave his time to others and helped
them develop their ideas. A keen ambassador of science to the public, he generated
passionate debates on subjects as diverse as “Physics and Medicine,” “Inventors,”
and “Primo Levi.” He inspired generations of students to pursue careers in physics
and played an active role in establishing the L’Oréal-UNESCO Awards for Women
in Science.
...

End of Excerpt of the Obituary

Here is another expression of a likening of de Gennes revelations to the product of
an artist in an excerpt of a description of de Gennes’ book on Soft Interfaces: “(The
book provides us with) an impressionistic tour of the physics of soft interfaces by
Nobel Laureate Pierre-Gilles de Gennes. Full of insight and interesting asides, it
not only provides an accessible introduction to this topic, but also lays down many
markers and signposts for interesting new research possibilities.”

I will end this essay with a personal remark:
Over the years, de Gennes and I corresponded and saw each other only once every

few years. Yet, in spite of his fame and his multitude of activities and acquaintances,
he remembered even the most trivial of our encounters. Most vivid in his mind when
I last saw him at a talk he gave at Harvard was about a dinner that his wife and he
had prepared for my family in 1967. They had forgotten to buy fresh cheese for our
dessert; this mistake required deep apologies and remained in his mind for 40 years.





Appendix K
MAPPINGS as a Basis for Arriving at a
Mutually Agreed Upon Description of Our
Observations of the World – Establishing
‘Truths’ and ‘Facts’

This book addresses the subject of physics, sound and light along with their
relationship to our own experience of sound and light. We have introduced many
concepts and equations that provide relationships among various physical quantities.
Physics is all about relationships. And so is a piece of music or work of fine art:
There are the relationships we perceive about the components of a given piece
of music or of a given work of art. In addition, there are relationships of these
components and their sum total that produce the full composition with our personal
emotional responses to these compositions. All of these relationships are examples
of what are more generally called mappings.

All forms of communication involve mappings. Moreover, physical laws are
mappings of observations - that we share - onto mathematical equations. Satis-
factory communication, as well as satisfactory laws of physics, require agreement
among those who share them. In this appendix, we will explore this subject a bit and
relate mappings to the complex philosophical questions of truth and fact. According
to my colleague George Smith of the Department of Philosophy at Tufts University,
who is an expert on Isaac Newton, my orientation towards the nature of scientific
investigation is within the framework of Newton’s proposed system thereof.

I was led to consider mappings seriously because of my study of color vision, as
this subject compels us to think with great clarity about the nature of mappings. One
of the first sets of words parents teach their babies is colors. This process provides
us with a wonderful example of how people learn how to share a common mapping
of human experience. The parent shows the baby an object with a uniform surface
of color, points, and says the word for the color of the surface - for example, red.
The term color is technically better referred to as the hue, the term that we will
henceforth use in this appendix. The parent then points to another object and says
green. The baby must learn that it is the hue that the word is distinguishing and not
another aspect of the object such as its shape or size. How is this aspect provided? –
by using a number of objects that hopefully differ essentially in all ways except for
the hue of their surfaces.

We realize that there are different hues that are similar but not identical, with
different levels of saturation. Note that, as we pointed out earlier in Chap. 14, there
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is no way to tell how the actual sensations compare among people. The same would
be true for the baby vis a vis the parent.

There are cases when a baby will be confused: The parent shows the baby two
surfaces, e.g. one red, the other green, and assigns these two different hues to the
surfaces. The baby, on the other hand, seems to jump around, randomly assigning
one or the other hues to both surfaces. The baby doesn’t seem to differentiate. As
you might guess, the baby is color blind. How does the baby handle this confusion?1

I bring up color blindness here just to point out that there are situations wherein
people are not always able to establish mappings that they can agree on. Imagine
what the situation would be like if the prevalence of various types of colorblindness
were close to 100%!

Note

Suppose that an infant is fitted with a device placed over its eyes that
inverts all images throughout infancy. Consider how the infant would
map observations onto language:

1. Can you think of situations where there might be confusion in
communication having to do with up and down?

2. How would the child draw itself as it sees itself in a mirror. Would
the child draw an image that is upside down to us?

1In color blindness, two words, red and green, are perceived to represent the same experience -
perceived color. Ultimately, the child will be told that the two words represent different colors that
between which he is incapable of distinguishing. I had problems of confusion of two words of a
different sort in hearing Yiddish as a child. In a number of cases, two different pronunciations
or even words were randomly assigned to what appeared to me to represent the same idea. I
was confused and blamed my difficulty on my own inability to remember or learn the correct
pronunciation or to distinguish between two ‘different’ words. For example, the word for the
number ‘two’ was pronounced as either ‘tsvay’ (as in the English word ‘say’) or ‘tsvy’ (as in
the English word ‘my’). I heard them as two different words. Ultimately, as an adult, I was told
that the reason that my relatives were jumping back and forth between two pronunciations was
that they naturally spoke with a ‘Galitsianer’ accent (close to a German accent). However, Litvaks
(from Lithuania), with their Litvak accent, were regarded as being more cultured. As a result, my
relatives were sometimes embarrassed about their natural Galitsianer accent.

Of course there is a difference between the case of color blindness and a confusion between
two dialects: While both involve a mapping of two different words onto what is conceived as
representing the same experience, contrary to the latter situation, the former involves an intrinsic
deficiency in perception that cannot be cured by explanation.
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K.1 MAPPINGS as Central to Organizing Human Experience

Essentially all human experience is dominated by mappings of one kind or another.
In the context of these notes, a mapping involves an association between two aspects
of human experience.

Examples are:

1. written letters that spell words and their verbal counterpart as expressed words
2. words that refer to classes of objects referred to as nouns
3. images that we perceive in our conscienceness and the scenes that produce

physical responses on the retina of an eye
4. printed musical notes and the tones produced by a musical instrument or the

human voice
5. frequency and intensity of a pure tone and a sense of pitch
6. spectral intensities and the corresponding sensations associated with color (hue

and saturation) and brightness.
7. a sequence of positions of an object and the perception by the eye and brain as

‘motion’ of the object.
8. the memory a person has of various perceptions of past inputs that correspond to

actual physical inputs to a person’s senses
9. words that classify many objects that produce an experience that is common in

some respect or respects - such as the appearance of tigers, lions, humans, or
apples or love, or anger. Sometimes there is disagreement as to how objects are
related to the words we ascribe to them. Severe arguments can arise, often merely
as a result of people having different mappings. In these cases, ultimately what
is important is how such classifications affect the way we use them - that is, how
they are mapped onto other actions or attitudes. The important thing is for people
to clarify as best then can the mappings they are using. 2

K.2 NUMBERS as a Mapping

A number of years ago, my wife, my then nine year old son Avi, and I were in
Grenoble, France for one of my sabbaticals. Avi went to l’École Houille-Blanche,
a public school whose student body was 50% French and 50% foreigners from all
over the world. Avi was placed in a class with foreign children ranging in age from
about 6 to 10, none of whom knew French. Few shared any particular language.

2Recently (2008) the International Astronomical Union decided to demote Pluto to the status
of being a “dwarf planet”. See the article in the National Geographic News, July, 2008.
http://news.nationalgeographic.com/news/2006/08/060824-pluto-planet.html

It seems to me to ludicrous to regard astronomers of the past as having been mistaken in labeling
Pluto as a planet. All we can say is that this new label allows astronomers to make statements about
the now regarded ‘true’ planets that will not be applied to Pluto.
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How are such children to be taught and be prepared to join the rest of the student
body in classrooms that used essentially only French? All I will mention here is
the following: The very first subject that students were taught was mathematics -
numbers being the first of this subject. Why was this so? Because it is relatively
easy to teach and discuss the concept of numbers without using a particular verbal
language. All one has to do is to present a number of objects such as one’s
fingers and assign a word to each finger: “One”, “two”, “three”, “four”, . Or: “un”,
“deux”, “trois”, “quatre”, .... We are observing the establishment of a one to one
correspondence between an ordered set of objects (such as our fingers) and words
expressed verbally or in written script. This numerical one to one correspondence is
perhaps the simplest example of a “mapping”.

Most of us would appreciate the probability that the first elements of communica-
tion between an earthling and an extraterrestrial would be the sharing of our ‘words’
for numbers. The reason is the simplicity of this mapping and the small chance that
the mapping will not be correctly communicated.

K.3 The Concept of TIME as a Mapping

What is time? The first level of consideration and observation regarding time is
the existence of an ordered sequence of observations. We refer to this observation
as time order. This ordering is preserved in the patterns that our minds provide
in what we call memory. Imagine what would happen if our brains destroyed the
order or direction of this sequence! The next level in establishing or characterizing
our sense of so-called ‘time’ requires that the physicist observe a system behaving in
a cyclic way: A pattern is observed to repeat itself again and again, with negligible
observable change in the pattern. A sense of equality in the evolving pattern leads
one to associate a time interval to a single occurrence of the pattern and to then
assign a numerical value to an evolution of patterns - we number and order the
patterns. The patterns are observed to be occurring simultaneously with other
physical observations so that we can assign a value to the time interval of a sequence
of physical observations. This special cyclic system becomes our “clock”. Any time
an event takes place, such as hearing a pulse of a sound or noting the position of
a car on the highway, we can correlate, that is map, that event onto the numerical
value of the number of cycles of a clock has made since we assigned an initial time.
We can express the time interval between events by noting how many cycles took
place between the two events. Here we have a mapping between two events and
number of cycles of a clock.

Now consider that astronomers used the rotation of the earth and its revolution
about the sun in order to measure time. These processes were believed to be periodic.
People could thus count the days or years by making reference to the position of the
sun or moon or stars in relation to the earth. Galileo is understood to have studied
the motion of objects with respect to time at one point by relying on his trust of
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good time keeping by a musician acquaintance.3 Later, Galileo used clocks that
were still quite crude compared to what we would demand today. On the basis of
the measurements of astronomers and scientists like Galileo, Newton was led to
his three laws of mechanics and his Universal Theory of Gravitation. Christian
Huyghens was able to improve on the limitations of the pendulum clock by
extending the observations of Galileo on an inclined plan through his contributions
to mathematics.4 Pure mathematics, along with Galileo’s experiments, justified the
trust he had in his clock.

Later developments in the improvement of clocks with respect to precision and
accuracy depended upon the Laws of Mechanics. Their quality was based on theory.
We now have the Cesium clock, which is understood to have an accuracy of one
nanosecond (10�9 seconds) per day, or about one part in 100-trillion!5 The quoted
accuracy is based upon an application of quantum theory.

The logic behind clocks is a bit confusing: Experiment based upon crude clocks
led to theory; theory then led to more accurate clocks. Where lies the ultimate basis
of evidence? Experiment or theory? Is the logic circular and therefore flawed?

It might seem as if we use theory as our ultimate judge, so that circular
reasoning is not present. But that is not exactly so. The situation is more complex.

While Newton proposed his laws on the basis of a restricted domain of observa-
tions, his laws have been ultimately applied to a vast set of interconnected physical
phenomena - for example, all the developments in engineering and medicine and
in sending rockets to the moon. The Laws of Physics weave a network, an edifice,
such that if any component were to fail to fit the theory, the structure would lose
its reliability. It is because of the solidity of this edifice that physicists have such a
high degree of faith in the laws of Physics - yes faith in the laws.6 How did we end
up with quantum theory? The answer is that new experiments destroyed our total
trust by revealing that the edifice was flawed in a domain that takes into account the
behavior of systems the size of atoms or smaller. Classical physics misses certain
fine details and therefore had to be refined. Ultimately, Quantum Theory wove an
intricate edifice that became the basis for a new level of trust as did the classical
laws - hence the trust in the accepted accuracy of the Cesium clock. Nevertheless,
physicists still use Classical Laws to account for or describe most behavior in the

3See Drake, S., The Role of Music in Galileo’s Experiments, Scientific American, p. 98, June
1975. Also see the website (2-4-2011): http://www.joakimlinde.se/java/galileo/, which contains a
beautiful applet that enables us to appreciate Drake’s conjecture as to how Galileo might have used
a musician to arrive at his law that when a ball rolls down an inclined plane, its speed increases
linearly with time.
4A pendulum bob moves along a curved path that can be analyzed in terms of an infinite sequence
of infinitesimal inclined planes having different angles of inclination.
5(2-5-2001): http://en.wikipedia.org/wiki/Atomic clock
6Reader beware: the faith to which I am referring is not the same as the faith in religion, which has
no such edifice and yet has its great benefits in helping some people handle the complexity of life’s
experience.

http://www.joakimlinde.se/java/galileo/
http://en.wikipedia.org/wiki/Atomic_clock
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large, recognizing that corrections sometimes have to be made to take into account
Quantum Theory.7

Note: I have raised the issue of time here because it is an example wherein the nature
of a mapping can be complex and obscure.

K.4 Mappings as the Essential Goal of Physics

We observe the world about us. These observations are summarized by mappings
within our brains. We communicate with others in words that represent these
mappings, hoping to summarize these mappings in such a way that we can establish
a one-to-one correspondence between our words and our observations that are
shared among our fellow human beings. I will repeat a statement to be found in
Chap. 5:

The essential goal of physics is to establish a theoretical framework for
describing in a quantitative way what we decide to and are able to measure.
That framework makes use of models, concepts, and images. However, its
ultimate content is a set of mathematical equations, which we call laws. The
laws are as simple and all-encompassing as possible, and provide relationships
among measurable quantities.

One of the most remarkable examples of such a mapping is the following: We
observe an enormous variety of materials made out of a relatively small number
of different kind of atoms (fewer than 100) arranged in a multitude of ways. We
have millions of different organic compounds, metals and alloys, complex materials
like wood, and so on. They have a variety of physical properties with respect to
pliability, density, color, texture, and so on. And yet, it is understood by physicists
that this entire variety of properties is describable, that is, can be mapped onto a set
of a small number of mathematical equations.

For comparison sake: Note that a finite set of coupled algebraic equations are
incredibly simple in content. For example, suppose that we have to solve the two
equations, x Cy D 1 and x �y D 3 for x and y. The solution is x D 2 and y D �1.
Such equations cannot provide us with the richness of content that is associated with
the behavior of materials.

Having discussed mappings, we need to answer the question of the relationship
of mappings to questions of truth or fact. In my opinion, these issues are not
subject to being defined by science. They are purely philosophical. In practice, I
would say that we tend to use these terms in science to describe mappings for which
there is essentially universal agreement under the rules that are used by scientists

7I must warn the reader that the above view of Physics as being ultimately dependent upon
faith is not shared by many physicists. Interestingly, this issue does not seem to arise among
mathematicians because they recognize that a mathematical theory is dependent upon a set of
axioms that is not provable.
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to test for acceptability. Any person has a right not to accept these rules, often to
their own detriment. To add to this list of what I consider a non-scientific issue is
the question of reality. “Do photons really exist?” I heard recently this question
argued at a colloquium at Harvard University, during which Nobel prize winners
couldn’t agree!8 At best, we can say that the photon is a conceptual tool that is
represented mathematically in physical laws that are mapped onto observations.
Interestingly: While physicists might debate and disagree about the issues of truth,
fact, and reality, these disagreements don’t seem to affect their ability to conduct the
discipline of physics.

A Final Remark

Let us recall the opening chapter of this book, wherein we exhibited a graph of a
wave for a piece of music. It can be a joy to contemplate that this curve has all the
content that maps onto our incredibly rich, sensual, and emotional experience when
listening to the sound associated with the wave pattern. The graph maps onto a sound
wave that ultimately produces nerve impulses that are processed in our programmed
brains so as to produce our musical experience.

8I ought to be specific: While Max Planck based his theory of Black Body radiation on the
assumption that electromagnetic radiation is absorbed and/or emitted by atoms in discrete units,
he didn’t believe that the radiation itself was quantized. In 1905, Einstein produced a theory of
the so-called photoelectric effect, which involves electromagnetic radiation knocking electrons
out of a metal. Einstein’s theory assumes that discrete units of radiation collide with the electrons.
As a result it has been commonly understood that this experiment along with Einstein’s theory
provide proof as to the photon’s existence. Someone in the Harvard audience asked whether the
photoelectric effect does indeed prove the photon’s existence. The vote was overwhelmingly in
the negative, but not unanimously. Interestingly, no one who voted in the negative proposed an
experiment that does prove its existence. Another example of existence questions has to do with
atoms. Planck rejected their existence until as late as the early 1900’s. Brownian motion (the motion
of micron sized particles in a water suspension, due to collisions of water molecules with the
particle) is given credit for proving their existence.
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