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Introduction

Light and Sound

Through light and sound we perceive the world. We have perfected several
ways of communicating with each other, and most of these use either light or
sound, or both. The highest form of communication is art, and most of the arts
use light and/or sound as their expression medium. The visual arts use light,
so we can see the works of art; music uses sound so we can hear it; and ballet,
movies, and music videos with computer graphics use both.

A deep yet accessible analysis of the physics of light and sound, and how
our eyes and ears detect them, is not only intellectually enjoyable, but also
useful to understand and interpret the world in which we live, all the pheno-
mena that take place around us, and how we perceive them—in short, how we
interface with our planet, its inhabitants, and their creations. Understanding
the physics of light and sound may also increase the appreciation for works
of art and stimulate the artists among the readers to deepen their knowledge
of their media, of how people interface with them, and perhaps inspire new
ideas.

Deriving its name from phusis, the Greek for “nature,” physics is the
science that studies naturally occurring phenomena concerning energy or
matter. If we can understand a natural phenomenon, then we have contributed
to mankind’s general knowledge, but often we can also harness it and use it
to develop a better life for ourselves and all others on this planet. We think
this exciting concept can be exported to the arts and stimulate art productions
through the understanding of the physical phenomena underlying them. This
very thought motivates our desire to teach physics to artists and humanists

xi
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and to communicate the physics concepts in simple terms to a more general
audience.

Both sound and light are wave phenonema. These are different kinds of
waves—mechanical waves in sound and electromagnetic waves in light—but
they both oscillate like the surface of a water pond after a stone has been
thrown into it. Newton first coined the word spectrum of visible light, and
then subdivided it into seven colors. Why seven? This choice was arbitrary,
but he chose seven by analogy with the seven notes of the musical scale. We
now know that the normal human eye can distinguish almost a million colors!
For reasons that we will explain later, we will, however, subdivide the visible
spectrum into three colors only: red, green, and blue.

Have you ever wondered why the human eye is sensitive to the specific
radiation called “light”? Although the sun emits radiation, which, after filte-
ring through the atmosphere, comprises the visible range, there is also a lot of
infrared and ultraviolet light that reaches Earth’s surface. Why don’t we see
in those ranges as well? Radiation in the visible range has the most effective
energy to interact with the objects of the world. It therefore best informs us on
the structure and behavior of objects around us.

The measurable electromagnetic spectrum extends from high-energy
gamma rays to low-frequency radio waves. This covers about 30 orders of
magnitude in frequency (or energy, or wavelength). From the beginning to the
end of what we call visible range (violet to red), the frequency varies by a mere
factor of 2. In music, the frequency doubles in one octave. In the measurable
electromagnetic spectrum the frequency doubles 100 times (2100 � 1030).
Poetically put, we can only “see one octave” on an idealized electromag-
netic piano keyboard of 100 octaves! Yet so much happens in this narrow
region because radiation of these energies strongly interacting with electrons
generates nonflat, interesting absorption spectra, which in turn generate the
millions of colors to which we are sensitive.

Compared to light, we hear as sound a much larger region of the usable
frequencies. The frequency range for audible sound is 20−20,000 oscilla-
tions per second or 20−20,000 Hz. Higher frequencies, or ultrasounds, are
used for medical imaging (10 MHz) and for communication by dolphins (up
to 170 kHz), whales (up to 200 kHz), and bats (up to 120 kHz). Lower fre-
quencies, or infrasounds, are produced by earthquakes, avalanches, volcanoes,
nuclear tests, and even elephants (14 Hz)—for communicating with other
elephants within a 10 km distance.

The color and sound we perceive do not depend only on the physical,
measurable stimuli, but also on the physiological and psychological response
of our eyes, ears, and brain to the stimuli. Color and sound, therefore, are best
described by psycho-physical parameters. These are, as we will describe in
detail later, hue, saturation, and brightness for color, and pitch, loudness, and
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The bedroom, 1888 (oil on canvas) by Gogh, Vincent van (1853–90) c© Van Gogh Museum,
Amsterdam, The Netherlands/The Bridgeman Art Library Nationality/copyright status:
Dutch/out of copyright. Ursus Wehrli, Tidying up Van Gogh’s Bedroom at Arles. Copyright
c© Ursus Wehrli. From: Ursus Wehrli, Kunst aufräumen. Copyright c© 2002 KEIN & ABER
AG, Zürich.

timbre for sound. A trombone and a viola can immediately be distinguished by
the listener even if they play the exact same tone. The attribute distinguishing
them is called the timbre or, by another analogy with light, “tone color.”

The goal of this book is not to tidy up art, rationalize it, and explain it
in scientific terms. Other excellent authors did that, as shown in the figures
above. Our goal is to add another component—physics—to the enjoyment of
art. Understanding the form and function of musical instruments adds to the
music. Similarly, understanding color, color vision, and color mixing can only
expand the palette of visual artists and the intellectual enjoyment of all people
looking at their art.

Both authors collaborated on all parts of the book, however, Pupa Gilbert
takes primary responsibility for the part on Light, and Willy Haeberli for that
on Sound. We wish you an enjoyable read!
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� Chapter 1

Light and Light Waves

We all have experience with light and its colors, variations in intensity,
reflection, refraction, focusing, and light’s characteristic of traveling along a
straight line in a homogenous medium. We have, however, no intuitive feeling
for the physical nature of light, what it is made of, and how it works. In this
chapter we discuss the dual nature of light—how it behaves as both waves and
particles—and we will also discuss the electromagnetic spectrum, the speed
of light in different media, and polarization.

Until the 1600s everyone thought light was made up of particles. Then, in
the 1600s, competing theories of light were proposed by Christiaan Huygens
who maintained that light was waves, and Isaac Newton, who insisted it was
particles. The debate continued, until finally in the 1900s it was agreed that
the particles composing light—photons—sometimes behave more as particles,
other times more as waves. They, however, are always both particles and waves
at the same time. This is termed the dual nature of light. Several phenomena
can be explained considering light as waves, while others are better explained
considering light as particles.1

If you’ve ever stood in shallow sea water, you probably noticed that you
could not stop the waves with your body. The waves just go around you.
This phenomenon is called diffraction, and it lets waves go around obstacles

1Light behaves as waves in all experiments involving diffraction, interference, reflection, and
refraction. It behave as particles in Einstein’s photoelectric effect, Planck’s thermal radiation,
and Compton’s scattering.

1
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FIGURE 1.1 �
Schematic representation of the
waves on water surface, seen from
above. Red lines indicate crests,
black lines troughs. A plane wave
is propagating up from the bottom
of the schematic. When it reaches
a wall with an aperture, it propa-
gates as a circular wave, centered
at the aperture.

almost undisturbed. Waves also go through a small opening and seem to
diverge from there, as shown in Figure 1.1. Also, when the wakes from
two boats combine, standing waves may form. On the water surface, where
both wake waves have a crest, a stationary double-height crest results, but
if both have troughs, there is a stationary doubly deep trough. In places
where one wake wave has a crest and the other has a trough, however, the
water surface is flat, and no wave is present. This phenomenon is called
interference. Constructive interference generates doubly intense crests or
troughs; destructive interference cancels a trough with a crest. If you now
consider two slits, producing two sets of circular waves, you will see a sim-
ilar interference effect. In Figure 1.2, where two black (troughs) or two red
(crests) wave lines intersect, there is constructive interference (solid dots),
and where one red and one black line intersect, the interference is destructive
(open dots).

In a famous experiment done by Thomas Young in 1803, a very similar
interference phenomenon takes place, using light instead of waves on the sur-
face of water and two light beams. Young’s experiments proved for the first
time that light is composed of waves. In his experiment, sunlight was reflected
by a mirror and then filtered through a red filter, transmitted through a pinhole,
and projected into a darkened room. At this point the red light beam was split
into two light beams by a card, one-thirtieth of an inch in thickness, held
into the beam edgewise as shown in Figure 1.3. The two beams interfered
constructively and destructively, as in Figure 1.2, and generated the pattern
shown in Figure 1.3.

Often this experiment is thought to have been done by Young using two
slits. That version of the same experiment, however, was not done until much
later. The experiment of Figure 1.3 can easily be reproduced by the reader
using a laser pointer as the illuminating source, or sunlight if the sun is shining,
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FIGURE 1.2 � Schematic representation of the same waves going through two apertures
and interfering. Where two red lines cross, a crest of double height is formed, while at black
line intersections, troughs of double depth are formed by constructive interference (solid
dots). Where a black line crosses a red line, destructive interference makes the waves cancel
each other, and the water surface is flat (open dots).

FIGURE 1.3 � Young’s experiment demonstrating the wave nature of light. Left:
A beam of sun light filtered through a red filter (not shown) is made to pass through a
pinhole. A playing card is held edgewise, so the red beam is split into two beams, which
interfere after the card to create the pattern on the right.

and a darkened room. It is important to use a colored filter in the latter case;
light of only one color (wavelength) must be used.

There is no conceivable way that would make particles accumulate more
in certain spots and less in others to generate the interference pattern of
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Figure 1.3. Young’s experiment, therefore, proved for the first time that light
indeed behaves as waves.

In this and all other experiments in which light is better interpreted
as waves, there is a similarity between light and the crests and troughs
of waves on the surface of water or waves traveling along strings. In
light, what oscillates are the electric and magnetic fields. They both oscil-
late in the plane perpendicular to the travel direction. We all have some
familiarity with these fields. The magnetic field is what makes a magnet
attract a piece of iron, and the electric field is responsible for the attrac-
tion of small pieces of paper to a comb that has been rubbed on wool
(or dry hair).

As these fields oscillate in light waves, there is an alternation of places with
a strong upward electric field, a strong downward field, and an electric field of
zero. The pattern is similar to the one we see for waves on water: Light moves
with a velocity of propagation v, and, like all other waves, it has an amplitude,
a frequency, and a wavelength. Figure 1.4 graphically shows these quantities
in a wave.

The wavelength λ varies for different colors. For example, blue light has a
shorter wavelength than red light, as shown in Figure 1.5.

amplitude
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wavelength (λ)
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(frequency is number of
oscillations per second)
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FIGURE 1.4 � Light wave oscillating in space as it travels. The half-height is
called amplitude, the distance between subsequent crests is the wavelength indicated
by the Greek letter λ (lambda), and the frequency is the number of oscillations in
1 second.
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space

FIGURE 1.5 �
Two light waves oscillating
as they travel. The amplitude
is the same for both waves,
while the wavelength for
blue light is shorter than for
red light.

1.1 Speed of Light

The velocity of propagation of light depends on the medium through which
it travels. In vacuum, and to a good approximation in air, the speed of light
is 300,000,000 m/sec (or 3×108 m/s). This is a very considerable speed. By
comparison, a fast car travels at 30 m/s, sound travels at 300 m/s, and a rocket
leaving earth travels at only 10,000 m/s. The speed of light in vacuum is usu-
ally represented by the letter c (from the Latin word celeritas), so we write
c � 3×10 8m /s.

In other transparent media, such as water, glass, and plexiglass, the speed
(represented as ν) of light is smaller than its speed in vacuum c. The actual
value of ν depends on the medium. The velocity ν of light in a medium
depends on the index of refraction n of the medium and can be found using
the following equation:

ν � c

n

The denser the medium, the larger its index of refraction and the slower
light travels through it. For example: the index of refraction of plexiglass is
nplexiglass � 1.5, so the velocity of light in plexiglass is

ν � c

n
� 3 × 108

1.5
� 2 × 108 m/s

The index of refraction of vacuum is nvacuum � 1, the smallest index
of refraction that exists. Therefore, light travels fastest in vacuum. Here is
an interesting effect: Imagine a transparent object with n > 1 surrounded by
vacuum. When light traveling in vacuum traverses an object made of a trans-
parent medium, it slows down, and then it instantaneously accelerates again
when exiting the medium, without changing its energy.
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1.2 Electromagnetic Spectrum

Electromagnetic waves can have a large range of frequencies or wavelengths.
What we call light is the narrow range of wavelengths that can be detected by
our eye: 400 nm to 700 nm (1 nm = one nanometer = 1×10−9m). This range
of wavelengths is called visible range.

Electromagnetic waves with large wavelengths (λ � 300 m) are called
radio waves and are received by radios. Waves with very short wavelengths
are called ultraviolet light, or if shorter still are called x-rays and gamma-rays.
Figure 1.6 shows energy, frequency, wavelength, and the common names for
the entire electromagnetic spectrum.

Table 1.1 shows the wavelengths corresponding to the seven colors com-
monly associated with the visible range. These are the colors originally
identified by Newton, as dispersed by a prism. There are millions of colors
in the spectrum, not only seven, but Newton, by analogy with the seven notes
of music, arbitrarily subdivided the spectrum into these seven colors. In spo-
ken language these are the color names most commonly used; therefore, we
think it’s useful to identify them here by their wavelength.

This could therefore be considered a “spoken language spectrum.” In real-
ity the spectrum is a continuum, and a range of wavelengths is associated with
each of these colors and a myriad of visibly distinct colors. Some of these—for
example, cyan (470–500 nm)—do not normally appear in the “spoken lan-
guage spectrum,” but they are very evident when one looks at the continuum
spectrum dispersed by a prism.

wavelength (λ)

Wavelength (m)

Frequency (Hz)

Energy (eV)

energy & frequency (ν)

Gamma rays X-rays UV VIS Infrared Microwaves Radio waves

10-11

1020

106 105 104 103 102101 100 10-1 10-2 10-3 10-410-5 10-6 10-7 10-810-910-1010-11

10191018 101710161015 1014 1013 101210111010 109 108 107 106 105 104103

10-1010-910-8 10-710-7 10-6 10-510-5 10-410-410-310-3 10-2 10-1 10101 102102 103103 104104 105105 106106

EM spectrum

FIGURE 1.6 � The electromagnetic spectrum, expressed in wavelengths, frequencies
and energies. Notice how narrow the visible range (VIS) is, compared to the full spectrum.
The highest energy gamma rays we observe in the universe are 1018 eV.
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TABLE 1.1 �
Color Name Wavelength Range

violet 400–430 nm
blue 430–480 nm
cyan 480–500 nm
green 500–570 nm
yellow 570–585 nm
orange 585–620 nm
red 620–700 nm

1.3 Polarization

Let us now examine one more phenomenon that can only be explained by
taking into account the wave nature of light. When light propagates in one
direction, the electric and magnetic fields oscillate in a second and third
direction, respectively, perpendicular to each other. The plane in which the
electric field oscillates, which also contains the direction of propagation,
is called the plane of polarization (see Figures 1.7 and 1.8). The latter in
particular will clarify how the direction of propagation is contained in the
plane of polarization. For a simple example, imagine a rope fixed at one end
and being moved at the other end. If the free end of the string is moved up
and down periodically, the crests and hollows that form on the string are
vertically above and below the position of the undisturbed string. In this case
we can say that the waves on the string are vertically polarized. If the end
of the string is moved horizontally, left to right, the waves are horizontally
polarized.

To produce an electromagnetic wave, an electric charge is moved up and
down on a conductor (antenna). This generates a vertically polarized electro-
magnetic wave, irradiating in all horizontal directions away from the antenna
transmitting the signal. This is easily done by making an electric current flow
back and forth along a vertical wire.

Light from the sun or a light-bulb, however, is composed of many waves
with different, random planes of polarization. This is called unpolarized light.

Sunlight is unpolarized. It contains electric fields oscillating in all direc-
tions. When unpolarized light is reflected by a horizontal surface (such as a
mirror, water surface, car top, road, etc.), the reflected light is horizontally
polarized,2 as shown in Figure 1.7.

2At a specific incidence and reflection angle, called the Brewster’s angle, 100% of the
reflected light is polarized. In other words, if light strikes the surface of a horizontal medium
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reflected light is polarized

E field

polarized light

water or glass

unpolarized light

FIGURE 1.7 �
Unpolarized light has the ele-
ctric field oscillating in all
directions perpendicular to
the direction of propagation.
When unpolarized light is ref-
lected by a horizontal surface
of water or glass it becomes
polarized, horizontally pola-
rized.

Sunglasses with polarizing lenses

light waves with
E vibrating vertically 

light waves with E 
vibrating horizontally 

FIGURE 1.8 � Polaroid filters in sunglasses are always mounted so that horizontally
polarized light, that is, light with the electric field E oscillating horizontally, shown in red,
reflected by horizontal surfaces (water, car tops, floors, roads etc.), is absorbed, and light
polarized in all other directions, or unpolarized is transmitted. Polaroid sunglasses do not
stop the glare from windows, as this is vertically polarized, shown in blue.

Polaroid filters absorb light polarized in one specific direction and trans-
mit the rest. These filters are prepared by depositing iodine needle crystals
onto a polymer surface, which is then stretched so that the iodine needles
orient themselves along the direction of stretching, causing them to absorb
light polarized in that direction only.

Sunglasses with polarized lenses have the iodine needles oriented hori-
zontally, and they absorb horizontally polarized light (Figure 1.8). Vertically

at a Brewster’s angle, the reflected light is completely horizontally polarized. For water the
Brewster’s angle is 53◦, for glass it is 56◦, and for diamond 67.5◦. At incidence angles that
are larger or smaller, part of the light is also vertically polarized, so the degree of horizontal
polarization is less than 100%.
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FIGURE 1.9 � Photographs without (left) and with (right) polarizer filter of the same
clouds. Notice how the contrast cloud-sky is enhanced by the polarizer. Photographs are
courtesy of Tiziana Parasassi.

polarized light is still transmitted. If you combine two Polaroid filters at 90◦
from each other, no light is transmitted.

A polarizer filter in front of a camera lens darkens the clouds in the sky but
darkens the sky even more. This happens because light scattered by smaller
particles is more polarized than light scattered by larger particles. The air
molecules in the sky are smaller than the ice crystals and water droplets in
the clouds. Therefore, there is more polarized light from the sky than from
the clouds. Correspondingly, the polarizer filter removes more light from the
sky, and the contrast between the clouds and the sky is enhanced, as shown in
Figure 1.9.



� Chapter 2

Reflection and
Refraction

2.1 Specular Reflection of Light

Imagine a mirror surface that is perfectly flat, polished, and reflecting. Now
imagine a line perpendicular to the mirror surface, called the normal. The
normal forms angles of 90◦ from the mirror surface. When light illuminates
any mirror like the one you imagined, it is reflected.

In Figure 2.1, the ray of light coming from the left is incident (or “incom-
ing”) on the mirror surface. The angle marked i is called the angle of
incidence, and it is measured from the normal (in the particular diagram of
Figure 2.1, i = 45◦). The incident ray is reflected by the mirror into another
ray. This reflected ray of light forms an angle of reflection, marked r,with
respect to the normal. The angle of incidence is equal to the angle of
reflection, or

i = r.

This is called the law of specular reflection, from the Latin word
speculum, meaning “mirror.” The law of specular reflection is valid for
any value of the angle of incidence i, not only for the 45◦ angle shown in
Figure 2.1. This law is all you really need to know about specular reflection.

All polished and smooth surfaces reflect light as a mirror. Usually mirrors
are made by combining a glass pane, which can be made very flat and smooth,
with a reflective metal layer coated on its back.

All materials reflect light, at least to some extent. This is true even for the
most transparent ones, such as uncoated glass. You can see this in everyday

10



Section 2.1 Specular Reflection of Light 11

normal

i r

i = angle of incidence
r = angle of reflection

Specular Ref lection: i � r

FIGURE 2.1 � A ray of light is reflected by a mirror so that the angles of incidence
and reflection are equal (i = r).

life. When you are standing outside in daylight and look at a building, all
the windows reflect the outside world, including the sky, other buildings, and
trees. Why does this happen?

This happens because the windowpanes are very flat and slightly reflect-
ing. Since there is more light outside than inside the building, the windows
reflect the outside world. The same phenomenon happens at night in the oppo-
site direction. When there is artificial illumination inside (the lights are on)
and it is dark outside, people from outside can see the inside through the
windowpanes very well, but from the inside, people can’t see out. If you are
standing inside, you can only see the reflection of yourself and the rest of
the room. If you want to see outside, you must turn the inside lights off. The
general rule is that you can see from darker to brighter through a window
but not vice versa. Remember that this is because of reflection. You only see
reflection if you stand on the bright side.

Another observation is that the reflectivity of polished surfaces is greater at
grazing incidence—that is, when the angle of incidence (as well as the angle
of reflection) is close to 90◦.

Most objects around us are not perfectly polished, so they are not good
specular reflectors. When these objects are illuminated, they do not reflect
light according to the law of reflection. Instead, nonpolished objects scat-
ter (or diffusely reflect) light in all directions around them. This means that
you do not have to be in a specific position or at a specific angle to see an
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illuminated object. You can be at any angle from it and still see it. This is quite
convenient!

Every nonpolished, illuminated object can be considered a source of
light rays. The sun, incandescent lightbulbs, neon lights, fluorescent lights,
or computer monitors all emit light, but not very many other objects do.
Illuminated nonpolished objects, however, can be represented as sources of
light, since they scatter light in all directions. From the geometric point of
view, objects can be schematically represented as centers of diverging rays—
that is, sources of light rays. Imagine for example a red laser pointer beam
illuminating a spot on a sheet of paper. The red dot on paper can be seen
from everywhere else in the room, not only at a specific angle, as it would
on a mirror. Therefore, light rays diverge from the red dot on paper as if
that dot was emitting light. Clearly the paper does not emit light but only
scatters it, as most other objects surrounding us do. The dot on the paper,
however, can be considered as a source of light rays, propagating in all
directions.

mirror

The image is virtual, not real

O = object
I = image

O

90˚

h

h

I

FIGURE 2.2 � Reflection from a mirror.

Imagine now that an
object is in front of a mir-
ror. The diverging rays of
light that originate from
the object, marked O in
Figure 2.2, are reflected by
the mirror. The reflected
rays of light behave as if
they originated from the
point I . This point is call-
ed the virtual image of the
object O.

Several observations can
be made from this figure:

• Reflected rays seem to
come from point I .

• Point I is located
behind the plane of
the mirror, at a dis-
tance h, equal to the
distance between O
and the mirror.

• Points O and I are on a line perpendicular to the plane of the mirror.
• The mirror does not need to extend to the red line on the left. A smaller

mirror is sufficient to produce an image of object O.
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To find the image position of any object, draw the normal from the object
to the mirror and then measure the distance between the object and the mirror.
The image I is located at the same distance from the mirror as the object, but
it is on the opposite side. This is why it is called a virtual image. In other
words, there are no real rays of light that emerge from point I. As you can
see in Figure 2.2, only the artificial extensions of the reflected rays (marked
as dashed lines) originate from I.

Any ray from O that strikes the mirror is reflected, and the artificial
extensions of these reflected rays always seem to come from point I . If you
were to remove the mirror and place point object O at point I , it would look
identical to the reflected point O. The eye cannot tell the difference between
rays coming from a virtual image I and a real object at the same position.

When you look at yourself in the mirror, what you see is a virtual image
of yourself. This virtual image is behind the mirror. If a friend were to look
behind the mirror, however, she would not find an image of you. The image is
virtual!

You can only see a virtual image if you are on the same side of the mirror
as the object.

Another important observation is that vertically mounted mirrors appear
to invert left and right, but not top and bottom. Both these observations are
actually incorrect. The vertical mirror does not invert left to right but only front
and back. In the mirror on the wall you see the top of your face on the top and
your right ear on the right. Neither up-down nor left-right are reversed. The
only inverted direction is front and back. Other people facing you, however,
always see your right ear on their left, so they see you differently from the way
you see yourself in the mirror. This is why everybody thinks that left and right
are inverted in a vertical mirror. It’s just the habit we all have of seeing each
other frontally.

Why is gold yellow? Why are silver and aluminum gray? Why is copper red?
In Figure 2.3 we report the reflectivity curves for these metals. As mentioned
in Chapter 1, the wavelengths between 400 nm and 700 nm are the visible
range of light. Below 400 nm is ultraviolet light, and above 700 nm is infrared
light. We do not see these types of light. From the reflectivity curves, you
can see that gold does not reflect blue. Rather, it absorbs blue and this causes
it to appear yellow. Copper absorbs both blue and green, so it looks orange-
red. Aluminum and silver have fairly flat reflectivity curves along the entire
visible range, so they appear gray. In other words, aluminum and silver reflect
all the colors of light illuminating them and absorb none. This is why silver
and aluminum are the best materials for mirrors. In the old days, silver was
the only material used to make mirrors, so few mirrors were produced, and
they were very expensive. Today, technology is available that allows us to
deposit thin, smooth layers of aluminum on glass. Mirrors made through this
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FIGURE 2.3 � Reflectivity curves of several metals.

process are much more affordable, so now mirrors are much more widely
available. Can you imagine life without a mirror? If not, you owe a thanks to
physics!

2.2 Refraction of Light

Light travels along straight lines in a uniform medium. If a ray of light passes
from one medium to another (from air into water or glass, for instance), in a
direction that is normal, or perpendicular, to the interface, the ray will travel
in a straight line. However, if a ray passes from one medium to another in a
direction different from the normal, the direction of the light ray changes in
the second medium—the ray is kinked. This abrupt deflection, or kinking, of
light rays at the interface between two media is called refraction.

The behavior of light in a medium depends on the index of refraction of
the medium, n. The index of refraction of a medium determines the speed of
light in that medium and the angle of refraction. The index of refraction n is
an intrinsic property of each material and depends on its density. In general,
the denser the medium, the higher the index of refraction n. Vacuum, and
to a good approximation air, has an index of refraction n = 1. For water,
n = 1.33, and for glass, n = 1.52. The index of refraction n is a dimension-
less number—in other words, it has no units. In most media, n is a number
between 1.0 and 2.5. Table 2.1 presents the indices of refraction of common
materials.
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TABLE 2.1 �
Material Index of Refraction n

vacuum 1.00000
air at 50◦C 1.00024
air at 0◦C 1.00029
liquid water (20◦C) 1.33
ice 1.31
ethanol 1.36
plexiglass 1.50
glass (crown) 1.52
glass (flint) 1.89
zircon 1.97
cubic zirconia 2.16
diamond 2.42
gallium phosphide 3.50
gallium arsenide 3.93
silicon 4.01

In the real world, things do not work out so simply. There is an
additional complication: The index of refraction is not constant for each
material but actually depends slightly on the wavelength of light. This
phenomenon is called dispersion. For example, the index of refraction of
borosilicate crown glass (known also as BK7) for short 400 nm wavelength
(violet) is n400 = 1.53 and for long 700 nm wavelength (red) is n700 = 1.51.

air

water

normal

interface

FIGURE 2.4 � Light traveling from air to water.
When it traverses the water surface, the light ray is
kinked toward the normal.

This is may seem a small
difference, but as we will see
later on, it makes it possi-
ble to separate the spectral
colors using a crown glass
prism.

Let us consider a light
ray crossing the interface
between a medium with
an index of refraction n =
1.0 and a second medium
with an index of refrac-
tion n > 1. This is depicted
in Figure 2.4. Notice in
Figure 2.4 that a ray of light
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FIGURE 2.5 � Definitions of the angles of incidence and refraction.

is traveling in air and then reaches the interface between air and water. As the
ray crosses the interface and enters the water, it is kinked toward the normal.
Whenever light travels from a less dense to a denser medium, it kinks toward
the normal, as shown in both Figures 2.4 and 2.5. When light travels in the
reverse direction from a denser to a less dense medium it kinks away from the
normal.

Let us compare the angle that a ray forms with the normal at the point of
incidence (θa, the angle in air) and the corresponding angle in water (θm),
shown in Figure 2.5. The behavior of the ray as it is refracted at the interface
can be described as follows:

1. The angle in air (θa) and the angle in the medium are on opposite sides
of the normal (Figure 2.5).

2. The angle in air is always larger than the angle in the other medium
because air is less dense than any other medium (e.g., glass, water,
plexiglass, acrylic, etc.).

3. The angles θa and θm do not change if the light ray goes from
air to the medium or from the medium to air. The ray of light is
reversible. This is always true. Light rays are always reversible. We
will make great use of this characteristic of all light rays, here and
later.

4. The angles θa and θm are related to each other in a very accurate and
quantitative law—called Snell’s law.

SNELL’S LAW
sin θa

sin θm
= nm

na
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air

normal

M

A

A
M

Refraction: Simplified Snell
,
s Law

water

FIGURE 2.6 � A visual representation of Snell’s law, in which A is the sine of θa and M
is the sine of θm. These correspond to the blue and green horizontal lines, respectively.

2.3 Total Internal Reflection

Any angle in air θa corresponds to a particular angle θm in the medium. For
example, for rays traveling from air into water (with an index of refraction
n = 1.33), Snell’s law gives the results shown in Table 2.2.

Table 2.2 goes up to 90◦ only. This is because the angle in air, θa, can never
be greater than 90◦. If it were greater, the ray would no longer be coming from
air but from under the surface of water (below the interface).

Table 2.2 can be also used for a ray of light traveling in the opposite direc-
tion, from water into air. A diver with a waterproof flashlight could experiment
with rays of light and verify for us that the angles reported in the table are still
accurate when going from water to air.
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TABLE 2.2 �
Angle in Air θa Angle in Water

θm = sin−1(θa/n)

0◦ 0◦
10◦ 7.5◦
20◦ 14.9◦
30◦ 22.1◦
40◦ 28.9◦
50◦ 35.2◦
60◦ 40.6◦
70◦ 44.9◦
80◦ 47.8◦
90◦ 48.7◦

50°

35.2°

Remember, rays of light can always be inverted. All optics formulas and
all drawings, including Snell’s law and the table of values for θa and θm,
do apply to inverted rays. When using inverted rays, the only difference for
Snell’s law is that you start from the angle in water and calculate the angle
in air. Looking at the table on the previous page, you would start from the
right column and read the corresponding angles on the left. There is one thing
you must watch out for when using inverted rays: Since nwater > nair, the
angles in water θm do not go all the way to 90◦. Notice: the table does not
tell us what happens with a ray with θm = 60◦. What happens is simply the
following:

θm = 49◦ corresponds to θa = 90◦
θm = 60◦ corresponds to θa > 90◦

This is impossible because this ray would not really be in air. The ray is
not refracted into air but reflected at the interface of water-air back into
water!

Above a certain angle, called the critical angle θc or, more precisely,
the critical angle of total internal reflection, all light is reflected from the
interface. No light is refracted. This occurs only when the ray of light passes
from a denser to a less dense medium—that is, from higher to lower index of
refraction. For example, this can happen when a ray is passing from water to
air, as just described, but not from air to water.

The critical angle for the water/air interface is 49◦. For glass/air it is 41◦
and for diamond it is 24.4◦.
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60°

FIGURE 2.7 � A man under water can project light into air from his flashlight,
only as long as the incidence angle is less than 49◦, the critical angle of total internal
reflection for the water/air interface.

This means that if the angle of incidence is greater than the critical angle,
θm>θc, no light is refracted. In Figure 2.7, since the angle of incidence
is 60◦, and it is greater than the critical angle θc = 49◦, the light is totally
reflected.

It is easy to calculate the critical angle. At the critical angle, the angle in
air θa = 90◦. Since we know that the index of refraction n for air = 1 and that
sin 90◦ = 1, Snell’s Law appears as

nwater = 1
sin θc(water)

Hence,

sin θc (water) = 1
nwater

from which we can calculate.

θc (water) = sin−1(
1

nwater
) = sin−1(0.75) = 49◦.

With the aid of the preceding information, we can anticipate the behav-
ior of a light ray as it crosses a transparent medium. This allows us to
make drawings of what will happen without actually doing experiments!
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Figures 2.8, 2.9, 2.10, and 2.11 show examples of refraction in some common
situations. In all of these examples, for simplicity’s sake, we only show the
rays coming from one point of the object. Be aware that there are similar rays
coming from each point on the surface of the object. You can imagine what
these rays would look like.

apparent length

real length

FIGURE 2.8 � Because of refraction, a vertical stick under water appears to be
shorter. If the stick were not vertical, it would also appear to be bent at the air-water
interface. The bottom of the stick always appears closer to the surface than it really is.
The photograph shows two identical bowls (approximately semispherical) and two
turquoise glass rods, which are vertical and identically positioned in the two bowls. The
left bowl is filled with water, and the right bowl is empty. Notice the striking difference
in apparent length: The underwater rod appears shortened by refraction.

FIGURE 2.9 �
A fish under water seen
from the top, appears to be
closer to the surface than
it really is. The apparent
size of the fish, however,
does not change.



Section 2.4 Reflection and Refraction in Diamonds 21

real position

apparent position

FIGURE 2.10 � A fish seen at an angle (not from the top) appears to be closer to the
surface and more vertically compressed (narrower) than it really is. Experienced spear
fisherfolk keep refraction into account when they aim and launch their spear.

magnified cross-section
of the window pane

FIGURE 2.11 � Here a ray crosses a glass pane with parallel sides. The ray coming
from the right is kinked toward the normal (dashed line) when entering the glass and away
from the normal when exiting on the left. The incoming and outgoing rays are parallel to
each other. Since the windowpane is thin, there is almost no shift in the image position.
A thicker block of glass or plexiglass shifts light rays much more than a windowpane does.

2.4 Reflection and Refraction in Diamonds

A brilliant cut diamond sparkles because of skillful use of refraction and
total internal reflection. Let us look at the detailed path of some rays of
light. Consider two rays of light (1 and 2 in Figure 2.12) passing the
air-diamond interface. Ray 1 is kinked toward the normal (red), because
a diamond is denser than air. Ray 2 enters perpendicular to the surface of
the diamond (along the normal) and therefore does not kink. Instead, it goes
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1
2

FIGURE 2.12 � Rays 1 and 2 are
totally internally reflected because
they reach an inner diamond sur-
face at angles greater than the criti-
cal angle, which for diamond is very
small: only 24.4◦.

straight through the surface. Both rays
reach the inner surface at the arrow
heads and from there undergo total
internal reflection. The angles that fall
within the critical angle are shown by
the blue cones in Figure 2.12. Both
rays 1 and 2 are outside these blue con-
es and are thus both at angles larger than
the critical angle. Both rays are, there-
fore, totally internally reflected. The
critical angle is calculated, as before,
using Snell’s Law. The index of refrac-
tion for diamond is ndiamond = 2.42.

Snell’s law for diamond is

sin θair

sin θdiamond
= ndiamond

nair

Total internal reflection in diamond takes place when θair = 90◦, which
corresponds to

sin θdiamond = nair

ndiamond
= 1

2.42
= 0.41 and sin−1 0.41 = 24.4◦

Whenever θdiamond ≥ 24.4◦, light is completely reflected within the dia-
mond and no light is refracted outside.

1
2

FIGURE 2.13 � Rays 1 and 2 again.

After rays 1 and 2 are totally inter-
nally reflected, the two rays reach the
other side of the diamond bottom
surface. Here, they are again both
traveling at angles greater than the crit-
ical angle (outside the blue cones), as
shown in Figure 2.13. Therefore, they
are completely reflected toward the top
of the diamond.

Ray 1 is reflected in a vertical
direction and reaches the top surface
perpendicularly. Therefore, it goes
straight through the surface. Ray 2
reaches the surface at an angle. This
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time, the incidence angle is within the blue cone, so the ray is refracted
outside the diamond. Since the index of refraction n is slightly different for
each light wavelength, each color of the spectrum is refracted at a slightly
different angle as shown in Figure 2.14. Violet rays are kinked more than red
rays. In physics, this phenomenon is called dispersion of light. In the jewel
industry, it is called the fire of a gemstone. Light dispersion will be discussed
in more detail in Chapter 6.

1
2

FIGURE 2.14 � Light of different col-
ors is dispersed at different angles, gener-
ating the “fire” in a diamond.

If the diamond is cut too shallow
or too deep (as shown in Figure 2.15),
light leaks out through the bottom
facets, and the diamond appears dark
and dull. The cones defining the crit-
ical angle are again shown in blue.
Notice that where the light leaks out,
the rays are traveling at an angle
that falls within the blue cones. If
light is able to “escape” in this
way, a diamond does not appear as
sparkly.

For the diamond to sparkle, it must
be cut at very accurate proportions—
for instance, the “brilliant cut” and

1 2 1 2

FIGURE 2.15 � Two diamonds, one cut too shallow and one too deep, are shown here.
The cones defining the critical angles are again shown in blue. Notice where the light leaks
out, the rays are traveling at an angle that falls within the blue cones.
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proportions of a brilliant cut diamond

43.1%

34

40

100%
53%

16.2%

FIGURE 2.16 � The precise propor-
tions of the “brilliant cut” for diamonds.

its proportions, optimized to give
the greatest sparkle to a diamond,
are shown in Figures 2.16 and 2.17.

After cutting the gem, the sur-
face of the diamond facets must also
be polished. If they are not polished,
the angles of total internal reflec-
tion are not all oriented equally with
respect to the surface, as shown in
Figure 2.18. This causes most of the
light to be lost to refraction.

FIGURE 2.17 � Top view of the circular crown (top) and side view of a brilliant cut
diamond (bottom).

air

gemstone

critical angles

FIGURE 2.18 � Diamond facets must be polished or most of the light will be lost due
to refraction within the critical angle cones.
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2.5 The Rainbow

Now that we have familiarized ourselves with reflection, refraction, and dis-
persion, we can understand how rainbows form. In general, to be able to see
a rainbow in front of you, the sun must be behind you. A myriad of water
droplets, such as rain or moisture, must be present in the air for the rainbow
to appear. This is shown in Figure 2.19. Three of the droplets are magnified
there. The black lines represent light rays coming from the sun. Droplet 1
shows how the white light from the sun is refracted inside the droplet (toward
the normal) and then dispersed so that violet rays are deflected more than
red rays. All of the light rays are then partly reflected on the inner surface
of the droplet, following the law of reflection. Notice that this is not total
internal reflection! In fact, light rays are partly reflected and partly refracted
outside the droplet (away from the normal). The reflected rays then reach the
droplet surface again, and, again, they will be partly reflected (see droplet 1 in
Figure 2.19) and partly refracted outside the droplet.

Droplets 2 and 3 show the red and the violet light rays only. Hopefully
this will clarify that there are different angles and directions of refraction and
internal reflection for each color wavelength. In reality, all colors come out of
all droplets at all times, so it is incorrect to assume that 2 is a “red droplet” and

FIGURE 2.19 � How the rainbow forms. Each water droplet, schematically represented
by a sphere, is penetrated by white light, which is dispersed, then partly refracted outside
the droplet, partly intemally reflected.
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that 3 is a “violet droplet.” They only appear to have those colors to the little
man with the umbrella because these droplets are at a well-defined position in
the sky. This allows the refracted-reflected-refracted rays to reach his eyes at
the correct angle to appear red and violet, respectively. Notice how the violet
rays come out of the droplets at a shallower angle, while the red rays come
out at a steeper angle. Likewise, red always lies along the outside arches of
the rainbow, while violet is always along the inside. So droplet 2 is above
droplet 3 in Figure 2.19.

A straight line from the sun through the eye of the man with the umbrella
and continuing on marks the center of the rainbow. In this sense the man with
the umbrella carries the rainbow around with him. Sometimes on top of a
mountain or from an airplane one can see almost an entire rainbow circle.

On rare occasions double rainbows can be observed in nature. The second
rainbow always lies outside the first one and always has an inverted color
order (violet outside, red inside). The second rainbow is formed by the second
internal reflection and the fourth refraction outside of the droplet that follows.
The droplet in Figure 2.20 shows a schematic representation of the first four
refractions.

Notice that at each refraction some of the light is lost in a direction that
cannot be observed from ground. Therefore, the second rainbow is always
dimmer than the first. At this point it may be a bit difficult to imagine how
these two rainbows can form at once. Figure 2.21 shows a droplet that could
“potentially” generate both rainbows. In reality, no droplet alone can generate
either a single or a double rainbow. You have to imagine a plethora of droplets.

Those droplets that are at the correct position for an observer to see them
as red will appear red. The next ones will appear orange, the next yellow,
the next green, and so forth. Observe how the doubly reflected rays that form

FIGURE 2.20 �
The first four refractions of
dispersed rainbow colors are
shown here. The first occurs
when white light enters the
droplet, the following ones
when the dispersed colors
are refracted outside the dro-
plet. Each refraction is less
intense than the previous.
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sunlight illuminates
entire droplet hemisphere

second
rainbow

first
rainbow

FIGURE 2.21 � The origin of the first and the second rainbow. The second rainbow is
always much less intense than the first, because light from each second-rainbow droplet
has already undergone two dispersive refractions (as shown in Figure 2.20), and has lost
intensity.

the second rainbow have an inverted color order with respect to the first rain-
bow. Inside the droplet of Figure 2.21, again for simplicity’s sake, only violet
and red rays are shown. The final refracted rays (the rainbows), however, are
depicted as the seven commonly mentioned colors of the spectrum. Be aware
that this is only a simplification. There are not really only seven colors in a
rainbow but an infinite number of colors all associated with the infinite array
of continuously increasing wavelengths along the entire visible light spectrum.
In this range, the human eye can distinguish approximately one million col-
ors. Water droplets disperse all different wavelengths with continuity, along
with the seven colors that are commonly associated with a rainbow. No abrupt
separations between colors can actually be observed in the rainbow or any
other dispersed spectrum.

2.6 Questions

1. Is the image you see of yourself in the mirror real or virtual? Explain.
2. Which way is a beam of light kinked when it enters water from air?
3. When it goes from water to air?
4. For spear fishing you have to look straight down to the water. Why?

Where would the spear go, with respect to the fish, if you aimed for
the fish, looking at an angle other than 0◦ from the normal? Similarly,
explain why a person standing in water looks out of proportion to a
person outside the pool. What does the person in the water look like?
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5. If you look at yourself in the mirror, do you see yourself identically to
how other people normally see you, leaving psychology aside? Are left
and right reversed? Are up and down reversed? Why?

6. How can one observe dispersion?
7. What is dispersion?
8. Define index of refraction, Snell’s Law, and total internal reflection.
9. You stand 4 meters from the mirror. Your friend stands 2 meters from

the mirror. To you, where does the image of your friend appear to be?

10. In the Top View diagram below, you are the person with sunglasses,
looking in the mirror at the image of your friend. Carefully draw the
path of light rays from the tip of your friend’s nose to your left eye and
to your right eye. Extend the two rays that go to your eyes to illustrate
where they seem to come from.

Top view
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11. Show by rays reflected from a mirror where the mirror image of the
flower appears to be.

Top view

12. If you are 6 feet tall, how tall a mirror do you need to see yourself head to
toe? Where on the wall should the mirror be mounted? Show a diagram
to explain your answer.

13. The index of refraction of transparent acrylic is n = 1.414. What is the
critical angle for this material?

14. The index of refraction of crown glass is n = 1.52. What is the critical
angle for this material?
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Lenses

3.1 The Prism

When the surfaces of a block of glass or plexiglass are not parallel, as in a
prism, the incoming and outgoing rays of light are not parallel. In Figure 3.1,
the incoming ray is first refracted and kinked toward the first normal. Then
it is transmitted through the prism, and when it reaches the other surface, it
is refracted again, only this time away from the second normal. When light
travels through a prism, the end result is always that the ray is deflected away
from the apex of the prism.

apex

normal 2normal 1

front view of the same prism3D view of a prism

FIGURE 3.1 � Refraction by a prism.

30
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3.2 Converging and Diverging Lenses

Converging lenses are thicker in the middle than near the edges, so they
deflect light rays toward an axis. You can see this if you apply the law of
refraction to the surface where the light beam enters the glass and to the
surface where the light beam comes out of the glass to find the direction in
which light will kink with respect to the normal. You may think of a little piece
of the lens as similar to a prism, as shown in Figures 3.2 and 3.3. Figures 3.4
and 3.5 show a few light rays going trough a converging and a diverging lens,
respectively.

Figure 3.6 shows some other lens shapes. The more curved the surfaces,
the more the rays are deflected as they travel through the lens. The higher the
refractive index of the lens material, the more the rays are deflected.

region in which the rays cross

apex 1

apex 2

FIGURE 3.2 � Combination of two prisms. The top prism deflects the rays down, while
the bottom prism deflects them up. The rays that travel through equivalent sections of the
two prisms cross each other at the center, on the pink axis. But is there a transparent object
that can make all parallel rays that travel through it cross at the exact same point, no matter
where they traverse the object?

focal point

parallel rays

FIGURE 3.3 � The answer to the question in Figure 3.2 is yes! If the two surfaces of
the transparent prisms are not flat but curved along two spherical surfaces, the result is a
lens. In the diagram here, the lens is convex on both sides, so it is a converging lens. All
parallel rays coming from the left converge into a single point on the right!
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converging lens

optical axis
1 2 3

4

enlarged view of
part of the lens

FIGURE 3.4 � Notice in the enlargement that, in accordance with Snell’s Law, angle 2
is smaller than angle 1, and angle 4 is larger than angle 3.

diverging lens

optical axis

FIGURE 3.5 �
Diverging lenses are thinner in the
middle, so they deflect light rays
away from the axis.

converging lenses diverging lenses

FIGURE 3.6 � The concavity or convexity of lens surfaces is not sufficient to determine
if a lens is converging or diverging. The real distinction is the thickness at the center of the
lens compared with its edges: converging lenses are thicker in the middle, diverging lenses
are thinner in the middle.
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Eyeglasses are diverging or converging, depending on whether the person
is nearsighted or farsighted. If you wear glasses, check to see if they are thicker
or thinner at the outer edges.

3.3 Focal Length

Consider parallel light rays (for instance light rays from a light source very
far away or at infinity) falling upon a converging lens.

As shown in Figure 3.7, the rays converge at a point at a certain distance
f from the lens. This is called the focal length of the lens. Conversely, if you
place an object (a source of light) at distance f from the lens, the light rays
will pass through the lens and come out parallel to each other (light rays can
always be inverted). A strong lens is one that deflects light a lot, meaning it
has a short focal length. The focal length of camera lenses is always given
in millimeters. The most common and inexpensive 35 mm cameras (indi-
cating 35 mm film width, not 35 mm focal length!) have lenses with a focal
length of 50 mm (f = 50 mm). For eyeglasses, the dioptric power is usually
used instead of the focal length to describe the lens. The relationship between
dioptric power (measured in diopters, D) and f is simple:

Dioptric Power (D) = 1
f (m)

focal length f
parallel rays

focal point

converging lens

FIGURE 3.7 � When parallel rays are refracted by a converging lens they cross each
other in the focal point. The distance of this point from the center of the lens is called
focal length.
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The focal length f in this formula must be expressed in meters! If you
forget, it is like mislabeling a piece of mail. If you put the wrong house
number, the letter may still get to the right street but not the right house. Simi-
larly, the diopters will be off by several decimal places. In physics, that’s a big
difference!

According to the formula, a camera lens with a focal length f = 50 mm =
0.05 m has

1
0.05

= 20 D. The advantage of diopters is that if you combine

two lenses, one right next to the other, you can simply add the diopters. This
implies that for two lenses, the combined focal length is

1
f

= 1
f1

+ 1
f2

,

where f1 and f2 are the focal lengths of the two lenses.
After the parallel rays go through the diverging lens, they diverge as if

they came from the virtual image at the focal point. The effect of a diverging
lens is shown in Figure 3.8. Just like with converging lenses, the focal point
is found at a distance f , or the focal length, away from the lens. To indicate
that the (apparent) crossing point of the rays is on the same side of the lens as

diverging lens

parallel rays

focal length f

optical axis

focal point

FIGURE 3.8 � A diverging lens with parallel rays incident upon it from a faraway
object. The diverging lens makes the rays diverge, as if they were originating from the
focal point. The image of the far away object (at infinity) on the left is formed in the focal
point on the left-the same side of the lens as the object. The image is virtual, as there are
no actual rays converging at the image point. Only the artificial extension of diverging rays
(shown as dashed lines in this diagram) converge in the focal point or, more accurately,
diverge from the focal point.
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the source of light, the focal length of a diverging lens is stated as a negative
number. An important advantage of giving the focal length of a diverging
lens as a negative number is that it makes the formulas work out automati-
cally. For instance, if you combine a converging lens with 10 cm focal length
with a diverging lens of −10 cm focal length, the resulting focal length, f is
calculated from the following equation:

1
f

= 1
10

+
(

1
−10

)
= 1

10
− 1

10
= 0

f = ∞
In the system of two lenses shown in Figure 3.9, the resulting focal lens
is infinite—the incoming rays are parallel, and the outgoing rays are also
parallel. The lens combination acts like a flat windowpane! But wait—does
this really work? Yes, because when a converging lens and a diverging lens
are combined so that the convex and concave sides are stuck together, the
resulting object is indeed a parallel slab of glass, just like a windowpane!

The focal length of a lens depends on the index of refraction of the glass
and on the radius of curvature of the two faces of the lens, r1 and r2, as shown
in Figure 3.10:

1
f

= (n − 1)
[

1
r1

+ 1
r2

]

This is called the lens-maker’s formula. This formula has important conse-
quences that are worth noticing.

There are always two focal points for each lens, and they lie at a distance
f on either side of the lens.

r2r1

glass of 
refraction index n

sphere 1

sphere 2

FIGURE 3.9 � System of 2
lenses, which combined have
infinite focal length.

FIGURE 3.10 � A lens with two different radii of
curvature, as in the lens maker’s formula.
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concave surface
r is negative

FIGURE 3.11 � If the lens surface is
concave, the radius is negative.

The lens may have two different
radii of curvature, but the focal points
are always equidistant from the cen-
ter point of the lens.1 This implies that
a lens can be used from one side or
flipped and used from the other side,
and either way the image will be iden-
tical. If you wear glasses, you can try
this right now! Take your glasses off,
rotate them by 180◦ so that you can look
through the lenses and the arms extend
away from your face. Now look through
the lenses. If you rotated the glasses cor-
rectly, you should be looking with your

right eye through the right lens and with the left eye through the left lens—
but inside out. You should be able to see just as well with the lenses inverted.
Taking into account how the lenses are curved, this is really counterintuitive!
It is one of many surprising phenomena in physics.

The formula makes sense even if n = 1 (a lens made of air!), is always
zero, or f → ∞, and the rays are not deflected.

If the face of the lens is concave, r is counted negative, as shown in
Figure 3.11.

The smaller r1 and r2 get, the smaller the focal length. What does the
formula tell you if you take a thin sheet of plastic and curve it? Does it still
make sense?

Note that the lens maker’s formula works only for thin lenses—lenses for
which the thickness is much less than the focal length.

3.4 Images—Real and Virtual

Imagine sunlight shining on the face of a lion. Think of one tiny point on the
lion’s cheek. Part of the sunlight hitting that point is scattered in all directions.
That’s why we see the lion with our eyes no matter from what direction we
look at it! This is also called diffuse reflection of light, and it is different from
specular reflection from a mirror, which goes in one particular direction only.
If a converging lens is placed in such a way that the rays coming from the
point of the lion converge to a point on the other side of the lens, an image of
the object point on the lion is formed. Figure 3.12 shows this case. The lion is

1This is always true only for thin lenses.
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image of point
on lion

FIGURE 3.12 � The object is a point on the lion’s face, the lens forms an image of this
point where multiple real light rays converge.

FIGURE 3.13 � Each point on the lion’s face can be imaged as in Figure 3.12, and the
entire lion’s face image is formed by the converging lens. Since the image is real, it can
be captured by a paper screen, a photographic film, or a CCD (the detector in a digital
camera).

the object, and for each point on the lion an image point is formed on the other
side of the lens. If you put a screen at the image point, you see an image of the
point on the lion. This is a real image of the object: There are real light rays
converging at the image point. Therefore, if you put a piece of paper at the
image point, the light rays will form a focused spot on the paper. In fact, you
will see an image of the whole lion because, point by point, the rays traveling
from the lion converge again on the other side of the lens to form a full image
of the lion, as shown in Figure 3.13.

If there is no screen, you will see the image only if you stand in back of
the lens. From the side you will not see the image of the lion. The best way
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image of point
on lion

FIGURE 3.14 � The object is very near the converging lens, and the lens is not strong
enough to make the rays converge. The image is virtual.

image of point
on lion

FIGURE 3.15 � The diverging lens makes the rays diverge even more. The image is
virtual.

to see the image is to place a screen where the image is formed, as shown in
Figure 3.13, because the screen will direct some of the light into your eyes
by, again, the process of scattering. The image is called real if (after passing
through the lens) the rays from a given point of the object cross each other,
or converge, into a point. A real image can be seen on a screen or on photo-
graphic film. To form a real image, we need a converging lens, but converging
lenses do not necessarily produce a real image, as we shall see later.

The distance from the object to the lens is called the object distance,
represented as o. The distance from the lens to the image is called the image
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distance, or i. It is important to always remember that the distance i may be
where the rays from the object are focused, but this is not the focal length!
Focal length refers to the place where parallel incident rays converge—this
requires that the object be very far away! The image distance i is equal to the
focal length f if and only if the object distance o is very large or at infinity
(written as the symbol ∞).

If the object is very near the converging lens, the lens may not be strong
enough to deflect the light rays coming from the object and make them con-
verge into a point. Worse yet, we may have a diverging lens that spreads the
rays even more than they were spreading before they got to the lens. In either
case, after crossing the lens, the rays seem to come from a point at distance i
behind the lens (with respect to your eye; see Figures 3.14 and 3.15). You can
see the image with your eye if you look through the lens, but you cannot place
a screen or a film where the image is and expect to see an image; no real rays
cross in that location, or anywhere else for that matter!

This is a virtual image. We have already encountered virtual images: In a
mirror, the image produced by reflection is also virtual. If you place a lightbulb
near a mirror, there is no way to catch the image on a piece of white paper,
no matter where you place it. To do this, you would need an additional lens
(such as your eye or a camera taking a picture of the rays reflected by the
mirror) to make the rays converge and form a real image. A converging lens
forms a virtual image only when the object is closer to the lens than the
focal length (Figure 3.14). A diverging lens always produces virtual images
(Figure 3.15).

3.5 Three Easy Rays

Given a thin lens and an object, one can graphically draw rays to find the image
size and position. With a diagram, you can see how the image is formed and
where it is. This procedure is called ray tracing, and it is performed by very
fast computers that trace many rays of light simultaneously, to simulate what
happens in nature. Ray tracing is used in scientific applications, to produce
sophisticated camera lenses, in animated movies, in computer graphics, and
will be used by you in this course! It may seem complicated, but it is very
simple to learn how to master ray tracing for a single thin lens. The trick is to
focus on three particularly easy rays.

If we select a point on the object—for instance, the top of the lightbulb in
Figure 3.16—we do not need to repeat the operation for each and every point
of that same lightbulb. We only need to use three easy rays!

The three easy rays to be traced for a converging lens are shown in
Figure 3.16 and described verbally hereafter:
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FIGURE 3.16 � The three easy rays for a converging lens. The blue dots mark the
distance f (focal length) from the lens. Remember that the distance is the same on either
side of the lens.

• A ray from the object through the center of the thin lens. This ray goes
straight through because at the center of the lens the two lens faces are
parallel to each other. There is actually a very slight shift for thicker
lenses (see Figure 2.11), but it can be neglected for thin lenses like the
ones we discuss here.

• A ray from the object to the lens, parallel to the optical axis. This ray
goes through the focal point on the other side of the lens. The image
point is where these two rays cross, so now we can draw the image as
shown in the graph. It is an upside-down, or inverted, image.

• A ray from the object through the focal point on the left2 of the lens.
This ray will leave the lens traveling parallel to the axis and, of course,
should go through the same image point already found. This is a good
way to check the accuracy of the first two rays.

These are the three easy rays for a diverging lens, shown in Figure 3.17:

• As for the converging lens, the first easy ray goes straight through the
center of the lens.

• The second ray is parallel to the optical axis. This ray is deflected out
of the lens and appears as if it came from the focal point on the left3

2The third ray does not necessarily have to go through the focal point “on the left”; it has to
go through the focal point on the same side of the lens as the object. Therefore, if the object is
on the right, it goes through the right focal point.

3Again, this does not have to be the left side, just the same side as the object.
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FIGURE 3.17 � The three easy rays for a diverging lens. The blue dots again mark a
distance f from the lens.

side of lens. The image point is where the first ray and the extension
(dashed line) of the second ray cross.

• The third ray is the ray from the top of the object heading in the direc-
tion of the focal point on the right of the lens.4 This ray will come
out parallel to the axis, seeming to come from the point already identi-
fied by the first two rays. This ray may seem more complicated to draw.
Just remember that light rays can always be inverted, and therefore, if
this third ray were to come from the right traveling parallel to the opti-
cal axis, it will diverge on the left as if it came from the focal point on
the right.

We see from these three easy rays that the image is virtual, upright, and smaller
than the object. This is always the case for diverging lenses.

3.6 The Lens Formula

The lens formula (not to be confused with lens-marker’s formula) can be used
to quantitatively answer a variety of questions: Where is the image? Is the
image real or virtual? How large is the image? The lens formula tells you how
object distance o and image distance i are related to the focal length f of
a lens:

1
o

+ 1
i

= 1
f

4As for the previous notes, this is not necessarily on the right but has to be on the opposite
side of the lens with respect to the object.
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hi

ff

ho

io

FIGURE 3.18 � The magnification M can be easily calculated. The method is shown
in this diagram. In the formulas, ho is the height of the object and hi is the height of the
image. The formula is directly derived from the two similar triangles filled with green.

Figure 3.18 explains how to measure the magnification. Given a certain
object distance o and a given focal length f , one can calculate the image dis-
tance i using the lens formula. The magnification M , then, is simply the ratio
of i over o.

hi

ho
= i

o
, so the image size is hi = i

o
ho

and the Magnification M is M = i

o

Be careful with the term magnification. Keep in mind that the magnifi-
cation can be smaller than 1, and when this is the case, the lens really is
demagnifying and the image produced is smaller than the object. The range
of possible magnifications for a given converging lens varies dramatically, as
the lens can be either magnifying or demagnifying, depending on how far the
object is positioned from the lens.

The magnification is always a positive number: If the image distance i is
negative (object and image are on the same side of the lens), take the modulus
of i, or the absolute value—ignore the minus sign.

Let us now see some examples of how the lens formula and the magnifi-
cation formula are used. For the next three examples, take a converging lens
with a focal length of 10 cm. Notice that the focal length is always given by
the manufacturer of the lens and cannot be changed (this is not true for zoom
lenses, in which the focal length can be changed, but we are now talking about
simple, single lenses).
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Object distance greater than focal length
First, place the object 20 cm from the lens. Where is the image?

1
i

= 1
f
− 1

o
= 1

10
− 1

20
= 2

20
− 1

20
= 1

20

i = 20 cm
So the image is 20 cm from the lens.
How big is the image?
The height of the object is ho, and the height of the image is hi.

Magnification = hi

ho
= i

o

In other words, the image size is to the object size as the image distance is to
the object distance—the two lengths are proportional!

In this example
hi

ho
= i

o
= 20

20
= 1 or hi = ho.

Therefore, for this example the image is the same size as the object.

Using the same lens, move the object to a distance of 50 cm away

o = 50 cm; f = 10 cm

1
i

= 1
10

− 1
50

= 5
50

− 1
50

= 4
50

i = 50
4

cm = 12.5 cm

Image size is now 5 cm, 1/4[= 12.5/50] of object size. Note that as we moved
the object from 20 to 50 cm (further away from lens), the image got closer to
the lens (from 20 cm to 12.5 cm).

There is a neat and easy way to understand (and more importantly to
remember) this. Look at Figure 3.19. Light hitting point A of the lens is
deflected as indicated by the angle labeled “deflection.”

If the object is in the focal point (10 cm in Figure 3.19, left), the ray will
be deflected by the lens in point A so that it comes out of the lens parallel
to the optical axis. This deflection angle stays the same, no matter where the
object is placed. So if, for example, we put the object at twice the focal length
(20 cm; Figure 3.19, right), its image will be formed at a distance that keeps
the deflection angle the same—that is, at exactly 20 cm. If we now move the
object further away (as in Figure 3.20, left), the ray coming from the same
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AA deflection
image of point
on object

point
on object

deflection

f
10 cm

20 cm 20 cm

FIGURE 3.19 � The deflection angle at point A on the lens is always the same, for any
object distance.

12.5 cm
7 cm

deflection

deflection

AA

image

virtual
image of
object point

object
point

point
on object

–23 cm50 cm

FIGURE 3.20 � Same as in Figure 3.19, but with the object farther and closer.

point on the object and hitting the same point A will still be deflected by the
same angle as before! The only difference is that the incoming ray hitting
point A comes in at a lower angle (less steep) when the object is further away,
causing the ray leaving the lens to be steeper and cross the axis earlier. Eventu-
ally, when the object is very far away, the ray will cross the axis at a distance f
from the lens (which would be 10 cm in the earlier example). If we then move
the object closer to the lens than the focal point—that is, 7 cm (Figure 3.20,
right), we can still use the deflection angle to find the image position, even
though in this case the image distance is on the same side of the lens as the
object: The image is virtual!

Object distance smaller than the focal length
Using the same lens, move the object to a distance 7 cm from the lens, as
shown in Figure 3.20, right.

1
i

= 1
f
− 1

o
= 1

10
− 1

7
= 7

70
− 10

70
= −3

70
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or or

FIGURE 3.21 � Diverging lenses.

image distance i = −70/3 = −23 cm The
minus sign indicates that the image is on
the same side of the lens as the object,
rather than on the opposite side as in
examples 1 and 2. This negative image
distance i indicates that the image is vir-
tual. The size of the virtual image is
3.3 times the object size, since M =
i

o
= 23

7
= 3.3. For a converging lens, the

image is virtual whenever the object dis-
tance is less than the focal length of
the lens.

Diverging lens
Now we are going to use a diverging lens with a focal length f = −10 cm.
This can have different curvatures, as shown in Figure 3.21, but it must be
thinner in the middle than at the edges.
We must use f = −10 cm (negative focal length) in the lens formula.

1
i

= 1
−10

− 1
o

= 1
−10

− 1
o

Note that the image distance i will always be negative (and the image will be
virtual), no matter where we place the object—that is, for any value of the
object distance o. For example, if o = 10 cm

1
i

= −1
10

− 1
10

= −2
10

= −1
5

; therefore, i = −5 cm

The virtual image is 5 cm from lens, on the same side of the lens as the object.

The image will be half the size of the object because M = i

o
= 5

10
= 1

2
.

Remember to neglect any minus signs when calculating the magnification.

3.6.1 Note on Magnification
As previously mentioned, the magnification is always lower than 1 for diverg-
ing lenses. In other words, diverging lenses are always demagnifying lenses.
On the other hand, the magnification can vary dramatically for converging
lenses, which can be magnifying or demagnifying, depending on where the
object is positioned with respect to the lens. See Figure 3.22 for various
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When the object (man with umbrella) is further than the focal length (blue
dots), the image is real, upside down, and smaller than the object.

When the object is at twice the focal length (magenta dots) from the lens, the
magnification is 1.

When the object is between the focal length and twice the focal length
(between magenta and blue dots), the magnification is greater than 1.

When the object is closer to the lens than the focal length, the image is virtual
(gray man), upright, and the magnification is greater than 1.

FIGURE 3.22 � The magnification increases as the object distance decreases. (Dia-
grams adapted from Eugene Hecht, Optics, Addison-Wesley Publishing Company, Read-
ing, MA, 1997)
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converging lens, o = `

virtual upright image
M = i/o < 1

virtual upright image
M = i/o < 1

real inverted image
M = i/o > 0 M >1 or M <1

converging lens, o > f

diverging lens, o = ` diverging lens, o > f diverging lens, o < f

virtual upright image
M = i/o > 1

converging lens, o < f

virtual image in focal point
M = i/` = 0

real image in focal point
M = i/` = 0

FIGURE 3.23 � Summary of the images and magnifications resulting from all possible
cases for converging and diverging lenses: object at infinity, object farther than the focal
length, and object closer than the focal length.

object positions. In these diagrams, notice that one object (the man with the
umbrella) moves, while another object (the tree) is stationary. Compare the
relationship between the two objects on each side of the lens for each dia-
gram. In Figure 3.23 we summarize all possible images and magnifications
produced by converging and diverging lenses.

3.7 Lens Aberrations

The formulas and ray tracing method we have discussed so far work accurately
as long as the lenses are thin and, more importantly, as long as we are in the
paraxial approximation, meaning that we only consider rays of light close
to the optical axis. Selection of only paraxial rays can be done either using a
lens with a very small diameter or using a larger lens with an iris aperture that
limits the lens diameter actually used. Decreasing the effective diameter—or
closing the aperture—limits the brightness of the image—that is, the lumi-
nosity. Consider an object and a lens. Rays from the object hit all points
on the surface of the lens, not just the points hit by the three easy rays we
considered before. Each and every portion of the lens is producing the image
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of every point of the object. You may therefore use a small lens to take a
picture of a large tree, or you may cover a portion of the lens and still obtain the
same image! If, for example, you cover half of the lens, the other half (which
now has a D shape), you will obtain the exact same image of the object, with
the same magnification and position as if the entire lens was uncovered. This
image, however, will have half the intensity. The reason for using a larger lens
is to increase the lens’s luminosity. That is why the best telescopes—those that
can see the faintest stars—have very large diameters. The same applies to cam-
era lenses: The best cameras have lenses with the largest diameters, allowing
them to take photographs in dim light conditions by opening the aperture all
the way and using the entire diameter of the lens.

Departing from the paraxial condition—for instance, when taking a photo-
graph with the aperture wide open—introduces problems in image clarity and
shape. These problems are called lens aberrations. There are different kinds
of aberrations. Chromatic aberrations arise from the fact that the index of
refraction n varies for different wavelengths of light (colors). Monochromatic
aberrations, on the other hand, occur even if a single wavelength of light is
used. Monochromatic aberrations include spherical aberration, coma, astig-
matism, field curvature, and distortion. Here we will only focus on the types
of aberrations that mostly affect photography.

3.7.1 Chromatic Aberrations
As described in Chapter 2, the index of refraction of glass is a little different
for each different wavelength of light, a phenomenon known as dispersion.
Rays of different colors are separated by the lens, as blue light rays are
deflected more than red light rays. Consequently, the focal length of a sim-
ple lens for blue light is different from the focal length of the same lens for
red light, as shown in Figure 3.24. The difference is not very large, but it is
enough to cause trouble. For example, you cannot capture both red and blue
polka dots of a woman’s skirt with a good, sharp focus at the same time if you
are using a camera with a simple lens. If you focus on the red dots, the blue
dots will become a little fuzzy and vice versa. If you can see the image of the
red dots as perfectly in focus, the image of the blue dots will be in focus at
about 0.2 mm in front of the film. By the time the rays get to the film, they will
have already re-diverged a little, producing a slightly blurry image of the blue
dots. The blur is worse if the lens aperture is large because the rays diverge
more over the 0.2 mm distance. This is because rays of light farther from the
axis of the lens must be deflected more (at a sharper angle) to be brought into
focus. The more rays of light are deflected by the lens, the greater the effect
of chromatic aberration. If you don’t need a large lens aperture, however (for
example, if you only want to take pictures outside on sunny days), there is a
simple way around this problem-just use a small lens aperture.
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white
light

FIGURE 3.24 � Blue light is deflected by the lens more than red light, so the focal point
for blue is closer to the lens than the focal point for red. Blue and red objects cannot be in
focus at the same time. Closing an iris aperture—that is, selecting the central or paraxial
rays only—reduces chromatic aberration.

Most cameras have achromatic lenses that produce sharper pictures and
that can be used in dimmer light. Achromatic lenses are built by combin-
ing a strongly converging lens, made of low-dispersion glass, with a weakly
diverging lens of high-dispersion glass. With this combination, the dispersion
cancels out, while net focusing remains. You might wonder why lens makers
don’t simply use a type of glass with no dispersion. There is no such glass
or plastic! Another common question is, Why not cancel the dispersion by
making half of the lens with glass of the opposite characteristic? Again, this
is impossible since all transparent materials deflect blue more than red.

3.7.2 Spherical Aberration
This type of aberration is color-independent and arises from the fact that rays
hitting the outer diameters of a lens are deflected more than paraxial rays,
the rays hitting the lens inner diameters. This is true for both converging and
diverging lenses. The net result does cancel if you use a combination of diverg-
ing and converging lenses, as shown in Figure 3.25. Another way to eliminate
spherical aberration is to use a small aperture, but, again, this can only be done
in conditions of bright light.

Chromatic and spherical aberration, as well as coma and astigmatism,
deteriorate the image clarity. Field curvature and distortion, on the other hand,
deteriorate the image shape. In other words, they deform the image.

Distortion: It is not enough that a picture is in sharp focus for all col-
ors and for all rays passing through the lens. Suppose you take a picture
of a rectangular building with a rectangular grid of windows. These should
produce an image on the film of rectangles, not slightly curved lines. However,
there are two types of common distortions that cause such curved images: the
pincushion distortion and the barrel distortion, shown in Figure 3.26.

These distortions arise from the fact that the image magnification varies
with the image radius. With pincushion distortion, the center of the image has
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lower magnification than the edges, while with barrel distortion, the center has
higher magnification than the edges.

The design of a good-quality camera lens is complicated (and therefore
the lens is very expensive) because it has to compensate for all the possible
aberrations for all possible object distances, including objects near the center of
the field of view and near the edges. The solution to the problem lies in making
compound lenses. This is done by stacking different lenses, each lens curved and
spaced from the next lens in the proper, particular way. Computer ray tracing
programs are used to do trial-and-error simulations of compound lenses to
find the combination of lenses with the best performances, thereby minimizing

converging lens diverging lens

spherical aberration

FIGURE 3.25 � The converging lens moves the focus to the left when using outer
diameters of the lens. The diverging lens moves the focus to the right when using the
outer diameters. Since these two lenses compensate for each other, in camera lenses a
combination of diverging and converging lenses is used to minimize spherical aberration.
Unlike those in Figure 3.9, these must have different curvatures and focal lengths.

FIGURE 3.26 � On the left is the object, at the center its pincushion distorted image,
and on the right is its barrel distorted image.
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distortionsandsphericalaberration.Only thenare the lensesphysicallymounted
in stacks. For most purposes, it is not worthwhile to buy the absolute best lens
available, since the imperfections for even an average-quality lens are only
very slight. Even cheap lenses can take pictures of good quality as long as the
lens aperture is kept small. However, if your interest is to take high-quality
or professional photos when you really can’t use a tripod or a flash, such as
early-morning wildlife photography, you must use larger lenses—for example,
a lens with a very large diameter (e.g., 300 mm) that increases luminosity and
allows for a fast exposure (which you need with no tripod and no flash). Such
lenses are always compound, and you may have to spend more than $10, 000
on a single lens! Not only is it expensive, but it is heavy, sometimes weighing
20 pounds! Imagine carrying that around the woods on long hikes. The life of
a photographer is not as easy as you might think!

Coated lenses: All high-quality camera lenses have coatings to reduce the
amount of light intensity that is lost to reflection from the lens surfaces.
These are non-reflective coatings. Some lens coatings may have a noticeable
magenta tinge. This is because a small amount of blue and red light is reflected
and makes the coating appear magenta. However, the best-quality coatings are
perfectly colorless, and they do not allow for any light to be reflected. Let us
see in detail why such non-reflective coatings are necessary to produce a good
photograph.

Not all the light incident on the surface of the glass lens penetrates the
lens and gets refracted. Part of the light is reflected back. The loss of light
intensity on the camera film from this reflection is quite serious because, as
more than one lens is usually used to avoid aberrations, the light goes through
many surfaces and the amount of light intensity lost at each surface adds up.

Example: If a compound lens is composed of 6 lenses, there are actually 12
surfaces.
Even if only 8% of the light intensity is lost to reflection on each individual
surface,

0.9212 = 0.367

after traveling through all 6 lenses, only 36.7% of the original light reaches
the film!

Without a nonreflective coating, you would really be better off using a
simple lens and avoiding aberrations instead—and simply use a small aperture!

This is why, especially for compound lenses, a non-reflective coating is
always used. The coating consists of a thin film that has just the right index
of refraction and just the right thickness so that reflected light from the front
and back surface of the coating cancel by destructive interference. The light
cannot be reflected and has to go through the lens.
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3.8 Questions

1. Which lenses are converging? Which are diverging?

#1 #6#3 #4 #5#2#1#1 #6#6#3#3 #4#4 #5#5#2#2

2. Which converging lens has the shortest focal length?
3. What does one mean by the “focal length” for a converging lens? For a

diverging lens? When is the focal length a positive number? When is it
negative?

4. What does one mean by a strong lens?
5. Find the position and size of the image by using:

1
i

+ 1
o

= 1
f

and
i

o
= M

O I

f f
o i
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The object O is at a distance o from the lens, while the image I is at a
distance i from the lens. If the focal length is f = 25 cm, o = 100 cm,
and height ho = 2 cm, where is the image? And how high is the image?
(i = ? and hi = ?)

6. A lens has a focal length of 20 cm. You place an object 100 cm from
the lens; where is the image? (Where should you put a screen or a film
to obtain an in-focus image?) How large is the image compared to the
object?

7. If you place the object 10 cm from the lens in Problem 6, where is the
image?

8. A lens has a focal length of 5 cm, and the object is 50 cm away from the
lens. What is the image distance?

9. The following lens has a focal length f = 3 cm. (Foci are marked *.)
Draw the “easy rays” and find the position of the image graphically, and
then use the lens formula to verify your results for the two subject dis-
tances shown. What is the magnification in each case? Copy the drawing
carefully for your answer.
(a)

11 10 9 8 7

7 76 65 54 43 32 21 1

6 65 54 4 3 3 2  21 1

(b)

Object

object



54 Chapter 3 Lenses

10. In the following diagram, find the position of the image by tracing the
three easy rays. The focal points of lenses are marked *.

11 10 9 8 7 6 65 54 4 3 3 2  21 1

Object

11. Show the three “easy rays” from the top of the object through the lens.
The symbol * marks the focal length on either side of the lens. Show the
image.

12. Show the three “easy rays” from top of the object through the lens. The
symbol * marks the focal length on either side of the lens. Show the
image.
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13. You are lying on the grass with a friend. A daffodil 0.2 m high and
1 meter away seems as big as the oak tree that is 100 m away. You see
them as shown in the following figure. What is the height of the oak tree?



� Chapter 4

The Eye

The lenses discussed in Chapter 3 are useful in understanding how the eye
works, its defects, and the corrections that appropriate lenses can provide. The
text in this chapter was adapted from Eugene Hecht’s book, Optics, which we
recommend for a more in-depth discussion.

The human eye is a complex organ composed of several parts, arranged as
shown in Figure 4.1.

optic nerve cornea

iris

pupil
scleraretina

human eye

crystalline lens + cornea f = 1.67 cm
image on retina is inverted

crystalline lens

FIGURE 4.1 � The parts composing a human eye.

56
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Rays of light cross a system of two lenses and then converge, in focus,
on the retina to form a real inverted image. The image has to be real—that is,
actual rays must converge on the retina. If the image is not real and not formed
by actual intersecting rays, the cone and rod cells in the retina will not be able
to detect the image, convert it into a train of pulses, and transmit it to the brain
via the optic nerve. The left and right eyes produce different upside-down
images. The two images are then blended together and inverted again by the
brain. The two images seen by the two eyes are identical to each other when
the objects are very far away, but their difference increases as objects become
closer. We do not realize that our two eyes see two different images until we
close them alternately and observe the right and the left image separately.
The difference in the images is important because it makes it possible for our
brain to observe the three-dimensionality of nearby objects and to provide an
estimate of their distance.

The eye is contained within a resistant yet flexible eyeball, the sclera,
which contains jelly-like fluids. Except for the front area, called the cornea,
the sclera is white and opaque. The cornea is the curved surface bulging
out from the eyeball. The cornea is slightly flattened at the center to reduce
spherical aberration. It is a hard, transparent, convex layer of cells, form-
ing a converging lens. It is the stronger of the two lenses in the eye, so it
has a lower focal length and a higher curvature than the other lens. Most
of the deflection of light rays by the cornea takes place at the air-cornea
interface because the refraction index of the cornea (ncornea � 1.376) is
much greater than that of air (nair � 1). It is similar to that of water
(nwater � 1.33), which is why we can’t see well underwater: Rays are
not deflected much at the water-cornea interface and reach the retina out
of focus. After the cornea is the iris, which is immersed in a watery fluid
and serves as a lens aperture. Just like the aperture stop in a camera, the
iris controls the amount of light entering through the pupil, the hole allow-
ing light to enter the eye. The iris is made of circular and radial muscles
so it can expand and contract, so the diameter of the pupil varies between
2 mm in bright light and 8 mm in darkness.

Immediately behind the pupil of the iris is the crystalline lens. This lens
has the shape of a small lentil bean or an M&M candy, with a diameter of
9 mm and a thickness at the center of about 4 mm. The crystalline lens has a
very complex structure, with 22,000 concentric layers (as in an onion), with
indices of refraction that vary slightly from one layer to the next. At the dense,
inner core, n � 1.406, while at the surface n � 1.386. A manmade lens with
these characteristics is called a GRIN lens, from GRadient INdex.

The crystalline lens provides fine focusing through changes in its shape.
Behind the crystalline lens is a jelly-like fluid called vitreous humor, which
differs from the fluid in front of the crystalline. The vitreous humor contains
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microscopic particles, which are dead cell debris floating around within it. You
can see these floaters by looking at the sky on a bright day. They appear as
transparent, amoeba-like objects floating across the field of view.

At the back inner surface of the eyeball is the retina. This is a thin, semi-
transparent layer of light receptor cells. The human eye has two kinds of light
sensitive cells: rod cells and cone cells. The rods provide low-resolution vision
and function well in dim light, while the cones provide high-resolution color
vision but only function well in bright light. There is a small depression of
about 2.5–3 mm in diameter at the center of the retina that is known as the
yellow spot, or the macula. This spot contains only cone cells and no rod cells.
At the center of the macula is the fovea, with a diameter of 0.3 mm. To give
you some perspective, keep in mind that the image of a full moon on the retina
is 0.2 mm. In the fovea the cones are thinner (with a diameter 1.5–3 μm) and
more densely packed than anywhere else in the retina. Since the fovea pro-
vides the highest resolution and most detailed visual information at the center
of our field of view, we continuously move our eyeballs so that light coming
from the object of primary interest always falls on the foveas.

Each cone cell has its own connection with an individual nerve fiber, while
approximately 100 rod cells connect to a single nerve fiber. All nerve fibers
come together in the optic nerve, which brings the signal from the retina to the
brain. The optic nerve connects with all the nerve fibers converging from all
over the retina. In the point in which the optic nerve is attached to the retina,
there is a region in which we do not see. This is called the blind spot.

Look at Figure 4.2, to localize your blind spots.

X 1 2

FIGURE 4.2 � To localize the blind spot of your right eye stand at a distance of about
10 inches from this figure, close your left eye, and focus your right eye on the X. You will
only be able to see the 1 because the 2 falls on the blind spot. If you now move closer, the 2
will reappear and the 1 will vanish. You can test this on your left eye as well, but you have
to rotate the book upside down.

4.1 Accommodation

As just mentioned, the crystalline lens provides fine focusing of the image
from the cornea and the pupil. The focal distance of the system of the two
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but there is a limit: the "near point"
this is the shortest distance of distinct vision

near object: the crystalline lens thickens far away object: the crystalline lens is relaxed

accommodation of the eye

FIGURE 4.3 � Accommodation of the eye.

lenses in the eye, the cornea and the crystalline together, is 1.67 cm. If an
object is at infinity, the image is exactly in the focal point, which is on the
retina. If the object comes closer, the image will be formed in focus after the
retina, and the image on the retina will be fuzzy. The crystalline lens, which
is flexible, can compensate for this effect. It becomes thicker in the middle,
becoming a stronger lens with a smaller radius of curvature and a shorter focal
distance. After the crystalline lens thickens, the images will be perfectly in
focus on the retina. This process of thickening is called accommodation, and
is shown in Figure 4.3.

As the object moves closer to the eye, the crystalline lens accommodates
more and more until it reaches a maximum point beyond which it cannot
thicken anymore. That maximum crystalline thickness defines the near point
of the eye. This is the shortest distance of distinct vision. You can easily find
your own near point. With one hand, cover one eye, extend your other arm,
and look at your finger. Now, bend your arm and slowly bring that finger closer
to the eye, keeping it in focus. As you do this, your crystalline lens is thick-
ening! As the finger approaches the eye, it will get closer and closer to the
near point. When it passes the near point, you will not be able to focus on the
finger anymore.

The near point-the shortest distance at which you can focus-varies from
person to person, and it also changes for the same person with age. As a person
gets older, the crystalline lens loses elasticity and the near point is at greater
distance away from the eye. With a normal eye, the near point is 7 cm for a
teenager, 12 cm for a young adult, 28–40 cm for a middle-aged person, and
about 100 cm for a 60-year-old. That is why the normal eye after a certain
age needs reading glasses. These move the near point closer. As you may
have imagined already, this correction is done using glasses with converging
lenses. The myopic eye may never need reading glasses.
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All mammals accommodate their vision this way. Fish, on the other hand,
can only move the lens in their eye away or toward the retina to adjust the
focus, just as we do when using a camera. Some mollusks elongate or contract
the eyeball depth, and birds of prey accommodate by changing the curvature
of the cornea.

4.2 Eyeglasses

Macfarlane, an anthropologist, and Martin, a historian of glass instruments,
both from Cambridge, United Kingdom, speculate that the development of
glass was fundamental for science itself. Lenses are the major components
of telescopes for looking at the stars and of microscopes for looking at cells.
Imagine life without glass before the first synthesis of transparent acrylics and
plexiglass. There would have been no windows to keep the warm air inside
while letting in sunlight, so the time for reading and studying would have been
far shorter, slowing down progress considerably. There would have been no
bottles to foster the development of alchemy and chemistry. Ancient cultures
that drank tea instead of wine, such as the Chinese and Japanese, never had a
good reason to develop glass-blowing skills because ceramic pottery had far
superior characteristics to hold hot liquids without cracking. Macfarlane and
Martin infer that the stagnation of those cultures in and after the Middle Ages
was due to the absence of glass. However, these are only speculations, and
there is of course no proof of how the development of glass technology would
have affected those cultures.

Eyeglasses were invented first in Florence, Italy, in 1299. These were
convex, converging lenses only. Glasses using diverging lenses did not appear
until about 150 years later. Negative, diverging lenses were actually first
produced in 1267, but they were not used in glasses for about 200 years.
Interestingly, it was considered improper in Europe to use eyeglasses in public
until the 1800s, and, therefore, we have very few paintings of people wearing
glasses.

A normal eye is an eye capable of focusing parallel rays on the retina while
in relaxed condition.

The dioptric power [DP � 1/f (m)] of the unaccommodated normal eye is
60 D (1 diopter � 1 D � 1m−1), of which 43 D is from the cornea and 17 D is
from the crystalline lens. The measure 60 D corresponds to a combined focal
length of the two lenses of 1.67 cm (1/60 × 100 cm).

The far point is the maximum distance of a point whose image lies on
the retina, or the maximum distance of distinct vision. For a normal eye,
the farthest point focused on the retina, the far point, is located at infinity.
Infinity, for all practical purposes, is anywhere beyond about 5 m from the
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eye’s lens. When the focal point of the eye’s system of two lenses does not
lie on the retina, the eye is nearsighted, farsighted, or astigmatic. This may
be a result of abnormal changes in the lenses (refractive index or curvature)
or the dimensions of the eyeball, which alter the distance between the lens
system and the retina. The second problem, abnormal dimensions, is the most
common cause of imperfect vision.

4.3 Nearsighted Eye

A deep eyeball causes the eye to be nearsighted, or myopic, as shown in
Figure 4.4. This can be corrected using a negative lens. In a nearsighted eye,
parallel rays converge before the retina and have diverged again by the time
they reach the retina. Therefore, faraway objects appear blurry and larger than
they should. The far point is closer than 5 m—for instance, at 2 m. To correct
for this problem, we have to add a lens to the optical system. Only when the
three lenses are combined (the eyeglass lens, the cornea, and the crystalline
lens) can we produce an image of parallel rays in focus on the retina. Since
the nearsighted eye cannot focus on faraway objects, we add a diverging lens
that forms a virtual image of distant objects closer to the eye. For objects
at infinity, the lens creates a virtual image located at the far point (2 m). No
accommodation by the crystalline lens is required. If the object is closer than
infinity, the virtual image is closer than the far point—say, 1 m away in the
preceding example. This image is then viewed by the cornea and crystalline
lenses, which cast a real, focused image on the retina, but only after accom-
modation. Another result of using these diverging lenses is that they move the
near point a little further. This is why nearsighted people prefer to take their
spectacles off when performing precision tasks, such as threading needles or

correct with diverging lens

deep eyeball shallow eyeball

correct with converging lens

nearsighted or myopic eye farsighted or presbyopic eye

FIGURE 4.4 � Nearsighted and farsighted human eyes.
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reading small print. Without the diverging lens, they can then bring the object
closer to the eye and increase the magnification.

4.4 Farsighted Eye

A shallow eyeball causes the eye to be farsighted, or hypermetropic, also
shown in Figure 4.4. Objects at infinity are seen clearly, but nearby objects are
blurred because the rays converge after the retina. Recall that the crystalline
lens accommodates only up to a point, reaching its limit at the near point.
The near point is further than norm for a farsighted eye. This defect can be
corrected with a converging lens, which makes the rays converge earlier, on
the retina. Such lenses effectively move a close object further away, beyond
the near point, where the eye can see clearly. The lens will form a distant,
virtual image that can be clearly seen by the cornea-crystalline lens.

Recall that diverging lenses are always demagnifying, while converging
lenses with nearby objects are always magnifying. You can, therefore, always
tell when looking at a person in front of you wearing eyeglasses which kind
of lenses they are using. In this case the person’s eyes are the objects, then
the lenses are their eyeglasses, and the image is the image of their eyes, which
you can see standing in front of them. If their eyes appear smaller through their
glasses the lenses are diverging, so you know the person is nearsighted. If their
eyes are magnified by their glasses, you know the lenses are converging and
they must be farsighted.

For the same reason, nearsighted people always see the world a lot smaller
when they wear their glasses. This is not only due to the fact that sharp objects
are smaller than blurry ones. It is also due to the demagnifying effect of all
diverging lenses.

4.5 Astigmatic Eye

Astigmatism is the most common eye defect. Almost everyone has some
degree of astigmatism, but in most cases this is so slight that people don’t
even know they have it. It arises from a nonspherical curvature of the cornea.
In particular, the curvature along different meridians differs, as in an eggshell.
Most frequently the curvature of the cornea along a meridian is greater than
the curvature in the plane perpendicular to that meridian. The result is a
blurred and/or distorted image on the retina. This defect can often be cor-
rected using cylindrical lenses, first introduced in 1825 but only commonly
used after 1862.
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Photography

5.1 The Camera

The oldest preserved black–and–white photograph was taken by Joseph
Nicéphore Niépce in 1826. It was produced by a dark box, a lens, and a light
from his window view projected onto a pewter plate that was coated with bitu-
men, a petroleum derivative. After a day-long exposure, the plate was washed
with a mixture of oil of lavender and white petroleum, which dissolved away
the parts of the bitumen that had not been hardened by light. The result was
the permanent direct positive photograph on pewter, rendering a view of the
outbuildings, courtyard, trees, and landscape as seen from that window, which
can still be seen today at the University of Texas at Austin. Soon after this first
photograph was taken, Louis Daguerre (from whom the name daguerreotype
for photographic prints on glass is derived) and William Henry Fox Talbot
invented the photographic process in which a negative was exposed in the
camera, developed in a dark room, and then printed on sensitive glass or paper.
Their cameras were conceptually similar to modern ones and are the easiest of
the optical instruments to understand. The key parts that form any camera, be
it the simplest ancient version or a very sophisticated modern one, are shown
in the schematic diagram of Figure 5.1:

• The lens, L, produces a real image of the object that one wishes to cap-
ture on the film. It is usually mounted on a barrel cap that can be moved

63



64 Chapter 5 Photography

L

I

F

S

FIGURE 5.1 � Schematic representation of a camera.

in and out, allowing the photographer to adjust the distance between the
film and the lens in order to focus the image.

• The shutter, S, is normally closed but opens for a small interval of time
to allow light from the object to enter the camera. The shutter may
be placed near the lens (“lens shutter”) or near the film (“focal plane
shutter”).

• The iris aperture, I, also called an f-stop, is an adjustable diameter aper-
ture (hole or orifice) located near the lens. This controls the amount of
light that enters the camera.

• The film, F, consists of a base, a polymer sheet, or a glass plate that is
coated with a light-sensitive emulsion. This emulsion contains grains of
silver salts (silver halides, such as AgBr) in a gelatin.

• When light strikes the emulsion, the emulsion grains are modified.
Chemical treatment of the emulsion, including developing and fixing,
removes the nonmodified emulsion grains and transforms the exposed
grains into metallic silver, which is black.

Let us now look in more detail at the operation of the various parts of the
camera.

5.2 Focusing the Camera

Focusing the camera involves adjusting the distance between the lens and the
film so that the real image of the object being photographed is located on the
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film plane, not in front or behind it. Why is that important? Consider a point
object being photographed. If the camera is not focused properly, the light
rays will not converge to a point on the film. Rather, they will produce a fuzzy
spot of a larger size, and the picture will be blurred.

For an example, consider a simple 35 mm camera. This label refers to the
size of the film, which is 35 mm wide and 24 mm high. The focal length of
the lens is most commonly f � 50 mm. If you wish to photograph a faraway
mountain, the object distance is very, very large. When the object distance is
more than 100 times greater than the focal length of the lens (5 m in this case),
photographers refer to the object as being “at infinity.” They use the standard
mathematical symbol for infinity to represent this distance: ∞.

When the object is very faraway, we write the lens formula as follows:

1
f

� 1
i

+ 1
o

o � ∞; then
1
o

� 1
∞ � 0 and i � f

In other words, if o is very large,
1
o

is very small—so small that it can be
neglected! The image distance is then equal to the focal distance. Therefore,
when using a lens with a focal distance f � 50 mm, both the film and the
image must be at 50 mm from the lens in order to take a photograph of a
mountain.

Suppose now that you want to take a closeup picture of a flower about
20 inches away.

20" ≈ 0.5 m o � 0.5 m � 500 mm
f � 0.05 m � 50 mm

Using the lens formula again:

1
f

� 1
i

+ 1
o

1
i

� 1
f

− 1
o

� 1
50

− 1
500

� 10 − 1
500

� 9
500

� 0.018 and

i � 55.55 ≈ 56 mm

The distance between the lens and the film must be 56 mm. As you can see,
a very small motion of the lens—in this case, 56 − 50 mm � 6 mm (or about
1/4 inch)—is all that is needed to change focus from infinity to 0.5 m (2 feet).
Thanks to the fact that only a small variation in image distance is necessary to
focus objects at any distance, cameras can be small and portable!

The change in image distance with focusing is small but by no means
negligible. Light rays diverge a lot in a small distance, so accurate focusing
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must be done, or the image will be blurry. The shutter is placed either near the
lens or near the film. The focal plane shutter is a double curtain mechanism
that lies directly in front of the film—that is, as close as possible to the focal
plane. Initially, both curtains cover the film (frame 2 in Figure 5.2). When
you press the button to take a photograph, the first curtain starts to move
across the whole film width, exposing the film to the light entering from
the lens (frames 2−7). After a certain time (which the photographer sets as
the exposure time), the second curtain starts to move in the same direction
as the first curtain, covering the film again and cutting off light exposure (frames
8−12).Forshortexposures, the twocurtainsmoveveryclosely together,keeping
a constant distance between them. Each point in the film is exposed for the
exact same amount of time (6 time-units in Figure 5.2). In real cameras, the
curtains move continuously, not in steps as in the schematic representation
of Figure 5.2. The sequence reported is only a simplification to aid your
understanding.

All cameras have a set of numbers that indicate the exposure time,
or the time that each point on the film is exposed to light as the shut-
ter curtains move across the front of the film. The exposure times are
usually 1000, 500, 250, 125, 60, 30, 15, 8, 4, 2, 1, B, T . This actually means
1/1000th of a second, 1/500th, 1/250th, etc., down to 2, meaning 1/2 of

1
2
3
4
5
6
7
8
9
10
11
12

FIGURE 5.2 � When taking a photo-
graph the curtains move in front of the film
so that each point of the film is exposed for
the same amount of time, thus each point
receives the same illumination.

a second, and 1, meaning sim-
ply 1 second. These are the times
a photographer has at his dis-
posal. Notice how they form a
sequence varying by factors of 2,
approximately.

Exposure times vary by factors
of 2. For each step toward the left,
the exposure time doubles, and to
the right it is cut in half. This is
not perfectly accurate, as you can
see by comparison with the geo-
metric progression in the following
chart, but it is very close. We will
soon see how this is very useful
when selecting the appropriate set-
tings in order to capture the desired
photograph.

When a camera is set on B,
which stands for “bulb,” the shut-
ter is opened when the button is
pressed and closes again when the
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Exposure
Time in 1 1/2 1/4 1/8 1/15 1/30 1/60 1/125 1/250 1/500 1/1000
Seconds

Geometric 1 1/2 1/4 1/8 1/16 1/32 1/64 1/128 1/256 1/512 1/1024
Progression

button is released. When the camera is set on T , which stands for “time,”
the shutter is opened by pressing the button and closes only by pressing
it again.

5.3 Choosing the Exposure Time

If the object to photograph is moving, it may appear blurred, depending on
how much it moved while the shutter was open. The distance that an object
moved is equivalent to the speed × time. In other words, d � v × t. A track star
running a 4-minute mile travels at a speed of 7 m/sec. If you set your camera’s
exposure time to 1/100 sec, the runner will have moved about 3 inches during
the exposure time, and the photograph will look quite blurry. This reveals that
the exposure time of 1/100 sec is too long (or too slow) to take a good action
shot of the runner.

7 m/sec × 1/100 sec � 0.07 m � 7 cm

A person walking at 1 m/sec moves only 1 cm in 1/100 sec. It is therefore
acceptable to take photographs using an exposure time of 1/100 sec with
people moving at this speed.

Even when the object is stationary, if the camera is held by hand, the
maximum exposure time that can be used is about 1/60 sec. This is because
of the natural and inevitable movements of the human body. For any exposure
time longer than 1/60 sec, as necessary for taking photographs at dusk, special
attention is required to not move the camera. If the camera moves, the image
of the stationary object moves on the film, and the image will appear blurred.
At 1/60 sec there is not a blurring problem for any handheld camera. Even
at 1/30 sec, if you hold your breath and lean against the wall, you may be
able to take a good picture. However, for longer exposure times, such as
1/15 sec or 1/2 sec, the camera must be held by a tripod or set on a table or
car roof.



68 Chapter 5 Photography

5.4 Choosing the Aperture

The iris aperture is a hole, or orifice, located immediately after the lens. It is
made of many thin metal blades that can be pivoted along the rim in order to
adjust the diameter of the opening. Cameras normally do not show the actual
diameter of the aperture. What is shown, printed on the lens mounting, are the
various f numbers that are mathematically represented by the symbol f /. The
diameter of the iris aperture is calculated by

f/ � f

Diameter

where f is the focal length of the lens and Diameter is the diameter of the
aperture—the effective diameter of the lens portion being used. For example,
if a camera has a lens with 50 mm focal length and the aperture is set at an
f number of 4 (this is written f /4, not f / � 4), then the diameter is actually
50 mm/4 � 12.5 mm.

The sequence of f numbers, or f /, that normally appears on the aperture
adjustment control is

f / 1 1.4 2 2.8 4 5.6 8 11 16 22 32 45

But what happens when you change the f number by two steps, from f /4
to f /8—that is, from 4 to 5.6 (one step) and again from 5.6 to 8 (another
step)? A photographer calls this change “two stops” because aperture stop
is the colloquial, commonly used name for the iris aperture. The diameter
of the aperture is changed in this example from 50/4 � 12.5 mm to 50/8 �
6.25 mm.

Through comparing these two diameters, it is apparent that changing the
aperture by two steps changes the diameter by a factor of 2. The area of the
aperture changes by a factor of 4 (because the area of a circle is proportional to
the radius squared). Changing the aperture by one step changes the diameter
by a factor of 1.4:

2.8
2

� 1.4;
4

2.8
� 1.4;

5.6
4

� 1.4; and so on.

One step changes the area by a factor of 2:

1.4 × 1.4 � 2
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Depth of field
the range of object distances that produce

adequately focused images on film

adequate focus 

}}

depth of field

FIGURE 5.3 � Definition of depth of field.

Each single step in f/
changes the lens area twofold
and therefore also changes the
amount of light on the film by a
factor of 2.

Besides its primary function
of controlling the amount of
light entering the camera, the
value of the f number also
affects another aspect of the pic-
ture: the depth of field, defined
in Figure 5.3.

5.5 Depth of Field

Suppose you are taking a photograph of an object that is 4 m away from the
camera. If you want to take a good picture, you will naturally want to adjust
the lens so that the object is in perfect focus. Objects farther away and in
the background—say, 5, 7, 8, or more meters from the main object—will be
out of focus. These background objects will become increasingly more and
more blurred the farther they get from the main object you are focusing on.
The same is true of objects closer by and in the foreground—say, 3, 2, or 1
meters away from the main object. Now, if the f number is large (indicating a
small diameter), you will find that objects at both 10 m and 3 m are in accept-
able focus—both are not too blurred. Objects farther than 10 m or closer than
3 m, however, are blurred on the photograph. Therefore, we say that the field
extends from 3 to 10 m and that the depth of field is 7 m.

Large f numbers give large depths of field, and, conversely, small f num-
bers give small depths of field. The reason for this is easy to understand.
Consider an object whose real image is not on the film but behind it, as the red
man with the umbrella in Figure 5.4. This object is out of focus. The green
man is instead focused in front of the film, and his image is also blurry on the
plane of the film. If we focus on the green man, the red man will be completely
out of focus, and vice versa. The two resulting negatives will appear as shown
here, with one man in focus or the other but not both in the same photo. The
images are upside down, as always in cameras, and the colors are inverted on
the negatives shown here. Also, the faraway green man appears smaller in the
negative (magenta man).

As you can see, when taking a photograph with the aperture wide open
(Figure 5.4), both objects that are nearby and further away are in focus on
their planes of perfect focus. Notice how the green rays from the far object
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planes of perfect focus

Depth of field

FIGURE 5.4 � The red man and the green man are close and far, respectively. Only
one of them at a time can be in focus on the film, as shown in the two negatives. Notice
that there is no aperture, or the aperture is wide open in this camera. Also note that the
images on the negatives are upside down, as they always are in real cameras, and appear
in inverted colors: cyan for the red man and magenta for the green man. These are inverse,
complementary colors. The nearby red (cyan) man appears larger than the far away green
(magenta) man on the negatives.

(green man) cross on the first plane of perfect focus. By the time they reach
the film, however, they are diverging again, and the image of the green man
will come out as blurred on the film. The red rays from the close object (red
man) also converge on their plane of perfect focus. However, since this plane
is after the film, the image the film captures will also be bigger and blurred.
When closing the aperture (Figure 5.5), the planes of perfect focus do not
move—they are still in front and behind the film. The difference is that now
rays can only enter the lens at small angles from the optic axis. Traveling
at such acute angles, both the blue and magenta rays diverge very little. The
image of far and close objects is small enough on the film that the focus is
acceptable! The negative in this case shows both men in focus. In Figure 5.6
we show a striking example of the effect of a large or small depth of field on
the same field of flowers.

5.5.1 Why the f Number?
There is a perfectly reasonable question you may ask: “I understand why
you need an aperture to control the amount of light entering the camera, and
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larger f/

Depth of field

smaller lens aperture, larger depth of field

FIGURE 5.5 � Both men are in focus on the negative when using a small aperture
diameter, corresponding to a large f number.

I also understand that steps of 1.4 in diameter correspond to steps of a factor 2
in the area of the aperture, but why not simply label the aperture stop with the
different aperture diameters instead of talking about the mysterious f number?”

The answer is that the amount of light on the film that matters is not the
total but the amount of light per square millimeter on the film. You may
think of this as the density of light rays. The f number is useful to keep this
density constant. Therefore, the f number was not introduced to make the art
of photography more difficult but to simplify it!

Consider the example in Figure 5.7 to clarify this point. Imagine a piece
of paper with some orchids printed on it that is photographed by two lenses
with focal lengths of 35 mm and 70 mm (or simply by a single zooming lens,
allowing you to adjust the focal length from 35 to 70 mm—this is a very
common zoom).

All lenses with the same f/ transmit the same amount of light per unit
area of the film. This is quite convenient when you are using a zoom and
changing the focal length of the lens because you do not need to recalculate
or remeasure the exposure time with an exposure meter!

5.6 The Film

You can buy film of many types, made by many manufacturers. Let us start
with black-and-white (B&W) film for simplicity’s sake. Color film will be
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large depth of field
(large f/)

small depth of field
(small f/)

FIGURE 5.6 � These two photos were taken with different f numbers (and cor-
respondingly different exposure times). The top image shows flowers that are well
in focus in both the foreground and the background (nearby and faraway flowers, respec-
tively). In the bottom image, a smaller f number selected only flowers at a very specific
distance to be perfectly in focus. Flowers closer and farther than that distance appear
blurred. Reprinted with permission from Michael Wagner.

explained in more detail in Chapter 8. All B&W films are coated with an
emulsion of silver halide grains. Those grains that were illuminated turn into
metallic silver when the film is developed in the darkroom. The more light
strikes them, the more of them turn into silver. That is why the film produces
negative images. These negatives are then inverted again to produce positive
images when printed. Films differ by several properties:

• Spectral Sensitivity Some films are sensitive to blue and green light
only (called orthochromatic film), while others are sensitive to red light
as well (called panchromatic). The advantage of ortho film is that it can
be developed in the darkroom under a red “safety light” so you see the
progress of the development. There are even special types of film that
are made to be sensitive to the infrared or the ultraviolet wavelengths.
Most black-and-white films that you can buy are panchromatic. Color
films are obviously sensitive to all colors.

• Contrast Suppose that you take a picture of a person wearing a rela-
tively dark shirt that causes the light coming from the person’s face to
be ten times stronger than the light coming from the shirt. On the devel-
oped film will be a dark face (inverted!). If the image of the face on the
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f = 35 mm

film

same diameter
of lens aperture

f = 70 mm

film

FIGURE 5.7 � The illuminated area on the film is 4 times larger for the photograph
taken with the 70 mm lens. If I want the same illumination on the film as for the 35 mm
lens, I must have 4 times more light coming in through the lens. Therefore, the diameter
of the iris aperture behind the lens must be twice as large for the 70 mm lens as it is for
the 35 mm lens. In other words, the f number must be the same! You may switch lenses or
zoom in, and if you keep the same f number, you can keep the same exposure time.

film is ten times darker than that of the shirt, we say that the contrast is
normal. If the face is more than ten times darker than the shirt, however,
we say that the negative has high contrast, and if it is less than ten times
darker, we say that the negative has low contrast.

• Grain The size of the original silver halide crystals and the method of
development determine the final size of the silver specks that form the
negative image on the film. This size is called the grain size and corre-
sponds to the resolution or number of megapixels in digital photographs.

• Speed Different types of film require different amounts of light to
produce the same amount of darkening on the negative. A “fast” film
requires a small amount of light to darken the negative, while a “slow”
film requires a lot of light.

The speed of films is measured in ISO (International Standard Organi-
zation). Currently, ISO has been adopted in all countries and has replaced
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both A.S.A. units (American Standards Association) and DIN units (Deutsche
Industrie Norm). Figure 5.8 shows several ISO speeds that are commercially
available.

Notice that ISO rating is inversely proportional to the amount of light
required to produce a certain standard black on the negative image. Doubling
the ISO number by using a faster film allows you to reduce the amount of light
you need to let into the camera by 1/2.

It may seem as if it is always a good idea to buy the fastest film so you
can take photographs in dim conditions of light, but you have to be careful:
The fastest films (e.g. ISO 1000) have a much larger grain size. Therefore,
while the photograph printed on 4" × 6" paper might appear acceptable, if you
tried to enlarge it, it would appear grainy and have a low resolution. Fast films
also have lower contrast (lack of deep black) and lower tonal range—that is,
fewer levels of gray between black and white and fewer color tones in color
photography.

Interestingly, the film speed is a useful concept not only when using
film, but also for digital cameras. Most digital cameras, in fact, allow the
photographer to select the ISO. Selecting higher ISO on a digital cam-
era, just as in film photography, enables photographs to be taken in dim
conditions of light. In this case the resolution is inferior, as for film,
because of “binning”—that is, the amount of light/unit area on the charge-
coupled device (CCD) is artificially increased by increasing the “binned”
area. If 2 × 2 pixels are binned together, the amount of light will be
four times greater and so on. In other digital cameras the resolution is not
decreased, but the gain (amplification) is increased, so there is greater pixel
noise.

Film speeds (ISO)

50     100     200     400     800     1600   3200

they also vary by factors of 2

slow film fast film

Film speed, Sensitivity (equivalent to “more light” on film) 

FIGURE 5.8 � The film speed varies by factors of 2. A fast film has a large ISO number
and needs less light, but has larger grain.
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5.7 Digital Photography

Digital photography has been embraced by artists, professional photographers
and photojournalists, and, of course, by the amateur “point-and-shoot” pho-
tographers. Digital photography is no longer in its infancy, and its resolution
satisfies the needs of many professional photographers and artists. Large-format
digital sensors with 30 or more megapixels are now available. Film-based pho-
tography, however, and in particular large-format cameras with film sizes
between 4" × 5" and 8" × 10" are still favored by landscape photographers.
These cameras can reach an image quality considerably beyond that of the best
digital cameras. The wonderful large silver-prints of nature photographs of the
American South-west by Ansel Adams, printed from negatives and taken with
a large-format camera, are unsurpassed.

Conventional films still have a considerable advantage when comparing
the overall resolution, contrast, and tonal range of an image.

Despite the current inferiority compared to film photography, in many
instances the loss in image quality is so small and the digital cameras
are so convenient to use that more and more people are abandoning film
photography—the authors of this book included! The conveniences of digital
photography are very appealing. You don’t have to buy film, develop nega-
tives, print the photographs, store them, and in the end rarely have them handy
when they are needed. It is so much easier to simply transfer the files to a
computer, process, enhance and modify them as you please, and have them
available at all times, stored in the small volume of a computer. We therefore
look forward to further progress in the resolution, contrast, and tonal range of
digital photography.

The film photography industry is certainly trying very hard to compete
with the digital world. Films today are substantially better than the ones avail-
able only ten years ago. Several companies are currently experimenting with
a new type of color film that could, in the near future, become ten times faster
than current films without too much loss in color fidelity, resolution, or con-
trast. Continued research will lead to further improvements, and these may
keep film photography competitive with digital alternatives. Film and digital
photography now complement each other, and they may continue to do so,
allowing them to coexist and provide photographers, artists, and other camera
buffs with many choices for taking a picture.

Obviously, digital cameras do not require a film and instead use a charge-
coupled device (CCD) to capture the image and then transfer it to a magnetic
memory card. The sensitivity of CCDs, however, is still measured in ISO and
can be changed by the user, so all we say about photography here applies to
both film and digital photography.
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5.8 Putting it All Together: Taking a Photograph

As we have seen, there are three numbers to take into consideration to capture
a good photograph: the exposure time the f number, and the film speed.
Figure 5.9 summarizes the values possible for each of these.

For each one of these three parameters, the most relevant variable is the
amount of light on the film, or illumination I, that results. The arrows in
Figure 5.9 indicate the directions in which I increases as you change each
variable. Again, whenever varying the exposure time, the f number, or the
film speed by one step, I varies by a factor of two. This is quite convenient
because it greatly simplifies all the calculations to be done before taking a
photograph.

Once you have the film in the camera, the film speed cannot be changed.
You are left with only the exposure time T and the f number f / to alter, or
to “play with” if you really like photography! The total amount of light I that
falls on the film depends on

I � L×T

(f /)2

where L is the amount of light reflected by the object being photographed and
transmitted by the camera lens.

f/1   1.4   2   2.8   4   5.6   8   11   16   22   32   45
I increases by factors of 2

1   1/2   1/4   1/8   1/15   1/30   1/60   1/125   1/250……..
I increases by factors of 2

1. The exposure time

2. The f number

3. The film speed

50     100   200     400     800 1600     3200 

slow film fast film

Film speed, Sensitivity (equivalent to “more light”) 

FIGURE 5.9 � Taking a photograph, while considering all relevant parameters: the
exposure time, the f number and the film speed.
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Remember, the f number of the lens is given by f / � f
Diameter .

For an example, let us assume that we are taking pictures outside. Since
we cannot change the amount of sunlight reflected from the object toward the
lens, all we can play with is T and f /. A picture taken at 1/60 sec and f /8 will
have the same exposure as one taken at 1/250 and f /4. Here is why:

1/60 → 1/125 → 1/250 is two steps less light on film

8 → 5.6 → 4 is two steps more light on film

Decreasing the exposure time from 1/60 to 1/250 decreases the amount of
light by a factor of 4. To compensate, we open the aperture by two stops,
increasing the lens area by a factor of 4.

Are these two pictures the same? The answer is no. The picture with f /8
(the larger f /) has a larger depth of field, and a tree 3 m away and a mountain
1000 m away would both be in focus. However, a child jumping off the tree
would be blurred because of the long exposure time. In the second picture
with the smaller f / and shorter exposure time, the child would not be blurred,
but the mountain in the background would be.

When taking a photograph, a larger f number requires a longer expo-
sure time. This is because a large f / gives less light on the film. This has
the advantage of an increased depth of field, but with the longer exposure time
it is not possible to photograph movement effectively. A short exposure time
gives less light on the film but has the advantage of capturing movement much
better. Figure 5.10 summarizes all parameters. This diagram is fundamental
for taking good photos and to solving any photography problem.

A handheld exposure meter or the built-in exposure meter of a digital
camera tells a photographer which settings will be best in the particular con-
ditions of light measured. The exposure meter gives the photographer two
numbers (or sets of two numbers): an f / and a corresponding exposure time.
However, the photographer is not bound to use those settings only. She may
use any other combination of f / and T that produces the same, ideal amount
of light on the film. If she increases the f /, she’ll obtain a better depth of field,
but she will also need to increase the exposure time. The same applies to cap-
turing movement: If she shortens the exposure time to better catch motion, she
must also lower the f /.

This is why commercial handheld exposure meters always give many
combinations of f / and T . Depending on the meter one can set 1, 2, or 3
steps of overexposure or underexposure. Autoexposure digital cameras (in
auto mode) give only one particular combination of f / and T . More sophis-
ticated digital cameras give different combinations depending on the “scene”
setting.
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f/1   1.4   2   2.8   4   5.6   8   11   16   22   32   45

I increases by factors of 2
Less light on film

BUT: increasing depth of field

T = 1   1/2   1/4   1/8   1/15   1/30   1/60   1/125   1/250…

I increases by factors of 2
Less light on film

BUT: captures movement better

FIGURE 5.10 � The fundamental diagram to take good photographs.

Furthermore, in modern cameras, one can select “exposure time prior-
ity” or “aperture priority.” This means that one chooses T , and the camera
automatically adjusts f /, or vice versa.

This combination (or combinations) of f / and T represent a “good set-
ting” for a photograph, as measured by the exposure meter. Starting from the
measured “good setting,” you can calculate other settings—for example, to
give priority to short exposures or to large f /, depending on the photograph
you wish to take. Starting from the numbers suggested by the exposure meter,
to adjust these settings we must move to the right on the sequence of f / and
to the left on the sequence of exposure times (Figure 5.10).

Let us look at an example.
An exposure meter tells us that the “good settings” for taking a photograph

are f /22 and exposure time T � 1/30 second.

f/1   1.4   2   2.8   4    5.6   8   11   16   22   32    45

T = 1   1/2   1/4   1/8   1/15   1/30   1/60   1/125   1/250 … 

However, since we do not have a tripod with us, we actually need to
choose a much shorter exposure time T to avoid blurring of the photograph—
say, 1/250 sec instead. (Remember, natural shaking of one’s hand causes a
photograph to be blurry if T is longer than 1/60 sec.)

With this alteration, we have moved three steps to the right on the exposure
time sequence (three steps less light on the film, or 2 × 2 × 2 � 8 times less
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f/1   1.4   2   2.8   4    5.6   8   11   16   22   32    45

T = 1   1/2   1/4   1/8   1/15   1/30   1/60   1/125   1/250 … 

light). Therefore, we must compensate by moving three steps to the left on the
f / sequence (three steps more light). The new photograph is now taken with
f /8 and T � 1/250 sec. The disadvantage from this change is a smaller depth
of field, but an advantage is that we don’t need a tripod and we can photograph
action better.

Let’s now consider a slightly more complicated case, in which all three
parameters are changed.

The ambient light conditions determine that a good photograph is taken
with 1600 ISO film, f /5.6, and T � 1/125 sec.

f/1   1.4   2   2.8   4   5.6   8   11   16   22   32   45

T = 1   1/2   1/4   1/8   1/15   1/30   1/60   1/125   1/250 …

ISO 1600 

However, we really want a better depth of field than that given by f /5.6.
For the depth of field we want, we need to increase the f / to f /8. However,
we also ran out of film, and the only film in our bag is 200 ISO. This is a
much slower film, and it requires much more light than the 1600 ISO film that
we were using before. This decreased sensitivity of the film is conceptually
equivalent to “less light on the film,” and therefore we have to compensate for
this loss by increasing the amount of light from one or both of the other two
parameters.

In total, from these changes we took 3 steps less light by changing
film speed and 2 steps less light by changing the f /. Therefore, we must
compensate by increasing the exposure time T by 5 steps (5 steps more light).
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f/1   1.4   2   2.8   4   5.6   8   11   16   22   32   45

T = 1   1/2   1/4   1/8   1/15   1/30   1/60   1/125   1/250 …

1600 ISO 200 ISO 

The new exposure time is T = 1/4 sec.
The disadvantage from this T is blurring when the camera is handheld.

5.9 Questions

1. What does the term film speed (fast or slow film) refer to? Why don’t
photographers always use fast film?

2. What is the meaning of the term exposure time?
3. What is the meaning of f number?
4. What is meant by depth of field?
5. A photograph taken with 1/60 second and f /8 gives the proper expo-

sure. What f number is needed if the exposure time is changed to 1/250
second?

6. A photograph taken with 1/250 second f /1.4 gives the proper expo-
sure. What f number is needed if the exposure time is changed to 1/30
second?

7. A photograph taken with 1/60 second and f /11 on ISO 100 film gives
the proper exposure. What f number is needed if the film is changed to
ISO 400 and the shutter speed is kept at 1/60 second?

8. A photograph taken with 1/60 second, f /11 on ISO 200 film gives the
proper exposure. What f number is needed if the film is changed to ISO
400 and the exposure time is kept at 1/60 second?

9. A photographer takes three pictures of traffic on University Avenue, with
the following exposure:

(a) 1/60 sec f /16
(b) 1/500 sec f /5.6
(c) 1/125 sec f /16

How do these pictures compare with each other?
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10. You want to take a picture of your friend, and you want the landscape
behind him to be sharp. Which of the two exposures would you choose,
a or b?
(a) f /22 1/3 sec
(b) f /5.6 1/250 sec

11. A photograph is taken at 1/ 30 second and f /2 on ISO 100 film. What
shutter speed should be used with ISO 800 film at f /4?

12. Most 35 mm slide projectors have lenses with a focal length f = 5 cm.
The f / of a good projector is about f /2.

(a) If the screen is 3 m from the lens, how far is the slide from the
lens? How large is the picture on the screen if the slide is the usual
35 mm × 24 mm?

(b) How large is the diameter of the lens aperture? Is an f /2 projector
lens always better than an f /4 projector lens? Explain.

13. A photograph taken with 1/60 s and f /16 gives the proper exposure.
What f / is needed if the exposure time is changed to 1/125 second?

14. A photograph taken with 1/60 s and f /11 on ISO 100 film gives the
proper exposure. What f / is needed if the film is changed to ISO 400
and the shutter speed is kept the same?

15. A photograph taken with 1/60 s and f /11 on ISO 200 film gives the
proper exposure. What f / is needed if the film is changed to ISO 400
and the shutter speed is changed to 1/30 second?



� Chapter 6

Color and
Color Vision

6.1 Color

White light is a mixture of light of many different wavelengths. If you
use a prism or a diffraction grating to break white light from the sun
into its components, you see a sequence of colors that varies from red to
violet.

The prism separates the different colors because the index of refraction
n is slightly different for each wavelength—that is, for each color. This phe-
nomenon is called dispersion. When white light illuminates a prism, the colors
of the spectrum are separated and refracted at both the first and the second
prism surfaces that light encounters. Refracted rays are deflected toward the
normal on the first refraction and away from the normal on the second. If
the prism is made of crown glass, the index of refraction for violet rays is
(n400 nm ) � 1.53, and for red rays, it is n700 nm � 1.51. From Snell’s Law,
we know that the greater the index of refraction, the more the rays are
deflected. Therefore, violet rays are deflected more than red rays, as shown in
Figure 6.1.

FIGURE 6.1 � Dispersion from
a prism.

The infinite array of colors in the real
spectrum (top panel of Figure 6.2) are
called spectral colors. Of this infinity of
continuously varying colors, the human
eye can distinguish fewer than one million
colors. The second panel is a simplified
version of the spectrum, with abrupt and
completely artificial separations between
colors. However, in speech, we do iden-
tify quite a broad range of wavelengths

82



Section 6.1 Color 83

UV IR
real spectrum

vi
ol

et

40
0-

43
0

blu
e

43
0-

48
0

cy
an

48
0-

50
0

gr
ee

n

50
0-

57
0

ye
llo

w

57
0-

58
5

or
an

ge

58
5-

62
0

re
d

62
0-

70
0

FIGURE 6.2 � The colors of the spectrum. In the simplified spectrum the range of wave-
lengths corresponding to each color is expressed in nanometers (nm). Notice the presence
of cyan, or blue-green, or turquoise, which is usually very evident in the spectrum, and
the absence of indigo, a color that this author has honestly never observed in the natural
spectrum.

as red, another as orange, and so on. Each range produces a specific
sensation detected by our eyes, and the accurate wavelength ranges for
each color are reported in the second panel of Figure 6.2. An even more
extreme simplification is shown in the third panel of Figure 6.2. It is com-
prised of only three colors—Red, Green, and Blue—and is commonly used
by computer monitors and TV sets. In these cases the three colors are
combined to produce a wide range of colors, as explained in Chapter 7.
You may notice that many colors you know from everyday life are not
present, even in the most complete sequence of spectral colors of the top
panel. Purple, magenta, and mauve are one class of colors that is miss-
ing from the spectrum. Other missing colors are all the browns and earth
colors, olive and hunter greens, and all the pastel colors, such as pink,
cyclamen, eggshell, aqua, sky-blue, beige, and so forth. These are mixed,
low-intensity, and low-saturation colors, respectively, as will be described
later.

It is interesting to look at the light produced by different kinds of
light sources through a diffraction grating or with a spectrophotome-
ter. This allows us to observe what wavelengths are present and in
what proportions. The light from a standard lightbulb shows all the
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FIGURE 6.3 � Emission spectra
from sunlight, a fluorescent ceiling
light, an incandescent 25W lightbulb,
and a 50W halogen bulb. Reprinted
with permission from P.U.P.A. Gilbert
and W. Haeberli, American Journal of
Physics, 75, 313–319 (2007). Copy-
right c© 2007, American Association of
Physics Teachers.

spectral colors, but the blue and
violet are less intense than in sun-
light or the light from a halogen lamp
(Figure 6.3). If one decreases the cur-
rent flowing through the lightbulb, the
filament becomes colder and the light
emitted becomes dimmer and appears
more yellow. When this light is ana-
lyzed with the spectrophotometer, it is
evident that violet and blue have dis-
appeared from the spectrum, explain-
ing why the light appears to be more
yellow.

On the other hand, if you use a
diffraction grating or a spectrophotome-
ter to analyze the light coming from a
neon discharge tube, you will find that
only certain colors are present. You see
many red lines, two or three orange
lines, a yellow line, two faint green lines,
and a few faint blue lines.

6.2 Color Sensitivity of the Eye

The human eye and its components were discussed at length in Chapter 4.
The light-sensitive retina, found at the back of the eyeball, contains cone
and rod cells. The rods provide low-resolution, peripheral vision and func-
tion well even in dim light, while the cones provide color, high-resolution,
central vision and can only function in bright light. You can do an interesting
experiment: Make the lighting in a room very dim, and wait until your eyes
get used to the dark (dark adaptation). Now you can see things again, but you
will see no colors!

We will focus on the color-sensitive cones because their functioning
explains the perception of colors and color mixing. Studies on color vision
indicate that there are three types of cones: Let us call them Types I, II, and III.
They are sometimes called blue-, green-, and red-sensitive cones, but this is
not accurate. Blue, green, and red are not the only colors to which these cones
are sensitive. The sensitivity curves of the three types of cones are shown in
Figure 6.4.

The sensitivity curve captures how the neural response changes in intensity
in response to changes in the wavelength of incoming light (when the intensity
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FIGURE 6.4 � The sensitivity curves for the
three types of cones in the human eye.
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FIGURE 6.5 � Response of the Type II cones
to 4 different colors: A (cyan, with a wavelength of
500 nm), B (green, 522 nm), C (orange, 590 nm),
and D (yellow, 580 nm).

of the light is kept constant).
A different neural response
means that a different num-
ber of nerve pulses per sec-
ond is transmitted by the cones
in the retina to the neuronal
axons in the optic nerve and
the visual cortex at the back
of the brain. In Figure 6.4, the
three types of cones are labeled
with Roman numerals and not
with usual color names in order
to stress an important point:
All three types of cones are
sensitive to a broad band of
wavelengths. In other words,
they are sensitive to many col-
ors. Cones of Type I are sensi-
tive to violet, blue, and green
light, Type II are sensitive to
blue, green, yellow, orange,
and red light, and Type III to
green, yellow, orange, and red
light.

The information that cones
send to the optic nerve is
simply a succession of elec-
tric pulses. The rate at which
pulses are sent depends both
on the intensity of the light
and its wavelength.

Consider four different col-
ors, as reported in Figure 6.5:
A (cyan, with a wavelength of
500 nm), B (green, 522 nm), C
(orange, 590 nm), and D (yellow, 580 nm). From the sensitivity curves
of Figure 6.4, you can read the responses of Type II cones. Notice that
the responses are identical for A and C and for B and D. If you only had
Type II cones, you would not be able to distinguish cyan from orange or
green from yellow. By having the three types of cone cells, the brain com-
bines the responses from each type and is able to interpret many more
colors.
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FIGURE 6.6 � The same 4 colors of Figure 6.5
are now seen with all three types of cones, and can be
distinguished.
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FIGURE 6.7 � Take a green and a red laser pointer,
with wavelengths respectively 532 nm and 633 nm. Point
both of them to the same spot on a white wall. The spot
will stimulate a response in your cones of 0, 17, and 17
in the three types of cones, respectively.

The magenta dots in
Figure 6.6 indicate the
response of all three types
of cone cells. Both col-
ors A and C generate a
response of 8 on Type
II cones, but at the same
time, A generates only 3
on Type III cones, while
C generates 17. In addi-
tion, A also stimulates a
small reaction on behalf
of Type I cones. No such
reaction is present for C.
The brain receives a set
of these three numbers:
the responses of cones
of Types I, II, and III.
Processing this informa-
tion, the brain can there-
fore distinguish A and C.
This interpretation takes
place instantaneously, as
you can see and distin-
guish the colors as soon
as you see them!

Most of the brain vol-
ume is used to interp-
ret visual input. This tells
you how complicated it
must be! Despite the com-
plexity of the system,
there is a problem asso-
ciated with having only
three types of cones:
Some ambiguities occur.

Figure 6.7 shows a good example of the ambiguity generated by having
only three types of cones. Consider two lights of wavelengths 532 nm and
633 nm. These are green and red lights. If you project these two lights onto a
white screen (you add them), the brain will interpret them as the sum of the
responses of all three types of cones. The response of Type I is negligible. For
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Type II it is 17, and for Type III it is 9 + 8 � 17 (see the magenta dots in
Figure 6.7).

Let us now look at a third light of wavelength 570 nm, which is yellow
(Figure 6.8). This generates a response of both Types II and III. These
responses are identical to the ones obtained previously from the sum of
green and red. That is why when you add red and green lights, the eye
perceives the resulting light as yellow even if no yellow wavelengths are
present!

Type III in Figure 6.8. Analyzed with a spectrograph, the mixed yellow has
two wavelengths (532 nm and 633 nm), and the spectral yellow has only one
wavelength (570 nm). Despite this spectroscopic difference, the eye cannot
tell the difference between one light of 570 nm and the sum of two lights of
532 nm and 633 nm! Perhaps if we had 4 or more types of cones we would
not have such ambiguities in our vision. On the other hand, more types of
cones would require more volume of the brain to be used for vision, and this
might have a negative effect on our other skills. Even worse, if we did not
have these ambiguities, we would not be able to mix colors as easily! Then we
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FIGURE 6.8 � Yellow light at 570 nm generates a response of 0, 17 and 17 in the
three types of cones. This is identical to the sum of the red and green lights in Figure
6.7. This is why red plus green gives yellow. Note that the red and green to be added
to give yellow do not have to be single-wavelength lights like the laser pointers of this
example. Broad-spectrum red or green beams, as those filtered through colored glass win-
dows in Gothic cathedrals, or simply flashlights beaming through red and green filters to
the same spot produce yellow. If you are using sun as a source of light for this experi-
ment all beams are parallel and you can’t make the red and green lights overlap. You may
use two converging lenses, or one small mirror to direct both red and green beams to the
same spot.
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could not have such a simple coding system for RGB color TV, computers, and
projectors, and we would have much more difficulty mixing pigment colors.

Cats have very poor color vision because they have very few cone cells.
Their eyes are optimized in several ways for night vision. Since cone cells only
function in bright light and cats are nocturnal animals (more active at night),
they have evolved to have a majority of rod cells that work well in dim illumi-
nation. Other differences between our eye and a cat’s eye are summarized in
Figure 6.9.

Cat’s eyes have vertical slits as pupils that can open up much more (at
night) and more easily than the radial and circular iris muscles of a human’s
circular pupil. A larger aperture has higher luminosity because more light
can go through the lens, but it also has the disadvantage of a small depth of
field. The lowest f / (fastest lens, highest luminosity) for camera lenses is f /1,
for the human eye f /2.4, for an owl, another night predator, f /1.3, and for a
cat, the f number is f /0.09. The cat also has a tapetum (Latin for “carpet”), a
layer of reflecting cells at the back of the retina. The retina is semitransparent,
and it does not absorb all the light that illuminates it. Part of the light is trans-
mitted through the retina and is simply lost. Night animals have the tapetum
to reflect that portion of the light back into the retina. The tapetum is located
immediately behind the retina, and therefore the reflected rays do not go out of
focus much, allowing the rods in the retina to have a second chance to detect
them.

f/1fast camera lens 
f/2.4human eye
f/1.3owl eye

f/0.09cat eye

tapetum

cat´s eye is optimized to see in dim light

has a tapetum to reflect light back to the retina
has a majority of rod cells (few cone cells)

has small f/ (vertical slit instead of round pupil,
for larger lens aperture D)

FIGURE 6.9 � A cat’s eye.
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FIGURE 6.10 � Bees do not see red, but see in the ultraviolet.

Many people believe that snakes can see infrared light, but this is not true.
Snakes do sense the heat irradiated (infrared) by their prey at night through
their tongue, but they do not see it. One exception is the rattlesnake, which
has an infrared pinhole system that allows it to actually see infrared light.
Dogs and flies see colors just as humans. Bees do not see red but do see
ultraviolet light, which humans cannot see. To attract bees, some flowers have
structures on their petals that are only visible in the ultraviolet, and we cannot
see (Figure 6.10).

Many other insects perceive UV light, as do birds, lizards, turtles, and
many fish. All these animals have a fourth type of cone in their retina,
which we humans completely lack. We do not have, by any means, the most
sophisticated eye in the animal kingdom!

A more direct way of studying how our eyes perceive color is to analyze
the addition of lights, or additive color mixing. This is described in detail in
Chapter 7.

Before starting to add lights, let’s introduce a few criteria and definitions
that will be useful to understand how colors are mixed.

6.3 Physical and Psychological Color

The physical, measurable color and the perceived, psychological color are
different. An example of a physical color is spectral yellow in sunlight or from
a sodium lamp. This is a color which is comprised of only one wavelength,
also known as a spectral color.
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A psychological color, or hue, can be a single wavelength or a
superposition of different wavelengths. Think of yellow: The color we see
can be a spectral yellow with a dominant single wavelength of 570 nm or the
superposition of red and green lights with two different wavelengths, it could
even be a broadband spectrum that appears to have the same color as 570 nm
spectral yellow. All these yellows are metamers: they have different physical
origins but generate the same perceived color for the normal eye.

Before we can discuss color further, therefore, we need to establish an
accurate definition of color.

6.4 Color: Hue, Saturation, and Brightness

The physical parameters of light are not sufficient to accurately describe the
color we see. A psychological response to the physical stimulus generates the
visual sensation. Color is therefore best described by psychophysical para-
meters, which we will call hue, saturation, and brightness. Here all three, and
their synonyms and antonyms, are defined.

Given any color, a matching color that appears to the normal retina identical
to the color in question is obtained by combining light of a single wavelength
with white light.1 The wavelength of the matching color is called dominant
wavelength. The corresponding attribute of visual sensation is called the hue
(or simply color). The fraction of white light is called saturation. Saturation is
also known as purity. High-saturation colors require a small fraction of white in
the matching color, low-saturation colors require a large fraction of white. The
latter are pale pink, sky blue, pale yellow, beige, and all those colors commonly
called pastels. The adjectives saturated and pale are therefore antonyms. To
match those colors, the matching color requires a large fraction of white. Some
authors define saturation in paints and pigments to be the parameter related to
the amount of black, but we do not see a reason for such distinction. Brightness
(also known as lightness) is the parameter of a color according to which an
area appears to emit more or less light. The adjectives bright and dark (or
light and dark) are therefore antonyms. In the literature there is a preference
to use the term brightness for luminant (light-emitting) sources and lightness
for illuminated (light-reflecting) surfaces.

Hue, saturation, and brightness are considered psychological parameters
by other authors and are deemed to be nonmeasurable. The computer industry,
however, has made the decision of adopting these three terms (abbreviated

1This definition does not apply to magentas and purples. Because magentas and purples are
non-spectral colors, they can be matched by the wavelength of their complementary color. See
non-spectral colors in Chapter 7.
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HSB) to quantitatively and reproducibly describe colors. We therefore think
it wise to adopt these three terms that, although not perfectly in line with
previous physics publications, are in good agreement with every day language
and with current technology.

Psychologically, pure yellow (0% white) appears to have low saturation
and seems to be lighter, while red, green, and blue appear to have high sat-
uration, and seem to be darker and fuller colors compared to yellow. This is
due to the higher sensitivity of the Types II and III cones in the yellow region
(either single wavelength or broad-band yellow at 500–700 nm), compared to
other wavelengths. There is no physical correspondence to this impression,
which is entirely due to the physiological response to light and colors, not to
the actual intensity or saturation of the physical color observed.

The intensity of the physical color corresponds to the brightness of the
psychophysical color. The perceived, psychological brightness cannot be
measured. It is proportional to the logarithm of the intensity, but it varies
dramatically from person to person, and even for the same person, depend-
ing on the surrounding illumination and the adaptation of the eye to both
color and light intensity. If the eyes are dark-adapted—that is if they’ve
been in darkness for a few minutes or longer—when the light is turned on
again, a dim color may appear brighter than it does when the same eyes
of the same person have not been dark-adapted. The physical intensity of
that color, which is a measurable quantity, remained unchanged in both
conditions.

The perceived brightness of a color also depends on the surrounding illu-
mination. A snowball indoors is perceived as white, and a piece of coal
outdoors under sunlight illumination is perceived as black, even though the

Edward H. Adelson

FIGURE 6.11 � The checker shadow illusion.
Reprinted from Edward H. Adelson. Copyright c© 1995.

snowball indoors scatters
much less light than the
coal outside! Brightness
debreak pends on the envi-
ronment surrounding the
object being observed. In
bright sunshine a black
object can still reflect a
large amount of light,
but since everything else
around it reflects more, it
is perceived as black. This
effect does not only take
place under intense sun-
shine. Observe the chec-
kerboard in Figure 6.11.
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The squares marked A and B are the same shade of gray. To check
this, cover the figure with a piece of paper with two holes punched to
show only the areas A and B. B appears much lighter than checker A
because it is surrounded by darker shades of gray. You can find this and
many other similar illusions on Edward H. Adelson’s website at MIT:
http://web.mit.edu/persci/gaz/.

6.5 Light Interaction with other Objects

The light illuminating objects can be any of the following:

• Absorbed
• Specularly reflected
• Scattered or diffusely reflected (synonyms)
• Transmitted and refracted
• Combinations of the above

If light from a light-bulb illuminating an object is completely absorbed by
that object, no light is reflected, such as when the object appears black. If only
some wavelengths of light are absorbed and others are scattered, the object
will appear colored. If light is specularly reflected, such as when the object
is an aluminum or silver mirror, the light does not change color at all and is
reflected in one very specific direction, defined by the law of reflection (i � r,
as described in Chapter 2). In this case, the virtual image of the object can only
be seen from a very specific position. Conversely, when light from the light-
bulb is scattered by the object, it bounces back in all directions, and the object
can be seen from any angle. If the object is transparent, light will be also trans-
mitted and refracted. The most common situation is to have a combination of
absorption and scattering of different wavelengths. This generates the colors
of all objects surrounding us. If the objects are smooth and shiny, they are
also specularly reflecting a portion of the light. Let us now look at the specific
details of these situations.

6.6 Scattering or Diffuse Reflection

Scattering (or diffuse reflection) takes place when light illuminates an
object that does not have a perfectly smooth and flat surface. We have seen
that in specular reflection, such as reflection from a mirror or a shiny smooth

http://web.mit.edu/persci/gaz/
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object, the angle of incidence is equal to the angle of reflection. In diffuse
reflection this is not the case. In fact, an object can have any kind of surface
roughness, texture, or finish, and we can usually see it from all angles.
Light illuminating any non-mirror object is scattered in all directions away
from the object. The scattered light rays are then visible from all angles, all
around the object.

In most cases, the conditions needed for specular reflection are satisfied
at the microscopic level, but there are so many different microscopic surface
orientations on a rough, non-mirror-like surface that the end result is light
bouncing off in all directions.

For simplicity’s sake, we can divide all the colors in white light into three
spectral ranges: blue, green, and red, as shown in Figure 6.2. We are therefore
neglecting the spectral orange, violet, yellow, and blue-green or cyan. This
is an oversimplification in some cases, but it is useful and can be applied to
most real-life situations and produce accurate results. In the examples follow-
ing and throughout the remainder of this book, we will use this simplified
spectrum.

A black object, such as a piece of lava rock, absorbs most of the light
intensity when illuminated by white light. A very small amount of light is scat-
tered, and from that small amount we can tell the shape and size of the rock.
Our eye can see the small amount of light, perceive its very low brightness
compared to the colors of the surrounding environment and to the illuminating
light, and interpret the color as black. All colors in white light (red, green, and
blue) are absorbed equally by the black rock, and a small proportion of each
one, in equal amounts, is scattered.

A white piece of paper or a snowball behaves in a very similar way: All
colors are equally reflected. The difference is that in this case, no light is
absorbed. All the illuminating light is scattered. The blue, green, and red
components are reflected in equal amounts, our eyes see the high brightness,
and both the paper and the snowball appear white.

All colored objects absorb certain wavelengths and scatter others. The
apple in Figure 6.12 appears red because, when illuminated by white light, it
absorbs green and blue and scatters red light only.

A lemon appears yellow because it absorbs blue light and scatters red and
green light. Our eyes perceive these red and green wavelengths, we add them
together, and interpret the lemon’s color as yellow. We can also think about the
color perceived in another way: An object appears as the color complemen-
tary to the color it absorbs. In other words, a lemon appears yellow because
it absorbs blue, the complementary color to yellow. Furthermore, the lemon
appears shiny on the surface (see Figure 6.13) because a small portion of the
light (white light!) is specularly reflected. The same goes for the apple in
Figure 6.12.
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FIGURE 6.12 � An apple is red
because it absorbs green and blue, and
scatters (diffusely reflects) red. It is also
shiny, thus in the areas accurately posi-
tioned for the apple surface to undergo
specular reflection with respect to the
observer’s eyes, it appears as a mirror:
white light illuminates it, white light is
reflected.

FIGURE 6.13 � A lemon appears
yellow because it absorbs blue, the color
complementary to yellow. It also reflects
white light in the area that satisfies the
condition for specular reflection.

FIGURE 6.14 � Three colored light
beams, red, green and blue, overlap two
at a time to form cyan, magenta and yel-
low. Colors at opposite ends of this dia-
gram are complementary colors: red and
cyan, green and magenta, blue and yel-
low. Where all three colors overlap the
resulting color is white.

The complementary colors are

cyan ⇔ red
magenta ⇔ green

yellow ⇔ blue

They appear on opposite sides of
the diagram in Figure 6.14. There
is a simple rule to memorize the
complementary colors: The most
commonly used sequences are
RGB and CMY (e.g., RGB mon-
itors or CMY ink cartridges). Col-
ors in the same positions in these
sequences are complementary.

It is interesting to note that
Descartes in 1630 attributed the
color of an object to a change in
the illuminating light when this
is reflected by the object. This
is exactly what we now know is
the correct interpretation of color.
A red apple is red because it
absorbs all colors in the illuminat-
ing light except for red and scatters
red. The illuminating and scat-
tered lights, therefore, are differ-
ent, exactly as Descartes intuition
predicted.
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Scattering also depends on the size of the scattering illuminated particles.
If scattering particles are larger than the wavelength of light, the scattering is
the same for all wavelengths (all light colors). If the particles are smaller, the
scattering is wavelength dependent. Let us see a few cases in which scattering
produces interesting effects.

Water is almost completely transparent. But then, why does water in a
Baroque fountain or a waterfall appear white? This phenomenon is an effect
of scattering. The water particles—that is, the droplets in the waterfall—are
much larger than the wavelength of visible light (400–700 nm). Therefore,
light scattering is wavelength independent. This is also called Mie scatter-
ing. If white light is illuminating the waterfall, white light is scattered in all
directions by the water droplets. Since all colors (wavelengths) composing
white light are scattered equally, we see the waterfall as white. The same
wavelength-independent scattering is responsible for the whiteness of the
clouds. The ice crystals and water droplets that form clouds are larger than
the wavelengths of light, so they appear white.

Let’s talk some more about scattering: Why is the sky blue? Air, with very
good approximation, is transparent, so why does a lot of air (the sky) appear
blue? In this case, the air particles (76% nitrogen molecules and 21% oxygen
molecules) are much smaller than the wavelength of light, and this causes the
scattering to be wavelength dependent. This is also called Rayleigh scattering.
The amount of light undergoing Rayleigh scattering is proportional to 1/λ4,
where λ is the wavelength of light. Therefore, blue light, which has the short-
est wavelength (400–500 nm), is scattered more than green (500–600 nm) and
red light (600–700 nm), and the sky appears blue. Although blue is scattered
more, all wavelengths are scattered. This is why the sky is light blue (in fact,
sky blue = unsaturated blue = white + blue).

Sometimes the sky is very light blue; other times it is a much more sat-
urated blue. Wavelength-independent Mie scattering from water droplets in
mist or haze desaturate the sky color. In dry climates the sky is always more
saturated. Figure 6.15 clarifies the geometry of direct sunlight and scattered
light from the sky.

Imagine light from the sun coming toward you. Along the way it
encounters air molecules in the atmosphere and bounces off of them at all
angles. Then, the blue light, which was scattered more than green and red at
the first bounce, continues to bounce off other air molecules again and again.
The whole sky becomes illuminated homogeneously as blue. In the absence
of an atmosphere to scatter light, the sky would not be illuminated at all, and
it would appear black. This is the case for the moon, which does not have
an atmosphere. On the moon, with no light scattering from air molecules,
areas that are directly illuminated by the sun (in line of sight of the sun) are
extremely bright and the shadows are completely dark.
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from
sun

red
yellow blue

FIGURE 6.15 � Formation of the blue sky and red sunrise or sunset by scattering in
the atmosphere. Redrawn and adapted with permission from K. Nassau, The Physics and
Chemistry of Color, Wiley, New York, 2001.

Fog and mist, as clouds, are formed by water droplets larger than the
wavelength of light (usually 1000 nm or larger), so they scatter wavelength-
independently and appear white. Manufacturers of automobile fog lamps,
however, sometimes make these produce yellow light, so that less scattering
occurs from the smaller droplets that are also present.

Why is the ocean blue? It is by no means true that the ocean is blue because it
reflects light from the sky. This can easily be proved on the surface of still water
(e.g., in a swimming pool) with an external source of light and a polarizer fil-
ter. It is also not true that blue in water and ice is a result of scattering. Although
some scattering is certainly present, the amount of scattering-generated blue is
orders of magnitude lower than the color generated by water absorption. The
answer is simple: The ocean is blue because water is blue, or cyan, to be per-
fectly accurate. The red part of the spectrum is absorbed by water, leaving blue
and green (which are not absorbed) to be scattered. Not by chance, aqua is
a blue-green color (blue-green = cyan and is complementary to red). Water
absorbs red, so it appears cyan. The same is true for the pale cyan color of
bulk ice, such as in glaciers or icebergs. A green color in water or ice usually
indicates the presence of algae, which contain a green pigment (chlorophyll).

When the background is white, for example, white sand, a white mar-
ble fountain, or a white bathtub—water appears cyan because it absorbs red.
Figures 6.16 and 6.17 show these examples.

In summary, from all these examples we conclude that the color of an
object depends on many different aspects, including the following:

• The wavelength and intensity of the illuminating light

• The wavelength of light scattered or transmitted by the object

• The color of surrounding objects

• The absorption or scattering of substances in the path of light
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FIGURE 6.16 � Colors of the Pacific Ocean from the Huahine Island in French Poly-
nesia. At the center of this photograph there is a white sand bank underwater. The shallow
water above it, therefore, appears an unsaturated cyan—that is, white (from the sand) and
cyan (from the water itself). Outside the reef, where the water is deeper and rougher, the
wind produces white caps, foam, and isolated air bubbles, which scatter light and keep it
from penetrating into the water. As a result, the water color is darker blue. In the fore-
ground of this photograph the water is also deeper but not rough and bubbly, so it has an
intermediate brightness.

FIGURE 6.17 � Water in the Barcaccia Fountain in Piazza di Spagna, Rome, Italy,
designed by Pietro Bernini, Father of Gian Lorenzo. Shallow water against the white marble
background appears cyan because water absorbs red.
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6.7 Questions

1. Visible light ranges in wavelength from 400 to 700. In what units are
these numbers expressed?

2. What wavelengths is red associated with in a simplified spectrum?
Green? Blue?

3. What are the eye’s color sensors called?
4. Draw graphs of the relative sensitivity of the three types of color recep-

tors in the retina, showing how the color sensitivity of each changes with
wavelength.

5. Are “green sensors” only sensitive to green light? Explain.
6. What are complementary colors? Which ones are they?
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Additive Color
Mixing

Additive color mixing works for mixing lights. The rules of additive color
mixing apply to color TV, computer monitors, projectors, and stage and disco
lights. These rules do not apply when mixing pigments and paints. The three
projectors shown here all emit white light. Each projector is illuminating one
filter. The color each filter transmits onto the screen is the same color as the
filter. The red filter transmits red light, the green transmits green light, and
so on. We can now mix these three colored lights by projecting them onto
the same location on the white screen. By overlapping them, we can obtain
almost any colors. On a TV or computer monitor, instead of overlapping the
three colors, they are positioned side by side in small areas called pixels. The
pixels are small enough that from a normal viewing distance the eye perceives
the additive mixture of red, green, and blue. Look at your TV or computer
screen with a magnifier and you will see the individual pixels. Let us start
with the additive primary colors.

7.1 Primary Colors

The three filters in front of the three projectors of identical intensity are red
(R), green (G), and blue (B). If all three colored lights are projected on a
white screen, partly overlapping, they produce the additively mixed colors
displayed in Figure 7.1. As shown, adding blue light to red light produces
magenta (M) (B + R = M), while adding B + G = cyan (C) and adding R +
G = yellow (Y). Where R, G, and B overlap, white is obtained. R, G, and B
are therefore three additive primary colors. The definition of primary colors is

99
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FIGURE 7.1 � The most frequently adopted
additive primary colors are R, G, and B.

(1) one primary cannot
be matched by a mix-
ture of the other two, and
(2) all three, when com-
bined in proper propor-
tions, produce white.

There are many other
combinations of three
colors that correspond
to this definition. An
example can be seen in
Figure 7.1: C, M, and Y.
These could also be pri-
maries since each color
cannot be made by a mix-
ture of the other two,
and, when combined in
proper proportions, they
produce white. As we
will see in more detail later (Figure 7.9), however, when mixed, they can only
generate a limited number of colors. Therefore, they are not the most useful
additive primaries.

Two complementary colors are two colors that, when additively mixed
in appropriate proportions, produce white. Additively mixed implies that we
are adding lights of these two colors, as with the above projectors and colored
filters (not paint!). Note in Figure 7.1 that the complementary colors appear
on opposite sides of the diagram and that the complement of each primary
color is the combination of the other two primaries.

7.2 Adding Primary Colors

It does not seem possible, at a first sight, that we can mix R, G, and B to obtain
the two colors reported in Figure 7.2: chocolate brown and cyclamen pink. We
will describe in detail how to do this quantitatively. For now, it will suffice to
say that there are accurate combinations of R, G, and B that produce these two
colors. These are: 66% R, 33% G, and no B. Then to obtain brown, we must
also decrease the intensity of the light. Pink is a mixture of approximately
40% R, 30% G, and 30% B. In fact, almost any color can be obtained with a
combination of R, G, and B lights.

Let us illuminate a white screen using a projector with a light of an
arbitrary color (stimulus S). In Figure 7.2, S is brown or cyclamen pink. To
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FIGURE 7.2 � Chocolate brown and
cyclamen pink can be matched exactly by
a combination of R, G and B.

do this, we can place on the screen
a colored sheet of paper and illumi-
nate it with white light or have a col-
ored filter in front of the white light
projector. Let us now illuminate an
empty part of the white screen in
Figure 7.2, with R, G, and B lights,
all pointing to the exact same loca-
tion, so they overlap. If we vary the
intensities of these three lights, we
can obtain a match for brown or
pink. A match of the color can be
represented by the equation

S = aR + bG + cB

In this equation, a, b, and c are the intensities of R, G, and B lights, respec-
tively, that are needed to match the stimulus color. The units or range of values
used for the intensities (a, b, c) are of no interest. The fractions of R, G, and B
that make up the light are the only numbers that matter when defining the
color of the light. We can calculate what fraction r of the light is red:

r = a

a + b + c

And similarly what fraction g is green:

g = b

a + b + c

These two numbers, r and g, define the mixture of colors projected on the
left spot.

In the cyclamen pink example we have

S = 250 R + 170 G + 200 B

The numbers reported here for a, b, and c (250, 170, and 200) are the
intensities of R, G, and B used on the computer to generate the cyclamen pink
in Figure 7.2, each of which can vary between 0 and 255. The total Intensity
I is the sum of the intensities for R, G, and B:

I = a + b + c = 250 + 170 + 200 = 620 units.
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Remember, the units in the intensity are irrelevant because the only
numbers that matter to define the color are the ratios, or the fractions, of R, G,
and B. These ratios are unitless. On a computer with 8-bit color images, the
values of a, b, and c vary between 0 and 255. There are, therefore, 256 (= 28)
intensity levels for R, for G, and for B. You can try the preceding numbers on
your computer and verify that you really do obtain cyclamen pink. The ratios
we need to calculate are

The fraction of red r = 250
620

≈ 0.40

The fraction of green g = 170
620

≈ 0.28

The fraction of blue b = 200
620

≈ 0.32

Notice that r + g + b = 0.4 + 0.28 + 0.32 = 1

0.2 0.4 0.6 0.8 1
r

0
0

0.2

0.4

0.6

g

0.8

1

FIGURE 7.3 � The color triangle. The fraction of red and green may vary between 0
and 1. The fraction of blue does not need to be plotted because it is always the complement
to 1 of the other two. If the fraction of green is 0, the colors on the horizontal axis are
B when r = 0, R when r = 1, and M when r = 0.5 (midpoint between R and B). On the
vertical axis (r = 0), we will have G when g = 1 and C when g = 0.5 (midpoint between
G and B). Y is between R and G, or when r and g = 0.5. White is at the point where both
r and g are 0.33. The color triangle here shows all these points (R, G, B, C, M, Y, W) and
the corresponding colors.
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This is always true! The fractions r, g, and b always add up to 1. Therefore,
we do not need to calculate all three fractions. Calculating the fraction of red
and the fraction of green is sufficient because the fraction of blue is always the
remainder (b = 1 − r − g).

We can now plot the fraction of red on the horizontal axis and the fraction
of green on the vertical axis of a diagram such as the one in Figure 7.3. This
diagram is called the chromaticity diagram or the color triangle.

7.3 The Color Triangle

We can find the coordinates of any mixed color on the color triangle. The color
triangle rule is the following: When adding two colors, the resulting color is
always on the line joining the two colors.

This is why C is in the midpoint between B and G, M between B
and R, and Y between R and G. The color triangle in Figure 7.4 provides a
simple way of mixing additive primary colors to obtain a desired color, or to
anticipate exactly what color will result when two colors are mixed in known
proportions.

Any mixed color is the sum of the corresponding spectral color plus
white. A high-saturation color contains no white, while a low-saturation

10.80.60.40.20

r

g
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FIGURE 7.4 � The color triangle here is filled with all the colors that can be obtained
by mixing R, G, and B.
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(pastel) color contains lots of white. In Figure 7.5 along any line starting from
white and going toward the edges of the triangle, the hue of a color does not
change. The only thing that changes is the saturation. Saturated colors are near
the edges of the triangle, while low-saturation colors are near the center.

Once the fractions of red and green of a color are identified, all we need
to do to find the exact hue of the color is graph the point (with coordinates
r and g) on the color triangle, draw a line from white to that point, extend the
line until it reaches the edge of the triangle, and identify the color where the
line crosses the edge. We then identify the saturation of the color by measuring
how far the point is from the edge.

Take the example of cyclamen pink. We found that r = 0.4 and g = 0.28.
We graph the point with these coordinates on the triangle in Figure 7.6 and
report it as a white circle, extend a line from white to this point, and then

FIGURE 7.5 �
Along the arrow lines drawn on
this color triangle only the sat-
uration changes: it increases as
the color is farther away from the
center, and contains less white.

FIGURE 7.6 �
Pink, or low saturation red, is
the color we find at r = 0.4 and
g = 0.28.
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continue the line until we reach the edge. The color at the edge (the corner
in this case) is red. The point corresponding to our color is much closer to
white than to red; we therefore conclude that the color is a low-saturation red.
This is known outside of physics as pink. If the distance from white to pink
is five times smaller than from white to red, the pink is in fact 1/5 red and
4/5 white.

When mixing two colors, we must first identify them on the color triangle.
Then we must draw a line between them. If the two colors are mixed in equal
amounts, the resulting color is at the midpoint between the two original colors.
If there is more of one color than the other, the resulting color is closer to the
more abundant of the two.

According to the color triangle rule, when mixing two colors, the resulting
color lies along the line connecting the two. In Figure 7.7 we mix 1 part of
high-saturation orange and 2 parts of high-saturation green; the resulting color
lies 1/3 of the way from green and 2/3 of the way from orange along the
line connecting the two colors, and the resulting color is a high-saturation
lime green (thicker white circle). Similarly, if we mix 2 parts of Y and 1 part
of C, we obtain low-saturation lime green. Imagine this point on the color
triangle.

By now, it should be clear why R, G, and B are usually chosen as the
additive primary colors: RGB provide the largest mixing potential. In other
words, the largest number of colors can be obtained from mixing RGB
primaries—all the colors in the color triangle. If we chose red, blue, and
yellow as additive primary colors, we could only obtain the colors within the

FIGURE 7.7 �
Mixing two parts of
green and one part of
orange, we obtain lime
green. The resulting
color is on the line con-
necting the two orig-
inal colors, 1/3 of the
way from green, 2/3 of
the way from orange.
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triangle enclosed by the three points where these three colors lie on the color
triangle, as shown in Figure 7.8. We could obtain R, O (for orange), Y, W, B,
M, and all the colors intermediate between these, but we could never obtain
G or C. This is shown in Figure 7.8. A choice of C, M, and Y would be even
more limiting because we could never obtain red, or blue, or green. This case
is shown in Figure 7.9.

FIGURE 7.8 �
If we used RYB as
primaries, only the col-
ors within the RYB tri-
angle could be obta-
ined, to the exclusion
of all greens and blue-
greens.

FIGURE 7.9 �
If we used CMY as
primaries, only the col-
ors within the CMY tri-
angle could be obtained
by mixing. No R, G or
B could ever be obtained
by mixing CMY in any
proportions.
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7.4 Low-Intensity Colors

Are all colors represented on the color triangle? Where are the olive greens,
the grays, the browns, beige, and black? These colors are indeed present on
the triangle, but since the color triangle does not represent the color inten-
sity, these low-intensity colors are not immediately evident. The color triangle
only shows the fractions of red and green, not the intensities. Olive green is
nothing but low-intensity green, while brown is low-intensity orange, gray is
low-intensity white, and black is the lowest-intensity white. Black can actually
be the lowest (or zero) intensity of any color. Black could therefore be any-
where on the color triangle. For these colors, the RGB intensities on a 0–255
level basis are as follows:

Green  = 0R + 255G + 0B 
Olive green = 0R + 100G + 0B
White = 255R + 255G + 255B
Black = 0R + 0G + 0B
Gray  = 123R + 123G + 123B
Orange = 255R + 123G + 0B
Brown = 123R + 62G + 0B
Beige = 223R + 162G + 100B

The color bars next to each color description were obtained using these
accurate values. Please try them on your own computer. Any graphics program
(Adobe Photoshopr, Adobe Illustratorr, PowerPointr, Canvasr, etc.) will
allow you to enter the RGB numeric values you desire when using a “color
picker” to select a color. These colors are also reported on the color triangle
of Figure 7.10.

7.5 Spectral Colors

Not all the spectral colors can be matched by mixing RGB. The colors
obtained mixing RGB primaries are less saturated than their corresponding
spectral colors (dominant wavelengths). This is particularly evident in the
blue-green region, also called cyan or turquoise.

Let us project on a screen in spot #1 a combination of RGB and on spot
#2 spectral cyan (480 nm). Let us try to match the color of spot #2 with a
combination of RGB in spot #1. As shown in Figure 7.11, in spot #1, we would
project blue and green, with wavelengths 420 nm and 550 nm, respectively.
We need to use our imagination here because the color in spot #2 was produced
on a computer that works additively and is therefore not as saturated as the true
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spectral cyan with 480 nm. Please imagine that the cyan in spot #2 has a much
higher saturation than the mixed cyan of spot #1.

To obtain a perfect match, we need to produce the same response in the
cone cells of our eye. We will find that the only way to obtain a match is to
shine some red light on spot #2 and then match the new color with blue and

FIGURE 7.10 � Olive green, brown, and gray are shown as dark dots in the color
triangle. They are in the same positions as green, orange, and white, since these are
only low-intensity colors, and the color triangle does not reveal intensities. Beige is
low-saturation brown, and it lies along the line between white and brown (or orange).

spot #1 spot #2

FIGURE 7.11 � A combination of R and B (spot #1) trying to match spectral cyan
(spot #2).
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green light on spot #1. The reason for this is clearer if we look again at the
sensitivity curves for the cones and their responses to the stimuli on spots #1
and #2. These are reported in Figures 7.12 and 7.13.

If we try to obtain the same result as from C by adding B and G, we
must first adjust the B intensity to give the correct Type I response (about
1 unit in Figure 7.12). We then add enough 550 nm light to get the desired
Type II response of 4 units. Since 550 nm also stimulates Type III cones a lot
(about 3/4 as much as Type II; in fact at 550 nm for 19.5 units on Type II we
also get 14 units on Type III), however, this means we have added too much
red—namely about 3 units (3/4 of 4; Figure 7.13).
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FIGURE 7.12 �
The responses of the
three types of cones to
the stimulus of spot #2:
spectral cyan with 480
nm wavelength.
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FIGURE 7.13 �
The responses of the
three types of cones to
the stimulus of spot #1:
a mixture of primary
G and B with 550 and
420 nm wavelengths,
respectively.
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The addition of R to B + G is equivalent to adding white, and the resulting
color is less saturated than the spectral cyan. The only way to match spectral
cyan with a mixture of B and G, therefore, is to add red to cyan and then
match it.

Adding red to the spectral cyan means to desaturate the cyan. Since red is
the complementary color to cyan, the addition of red is equivalent to adding
some white and produces a less saturated color. Adding red to the spectral
cyan we were trying to match is equivalent to adding negative red to the mixed
color. This is physically impossible: Since there was no red to begin with in
the B + G mixture, it is not possible to subtract red from it.

In other words, we cannot add negative R to G + B, but we can, equiva-
lently, add positive R to cyan, as we can see from the simple algebra:

saturated C = G + B − εR

where εR designates an appropriate amount of R (the amount of red required
depends on the particular RGB primaries used). Moving –εR to the left side
of the equation:

saturated C + εR = G + B

In fact, this is how color matching of spectral colors with RGB is done: Adding
red light to the saturated cyan and adjusting the amount of R until the cyan
matches the G + B.

A negative amount of R and, consequently, a negative fraction of red r can
indeed be plotted on the color triangle or, rather, outside the color triangle, as
shown in Figure 7.14.

The spectral cyan lies outside the color triangle. The color triangle defines
the colors that can be matched by a mixture of RGB, but more colors do
exist—they just can’t be matched by RGB. Cyan is an example of these
colors. Many other spectral and non-spectral colors lie outside the triangle.
These colors have to be desaturated before they can be matched by a mixture
of RGB primaries. You will never see an RGB-mixed turquoise on TV or on
your computer monitor that is as saturated as the spectral turquoise.

The hues obtained mixing primaries are less saturated than their spec-
tral corresponding colors, which are each associated with a single (dominant)
wavelength.

As shown in Figure 7.15, most of the spectral colors lie outside the
color triangle. Spectral red, green, and blue are at the edges of the triangle,
while yellow, cyan, and violet are outside of it. So are the high-saturation
purples.

The horseshoe shape in Figure 7.15 represents the area of human color
vision. This area is enclosed by the curved line along which all spectral colors
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FIGURE 7.14 � The difference between spectral C and the C obtained mixing B and G
is evident on the color triangle: spectral cyan requires negative red, therefore it lies outside
the color triangle.

FIGURE 7.15 � The spectral colors, which we can see but we cannot mix using RGB,
lie outside the color triangle. The colored horse-shoe shape in this figure shows the area of
human color vision, while the triangle contains only the colors that we can mix using RGB.
Notice how much smaller the area of the triangle is, compared with the area of human color
vision.
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lie (see corresponding wavelengths in the diagram) and the line between
spectral violet and red. In summary, the color triangle includes only the
colors that can be obtained mixing RGB, but the eye can see more colors,
including spectral colors and purples.

7.6 Non-Spectral Colors

Purple and magenta, as well as all the magenta-purple hues, are non-spectral
colors. There is no wavelength associated with them because they are not part
of the spectrum of white light. They are exclusively mixed colors. Magenta
is the mixture of spectral red (700 nm) and spectral blue (440 nm) or spec-
tral violet (400 nm), while all purples are simply low-intensity magentas. The
mixture of R + B in different proportions generates all the magentas: the red-
dish magentas and the bluish magentas. These hues can be obtained mixing
RGB primaries (R + B), and therefore you can see them on TV or on a com-
puter monitor. The magenta and purple hues obtained mixing violet and red
cannot be mixed with RGB primaries, since they lie outside the color triangle.

Now that we described the color triangle and the spectral colors, let us
look at the complementary colors again. Two additive complementary hues
must produce white when added together. White must be on the line between
the two colors. For example, B and Y are complements because when addi-
tively mixed they produce white. To be perfectly accurate, B and yellow are
complementary hues, not complementary colors. B and spectral Y are com-
plementary colors, since the points B and Y are not equally distant from white,
while SY and B are equidistant from W. We would actually need to add a lower
saturation blue (sky blue, labeled SB in Figure 7.16) to yellow if we wanted

FIGURE 7.16 �
The true complementary
color to blue (B) is spe-
ctral yellow (SY). The
complementary to Y is
sky blue (SB). SY and B
are equidistant from white
(W), as are Y and SB,
therefore, added in equal
amounts they produce
white.
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FIGURE 7.17 �
Other pairs of complementary
colors are: bluish cyan and
orange (BBG (or BC) and O),
lime green and bluish mag-
enta (YG and BM), unsatu-
rated green and magenta (UG
and M).

to obtain white. As an aside, note that B and Y pigments do not produce white
when mixed, as will be explained in detail in Chapter 8.

The line connecting blue and yellow passes through white. Other pairs of
complements are shown in Figure 7.17, but many more exist. Again, to be
accurate, it is unsaturated green (UG) that complements magenta perfectly.

We can now explain how purples and magentas can be defined by a single
wavelength, as described in Chapter 6 in the definition of hue. To do so, one
must illuminate magenta with light of appropriate intensity and wavelength
until it becomes white. The wavelength and saturation of the color used are
the complementary color to magenta—that is, green. Magenta is, therefore,
accurately defined by its complement, as indicated in Figure 7.15: c510 nm,
where c stands for complementary.

7.7 Summary

Every color can be located on the color triangle by a three-step process. First
match the color with three primaries R, G, and B. Second, find r and g:

r = fraction of red in the total intensity of light in the match

g = fraction of green in the total intensity of light in the match

Third, plot r on the horizontal axis and g on the vertical axis.
White falls at the point r = 0.33, g = 0.33, near the center of the triangle.

The more saturated a color (i.e., the greater its purity), the further it falls from
white. Spectral colors are the most saturated and fall on a curved line outside
the triangle.
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When two colors are added, the resulting color always falls along the line
connecting the two. This idea is useful in the explanation of complementary
colors—colors that produce white when added. Complements always fall on
opposite ends of a line through the white point. The hue of a color can be
specified by finding the dominant wavelength or, in the case of purples, the
complementary wavelength of the color. Every color can be matched by a
spectral color, or a purple, plus white. The smaller the amount of white, the
higher the saturation.

7.8 Additive Color Mixing in Painting

When painting and mixing oil paints, the rules of additive color mixing
don’t usually apply. We will describe in Chapter 8 how to mix pigments
and paints with subtractive color mixing. Nevertheless, there have been a
few extraordinary cases in art in which painters have attempted to paint
additively.

Postimpressionists used a revolutionary technique to enhance color bright-
ness and contrast. This technique was based on additive color mixing.
Van Gogh wanted to achieve the effects of the art glass in the windows of
Gothic cathedrals. These windows have colored pieces of glass adjacent to
each other, and they transmit colored light exactly as projectors do through
colored filters.

Van Gogh did not know about additive color mixing and mixing lights, but
he was striving to achieve the brightness and color contrasts that only mixing
lights can achieve. He invented the mélange solide, French for “solid mixture,”
in which instead of mixing oil colors subtractively, he painted adjacent brush-
strokes with contrasting colors (see, for example, Self-Portrait with Hay Hat,
by Vincent Van Gogh [Dutch, 1853–1890], Postimpressionist). Van Gogh said
of his painting, “Je cherche à exprimer avec le rouge et le vert les terribles
passions humaines” (“I try to express with red and green the terrible human
passions”). Since the brushstrokes in his mélange solide are large—much
larger than the eye’s resolution—the eye does not actually mix lights from
adjacent colors, but it perceives the striking contrast of very different and very
bright colors, as in a Gothic cathedral window!

If the regions of two different colors are much smaller, lights from the two
different colors side by side are mixed additively by our eyes and create a third
color. This resulting color is described as optically mixed—that is, it is mixed
in the eye of the observer. When two colors are mixed with pigments by a
painter (subtractively), they lose some of their intensity, while when the same
two colors are mixed optically, they retain their intensity and they may appear
brighter. Two Neo-Impressionists, the pointillists Seurat and Signac, explored
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this possibility. They experimented with small color regions: points or dots, as
shown in their paintings. See, for example, Chenal de Gravelines, by Georges
Seurat (French: 1859–1891), and St. Tropez, le Port, by Paul Signac (French:
1863–1935).

Seurat studied the effects of different colors interacting with each other,
and he tried to control their mixing by reducing the number of colors on his
palette and applying pigments in very small spots. The Impressionists have
often been interpreted as using “broken colors,” but a patch of yellow in an
impressionist painting is almost always yellow paint, not strokes of red and
green laid side by side to achieve optical mixing. Seurat, however, did con-
struct magenta from small spots of blue and red, and with his system, he could
also vary the intensity of red—for example, by placing it near an orange dot
and determining how much the red will induce a perception of its complement
(cyan) in the adjacent color.

Seurat called his technique divisionism because he had divided the colors
into their physical elements. His theory and practice, together with those of his
followers, were soon described as Neo-Impressionism and Pointillism. The
subject was still Impressionist—ordinary people seen in every day activities,
atmospheric conditions, immediacy of the scene—but the presentation and
technique were new.

The Neo-Impressionists had color theory available to them, including the
works of Herman von Helmholtz (whose Manual of Psychological Optics
had by then appeared in French) and Wilhelm von Bezold (whose texts were
published in French in 1876). Seurat and his colleagues had begun to feel
that if they did not become more involved in the science behind their tech-
nique, they would not be able to explain the optical effects forming the basis of
visual art and art itself would remain intellectually unsatisfying. Seurat’s task
was made easier by the work of the American physicist Nicholas Odgen Rood
(see Modern Chromatics with Application to Art and Industry, Chicago 1879),
who was himself an accomplished painter. Seurat was inspired by Rood’s writ-
ings and color theory, and he imitated the behavior of light itself, performing
additive color mixing when actually optically mixing pigments. However, he
was incorrect in thinking that “adjacent dots of pure spectral colors could be
mixed [in the eye of the observer] to obtain other spectral colors observed
in nature, with a brilliance and luminosity [read saturation!] unattainable by
conventional pigment mixtures.” Scientifically speaking, Seurat’s idea was
flawed. Nevertheless, he has given us some of the most haunting images of
European art. Another problem was with the contrast enhancement of adjacent
complementary colors. We have now learned that lights of complementary
colors produce white when mixed—not saturated colors.

The optical mixture of complementary colors kills color, as Signac himself
later admitted: “Pointillage makes the surface more lively, but it does not
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guarantee luminosity, intensity of color, or harmony. The complementary
colors, which are allies and enhance each other when juxtaposed, are enemies
and destroy each other if mixed, even optically. A yellow and a blue, if jux-
taposed, enliven each other, but yellow dots and blue dots make an aggregate
which is grey and colorless.” You can verify this effect very simply. Next time
you go to the Art Institute of Chicago, stand in front of Dimanche après Midi
sur l’Isle de la Grande Jatte, by Georges Seurat. If you are close enough to
see the individual dots, all colors appear very bright and luminous (saturated).
If you stand far away they all blend together, and the overall effect is a hazy
gray patina covering the whole painting.

More recently, a contemporary artist, Chuck Close (American, b. 1940)
was also inspired by optical mixing of colors. His portraits and self-portraits
are subdivided into a grid of large squares, each of which is an abstract paint-
ing containing several complementary, contrasting, or similar colors. Looking
at Close’s paintings or prints closely reveals all these colors, while standing
far away from them blends them all together, optically. An example is shown
in Figure 7.18.

FIGURE 7.18 �
Lyle, 2003. Chuck Close,
silkscreen, 149 colors,
166cm ×137cm. Edition
80. The 1149 squares
perfectly blend together
to form the portrait of
photographer and perfor-
mer Lyle Anton Harris.
Reprinted with permis-
sion from Dick Solomon
ofPacePrints.
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7.9 Questions

1. At a hip-hop concert the band is illuminated by red and blue spot lights.
What color does the white T-shirt of the DJ appear?

2. Identify on the color triangle eight colors of your choice. With the help
of the color triangle, write down the amount of R, G, and B corres-
ponding to each color. Convert the amounts you obtained into the 8-bit
graphics numbers so that the amounts of R, G, and B range between
0 and 255. If you have a computer, also create a graphic file with eight
separate fields and fill each one of them with the colors you have just
identified.

3. Add light of a color of your choice to another color of your choice, and
identify the resulting color on the color triangle. Choose mixed colors,
not pure R, G, or B.

4. Show where the complements of the marked colors are on the triangle.
What colors are they? Hint: First locate the “white point.”

5. What hue is each of the following combinations of primary colors?

(a) 0.3R + 0.1G + 0.6B =?
(b) 0.2R + 0.2G + 0.2B =?
(c) 0.1R + 0.5G + 0.4B =?
(d) 0.2R + 0.2G + 0.1B =?

6. Most people think that the primary colors are blue, red, and yellow,
instead of green. If you chose as primary colors B, R, and Y, what
hues could you reproduce by adding these three primaries? What hues
could you not reproduce (e.g., could you make the purples, cyan, orange,
white)?
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Subtractive
Color Mixing

Subtractive color mixing applies to overlapping colored filters and color
photography and is essential for understanding the mixing of pigments in
paints or inks and for color printing.

8.1 Filters

If light of a given spectral distribution passes through a filter, the spectrum
of the light is modified. The filter absorbs part of the light and transmits the
remainder.

filter transmittance
T 5 0.6

light in
4 units

light out
2.4 units

FIGURE 8.1 � A neutral density filter
that transmits 60% of the light has transmit-
tance T = 0.6.

The transmittance T of a filter is
the fraction of the incident light trans-
mitted through the filter. The filter
in Figure 8.1 has T = 0.6. The fil-
ter absorbs 40% and transmits 60% of
the light. If the incoming light has an
intensity of 4 units, then the transmit-
ted light has an intensity of 4 × 0.6 =
2.4 units.

The transmittance of a filter is
usually different for different wave-
lengths (colors) of light. The trans-
mittance is only the same for all

118
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FIGURE 8.2 � Idealized spectra of colored light incident on a colored filter. The spec-
trum of the illuminating light is on the left, the transmittance curve of the filter at the center,
and the spectrum of the transmitted light on the right. You should be able to decide what
color the incident and transmitted lights are from these plots.

wavelengths if the filter is a gray filter, also called a neutral density filter.
Let us look at a colored filter in Figure 8.2.

Once again we are using a simplified version of the spectrum, in which
the range of wavelengths between 400 and 500 nm is referred to as blue,
500–600 nm is green, and 600–700 nm is red, respectively (B, G, and R). The
real spectra are curved lines but they can be simplified as step functions, with
vertical and horizontal lines, as in Figure 8.2. While this approximation is
not always perfect to describe the behavior of light and color, it works in most
cases, and it is much simpler to use than the real spectral lineshapes. Examples
of real filter curves are reported in Figure 8.3.

If you were not able to correctly identify the colors in the spectra of
Figure 8.2, here is a complete explanation. The first spectrum was the incident
light. This light has no intensity (Intensity = 0) in the B region of the spec-
trum and intensity I = 1 in both the G and R regions. The incident light is
therefore a mixture of G + R lights. As described in Chapter 7, G and R lights
combine to form Y light. Therefore, you know that the incident light is yellow.
The filter transmits all light in the B and G regions (where Transmittance = 1)
but does not transmit light in the R region (where Transmittance = 0). Since
there was no B in the incident light, the only light that the filter transmits
is G. Therefore, the spectrum of the transmitted light has Intensity = 0 in
both the B and R regions and Intensity = 1 in the G region, transmitting all
the green light and causing the transmitted color to be green. The filter sub-
tracted red from the incident light. It absorbed the R component from the
incident light. We are now beginning to see why this is called subtractive color
mixing.



120 Chapter 8 Subtractive Color Mixing

filter transmittance 
red

cyan magenta yellow

green blue

4000

20

40

60

80

100

Tr
an

sm
itt

an
ce

 (
%

)

500 600 700

filter transmittance 

4000

20

40

60

80

100

500 600 700

filter transmittance 

4000

20

40

60

80

100

500 600 700

4000

20

40

60

80

100

Tr
an

sm
itt

an
ce

 (
%

)

500
wavelength (nm)

600 700
wavelength (nm)

4000

20

40

60

80

100

500 600 700

wavelength (nm)
4000

20

40

60

80

100

500 600 700

FIGURE 8.3 � Transmittance curves of real filters. These are R, G, B interference filters
(top) and C, M, Y interference filters (bottom). The filters used are commercial dichroic
filters. Reprinted with permission from P.U.P.A. Gilbert and W. Haeberli, American Jour-
nal of Physics, 75, 313–319 (2007). Copyright c© 2007, American Association of Physics
Teachers.

8.2 Subtractive Primary Colors

The most commonly used subtractive primary colors are cyan, magenta,
and yellow. Each one of these colors absorbs one additive primary, its
complementary color.

Cyan absorbs red, magenta absorbs green, and yellow absorbs blue.
When combined, C, M, and Y produce black. Again, these are not the
only colors that can be chosen as subtractive primaries. Any other three
colors that combined produce black are potential primaries, although the
mixing potential—the number of colors that can be obtained mixing three
primaries—is maximum with CMY.

This is why the computer industry has chosen CMY inks to be used in
color printers, and the same choice was made by all manufacturers for color
photography.

Figure 8.4 shows the absorption of the three subtractive primaries when
CMY filters are used. Figure 8.5 shows how to obtain the additive primaries
using combinations of CMY filters. In general, paints, inks, and pigments
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FIGURE 8.4 �
White light, coming from the
left, for simplicity’s sake, is con-
sidered to have only RGB com-
ponents. Each filter subtracts
its complementary color. Each
filter (or pigment) absorbs its
complementary color and trans-
mits (and partly scatters) the
other colors.

M + Y = R

M + C = B

C + Y = G

FIGURE 8.5 �
Combinations of subtractive primaries
to obtain R, G, and B. The order of the
two filters is not relevant: Swapping
them will produce the same color.

FIGURE 8.6 �
R, G and B filters trans-
mit the R, G, and B light.
They absorb their comple-
ments just as Y, M, and C fil-
ters do: Red absorbs B and
G (C), green absorbs B and
R (M), blue absorbs G and R
(Y), as shown.

behave the same way with scattered light as filters do with transmitted
light. Figure 8.6 shows the absorption of R, G and B filters, which also
absorb their complementary colors (see Figure 6.14 for the definition of
complementaries).
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8.2.1 Subtractive primaries
In subtractive color mixing, one often obtains colors that seem unexpected or
surprising. The hue and the saturation of the light transmitted through two
consecutive filters is not intermediary between the hues of the two filters. The
same applies for pigments. You can look on the color triangle to see where the
colors lie and compare that with the colors obtained anywhere in this chapter
when overlapping filters or mixing pigments.

Combinations of overlapping filters produce the results shown in
Figure 8.7.

Notice from Figure 8.7 that the overlapping of red (or M + Y) and green
(or C + Y) filters is black. Therefore,

Subtractively, R + G = Black

Additively, R + G = Yellow

You can see that subtractive color mixing is very different from additive color
mixing! Mixing filters (or pigments and paints) is very different from mixing
lights.

As discussed, overlapping filters and mixing pigments, paints, or inks are
called subtractive color mixing. The term is slightly misleading because a fil-
ter does not subtract (absorb) a fixed amount of light, but, rather, it absorbs
a fixed fraction of the light incident upon it. The mathematical operation is
not a subtraction. It is the multiplication of the incident intensity by the
transmittance of the filter or the multiplication of the transmittances of two
filters.

primary cyan
subtracts long

wavelengths (red)

primary magenta
subtracts middle

wavelengths (green)

primary yellow
subtract short

wavelengths (blue)

C+Y=G

C + M = B

M+Y=R

C + M + Y = K
Y

C M

FIGURE 8.7 �
Three overlapping C, M
and Y filters. Each two
of these combined trans-
mit an additive primary
color (R, G or B), while
all three do not transmit
any light (K = black).
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Let us look more in detail at yellow and cyan filters, overlapping to
transmit green light, as shown in Figure 8.8.

Figure 8.9 shows the transmittance curves and table for this example.
The resulting transmittance of the two filters can be graphically obtained

by combining the transmittance curves of the two filters. In Figure 8.10 you
can see that the region in which the two curves overlap (the dashed region) is
the resulting transmittance. In this region neither of the filters had a transmit-
tance of 0.

+ = C + Y = G

FIGURE 8.8 � White light, coming from the left, can be for simplicity’s sake considered
to have only RGB components. Each filter subtracts its complementary color. The cyan
filter absorbs R (its complementary color) while transmitting B and G. Remember that
additively B + G = C. Therefore, the B and G lights transmitted by the filter form C. The
yellow filter absorbs B and transmits G and R. Again, additively G + R = Y, so a C filter
transmits C light, a Y filter Y light. However, the combination of the two filters will only
transmit G light. If we start from white light, we have R, G, and B. The cyan filter subtracts
R and the yellow filter subtracts B, leaving only G to be transmitted. (R + G + B) − R −
B = G.
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FIGURE 8.9 � Transmittance curves for Y and C filters.

Simplified spectral ranges Tyellow Tcyan TY&C = TY × TC

B (400–500 nm) 0 1 0
G (500–600 nm) 1 1 1
R (600–700 nm) 1 0 0
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Transmittance curve for Y and C filter FIGURE 8.10 �
Light transmitted through Y
and C filters, as in Figure 8.9, is
green. The only region in which
both C and Y spectra are non-
zero is the green region. If you
prefer to think graphically: The
only region in which the two
spectra of Figure 8.9 overlap is
the dashed region, which corre-
sponds to green.

8.3 Color Photography

All color films consist of three layers containing silver halide (silver iodide or
silver bromide) emulsion, coated on top of each other to form a permanent,
multilayered structure supported by the film base. Each emulsion layer of
color negative film absorbs a specific color, determined by the properties of
the dyes embedded in that layer. There is a chemical reaction in the emulsion
that permanently modifies the layer after it is exposed to and has absorbed
light of a specific color. The top emulsion layer absorbs B light and transmits
G and R light to the lower layers. The middle emulsion layer responds only to
G, and the lower responds only to R.

Objects with colors other than B, G, or R, which illuminate the film during
exposure, react with two or more of the emulsion layers, according to the
spectral distribution of the light they scatter. The original color of the object
is reproduced only when the negative is printed. Color negative film produces
an image that is complementary in respect to colors and density of the original
objects. Subsequently, the negative is printed on color photographic paper to
yield a positive color print.

After exposure, the negative film is developed to yield the color negative.
The processing steps include immersion in a color developer, a bleach rinse, a
fixer, a bleach/fix, a final wash, a stabilizer, and drying. Let us briefly look at
these steps separately.

The chromogenic developer converts light-sensitive crystallites of silver
halide compounds in the emulsion layers into metallic silver. While doing this,
the developer also oxidizes and combines with dye couplers that are either
built into the emulsion layers or added during development. The result is the
formation of three dye layers, one from each of the subtractive primary colors:
cyan, magenta, and yellow. The blue-sensitive layer of the original film forms
a yellow image, while the green- and red-sensitive layers form magenta and
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unexposed
color film (side view)

exposed and developed
color film

bleached and fixed
color film 

FIGURE 8.11 � The unexposed film (left) appears gray. Once it has been exposed and
developed the B, G, and R absorbing layers are colored. After bleaching and fixing, the
silver halide crystals are removed, and only the color layers remain but only in the appro-
priate places to produce a negative of the image. Where only the cyan layer is present, the
image will be printed red, and so on.

real objects
developed, bleached,

and fixed color negative printed photograph

FIGURE 8.12 � The processed color film is a negative image in which all colors are
inverted—that is, the colors are complementary to colors of the original objects. These
colors, such as the cyan roof and the blue sun, can be seen in transmission on the negative
and act exactly like the combination of subsequent CMY filters. In the negative, the C layer
is only present where the roof is located in the image and the M and C layers are only
present where the sun is. The Y layer is absent from both areas of the processed negative.
The black areas on the negative have all three layers. White light is then transmitted through
the processed film and projected onto color-sensitive paper for printing. The paper is coated
with a similar emulsion that inverts the colors all over again!

cyan images, respectively. Bleach is then utilized to remove all of the silver
metal so that each layer is left with only a color image. After bleaching, the
film is fixed and washed thoroughly to remove all dissolved silver salts. Then
it is rinsed in stabilizer to improve dye stability and to harden the emulsion.
Finally, it is dried. Figures 8.11 and 8.12 illustrate the use of color layers and
film processing.

8.4 Pigments

The color of familiar objects depends on the pigments that they contain and
the reflectance R of these pigments. Consider the leaf of a tree, illuminated by
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Simplified spectral ranges Incident intensity Rleaf Reflected light

B (400–500 nm) 0.8 0 0
G (500–600 nm) 0.9 1 0.9
R (600–700 nm) 1 0.5 0.5
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FIGURE 8.13 � Sunlight illuminating a green leaf. The simplified spectra for the inci-
dent light, the reflectance, and the reflected light are also shown.

sunshine. Some of the light from the sun is specularly reflected as unchanged
white light by the glossy surface of the leaf. The remainder of the light is partly
absorbed and partly scattered in all directions, as shown in Figure 8.13. The
reflectance is the fraction of the incident light that is scattered. As in the case
of transmittance, the reflectance usually depends on the wavelength of light.
The reflectance indicates the amount of light scattered by the leaf in each of
the separate RGB ranges, as shown in the table in Figure 8.13. The reflectance
determines the color of the leaf, as we see it.

Pigments are the colored particles suspended in paints, inks, color photo-
graphic film, and so forth. When two paints of different colors are mixed, a
third color is obtained, which is different from each of the two components.
Can we anticipate what color will result? Artists do this regularly, using their



Section 8.4 Pigments 127

“experience”—that is, after preparing and seeing many mixtures of different
colors, they can “remember” the resulting colors. Here we analyze the physical
reason for obtaining the color of the mixture. Pigments act very nearly as
filters and are mostly subtractive. The reason pigments in a mixture “subtract”
color from each other is called multiple scattering. Let us explain this concept
with an example: the mixture of red and blue paints. Red pigments absorb all
blue and green from the illuminating white light and diffusely reflect only red
light. The reflected red light is in turn almost completely absorbed by nearby
blue pigments. A similar but inverse behavior is observed at all blue pigments.
Red and blue pigments, therefore, absorb each other’s scattered light. This
phenomenon happens not only once but many times in the paint mixture,
which is why we said the phenomenon is called multiple scattering. There
is a simple experiment that proved how multiple this multiple scattering is.
Adding a small amount of black to paint of any other color has a large effect
(darkening) on the color of the mixture. See how striking this effect is in the
experimental data of Figure 8.14.
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reflectance of mixed
acrylic paint: orange and black
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FIGURE 8.14 � The reflectance curves of orange acrylic paint, black acrylic paint, and
mixtures of the two, in different proportions. The mixed volumes were measured using
Gilson pipettes and the percentage of black paint is reported for each curve by the right
axis. The colors used to plot each spectrum are representative of the color of paint or
paint mixture. Notice how a small amount of black paint (1%) reduces the intensity to
40%. This result strongly suggests multiple scattering, that is, each black pigment as many
chances to absorb light, not just one. Reprinted with permission from P.U.P.A. Gilbert
and W. Haeberli, American Journal of Physics, 75, 313–319 (2007). Copyright c© 2007,
American Association of Physics Teachers.
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Quantitatively, when mixing pigments of two different colors, the resulting
color depends on the reflectance curves for the two colors. The reflectance
values in each spectral range can be calculated as just described for the
transmittances of filters.

It is worth noticing that the reflectance values in each spectral range
correspond exactly to the RGB intensities we discussed in additive color mix-
ing, and all colors, when defined only by their reflectance or transmittance
curves, can be located on the color triangle. All you have to do is use the
curves to calculate the fraction of red r and the fraction of green g!

On a computer, magenta and cyan would have the RGB intensities:

M = 255B + 0G + 255R

and

C = 255B + 255G + 0R

We already discussed the fact that the units and the absolute values of each
color intensity (a, b, and c) are not relevant. The only relevant quantities are
the fractions of red and green.

The fraction of red and green for M and C are

rM = 0.5 and gM = 0

rC = 0 and gC = 0.5.

Based on these coordinates, it is obvious where M and C are posi-
tioned on the color triangle. When subtractively combining colors of known
reflectances, if the resulting reflectance is a difficult color to identify, the
fractions of red and green can easily be calculated and the color can be
identified on the color triangle.

With this new tool, let us now look at a few examples of subtractive color
mixing that show changes in saturation or hue.

8.5 Change in Saturation

Sky B + Orange = Orange (pure, low intensity)
B = 255 B = 0 B = 0
G = 128 G = 128 G = 64
R = 128 R = 255 R = 128

From the RGB intensities given for each color, we can draw the reflectance
curves and fill in the reflectance table.
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Simplified spectral ranges RuB RO RuB&O = RuB × RO

B (400–500 nm) 1 0 0
G (500–600 nm) 0.5 0.5 0.25
R (600–700 nm) 0.5 1 0.5

Sky blue is unsaturated B (uB in the table)—that is, B + white.
The B reflectance curve therefore has white in it—in other words, a cer-
tain amount of all three spectral components, R, G, and B (0.5 in this
example), shown in Figure 8.15. Adding white is equivalent to adding a
horizontal line in the reflectance curve that shifts the whole reflectance
curve up. Orange, as should be evident from the RGB components
and from the reflectance curve of Figure 8.15, is saturated. As long

Sky blue
(blue + white)

Orange
(yellow +  red)
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FIGURE 8.15 � The reflectance curves for
sky blue and orange.
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(low intensity orange)
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FIGURE 8.16 � The resulting color is satu-
rated brown, or low intensity orange.

as at least one of the RGB com-
ponents is 0, the color is satu-
rated. As long as the reflectance
curve has an intensity of 0 in at
least one spectral range, there is
no horizontal line added to the
curve—there is no white and the
color has high saturation.

The reflectance curve for
orange is a direct consequence
of how orange is additively
obtained: 1 part of Y light and 1
part of R light. But Y = R + G
lights, so orange must contain 2
parts of R and 1 part of G, as
shown in the reflectance curve in
Figure 8.15.

The color resulting from the
mixing of sky blue and orange
is saturated, since its reflectiv-
ity in the blue range is 0. The
reflectance curve for this color
is graphed in Figure 8.16. This
curve is identical to the one for
orange except for a lower inten-
sity; this color is low-intensity
orange, or brown.
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8.6 Why Do Blue and Yellow Make Green?

Have you ever tried to mix blue and yellow paints? If you did, you certainly
obtained green. Now, let us look at the idealized reflectance curves for blue
and yellow paints, shown in Figure 8.17. There is no spectral region in which
the reflectance curves for yellow and blue overlap. In other words, at every
wavelength the product of the reflectances is zero. Since this means no light
in the 400–700 nm region is reflected and all is absorbed, the color produced
should be black. So Figure 8.17 must be wrong. In fact, its spectra are over-
simplified. The spectra of light scattered by yellow and blue paints do not have
such sharp cutoff but rather look like the ones in Figure 8.18.

Remember that when we introduced the “oversimplified” spectrum in
Chapter 6, composed by only the three colors RGB, we said that it works
in most cases? Well, this is one of the cases in which that simplification does
not work. We cannot consider the reflectances of yellow and blue as having
three values only (0, 1, 1 for yellow and 1, 0, 0 for blue, in the R, G, and B
regions, respectively). We must consider that the real reflectance curves have
many more values, not only three.

When measuring the reflectance of the resulting paint color, we find that
it is nonzero in the green region, as shown in Figure 8.18. That is why the
mixture of blue and yellow is green.

Whenever the simple answer to the question “What color will we obtain
if we mix two colors?” is “black,” one must be cautious and not trust the
oversimplified spectrum with three colors only. There may, in these cases, still
be significant overlap of the real reflectance curves of the two colors. In all
other cases of color mixing we discussed before and will discuss later, the
oversimplification of considering only three colors (RGB) in each reflectance
curve does not constitute a problem, and the results can be trusted.
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FIGURE 8.17 � Oversimplified Y and B reflectance curves lead to the wrong conclu-
sion that yellow and blue make black.
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FIGURE 8.18 � The measured reflectance curves for yellow, blue, and yellow + blue
acrylic paints. Notice that, since yellow and blue are complementary colors, the resulting
mixed color should be black, while in reality it is a dark green, with a maximum in the
only region in which both spectra are non-zero—that is, green. The color used to plot each
spectrum is representative of the color of paint or paint mixture. Reprinted with permission
from P.U.P.A. Gilbert and W. Haeberli, American Journal of Physics, 75, 313–319 (2007).
Copyright c© 2007, American Association of Physics Teachers.

8.7 Change in Hue

We also mentioned that in most cases, mixing pigments or overlapping filters
is equivalent. There are a few exceptions to this rule as well. The following
two examples only apply to filters. Mixing two parts of the same color with
pigments (in paints or inks) generates twice the amount of the same color, and
there is no change in hue.

M-purple + M-purple = BluishM
B = 255 B = 255 B = 255
G = 0 G = 0 G = 0
R = 128 R = 128 R = 64

However, the light transmitted by two subsequent, identical magenta-purple
filters is not magenta-purple but bluish magenta! Look at the transmittance
table for an explanation of this unexpected result and the reflectance curves
for the corresponding colors in Figures 8.19 and 8.20.
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Simpl. ranges TMP TMP TBM = TMP × TMP

B 1 1 1
G 0 0 0
R 0.5 0.5 0.25
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FIGURE 8.19 � The transmittance
curve for magenta-purple: 2 parts of B,
1 part of R.

FIGURE 8.20 � The resulting color,
transmitted through two identical magenta-
purple filters is not magenta-purple, but
bluish-magenta.

transmit reddish-orange
Two orange filters when used in combination FIGURE 8.21 �

The color transmitted by two
identical orange filters is not
orange, but reddish orange.

The same phenomenon occurs when using two orange filters, as shown
in Figures 8.21 and 8.22. The resulting color is then identified on the color
triangle in Figure 8.23.

After the first filter

r = 1
1.5

= 0.7 and g = 0.5
1.5

= 0.3

After the second filter

r = 1
1.25

= 0.8 and g = 0.25
1.25

= 0.2
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Transmittance curve for filter ATransmittance curve for filter A Transmittance curve for filter BTransmittance curve for filter B
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FIGURE 8.22 � The transmittance curves of two identical orange filters.
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FIGURE 8.23 �
The color transmitted
by the two filters in Fig-
ure 8.22. After the first
filter the color is orange,
but after the second fil-
ter it becomes reddish-
orange.

Using the values of r and g, we can locate the two hues on the color triangle,
as shown in Figure 8.23.

Simpl. ranges TO TO TRO = TO × TO

B 0 0 0
G 0.5 0.5 0.25
R 1 1 1

Although these surprising changes in hue do not really apply to mixing
pigments, painters are well aware of them. This effect occurs to a limited
extent in oil or acrylic painting, but it affects watercolor painting much
more significantly. As painters know, one layer of watercolor on white paper
is partly transparent and, therefore, acts as a colored filter in front of a
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projector. If the painter paints a second layer over the first with the exact same
watercolor, the hue changes slightly!

8.8 Questions

1. The transmittance curve of a filter tells you what fraction of the light of
a particular wavelength the filter transmits. A transmittance of 1 in the
following graphs means all the light of that wavelength is transmitted
through the filter; 0.5 means half of the light passes; and 0 means no
light goes through at that wavelength. What color is the light from filter
A? From filter B?
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2. Subtractive mixing. What color do you see on the screen if you use filters
A and B defined in problem 10 in the following configuration (left)?

white light

filter A

filter A

filter B

filter B

white light

white
 lig

ht
screen

screen

3. Additive mixing: What color do you see on the screen if you use
filters A and B defined in problem 1 in the preceding configuration
(right)?
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4. Answer problems 1, 2, and 3 using filters C and D, described below.
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5. Answer problems 1, 2, and 3 using filters E and F .
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6. Answer problems 1, 2, and 3 using filters G and H .
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7. What color do you obtain if you add two parts of C paint and one part
of Y paint? Find the color reflectance curve first, and then report the
coordinates of this color on the color triangle, and see what color this is.



� Chapter 9

Color-
Generating
Mechanisms

9.1 Illuminating Light

The color we see depends on the illuminating light. When an apple is
illuminated by white light, it appears red, but when it is illuminated by only
blue light, it appears black. This is because the pigments in the apple absorb
green and blue light and scatter red light. When there is no red light to reflect,
all the blue or green light is absorbed, and the apple does not reflect light of
any wavelength. This is why it appears black.

Colorful pieces of paper illuminated by yellow light, such as from a
sodium lamp, will scatter all colors that reflect a certain amount of yellow
wavelengths (green and red) while absorbing all shades of blue. Any blue
shades will therefore appear gray or black.

9.2 Pigments

The colors of the familiar objects surrounding us most frequently depend on
the pigments in the objects. Different pigments absorb and scatter light of dif-
ferent wavelengths and therefore appear colored themselves. There are animal,
plant, and mineral natural pigments, as well as synthetic dyes and coloring
agents for paints, fabrics, food, and so on. The animal pigments include:

• melanin (which can be black, gray, beige, or brown)
• carotenoids (which can be yellow, orange, pink, or red)

136
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FIGURE 9.1 � Fall colors at the UW-Arboretum in Madison, Wisconsin.

Melanin gives color to our skin and hair, with the exception of red hair, which
has a very unusual iron-oxide pigment. On the other hand, carotenoids give
color to the beaks and feet of birds; another carotenoid (astaxanthin) colors
the shells of crabs, shrimp, prawns, and lobsters and becomes the dominant
color when these animals are cooked. There are also blue animal pigments,
present only in fish and shellfish. The blue eyes in humans and Siamese cats
are not due to pigments but to scattering.

The most common plant pigments are:

• chlorophylls (which is green)
• carotenoids (which can be yellow, orange, pink, or red)
• tannin (which is black or brown)
• anthocyanins (which can be red or bluish purple)

9.3 Structural Color: Iridescence

Some birds, such as parakeets, kingfishers, peacocks, hummingbirds and
mallard ducks, have bright blue or green feathers. The shells of many beetles
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FIGURE 9.2 � The Brazilian butterfly
Morpho peleides has intense blue-cyan
wings due to iridescence.

are also green. The wings of the
Brazilian butterfly Morpho peleides
are a brilliant blue-cyan (Figure 9.2).
But with no blue or green pigments
in animals, what gives these animals
their striking colors?

These colors are generated by iri-
descence. Iridescence is an optical
phenomenon separating the spectral
colors present in white light. Iri-
descent colors are generated by the
structure of objects, not by the pres-
ence of colored pigments. In this
sense they are structural colors. If
a material is subdivided or layered
very finely—so finely that the spac-

ing between subdivisions or layers is similar to the wavelength of visible
light—color is generated. Multiple reflections from each layer or subdivi-
sion are responsible for this phenomenon, and the subsequent interference of
reflected lights determines which colors are seen. See Chapter 1 for interfer-
ence. The iridescent colors also change with the angle at which the objects
are seen.

Iridescent microscopic structure is found on the surfaces of some animals,
including bird feathers, beetle shells, and butterfly wings, as just mentioned.
These animal structures are optimized to provoke destructive interference for
all wavelengths of white light except green and/or blue. The latter wavelengths
undergo constructive interference and are then visible to our eyes.

Let us look at the details of iridescence in the wings of the Brazilian
butterfly. Light is reflected by arrays of microscopic ribs found on the wings
of this butterfly. These ribs act as tiny mirrors, which reflect light. The size
and spacing of the ribs ensure that only green and blue wavelengths interfere
constructively and that red-orange and yellow wavelengths interfere destruc-
tively, canceling each other out. The same mechanism explains the color of
the peacock, parakeet, kingfisher, and mallard feathers. All these feathers use
small rods instead of ribs, but the mechanism is the same. The hummingbird
feathers instead use oval-shaped platelets to reflect light. Thin-layered scales
on the shells of green beetles also generate interference and iridescence.

If you were to alter or destroy the microscopic structure of these ribs,
rods, platelets or scales—for example, by grinding the butterfly wings or bird
feathers very finely—the color would disappear because there is no blue-green
pigment present.
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9.4 More Color-Generating Mechanisms Due to
Iridescence

Iridescent colors can also be seen in soap bubbles, oil floating on water, pearls,
opals, and other gems.

There are only two surfaces generating iridescence in a soap bubble, so
this is the simplest of the iridescent systems. Light waves are reflected by
both the outer and inner surfaces of the soap film that forms the bubble. The
light wave reflected by the outer surface interferes with the one reflected by
the inner surface. If these two waves are counterphase, as in Figure 9.3, they
cancel each other out because of destructive interference. If they are in phase,
however, they interfere constructively. Consider white light coming from a
specific angle and a soap bubble whose film thickness is such that only green
wavelengths cancel. In this case, both red and blue wavelengths are reflected
and then added together, causing the surface of that portion of the soap bubble
to appear magenta.

The thickness of the soap bubble is constantly changing; the top becomes
thinner and thinner until the bubble bursts, and the water-soap mixture also
moves because of convection. Furthermore, the surface of a bubble is curved,
and therefore the film thickness through which light travels varies with
the angle of incidence. All these factors combine to guarantee that all colors of
the rainbow, magentas and purples appear on a bubble’s surface, as shown in
Figure 9.4.

The same effect takes place on thin layers of oil floating on water, as shown
in Figure 9.5. In Figures 9.6 and 9.7 we show the colors generated by irides-
cence in a mineral and a biomineral, opals, and mother-of-pearl, respectively.

air

soap film

FIGURE 9.3 � Iridescence in a soap
bubble.

Light reflected by the mother-
of-pearl layers or the opal silica
gratings interferes destructively or
constructively for different wave-
lengths, generating the colors seen
on the shell and the opals in
Figures 9.6 and 9.7. Interestingly,
a rotation of the shell or the opal
in front of the observer makes
the same locations change color.
This phenomenon is also called
“opalescence” and is due to the
change in effective spacing of the
opal grating when this is rotated.
Pearls (Figure 9.8) are also made
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FIGURE 9.4 � Part of a soap bubble
with enhanced iridescent colors. Notice
that magenta is not a spectral color. In
this photograph it results from the additive
combination of red and blue light.

FIGURE 9.5 � A thin layer of oil on
water.

FIGURE 9.6 �
Mother-of-pearl (or nacre) in
the inner side of the abalone
shell. Iridescence is genera-
ted by the regularly repeating,
400-nm-thick layers of cal-
cium carbonate tablets.

of mother-of-pearl like abalone, and their microstructure is regularly layered
so that each semitransparent calcium carbonate layer is reflecting part of the
light and transmitting the rest to lower layers.

Interference of the light reflected by subsequent layers generates the
iridescence, which in pearls is called “pearlescence.” Although Japanese
pearls are white and Tahitian pearls are dark gray due to different composition,
they both have extensive iridescence. Therefore, in both variations you can see
a wealth of changing colors as you move them. Pearls are produced by a vari-
ety of organisms, most commonly sea mollusks (such as pearl oysters). They
are also produced by freshwater mussels and, occasionally, by snails. Pearls
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FIGURE 9.7 �
Australian boulder opals, formed
by microspheres of amorphous sili-
con oxide. These are arranged reg-
ularly into gratings, and spaced at
distances between 400 and 700 nm
(similar to the wavelength of visi-
ble light).

FIGURE 9.8 �
Tahitian pearls
and Japanese
white pearls.

are produced as equally-spaced layers of aragonite crystals, growing around
an irritant such as a grain of sand, a piece of shell, or a parasite. Only the pearls
from mollusks with a nacreous mother-of-pearl lining are “true” pearls. Most
pearls on the market are cultured—that is, produced by inserting a marble bead
into a pocket, inside the body of a pearl-producing mollusk. This is the case
for Tahitian pearls. The mollusk treats the bead as an irritant and deposits a
nacreous coating over it through a process that takes approximately two years.
Chinese fresh-water pearls are instead produced by a mussel. The seeds (typi-
cally a piece of another “sacrificial” shell) are placed between the animal and
the shell mother-of-pearl lining, and it takes ten years for the pearls to grow
around the seeds. On the other hand, more than 40 pearls can be grown in a
single mussel.

On rare occasions, iridescence can also be seen in clouds. When this hap-
pens, clouds are formed by myriad droplets of water, all having the same size
of 1 micron (1000 nm). In these conditions the droplets act as in the rainbow
(see Chapter 2), but the clouds display much more intense colors than rainbows
against clear skies. Figure 9.9 shows stunningly colorful iridescent clouds.
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FIGURE 9.9 � Iridescent clouds,
reproduced from the website < http:
// www.psi.edu/iridescent.html > with
permission from David Lien.

The colors on a compact disc
(CD), such as the one at the begin-
ning of this chapter and on the
cover of this book, are also struc-
tural colors, are due to concentric
circular lines of pits, with size and
spacing similar to the wavelength
of visible light. They therefore sep-
arate the colors of the spectrum at
different angles.

In conclusion, we point out the
different structures that generate
iridescent colors in different sys-
tems. These include: thin layers in
soap bubbles, oil spills, platelets
in hummingbird feathers, scales on
green beetles, and mother-of-pearl;
spheres in opals; rods in peacock
feathers; ribs in the morpho butter-
fly; and pits in CDs and DVDs.

9.5 Color in Gemstones

There are several mechanisms that generate color in minerals. Besides the
obvious ones based on absorption of certain wavelengths and scattering of
others that we have already discussed, color can come from the presence of
single-atom impurities, their concentration, the specific sites in the crystalline
structure of a mineral in which these impurities reside, the oxidation state
of the impurities, and so on. For example, pure corundum is an oxide of alu-
minum (Al2O3). It is a colorless mineral. However, if corundum contains even
a small amount of chromium (Cr), it becomes pink or red (and is then called
ruby). In this case, the impurity is the presence of Cr. Chromium impurities
in different minerals, however, cause ruby to be red, emerald to be green, and
(most interestingly) alexandrite to assume different colors (purple, red, green,
or blue), depending on the illuminating light!

Figure 9.10 shows all these gemstones, which are differently colored by
the same element, chromium.

Different levels of impurity (1–2%) in the same mineral (e.g., beryl, which
is Be3Al2Si6O18) generate different colors. Figure 9.11 shows all the different
colors of beryl gemstones. Here are some examples of beryl gemstones, with
different impurities.

http://www.psi.edu/iridescent.html
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FIGURE 9.10 � Ruby (top left), emerald (top right), and alexandrite illuminated by
fluorescent light (bottom left) and candlelight (bottom right). All colors in these different
minerals are due to chromium impurities. Rough emerald is the author’s photo. Ruby and
Alexandrite photos are courtesy of Jillian F. Banfield and Hanna Cook-Wallace, from the
course website http://socrates.berkeley.edu/∼eps2/.

FIGURE 9.11 � Beryl gemstones have different colors due to different metal atom
impurities (Fe, Mn, or Cr) and the oxidation state of these metal atoms. Photos courtesy
of Jillian F. Banfield and Hanna Cook-Wallace, from the course website http://socrates.
berkeley.edu/∼eps2/.

http://socrates.berkeley.edu/%E2%88%BCeps2/
http://socrates.berkeley.edu/%E2%88%BCeps2/
http://socrates.berkeley.edu/%E2%88%BCeps2/
http://socrates
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BERYL
Aquamarine � blue beryl: Fe2+; this beryl is cyan
Heliodor � golden beryl: Fe3+; this is yellow Green beryl: mixtures of Fe2+
and Fe3+ are green
Morganite: Mn2+ is pink
Red beryl: Mn3+ is red
Emerald: Cr3+ is . . . emerald green!

The alexandrite effect (a color change as the result of a different type
of illuminating light, as shown in Figure 9.10) is an excellent example of
how transmission and absorption of specific wavelengths determines color.
Light from a lightbulb on a dimmer or a lit candle is rich in red and yellow
wavelengths while fluorescent light is rich in blue and green. Alexandrite can
transmit and reflect blue, green, and red light. Therefore, if the light illuminat-
ing alexandrite is rich in red and blue, it will transmit both red and blue and
appear purple. On the other hand, if the illuminating light is rich in red but
poor in blue and green (candlelight), this same piece of alexandrite will look
red. If the light is rich in blue and green but poor in red (fluorescent lights), it
will look blue or green.

9.6 Mineral Color Due to Charge Transfer

Another mechanism generating color in gemstones is charge transfer. Charge
transfer involves the exchange of an electron between two atoms. For example,
blue sapphire (Figure 9.12) is colored by iron (Fe) and titanium (Ti), and
it appears blue because R and G light wavelengths are absorbed to transfer
electrons back and forth between Fe and Ti atoms.

9.7 Mineral Color Due to Color Centers

Color centers are very small (atomic-scale) defects in the crystal structure
of the gemstone. Even a single electron, when trapped within the crystal
structure of a gemstone, is a color center. The electron absorbs some wave-
lengths of light and uses this energy to “jiggle” within its trap. The remaining
wavelengths are scattered, generating the color of the gemstone.

Since these color centers are defects of the crystal structure, they can be
“healed” by heating the gemstone or exposing it to UV light. Heat allows
the crystal to reorganize itself, while UV light frees the electrons trapped in
color centers. Both processes result in removal of the color center, causing the
gemstone to change color. If the only source of color was the color center, the
stone will become colorless.
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FIGURE 9.12 �
Blue sapphire, which is corun-
dum (Al2O3) with Fe2+ and Ti4+

atoms that exchange electrons
to become Fe3+ and Ti3+, and
vice versa. Photo courtesy of
Jillian F. Banfield and Hanna
Cook-Wallace, from the course
website http://socrates.berkeley.
edu/∼eps2/.

FIGURE 9.13 �
Swiss blue topaz, obtained by irradia-
tion with either neutrons or high-
energy electrons and subsequent heat
treatment of natural white topaz.

Exposure of gemstones to high-energy particles produces color centers.
High-energy particles include the following:

• Accelerated electrons
• Accelerated alpha particles
• Gamma ray photons from a radioactive cobalt-60 source
• Neutrons from a nuclear reactor.

Color centers give color to naturally yellow topaz. White topaz can also be
irradiated and heat-treated to make it blue (London blue, Swiss blue, or sky
blue), brown, or green. Figure 9.13 shows Swiss blue topaz. After irradia-
tion the gemstones are radioactive and cannot be used until the radioactivity
has decayed to safe levels. This may take months or years, depending on the
country of origin of the topaz, the irradiation energy, and the exposure time.

9.8 Color in Gems Due to Band Gap Absorption
of Light

In materials such as semiconductors and metals, some electrons are no longer
associated with individual atoms but are free to roam around the entire

http://socrates.berkeley
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crystal. Just like in pigments and in color centers, electrons in these materials
can absorb light at certain wavelengths, thereby generating color in the light
they scatter. In semiconductors, however, there is an additional phenomenon:
Light is only absorbed when its wavelength is below a threshold value. Recall
that smaller wavelengths correspond to greater energy (see Figure 1.6), and
for light to be absorbed by a semiconductor it must have enough energy to
jump the electrons over a forbidden energy gap, called the band gap. Light
with too large a wavelength, therefore, is transmitted, and the material appears
transparent. Materials that have a band gap at wavelengths greater than the
visible range (in the infrared) appear completely opaque to us (e.g., silicon);
those that have the band gap below the visible range (in the ultraviolet) are
transparent (e.g., diamond).

If the band gap falls within the visible range, some colors will be
absorbed and others transmitted and/or scattered, therefore the material
appears colored. The color in this case may be yellow, orange, or red,
depending on where the threshold wavelength lies in the optical spectrum,
but not blue. Because the transmittance and reflectance are never large at
low wavelengths and low at high wavelengths, blue is impossible in pure
semiconductors.

The presence of impurities, however, may introduce additional electron
energy states within the forbidden band gap. For instance, impurities in
diamonds provoke band gap states that absorb specific wavelengths and gen-
erate color. In diamonds, the presence of nitrogen impurities generates a
yellow color, while boron generates a blue color. Figures 9.14 and 9.15 show
diamonds with a variety of colors.

FIGURE 9.14 � Diamonds of multiple colors. Yellow and brown diamonds contain
nitrogen impurities in the band gap. Gemological Institute of America. Reprinted by
permission.



Section 9.8 Color in Gems Due to Band Gap Absorption of Light 147

FIGURE 9.15 � The famous Hope Diamond, valued at more than $200 million, is a
large (45.5 carats) blue diamond, made blue by boron impurities in the band gap. It is
surrounded by other colorless diamonds. Reproduced with permission from the National
Museum of Natural History, The National Gem Collection. Photo by: Dane A. Penland.
Copyright c© 2007, Smithsonian Institution.



� Chapter 10

Periodic Oscillations

Why do we hear something when we tap a tuning fork (see Figure 10.1) with a
rubber hammer? Let’s start with a rough explanation of the sequence of events:

FIGURE 10.1 � A tuning fork.

1. The two ends of the fork (tines) swing
toward and away from each other
rapidly. The motion is too small and
too rapid to be followed by eye, but
by touching the tuning fork lightly,
you can feel the vibrations. For the
“standard A” tuning fork, used by the
concertmaster for tuning the orchestra,
there are 440 to and fro oscillations
every second.

2. As the tines of the tuning fork swing
back and forth, air near the tuning fork
is pushed in the corresponding direc-
tion. This causes a slight variation in air
pressure near the tuning fork that is in
step with the motion of the fork.

3. The pressure variations spread out in
the surrounding air, much like the rip-
ples on the surface of a lake spread out
when you toss a rock into the water.

148
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4. When the pressure variations reach your ear, the eardrum is moved, ever
so slightly, in step with the pressure variations.

5. The motion of the eardrum is converted to nerve pulses, which
your brain interprets as the sound of a tuning fork. Your brain
does not register each oscillation individually, but the oscillations are
encoded in the ear in an interesting way, which we will discuss in
Chapter 16.

In order to understand sound—how it is produced, transmitted through the
air, and perceived—one must begin by understanding mechanical oscillatory
motion. Let us first learn what makes objects oscillate.

Vibrations, or oscillatory motions, are not unique to sound. Oscillations
are quite common in nature. Familiar examples are slow mechanical oscilla-
tions: a swinging pendulum, a weight bouncing up and down at the end of a
spring, a squirrel swinging up and down after jumping on a tree branch, or a
plucked guitar string. In all oscillations there is a to and fro motion. What else
is common to all oscillations?

1. A position of equilibrium: A place where the oscillating object remains
at rest if it is left alone. In the case of the pendulum, the equilibrium
position is at the bottom of its swing.

2. A restoring force: A force that always pulls the object back to its point
of equilibrium once it is displaced from its equilibrium position. If you
pull a person on a swing away from their point of equilibrium, gravity
will pull them back.

3. Inertia: When a mass is in motion, it keeps going (think of a spacecraft
in outer space) unless there is a push or pull to change the velocity of
motion. We say that the mass has “inertia,” i.e. the mass resists a change
in its state of motion. Therefore, if an object is stationary, it will stay put.
If it is moving, it will keep moving until another force stops it. Without
inertia, a person on a swing would not keep moving back and forth but
simply return to the point of equilibrium and go no further. (Swings sure
wouldn’t be much fun!)

As a simple example, let us look at a time sequence of the motion of an
oscillating object, such as the one in Figure 10.2.

A more quantitative statement about motion is expressed by Newton’s law:

�F � M · �a

The equation in words is force equals mass times acceleration. Acceler-
ation a means how much the velocity changes per second, and force means
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22 21 0 1 2

t � 0 sec, x � + 1.5 m
Somebody pulled the pendulum to the right and
released it. If we count the displacement to the right
of the equilibrium position as positive, the initial
displacement shown in the picture on the left is
x � + 1.5 m.

22 21 0 1 2

t � 1 sec, x � + 1 m
Gravity applies a downward force on the mass, but
the string keeps the mass from falling straight down.
Instead, the mass is pulled back toward the lowest
point (equilibrium position or rest position). The pull
of gravity speeds up the mass. We say that the force
acting on the mass accelerates the mass.

22 21 0 1 2

t � 2 sec, x � 0
The pendulum is at the equilibrium position but
keeps moving because of inertia. There is no braking
force to stop it.

22 21 0 1 2

t � 3 sec, x � − 1 m
Now the pendulum is being slowed down by the
force of gravity, which pulls the pendulum to the
right, toward the equilibrium position, but the pen-
dulum still keeps going until. . .

22 21 0 1 2

t � 4 sec, x � − 1.5 m
the continuous downward pull of gravity stops the
pendulum at − 1.5 m. But gravity again pulls it back
toward the equilibrium position, and so on. You can
complete the sequence on your own.

FIGURE 10.2 � The position x of a pendulum at different times t.
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the amount of push or pull on the mass M . Because acceleration means
the amount of velocity change in one second, after t seconds the change in
velocity would be

Δ�v = �a · t
change in velocity = acceleration times how many seconds (t) the force
acted.

The Greek symbol Δ (delta) is commonly used to denote a change in a
quantity. The arrow over the symbols means that the quantity has a partic-
ular direction—that is, if the force is in the downward direction, then the
change in velocity is also in the downward direction. Note that the velocity
might well be upward at a given instance in time (e.g., a ball thrown ver-
tically upward), but gravity (a downward force on the ball) would tend to
pull the ball downward, and the velocity will therefore decrease. The upward
velocity decreases every second until the ball stops in midair and starts falling
back down.

The acceleration of gravity on Earth is 9.8 m/s2. This means that for an
object in mid-air after, for example, 2 seconds, the pull of gravity adds an addi-
tional velocity of (2 s) × (9.8 m/s2) = 19.6 m/s in the downward direction.

Exercise: Use Newton’s law to find the force of gravity on a 5-kilogram bag
of apples.

Answer: Mass = 5 kg, a = acceleration of gravity = 9.8 m/s2. F = 5 ×
9.8 kg m/s2 � 49 kg m/s2

For brevity, 1 kg m/s2 is called 1N (pronounced “one Newton”). So the
answer is 49 N.

Example: If you throw a ball up vertically with a velocity of 30 m/s, what
will the vertical velocity be after two seconds? Well, you had 30 m/s upward
to start with, and you added (2 s) × (9.8 m/s2) = 19.6 m/s in the down-
ward direction, so there will be (30 − 19.6) = 10.4 m/s left in the upward
direction.

10.1 Displacement Graph: Position x Changes
with Time t

Let us make a graph showing the position x of the pendulum in Figure 10.2
at various times t. We will plot the displacement x—that is, the distance from
equilibrium position (in meters) versus time t in seconds (s). We choose to
call displacement to the right of the equilibrium position positive and to the
left negative.
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FIGURE 10.3 � The graph shows how the displacement x changes with time. Here we
plotted time on the horizontal axis of the graph and displacement x vertically.

We are going to simplify matters, as shown in Figure 10.3, and only think
about the motion of the pendulum in the x direction (parallel to the ground).
Note that a graph is an abstraction: The actual motion of the object may be
horizontal, but that does not keep us from plotting the displacement on the
vertical axis.

Looking at the graph in Figure 10.3, one can make several observations:

1. The pendulum swings at most 1.5 m to either side of the rest position.
This distance is called the amplitude A of the oscillation, just like in
Figure 1.4 for light waves. Here A = 1.5 m.

2. The motion we are looking at here is called periodic, because it repeats
itself over and over again. The time taken for one complete back-and-
forth oscillation is called the period T. We see from Figure 10.3 that
the period in this example is T = 8 s, where s (or sec) is used as an
abbreviation for “seconds.” Note that it does not matter where one
starts counting the time: T is marked in two different but completely
equivalent ways in the graph.

3. Instead of referring to the period T , one often speaks of the number of
oscillations (or cycles) per second. The number of complete back-and-
forth oscillations per second is called the frequency f . The unit of fre-
quency is called Hertz, abbreviated Hz (named after a German physicist
who studied high-frequency oscillations, which were later used for radio
transmission). So instead of saying that a tuning fork has a frequency
of 440 oscillations per second, we say that the frequency is 440 Hz
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(pronounced “440 hertz”). Years ago, the abbreviation “cps” was used for
“cycles per second” but the current international convention is to use Hz.

4. Different wave shapes: If we plot the motion of a tuning fork, we see
a graph very much like Figure 10.3, except that the time scale is much
faster. The simple wave shape shown in Figure 10.3 is referred to as a
sinusoidal motion or as simple harmonic motion. (We’ll discuss what
that means in the next chapter.) The tone produced by simple harmonic
motion of the tuning fork in music is called a pure tone. Most musical
instruments (and the voice) make more complicated oscillations when
they play a steady tone. The oscillations are periodic, but the shape of
the pressure variation versus time is different for each instrument. Two
examples of periodic but non-sinusoidal oscillations are also shown in
Figure 10.4.

Sinusoidal Oscillation Triangle Oscillation Complex Oscillation

timetimetime

Non-Harmonic Non-HarmonicHarmonic

FIGURE 10.4 � Graphs representing a harmonic and two non-harmonic oscillations.

10.2 The Period T and the Frequency f

As you may have imagined already, the period and frequency are related quan-
tities. If the period is very short, there are lots of oscillations in one second and
thus the frequency is high.

If there are f oscillations in one second, then the time T required for each
oscillation must be 1/f seconds. Mathematically:

T = 1/f or f = 1/T

Anything that oscillates with a high frequency f must have a short period
T , and vice versa.

Example: The “standard A” tuning fork that is used in tuning instruments
has a frequency of 440 Hz. Find the period of this tuning fork.

Answer: T = 1
440 Hz = 1

440(1/s) = 1 s
440 = 0.00227 s



154 Chapter 10 Periodic Oscillations

10.3 Large and Small Numbers

In the previous example, you already noticed that the period turns out to be
a small number with several zeroes after the decimal point. The numbers get
even smaller when the frequency is high, such as a dog whistle, which may
have a frequency of 30,000 Hz.

It is convenient to express large and small numbers by the use of prefixes.
Some of these you already encountered in the chapters on light, such as
nanometers (nm) when you specified wave lengths.

Prefix Such as in Example

1000 � kilo- k kg (kilogram), kHz
(kilohertz)

30,000 Hz �
30 kHz

1,000,000 � mega- M MHz (megahertz)—
FM station

88,700,000 Hz �
88.7 MHz

109 � giga- G GHz (cordless phone) 2.7 GHz �
2,700,000,000 Hz

1/100 � centi- c cm (centimeter) Person height
1.7 m � 170 cm

1/1000 � milli- m ms (millisec),
mg (milligram)

0.00227 s �
2.27 ms

0.03 g medication
� 30 mg

1/1,000,000 � μ μs (microsecond) Diameter of atom
10−6 � micro- μm (micrometer) � 0.01 μm

� 0.000,000,01 m
1/1,000,000,000 �
10−9 � nano-

n nm (nanometer) Wave length of red
light � 0.000,000,
7m � 700 nm

10.4 Speed of Motion

By looking at the graph (Figure 10.3), one can deduce how the object
speeds up and slows down. For instance at t = 1.5 s, the displacement x is
about +0.5 m, and a half second later (t = 2 s) the position is x = 0. Thus,
the average speed during this time interval is v � (distance covered)/(time
used) = 0.5 m/0.5 sec = 1.0 m/sec. Here we don’t care about the direction of
motion; we simply ask how far the object moved in 1s. We are talking about
the speed of the object, while velocity also specifies the direction of motion. If
we count velocity as positive in the +x direction, it would then be negative
in the −x direction. If a car goes into a curve at constant speed (using cruise
control), does the speed change? No, it doesn’t. Does the velocity change?
Yes, because the direction of the motion is changing.
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What we have used here is the concept of speed as you know it from driv-
ing a car: the speedometer tells you the distance covered per hour if you were
to keep going at the same rate for the entire hour. What the speedometer reads
is what we call the instantaneous speed (the speed at that instant). Even though
it is labeled as miles per hour (mph), it does not imply that we keep going for
an entire hour. Mathematically we express the speed as

speed = distance
time

= Δx

Δt

where Δt means a small time interval, and Δx is the distance covered during
this time interval.

You might well say that science is not supposed to use wishy-washy con-
cepts like “small time interval” because how would we decide if a time interval
is “small”? And “small” compared to what? Well, the idea is that the time
interval is small enough that the motion can be considered steady during this
time interval. So the required smallness depends on whether the motion is
very smooth, changing slowly in time, or very abrupt and changing rapidly.
If you look at the graph in Figure 10.5, the time interval for which we figure
the speed should be short enough that the curve during this short interval is a
straight line.
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FIGURE 10.5 � The magenta curve, which starts out at + 1.5, shows the
displacement—that is, how the position changes with time. The blue curve shows how
the velocity changes with time. The velocity scale is shown on the right vertical axis of
the graph. Note that the velocity is largest when the pendulum passes through its rest
position (x � 0).
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A nicer way to visualize the meaning of the speed at one particular instant
is to draw a tangent to the graph at that instant. In Figure 10.5 we show the
tangent at t = 9 s and at t = 12 s. At t = 9 s the tangent points downward
(negative velocity) and has a slope of −0.8 m/s, while at t = 12 s the tangent
is horizontal, which indicates that at that time, the mass is at rest for an instant.

If you think of the slope of the curve in Figure 10.5, you find that the curve
is steepest at t = 2 s, t = 6 s, and t = 10 s—in other words, it is steepest when
the displacement x is zero. This should make sense to you if you remember
that the graph in Figure 10.5 represents the motion of a pendulum. Imagine
a swinging pendulum and ask yourself at what position does it move most
rapidly. Well, it is fastest at the bottom of the swing when it passes though the
equilibrium position!

Some of you may have studied calculus. In calculus you learned that as
you make the time interval Δt shorter and shorter (and thus Δx also gets
smaller and smaller), eventually the ratio v = Δx/Δt reaches a limit. Strictly
speaking, it is this limit that is called the instantaneous speed: v = dx/dt—that
is, the instantaneous speed is the derivative of x(t). This exactly corresponds
to the tangent line we just mentioned. The displacement graph we showed in
Figure 10.5 (magenta curve) is a cosine graph; if you take the derivative of the
cosine, you get a negative sine graph, just as we showed in Figure 10.5.

10.5 Questions

1. The period of an oscillation is 4 ms. What is its frequency in Hz and in
kHz? If the frequency of oscillation is 1.3 MHz, what is the period in ms
and in μs?

2. A dog can hear frequencies up to 40,000 Hz. Express this frequency in
kHz. Find the period of this oscillation (express the answer in s, in ms,
and in μs).

3. For the oscillation shown here, the horizontal axis (time) is in msec.
Find the period T in sec and in msec. Find the frequency in Hz and in
kHz. Find the amplitude.

time (ms)
5 10 15 200

�10
�8
�6
�4

0
�2

2
4
6
8

10

The sum (superposition) of
the 200 and 300 Hz tones.
The period of the sum is
10 ms.
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4. Conversion of units:
2 km = m 1.5 cm = m
25 mm = cm 2600 g = kg
7800 Hz = kHz 0.0003 s = ms

5. The range of a young person’s hearing extends from 20 Hz to 20 kHz.
Find the corresponding periods of oscillation.

6. A violinist plays a very fast passage in which each tone lasts only 0.2 s.
How many to and fro oscillations does the string make during this time
when the frequency of the tone is (a) 200 Hz and (b) 1000 Hz?
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Simple Harmonic Motion

Oscillatory motion requires something elastic or “springy.” Deformation of
the object causes a restoring force, and this force drives the object back toward
the original shape—in other words, toward the equilibrium position. Think of
a tree branch: If you pull down on the branch, it yields a certain amount—
there is a “displacement.” The harder you pull, the larger the displacement.
A thick, heavy branch will yield less, and a thin branch will yield more. It is
the same with guitar strings: When you pluck the string, you displace it from
the equilibrium position. When you release the string, it snaps back—there is
a restoring force.

How do we measure the restoring force, and how does the restoring force
affect the oscillation when you release the branch or the guitar string?

To keep things simple, we use as a springy object a spring or—if you
prefer—a rubber band. To find out how springy the spring is, we hang a weight
from it and see how much it stretches (see Figure 11.1). A “soft” spring would
yield a lot, while a “stiff” spring stretches only a small amount.

The spring constant k is the elongation x divided by the force (weight)
that caused the elongation. If we assume that each added weight of 9.8 N
stretches the spring by an additional 5 cm = 0.05 m, the spring constant k
is k = 9.8 N/0.05 m = 196 N/m.

How do we measure the stretching (called the elongation x)? Simple!
We use a ruler and measure how much longer the spring became as we added
the weight. Suppose the spring or rubber band was 30 cm long to start with,
and after the weight was added, it was 35 cm long. The elongation in this case
would be (35 − 30) cm = 5 cm. Usually we measure the length in meters (m),

158
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1X
2X

FIGURE 11.1 � Different masses are
attached to a spring. If each mass is 1 kg,
the force of gravity (weight) on each mass
is 9.8 N.

rather than centi-meters (cm). Since
centi- means 1/100, 5 cm = (5/100)
m = 0.05 m.

How do you measure the down-
ward pull (weight) of the mass
attached to the spring? If you attach
a mass to the spring, why does
the spring get longer? You will say
that Earth pulls down on the mass,
and this downward pull is what we
call the weight of the mass. Why
be so fussy and distinguish between
mass (how big a chunk you attached
to the spring) and weight (how
much the mass gets pulled down by
gravity)? Well, the mass is simply
the amount of matter, but the weight
depends on where you are. On the

moon, the same mass gets pulled down much less than on Earth because
the moon is so much smaller, while in outer space, away from all plan-
ets, the same mass would be weightless. A conceptually simple way to
measure the weight of a mass, be it on Earth or on the moon, is to
let go of it. The mass will pick up speed during the fall (it will accel-
erate), but on the moon it will pick up much less speed every second
because the pull is less. If you measured the speed after 1 s, 2 s, 3 s,
you could find the acceleration of gravity (called g), meaning how much
additional speed the mass picks up every second. As we mentioned in the
preceding chapter, on Earth, g = 9.8 m/s2, meaning that every second the
speed of a falling object increases by that amount. The units come about
from acceleration being a change in speed (m/s) divided by the time (s), so it
makes m/s2.

To measure the amount of pull (weight), we use Newton’s law of motion,
F = M × a.

If we can measure the mass and the acceleration, we know the pull of
gravity, F . Here, the acceleration of gravity is called g instead of a, so the
weight W (the force F of gravity on the mass M ) is

Weight of mass M on Earth: F � M•g

Since it may be hard to keep track of all of this, let us simply state the end
result:
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When you have to figure out the pull of gravity (i.e. the weight) on a
mass M, you simply multiply the mass (in kg) by 9.8 and you get the weight
in N (Newtons).

Example: If Willy’s mass is 75 kg, how large is his weight (on Earth)?

Answer: His weight is 75 × 9.8 N = 735 N.

Example: If Willy jumps off a cliff, how large is his (downward)
acceleration?

Answer: According to Newton’s law, F = Ma. Here, F = 735 N ,
M = 75 kg, so his downward acceleration is a = F /M = 735/75 m/s2 =
9.8 m/s2. Of course, the answer must be just the acceleration of gravity. The
acceleration is the same for any mass, be it Willy’s or any other object or body
jumping off a cliff!

11.1 The Spring Constant

To test springs, we hang different weights from the spring, and for each
weight we record how much the spring got stretched compared to its original
length. Suppose we increase the weight step by step by adding an additional
0.5 kg mass each time. The results might look something like numbers in the
following chart.

mass M (kg) 0 0.5 1.0 1.5 2.0
weight (N) 0 4.9 9.8 14.7 19.6
elongation x (cm) 0 1.5 3.0 4.5 6.0

The thing to note is that equal increments in mass (i.e., equal increments in
weight) make equal increments in the length of the spring. Or the elongation
of a spring is proportional to the pull. The graph of spring length versus
force pulling on the spring is a straight line. Of course, this is true only up to a
point: if you pull too hard on the spring, eventually it will be stretched out of
shape.

In fact, there is usually some small measurement error so that the numbers
may not be as perfect as in this table.

If F is proportional to elongation x, the results can be expressed as

F = k · x or k = F /x

The quantity k is called the spring constant.
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In the preceding example, for F = 4.9N pull on the spring, the
elongation was 1.5 cm. The spring constant in this case is k = 4.9 N/1.5 cm =
3.27 N/cm.

If we convert the elongation to meters instead of cm, the answer is
k = 4.9N/(0.015 m) = 327 N/m.

All other columns of the table would give the same result because F and
x increase in proportion.

Not all springy things have a spring constant; in other words, not every-
thing stretches evenly in a straight-line fashion when you increase the pull. If
you use a rubber band instead of a metal spring, you will usually find that with
equal increments in pull, the rubber band yields more than it should because
the rubber band gets thinner and thinner, making it weaker and weaker, thus
easier to stretch.

Stiff springs have a large value of the spring constant because a stiff spring
requires a larger force than a soft spring for a given amount of stretching. Until
now, we talked about stretching or elongation of a spring, but the same applies
to compression of a spring, such as the springs of a car suspension.

11.2 Oscillation Frequency for Simple Harmonic
Motion (SHM)

Simple Harmonic Motion is the name given to the motion that results when
the force on a mass is exactly proportional to the displacement of the mass
from its rest position.

When the mass hanging from a spring is displaced and then released, it will
oscillate. How rapid is this oscillation, what does the oscillation frequency
depend on, and what is the wave shape of this oscillation? The answers to
these questions will be important later on when we want to figure out what
musical tone is produced by the strings of a piano or a guitar.

You are perfectly correct if you guessed that, with some math, one can
figure out the frequency of oscillation of a mass on a spring, given that
we know the spring constant k and the amount of mass M. Newton’s law,
F = M × a, says that if we know the spring force F and the mass M , we can
figure out the acceleration. Knowing the acceleration, in turn, lets us calculate
the velocity at each instant in time, so we can predict how the object moves,
based on a simple calculation. But what makes the calculation complicated
is that as the mass moves up and down, the position changes, which changes
the spring force, which changes the acceleration, which changes the velocity,
which changes the position—and so we are back to the beginning of the chain
of quantities, all of which change with time.
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The math required for this calculation is rather elementary calculus. But
instead of just telling you the result, let’s see if we can figure out at least part
of it together. Whenever possible, you should try to reason things out rather
than just taking somebody’s word for it.

When you displace the mass some distance x, there will be a restoring
force F pulling the mass back to the equilibrium position. A large spring
constant k means the force is large, causing a large acceleration. The mass
picks up speed quickly and returns to the equilibrium position in a short time.
Conclusion: Large spring constant k causes rapid oscillations (large fre-
quency). On the other hand, a large mass is sluggish, picks up speed slowly,
so for the same spring as before, a larger mass will produce a lower frequency
of oscillation. These two statements imply that in the formula for frequency,
the spring constant k should be in the numerator and the mass M should be
in the denominator—larger k gives larger f , larger M gives smaller f .

So we would think that the vibration frequency depends on k/M . Basi-
cally, this is correct, but let us look at the units: The frequency must have units
of number of oscillations per second, but does this agree with our answer
k/M? If you figure it out (k has units of N/m, N has units kg– m/s2, M has
units of kg) you find that our answer has units of 1/s2, not 1/s. So we need to
take the square root of the quantity k/M .

Indeed, the correct answer for the oscillation frequency of a harmonic
oscillator is

f = 1
2π

√
k
M

This is called the natural frequency of the oscillator, natural in the sense
that if the mass M is set in motion and then left to itself without outside
interference, f is the frequency at which the mass inherently wants to oscillate.
The formula is just what we guessed; the only thing we missed in our guess is
the 1/2π in front. For the formula to work out, we must use the proper units:
k is expressed in N/m and M in kg. The frequency then has units of 1/s, which
means so many complete oscillations per second, or so many Hertz.

Example: At a farmers’ market, a farmer uses a spring scale to weigh
apples. Assume that 2 kg of apples stretch the spring by 10 cm. Find the
oscillation frequency of the apples on the spring scale after they are given
a push.

Answer: The weight is 2 × 9.8 N = 19.6 N. The elongation is 10 cm =
0.1 m, thus the spring constant is k = F /m = 19.6 N/0.1 m = 196 N/m.

The frequency is f = 1
2π

√
196
2 Hz = 1.58Hz
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Does amplitude affect the frequency? Our first intuitive reaction might
be to say that larger amplitude means that the mass has further to travel on
each swing so that the period (time for one oscillation) should get longer.
Not so! If you make the initial displacement—for instance, twice as large—
indeed the mass has twice as far to travel, but at the same time, for the
larger displacement the spring force is also twice as large. Twice a spring
force means twice the acceleration, twice the speed picked up, which exactly
offsets the larger distance traveled. So, indeed, this is the reason that in
the formula for the vibration frequency, the amplitude does not appear! In
other words, the natural frequency does not depend on the amplitude of
oscillation.

Note, however, that frequency does not change with amplitude only for
a simple spring force, which is exactly proportional to displacement. In
all other cases the frequency changes when the amplitude changes. It is a
special property of simple harmonic motion that the frequency of oscillation
is independent of amplitude.

This is of enormous importance in musical instruments. In music, ampli-
tude is related to loudness of the tone, while frequency of oscillation is the
pitch of the tone. When we say that the frequency is “independent” of ampli-
tude, we are saying that the pitch does not change when you play softer or
louder. The amplitude of a piano string can be large or small, depending on
how loud a tone is being played, but the frequency is still the same. If not,
it would be a disaster, since the musical pitch would change every time the
musician goes from soft to loud.

11.3 Wave Shape of Simple Harmonic Motion

To produce a graph (position vs. time) for simple harmonic motion (SHM),
we could imagine attaching a pen to the oscillating mass and sliding a
strip of paper at a constant speed under the pen. The result is shown in
Figure 11.2.

What exactly is the shape of the graph that characterizes simple harmonic
motion? Those of you who had some trigonometry might say, “Just call it a
sine curve.” Even if you had no trigonometry, in a couple of minutes you can
learn that the sine-function is just a name for something very simple, as shown
in Figure 11.3. Draw a circle with a radius 1 unit of length, and draw a radial
line that is rotated counterclockwise by an angle α (alpha) with respect to
the horizontal. The length of the green line in Figure 11.3 is called the “sine”
of angle α, or sinα (read “sine alpha”). No math skills are needed—just a
protractor to measure angles and a ruler! In Figure 11.3, the angle is 30◦, and
you see that sin 30◦ = 0.5. If instead you draw the radius at 45◦ and count
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tx = 0

FIGURE 11.2 �
Wave shape of simple har-
monic motion. A mass hang-
ing from a spring oscillates
and makes a trace on a paper
strip that moves to the right.
The horizontal axis shows
time, and the vertical axis is
displacement. It is fun to
look at the demonstration on
the Web: http://surendranath.
org/Apps.html. In the “oscil-
lations” menu select “forced
oscillations” and set force
amplitude and resistance to
zero.
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FIGURE 11.3 �
Explanation of the sin func-
tion. The circle has a radius
R = 1. The red line is a
radial line rotated counter-
clockwise by an angle α
with respect to the hori-
zontal. The length of the
vertical green line is called
“the sine of the angle α.”
In this example, you find
sin 30◦ = 0.50. You also
note that sin 0◦ = 0, and
sin 90◦ = 1. When the angle
α is between 180◦ and 360◦,
the sine of the angle is
negative.

the number of squares, you find sin 45◦ = 0.707. You also see that the largest
value of sinα is found when α = 90◦; in other words sin 90◦ = 1.

You might say, “Why make a graph like Figure 11.3? Didn’t it occur to
anybody to write a book with values of sine for different angles?” Yes, but
even more convenient, most pocket calculators have a “sin” button. If you

http://surendranath
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put in 45 and press “sin,” it should show 0.707 on the display. If not, your
calculator may use a different way to measure angles. In radians, once around a
circle is 2π radians. In this case you have to reset the calculator to use degrees,
so once around a circle is 360◦.

Exercise 11.1 Draw the radius line for α = 210◦ in the graph and show that
sin210◦ = −0.5. It helps to note that 210◦ = 180◦ + 30◦

An equation to describe SHM: The displacement x of a pendulum (or the
air pressure for a tuning fork making SHM) can be written as an equation that
contains the amplitude A of the oscillating object, the period T , and the time
t at which you want to know the displacement. The answer is

x = A · sin(360◦/T ) or, if angles are in radians, x = A · sin(2π · t/T )

Let’s see if this makes sense: When one period has passed, the time t equals
the period T , and thus t/T = 1. Indeed, after one period, the angle in the
sin-function must be 360◦ (or 2π, if you use radians instead of degrees). The
reason to multiply sin by the amplitude A is that the largest value of sin is 1,
but the largest displacement is A.

Often we would rather express x in terms of the frequency f instead of the
period T. We can simply replace 1/T by f :

x = A · sin(360◦f · t) or, if angles are in radians, x = A · sin(2πf · t)

Exercise 11.2 A tuning fork vibrates with a frequency of 200 Hz and ampli-
tude 1 mm. Make a graph showing the displacement every 0.5 ms between
time t = 0 and time t = 5 ms. Use a calculator to look up the sin values.

Answer: It is a bit tedious but easier than you think! Make a table of time
values t (0 s; 0.5 ms = 0.0005 s; 1.0 ms = 0.001 s; etc.). For each value
calculate frequency times time. Then get sin of that number from the calcu-
lator, and multiply by A; this is the displacement x. The graph should look
similar to Figure 11.2.

The displacement graph you calculated in this way is called a sinusoidal
oscillation (see Figure 11.4).

11.4 Phase Angle

The angle that the rotating arm makes with the horizontal is called the phase
angle. When we look at a displacement versus time graph for a harmonic
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FIGURE 11.4 � A sinusoidal oscillation. The phase angle is marked at different points
of the oscillation; it is the angle between the horizontal axis and the radial line in
Figure 11.3. After a complete oscillation, the phase angle is 360◦ or 0◦, whichever you
prefer to call it.

oscillator (a sine curve), we can mark the phase on the curve or on the time
axis. The phase angle is particularly useful later when we compare two similar
sinusoidal oscillations that are out of step.

11.5 Questions

1. A spring is 7 cm long when no force is applied to it. When a 2 N pull is
applied to the spring, it stretches to a total length of 13 cm.
What is the spring constant for this spring?
If a 0.5 kg mass is attached to this spring, what will the frequency of
oscillation be?

2. A certain spring has a frequency of 100 Hz when a 50 g mass is hung
from it.
What would the frequency be if the mass were changed to 200 g?
What would the frequency be if the mass were changed to 500 g?
Does a stiff spring have a larger or smaller spring constant k than a soft
spring?
Does a stiff spring cause a higher or lower oscillation frequency than a
soft spring?

3. If Jim has a mass of 70 kg, how many Newtons does he weigh on Earth
where the acceleration of gravity is g = 9.8 m/s2? If Jim is on the moon
where the acceleration of gravity is only 1.62 m/s2, how much will he
weigh?
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4. The length of a spring is measured for different pulls F:

pull F: 2 N 4 N 6 N 8 N 10 N
length of spring: 20 cm 25 cm 30 cm 35 cm 40 cm

Find the spring constant in N/cm and in N/m.

5. In a lecture demo we found that a 2 kg mass oscillating up and down on
a spring made 10 oscillations in 5 sec, which corresponds to a frequency
of Hz. What would have been the frequency if the 2 kg mass were
replaced by a 4 kg mass? (Hint: Look at the SHO frequency formula,
and use proportions like we did in lecture.) What would have been the
frequency if the 2 kg mass were replaced by a 1 kg mass?
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Damped
Oscillations
and
Resonance

Marimba from the highlands of Guatemala

12.1 Damped Oscillations—The Concept of
“Damping Time”

Up to now we have talked about oscillations (pendulum, mass, and spring,
etc.) as if—once put in motion—these oscillations continued indefinitely. We
know that in the real world, oscillations sooner or later come to a stop. The
graph that represents displacement versus time does not look like the top one
in Figure 12.1 but more like the one at the bottom. The amplitude of the oscil-
lation decreases with time. Friction or air resistance is responsible for this
behavior. The larger the friction, the more rapidly the amplitude of oscillation
decreases. The energy that was given initially to the oscillator is being slowly
changed into some other form of energy. Some of the energy may go into heat.
In a musical instrument (piano) some of the energy may be given off as sound
energy.

The time taken for the amplitude of an oscillator to decrease to half its
original value is called the damping time τ (Greek letter tau). Note that the
amplitude does not decrease in a straight-line fashion, but rather, the decrease
in amplitude becomes smaller as the amplitude itself gets smaller. One way to
put it is to say that the loss in amplitude is proportional to the amplitude itself.

168
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FIGURE 12.1 �
Two oscillations of the same
frequency are shown. If there
is no friction or other loss
of energy of the oscillator,
the amplitude remains con-
stant. But in reality, there is
always some loss of energy
that makes the amplitude of
the oscillations decrease with
time, as shown in the lower
graph. The “damping time” τ
is the length of time it takes the
amplitude to decrease to half
of the previous value.

As a result, if the amplitude decreases to half in one damping time τ , it will
reduce to a quarter in 2τ , as shown in Figure 12.1. This is called an exponential
decrease in amplitude. If you inherit a small fortune and every year spend half
of what you still own, your capital would decrease in the same way, so you
never run out of money! It is the same with a tuning fork: Theoretically it will
never stop, but after a few seconds the sound is so soft that nobody can hear
it (or, in the case of your inheritance, you are too poor to buy yourself a hot
dog!).

A long damping time τ indicates that there is little friction to dissipate
the energy of the oscillator, we say that there is little “damping.” A short
damping time τ indicates that the oscillator is losing energy rapidly. The oscil-
lator is “heavily damped,” as in the last graph of Figure 12.2. The vibrations
of a drumhead are heavily damped compared to the oscillations of a plucked
guitar string, which lingers for several seconds. A 500 Hz guitar string with
a damping time of 2 s makes 2 × 500 = 1000 oscillations before it loses half
the amplitude.
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FIGURE 12.2 � Each of the oscillations shown here has a frequency of 8 Hz. The
damping time varies from 1 s for the first graph to 0.125 s for the last graph.

12.2 Resonance

How are oscillations in musical instruments set in motion? In many instru-
ments the oscillations are built up by adding many little pushes, timed to
correspond to the period of the oscillator, much like a gentle person can set a
swing in motion by many properly timed small pushes. As an example, look
at a trumpet. The musician, by pressing his lips against the mouthpiece, makes
rapid periodic puffs of air (try to “buzz” your lips!) that set into motion the air
column in the trumpet. For a trumpet, the buildup of the oscillations is quite
rapid, but in a large organ pipe, it may take half a second or more to build up
the oscillations.

Another example where an oscillating system is set in motion by repeated
pushes from the outside is the soundboard of a piano, which is put in motion
by the vibrating string.

Now we will examine the fundamental properties of such “driven oscilla-
tors” by first studying simpler systems, such as a pendulum (see Figure 12.3)
or a cart between springs, riding on a (nearly frictionless) track (see
Figure 12.4).

We will assume that the external force (the driving force) is a simple peri-
odic sinusoidal pull with a constant frequency. Let’s consider the example
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Cart

FIGURE 12.3 � You apply a gentle,
periodic force near the top of a pendulum.

FIGURE 12.4 � You apply a gentle,
periodic force to a glider on wheels.

of the cart on wheels in Figure 12.4. There are four things to be taken into
consideration:

1. The natural frequency fN (the subscript N is attached to f to indicate
that it is the natural frequency). The natural frequency is the frequency
of oscillation in the absence of an external driving force.
In Chapter 11 we learned that fN depends on the physical construction
of the oscillator, such as the mass of the cart and the stiffness of the
springs.
As an example, let us assume that the oscillator, if it is set in motion and
then left alone, has a frequency fN � 10 Hz.

2. The driving frequency fD is the frequency with which you pull on the
spring. The driving frequency can be whatever one chooses; you are not
obligated to push the oscillator at its natural frequency.
For instance you might pull 5 times per second (fD � 5 Hz) or any other
frequency.

3. The amplitude of the driving force specifies how hard you are pulling
on the spring, such as how large a force you use. You can choose to pull
very softly or very hard; a stronger force will result in larger amplitude
of the motion.

4. The amplitude of the oscillator measures the response of the oscillator
to the driving force.

We want to see how the motion of the glider depends on the driving
frequency fD. We try various frequencies using the same force in all cases,
and we observe the amplitude of the oscillator. Suppose that the oscillator has
a natural frequency of 10 Hz, but we start out by pulling on it with a driving
frequency fD � 2 Hz. Note that fD is very different from fN . The glider starts
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to move a little bit. It wants to move at 10 Hz, but the pushes are at 2 Hz, so
the pushes are not at all in step with the natural frequency. In the beginning
the motion of the glider is irregular—neither 10 Hz nor 2 Hz—but it is soon
forced into vibrating at the frequency of the driving force fD. However, the
amplitude A of the oscillation will be small, as indicated in Figure 12.5.

Now we change fD to 8 Hz, which is closer to the 10 Hz natural frequency.
The first oscillation of the driving push imparts a small amount of motion to
the glider. The second back-and-forth push in this case comes 0.125 s after the
first push, but this is very close to the 0.1 s that would be needed to be in step
with the glider motion. This means that for fD � 8 Hz, the glider moves with
a larger amplitude than for fD � 2 Hz, where the timing of the pushes was
completely off.

To build up the biggest amplitude, the driving frequency fD should be
equal to fN because then the subsequent pushes keep adding to the motion
imparted by the previous pushes. So at fD � 10 Hz, the cart’s amplitude will
be the largest. When you push with too high a frequency, the amplitude is less
again because the pushes are out of step with the natural frequency.

A plot of the cart’s amplitude versus driving frequency is shown in
Figure 12.5.

The response of an oscillating system to pushes from the outside shown in
Figure 12.5 is called “resonance.” The oscillating cart resonates at 10 Hz, i.e.
it selectively responds to the pushes if they are at the resonance frequency.

Resonant Frequency

Half Maximum Points

Driving Frequency (Hz) fD

A
m

pl
itu

de
 (

cm
)

0
0

1

2

3

4

5

6

7

5 8 10 12 15 20 25

FIGURE 12.5 � Resonance curve for an oscillator with a natural frequency of 10 Hz.
In this example, if the driving frequency differs from the natural frequency by 2 Hz either
way, the amplitude of the oscillator is still half of the maximum amplitude when you are
exactly on resonance. The width of this resonance curve is 2× 2 Hz = 4 Hz.
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For simplicity, we used a pushed cart as an example. What other examples
of resonance can you think of? How about singing in the shower? If you have
a deep, loud voice and change the frequency from high to low, you may find
a big echo at a certain frequency—namely at the natural frequency of the air
oscillations in the shower stall volume. If you have access to a piano, one
demonstration of resonance you can try is to depress the loud pedal (which
takes the dampers off the strings) and sing a loud tone close to the piano. Some
string may resonate—namely the strings whose natural frequency is close to
the driving frequency of your voice. It may help to hit a key first and then sing
the same tone to get your voice’s fD to match the fN of the string.

How close to the natural frequency (fN ) must the driving frequency fD

be to give reasonably large amplitudes? One way of looking at this is to
find at what frequencies the amplitude is exactly half of that obtained when
fD = fN . In Figure 12.5, the maximum amplitude (for fD = 10 Hz) is 6 cm.
At fD = 8 Hz the amplitude is half the maximum value. The same is true at
12 Hz. The difference between these two frequencies is called the width (Δf )
of the resonance curve (also called the “full width at half maximum” FWHM).
In this case Δf = 12 − 8 = 4 Hz.

Another resonance curve for a different driven oscillator is shown in
Figure 12.6. In this case we would say the resonance frequency is fN = 60 Hz
and the width Δf = 20 Hz.

A resonance width of 20 Hz means that if the driving frequency fD is off
by half that amount (10 Hz) to either side, the response of the oscillator is half
the maximum response.

Δf = 70 Hz � 50 Hz

Driving Frequency  (Hz) fD
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FIGURE 12.6 � Resonance curve of a large Tabla (Indian drum) when set in motion
by a periodic force. The resonance frequency fN is 60 Hz, and the width of the resonance
is 20 Hz.
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The width of the resonance curve depends on the amount of damping.
One finds that some resonance curves are very sharply peaked, while others
are quite broad. The important difference between sharp or broad resonances
is the amount of damping (amount of friction) of the oscillating system that
is being pushed. If the oscillator has little damping, one can build up a huge
amplitude, provided the driving frequency is close to the natural frequency.
Why? Because for small friction (long damping times) the oscillator gets a
little more energy with each push—that is, it still remembers all the previous
pushes. But in this case, even if the driving frequency is off only a little, the
later pushes will eventually have fallen out of step and start to reduce rather
than add to the oscillations.

On the other hand, when the oscillator is more damped, the energy
it acquired from the pushes is soon dissipated, so the oscillator does not
remember the previous pushes. This has two effects, which are illustrated in
Figure 12.7: (a) for more friction, the peak of the resonance curve is not as
high, but (b) if you are off in frequency it matters relatively less so that the
resonance curve is wider. In summary, there is an inverse relationship between
f and τ : Long damping time (small amount of friction) corresponds to a
small width of the resonance curve, and vice versa.

Until now, we always assumed that the pushes of the driving force conti-
nued for a long time—that the oscillator came to a “steady state.” The
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FIGURE 12.7 � The graph on the left shows two resonance curves for different amounts
of damping (friction) but the same resonance frequency. The graphs at right show the
damped oscillations for the same two cases.
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resonance curve shows the steady state response to the driving force. The time
needed for the oscillations to steady down depends on the damping time: short
steadying time for short damping time, long for long damping time.

The inverse relationship between Δf and τ can be put into quanti-
tative terms: A calculation shows that the product of Δf and τ is always the
same (at least if the damping is not too large, in which case the product is
ln2

√
3/π):

Δf•τ � constant � 0.4

If you make Δf large, τ becomes small, or if you make τ large, Δf becomes
small (long decay and sharp resonance). This relationship has important
applications and is extensively used in acoustics.

Exercise 12.1 The drumhead of a kettledrum has a frequency of 50 Hz. The
drumhead makes about 10 oscillations before the amplitude has decreased
to half the initial value. Find (a) the damping time and (b) the width of the
resonance curve.
Answer:

(a) The period is (1/50) s, so 10 oscillations take (10/50) = 1/5 = 0.2 s
Damping time τ = 0.2 s.

(b) Solving Δ equation for Δf gives: Δf = 0.4/τ = (0.4/0.2 s) = 2.0 Hz.
Note that the units come out correctly: τ is in seconds, so 1/τ has units 1/s,
which is the correct unit for frequency (Hz).

12.3 Build-up Decay of Musical Tones

When you listen to an instrument (e.g., a clarinet or a violin) you get the
impression that the sound of a given note played starts and stops instantly. But
if you look at the tone on an oscilloscope, you find that the tone builds up and
decays gradually. Buildup and decay times are closely related: If it takes the
tone 0.1 s to decay to half, it also takes 0.1 s to build up to half the amplitude.
It turns out that the gradual buildup and decay is an important attribute of the
tone quality of an instrument. If one records a tone from a musical instrument,
and during replay with a fast switch cuts off the build-up and decay, it is much
harder to tell what instrument is playing!

12.4 Applications in Music

12.4.1 Resonators in Musical Instruments
Sympathetic strings: Some instruments, including the Indian Sitar or the 18-th
century viola d’amore, as well as some guitars, use so-called “sympathetic”
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FIGURE 12.8 � A modern marimba.
The actual resonators are behind the orna-
mental vertical bars in front.

strings to enhance the sound. These
strings are not bowed or plucked them-
selves but are set in oscillation by a
nearby string.
Instruments with resonators: The
marimba and the xylophone have sets
of wooden bars of different lengths,
producing a sequence of tones simi-
lar to the piano keyboard. The sound
of the bars is reinforced by hollow
tubes (resonators) whose dimensions
are matched to the pitch of each bar to

produce a resonant sound. The origin of the marimba is not known, but in the
mythology of the Zulus of South Africa, there is a tale about a goddess called
Marimba who made an instrument by hanging gourds below wooden bars
struck by a mallet. A traditional marimba from the highlands of Guatemala
is shown on the opening page of this chapter. Another instrument, the xylo-
phone, is similar to the marimba, but has a different musical range. A modern
marimba is shown in Figure 12.8. The frequency of the struck bars increases
from one end of the instrument to the other and the resonators correspond-
ingly should increase in length across the instrument. It thus seems puzzling
that the bars in front of the instrument shown in the figure are symmetric,
short in the center and long at both ends. The answer is that the bars in front
of many commercial instruments are ornamental only; the real resonators are
hidden behind the ornamental ones, and, of course, they follow the laws of
physics.

The vibraphone is a modern instrument (often used in jazz) that we
mention here because it provides a vivid demonstration of resonance. The
instrument has a set of metal bars and metal tubes of different lengths below
each bar. Above each resonator is a metal disc, slightly smaller in diameter.
These discs are attached to a motor-driven horizontal bar, such that the res-
onators are periodically covered and uncovered, causing the resonators to be
rapidly turned on and off. Correspondingly, the sound intensity is modulated
rapidly from loud to soft (“wow-wow-wow”). The musician can change the
speed of the motor to change the rate of modulation.

Soundboards of instruments: The sound volume produced by a piano
string by itself is very weak because the string itself is small and does not
push on much air. The beautiful, loud sound of a good piano (or any other
string instrument) is achieved by running the taught string over a bridge that
transmits the vibrations to a large sound board. Some people speak of a “res-
onance board,” but this is poor terminology because the instrument builder
wants to avoid resonances. Why? Because a resonance selectively responds to
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a narrow band of frequencies, while the sound board should respond evenly to
all frequencies of the instrument.

A related comment can be made about loudspeakers: Most loudspeakers
consist of a cardboard cone with a corrugated flexible rim that allows the
speaker cone to move in and out. The driving force is provided by an electrical
coil and a magnet that pushes on the apex of the speaker in step with the elec-
trical signal from the amplifier. So, indeed, this is an oscillating system with a
periodic driving force. To achieve a more or less uniform frequency response,
we want the resonator to be very heavily damped so that the resonance is flat
and spread out. To obtain good music reproduction over all frequencies, one
uses not just one speaker but separate speakers for bass (woofer), midrange,
and high frequencies (tweeter). An unavoidable consequence of the need for
heavy damping (high friction) is that most of the energy supplied by the ampli-
fier goes into overcoming the friction. A 50 watt music system produces but a
small fraction of 50 watts as sound energy; most energy produces heat instead
of sound.

While not related to music, touchtone dialing (technically called dual-
tone, multifrequency dialing) is an interesting everyday application of reso-
nance. When you press one of the 12 keys on a telephone keyboard, you hear
two pure tones. These tones are generated by your telephone and are sent to the
telephone switchboard center. At the switchboard, the signal is sent to seven
resonance circuits, each of them responding to one particular frequency. Seven
tones are sufficient to represent the 12 keys. For instance, when you push 1,
the two frequencies are 697 Hz and 1209 Hz. It is said that some people with
good tone perception can tell the number from the tones.

12.5 Questions

1. The motion of a tuning fork is damped.
(a) If the damping time is 1.5 sec, what fraction of the initial amplitude

remains after 3 s? After 6 s?
(b) Is the frequency of the fork the same after 3 sec as it was at the

beginning, or is it lower? Higher? What is the implication of the
answer as far as the pitch of the tone is concerned; in other words,
how does the pitch of a guitar or a tuning fork change as the tone
dies away?

2. Damping time: A guitar string has a frequency of 260 Hz (middle C)
and a damping time of 2 sec. How many oscillations does the string
make before the amplitude has decreased to half of the original value?
If the initial amplitude of the guitar string was 2 mm, how large will the
amplitude be after 2 sec? After 4 sec? After 8 sec?
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3. The following graph shows the resonance curve of an oscillating
system—for instance, a flexible metal blade or the air in a tuning
fork box.
(a) What quantity does the horizontal axis of the graph represent?
(b) What quantity does the vertical axis of the graph represent?

1

0.5

0 50 70 100

(c) From your understanding of the figure, what is the natural
frequency of the oscillating system? How large is the width of the
resonance curve?

(d) From the preceding answers, deduce the damping time of the
oscillating system.
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13.1 Principle of Superposition

Sound consists of rapid pressure variations. If the pressure variations are
periodic, we perceive the sound as a tone, not as noise, which consists of
disordered (random) pressure variations.

What happens to the pressure variations at your ear (or at a microphone
that picks up the sound) when two of more sound sources oscillate at the same
time—for instance, an entire brass band all playing together?

The way to look at this problem is to first consider that each instrument,
if it played by itself, would produce a certain sound pressure variation with
time. Let us call the sound pressure of instrument #1 at a given instant in time
P1(t). Then let us have instrument #2 play and call its sound pressure P2(t).
What is the sound pressure when both instruments play at the same time? The
Principle of Superposition says that the new pressure is the sum.

Pressure created by many instruments � sum of the pressures created
by each instrument:

P (t) � P1(t) +P2(t) +P3(t) + . . .

Example: One flute produces the pressure variations shown as the black
curve in Figure 13.1, while the second flute produces the pressure variations
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FIGURE 13.1 � Sound pressure variations from two tuning forks. At time t � 3 ms,
one tuning fork produces a positive pressure of 1.4 units, the other a negative pressure of
−4.0 units. The lower graph shows the sum (or superposition) of the two sounds.

shown as the blue curve. When both flutes play, the pressure variations are
the sum (bottom graph in Figure 13.1). Note that in adding the pressures
we have to take into account that at a certain instant one instrument may pro-
duce a negative pressure (pull on the eardrum), while the other produces a
positive pressure (push). At the instant marked in the graph by the red arrows
(t � 3 ms), P1 � +1.4, P2 � −4.0, so the sum at that moment is P � −2.6.
At t� 4 ms both pressures are zero, so the sum is zero.

13.2 Three Special Cases

13.2.1 Two Pure Tones of the Same Frequency
“Pure tones” correspond to sinusoidal pressure variations, such as tuning fork
oscillations. If one adds two sine curves of the same frequency, the result
is again a sine curve with the same frequency, but the amplitude of the sum
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FIGURE 13.2 � Two sinusoidal oscillations of
the same frequency but different amplitudes (5 and
3 units of pressure) are added. The oscillations are
not in step but are shifted in phase by 1/4 of a full
oscillation. If we consider a full oscillation to rep-
resent 360◦, the phase shift here is 1/4 of 360◦ or
90◦. The Figure on the bottom shows the sum of
the two oscillations.

depends on the relative tim-
ing of the two oscillations.
To understand this, imagine
two swings of the same length
side by side: They can be
set in motion in synchronism
(in step), or they might be
swinging out of step with each
another. The “out-of-stepness”
is measured by a quantity
called the phase shift φ (Greek
letter phi), where one full
oscillation corresponds to 360◦
phase shift. Thus, for example,
a 90◦ phase shift corresponds
to 1/4 oscillation, as shown
in Figure 13.2. You will note
in the Figure that the sum is
again a sinusoidal oscillation,
but the amplitude is not simply
the sum of the two amplitudes
because the two oscillations do
not reach the peak at the same
time.

If the two oscillations are shifted by 180◦, they completely oppose each
other. In this case when one oscillation is at its peak (P1 � 5) the other is
at its trough (P2 � − 3), and the amplitude of the sum is only two pressure
units—that is, less than either instrument alone! This is shown in Figure 13.3.
Therefore, instead of being louder, the two sounds together are softer than
either one alone. Could this really happen? Yes, if you produced the tones elec-
tronically and fed them to the same speaker—but not for a musical instrument.
Musicians cannot time their instruments so accurately as to remain exactly out
of phase for any length of time.

How does one measure the phase shift? A simple way is to count
how many divisions on the graph you would have to shift one of the
curves to get the two curves in phase. Next, you count how many divi-
sions one period corresponds to and call this 360◦ (as in Figures 13.2
and 13.3). Now you use simple proportions to find the phase shift in
degrees.

Example: In Figure 13.2 the red oscillation is shifted to the right (delayed
in time) by 5 divisions with respect to the blue oscillation. One full oscillation
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is 20 divisions � 360◦. Thus, 1 division � 360◦/20 � 18◦, and 5 divisions �
5 × 18◦� 90◦.

13.3 Beats
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FIGURE 13.3 � Same oscillations as in
Figure 13.2 but with 180◦ phase shift.

Consider two tones of nearly
the same frequency—for insta-
nce f1 � 100 Hz and f2 � 98 Hz.
For simplicity we assume that
both tones have the same ampli-
tude. In musical terms, the two
musicians play the same tone but
are slightly out of tune, as they
might be before the performance
when their instruments are not
well tuned.

In this case, if the two oscil-
lations are initially in phase (in
step), they will slowly go out
of phase because one frequency
is a little higher than the other,
which means that one period is
a little longer than the other. In
this example, after 1/4 second, the first instrument (100 Hz) has made 25
oscillations, while the second instrument (98 Hz) has 98/4 � 24.5 oscilla-
tions. This means the corresponding oscillations are shifted with respect to
each other by 0.5 oscillations, which corresponds to a phase shift of 180◦.
They now are opposing each other, and now the two sounds cancel.

Figure 13.4 should help to visualize the situation. At the time 0 there is
a maximum for both oscillations #1 and #2. As time goes by, the maxima of
oscillation #1 occur before those of #2. Eventually, the maxima of oscillation
#2 arrive so late that they coincide with the minima of oscillation #1 (position
A on the time line of Figure 13.4). They are now 180◦ out of phase. As we
carry on the drawing, the maxima of oscillation #2 lag further and further
behind until one full cycle is missed, and a maximum in #2 happens at the
same time as the “next” maximum of #1 (position B). The two oscillations are
360◦ out of phase, but that is the same as being in phase again!

The term beats refers to the acoustic effect of alternating loud and soft
sound coming from the alternating in-step and out-of-step oscillations. The
beat frequency is the repetition rate of loud and soft alternations—that is, how
many times a second the two sounds cancel.



Section 13.3 Beats 183
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time'

FIGURE 13.4 � Oscillations #1 and #2 with slightly different frequencies. During the
time the first oscillation (blue) makes 17 full cycles, and the second one (magenta) makes
16. The sum of the two oscillations (bottom) shows “beats.”

In general, if one adds two oscillations with frequencies f1 and f2 and
corresponding amplitudes A1 and A2, these add most strongly (f1 − f2)
times per second. At these times the resulting amplitude will be A1 +A2.
Also they subtract from each other (f1 − f2) times per second, and at these
times the resultant amplitude will be A1 −A2 (or A2 −A1, whichever is
positive).

The beat frequency is equal to the difference in the frequencies of the
two sources:

Beat Frequency:

fB � (f1 − f2)

Beats between piano strings: If you open up a piano you will notice that the
same hammer strikes two (or on a grand piano even three) strings. When a
piano is badly out of tune, there will be rapid beats between the two strings
producing the rough, unpleasant sound normally associated with a honky-tonk
barroom piano. On the other hand, in tuning a concert grand piano, the tuner
may well choose to allow a very small mistuning so that the sound that lingers
has a soft, long modulation in amplitude.
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13.4 Harmony

Certain tones played together sound pleasant to us—harmonious—while
others sound rough—dissonant. This is not to say that dissonant sounds are
not used in music. It is often the contrast between harmony and dissonance
that makes a composition interesting.

If you hit two keys on the piano at the same time, certain combinations
sound “in tune” or harmonious. These combinations are given special names,
depending on how many keys apart they are, as we will see later when we
talk about musical scales. For now we just want to mention a few of them and
explain what is special about harmonious intervals.

The frequency relationship between two tones is called a musical interval.
An interval is characterized by the frequency ratio of the two tones. Some
harmonious intervals (“consonant” intervals as opposed to “dissonant” inter-
vals) are listed here:

Name of Interval Frequency Ratio Example

unison 1:1 300 Hz + 300 Hz
octave 1:2 300 Hz + 600 Hz
fifth 2:3 200 Hz + 300 Hz
fourth 3:4 150 Hz + 200 Hz

You note that the frequency ratios in all these cases are what you might call
simple-number ratios, like 2:3 rather than for instance 23:31. The superpo-
sition of two tones of ratios like those shown in the preceding chart has a
special property: The sum is periodic and repeats itself after a short time.
You can look at it this way: For a frequency ratio—say, 2:3—in the same
time interval in which the 200 Hz tone does two full oscillations, the 300
Hz tone does three full oscillations, as illustrated in Figure 13.5. Notice that
the superposition of the two tones is nonsinusoidal but periodic with a period
of 10 ms. Why 10 ms? The periods of the two tones (200 Hz and 300 Hz)
are 5 ms and 3.33 ms, and we must wait long enough for both to have com-
pleted an integer number of oscillations. After 10 ms, the two oscillations
have completed two and three full oscillations, respectively. The repetition
period is thus 10 ms � 0.01 s, and the repetition frequency is f � 1/T �
100 Hz.

In general, the frequency with which the superposition tone repeats itself
is the largest common divisor of the two individual frequencies. The largest
common divisor of 200 and 300 is 100. (A number like 50 would be a common
divisor also, but 100 is the largest one.)
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FIGURE 13.5 � Superposition of tones with frequency ratio 2:3.

13.5 For the Fun of It: Lissajous Figures

Jules-Antoine Lissajous had the idea to graph two oscillations in a different
way: show the displacement that corresponds to one oscillation along the
x-axis, while the other displacement is shown along y. You can see a sim-
ple demonstration of this in the Exploratorium in San Francisco, where a
pendulum like that in Figure 13.6 hangs from the ceiling. The pendulum has a
different period for x and y motion. The curve traced out by the paint bucket
(or by a felt pen) is a Lissajous figure.

What do we need Lissajous figures for? We don’t really need them, but
they are fun to physicists and perhaps also to some graphic artists (see Figure
next to chapter title). Furthermore, as we shall see shortly, they can be used in
the lab to tune two tones to be exactly in a harmonious ratio. In this case we
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FIGURE 13.6 �
A Lissajous pendulum. The pendulum
swings left to right faster than back and
forth because it is shorter in one direction
than the other. If you make it oscillate left
to right and back and forth at the same
time, the blue paint dripping down from
the paint bucket traces out a curve called
a Lissajous figure.

would use an oscilloscope and connect one signal to the x input, the other to
the y input so that the dot on the face of the scope gets deflected accordingly.
Let us look at some examples:

Same frequency: This would correspond to the oscillations of a normal
pendulum (without the V in the string of Figure 13.6), which oscillates along
x or along y or any other direction with the same frequency.

180°135°90°45°In Phase 180°135°90°45°In Phase 180°135°90°45°In Phase

FIGURE 13.7 � Lissajous figures for the frequency ratio 1:1.

The graph you get depends on the phase shift between the x and y oscil-
lations. Think about it: If the x and y oscillations are in step, the pendulum
traces a straight line. If both amplitudes are the same, the straight line is at
45◦, as shown in Figure 13.7. Now if you imagine the two oscillations being
out of phase by 90◦ (a quarter of an oscillation) as in Figure 13.2, you see
immediately that when one displacement is at the maximum the other is zero:
The pendulum moves in a circle. For phase shifts intermediate between 0◦ and
90◦ the path of the pendulum is an ellipse. For 180◦ phase shift it is again
a straight line. Note that all of these are curves that come back upon them-
selves after one oscillation, because the period in x and y displacements is the
same.
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Frequency ratio 2:1: If one oscillation is twice as fast as the other (octave
interval in music), the pictures again depend on the relative timing of the two
oscillations—that is, if they cross zero at the same time as was shown in
Figure 13.1 or are shifted with respect to one another. In contrast to
Figure 13.1, here we assume again that the amplitudes in x and y are
the same so that the Figure fits into a square. Try to figure out whether
Figure 13.8 or Figure 13.9 corresponds to the relative timing of the oscillations
in Figure 13.1.

Whether you think this is fun is a matter of taste. But it is good to
understand that Lissajous figures are very useful for exact tuning to a sim-
ple frequency ratio. If the frequency ratio differs ever so slightly from the
exact ratio, the figure does not repeat itself again and again but rather changes
slowly from one of the patterns to the next.

What is the frequency ratio? Try to figure out on your own what the fre-
quency ratio is for the set of pictures shown in Figure 13.10. You can get
a hint if you ask yourself why the curve for the 1:2 ratio touches the top
and bottom of the graph twice while it touches the left and right side only
once.

2:12:1

FIGURE 13.8 � Lissajous figures for 2:1 frequency ratio.

3:2

FIGURE 13.9 � Lissajous figures for 3:2 frequency ratio.
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FIGURE 13.10 � What are the frequency ratios for each of the three Lissajous figures
shown here?

Nonsimple ratios: For a frequency ratio like 1:1.571 almost the entire
square will be filled with ink before the line closes. You may remember from
math that some numbers cannot be expressed as a ratio of two whole numbers.
For such “irrational” relationships between the two frequencies, the curve
never closes; the entire page will eventually get filled with ink.

13.6 Questions

1. Add the two oscillations below between 0 and 1.0 ms (one point at every
0.2 ms mark and one point in between will be sufficient)
What is the frequency of oscillation A?
What is the frequency of oscillation B?
What is the frequency of the sum of A and B?
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2. What is the physical basis of harmony—in other words, why do only
certain frequency combinations sound harmonious?

3. Beats: A tuning fork has a frequency of 440 Hz. What are the possible
frequencies of a second tuning fork if we hear 4 beats every second
when both forks are sounded together?

4. Find the phase shift between the two oscillations shown in the following
graph.
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Sound Waves

14.1 Propagation of a Pulse

If you drop a stone in a still pond or an undisturbed swimming pool, a
disturbance is created on the surface of the water. What happens is shown
in Figure 14.1. One sees that the disturbance, or bump, on the water surface
travels across the pond.

Speed of propagation: One can measure the speed with which the
bump travels across the water. To find this speed, divide the distance trav-
eled (D in Figure 14.1) by the time (t2 − t1) it took to travel that far:

D

time = t0

time = t1

time = t2

FIGURE 14.1 � A rock is dropped in a pond.

v � D

(t2 − t1)

If you put some leaves or
paper boats on the water, you
see that they bob up and down
as the disturbance moves under
them. They do not move along
the surface with the bump,
but the water moves only up
and down. Energy of motion
is being transmitted across the
pond by the water without any
water actually moving from
one side of the pond to the

190
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FIGURE 14.2 � Transverse pulse on a string or a
rope.

other. The same with sound
propagating in air: The air
molecules push on one another
and transmit the sound from
place to place without any
motion of air from the instru-
ment to the listener.

The same phenomenon of
a traveling disturbance can be
seen on a stretched Slinky
or on a taught, long rope or
string: Shake one end sharply,

and you can see a bump traveling along it. Exactly the same happens on the
taught string of a piano or a string instrument. To understand vibrations of
strings, we need understand how to figure out the speed of propagation (see
Figure 14.2).

The height of the bump obviously depends on how strongly one has shaken
the end of the rope. The velocity of propagation of the bump does not depend
on how the end was shaken but only on the tension on the string and on mass
per unit length of the string

Speed of propagation v �
√

F
M /� �

√
F
ρ

Here F is the tension on the string (in Newtons)—that is, the force applied
at the ends of the string to keep it taught—M is the mass of the string (in kg),
and � is the length of the string (in m). What matters to the speed of motion
is the quantity M /�—that is, the mass of 1 meter of string. Whether you cut
a long or a short piece of string to figure out M /� does not matter because
M and � increase in direct proportion to one another. So sometimes it may be
better to call M /� by a new name, like Greek rho: ρ � M /� � mass per meter
length (also called “linear mass density”) of the rope. Usually, the symbol T
is used for the tension, but to avoid confusion with the period T , we simply
call it F .

Does the formula for the speed of propagation make sense? To understand
the formula, we look at the propagation of a pulse in detail. For our “rope” we
will use a large number of balls strung like beads onto a strong thread. Then
we stretch the thread with a tension, F , hit one ball with a hammer, and watch
the pulse propagate as in Figure 14.3.

Intuition will tell you that when the first ball is hit downward by the
hammer, the second ball also moves downward but a little later than the first
ball. Why? Because after the first ball has moved a small distance, the taught
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FIGURE 14.3 � The dots represent balls on a
taught, stretched string. The small arrows indi-
cate the direction of motion of the balls.

string starts pulling on the
second, but it takes time for the
second ball to pick up speed.

For the same reason, the
third ball will move only after
the second ball moves and
with the same delay. The accu-
mulation of delays, combined
with the separation of balls,
yields a certain speed for the
pulse propagation. This speed
is higher if the delay is smaller
and vice versa. Since heavy
balls move “sluggishly” for a
given force, the delay is longer
for heavy balls than it is for
light balls. Similarly, if the

balls are closer to each other, there is more mass to be set in motion and
the propagation is slower. So the greater the mass per meter length, M /�, the
slower the pulse travels. It thus makes sense that M /� in the formula is in the
denominator. If we increase the tension, F , the force on the second ball due
to the first is larger, it will pick up speed (accelerate) faster and the delay is
shorter. So greater tension F means faster pulse speed v. Again the formula
works out. The square root sign is harder to understand intuitively, but without
the square root, the units do not work out—just as we saw in Chapter 11 for
simple harmonic motion.

To summarize:

• The greater the tension, the higher the speed of propagation.

• The heavier the rope or the string, the slower the speed of propagation.

A word of caution: The speed of propagation formula is true only if the
string is very limber—that is, if it has no stiffness. Any stiffness of the string
adds an additional force (besides the tension) that is not taken into account in
the formula.

14.2 Longitudinal and Transverse Waves

If one end of the rope (or of a Slinky) is moved smoothly up and down at a
constant rate, a wave travels along the string. You can do this by stretching a
long Slinky on the floor and moving one end smoothly back and forth again
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FIGURE 14.4 � Transverse sinusoidal wave on
a long string.

and again. Figure 14.4 shows
the shape of the Slinky at
different instances in time.
A wave is different from a
simple oscillation: A wave
extends in space with many
points along the wave oscillat-
ing at the same rate. The waves
we discuss here are mechani-
cal waves, quite different from
light waves that, as we learned,
are electromagnetic waves.

Note that in the Figure 14.4, the wave travels from left to right, but each
point of the string moves up and down; that is, the motion of the string
is at 90◦ from the direction of propagation. This type of wave is called a
transverse wave.

Now suppose you move the end of a Slinky along the Slinky axis rather
than transverse to it—in other words, you push and pull on the Slinky again
and again to compress and to stretch it periodically. Now the direction of
motion of each part of the Slinky is the same as the propagation direction
(Figure 14.5): This is called a longitudinal wave.

14.3 Sound Waves in Air Are Longitudinal Waves

Air is squishy. It can be compressed, as you well know if you ever used
a simple bicycle pump. Sound waves in air are longitudinal waves. A big
loudspeaker membrane that moves rapidly back and forth making alternate
compressions and decompressions can create sound waves. When compres-
sions are passed to the neighboring air particles, they are set in motion because
the compressed air near the speaker pushes on the nearby air particles, much
like we visualized for longitudinal waves on a Slinky.

In Figure 14.6, the dots symbolize the air molecules. At a wave crest the air
is denser; at a wave trough the air is more dilute. You should imagine the crests
and troughs to be moving to the right, assuming a loud speaker continues to
produce compressions at the left. The picture should not be taken too literally.
Obviously, there are many more molecules than we can show, but also the
change in air density from one place to the next is tremendously exaggerated.
Even for the very loudest sounds you can barely tolerate, the change in air
density between the wave crests and troughs is only 1/10,000 of the normal
air pressure! So if normal air pressure (no sound) had 10,000 little dots on one
area of Figure 14.6, at the peaks there would be 10,001 dots and at the troughs
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PULSE

FIGURE 14.5 � Longitudinal pulse on a Slinky.

Distance From Speaker (m)

l = 0.7 m

1 2 3 4 5 60

FIGURE 14.6 � Longitudinal sound wave from a loudspeaker. The wave moves left to
right and is shown at different instances in time. Greater density of dots indicates greater
air pressure. The distance from one wave crest (maximum density) to the next is called the
wavelength λ The bottom drawing is lagging one period T behind the top drawing.

9,999 dots. You certainly would not be able to notice it. Your eardrum is just
terribly sensitive: An ant walking on your eardrum would make a deafening
sound!

The distance from one wave crest to the next is called the wavelength λ
(Greek letter lambda). The wavelength is marked in Figure 14.6. We encoun-
tered the wavelength concept already in Chapter 1, but for audible sound the
wavelengths turn out to have everyday dimensions from inches to yards, while
for visible light the wavelengths are less than a nm.
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Making a drawing like Figure 14.6 full of little dots has two shortcomings.
It is tedious to draw, and it is not quantitative (i.e., it is difficult to read or
measure how compressed or rarefied the air is at a particular point in space
and time).

A more convenient way of depicting the sound wave is to draw a series
of graphs showing the pressure at various points for different instants in time
(Figure 14.7). One sees that the pressure variations are sinusoidal and move
to the right. The drawing in Figure 14.7 corresponds to the propagation of a
pure tone of about 500 Hz frequency in air.

P
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Distance x (m)

V

x

x

x

xP

P

5

5

5

l = 0.7 m

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4 5

FIGURE 14.7 � Graphs corresponding to the pressure distribution of the drawing in
Figure 14.6. With time the wave crests move more and more to the right.

Why can’t you produce transverse waves in air? If you were to hold a
stiff piece of cardboard in front of you and move it left and right, it would
simply slide through the air without making a wave because the air particles
are not attached to one another as they are in a Slinky. But if you were to move
the same cardboard fast enough toward and away from you, the air would be
compressed and rarefied, and a longitudinal wave would propagate.

14.4 Speed of Sound in Air

To understand wind instruments of all kinds, we need to know the speed
with which the pressure waves propagate in the instruments. The speed of
propagation depends on the properties of the gas. If the molecules of the
gas are relatively heavy, they move more slowly than for lighter molecules.
Consequently, it takes longer for the compression to reach the neighboring
molecules, and thus sound propagates slowly. For example, in helium, whose
atoms are much lighter than air (which is made up of mostly nitrogen and
oxygen molecules), the speed of sound is almost three times greater than in air.
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With increasing temperature the gas molecules move more rapidly, and the
speed of sound increases accordingly. The kinetic energy of the gas molecules,
(1/2) mv2, is proportional to the absolute temperature. Absolute zero temper-
ature is at −273.2◦C (−460◦F), and at this temperature all molecular motion
stops. To figure out the change in speed of sound for instance between 0◦C
(freezing point of water) and 20◦C (room temperature, 68◦F), you would
add 273.2◦K to get the absolute temperatures: 273.2◦K and 293.2◦K. Now
the ratio between these two numbers is 0.932. This is the ratio of molecular
kinetic energy—that is, the ratio of the square of velocity at the two tem-
peratures. To find the ratio of velocities, you need to take the square root of
0.932, which is 0.965. So if the speed of sound at 20◦C is 344 m/s, at 0◦C it is
0.965 × 344 m/s = 332 m/s.

To save you the trouble of doing this calculation for different temperatures,
it is sufficient to know two numbers: the speed of sound in air at room
temperature and the change in speed of sound for every degree change in
temperature.

speed of sound in air at room temperature (20◦C) v = 344 m/s
increase in v with temperature: 0.17% per ◦C = 0.6 m/s per ◦C.

In U.S. customary units (speed in feet/s and temperature in ◦F), the
corresponding numbers are:

speed of sound in air at room temperature (68◦F) v = 1130 ft/s
increase in v with temperature: 1.1 ft/s per ◦F.

The change of speed of sound with air temperature is important for brass
and woodwind musicians. The pitch (frequency) of the instruments depends
on the speed of sound and, therefore, depends on the temperature of the air
inside the instrument. As we will see later when we talk about oscillations
of wind instruments, the frequency changes in direct proportion to the speed
of sound. A wind instrument gets warmer after it is played a few minutes, so
when a flutist warms up her instrument—for instance, by 10◦C (18◦F)—the
speed of sound increases by 10 × 0.17% � 1.7%. This raises the pitch very
noticeably.

14.5 Wavelength and Frequency

The wavelength is the distance from one wave crest to the next, as shown in
Figure 14.7. But you could just as well have used the distance from one wave
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trough to the next, or the distance from any one point of the wave to the next
point, which has the same phase. A wavelength simply includes one complete
oscillation.

The rate at which the wave crests arrive at the listener depends on two
things: the speed v with which the wave travels toward the listener and the
wavelength λ. You will easily be able to figure out the relationship between
frequency and wavelength. If the sound source makes f oscillations in one
second, and the wave travels v meters away from the source in one second,
there will be f oscillations distributed over v meters, so the wavelength must be

wavelength : λ � v/f

Note that the units in the preceding equation work out: v has units of
m/s, and f has units of 1/s, so v/f has units of m. The equation says that if
the oscillation frequency is high, the wavelength is small. Well, yes, if you
move your big toe in the bathtub back and forth rapidly, the wave crests are
close together, because you make more ripples than if you moved the toe
slowly. Instead of memorizing this equation, you can always figure it out
quickly.

Example: Find the wavelength in air of a very low-pitched sound (100 Hz)
and a high-pitched sound (10,000 Hz= 10 kHz).

Answer:

For 100 Hz: λ � v

f
� 344 m/s

100/s
� 3.44 m

For 10,000 Hz: λ � v

f
� 344 m/s

10, 000/s
� 0.034 m

In U.S. customary units, for a low-pitched tone, the wavelength is about
10 feet, while for a high-pitched tone the wavelength is just over an inch.

14.5.1 Relevance to Size of Instruments or Loudspeakers
The preceding example shows that bass tones have a long wavelength. To
produce a strong bass tone, the instrument or loudspeaker must be large.
A vibrating violin string by itself will hardly make any sound because as it
vibrates back and forth when air is pushed away as the strings move one way,
the air simply goes around to fill the void on the back of the string. You can
best see this if you hold a pencil vertically in the water and move it back
and forth. For a slow motion the water has time to flow around the pencil
and makes hardly any waves; only for a very rapid motion, when the waves
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have a very short wavelength, does a pencil make noticeable waves. To make
waves with a long wavelength, you need a large object, like a canoe paddle!
The conclusion: The size of the sound source (the “radiator”) must not be
much smaller than the wavelength of sound that is to be radiated. There is an
English saying: “You can’t fan a fire with a knitting needle.” Thus, a bass fiddle
or a bass speaker needs to be fairly large. A violin radiates higher frequen-
cies and thus can be smaller. Bass speakers increase the efficiency of sound
radiation at low frequency by suitable enclosures that prevent air that is pushed
away at the front of the speaker from going around to the back of the speaker
and filling the void in the back rather than projecting the sound out of the
front.

14.6 Sound Propagation

1. Reflections: Sound waves disperse through rooms and to adjacent rooms
by multiple reflections. Even if there are obstructions between you and
your radio speaker, you hear the sound reflected from the walls or the
ceiling (Figure 14.8).

source

target

FIGURE 14.8 �
Three possible paths from a
source of sound to a target (a
person) are shown. The three
paths shown are not all pos-
sible paths. Shown are paths
with 1, 3, and 6 reflections,
respectively.
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FIGURE 14.9 � Wave propagation near an obstacle. If the wavelength is much shorter
than the size of the obstacle, a shadow is created (left figure). The larger the wavelength
compared to the size of the obstacle, the more the waves bend around the obstruction
(diffraction of waves, pictures on the right).

2. Diffraction and shadowing: No doubt you have noticed that another
person standing in front of a table lamp makes a shadow on the book
you are reading but does not obstruct the sound waves from your table
radio. Why are light waves more easily obstructed than sound waves?

The answer is that light waves have very short wavelengths, while
sound has wavelengths ranging from a few inches to a few feet.

Shadowing of sound or light waves depends on the size of the object
compared to the wavelength. If the wavelength is short compared to the
obstacle, there is a shadow behind the obstruction (Figure 14.9). This is
the usual case for light waves because the wavelength of light is so short
that normal objects are always much larger than the wavelength of light.

But sound waves of lower frequencies have rather large wavelengths,
which bend around the obstacle (Figure 14.9).

This would suggest that if you sit behind a big stone pillar at a concert
in a Gothic church, the high frequencies would be completely shadowed. If
the pillar has a diameter of 1 m, wavelengths much shorter than 1 m would be
shadowed. But a 1 m wavelength corresponds to 344 Hz—that is, much above
344 Hz would not be heard. So almost half of the tones on a piano keyboard
would not be heard. In reality, even if you sat behind the pillar, where you get
very cheap tickets, you still hear the higher frequencies as reflections from the
many other surfaces where sound is reflected (Figure 14.8).

14.7 Interference of Sound Waves

The term interference of sound waves is commonly used to describe the
superposition of sound waves of the same frequency from two sources at
different distances from the listener. The term is misleading because the oscil-
lations caused by different sound sources do not really hinder one another, as
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we see with water waves in the figure on the chapter opening page. The two
waves simply add as we have learned earlier when we discussed superposition.

As an interesting illustration we can imagine stereo loudspeakers that are
placed some distance apart, as shown in Figure 14.10. Suppose that your
amplifier is switched to mono, which means that both speakers are connected
to exactly the same signal and oscillate in phase (in step). What will be the
result of the superposition of the two sound sources? At first you might say
that they will simply add to one another, since they are in step. But this is not
the case; we must take into account that we may be closer to one speaker than
the other so that the wave from one speaker arrives a little later than the wave
from the other one. You might say that sound travels pretty fast, so the delay
would not amount to much, but on the other hand, sound oscillations are pretty
fast, so the delay should always be taken into account.

What will happen? To think of a specific example, assume that both
speakers emit the same pure tone of 1100 Hz, for which the wavelength is
about 0.3 m. If you are the same distance from both speakers, the waves
arrive in step (in phase) because the delay from the speaker to your ear is
the same. But if the distance differs, then one wave will be delayed with
respect to other. If the delay is just half an oscillation, the two waves tend to
cancel; they make “destructive interference,” as shown in the bottom picture

soft
(opposite phase)

loud
(in phase)

FIGURE 14.10 � Interference from two loudspeakers. The + and – signs indicate wave
crests and wave troughs. When + meets + and – meets –, the sounds reinforce (as shown
in Figure 1.2). In the figure at the bottom, the listener moved to the side. Now the distance
to the two speakers is no longer the same. If the difference in distance equals 1/2 or 3/2 or
5/2 wavelengths, + meets –, and the sounds tend to cancel one another.
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of Figure 14.10. This is the case when the difference in distances from the two
sources is exactly one-half wavelength—in our example 0.15 m. But come
to think of it, what if you move your ear more to the side so that the dis-
tance from the two speakers is bigger? Well, when the delay is one whole
wavelength the two waves will reinforce again just as in the middle (we
have constructive interference). Thus, you can well imagine that as you move
off to the side, there will be alternate places of loud and soft sound—loud
every time the difference in distance to the speakers is 1 or 2 or 3 whole
wavelengths, and soft whenever the difference is 1/2, 3/2, 5/2, and so on,
wavelengths.

In a room the effects are not so pronounced because there is also sound
coming from wall reflections. But still there is a practical application to test
whether your stereo speakers are correctly connected. For mono the speakers
are supposed to oscillate together in phase, but if you have one pair of wires
crossed, they are 180◦ out of phase. To do a test, put one of your ears near
the speakers the same distance from both speakers, and cover your other ear
to reduce hearing room reflection. If you have a friend reverse the pair of
wires on one speaker while you listen, the sound will be loud for the correct
connection and soft for the incorrect one, since for the incorrect connection
the speakers are opposing one another.

14.8 Concert Hall Acoustics

Understanding how sound propagates in a room has an important application
to the design of concert halls. Not only is the construction of a large concert
hall very expensive, but if the hall is considered to have inferior acoustic
properties, it is difficult to recover the large expense needed to engage first-rate
performers. Thus, invariably the architect designs the hall in intense collabo-
ration with physicists or engineers who act as their acoustic consultants. For
economic reasons, concert halls need to be large enough to seat 2000 to 3000
people. During the last five decades, much progress has been made in the
understanding of the design criteria that contribute to the quality of perfor-
mance spaces for theater, opera, or orchestral music. Here we mention but a
few of the most important considerations.

Outdoors, the sound from a solo violin or singer disperses in all directions
so that already 100 feet away the sound is very feeble indeed, while in a
good concert hall (e.g., Boston Symphony Hall, 150 feet long) the music is
still heard clearly in the rear of the hall. Multiple reflections of sound from
the walls of the hall are essential for sufficient loudness. Indoors, most of
the sound that reaches the audience has undergone many reflections from the
surfaces of the concert hall.
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What do musicians and music lovers mean by clarity, intimacy,
envelopment, and warmth of a concert hall? How are these desirable char-
acteristics related to the architectural characteristics of the hall and aspects of
the construction?

Clarity has an obvious meaning when we are concerned about understand-
ing spoken or sung words, but clarity is equally important to discern each
note of a rapid musical passage or to recognize separately the different instru-
ments of an orchestra. Clarity requires sufficient volume of direct sound from
the stage to the listener. Strong, direct sound is obtained with direct line of
sight from the sound source to the listener. This is achieved using a raised
stage and shallow balconies with raked seating—that is, seating that rises
toward the back. The direct sound is often enhanced by structures hung over
the performers and/or by panels placed behind the performers to direct the
sound energy, which would otherwise be wasted, toward the audience. These
reflectors take the form of canopies or are broken up into many smaller pieces
referred to as clouds. The time taken by sound to travel to the clouds is small
so that the sound reflected by the clouds can be considered part of the direct
sound. To make the reflected sound disperse over the audience, the surface of
the clouds tends to be convex rather than plane or concave. In addition, these
structures help cohesion of the musicians in the orchestra. Figure 14.11 shows
an example of clouds in a concert hall.

A concert outdoors or in an airplane hangar lacks intimacy. Performers
have described an intimate hall—for instance, Carnegie Hall in New York,
despite its 2804 seats—as one that “wraps its arms around you.” The feeling
of being in an intimate setting requires reflections from surfaces on the left
and the right that follow the direct sound within a short time. Strong lateral
reflections within 30 ms after the direct sound are characteristic of good acou-

FIGURE 14.11 � The donut-shaped clouds
over the orchestra stage in the Opera House,
Sydney, Australia.

stic design. Reflected energy
beyond about 80 ms is sensed
as a disturbing reflection or, for
longer delays, as a distinct echo.
The Symphony Hall in Boston
is 24 m (70 feet) wide, so sound
reflected from the side walls
takes about 12/344 s = 35 ms
to reach the center of the hall.

After the early reflections,
the sound in the concert hall
should linger for the right
amount of time. This decay
of sound results from many
reflections of sound from the
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surrounding walls, ceilings, seating, and so on, and arrives it from all
directions so that the listener feels enveloped in sound. The decay should be
smooth, like that of a tuning fork (Chapter 12). The rate of decay is described
by a number called the reverberation time (RT), which is the time required
for sound level to decrease by 60 dB (see Chapter 15), which roughly corre-
sponds in musicians’ terms from very loud (fff) to very soft (ppp). To picture
the meaning of the RT, imagine being in a still, large cathedral or a large vault
with concrete walls, such as a large empty indoor swimming pool. The sound
from a loud clap will linger for several seconds before it becomes inaudible, in
contrast with a small bedroom, where the sound is swallowed up very quickly.
In fact, the RT is measured, for example, by firing a toy pistol cap and record-
ing the reverberant sound with a microphone and oscilloscope. You can try
this yourself if you have a laptop computer with a sound card and suitable
(free) oscilloscope software.

The desired reverberation time depends on the use of the hall and to some
extent on musical taste. For speech, a shorter RT (less than 1 s) is desired for
intelligibility than for classical music (1–2 s). Different composers (and con-
ductors) favor somewhat different concert halls. Famous examples are Mozart
and Beethoven, who preferred to conduct in the Wiener Hofburg with 1.4 sec
reverberation time, while later composers of the Romantic period, such as
Brahms, Bruckner, and Mahler, preferred the Musikvereinsaal Vienna with a
rather long 2.1 sec reverberation time. The best reverberation time depends
on the size of the hall (shorter for small halls) and on the sound frequency.
A longer reverberation time for low frequencies (100 Hz) contributes to the
sensation of warmth of a concert hall.

Of fundamental importance to acoustic design is the ability to calculate
the reverberation time Tu by the Sabine equation. The important parameters
of this equation:

T (in sec) � 0.161 V /A (metric units),

or:

T (in sec) � 0.049 V /A (U.S customary units)

are the volume of the hall V (in m3or in ft3) and the total absorption area
A (in m2or in ft2) of the surfaces. If the walls absorbed no sound at all, A = 0,
and the sound reverberates forever. In an actual room, different parts (walls,
ceiling, seats, etc.) are more or less sound absorbing, so the absorbing area A
is calculated as

A � S1a1 +S2a2 + . . .

where the total surface of the hall is subdivided into various parts
S1, S2, . . . . . . and so on, with relative sound absorption coefficients
a1, a2, . . . . . .. Wooden theater seats do not absorb much sound (a = 0.07 at
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1 kHz), while the same seats occupied by people absorb about 10 times more
(a = 0.76)! This is bad, because the reverberation time would change a lot
with the room occupancy. Upholstered seats are much better because their
absorption is high no matter whether they are occupied of not.

If a concert hall has too much absorption, the sound is “dead.” The problem
is particularly severe if the hall lacks in warmth because of too much low-
frequency absorption. Construction materials that particularly absorb low
frequencies are avoided (e.g., plywood panels over empty spaces), while
walls of concrete and plaster on wire lath yields good bass reflection and
warmth. Too little absorption is less of a problem because the architect can
add sound-absorbing elements (cloth). Extensive tables of sound absorption
coefficients for a large number of materials at different frequencies are readily
available.

Not only must the sound in the hall last just the right length of time, but the
sound must be distributed uniformly throughout the hall. Uniformity means
there are no bad seats; everyone hears the music equally clearly. One essential
tool to achieve uniformity as well as smooth decay of the reverberant sound is
the use of diffusers. Large, flat walls tend to reflect sound in certain direc-
tions and can lead to sound bouncing back and forth from one surface to
another ( flutter). Diffuse reflection of sound requires irregular surfaces of dif-
ferent sizes, small for diffusion of high frequencies (short wavelengths), large
for low frequency sound (large wavelengths). Thus, balconies with concave
surfaces, sunken wall panels, ceilings with structural elements of different
sizes, chandeliers, and so forth are desirable. Make it a habit when you wait
for the concert to look around and identify as many sound-diffusing elements
as you can.

Another virtue of a good concert hall is the absence of extraneous noise
(street noise, ventilation, air conditioning). This sometimes requires large
efforts. The Bridgewater Concert Hall in Manchester, England, is immediately
adjacent to a railroad track. To isolate the building from the vibration caused
by passing trains, the entire building is on a gigantic slab, supported on shock
absorbers.

Until rather recently, the only way to ensure good acoustics was to copy
the basic design of earlier, successful halls. The classic design is referred
to as a “shoe box”—a rather large shoe box, of course, to which doors, a
stage, seats, and balconies are added. But now it appears that computer-aided
acoustic design has allowed successful deviations from the shoe box, such
as the recently constructed Tokyo Opera City Concert Hall and the “Parco
della Musica” Auditorium in Rome, Italy, which have been called acous-
tic miracles. Just what fraction of the recent successes can be credited to
computations and how much to insights derived from long experience is still
being debated.
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14.9 Questions

1. You dip your finger in a still pond to make steady waves. If you wiggle
the finger up and down 5 times every second, you observe wave crests
that are 3 cm apart. What do you conclude about the speed of waves
on the pond? Can you explain the answer to a friend who has common
sense but knows no math or physics?

2. Are the waves propagating in a flute transverse, longitudinal, or both?
What about the waves propagating on a string?

3. The range of human hearing extends from about 20 Hz to 20,000 Hz.
Find the wavelength of the lowest frequency you can hear. Find the
wavelength of the highest frequency you can hear. Find the frequency
of a tone whose wavelength is 0.75 m.

4. How many times greater or smaller should the musician make the
tension F on the string to double the speed of propagation of a wave?

5. The longest string on a concert grand piano is about 2 m long and has a
mass of 50 g. (a) Find the mass per unit length of the string. (b) If the
tension on the string is 300 N, what is the speed of wave propagation on
this string?

6. At the Steinway piano factory, a worker finds that 500 m of piano wire
on a spool weighs 2 kg. (a) Find the mass per unit length. (b) Find the
speed of propagation on this wire for a tension of 40 N. (c) How much
tension is required to double the speed of propagation?

7. Consider two loudspeakers oscillating in phase playing the same tune.
Your ear is 6.0 m away from one speaker and 5.4 m from the other.
Which frequencies will be suppressed? Which frequencies will be loud?



� Chapter 15

Sound Perception: Pitch,
Loudness, and Timbre

Now that we have learned about the basic properties of sound, let us begin
studying what effect sound has on our ears. For the present purposes, it is more
convenient to use electronic circuits for sound production rather than a musi-
cal instrument because we can more easily control and measure frequency,
amplitude, and wave shape. Let us connect a loudspeaker (or headphones) to
the signal generator (an electronic “oscillator”) and display the wave shape on
an oscilloscope.

It is easy to discover relationships between physical stimulus (what you
observe on the oscilloscope) and the perception of the sound. Amplitude of
the sound waves corresponds to the perceived loudness, while the frequency
is perceived as pitch.

If one changes the shape of the wave from sinusoidal to triangular or
square wave, the timbre is changed, but the pitch is not. Timbre (pronounce
it in French, or as in the first two syllables of the word tambourine) is the
“quality” of the sound. If you listen to a flute or violin both playing the same
tone (same pitch) with the same loudness, you can immediately tell that they
sound different. The aspect that distinguishes them is called the timbre or, by
analogy with light, the physical “tone color.” The timbre is associated with the
wave shape of the sound pressure variations, and this differs between violin,
flute, and any other string or wind instruments playing the same tone. We will
later see that the wave shape of the tone is determined by its harmonic con-
tent. The way the tone rises in time (the attack) and the way the oscillations

206
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diminish when the tone ends are also of much importance. These relationships
can be shown schematically as

stimulus

amplitude
frequency
wave shape

loudness
pitch
timbre

perception

The black lines suggest that loudness depends not only on amplitude but
also on frequency, and for the same frequency very loud and very soft tones are
perceived by some people as having slightly different pitches. More detailed
experiments on human hearing suggest that to a small extent all three aspects
of the stimulus affect all three aspects of perception, but the red and solid
black lines in the preceding diagram represent the most important aspects of
tone perception.

15.1 Loudness and Amplitude

No doubt, when one increases the amplitude of the pressure variations by
turning up the volume control on the radio, the perceived loudness increases.
But does the sound get twice as loud when you make the amplitude twice
as large? This question reveals a fundamental problem of perception studies:
How do you know exactly what “twice as loud” really means, and would tests
on different people who are asked to judge “twice as loud” in an experiment
give similar results?

A much more objective test on loudness perception is done by playing
two tones of the same frequency (e.g., 1000 Hz) but slightly different ampli-
tude one after the other. The difference in amplitude is then made smaller and
smaller until the listener can no longer tell the difference. This is done by alter-
nating between the softer (S) and the louder (L) tone randomly (L L S L S S S
L S etc.) and the listener indicates which tones sound louder or softer. In this
way one finds the JND (just noticeable difference) in loudness perception.

The results on loudness perception are surprising in two respects:
1. We are rather insensitive to small differences in amplitude. Increasing

the amplitude 1.5-fold is only barely noticeable.
2. A given increment in loudness corresponds to a certain ratio of sound

pressure amplitude. For instance, a change in amplitude from 10 to
15 units sounds the same to us as the change from 20 to 30 units, or
from 100 to 150 units. Note that from 10 to 15 the amplitude changed
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by 5 units, and from 100 to 150 the amplitude changed by 50 units, but
subjectively the loudness change is the same in both cases. The same is
observed for louder tones: Equal increments in loudness correspond to
multiplying the amplitude by the same number. Many audio systems
let you increase the volume in steps. These are equal steps in loudness,
each time multiplying the amplification by the same factor.

Another surprising aspect of our loudness perception is the vast range of
amplitudes that we can perceive, from the softest tone to the loudest tone we
can tolerate. Sound pressure amplitude is measured in N/m2—it tells how
much force (in Newtons) is pushing against the eardrum per unit area (pres-
sure = force/area). For a frequency of 1000 Hz, for the average person of
normal hearing, the threshold of hearing is a sound pressure amplitude of
0.00003 N/m2 = 3 × 10−5 N/m2. Compare this pressure to that exerted by
a single sheet of paper on the table: the threshold of hearing is 20,000 times
less pressure! But at the other extreme, the loudest sound you can still stand,
although painful, exerts a pressure 1,000,000 times greater than the threshold
of hearing—that is, a pressure of 30 N/m2 (50 sheets of paper).

Sound intensity means how much sound energy hits one square meter of
area that absorbs the sound. Energy is measured in watts (abbreviated W, such
as in a 60 W lightbulb). Sound intensity (in W/m2) is proportional to the
square of the sound pressure amplitude. Without going into details, a similar
relationship holds between the amplitude and energy of a pendulum or a mass
oscillating on a spring: Doubling the amplitude quadruples the energy because
for twice the amplitude the spring gets stretched twice as far, but in addition it
is twice as hard to pull: 2 × 2 = 4—the square.

How large is the sound intensity for the loudest sound you can toler-
ate, compared to the threshold of hearing? The sound pressure amplitude
is 1,000,000 times larger, so the sound intensity is the square of that—
1,000,000,000,000 times larger, or 1012!

Table 15.1 shows some of the important aspects of what we just talked
about. The table lists different typical intensities of sound sources, from a jet
engine to the softest sound you can barely hear in a soundproof enclosure (the
threshold of hearing). In each case the sound pressure amplitude, the ratio of
the sound pressure to the threshold sound pressure (po) for a 1000 Hz tone,
and the corresponding intensity level I in W/m2 are listed. The column labeled
I/Io gives the sound intensity relative to threshold intensity Io.

For the loudest sound, the intensity is, as mentioned, 1012 times larger than
the threshold intensity.

Remember that equal increments in subjective loudness correspond to
equal factors of sound amplitude or sound intensity. For each step in
Table 15.1, the sound pressure increases 10-fold, and the intensity, being the
square of the sound pressure, increases 100-fold.
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TABLE 15.1 � Intensities of Different Sound Sources

p/po

Description Pressure Pressure Intensity Sound
and Musical Amplitude Relative to I Level
Notation p in N/m2 Threshold in W/m2 I/Io in dB

Jet Engine at 20 feet 30 1,000,000 2
Loud as Hell 3 × 101 106 1012 120
Rock Band 3 1,000,000 0.02
Fortissimo ( fff ) 3 × 100 105 2 × 10−2 1010 100
Very Heavy Traffic 0.3 10,000 0.0002
Loud f (forte) 3 × 10−1 104 2 × 10−4 108 80
Quiet Conversation 0.03 1,000 0.000002
Soft (p—piano) 3 × 10−2 103 2 × 10−6 106 60
Quiet Room 0.003 100
Very Soft ( ppp) 3 × 10−3 102 2 × 10−8 104 40
Whisper at 4 feet 0.0003 10
Hard to Hear 3 × 10−4 10−1 2 × 10−10 102 20
Threshold of Hearing 0.00003 1
at 1000 Hz 3 × 10−5 2 × 10−12 1 0

It seems that a better measure of loudness is, therefore, the number of
zeroes in the intensity level relative to threshold. The intensity of the loudest
sound (relative to threshold) has 12 zeroes, while the softest (threshold) has
none. This indeed is how the physical sound intensity level is specified, except
that the number of zeroes is multiplied by 10. This is, by definition, the sound
level in decibels (abbreviated dB):

Sound level in dB dB = 10 log I
Io

.

10 log(I/Io) is a fancy mathematical way of indicating that we take the
number of zeroes in the I/Io ratio. Calculated this way, then, the loudness in
the last column of the table shows that the loudest tone has 120 dB, the thresh-
old is 0 dB, and in between equal increments in the number of dB correspond
to equal increments in subjective loudness.

One way you use this equation is to put the number for I/Io in your calcu-
lator and then press the “LOG” button. Try it; if you put in 100, you should get
the answer 2, because there are two zeroes. To get the decibel level, multiply
this answer by 10.

We will be using logarithmic scales again later when we talk about
musical scales. It may be useful to show how numbers on a logarithmic axis
are distributed:
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1 5 10 50 100 500 1000

In contrast to the normal number line, where equal increments in the
number are represented as equal distances, here equal factors are represented
by equal distances. Note, for example, that a 10-fold increase (from 1 to
10, or from 5 to 50, or from 10 to 100) shows up as the same length. Per-
ceived loudness increases the same amount for every 10-fold increase in sound
intensity level. Thus, you can think of perceived loudness represented by the
distance along a log number line, while the numbers along the line correspond
to the intensity level.

We mentioned earlier that we are not very sensitive to small changes in
sound intensity level. Under good laboratory conditions, a 1.5 dB change is
just noticeable, but in real life a 3 dB change is needed before you can say a
tone is clearly louder. To calculate I/Io for 3 dB, you put 3 into the calculator,
divide by 10, and press the inverse function of log, called 10x. The result you
get is 2.0. This tells you that doubling the sound intensity level is needed to
bring an appreciable increase in subjective loudness.

If you have a good amplifier, the volume control may be labeled “loud-
ness” and the numbers given on the dial or the digital display are the dB
numbers. Sound intensity levels in dB are always with respect to some arbi-
trary reference. In the previous equation, the reference level is the threshold
of hearing, but dB is a useful number to compare any two intensity levels. On
an amplifier, the reference level is rather arbitrary, often chosen for the very
highest amplification to be called 0 dB and to specify lower amplification by
negative numbers.

15.2 Loudness and Frequency

A simple experiment demonstrates that perceived loudness depends not only
on amplitude but on frequency also. If one slowly changes the frequency of
a tone with fixed amplitude from 1,000 to 30,000 Hz, the perceived loud-
ness of the sound decreases sharply in the neighborhood of 15,000 Hz. Above
22,000 Hz one hears nothing, although a microphone and oscilloscope would
confirm that there is a sound wave present. The air is transmitting pressure
waves, but the frequency is too high for our ears to hear; it is “ultrasound.”
With increasing age, one hears less and less of the high frequencies; as early
as age 25, the ability to hear very high frequencies declines. At low frequen-
cies, hearing extends to about 20–30 Hz; for large amplitude sounds below
20 Hz, you may still perceive some sort of pressure variation but not a tone of
a definite pitch.
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If we compare sounds with different frequencies, how is their perceived
loudness related to the intensity, or the amplitude, of the sound waves? By
switching back and forth between two tones of different frequencies and
adjusting the amplitude until they seem about equally loud, we can study
how loudness perception changes with frequency. Do two tones at different
frequencies sound equally loud when they have the same amplitude—that is,
the same intensity level I in W/m2?

The answer is, not at all!
The results of such measurements are called the Equal-Loudness curves.

To explain the method, we show one example in Figure 15.1. One uses as a
reference a pure tone of 1000 Hz and adjusts the sound intensity level to the
desired value—in this example 40 dB. The perceived loudness of this tone is
called loudness level 40 phons. Tones at other frequencies that are judged
to sound “equally loud” are also said to have a loudness level of 40 phons.
What the measurements show is that the physical sound pressure or sound
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FIGURE 15.1 � Curve of equal loudness: the curve shows the sound intensity level (in
dB) that is needed to match the loudness of a 40 dB tone at 1000 Hz. All the tones along
the curve have a loudness level of 40 phons.
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intensity level is very much different for different frequencies—that is, the ear
has a different sensitivity at different frequencies. Figure 15.1 shows that, for
instance, at 100 Hz, the sound intensity must be 60 dB to sound as loud as
a 1000 Hz tone of 40 dB intensity. This difference of 20 dB is very large if
you remember that 20 dB means 100 times greater intensity level (or 10 times
larger sound pressure level). The ear is much less sensitive at 100 Hz than at
1000 Hz.

An interesting result is found when the same experiment is repeated star-
ting with varying loud sounds at 1000 Hz. Figure 15.2 shows an entire set of
measurements of perceived loudness as a function of frequency for different
intensities 10 dB apart at 1000 Hz. When the tone is very loud, such as 90 dB,
the curve is almost flat, indicating that for very loud sounds the sensitivity
of the ear does not depend much on frequency. For loud sounds the ear is
equally sensitive to different pitches. But at the other extreme, for very soft
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FIGURE 15.2 � Tones at 1000 Hz in 10 dB increments of sound intensity level are
matched in loudness by tones of frequencies between 20 Hz and 20,000 Hz. The corre-
sponding loudness levels of musical tones are shown in the usual notation (f stands for
forte, etc.). Sound intensity level (dB) is on the left axis, and intensity (W/m2) and the
corresponding pressure amplitude (N/m2) are on the right. The graph is adapted and reused
with permission from H. Fletcher and W. A. Munson, The Journal of the Acoustical Society
of America, 5, 82 (1933). Copyright c© 1933, Acoustical Society of America.



Section 15.3 Pitch Discrimination 213

sounds, there is a tremendous difference in sensitivity: The sound needs to
have more than a 1000 times greater intensity to be barely audible at 100 Hz
than at 1000 Hz. Figure 15.2 shows that hearing of faint sounds is most acute
in the range of about 1000 Hz to 6000 Hz.

You might wonder if any of this is of practical use. One application that
will interest you is in music reproduction. Suppose you like to listen to music
played at an ear-splitting loudness of 90 dB. Now your neighbors complain,
so you turn down the volume on the amplifier. While for loud sounds the ear
was nearly equally sensitive for different frequencies, after you turn down the
amplifier from 90 dB to 50 dB, the midrange is still audible, but the lower fre-
quencies have almost completely disappeared, because at low sound intensity
levels low frequencies are harder to hear. So you are very unhappy about the
sound, unless you turn up the bass quite a lot. Most of the better amplifiers
do this automatically; that’s why the knob is labeled loudness control and not
volume control.

A similar comment applies to the conductor of a band or an orchestra.
Since the conductor is close to the orchestra, his sound intensity level is much
greater than for the audience, so he needs to compensate by “turning up” the
volume of the bass and of the high frequencies.

15.3 Pitch Discrimination

For musicians it is important to know how small a difference in frequency a
person can recognize. We learned in Chapter 13 that beats between two tones
allow you to detect even the smallest frequency differences when the two tones
are played at the same time. Here we ask how well a person can tell when two
frequencies are slightly different, one tone played after the other.

The answer depends on many factors. Very short tones can be off more
than long, steady tones, which is a good thing for the violinist because if the
pitch is a little off-key in a very rapid passage, one is less likely to notice than
for steady tones. For test tones of one-second duration, experienced musicians
can tell when the frequency between two successive tones differs by about
0.3% or 3 Hz for a 1000 Hz tone. So you see that the ear is very good at detect-
ing differences in frequency between two tones, but not good at recognizing
differences in sound intensity.
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The Ear

The eye and the ear are probably the most complicated sensory instruments in
our body—as well as the most remarkable for their ability to perceive and pro-
cess a vast range of stimuli. Here we give a brief, simplified review of the way
the ear senses sound pressure variations and converts them into nerve pulses
transmitted to the brain. Does the ear work like a microphone, which accu-
rately changes pressure variations into an electric signal of the corresponding
wave form? How does it manage to work over such a vast range of intensities?
What limits the frequency range of the ear? How is it possible for the ear to
distinguish tones which differ in frequency by less than 1%? These are but a
few of the questions one might ask when one thinks about the ear as a sound
detector. In passing we might mention that the ear not only allows us to hear
sound, but it is also the organ that helps us maintain balance.

16.1 The Parts of the Ear

The components of the ear, shown in Figure 16.1, can be grouped into three
parts: the external ear, the middle ear, and the inner ear.

The external ear consists of the pinna and the ear canal. The pinna is the
outer part of the ear, while the auditory canal is the tubular opening leading to
the middle ear. Although the pinna is not as important to us as it is to many
other mammals (elephants!), it helps us distinguish the direction from which
the sound originates. The pinna alters the intensity of sound from a source
behind our head compared to that from a source in front of us. In addition, the
pinna collects sound and guides the sound waves more or less toward the ear

214
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FIGURE 16.1 � The parts of the ear. Medical Illustration Copyright c© Nucleus Medical
Art, All rights reserved. www.nucleusinc.com.

canal—more or less, because you remember that in considerations of sound
propagation (Chapter 14), one should compare the size of the object to the
wavelength of the sound. The pinna is approximately 6 cm in size. The fre-
quency that corresponds to a 6 cm wavelength is about 6,000 Hz, so the pinna
helps sound collection primarily for the higher frequencies.

The ability to tell from which direction sound originates has two aspects:
the difference in sound volume received by the left and the right ear, and the
tiny difference in the arrival time of the sound between the two ears.

At the end of the auditory canal begins the middle ear, which consists of the
tympanic membrane (eardrum) and three tiny bones (ossicles) transmitting
the motion of the ear drum to the inner ear. These bones are called the hammer,
the anvil, and the stirrup, according to the objects their shapes resemble. These
are the smallest bones in the human body.

Together, the ossicles act like a lever or a crowbar: The eardrum pushes
back and forth at one end (hammer), and at the other end (stirrup), the
amplitude of motion is less but the force is greater. What is quite remarkable is
that our body has the ability to change the effective fulcrum (point of rotation)
of the lever, so for very loud sounds the ear is partially protected from damage.
This involves a feedback mechanism in which the brain, when a sound is too
loud, makes muscles in the ear change the lever action!

http://www.nucleusinc.com
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FIGURE 16.2 � Longitudinal section through the stretched-out cochlear duct. The
entire cochlea is approximately 35 mm (or 1.4") long. Pressure from the eardrum is trans-
mitted to the stirrup (top left), which presses on the oval window. The pressure wave
travels along the top of the basilar membrane through the fluid inside the cochlea and
returns along the bottom of the membrane back to the round window on the lower left.
In the process, the basilar membrane is deflected, but note that the amplitude of the
membrane deformation is much exaggerated in this schematic.

The inner ear contains the cochlea, which converts the mechanical pressure
variations into nerve signals. The cochlea is a spiraling, tapered, snail-like,
bony structure filled with fluid and having two windows. The “oval window”
(Figure 16.1) is attached to the stirrup, which wiggles the window back and
forth and sets up a pressure wave in the liquid inside the cochlea.

The function of the cochlea is much easier to describe if we imagine
the snail-like spiral stretched out, as shown schematically in Figure 16.2. The
basilar membrane is a flexible membrane that runs down the middle of the
cochlea and divides it into an upper and a lower part, connected by an opening
at the apex of the cochlea.

16.2 Place Theory of Pitch Perception

Attached to the basilar membrane are about 15,000 nerve cells, which respond
to the bending of the membrane. The membrane is much more flexible near
the apex than near the oval window. Depending on the frequency of sound,
the flexing of the membrane shifts from one region of the cochlea to another,
as shown in Figure 16.3. Correspondingly, different nerve cells are stimulated
for sounds of different pitches. For example, a 1600 Hz tone mostly stimulates
cells between 10 and 20 mm from the oval window but almost no cells beyond
22 mm. On the other hand, low-frequency tones stimulate nerve cells near the
flexible, floppy end of the basilar membrane.

The place theory of sound perception holds that we recognize the pitch of
a tone by the location on the basilar membrane of the groups of nerve cells
that are affected by the sound. While this plays a role, place theory would be
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FIGURE 16.3 � For low-frequency tones, the basilar membrane flexes mostly near the
apex for high-frequency sound nearer to the oval window. Correspondingly, different nerve
cells are stimulated for sounds of different pitches.

hard pressed to explain why almost anyone can tell apart tones that differ by
1% in frequency, and musically trained people do even better than that. If one
imagines shifting the 400 Hz curve by 4 Hz (1% of 400), the shift is so small
that it can hardly be the principal way we recognize pitch. Recent studies of
signals from single nerve cells provide a better explanation.

16.3 What Do the Auditory Nerves Tell the Brain?

The nerve cells in the cochlea send signals to the brain, where the signals are
processed into what we call hearing sound. While the processing in the brain
is not well understood, fascinating research on the nerve response of single
auditory nerve cells has been done at the University of Wisconsin Department
of Neurophysiology.

In general, nerve cells are known to communicate with the brain by send-
ing electrical signals not in the form of a complex wave shape but by sending
a sequence of individual nerve impulses.

The results of studies on the response of individual auditory nerve cells
have found remarkable results, briefly summarized here:

1. When the auditory nerve is stimulated by a periodic signal, such as a
pure tone (sine wave), the nerve pulses occur at various, seemingly
irregular intervals. All nerve pulses (“spikes”) are nearly of the same
height, independent of the loudness of the tone.

2. A histogram of the spacing between adjacent pulses shows an interesting
regularity: The pulses are grouped at multiples of the period T of the
periodic tone (Figure 16.4).
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FIGURE 16.4 � The histogram shows the distribution in spacing between adjacent
nerve impulses from a single auditory nerve cell stimulated by sinusoidal tones of dif-
ferent frequencies. The peaks in the distribution are at multiples of the period of the sound.
The histogram for 600 Hz shows that sometimes 10 or more periods pass before the next
nerve impulse occurs. The average rate of the nerve impulses (spikes) is related to sound
intensity level (dB). The figure is adapted and used with permission from a paper by
J. E. Rose et al. in the Journal of Neurophysiology, 30, 769 (1967).

3. The loudness of the tone changes the average rate with which the pulses
occur. The rate is related to the sound level in dB of the tone.

4. Nerve pulses are transmitted only during the positive part of the pressure
wave, not during the wave troughs.

5. The wave shape is encoded in the detailed shape of the nerve pulse
peaks in the histogram in Figure 16.4. For a pure tone, the peaks of
the distribution reflect the positive part of the sine wave. For a complex
tone, the distribution changes correspondingly.

When listening to different sounds, the brain receives a sequence of nerve
pulses (spikes) with different time distributions from about 15,000 nerve cells
in the cochlea. Since we know that we can distinguish changes in pitch of
1% or less, we conclude that the brain must analyze all these histograms and
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determine the periodicity of the spike distribution to high accuracy. Therefore,
for very soft tones, when the spikes in the average are few and far between,
it must take longer to accumulate sufficient information to recognize the pitch
accurately. This is indeed the case: the accuracy of pitch perception for very
short tones of very low levels is much poorer than for louder and longer tones.

This brief summary shows that the auditory system encodes loudness,
pitch, and timbre in a complicated way. We don’t fully know how the brain
turns this stream of encoded nerve pulses into sensations. You might, how-
ever, stop and marvel at your ear and brain functioning the next time you hear
a sound.
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Vibration of
Strings

17.1 Single Modes

The simplest kind of oscillation of a guitar string is a harmonic to and fro
motion, just like the one shown in Figure 17.1 for a Slinky or for a string
in Figure 17.2. In this case, each point of the Slinky or the string moves
up and down in simple harmonic motion, and all points oscillate with the
same frequency but with different amplitudes. When all parts of an oscillating
system vibrate in simple harmonic motion, the motion is called a Mode of the
oscillating system. Whether the oscillating system is a string or a drum, all
of its parts vibrate with the same frequency. As we will see later, the actual
motion when a string is plucked or bowed is more complicated, but we will be
able to understand these complicated motions as the simultaneous occurrence
of several modes.

Only certain special frequencies are allowed. To set up such an oscil-
lation, you would gently wiggle the Slinky or the string up and down in
sinusoidal motion. The wave you create in this way travels along the string
and is reflected at the far end where the string is tied down. The wave then
travels back toward you and is reflected once more at your end of the string,
and on and on, the wave goes back and forth. Notice one important point that is
essential to understand why only certain frequencies are possible on a string:
To build up a steady oscillation, each subsequent wave crest that you make
with your hand should be in step with the wave already present on the string.
This means that you should time the wave crests to be spaced exactly equal
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FIGURE 17.1 � Top: The shape of a
Slinky at two instances in time when it
oscillates in the first (fundamental mode).
Bottom: Photograph of a string in vibra-
tion.

FIGURE 17.2 � The shape of a string
at different instances in time when the
string vibrates in the first (fundamental)
mode. The four drawings are one-eighth of
a period (T /8) apart in time and represent
half a period (T /2).

to the round-trip time of the wave on the string. A whole number of complete
waves (1, 2, 3, etc.) must fit into one round-trip time. Conclusion: in the fun-
damental mode of oscillation of the string, the period T equals the round-trip
travel time of the wave on the string. If the length of the string is called L,
and the speed of propagation of the wave on the string is v, then the period of
oscillation T (round-trip travel time) is T = 2L/v. Since the frequency is the
reciprocal of the period T , or f = 1/T , then

First (fundamental) mode frequency: f1 = v/2L

The preceding equations says that shorter string corresponds to higher
frequency (string length is inversely proportional to string oscillation
frequency). When the musician shortens the string by placing a finger on the
fingerboard the pitch increases. Note that the speed of propagation v on the
string in the formula stays the same as long as the musician does not change
the tension (pull on the string) with the tuning pegs.

You can do this yourself. Find the round-trip travel time of a pulse on a
Slinky stretched between you and a friend. Then move your hand gently up
and down in step with the reflected pulse and observe that you build up a mode
that looks like Figure 17.1.

Example: The string of a guitar is 60 cm long and is tuned to standard
A = 440 Hz. What is the new frequency if the vibrating length of the string
is shortened to 40 cm by placing a finger on the fingerboard?
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Answer: Frequencies are inversely proportional to the string lengths. The
ratio of lengths is 40 cm/60 cm = 2/3. Thus, the new frequency is (3/2) times
the old frequency = (3/2) × 440 Hz = 660 Hz. The new frequency has to be
higher, since the string is shorter.

17.2 Higher Modes

What happens if you gently wiggle your hand exactly twice as fast? If you
understood the argument in the preceding section, you will anticipate the
answer: You now make not one but two full waves for every round-trip
distance of the string so that you are again reinforcing the existing oscillation.
So the next higher allowed frequency is twice the fundamental frequency, or
f 2 = 2f1 (see Figures 17.3 and 17.4).

If you shake the Slinky (or the string) even faster, you can produce
three half-wavelengths along it. Again all points of the Slinky make simple
harmonic motion (see Figures 17.5 and 17.6).

The third mode has frequency f 3 = 3f 1.
The n-th mode has a frequency n-times the fundamental frequency, or

fn = nf1 = nv/2L

Wavelength: If you look at the picture of the string oscillating in the first
mode (Figure 17.1), it looks like half of a wavelength fits into the length of
the string. So we can also express the condition for the fundamental oscillation
by saying that λ1/2 = L.

FIGURE 17.3 � Top: Oscillation of a
Slinky in the second mode. Bottom: Pho-
tograph of a string oscillating in the second
mode.

FIGURE 17.4 � Shape of the string
at different instances in time. The pictures
are 1/4 period apart.
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FIGURE 17.5 � Top: Oscillation of a
Slinky in the third mode. Bottom: Photo-
graph of a string oscillating in the third
mode.

FIGURE 17.6 � Shape of a string at
different instances in time. The drawings
are 1/4 period apart.

First mode: f1 = v

2L
λ1 = 2L

(fundamental)

Second mode: f2 = 2f1 λ2 = 2L

2
= L

Third mode: f3 = 3f1 λ3 = 2L

3

Fourth mode: f4 = 4f1 λn = 2L

4
= L

2

nth mode: fn = nf1 λn = 2L
n

FIGURE 17.7 � The oscillation frequency f and the wavelength on the string when the
string is oscillating in one of it’s modes.

Well, yes, this is correct: Remember that λ = v/f , so if we substitute for f ,
the frequency of the first mode (f1 = v/2L), we get λ = 2L.

For the n-th mode, the frequency is n times higher so that the wavelength
is n times shorter. Thus, n half-wavelengths fit into the string length.

This is summarized here and shown in Figure 17.7. For all modes, each
point of the string makes simple harmonic motion, but the frequency is now
twice, three times, four times as large as for the first mode.

17.3 Traveling Versus Standing Waves

We should realize that these motions of the string in the various modes are
quite different from the waves we have encountered before. In a traveling
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FIGURE 17.8 � In a traveling wave, the wave crests move along at speed v. All points
move in simple harmonic motion with the same amplitude and the same frequency but
shifted in phase.

node

antinode

FIGURE 17.9 � In a standing wave, all points oscillate with the same frequency, but,
in contrast to the traveling wave, all points oscillate in phase but with different amplitude.
Points that never move are called nodes, and points that have the largest amplitude are
called antinodes (or “bellies”).

wave the wave crests moved along the water’s surface; all points of the system
(the water surface) moved up and down, and nothing stood still. This is
represented in Figure 17.8.

In contrast, the wave pattern of the Slinky or the string is a standing
wave; it moves neither to the left nor to the right but is the sum of two waves
moving in opposite directions (see Figure 17.9). Here are the differences
between traveling waves on a long string and standing waves on a string tied
at both ends:

• In a traveling wave the crests and troughs move along the string.

• In a traveling wave all the points move up and down with the same
amplitude. Different points have different phases.

• In a standing wave the amplitude is different at different points. Some
points don’t move at all. These places are called nodes of motion.

• In a standing wave points of maximum motion (bellies or antinodes)
are halfway between the nodes. All points between two nodes move in
phase.
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17.4 The Voicing Formula

To find the frequencies of the string’s modes, we must know the speed of
propagation v of the wave on the string. But we have learned that v depends
on the tension and the mass per unit length of the string (Chapter 14). Using
this result, we can find the fundamental frequency of a taught string, which is
tensioned by a pull F

Fundamental frequency: f1 = v

2L
= 1

2L

√
F

M /�
= 1

2L

√
F

ρ

Remember that ρ = M /� simply means the mass of a 1-meter length of
string, no matter how long the actual string is. Piano tuners and piano builders
call this the voicing formula because “voicing” a piano means to put strings
on it; without strings the piano has no voice!

Frequency of higher modes: fn = n
2L

√
F
ρ = nf1

The equations say that the frequency increases as the tension is increased,
in proportion to the square root of the tension F . This means that to dou-
ble the frequency, the tension must be 4 times larger. The formula says that
the frequency is lower for a thicker string (larger M /�), in inverse proportion
to

√
(M /�).

How does the piano builder choose the length, the tension, and the mass
of the string? The tension should be as high as possible (without breaking the
string!) so that the oscillating string presses hard against the soundboard, pro-
ducing a good, forceful sound volume. Bass strings need to be long and thick
(massive), since L and M /� are in the denominator. In a large grand piano, the
longest strings are about 7 feet long (2.1 m). But to make the frequency low
enough, the strings still need to be quite massive.

Example: A piano string is 1.2 m long and has a tension of 200 N. The
tuner cut the string from a spool of wire that was labeled “200 m piano
wire/mass 1 kg.”

What is the fundamental frequency of this string and what are the
frequencies of the next two higher modes?

Answer: We substitute M /� = 1.2 kg/200 m = 0.006 kg/m; F = 200 N,
L = 1.2 m
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f1 = 1
2 × 1.2

√
200

0.006
= 76.1 Hz

f2 = 2 × 76.1 Hz = 152 Hz

f3 = 3 × 76.1 Hz = 228 Hz

17.5 How Do Modes Relate to Music?

When a string is bowed or plucked, many modes of oscillation occur at the
same time—that is, the actual motion of a bowed or plucked string is the
superposition of many modes, often up to 10 or more modes.

Correspondingly, the tone produced by a 440 Hz string has in it also
vibration frequencies of two times, three times, four times 440 Hz. Musicians
call these the higher partials of the tone, or overtones. The fundamental mode
is the first partial, the second mode is the second partial, and so on. Since over-
tone refers to the oscillations higher than the fundamental, the first overtone is
the second mode (second partial), and so on.

The frequencies of the partials of a musical tone need not be exact multi-
ples of the first mode; in fact, for drums this is by no means the case, nor is it
true for stiff vibrating bars (xylophone). Partials whose frequencies are exact
multiples of the fundamental are called harmonics.

The frequencies of the harmonics form the harmonic series:

harmonic series: f1 2f1 3f1 4f1 5f1 and so on

Note that the partials have simple frequency ratios: the second partial has twice
the frequency of the first. In musical terms it is the octave (frequency ratio
2:1); the fourth partial is the octave of the second partial, and so on. The
third and second partial form a 3:2 ratio, which in music is called a fifth, as
mentioned in Chapter 13. We will discuss this at length in Chapter 20, where
we talk about musical intervals and musical scales.

As we just mentioned, the motion of a bowed or plucked string is com-
plicated, but it can be thought of as a superposition of many modes. How
much of each mode is present (its amplitude) depends on how and where
the string is plucked or bowed. It may be interesting to see the motion of a
string that vibrates in several modes at the same time. This can be done with
a computer simulation; it may not work on all computers, but try by going to
http:/ /surendranath.tripod.com/Applets/Waves/Harmonics/HarmonicsApplet.
html. The mix of partials determines the tone color (timbre) of the musical
tone. The relative strength of the various partials can be represented by a bar
graph, which shows the amplitude of each partial, as shown in Figure 17.10.

http://surendranath.tripod.com/Applets/Waves/Harmonics/HarmonicsApplet
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FIGURE 17.10 �
The spectrum of partials
in a tone represented as a
bar graph. The mix of par-
tials determines the tim-
bre of the musical tone. On
the horizontal axis we indi-
cate the number of the par-
tial, while the height of the
bar indicates its amplitude.
A higher bar indicates a
stronger partial (e.g., the
third partial in this graph).

17.6 Damping of Higher Partials

After plucking a string, the sound slowly decays—that is, the oscillation is
damped because energy is dissipated not only as sound but also in the back-
and-forth bending of the string. If you listen carefully to the decaying tone of
a guitar string, you may notice that the tone not only becomes softer (lower
amplitude) but more and more the tone approaches a pure tone. This change in
timbre is related to the fact that the higher modes are damped faster because
they require more bending of the string.

17.7 Plucked Strings: Missing Partials

While it is not always easy to anticipate how much of each partial is present in
the tone of the instrument, you may expect that to produce a strong first mode
you have to pluck the string at is center because this is where the first mode
has an antinode (belly).

If you pluck the string at the exact center, is the second mode present? No,
because the second mode has a node at the center and is therefore incompati-
ble with plucking at the center. Moving the string at the center does not excite
this mode. Similarly, all higher modes with a node at the center are absent.
The second, fourth, sixth, and eighth modes are all missing, as shown in
Figures 17.11 and 17.12.

Generally speaking, modes that have a node at the plucking point will not
be excited. Modes that have an antinode at the plucking point will be strongly
excited. The strength of excitation of modes depends on whether the plucking
point is close to a node (weak excitation = small amplitude) or close to an
antinode (strong excitation = large amplitude). It is for this reason that a guitar
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FIGURE 17.11 � String plucked at the
center: all modes with a node at the center
are absent.

FIGURE 17.12 � Spectrum of partials
for a string plucked at the center shown as
a bar graph.

string produces different sounds when plucked at different places; the closer to
the bridge the strings are plucked, the more higher modes that will be present
and the harsher the sound.

Try to figure out which modes are missing and which ones are strongly
excited if you pluck the string at 1/3 of the string length (for instance, you
pluck a 60 cm long string at a distance 20 cm from either end). From the
distribution of partials in Figure 17.10, try to determine where the string was
most likely plucked.

17.8 Playing Harmonics

When a string vibrates in only one mode, nodes and antinodes are located in
a regular pattern along its length. If you touch the string lightly at one of the
nodes, the vibration will continue undisturbed. If you touch it anywhere else,
the vibration will stop instantly.

If one plucks a guitar string near the bridge, many modes are present in the
sound. If the guitarist now lightly touches the string at a point 1/4 length from
the end, what modes will still sound? Touching the string at a given point kills
all modes except the ones that have a node where the finger is placed. The modes
with a node where the finger was placed survive because the string did not move
at that place anyway. Figure 17.13 shows which partials survive in this case.

17.9 Real Strings Have Some Stiffness

In this section we assumed that the speed of propagation of waves on the
string, v, does not depend on the wavelength (or the frequency) of the waves.
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FIGURE 17.13 � Playing harmonics: we assume that the string was originally plucked
near one end of the string and that a finger is lightly placed on the string 1/4 length from
the end. The picture shows that the fourth, eighth, and so on partials still oscillate.

This is true only if the string has no stiffness at all and all the restoring force
is provided by the tension of the string.

Real strings, however, have some stiffness (gut strings very little, steel
strings quite a bit) and this will be felt as an increase in restoring force for
the higher modes (where there is more bending of the string). The stiffness of
the string increases the velocity of propagation for the higher modes and there-
fore slightly increases their frequency. Musicians say that the higher modes are
sharp (i.e., slightly too high in frequency).

We have learned that bass strings need to be massive—that is, they have
relatively larger diameters, which makes them stiffer. How can one make a
massive metal string that is still quite pliable—in other words, has a small
stiffness? One uses overwound strings: A second wire is wound around a
central core, thereby increasing the mass without increasing the stiffness. All
bass strings on the piano and the lower strings on most string instruments are
overwound, but of course some stiffness remains.

Typically, for a piano string, the second mode is sharp by about 0.2%; that
is, if the fundamental is 100 Hz, the second partial is not 200 Hz but 200.4 Hz,
the third partial is 300.6 Hz instead of 300 Hz, and so on. We say that the
partials of the piano string are slightly anharmonic.

17.10 Questions

1. A guitar string of 60 cm length has a fundamental frequency of 240 Hz.
One can increase the frequency to 300 Hz by placing a finger on the
fingerboard so that the vibrating length becomes shorter. How long
should the vibrating length be? What will be the frequency of the string
if the vibrating length is 40 cm? 20 cm?

2. What happens to the frequency of a 200 Hz piano string if you changed
the tension from 200 N to 50 N? From 200 N to 300 N? What happens
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to the frequency of a piano string if you double the diameter? (You need
to ask yourself, does the mass of the string double? Triple? Quadruple?)

3. If the tension of a 240 Hz string is made half as large, what would the
new fundamental frequency be?

4. If you pluck a string 1/4 from one end, which partials will be missing?
Which is likely to be the strongest one?

5. A viola string of length 60 cm is tuned to play a tone called G3. Where
should you place the finger on the fingerboard to play a tone one octave
above G3? One-fifth above G3? One-fourth above G3? (See Chapter 13
for the frequency ratios of these intervals.)

6. How does one reduce the stiffness of bass strings, which must be fairly
thick? Acoustically, what is the effect of string stiffness? Is this effect
desirable or not?

7. If you pluck a string 1/4 from one end and then touch it lightly at the
midpoint, what modes will survive. Give the number of the modes.
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Pipes

18.1 Pressure Pulse in a Pipe

You recall from the previous chapter that a standing wave is produced by the
superposition of two identical waves that travel in opposite directions. In a
string the opposing waves come from end reflections. Only at certain specific
frequencies (or wavelengths) do these waves superimpose constructively to
produce a mode or standing wave. At all other frequencies, no steady oscilla-
tion is possible because, having the wrong frequencies, after a few reflections
the waves are out of step and interfere destructively.

The sound waves in a pipe are longitudinal pressure waves. An easy and
quite correct way to visualize the sound wave in a pipe is to think of a Slinky
(to keep it from sagging we suspend it from many fine threads). If you give
the Slinky a push to compress it at one end (see Figure 14.5), the pulse travels
along the Slinky much like a pressure pulse would travel along a pipe if the
air is pushed at one end of the pipe. In Figure 18.1 we show the pressure pulse
traveling to the right in two different ways: as a schematic picture of a pipe
showing the air density by shading and as a graph showing the variation of air
pressure along the pipe.

When the pressure pulse arrives at the end of the pipe, it is reflected
because there is a sudden change on impedance (resistance) to air motion.
At the open end, the compression pulse forces the air out of the pipe into the
open, and inertia keeps the air moving out until a negative pressure in the
pipe sucks the air back in, so in Figure 18.1 we show the reflected pulse as a
rarefaction (a partial vacuum) instead of a compression.

231
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Pressure vs. Position Pressure vs. Position Pressure vs. PositionPressure vs. Position

FIGURE 18.1 � A pressure bump is traveling to the right in a pipe and is reflected at
the open end.

Since the wave is reflected at the end of a pipe, under the right conditions
standing waves can be formed just as in the case of a string.

18.2 Reflections in Open and Closed Pipes

The end of a pipe can be open, or it can be closed off with a stopper. Pipes
closed at both ends are not useful as musical instruments because there is
no way for the sound to come out or for the musician to set the air into
oscillations—unless you think of a singer in a closed shower stall setting the
air into oscillations!

Thus, usually by a closed pipe we mean a pipe closed at one end, while an
open pipe is open at both ends, as shown in Figure 18.2. Unless we specify
something different, it is understood that the inner hole (bore) of the pipe is
cylindrical rather than, for example, cone shaped.

In the flute the mouthpiece represents an open end, even though it is off
to the side, since air is free to escape. The clarinet has a cylindrical inner bore
and can be considered a closed pipe, closed off by the reeds.

It is reasonable to assume that the way the sound wave is reflected at
the end of the pipe depends on whether the pipe is open or closed. At an
open end, the air pressure cannot build up, since the air is free to escape,
so there must be a pressure node at the open end. At a closed end, the
stopper keeps the air from moving, so there must be a node of motion at
the closed end. The physical conditions imposed on the air motion at the
closed or the open ends are called “boundary conditions.” For the example of
the vibrating string, because the string is kept fixed at the ends, the bound-
ary condition is that at both ends of the string there has to be a node of
displacement.

Knowing the boundary conditions makes it easy to find out what
modes of oscillation are possible, because the frequency or wavelength
of the sound wave in the pipe must be just right to match the boundary
conditions.
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Cross section of an open pipe:

Cross section of a closed pipe:

FIGURE 18.2 � Diagram of “open” and “closed” pipes.

18.2.1 Boundary Conditions
At the open end of pipe: pressure node, motion antinode (air escapes)
At closed end of pipe: motion node (air cannot move), pressure antinode
(pressure belly)

It is a lot better to reason out this concept than to memorize it.

18.3 Standing Waves in Open Pipes

The wind player learns to set the air in the instrument into periodic oscillation
by making periodic puffs of air in resonance with the modes of the pipe. It may
seem implausible that a musician can make, for instance, exactly 440 puffs of
air every second when she plays the standard A on the flute—exactly in step
with the resonance frequency of the flute! How this is done will be discussed
later. The mechanism involves a feedback between the flute oscillations and
the oscillations of the musician’s air stream.

Assume that the musician has set the air in a flute (open pipe) into steady
oscillations. How do we picture the motion and pressure variations in the pipe?
On the left of Figure 18.3, the dark and light areas show regions of compres-
sion and decompression of the air in the pipe during one oscillation of the
fundamental mode. In the first picture the air is compressed most at the center.
Air starts to flow out both ends of the pipe until the pressure is the same as
the air pressure outside, but inertia keeps the air flowing out until the pressure
inside the pipe is below normal air pressure. At this point the airflow reverses,
and the air inside the pipe is compressed again.

On the right we show the corresponding graphs for air pressure and speed
of airflow. It might seem surprising that the air is still (v = 0 throughout the
pipe) at the moment when the pressure inside the pipe is the highest. But
remember the pendulum motion: When the displacement is the largest (end of
the swing), the speed is zero because at that moment the direction of travel
reverses, while the speed is greatest at the middle of the swing when the
displacement is zero. The same happens in the open pipe here: the air speed is
greatest when the air is neither compressed nor diluted.
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Air Pressure vs. Position Air Velocity vs. Position

FIGURE 18.3 � The fundamental mode of an open pipe. The dark and light areas of
the pipe on the left indicate regions of high or low air pressure, respectively. The graphs
on the right show the air pressure distribution along the pipe and the air velocity. Negative
velocity means that the air moves to the left. Adjacent graphs are 1/4 of a period apart.

Note that in the fundamental mode, at the center of the pipe there is a node
of motion. The air at the center gets compressed and decompressed, but it does
not move! So the center is a node of air speed.

18.4 Fundamental Frequency of Open Pipe

Just as in the case of the string, the frequency of excitation (external
pushes) must correspond to the round-trip travel time of the wave. For
a pipe, the speed of travel is the speed of sound in air, v = 344 m/s at
room temperature. Thus, the fundamental frequency of an open pipe of
length L is

Fundamental of open pipe: f1 = v

2L

Note that the pipe diameter does not appear in the formula; the diameter
of the pipe has almost no effect on the frequency of the pipe’s tones. For a
string, the diameter matters but not for a pipe. You might wonder why that
is, because, after all, for a pipe the mass of air that is oscillating is greater
too when the pipe has a larger diameter. But the difference is that for a pipe
of larger diameter, the push on the air by the propagating sound wave is also
bigger because the air pressure acts over a larger area. The larger push offsets
the larger mass. For a string, too, if you increased the diameter and the tension,
the frequency would stay the same.
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A string of length L can produce any frequency because we can change
the mass of the string or the tension at will. But for a pipe of length L, the
frequency is fixed because we cannot change the speed of sound in air! So
when a string player tunes the instrument, she changes the tension, but when
a flutist tunes her instrument, she makes it a little shorter or longer by pulling
out the mouthpiece from the body of the flute.

Example: A flute (with all finger holes closed) plays the tone C, which has
a frequency of 260 Hz. How long is the flute?

Answer: Solve f1 = v / 2L for L:

L = v

2f1
= 344 m

sec

2 × 260 1
sec

= 0.66m

18.5 Higher Modes of Open Pipe

Because modes are sinusoidal oscillations, to find the higher modes, we must
find those sinusoidal standing waves inside the open pipe with pressure nodes
at each end of the pipe (boundary condition).

For the second mode there will now be two half-wavelengths inside the
pipe, again with a pressure node at both ends. From Figure 18.4 we see that
for the second mode there is a region of high pressure and a region of low

Air Pressure vs. Position Air Velocity vs. Position

FIGURE 18.4 � Second mode of an open pipe. The dark and light areas of the pipe on
the left indicate regions of high and low air pressure. The graphs on the right show the
air pressure distribution along the pipe and the air speed. Note that when the air flows out
of the left end it flows into the right end, which is opposite to the fundamental mode of
Figure 18.3. Adjacent graphs are 1/4 of a period apart.
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pressure inside the pipe. Initially, air flows out of the left side and into the
right side of the pipe, which is opposite to what we found for the first mode.
Note that in this mode the air at the center of the pipe moves back and forth,
while for the fundamental mode the air in the center never moves.

For the next higher modes, three, four, and so on half-wavelengths fit inside
the length of the pipe. We summarize the pressure distributions for all modes
in Figure 18.5, where we mark the pressure nodes (places of constant pres-
sure) with a green arrow and the antinodes with a red arrow. Remember that
the air velocity is opposite: The air velocity is largest where the pressure has
a node and smallest where the pressure has an antinode.

As you can see from Figure 18.5, the higher the mode, the shorter
the wavelength, and therefore the higher the frequency. But all frequen-
cies are multiples of the first mode frequency: They are harmonic. This
is very important from the musical standpoint. The fact that the modes of
pipes and strings are harmonic is responsible for the pleasing sound of the
instruments.
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FIGURE 18.5 � Each graph is a graph of pressure versus position inside the pipe. Red
arrows show pressure antinodes, and green arrows show pressure nodes. Notice that in odd
harmonics there is a pressure antinode at the center of the pipe, while in even harmonics
there is a node at the center of the pipe.
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18.6 Fundamental Mode of Closed Pipe

As mentioned in section 18.2, for a closed pipe (closed at one end), there
must be a node of pressure at the open end but an antinode of pressure at the
closed end. At the closed end the air pushes against the stopper so that the air
pressure varies at the closed end, while at the open end the air is free to escape
and the pressure is constant. The pressure and air velocity graphs for a closed
pipe are shown in Figure 18.6.

Fundamental Frequency of Closed P ipe :

You may have noticed in Figure 18.6 that for the fundamental oscillations
of the closed pipe, 1/4 of a wavelength fits inside the pipe of length L, while
for the open pipe the wavelength was half as long, so 1/2 a wavelength fits.
In other words, considering two pipes of the same length, the closed pipe
has twice the wavelength of the open pipe. Longer wavelength means lower
frequency: A closed pipe has half the frequency of an open pipe of the same
length.
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Air Pressure vs. Position Air Velocity vs. Position

FIGURE 18.6 � Fundamental mode of closed pipe. The dark and light areas of the pipe
on the left indicate regions of high or low air pressure. The graphs on the right show the air
pressure distribution along the pipe and the air velocity. Negative velocity means that the
air moves to the left. Adjacent graphs are 1/4 of a period apart.
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Here it is expressed as an equation:

Fundamental of closed pipe: f1 = v

4L

A particularly attentive reader may argue that if we again were to use the
argument that the round-trip time of a pulse should equal the period of the
fundamental, we would get the same answer for the period no matter whether
the pipe is open or closed. This apparently is not the case. Why not? The
answer is that at the closed end a positive pulse is reflected as a negative one,
as shown in Figure 18.1. Thus, a belly of the sine wave is reflected at the
closed end as a through, meaning that the phase of the wave jumps by 180◦.
So we lose a half-wavelength in the reflection at the closed end.

Example: A 2-m-long organ pipe is closed at one end. Find the fundamental
frequency.

Answer:

f1 = v

4L
= 334 m/s

4 × 2 m
= 43 Hz.

On a pipe organ, the pipes of lowest frequency are often closed pipes. To
get the same 43 Hz fundamental from an open pipe requires a pipe twice as
long—that is, 4 m, or about 12 feet.

18.7 Higher Modes of Closed Pipe

For the next higher mode, we must again be sure that there is a pressure node
at the open end and a pressure antinode (belly) at the closed end. The picture
for the second mode is shown in Figure 18.7.

So what is the frequency f2 of the second mode? There are now three (1/4)
waves inside instead of just one, so the wavelength is three times shorter and
the frequency three times higher than the fundamental: f 2 � 3f1. In contrast
to strings and open pipes, the next mode does not have twice the frequency!

Following we show the pressure distribution for the first five modes of the
closed pipe. To always have an antinode (belly) at the closed end, we must
use an odd multiple of λ / 4 inside the pipe—namely, 1, 3, 5, 7, and so on.
Correspondingly, the frequencies of the higher modes are 1, 3, 5, 7, 9 times
the fundamental frequency, not 1, 2, 3 times the fundamental!

Closed pipe: fn = (2n − 1) × v

4L
, where n = 1, 2, 3, . . .

Figure 18.8 shows the pressure distributions for the first five modes of the
closed pipe.
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Example: Let us find the first three mode frequencies of a 2-m-long
closed pipe.

Answer: We found that the fundamental of a 2-m-long closed pipe is
43 Hz. The next two modes have frequencies of 3 × 43 Hz = 129 Hz and
5 × 43 Hz = 215 Hz.

18.8 Playing Tunes on Wind Instruments:
Fingerholes and Overblowing

Just as for the string, in wind instruments the player does not excite only
a single mode but many modes at the same time. The sound from an open
pipe is the sum (superposition) of many sinusoidal oscillations of frequency
f1 and multiples of f1, whereas for the closed pipe only the odd multiples of
f1 are present.

String players can easily change the fundamental frequency simply by
putting a finger on the fingerboard to make the string shorter. Wind players
have to make their pipe shorter or longer by opening different finger holes
where the air can escape and make a pressure node somewhere along the
pipe or by making the pipe longer or shorter with valves (trumpet) or a slide
(trombone).

But it would be difficult to cover a very large range in frequency this way.
Every octave requires making the pipe half as long so after three octaves it
is 1/8 the original length and there is almost nothing left—not to mention
the tremendous number of finger holes the musician would have to open and
close. Another way to produce frequency changes in wind instruments is to
“overblow” to the next mode: the wind player learns to blow in such a way
that the excitation frequency of an open pipe jumps to the second mode, so
the full length of the pipe plays 2f1—that is, the octave. Or it could be even
three or four times the fundamental. One striking application of this is the
bugle, which is a trumpet without any valves. The bugle can nevertheless play
a sequence of tones: f , 2f , 3f , 4f , and so on, called the harmonic series or
the harmonic scale. By what magic the musician can at will excite different
modes, we will discuss in Chapter 21.

18.9 Other Shapes

Except for the flute and some organ pipes, wind instruments are not usually
simple cylinders. Brass instruments have flares attached to the end, not only
to improve sound radiation but also to shift the resonance frequencies. Some
instruments (oboe, bassoon) have a conical rather than a cylindrical opening
(see Chapter 21).
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The math for figuring out the modes of these instruments is complicated,
but we want to mention one interesting fact. The modes of a conical pipe are
for some reason mathematically identical to those for an open cylindrical pipe
of the same length. Of course, for a conical pipe we imagine a mouthpiece
attached to the tip of the cone for the musician to blow so that the air inside is
set into oscillation.

18.10 Acoustic Length

In connection with the open pipe equation, we mentioned that the diameter
of the pipe does not appear in the frequency formula—in other words, the
frequency is the same no matter how large a diameter the pipe has. But this
is an oversimplification: In actual fact, the pipe oscillations extend beyond
the physical end of the pipe by some fraction of the pipe diameter. The effect
of this extra length is to slightly lower the frequencies of all the modes. The
“acoustic length” of a pipe is the value of L in the equation that corresponds
to the actual frequency of the pipe. The amount by which the acoustic length
exceeds the physical length is about 0.6 times the radius of the pipe.

18.11 Questions

Assume speed of sound in air 344 m/s.

1. How does the frequency of an 80-cm-long open pipe change if you:

(a) change the length from 80 cm to 100 cm? (Find the frequency for
both lengths.)

(b) keep the length at 80 cm but close one end of the pipe?
(c) change the diameter of the pipe from 2 cm to 4 cm?
(d) increase the air temperature?

2. To blow A (440 Hz) on a trumpet, the air stream from the lips of the
musician must vary 440 times a second. Explain how feedback works to
keep the lips opening and closing at the right instance.

3. (a) The flute is a cylindrical pipe of length 66 cm, open at both ends.
Find the fundamental frequency of the flute when all finger holes
(tone holes) are closed.

(b) The clarinet has almost the same length as the flute, but the funda-
mental frequency is about half that of the flute. Is the clarinet an
open or a closed pipe?
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4. The fundamental frequency of a closed organ pipe is 200 Hz.

(a) What is the length of the pipe?
(b) What is the frequency of the same pipe if one end is closed?

5. Wind instruments usually have finger holes or valves so that one can
change the effective length of the instrument. Besides changing the
length, what other way is there to change the pitch of a wind instrument?

6. How long an organ pipe would you need to play a 40 Hz tone?
7. (a) Find the fundamental frequency and the frequencies of the first two

overtones of an open pipe of 60 cm length.
(b) If the same pipe is closed at one end, what are the corresponding

frequencies?
8. (a) Make a graph of the pressure at different instances in a cylindrical

pipe open at both ends when it oscillates in the fundamental mode,
and

(b) in a cylindrical pipe closed at the left end.
9. Between room temperature (20◦C) and body temperature (37◦C) the

speed of sound increases by 10 m/s. A flute has a frequency of 260 Hz
when it is cold. Find the frequency when the flute is warmed to body
temperature by the flutist’s breath. (Hint: Use proportions to relate fre-
quencies to speed of sound. What is the ratio of speed of sound at the
two temperatures? What is the frequency ratio?)



� Chapter 19

Fourier Analysis

19.1 The Fourier Theorem

When we looked at modes of a string, we represented the intensity of the
various modes by a bar graph, which showed the amplitude of all the modes
that make up the complex vibrations of the string. A bar graph, of course, is
much easier to draw than the complex wave, which is the superposition of
the various sine curves. You may remember from the examples in Chapter 13
how tedious it is to draw the actual wave shape when two oscillations are
superimposed, not to mention three or four!

Looking at a wave shape—for instance, of the human voice—on an
oscilloscope may be fun but very hard to interpret or to identify which fea-
ture of the wave shape is different when you compare the voice of an opera
star to your own voice. A young singer might decide to improve her voice
by trying to make her oscilloscope trace look similar to the oscilloscope trace
from the recording of a famous star, but this would be futile because the oscil-
lations are so complex. In addition, changing the phase (the timing) between
oscillations changes the wave shape but not the tone we hear, which is another
indication that the wave shape is not all that important. Rather, it is the inten-
sities of the partials—and not their relative timing—that determine the tone
quality.

Instead of dealing with the complicated wave shapes that voices and instru-
ments produce, Fourier analysis allows us to describe a steady tone of any
complexity by just a few numbers or by a simple graph.

243
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Baron Jean Baptiste Joseph Fourier, a French mathematician (1768–1830),
presented a mathematical proof of the Fourier theorem. This theorem has three
parts:

1. Any periodic wave of period T can be represented as a sum of sine waves
with appropriate frequencies, phases, and amplitudes.

2. Only certain frequencies are necessary—namely, those that are multi-
ples of the fundamental frequency f = 1/T .

3. There is only one combination of sine waves that produces the given
complex wave.

In other words, the Fourier theorem states the following:
Any periodic function of period T can be expressed as a sum of sine

curves whose frequencies are multiples of f = 1/T and whose amplitude
and phase are suitably chosen.

For example, if a singer’s voice makes a very complex oscillation of some
repetition frequency f , this oscillation can be represented by the sum of
Fourier components—namely, sinusoidal oscillations of frequencies f, 2f,
3f, and so on. Of course, for a string or a pipe we are not surprised that this
is possible because we have learned from the physics of their oscillations that
the tone they produce is a superposition of modes of frequency f, 2f, 3f, and
so on. Musicians call the Fourier components the partials of the tone.

Why are the frequencies of the Fourier components exact multiples of the
fundamental frequency? If the fundamental oscillation has a period T , the
periods of the higher oscillations must fit into T once, or twice, or three times,
and so on. If they did not, they would spoil the periodicity. Thus, we readily
understand that the frequencies of the Fourier components must be multiples
of the fundamental frequency.

19.2 Sound Spectrum

The Fourier spectrum of a musical tone (also called the sound spectrum) is
a graph that represents the amplitude of the various partials of a complex tone
versus the frequency of the partial. Often, if there are lots of partials, we may
show the number of each partial instead of the actual frequency, but we still
need to specify the frequency of the fundamental.

How does one find the Fourier components (partials) of a complex
tone? There are two ways: You can record the exact wave shape and use a
mathematical procedure involving integral calculus to find the amplitudes of
the partials. But for studies in acoustics, a much more convenient and elegant
approach is to use a “Fourier analyzer,” which carries out this calculation and
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immediately displays the spectrum of sound picked up by a microphone on a
computer screen. Any present-day desktop computer with a sound card and
either an internal or external microphone can be used as a Fourier analyzer.
The necessary programs are now readily available for free or for a small fee
on the Internet. If you do a search using the keywords “Fourier analyze,” you
can have great fun exploring your voice or a musical instrument.

To get used to the concepts, the figures in this chapter show some periodic
oscillations and the corresponding Fourier spectrum. We first deal with calcu-
lated wave shapes (Figures 19.1 to 19.4) and later show examples of actual
measurements.

1. A pure tone (e.g., tuning fork): The left side of Figure 19.1 shows the
sound pressure variations. The right shows the corresponding Fourier
spectrum. It is obviously a lot easier and more instructive to draw the

20
0

2

4

0 100 200 300
Frequency (Hz)

A
m

pl
itu

de

400 500 600
0

2

4P

-2

-4

4 6 8 10 12 14 16 18

time (ms)

20

FIGURE 19.1 � Pressure variations and corresponding sound spectrum of a pure tone
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FIGURE 19.4 � Pressure variations and corresponding sound spectrum for the same
two tones of Figure 19.3 but shifted in relative timing (phase). The pressure variations are
different, but the sound spectrum and the perceived sound stays the same.

Fourier spectrum than the actual air pressure variations. The figure tells
us that there is one sine wave present of frequency 300 Hz and amplitude
2 units.

2. A pure tone of different phase, frequency and amplitude (Figure 19.2).
3. A complex tone consisting of two partials: In Figure 19.3 we have

added the preceding two oscillations to produce a more complex tone.
The period of the resulting oscillation is 10 ms, which corresponds to a
100 Hz frequency.

Now it is even more obvious that the Fourier spectrum is an ele-
gant way to see what is happening. If you only were given the complex
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oscillation (black curve in Figure 19.3), you would have a hard time
figuring out its components, while the Fourier spectrum immediately
tells you what partials made up the black curve.

The missing fundamental: In the preceding example, the complex
oscillation clearly has a frequency of 100 Hz—in other words, it repeats
itself every 10 ms, or 100 times per second. As we explained earlier, this
frequency is the largest common divisor of 200 Hz and 300 Hz, but what
is the amplitude of the fundamental in the Fourier spectrum? The funda-
mental has amplitude 0 (zero)—that is, there is no fundamental present.
Yet, 100 Hz is the fundamental in the sense that the repetition frequency
is 100 Hz. We refer to this as the missing fundamental.

It is interesting to ask ourselves what frequency we actually hear in
this case. If you have several partials, but the fundamental is not actually
present in the complex oscillation, the pitch still sounds like the funda-
mental that is not there! This is one reason why a small radio on your
nightstand that has virtually no bass response still can reproduce bass
sounds to some extent, because the higher partials of the actual bass
suggest to the ear-brain system the presence of the fundamental, even if
the speaker in the radio does not reproduce it.

4. Change in phase affects wave shape but not Fourier spectrum:
Drawing the spectrum instead of the wave shape is a lot easier and
more instructive, but here is a possible problem: when you change the
timing (phase) between the oscillations, the wave shape changes con-
siderably, as shown in Figure 19.4. But the spectrum graph stays the
same because the graph only says how much of each oscillation there
is, not how they are timed. So how can one say that the spectrum graph
represents the real sound?

It is indeed sufficient to show only the amplitude but not the phase of
the partials because we cannot hear differences in phase between the par-
tials! Two oscillations (e.g., left-hand side of Figures 19.3 and 19.4) can
have rather different wave forms yet sound exactly the same. We say that
the ear is insensitive to the phase of the partials. Stated another way,
the human hearing apparatus is a Fourier analyzer that takes apart the
complex wave shape into its components (partials) without paying atten-
tion to the detailed wave shape. This is rather surprising in view of the
coding of sound in nerve pulses, the distribution of which in fact is sen-
sitive to phase, so it is only later, in the brain, that the phase information
is ignored.

This raises another question: when we listen to a complex tone from
a musical instrument, do we hear that the tone is made up of partials?
The answer is no. We integrate all the partials into one perception of
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one tone, with one frequency. In our perception, all the partials fuse into
a single tone, which we identify as a flute, a violin etc. This process—
fusion of partials—happens in the brain and is poorly understood. Some
musicians claim that they can hear partials but most of us don’t.

5. The sound spectrum of musical instruments: In Figure 19.5 we show
the sound spectra for two instruments, an alto saxophone and a clarinet.
This illustrates that real instruments usually have many partials. A violin
would have even more. Second, it illustrates that the clarinet has strong
odd and weak even partials (at least for the first few partials), similar to
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FIGURE 19.5 � Sound spectrum of an alto saxophone playing a tone with frequency
233Hz and a clarinet playing a frequency of 134 Hz. The clarinet has strong odd partials,
while the saxophone has odd and even partials of similar strength.
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FIGURE 19.6 � Sound spectrum of a closed organ pipe (left) and a conical organ pipe
(right), both playing a frequency of 262 Hz. Note that the closed pipe has only odd partials.

a closed pipe, while the saxophone has strong even and odd partials. We
will discuss that more when we talk about instruments in Chapter 21.

Figure 19.6 shows the spectrum of two organ pipes playing the same
tone C4, which has a frequency of 262 Hz. The names of organ pipes are
often derived from German names: the name gedackt pipe comes from
gedeckt, meaning “covered”—that is, a closed pipe (left graph). It shows
odd harmonics only. In contrast, the Spitzflöte (spitz, meaning “point”—
that is, a pointed, conical pipe) has odd and even harmonics. The two
pipes have the same pitch but very different timbre: The Spitzflöte
sounds very nasal, while the closed pipe has a smoother, rounded tone.

19.3 Fourier Analyzer (Sound Analyzer)

Almost any computer with a sound card and a microphone can be used to
record and to graph almost instantaneously the sound spectrum of a tone
played or sung into the microphone. Such displays are now used in voice train-
ing. Experienced singers produce a vowel sound in such a way that all partials
are immediately present at the beginning of the tone, while for less experi-
enced singers the higher partials come into play only slowly. By watching
the spectrum on the computer screen, the singer learns how to avoid this
undesirable “blooming” of the partials.

Two examples of sound spectra acquired with a computer are shown in
Figures 19.7 and 19.8.

In Figure 19.7 one of the authors was singing “aah” as in “father” at about
220 Hz. He actually tried to match the frequency of a 440 Hz tuning fork but
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FIGURE 19.7 � Fourier analysis done on a computer. The example shows Willy’s voice
when he sings a sustained “aah” sound at 220 Hz. The computer displays the sound pres-
sure variations detected by a microphone (top part of the computer screen) and the sound
spectrum (bottom part of the screen).

FIGURE 19.8 � Sound spectrum of a violin playing a frequency of 350 Hz. Note that
the tenth partial is much stronger than the fundamental.
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sang the tone an octave too low. It is interesting that even good singers, when
they try to match the tone of an instrument, often find that they sing in a
different octave.

The top panel of the computer screen reproduced in Figure 19.7 shows
the air pressure variations picked up by a microphone. Note that the wave
is periodic but quite complicated. The time scale shows that the period is
approximately 5 ms. The panel below shows that the sound spectrum contains
partials up to the eighteenth partial. There are stronger groups in the region
up to about 1000 Hz, and then again around 3000 Hz. These regions are called
the formants of the vowel “aah” in Willy’s voice and are the result of broad
resonances in the throat and oral cavity. Notice the difference between Willy’s
voice and a violin by comparing Figures 19.7 and 19.8.

19.4 Fourier Synthesis

If any periodic oscillation can be represented as a sum of sine waves, it must
be possible to artificially synthesize any periodic oscillation by adding sine
oscillations. Accordingly, a violin tone or Willy singing “aah” can be synthe-
sized by adding many sine waves. Electronic synthesizers produce musical
tones resembling real instruments in this way, but a more interesting use of
such synthesizers is to produce new and different sounds.

As an illustration of Fourier synthesis, let’s see if we can synthesize a
square wave (black curve in Figure 19.9) with a combination of sine curves.
We start by making a fundamental sinusoidal oscillation of frequency f that
resembles the square wave as much as possible (red sine wave in Figure 19.9).
The next higher oscillation will have twice the frequency of the fundamental
(cyan sine). But you can see that adding such an oscillation is a bad idea
because the square wave is mirror-symmetric left and right of the vertical
dashed lines, while the oscillation with frequency 2f is not symmetric. Thus,
we should make the amplitude of the 2f oscillation zero. Adding 3f , on the
other hand, really helps (Figure 19.10). Adding a bit of 3f to the fundamental
already makes the sum of these two a lot closer to the square (purple line in
Figure 19.10).

Figure 19.11 shows that the sum of four harmonics (f , 3f , 5f , 7f ) is getting
closer to the square wave, but note that the steep vertical sides of the square
wave cannot really be made up of low-frequency sine waves. To produce a
vertical step would require infinitely high partials. Finally, Figure 19.12 shows
that 51 partials are a pretty good representation of the square wave.

It is generally true that representing a very rapid rise or fall of the curve
requires very high frequencies.



252 Chapter 19 Fourier Analysis

Sum of First and Second Harmonic 

1

-1.5

1.5

0.5

1.5

1

-0.5

0

-1

0.5

-0.5

0

-1

-1.5

FIGURE 19.9 � Top: A square wave (black curve) is approximated by the red sine
wave. Bottom: The square wave is mirror-symmetric about the dashed vertical lines Adding
an oscillation of twice the frequency would destroy the symmetry.

19.5 Why Can’t We Synthesize a Stradivari?

Can we synthesize the tones musicians play? Indeed, it is easy enough to syn-
thesize a perfectly steady, perfectly periodic oscillation, but this is not what
a musician aspires to play. In the first place, a musical tone is not a start-
play-stop oscillation. Even though we are not consciously aware of it, the tone
builds up over a fraction of a second, and at the end, it does not stop abruptly
but takes a certain time to decay. The characteristic attack and decay of a
tone are both important. As mentioned in Chapter 12.3, if a steady tone of an
instrument is recorded and then replayed with the beginning and the end of
the tone cut off abruptly, the instrument looses so much of its character that in
some cases it becomes nearly unrecognizable. For a synthesizer to reproduce
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FIGURE 19.10 � Top: Here we added an oscillation of frequency 3f to the fundamental
of frequency f . Bottom: The sum of these two shows that we are already getting closer to
representing a square wave (lower graph).

the attack and decay, one must keep in mind that each of the approximately
20 partials has a different rise and decay time, which adds a lot of complexity.

But a more fundamental problem is that real musical tones are not com-
pletely periodic. Take a violinist as an example. As she plays a tone, she has
several parameters she can vary with time during the tone: speed of bow, pres-
sure on bow, distance of bow from bridge, finger position (vibrato). But each
time she plays the same tone again, she will choose slightly different param-
eters, and it is these choices that distinguish artists from one another even if
they were to play the same Stradivari! So no, there is no point trying to syn-
thesize the beautiful, lively, varied tones musicians play be it on a Stradivari
or any other instrument. The main purpose of synthesizers then is to produce
interesting new sounds, different from actual instruments.
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19.6 Questions

NOTE: We usually cannot figure out the amplitudes of the overtones but can
only deduce which overtones are present and what their frequencies are. Thus,
when you are asked to draw a Fourier spectrum, the Fourier components
should be in the right position, but their intensity is arbitrary.

1. Suppose you have a complicated but periodic oscillation of period 5 ms.
What statement did Fourier make about representing this complicated
wave as a superposition of sine waves?
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Answer: Any complex oscillation of period T (e.g., 5 ms) can be
represented
as
whose frequencies are
For this example, the frequencies would be , ,
and .

2. Draw the Fourier spectrum of a string whose fundamental frequency is
200 Hz when it is plucked at the midpoint.

3. (a) Draw the Fourier spectrum of a closed pipe with fundamental
frequency 300 Hz. (b) Draw the spectrum when the same pipe is open at
both ends.

4. A complex tone from a violin has a frequency of 300 Hz. Which partials
are present in the complex wave shape?

5. What might the Fourier spectrum of a 500 Hz violin string look like
when it is plucked 1/3 the length from one end?
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Musical
Scales

A musical scale is a sequence of frequencies, most often arranged in ascending
order. A scale normally is contained within one octave—that is, within a
frequency range of 2:1. The tones of the scale are also referred to as the notes
of the scale. The term note is used either to denote the symbols that represent
the tones of the scale on paper or the tones themselves.

Why do we need a scale? To make music in an organized fashion, one
needs some set of frequencies that people (more or less) adhere to, at least
within a given culture. Otherwise, how would one tune a piano and bore holes
in the body of wind instruments and so forth? And how would an entire chorus
sing “in tune”?

We could simply describe the Western scale by a table of frequencies and
could say that’s the way the scale developed over the centuries. But physics
tries to understand why it is that way. Why does the piano keyboard end
up with the funny arrangement of black and white keys where a black key
is missing between some of the white keys? It is clear that a scale evolves
over centuries, based on the aesthetic judgment of generations of musicians,
but here we seek to find the reason in particular for the development of the
scale used in most Western music. We want to show that quite likely the
scale as we know it is a direct result of the desire to make a scale that
allows for harmonious frequency ratios. Some of it will involve some tedious
calculations, but the reader who is only interested in the end result can skip
over it.

256
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20.1 Musical Intervals

When you sing a tune, your voice produces a sequence of musical tones of
different pitch—that is, a sequence of sounds with different frequencies. As
a child, if you grew up in the United States or in Europe, you may have
learned the song “Are You Sleeping, Are You Sleeping, Brother John?” (or
“Frère Jacques, Frère Jacques, Dormez-Vous?,” or “Fra Martino, Campanaro,
Dormi Tu?,” or “Bruder Jakob, Bruder Jakob, Schläfst Du Noch”). Frequency
measurements would show the following:

Are you sleep- -ing
150 Hz 168.7 Hz 187.5 Hz 150 Hz

But this is not the only way one can sing this tune: A woman may sing it
at a higher pitch:

Are you sleep- -ing
200 Hz 225 Hz 250 Hz 200 Hz

or a man with a low voice may sing it like this:

Are you sleep- -ing
100 Hz 112.5 Hz 125 Hz 100 Hz

These different sequences of tones to us are “the same tune”—that is,
the same sequence of musical intervals. The question is, what about these
frequencies is the same for all three of the preceding sequences of numbers?

The answer is simple. The ratios of the various frequencies are the same.
The frequency of the second tone divided by that of the first in each case is
the same—namely, 9/8. Let us check:

112.5
100

� 1.125 � 9
8

;
168.75

150
� 1.125 � 9

8
;

225
200

� 1.125 � 9
8

The ratio between the next two tones, “you” and “sleep-,” is also the same
for all three renditions of the tune.

We must therefore conclude that what sounds to us like the same musi-
cal interval, in physical terms means the same frequency ratio. Note that the
frequency differences in Hz are quite different; it is the ratio that matters.

A musical interval is characterized by the ratio of the two frequencies.
Intervals sound the same if they have the same frequency ratios.

This means that if you divide (or multiply) all frequencies of a tune by the
same number, it will again be the same tune. On some old record players you
can change the speed of the turntable. If you change the speed, the music, of
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course, is faster or slower, but it is exactly the same tune in a higher or lower
pitch. All the frequencies are multiplied by the same number.

Examples of musical intervals (the origin of the names is explained later):

A 2:1 ratio is called the octave: The interval from 200 Hz to 400 Hz sounds
the same as the interval from 300 Hz to 600 Hz.

A 3:2 ratio is called a fifth: The interval from 200 Hz to 300 Hz sounds the
same as the interval from 300 Hz to 450 Hz.

A 5:4 ratio is called a major third: In the preceding example (“Are you
sleeping . . . ”), the third tone (“sleep-”) is a major third above the first
(“Are”).

A 6:5 ratio is called a minor third.

Note that a 3:2 ratio (3/2 � 1.5) is the same interval as the inverse 2:3
ratio (2/3 � 0.666). The only difference is that in one case we “go up one
fifth,” in the other case we “go down one fifth.”

Example: What is the frequency of a tone one fifth above A � 440 Hz?
A tone one fifth below?

Answer: Going up means to multiply by a 3/2. Thus, the frequency becomes
440 × (3/2) � 660 Hz.

Going down means either to divide by 3/2 or multiply by 2/3. Multiplication
by some fraction like 2/3 is the same as division by the reciprocal 3/2:

440 × 2
3

= 440
3/2

= 293.3 Hz

20.2 Consonance (Harmony): Simple Number Ratios

In all musically developed cultures, tunes are played with a number of tones
that have well-defined intervals. These are the intervals of the musical scale.
The tuning of the piano or the placement of frets on the guitar are chosen to
correspond to those particular intervals. But what exactly are those intervals,
and how were they chosen to start with?

The establishment of a musical scale is a cultural development that extends
over centuries and involves subjective preferences. However, one finds that
all cultures seem to have a preference for certain musical intervals (frequency
ratios), like the octave, the fifth and other simple-number ratios. The prefer-
ence for simple-number ratios quite likely is related to the fact that in most
music two or more tones are heard simultaneously. Compositions in which
two or more tones are sounded simultaneously are called “polyphonic” (from
the Greek poli, meaning “many” and phonos, meaning “sound”). Not all
tones played in combination simultaneously sound pleasing to the ear. Some
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intervals are “rough” or “dissonant,” while other intervals are particularly
pleasing, harmonious or “consonant.” But what combinations of frequencies
f1, f2, . . . are in harmony, and why? A plausible explanation is the following:

Simple-number frequency ratios are consonant (“in harmony”) because
the various partials of the two tones being played simultaneously either
coincide exactly or are different enough to avoid beats or roughness.

Roughness comes about when two frequencies are near one another but
not so close that one discerns the beats individually (e.g., 400 Hz and 410 Hz).
For example, two tones a fifth apart, such as 200 Hz and 300 Hz are consonant
because the partials of one (200, 400, 600, 800, 1000, 1200 Hz) and of the
other (300, 600, 900, 1200 Hz) have a particular relationship: Some partials
coincide exactly (here 600, 1200 Hz), while the others are so different that they
produce no roughness. This of course would not be the case for a detuned fifth,
such as 200 Hz and 305 Hz, since now the third partial of 200 Hz (600 Hz)
clashes with the second partial of 305 Hz (610 Hz).

An extreme case of consonance (harmony) is the octave (e.g., 200 Hz and
400 Hz), where all the partials of the higher tone (400, 800, 1200 Hz) are
already present as partials of the lower tone (200, 400, 600, 800 . . . ), so the
higher tone has nothing new to contribute. This then explains why two tones
an octave apart sound so alike and in music are given the same name. The tone
of 440 Hz and the octave 880 Hz are both called A but are distinguished by a
subscript: A at 440 Hz is called A4, while the octave above, A at 880 Hz, is
called A5. In this way, Ao is near the bottom of the audible range.

To repeat: Tones with simple number ratios of frequencies are consonant
because of absence of beats or roughness between their higher partials.
We said “simple number ratios,” but how simple do they need to be? An
experiment shows that 6:5 is perceived as consonant (in earlier times it was
considered dissonant!), while already 9/8 is not and 16:15 is very dissonant!

20.3 The Major Triad

A “triad” is a set of three tones often played together as a “chord.” If you
learned to sing or to play an instrument, you will know the names of the tones
of the (Western) musical scale, like do–re–mi–fa–so–la, and so on, or C–D–
E–F–G, and so on.

If you skip every other note starting on C, you get a sequence C–E–G,
which is called the major triad. What is special about it is the simple
relationship between the three frequencies:

Frequency ratios of the major triad: 4 5 6

divide by 4 1
5
4

3
2
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To get the frequency in Hz, multiply the three numbers by any number you
like. For instance,

Multiply the sequence 4, 5, 6 by 50: 200 Hz 250 Hz 300 Hz
The tones in the usual notation are: C E G

In reality, C is tuned to 264 Hz, but to keep the numbers simple, we use
200 Hz for the first tone. Remember, all that matters to music is the ratio of
frequencies, not the frequency itself. If you used 264 Hz for C, E becomes
264 × (5/4) = 330 Hz. The first interval of the major triad, 5/4, is what we
called a major third. The second interval, 6/5, is a minor third. The overall
interval (C to G), 6/4 = 3/2 is a fifth.

What is special about the major triad is that it contains three simple-
number ratios and thus sounds especially pleasing when the three tones are
played either at the same time or in sequence.

20.4 Constructing a Scale: The Just Scale

Because people like harmony, a scale should permit a lot of harmonious
intervals. With this idea in mind, we can construct a scale step by step, as
described here. Through the physics of sound, therefore, we can explain how
the currently used scale most likely came about.

To play music, we need more than just three tones; we need a “scale”
with more tones. If C is the beginning of the scale, then the octave above
is C again, but what frequencies do we put in between? Greek philosophers
placed great value on numbers, and since they knew from experiments with
vibrating strings that a fifth (3/2 ratio) is a perfect harmony, one idea was to
keep going up in frequency in fifths—that is, repeated multiplication by 3/2.
Already the second fifth goes beyond the octave, since (3/2) × (3/2) = 9/4 is
larger than 2. But they could go down an octave, which meant to multiply by
1/2, which makes the new frequency 9/8. This is nice when played after C,
as in the very beginning of the tune “Are you sleeping . . . ” The scale based
on fifths is called the Pythagorean scale. You can calculate the ratios for this
scale yourself with a calculator or a spreadsheet on a computer. But the fly
in the ointment is that multiplication by 3/2 (going up in fifths) followed by
multiplication by 1/2 (going down in octaves) never makes a frequency that is
double of the first frequency, so we cannot even make a perfect octave. What
a shame!

Here we present another way to make a scale. Since the major triad is a
perfect harmony, we build the scale by adding more tones forming major
triads. Before we write down any numbers, here is the plan. The end result
will be a sequence of frequencies for the tones of the scale:

C D E F G A B C ′ D ′ E ′
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Let us start with the triad we already know, called major triad C–E–G, and
add the octave of C (we can call it C’ to distinguish it from the lower C). The
plan is to link two further triads to the first one:

One triad starting on G: in musical notation, these will be tones called
G–B–D ′, and one triad ending on C ′: in musical notation, these will be tones
F–A–C ′.

In other words, we will choose the frequencies such that when we skip
every other tone of the scale we get perfect triads.

These additional two triads are reported in green and in blue:

C D E F G A B C ′ D ′ E ′

C D E F G A B C ′ D ′ E ′

Now we need to calculate the required frequencies. Again, we call the first
frequency C = 1.

Figure 20.1 shows the three triads separately. To get the numbers for the
green triad, starting on G, since we already fixed G at G = 3/2, we now must
multiply by (5/4) to get the second tone: B = (3/2) × (5/4) = 15/8. The third
tone must be (3/2) above the first—thus, D ′ = (3/2) × (3/2) = 9/4. The D an
octave below will be (1/2) × (9/2) = 9/8.

To calculate the frequencies of the last triad, we must end the triad on
C ′ = 2. So the first tone, a fifth below, must have a frequency 2 × (2/3) = 4/3
(remember, to go down a fifth, we divide by 3/2 or multiply by the recip-
rocal, 2/3). Finally, from F = 4/3 we go up a major third (5/4) and get
A = (5/4) × (4/3) = 20/12 = 5/3.

A B C D E F G A B C D E

C-E-G TRIAD (red) 1

9
8

5

15

2

2

9
4

5
8

4

4

3

3

2

3
2

3

G-B-D TRIAD (green)

F-A-C TRIAD (blue)

FIGURE 20.1 � The three major triads of the just scale are indicated on a piano
keyboard.
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Here is the final result of our labors. We have constructed a scale from
three beautiful, perfect triads. This sequence of frequency ratios relative to the
first tone of frequency 1 is called the just major scale. If the first tone of the
scale is chosen to be C, the scale is called the just C-major scale.

To find actual frequencies in Hz, again you would need to multiply all
those ratios by whatever number of Hz the first tone has. In the table below
we called the first tone C, but the first tone of the scale need not be tuned to
the actual C of the piano. You could start the scale on a lower or higher pitch.

Name DO RE MI FA SO LA TI DO

C4 D E F G A B C5

Ratio to C4 1 9/8 5/4 4/3 3/2 5/3 15/8 2

Decimal equivalent 1 1.125 1.25 1.33 1.5 1.66 1.875 2

Here we have used the notation C4, C5 for tones an octave apart. The
preceding chart is valid for any other octave.

Extension to lower and higher octaves: Frequencies an octave above
those shown in the chart are twice as large; frequencies two octaves above
are 2 × 2 = 4-times as large; and so on. Frequencies an octave below are half
the frequencies the frequency, and so on.

How do we use these numbers?

Examples:
1. If C4 has a frequency of 264 Hz, what is the frequency of F4?

Answer: The ratio between F4 and C4 is 4/3.

4
3

× 264 Hz = 352 Hz.

2. If A4 is 440 Hz, what is the frequency of E4?

Answer: We need to find the frequency ratio between the two tones.
Let us calculate the interval E–A:

E

A
= 5/4

5/3
= 5

4
× 3

5
= 3

4
, thus, E4 = (3/4)A4 = (3/4)440 Hz = 330 Hz.

3. If G4 has a frequency of 396 Hz, what is the frequency of D5?

Answer: Calculate the interval G4 − D5. To find the frequency of D5,
an octave above D4, we take the frequency of D4 and multiply it by 2:
(9/8) × 2 = (9/4).
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The interval G4 − D5 is

D5

G4
= 9/4

3/2
= 9

4
× 2

3
= 3

2
, thus D5 = 396 × 3

2
= 594 Hz

20.5 Whole and Half Tone Intervals

You will certainly be curious to know whether climbing up the just scale is
like climbing up a ladder in which the rungs are equally spaced. Are all the
intervals in this scale the same?

This is easy to figure out if you remember that an interval is the ratio
(rather than the difference) between two frequencies. So you can simply take
a calculator and find the ratio between adjacent numbers, always taking the
higher number divided by the lower. In Table 20.1, we copy the just frequency
table and underneath show the intervals.

If you want to get the answer as a fraction rather than decimals, you need
to remember how to divide fractions: You multiply by the reciprocal. For
instance, from F to G, the interval is

G
F

= 3/2
4/3

= 3
2

× 3
4

= 9
8

We note two interesting results: The intervals are not at all the same but rather
they come as two kinds: big intervals (called whole-tone intervals) and small
intervals (called half-tone or semitone intervals). On the last line we label
them as W and H (for whole and half, respectively). In Table 20.1 we also
listed the frequency change from one tone to the next in percent change. For
the whole-tone intervals the changes are 12.5% and 11.1%, while for the
half-tone interval the change is 6.7%, nearly half of the larger intervals. So

TABLE 20.1 � Increments Between Adjacent Tones of the Major Scale.
W is Called a Whole Tone Interval, or Simply “a tone”, H is Called a
Half-tone or Semi-tone

Name: C D E F G A B C

Ratio to C: 1 9/8 5/4 4/3 3/2 5/3 15/8 2
Interval 9/8 10/9 16/15 9/8 10/9 9/8 16/15
in decimals 1.125 1.11 1.067 1.125 1.111 1.125 1.067
% change 12.5 11.1 6.7 12.5 11.1 12.5 6.7
Whole tone W, W W H W W W H
half tone H
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we may call the whole- and half-tones 1 and 1/2. Any sequence of tones that
has this particular pattern of intervals:

Major scale intervals: 1 1 1
2 1 1 1 1

2

is called a major scale. Depending on the tuning of the instrument, the
frequencies may differ a little bit from the just tuning, what is important here
is that there are two kinds of intervals, large and small. Scales using two kinds
of intervals, large and small, are called diatonic scales.

When you read in the concert program that a piece is in F-major, the com-
position uses a scale with a key note of F (the starting point of the scale) and
again uses the preceding sequence of whole and half-tone intervals, starting
on F. Major scales are widely used in Western cultures, but less so in African
or Asian music.

This is remarkable! If you compare the preceding sequence of whole and
half-tones to a piano keyboard, you now suddenly realize why the black keys
are distributed in the familiar pattern: The groups of two black keys and three
black keys, separated by a gap, correspond exactly to the groups of two whole
tones and three whole tones, separated by a half-tone gap. The black keys are
where there is a large interval, W. The black keys provide a half-step where
there is a big interval. We need no black key where there already is a half-tone
interval because there already is a small interval at this place.

It is important to remember the sequence of whole and half tone intervals,
but we now see that the sequence is easy if you picture the piano keyboard.
Where the black key is missing, two adjacent white keys are a half-tone apart.

The musicians who developed the scale centuries ago may not have
thought about it this way and presumably were guided by musical taste rather
than numbers, but it is certainly not by chance that our tuning using triads quite
naturally led to two kinds of intervals, half-tone and whole-tone, distributed
in this particular way.

20.6 Names of Intervals

Why is the interval from C to G called a “fifth”? Well, if you count all keys
when you ascend the scale from C to G on a piano keyboard, indeed you
find five, provided you include in your count the first key C as well. But it is
somewhat strange to say that G is “a fifth above C,” because it really is the
fourth tone above C.

Having learned this quirk of musical nomenclature, it is now easy to
deduce the names of other intervals and to find the frequency ratio for var-
ious intervals if the keyboard is tuned according to just tuning. Table 20.2
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TABLE 20.2 � Names of Some Intervals, Number of Semitones and
Just Frequency Ratios

Frequency
Number of Examples Ratio for Just

Name of Interval Semitones (Blue if Just) Intervals

Minor third 3 E–G, D–F 6/5
Major third 4 C–E, F–A 5/4
Fourth 5 C–F, D–G 4/3
Fifth 7 C–G, D–A 3/2
Sixth 9 C–A, D–B 5/3
Octave 12 C–C, D–D 2

lists the names of intervals and their frequency ratio. We also count how
many “semitones” the interval contains, where we count whole tones as two
half tones (also called semitones). The content of this table is not to be
memorized. Just look at the piano keyboard and simply count the semitones!

Remember, when we constructed the scale, we started with a “major triad,”
C–E–G. The interval C–E is a third, and so is the interval E–G. But if you
look at the keyboard or at the last row of Table 20.1, you may note that from
C to E we go up four semitones (two whole tones), but for E–G only three
semitones. A third consisting of four semitones is called a major third, and a
third consisting of three semitones is called a minor third. The same idea is
used for other intervals: C–D (1 whole tone = 2 semitones) is a major second;
E–F (one semitone interval) is a minor second.

Table 20.2 shows that the just scale contains many intervals (ratios) that
are consonant—simple number ratios. We calculate the ratio, for instance, for
the minor third by looking up the frequencies for G and E in the just frequency
table and dividing the higher frequency G = 3/2 by the lower one E = 5/4.

The adjective just is added to the name of a frequency interval if the
interval has an EXACT simple number ratio such as 3/2. It is important to
note that in “just” tuning not all intervals are “just”! Take the interval from
D to A. It is a fifth and consists of seven semitones. But is it “just”? If we
calculate the ratio of A = 5/3 to D = 9/8, we find—surprise!—40/27, and not
3/2. More about this later, but remember that in just tuning, only those inter-
vals that have nice, simple number ratios and thus perfect harmony are called
“just.” For octaves one does not distinguish between just and nonjust because
octaves are assumed to have a perfect 2:1 ratio no matter what tuning
is used.

The third column of Table 20.2 shows several examples of intervals that are
not “just.” Check it out yourself by using the numbers from the just frequency
table.
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Example: A 50 cm long string of a viola is tuned to G4. How far from
the neck must one place the finger on the fingerboard to play C5? What is the
name of the interval? (The neck is the far end of the fingerboard, where the
tuning pegs are located.)

Answer: Counting keys on the piano keyboard, the interval is a fourth.
Check to see if it is a “just” fourth: The ratio is 2 divided by 3/2 = 2 ×
(2/3) = 4/3. It is a just fourth (Table 20.2). The new length of the string must
be shorter than 50 cm in the 3/4 ratio. The new vibrating length is 50 × (3/4).
The distance from the neck is what remains, 50 × (1/4) = 12.5 cm.

For completeness let us mention another problem of naming intervals. In
Table 20.2 we said that a fourth has five semitones. If you try this out on the
picture of the piano keyboard by placing fingers on C and F and moving the
pair of fingers up the scale, you find that indeed the fourth always spans
one half-tone interval—with one exception! From F to B is indeed a fourth
but an exceptional one, having three whole tones or six semitones instead of
five. It is called the augmented fourth.

No such exception arises for the fifth, as you can easily convince yourself.
But for the sixth you note that usually it spans one semitone and four whole
tones, nine semitones altogether, as shown in Table 20.2. There is one excep-
tion: From E to C is indeed a sixth, but this one is the exception because it
spans two semitones, ending up with eight instead of nine. It is thus a smaller
interval than the normal sixth and is called the minor sixth.

20.7 Transposing: Why Black Keys?

If you look at the intervals of the “Frère Jacques” song at the beginning of this
chapter, you will find that three tones correspond to C–D–E of the C-major
scale—namely, frequencies (with respect to C = 1) of 1, 9/8, and 5/4. Now if
the pianist plays the song in C-major, using the white keys of the piano, the
singer may find it a bit too high in pitch for his voice. He may ask the pianist
to play her part “in a lower key”—starting a tone lower on B. The song needs
to be “transposed” to a lower key.

When “transposing” we need to keep the same musical intervals, which
means the same number of semitones between the various tones. Let us
attempt to transpose a C-major scale down to B-major. The sequence of whole
and half-tones: 1, 1, 1/2, 1, 1, 1, 1/2 must be maintained, but we need to begin
on B3.

If we use the white keys of the piano, we are in trouble because playing
B–C–D instead of C–D–E is not what we want; it sounds not just lower but all
wrong! C–D–E has two whole tone intervals in sequence, but B–C–D starts
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out with a semitone instead. The solution is to make a new tone, one whole
tone above B. This tone will be a half tone above C. We use the black key to
the right of C, tune it accordingly, and call it C# (called C-sharp). How do we
tune C#? It must be a 9/8 ratio to B because we want to maintain the original
interval. What’s the next tone after C#? D would not be right because it is only
a half-tone above C#, so we use another black key, the one to the right of D
and call it D#.

By now you should get the idea: To transpose a major scale, we keep the
sequence of whole and semitones, 1, 1, 1/2, 1, 1, 1, 1/2, but start on a different
tone and we use the black keys as needed to get the desired whole and half-
tone steps. If you continue, you will find that the sequence of tones for the
B-major scale is

B C# D# E F#G#A#B.

Note that we did not need to calculate any frequencies. Instead, we
just sketch the piano keyboard and count the number of whole tones and
semitones. Music students have to memorize which black keys (also called
“accidentals”) to use for each scale. Here instead, we learned to reason it out!
A tone is called “sharp” or “flat,” depending on whether it is the black key on
the right or the left of the corresponding white key. So which of the names do
you use? The rule is that you use the same letter only once. In the preceding
example, we would not replace D #by Eb(E-flat).

20.8 Perfection Sacrificed: The Tempered Scale

We talked about transposing and why there are black keys on the piano. Trans-
posing from C-major to B-major required many black keys. Does the addition
of the black keys take care of everything? There is a problem we swept under
the rug thus far. We called the interval from C to D a whole tone, and from D
to E a whole tone also. But these are not really quite the same. Look back to
the chart of intervals in the Just Scale (Table 20.1). If we tune the piano to the
just scale and want to transpose from C-major to D-major, we are in trouble
immediately because the first interval of the major scale is supposed to have a
9/8 ratio. But if we start playing the tune on D, the first interval is 10/9 rather
than 9/8. Maybe this is not a big problem because we usually don’t play two
adjacent tones at the same time anyway, so why worry about a little mistun-
ing? But worse is to come: remember the beautiful, perfect, 3:2 ratio, the fifth?
In just C-major tuning, C to G was a perfect 3:2 ratio, but if we start our tune
on D and play the tone a fifth above (A), the interval will be an ugly, out-of
tune fifth—as we see if we work out the frequency ratio between D and A.
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To figure it out, take the higher frequency (A) from the just frequencies in
Table 20.1 divided by the lower frequency (D):

A

D
= 5/3

9/8
= 5

3
× 8

9
= 40

27
= 1.482

The fifth from A to D in just tuning is far from a perfect fifth. Harmony
depends on coincident overtones. Here, if we make A = 440 Hz, the frequency
of D will be 440/1.482 = 296.9 Hz. Harmony requires that the higher partials
coincide. Here, the second harmonic of the A is 880 Hz, but the third harmonic
of the D is 890 Hz. The 10 Hz difference produces a 10 Hz beat frequency,
which we perceive not so much as rapid beats but as unpleasant roughness.
For the same interval one octave or two octaves lower, all the frequencies
would be half or a quarter as much, which means now the 10 Hz difference
becomes 5 Hz or 2.5 Hz, producing very recognizable beats.

A very convenient way to picture this is to mark the frequencies of the
scale on a logarithmic number line. To review the main point: On a log scale,
the numbers are arranged in such a way that equal ratios (or equal factors)
are represented by equal distances. This is perfect here because equal ratios
of frequencies means equal musical intervals so that on a log scale equal
intervals are shown as equal distances. This makes it easy to see what goes
wrong in transposing. Transposing means to shift the entire scale up or down.
Figure 20.2 showed the just scale marked on a log scale (green marks) and
underneath, the same set of marks shifted to the right so that the first mark
has moved from C to D. One notes that to play a scale starting on D, some
of the green (C-major) frequencies are off. In particular, the (green) E and A
are too low in frequency; they are flat, while G and B are perfectly fine. This
is confirmed by the calculation we just did for the interval from D to A. You
might want to do the same for other intervals.

Help in visualizing scales:

• Equal musical intervals—equal frequency ratio
• On a “multiplicative” number line (= log scale), equal ratios are

equidistant

Advantage: In the graphs below, equal intervals have the same length.
We conclude from this that no matter how we tune the two black keys, we

still have to retune the white keys when changing from C-major to D-major.
Now we have two choices: Either we stay with C-major and keep out of trou-
ble or we retune the keyboard every half hour when we want to play a different
key! To stay with C-major limits the musical expression. Although we said
that the tune: “sounds the same”, when it is transposed to D-major or E-major
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fifth
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x Triad
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FIGURE 20.2 � A logarithmic scale is used to explain the problem that arises in trans-
position when just tuning is used. On the line labeled “Just” the frequencies of the just scale
are marked (green marks). If we shift the scale up one tone (transposing from C to D), one
obtains the short black marks below, as you can check yourself by copying the green scale
and comparing to the black scale; they are the same but shifted. The short black marks
indicate the frequencies we would need for a just scale in D. We see that G and B are tuned
properly, but E and A would have to be retuned. The black markers between F and G and
between C and D show to what frequency the black keys F# and C# need to be tuned.

(and so on), a higher key makes it sound different just because it is higher,
brighter, and more sparkling.

Until the 18th century, keyboard instruments were retuned before
switching—for example, from C-major to D-major. The black keys, of course,
one can tune prior to the performance, but the white keys needed to be retuned.
Depending on what key one wants to use, in some cases only a few tones
are off and need adjustment. In Bach’s time, music was played in very few
keys and the keys were chosen so that between pieces only a few notes
of the keyboard (harpsichord) had to be adjusted. But still, it was a great
nuisance. Moreover, church music that included pipe organs was the driv-
ing force behind much of the musical creativity of great composers, among
them Frescobaldi and J. S. Bach. Retuning organ pipes was and is completely
impractical.

Composers and musicians have experimented with alternative tunings to
alleviate these problems, and some of them were rather successful, at least
for applications limited to specific keys, such as Bach’s version of tempered
tuning. It is too complicated to describe these tuning compromises here, so we
proceed to describe the contemporary radical solution.

Modern tunings use a strikingly simple scale—that is, a sequence of tone
frequencies. Remember, the troubles started because in just tuning, the whole
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tones are not all alike, some have 9/8, others have 10/9 frequency ratios. And
in addition the semitone was not really half of a whole tone. That’s why we
had difficulty transposing from C-major to D-major. The idea of the modern
tempered tuning is to divide the octave into 12 identical semitone intervals.
Each whole tone then is exactly two semitones, and all are alike. Why 12
intervals? Because we want to retain as much of the just tuning as possible,
and in just tuning each octave had five whole-tone intervals and two semitone
intervals, which combined give 5 × 2 + 2 = 12 increments.

What would the frequency ratio have to be, then, for a whole tone and
for a semitone? Remember that “same interval” means same frequency ratio.
Each time we go up a semitone, we multiply the previous frequency by some
number x, using the same number x 12 times so that all intervals are the same.
But after 12 of these steps, we must have the octave of the first tone. Expressed
mathematically:

x · x · x . . . . . . . . . · x = x12 = 2

So now we need to figure out what number multiplied by itself 12 times
makes 2!

The answer is:

x = 12
√

2 = 1.0595 . . .

This is the semitone ratio of the tempered scale.

Tempered semitone frequency ratio : x = 1.0595 . . .

In the tempered scale the frequency ratio of any two adjacent keys of the
piano (black or white) is the same and equals 1.059 . . . = 12√2. The advantage
of the tempered scale is that there is no difficulty transposing because the
intervals between adjacent (black or white) keys on the piano are all exactly
identical.

This only says that there is no loss when transposing without any need
to retune, but it does not say anything about how badly out of tune the scale
became, due to the radical change to equal semitone steps!

To see what happened, we calculate the tempered ratio for various impor-
tant intervals and compare to the desirable just ratios, as reported in Table 20.3.

The tempered whole-tone ratio is x2 = 1.1225. This number is in between
the two whole-tone ratios of the just scale. For the other intervals, the tem-
pered ratios are easily calculated by multiplying x by itself a number of times
equal to the number of semitones in the interval (or use the xy key on your
calculator).
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TABLE 20.3 � Comparison of Tempered and Just Intervals

Frequency
Name of Number of Tempered Ratio for Just
Interval Semitones Ratio Interval Deviation %
Minor third 3 1.189 6/5 = 1.200 0.9%—bad
Major third 4 1.260 5/4 = 1.250 0.8%—bad
Fourth 5 1.335 4/3 = 1.333 0.12%—good
Fifth 7 1.498 3/2 = 1.500 0.07%—very good
Sixth 9 1.682 5/3 = 1.666 0.9%—bad
Octave 12 2 2

A deviation of 0.1% is still harmonious while one that approaches 1% used to be considered
dissonant. These are labeled “Good” and “Bad”, respectively.

Table 20.3 shows that the tempered intervals are not far from the just
intervals. And most importantly, the strength of the tempered tuning is that the
tuning is equally good (or equally bad!) for all keys—that is, one can trans-
pose at will without any further loss in harmony and no need for retuning.
The weak points of the tempered scale are the relatively large deviations for
the major and minor third, which are off nearly 1 percent, or 1 Hz for every
hundred Hz in frequency. This means that for tones near 200 Hz, the tempered
thirds are off about 2 Hz—enough to cause significant imperfection in the har-
mony. These tempered thirds were for a long time considered unacceptably
dissonant, particularly because Baroque composers loved to use parallel lines
between instruments spaced in thirds, but modern audiences no longer reject
them. On the contrary, we are now so used to the “bad” tempered thirds that
some time ago, when a music critic listened to a classical concert in just tun-
ing (without being aware of it), he complained that the performance was out
of tune.

In Table 20.3 note that the tempered fifth, the most important of all conso-
nant intervals other than the octave, deviates by less than 0.1% from the just
ratio. Also, the fourth is very satisfactory. In modern music terminology, the
tempered fourth and fifth is referred to as a “perfect” interval, even though it
is not mathematically perfect.

A table of frequencies for tempered tuning with A4 = 440 Hz is given in
Table 20.4. A scale that, as the tempered scale, assigns a definite frequency
(or frequency ratio) to all 12 semitones (white and black keys) is called a
chromatic scale. For comparison, the frequencies of the just C-major scale
are also listed in the table. The just scale is not a chromatic scale because it
does not assign a unique frequency to the black keys; they are tuned differently
as needed when transposing.
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TABLE 20.4 � Just and Tempered Scale: The Table Lists Frequency
Ratios (with respect to C4) and Frequencies for the Middle Octave of the
Piano (assuming A4 = 440 Hz for both scales)

Just Tempered
Ratio Frequency Ratio Frequency

C4 1 264 1 261.6

C#
4 Db

4 1.059 277.2

D4 9/8 � 1.125 297 1.122 277.2

D#
4 Eb

4 1.189 311.1

E4 5/4 � 1.25 330 1.260 329.6

F4 4/3 � 1.333 . . . 352 1.335 349.2

F#
4 Gb

4 1.414 370.0

G4 3/2 � 1.5 396 1.498 392.0

G#
4 Ab

4 1.587 415.3

A4 5/3 � 1.666 . . . 440 1.682 440

A#
4 Bb

4 1.782 466.2

B4 15/8 � 1.875 495 1.88 493.9

C5 2 528 2 523.2

String orchestras or string quartets are not restricted to particular intervals.
Books sometimes claim that good professional string quartets play the just
scale for perfect harmony. Frequency measurements on first-rate professional
string quartets show that they deviate from the just intonation and in fact play
somewhere between the just and the tempered tuning.

Many musicians and music theorists are still searching for better ways
to tune fixed-frequency instruments like the pipe organ. Not everyone is
resigned that the modern tempered tuning is the best solution. Particularly,
lovers of Baroque music often use tunings other than the tempered tuning,
and some musicians have made a name for themselves for their performances
and recordings using historic Baroque tunings.

Example: A guitar string is 60 cm long. The frets on the guitar are placed
according to tempered tuning with a semitone from one fret to the next. What
must be the distance from the neck (end of guitar) to the first fret?

Answer: The string must be shortened in the ratio 1:1.0595 (1 semitone
ratio). The shortened string must be 60 cm/1.0595 long = 56.6 cm. This is
60 − 56.6 = 3.4 cm shorter than the original string. The first fret must be
3.4 cm from the neck.
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20.9 Major and Minor Scales

As explained in section 20.5, if you remember the layout of the white and
black keys of the piano keyboard, you can reconstruct the sequence of whole
and half tones.

Intervals of a major scale: 1 1
1
2

1 1 1
1
2

As you might imagine, other sequences are possible. The next common
choice results in the minor scale.

Intervals of a minor scale: 1
1
2

1 1
1
2

1 1

This is the sequence that occurs if you play the white keys of the piano
starting on A. Musicians usually modify this scale because the whole tones at
the end of the scale sound strange, but we need not go into this here. If you
play a minor scale, it sounds very different from the major scale, even though
it is the same sequence of whole and semitone intervals. We just started the
sequence at a different place. Compositions in minor keys tend to sound more
subdued, somber, and even sad.

You can, of course, create new scales by starting the sequence in different
places, such as D or E. These scales were used in Greek music and early
Christian church music (called Gregorian modes). These go under the names
of Dorian, Lydian, and Aeonian modes. Note that when we use the term modes
to denote a particular sequence of whole tones and semitones (such as major
mode, minor mode, Greek modes), this denomination has absolutely nothing
to do with sinusoidal motion of string and pipe modes.

Some modern composers use no particular sequence of whole and semi-
tones, but instead they use all semitone intervals within the octave (that is,
all 12 white and black keys within the octave are considered equal). This
is referred to as 12-tone music. Remember that the intervals of the just
scale came up with large and small intervals—that is, with whole and half
steps, in order to produce harmonious intervals. In 12-tone music, consonance
(harmony) plays no important role. Some people like it nevertheless.

20.10 The Natural Scale

A sequence of frequencies that plays a special role in music is the so-called
natural scale, also called the harmonic series. It is the scale that is played on
a “natural horn”—that is, a pipe without valves or tone holes (finger holes),
playing only multiples of the fundamental frequency. Here, we simply label
the frequencies 1, 2, 3, and so on, with the understanding that to obtain the
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frequencies in Hz, we multiply all of them by the fundamental frequency
in Hz.

Natural scale 1 2 3 4 5 6 7 8 9 10 11 12
C C G C E G X C D E X G

Now we want to know how this scale relates to the just scale, which is also
made up of whole numbers. You may recognize right away that the major triad
(like C–E–G) is part of the natural scale. If the “natural instrument” is tuned to
C, we can label the tones of the natural scale as shown: the first tone is C, and
so are the tones one, two, and three octaves above (2, 4, 8). The sixth tone of
the natural scale is a fifth (3/2 ratio) above the fourth tone (C), so it is G. If the
sixth tone is a G, so are all other tones an octave below or above (3, 12). Bugle
tunes use tones of the natural scale. What the tones are if the bugle is tuned to
G rather than C you will be able to figure out by extending the frequency table
for the just scale to other octaves. The seventh and eleventh tones of the natural
scale are marked X because they do not exactly match tones of the just scale.

20.11 Questions

Use the table of frequency ratios given in the text.

1. (a) If you tune A4 to 440 Hz, what is the frequency in Hz of D5 in just
tuning? (Hint: Use the table of just frequency ratios given on front
page.)

(b) What must be the frequency in Hz of F4 in just tuning?
(c) What is the frequency of a tone a just minor third above A2?

2. The D-string of a guitar is tuned to D3. The string is 60 cm long. Where
must you place the fret to play the octave above D3? To play E3?
(Remember: guitars use tempered tuning.)

3. An instrument plays the “natural scale.” It the first tone of this scale is
200 Hz, what are the frequencies of the following four tones?

4. An open pipe is tuned to G3. What tones on the musical scale are the
next four modes of pipe?

5. What is the fundamental frequency and the length of the preceding pipe?
6. A French horn is 350 cm long.

(a) What length of tubing should be added to decrease the frequency by
a tempered semitone?

(b) By two semitones?
(c) By three semitones?

7. How many semitones are there in the following intervals: octave, fifth,
fourth, major third, minor third?
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Musical Instruments

21.1 Structure of Musical Instruments

Musical instruments are intended to produce sounds of a particular pitch and
amplitude. In most cases, these sounds are more or less periodic over many
oscillations and usually involve a complex wave shape that contains a number
of partials, often 20 or more.

The physical structure of an instrument can be represented by the diagram
in Figure 21.1. At the center of the instrument is an oscillating system (here
called a resonator), such as the string of a violin, the air column of a trumpet,
or the drumhead of a kettle drum. To set the oscillator into motion, we need an
excitation device, such as the bow of the violin, the lips of the trumpet player,
or the piano hammer hitting the string. The excitation device in turn requires a
source of energy—for instance, the bowing arm of the string player, the lung
of the flutist, or the compressor that blows air into the organ pipe. Finally, the
energy supplied by the energy source to the oscillator is given off as a sound
wave, which requires some sort of a radiator.

For some instruments, the radiator is clearly visible to the eye. The sound
board of a piano, the body of the guitar, or the violin. The string itself is a very
poor radiator because it is much thinner than the wavelength of the sound in
air being radiated. Many brass instruments and woodwind instruments have a
flared end (a “bell” or a “horn”) to improve sound radiation. The sound radi-
ation is usually stronger in particular directions, for the violoncello roughly
perpendicular to the body of the instrument, for brass instruments primarily
along the axis of the bell. Composers are aware of these technical details. For
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Energy
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Excitation Resonator Radiator

Feedback

Tuning

FIGURE 21.1 � Schematic of the physical structure of a musical instrument.

instance, Bruckner specified in a loud trumpet passage that the trumpet is to
be played “with raised bell.” The flute does not have a bell, but rather the radi-
ator for the flute is the air escaping from the open ends and the finger holes,
none of which are very efficient in radiating sound. Indeed, the flute in the
orchestra struggles to be heard unless the composer gives it a short solo part
now and then.

21.2 Excitation Mechanism

For percussion instruments or plucked strings, the excitation is relatively
simple: the oscillator is hit once, and the excitation consists of a momentary
impact. The excitation of a steady tone is more difficult: the oscillation some-
times must last for several seconds, which means that the resonator will make
many hundreds of oscillations during a given tone. The musician has there-
fore a seemingly impossible task: he must control the excitation so that it is at
resonance with the oscillator. To put it in simple words, suppose the trumpet
plays an 880 Hz A5 for three seconds. The air column in the trumpet during
this time makes about 2600 oscillations. This then requires that the air column
(the resonator) be pushed by the musician 2600 times but with air puffs that
are in step (in resonance) with the oscillator. By what magic does the musician
accomplish this task?

The answer is that the trumpet player presses his lips against the mouthpiece
and blows to make a buzzing vibration of the lips. You can buzz the lips your-
self even without a mouthpiece by pressing the lips together fairly hard and
blowing. When the musician first starts blowing into the trumpet, the pressure
variation from the buzzing lips travels along the trumpet and is reflected again
and again. It is the pressure wave reflected from the end of the trumpet that
locks the lip frequency to the pipe frequency, as long as the musician learned to
buzz somewhere near the oscillator frequency. In effect, the excitation (buzzing
lips) is the driving force on the resonator, but the resonator in turn affects the
driving force (the lips) to keep it at the resonance frequency. This process is
described as feedback between oscillator and excitation. Somewhat the same
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Air

FIGURE 21.2 � Air flows through a narrow slot rapidly enough to make turbulent
eddies in alternation up and down. The periodic pressure variations set the air in the pipe
into oscillation. The pressure wave reflected from the end of the instrument in turn affects
the eddies (feedback).

happens in organ pipes or a soprano recorder, in which air flowing through a
slit is directed towards a sharp edge (Figure 21.2). The air flow is fast enough
for the flow to make turbulence (“eddies” or vortices, the same you see in a fast
flowing river behind a tree branch sticking out of the water). The oscillation
of the turbulent air—the so-called “edge tone”—sets in motion the air in the
pipe. But the reflected wave from the end of the pipe in turn deflects the air
stream, so by feedback, the oscillations of the air stream are locked to one
of the modes of the pipe. Here again, the frequency of the air oscillations by
themselves must be close to one of the pipe modes. The recorder player can
excite the second mode of the pipe by blowing harder and by starting the air
stream very suddenly, because now the air stream oscillations tend to become
faster and can be close to the second mode instead of the fundamental. The
player “overblows” to the octave.

What we just described applies in a similar way to the flute, where the slit
is formed by the player’s lips and the edge is the sharp edge of the mouth hole.
Almost everyone has at one time blown across the opening of an empty bottle
to make it sound. Again, you create an edge tone that is close to the mode
frequency of the bottle itself.

Reed instruments, including the clarinet, saxophone, oboe, and bassoon,
have one or two strips of tapered, flexible pieces of cane or plastic (reeds)
in the mouthpiece. Again, these form a narrow opening through which the
player’s air stream passes. The reeds vibrate against one another (double reed
instruments) or against the fixed mouthpiece (single reed instruments), inter-
rupting the air stream. Again, the reed frequency is locked into one of the
modes of the instrument. The player can choose which mode she wants to
excite by changing the lip pressure on the reed and by changing the speed of
air flow. In this way she can, with practice, overblow the instrument to make
the pitch jump from one mode to the other. Without the ability to overblow,
the range of pitch available to be players of wind instruments would be far too
limited.
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FIGURE 21.3 � Schematic representation of a bowed string. The bow is made slightly
sticky with rosin so that the string gets pulled aside when the bow is pulled across the string.
At some point in time, the string snaps back and the process repeats. The pulse reflected
from the end of the string helps to shake the string loose at the right moment.

For bowed strings, the musician pulls the bow across the string and sets
the string into motion. Again, the driving force on the oscillator (the string)
has to be in tune with the natural frequency of the string. How does the player
wiggle the bow exactly 440 times every second when she bows the A-string?
She doesn’t! Again, feedback comes to the rescue. The string player rubs
rosin on the bow to make it slightly sticky. When she pulls the bow across
the string, the string is pulled aside (Figure 21.3) until the restoring force is
too large and the string loosens from the bow and snaps back. This pulse trav-
els down the string and is reflected after time T , the round-trip travel time on
the string. The reflected pulse, when it arrives at the bow, helps to shake the
string loose from the bow and the string snaps back at the right moment, so
again the mode frequency of the oscillating system (string) feeds back in the
excitation (bow) to keep it in tune. Again, the musician must learn to bow
with the right pressure and speed of the bow to be near the desired frequency;
otherwise, you get the awful scratchy sound of a beginner’s attempt to bow
a string.

21.3 Playing a Tune

To play a tune, the musician must be able to change the frequency of the
sound. This requires changing the frequency of the oscillator to resonate at
a sequence of frequencies, which correspond to the musical scale. This is a
large and interesting topic, on which we make only a few brief comments.

1. Strings: Strings are tuned to the right frequency by changing the tension
with the tuning pegs. Once tuned, the frequency is changed by pressing
the string against the fingerboard. This shortens the vibrating length of
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the string and increases the frequency in inverse proportion to the length
of the string. All guitars have frets on their fingerboards. The frets are
placed according to tempered half-tone intervals. Consequently, as you
go up the fingerboard, frets get closer and closer because for each suc-
cessive half-tone the string needs to be shortend by the same fraction of
the remaining length. When playing the guitar, the finger is not placed
on the fret but between frets so that the position of the fret accurately
determines the length of the vibrating part of the string. Frets make it
easy to play in tune (provided the strings were initially properly tuned
with the tuning pegs) but have the disadvantage that they are not flexible.
The frequencies are therefore fixed to tempered tuning, and one cannot
produce slides or a vibrato.

In keyboard instruments, and also the harp, each tone has its own
string, properly tuned to the “right” frequency. One interesting aspect
of piano tuning is that the octaves are not precise 2:1 ratios! This is
related to string stiffness (Chapter 17), which increases the frequencies
of the higher modes of a string a little bit. When you play two tones an
octave apart on the piano, such as A4 and A5, you certainly want the
second partial of A4 to be in perfect tune with the fundamental of A5.
But because of string stiffness, the second partial of A4 is a little more
than twice the fundamental. Thus, the A5, tuned to the second partial of
A4, will be a little sharp, a little more then twice the A4 fundamental; it
will be a “stretched octave.” For one octave, the effect is small, but by
the time you keep doing this, one octave after the other, the errors accu-
mulate. If one compares the lowest tone of a grand piano to the highest
one about seven octaves above, there is nearly a half-tone discrepancy
compared to the mathematical 27 ratio. One can of course now synthe-
size sounds at will with computers; one can even play in just tuning, but
it appears that the slight imperfections of real instruments are preferred
by musicians and listeners.

2. Woodwinds: The lowest tone of a woodwind, such as a flute, oboe, bas-
soon, or clarinet, is played by covering all the tone holes. To play the
tones of the musical scale, the player opens holes along the body of
the instrument in succession, starting from the bottom, to shorten the
air column and consequently raise the pitch. Proper placement of the
holes is not as simple as placing frets on the guitar because the pressure
node in a wind instrument is not exactly at the first open hole. The holes
simply cannot be made large enough to assure a pressure node. This
is seen clearly if you close a hole at the bottom end of the instrument
and keep an intermediate hole open. If the open hole had the effect of
making a pressure node, with air escaping freely as if the pipe were
cut off at that point, then closing a finger hole at the far end of the
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instrument should not change the pitch at all, but it does! Therefore,
placement of finger holes or tone holes and design of fingering patterns
to keep the instrument in tune over three octaves is a challenge. All
modern woodwinds use tone holes too large to be covered with a fin-
ger. Mechanically linked, padded covers over the tone holes (“keys”)
allow large tone holes and free choice of location of the tone holes.
This, coupled with the ability of the player to overblow the instrument
to higher modes, allows about three octaves in half-tone intervals and
pretty accurate tuning. It is known that Mozart only reluctantly com-
posed for the flute on commission when he needed the money because
the flutes of his time could not be played accurately in tune. If the mod-
ern flute (designed by Böhm based on physics calculations) had been
available to Mozart, we probably would enjoy many more of his flute
compositions.

3. Brass Instruments: Brass instruments include the trumpet, euphonium,
trombone, French horn, and so on. The air column in these instru-
ments is never just a straight pipe, but rather brass tubing that is bent
into beautiful curves, because otherwise the instrument would be too
large to handle. The same can be said for woodwinds playing low fre-
quency tones, such as the bassoon, which is 10 feet long. The sound
wave thus travels along a curved trajectory. As long as the bends are
smooth and have no abrupt corners that would reflect waves, a curved
pipe works just as well as a straight one but is a lot easier to handle and
to play.

Brass instruments change the frequency of the resonator by adding
lengths of tubing. The slide used in the trombone is a simple and
very transparent method to change the length of the pipe. Again the
player needs to overblow to higher modes. Without overblowing, the
change in length of the air column needed to play three octaves would
be impossible to achieve within the physical limits of a person’s arm
length.

Trumpets have three valves to change the length of the pipe. Other
brass instruments sometimes have four or even five valves. When the
trumpet player depresses a valve, a short length of tubing is added to the
trumpet. To lower the pitch a semitone (ratio 1.059), we need to multiply
the length of the trumpet by 1.059—that is, we add to the trumpet a little
loop whose length is 5.9% of the original length. A second valve low-
ers the pitch by two semitones and a third valve by three. So all three
valves depressed should lower the pitch by six semitones. But if you
do the math you find that this is not quite true, because with increas-
ing length of the air column, the amount of space per semitone to be
added gets larger. For this reason the trumpet is provided with a small
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slide operated by the thumb, which permits the musician to correct the
pitch.

What comes after six semitones? The answer is seven, of course, but
seven semitones is a fifth, and the trumpet player can produce a fifth by
overblowing from the second mode (2f ) to the third mode (3f ).

Brass instruments are cylindrical pipes. They are simply tubes of a
constant diameter to which a bell and a mouthpiece are added. The
player makes a pressure antinode at the mouthpiece. A pressure anti-
node at one end is characteristic of a closed pipe, so we should expect
mode frequencies that are odd multiples of the fundamental. But the
higher modes of brass instruments are in fact 2f , 3f , 4f , as if they were
open pipes. The reason is that the higher modes of these closed pipes are
shifted intentionally by proper design of the bell and the mouth piece to
correspond to 2f , 3f , 4f , and so on. The frequency f is not actually
a resonance mode of the instrument and is referred to as a “fictitious”
fundamental.

Example: The air column of the French horn is 2.6 m long. A piece of
tubing is added by depressing a valve of the instrument. How long must
the added piece of tubing be to lower the pitch by a semitone?

Answer: The semitone ratio of frequencies is 1.0595. The new
length must be 260 cm × 1.0595 = 275.5 cm. The additional length is
275.5 − 260 = 15.5 cm.

4. Voice: When you sing a steady tone, air passes through the narrow open-
ing between your vocal folds, which sets them into oscillations similar
to the oscillations of the reeds on a woodwind. The singer can control
the frequency of these oscillations by muscles, which change the ten-
sion on the vocal folds (also called “vocal cords”). But the air pressure
variations are far from sinusoidal; rather the opening and closing of the
vocal folds makes a sequence of sharp, periodic puffs of air with a large
number of Fourier components in the sound spectrum. Air in the throat
and in the mouth (“oral cavity”) is set into oscillation by these puffs of
air. Once again, this is an oscillator set in motion by a driving force.
As far as resonators go, the throat and oral cavity have a large amount
of damping and thus a wide resonance curve. The only components of
the vocal folds, sound spectrum that are enforced (are strong) are the
ones that resonate in the throat or in the oral cavity. In Chapter 19 we
saw a spectrum of Willy’s voice. The vocal folds produce 220 puffs of
air every second so that the partials are all multiples of 220 Hz. The
sound spectrum in Figure 19.7 shows that the resonance in the oral
cavity reinforces some frequency regions of Willy’s voice. These are
called the formants of the particular vowel. Singing a different vowel of
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the same frequency would have the same set of partials (multiples
of 220 Hz) but different formants.

5. Percussion Instruments: Drums, bells, xylophones, and so forth are
made to oscillate when struck or hit by hands or sticks. Large drums
are the most powerful orchestral instruments. A single drum can com-
pete with an entire orchestra in sound power output. For drums, the
oscillations are heavily damped and thus decay rather rapidly. A spe-
cial property of percussion instruments is that the higher partials are
nonharmonic. Since the tone does not last very long, nonharmonic par-
tials are not perceived as unpleasant. Some Indian drums (the tabla)
use drumheads loaded by adding sticky material near the center of the
drum, which permits shifting of the higher partials to be nearly har-
monic. For bells and cymbals, the tone may last for a second or more,
but the higher partials decay quickly so that very soon only the lowest
partials are heard. These are tuned to be nearly harmonic.

Drums and bells have modes like strings: motions in which all parts
of the instrument move at the same frequency and therefore undergo
simple harmonic oscillation. As an example, modes of a drumhead are
shown in Figure 21.4, in which the dashed lines show the positions of
node (nodal lines). Along one of the nodal lines, the drumhead does
not move, as one can show by sprinkling sand or sesame seeds on the
drum. On either side of a nodal line, the drumhead oscillates in opposite
phase, just like on a string the motion is opposite to the left and the
right of a node. To excite a drumhead to a single mode, one can use
a loudspeaker placed near the drumhead in a place where the desired
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FIGURE 21.4 � Modes if a drumhead. The higher partials are not multiples of the
fundamental—that is, the partials are not “harmonics.” The frequency formula is explained
in the text.
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mode has an antinode. The formula in Figure 21.4 shows similarity with
the string formula. Here the quantity F is the pull per unit length of the
circumference, σ is the mass per unit area of the drum head, and D is its
diameter.

21.4 Questions

Note: The names of intervals remain the same when you go from just to
tempered tuning. To find names of intervals, you need NOT calculate the
frequency ratio but instead count the number of semitones. For instance, an
interval of four semitones (two whole tones) is called a major third no matter
what. Only if you want to know if it is a just interval do you need to check
the actual frequency ratio, which would have to be 5/4 to be called a just
major third.

1. The six strings of the guitar are tuned to E2, A2, D3, G3, B3, E4. Name
the intervals between adjacent strings (NO calculation needed; instead
look at keyboard and count semitones).

2. Are the whole tone intervals all the same in just tuning? In tempered
tuning? Compare C–D and D–E.

3. A 60-cm-long guitar string is tuned to E4. Where must I place a fret
(i.e., how much must the string be shortened) to play a fourth above E?
What is the tone called?

4. A viola string is 80 cm long and is tuned to G3. What tone will the
string sound when the musician reduces the oscillating length to 60 cm
by pressing a finger on the fingerboard?
(a) What is the length ratio?
(b) What interval does this ratio represent?
(c) What is the tone for 30 cm vibrating length?

5. Assume that the vibrating length of the air column in a brass instrument
is 150 cm. Pressing a valve adds a certain length to the air column. How
much length should be added to the air column to lower the pitch by one
tempered semitone?
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Solutions to Problems

Chapter 2

1. Virtual. The rays reflected from a given point of my face (e.g., the tip
of my nose) do not cross anywhere after reflection from the mirror, but
rather they seem to come from a point behind the mirror.

2. The light beam is kinked toward the normal (see figure below).

Air
Water

no
rm

al

3. Light rays are always reversible. That is, you can use the same figure on
the left, invert the light ray (bold arrow), and see that when going from
water to air, the ray is bent away from the normal.

284
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4. A light beam leaving the water perpendicular to the surface (ΘA � 0◦)
is not refracted and goes straight. If you look into the water at any other
angle, the light ray from the fish to your eye is bent so that the fish is
not where it appears to be. The fish is really below where it appears.
Similarly, if a person stands in the water—say, up to their hips—and
you look at them from outside the water, their legs will appear shorter
to you, and the figure is out of proportion.

apparent position

real position

5. The mirror does not invert left to right or upside down, but it only inverts
front and back. In the mirror you see the bottom of your face on the
bottom and your right ear on the right. Neither up-down nor left-right
are reversed. But other people who are facing you see your right ear on
their left, so they see you differently from the way you see yourself in
the mirror.

6. With a prism and white light being refracted and dispersed by it. White
light through a prism is refracted away from the apex. In addition, blue
light is kinked more than red light, so these, and all other spectral colors,
are separated by the prism.

7. Dispersion is the difference between the index of refraction (n) for red
and blue light. For example, if n in Plexiglas is 1.55 for red and 1.51 for
blue, the dispersion in Plexiglas is 1.55 − 1.51 � 0.04. Another exam-
ple: If n in carbon tetrachloride (CCl4) is 1.38 for red and 1.32 for blue,
the dispersion in CCl4 is 0.06. Note: The dispersion in CCl4 is greater
than in Plexiglas, but the index of refraction is smaller. In conclusion,
CCl4 makes a better prism because the difference in bending between
red and blue is greatest for it, even though it doesn’t bend the entire
beam of light as much.

8. Index of refraction of a medium, n:

n � velocity · of · light · in · vacuum

velocity · of · light · in · medium
Snell’s Law: When light travels from vacuum (≈ air) into a medium,
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n � sin ·of · angle · θA

sin ·of · angle · θM

Vacuum

Normal directionθA

θM

Medium

Total internal reflection: When light travels in a medium and encoun-
ters an interface with a less dense medium (lower index n), light is
refracted out only if the angle θM is smaller than a “critical angle”;
if θM is greater than “critical angle,” light is not refracted but only
reflected, again in the same medium. That is why this is called total
internal reflection.

Less dense

Dense

θM

θC

No light enters the less dense medium; this is total internal reflection.

The value of critical angle θc : sin θc � 1
n

.

Less dense

Dense

θM

θC
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9.

2 meters 2 meters 2 meters
Side view

10.

Top view
11.

Top view
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12.

a
b

0 ft

1 ft

2 ft

3 ft

4 ft x

5 ft

6 ft

In the preceding diagram,
a � distance from eye to top of hat
b � distance from eye to feet
x � length of mirror

By equal triangles we have x � a

2
+ b

2
� a + b

2
� 6ft.

2
� 3ft.

The mirror must be located so that bottom is 1/2 of the distance from
the foot to the eye.

13. In Snell’s Law,
sin θa

sin θm
� nm

na
at the critical angle θm � θc , sin θa � 1,

therefore,
1

sin θc
� nm

1
and θc � sin−1 1

nm
� sin−1 1

1.414
� 45˚

14. In Snell’s Law,
sin θa

sin θm
� nm

na
at the critical angle θm � θc , sin θa � 1,

therefore,
1

sin θc
� nm

1
and θc � sin−1 1

nm
� sin−1 1

1.52
� 41˚

Chapter 3

1. A lens thicker at the center and thinner at the edges is always converging.
A lens thinner at the center is diverging. Therefore, lenses #1, 2, 3, and
6 are converging, and 4 and 5 are diverging.

2. The “strongest lens”—that is, the one with the shortest focal length—is
the lens with the smallest radius of curvature and the “curviest,” or most
convex surfaces. Lens #2 is the shortest focal length.

3. The focal length f is the distance from the center of the lens to the
focal point—that is, the point where parallel rays going through the lens
converge, for a converging lens, or where rays seem to come from for a
diverging lens.
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See the following diagrams.

converging lens diverging lens

parallel rays

parallel rays

focal length f
focal length f

focal point
focal point

optical axis

For a converging lens f is always positive; for a diverging lens f is
always negative.

4. A strong lens is one that has a very short focal length.

5. Using
1
i

+ 1
o

� 1
f

and substituting the values for o and f , we have

1
i

+ 1
100

� 1
25

therefore
1
i

� 1
25

− 1
100

and
1
i

� 4
100

− 1
100

� 3
100

i � 100
3

� 33.3 cm

For the image size we use the magnifcation equation and substitute the
values we have for i, o, and ho:

hi

ho
� i

o
hi

2 cm
� 33.3

100

hi � 2x33.3
100

� 0.66 cm

6. For o � 100 cm;
1
20 � 1

i + 1
100

1
i � 1

20 − 1
100 � 5

100 − 1
100 � − 4

100 � 0.04
or i = 25 cm

7. For o = 10 cm;
1
20 = 1

i + 1
10

1
i = 1

20 − 1
10 = 1

20 − 2
20 = − 1

20
or i = −20 cm

Note: Negative i means virtual image 20 cm from lens. Image is upright
and on the same side of the lens as object.
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8. For f = 5 cm and o = 50 cm we have:

1
5 = 1

i + 1
50

1
i = 1

5 − 1
50 = 10

50 − 1
50

= 9
50 = 0.18

or i = 5.55 cm
9. (a)

Object

11 10 9 8 7 1 16 5 4 3 2 2 3 4 5 6

Image

(f = 3, o = 9, i = ?)
1
i

= 1
3
− 1

9
= 3

9
− 1

9
= 2

9
i = 4.5 Magification = i

o
= 4.5

9
= 0.5

(b)

object
virtual
image
virtual
image

7 6 5 4 3 1 2 3 4 5 6 72 1

(f = 3, o = 1, i = ?)
1
3 = 1

1 + 1
i

1
i

= 1
3
− 1 = 1

3
− 3

3
= −2

3
i = −1.5 Magnification = 1

o
= 1.5

1
= 1.5
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Note: We did not use the minus sign to calculate the magnification.
We used 1.5, not –1.5. The magnification does not have a sign. It is
a “modulus,” always between 0 and 1.

10.

Object Image

65432234567891011 11

11. This is a little harder: Ray #1 goes through the center of the lens without
deviating. Ray #2 strikes the lens parallel to axis and is bent away from
axis so that it appears to come from the left focal point as shown here.

object #1

#2

#3

virtual
image
virtual
image

Ray #3 is a little trickier: The ray that is aimed toward the right focal
point (black, dashed line) is bent so that it leaves the lens parallel to
the axis! To see this think of ray #2 going in the reverse direction. Now
extend the three rays back (magenta, dashed lines) to their meeting point
to find the image position and size. The image is upright, smaller, closer
to the lens, and virtual.

12.
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13. Use similar triangles:

1 m

100 m

0.2 m H

H
0.2 = 100

1

H = 20 m.

The oak tree is 20 m high.

Chapter 5

1. “Film speed” refers to the amount of light required to produce a certain
amount of blackening of the film; high-speed or fast film is a film that
requires little light to darken, or a very short exposure time. That is,
fast film has greater sensitivity to light than slow film. Fast film has
disadvantages: it is grainy and never deep black because the emulsion
is thin.

2. The exposure time is the amount of time that the shutter stays open—in
other words, the time that the film is exposed to light, to the image.

3. f/ =f/D, where f is the focal length of the lens and D the diam-
eter of the iris. A large f number means a small diameter and vice
versa. f numbers vary following the sequence: f/2 f/2.8 f/4 f/5.6
f/8 f/11 f/16 f/22 f/32.
Changing the aperture by two steps means changing the diameter by a
factor of 2. Therefore, changing the aperture by one step means chang-
ing the diameter by a factor of 1.4, and the area, proportional to the
square of the diameter, by a factor of 1.42 = 2. The lens area chang-
ing by a factor of 2 corresponds to the illumination varying by a factor
of 2 (→amount of light entering per second). For example, changing
the f number from f/2.8 to f/11, there are four steps and f/11 is
2 × 2 × 2 × 2 times less light than f/2.8, or 16 times less light.
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4. Depth of field is the range of object distances that produce adequately
focused images on the film.

5. Changing the exposure time from 1/60 → 1/250 corresponds to having
two steps less light on the film. Therefore, the aperture must also
be changed by two steps in order to compensate for this, from f/8
to f/4.

6. Exposure time from 1/250 → 1/30 corresponds to 3 steps more light
on the film. The f number must be changed from f/1.4 to f/4.

7. The ISO 400 film is “faster”; it requires four times less light. It has
change by two steps. So we must change the f number by two steps
toward lower illumination: from f/11 to f/22.

8. ISO 200 → 400 is twice as sensitive. This is equivalent to having one
step more light, so the f number must be changed from f/11 to f/16,
corresponding to one step less light.

9. Picture (a) has the same exposure as (b). The difference is three steps
in exposure time: 60 → 125 → 250 → 500 and three steps in f number
16→ 11 → 8 → 5.6. However, fast moving cars will be blurred, because
1/60 sec is too long an exposure time. Picture (c) is underexposed by one
step (lower film illumination): Shorter exposure time is not compen-
sated by a change in f number. This picture will be darker than pictures
(a) and (b).

10. Larger f number gives larger depth of field, so your friend and the
landscape behind him are both in focus if you use exposure (a).

11. ISO 100 → ISO 800 requires three steps less light.
f/2 → f/4 = 2 steps less light
Therefore the exposure should be one step shorter 1/30 → 1/60 sec.

12. (a) f = 5 cm and i = 3 m = 300 cm. Then 1/o = 1/5 − 1/300 =
0.197; o = 5.08 cm. The magnification is i/o = 59. So if the slide is
35 mm by 24 mm, the image will be 59 times that size: 35 × 59 =
2065 mm wide by 24 × 59 = 1416 mm high.
(b) The aperture diameter is the focal length divided by the f num-
ber. Here the diameter is (5/2) cm = 2.5 cm. The f/2 lens transmits
more light than and f/4 lens, but f/2 is not necessarily better; larger
apertures have worse depth of field and allow more aberration and
distortion.

13. The exposure time was decreased by one step to 1/250 s. To com-
pensate, we should increase the aperture size by one step: f/16 goes
to f/11.

14. The film speed goes from ISO 100 to ISO 400, so the film needs 1/4
as much light: two steps less light. The exposure time stays the same,
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so the aperture diameter must decrease by two steps, and the f number
increase by two steps. f/11 goes to f/22.

15. The film speed goes from ISO 200 to ISO 400, so the film needs 1/2 as
much light: one step less.
The exposure time increases by one step, so the aperture size must
decrease by two steps: f/11 goes to f/22.

Chapter 6

1. 400 to 700 nanometers (abbreviated nm). The metric prefix nano means
multiply by 10−9. 1 nm = 10−9 m—that is, a billionth of a meter.

2. Red: 600–700 nm, Green: 600–500 nm, Blue: 400–500 nm.
3. The eye color sensors are called cone cells.
4. See Figure 6.4.
5. The type II cone cells (incorrectly called “green sensors”) are sensitive

all the way from 400 to 660 nm, including violet, indigo, blue, green,
yellow, and orange. They are, however, most sensitive around 550 nm,
which is green.

6. Lights of two complementary colors added together give white light.
This works for lights, for additive color mixing! Not for adding
paints! The complementary colors are R and C, G and M, and B
and Y.

Chapter 7

1. Magenta. R + B = M.
2. Say you selected orange: On the color triangle you see that orange is

between Y and R. Orange = Y + R, but Y = R + G, so orange = 2
parts red + 1 part green. In 8-bit graphics, R = 255, G = 128, B = 0.

Magenta: R = 255, G = 0, B = 255.

Blue: R = 0, G = 0, B = 255.

Green: R = 0, G = 255, B = 0.

Cyan: R = 0, G = 255, B = 255.

Pale yellow: R = 255, G = 255, B = 150.
Pale pink: R = 255, G = 200, B = 200.
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3.

Color triangle rule:

1

0.8

0.6

0.4

0.2

0.2 0.4 0.6

fr
ac

ti
on

 o
f 

gr
ee

n

fraction of red
0.8 10

0

when you add two colors, the resultant color
always lies along the line joining the colors

4. The complementary color is located directly across from white. The
colors are as follows: A′ is green of high saturation; B′ is bluish cyan
of high saturation; C′ is blue of high saturation; D′ is greenish cyan of
low saturation.

fraction of red

fr
ac

tio
n 

of
 g

re
en

0
0 1

1
G

R
A

B

C

D

B´

D´

C´

A´

5. (a) r = 0.3, g = 0.1. This is bluish magenta of high saturation (see color
triangle on the right)
(b) r = g = b = 0.33. This is white (zero saturation).
(c) r = 0.1, g = 0.5. This is greenish cyan of high saturation.
(d) r = g = 0.4. This is yellow of low saturation.
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fraction of red

fr
ac

tio
n 

of
 g

re
en

1

1
G

R

d

a

b

c

0.1 0.3 0.4

0.1

0.33
0.4
0.5

6. You could only mix colors within the gray triangle below. These include
some of the purple colors, white and orange, but not cyan.

fraction of red

fr
ac

tio
n 

of
 g

re
en

0
0 1

1
G

R
B M

orange

Y
cyan

purples

Chapter 8

1. A rapid way to identify the color of the light is to simplify the spectrum
and say that 400–500 nm is blue, 500–600 nm is green, and 600–700 nm
is red. Filter A transmits half the light in the green region, and all the
light in the red region. This corresponds to a fraction of green g = 1/3,
and a fraction of red r = 2/3 (twice more red than green). This is orange
on the color triangle.
Filter B transmits all the light in the green region, 500–600 nm, and is
therefore green.
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tr
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400 500 600 700
wavelength (nm)

1

0.5

0

filter A: orange

tr
an

sm
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ce

400 500 600 700
wavelength (nm)

1

0.5

0

filter B: green

2. Filters A and B are orange and green, as determined in problem 1. To
find the combined transmittance, we multiply the transmittances of the
two filters in each wavelength region. In the B region (400–500 nm) they
are both zero, so the combined transmittance is zero. In the G region
(500–600 nm) filter A’s transmittance is 1/2 and filter B’s transmittance
is 1. The combined transmittance is 1/2. In the R region (600–700 nm)
the filter A’s transmittance is 1 and filter B’s is zero: the combined trans-
mittance is zero. The final transmittance curve looks like the one on the
right.
The combination is dark green.

tr
an

sm
itt

an
ce

400 500 600 700

wavelength (nm)

1

0.5

0

combined transmittance of filters A and B

Another way to look at this: Filter B absorbs all the light except
for green, and filter A absorbs half the green light. Combining the
two filters, half of the green light goes through and none of the rest
(R and B).

3. Now we add the lights from the two filters. A transmits 0.5 units of
green and 1 unit of red. B transmits 1 unit of green. The total light on
the screen, then, is (0.5 + 1 = 1.5) units of green and (1 + 0 = 1) unit of
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red. To name the color, we calculate the fractions of red and green, and
find the color on the color triangle. The total amount of light is (1.5 +
1 = 2.5) units, so the fraction of red is (1/2.5 = 0.4) and the fraction of
green is (1.5/2.5 = 0.6). We see on the color triangle that this is greenish
yellow of high saturation.

fraction of red

fr
ac

tio
n 

of
 g

re
en

0
0 1

1

0.6

0.4

G

R
B

Y

4. Filter C transmits all the light in the blue and green regions. Since it
transmits equal amounts of green and blue, it is a cyan filter.
Filter D transmits all the green and the red light, in equal amounts, and
is therefore yellow.
Subtractive mixing: Filter C absorbs all the red light and filter D
absorbs all the blue light, and neither absorbs green light. The combined
transmittance curve looks like the following:

1

0.5

0

combined transmittance of filters C and D

fraction of red

fr
ac

tio
n 

of
 g

re
en

0 10.25

G

R
B

Wtr
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400 500 600 700

wavelength (nm)

1

0.5

0

Additive mixing: Filter C transmits 1 unit of blue and 1 unit of green,
Filter D transmits 1 unit of green and 1 unit of red. In total there are 1 unit
of blue, 2 units of green, and 1 unit of red light (total 4 units). The frac-
tion of green is g = 2/4 = 0.5 and the fraction of red is r = 1/4 = 0.25.
On the color triangle above we see that this is green of low saturation.
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We could also see this because one unit of each primary, blue, green,
and red, goes to form white, and 1 unit of green is left over. This color
is therefore G + W.

5. Filter E is blue. It transmits light from 400 to 500 nm. Filter F is red. It
transmits all light between 600 and 700 nm.
Subtractive mixing: Filter E absorbs all light above 500 nm, and Filter
F absorbs all light below 600 nm. If you overlap them, no light can go
through.
Additive mixing: Filter E transmits 1 unit of blue light, and filter F trans-
mits 1 unit of red light. The additive combination is 1/2 blue and 1/2 red,
which is magenta.

6. The steps in the transmittance curves no longer come right at the
400–500–600 nm boundaries, but we can still see how much light is
transmitted in each range. Filter H transmits 1/2 the light in the green
region and 1/2 the light in the red region. It is therefore dark yellow.
Filter G transmits all the light between ∼570 and ∼640 nm, no light
between 640 and 680 nm, and all the light above 680 nm. This filter is
also yellow, although its transmittance curve looks very different! This
color is reddish yellow, since it has more red than green wavelengths. It
appears yellow-orange, like an egg yolk.
Subtractive mixing: Filter H absorbs all the light below 500 nm and half
the light between 500 and 700 nm. Therefore, we multiply the transmit-
tance of filter G by 0.5, and the transmittance curve looks like this:

combined transmittance of filters G and H

tr
an

sm
itt

an
ce

400 500 600 700

wavelength (nm)

1

0.5

0

This is brown, or darker egg yolk yellow.
Additive mixing: Filter G transmits 1 unit of green and 1 unit of red,
Filter H transmits 1/2 unit of green and 1/2 unit of red (total 3 units). The
resulting light on the screen will have a fraction of red r = 1.5/3 = 0.5
and a fraction of green g = 1.5/3 = 0.5. This is therefore yellow.

7. You added 2 parts of C and one of Y paint. Think subtractively!
Starting from the line indicating white light (illumination), go down,
following the red arrows, by 2 parts of C and 1 part of Y. You have
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therefore removed all red light (absorbed by C paint), half of the B light,
and none of the G light. Remember that YMC are complementary of
BGR, and each color absorbs its complementary color.
The resulting reflectance curve for this paint mix is the below second

400

re
fle

ct
an

ce

white

500 600 700 �(nm)

MY C

400

re
fle

ct
an

ce

500 600 700 �(nm)

Y M C

Now, to understand what color this is, think additively again, and read
the reflectance curve from the bottom, as shown on the right. Your eye
is receiving 1 part of B light, 2 parts of G light, and 0 parts of R light.
It is now easy to find this color on the color triangle and interpret it as
cyan-green, or aqua.

400 500 600 700 �(nm)

re
fle

ct
an

ce

B G R

Let’s look at it numerically: S =1B + 2G + 0R
The fractions of red and green, therefore, are r=0 and g=2/3=0.66.
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1

0.8

0.6

0.4

0.2

0
0 0.2 0.4 0.6 0.8 1

This color is between C and G. The reflectance curve above may have
already suggested to the careful reader that this color is C + G. There
are 2 parts of C light (B + G) and 1 additional part of G light diffusely
reflected by this paint mix. This is why the resulting color on the triangle
is closer to C than to G.
This is a trick that always works: a reflectance curve can always be
interpreted as the sum of lights in the B, G, and R regions, and therefore
be treated according to additive color mixing. In conclusion, we used
subtractive color mixing to determine the resulting reflectance curve for
a paint mixture but then determined what color that curve represents by
using additive color mixing: the color triangle and the BGR light com-
ponents. This is because the human eye and brain perceive and interpret
color additively.

Chapter 10

1. 250 Hz, 0.25 kHz; 7.7 × 10−4 ms = 0.77 μs
2. 40 kHz; 2.5 × 10−5 s, 0.025 ms, 25 μs.
3. 0.01s, 10 ms; 100 Hz, 0.1 kHz, 8 units.
4. 2000 m, 2.5 cm, 7.8 kHz; 0.015 m, 2.6 kg, 0.3 ms.
5. 50 ms; 50 μs.
6. 40 oscillations; 200 oscillations.
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Chapter 11

1. k = F

x
= 2N

0.06 m
= 33

N

m
; f = 1

2π

√
k

M
= 1.3 Hz.

2. ρ = 50 Hz; ρ = 31.6 Hz; larger; higher
3. 686 N; 113.4 N.

4. k = F

x
= 2N

5 cm
= 0.4

N

cm
; 2N

0.05 cm = 40
N

m
.

5. 2.0 Hz;
2.0√

2
Hz = 1.41 Hz; 2.0 ×√

2 Hz = 2.82 Hz.

Chapter 12

1. (a) 1/4, 1/6; (b) same: pitch of tone does not change as tone dies away.
2. 520 oscillations: 1 mm, 0.5 mm, 0.125 mm.
3. Frequency of driving force; amplitude of oscillation; 60 Hz; 20 Hz;

τ = 0.4
Δf

= 0.4
20

= 0.02 s = 20 ms.

Chapter 13

1. 1000 Hz; 2000 Hz; 1000 Hz.
2. Simple number rations like 2:3 cause no beats and thus are perceived as

harmonious.
3. 444 Hz or 436 Hz.
4. Shift is 2 divisions on horizontal axis, while full oscillation is 12

divisions.
360◦

12
× 2 = 60◦.

Chapter 14

1. v = 15 cm/s.
2. Flute: longitudinal; string: transverse.

3.
344 m/s
20 1/

s
= 17.2 m;

344 m/s
200001/

s
= 0.017 m = 1.7 cm.

f = 344
0.75

1/
s = 459 Hz

4. 4x greater.
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5. (a) ρ = M
� = 0.05 kg

2 m = 0.025 kg/
m

(b) v =
√

F
ρ =

√
300N

0.025 kg/m
= 109.5 m/s

6. (a) ρ = M



= 2 kg

500 m
= 0.004 kg/

m

(b)

√
40

0.004
= 100 m/s

(c) 22 = 4x higher tension = 160 N.
7. Loud if 6.0 m − 5.4 m = 0.6 m = nλ with n = 1, 2, 3, . . . .

λ = 0.6 m
n

= 0.6 m; 0.3 m; 0.2 m; etc.

f = 344
λ

= 573 Hz; 1147 Hz; 1720 Hz; etc.

Soft if 6.0 m − 5.4 m = 1
2λ; 3

2λ; 5
2λ;

λ = 1.2 m; 0.4 m; 0.24 m;

f = 344
λ

= 287 Hz; 860 Hz; 1433 Hz;

Chapter 17

1.
240 Hz
300 Hz

× 60 cm = 48 cm;
60
40

× 240 Hz = 360 Hz;

60
20

× 240 = 720 Hz.

2.
√

4 = 2 times lower f = 100 Hz; half the frequency.

3.
240 Hz√

2
= 170 Hz.

4. 4th, 8th, 12th missing, 2nd strongest.
5. 30 cm; 40 cm; 45 cm measured from bridge.
6. Overwrapped (or overwound) string; stiffness raises frequency; not

desirable.
7. 2nd; 6th; 10th.

Chapter 18

1. (a) 215 Hz; 172 Hz.
(b) 107.5 Hz.
(c) 215 Hz.
(d) Increases frequency.
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2. Assuming the musician “buzzes” the lips near the right frequency, the
pressure wave reflected from the instrument locks the lip frequency to
the pipe frequency.

3. (a) 277.4 Hz
(b) Closed pipe

4. (a) 0.86 m.
(b) 100 Hz.

5. One can overblow to higher modes: 2f , 3f , 4f , etc.
6. 4.3 m if it is an open pipe, 2.15 m if it is closed.
7. (a) 286.7 Hz, 573.3 Hz, 860 Hz.

(b) 143.3 Hz, 430 Hz, 716.7 Hz.
8. (a)

P

x

(b)

P

x

9. Speed of sound 244 m/s at 20◦C, 254 m/s at 37◦C. Frequency increases
in proportion:

f = 354
344

× 260 Hz = 267.6 Hz.



Chapter 22 Solutions to Problems 305

Chapter 19

1. As the superposition (sum) of sinusoidal oscillations, whose frequencies
are multiples of the fundamental frequency f = 1

T . In this example, for
T = 5 ms, f = 200 Hz, 400 Hz, 600 Hz, etc.

2.

200 600 1000 f(Hz)

A

3.

300 900 1500

closed

f(Hz)

A

600 1200 1800

open

f(Hz)

A

4. 300 Hz, 600 Hz, 900 Hz, etc.
5.

500 1000 3000 f(Hz)

A

1500 2000 2500

i.e. 3x, 6x fundamental missing
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Chapter 20

1. (a) D5 = 9/4
5/3

× 440 Hz = 9 × 3
5 × 4 × 440 Hz = 27

20 × 440 Hz = 594 Hz.

(b) F4 = 4/3
5/3

× 440 Hz = 4
5 × 440 Hz = 352 Hz.

(c) f = 6
5 × 440 Hz

4 = 132 Hz.

2. 30 cm from bridge;
60 cm

(1.0595)2
= 53.4 cm from bridge.

3. 400 Hz, 600 Hz, 800 Hz, 1000 Hz.
4. G4, D5, G5, B5.

5.
220 Hz

(1.0595)2
= 196 Hz, 
 = 87.3 cm

6. (a)(350 × 1.0595 − 350) cm = 20.8 cm
(b) 42.9 cm
(c) 66.3 cm

7. 12; 7; 5; 4; 3.

Chapter 21

1. Fourth, fourth, fourth, major third, fourth.
2. Just tuning: no. C − D = 9/8; D − E = 10/9.

Tempered: yes.

3. 5 semitones
60 cm

(1.0595)5
= 44.9 cm from bridge. It is A4.

4. (a) Length ratio 80/60 = 4/3;
(b) Fourth above G3 = C4;
(c) Octave above C4 = C5.

5. (150 × 1.0595 − 150) cm = 8.93 cm.
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Index

Absorbing area, concert hall, 203–204
Accommodation, eye, 58–60
Acoustic length, pipe, 241
Acoustics, See Concert hall acoustics
Adaptation, eye to color and light, 91
Additive color mixing

color triangle, 103–106
complementary colors, 93–94, 100
definition, 89
low-intensity colors, 107
nonspectral colors, 112–113
painting, 114–116
primary colors, 99–103
spectral colors, 107–112

Amplitude
oscillating object, 152, 163
sound loudness, 163, 207–208

Angle of incidence, 10
Angle of reflection, 10
Antinode, standing wave, 224
Aperture

camera, 64
f number

background, 70–71
depth of field relationship, 69
illumination determinants, 76–79
selection, 68–69

Astigmatism, 62

Auditory nerve, 217–219
Augmented fourth, music, 266

Band gap absorption, light in gemstones,
145–146

Beats
beat frequency, 183
definition, 182
piano strings, 183

Beryl, color, 144
Blind spot, 58
Brass instruments

pipe acoustics, See Pipe
tune playing, 280–281

Brightness, color, 90–91

Camera, See Photography
Carotenoids, 137
CD, See Compact disc
Chromatic aberration, 48–49
Chromatic scale, 271
Clarity, acoustics, 202
Close, Chuck, 116
Cloud, iridescence, 141
Coated lens, spherical aberration, 51
Cochlea, 216
Color

complementary colors, 93–94
dependent factors, 96

307
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Color (Cont.)
eye sensitivity, 84–89, 110–112
iridescence, See Iridescence
minerals

band gap absorption, 145–146
charge transfer, 144
color centers, 144–145
gemstones, 142, 144

mixing, See Additive color mixing;
Subtractive color mixing

physical color, 89
psychological parameters, 90–92
spectral colors, 82–85, 89

Color triangle, 103–106, 113
Compact disc (CD), iridescence, 142
Complementary colors, 93–94, 100, 112,

121
Concert hall acoustics

absorbing area, 203–204
clarity, 202
design, 204
diffusers, 204
reflections, 201–202
reverberation time, 203

Cone, eye, 58, 84–87, 109
Consonance, music, 258–259
Constructive interference, 2
Contrast, film, 72–73
Converging lens, 31–33, 39, 61
Cornea, 57
Critical angle of total internal reflection,

18–19
Crystalline lens, 57–58
Cylindrical lens, 62

Damping time
oscillating object, 168–169
resonance relationship, 174–175

Decibel, 209
Depth of field, 69–70
Destructive interference, 2, 138
Diamond, reflection and refraction

in cut, 21–24
Diatonic scale, 264
Diffuse reflection, See Scattering
Digital photography, 75
Diopteric power, eyeglasses, 33, 60
Dispersion, light, 15, 23, 82
Displacement graph, oscillating object,

151–153
Distortion, spherical aberration, 49–51
Diverging lens, 31–33, 39, 45, 61

Ear
anatomy, 213–216
auditory nerve studies, 217–219
loudness discrimination, 210
pitch discrimination, 177, 212–213
place theory of sound perception,

216–217
Electromagnetic spectrum, 6
Elongation, spring, 158–160
Equal loudness curves, 211–212
Equilibrium, oscillating object, 149
Excitation, musical instruments, 275–278
Exposure time

illumination determinants, 76–80
selection, 67
setting standards, 66–67

Eye
accommodation, 58–60
adaptation to color and light, 91
anatomy, 56–58
blind spot, 58
color sensitivity, 84–89, 110–112
crystalline lens, 57–58
night vision in animals, 88

Eyeglasses
astigmatism, 62
diopteric power, 33, 60
far point, 60–61
farsightedness, 62
historical perspective, 60
nearsightedness, 61–62

Farsightedness, 62
Fifth, music, 226, 260, 264
Film

color negative film, 124
contrast, 72–73
grain, 73
overview, 64, 71–72
spectral sensitivity, 72
speed, 73–74

Filters, 118–119
Fire, gemstones, 23
f number, See Aperture
Focal length, 33–36
Focal plane shutter, 66
Force, equation, 149
Formants, voice, 251, 281
Fourier analysis

Fourier theorem, 244
overview, 243
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sound analyzer, 249, 251
sound spectrum, 244–249

Fourier synthesis, 251–253
Frequency

equal loudness curves, 211–212
oscillating object, 152–153, 163
sound pitch, 210–213
string vibration, 220–223
units, 152
wavelength relationship, 197

Frequency ratio
harmony, 184
Lissajous figures, 187–188
musical intervals, 257–258

Fundamental frequency
pipes

closed pipe, 237–238
open pipe, 234–235

string vibration, 221, 225

Gemstones, See Diamond; Mineral color
Grain, film, 73
Gravity, acceleration, 151
Gray filter, 119

Half-tone intervals, 263–264
Harmonics

pipe, 236, 240
string, 226, 228

Harmonic series, 273–274
Harmony

consonance, 258–259
frequency ratio, 184
Lissajous figures, 185–188

Hertz, 152
Hue, 90, 122, 131–134

Illumination, determinants in photography,
76–80

Index of refraction, 5, 14–15, 82
Inertia, oscillating object, 149
Intensity, physical color, 91
Interference, sound waves, 199–201
Inversion, light rays, 18
Iridescence

color generation, 138–142
examples, 137–142

Iris, camera, 64

Just major scale, 262

Law of specular reflection, 10
Lens, See also Eyeglasses

aberrations
chromatic aberration, 48–49
overview, 47–48
spherical aberration, 49–51

camera, 63–64
converging lens, 31–33, 39
diverging lens, 31–33, 39, 45
eye, See Eye
focal length, 33–36
images, real and virtual, 36–39
prism, 30
ray tracing, 39–41

Lens formula
camera focusing, 65
diverging lens, 45
formula, 41
magnification calculation, 42, 45–47
object distance greater than focal length,

43–44
object distance smaller than focal

length, 44–45
Lens-maker’s formula, 35–36
Light

color mixing, See Additive color mix-
ing; Subtractive color mixing

diamond reflection and refraction,
21–24t

dual nature, 1
interaction with objects, 92
interference, 2
oscillation, 4
polarization, 7–9
refraction, 14–17
reversibility of rays, 16
scattering, 11–12, 36, 92–96
specular reflection, 10–14
speed, 5
total internal reflection, 17–20
wave behavior, 2–4
wavelength, 6

Lissajous figures, 185–188
Longitudinal wave, 193–195
Loudness

amplitude, 163, 207–208
definition, 206
discrimination, 210
equal loudness curves, 211–212
sound intensity, 208–210
units, 209
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Loudspeaker
interference, 199–201
oscillation, 177
size and wavelength output, 197–198

Magnification, calculation, 42, 45–47
Major scale, intervals, 264–266, 273
Major third, music, 260, 265, 271
Major triad, 259–260
Marimba, resonators, 176
Melanin, 137
Metamer, 90
Mineral color

band gap absorption, 145–146
charge transfer, 144
color centers, 144–145
gemstones, 142, 144

Minor scale, intervals, 273
Minor sixth, music, 266
Minor third, music, 260, 265, 271
Multiple scattering, pigments, 127
Musical interval, definition, 184
Musical scale

chromatic scale, 271
consonance, 258–259
construction, 260–263
diatonic scale, 264
intervals and frequency ratios, 257–258
intervals

half-tone intervals, 263–264
major scale, 264–266, 273
minor scale, 273
nomenclature, 264–266
whole-tone intervals, 263–264

just major scale, 262
major triad, 259–260
natural scale, 273–274
notes, 256
origins, 256
tempered scale, 267–273
transposition, 266–268

Musical tone
buildup, 175
decay, 175
descriptors, See Loudness; Pitch; Tim-

bre
loudness, 163
pitch, 163
pure tone definition, 153

Myopia, See Nearsightedness

Natural frequency, 162, 173

Natural scale, 273–274
Nearsightedness, 61–62
Neutral density filter, 119
Night vision, mechanisms, 88
Node, standing wave, 224
Note, definition, 256

Octave, music, 226, 259, 262
Oscillation

amplitude, 152, 163
damping time, 168–169
displacement graph, 151–153
examples, 148–149
excitation of musical instruments,

275–278
force, 149
frequency, 152–153, 163
period, 152–153
resonance, 170–175
simple harmonic motion

equation, 165
oscillation frequency, 161–163
phase angle, 165–166
spring constant, 160–161
spring example, 158–160
wave shape, 163–165

speed, 154–156
strings, See String vibration
velocity, 151, 154

Overtones, 226

Parallel incident rays, 39
Pearl, iridescence, 140–141
Percussion instruments, modes, 282–283
Period, oscillating object, 152–153
Phase angle, definition, 165–166
Photography

camera
components, 63–64
focusing, 64–67

color photography, 124–125
digital photography, 75
exposure time, 66–67
f number

background, 70–71
depth of field relationship, 69
selection, 68–69

film, See Film
illumination determinants, 76–77

Physical color, 89, 91
Pigments

animals, 136–137
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plants, 137
subtractive color mixing, 125–127

Pipe
acoustic length, 241
boundary conditions, 233
fundamental frequency

closed pipe, 237–238
open pipe, 234–235

higher frequency modes
closed pipe, 238–240
open pipe, 235–237

open versus closed, 232–233
pressure pulse, 231–232
reflections, 232
standing waves in open pipes, 233–234
wind instruments, 240

Pitch
definition, 206
discrimination, 212–213
frequency, 210–213

Place theory, sound perception, 216–217
Polarization

filters, 8–9
horizontal polarization, 7
plane, 7
reflected light, 7
vertical polarization, 7

Polaroid filter, 8–9
Polyphonic, 258
Primary colors

additive, 99–103
subtractive, 120–124

Principle of superposition, 179–180
Prism, 30, 82
Problem solutions, 284–306
Propagation

pulse, 190–192
sound, 198–199

Psychological color, 90
Pulse, propagation, 190–192
Pupil, 57
Pure tone

definition, 153
superposition of two pure tones of same

frequency, 180–182

Radiator, musical instruments, 275
Rainbow

double rainbow, 26–27
formation, 25–26

Ray tracing, 39–41
Rayleigh scattering, 95

Real image, 38
Reflectance, pigments, 125–126
Reflected light

diamonds, 21–24
polarization, 7
rainbow, 25–27
specular reflection, 10–14

Reflection
concert hall acoustics, 201–202
pipes, 232
sound waves, 198

Reflectivity curves, metals, 13–14
Refraction

definition, 14
diamonds, 21–24
prism, 30
rainbow, 25–27

Resonance
damping relationship, 174–175
driving frequency, 172–173
example, 170–172

Resonators, musical instruments, 175–177,
275

Retina, 58
Reverberation time, 203
Rod, eye, 58, 84
Roughness, music, 259

Sabine equation, 203
Saturation, color, 90, 122, 128–129
Scattering, light, 11–12, 36, 92–96
Sensitivity curve, eye, 84–87
Seurat, Georges, 114–116
Shadowing, sound waves, 199
SHM, See Simple harmonic motion
Shutter, camera, 64, 66
Signat, Paul, 114–115
Simple harmonic motion (SHM)

equation, 165
oscillation frequency, 161–163
phase angle, 165–166
spring constant, 160–161
spring example, 158–160
wave shape, 163–165

Snell’s Law, 16–17, 22, 82
Sound board, 176
Sound intensity, 208–210
Sound spectrum

complex tone with two partials,
246–247

Fourier analyzer, 249, 251
musical instruments, 248–249
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Sound spectrum (Cont.)
overview, 244–245
phase change effects, 247–248
pure tone, 245–246

Sound wave
acoustics, See Concert hall acoustics
interference, 199–201
longitudinal waves, 194–195
pulse propagation, 190–192
reflection, 198
shadowing, 199
speed of sound in air, 195–196

Spectral colors, 82–85, 89, 107–112
Spectral sensitivity, film, 72
Specular reflection, 10–14
Speed

film, 73–74
oscillating object, 154–156
pulse propagation, 190–192
sound in air, 195–196

Spherical aberration, 49–51
Spring constant, 160–161
Standing wave

open pipes, 233–234
traveling wave comparison, 223–224

String vibration
damping of higher partials, 227
frequencies, 220–223, 225
harmonics, 226
harmonics, 226, 228
missing partials in plucked strings,

227–228
stiffness, 228–229
superposition of modes, 226–227
traveling versus standing waves,

223–224
tune playing, 278–279
voicing formula, 225
wavelength, 222–223

Structural color, 138
Subtractive color mixing

filters, 118–119
green from blue and yellow, 130
hue change, 131–134
pigments, 125–127
primary colors, 120–124
saturation change, 128–129

Superposition
principle of, 179–180

two pure tones of same frequency,
180–182

Synthesizer
Fourier synthesis, 251
limitations, 252–253

Tapetum, night vision, 88
Tempered semitone frequency ratio, 270
Tempered tuning, 269–270
Three easy rays, tracing, 39–41
Timbre

definition, 206
wave shape, 207

Total internal reflection, 17–20
Touchtone dialing, resonance, 177
Transmission, light, 92
Transmittance, filters, 118, 122
Transposition, music, 266–267
Transverse wave, 192–193
Traveling wave, standing wave

comparison, 223–224
Triad, scale construction, 260–262
Tuning fork, principles, 148–149

Ultraviolet light, perception, 89

Van Gogh, Vincent, 114
Velocity, oscillating object, 154
Velocity change, equation, 151
Vibraphone, resonators, 176
Virtual image, 12–13, 34, 39
Vision, See Eye
Voice

formants, 251, 281
singing, 281–282

Voicing formula, 225
von Helmholtz, Herman, 115

Wavelength
definition, 196–197
electromagnetic spectrum, 6
equation, 197
frequency relationship, 197
index of refraction dependence, 82
string vibration, 222–223

Whole-tone intervals, 263–264
Woodwinds

pipe acoustics, See Pipe
tune playing, 279–280
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