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Preface

Einstein’s relativity theories changed radically the physicists’ conception of
space and time. The Special Theory, i.e., Minkowski spacetime and Poincaré-
invariance, not only removed an inconsistency between the kinematical foun-
dations of mechanics and electrodynamics but provided a framework for all of
physics except gravity. Even General Relativity kept the most essential ingredi-
ent of special relativity — a Lorentz-metric — and, therefore, maintained Lorentz-
invariance infinitesimally. In the large realm of particle physics where intrin-
sic, tidal gravitational fields are totally negligible, Poincaré-invariance combined
with gauge invariance led to relativistic quantum field theories and, specifically,
to the standard model of particle physics.

General Relativity theory and Quantum Field theory generalized classi-
cal Poincaré-invariant field theory in different directions. Both generalizations
turned out to be successful, but their basic assumptions contradict each other.
Attempts to overcome this “most glaring incompatibility of concepts” (F. Dyson)
so far have led to partial successes but not to a unified foundation of physics en-
compassing gravity and quantum theory. Thus, after about a century of successes
in separate areas, physicists feel the need to probe the limits of validity of the
SR-based theories. Canonical approaches to quantum gravity, non-commutative
geometry, (super-)string theory, and unification scenarios predict tiny violations
of Lorentz-invariance at high energies. Accordingly, the present seminar tries to
cover the basics of Special Relativity, proposed scenarios that lead to violations of
Lorentz-invariance, and experiments designed to find such effects. Furthermore,
some historical and philosophical aspects are treated.

The main topis of this seminar are

The foundations and the mathematics of Special Relativity
Conjectured violations of Lorentz-invariance

Confrontation with high-precision experiments
Philosophical and historical aspects

The 271st WE-Heraeus Seminar on Special Relativity, where these issues
have been discussed, took place in Potsdam from February 13-18, 2005. We
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sincerely thank all speakers for their presentations and especially those who
moreover were willing to write them up for the present volume. Last but not least
we thank the Wilhelm and Else Heraeus Foundation for its generous support,
without which this seminar could not have been realized.

Golm and Bremen Jiurgen Ehlers
January 2006 Claus Limmerzahl

Experimental set-up of an early high precision search for an anisotropy of inertia.
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Isotropy of Inertia: A Sensitive Early
Experimental Test

R.W.P. Drever

California Institute of Technology, 200-36, Pasadena, CA 91125, USA
rdrever@Qcaltech.edu

Abstract. An experimental test for anisotropy of inertia performed by a nuclear free-
precession experiment is described. The precession was observed in the Earth’s mag-
netic field, in a countryside location in the open air. The experiment was exceptionally
sensitive, and slightly unusual in other ways. Some of the background and other aspects
are briefly discussed.

1 Introduction

When I was asked to give an account of an early experiment! on “Isotropy of
Inertia” which I conceived and carried out many years ago I was reluctant at
first. Then I realized that there might be some usefulness, and possibly interest,
in this since the experiment was unusual in several ways, and was very different
from typical experiments done now. And it might be interesting to explain how
some of the ideas arose, and how some of the problems were overcome, in a more
personal way than usual.

This experiment was conceived and carried out around 1960, at a time when I
was working on experimental nuclear physics in the Natural Philosophy (physics)
Department of the University of Glasgow, in Scotland. I had obtained a Ph.D.
a few years earlier for work relating to low energy beta spectroscopy and other
research on radioactive nuclei carried out using special gas proportional counter
techniques developed for the purpose. I was, however, also interested in possibil-
ities of experimental work relating to cosmology, and in the book on cosmology
by H. Bondi [1] had come across the suggestion that a test of Mach’s Princi-
ple ideas on inertia might be possible by looking for some anisotropy in inertial
mass. If the inertial mass of a body on the Earth arose from coupling to all
other matter in the universe, then the Earth’s position to one side of the centre
of our galaxy might lead to some anisotropy in the inertial mass of bodies on the
Earth. A fairly specific hypothesis of this kind was that of Kaempfler [2], which

! Experiment performed (in 1960/61) while at: Department of Natural Philosophy,
University of Glasgow, Glasgow, G12 9QD, Scotland

R.W.P. Drever: Isotropy of Inertia: A Sensitive Early Experimental Test, Lect. Notes Phys. 702,
3-14 (2006)
DOI 10.1007/3-540-34523-X _1 (© Springer-Verlag Berlin Heidelberg 2006



4 R.W.P. Drever

I found quite appealing. Cocconi and Salpeter [3] took the general idea further
by estimating possible shifts of atomic energy levels, and set an upper limit to
mass anisotropy from this.

2 Early Ideas

At around this time I realized that similar effects could show up in suitable
nuclei, and these could set more sensitive limits since the nuclear building en-
ergies involved are so much larger than the binding of electrons in atoms. Coc-
coni and Salpeter realized this also, and suggested [4] use of the Mdssbauer
Effect to measure this. It had occurred to me that more sensitive and direct
measurements could be made by measuring transitions between levels involv-
ing predominantly different distributions of nucleon momentum, using nuclear
magnetic resonance techniques (NMR). In fact I found it possible to set new
upper limits to anisotropic effects from the width of published NMR resonances
already measured with spin 3/2 nuclei for other purposes.

This finding seemed to me to be worth publishing, and I wrote a brief note
on it and submitted it to a major letters journal. My manuscript was returned
to me with a comment from the Editor saying that the idea was a good one, but
it was already being investigated in experiments by a group at Yale led by V.W.
Hughes.

I was at first very saddened by this rejection, and also by learning that the
same idea was already being experimentally investigated by a group which was
probably very experienced and almost certainly had much better equipment and
resources than were available to me for such an experiment.

3 Possibilities for Experiments

I was keen, however, to attempt some experiment of this type myself, and the
knowledge that a group in a major institution must have decided it was worth
doing was a strong additional stimulus for me. I started to consider all the
experimental possibilities I could think of, and assess the factors likely to limit
sensitivity in each.

The simplest kind of experiment seemed to be an NMR measurement of
transitions between the levels of a nucleus with spin 3/2 in a uniform magnetic
field, as a function of the direction of the magnetic field relative to the direction
to the centre of our galaxy. In the absence of any anisotropy there would be four
equally-spaced magnetic sublevels, with spins +3/2, +1/2, —1/2, and —3/2;
giving a single NMR frequency. Cocconi and Salpeter suggested that in the
presence of a mass anisotropy it was possible that the levels could be slightly
shifted, the +3/2 and —3/2 levels in one direction, and the +1/2 and —1/2
levels in the opposite direction. This would split the NMR line into a triplet,
with a splitting which would be a function of the direction of the magnetic field
relative to the direction of the galactic centre. If the magnet providing the field
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was attached to the Earth it would rotate as the Earth rotates, giving splitting
which would be modulated with a periodicity related to 24 hours (sidereal time).

4 Some Factors Expected to Affect Sensitivity
in a Simple NMR Measurement

Estimating sensitivity of an NMR experiment of this type involves the following
considerations:

(a) The width of the observed resonance could set a limit to sensitivity for small
splitting. Factors affecting line width include the relaxation time, which for a
suitable liquid solution may be several seconds, and variations in the magnetic
field over the volume of the sample.

(b)In this particular experiment, the strength of the magnetic field is not as
directly significant as in other NMR measurements, since the frequency split-
ting is independent of the field, and has to be compared with the frequency
corresponding to a fixed nuclear binding energy.

Consideration of factor (b) might suggest that using a weak magnetic field
might be an advantage in this case, as it is usually easier to reduce the spatial
variation of the magnetic field if the absolute value of the field itself is small.
In the present application it seemed appropriate to consider use of the magnetic
field of the Earth itself. Free precession techniques had been developed for mea-
suring the Earth’s magnetic field, and it seemed these might be adapted for this
experiment. In a location far from ferromagnetic materials the field can be very
uniform. This seemed to give an opportunity for a sensitive and relatively simple
experiment to be performed at very low cost. This was the technique developed
and used in this research.

It may be mentioned that the idea of using the Earth’s magnetic field here was
stimulated in part by the fact that in the Honours Natural Philosophy student
laboratories in the University there was an Earth’s-field free precession system,
to help educate (and challenge) some of the students. The problem of finding a
location having a sufficiently uniform magnetic field near steel-framed buildings
made this experiment difficult for students, but free precession proton signals of
short duration could be observed with a sample suspended from a rope between
upper floors of two different buildings.?

5 Development of the Experimental Technique

The original technique for measuring the Earth’s magnetic field used a 250 cm?
sample of water surrounded by a coil, with its axis perpendicular to the direction
of the Earth’s field. A current is passed through the coil for a few seconds to

2 It is thought that this interesting experiment was originally introduced to the student
laboratory by Dr. Jack M. Reid.
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polarize the magnetic moment arising from the protons in the water, and when
the current is suddenly interrupted, the proton field precesses about the Earth’s
field, generating a signal in the coil which is detected by switching to a suitable
amplifier system [5, 6].

The nucleus with spin 3/2 chosen for the present experiment was Li". A
solution of lithium nitrate in water was found to have a suitable relaxation time
of around 4 seconds. The Li’ precession signal had a frequency of 803 Hz in
the local Earth’s field, which with protons gave a frequency near 2068 Hz. The
lower frequency and relative weakness of the Li signal compared with that from
protons made it necessary use a larger sample, of around 2 litres, and a stronger
magnetizing field, with current from a bank of 6 lead-acid car batteries. This
in turn required a more extensive uniform magnetic field than available near
the University laboratories. The equipment was therefore moved to a country
location in the village of Bishopton, 12 miles West of Glasgow, in the back
garden of the house in which I was living at the time. In this area the direction
of Earth’s magnetic field dips steeply towards the North, in such a way that it
passed within 10° of the centre of the Galaxy once each sidereal day, a convenient
situation for this experiment.

A simplified schematic diagram of the overall arrangement as eventually de-
veloped is shown in Fig. 1.

The lithium nitrate solution is contained in a polythene bottle, surrounded
by the coil used for magnetizing and sensing, shown at the extreme left side of

Direction of

Earth's Field

Camera

Coil [_E-’

s:\::lt:le / 1"2 < Tuned O

Bottle 1 Amplifier [—

(Gain 105, | CRO.

Thermocouple Leads Surge Suppressor
2 (Metrosil)

Fig. 1. Simplified diagram of experimental arrangement. Passing a current through
the coils produces a net polarization of Li” nuclei perpendicular to the direction of the
Earth’s magnetic field, in a lithium nitrate solution. Rapid switch-off of the current
leads to precession of the resulting nuclear magnetization, giving a signal which is
examined for beats corresponding to small differential shifts in the nuclear magnetic
levels
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the figure. The signal was weak, and to minimize interference by electromagnetic
fields from the frame time bases of television receivers occasionally operating in
the neighborhood, a second similar coil connected in opposition to the sample coil
was arranged to cancel signals induced by external magnetic fields. In operation,
a magnetizing current is passed through the coils for several seconds to build up
a polarization of the nuclear spins perpendicular to the Earth’s field. The current
is then suddenly turned off, in a time short compared with the precession period,
causing the nuclear magnetization to precess about the Earth’ field. After a delay
of about 0.6 seconds to allow induced voltage transients to decay, the coils are
connected to a sensitive tuned amplifier and oscilloscope system to record the
free precession signal.

For a single precession frequency, and a uniform magnetic field, the observed
signal would be expected to exhibit an exponential decay with a time constant
corresponding to the transverse relaxation time of the spin system. If, however
the resonance were split into a close triplet it would be expected that the signal
would exhibit beats, corresponding to interference between oscillations at the
three resonance frequencies which would be detected in a steady-state exper-
iment. A detailed analysis by Das and Saha [7] of the analogous situation of
free precession in the presence of a weak electric quadruple interaction indicates
that there would be a strong modulation of the signal amplitude at the splitting
frequency. If this were due to an anisotropy of inertial mass arising from an in-
teraction with our galaxy it would be expected that the modulation would vary
throughout the sidereal day as the direction to the center of our galaxy changes.

6 Initial Observations

The non-uniformity of the Earth’s magnetic field in the vicinity of the steel-
framed buildings in the Glasgow laboratories had made it very hard to observe
free-precession signals from lithium there. However, moving the equipment to
the countryside location almost immediately made the lithium precession signals
much more detectable. A photographic record of a typical free-precession lithium
signal obtained with the arrangement outlined above is shown in Fig. 2. No
indication of beating effects of the type expected from anisotropic phenomena
were observed at any time, and there were no immediately obvious changes in the
records with time of day. Even these initial observations could set better limits
to the phenomena being looked for than previous work, and were themselves
quite encouraging.

Work then began on a series of further experiments, technical developments,
and experimental precautions aimed at improving the sensitivity of the work.

7 Experiments and Developments for Higher Sensitivity

(a) A number of initial tests were made with the coil and sample in various lo-
cations, to avoid local non-uniformities of magnetic field. It was found very
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TIME IN SECONDS

Fig. 2. Typical decay of a free precession signal recorded photographically showing
absence of obvious beats over the 15 second time scale indicated

early that allowing the coil to lie directly on the ground gave shorter re-
laxation times than placing it on a wooden support above the ground. A
photograph of an early version of the coil assembly on a wooden metal-free
stool in one of the garden locations is shown in Fig. 3, with a close-up view
shown in Fig. 4. Tests were also made with the coil assembly supported in
the branches of the crab-apple tree seen towards the left side of Fig. 3. No
significant difference was observed between the results obtained on the stool
and a few metres higher in the tree. Most of the subsequent experiments
were made using the wooden stool. The later work was done with the coil
assembly nearer the center of a lawn, about 20 m away from the brick wall
seen in the background.

(b) The relaxation time in a liquid is a function of temperature, so for obser-
vations over 24 hour periods it was important to monitor and control the
temperature of the lithium nitrate solution. A later version of the appara-
tus shown in Fig. 5 incorporates a thermocouple monitor within a polythene
sleeve with the end which is inside the bottle sealed. There is also a simple
stirring device consisting of a curved copper wire within a similar flexible
sealed polythene sleeve. Rotating the wire manually could flex the sleeve,
giving effective stirring. In later observations it was arranged that the stirrer
could be operated by a small electric motor placed about 20 m from the coil,
and coupled to the stirrer by a very light, long belt made from soft medical
rubber tubing, 2 mm in diameter. During observations the coil assembly was
covered by light plastic sheeting to prevent condensation of dew in the early
hours of the morning.
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Fig. 3. Photograph of coil and sample bottle on a wooden iron-free stool during early
tests in a countryside garden location

(¢) To maximize the decay time constant and help keep it constant, nitrogen was
bubbled through the lithium nitrate solution to remove dissolved oxygen and
the sample bottle was hermetically sealed.

(d) To improve the signal to noise ratio for the lithium precession signal, a slightly
more elaborate switching arrangement than that shown in Fig. 1 was even-
tually used. This involved relays operating in sequence to disconnect and
short-circuit the low-noise amplifier system in several places to adequately
attenuate the large pulses induced during switch-off of the magnetizing cur-
rent in the signal coil. A photograph taken during development and testing
of the electronic system in one of the teaching laboratories in the University,
during a student vacation, is shown in Fig. 6.

8 Experimental Procedure

In operation, a free-precession signal was examined at intervals of 20 or 30
minutes throughout the sidereal day, and photographically recorded using a
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Fig. 5. A later version of the coil and sample system, with a thermocouple temperature
monitor. There is a sealed stirrer, operated manually at the time of the photograph and
later belt-driven by a small motor from a distance of 20m. The top of an interference-
canceling coil located directly behind the sample coil is just visible
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Fig. 6. A photograph taken during development and testing of the electronics and
switching system in one of the Honours Natural Philosophy laboratories. A modified low
noise nuclear physics amplifier and preamplifier used are on the left and an oscilloscope
with a long persistence phosphor on the right. The sample coil was suspended outside
the building for these tests

camera with continuously moving film from an oscilloscope with its timebase
turned off. The temperature of the lithium nitrate solution was monitored and
maintained constant at 37 £+ 1°C by manually adjusting a small current passed
through the magnetising coil between the observations.

No sign of a beating pattern or any significant change in the envelope of the
precession signal was observed. An upper limit to any effect near the instrumen-
tal noise level was determined by projecting the recorded signals onto expected
envelope shapes for various assumed energy level shifts. Comparison with a the-
oretical envelope for the case of a splitting of the resonances by 0.04 Hz, for
which the first minimum in the beat pattern occurs near 10 seconds after the
start of the precession showed that a slowly varying splitting of this magnitude,
which would arise from individual energy level shifts of 0.02 Hz, would have been
readily detectable.

This finding alone might not have been enough to completely rule out a much
larger effect which moved the outer components of the triplet right outside the
pass-band of the amplifier and coil system for most of the sidereal day, allowing
them only to pass through the sensitive frequency region at times which hap-
pened to coincide with intervals between observations. To check on this unlikely
situation a separate experiment was carried out in which the amplitude of the
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lithium signal was compared with that from protons in the solution. In doing
this it was necessary to take into account the difference in the sensitivity of the
apparatus at the two frequencies involved, and to ensure that the decay of the
magnetizing field was sufficiently rapid to give maximum signals from both types
of nucleus. The experimental results agreed to within 5% of the ratio expected
for detection of the whole lithium signal and in disagreement with that expected
if only the central component of a triplet had been observed.

It could be concluded that any shifts in the lithium energy levels of the type
suggested by Cocconi and Salpeter do not alter the spacing of the levels by
more than 0.04 Hz. If one applies the calculation of these authors directly to
lithium this would correspond to an upper limit for the ratio of the anisotropic
part of inertial mass of the protons involved to its isotropic part of the order of
5-10723 [8,9)].

9 Discussion of Experimental Results

The high sensitivity achieved in this relatively simple and low-cost experiment
was very satisfying for an experimental physicist. And although the earliest
published tests for “anisotropy of inertia” were sufficient to rule out effects of
magnitude suggested as possible from theories of inertia such as those discussed
by Bondi [1], Sciama [10] and Kaempffer [2], the performance of the experiment
described here might be taken to correspond to a reserve in sensitivity of as
much as a factor of order 10'®. This might allow a wide range of second order
effects to be ruled out also.

It may be remarked that the use of the Earth’s magnetic field did allow this
experiment to have significantly higher sensitivity than originally reported from
the NMR experiment by the group at Yale University [11], although subsequent
improvements in the latter brought its limit [12] closer to that of the experiment
described here. It was many years before comparable sensitivity was achieved
by other techniques. Major advances in atomic spectroscopy eventually allowed
groups at NBS Boulder [13] in 1985, at the University of Washington [14] in
1986, at Harvard University [15] in 1989, and at Amherst College [16] in 1995,
to reach even higher precision.

10 Interpretation

The experiment described here was initially partly stimulated by the idea that it
might give experimental evidence for or against Mach’s Principle, but around the
time when early experiments began to give negative results it was pointed out by
Epstein [17] that anisotropy in the potential energy of a nucleon could well ac-
company an anisotropy in its mass and counteract the effects. Dicke [18] showed
subsequently that this could be expected, and suggested that these experiments
could be regarded as showing, with high precision, that inertial anisotropy effects
are universal, the same for all particles. More recently, anisotropy in a variety
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of other phenomena and violations of Lorentz invariance in general, have been
suggested and experimentally tested. Extensive and more modern discussions of
these topics have been given by Will [19], Haugan and Will [20], and others,
including contributors to the present Conference Proceedings.

11 Some Personal Remarks

The experiment described here differed in several ways from most current sen-
sitive experiments. As the photographs illustrate, much of the equipment was
relatively simple and of low cost, and could be assembled or built fairly quickly.

A strong recollection for me of this work was how exciting it all was to do.
A large part of this probably came from the knowledge that the sensitivity was
better than anything of the kind known to have been done before, so there was
a possibility, even if unlikely, that something quite unexpected and important
might be discovered. And moreover a significant result might be found in a 24-
hour run, without requiring extensive and time-consuming analysis. The fact
that a positive result was not found did not significantly spoil the excitement —
something quite new could have shown up.

I might remark also that although I have worked on several very interesting
and engrossing kinds of experimental research, this work was by far the most
intensely exciting of anything I have been involved in up to now. I say this to
encourage others to try to find and work on research that is enjoyable as well
as important, which I am sure still exists in all branches of science. If these
recollections and comments can be of encouragement to someone I feel that this
account will have been well worthwhile.
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1 Knowledge and Power in the Scientific Revolution

The pioneers of the scientific revolution claimed that the developing system of
knowledge they envisioned would be distinguished by its practical usefulness.
Galileo Galilei, Francis Bacon, and René Descartes agreed that the newly con-
ceived endeavor of unveiling nature’s secrets by means of uncovering its lawful
regularities would engender practical progress, too. The novel and revolutionary
idea was that knowledge of the causes and the laws of nature would pave the
way toward technological innovation. As Bacon claimed, inventions bring about
supreme benefit to humankind, and this aim is best served by investigating the
processes underlying the operations of nature. Knowledge about nature’s work-
ings makes it possible to take advantage of its forces [1, 1.§129]. In the same
vein, Descartes conceived of technology as an application of this novel type of
knowledge. The speculative and superficial claims that had made up the erudi-
tion of the past had remained barren and had failed to bear practical fruit. The
principles of Descartes’ own approach, by contrast, promised to afford

knowledge highly useful in life; and instead of the speculative philosophy
taught in the schools, to discover a practical one, by means of which,
knowing the force and action of fire, water, air, the stars, the heavens,
and all the other bodies that surround us, as distinctly as we know the
various crafts of our artisans, we might apply them in the same way to
all the uses to which they are apt, and thus render ourselves the lords
and possessors of nature. [2, IV.2,p.101]

The scientific revolution was fueled by the prospect of technological progress.
Knowledge of the laws of nature was claimed to be the chief road toward the bet-
terment of the human condition. Bacon quite explicitly stated that studying the
processes of nature, or, in present-day terms, carrying out fundamental research,
is much better suited for ensuring technological invention than mere trial and
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error. Fumbling around with some gadgets is of no avail; rather, systematic ob-
servation, methodical experimentation, and painstaking analysis constitute the
pivot of technology development [1, 1.§110, §117, §129].

However, the emerging science of the 17th century completely failed to live
up to these ambitions. The declarations of practical relevance were in no way
borne out by the rise of applied research. Quite the contrary. The traditional rift
between science and technology remained unbridged for centuries. Christopher
Wren was both an outstanding architect and a physicist. In particular, he was
familiar with the recently discovered Newtonian mechanics which he thought
disclosed the blueprint of the universe. However, when he constructed St. Paul’s
Cathedral in London, Wren exclusively relied on medieval craft rules. The New-
tonian laws accounted for the course of celestial bodies and resolved the mystery
of the tides, but they offered no help for mastering the challenges of architecture.
Likewise, the steam engine was developed in an endless series of trial and error
without assistance from scientific theory [3, p. 162-163]. The operation of the
engine was understood only decades after the construction had been completed.
The grasp of theory only rarely extended to machines and devices.

Around the middle of the 19th century things began to change. Applied
science came into being and successfully connected theory and technology. Tin-
kering and handicraft were gradually replaced by scientific training. Industrial
research emerged and scientists and engineers became the key figures in pro-
moting technological progress. Around 1900, Bacon’s vision of a science-based
technology had finally become reality.

Bacon’s conception of the relation between scientific knowledge and techno-
logical power is sometimes called the cascade model. The idea is that scientific
knowledge flows downward to the material world, as it were, and becomes man-
ifest in useful devices. Practical tasks are best solved by bringing fundamental
insights to bear. Deliberate intervention in the course of nature demands un-
covering nature’s machinery, it requires studying the system of rods, gears, and
cogwheels nature employs for the production of the phenomena [1, 1.§3, 1.§110,
1.§117, 1.§129].

I wish to explore the relationship between pure and applied research. I will be-
gin by outlining consequences of the cascade model and will sketch an alternative,
emergentist conception. Both approaches agree in suggesting that the concentra-
tion on practical problems which is characteristic of large parts of present-day
research is detrimental to the epistemic aspirations of science. These concerns
are not without justification. Yet examining Albert Einstein’s road toward spe-
cial relativity theory brings an additional message in its train: Taking practical
issues into account may stimulate epistemic progress. I will explain that the op-
erational notion of simultaneity that constituted a key element in the conception
of special relativity was suggested by the technological background of the period.
Technology became heuristically fruitful for scientific theory. My conclusion is
that pure science has less to fear from application pressure than is thought in
some quarters.
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2 Contrasting Intuitions on the Cascade Model

The growth of scientific knowledge leads to the increasing capacity to cope with
intricate circumstances and heavily intertwined causal factors, and this improve-
ment also enhances the practical relevance of scientific theory. As a result, the
cascade model appears to provide an adequate portrait of the relationship be-
tween scientific progress and technology development. In fact, the cascade model
was underlined in the so-called Bush-report issued in 1945 [4]. Vannevar Bush
had been asked by President Roosevelt to devise an institutional scheme that
would make science in the future post-war period most beneficial to the peo-
ple. The President was interested in how to improve the usefulness of science;
he explicitly mentioned the fighting of diseases and the stimulation of economic
growth. In his report, Bush placed fundamental research at center stage. As he
argued, new products and new jobs can only be created through continuing basic
research. Bush gave two reasons. First, the solution of a practical problem may
come about as an unexpected consequence of a seemingly remote theoretical
principle. Second, innovative approaches to practical problems often originate
from an unfamiliar combination of such principles. Both arguments imply that
the theoretical resources needed for meeting a technological challenge often can-
not be anticipated and specified in advance. As Bush claimed, practical success
will frequently result from fundamental insights in fields and subjects apparently
unrelated to the problem at hand. The lesson is clear. The royal road to prac-
tically successful science is the broad development of basic research. If useful
knowledge is to be gained, it is counterproductive to focus on the concrete is-
sues in question. Rather, forgetting about practical ends and doing fundamental
research in the entire scientific field is the first step toward practical accom-
plishments. In the second step, technologically relevant consequences are drawn
from these principles; that is, theoretical models for new technical devices and
procedures are derived [4].

The message of the Bush report strongly influenced the public understanding
of the relationship between basic and applied research. Indeed, there was and
still is an element of truth in it. A large number of the technological innova-
tions in the past decades were achieved by bringing theoretical understanding
to bear on practical challenges. For instance, the breathtaking decrease in the
size of electronic circuits was accomplished by procedures which draw heavily
on theories of optics and solid state physics. Similarly, inventions like optical
switches or blue light emitting diodes are produced by joining and combining
hitherto unconnected laws of physics. Conversely, what amounts to the same,
premature applications may come to grief. A case in point is the striking fail-
ure of the American systematic program on fighting cancer. This program was
launched in 1971 after the model of the Manhattan Project and the Apollo Pro-
gram; it included a detailed sequence of research steps to be taken in order to
advance cancer prevention and therapy. The practical achievements reached were
almost insignificant, and this failure is usually attributed to the fact that the
fundamental knowledge necessary for developing successful medical treatment
was still lacking [5, p. 211-212].
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The cascade model has proved its relevance for relativity theory, too. Ein-
stein’s fundamental insights into the factors influencing temporal durations figure
prominently in the satellite-based global positioning system (GPS). Numerous
satellites in the orbit of the earth broadcast signals from which a terrestrial re-
ceiver can infer the time at which the signals were sent. By taking into account
the velocity of light, the distance to the relevant satellites can be obtained. It
is clear that such a procedure is critically dependent on highly accurate clocks
in the satellites. At this juncture, distortions highlighted by special and gen-
eral relativity come into play. Time dilation slows the orbiting clocks down, the
weaker gravitational field makes them run faster. Consequently, the clocks need
to be manufactured in such a way that they run inaccurately on Earth — and
even substantially inaccurate at that. As a matter of fact, in 1977 when the first
cesium clock was launched into the orbit, some engineers doubted the appro-
priateness of such comparatively huge alterations and insisted that the clocks
run at their uncorrected terrestrial rate. A relativistic correction mechanism was
built in but remained switched off initially. The signals received exhibited pre-
cisely the distortion predicted by the joint relativity theories. After 20 days of
increasing error, the correction unit was activated — and has remained so ever
since [6, p. 285—289).

Thus, relativity theory is attuned to Bush’s leitmotif that theoretical princi-
ples may gain unexpected practical significance or, conversely speaking, that the
solution to practical problems may come from remote theoretical quarters. You
never know for sure in advance which particular corner the light of knowledge
will illuminate. Yet, on the whole, the picture is not that clear. Other indications
point in the opposite direction. Let me contrast the cascade model with contrary
considerations.

Underlying the cascade model is a thorough theoretical optimism. Insights
into nature’s mode of operation extend to include the subtleties of the function-
ing of engines and gadgets. Theoretical principles are able to capture the fine
details of the phenomena on which the appropriateness and reliability of some
artifact turns. Within the sciences, such a sanguine attitude is called reduction-
ism. No feature of nature is small enough or remote enough to escape the grip of
the fundamental laws. However, scientists do not embrace reductionism univo-
cally. Rather, its prospects remain contentious. In the U.S. debate around 1990
about the usefulness of building a superconducting collider on Texan soil, one
of the warring factions, the particle physicists prominently among them, main-
tained that unveiling the fundamental processes would shed light on phenomena
at higher levels of the organization of matter. That is, discoveries in particle
physics should help to clarify properties and interactions at the nuclear, atomic
or molecular scale. By contrast, the opposing anti-reductionist or emergentist
camp featured the specific character of the phenomena at each level of orga-
nization. Emergentists deny that insights about quarks or strings will radiate
downward, as it were, and have much impact on the clarification of phenomena
from atomic or solid state physics.
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Actually, these two factions go back to a venerable opposition in the philos-
ophy of nature, the opposition, namely, between Platonism and Aristotelianism.
Platonism is committed to the rule of fundamental law; the universal is sup-
posed to pervade the whole of nature. Aristotelianism insists on the basic and
unique character of specific cases; the differences among the particulars outweigh
their shared features. This latter view has been prominently supported in the
last quarter century by Nancy Cartwright. As she argues, the universal claims
of overarching laws are specious; such laws fail to gain access to the phenomena
with their rich details and variegated traits. Cartwright takes up an example of
Otto Neurath who had drawn attention to the embarrassing silence that seizes
Newtonian mechanics in the face of the question where a thousand-shilling bill
swept away by the wind in Vienna’s St. Stephen’s square will hit the ground even-
tually [7, p. 318]. The only way to get a grip on the phenomena is by making
use of local models that are tightly locked onto particular problems. Descriptive
adequacy is only accomplished by small-scale accounts; comprehensive theories
inevitably lose touch with the wealth of the phenomena. The patchwork quilt,
not the pyramid, is symbolic of the structure of scientific knowledge [7, p. 322—
323].

Such Aristotelian or emergentist approaches are tied up with a new account
of the relation between basic and applied science or epistemic and practical
research. The cascade model is abandoned; basic research is said to be largely
unsuccessful in meeting applied challenges. Rather, practical problems are to be
attacked directly; a detour through the basics is unnecessary and superfluous.
Fundamental truths only rarely produce technological spin-offs. Applied research
needs to rely on its own forces. The heuristic message of emergentism is that
the resources available for addressing practical challenges should be allotted to
doing research on precisely these practical challenges.

In fact, a closer inspection of the present state of applied research confirms
this latter approach. Industrial companies tend to reduce basic research in favor
of target-oriented projects which aim at concrete, marketable goods. Take “giant
magnetoresistance” as an example. The underlying physical effect was discov-
ered in 1988; it involves huge (“giant”) changes of the electrical resistance of
systems composed of thin ferromagnetic layers separated by non-ferromagnetic
conducting spacer layers. The resistance of such systems is strongly dependent
on the direction of magnetization of the ferromagnetic layers which can be al-
tered by applying an external magnetic field. As a result, the electrical resistance
of such an array is influenced by an external field, and this dependence can be
used to build extremely sensitive magnetic field sensors. Giant magnetoresis-
tance underlies the functioning of today’s magnetic read heads; it is used for
hard disks or magnetic tapes. It was realized immediately that the effect is based
on spin-dependent scattering of electrons, but such a qualitative explanation was
insufficient for constructing suitable devices. For technological use, quantitative
relations between relevant parameters such as layer thickness or ferromagnetic
coupling between layers were needed. Such relations were not provided by theory,
but had to be gained experimentally. When it came to building working devices,
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the empirical identification of design rules, not the appeal to fundamental laws,
were the order of the day [8].

However, if focusing on narrow, practical issues determines the agenda of
applied research, and if fitting parameters is among its chief tools, what kind
of science will we end up with? Given the dominance of application-oriented
research, its methods and procedures can be expected to radiate into the whole
of science. Actually, worries about the detrimental impact of applied research on
the methodological dignity of science have been articulated frequently. For in-
stance, theoretical physicist John Ziman complained recently that science guided
by material interests and commercial goals will lack objectivity and universality
([9, p- 399]; see [8, Sect. 1]). In the same vein, particle physicist Silvan Schweber
claimed that “the demand for relevance ... can easily become a source of cor-
ruption of the scientific process” [10, p. 40]. According to such voices, science is
likely to suffer in methodological respect from the emphasis on practical use. Ap-
plication dominance jeopardizes the demanding epistemic standards that used to
distinguish science; conversely, retaining such standards requires a commitment
to truth rather than utility.

These considerations leave us with a stark alternative concerning the struc-
ture of applied research. If the cascade model is correct, concentration on practi-
cal issues will dry up practical success in the long run. It would mean eating up
the seed corn needed for producing future harvest. If the emergentist approach
is correct, practical success is best accomplished by focusing on specific issues,
but proceeding in this fashion could spoil the epistemic merits of science. Which
side is right? Well, it helps to cast a glance at Einstein who worked at the Bern
patent office while pondering the electrodynamics of moving bodies.

3 Poincaré, Einstein, Distant Simultaneity,
and the Synchronization of Clocks

It is well known that Einstein in his classical 1905 paper on special relativity
suggested two principles as the foundation of the theory he was about to develop.
First, the principle of relativity according to which all frames of reference in
uniform-rectilinear motion are equivalent, not alone with respect to the laws of
mechanics but also regarding electrodynamics including optics [11, pp. 26,29].
Second, the statement that the velocity of light is independent of the motion of
the light source. This claim was not peculiar to Einstein but rather a theorem
of classical electrodynamics, or the “Maxwell-Lorentz theory.”

This latter theory implied, however, that the velocity of light should depend
on the motion of the observer. In a series of experiments, conducted in part with
Edward Morley, Albert Michelson had established that no such dependence was
measurable. Surprisingly enough, the velocity of light came out the same for
differently moved observers. Yet the assumed variation in the velocity of light
was the chief means for determining the state of motion of an observer. Thus it
appeared that different frames of uniform-rectilinear motion or inertial motion
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could not be distinguished empirically. This failure posed a serious challenge
to electrodynamics to which Hendrik Lorentz responded by developing a more
sophisticated version of the theory.

The appropriate application of the principles of electrodynamics (such as
Maxwell’s equations) demanded that the relevant values of “true motion” or
motion with respect to the ether be known. True motion should become mani-
fest in a change in the measured speed of light depending on the velocity of the
observer. However, the Michelson—Morley experiment showed that no influence
of the motion of the observer on electromagnetic quantities could be recognized.
Lorentz pursued a two-pronged strategy for coping with this anomaly. First, he
introduced a quantity he called “local time” which differs from place to place
and is thus distinguished from true, universal time ¢. Local time ' is obtained
from true time t, the velocity v and the position = of the observer, and the
velocity of light: #' = t — vz /c?. Lorentz’s proposal was to employ local time
for ascertaining the electromagnetic properties of moved bodies. Namely, these
properties are determined by calculating them for bodies at rest in the ether at
the corresponding local time. In other words, the effect of the motion was taken
into account by evaluating the relevant quantities at a time different from the
true one. Lorentz considered position-dependent local time as a mathematical
artifact for transforming electromagnetic quantities and did not expect that local
time showed up on anybody’s watch. Second, Lorentz introduced a contraction
hypothesis according to which bodies were assumed to shrink as a result of their
motion through the ether. This length reduction was thought to be produced
by the interaction between moved matter and the ether. The resting ether com-
presses the body in passage through it, and this contraction precisely cancels the
effect of the motion on the velocity of light. The change in the velocity of light
induced by the motion is precisely compensated — as the Michelson—Morley null
result demands. No effect of the motion on the moved body will be registered
([12, pp. 268-270]; [13, p. 482]; [14, p. 10]; [15, pp. 47-48]; [16, pp. 104-113];
see [17, pp. 130-133], [18, p. 78]).

Lorentz provided his contraction hypothesis with a theoretical backing. He
assumed that the forces of cohesion that produce the shape and dimensions of
a body are electromagnetic in kind (or at least transform like electromagnetic
forces) and was able to derive the contraction hypothesis on this basis. The stated
conclusion was that “many” phenomena appear in the same way irrespective of
the observer’s state of motion, which means that Lorentz did not rule out the
existence of tangible effects of the motion of bodies through the ether. That is,
his improved theoretical framework did not embody a principle of relativity?.

From 1900 onward, Henri Poincaré modified Lorentz’s approach in two im-
portant respects. First, Poincaré had suggested in 1898 that temporal notions
like duration or simultaneity are not given by the senses but need to be defined.
Defining simultaneity is, as he went on to argue, a matter of coordinating distant

119, p. 8]; [20, p. 48]. In 1912, Lorentz acknowledged in retrospect that his failure to
adopt the principle of relativity as a comprehensive and strict law was responsible
for the erroneous parts of his earlier treatment [19, p. 10].
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clocks. The options he mentioned for this purpose included the use of globally
visible astronomical events, clock transport and electric signals sent by the tele-
graph ([21, pp. 11-12], [6, pp. 32-37, 238-239]). As Poincaré later made more
explicit, the method of choice is sending signals crosswise between two distant
clocks and adjusting the clock readings accordingly [14, p. 7]. Poincaré’s first
conceptual breakthrough was to recognize that if signal exchange was employed
for synchronizing distant clocks in motion through the ether, an event happening
at true time ¢ at one clock will occur at local time ' at the other [22, p. 483].
That is, in contrast to Lorentz’s view, local time was not a mere convenience.
Rather, Poincaré’s idea of establishing distant simultaneity by synchronizing
clocks through signal exchange entailed that local time is observable; it is the
time reading the moved clock yields. Second, likewise in contrast to Lorentz,
Poincaré assumed that there is no way to distinguish bodies in absolute mo-
tion; only relative motions are accessible empirically. This means that Poincaré’s
version of the Maxwell-Lorentz theory incorporated the principle of relativity
([23, pp. 176-177,186], [6, pp. 45,277-279)]).

Both assumptions are also characteristic of special relativity theory. Einstein
supposed as well that local time is the time provided by a moved clock and
is thus given in experience, and he also stated that only relative motions are
accessible empirically. Yet this superficial agreement hides a deep-seated diver-
gence as to the nature of local time and the conceptual status of the relativity
principle. For Poincaré, local time involved a distortion of true time that was
due to the motion through the ether. In reality, the velocity of light is different
depending on the motion of the observer; the true value is only assumed in the
system at rest in the ether. As a result, the correct simultaneity relations are
only obtained within this rest system. However, there is no way to know which
system is really at rest. Signal synchrony yields mistaken simultaneity relations
for systems in true motion but since all clocks are distorted alike and length
relations altered correspondingly, the true simultaneity relations cannot be re-
vealed by experience. The simultaneity relations and the yardstick used for their
evaluation change in the same way so that the true relations remain hidden.
Consequently, for Poincaré, the principle of relativity constituted a theorem of
electrodynamics. It was deduced from electrodynamic assumptions, procedures
for establishing simultaneity relations, and the forces acting on charged bodies.
In addition, the principle was purely epistemic. In nature, there are privileged
frames of reference and absolute motions; yet they are concealed from the unbe-
fitting curiosity of human observers ([23, pp. 188-189]; [14, p. 10]).

Einstein dissented on both counts. First, he placed the relativity principle at
the top. After a quick reference to the failed attempts to identify states of ab-
solute rest, he immediately jumped to the principle: “We will raise this conjecture
(whose intent will from now on be referred to as the "Principle of Relativity’)
to the status of a postulate” [11, p. 26]. In contradistinction to Lorentz and
Poincaré, the principle was not supposed to be derived but stated as a premise.
Second, Einstein did not confine the principle to observable phenomena but ex-
tended it to the theoretical description. This is apparent from the famous opening
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paragraph of the 1905 paper in which Einstein criticizes an explanatory asym-
metry inherent in the then-current electrodynamics: the interaction between a
magnet and a coil is treated differently depending on which object is assumed
to be in motion. If a coil is moved in a static magnetic field, an electric current
is produced through the Lorentz force; if the magnet is moved, the current is
generated by induction. The value of the current agrees in both cases, but its
emergence is attributed to different causes. Einstein took this conceptual asym-
metry to be utterly implausible. In his view, there was but one phenomenon,
namely, coil and magnet in relative motion; and one phenomenon demanded one
explanation. Consequently, Einstein was not content with the recognition that
the attribution of specific states of motion made no observable difference; he re-
quired in addition that the theoretical explanation invoked nothing but relative
motion.

However, this creative shift was not enough to save the situation but rather
gave rise to a great puzzle. The principle of relativity implies that observers in
different states of motion measure the same value of the velocity of light. Yet how
is it possible, one must ask, that this quantity comes out the same without appeal
to any compensating mechanism? Einstein masters this challenge with another
creative shift, namely, the adoption of a procedural definition of simultaneity.
From Poincaré, Einstein had learned that judgments about simultaneity are to
be based on procedures for synchronizing distant clocks. Einstein elaborated
this operational approach to simultaneity and proposed to employ light flashes
as a means for synchronizing distant clocks. Two distant clocks are said to be
synchronous if the transit time of the signal from the one to the other, as given
by reading both clocks, equals the transit time in the backward direction. This
is tantamount to saying that the two clocks are synchronous if the reflection
of the signal at the distant clock, as measured by that clock, is one half of the
period which passes between emission and return of the signal, as measured by
the clock at the origin ([11, p. 28]; [24, pp. 196-197)).

Einstein went on to demonstrate that the Lorentz—contraction can be ex-
plained on this basis. Observers in relative motion who apply this rule will deviate
in their judgments about which events are simultaneous. Measuring the length
of a moved body involves locating its edges at the same time. Divergent assess-
ments of the prevailing temporal relations will obviously affect the outcome of
length measurements. Lorentz—contraction ceases to be a dynamic effect, based
on the action of the forces of cohesion, it becomes a metrogenic effect, based on
different judgments about simultaneity. Some argumentative steps later Einstein
also succeeded in resolving the conceptual asymmetry in electrodynamics that
had prompted his initial worries. Special relativity was born.

Einstein’s operational approach to simultaneity was the key to success. How-
ever, adopting such an approach is by no means a matter of course. On the
contrary, placing all one’s bets on signal synchrony seems highly dubious in the
face of the counterintuitive results this method yields. Imagine the situation: A
criterion for assessing simultaneity relations picks different events as simultane-
ous according to the state of motion of those who bring the criterion to bear.
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Simultaneity ceases to be objective and becomes a frame-dependent notion. How
to digest such a finding? One might be tempted to argue that the relativity of
simultaneity militates against the procedural approach to simultaneity and sug-
gest that the latter be abandoned. Yet Einstein sticked to it — in spite of its
seemingly absurd consequences. And the scientific community quickly accepted
this move. But why? What is the reason for Einstein’s confidence in the opera-
tional notion of simultaneity? And why was the scientific community prepared
to follow him on this path?

4 The Emerging Rule of Global Time

The procedural approach to simultaneity was first proposed by Poincaré who rec-
ommended the telegraph as a preferred means for synchronizing distant clocks.
Yet Poincaré advanced his suggestion not as something new and innovative but
as “the definition implicitly admitted by the scientists” [21, p. 11]. Peter Gal-
ison recently elucidated the vast technological background to this judgment.
Standardizing time readings by coordinating distant clocks constituted one of
the chief items on the agenda of technology development in the three decades
preceding Einstein’s wrestling with the issue. One of the reasons was the rapid
expansion of the railroad system. Traditionally, the clocks were set on a local or
regional basis by using astronomical procedures. That is, clocks were adjusted
to the corresponding mean solar time. The spread of a train service operating
on a fixed schedule demanded the coordination or unification of the scattered
local time zones.

In addition, an early wave of globalization swept through the late 19th cen-
tury world. Soaring trade and commerce figures and the foundation of colonies
worldwide created a demand for unambiguous time regulations and accurate
maps. The problem with drawing global maps lay with measuring longitude dif-
ferences reliably. In general terms, it was clear how to proceed. The time readings
of clocks placed at the relevant positions had to be compared and the local devi-
ations be translated into shifts in the east-west direction. However, a comparison
of this sort requires that the clocks run in a coordinated fashion. Accordingly,
establishing distant synchrony was not a remote subtlety but rather pervaded
the web of commerce, technology, and politics of the period.

In fact, the procedure standardly adopted for synchronizing clocks was send-
ing signals. Around 1880, a pneumatic system was in use in Paris. Air pressure
pulses raced through pipes underneath the streets and transmitted time signals
to public clocks distributed over the city. The delay due to the transit time of the
pressure waves ran up to 15 seconds and was corrected by an array of mechanical
counteracting devices [6, pp. 93-95].

From the 1880s onward, this clumsy network of pipes war replaced by a
system of cables and wires. The signals employed for synchronizing clocks became
electrical; the telegraph made its appearance. Electrocoordinated time connected
Europe with North America and with the colonies overseas. The subsequent
technological step was taken in the early 20th century. It involved employing
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radio waves and allowed surveyors to dispense with a costly network of cables
across land and sea. Time coordination and longitude determination became
feasible worldwide. Distant synchrony was achieved by emitting a radio signal
at a known time and adjusting a distant clock accordingly, taking due account of
the transit time. Longitude differences were determined on that basis by using
two clocks and sending one radio signal from east to west and another one from
west to east [6, pp. 184-186].

In the period under consideration, Poincaré served as chief of the French
Bureau de Longitude and was familiar with the practical challenges of coordi-
nating clocks; he referred to the crosswise exchange of signals, i.e., the method
in practical use in the administration he headed [14, p. 7]. Likewise, this array of
two clocks connected by two signals sent back and forth strikingly resembles the
arrangement Einstein invoked for the operational introduction of simultaneity.
The only difference is that he referred to light rays whereas electrical signals
and radio waves were in general use in his period [11, p. 28]. Likewise, Einstein’s
passing reference to train schedules as a means for illustrating the importance of
simultaneity [11, p. 27] gains a significance that is easily missed otherwise. The
technical background makes its presence felt strongly.

It is worth remembering, therefore, that Einstein lived in Bern which, by
1905, ran an extensive network of coordinated clocks, see Fig. 1. It is worth not-
ing, too, that Einstein worked as a technical expert in the Swiss patent office.
He reviewed and examined patent applications, and clock making was one of the
key technologies of the period. A number of applications concerning electrically
coordinated clocks passed through the patent office between 1902 and 1905, some
of which must have crossed Einstein’s desk [6, p. 248]. It is true, Einstein was
critical of Newtonian absolute time and similar metaphysical conceptions as a
result of his philosophical studies. Reading the works of Hume, Mill, Mach, and
Poincaré had prepared him to accept procedural notions of temporal quantities.
Yet the adoption of signal synchrony as the basis of distant simultaneity is no
doubt strongly influenced by the technology of his time and his daily work in
the patent office. Next to Einstein, the philosopher-scientist, stands Einstein,
the patent officer-scientist [6, p. 255]. It is at this juncture where we find the
sought-for basis of Einstein’s seemingly premature confidence in the operational
definition of simultaneity. Here lies the justification for retaining signal syn-
chrony despite its prima-facie implausible ramifications and to transform our
spatiotemporal notions on that basis.

5 Technology-Based Concepts
and the Rise of Operationalism

The upshot is that the technological development of the period contributed to
shaping concepts used in highbrow theory. The procedural approach to simul-
taneity paved the way toward the understanding of the electrodynamics of mov-
ing bodies. The underlying operational attitude is found in both Poincaré and
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Fig. 1. Bern’s Electrical Clock Network by 1905 [26, p. 131] (by courtesy of Chronos—
Verlag Ziirich)
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Einstein, but Einstein pushed this approach much further than Poincaré and
thereby prepared the breakthrough to Special Relativity. Poincaré continued to
adhere to a privileged, true simultaneity relation. It is true, he emphasized the
epistemic problems involved in the identification of true simultaneity. At bot-
tom, Poincaré developed an epistemic circularity argument to the effect that
the quantity to be evaluated and the standard used for the evaluation change
in the same way so that no observable effect remains. In reality, the velocity of
light is influenced by the absolute motion of the observer; but, first, as a result
of using signal synchrony and, correspondingly, judging simultaneity relations
in terms of local time, and, second, due to the universal contraction of bodies
moved through the ether, this influence is invisible in the data.

This means that Poincaré did retain the notion of a preferred frame of refer-
ence. The ether rest frame was distinguished among the class of inertial frames in
that it alone yields the true measures of lengths, velocities, and electromagnetic
quantities. The motion through the ether produces a distortion of these magni-
tudes which is compensated by other effects of the motion. Poincaré’s account,
like Lorentz’s, involves a sort of conspiracy among different effects brought forth
by the motion of bodies. These effects are so contrived as to cancel each other
out, hiding in this way the true quantities.

It is characteristic of Poincaré that epistemic problems of this sort did not,
in his view, undermine the legitimacy of the concepts involved. The notion of
simultaneity remains unaffected. Events happening at the same true time are
truly simultaneous — whatever their relation at the local time scale is. Local
time is a specious measure of temporal relations; it is flawed by the inability
to take absolute motion into account. Likewise, the principle of relativity was
confined to the phenomenal realm. In reality, the relevant quantities are affected
by the motion, but its influence is compensated by counteracting factors with
the result that no net effect remains. Consequently, the principle of relativity
merely expresses operational limitations but does not extend to the nature of
the concepts involved.

By contrast, Einstein understood the principle of relativity in a stronger,
more literal sense. The results obtained by differently moved observers are ob-
jectively equivalent, not merely indistinguishable in their appropriateness. There
is no true, universal measure of the relevant quantities; rather, electromagnetic
fields and spatiotemporal relations are really different in different frames of refer-
ence. In Einstein’s approach, distant simultaneity is a relational notion in that it
is only defined with respect to a frame of reference. Frame dependence (or “rela-
tivity”) is part of the concept of simultaneity, it is not merely an obstacle to the
appropriate application of the concept. Einstein’s insistence on the operational
foundation of scientifically adequate concepts was accepted as a model by empiri-
cist positions to the philosophy of science. Moritz Schlick, Hans Reichenbach, or
Percy Bridgman regarded Einstein’s emphasis on the definitional and procedural
aspects of concept formation as a major breakthrough in epistemology.

The idea to elucidate the semantic features of a concept by drawing on the
characteristics of the pertinent measurement procedures comes out particularly
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clear in the claim of the conventionality of simultaneity. This claim originated
with Poincaré [21, p. 13], was accepted by Einstein [11, p. 28] and elaborated
within the mentioned empiricist approaches. As the argument developed in this
latter framework runs, the evaluation of one-way velocities requires distant si-
multaneity relations. Yet in order to single out simultaneous events, signal speed
needs to be known. As a result of this reciprocal dependence, distant simul-
taneity cannot be based on experience alone but is (within limits) subject to a
stipulation ([25, pp. 148-149]; [27, p. 155]).

Underlying such commitments to operationalism is the conviction that es-
tablishing the concept of distant simultaneity requires a feasible method for
comparing events in temporal respect. The crucial step is, then, that the room
left by such procedures is indicative of the room inherent in the concept. On this
markedly operational attitude, epistemic confines in ascertaining simultaneity re-
lations are tantamount to the objective indeterminateness of these relations. It
is precisely this attitude that made Einstein accept the counterintuitive, frame-
dependent judgments about simultaneity relations as an adequate aspect of the
concept of simultaneity.

In sum, Poincaré took the first step and advocated a procedural approach
toward the notion of simultaneity, Einstein went one step further and advanced
a procedural notion of simultaneity. Viewed along such lines, the ramifications
of introducing a worldwide web of electrocoordinated clocks reached far up into
the lofty realms of theoretical physics and philosophy of science.

6 Technological Problems, Technological Solutions,
and Scientific Progress

The incipient career of special relativity theory places the fruitful interaction of
technology and physics in the lime light. The early development of Einstein’s
thought shows that technology can be heuristically fruitful; it can promote sci-
entific understanding. This finding does not square well with either one of the
before-mentioned accounts of the relationship between pure and applied research.
Neither the cascade model nor the emergentist conception left room for a semi-
nal or productive influence of technology on science. The conclusion to be drawn
from the case study is that technological challenges need not have a deteriorating
effect on science. It may happen that technology stimulates scientific inventive-
ness.

At first sight, this account does not precisely respond to the concern raised
earlier. Einstein had a scientific problem which he solved by developing a
technology-based solution. The predicament addressed before was that focusing
on technological problems might bring scientific progress to a halt. The worry
mentioned in Sect. 2 was that concentrating research on technological issues
could exhaust the epistemic resources of science and eventually block any fur-
ther advancement of scientific understanding. However, the story of how special
relativity was conceived can be reframed in such a way that concerns of this sort
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are mitigated. After all, the technological problems of establishing simultaneity
that plagued railroad planners, cartographers, and other practical professions
stimulated Poincaré and Einstein to revise the conception of simultaneity. As a
result of application pressure, they conceived of simultaneity as a definition and
suggested an operational approach. At second glance, therefore, the account is
able to alleviate apprehensions as to the harmful impact of applied research on
epistemic science.?

In other cases the pressure of practical problems on theory development is
even more pronounced. Not infrequently, practical challenges cannot appropri-
ately be met without treating problems in basic science. This feature I call appli-
cation innovation. It involves the emergence of theoretically significant novelties
within the framework of use-oriented research projects. Although theoretical un-
derstanding is not among the objectives of applied research, it may yet be pro-
duced in the course of solving practical problems. On some occasions, treating
such problems successfully demands addressing epistemically significant issues.
Once in a while, applied research naturally grows into basic science and cannot
help generating epistemic insights.

High-temperature superconductivity is a case in point. The phenomenon was
discovered in 1986 in the IBM research laboratory near Zurich, and its identifi-
cation stimulated the development of new theoretical accounts of superconduc-
tivity. Similarly, the transistor effect was found in the Bell laboratories. The
emergence of this effect was based on the truly innovative procedure of adding
impurities to semiconductors which act as electron donors or acceptors. This
idea enriched solid state physics tremendously. Turning to biology, the path-
breaking polymerase chain reaction was first conceived in a biotechnology firm,
and the revolutionary conception of prions was elaborated in the practical con-
text of identifying infectious agents. Prions are infectious proteins which re-
produce without the assistance of nucleic acids; they were discovered during a
use-oriented study on the sheep disease scrapie.

In these examples, research had been directed toward a practical goal but un-
intentionally produced innovations in basic research. This is no accident. Applied
research tends to transcend applied questions for methodological reasons. A lack
of deeper understanding of a phenomenon eventually impairs the prospects of
its technological use. Superficial empirical relations, bereft of theoretical under-
standing, tend to collapse if additional factors intrude. Uncovering the relevant
mechanisms and embedding them in a theoretical framework is of some use typ-
ically for ascertaining or improving the applicability of a finding. Scientific un-
derstanding makes generalizations robust in the sense that the limits of validity

2 If the story is told in this way, the early development of quantum mechanics can be
taken as a continuation. In his 1930 introduction to quantum theory, Werner Heisen-
berg explicitly placed his approach within the tradition of Einstein’s operational
analysis of seemingly innocuous concepts. As Heisenberg argued, what Einstein ac-
complished with respect to simultaneity, he aimed to do with respect to the concept
of observation. Quantum theory needs to be based conceptually on the recogni-
tion that the interaction between object and observer can neither be neglected nor
controlled [28, pp. 2-3].
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can be anticipated or, as the case may be, expanded. Treating applied questions
appropriately requires not treating them exclusively as applied questions. This
is why epistemic science has less to fear from application pressure than it might
appear initially.

The cascade model applies in a number of cases, and the emergentist ap-
proach rightly characterizes others. Yet application innovation represents a third
mode of research which teaches a methodological lesson different from the others
and tends to vindicate applied research in methodological respect.

The electrodynamics of moving bodies headed the research agenda of the pe-
riod. Einstein approached this familiar problem situation in an unfamiliar way,
namely, by starting from a procedural notion of simultaneity. This notion itself
was by no means novel; it emerged tied up with the progress of clock technology
and lay open right in front of Einstein’s eyes at his desk at the patent office.
The innovative step Einstein took was to connect topical areas and to bring the
practice of railroad planners and surveyors to bear on issues of highbrow physi-
cal theory. This is quite typical of human creativity. On rare occasions only do
we succeed in conceiving ideas completely novel and without precedent. Much
more often innovations are produced by the more modest procedure of bringing
together what appeared separate before. The Copernican achievement is pre-
cisely of this sort. Copernicus intended to solve the problem of the apparent
inequality of planetary motions, as many had attempted before him, and he did
so by drawing on the heliocentric ordering of the planetary orbits that was be-
queathed to him by astronomical tradition. Both elements were widely known.
Yet no one had endeavored before to invoke the heliocentric configuration as
a means for resolving the inequality problem. Unifying seemingly disparate fea-
tures is the predominant mode of producing innovations. And this is precisely the
mechanism underlying Einstein’s originality. He linked the technology of clock
coordination to the issue of how bodies move when they approach the velocity
of light. Links of this sort are the stuff human originality is made of.
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1 Introduction

Any physical theory is based partly on a spacetime structure, which is needed
to locate events (= spacetime points) and to provide a domain of definition for
variables describing particles and fields.

So far, the following spacetime structures have been successfully used in
physics: (i) Newton’s spacetime, (ii) the Einstein-Minkowski spacetime of Spe-
cial Relativity (SR) and (iii) the Riemann—-Einstein spacetime of General Rel-
ativity (GR). In the first two, metric and (flat) connection are specified once
and for all, influencing matter but not affected by matter. In GR the metric
and the associated connection and curvature are physical fields. Accordingly, in
Newtonian and SR physics one can separate kinematics from dynamics, which
is not possible in GR.

The metric not only serves to determine distances, time spans and causal
relations, it always enters the description of matter. This fact is often obscured
by the habit of not distinguishing between vectors and covectors (= one forms)
using the metric to “move indices”. While phases of waves are represented geo-
metrically by hypersurfaces given infinitesimally by k., = 9,5, world lines or
rays are curves, i.e., generated by vectors p* (e.g., kinetic 4-momentum). To
relate particle and wave quantities a la Einstein—de Broglie, one writes

p* = hgo‘ﬁkﬁ or hky = gagp’g, (1)
or one relates the canonical momentum to the 4—velocity via
_ dz®
Po = mgaﬂuﬁ , ut = “ds (2)

In my view, these equations together with the interpretations of p*, kq, p,,, and
u® and similar relations between vectors and covectors exhibit the basic role of
the spacetime metric for physics as well as statements about distances or time
intervals. In other words, the basic role of the metric is to define an isomorphism
between the tangent space and its dual. Once this is given, other roles of the
metric (distance, duration, angle) can be derived.
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2 Inertial Frames

To start physics one needs a frame of reference, a way to locate events by means
of coordinates. In Newtonian physics as well as in SR it is assumed that there
are preferred frames, inertial frames, with coordinates % = (2%,2°), 20 = ct,
where the z® are rectangular Cartesian coordinates in position space which is
taken to be Euclidian, and ¢ measures time. Taking distance and duration as
basic measurable quantities presupposes the existence of reproducible standards
of length and time functioning independent of their pre—histories.

While in Newtonian mechanics an absolute time t is assumed and inertial
frames are characterized by the law of inertia £ = 0, in SR one proceeds differ-
ently, for well-known reasons. One assumes, as laws of nature,

1. that in empty space light propagates independently of the state of motion
of the source, and

2. relative to an inertial frame, the mean speed of light on any closed triangular
path in vacuo has a universal value c.

Combined with Einstein’s definition of simultaneity of pairs of events, these
two properties imply the existence of a global time coordinate ¢ in an inertial
frame such that the one—way speed of light in vacuo is always c. (The last asser-
tion involves a convention on simultaneity and facts about light propagation.)
One may then also assume, relative to an SR inertial frame, the law of inertia for
“free” particles as stated above, but now with respect to the Einsteinian time ¢.
In inertial coordinates, light signals are then given by

Ax? — (A2°)% = oA AP =0, (3)
and free particles by
d?z
7 =0 (4)

Statement 1. does not require the concept of speed for either light or sources. It
says that the set of events constituing a short light pulse is uniquely determined
by the emission event. It holds equally in GR.

Because of assumption 1., in 2. the state of motion of the light source does
not matter provided reflecting mirrors (tacitly assumed in 2.) are considered as
sources of the reflected light.

Historical remarks. The statement 1. was originally taken from Maxwell’s
theory, unambiguous experimental support came only in the 1960ies, e.g., [1,
2]. In 1905 and later, Einstein assumed that his definition of simultaneity is
an equivalence relation between events. In 1922 H. Weyl replaced Einstein’s
assumption by the experimentally testable statement 2.

3 Poincaré Transformations

Suppose (2%) and (z%) are two inertial coordinate systems I, I’. It is assumed
that events can be identified as being “the same” from both systems. Then there
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is a bijective transformation z¢ — 2% . There are several ways to determine its
form, based on different assumptions.

I first present explicitly an elementary derivation. It presupposes (3) and (4)
to hold in both frames, for unspecified coordinate ranges. Take then two free
particles Py, P> which have in I the same 3—velocity. Imagine light signals to be
sent back and forth between P; and P. This defines, according to (3) and (4), a
sequence of events on P; which have equal time separations At (light clock). The
assumptions (1) and (2) about light rays and free particles imply that, viewed
from I’ the particles P; and P, move with constant 3—velocities, and light rays
move back and forth between them. We next show that the 3—velocities of P;
and P, in I’ are equal, too. For this purpose we interpret — separately in I and I’
— the coordinates 2 and z® as affine coordinates of two distinct 4-spaces S, S".
(This is necessary since at this stage we do not yet have a spacetime geometry).
Then, the free particle motions and the light rays are represented, according to
(3) and (4), as straight lines both in S and S’. In S, by construction, P; and
P, are parallel, and so are the two sets of light ray segments connecting them.
The crucial point now is that parallelism of two free particle world lines can be
expressed solely in terms of light rays and a few auxiliary free particle world lines
as recognized by Marzke [9], see Fig. 1. Therefore, P, and P, are represented
by parallel lines also in S’, and consequently, viewed from I’, we also have a
light clock with equal “ticks” At’. And since P; and P» can be chosen arbitrarily
close to each other, the “periods” At, At can be made arbitrary small, and
therefore the time coordinates ¢, t' on P; are related by an equation ¢’ = at + b
with constants a,b with a > 0 with natural time orientation. Therefore, the
transformation z® — z® must be such that

/

v () = £ (2] + tc?) = af + 1 (5)

holds for arbitrary asg ,c? (with some open ranges). Note that the independent
variable on both sides is ¢, due to the preceding argument. Differentiating twice
w.r.t. t gives that the transformation is affine,

a® = AY 2P +d*. (6)

Using next the invariance of (3) shows that the matrix A must be a positive
multiple AL of a Lorentz matrix,

A=AL, A>0, LeO(31). (7)
In fact, (3) says that the quadratic form
Aw",na/[y Az? = Aglnawag/AxéAxﬁ (8)
vanishes if and only if 17,5 Az* Az does, where
(Nap) = (Narpr) = diag(1,1,1, 1) . (9)

This holds if and only if
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Fig. 1. Task: Given the (particle) line P and the event X ¢ P, construct the parallel
to P through X. Construction: Choose A on P, draw AX = R. Draw light ray DX
and light ray from A that meets DX in B. Draw light ray through D parallel to AB to
obtain C. Draw a light ray through C' parallel to BD to obtain E. Draw BFE to obtain
Y. Then XY || P. Note that the whole construction takes place in a plane of S, and
therefore — because of (3) and (4) — in a plane of S’

AL N AT = N2mgs with A >0, (10)

which means that A=A = L is a Lorentz metric. Note that the invariance of (3)
follows from property 1. of Sect. 2. As long as statements about a single inertial
frame are made, only property 2. about light is needed; for synchronizing clocks
one may use light signals emitted by sources at rest in the frame considered, and
(3) holds for those signals — separately in each such frame. However, because
of 1. the sequence of events of which a light ray consists is the same in all
inertial frames, and this fact implies the invariance of (3). (Both (3) and (4)
establish “bridges” between I and I'.) It follows (!) that one may, without loss
of generality, take the coordinate ranges in both frames to be R%. This is as far
as one can get under the specified assumptions.

One can put A = 1 if one requires that in I and I’ the same units of length
and time are employed, e.g. by defining the (proper) time via a particular Cs
transition and fixing the value of ¢, as agreed since 1983. To infer A = 1 from that
requires however, an additional assumption, e.g. that time—dilation be symmetric
between I and I’, or that meter sticks at rest in I and I’, orthogonal to the
direction of relative motion, coincide when passing each other.

Another way to deduce (6), (7), which is more elegant than the above one,
but perhaps less physical, takes for granted only that the coordinate range is R*
in any inertial frame and that the relation (3) between event pairs is invariant.
The statement then is:

A bijection R* — R* is of the form (6), (7) if and only if (3) is invariant as
has been shown by Borchers and Hegerfeld [10].

Note that, in contrast to the previous argument, no differentiability is as-
sumed, and nothing is assumed about particle motions. Given R* as the space-
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time manifold, the light cone defines the kinematics of SR (except for a common
spacetime scale).

Remarks. The affine nature of the transformations between SR inertial
frames, (6), has often been taken for granted, or as obvious, or based on vaguely
stated arguments (as in Einstein 1905). It has been derived by H. Weyl, A.D.
Alexandrov, G. C. Zeeman and others. — Assuming linearity, Robertson [3] has
derived (7) from idealized inferences from the classic optical experiments by
Michelson-Morley [4], Kennedy—Thorndike [5], and Ives—Stilwell [6]. — As shown
above, rods and clocks are not needed, free particles and light rays are sufficient
to obtain the SR kinematics.

4 Minkowski Spacetime

The considerations reviewed in Sects. 2 and 3 can be restated, following H.
Minkowski (1908), as follows:

Spacetime can be represented geometrically as the (real), 4-dimensional affine
space A%, equipped with a Lorentz metric 7,5 (here taken to have signature
+ + +—) compatible with the affine structure. In this interpretation, an inertial
coordinate system is an affine coordinate system, (pseudo-) orthonormal with
respect to the metric 7,4; it is given by an Origin O and an orthonormal basis

—
(E,) of vectors, and then an event P has coordinates %, OP = z“E,,.

Using Minkowskian geometry it is easy to derive the ”"special” Lorentz trans-
formation

2t = ’y(v)(:cl — ﬂxo) , 2 = z2, 3 = g3 (11)
29 = 4(0) (2 - fat) (12)

Indeed, given two inertial frames with bases (E,), (Es) and, without loss of
generality, the same origin O, one can employ spatial rotations to arrange that
E; and Ej are contained in the (timelike) plane spanned by Ey and Ey, and Fy =
Ey, E5 = E3 in the (spacelike) plane orthogonal to the (Ey, Ey)—plane. This
results in the standard equations written down above. (Without Minkowskian
geometry it is not easy to derive those equations since the 3-spaces of the two
frames “move” relative to each other.) The reference space of an inertial frame
I consists of parallel, timelike lines; events which are simultaneous in [ fill a
spacelike hypersurface orthogonal to those lines.

The light cone of an event separates vectors X into timelike ones (7,5X *X " =
X-X < 0), lightlike ones (X2 = 0, X # 0) and spacelike ones (X2 > 0 or X = 0).

The Poincaré transformations (6), (7) with A = 1 relate inertial coordinates.
Since they are characterized by leaving certain relations invariant they form a
group. This group may also be taken to act (“actively”) on A%; it is the isometry
group of (A% n); it acts simply transitively on the set of inertial coordinate
systems.

Due to the foregoing, tensors (and, if needed, spinors) may be used to describe
physical objects in spacetime.
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5 Axiomatics

Minkowski spacetime has been axiomatized in the style of Hilbert’s axiomatiza-
tion of Euclidean geometry, even in several versions.

1. The oldest axiomatization has been elaborated by A.A. Robb [11]; he uses as
the only primitive relation between events the causal order, p > ¢, p causes
q.

2. C. Caratheodory [12] and H. Reichenbach [13] used particles and light rays
(or “first signals”) and coincidence relations.

3. B. Mundy [14] gave two axiomatizations, one based on optical connectivity,
the other one on several betweenness-relations on timelike and lightlike lines.

4. H. Weyl [15] sketched an axiomatic, using free particles and light rays.

5. J. Schutz [16] also used free particles and light rays as primitive concepts. His
treatment is mathematically remarkable in that he proved the independence
of all his axioms.

This list is not complete, I just wanted to mention that the geometry of
Minkowski spacetime has been axiomatized in all rigour. Hence, skeptics may be
assured that SR as a logico-mathematical theory is as free of contradictions as
Euclid’s geometry in Hilbert’s version.

6 The Principle of Special Relativity and Its Limits

By definition, inertial frames are equivalent as far as free particle motions, light
rays and statements about measurements of lengths, times, frequencies on mov-
ing bodies, light sources etc. are concerned.

Einstein’s principle of SR postulates that this equivalence holds for all laws
of physics. This means that the isometries of Minkowski spacetime are taken to
induce symmetries in all physical laws.

If laws can be expressed in terms of tensor (or spinor) calculus they satisfy
that principle automatically, and for this reason it has been possible to formu-
late, or reformulate, large parts of physics within the framework of Poincaré
invariant, special theory, and these branches of physics turned out to be em-
pirically successful. However, SR met with difficulties in two ways. One is that,
as Einstein showed, gravitation does not fit naturally into SR. The flat metric
has to be replaced by a curved one and becomes a dynamical field, and from
the point of view of the resulting general theory of relativity, SR is relegated
to an approximation. The other, deeper limitation is that relativistic quantum
theories require a radical change of the microstructure of spacetime; substitutes
for a manifold are under discussion, but the problem seems to be far from solved.
In the first respect, special relativity did not survive the previous century, in the
second respect, even its large-scale successor GR will not survive the 215 cen-
tury. The question of this meeting can perhaps be rephrased as: Will SR survive
as a tool for perturbative analyses of certain classes of experiments?
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Additional remark. In the change SR — GR the metric changes from a pre—
assigned, absolute element into a dynamical field with its own degrees of freedom.
While both SR and GR can be formulated in a generally covariant form, the
Poincaré group loses its role as invariance group in the transition SR — GR.
(For a recent discussion of this aspect see, e.g. N. Straumann [17].)

7 Examples

As examples of SR laws I recall Maxwell’s equations of electrodynamics,
Flopm =0, FP3=7J" (13)
and “Euler’s” equations for perfect fluids,
7% 5= [(p+)UU’ +pg*°] 5=0 (14)

with p = f(p) > 0, 0 < f’ < 1. Both systems separately, with J* = 0 in
(13), admit well-posed initial value problems, and (13) implies stress—energy—
momentum conservation. If the fluid represents a plasma, the systems may be
coupled via J¥, then the total energy tensor is conserved.

In empty space the characteristics of (13) are null hypersurfaces and the
bicharacteristics are light-like straight lines. WKB approximation can be used
to show that the initial assumption about light rays now follows from theory.

In a similar way one can derive the law of inertia (4) from T8, g =0, applied
to an isolated, finite body. If —T*3 maps the interior of the future light cone
into itself, which is one version of an energy condition, then the convex hull
of the body contains a timelike straight line, its center—of-mass line, so that a
small body can be represented approximately by such a line given by (4), see
J.L. Synge [18].

This and the preceeding remark show that the simple assumptions made to
initiate the theory later follow from the laws within the theory, a requirement
sometimes called semantic consistency.

8 Accelerated Frames of Reference

For recognizing inertial forces and as stepping stones leading to GR it is useful
to consider accelerated frames of reference in flat spacetime.
Applying the transformation

2
T = (C—i—X) cosh (QT)

g c

c? . g
ct = (g+X) sinh (ET) (15)
y:Y7Z:Z7X:(X’Y?Z)
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to the flat line element
ds* = dx* — c*dt? (16)

gives

X 2
ds* = dX? — (1 + 962) 2dT? | (17)

with —c?/g < X < oo. A point X of the frame has the absolute dynamical
acceleration g/(14+¢X/c?). Equation (17) exhibits the time dilation (measured by
Pound-Rebka—Snider [7,8]) and, via ds? = 0, gives an effective index of refraction
n = (1 +gX /02)71, which leads to curved light paths in the accelerated 3—
space. Since gX plays the part of gravitational potential, Einstein conceived in
1907 [22] (by sophisticated arguments — before Minkowski’s geometry), guided
by his equivalence principle, the ideas of gravitational time dilation and light
bending, in a gravitational field with potential @ in place of gX.

Similarly, using cylindrical coordinates and substituting ¢ — ¢ — wt, one
gets, for wr < ¢,

2 wr 2
2_ 3.2 rde 2 wr 2 i

(18)
the metric in a uniformly rotating frame. It exhibits the time delay related to the
centrifugal potential, the Coriolis (vector) potential which affects simultaneity
in the rotating frame, and the Lorentz contraction which “causes” the space—
geometry to be non—FEuclidean.

The use of curvilinear coordinates and/or non—parallel orthonormal bases
(tetrads) in SR does, of course, not affect the intrinsic Poincaré invariance of
SR, nor does it introduce “true” gravitational tidal fields, i.e. curvature.

Both examples (17) and (18) exhibit rigid motions in Born’s sense, while
rigid bodies do not exist in SR. (In Minkowski spacetime, all rigid motions are
known due to G. Herglotz [19] and F. Noether [20].)

9 SR Causality

The laws of SR are local ones. Poincaré invariance by itself does not exclude
signals with v > ¢, nor does it forbid characteristics outside the light cone.
However, as Einstein remarked in 1907, if such signals were assumed to exist,
an observer could send a message which would arrive at the receiving station
earlier than it was sent, judged by the inertial time of the observer. Although
this does not entail a logical contradiction, Einstein remarks, it contradicts all
our experience such that its impossibility seems to be established sufficiently.
Since Einstein used his — after all, conventional — concept of simultaneity, one
may not be convinced. However, if there were superluminal light signals obeying
Poincaré invariant laws, and if observers were able to trigger such signals, then
they should be able to affect their own past. Therefore, if one wants to maintain,
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as part of the idea of causality, that the past relative to any observer is factual
and cannot be changed by any actions, then one is forced to postulate (!) that
causal influences can propagate with speeds at most equal to ¢, and hence that
partial differential equations expressing laws of nature must be hyperbolic, with
characteristic ray cones inside or coinciding with the light cone.

I find it interesting to note that Heisenberg [21] draws a parallel to that
“postulate” and his assumption that quantum mechanics requires “uncontrolled
disturbances” during measurements. In both cases the assertions do not follow
from laws of the theory, but they have to be postulated in order that we can
maintain our usual thinking about causation, past and future and not get into
contradictions with the formal theories used to describe phenomena, SR and
quantum mechanics, respectively.

This, then leads to Einstein causality: The causal past of an event P consists
of its past half null cone, its domain of influence consists of its future half null
cone. This causal structure is maintained in GR as well as in local quantum field
theory. A substitute for it in a not—yet existing quantum gravity theory or TOE
is not known, though there are attempts to find one.
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Abstract. I review, on an advanced level, some of the algebraic and geometric struc-
tures that underlie the theory of Special Relativity. This includes a discussion of rela-
tivity as a symmetry principle, derivations of the Lorentz group, its composition law,
its Lie algebra, comparison with the Galilei group, Einstein synchronization, the lat-
tice of causally and chronologically complete regions in Minkowski space, rigid motion,
and the geometry of rotating reference frames. Representation-theoretic aspects of the
Lorentz group are not included. A series of appendices present some related mathe-
matical material.

1 Introduction

In this contribution I wish to discuss some structural aspects of Special Relativity
(henceforth abbreviated SR) which are, technically speaking, of a more advanced
nature. Most of what follows is well known, though generally not included in
standard text-book presentations. Against my original intention, I decided to not
include those parts that relate to the representation- and field-theoretic aspects
of the homogeneous and inhomogeneous Lorentz group, but rather to be more
explicit on those topics now covered. Some of the abandoned material is (rather
informally) discussed in [26]. All of it will appear in [22]. For a comprehensive
discussion of many field-theoretic aspects, see e.g. [40].

I always felt that Special Relativity deserves more attention than what is
usually granted to it in courses on mechanics or electrodynamics. There is a
fair amount of interesting algebraic structure that characterizes the transition
between the Galilei and Lorentz group, and likewise there is some interesting
geometry involved in the transition between Newtonian (or Galilean) spacetime
and Minkowski space. The latter has a rich geometric structure, notwithstanding
the fact that, from a general relativistic viewpoint, it is “just” flat spacetime. I
hope that my contribution will substantiate these claims. For the convenience of
some interested readers I have included several mathematical appendices with
background material that, according to my experience, is considered helpful
being spelled out in some detail.
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2 Some Remarks on “Symmetry” and “Covariance”

For the purpose of this presentation I regard SR as the (mathematical) theory of
how to correctly implement the Galilean Relativity Principle — henceforth simply
abbreviated by RP. The RP is a physical statement concerning a subclass of
phenomena — those not involving gravity —, which translates into a mathematical
symmetry requirement for the laws describing them. But there is no unique way
to proceed; several choices need to be made, whose correctness cannot be decided
by mere logic.

Given that the symmetry requirement is implemented by a group action
(which may be relaxed; compare e.g. supersymmetry, which is not based on a
group), the most fundamental question is: what group? In this regard there is
quite a convincing string of arguments that, given certain mild technical as-
sumptions, the RP selects either the Galilei or the Lorentz group (the latter for
some yet undetermined velocity parameter ¢). This will be discussed in detail in
Sect. 3.

Almost as important as the selection of a group is the question of how it
should act on physical entities in question, like particles and fields. The impor-
tance and subtlety of this question is usually underestimated. Let us therefore
dwell a little on it.

As an example we consider vacuum electrodynamics. Here the mathematical
objects that represent physical reality are two spacetime dependent fields, E(x, t)
and B(x,t), which take values in a vector space isomorphic to R3. There will
be certain technical requirements on these fields, e.g. concerning differentiability
and fall-off at spatial infinity, which we do not need to spell out here. For sim-
plicity we shall assume that the set of all fields obeying these conditions forms
an infinite-dimensional linear space IC, which is sometimes called the space of
“kinematical” (or “kinematically possible”) fields. Those fields in K which sat-
isfy Maxwell’s (vacuum) equations form a proper subset, S C K, which, due
to the linearity of the equations and the boundary conditions (fall-off to zero
value, say), is a linear subspace. It is called the space of “physical” (or “dynam-
ically possible”) fields. Clearly these notions of the spaces of kinematically and
dynamically possible fields apply to all sorts of situations in physics where one
considers “equations of motion”, though in general neither of these sets will be
a vector space. This terminology was introduced in [2].

In general, we say that a group G is a symmetry group of a given dynamical
theory if the following two conditions are satisfied:

1. There exists an (say left-) effective action G x K — K, (g,k) — ¢ -k, of G
on K (cf. Sect. A.1). Posing effectiveness just means that we do not wish
to allow trivial enlargements of the group by elements that do not move
anything. It also means no loss of generality, since any action of a group
G on a set K factors through an effective action of G/G’ on K, where G’
is the normal subgroup of trivially acting elements (cf. Sect. A.1. Such an
action of the group on the kinematical space of physical fields is also called
an implementation of the group into the physical theory.
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2. The action of G on K leaves S invariant (as a set, not necessarily pointwise),
ie. if s € S then g-s € S for all g. This merely says that the group action
restricts from K to S. Note that, from an abstract point of view, this is the
precise statement of the phrase ‘leaving the field equations invariant’, since
the field equations are nothing but a characterization of the subset S C K.

If this were all there is to require for a group to count as a symmetry group,
then we would probably be surprised by the wealth of symmetries in Nature.
For example, in the specific case at hand, we often hear or read the statement
that the Lorentz group leaves Maxwell’s equations invariant, whereas the Galilei
group does not. Is this really true? Has anyone really shown in this context that
the Galilei group cannot effectively act on K so as to leave S invariant? Certainly
not, because such an action is actually known to exist; see e.g. Chap. 5.9 in [21].
Hence, in the general sense above, the Galilei group is a symmetry group of
Maxwell’s equations!

The folklore statement just alluded to can, however, be turned into a true
statement if a decisive restriction for the action is added, namely that it be local.
This means that the action on the space of fields is such that the value of the
transformed field at the transformed spacetime point depends only on the value
of the untransformed field at the untransformed point and not, in addition, on
its derivatives.! This is the crucial assumption that is implicit in all proofs of
Galilean-non-invariance of Maxwell’s equations, and that is also made regarding
the Lorentz group in classical and quantum field theories. The action of the
Galilei group that makes it a symmetry group for Maxwell’s equations is, in
fact, such that the transformed field depends linearly on the original field and
its derivatives to all orders. That is, it is highly non local.

Returning to the general discussion, we now consider a classical field, that
is, amap ¥ : M — V from spacetime M into a vector space V. A spacetime
symmetry-group has an action on M, denoted by T : (g,z) — Ty(x), as well
as an action on V, which in most cases of interest is a linear representation
g — D(g) of G. A local action of G on field space is then given by

(g,?)»—>g~¢::D(g)OWOTg_l7 (1)

where here and below the symbol o denotes composition of maps. This is the form
of the action one usually assumes. Existing generalizations concerning possible
non-linear target spaces for ¥ and/or making ¥ a section in a bundle, rather
than just a global function, do not influence the locality aspect emphasized here
and will be ignored.

Next to fields one also considers particles, at least in the classical theory.
Structureless (e.g. no spin) particles in spacetime are mathematically idealized
by maps 7 : R — M, where R (or a subinterval thereof) represents parameter
space. The parameterization usually does not matter, except for time orientation,

! Here one should actually distinguish between “ultralocality”, meaning not involving
any derivatives, and “locality”, meaning just depending on derivatives of at most
finite order.
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so any reparameterization f: R — R with f’ > 0 gives a reparameterized curve
~" := v o f which is just as good. On the space of particles, the group G acts as
follows:
(9:7) = g-v:=Tg07. (2)
Together (1) and (2) define an action on all the dynamical entities, that is
particles and fields, which we collectively denote by the symbol @. The given
action of G on that space is simply denoted by (g,®) — ¢ - .
Now, the set of equations of motion for the whole system can be written in

the general form
£[2,0] =0, (3)

where this should be read as a multi-component equation (with 0 being the
zero “vector” in target space). X stands collectively for non-dynamical entities
(background structures) whose values are fixed by means independent of equa-
tion (3). It could, for example, be the Minkowski metric in Maxwell’s equations
and also external currents. The meaning of (3) is to determine @, given X (and
the boundary conditions for @). We stress that X' is a constitutive part of the
equations of motion. We now make the following

Definition 1. An action of the group G on the space of dynamical entities @ is
is said to correspond to a symmetry of the equations of motion iff?> for all g € G
we have

EX, D=0 < &[X,9-9]=0. (4)

Different form that is mere “covariance”, which is a far more trivial require-
ment. It arises if the space of background structures, X', also carries an action
of G (as it naturally does if the X are tensor fields). Then we have

Definition 2. An action of the group G on the space of dynamical and non-
dynamical entities @ and X is is said to correspond to a covariance of the equa-
tions of motion, iff for all g € G we have

E[2, 8] =0 <= Elg-5,g-P] =0. (5)

The difference to symmetries being that the background structures — and in that
sense the equations of motion themselves — are changed too. Equation (4) says
that if @ solves the equations of motion then g-& solves the very same equations.
In contrast, (5) merely tells us that if @ solves the equations of motion, then g-&
solves the appropriately transformed equations. Trivially, a symmetry is also a
covariance but the converse it not true. Rather, a covariance is a symmetry iff
it stabilizes the background structures, i.e. if for all g € G we have g - X = 3.
Usually one has a good idea of what the dynamical entities @ in ones theory
should be, whereas the choice of X is more a matter of presentation and therefore
conventional. After all, the only task of equations of motion is to characterize
the set S of dynamically possible fields (and particles) amongst the set K of all
kinematically possible ones. Whether this is done by using auxiliary structures

2 We write “iff” as abbreviation for “if and only if”.
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X1 or X5 does not affect the physics. It is for this reason that one has to regard
the requirement of mere covariance as, physically speaking, rather empty. This
is because one can always achieve covariance by suitably adding non-dynamical
structures Y. Let us give an example for this.

Consider the familiar heat equation,

T — kAT = 0. (6)

Here the dynamical field & = T is the temperature function. The background
structure is the 3-dimensional Euclidean metric of space which enters the Lapla-
cian, A := §*°9,0y; hence ¥ = §. This equation possesses time translations
and Euclidean motions in space (we neglect space reflections for simplicity) as
symmetries. These form the group E3 = R3 x SO(3), the semi-direct product of
spatial translations and rotations. Clearly Fs5 stabilizes 9.

But without changing the physics we can rewrite (6) in the following space-
time form: Let (z°, 2%, 2%, 23) = (ct, 2,3, z) be inertial coordinates in Minkowski
space and n = 0; = nt0, (i.e. n* = (¢,0,0,0)) the constant vector field de-
scribing the motion of the inertial observer. The components of the Minkowski
metric in these coordinates are denoted by g,.,. In our conventions (‘mostly
minus’) {g,, } = diag(1,-1,-1,-1). Then (6) is clearly just the same as

nt*0,T — k (072 n*n” — g’“’) 0,0, T=0. (7)

Here the dynamical variable is still & = T but the background variables are
now given by X = (n, g). This equations is now manifestly covariant under the
Lorentz group if n* and ¢g"*¥ are acted upon as indicated by their indices. Hence
we were able to enlarge the covariance group by enlarging the space of Xs. In fact,
we could even make the equation covariant under general diffeomorphisms by
replacing partial with covariant derivatives. But note that the symmetry group
would still be that subgroup that stabilizes (leaves invariant) the (flat) metric
g and the (covariant constant) vector field n, which again results in the same
symmetry group as for the original equation (6).

3 The Impact of the Relativity Principle
on the Automorphism Group of Spacetime

In the history of SR it has often been asked what the most general transforma-
tions of spacetime were that implemented the relativity principle (RP), without
making use of the requirement of the constancy of the speed of light. This ques-
tion was first addressed by Ignatowsky [30], who showed that under a certain
set of technical assumptions (not consistently spelled out by him) the RP alone
suffices to arrive at a spacetime symmetry group which is either the Galilei or
the Lorentz group, the latter for some yet undetermined limiting velocity c¢. More
precisely, what is actually shown in this fashion is, as we will see, that the space-
time symmetry group must contain either the proper orthochronous Galilei or
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Lorentz group, if the group is required to comprise at least spacetime transla-
tions, spatial rotations, and boosts (velocity transformations). What we hence
gain is the group-theoretic insight of how these transformations must combine
into a common group, given that they form a group at all. We do not learn any-
thing about other transformations, like spacetime reflections or dilations, whose
existence we neither required nor ruled out on this theoretical level.

The work of Ignatowsky was put into a logically more coherent form by
Franck & Rothe [19] [20], who showed that some of the technical assumptions
could be dropped. Further formal simplifications were achieved by Berzi & Gorini
[8]. Below we shall basically follow their line of reasoning, except that we do not
impose the continuity of the transformations as a requirement, but conclude it
from their preservation of the inertial structure plus bijectivity. See also [3] for
an alternative discussion on the level of Lie algebras.

The principles of SR are mathematically most concisely expressed in terms
of few simple structures put onto spacetime. In SR these structures are absolute
in the sense of not being subject to any dynamical change. From a fundamental
point of view, it seems rather a matter of convention whether one thinks of these
structures as primarily algebraic or geometric. According to the idea advocated
by Felix Klein in his “Erlanger Programm” [35], a geometric structure can be
characterized by its automorphism group®. The latter is generally defined by the
subgroup of bijections of the set in question which leaves the geometric structure
— e.g. thought of as being given in terms of relations — invariant. Conversely, any
transformation group (i.e. subgroup of group of bijections) can be considered as
the automorphism group of some “geometry” which is defined via the invariant
relations.

The geometric structure of spacetime is not a priori given to us. It depends
on the physical means on which we agree to measure spatial distances and time
durations. These means refer to physical systems, like “rods” and “clocks”, which
are themselves subject to dynamical laws in spacetime. For example, at a fun-
damental physical level, the spatial transportation of a rod or a clock from one
place to another is certainly a complicated dynamical process. It is only due to
the special definition of “rod” and “clock” that the result of such a process can
be summarized by simple kinematical rules. Most importantly, their dynamical
behavior must be “stable” in the sense of being essentially independent of their
dynamical environment. Hence there is always an implicit consistency hypoth-
esis underlying operational definitions of spatio-temporal measurements, which
in case of SR amount to the assumption that rods and clocks are themselves
governed by Lorentz invariant dynamical laws.

A basic physical law is the law of inertia. It states the preference of certain
types of motions for force-free, uncharged, zero-spin test-particles: the “uniform”
and “rectilinear” ones. In the spacetime picture this corresponds to the prefer-
ence of certain curves corresponding to the inertial worldlines of the force-free
test particles. In the gravity-free case, we model these world lines by straight lines
of the affine space Aff(R*) over the vector space R*. This closely corresponds to

3 Klein calls it “Hauptgruppe”.
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our intuitive notion of homogeneity of space and time, that is, that there exists an
effective and transitive (and hence simply transitive) action of the Abelian group
R* of translations (cf. Sects. A.1 and A.7). A lot could (and perhaps should) be
said at this point about the proper statement of the law of inertia and precisely
how it endows spacetimes with certain geometric structures. Instead we will
simply refer the interested reader to the literature; see e.g. [25] and references
therein.

Note that we do not conversely assume any straight line to correspond to some
inertial world-line. Hence the first geometric structure on spacetime, which can
be thought of as imposed by the law of inertia, is that of a subset of straight lines.
If all straight lines were involved, the automorphism group of spacetime would
necessarily have to map any straight line to a straight line and therefore be a
subgroup of the affine group R* x GL(4,R). This is just the content of the main
theorem in affine geometry; see e.g. [6]. However, we can only argue that it must
map the subset of inertial world-lines onto itself. We take this subset to consist of
all straight lines in Aff(R*) whose slope with respect to some reference direction
is smaller than a certain finite value 8. This corresponds to all worldlines not
exceeding a certain limiting speed with reference to some inertial frame. It is
then still true that any bijection? of Aff(R?*) preserving that subset must be a
subgroup of the affine group [28]. Also, it is not necessary to assume that lines
map surjectively onto lines [16].

For further determination of the automorphism group of spacetime we invoke
the following principles:

ST1: Homogeneity of spacetime.
ST2:  Isotropy of space.
ST3:  Galilean principle of relativity.

We take ST1 to mean that the sought-for group should include all translations
and hence be of the form R* x G, where G is a subgroup of GL(4,RR). ST2 is
interpreted as saying that G should include the set of all spatial rotations. If,
with respect to some frame, we write the general element A € GL(4,R) ina 1+3
split form (thinking of the first coordinate as time, the other three as space), we
want G to include all

.
R(D) = (3 ‘;)) . where D eSO(3). (8)

4 If one drops the assumption of bijectivity, then there exist in addition the fractional
linear transformations which map straight lines to straight lines, except for those
points that are mapped to ‘infinity’; see e.g. the discussion in Fock’s book [18], in
particular his Appendix A, and also [20]. One might argue that since physics takes
place in the finite we cannot sensibly argue for global bijectivity and hence have to
consider those more general transformations. However, the group they generate does
not have an invariant bounded domain in spacetime and hence cannot be considered
as the automorphism group of any fixed set of physical events.
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Finally, ST3 says that velocity transformations, henceforth called “boosts”, are
also contained in G. However, at this stage we do not know how boosts are to
be represented mathematically. Let us make the following assumptions:

Bl: Boosts B(v) are labeled by a vector v € B.(R3), where B.(R3) is the
open ball in R? of radius c. The physical interpretation of v shall be that of
the boost velocity, as measured in the system from which the transformation
is carried out. We allow ¢ to be finite or infinite (B (R?) = R3?). v = 0
corresponds to the identity transformation, i.e. B(0) = idgs. We also assume
that v, considered as coordinate function on the group, is continuous.

B2: As part of ST2 we require equivariance of boosts under rotations:

R(D) -B(v)-RMD ) =BD-v). (9)

The latter assumption allows us to restrict attention to boost in a fixed direc-
tion, say that of the positive z-axis. Once their analytical form is determined
as function of v, where v = ve,, we deduce the general expression for boosts
using (9) and (8). We make no assumptions involving space reflections.® We now
restrict attention to v = wve,. We wish to determine the most general form of
B(v) compatible with all requirements put so far. We proceed in several steps:

1. Using an arbitrary rotation D around the z-axis, so that D-v = v, equation
(9) allows to prove that

B(vey) — <A(<)”) a(f)b) , (10)

where here we wrote the 4 x 4 matrix in a 2+ 2 decomposed form. (i.e. A(v)
is a 2 X 2 matrix and 1g is the 2 x 2 unit-matrix). Applying (9) once more,
this time using a mw-rotation about the y-axis, we learn that « is an even
function, i.e.

a(v) = a(—v). (11)

Below we will see that a(v) = 1.
2. Let us now focus on A (v), which defines the action of the boost in the ¢ —
plane. We write

()= (=20 ()= Coa) () o2

We refer to the system with coordinates (¢, z) as K and that with coordinates
(t',2") as K'. From (12) and the inverse (which is elementary to compute)

5 Some derivations in the literature of the Lorentz group do not state the equivariance
property (9) explicitly, though they all use it (implicitly), usually in statements
to the effect that it is sufficient to consider boosts in one fixed direction. Once
this restriction is effected, a one-dimensional spatial reflection transformation is
considered to relate a boost transformation to that with opposite velocity. This
then gives the impression that reflection equivariance is also invoked, though this is
not necessary, for (9) allows to invert one axis through a 180-degree rotation about
a perpendicular one.
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one infers that the velocity v of K’ with respect to K and the velocity v’ of
K with respect to K’ are given by

v == c(v)/d(v), (13a)
v = —vd(v)/a(v) =: p(v). (13b)

Since the transformation K’ — K is the inverse of K — K’, the function
v :(—c,c) — (—c,c) obeys

Ap(v) = (A(w) . (14)

Hence ¢ is a bijection of the open interval (—c, ¢) onto itself and obeys
pop=id(_ce) - (15)

3. Next we determine . Once more using (9), where D is a m-rotation about the
y-axis, shows that the functions a and d in (10) are even and the functions
b and ¢ are odd. The definition (13b) of ¢ then implies that ¢ is odd. Since
we assumed v to be a continuous coordinatization of a topological group,
the map ¢ must also be continuous (since the inversion map, g — g1, is
continuous in a topological group). A standard theorem now states that a
continuous bijection of an interval of R onto itself must be strictly monotonic.
Together with (15) this implies that ¢ is either the identity or minus the
identity map. If it is the identity map, evaluation of (14) shows that either
the determinant of A(v) must equals —1, or that A(v) is the identity for
all v. We exclude the second possibility straightaway and the first one on
the grounds that we required A (v) be the identity for v = 0. Also, in that
case, (14) implies A?(v) = id for all v € (—c,c). We conclude that ¢ = —id,
which implies that the relative velocity of K with respect to K’ is minus the
relative velocity of K’ with respect to K. Plausible as it might seem, there
is no a priori reason why this should be 0. The RP only implies (15), not
the stronger relation ¢(v) = —v. This was first pointed out in [§]

4. We briefly revisit (11). Since we have seen that B(—ve,) is the inverse of
B(ve;), we must have a(—v) = 1/a(v), so that (11) implies a(v) = +1.
But only a(v) = +1 is compatible with our requirement that B(0) be the
identity.

5. Now we return to the determination of A(v). Using (13) and ¢ = —id, we

write Al) = < a(v) b(v)> (16)

A(v) := det(A(v)) = a(v)[a(v) + vb(v)] . (17)
Equation A(—v) = (A(v))~! is now equivalent to

and

5 Note that v and v’ are measured with different sets of rods and clocks.
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a(—v) = a(v)/A(v), (18a)
b(—v) = —b(v)/A(v). (18b)
Since, as already seen, a is an even and b is an odd function, (18) is equivalent

to A(v) = 1, i.e. the unimodularity of B(v). Equation (17) then allows to
express b in terms of a:

a(v) [ 1
b(v) = —= -1 . 19
=" 1] (19)
Our problem is now reduced to the determination of the single function a.
This we achieve by employing the requirement that the composition of two
boosts in the same direction results again in a boost in that direction, i.e.

A(v)-A@W) = AR"). (20)

According to (16) each matrix A(v) has equal diagonal entries. Applied
to the product matrix on the left hand side of (20) this implies that
v=2(a=2%(v) — 1) is independent of v, i.e. equal to some constant k whose
physical dimension is that of an inverse velocity squared. Hence we have

1
a(v) = ———— | 21
W= e @)
where we have chosen the positive square root since we require a(0) = 1.
The other implications of (20) are

a(v)a(v)(1 — kvv') = a(v"), (22a)

a(v)a()(1+wv") = v"alv”), (22b)
from which we deduce ,
n_ vtwv

1= kv (23)

Conversely, (21) and (23) imply (22). We conclude that (20) is equivalent to
(21) and (23).
So far a boost in x direction has been shown to act non-trivially only in the

t—x plane, where its action is given by the matrix that results from inserting
(19) and (21) into (16):

Alv) = ( a(v) kva(v)) where a(v) = 1/v1 1 ko? . (24)

—va(v) a(v),

e If k> 0 we rescale t — 7 := t/v/k and set Vkv := tana. Then (24)
is seen to be a Euclidean rotation with angle « in the 7 — x plane. The
velocity spectrum is the whole real line plus infinity, i.e. a circle, cor-
responding to a € [0,27], where 0 and 27 are identified. Accordingly,
the composition law (23) is just ordinary addition for the angle «. This
causes several paradoxa when v is interpreted as velocity. For example,
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composing two finite velocities v, v’ which satisfy vo’ = 1/k results in
v = 0o, and composing two finite and positive velocities, each of which
is greater than 1/ V'k, results in a finite but negative velocity. In this way
the successive composition of finite positive velocities could also result in
zero velocity. The group G C GL(n,R) obtained in this fashion is, in fact,
SO(4). This group may be uniquely characterized as the largest connected
group of bijections of R* that preserves the Euclidean distance measure.
In particular, it treats time symmetrically with all space directions, so
that no invariant notion of time-orientability can be given in this case.

e For k = 0 the transformations are just the ordinary boosts of the Galilei
group. The velocity spectrum is the whole real line (i.e. v is unbounded
but finite) and G is the Galilei group. The law for composing velocities
is just ordinary vector addition.

e TFinally, for £ < 0, one infers from (23) that ¢ := 1/y/—Fk is an upper
bound for all velocities, in the sense that composing two velocities taken
from the interval (—c,c¢) always results in a velocity from within that
interval. Writing 7 := ct, v/c =: § =: tanhp, and v = 1/4/1 — 32, the
matrix (24) is seen to be a Lorentz boost or hyperbolic motion in the 7 —x
plane:

()= () (1) = (e, o) ()

The quantity
p = tanh ' (v/c) = tanh () (26)

is called rapidity.” If rewritten in terms of the corresponding rapidities
the composition law (23) reduces to ordinary addition: p” = p + p'.

This shows that only the Galilei and the Lorentz group survive as candidates
for any symmetry group implementing the RP. Once the Lorentz group for veloc-
ity parameter c is chosen, one may prove that it is fully characterized by its prop-
erty to leave a certain symmetric bilinear form invariant (cf. Sect A.4). Endowing
spacetime with that structure plus the affine structure from the law of inertia, we
can characterize the Lorentz group as automorphism group of some geometric
structure. This is often the starting point of more axiomatic approaches. Here we
preferred to start with the opposite strategy, which stresses that the geometry of
spacetime is a contingent physical property, emerging through its automorphism
group, which in turn relates to the actual dynamical laws of nature. Having said
that, we may now follow the convenient axiomatic line of presentation.

4 Algebraic Structures of Minkowski Space

Definition 3. Minkowski space is the affine space Aff(R*) over the four-dimen-
sional real vector space R*, where the latter is endowed with a symmetric

" This term was coined by Robb [39], but the quantity was used before by others;
compare [50].
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non-degenerate bilinear form g of signature (+,—,—,—) = (1,3). We write
M* = (Aff(RY), g). We shall usually restrict to bases {€,},—o...3 of R* for which
g(eu, en) =t g = diag(1,—-1,—-1,—-1).

4.1 The Lorentz and the Galilei Group

Definition 4. The (homogeneous) Lorentz group is the linear group (subgroup
of GL(4,R)) of orthogonal transformations of M*, also called O(1,3). Hence
{LU} € O(1,3) iff

G LB LG = gag - (27)

Note that according to Proposition 9 orthogonal transformations are necessarily
linear.

As topological space O(1,3) decomposes into the disjoint union of four con-
nected components. Here +/— stands for positive/negative determinant and
1/ | for time-orientation preserving/reversing respectively:

0(1,3) = 0L(1,3) U 0%(1,3) UO'(1,3) U 0L (1,3). (28)
SO(1,3)

Of these four components only OL(LS)7 the component containing the group
identity, is a subgroup, called the group of proper orthochronous Lorentz
transformations. Elementwise composition with space/time reflections gives
0" (1,3)/0% (1,3) respectively. In the sequel we shall also write Lor for O(1,3)
and Lorl for OL(I,?)).

For any group G C GL(n,R), there is a corresponding inhomogeneous group,
IG, given by the semi-direct product

IG={(a,A) |a eR", Ae G}, (29)

where
(a,A)(a',A')=(a+A-d', A-A). (30)

It can again be thought of as subgroup of GL(n + 1, R) via the embedding
107
@ay— (3% (31)

In this fashion we get the inhomogeneous Lorentz groups ILor and |Lor1 also
called Poincaré groups.

Let us recall the structure of the proper orthochronous homogeneous Galilei
group, which we denote by GaIL. It is generated by spatial rotations x +— x’ =
D - x and boosts x — x' = x + vt (' =t in both cases). Hence, if we agree to
let rotations act first and then act with the boosts, the general form of a matrix
in Galj_ C GL(4,R) will be (written in a 1 4+ 3 decomposition):
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awm - ()69)-(08)

Hence, given any pair (v, D), this tells us how to uniquely construct the matrix
G(v,D) € Galj_. Conversely, given a matrix G € GaIE_, we can immediately tell
v € R3 and D € SO(3) by comparison with the general form (32). Hence there
is a bijection of sets G : R? x SO(3) — Gall. The group structure on R? x SO
that makes this into an isomorphism of groups is a semi-direct product:

G(Vl,Dl)-G(Vg,Dg) :G(Vl +D1 Vo, D1 Dg) (33)

Hence we have an isomorphism GaIT+ = R3xS0(3). This also follows straightaway
from comparing (31) with (32). From (33) the law for taking the inverse is easily
deduced:

(G(v,D)) " =G(-D~'-v, DY) (34)

The inhomogeneous Galilei group is now isomorphic to an iterated semi direct
product:
IGall, :=R?* x Gall. = R* x (R® % SO(3)), (35)

where R* corresponds to space-time translations and R® to boost. The action of
Gall_ on R? is via the “defining representation”, i.e. the obvious action of 4 x 4
matrices of the form (32) on R%. Not that this 4-dimensional representation of
GaLTF is reducible: it transforms the 3-dimensional subspace of “spatial” vectors
(0,a) T into themselves. Hence the semi-direct product of Gall with the subgroup
of pure spatial translations, isomorphic to R3, is a proper subgroup of IGaIL that
properly contains GaIL: GaIT+ CR3x Gall - IGaIL. In other words: Gall is not

a maximal® subgroup of IGaIL Hence another way to write IGaIEr as semi-direct

product is
IGall, = (R® x R?) x (R x SO(3)). (36)

where the first two R? on the right hand side correspond to spatial translations
and boosts respectively, and the single R to time translations. The action of
R x SO(3) on R? x R3 is the factor-wise standard action of SO(3) on R? and the
trivial action of R.

At this point we can already anticipate some major group-theoretic differ-
ences between the Galilei and the Lorentz groups (denoted by Lor). For example:

1. LorT+ is a simple group, that is, it does not contain any normal subgroup other
than the trivial ones (itself and the unit element). The set of pure boost does
not form a subgroup. In contrast, GaIE_ is not even semi-simple, meaning that
it contains a non-trivial Abelian normal subgroup, namely the boosts. This
makes a big difference in the corresponding representation theories.

8 A proper subgroup G’ C G is mazimal if there is no subgroup H of G such that
G' ¢ HCG.
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2. In ILorI_ = R* x Lor]_ the action of Lor]_ on R* is irreducible and Lorj_ is

a maximal subgroup of ILor]_, in contrast to the Galilean case. This makes
a difference for the existence of invariant equivalence relations on spacetime
(cf. Sect. A.1), like, for example, absolute simultaneity structures. This will
be further discussed in Sect. 5.3.

4.2 Polar Decomposition

In (32) we have given an easy proof-by-inspection of the unique decomposability
of any element in Galj_ into a product of a rotation and a boost. We now like to
discuss the analog of this decomposition within Lorl, which is more difficult to
obtain. We start by recalling the statement and proof of the ‘polar decomposi-
tion’ of matrices:

Proposition 1. Let X € GL(n,C); then there exists a unique R € U(n) (i.e.
RY = R™') and a unique positive-definite Hermitian matriz B (i.e. B = B with
strictly positive eigenvalues) such that

X=B-R. (37)

If X € GL(n,R) then B is real, symmetric, and positive definite. R is real and
orthogonal.

Proof. Let A := XX, which is positive-definite and Hermitean (zero eigen-
values are excluded since X is invertible). Recall that the square-root is a
well defined bijective map (a homeomorphism in fact) of the space of positive-
definite Hermitean matrices onto itself. Define B := v/A and R := B~'X, then
Rt = XTB~! = X~'1B = R™!, where the first equality follows from Hermitic-
ity of B and the second from B? = XX'. Hence R is unitary and we have
shown existence of a polar decomposition. To show uniqueness, assume there
exist two such decompositions: X = B1R; = BsRy. Then B; = By R3, where
R3 = RoRy ! is again unitary. Hermiticity of B > and unitarity of R3 now im-
ply B2 = ByB] = ByR3RiB} = B2 and hence B; = By, since “squaring” is
an injective map (a homeomorphism in fact) from the space of positive-definite
Hermitean matrices onto itself. This, in turn, implies R; = Rs and hence unique-
ness. Finally, if X is real, then B and consequently R are also real. a

We wish to apply this to Lor]_ C GL(4,R). But note that polar decomposing an
element in G C GL(n,C) need not generally lead to factors in G. However, this
is true in many cases. For example, we have

Proposition 2. Let E?9 be the diagonal matriz whose first p diagonal entries
equal +1 and the remaining ¢ = n — p diagonal entries equal —1. We define the
group

U(p,g) == {X € GL(n,C) | X -E®D.XT = g2} (38)
Restricting to matrices with real entries gives the group O(p,q). Polar decompos-
ing elements of U(p,q) or O(p,q) leads to factors within these groups respectively.
The same is true if we restrict to the identity components of these groups.
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Proof. Tt is sufficient to prove that B = VXXt is in U(p,q) since this clearly
implies that the product R = B~'X will also be in U(p,q). Now, E®% ¢ U(p,q)
(it clearly satisfies the defining relation in (38)) so that X' and hence XX

are elements in U(p,q). But then VX XT € U(p,q), too. To see this, use e.g.
the exponential map (cf. Sect. A.10), which defines a homeomorphism from the
space of Hermitean to the space of positive-definite Hermitean matrices. Then
X =exp(Y) € U(p,q) & E®D .Y . EPD = YT & /X = exp(Y/2) € U(p,q).
Finally it is clear from the explicit construction of the polar factors that if X (s)
is a continuous path connecting the identity to X, and if X(s) = B(s)R(s) is
the polar decomposition for each value of s, then B(s) and R(s) are continuous
paths connecting B and R to the identity. O

We will use this to decompose any proper orthochronous Lorentz transfor-
mation L into a boost B and a proper spatial rotation R.% Let

L= <g "{‘\D (39)

be a Lorentz transformation. The defining relation (27), as well as the relation
L:ijf g" = ¢®P which follows from it, are equivalent respectively to

a’=7"-1, 'b=M-a, M-M'=1;+b®b’,  (40a)
b’=+"-1, ya=M'"-b, M'-M=13+a®a’. (40Db)

The polar decomposition of the matrix L € O(1, 3)1 in (39) is given by

L=B-R (41)

= b®bT ) = b®aT .
b 13 + 1+'Y O M - W

with

Tho check this, first verify that L is indeed the product B - R using the relations
(40). Next we note that B is symmetric and that its eigenvalues (EV) are all
positive:

EV(B):(’V—"_VWQ_]WW_ '72_17171) > 0. (43)

Finally one checks that R is a spatial rotation, i.e.

boa'
1+~

D.=M

€ S0(3). (44)

9 Note that the analogous factorization (32) of a homogeneous Galilei transformation
into boost and rotation is not given by polar decomposition, but rather by a de-
composition into a lower triangular matrix with unit diagonal (the boost) and an
orthogonal matrix. This is a special case of what is generally known as Iwasawa
decomposition.
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Indeed, D - DT = 13 is easily verified using the relations (40) and det(D) = 1
follows from det(L) = det(B) = 1. Hence we have found the polar decomposition
of L € 0L(1,3).

We can now characterize the factors B (boost) and R (rotation) of L in terms
of the parameters v, a, b, M in (39). We start with R: Using the first and second
equation in (40a) one readily shows that

D-a=b. (45)
Hence the plane of rotation for D is span{a, b} C R3. The rotation angle § obeys

cosf = (46a)

-1’
where we used a? = b? = 4?2 — 1 (first equations in (40)). On the other hand, it
evidently also obeys the general equation 1+ 2cos = trace(D), i.e.

a-b

14 2cosf = trace(M) — . 46b
) 22 (46b)

Elimination of a - b via (46a) gives

t M) -1
cosf = race(M) (46¢)
I+~y
Next we set 8 :=b/v, 8 := 8|, and B:= B/0; then

v=7B)=1/V1-5, b=98, a=D" 8. (47)
Writing B in terms of 3 explicitly shows that it is a boost with parameter

B=v/c
The general Lorentz transformation (39), instead of being considered as func-
tion of 7, a, b, M obeying (40), can now be considered as function of 8 and D,

[ 87 10"
L(B,D) = <7,3 Lot (- 1)B®ﬁT> (0 D) 7 (48)
— B(3) =: R(D)

where 7 is now understood as function of 3 as in (47). The only restrictions
on the parameters being that D € SO(3) and 3 € By C R?, where B; denotes
the ball of unit radius centered at the origin (cf. (69)). The decomposition (48)
should be regarded as the analog of (32).

It is easy to check directly that the boost are indeed equivariant with respect
to rotations:

R(D)-B(8)-R(D™')=B(D-B). (49)

The polar decomposition is unique once the order of rotations and boosts are
fixed. In (41) we had put the rotations to the right, i.e. one first rotates and
then boosts (we think actively). Had we chosen the opposite order the rotation
parameter would still be D but the boost parameter would change to DT - 3.
This follows immediately from (49).
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4.3 The Lie Algebras of the Lorentz and Galilei Groups

The commutation relations of the Lorentz Lie-algebra follow from the general
formula (191), where we have to set e = 1. Here we shall rename the generators
My, where a,b € {0,1,2,3}, in the way explained below (indices i, j, k are in
{1,2,3}). For direct comparison with (191) we also give their expression in terms
of the defining representation (i.e. as elements of End(R*)). So let {eq}a=o...3
and {n?},—o...3 be dual bases of R* and 7, := gsn®, where gup := g(eq,ep) (cf.
Sect. A.5). Then:

Ji = %fijijk, = gijkej ® N, (50a)
K; = % M;o = % (ei ®@mo — e @), (50b)
P =T = ¢, (50¢c)
E :=c¢Ty = ceg. (50d)

These generate active rotations, boosts, translations in space, and translations
in time respectively. The reason for the factors of 1/¢ in (50b) and ¢ in (50d) is as
follows: We wish the K; to be the generators of boosts with velocity parameters
v (rather than 8¢ = v'/c), i.e. exp(M;03") = exp(K;v"). Similarly, we wish E to
be the generator of time translation with parameter At (rather than Az® = cAt),
i.e. exp(TpAz°) = exp(EAt). This puts the K; and E in quantitative analogy to
the corresponding generators in the Galilei group and hence facilitates a direct
comparison.
The relations (191) now amount to

(i, J5] = eijr Ji (51a)
[Ji, Kj] = eijn Kk (51b)
(K, Kj] = —¢ijk Ji/C” (51c)
[Ji, Pj] = e€iji P (51d)
[Ji,E] =0 (51e)
[Ki,Pj] = 6i; B/ (51f)
[Ki, E] = P (51g)
[Pi,Pj] =0 (51h)
[PLE] = 0. (51)

Those involving J; on the left hand side just tell us that the other quantity in
the bracket is either a spatial vector or scalar. According to (51a) the J; form a
Lie subalgebra but, as e.g. (51b) shows, not an ideal (cf. Sect. A.9). In contrast,
(51c) shows that the K; do not form a Lie subalgebra. The J;, K; span the Lie
algebra of O(1,3) and it is easy to prove from the first three relations above
that it is simple (has no non-trivial ideals). Moreover, any of the ten generators
appears on the right hand side of some relation (51), i.e. can be written as a
commutator. This means that the Lie algebra of the inhomogeneous Lorentz
group is perfect (i.e. generated by commutators).
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Another fact easily seen from (5la-51c) is that the Lie algebra of the ho-
mogeneous Lorentz group is the ‘complex double’ (my terminology, see below)
of the Lie algebra of SO(3). Let us explain this. Given a real Lie algebra L of
dimension n, we consider the real vector space C ® L of dimension 2n. Here C
is considered as two-dimensional real vector space and ® is clearly also taken
over R. C® L can be made into a real 2n-dimensional Lie algebra by defining
[210 X1, 220X5] := 2122®[X1, X2] and R-linear extension. This is easily checked
to satisfy all axioms (180). The complex double of L is now defined to be the real
Lie algebra C® L. For sure, C® L has a natural complex structure, which allows
to consider it as n-dimensional complex Lie algebra. In this case we'® would call
it LT, the complezification of L. However, we are interested in Lie algebras of Lie
groups, which a priori are always considered as real (cf. Sect. A.9), regardless of
the possible existence of a complex structure. Now let L be the Lie algebra of
SO(3), i.e. L = span{ey, ez, e3} where [e;, e;] = €;j1ex. Consider C ® L and set
Rj:=1®e; and cK; :=1® ej, so that C® L = span{R1, Rq, R3, K1, K2, K3}.
In this basis the Lie brackets are just given by (5la-51c), showing that the ho-
mogeneous Lorentz Lie-algebra is indeed the complex double of the Lie algebra
of SO(3).

The Lie algebra of the inhomogeneous Galilei group is formally obtained from
(51) by taking the limit 1/c? — 0, to that the right hand sides of (51c) and (51f)
are now replaced with zero. This causes big structural changes. For example,
the generators of boosts now generate an Abelian ideal in the homogeneous
Galilei Lie-algebra (generated by R;, K;), implying that it is not even semisimple,
whereas we just said that the homogeneous Lorentz Lie-algebra is simple. In the
inhomogeneous Galilei Lie-algebra the K; and P; together generate an Abelian
ideal. It is not perfect since the K; and E do not occur on the right hand sides
anymore.

One might argue that it is physically incorrect to take E/c? to zero in the
limit ¢ — oco. Rather, E — oo as ¢ — oo since E contains a contribution mc?
from the rest-energy of the system (m denotes the rest mass, which we wish
to keep at a finite value). Hence, for an isolated system, one should rather set
E = mc® + Ey and therefore have E/c? — m in the limit as ¢ — co. Then
the right hand side of (51c) is still zero in this limit but the right hand side
of (51f) becomes proportional m d;;, where m is now read as a new element of
the Lie algebra that commutes with all other elements, i.e. lies in the center (in
any irreducible representation it is therefore written as m1 where 1 is the unit
operator). Also, due to m being central, (51g) is maintained with Ej replacing
E.

The 11-dimensional Lie algebra so obtained is well known. It is a central
extension of the inhomogeneous Galilei Lie-algebra, out of a unique 1-parameter
family of inequivalent central extensions, labeled by the value of m. As is well
known, it is this extension (and the corresponding 11-dimensional Lie group,

10 The terminology used here is non-standard. Often the distinction between C® L and
L€ is not explicitly made, and even if it is, both are called “the complexification”
of L.
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sometimes called the Schrédinger group), which implement the Galilean sym-
metries in quantum mechanics by proper representations, whereas the inhomo-
geneous Galilei group only acts by ray-representations. Formally, the central
element m then gives rise to superselection rules. There are certain analogs of
this on the classical level; see [23].

The formal process by which the (inhomogeneous and homogeneous) Galilei
Lie-algebra emerges from the Lorentz Lie-algebra is a special case of what is
called a contraction, which was introduced in [31] just in order to understand
precisely the way in which the Galilei Lie-algebra and group can be understood as
limiting case of the Lorentz Lie-algebra and group respectively. The general idea
can be briefly described as follows: Consider a Lie algebra L with decomposition
into two linear subspaces L = H @ H', none of which we a priori assume to be a
Lie subalgebra. Choose an adapted basis {Xi, - Xy, X1, -+ X/, } such that the
unprimed elements span H and the primed elements H'. The Lie brackets have
the general form

(X, X = CGXe + CS XL, (52a)
[Xa, X} = CSXe + CS X0, (52b)
[ (/1/7Xl/)’] = Cg/b/Xc + Og;b/X(/:/ . (52C)

We now rescale the primed generators, leaving the unprimed ones untouched,

X, =Y, = X,, (53a)
! HYG/, = EXA/ (53b)

a’

and write down (52) in terms of the new basis:

Yo, Vo] = ChYe + e 'CHLYL, (54a)
Vo, Yy] = eCopYe + CopYy, (54b)
YL,V = EC Yo+ €Coy Y, (54c)

We wish to formally take the limit ¢ — 0. Clearly this cannot be done unless the
terms oc e~ ! in (54a) all vanish, i.e. unless Cg; = 0, which is equivalent to saying
that H := span{Xi, -+ X,,} must be a Lie-subalgebra of L. Assuming that this
is the case, the limit can be taken and the following Lie algebra emerges:

[Yaa}/b] = Cgb}/C7 (55&)
Yo, Yy = Co Vi, (55b)
Y., Y] = 0. (55¢)

Thus we see that in the limit the subalgebra H survives whereas the linear space
H’ turns into an Abelian ideal. Hence the limit Lie algebra is a semi-direct
sum of the original Lie subalgebra H with the Abelian ideal H’. It is called
the contraction of L over H, since H stays intact and the rest is contracted.
On the level of Lie groups one might think of the contracted group (the group
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generated by H’) as an infinitesimal neighborhood of the group one contracts
over (the group generated by H) within the full Lie group (the group generated
by L).

This applies to the transition Lorentz — Galilei as follows: In the homo-
geneous case, we decompose the Lorentz Lie-algebra into the Lie subalgebra
H = span{Ji, J2, J3} and the linear subspace H' = span{ K, Ko, K3}, and then
contract it over H to obtain the homogeneous Galilei Lie-algebra. In the inho-
mogeneous case we set H = span{Jy, Ja, J3, E'}, which is indeed a Lie subalgebra
as seen from (51), and H' = span{ K, K3, K3, P1, P5, P;}. Contracting over H
then just results in making H’ Abelian, i.e. annihilating the right hand sides
of (51c) and (51f), which just results in the inhomogeneous Galilei Lie-algebra.
Its structure as semi-direct sum with H’ as Abelian ideal is just the Lie-algebra
analog of the semi-direct product structure (36).

4.4 Composing Boosts

After this digression into Lie algebras we return to the level of groups. More
specifically, we are now interested in the composition of two boosts, B(31) and
B(B2). The matrix product can be easily computed using the explicit form of
B(B) as given in (48). We set v; := ~(8;) for i = 1,2 and denote by G,
and (3;, the components of 8; parallel and perpendlcular to the other velocity
respectively. The angle between 3; and 32 is denote by ¢, i.e. Bl ﬁ2 = cos .
Then the matrix product has the general form (39), where

7 = mn(l+B1-B2) = (1l + Pifzcosep), (56a)
a = m17%(B24 B+ 'BiL). (56D)
b = v172(81+ B2 +1 ﬁu) ; (56¢)
M =13+ (m - 1B @8 +(e-1)Beh

(61’716272 + (1= D2 — 1)ﬁ1 /62) 51 ® ﬁ2 . (56d)

The resulting boost and rotation parameters will be called 3 = 31 * 32 and
D = T[3, B2] respectively. Hence we have:

B(B1) - B(B2) = B(B1x B2) - R(T[B1,82]) - (57)

The operation x entails the law of how to compose velocities in SR. T[31, 3]
is called the “Thomas rotation”. Its existence (i.e. it being non trivial) means
that pure boosts do not form a subgroup in the Lorentz group, in contrast to
the Galilei group.

The functional form of the x operation follows from (56), since 31 x32 = b/~:

B1+ B+ /@u
1481 B2

Comparing (56b) with (56¢) shows a/y = B2 x 31. Equation (45) then shows

ﬂl */6 (58)
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B1* B2 = T[B1,B2] - (B2 xB1) , (59)
which in turn implies (we write T~![—, —] for the inverse matrix (T[—, —])~1)
T[B1,B2] = T~ [B2, B1]. (60)
Let now D € SO(3) be any rotation; then (58) shows that x obeys
(D-B1)*(D-B2) =D (B1%B2), (61)

which combined with (59) also shows that
T[D-B1,D-B2] =D T[B1,8:] - D' (62)

The Thomas rotation takes place in the plane span{a, b} = span{8i, B2}.
The cosine of the angle of rotation, 6, follows from (46¢) and (56d):

(1 =D(2—1)

cosf@=1-—
v+1

sin ¢, (63a)
where we used (56a) to eliminate a term o cos @. It shows that T[31,82] = 13
iff B; and B, are either parallel (¢ = 0) or anti-parallel (¢ = 7). We can now
again make use of (56a) to eliminate v in favor of 1, y2, and cos ¢, so as to make
cos a function of the moduli 51, B2 of the velocities and the angle ¢ between
them:

(71— 1)(re — Dsin®¢

cosf@=1-— 5 5 .
L+mye+ (i —D(yz — 1) cosep

(63D)

Alternatively we can use (56a) to express cosf as function of the tree moduli
B1, B2, and 3 = ||B1 * B2]|, which assumes a nice symmetric form:*

1 2
cos = (L5 + 7 +9) —1. (63c)

I+MA+7)1+72)

Figure 1 illustrates the laws (58) and (59) of the Thomas rotation for a special
case in which the two velocities are perpendicular. In such cases 6 ranges between
0 and 7/2, as can be immediately deduced from (63b). The sense of the Thomas
rotation in the B18s-plane is negative (we orient this plane in the usual way,
such that 31 x B2 defines the direction of the normal).

Generally 6 ranges between 0 and 7. More precisely, take fixed moduli 3
and [y and consider cos€ as function of ¢ as given by (63b). For ¢ = 0 and
© = 7 this function has obvious maxima (where cos @ = 1) and hence must have
a minimum inbetween, which corresponds to a mazimal value of 0. Using (63b)
we compute that this maximum of 6 occurs at a value ¢,,, which obeys

(1 —D(y2—1)

RS (64

COS Py = —

1 This derivation, albeit straightforward, is a little tedious. A more elegant derivation,
using Clifford algebra, is given in [47].
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75 B

—1
1 B2

Fig. 1. Addition of perpendicular velocities 31 and B2 of modulus 1 = B2 = 0.78
so that 77 ' = 75 ' = 5/8. In this case (58) gives B1 x B2 = B1 + gﬁg and likewise
BaxB1 = P2+ % B1. For comparison, the dashed arrow corresponds to the “classically”
composed velocities (vector addition). According to (59), the rotation T[B1, B2] turns
B2 x B1 into B1 x B2, as indicated by the curved arrow

(the negative sign shows that ¢, > 7/2) and that the maximal value 6,, obeys

(1= 1D(y2—1)

cosl, =1-—2
(m+1(2+1)

= — cos(2¢m) - (65)
Hence we see that 6 becomes larger than /2 for sufficiently large values of v,
and ,. For example, if 81 = B2 = 3, i.e. 71 = 2 = =, the value of g above which
0, exceeds /2 is given by 2°/4/(21/2 + 2) ~ 0.985. Equation (65) also shows
that 6, approaches its maximal value, 7, only if 7v; and 72 tend to infinity. In
general, (63b) shows that in that limit cos @ approaches cos ¢, which means that
0 approaches 27w — ¢, since the Thomas rotation is in the negative sense relative
to the orientation of the 3:-32 plane.

Finally, using (49) and (57), we can now write down the general composition
law for Lorentz transformations:

L(B1,D1) - L(B2,D3) = L(B1 x Dy - B2, T[B1,D1 - B32] - D1 -Dy).  (66)

Moreover, noting that (B(8))~! = B(—0), equations (41,49) also show that
—1 _ _

Note that (67) and (34) are just the same analytic operations on the parameter
spaces. The multiplication law (66) now replaces the semi-direct product struc-
ture (33) of the Galilei group, into which it turns in the limit ¢ — oco. Indeed,
writing 3 = v/¢, the operation x between the v’s approaches + and the Thomas
rotation T[—, —] becomes the identity, as one e.g. sees from (63b) for v;, v, — 1.
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4.5 The Algebraic Structure of Velocity Composition

Let us say a little more about the algebraic structure behind (58). First of all, x
defines a map

*: By x By — B, (81,82)— B1*P2, (68)

where

Bi:={BeR’ | |IB] <1} (69)

is the open ball in 3-dimensional Euclidean space (here space of velocities/c).

That its image lies indeed in By C R? follows from (56a), which e.g. implies

v < 291y2. Hence *x makes By, into a groupoid (see below). Moreover, for each
B € Bi, we have

0x3=03%x0=0, (70)

so that 0 is a unit with respect to *. Each element also has an inverse (left and

right):
Br(=B)=(-B)xB=0. (71)
We already saw in (59) that the Thomas rotation obstructs commutativity of

*. We now show that it also obstructs associativity. Consider the composition of
three boosts B(81)-B(82)- B(33) and use associativity of matrix multiplication:

B(B1) (B(52) ‘ B(ﬁg)) = (B(,Bﬁ : 3(52)) - B(B3) - (72a)
Tterated application of (57) shows that the left hand side is equal to
B(B1 % (B2 % B3)) - R(T[B1, B2 B3] - T[B2, Bs]) , (72b)

whereas the right hand side equals (also making use of (49)),

B((B1%B2)*(T[B1,82]-B3)) - R(T[B1x B2, T[B1,B2]- B3] - T[B1,B2]) . (72c)

Expressions (72b) and (72c) are in polar decomposed form. Uniqueness then
implies equality of the boost and rotation factors separately. For the boosts this
implies

B1* (B2 % B3) = (81 * B2) » (T[B1,B2] - B3) » (73)

which shows how the Thomas rotation obstructs associativity. The general iden-
tity obtained from equating the rotational parts of (72b) and (72c) does not
interest us here. Rather, we wish to consider the special case where 3; = (3.
Then the product (72) is a symmetric and positive definite matrix'2, that is, it
is a pure boost and therefore (trivially) polar decomposed. Hence the rotational
part in (72b) must be the identity. This gives

T[B1,82] = T[B1, 82 % B1] = T[B1 x B2, B2], (74)

2 For matrices it is generally true that if B is positive definite and A invertible, then
A-B-A' is again positive definite. Note that here A* is the adjoint of A with respect
to the Euclidean inner product.
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where the second equality follows from the first by simultaneously taking the
inverse and exchanging 3 and B3, (which leaves T[31,32] invariant according
to (60)).

Now consider the following equation in 31, 32, and 33:

B1x B2 = Bs. (75a)

Can we (uniquely) solve it for 31 given B2 and (s, or for B2 given B; and
B3? Since each B has an inverse, associativity would immediately answer this
in the affirmative.’® But associativity fails to hold. However, the answer is still
affirmative:

Proposition 3. The unique solutions of (75a) for 31 and B2 are given by

B1 = B3 *(=T[B3,08:] - B2), (75b)
B2 = (=B1)*Bs. (75¢)

Proof. (75¢) immediately follows from x-multiplying (75a) with —3; from the
left and using (73), taking into account that T[—/31,31] = 15. The proof of (75Db)
is more difficult. One way that is not just “guessing and verifying”, but rather
arrives at the solution in a more systematic fashion, is to go back to the group
level and consider the corresponding equation

L(B1,D1) - L(B2,D2) = L(B3,D3), (76a)

whose parameter form is
Bs = B1 %Dy B2, (76b)
D3 = T[,@l, D1 . ﬂQ] . D1 . D2 . (76C)

The group structure now tells us that the unique solution for L(81,D1) is, using
(67),
L(B1,D1) = L(85,D3) - L(~D; " - B2, Dy ") (77a)

whose parameter form is

B1 = B3x(-D3-Dy' Ba),
D; = T[33, —D;-D;'-3;] - D3 -D;".

(
Due to the group structure (76) and (77) are equivalent. In particular, (77) is a
consequence of (76). We now specialize to the case Dy = 13, in which (76b) just
becomes (75a). Equation (76¢) then becomes

Dy D, = T(Bi, 5]
= T[B1 * B2, B2] using (74)
= T[Bs, B2] using (76b) . (78)
Inserting this into (77b) gives (75b). O

3 For then we could e.g. x-multiply (75a) with —32 from the right and get on the left
hand side (81 x B2) x (—B2) = B1 % (B2 * (—B2)) = B1.
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Let us relate these findings to some algebraic terminology. A groupoid is a
set S with some map ¢ : S x S — S. Hence * makes the open unit ball 3; C R?
into a groupoid. An associative groupoid is called a semigroup (so we don’t have
a semigroup) . A groupoid S is called a quasigroup if for any pair (a,b) € S x S
there is a unique pair (z,y) € S x S such that ¢(z,a) = b and ¢(a,y) = b. In our
case we have just seen that the unique pair (z, y) associated to (a,b) = (81, B2) is
x = Bax(—T[Bs, B1]-B1) and y = (—B1)*Bs. If a common unit element exists, as
in (70), one calls it a quasigroup with unit or simply a loop. Note that in this case
the existence of a unique inverse for each element follows. In some sense a loop is
as close as you can get to the structure of a group if you drop associativity. This
is the algebraic structure of velocity space in SR. Much original work on this has
been done by A.Ungar, starting with [44], where e.g. the precise way in which
strict associativity fails (i.e. (73)) was first spelled out; see also his comprehensive
treatise [45] and references therein. In a more recent book [46] the same author
systematically develops the intimate relation to hyperbolic geometry. A brief
history of the research on these generalized algebraic structures is given in [40].

Let us briefly come back to the composition formulae (75). We interpret 31,
B2, and B3 as velocities of frames: B is the velocity of frame 2 with respect to
(i.e. measured in) frame 1. B3 is the velocity of frame 3 with respect to frame 2.
Finally, B3 is the velocity of frame 3 with respect to frame 1. Then, using (56a),
it is easy to derive the following expressions for the moduli of 33 and 3s:

(B1 4 B2)* — (B1 x B2)?

g5 = (1+pB1-B82)? 7 (79)
(B3 —B1)* — (B3 x 31)?
e (R Y- (790)

(2 is the modulus of the relative velocity between frames 2 and 3 as function of
the velocities of these frames with respect to a third one (here frame1). It may
either be interpreted as velocity of frame 3 with respect to frame 2, (as above)
or as velocity of frame 2 with respect to frame 3 (reciprocity of frame velocities,
see Sect. 3). Accordingly, the right hand side of (79b) is symmetric under the
exchange 31 < (3.

4.6 The Geometric Structure of Velocity Composition

Even though the discussion of the geometry behind velocity composition belongs,
strictly speaking, to the next, the geometry section, it is so intimately related to
the discussion just given that it seems more appropriate to place the two right
next to each other.

More precisely, the composition law for velocities is intimately related with
hyperbolic geometry (i.e. geometry on spaces with constant negative curvature),
as was first pointed out by Sommerfeld [41], Varicak [49, 50], Robb [39], and
Borel [11]. More recently the subject was elaborated on by Ungar [46]. The
general reason is that the space of four-velocities
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He = {u e R*| g(u,u) = 2} CR*, (80)

is a 3-dimensional hyperbola in (R*,g), whose induced metric (g restricted to
the tangent bundle of H,.) is of constant negative curvature.

The space of velocities is parameterized by 8 € B; (cf. (69)). Formula (79b)
may now be read as endowing B; with a distance function. From it we can
read off the Riemannian metric by just applying it to two infinitesimally nearby
velocities 3 = (@1 and B + dB = B3. Then 33 gives us the square of their
distance, ds?, and we obtain

dp® — (B x dB)*

ds® = 8la
5k (81a)
d 2 2
- T 532)2 +7 fﬁz (d6? + sin® 0 d?) (81b)
2
= 1(?:73 + 72 (d6? + sin® 0 dp?) . (81c)

Here (3,0, ) are just the ordinary spherical polar coordinates in 3-space and
r = (/y/1— (2. This is easily recognized as Riemannian metric of constant
negative curvature, e.g. by comparing (81c) with the spatial part of the k = —1
standard FRW-metric in cosmology. The geodesic between the origin and a point
(8,0, ) is just the radial segment, whose length is

s = ﬂidﬂ/
" Vi-?

Hence the rapidity (26) turns out to be just the geodesic distance in velocity
space. This explains why in terms of it the composition of velocities in the same
direction is just ordinary addition; compare the remark following equation (26).

In this geometric setting the law (79a) for the modulus of the composed
velocities just turns into the law for the length of the third side of a geodesic
triangle as function of the length of the two other sides and the angle between
them. This is most easily read off from (56a) if rewritten in terms of rapidities,
i.e. 7; = cosh p; and ;7y; = sinh p;:

=tanh™' 3. (82)

cosh p3 = cosh py cosh p; + sinh p; sinh ps cos . (83)

This is just the well known “cosine-law” for hyperbolic triangles, the connection
of which with the law of composing velocities in SR was first pointed out by
Sommerfeld [41] and later, independently, by Borel [11].

A beautiful application of the hyperbolic geometry of velocity space (80)
concerns Thomas rotation [47]. Suppose a torque-free gyro is carried along the
worldline z(7) of an observer. The hodograph is the curve 2(7) on H, and #(7)*
can be identified with the tangent plane to H, at 2(7). At each instant the gyro’s
angular-momentum vector lies in this tangent plane and along the worldline it
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is Fermi-Walker transported. We recall that given a vector field X along the
worldline z, the Fermi-Walker derivative of X along z is defined by

F. X = (V,y;X”)H +(V:X1)1, (84)

where || and L denote the g-orthogonal projections parallel and perpendicular
to the worldline’s tangent direction Z. Applied to the gyro’s angular momen-
tum vector one sees that the law of Fermi-Walker transportation along z turns
into the law of parallel propagation along the hodograph on H, with respect
to the Levi-Civita connection for the hyperbolic metric that H,. inherits from
its embedding into Minkowski space.!* Applied to spatially periodic orbits the
holonomy of their closed hodographs in the tangent bundle of H,. is then just
Thomas’ rotation. This neat geometric idea goes back to Borel [11], who sketched
it almost 15 years before Thomas’ paper [42] appeared.

5 Geometric Structures in Minkowski Space

5.1 Preliminaries

Let us generally consider n dimensional Minkowski space M, that is, the affine
space over an n-dimensional, real vector space V' with a non-degenerate bilinear
form g of signature (1,7 — 1) (compare Sect. A.7 and Sect. A.2 respectively). We
introduce the following notations:

vow = glow)  and ully = V/Ig(o, 0] (85)

We shall also simply write v? for v-v. A vector v € V is called timelike, lightlike,
or spacelike according to v? being > 0, = 0, or < 0 respectively. Non-spacelike
vectors are also called causal and their set, C C V, is called the causal-doublecone.
Its interior, C, is called the chronological-doublecone and its boundary, £, the
light-doublecone:

C:={veV]|v>>0}, (86a)
C:={veV]v?>0}, (86b)
L:={veV]|v>=0}. (86¢)

A linear subspace V' C V is called timelike, lightlike, or spacelike according to
9‘\// being indefinite, negative semi-definite but not negative definite, or negative
definite respectively. Instead of the usual Cauchy-Schwarz-inequality we have

v?w? < (v-w)? for span{v,w} timelike, (87a)

v*w? = (v-w)? for span{v,w} lightlike, (87b)
2

2,2

viw® > (v-w)® for span{v,w} spacelike. (87¢)

14 Generally, the Levi-Civita covariant derivative of a submanifold is obtained from the
(covariant) derivative of the ambient manifold by restricting it to tangent vectors
and subsequently projecting the result tangentially to the submanifold.
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Given a set W C V (not necessarily a subspace!®), its g-orthogonal comple-
ment is the subspace

Wt={veV|v-w=0,YweW}. (88)

If v € V is lightlike then v € v*. In fact, v is the unique lightlike hyperplane
containing v. On the other hand, if v is timelike /spacelike v is spacelike/timelike
and v & vt.

Given any subset W C V', we can attach it to a point p in M":

Wy =p+W:={p+w|lweW}. (89)

In particular, the causal-, chronological-, and light-doublecones at p € M" are
given by:

C, :=p+C, (90a)
Cp :=p+C, (90b)
Ly:=p+L. (90c¢)

If W is a subspace of V' then W), is an affine subspace of M" over W. If
W is time-, light-, or spacelike then W), is also called time-, light-, or spacelike.
Of particular interest are the hyperplanes vj; which are timelike, lightlike, or
spacelike according to v being spacelike, lightlike, or timelike respectively.

Two points p, ¢ € M" are said to be timelike-, lightlike-, or spacelike separated
if the line joining them (equivalently: the vector p — ¢) is timelike, lightlike, or
spacelike respectively. Non-spacelike separated points are also called causally
separated and the line though them is called a causal line.

It is easy to show that the relation v ~ w < v-w > 0 defines an equivalence
relation on the set of timelike vectors. (Only transitivity is non-trivial, i.e. if
u-v > 0and v-w > 0 then u-w > 0. To show this, decompose u and w into their
components parallel and perpendicular to v.). Each of the two equivalence classes
is a cone in V, that is, closed under addition and multiplication with positive
numbers. Vectors in the same class are said to have the same time orientation.
In the same fashion the relation v ~ w < v - w > 0 defines an equivalence
relation on the set of causal vectors, with both equivalence classes being again
cones. The existence of these equivalence relations is expressed by saying that
M™ is time orientable. Picking one of the two possible time orientations is then
equivalent to specifying a single timelike reference vector, v,, whose equivalence
class of directions may be called the future. This being done we can speak of the
future (or forward) (4) and past (or backward) (—) cones:

Ctr:={velC|v-v, =20}, (91a)
Ct:={vel|v-v, 20}, (91b)
LE:={vell|v-v, =0}. (91c)

15 By a ‘subspace’ of a vector space we always understand a sub vector-space.
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Note that C* = C* U L* and C* N LT = (). Usually £L* is called the future and
L~ the past lightcone. Mathematically speaking this is an abuse of language
since, in contrast to C* and C*, they are not cones: They are each invariant (as
sets) under multiplication with positive real numbers, but adding to vectors in
£* will result in a vector in C* unless the vectors were parallel.

As before, these cones can be attached to the points in M. We write in a
straightforward manner:

Cr:=p+C*, (92a)
Cr:=p+C*, (92b)
/J;t = p+LE. (92¢)

The Cauchy-Schwarz inequalities (87) result in various cases for generalized
triangle inequalities. Clearly, for spacelike vectors, one just has the ordinary
triangle inequality. But for causal or timelike vectors one has to distinguish
the cases according to the relative time orientations. For example, for timelike
vectors of equal time orientation, one obtains the reversed triangle inequality:

o+ wllg = [lvllg + wllg, (93)

with equality iff v and w are parallel. It expresses the geometry behind the “twin
paradox”.

Before we turn to the next section, we remark that any bijective map
¢ : M" — M" that satisfies d(p, q) = d(¢(p), #(¢)), where d(p,q) := [|p — qll, is
necessarily affine linear. This follows immediately from the corresponding state-
ment for vector spaces, as given in Proposition9. The results in the following
section should be considered as strengthenings of this statement.

5.2 Causality Relations and the Lorentz Group

The family of cones {C;” | ¢ € M"} defines a partial order relation, denoted by
> (cf. Sect. A.1), on spacetime as follows: p > ¢ iff p € C_;', i.e. iff p — ¢ is causal
and future pointing. Similarly, the family {Cq+ | ¢ € M™} defines a strict partial
order, denoted by > (cf. Sect. A.1): p>qiff pe C(j, i.e. if p — ¢ is timelike and
future pointing. There is a third relation, called >, defined as follows: p > ¢ iff
pE ﬁg, i.e. p is on the future lightcone at q. It is not a partial order due to the
lack of transitivity, which, in turn, is due to the lack of the lightcone being a
cone (in the proper mathematical sense explained above). Replacing the future
(4+) with the past (=) cones gives the relations <, <, and <.

It is obvious that the action of ILor! (spatial reflections are permitted) on
M™ maps each of the six families of cones (92) into itself and therefore leave
each of the six relations invariant. For example: Let p > ¢ and f € ILor!, then
(p—q)? > 0 and p— q future pointing, but also (f(p) — f(¢))? > 0 and f(p) — f(q)
future pointing, hence f(p) > f(¢). Another set of “obvious” transformations of
M™ leaving these relations invariant is given by all dilations:
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diamy : M™" = M",  pr=dim(p) = Ap—m)+m, (94)

where A € R is the constant dilation-factor and m € M” the center. This follows

from (dx,m(p) = dxm(@)” = 22(p — )%, (dam(p) = drm (@) 02 = Ap— ) - v,
and the positivity of A. Since translations are already contained in ILor!, the
group generated by ILor’ and all dx,m is the same as the group generated by
ILor’ and all dx,m for fixed m.

A seemingly difficult question is this: What are the most general transforma-
tions of M™ that preserve those relations? Here we understand “transformation”
synonymously with “bijective map”, so that each transformation f has in inverse
f~L. “Preserving the relation” is taken to mean that f and f~' preserve the re-
lation. Then the somewhat surprising answer to the question just posed is that,
in three or more spacetime dimensions, there are no other such transformations
besides those already listed:

Theorem 1. Let > stand for any of the relations >, >, > and let f be a bijection
of M™ with n > 3, such that p = q implies f(p) = f(q) and f=(p) = f~1(q).
Then f is the composition of an Lorentz transformation in |Lor! with a dilation.

Proof. These results were proven by A.D. Alexandrov and independently by E.C.
Zeeman. A good review of Alexandrov’s results is [1]; Zeeman’s paper is [51]. The
restriction to n > 3 is indeed necessary, as for n = 2 the following possibility
exists: Identify M? with R? and the bilinear form g(z,z) = 22 — y?, where
z = (x,y). Set u ;= x —y and v := x + y and define f : R? — R? by f(u,v) :=
(h(u), h(v)), where h : R — R is any smooth function with h’ > 0. This defines
an orientation preserving diffeomorphism of R? which transforms the set of lines
u = const. and v = const. respectively into each other. Hence it preserves the
families of cones (92a). Since these transformations need not be affine linear they
are not generated by dilations and Lorentz transformations. a

These results may appear surprising since without a continuity requirement
one might expect all sorts of wild behavior to allow for more possibilities. How-
ever, a little closer inspection reveals a fairly obvious reason for why continuity
is implied here. Consider the case in which a transformation f preserves the
families {C;” | ¢ € M"} and {C; | ¢ € M"}. The open diamond-shaped sets
(usually just called “open diamonds”),

Ulp,q) :=(C; nC)U(CSnC, ), (95)

are obviously open in the standard topology of M™ (which is that of R™). Note
that at least one of the intersections in (95) is always empty. Conversely, is is
also easy to see that each open set of M"™ contains an open diamond. Hence the
topology that is defined by taking the U(p, ¢) as subbase (the basis being given
by their finite intersections) is equivalent to the standard topology of M". But,
by hypothesis, f and f~! preserves the cones C;t and therefore open sets, so that
f must, in fact, be a homeomorphism.
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There is no such obvious continuity input if one makes the strictly weaker
requirement that instead of the cones (92) one only preserves the doublecones
(90). Does that allow for more transformations, except for the obvious time
reflection? The answer is again in the negative. The following result was shown
by Alexandrov (see his review [1]) and later, in a different fashion, by Borchers
and Hegerfeld [10]:

Theorem 2. Let ~ denote any of the relations: p ~ q iff (p — q)*> >0, p ~ q iff
(p—q)? >0, orp~ qiff (p—q)* = 0. Let f be a bijection of M™ withn > 3, such
that p ~ q implies f(p) ~ f(q) and f=1(p) ~ f~1(q). Then f is the composition
of an Lorentz transformation in ILor with a dilation.

All this shows that, up to dilations, Lorentz transformations can be charac-
terized by the causal structure of Minkowski space. Let us focus on a particular
subcase of Theorem 2, which says that any bijection f of M" with n > 3, which
satisfies ||p — ¢llg = 0 & || f(p) — f(¢)||lg = 0 must be the composition of a dila-
tion and a transformation in ILor. This is sometimes referred to as Alexandrov’s
theorem. It is, to my knowledge, the closest analog in Minkowskian geometry
to the famous theorem of Beckman and Quarles [4], which refers to Euclidean
geometry and reads as follows:'6

Theorem 3 (Beckman and Quarles 1953). Let R™ for n > 2 be endowed
with the standard Euclidean inner product (- | ). The associated norm is given
by ||lz|| == /(x| z). Let § be any fized positive real number and f : R™ — R”
any map such that ||z —y|| = § = ||f(z) — f(y)|| = &; then f is a Euclidean
motion, i.e. f € R™ x O(n).

Note that there are three obvious points which let the result of Beckman and
Quarles in Euclidean space appear somewhat stronger than the theorem of
Alexandrov in Minkowski space:

1. The conclusion of Theorem 3 holds for any § € R, whereas Alexandrov’s
theorem singles out lightlike distances.

2. In Theorem 3, n = 2 is not excluded.

3. In Theorem 3, f is not required to be a bijection, so that we did not assume
the existence of an inverse map f~!. Correspondingly, there is no assumption
that f~! also preserves the distance 6.

Jun

5 In fact, Beckman and Quarles proved the conclusion of Theorem 3 under slightly

weaker hypotheses: They allowed the map f to be “many-valued”, that is, to be
amap f: R" — 8" where 8" is the set of non-empty subsets of R™, such that
lx —yll =6 = ||2' —¢'|| = J for any 2’ € f(z) and any 3y’ € f(y). However, given
the statement of Theorem 3, it is immediate that such “many-valued maps” must
necessarily be single-valued. To see this, assume that x. € R" has the two image
points y1,y2 and define h; : R® — R"™ for 4 = 1,2 such that hi(z) = ha(z) € f(z)
for all x # z. and h;(x«) = y;. Then, according to Theorem 3, h; must both be
Euclidean motions. Since they are continuous and coincide for all x # x., they must
also coincide at x..
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5.3 Einstein Synchronization

We start by characterizing those cases in which a strict inverted Cauchy-Schwarz
inequality holds:

Lemma 1. Let V' be of dimension n > 2 and v € V' be some non-zero vector.
The strict inverted Cauchy-Schwarz inequality,

vw? < (v-w)?, (96)
holds for all w € V linearly independent of v iff v is timelike.

Proof. Obviously v cannot be spacelike, for then we would violate (96) with any
spacelike w. If v is lightlike then w violates (96) iff it is in the set v — span{v},
which is non-empty iff n > 2. Hence v cannot be lightlike if n > 2. If v is timelike
we decompose w = av +w' with w’ € v+ so that w'? < 0, with equality iff v and
w are linearly dependent. Hence

(v-w)? —v?w? = —v?w? >0, (97)
with equality iff v and w are linearly dependent. O

The next Lemma deals with the intersection of a causal line with a light cone, a
situation depicted in Fig. 2.

Lemma 2. Let £, be the light-doublecone with vertex p and £ := {r+Xv | r € R}
be a non-spacelike line, i.e. v? > 0, throughr & L,. If v is timelike {NL,, consists
of two points. If v is lightlike this intersection consists of one point if p—r ¢ v
and is empty if p —r € v. Note that the latter two statements are independent
of the choice of r € £—as they must be—, i.e. are invariant under r — r' := r—+ov,
where o € R.

Proof. We have r 4+ Av € L, iff
(r+X—p)?=0 < A\ +2\v-(r—p)+(r—p)?=0. (98)

For v timelike we have v? > 0 and (98) has two solutions

1 2
o= {-v o on e o)
Indeed, since r ¢ L,,, the vectors v and r —p cannot be linearly dependent so that
Lemma 1 implies the positivity of the expression under the square root. If v is
lightlike (98) becomes a linear equation which is has one solution if v-(r —p) # 0
and no solution if v-(r—p) = 0 [note that (r—p)? # 0 since g ¢ £, by hypothesis].
O
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r

Fig. 2. A timelike line £ = {r + Av | A € R} intersects the light-cone with vertex p ¢ ¢
in two points: ¢4, its intersection with the future light-cone and ¢_, its intersection
with past the light cone. ¢ is a point inbetween ¢+ and ¢q_—

Proposition 4. Let ¢ and L, as in Lemma 2 with v timelike. Let q; and q_ be
the two intersection points of £ with L, and q € £ a point between them. Then

lla = »l3 = llg+ —allg la —a-1g - (100)
Moreover, ||q+ —qllg = llg — q-|lg iff p — q is perpendicular to v.

Proof. The vectors (¢4 —p) = (¢—p) +(¢+ —¢) and (¢- —p) = (¢—p) +(¢- —q)
are lightlike, which gives (note that ¢ — p is spacelike):
la—pl; = —(a=»)° = (¢+ —0)* +2(a—p) - (a+ — ). (101a)
lg=pl2 = —(¢—p)* = (¢-—q)*+2(¢—p) (- —q). (101b)
Since ¢4 — g and ¢ — ¢q_ are parallel we have ¢ — ¢ = A(g — ¢—) with A € R
so that (¢4 —)* = g+ — dllglla — a-llg and Ma- — ¢)* = llg+ — allglla — a-|l4-
Now, multiplying (101b) with A and adding this to (101a) immediately yields

T+ N [lg=pl2 =1+ llar — allglla — a-1l - (102)

Since 14+ A # 0 this implies (100). Finally, since ¢4 —¢q and ¢_ —q are antiparallel,
la+ —ally = llg- —allg iff (¢+ — @) = —(¢- — ). Equations (101) now show that
this is the case iff (¢ — p) - (gx — q) = 0, i.e. iff (¢ — p) - v = 0. Hence we have
shown

lay —dllg =lle —g-lly <= (¢—p)-v=0. (103)
In other words, ¢ is the midpoint of the segment gyq— iff the line through p and
q is perpendicular (wrt. g) to £. a
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The somewhat surprising feature of the first statement of this proposition is that
(100) holds for any point of the segment g ¢—, not just the midpoint, as it would
have to be the case for the corresponding statement in Euclidean geometry.
The second statement of Proposition 4 gives a convenient geometric charac-
terization of Einstein-simultaneity. Recall that an event ¢ on a timelike line ¢
(representing an inertial observer) is defined to be Einstein-simultaneous with
an event p in spacetime iff ¢ bisects the segment g;-g_ between the intersection
points g4, q— of £ with the double-lightcone at p. Hence Proposition 4 implies

Corollary 1. Finstein simultaneity with respect to a timelike line £ is an equiv-
alence relation on spacetime, the equivalence classes of which are the spacelike
hyperplanes orthogonal (wrt. g) to £.

The first statement simply follows from the fact that the family of parallel hy-
perplanes orthogonal to ¢ form a partition (cf. Sect. A.1) of spacetime.

From now on we shall use the terms “timelike line” and “inertial observer”
synonymously. Note that Einstein simultaneity is only defined relative to an
inertial observer. Given two inertial observers,

L ={r+X | XeR} first observer, (104a)
¢ ={r"+XNv' | N eR}  second observer, (104b)

we call the corresponding Einstein-simultaneity relations ¢-simultaneity and ¢'-
simultaneity. Obviously they coincide iff £ and ¢’ are parallel (v and v’ are lin-
early dependent). In this case ¢’ € ¢ is ¢-simultaneous to ¢ € £ iff ¢ € £ is
¢'-simultaneous to ¢’ € ¢'. If ¢ and ¢'are not parallel (skew or intersecting in one
point) it is generally not true that if ¢’ € £’ is {-simultaneous to g € £ then ¢ € ¢
is also ¢'-simultaneous to ¢’ € ¢. In fact, we have

Proposition 5. Let ¢ and ¢ two non-parallel timelike likes. There exists a
unique pair (q,q") € € x £ so that ¢’ is L-simultaneous to q and q is £ si-
multaneous to q'.

Proof. We parameterize ¢ and ¢ as in (104). The two conditions for ¢’ being ¢-
simultaneous to g and ¢ being ¢-simultaneous to ¢’ are (¢—¢')-v =0 = (¢—¢')-v'.
Writing ¢ = 7+ Av and ¢’ = 7’ + Xv’ this takes the form of the following matrix
equation for the two unknowns A\ and \:

R R AW ) (r—r)-wv
(v v =2 N) o\ =r)0) (105)
This has a unique solution pair (A, \’), since for linearly independent timelike
2 2,72

vectors v and v’ Lemmal implies (v - v’)? — v*v’* > 0. Note that if ¢ and ¢
intersect ¢ = ¢’ = intersection point. O

~

Clearly, Einstein-simultaneity is conventional and physics proper should not
depend on it. For example, the fringe-shift in the Michelson-Morley experiment
is independent of how we choose to synchronize clocks. In fact, it does not
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even make use of any clock. So what is the general definition of a “simultaneity
structure”? It seems obvious that it should be a relation on spacetime that is
at least symmetric (each event should be simultaneous to itself). Going from
one-way simultaneity to the mutual synchronization of two clocks, one might
like to also require reflexivity (if p is simultaneous to ¢ then ¢ is simultaneous
to p), though this is not strictly required in order to one-way synchronize each
clock in a set of clocks with one preferred “master clock”, which is sufficient for
many applications.

Moreover, if we like to speak of the mutual simultaneity of sets of more than
two events we need an equivalence relation on spacetime. The equivalence rela-
tion should be such that each inertial observer intersect each equivalence class
precisely once. Let us call such a simultaneity structure “admissible”. Clearly
there are zillions of such structures: just partition spacetime into any set of ap-
propriate!” spacelike hypersurfaces (there are more possibilities at this point, like
families of forward or backward lightcones). An absolute admissible simultaneity
structure would be one which is invariant (cf. Sect. A.1) under the automorphism
group of spacetime. We have

Proposition 6. There exits precisely one admissible simultaneity structure which
is invariant under the inhomogeneous proper orthochronous Galilei group and
none that is invariant under the inhomogeneous proper orthochronous Lorentz
group.

Proof. See [24]. O

There is a group-theoretic reason that highlights this existential difference:

Proposition 7. Let G be a group with transitive action on a set S. Let Stab(p) C
G be the stabilizer subgroup for p € S (due to transitivity all stabilizer subgroups
are conjugate). Then S admits a G-invariant equivalence relation R C S x S
iff Stab(p) is not mazimal, that is, iff Stab(p) is properly contained in a proper
subgroup H of G: Stab(p) C H C G.

Proof. See Theorem1.12 in [32]. a

Regarding the action of the inhomogeneous Galilei and Lorentz groups on space-
time their stabilizers are the corresponding homogeneous groups. As already dis-
cussed at the end of Sect. 4.1, the homogeneous Lorentz group is maximal in the
inhomogeneous one, whereas the homogeneous Galilei group is not maximal in
the inhomogeneous one. This, according to Proposition 7, is the group theoretic
origin of the absence of any invariant simultaneity structure in the Lorentzian
case.

17 For example, the hypersurfaces should not be asymptotically hyperboloidal, for then
a constantly accelerated observer would not intersect all of them.
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5.4 The Lattice Structure of Causally
and Chronologically Complete Sets

Here we wish to briefly discuss another important structure associated with
causality relations in Minkowski space, which plays a fundamental réle in modern
Quantum Field Theory (see e.g. [27]). Let S; and S5 be subsets of M"™. We say
that S7 and S are causally disjoint or spacelike separated iff p1 — po is spacelike,
ie. (p1 —p2)? <0, for any p; € S; and py € Sy. Note that because a point is
not spacelike separated from itself, causally disjoint sets are necessarily disjoint
in the ordinary set-theoretic sense — the converse being of course not true.

For any subset S C M"™ we denote by S’ the largest subset of M"™ which
is causally disjoint to S. The set S’ is called the causal complement of S. The
procedure of taking the causal complement can be iterated and we set S” := (S”)’
etc. S” is called the causal completion of S. It also follows straight from the
definition that S; C Sy implies S7 2 S} and also S” D S. If §” = S we call
S causally complete. We note that the causal complement S’ of any given S is
automatically causally complete. Indeed, from S” O S we obtain (S’)” C 5,
but the first inclusion applied to S’ instead of S leads to (S")” 2 S’, showing
(8")" = S’. Note also that for any subset S its causal completion, S”, is the
smallest causally complete subset containing S, for if S C K C S” with K" = K,
we derive from the first inclusion by taking ” that S” C K, so that the second
inclusion yields K = S”. Trivial examples of causally complete subsets of M"
are the empty set, single points, and the total set M"™. Others are the open
diamond-shaped regions (95) as well as their closed counterparts:

Ulp,q) :=(C; nCH)U(CS NC, ). (106)

We now focus attention to the set Caus(M™) of causally complete subsets
of M", including the empty set, ), and the total set, M™, which are mutu-
ally causally complementary. It is partially ordered by ordinary set-theoretic
inclusion (C) (cf. Sect. A.1) and carries the “dashing operation” (') of tak-
ing the causal complement. Moreover, on Caus(M"™) we can define the opera-
tions of “meet” and “join”, denoted by A and V respectively, as follows: Let
S; € Caus(M™) where i = 1,2, then S; A Sy is the largest causally complete
subset in the intersection S7 N .Sy and S; V Sy is the smallest causally complete
set containing the union S; U Ss.

The operations of A and V can be characterized in terms of the ordinary
set-theoretic intersection N together with the dashing-operation. To see this,
consider two causally complete sets, S; where i = 1,2, and note that the set
of points that are spacelike separated from S; and Sy are obviously given by
S NS4, but also by (S1 U S2)’, so that

Si N Sé = (51 U SQ)/7 (107&)
S1NSy = (S, USL) . (107b)

Here (107a) and (107b) are equivalent since any S; € Caus(M™) can be written
as S; = P/, namely P, = S,. If S; runs through all sets in Caus(M™) so does P;.
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Hence any equation that holds generally for all S; € Caus(M™) remains valid if
the S; are replaced by S..

Equation (107b) immediately shows that S; NSy is causally complete (since
it is the ’ of something). Taking the causal complement of (107a) we obtain the
desired relation for S; V Sy := (51 U S3)”. Together we have

Sl A SQ = Sl n Sg, (108&)
S1V .Sy = (Si n Sé)/ . (108b)

From these we immediately derive

(Sl A Sg)/ = Si vV Sé 5 (109&)
(S1V Sy) = 81 ASS. (109Db)

All what we have said so far for the set Caus(M™) could be repeated verbatim
for the set Chron(M") of chronologically complete subsets. We say that S; and
Sy are chronologically disjoint or non-timelike separated, iff Sy NSy = () and
(p1 —p2)? <0 for any p; € Sy and py € Sy. S’, the chronological complement of
S, is now the largest subset of M which is chronologically disjoint to .S. The only
difference between the causal and the chronological complement of S is that the
latter now contains lightlike separated points, which are not contained in S. A
set S is chronologically complete iff S = S”, where the dashing now denotes the
operation of taking the chronological complement. Again, for any set S the set S’
is automatically chronologically complete and S” is the smallest chronologically
complete subset containing S. Single points are chronologically complete subsets
and every chronologically complete subset is the join of its points. All the formal
properties regarding ’, A, and V stated hitherto for Caus(M"™) are the same for
Chron(M™).

One major difference between Caus(M™) and Chron(M"™) is that the types
of diamond-shaped sets they contain are different. For example, the closed ones,
(106), are members of both. The open ones, (95), are contained in Caus(M"™)
but not in Chron(M"). Instead, Chron(M"), contains the closed diamonds
whose ‘equator’'® have been removed. An essential structural difference between
Caus(M™) and Chron(M") will be stated below, after we have introduced the
notion of a lattice to which we now turn.

To put all these formal properties into the right frame we recall the definition
of a lattice. Let (L, <) be a partially ordered set and a,b any two elements in
L. Synonymously with a < b we also write b > a and say that a is smaller than
b, b is bigger than a, or b majorizes a. We also write a < b if a < b and a # b.
If, with respect to <, their greatest lower and least upper bound exist, they are
denoted by a A b—called the “meet of @ and b”"—and aV b—called the “join of a and
b’—respectively. A partially ordered set for which the greatest lower and least
upper bound exist for any pair a,b of elements from L is called a lattice.

18 By “equator” we mean the (n — 2)-sphere in which the forward and backward light-
cones in (106) intersec. In the two-dimensional drawings the “equator” is represented
by just two points marking the right and left corners of the diamond-shaped set.
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We now list some of the most relevant additional structural elements lattices
can have: A lattice is called complete if greatest lower and least upper bound
exist for any subset K C L. If K = L they are called 0 (the smallest element
in the lattice) and 1 (the biggest element in the lattice) respectively. An atom
in a lattice is an element a which majorizes only 0, i.e. 0 < a, and if 0 < b < a
then b = 0 or b = a. The lattice is called atomic if each of its elements different
from 0 majorizes an atom. An atomic lattice is called atomistic if every element
is the join of the atoms it majorizes. An element c is said to cover a if a < ¢ and
if a <b < ceither a =b or b =c. An atomic lattice is said to have the covering
property if for every element b and every atom a for which a A b = 0 the join
a V b covers b.

The subset {a,b,c} C L is called a distributive triple if

aN(bVe) = (aAb)V(aAc) and (a,bd,c) cyclically permuted , (110a)
aV({Ae)=(aVb)A(aVe) and (a,b,c) cyclically permuted . (110b)

Definition 5. A lattice is called distributive or Boolean if every triple {a, b, c} is
distributive. It is called modular if every triple {a,b, c} with a < b is distributive.

It is straightforward to check from (110) that modularity is equivalent to a single
condition as follows:

modularity & aV (bAc)=bA(aVe) foralla,b,ce Lst.a<b  (111)

If in a lattice with smallest element 0 and greatest element 1 a map L — L,
a — a’, exist such that

a":=(a) =a, (112a)
a<b=0b<d, (112Db)
and =0, aVd =1, (112c)

the lattice is called orthocomplemented. It follows that whenever the meet and
join of a subset {a; | ¢ € I} (I is some index set) exist, one has De Morgan’s
laws: 1

(Nier ai)/ = Vier a5 (113a)
(Vier 1) = Nies a5 (113b)

For orthocomplemented lattices there is a still weaker version of distributivity
than modularity, which turns out to be physically relevant in various contexts:

Definition 6. An orthocomplemented lattice is called orthomodular if every
triple {a,b,c} with a <b and ¢ <Y is distributive.

9 From these laws it also appears that the definition (112c) is redundant, as each of
its two statements follows from the other, due to 0’ = 1.
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From (111) and using that b A c¢ =0 for b < ¢’ one sees that this is equivalent to
the single condition (renaming ¢ to ¢):

orthomod. & a =bA(aV<) foralabce Lst.a<b<c, (1l4a)
& a=0bV(aAd) foralla,bce€ Lst.a>b>c, (114b)

where the second line follows from the first by taking its orthocomplement and
renaming a’,b’, c to a,b, c’. It turns out that these conditions can still be simpli-
fied by making them independent of ¢. In fact, (114) are equivalent to

orthomod. & a=0bA(aVb) foralla,be L st a<b, (115a)
< a=bV(aAb) foralla,be Lst.a>b. (115b)

It is obvious that (114) implies (115) (set ¢ = b). But the converse is also
true. To see this, take e.g. (115b) and choose any ¢ < b. Then ¢ > b, a > b
(by hypothesis), and a > a A ¢ (trivially), so that a > bV (a A ¢/). Hence
a>bV(ancd)>bV (aAb)=a, which proves (114b).

Complete orthomodular atomic lattices are automatically atomistic. Indeed,
let b be the join of all atoms majorized by a # 0. Assume a # b so that necessarily
b < a, then (115b) implies a A b’ # 0. Then there exists an atom ¢ majorized by
aAb'. This implies ¢ < a and ¢ < ¥, hence also ¢ £ b. But this is a contradiction,
since b is by definition the join of all atoms majorized by a.

Finally we mention the notion of compatibility or commutativity, which is a
symmetric, reflexive, but generally not transitive relation R on an orthomodular
lattice (cf. Sect. A.1). We write ahb for (a,b) € R and define:

ath & a= (aAb)V(aAl), (116a)
& b=(bAa)V(DAL). (116b)

The equivalence of these two lines, which shows that the relation of being com-
patible is indeed symmetric, can be demonstrated using orthomodularity as fol-
lows: Suppose (116a) holds; then bAa’ = bA (V' Va' )A(bVa') = bA (V' Va'), where
we used the orthocomplement of (116a) to replace a’ in the first expression and
the trivial identity b A (bV a’) = b in the second step. Now, applying (115b) to
b>anbwegetb=(bAa)VIDAM Vad)=(bAa)V (bAd),ie. (116b). The
converse, (116b) = (116a), is of course entirely analogous.

From (116) a few things are immediate: aljb is equivalent to afb’, alib is implied
by a < bor a <V, and the elements 0 and 1 are compatible with all elements in
the lattice. The center of a lattice is the set of elements which are compatible
with all elements in the lattice. In fact, the center is a Boolean sublattice. If
the center contains no other elements than 0 and 1 the lattice is said to be
irreducible. The other extreme is a Boolean lattice, which is identical to its own
center. Indeed, if (a,b,b’) is a distributive triple, one has a = aAl = aA(bVY) =
(anb)V(aAD) = (116a).

After these digression into elementary notions of lattice theory we come back
to our examples of the sets Caus(M™) Chron(M™). Our statements above amount
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to saying that they are complete, atomistic, and orthocomplemented lattices.
The partial order relation < is given by C, and the extreme elements 0 and 1
correspond to the empty set () and the total set M™, the points of which are the
atoms. Neither the covering property nor modularity is shared by any of the two
lattices, as can be checked by way of elementary counterexamples.?® In particu-
lar, neither of them is Boolean. However, in [15] it was shown that Chron(M")
is orthomodular; see also [13], which deals with more general spacetimes. In
contrast, Caus(M™) is definitely not orthomodular, as is e.g. seen by the coun-
terexample given in Fig. 3.1 Tt is also not difficult to prove that Chron(M") is
irreducible.??

It is well known that the lattices of propositions for classical systems are
Boolean, whereas those for quantum systems are merely orthomodular. In clas-
sical physics the elements of the lattice are measurable subsets of phase space,
with < being ordinary set-theoretic inclusion C, and A and V being ordinary
set-theoretic intersection N and union U respectively. The orthocomplement is
the ordinary set-theoretic complement. In Quantum Mechanics the elements of
the lattice are the closed subspaces of Hilbert space, with < being again ordinary
inclusion, A ordinary intersection, and V is given by a V b := span{a,b}. The
orthocomplement of a closed subset is the orthogonal complement in Hilbert
space. For more information see [33] and [5].

One of the main questions in the foundations of Quantum Mechanics is
whether one could understand (derive) the usage of Hilbert spaces and com-
plex numbers from somehow more fundamental principles. Even though it is not
a priori clear what ones measure of fundamentality should be at this point, an
interesting line of attack consists in deriving the mentioned structures from the
properties of the lattice of propositions (Quantum Logic). It can be shown that
a lattice that is complete, atomic, irreducible, orthomodular, and that satisfies
the covering property, is isomorphic to the lattice of closed subspaces of a lin-
ear space with Hermitean inner product. The complex numbers are selected if

20 An immediate counterexample for the covering property is this: Take two timelike
separated points (i.e. atoms) p and ¢. Then {p} A{q} = @ whereas {p} V {q} is given
by the closed diamond (106). Note that this is true in Caus(M") and Chron(M").
But, clearly, {p} V {q} does not cover either {p} or {¢}.

Regarding this point, there are some conflicting statements in the literature. The
first edition of [27] states orthomodularity of Chron(M") in Proposition4.1.3, which
is removed in the second edition without further comment. The proof offered in the
first edition uses (115a) as definition of orthomodularity, writing K for a and K for
b. The crucial step is the claim that any spacetime event in the set Ko A (K1 V K3)
lies in K5 and that any causal line through it must intersect either K; or K. The
last statement is, however, not correct since the join of two sets (here K1 and K3) is
generally larger than the domain of dependence of their ordinary set-theoretic union;
compare Fig. 3. : (Generally, the domain of dependence of a subset S of spacetime
M is the largest subset D(S) C M such that any inextensible causal curve that
intersects D(S) also intersects S.)

In general spacetimes M, the failure of irreducibility of Chron(M) is directly related
to the existence of closed timelike curves; see [13].

21

22
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v <o

Fig. 3. The two figures show that Caus(M") is not orthomodular. The first thing to
note is that Caus(M"™) contains open (95) as well as closed (106) diamond sets. In the
left picture we consider the join of a small closed diamond a with a large open diamond
b'. (Closed sets are indicated by a solid boundary line.) Their edges are aligned along the
lightlike line ¢. Even though these regions are causally disjoint, their causal completion
is much larger than their union and given by the open (for n > 2) enveloping diamond
a V' framed by the dashed line. (This also shows that the join of two regions can
be larger than the domain of dependence of their union; compare footnote 21.) . Next
we consider the situation depicted on the right side. The closed double-wedge region
b contains the small closed diamond a. The causal complement b' of b is the open
diamond in the middle. a Vb’ is, according to the first picture, given by the large open
diamond enclosed by the dashed line. The intersection of a VV b" with b is strictly larger
than a, the difference being the dark-shaded region in the left wedge of b below a.
Hence a # b A (a V'), in contradiction to (115a)

additional technical assumptions are added. For the precise statements of these
reconstruction theorems see [5].

It is now interesting to note that, on a formal level, there is a similar tran-
sition in going from Galilei invariant to Lorentz invariant causality relations. In
fact, in Galilean spacetime one can also define a chronological complement: Two
points are chronologically related if they are connected by a worldline of finite
speed and, accordingly, two subsets in spacetime are chronologically disjoint if
no point in one set is chronologically related to a point of the other. For example,
the chronological complement of a point p are all points simultaneous to, but
different from, p. More general, it is not hard to see that the chronologically
complete sets are just the subsets of some ¢ = const. hypersurface. The lattice of
chronologically complete sets is then the continuous disjoint union of sublattices,
each of which is isomorphic to the Boolean lattice of subsets in R3. For details
see [14].

As we have seen above, Chron(M") is complete, atomic, irreducible, and
orthomodular. The main difference to the lattice of propositions in Quantum
Mechanics, as regards the formal aspects discussed here, is that Chron(M")
does mot satisfy the covering property. Otherwise the formal similarities are
intriguing and it is tempting to ask whether there is a deeper meaning to this.
In this respect it would be interesting to know whether one could give a lattice-
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theoretic characterization for Chron(M) (M some fixed spacetime), comparable
to the characterization of the lattices of closed subspaces in Hilbert space alluded
to above. Even for M = M" such a characterization seems, as far as I am aware,
not to be known.

5.5 Rigid Motion

As is well known, the notion of a rigid body, which proves so useful in Newtonian
mechanics, is incompatible with the existence of a universal finite upper bound
for all signal velocities [36]. As a result, the notion of a perfectly rigid body does
not exist within the framework of SR. However, the notion of a rigid motion does
exist. Intuitively speaking, a body moves rigidly if, locally, the relative spatial
distances of its material constituents are unchanging.

The motion of an extended body is described by a normalized timelike vector
field u : £2 — R™, where {2 is an open subset of Minkowski space, consisting of the
events where the material body in question “exists”. We write g(u,u) = u-u = u?
for the Minkowskian scalar product. Being normalized now means that u? = ¢?
(we do not choose units such that ¢ = 1). The Lie derivative with respect to u
is denoted by L,,.

For each material part of the body in motion its local rest space at the event
p € {2 can be identified with the hyperplane through p orthogonal to w,:

Hy:=p+u, . (117)

uj; carries a Euclidean inner product, h,, given by the restriction of —g to u

Generally we can write

4
D"

h=c?2vou —g, (118)

where v’ = g'(u) := g(u,-) is the one-form associated (‘index-lowered’, cf.
Sect. A.5) to u. Following [12] the precise definition of “rigid motion” can now
be given as follows:

Definition 7 (Born 1909). Let u be a normalized timelike vector field u. The
motion described by its flow is rigid if

L,h=0. (119)

Note that, in contrast to the Killing equations L, g = 0, these equations are non
linear due to the dependence of h upon u.

We write ITj, := id — c 2 u®u” € End(R™) for the tensor field over spacetime
that pointwise projects vectors perpendicular to u. It acts on one forms « via
I}, («) := «o II}, and accordingly on all tensors. The so extended projection map
will still be denoted by IIj. Then we e.g. have

h = —th = —g(Hh~,Hh~) . (120)
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It is not difficult to derive the following two equations:?3
L¢yh = fLyh, (121)
L,h = —L,(IThg) = —p(Lyyg), (122)

where f is any differentiable real-valued function on 2.

Equation (121) shows that the normalized vector field u satisfies (119) iff any
rescaling fu with a nowhere vanishing function f does. Hence the normalization
condition for w in (119) is really irrelevant. It is the geometry in spacetime of
the flow lines and not their parameterization which decide on whether motions
(all, i.e. for any parameterization, or none) along them are rigid. This has be
the case because, generally speaking, there is no distinguished family of sections
(hypersurfaces) across the bundle of flow lines that would represent “the body in
space”, i.e. mutually simultaneous locations of the body’s points. Distinguished
cases are those exceptional ones in which w is hypersurface orthogonal. Then
the intersection of w’s flow lines with the orthogonal hypersurfaces consist of
mutually Einstein synchronous locations of the points of the body. An example
is discussed below.

Equation (122) shows that the rigidity condition is equivalent to the “spa-
tially” projected Killing equation. We call the flow of the timelike normalized
vector field u a Killing motion (i.e. a spacetime isometry) if there is a Killing
field K such that v = ¢K/v/K?2. Equation (122) immediately implies that Killing
motions are rigid. What about the converse? Are there rigid motions that are
not Killing? This turns out to be a difficult question. Its answer in Minkowski
space is: “yes, many, but not as many as naively expected.”

Before we explain this, let us give an illustrative example for a Killing mo-
tion, namely that generated by the boost Killing-field in Minkowski space. We
suppress all but one spatial directions and consider boosts in x direction in two-
dimensional Minkowski space (coordinates ct and z; metric ds? = c?dt? — dz?).
The Killing field is?*

K=xz0,4+ctd,, (123)

which is timelike in the region |z| > |ct|. We focus on the “right wedge” = >
|ct|, which is now our region 2. Consider a rod of length ¢ which at ¢ = 0 is
represented by the interval x € (r,r+£), where r > 0. The flow of the normalized
field u = cK/VK? is

2 Equation (122) simply follows from L.II, = —c 2u ® Lyu’, so that
9((LuIIn) X, 1Y) = 0 for all X,Y. In fact, Lou’ = ab, where a := V,u is the
spacetime-acceleration. This follows from L,u”(X) = Ly (g9(u, X)) — g(u, L, X) =
9(Vuu, X) + g(u, VuX — [u, X]) = g(a, X) — g(u, Vxu) = g(a, X), where g(u,u) =
const. was used in the last step.

24 Here we adopt the standard notation from differential geometry, where 9, := 9/9z"
denote the vector fields naturally defined by the coordinates {z* },=0...n—1. Pointwise
the dual basis to {0, }u=0.-.n—1 is {dz*}u=0...n—1.
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ct(r) = wg sinh(cr/20), (124a)
z(1) = g cosh(cr/zo), (124b)

where o = (7 = 0) € (r,r+{) labels the elements of the rod at 7 = 0. We have
2?2 — c*t? = 22, showing that the individual elements of the rod move on hyper-
bolae (‘hyperbolic motion’). 7 is the proper time along each orbit, normalized
so that the rod lies on the z axis at 7 = 0.
The combination
Ai=cT/x0 (125)

is just the flow parameter for K (123), sometimes referred to as “Killing time”
(though it is dimensionless). From (124) we can solve for A and 7 as functions
of ¢t and x:

A= f(et,z) = tanhfl(ct/x), (126a)
T = flct,x) == /(x/c)? — 2 tanh_l(ct/z), (126b)
zo/c

from which we infer that the hypersurfaces of constant A are hyperplanes which
all intersect at the origin. Moreover, we also have df = Kb/K'2 (d is just the
ordinary exterior differential) so that the hyperplanes of constant A intersect all
orbits of u (and K) orthogonally. Hence the hyperplanes of constant A qualify
as the equivalence classes of mutually Einstein-simultaneous events in the region
x > |ct| for a family of observers moving along the Killing orbits. This does not
hold for the hypersurfaces of constant 7, which are curved.

The modulus of the spacetime-acceleration (which is the same as the modulus
of the spatial acceleration measured in the local rest frame) of the material part
of the rod labeled by xg is

lally = /0. (127)

As an aside we generally infer from this that, given a timelike curve of local ac-
celeration (modulus) «, infinitesimally nearby orthogonal hyperplanes intersect
at a spatial distance ¢ /a. This remark will become relevant in the discussion of
part 2 of the Noether-Herglotz theorem given below.

In order to accelerate the rod to the uniform velocity v without deforming it,
its material point labeled by xo has to accelerate for the eigentime (this follows
from (124))

r=20 tanh™ ' (v/c), (128)
c

which depends on z. In contrast, the Killing time is the same for all material
points and just given by the final rapidity. In particular, judged from the local
observers moving with the rod, a rigid acceleration requires accelerating the rod’s
trailing end harder but shorter than pulling its leading end.

In terms of the coordinates (), zp), which are comoving with the flow of K,
and (7, o), which are comoving with the flow of u, we just have K = 9/9\ and
u = 0/07 respectively. The spacetime metric g and the projected metric h in
terms of these coordinates are:
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h = dz?, (129a)
g = 23d\? — dal = A (dr — (r/x0) dwo)” — da. (129b)

Note the simple form g takes in terms of zp and A, which are also called the
“Rindler coordinates” for the region |z| > |ct| of Minkowski space. They are
the analogs in Lorentzian geometry to polar coordinates (radius xg, angle A) in
Euclidean geometry.

Let us now return to the general case. We decompose the derivative of the
velocity one-form u’ := g!(u) as follows:

Vi =0+w+c 2’ ed, (130)

where 6 and w are the projected symmetrized and antisymmetrized derivatives
respectively?®

20 = II,(VVW’) = Vv —c2u’va, (131a)
2w = IH(VAW) = VAU —c 2’ Nd”. (131b)

The symmetric part, €, is usually further decomposed into its traceless and pure
trace part, called the shear and expansion of u respectively. The antisymmetric
part w is called the wvorticity of u.

Now recall that the Lie derivative of g is just twice the symmetrized deriva-
tive:

Lug=V V. (132)
This implies in view of (119), (122), and (131a)

Proposition 8. Let u be a normalized timelike vector field u. The motion de-
scribed by its flow is Tigid iff u is of vanishing shear and expansion, i.e. iff 6 = 0.

Vector fields generating rigid motions are now classified according to whether
or not they have a vanishing vorticity w: if w = 0 the flow is called drrota-
tional, otherwise rotational. The following theorem is due to Herglotz [29] and
Noether [37]:

Theorem 4 (Noether & Herglotz, part1). A rotational rigid motion in
Minkowski space must be a Killing motion.

An example of such a rotational motion is given by the Killing field2%
K=0+kr0, (133)

25 We denote the symmetrized and antisymmetrized tensor-product (not including the
factor 1/n!) by V and A respectively and the symmetrized and antisymmetrized
(covariant-) derivative by VV and VA. For example, (ub A ’Ub)ab = UgVp — UpV, and
(VVu”)ap = Vaup + Vitia. Note that (V A u’) is the same as the ordinary exterior
differential du’. Everything we say in the sequel applies to curved spacetimes if V
is read as covariant derivative with respect to the Levi-Civita connection.

26 We now use standard cylindrical coordinates (z,p, ), in terms of which ds® =
Adt? — dz? — dp® — p? dp?.
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inside the region

2= {(t,z,p7 ©) ‘ kp < C}, (134)
where K is timelike. This motion corresponds to a rigid rotation with constant
angular velocity x which, without loss of generality, we take to be positive. Using

the comoving angular coordinate ¢ := ¢ — kt, the split (118) is now furnished
by

W = c\/1— (kp/c)? {cdt - % pdz/)} , (135a)

p2 de
1—(rp/c)®
The metric h is curved (cf. Lemma 3). But the rigidity condition (119) means
that h, and hence its curvature, cannot change along the motion. Therefore,
even though we can keep a body in uniform rigid rotational motion, we cannot
put it into this state from rest by purely rigid motions, since this would imply a
transition from a flat to a curved geometry of the body. This was first pointed
out by Ehrenfest [17]. Below we will give a concise analytical expression of this
fact (cf. equation (139)). All this is in contrast to the translational motion, as
we will also see below.

The proof of Theorem 4 relies on arguments from differential geometry proper
and is somewhat tricky. Here we present the essential steps, basically follow-
ing [38] and [43] in a slightly modernized notation. Some straightforward cal-
culational details will be skipped. The argument itself is best broken down into
several lemmas.

At the heart of the proof lies the following general construction: Let M be
the spacetime manifold with metric g and {2 C M the open region in which
the normalized vector field w is defined. We take (2 to be simply connected.
The orbits of u foliate {2 and hence define an equivalence relation on {2 given
by p ~ ¢ iff p and ¢ lie on the same orbit. The quotient space Q= 2/~ is
itself a manifold. Tensor fields on £2 can be represented by (i.e. are in bijective
correspondence to) tensor fields 7' on {2 which obey the two conditions:

mT =T, (136a)
L, T =0. (136b)

h = d2*+dp* + (135b)

Tensor fields satisfying (136a) are called horizontal, those satisfying both con-
ditions (136) are called projectable. The (n — 1)-dimensional metric tensor h,
defined in (118), is an example of a projectable tensor if u generates a rigid
motion, as assumed here. It turns ({2, h) into a (n — 1)-dimensional Riemannian
manifold. The covariant derivative V with respect to the Levi-Civita connection
of h is given by the following operation on projectable tensor fields:

Vi=1I,0V (137)

i.e. by first taking the covariant derivative V (Levi-Civita connection in (M, g))
in spacetime and then projecting the result horizontally. This results again in a
projectable tensor, as a straightforward calculation shows.
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The horizontal projection of the spacetime curvature tensor can now be re-
lated to the curvature tensor of £2 (which is a projectable tensor field). Without
proof we state

Lemma 3. Let u generate a rigid motion in spacetime. Then the horizontal
projection of the totally covariant (i.e. all indices down) curvature tensor R of
(£2,9) is related to the totally covariant curvature tensor R of (£2,h) by the

following equation:2"

IyWR=—-R-3(d—I\)wQuw, (138)

where Il is the total antisymmetrizer, which here projects tensors of rank four
onto their totally antisymmetric part.

Formula (138) is true in any spacetime dimension n. Note that the projector
(id — IT,) guarantees consistency with the first Bianchi identities for R and R,
which state that the total antisymmetrization in their last three slots vanish
identically. This is consistent with (138) since for tensors of rank four with the
symmetries of w ® w the total antisymmetrization on tree slots is identical to
IT5, the symmetrization on all four slots. The claim now simply follows from
IIno(id—1IIn) =1, — Iy = 0.

We now restrict to spacetime dimensions of four or less, i.e. n < 4. In this case
I, oI}, = 0 since IT;, makes the tensor effectively live over n—1 dimensions, and
any totally antisymmetric four tensor in three or less dimensions must vanish.
Applied to (138) this means that IT(w ® w) = 0, for horizontality of w implies
w® w = II}(w ® w). Hence the right hand side of (138) just contains the pure
tensor product —3w ® w.

Now, in our case R = 0 since (M, g) is flat Minkowski space. This has two
interesting consequences: First, (f}, h) is curved iff the motion is rotational, as
exemplified above. Second, since Ris projectable, its Lie derivative with respect
to u vanishes. Hence (138) implies Lyw ® w + w ® Lyw = 0, which is equivalent
028

L,w=0. (139)

This says that the vorticity cannot change along a rigid motion in flat space.
It is the precise expression for the remark above that you cannot rigidly set
a disk into rotation. Note that it also provides the justification for the global
classification of rigid motions into rotational and irrotational ones.

A sharp and useful criterion for whether a rigid motion is Killing or not is
given by the following

Lemma 4. Let v be a normalized timelike vector field on a region {2 C M. The
motion generated by u is Killing iff it is rigid and o’ is exact on 2.

7R appears with a minus sign on the right hand side of (138) because the first index
on the hatted curvature tensor is lowered with h rather than g. This induces a minus
sign due to (118), i.e. as a result of our “mostly-minus”’-convention for the signature
of the spacetime metric.

28 In more than four spacetime dimensions one only gets (id—ITx ) (Luw@w+w® Lyw) =
0.
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Proof. That the motion generated by u be Killing is equivalent to the existence
of a positive function f : {2 — R such that L;,g =0, ie. VV (fu’) = 0. In view
of (131a) this is equivalent to

20+ (dIn f 4+ ¢ 2d’) v’ =0, (140)

which, in turn, is equivalent to § = 0 and @’ = —c?>dIn f. This is true since 6 is
horizontal, IT;,0 = 6, whereas the first term in (140) vanishes upon applying 1.
The result now follows from reading this equivalence both ways: 1) The Killing
condition for K := fu implies rigidity for u and exactness of a’. 2) Rigidity of u
and a” = —d® imply that K := fu is Killing, where f := exp(®/c?). O

We now return to the condition (139) and express L,w in terms of du”. For
this we recall that L,u” = a” (cf. footnote 23) and that Lie derivatives on forms
commute with exterior derivatives.?? Hence we have

2 Lyw = Ly(ITdu’) = II,da’ = da’ — ¢~ 2u’ A Lya’ . (141)

Here we used the fact that the additional terms that result from the Lie derivative
of the projection tensor I vanish, as a short calculation shows, and also that
on forms the projection tensor I}, can be written as I, = id — 2 N1y, where
i, denotes the map of insertion of u in the first slot.

Now we prove

Lemma 5. Let u generate a rigid motion in flat space such that w # 0, then
L,a®=0. (142)

Proof. Equation (139) says that w is projectable (it is horizontal by definition).
Hence Vw is projectable, which implies

L,.Vw=0. (143)
Using (130) with ¢ = 0 one has
Vw = II,Vw = I, VVu’ — 0_217;1(Vub ® ab) . (144)

Antisymmetrization in the first two tensor slots makes the first term on the right
vanish due to the flatness on V. The antisymmetrized right hand side is hence
equal to —c¢ 2w ® a”. Taking the Lie derivative of both sides makes the left hand
side vanish due to (143), so that

L (w®ad)=w®L,a’ =0 (145)
where we also used (139). So we see that L,a” = 0 if w # 0.0 O

29 This is most easily seen by recalling that on forms the Lie derivative can be written
as L, = d o, + iy o d, where i, is the map of inserting w in the first slot.
30 We will see below that (142) is generally not true if w = 0; see equation (154).
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The last three lemmas now constitute a proof for Theorem 4. Indeed, using
(142) in (141) together with (139) shows da® = 0, which, according to Lemma4,
implies that the motion is Killing.

Next we turn to the second part of the theorem of Noether and Herglotz,
which is somewhat easier to prove:

Theorem 5 (Noether & Herglotz, part 2). All irrotational rigid motions in
Minkowski space are given by the following construction: take a twice continu-
ously differentiable curve 7 — z(7) in Minkowski space, where w.l.o.g T is the
eigentime, so that 2 = c2. Let H, := z(7) + (2(1))* be the hyperplane through
2(T) intersecting the curve z perpendicularly. Let 2 be a the tubular neighborhood
of z in which no two hyperplanes H,, H,/ intersect for any pair z(1),z(7") of
points on the curve. In {2 define u as the unique (once differentiable) normalized
timelike vector field perpendicular to all H- N 2. The flow of u is the sought-for
rigid motion.

Proof. We first show that the flow so defined is indeed rigid, even though this is
more or less obvious from its very definition, since we just defined it by “rigidly”
moving a hyperplane through spacetime. In any case, analytically we have,

H; ={z eM" | f(r,2) :== 2(1) - (x — 2(7)) = 0} (146)

In 2 any x lies on exactly one such hyperplane, H,, which means that there is
a function o : 2 — R so that 7 = o(x) and hence F(z) := f(o(z),z) = 0. This
implies dF' = 0. Using the expression for f from (146) this is equivalent to

do=200/[?—(500)-(id—z00)], (147)

where “id” denotes the “identity vector-field”, x — z#9,, in Minkowski space.
Note that in 2 we certainly have 0, f(7,z) # 0 and hence % - (x — 2) # 2. In 2
we now define the normalized timelike vector field3!

u:=~zo00. (148)
Using (147), its derivative is given by
Vi’ =do® (3" 00) = [(2 00) ® (5 00)] /(N?c?), (149)

where
N:=1-(%00)-(id—zo00)/c?. (150)

This immediately shows that IT,Vu’ = 0 (since IT;,2* = 0) and therefore that
6 = w = 0. Hence u, as defined in (148), generates an irrotational rigid motion.
For the converse we need to prove that any irrotational rigid motion is ob-

tained by such a construction. So suppose v is a normalized timelike vector field
such that # = w = 0. Vanishing w means IT,(V A u”) = ITj,(du”) = 0. This is

31 Note that, by definition of o, ((00) - (id — z00) = 0.
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equivalent to u” A du” = 0, which according to the Frobenius theorem in differ-
ential geometry is equivalent to the integrability of the distribution®? u* = 0,
i.e. the hypersurface orthogonality of u. We wish to show that the hypersurfaces
orthogonal to u are hyperplanes. To this end consider a spacelike curve z(s),
where s is the proper length, running within one hypersurface perpendicular to
u. The component of its second s-derivative parallel to the hypersurface is given
by (to save notation we now simply write u and u” instead of uo z and u’ o z)

i =% —c2uu’(3) = 5+ ¢ 2ub(2,2) = %, (151)

where we made a partial differentiation in the second step and then used 6 = 0.
Geodesics in the hypersurface are curves whose second derivative with respect
to proper length have vanishing components parallel to the hypersurface. Now,
(151) implies that geodesics in the hypersurface are geodesics in Minkowski space
(the hypersurface is “totally geodesic”), i.e. given by straight lines. Hence the
hypersurfaces are hyperplanes. a

Theorem 5 precisely corresponds to the Newtonian counterpart: The irrota-
tional motion of a rigid body is determined by the worldline of any of its points,
and any timelike worldline determines such a motion. We can rigidly put an
extended body into any state of translational motion, as long as the size of the
body is limited by ¢?/a, where « is the modulus of its acceleration. This also
shows that (142) is generally not valid for irrotational rigid motions. In fact, the
acceleration one-form field for (148) is

o’ = (3" 00)/N (152)
from which one easily computes

II,%Zo00) - (id—zo00) N-2-2
N¢?

(153)
From this one sees, for example, that for constant acceleration, defined by IT;, 2" =
0 (constant acceleration in time as measured in the instantaneous rest frame), we
have da’ = 0 and hence a Killing motion. Clearly, this is just the motion (124)

for the boost Killing field (123). The Lie derivative of a” is now easily obtained:

da® = (2" 0 0) A {(Hh'é'b 0o)+ (2o O')(

Ly’ =iyda’ = (II,%" 0o 5) N2, (154)

showing explicitly that it is not zero except for motions of constant acceleration,
which were just seen to be Killing motions.

32 “Distribution” is here used in the differential-geometric sense, where for a manifold
M it denotes an assignment of a linear subspace V, in the tangent space T, M to
each point p of M. The distribution v’ = 0 is defined by V,, = {v € T,M | u}(v) =
up - v = 0}. A distribution is called (locally) integrable if (in the neighborhood of
each point) there is a submanifold M’ of M whose tangent space at any p € M’ is
just Vp.
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In contrast to the irrotational case just discussed, we have seen that we cannot
put a body rigidly into rotational motion. In the old days this was sometimes
expressed by saying that the rigid body in SR has only three instead of six
degrees of freedom. This was clearly thought to be paradoxical as long as one
assumed that the notion of a perfectly rigid body should also make sense in
the framework of SR. However, this hope was soon realized to be physically
untenable [36].

5.6 Geometry of Space and Time in Rotating Reference Frames

We have seen above that there is a generalization of Einstein simultaneity for
the case of rigid linear accelerations. The hypersurfaces of simultaneity were
given by the hyperplanes of constant Killing time A, which are different from
the (curved) hypersurfaces of constant proper time 7. This worked because the
Killing field was (locally) hypersurface orthogonal.

Note that in terms of the co-rotating coordinates (ct,z,p, 1) (recall that
1 = ¢ — kt) the Killing field (133) is just K = 0;. It is convenient to rewrite the
spacetime metric g = ¢~ 2u” ® v’ — h in the following form

g=c?exp(2®/c*) A® A—h, (155)

where h is given by (135b) and, using (135a), we have the following expressions
for @ and A:

P =2 ln{\/Kz/CQ} = %111{1 — (kp/c)*}, (156a)
_ o R
A= KK = dt— T . (156b)

The physical interpretation of @ appears from calculating the acceleration a that
an observer experiences who moves along the Killing orbit:

a’ =V’ = —dd. (157)

Hence @ is the Newtonian potential that is accelerating the Killing observer.
The rotational Killing field is clearly not hypersurface orthogonal. The ob-
struction is just given by the vorticity w. A simple calculation gives

F:=dA=2c2exp(—®/c*)w. (158)

Hence the obstruction for hypersurface orthogonality is likewise faithfully mea-
sured by A. Moreover, as we shall see below, the 1-form A has an interesting
physical and geometric interpretation, which is the actual reason why we intro-
duced it here.

Inside the region {2 (defined in (134)) K is a complete and nowhere vanishing
timelike vector field. This means that the flow f : R x 2 — (2 of K defines
a free action of the additive group R on 2 that makes (2 the total space of a
principle bundle with fiber R and base =20 /~. Here ~ is again the equivalence
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relation which declares two points in {2 to be equivalent iff they lie on the
same K orbit. Hence £2, which is obviously diffeomorphic to the solid cylinder
{(z,p,¢) | p < ¢/K}, is the space of K orbits. Since {2 is endowed with the
metric g and since K acts by isometries, the distribution of hyperplanes (117)
orthogonal to the Killing orbits define a connection on the principal bundle
whose corresponding 1-form is just A.33 Accordingly, the bundle curvature is
given by F' = dA. Note that F' can be considered as 2-form on 2 since ix F =0
and LKF = ’LKdF = 0.34

Now, parallel transport defined by the connection A has a direct physical
interpretation: it is just transportation of time according to Einstein synchro-
nization. Since F' # 0 this transportation is not path independent. In particular
this implies that synchronization along fixed paths is not a transitive operation
anymore. Given two points in 2 connected by a spatial path 4 in fZ, parallel
transportation along 4 requires that we lift 4 to a path v in {2 whose tangent
vectors are annihilated by A, that is, which runs orthogonally to the orbits of
K. But this is just what we mean by saying that the points on the curve v are
locally Einstein synchronized, in the sense that any two infinitesimally nearby
points on ~ are Einstein synchronized. Hence the integral of A along ~y vanishes.
Using (156b) this is equivalent to

P
At —[ydt— Czél_(ﬁp/C)Q d’(/}7 (159)

where we interpreted p and v as coordinates on (2 so that the right hand side
could be written as integral along the curve % in 2. This means that if we
Einstein synchronize clocks along 4 in space, the clock at the final point of 4
shows a lapse At of coordinate-time as compared to the clock at the initial point
of 4. A striking consequence of the non-transitivity of Einstein synchronization is
the non-zero lapse of coordinate time that one obtains for spatially closed curves.
These lapses are just the holonomies of the connection A. If, for simplicity, we
choose 4 to be a closed planar loop of constant p and z, (159) immediately leads

to

2 (wp/o)? )

= ——" 2 (2 S 160
T = (o)), (160)
where S is explained below. The lapse in proper time, A7, is obtained by mul-
tiplying this result with exp(®/c?), which merely amounts to replacing the de-
nominator 1 — (kp/c)? in (160) with its square root. This time lapse is directly
related to the Sagnac effect. In fact, the observed phase shift in the Sagnac

At

33 The connection 1-form A associated to the distribution of “horizontal” subspaces
has to fulfill two conditions: 1) vectors tangential to the horizontal subspaces are
annihilated by A and 2) A(K) = 1, where K is a “fundamental vector field” which
generates the action of the structure group R. Both conditions are satisfied in our
case. See e.g. [9] for a lucid discussion of these notions.

34 More precisely, there is a unique 2-form Fon 2 such that #*F' = F,wherem: 2 — 2
is the bundle projection.
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effect is obtained by multiplying the expression for the time lapse with twice3®
the light’s frequency v.

In (160) S denotes the area of the 2-disk spanned by the planar loop. Note
that this area is only approximately given by 7p? since the geometry in §2,
determined with co-rotating rods and clocks, is given by the metric h; see (135b).
The precise expressions for the circumference, C and area, S, of the planar loop
of constant p follow from (135b):

S ) _

A e N e e > 2mp, (1613
_ 2m pp di/} dp/p/ B 27T62 - — _ ,

. _/0 o JI_(rpJoE | R {1 1—(kp/c) } > 7p*.  (161b)

The circumference grows faster than o< p and the area faster than o< p?. Note that
according to (135b) p is the geodesic radial distance. Hence the two-dimensional
hypersurfaces of constant z in 2 are negatively curved. In fact, the Gaussian
curvature, IC, of these hypersurfaces turns out to be

__ -39
{1- (vp/c)2}?

which is strictly negative, approximately constant for p < ¢/k, and unbounded
as p approaches the critical radius ¢/k. In contrast, according to (135b), the
metrics induced by A on the hypersurfaces of constant ¢ are flat.

The bundle curvature of F' for the connection A and the Riemannian cur-
vature for (Q, h) are indeed intimately linked through identities which arise by
calculating the Riemannian curvature of ({2, g), where g is parameterized as in
(155), and noting that g is flat (Minkowski metric). One such identity is the so
called Kaluza-Klein identity, which expresses the scalar curvature (Ricci scalar)
of g in terms of the scalar curvature Ry, of h, @, and ||F||? = h'*hI'F}; F},. Since
the scalar curvature of g is zero, one obtains:

(162)

Ry = 2exp(~0/c) A exp(@/c?) — L P exp(20/¢?) [FIE,  (163)
where A}, is the Laplace operator on (Q, h).

It is an interesting historical fact that it was Kaluza who pointed out that
“space” in rotating reference frames cannot be identified with a submanifold per-
pendicular to the Killing orbits (because such a submanifold does not exist) but
rather has to be constructed as the quotient manifold 2 which carries the curved
metric h [34]. He also discussed the non-integrability of Einstein synchroniza-
tion. This he did in 1910, ten years before he applied the very same mathematical
ideas to the five-dimensional setting known as Kaluza-Klein theories.

35 The factor 2 results simply from the fact that the Sagnac effect measures the sum
of the moduli of time lapses for a closed curve traversed in both directions.



98 D. Giulini
A Appendices

For the interested reader this appendix collects some mathematical background
material which are relevant to the discussion in the main text.

A.1 Sets and Group Actions

Given a set S, recall that an equivalence relation is a subset R C S x S such that
for all p, ¢, 7 € S the following conditions hold: 1) (p, p) € R (called “reflexivity”),
2) if (p,q) € R then (¢,p) € R (called “symmetry”), and 3) if (p,q) € R and
(¢,r) € R then (p,r) € R (called “transitivity”). Once R is given, one often
conveniently writes p ~ ¢ instead of (p, ¢) € R. Given p € S, its equivalence class,
[p] C S, is given by all points R-related to p, i.e. [p] := {¢ € S| (p,q) € R}. One
easily shows that equivalence classes are either identical or disjoint. Hence they
form a partition of S, that is, a covering by mutually disjoint subsets. Conversely,
given a partition of a set 5, it defines an equivalence relation by declaring two
points as related iff they are members of the same cover set. Hence there is a
bijective correspondence between partitions of and equivalence relations on a set
S. The set of equivalence classes is denoted by S/R or S/~. There is a natural
surjection S — S/R, p — [p].

If in the definition of equivalence relation we exchange symmetry for antisym-
metry, i.e. (p,q) € R and (q,p) € R implies p = g, the relation is called a partial
order, usually written as p > ¢ for (p,q) € R. If, instead, reflexivity is dropped
and symmetry is replaced by asymmetry, i.e. (p,q) € R implies (¢,p) € R, one
obtains a relation called a strict partial order, usually denoted by p > ¢ for
(p,q) € R.

An left action of a group G on a set S is a map ¢ : G x S — S, such
that ¢(e,s) = s (e = group identity) and ¢(gh,s) = &(g, ¢(h,s)). If instead
of the latter equation we have ¢(gh,s) = ¢(h,d(g,s)) one speaks of a right
action. For left actions one sometimes conveniently writes ¢(g,s) =: g - s, for
right actions ¢(g,s) =: s-g. An action is called transitive if for every pair
(s,8') € S xS there is a g € G such that ¢(g,s) = ', and simply transitive
if, in addition, (s, s’) determine g uniquely, that is, ¢(g,s) = &(¢’,s) for some
s implies ¢ = ¢’. The action is called effective if ¢(g,s) = s for all s implies
g = e (‘every g # e moves something’) and free if ¢(g,s) = s for some s implies
g = e (‘no g # e has a fixed point’). It is obvious that simple transitivity implies
freeness and that, conversely, freeness and transitivity implies simple transitivity.
Moreover, for Abelian groups, effectivity and transitivity suffice to imply simple
transitivity. Indeed, suppose g -s = ¢’ - s holds for some s € S, then we also
have k- (g-s) = k- (¢’ -s) for all k € G and hence g- (k-s) = ¢ - (k-s) by
commutativity. This implies that g -s = ¢’ - s holds, in fact, for all s.

For any s € S we can consider the stabilizer subgroup

Stab(s) :={g € G| ¢(g,s) =s} CG. (164)

If ¢ is transitive, any two stabilizer subgroups are conjugate: Stab(g - s) =
gStab(s)g~—1. By definition, if ¢ is free all stabilizer subgroups are trivial (consist
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of the identity element only). In general, the intersection G’ := ﬂge g Stab(s) C
G is the normal subgroup of elements acting trivially on S. If ¢ is an action
of G on S, then there is an effective action qb of G := = G/G' on S, defined by
o([g],s) := ¢(g, s), where [g] denotes the G’-coset of G’ in G.

The orbit of s in S under the action ¢ of G is the subset

Orb(s) := {¢(g,s) |g€ G} C 5. (165)

It is easy to see that group orbits are either disjoint or identical. Hence they
define a partition of S, that is, an equivalence relation.

A relation R on S is said to be invariant under the self map f : S — §
it (p,q) € R< (f(p), f(¢)) € R. It is said to be invariant under the action ¢
of G on S if (p,q) € R < (¢(9,p),#(g,q9)) € R for all g € G. If R is such a
G-invariant equivalence relation, there is an action ¢’ of G on the set S/R of
equivalence classes, defined by ¢'(g,[p]) := [¢(g,p)]. A general theorem states
that invariant equivalence relations exist for transitive group actions, iff the
stabilizer subgroups (which in the transitive case are all conjugate) are maximal
(e.g. Theorem 1.12 in [32]).

A.2 Structures on Vector and Affine Spaces
A.3 Non Degenerate Bilinear Forms

Consider a vector space V' of dimension n over F (here denoting R or C). Let it
be endowed with a non-degenerate bilinear form w : V x V' — F. No assumptions
regarding symmetries of w are made at this point. The dual space of V' is denoted
by V* whose elements we will denote by Greek letters. The set of linear maps
V — V is denoted by End(V), called the endomorphisms of V', which forms an
associative algebra over F (algebra multiplication being composition of maps).
The set of invertible elements in End(V) (i.e. isomorphisms of V') will be denoted
by GL(V); it forms a group under composition. Generally, composition of maps
will be denoted by o.
The form w defines an isomorphism

wh: Vv, wh() == w(v,-), (166)

with inverse map being denoted by

WV V, o W= (wh) T (167)

so that
wlow! =idy and  w'ow! =idy-. (168)
Recall that “transposition” is a map End(V) — End(V*), denoted by A —
AT and defined through A'(a) := a o A. This map is an anti-isomorphism

of algebras (‘anti’, since it obeys (A o B)T = BT o AT). Different from this
canonically defined notion of transposition is the ‘w-transposition’, which is an
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isomorphism End(V) — End(V'), which we denote by A’ (the dependence on w
being implicitly understood) and which is defined through

w(A'u,v) = w(u, Av) Yu,v e V. (169)

Note that the w-transposed is in End(V') whereas the canonical transposed is in
End(V*). The relations between the two are

At=wloATow! and AT =wloAlouw!. (170)

A.4 Generalized Orthogonal Transformations

A generalized orthogonal transformation of (V,w) is any bijective map ¢ : V. — V
such that w(¢(u), ¢(v)) = w(u,v) for all u,v € V. In this subsection we shall
restrict to symmetric w. Note that any symmetric bilinear form w is uniquely
determined by its quadratic form, i.e. the function @ : V. — F, v — @(v) :=
w(v,v), for we have w(u,v) = 1 (&(u+v) —&(u) —w(v)). It is sometimes useful to
consider generalizations of distance measures by setting d(u,v) := /|0(u — v)].
This is e.g. done in SR, where one speaks of timelike and spacelike distances in
that sense. Now suppose @ is an isometry with respect to d, i.e. d(¢(u), p(v)) =
d(u,v) for all u,v. Consider ¢ defined by ¢(u) := ¢(u) — ¢(0). Clearly ¢ is
an isometry of d if ¢ is an orthogonal transformation with respect to w. Now,
orthogonal transformations are necessarily linear:

Proposition 9. Let w be a non-degenerate symmetric bilinear form on V and
let ¢ : V. — V be an orthogonal transformation with respect to w. Then ¢ is
linear.

Proof. Consider I := w(a¢(u) + bp(v) — ¢p(au + bv), w); surjectivity® allows to
write w = ¢(z), so that I = aw(u, z) + bw(v, z) —w(au+bv,z) =0 for all z € V.
Hence the aforementioned expression for [ is zero for all w € V', which by non-
degeneracy of w implies the linearity of ¢. ad

Particularly simple orthogonal transformations are given by reflections on
non-degenerate hyperplanes. To explain this, let v € V and vt = {w € V|
w(v,w) = 0} C V. vt is a linear subspace of co-dimension one, that is, a
hyperplane. That it be non-degenerate means that w|,. is non-degenerated,
which is easily seen to be the case iff w(v,v) # 0. The reflection at the non-
degenerate hyperplane v is the map

po(x) =2 —2v geat (171)
where for convenience we wrote u - v = w(u,v) and v? := v - v. p, is easily
seen to be an involutive (i.e. p, o p, = idy) orthogonal transformation. If ¢ is
any other orthogonal transformation, the following equivariance property holds:
pop,00p = Po(v)- An important result is now given by

36 Note that we only use surjectivity here, so that the hypotheses for this result may
be slightly reduced.
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Theorem 6 (Cartan, Dieudonné). Let the dimension of V' be n. Any orthog-
onal transformation of (V,w) is the composition of at most n reflections.

Proof. Comprehensive proofs may be found in [32] or [7]. Here we offer a proof
of the weaker result, that any orthogonal transformation is the composition of at
most 2n — 1 reflections. So let ¢ be orthogonal and v € V' so that v? # 0 (which
certainly exists). Let w = ¢(v), then (v + w)? + (v — w)? = 40v? # 0 so that
w + v and w — v cannot simultaneously have zero squares. So let (v F w)? # 0
(understood as alternatives), then p, ., (v) = £w and pyg4(w) = £v. Hence v
is eigenvector with eigenvalue 1 of the orthogonal transformation given by

\_fpewod -0,
qs_{pvopv_*_wod) if(v—w)QZO. (172)

Consider now the orthogonal transformation ¢’ |v . on vt with induced bilinear
form w‘v ., which is non-degenerated due to v? # 0. We now conclude by induc-
tion: At each dimension we need at most two reflections to reduce the problem
by one dimension. After n — 1 steps we have reduced the problem to one di-
mension, where we need at most one more reflection. Hence we need at most
2(n — 1) + 1 = 2n — 1 reflections which upon composition with ¢ produce the
identity. Here we use that any orthogonal transformation in v* can be canoni-
cally extended to span{v} @ v* by just letting it act trivially on span{v}. O

There are several useful applications of this result, most notably in the construc-
tion of the Spin groups. Other applications in SR are discussed in [48].
A.5 Index Raising and Lowering

Let {eq}a=1,... n be a basis of V and {n®},=1,... n its (canonical) dual basis of
V*, which is defined by n%(e;) = 6¢. Using w! and w' one can define the w-duals
of {e,} and {n®} respectively, given by

Na = wh(eq) € V™, (173a)

e = wln)ev , (173b)

so that, writing wa.p = (eq,ep) and w® for the components of the inverse-
transposed matrix (i.e. wqew?® = weaw® = 68),

Na = w(eq) = wan®, (174a)

e = wl(n?) = wey. (174Db)

Using components with respect to the canonical dual bases, so that v = v%e, € V
with w!(v) =: v,n® and a = a,n® € V* with w!(a) =: a®e,, one obtains the
equivalent to (174) in coordinates:
Ve = Vwpa, (175a)
a® = whay. (175b)
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It should be clear from (174) and (175) why the maps w! and w! are called
“index lowering” and “index raising”. Often, if there is no ambiguity as to what
structure w is used, the following notation is employed: Let v € V and o € V*,
then w!(v) =:v” € V* and wl(a) =: of € V.

Finally we remark on the choice of conventions. Comparing e.g. (175a) with
(175b) one notices that one sums over the first index on w for lowering and
over the second index for raising indices (on the bases (174) it is just the other
way round). This is a consequence of the following requirements: 1) raising and
lowering of indices are mutually inverse operations, and 2) the matrix, {w?},
used for raising indices is the transposed inverse of {wyp}. The rationale for the
second condition is the requirement that lowering both indices on {w®} using
{wap} should reproduce {w,} and raising both indices on {w,p} using {w®}
should reproduce {w®}. This enforces 2).

Note again that so far no assumptions were made concerning the symmetries
of w. In the general case there are, in fact, two raising-lowering operations: One
as given above, the other by replacing (166) with @'(v) = w(-,v), i.e. v now
being in the second rather than the first slot. For this second operation we have
all formulae as above with {wa,} and {w?} being replaced by the transposed
matrices. In physical applications w is either symmetric — like in case of the
Minkowski metric — or antisymmetric — like for the 2-spinor metric (symplectic
form). In those cases there is — up to sign in the second case — a unique pair of
lowering and raising operations.

A.6 Linear Frames

A basis f = {ea}a=1,...n of V can be viewed as a linear isomorphism (also
denoted by f), f : F* — V, given by f(v!, -+ ,v") = v%,. With this interpreta-
tion we call the basis f a linear frame. Any frame f induces an isomorphism of
algebras End(F") — End(V), given by A +— Af := foAof~1. If A = {Ab}, then
Af(e,) = Ale,. The standard (linear) action ¢ of GL(F™) on F", ¢(A,z) := Ax,
thereby translates in an f-dependent way to an action ¢/ of GL(F™) on V, de-
fined by ¢f(A,v) := fo ¢(A, f~1(v)); that is, (A,v) — Afv = f(Ax), where
flz) =w.

Let Fy denote the set of frames for V. The general linear group GL(F™) acts
transitively and freely on Fy from the right:

GLV)x Fy = Fy, (A f)—f-A=FfoA. (176)

Proper subgroups of GL(F™) continue to act freely on Fy .

A.7 Affine Spaces

An affine space over the vector space V' is a set Aff(V') together with an effective
and transitive action ¢ of V', considered as Abelian group (group multiplication
being vector addition). Since the group is Abelian, this suffices to imply that
the action is free and simply transitive. One writes ¢(m,v) =: m + v, which
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defines what is meant by “4” between an element of Aff(V') and an element of
V. Any ordered pair of points (p, q) € Aff(V) x Aff(V') uniquely defines a vector
v, namely that for which p = ¢ + v. One writes p — ¢ = v, defining what is
meant by “—” between two elements of Aff(V'). Considered as Abelian groups,
any linear subspace W C V defines a subgroup. The orbit of that subgroup in
Aff(V) through m € Aff(V) is an affine subspace, denoted by W,,, i.e.

Wyp=m+W:={m+w|weW}, (177)

which is an affine space over W in its own right of dimension dim(W). One-
dimensional affine subspaces are called (straight) lines, two-dimensional ones
planes, and those of co-dimension one are called hyperplanes.

A.8 Affine Frames

A basis for Aff(V) is a tuple F' := (m, f), where m is a point in Aff(V) and
f a basis of V. F can be considered as a map F" — Aff(V), given by F(z) :=
f(z) + m (here f is interpreted as linear frame). With this interpretation F is
called an affine frame. We denote the set of affine frames by Fag(v)-

The general affine group of F™ is given in the familiar fashion by the
semi-direct product F” x GL(F™), which acts on F™ in the standard way:
¢ ((a,A),z) — ¢((a,A),z) := A(z) + a. Its multiplication law is given by:

(a1,A1)(az, A2) = (a1 + Ajaz, A1As). (178)

Depending on the choice of a frame F' € Fag (v the action ¢ of F” xGL(F"™) on F"
translates to an action ¢ of F™ x GL(F") on Aff(V) as follows: ¢%'((a, A),p) :=
F o ¢((a,A), F~1(p)); in other words, if F = (m, f) and F(x) = p, we have
OF : ((a,A), p) — F(Az +a) = A (p— m) +m + f(a).

™ x GL(F™) has an obvious right action on Fag vy, given by (g, F') — F-g :=
F o g. Explicitly, for g = (a, A) and F = (m, f), this reads

F-g=(m,f)-(a,A) = (m+ f(a), o A). (179)

A.9 Lie Algebras for Matrix Groups
General Considerations

We first recall the definition of a Lie algebra:

Definition 8. 4 Lie algebra over F (here denoting R or C) is a vector space L
over F endowed with a map (called the “Lie bracket”) L x L — L, (X,Y) —
[X,Y], which for all X,Y,Z € L obeys:

[X,Y] =-[Y, X] (anti-symmetry), (180a)
[aX +Y,Z) =alX, Z] +[Y, Z] (linearity) (180Db)
(X, [V, Z|+ V.2, X]|+ [Z,[X,Y]] =0 (Jacobi identity) . (180c¢)
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A Lie subalgebra L' C L is a linear subspace which becomes a Lie algebra when
the bracket is restricted to L', i.e. if [L’, L] C L’. A Lie subalgebra is called an
ideal if the stronger condition holds that [L’, L] C L. It is easy to see that if L'
is an ideal the quotient L/L’ is again a Lie algebra: just define the bracket of
two cosets as the coset of the bracket of two arbitrary representatives, which is
well defined.

In may cases of interest L is already given as an associative algebra and the
Lie bracket is then defined as commutator: [X,Y]:= X - Y —Y - X. This is e.g.
the case if L C End(V) since, as already mentioned, the endomorphisms of a
vector space V form an associative algebra if the multiplication is taken to be
the composition of maps.

Given a matrix group G C GL(n,F) we consider the set C}(R, G) of all contin-
uously differentiable curves A : R — G such that A(0) = 1,, (unit n X n-matrix).
We define A := 4 A(8)|s=0, the “velocity” of the curve A(s) at the group iden-
tity. We consider the set of all such velocities:

Lie(G) :={A | A€ C}(R,G)} C End(R"). (181)

Proposition 10. Lie(G) is a real Lie algebra.

Proof. First we prove that Lie(G) is a linear space: Let X,Y € Lie(G) and
A,B € CYR,G)) such that X = A and Y = B. Define C € C}(R,G) by
C(s) := A(s) - B(ks), where k € R, then C' = X + kY, showing that Lie(G) is
a vector space over R. Here and below “-” denotes matrix multiplication. Now,
since Lie(G) C End(F"), i.e. lies in an associative algebra, we define the Lie
bracket on Lie(G) as commutator, that is [X,Y]:= X -Y — X - X. This bracket
clearly satisfies conditions (180)). But we still have to show that [X,Y] is in
Lie(G) if X,Y are. That is, we have to show that there is a curve C' € CL(R, G)
such that C' = [X,Y7]. To do this, let again A, B € C}(R,G) be such that X = A
and Y = B. Then the sought for C is given by

Y(r(s)) fors>0,

B (182)
B(r(s)) - A(7(s)) - B! (7(s)) - A™}((s)) for s <0,

= { P ez s

This curve is indeed differentiable at s = 0 (though s — A(y/s) and s — B(/s)
are not). Its right derivative (s > 0) is:

¢ i CO = { [A(7(s)), B(r(s))] A~ (7(5)) B~ (7(s)) }

s—0 S s—0

7—0 T T

— lim { {A(T) —1. Bln- 1"} Al(T)Bl(T)} _X,Y].  (184)
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Its left derivative follows along the same lines, one just exchanges A « B and
replaces s with —s, leading again to [X,Y]. O

Some Special Lie Algebras

Before we restrict attention to the Lorentz group and its inhomogeneous coun-
terpart (sometimes called the Poincaré group), let us describe in general the
situation of which they are special cases.

Consider a vector space V of n dimensions over the field F (R or C). As before,
End(V) denotes the associative algebra of linear maps V +— V. Let GL(V) C
End(V) denote the set of invertible linear maps, i.e. det(f) # 0 (compare (195))
for all f € GL(V).

Given a subgroup G C GL(V), there is a corresponding inhomogeneous group,
IG C IGL(V), given by the semi-direct product of V' (considered as Abelian group
under addition) with G, denoted by V' x G. Its multiplication law is as follows:

(al,Al)(QQ,Ag) = ((11 + Al(a2) R Ao Ag), a; €V A; €G (185)

We endow V' with a non-degenerate bilinear form w : V x V — F, which
we restrict to be either symmetric (e = 1) or antisymmetric (e = —1), that is
w(v,w) = ew(w,v) for all v,w € V. We want to consider the group G C GL(V)
of w preserving maps:

G:={AeGL(V)|w(Av, Aw) = g(v,w) Yo,weV}. (186a)

Using the “index-lowering” map w! : V. — V* v + w(v,-) and its inverse
w! 1 V* — V| the “index-raising” map (cf. Sect. A.2), this can also be written
as

G:={AeGL(V)|wrodow! = (A7)}, (186b)

The Lie algebra Lie(G) is easily obtained by considering curves in G, as
explained in the previous subsection. Using (186) this leads to

Lie(G) : = {X € End(V) | w(Xv,w) + w(v,Xw) =0 Vv,weV}, (187a)
= {X cEnd(V)|woXowl =-XT}. (187b)

Let us describe it more concretely in terms of components. Choose a basis
{€a}a=1..n of V and the corresponding dual basis {n®},=1.., of V*, so that
n®(ep) = 0¢. From (187b) it follows that a general element X e, @ n° € End(V)
lies in Lie(G) iff X, = — € Xpa, where Xy, := Xfw.q. Hence, writing n, := Wapn®
so that 1q(ep) = wap (cf. Sect. A.5), a basis for Lie(G) is given by the in(n — ¢)
vectors

Muyp =€, Qm — €ep DN - (188)

The Lie algebra of the corresponding inhomogeneous group is given by the
linear space V @ Lie(G) and Lie bracket as follows:

[(a1, X1), (a, X2)] = (Xi(a2) — Xa(a1), [X1, Xa]) . (189)
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Hence we obtain Lie(IG) by adding to (188) the n translation generators
T, :=¢q. (190)

Together they span the $n(n 4 2 — ¢)-dimensional Lie algebra Lie(IG), whose

commutation relations easily follow from (188,189,190):

[Mab7 Mcd] = wadec + wbcMad - 6Wac-Z\4bd - 6Wbd]\lac ) (1913)
[Maba Tc] = WbcTa - 6Waccrb 5 (191b)
[T,,Ty] = 0. (191c)

Two special cases of this general setting become relevant in SR:

1 Let V = R* and w symmetric with signature (1,3) (one plus, three minuses).
The technical name of G is then O(1,3). Generally, if V' = R"™ and if w is of
signature (p,q), where p+ ¢ = n, G is called O(p,q). O(p,q) is isomorphic to
O(g,p) and O(n,0) is just the ordinary orthogonal group O(n) in n dimensions.

2 Let V = C? and w antisymmetric. In two dimensions, leaving an anti-
symmetric form invariant is equivalent to having unit determinant. Hence
G = SL(2,C), the group of complex 2 x 2 matrices of unit determinant. The
group SL(2,C) is the double (and also universal) cover of the identity com-
ponent of O(1,3), often denoted by 01(173) or SOT(1,3).

A.10 Exponential Map

Since End(V) form an associative algebra, we can form functions based on ad-
dition and multiplication. Writing X™ for the n-fold composition X o---0 X, we
can define the exponential map

o}

exp : End(V) — End(V), exp(X) := Z % . (192)
n=0 '

Note that the series converges absolutely with respect to the standard norms on
End(V).

Now consider “det” and “trace”, which are the familiar F-valued functions
on End(V):

det(X) := deti,{n*(Aep)}, (193)
trace(X) := n*(4e,), (194)

where {e,} and {n®} is any pair of dual bases (it does not matter which one)
and where det,, is the standard determinant function for matrices. We have

Proposition 11.
det o exp = exp o trace. (195)
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Proof. Assume V to be complex (complexify if V' was real). For X € End(V)
one can then find an eigenbasis, so that with respect to it X is a triangular
matrix, whose diagonal entries are its eigenvalues. Then equation (195) reduces
to the statement, that the product of the exponentials of the eigenvalues is the
exponential of their sum, which is true of course. O

Equation (195) shows that det(exp(X)) > 0 for any X € End(V'). Moreover,
any element A = exp(X) is connected to the identity by a continuous path
s +— exp(sX). Hence the image of End(V') under exp is contained in the identity
component of GL(V), which is given by the invertible linear maps of positive
determinant, denoted by GL™ (V).

Note that the curve s — exp(sX) is a homomorphism from the additive
group R to GL(V'). Conversely, we have

Proposition 12. Let v : R — GL(V) be a homomorphism, i.e. a map that
satisfies

¥0)=1 and ~(s+t)=~(s)ox(t) foralls,teR. (196)
Then v must be of the form ~(s) = exp(sX), where X = 4(0).

Proof. We consider the curve 8(s) := ~(s) o exp(—sX), which satisfies §(0) = 1
and 3(s) = #(s) —~(s) o X. But this is zero, as can be seen from differentiating
v(s+1t) = v(s)ovy(t) with respect to ¢t at ¢ = 0. Hence (s) = 1 for all s, showing
that v(s) = exp(sX). ]

Let us now regard the exponential map restricted to the special Lie subalge-
bras Lie(G) defined in (187). Since

whoexp(X)ow! = exp(w! o X owl) (197)

for all X € End(X), the image of Lie(G) under the exponential map lies in G.
More precisely, since Lie(G) is connected and exp continuous, the image must
also be connected. Since it also contains the identity (1 = exp(0)), the image of
Lie(G) lies in the identity component of G, denoted by G;. Hence we have a map

exp : Lie(G) — G . (198)

It is clear that this map is generally not injective. Consider e.g. the group SO(2)
of planar rotations, which is topologically a circle (S') and whose Lie algebra is
the real line. exp winds the line infinitely often around the circle. But neither is
exp generally onto. A relevant example is given by G = SL(2, C). Its Lie algebra
is given by the space of traceless 2x matrices with complex entries. Now, for
example, none of the matrices

Ay = (01 _“1> a#0 (199)

can be in the image of the exponential map. To see this, first note that, within
SL(2,C), A(a) can be continuously connected to the identity, e.g. by the path
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Aa(s)=<eXp(m) o4 ) (200)

0  exp(—ins)

In fact, SL(2,C) is connected. Suppose now that exp(X) = A, for some traceless
X . The eigenvalues of X are +\ # 0 so that X is diagonalizable. Let T' € GL(2, C)
such that TXT~! = diag(\, —\), then TA,T~! = diag(exp(A), exp(—\)), which
is impossible since both eigenvalues of A, equal —1.

What is however true is that the image of the exponential map covers a
neighborhood of the group identity. This follows from the fact that the derivative
of the smooth map (198) evaluated at 1 € G is non-zero (it is the identity map
Lie(G) — Lie(G)). Hence, by the inverse-function theorem, it has a local smooth
inverse. Moreover, we have the following

Proposition 13. Any A € G is the finite product of elements in the image of
exp, that is, for any A € G there exist X; € Lie(G), i =1,...,k < oo, such that

A=-exp(Xj)o---oexp(Xg). (201)

Proof. We first note that elements of the form (201) obviously form a subgroup
G’ € G; which contains a whole neighborhood U C 1 € Gy, as we have just seen.
Now, for any A € G/, themap L4 : G — G/, B — AB, is a smooth bijection with
smooth inverse L —1. Hence L4 is an open map (sends open sets to open sets)
so that L4 (U) is an open neighborhood of A € Gy. This shows that G' C Gy
is open. Likewise one shows that all cosets of G’ in Gy are open, since they are
obtained as images of G’ under L 4 for some A € G;. But this shows that G’ C Gy
is also closed, since it is the complement of the union of all G’-cosets different
from G’ itself. Being open and closed in the connected set Gy, G’ is necessarily
identical to it. [This argument shows in fact that any neighborhood U of the
identity in a topological group generates the identity component, in the sense
that any element in the identity component is the finite product of elements
from U] ad
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Abstract. The observational basis of quantum theory in accelerated systems is stud-
ied. The extension of Lorentz invariance to accelerated systems via the hypothesis of
locality is discussed and the limitations of this hypothesis are pointed out. The non-
local theory of accelerated observers is briefly described. Moreover, the main observa-
tional aspects of Dirac’s equation in noninertial frames of reference are presented. The
Galilean invariance of nonrelativistic quantum mechanics and the mass superselection
rule are examined in the light of the invariance of physical laws under inhomogeneous
Lorentz transformations.

1 Introduction

Soon after Dirac discovered the relativistic wave equation for a spin % particle [1],
the generally covariant Dirac equation was introduced by Fock and Ivanenko [2]
and was studied in great detail by a number of authors [3]. Dirac’s equation

(1hy* 0o —me)p =0 (1)

transforms under a Lorentz transformation 2’ = Lo‘ﬁ 2P as

P'(2') = S(L)ip(x) , (2)
where S(L) is connected with the spin of the particle and is given by
Sy g = Laﬁ'yﬁ. (3)

The generally covariant Dirac equation can be written as
(i7", = me)y =0, (4)

where V,, = 0, + I, and I, is the spin connection. Let us consider a class of
observers in spacetime with an orthonormal tetrad frame \* (a)’ ie.

gHVXu(a))\V(ﬁ) = M) (8) > (5)
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where 1)(4)(g) is the Minkowski metric tensor. Then in (4), v* is given by v =
)\”(a)'y(o‘) and
i 14 «
Iy = _Z)‘V(a) [A (ﬁ)};# (@) ) (6)

where

i
o(@)B) — 5h(a)m,(ﬁ)] ) (7)

In this way, the generally covariant Dirac equation is minimally coupled to inertia
and gravitation.

The standard quantum measurement theory involves ideal inertial observers.
However, all actual observers are more or less accelerated. Indeed, the whole
observational basis of Lorentz invariance as well as quantum mechanics rests
upon measurements performed by accelerated observers. It is therefore necessary
to discuss how the measurements of noninertial observers are connected with
those of ideal inertial observers. This paper is thus organized into two parts. In
the first part, Sects. 2—4, we consider the basic physical assumptions that underlie
the covariant generalization of Dirac’s equation. The second part, Sects. 5-9,
are devoted to the physical consequences of this generalization for noninertial
frames of reference. In particular, the connection between the relativistic theory
and nonrelativistic quantum mechanics in accelerated systems is examined in
detail. Sect. 10 contains a brief discussion.

2 Hypothesis of Locality

The extension of Lorentz invariance to noninertial systems necessarily involves
an assumption regarding what accelerated observers actually measure. What is
assumed in the standard theory of relativity is the hypothesis of locality, which
states that an accelerated observer is pointwise equivalent to an otherwise iden-
tical momentarily comoving inertial observer. It appears that Lorentz first intro-
duced such an assumption in his theory of electrons to ensure that an electron
— conceived as a small ball of charge — is always Lorentz contracted along its di-
rection of motion [4]. He clearly recognized that this is simply an approximation
based on the assumption that the time in which the electron velocity changes is
very long compared to the period of the internal oscillations of the electron (see
Sect. 183 on page 216 of [4]).

The hypothesis of locality was later adopted by Einstein in the course of the
development of the theory of relativity (see the footnote on page 60 of [5]). In
retrospect, the locality assumption fits perfectly together with Einstein’s local
principle of equivalence to guarantee that every observer in a gravitational field
is locally (i.e. pointwise) inertial. That is, Einstein’s heuristic principle of equiv-
alence, namely, the presumed local equivalence of an observer in a gravitational
field with an accelerated observer in Minkowski spacetime, would lose its op-
erational significance if one did not know what accelerated observers measure.
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However, combined with the hypothesis of locality, Einstein’s principle of equiv-
alence provides a basis for a theory of gravitation that is consistent with (local)
Lorentz invariance.

Early in the development of the theory of relativity, the hypothesis of lo-
cality was usually stated in terms of the direct acceleration independence of
the behavior of rods and clocks. The clock hypothesis, for instance, states that
“standard” clocks measure proper time. Thus measuring devices that conform to
the hypothesis of locality are usually called “standard”. It is clear that inertial
effects exist in any accelerated measuring device; however, in a standard device
these effects are usually expected to integrate to a negligible influence over the
duration of each elementary measurement. Thus a standard measuring device is
locally inertial [6].

Following the development of the general theory of relativity, the hypothesis
of locality was discussed by Weyl [7]. Specifically, Weyl [7] noted that the locality
hypothesis was an adiabaticity assumption in analogy with slow processes in
thermodynamics.

The hypothesis of locality originates from Newtonian mechanics: the acceler-
ated observer and the otherwise identical momentarily comoving inertial observer
have the same position and velocity; therefore, they share the same state and are
thus pointwise identical in classical mechanics. The evident validity of this as-
sertion for Newtonian point particles means that no new assumption is required
in the treatment of accelerated systems of reference in Newtonian mechanics.
It should also hold equally well in the classical relativistic mechanics of point
particles, as originally recognized by Minkowski (see p. 80 of [8]). If all physical
phenomena could be reduced to pointlike coincidences of particles and rays, then
the hypothesis of locality would be exactly valid.

The hypothesis of locality is not in general valid, however, in the case of
classical wave phenomena. Consider, for instance, the determination of the fre-
quency of an incident electromagnetic wave by a linearly accelerated observer.
Clearly, the frequency cannot be determined instantaneously; in fact, the ob-
server needs to measure a few oscillations of the electromagnetic field before a
reasonable determination of the frequency becomes operationally possible. Let A
be the characteristic wavelength of the incident radiation and £ be the accelera-
tion length of the observer; then, the hypothesis of locality is approximately valid
for A <« L. Here L is a length scale that involves the speed of light ¢ and certain
scalars formed from the acceleration of the observer such that the acceleration
time £/c characterizes the time in which the velocity of the observer varies ap-
preciably. In an Earth-based laboratory, for instance, the main translational and
rotational acceleration lengths would be ¢?/gg ~ 1 lt-yr and c¢/f2g ~ 28 AU,
respectively. Thus in most experimental situations A/L is negligibly small and
any possible deviations from the locality hypothesis are therefore below the cur-
rent levels of detectability. Indeed, in the ray limit, A\/£ — 0, the hypothesis of
locality would be valid; therefore, A/L is a measure of possible deviation from
the locality postulate.
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Consider a classical particle of mass m and charge ¢ under the influence of
an external force fey;. The accelerated charge radiates electromagnetic radiation
with a typical wavelength A ~ L, where L is the acceleration length of the
particle.We would expect that a significant breakdown of the locality hypothesis
occurs in this case, since A/L ~ 1 in the interaction of the particle with the
electromagnetic field. The violation of the hypothesis of locality implies that the
state of the particle cannot be characterized by its position and velocity. This
is indeed the case, since the equation of motion of the radiating particle in the
nonrelativistic approximation is given by the Abraham-Lorentz equation

v 2¢*d*v
MG gt ®)
which implies that position and velocity are not sufficient to specify the state of
the radiating charged particle [9].

To discuss quantum mechanics in an accelerated system of reference, it is
therefore useful to investigate the status of the hypothesis of locality vis-a-vis the
basic principles of quantum theory. The physical interpretation of wave functions
is based on the notion of wave-particle duality. On the other hand, the locality
hypothesis is valid for classical particles and is in general violated for classical
waves. This circumstance provides the motivation to develop a nonlocal theory
of accelerated systems that would go beyond the hypothesis of locality and would
be consistent with wave-particle duality. Such a theory has been developed [10]
and can be employed, in principle, to describe a nonlocal Dirac equation in
accelerated systems of reference. Some of the main aspects of the nonlocal theory
are described in Sect. 4.

3 Acceleration Tensor

It follows from the hypothesis of locality that an accelerated observer in Minkowski
spacetime carries an orthonormal tetrad A" ()’ where M 0 = dz* /dr is its four-
velocity vector that is tangent to its worldline and acts as its local temporal
axis. Here 7 is the proper time along the worldline of the accelerated observer.
To avoid unphysical situations, we assume throughout that the observer is ac-
celerated only for a finite period of time. The local spatial frame of the observer
is defined by the unit spacelike axes \* (i) 1 =1,2,3. The tetrad frame is trans-
ported along the worldline in accordance with

d\*

(@) _ g By»
dT - @a )‘ (ﬁ) ) (9)
where
Dop = —Psa (10)

is the antisymmetric acceleration tensor. In close analogy with the Faraday ten-
sor, the acceleration tensor consists of “electric” and “magnetic” components.
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The “electric” part is characterized by the translational acceleration of the ob-
server such that @y; = a;(7), where a; = A#)\”(i) and A* = d)\“(o)/dT is the
four-acceleration vector of the observer. The “magnetic” part is characterized
by the rotation of the local spatial frame with respect to a locally nonrotating
(i.e. Fermi-Walker transported) frame such that ®;; = €;;,2"%, where $2(7) is
the rotation frequency. The elements of the acceleration tensor, and hence the
spacetime scalars a(7) and £2(7), completely determine the local rate of variation
of the state of the observer. It proves useful to define the acceleration lengths
L = c?/a and ¢/§2, as well as the corresponding acceleration times £/c = c/a
and 1/£2, to indicate respectively the spatial and temporal scales of variation of
the state of the observer. Let A be the intrinsic length scale of the phenomenon
under observation; then, we expect that the deviation from the hypothesis of
locality should be proportional to A/L.

It follows from a detailed analysis that if D is the spatial dimension of a
standard measuring device, then D < L [6]. Such devices are necessary for the
determination of the local frame of the accelerated observer. In fact, this circum-
stance is analogous to the correspondence principle: while we are interested in
the deviations from the hypothesis of locality, such nonlocal effects are expected
to be measured with standard measuring devices.

4 Nonlocality

Imagine an accelerated observer in a background global Minkowski spacetime
and let ¢(x) be a basic incident radiation field. The observer along its world-
line passes through a continuous infinity of hypothetical momentarily comoving
inertial observers; therefore, let 1&(7’) be the field measured by the hypotheti-
cal inertial observer at the event characterized by the proper time 7. The local
spacetime of the hypothetical inertial observer is related to the background via
a proper Poincaré transformation ' = Lx + s; hence, ¢'(z') = A(L)Y(z), so
that A = 1 for a scalar field. We therefore assume that along the worldline
(1) = A(T)i(r), where A belongs to a matrix representation of the Lorentz
group.

Suppose that ¥(7) is the field that is actually measured by the accelerated
observer. What is the connection between LTA/( ) and 1&(7’)? The hypothesis of
locahty postulates the pointwise equivalence of W( ) and 1[)(7'), i.e. it requires
that @ (1) = (7). On the other hand, the most general linear relation between

¥ (1) and ¢(7) consistent with causality is

b(r) = )+ [ Ky (1)

where 79 is the initial instant of the observer’s acceleration. Equation (11) is man-
ifestly Lorentz invariant, since it involves spacetime scalars. The kernel K (T 7’)
must be directly proportional to the observer’s acceleration, since U = 1/1 for
an inertial observer. The ansatz (11) differs from the hypothesis of locality by
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an integral over the past worldline of the observer. In fact, this nonlocal part
is expected to vanish for A/£ — 0. The determination of a radiation field by
an accelerated observer involves a certain spacetime average according to (11)
and this circumstance is consistent with the viewpoint developed by Bohr and
Rosenfeld [11].

Equation (11) has the form of a Volterra integral equation. According to
Volterra’s theorem [12], the relationship between ¥ and 1) (and hence %) is unique
in the space of continuous functions. Volterra’s theorem has been extended to
the Hilbert space of square-integrable functions by Tricomi [13].

To determine the kernel K, we postulate that a basic radiation field can
never stand completely still with respect to an accelerated observer. This physical
requirement is a generalization of a well-known consequence of Lorentz invariance
to all observers. That is, the invariance of Maxwell’s equations under the Lorentz
transformations implies that electromagnetic radiation propagates with speed ¢
with respect to all inertial observers. That this is the case for any basic radiation
field is reflected in the Doppler formula, w’ = y(w — v - k), where w = ¢|k|. An
inertial observer moving uniformly with speed v that approaches ¢ measures a
frequency w’ that approaches zero, but the wave will never stand completely
still (w” # 0) since v < ¢; hence, w’ = 0 implies that w = 0. Generalizing this
situation to arbitrary accelerated observers, we demand that if ¥ turns out to
be a constant, then ¢ must have been constant in the first place. The Volterra-
Tricomi uniqueness result then implies that for any true radiation field ¢ in the
inertial frame, the field ¥ measured by the accelerated observer will vary in time.
Writing (11) as

b(r) = Alr)olr) + [ " K(n ) A (12)

we note that our basic postulate that a constant ¥ be associated with a constant
1) implies

A(1o) = A(7) + /T K(r,7)A(r")dr", (13)

where we have used the fact that ¥(ry) = A(70)¢(7). Given A(7), (13) can
be used to determine K(7,7’); however, it turns out that K(7,7') cannot be
uniquely specified in this way. To go forward, it originally appeared most natural
from the standpoint of phenomenological nonlocal theories to postulate that
K(7,7') is only a function of 7 — 7/ [10]; however, detailed investigations later
revealed that such a convolution kernel can lead to divergences in the case of
nonuniform acceleration [14]. It turns out that the only physically acceptable
solution of (13) is of the form [15,16]
dA(T")

K(r,7)=k(r") = — o0 /1_1(7") . (14)

In the case of uniform acceleration, (14) and the convolution kernel both lead
to the same constant kernel. The kernel (14) is directly proportional to the
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acceleration of the observer and is a simple solution of (13), as can be verified
by direct substitution. Moreover, if the acceleration of the observer is turned off
at 7y, then the unique kernel (14) vanishes for 7 > 7¢. Thus for 7 > 74, the
nonlocal contribution to the field in (11) is simply a constant memory of the
past acceleration of the observer that is in principle measurable. This constant
memory is simply canceled in a measuring device whenever the device is reset.

For a scalar field A = 1 and hence the kernel (14) vanishes. As will be
demonstrated in Sect. 8, it follows from the locality of such a field that for
scalar radiation of frequency w, an observer rotating uniformly with frequency
2 will measure ' = y(w — MS2), where M = 0,+1,£2,.... Thus o’ = 0
for w = M {2 and our basic physical postulate is violated: the scalar radiation
stands completely still for all observers rotating uniformly about the same axis
with frequency {2. It therefore follows from the nonlocal theory of accelerated
observers that a pure scalar (or pseudoscalar) radiation field does not exist. Such
fields can only be composites formed from other basic fields. This consequence of
the nonlocal theory is consistent with present observational data, as they show
no trace of a fundamental scalar (or pseudoscalar) field.

4.1 Nonlocal Field Equations

It follows from the Volterra (11) with kernel (14) that

=" —|—/ r(r, 7 (r)dr" (15)
To

where r(7,7') is the resolvent kernel. Imagine that a nonlocal field ¥ exists in

the background Minkowski spacetime such that an accelerated observer with a

tetrad frame A" (o) MeASUTES

=AW . (16)
The relationship between ¥ and ¢ can then be simply worked out using (15),
namely,

b=0+ / " Y (e (17)

0

where 7 is related to the resolvent kernel by
F(r, ") = A7 () (1, 7)A(T) . (18)

It is possible to extend (17) to a class of accelerated observers such that
¥ (x) within a finite region of spacetime is related to a nonlocal field ¥(z) by a
suitable extension of (17). The local field ¢ (z) satisfies certain partial differential
equations; therefore, it follows from (17) that ¥ would satisfy certain Lorentz-
invariant nonlocal field equations. In this way, the nonlocal Maxwell equations
have been derived explicitly for certain linearly accelerated systems [17]. It turns
out that in general the field equations remain nonlocal even after the cessation
of accelerated motion.
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4.2 Nonlocal Electrodynamics

To confront the nonlocal theory with observation, it is useful to derive the phys-
ical consequences of nonlocal electrodynamics in systems that undergo transla-
tional and rotational accelerations and compare the predictions of the theory
with observational data. It turns out that for accelerated systems the experi-
mental data available at present do not have sufficient sensitivity to distinguish
between the standard theory (based on the locality hypothesis) and the non-
local theory. In the case of linearly accelerated systems, it may be possible to
reach the desired level of sensitivity with the acceleration of grains using high-
intensity femtosecond lasers [18,19]. For a uniformly rotating observer in circu-
lar motion, one can compare the predictions of nonlocal electrodynamics with
the nonrelativistic quantum mechanics of electrons in circular atomic orbits or
about uniform magnetic fields in the correspondence limit. If the nonlocal theory
corresponds to reality, its predictions should be closer to quantum mechanical
results in the correspondence regime than those of the standard local theory
of accelerated systems. This turns out to be the case for the simple cases that
have been worked out in detail [20]. Let us now return to the standard physi-
cal consequences of Dirac’s equation in noninertial systems of reference. In the
following sections, emphasis will be placed on the main inertial effects and their
observational aspects in matter-wave interferometry.

5 Inertial Properties of a Dirac Particle

The physical consequences that follow from the Dirac equation in systems of
reference that undergo translational and rotational accelerations have been con-
sidered by a number of authors [21-24]. In particular, the work of Hehl and
Ni [25] has elucidated the general inertial properties of a Dirac particle. In their
approach, standard Foldy-Wouthuysen [26] transformations are employed to de-
couple the positive and negative energy states such that the Hamiltonian for the
Dirac particle may be written as

2

H:5<m02+§n>+ﬂma~m—ﬂ-(L+S) (19)

plus higher-order terms. Here Sma - x is an inertial term due to the translational
acceleration of the reference frame, while the inertial effects due to the rotation
of the reference frame are reflected in —§2 - (L + S).

Before proceeding to a detailed discussion of these inertial terms in Sects. 6
9, it is important to observe that Obukhov [27] has recently introduced certain
exact “Foldy-Wouthuysen” (FW) transformations to decouple the positive and
negative energy states of the Dirac particle. Such a FW transformation is defined
up to a unitary transformation, which introduces a certain level of ambiguity
in the physical interpretation. That is, it is not clear from [27] what one could
predict to be the observable consequences of Dirac’s theory in noninertial systems
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and gravitational fields. For instance, in Obukhov’s exact FW transformation,
an inertial term of the form —1S-a appears in the Hamiltonian [27]; on the other
hand, it is possible to remove this term by a unitary transformation [27]. The
analog of this term in a gravitational context would be %S - g. Thus the energy
difference between the states of a Dirac particle with spin polarized up and down
in a laboratory on the Earth would be %hg@ ~ 10723 eV, which is a factor of
five larger than what can be detected at present [28]. A detailed examination of
spin-acceleration coupling together with theoretical arguments for its absence is
contained in [29].

The general question raised in [27] has been treated in [30]. It appears that
with a proper choice of the unitary transformation such that physical quanti-
ties would correspond to simple operators, the standard FW transformations of
Hehl and Ni [25] can be recovered [30]. Nevertheless, a certain phase ambiguity
can still exist in the wave function corresponding to the fact that the unitary
transformation may not be unique. This phase problem exists even in the nonrel-
ativistic treatment of quantum mechanics in translationally accelerated systems
as discussed in detail in Sect. 9.

6 Rotation

It is possible to provide a simple justification for the rotational inertial term in
the Hamiltonian (19). Let us start with the classical nonrelativistic Lagrangian of
1.2

a particle L = 5mv=—W, where W is a potential energy. Under a transformation

to a rotating frame of reference, v = v’ + £2 x r, the Lagrangian takes the form

L'= %m(v’ +2xr)-w, (20)
where W is assumed to be invariant under the transformation to the rotating
frame. The canonical momentum of the particle p’ = OL'/0v’ = p is an invariant
and we find that H' = H — £2- L, where L = r x p is the invariant angular
momentum of the particle. Let us note that this result of Newtonian mechan-
ics [31] has a simple relativistic generalization: the rotating observer measures
the energy of the particle to be E' = y(E — v - p), where v = 2 X r; therefore,
E=~FE-2-L).

This local approach may be simply extended to nonrelativistic quantum me-
chanics, where the hypothesis of locality would imply that [32]

W(fﬂlat) = ¢(wat) ’ (21)

since the rotating measuring devices are assumed to be locally inertial. Thus
Y'(x',t) = Ry(x',t), where

R = Ten Jo 20)-Tdi" (22)

Here 7' is the time-ordering operator and we have replaced L by J = L + S|,
since the total angular momentum is the generator of rotations [32]. It follows
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that from the standpoint of rotating observers, Hy = ihdy /0t takes the form
H'Y' = ihoy' /Ot, where

H =RHR™'-02-J. (23)

For the case of the single particle viewed by uniformly rotating observers, H’
can be written as
/ 1 / 2 1 2
H=—@p -m2xr)*—-m(2xr) —N-S+W, (24)
2m 2

where —im(42 x r)? is the standard centrifugal potential and —42 - S is the
spin-rotation coupling term [32]. The Hamiltonian (24) is analogous to that of a
charged particle in a uniform magnetic field; this situation is a reflection of the
Larmor theorem. The corresponding analog of the Aharonov-Bohm effect is the
Sagnac effect for matter waves [33]. This effect is discussed in the next section.

7 Sagnac Effect

The term —§2 - L in the Hamiltonian (19) signifies the coupling of the orbital
angular momentum of the particle with the rotation of the reference frame and
is responsible for the Sagnac effect exhibited by the Dirac particle. The corre-
sponding Sagnac phase shift is given by

2
A(I)Sagnac = ?m / 2-dA ) (25)
where A is the area of the interferometer. Equation (25) can be expressed as
2w
AQSagnac = 072 2.-dA ; (26)

where mc? ~ hw and w is the de Broglie frequency of the particle. Equation (26)
is equally valid for electromagnetic radiation of frequency w.

For matter waves, the Sagnac effect was first experimentally measured for
Cooper pairs in a rotating superconducting Josephson-junction interferome-
ter [34]. Using slow neutrons, Werner et al. [35] measured the Sagnac effect
with £2 as the rotation frequency of the Earth. The result was subsequently con-
firmed with a rotating neutron interferometer in the laboratory [36]. Significant
advances in atom interferometry have led to the measurement of the Sagnac ef-
fect for neutral atoms as well. This was first achieved by Riehle et al. [37] and has
been subsequently developed with a view towards achieving high sensitivity for
atom interferometers as inertial sensors [38]. In connection with charged particle
interferometry, the Sagnac effect has been observed for electrons by Hasselbach
and Nicklaus [39].

The Sagnac effect has significant and wide-ranging applications and has been
reviewed in [40].
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8 Spin-Rotation Coupling

The transformation of the wave function to a uniformly rotating system of co-
ordinates involves (¢,r,0,¢) — (t,r,0,¢ + 2t) in spherical coordinates, where
{2 is the frequency of rotation about the z axis. If the dependence of the wave
function on ¢ and ¢ is of the form exp(iM ¢ —iFEt/h), then in the rotating system
the temporal dependence of the wave function is given by exp[—i(E —hM 2)t/h].
The energy of the particle measured by an observer at rest in the rotating frame
is
E =~(E-hM$) , (27)
where v = t/7 is the Lorentz factor due to time dilation. Here AM is the total
angular momentum of the particle along the axis of rotation; in fact, M =
0,+1,42,..., for a scalar or a vector particle, while M F % =0,£1,%2,..., for
a Dirac particle.
In the JWKB approximation, (27) may be expressed as E' = y(E — 2 - J)
and hence
E=v(E-92-L)—~72-8§. (28)
It follows that the energy measured by the observer is the result of an instanta-
neous Lorentz transformation together with an additional term

§H=-—2-8, (29)

which is due to the coupling of the intrinsic spin of the particle with the frequncy
of rotation of the observer [32]. The dynamical origin of this term can be simply
understood on the basis of the following consideration: The intrinsic spin of a
free particle remains fixed with respect to the underlying global inertial frame;
therefore, from the standpoint of observers at rest in the rotating system, the
spin precesses in the opposite sense as the rotation of the observers. The Hamil-
tonian responsible for this inertial motion is given by (29). The relativistic nature
of spin-rotation coupling has been demonstrated by Ryder [41]. Let us illustrate
these ideas by a thought experiment involving the reception of electromagnetic
radiation of frequency w by an observer that rotates uniformly with frequency
£2. We assume for the sake of simplicity that the plane circularly polarized radi-
ation is normally incident on the path of the observer, i.e. the wave propagates
along the axis of rotation. We are interested in the frequency of the wave w’
as measured by the rotating observer. A simple application of the hypothesis of
locality leads to the conclusion that the measured frequency is related to w by
the transverse Doppler effect, w}, = yw, since the instantaneous rest frame of the
observer is related to the background global inertial frame by a Lorentz transfor-
mation. On the other hand, a different answer emerges when we focus attention
on the measured electromagnetic field rather than the propagation vector of the
radiation,

Fay) (1) = Fu N ()N (g » (30)
where F},,, is the Faraday tensor of the incident radiation and A" (@) is the ortho-
normal tetrad of the rotating observer. The nonlocal process of Fourier analysis
of Fia)(g) results in [42]
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W =vwFN2), (31)

where the upper (lower) sign refers to positive (negative) helicity radiation. We
note that in the eikonal limit £2/w — 0 and the instantaneous Doppler result
is recovered. The general problem of electromagnetic waves in a (uniformly)
rotating frame of reference has been treated in [43].

It is possible to understand (31) in terms of the relative motion of the ob-
server with respect to the field. In a positive (negative) helicity wave, the electric
and magnetic fields rotate with the wave frequency w (—w) about its direction
of propagation. Thus the rotating observer perceives that the electric and mag-
netic fields rotate with frequency w — {2 (—w — £2) about the direction of wave
propagation. Taking due account of time dilation, the observed frequency of the
wave is thus y(w — §2) in the positive helicity case and y(w + {2) in the neg-
ative helicity case. These results illustrate the phenomenon of helicity-rotation
coupling for the photon, since (31) can be written as E' = y(E — S - 2), where
E=hw, §= hH and H = +ck/w is the unit helicity vector.

It follows from (31) that for a slowly moving detector v & 1 and

WRwF 2, (32)

which corresponds to the phenomenon of phase wrap-up in the Global Positioning
System (GPS) [44]. In fact, (32) has been verified for w/(27) ~ 1 GHz and
£2/(27) ~ 8 Hz by means of the GPS [44]. For w > (2, the modified Doppler
and aberration formulas due to the helicity-rotation coupling are [45]

W=q[w—H- -2)—v-k|, (33)

k’:k+v—12('y—1)(v~k)v—C%v(w—I:I-Q)U, (34)

and similar formulas can be derived for any spinning particle. Circularly po-
larized radiation is routinely employed for radio communication with artificial
satellites as well as Doppler tracking of spacecraft. In general, the rotation of the
emitter as well as the receiver should be taken into account. It follows from (33)
that ignoring helicity-rotation coupling would lead to a systematic Doppler bias
of magnitude ¢f2/w. In the case of the Pioneer spacecraft, the anomalous ac-
celeration resulting from the helicity-rotation coupling has been shown to be
negligibly small [46].

A half-wave plate flips the helicity of a photon that passes through it. Imag-
ine a half-wave plate that rotates uniformly with frequency {2 and an incident
positive helicity plane wave of frequency wj, that propagates along the axis of
rotation. It follows from (32) that w’ ~ w;, — 2. The spacetime of a uniformly
rotating system is stationary; therefore, w’ remains fixed inside the plate. The
radiation that emerges from the plate has frequency wey and negative helic-
ity; hence, (32) implies that w’ & weout + §2. Thus the rotating half-wave plate
is a frequency shifter: wouy — win &~ —22. In general, any rotating spin flipper
can cause an up/down energy shift given by —2S5 - £2 as a consequence of the
spin-rotation coupling. The frequency-shift phenomenon was first discovered in
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microwave experiments [47] and has subsequently been used in many optical
experiments (see [45] for a list of references).

Regarding the spin-rotation coupling for fermions, let us note that for exper-
iments in a laboratory fixed on the Earth, we must add to every Hamiltonian
the spin-rotation-gravity term

SH~—-S-2+85 2p, (35)

where the second term is due to the gravitomagnetic field of the Earth. That
is, the rotation of the Earth causes a dipolar gravitomagnetic field (due to mass
current), which is locally equivalent to a rotation by the gravitational Larmor
theorem. In fact, £2p is the frequency of precession of an ideal fixed test gyro
and is given by G

2p ~ %[B(J e — Jr?) (36)
where J is the proper angular momentum of the central source. It follows
from (35) that for a spin % particle, the difference between the energy of the parti-
cle with spin up and down in the laboratory is characterized by h{2g ~ 10719 eV
and Af2p ~ 1072% eV, while the present experimental capabilities are in the
10724 eV range [28]. In fact, indirect observational evidence for the spin-rotation
coupling has been obtained [48] from the analysis of experiments that have
searched for anomalous spin-gravity interactions [49]. Further evidence for spin-
rotation coupling exists based on the analysis of muon g — 2 experiment [51].

An experiment to measure directly the spin-rotation coupling for a spin %
particle was originally proposed in [32]. This involved a large-scale neutron in-
terferometry experiment with polarized neutrons on a rotating platform [52].
A more recent proposal [53] employs a rotating neutron spin flipper and hence
is much more manageable as it avoids a large-scale interferometer. The slow
neutrons from a source are longitudinally polarized and the beam is coherently
split into two paths that contain neutron spin flippers, one of which rotates with
frequency 2 about the direction of motion of the neutrons. In this leg of the in-
terferometer, an energy shift 0 H = —25 - {2 is thus introduced. The two beams
are brought back together and the interference beat frequency {2 is then mea-
sured. It is interesting to note that a beat frequency in neutron interferometry
has already been measured in another context [54]; therefore, similar techniques
can be used in the proposed experiment [53].

Some general remarks on the calculation of the phase shift are in order here.
One starts from the relation i dp = —FEdt + p - dx for the phase @(x,t) of the
neutron wave in the JWKB approximation. Integrating from the source (zg,ts)
to the detector (xp,tp), we find

tp Tp
hb(zp,tp) = hd(xs,ts) — | Edt +/ p-dx. (37)
x

ts s

Assuming equal amplitudes, the detector output is proportional to

|6i451 + ei¢2|2 — 2(1 + cos A@) 9 (38)
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where @1 (P5) refers to the phase accumulated along the first (second) beam and
AP = &1 — Po. 1t is usually assumed that the two beams are coherently split at
the source; therefore,

D1(xs,ts) = Pa(xs,ts) - (39)
We thus find .
D
hAP =— AEdt—i—j{p-dw. (40)
ts

In stationary situations, it is possible to assume that E; = Ey = p2/(2m), where
(fori=1,2)
2
B =2
2m

+6H, . (41)

Thus AF = 0 and the calculation of the phase shift (40) can be simply performed
if the perturbations 6 H; and 0 Hy are small. It then follows from (41) that if op
is the perturbation in neutron momentum due to §H such that p — dp is the
“unperturbed” momentum with magnitude pg, then

v-dp=—-0H, (42)

where v is the neutron velocity. Hence, the extra phase shift due to the pertur-
bation is given by

D
Ab— L ?{51, dx = 1/ (—0H,y + 0Hy)dt . (43)
h hJs

Consider, as an example, the Sagnac effect in the rotating frame, where £ =
p?*/(2m) + 6H with 6H = —§2 - L. Thus (43) can be written as h A® = § £2 -
(mr X dr), since L = mr x v. In this way, one immediately recovers (25). The
approach described here was originally employed for the calculation of the phase
shift due to the spin-rotation coupling in a uniformly rotating system in [32].

In nonstationary situations, such as the proposed experiment using a rotating
spin flipper, AE # 0 and hence there is a beat phenomenon in addition to a
phase shift. In fact, it follows from the analysis of that experiment [53] that
AE = —hf2 for t > tou, when the neutron exits the spin flippers. Hence A®
contains 2(tp — tout) in addition to a phase shift.

It is important to mention briefly the modification of spin-rotation coupling
by the nonlocal theory of accelerated observers (Sect. 4). Equation (27) implies
that £’ can be positive, zero or negative. When E’ = 0, the wave stands com-
pletely still with respect to the static observers in the rotating system. This is
contrary to the basic postulate of the nonlocal theory; therefore, the only mod-
ification in (27) occurs for the E/ = 0 case. This circumstance is discussed in
detail in [20].

9 Translational Acceleration

Before treating quantum mechanics in translationally accelerated systems, it
proves useful to digress here and discuss the transition from Lorentz invariance
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to Galilean invariance in quantum mechanics. What is the transformation rule
for a Schrodinger wave function under a Galilean boost (¢t = t/,& = o’ + Vt)?
It follows from Lorentz invariance that for a spinless particle

$(z) = ¢' (') , (44)

where ¢ is a scalar wave function that satisfies the Klein-Gordon equation

m2c?
(D + 2 ) ¢(x)=0. (45)
To obtain the Schrédinger equation from (45) in the nonrelativistic limit, we set
"77LC2
¢(z) = (@, t)e™" n " (46)
Then, (45) reduces to

R _, de h? 0%p
- — =ih— — —-— . 47
2mV P T 2me? a2 (47)

Neglecting the term proportional to the second temporal derivative of ¢ in the
nonrelativistic limit (¢ — 00), we recover the Schrédinger equation for the wave
function ¢.

Under a Lorentz boost, (44) and (46) imply that

2 2
jme” ¢ me= 4/
= h

p@,t)e™ "t = ¢ (@ )™ (48)

where )
tzy(t’—l—CZV%l:’) . (49)

It follows from ) ) )
_ 2

tt’c2<V'm'+2Vt')+O(c4) (50)

that in the nonrelativistic limit (¢ — 00),
o, t) = ' F V=V (@l 1) (51)

This is the standard transformation formula for the Schrédinger wave function
under a Galilean boost.

On the other hand, we expect from equations (2) and (44) that in the absence
of spin, the wave function should turn out to be an invariant. Writing (48) in
the form

o 7”.(_'2

- mc?
o, t)e "t = [ (x ' )e’ R

(=t)]gmimet (52)

we note that the nonrelativisitic wave function may be assumed to be an invariant
under a Galilean transformation

1/1(33,15) = 1//(33/,” ) (53)
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where ) 2
Yl t) = gz, t), (@ 1) = FVE Vg g gy (54)

That is, in this approach the phase factor in (51) that is due to the relativity of
simultaneity belongs to the wave function itself.

The form invariance of the Schrodinger equation under Galilean transfor-
mations was used by Bargmann [55] to show that under the Galilei group, the
wave function transforms as in (51). Bargmann used this result in a thought
experiment involving the behavior of a wave function under the following four
operations: a translation (s) and then a boost (V') followed by a translation (—s)
and finally a boost (—V') to return to the original inertial system. It is straight-
forward to see from (51) that the original wave function ¢(x, t) is related to the
final one ¢'(x,t) by

p(@,t) =TV (@,1) . (55)

The phase factor in (55) leads to the mass superselection rule, namely, one cannot
coherently superpose states of particles of different inertial masses [55,56]. This
rule guarantees strict conservation of mass in nonrelativistic quantum mechanics.
The physical significance of this superselection rule has been critically discussed
by Giulini [57] and more recently by Greenberger [58]. The main point here
is that only Lorentz invariance is fundamental, since the nonrelativistic limit
(¢ — o0) is never actually realized.

It should be clear from the preceding discussion that no mass superselec-
tion rule is encountered in the second approach based on the invariance of the
wave function (53). It follows from the hypothesis of locality that the two dis-
tinct methods under discussion here carry over to the quantum mechanics of
accelerated systems [59].

Let us therefore consider the transformation to an accelerated system

t
z=x +/ V(t)dt", (56)
0

where @ = dV/dt is the translational acceleration vector. Starting from the
Schrodinger equation Hip = ihdy /0t and assuming the invariance of the wave
function, ¥(x,t) = ¢'(2’,t), as in the second approach, we find that ' (2, t) =
Uip(x',t), where

U=enrloVE)pd (57)

If follows that ¢’ satisfies the Schrodinger equation H'v)' = ihov)' /Ot with the
Hamiltonian

H =UHU'-V(t)-p, (58)

where p is the invariant canonical momentum. Writing H = p?/(2m)+ W, where
W is the invariant potential energy, we find
1

1
%(p —mV)? — §mV2 + WY =ih

oY’
ot -

(59)

Let
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wl(ﬂﬁl,t) — ez%[V:D/+%fot V2(t’)dt’]@/(wl’t) ’ (60)
then ¢/ (', t) satisfies the Schrodinger equation
h? oy’
(—MV'Q—i—ma-ax'—&—W) o =ih ;; , (61)

where V' = V follows from (56). It is important to recognize that ¢'(2’,t) is
the wave function from the standpoint of the accelerated system according to
the first (Bargmann) approach. Here the acceleration potential ma - ', where
—V'(ma - x’') = —ma is the inertial force acting on the particle, corresponds to
the inertial term that appears in (19). The existence of this inertial potential has
been verified experimentally by Bonse and Wroblewski [60] using neutron inter-
ferometry. In connection with the problem of the wave function in the accelerated
system — i.e. whether it is ¢’ or 1)’ — a detailed examination of the experimen-
tal arrangement in [60] reveals that this experiment cannot distinguish between
the two methods that differ by the phase factor given in (60). Specifically, the
interferometer in [60] oscillated in the horizontal plane and the intensity of the
outgoing beam was measured at the inversion points of the oscillation at which
the magnitude of acceleration was maximum but V' = 0; therefore, the phase
factor in question was essentially unity. To conclude our discussion, it is inter-
esting to elucidate further the physical origin of this phase factor using classical
mechanics [32].

Under the transformation (56), v = v’ + V(¢) and the Lagrangian of a
classical particle L = {muv? — W, with L(z,v) = L'(2/,v'), becomes L' =
%m(v' + V)2 — W in the accelerated system. In classical mechanics, there are
two natural and equivalent ways to deal with this Lagrangian. The first method
consists of writing [31]

1 2 dF

L/:§mv/ —ma-:c/—W—i—E, (62)

where F' is given, up to a constant, by
1 t
F=mV()-a + gm [ Vi) (63)
0

The total temporal derivative in (62) does not affect the classical dynamics
in accordance with the action principle and hence we confine our attention to
L) = %mv'2 —ma -’ — W. The momentum in this case is p’ = mv’ and the
Hamiltonian is thus given by

12
p

Hj = — '+ W, 64
= - tma-a+ (64)
which corresponds to the Hamiltonian in the Schrodinger (61). The second
method deals with L’ without subtracting out dF'/dt. In this case, the momen-
tum is the invariant canonical momentum p = m(v’ + V') and the Hamiltonian

is
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e V4+Ww 65
—%—p' + ) (65)

which corresponds to (58) and the Hamiltonian in the Schrédinger (59).

In classical mechanics, the two methods represent the same dynamics. Quan-
tum mechanically, however, there is a phase difference, which can be easily seen
from the path integral approach. That is,

(@ t) = YerS (66)

where S’ is the classical action,

S = /L’(w’,v’)dt. (67)

It follows from (62) that
§'=8+F, (68)

where S7 is the action corresponding to L}. Using (68) and the fact that
o (x' t) = XetSt | (69)

we find v
v(alst) = et (@ 1) (70)
in agreement with (60).
It would be interesting to devise an experiment of the Bonse-Wroblewski [60]

type that could distinguish between the two methods and hence remove the
phase ambiguity in the treatment of translationally accelerated systems.

10 Discussion

The main observational consequences of Dirac’s equation in noninertial frames
of reference are related to the Sagnac effect, the spin-rotation coupling and the
Bonse-Wroblewski effect. These inertial effects can be further elucidated by in-
terferometry experiments involving matter waves. In particular, a neutron inter-
ferometry experiment has been proposed for the direct measurement of inertial
effect of intrinsic spin. Moreover, neutron interferometry experiments involving
translationally accelerated interferometers may help resolve the phase ambiguity
in the description of the wave function from the standpoint of a translationally
accelerated system.
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Abstract. A summary of some lines of ideas leading to model-independent frame-
works of relativistic quantum field theory is given. It is followed by a discussion of the
Reeh-Schlieder theorem and geometric modular action of Tomita-Takesaki modular
objects associated with the quantum field vacuum state and certain algebras of observ-
ables. The distillability concept, which is significant in specifying useful entanglement
in quantum information theory, is discussed within the setting of general relativistic
quantum field theory.

1 Introduction

About 100 years ago, new insights into the physical world were gained which
at that time had a new quality to them. The new feature was that certain
phenomena could successfully be described by means of concepts which have
little in common with the behavior of physical objects familiar from everyday
experience. The first of these insights we are referring to was Planck’s quantum
hypothesis in his account of black-body radiation. The second was Einstein’s
theory of special relativity. (See, e.g., [45] for a historical presentation of these
developments.)

It took a while — more or less, two decades — until quantum theory reached
the form of (non-relativistic) quantum mechanics which is nowadays taught in
courses at universities. A further step was the combination and unification of
the principles of quantum mechanics and special relativity. The endeavors to
accomplish this step took still longer — and, rigorously speaking, they haven’t
come to an end even today. And the synthesis of quantum mechanics and general
relativity into some form of a quantum theory of gravity lies still well ahead of
us.

The theory unifying the principles of quantum mechanics and special relativ-
ity has come to be called relativistic quantum field theory, or QFT, for short. To
delineate the basic characteristics of QFT, let us recall first the basic features of
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Quantum mechanics, which provides a conceptual foundation for describing
physical processes at small scales (in space and time), and is therefore rele-
vant in the microscopic domain and accounts for the stability of atoms and
molecules. Moreover, its (experimentally testable) predictions are of statis-
tical nature, with the characteristic feature of uncertainty relations.

Special relativity, on the other hand, can be viewed as providing a conceptual
foundation for the description of space and time, relevant in particular in
the context of processes involving very high energies and momenta. Among
its principal features are the absence of preferred inertial frames (observers),
i.e. Poincaré-covariance, the speed of light as maximal velocity of signal
propagation, and matter (mass)-energy equivalence.

The fundamental aspects of both quantum mechanics and special relativity find
a unification in the form of

Quantum field theory, which consequently provides a theoretical framework
for the description of processes with very high energy/momentum ex-
change at very small time/length scales; it is therefore relevant in the sub-
microscopic domain and accounts for the properties and the stability of ele-
mentary particles, predicts annihilation and creation of particles, new types
of charges, anti—charges, PCT and spin—statistics theorems, fluctuations and
long-range correlations.

While this is not the place to give a review of the historical development of QFT
and its interplay with the development of elementary particle physics, involving
also new concepts such as renormalization, internal group symmetries, gauge
theory, spontaneous symmetry breaking, Higgs mechanism etc., there are some
comments to be made at this point about the various sub-branches of QFT and
its status as a physical theory, as well as its status as concerns mathematical
consistency of the framework.

Let us begin by mentioning the by far largest branch of QFT, which we re-
fer to as perturbative QFT. The idea here is to look at concrete quantum field
models, mostly in the form of a Lagrangean for an — initially — classical field
theory model involving certain types of matter and gauge fields. Typically, the
fields interact in some way and this leads to the occurrence of multilinear (poly-
nomial) expressions of the fields in the field equations. One would then like to
have “quantized” solutions of the field equations. It is not a priori clear what
this means, but the pragmatic way to proceed is as follows. One starts with the
interaction-free part of the field equation (neglecting the multilinear, interact-
ing parts of the field equations) and constructs “quantized” solutions for that
in the form of “free” quantum fields — where it is in most of the relevant cases
known what this means. Then one regards the interacting expressions of the
(now quantized, free) fields as a perturbation of the free dynamics, and tries to
construct solutions to the full dynamics by means of a perturbation series in the
parameter specifying the strength of the interaction (the coupling parameter).
At this point there arises the difficulty that the various multilinear expressions
in the fields appearing in the perturbation series are not well defined at the level
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of (free) quantized fields, and that they need to be “renormalized”. If this is
possible systematically to all polynomial orders upon introducing only finitely
many parameters (to be determined experimentally), one calls the quantum field
model under consideration (perturbatively) renormalizable. Once the renormal-
ization parameters are determined experimentally, predictions of the quantum
field model can be compared with experimental data e.g. obtained in scatter-
ing experiments with elementary particles — up to a given order in the coupling
parameter of the perturbation series.

The successes of perturbative quantum field theory in comparison with exper-
iment are truly impressive. The numerical agreement of theoretical predictions
and experimental data is in many cases of the in the range of 8 significant figures
or better, and also properties of particles whose existence was predicted by QFT
prior to observation, like in the case of the W* and Z° bosons in the electroweak
interactions, are in excellent agreement with experimental findings. (See [34, 68|
for the various aspects of perturbative QFT.)

However, from a more fundamental point of view, perturbative QFT is not
fully satisfactory. The perturbation series by which one attempts to approximate
the full interacting quantum field dynamics won’t converge, and then it is un-
clear if there is a solution to the quantized field equations at all. This provokes
the question at which order in the coupling parameter the perturbation series
ought to be truncated to yield acceptable agreement with experiment, and this
question remains so far unanswered within perturbative quantum field theory.
Moreover, the number of renormalization parameters which have to be deter-
mined by experiment and are not derivable within perturbation theory are quite
large for physically realistic quantum field models (of the order of about 20 in
the case of the standard model), and this is regarded as a considerable drawback
as concerns the predictive power of perturbative QFT.

Hence, there clearly is room for approaches to QFT (and elementary particle
physics) other than by perturbative QFT. Let me point out three basic branches.
One idea is that theories such as the standard model are simply not rich enough
and/or do not include all interactions (such as gravity), and that a richer theory
should be considered in the first place (first at the level of a “classical field
theory” then quantized, maybe at the level of perturbative QFT), with the hope
that the richer symmetry structure constrains the amount of free parameters
considerably. Grand unified theories, and string theory, can be seen in this light.

The next branch is constructive quantum field theory, where one attempts to
construct solutions to the quantized, interacting field equations mathematically
rigorously. This branch of QFT is much smaller than those mentioned previously,
but has had quite impressive successes which are partly documented in [27,53].
The mathematical difficulties one is faced with in constructive QFT are immense,
not least by the circumstance that it is often not entirely clear what is actually
meant by a solution to a quantized, interacting field equation (we will soon come
back to this point). Nevertheless, interacting quantum field models have been
rigorously constructed in spacetime dimensions 2 and 3. The case of a rigorous
solution to quantized field equations for models regarded as physically relevant
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remains open in 4 spacetime dimensions and is still an area of active research.
The Clay Institute of Mathematics awards a million dollars for the solution of
this problem. (There is also a branch of QFT which is known as lattice gauge
theory, and which can be placed somewhere between perturbative QFT and
constructive QFT. The interested reader is referred to [44] for more information
about it.)

Finally, there is yet another branch of QFT, commonly called axiomatic
quantum field theory, although this labeling is to some degree misleading. The
basic idea is that one wishes to formulate and analyze the properties which are
thought to be common to all physically realistic quantum field models. This is
on one hand indispensable to make the problem of rigorous construction of in-
teracting quantum field models a mathematically well-defined problem, on the
other hand it is also difficult in the absence of rigorously constructed interacting
quantum field models in 4 spacetime dimensions as a guidance. To begin with,
the task is to find a mathematical structure which encodes the basic principles
of quantum mechanics and special relativity, and which subsumes the known
rigorously constructed quantum field models where these principles are imple-
mented (e.g. for free quantum fields, or for interacting quantum fields in lower
spacetime dimension). This task was taken up initially by Wightman and oth-
ers (see [8,37,60]) from a point of view involving mainly distribution theory,
and by Haag and Kastler [28,29] using the mathematical theory of operator
algebras. Seen from a mathematician’s perspective, the latter approach turned
out to be more fruitful. In fact, there are many rigorous and deep results about
the mathematical structure of (model-independent) quantum field theory in the
operator algebraic framework. The reader might like to consult [1, 3, 28] for a
comprehensive review.

The present contribution is, in fact, placed within the framework of axiomatic
QFT. In the next section, we will sketch how one can combine the principles of
quantum mechanics and of special relativity in a mathematical structure which
more or less is “common to all quantum field models”. Then we will present
the “Reeh—Schlieder—theorem” and discuss some of aspects of it. The Reeh—
Schlieder—theorem is a strong mathematical statement about the ubiquity and
complexity of vacuum fluctuations in quantum field theory, regardless of the
particular quantum field theoretical model considered: It is a consequence of
first principles such as locality (causal propagation), stability of the vacuum, and
covariance. Then we will discuss a mathematical structure arising in connection
with the Reeh-Schlieder-theorem: Geometric modular action. While discovered
already in 1975 by Bisognano and Wichmann [7], this mathematical structure has
in the recent years given rise to many new insights into quantum field field theory
which we will briefly discuss. In a sense, it unifies the mathematical domains
of quantum mechanics — operator algebras — and of special relativity — affine
geometry — completely. Moreover, it opens very interesting new perspectives.

We will then proceed to another topic where the Reeh-Schlieder-theorem
plays again a prominent role: In discussing aspects of entanglement in the frame-
work of relativistic QF'T. This part of the present contribution is essentially a
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summary of parts of a recent joint work with R. Werner [67]. We will present a
variant of the distillability concept of bipartite systems in quantum field theory.
Furthermore, we will quote our result stating that the vacuum state (as well as
any relativistic thermal equilibrium state) is distillable over arbitrary spacelike
distances.

Taking up a line of thought mentioned at the very beginning of this introduc-
tion, we should like to point out that also in the realm of phenomena described
by quantum field theory one encounters theoretical propositions which at first
sight appear implausible because of their highly counterintuitive character. The
Reeh—Schlieder—theorem serves as an example, as well as distillability of the vac-
uum state. However, careful statement of the concepts and careful analysis of
their consequences, together with proper use of adequate mathematical methods,
will bring us closer to an understanding of these novel situations and, ultimately,
their experimental testing. Thus, we will need to collect also some mathematical
concepts and results which are not necessarily in every theoretical physicist’s
toolbox. Nevertheless, we have tried to keep the amount of formalities at a min-
imum and to make this contribution as self-contained as possible, hoping that
everyone familiar with quantum mechanics, special relativity and the rudiments
of quantum field theory will be able to follow this contribution without undue
strain.

2 From Quantum Mechanics and Special Relativity
to Quantum Field Theory

Let us once more recall the basic features of quantum mechanics, this time at
a more formal level. The theory of quantum mechanics says that a quantum
mechanical system is described by:

[0 H : a Hilbert space

O R C B(H) : a *-algebra of operators, where:
— A= A* € R is interpreted as an observable
— For ¢ € H with ||¢|| = 1, the quantity

(A)y = (¥, AY)

is interpreted as the expectation value of the observable A in the state
given by ¥. More generally: For p = trace-class operator on ‘H with p > 0,
trace(p) = 1, we interpret (A), = trace(p A) as expectation value of A in
the state given by p.

We need to explain some notation and terminology appearing here. First
note that by Hilbert space we mean a complex-linear Hilbert space. The scalar
product of two vectors 1, ¢ € H is denoted (¢, ¢), and ||[¢||* = (¢, ¢). By B(H)
we denote the set of all bounded linear operators A : H — H. A subset R of
B(H) (which may, but need not, coincide with B(H)) is a x-algebra if, given
A and B in R and A, € C, the operators A\A + uB, AB and A* are again
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contained in R, where A* is the adjoint operator. Hence, a quantum mechanical
system is described by specifying its state Hilbert space H and its algebra of
observables R.

There are a few remarks to be made:

(2.1)

(2.2)

(2.3)

(2.4)

One might take the point of view that the description of a quantum me-
chanical system requires also the specification of dynamics, e.g. in the
form of a Hamiltonian operator H acting in /. Furthermore, one may
also require that the quantum system admits states of lowest energy for
H (“ground states”) [or that the spectrum of H is bounded below], or
thermal equilibrium states, since the sudden decay of matter which would
otherwise occur (for quantum systems not having these properties) is not
observed in real systems. We shall ignore aspects of dynamics for the mo-
ment, but will come back to this point later in the discussion of quantum
field theory.

It is tacitly assumed that R is non-abelian, i.e. that AB # BA holds for
some A and B in R, as otherwise there are no uncertainty relations which
are characteristic of quantum theory.

One may wonder if the setting presented here is general enough since
R contains only bound operators, while in quantum mechanics of single
particles observables like position or momentum are represented by un-
bounded operators as a consequence of the canonical commutation rela-
tions. Employing the functional calculus, however, one may pass e.g. from
the unbounded operator P representing the observable “momentum” to
the bounded operator f(P), which is bounded when f is a bounded real
function on R, and which represents the observable “f(momentum)”. This
shows that it is in general no loss of physical information to work only with
bound operators as observables; moreover, unbounded operators can be re-
garded as suitable limits of sequences of bounded operators. Working with
bounded operators has considerable advantages as far as the mathemat-
ical analysis is concerned, since subtle domain problems that plague the
rigorous manipulation of unbounded operators are avoided.

One may also wonder why we have not simply taken R = B(H), the
standard case in quantum mechanics of a single particle. The reason is that
we would like to allow greater flexibility, making it possible to consider also
subsystems of a larger, ambient system. An example, occurring often in
quantum information theory, is the case H = H; @ Hz with R = B(H1)®1
modeling a subsystem of the full system whose algebra of observables is
given by B(H1 ® Ha) = B(Hi1) ® B(Hz). We will encounter a similar
situation later. In discussions of model-independent properties of quantum
field theories, R often means the algebra of observables measurable — and
in this sense, localized — in a proper subregion of Minkowski spacetime, as
we will discuss below.

Having thus collected the basics of the formal framework of quantum me-
chanics, we turn now to special relativity. We will be very brief in recalling its
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basic formal ingredients. The theory of special relativity states that all physical
events can be collected in a catalogue which has the structure of a 4—dimensional
affine space M, where each point in M represents a (possible) event. There is a
metric 7 of Lorentzian signature on M; that is, one can choose identifications of
M with R* in such a way that, with respect to the standard coordinates of R*,
7 is represented by the diagonal matrix diag(1, —1,—1, —1). The choice of such
an identification is also referred to as fixing of an inertial frame. With respect to
a fixing of an inertial frame (inducing an orientation an a time—orientation), one
can introduce the proper orthochronous Poincaré group %1, which is the unit
connected component of the full Poincaré group ‘B, defined as the group of all
invertible affine transformations of M leaving n invariant. We assume from now
on that an inertial frame has been fixed. Any L € B (or ‘I?L) decomposes as a
semidirect product of A € £ (or EL), the Lorentz group (or its unit connected
component) and a € T = R*, the group of translations, according to

Lr=(Aa)x=Az+a, z€M=R

The reader is referred to the contribution by D. Giulini in this volume for a
full discussion of special relativity, Minkowski spacetime and the Poincaré group
(alternatively, see e.g. [59]).

The theory of special relativity states that the description of a physical sys-
tem is equivalent for all inertial observers, i.e. in arbitrary inertial frames. Put
differently, the description of physical processes should be covariant with respect
to proper, orthochronous Poincaré transformations. More formally, this means:

Suppose a quantum system is modeled by (R, H). Let p be a density
matrix and A an observable with respect to a given inertial frame. If L €
‘,BL then there corresponds, with respect to the L-transformed inertial
frame, a density matrix py and observable Ay to p and A, respectively,

such that
<AL>PL = <A>p : (1)

One can add some mathematical precision, requiring that the maps taking A to
Ap and p to pp are one—to—one and onto, i.e. bijective. Following Wigner, one
may think of elementary systems where R = B(H), and then one can conclude:

There is a unitary representation
Bl 5L UL)
of the universal covering group of ‘Bl on H, such that

Ap =U(L)AU(L)", pr=U(L)pU(L)",

where ‘331 5L L€ ‘Bl is the canonical projection. Moreover, if
suitable assumptions about the continuity of the maps A — Ay, p — pr
are made — and we tacitly make this assumption — then one can conclude
that the unitaries U(L) depend continuously on L.
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This result is known as the Wigner-Bargmann-theorem, which actually holds
under somewhat weaker assumptions than expressed in (1); it is sufficient to
consider as observables 1-dimensional projections A = |¢)(¢)| and likewise, 1-
dimensional projections p = |¢)(¢| as density matrices, and to replace (1) by the
weaker requirement

(ALY o] = (A,

We refer to the original articles by Wigner [70] and Bargmann [2] and to [28,55,
60] for considerable further discussion.

The Wigner-Bargmann—theorem states that, in the case of an (elementary)
quantum system compatible with the covariance principle of spemal relativity,
the state Hilbert space H carries a unitary representation of ‘}3 ., the universal
covering group of the proper orthochronous Poincaré group, implementing the
change of inertial frames. The appearance of a unitary representation of the
universal covering group instead of the proper orthochronous Poincaré group
itself is due to the fact that (1) fixes only a unitary representation of ‘}31 up
to a phase, but this can be lifted to a proper unitary representation of ‘1~3L
The significance of this was clarified by Wigner’s analysis of the irreducible
unitary representations of ‘331 having positive energy, thereby making the term
“elementary system” precise. The Hilbert spaces supporting these irreducible
unitary representations (“one—particle spaces”) correspond to spaces of solutions
of linear wave equations, like the Klein—-Gordon, Dirac or Maxwell equations in
the simplest cases. The mass and the spin (or helicity) of these wave equations
is a distinguishing label for the irreducible unitary representations of 531_

Wigner’s analysis reveals some structural elements of quantum mechanical
systems compatible with the principles of special relativity, but not all, in par-
ticular the aspect of a “quantized field” hasn’t appeared yet. To see how this
aspect comes into play, one usually takes a complementary route: Consider a
typical ‘Blfcovariant classical system; i.e. a classical field subject to a linear
wave-equation. The electromagnetic field provides the prime and archetypical
example, but let us consider here a much simpler example, the scalar Klein-
Gordon field p(r), z € M = R*, obeying the following equation of motion:

9 0
<77” Dk D +m2> P@) =0

where m > 0 is a constant. Such a classical field can be viewed as a Hamiltonian
system with infinitely many degrees of freedom, and one may therefore try and
quantize it by regarding it as a “limit” of a Hamiltonian system with N degrees
of freedom as N — oo, and taking as its quantized version the “limit” of the
quantized systems with N degrees of freedom as N — oo. In the case of the Klein-
Gordon field, the classical field p(2°, x), z = (20, &) € RxR3, at time-coordinate
20 (with respect to an arbitrary but fixed inertial frame) can be approximated
by a discrete lattice of coupled harmonic oscillators with canonical coordinates
q,\W(xO) at the lattice site
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where a > 0 is the lattice spacing. To the discrete lattice system one can associate
the quantum system of coupled harmonic oscillators (at lattice spacing a, there
are N ~ 1/a% of them), where the canonical classical coordinates ¢y, (z°) and
conjugate momenta pj,,, (x°) become operators Q.. (2°) and Py, (2°) obeying
the canonical commutation relations. In the limit as ¢ — 0 and N — oo, one
obtains for each f,h € C§°(R?) the field operators

o0, f) = _lim > Quu () f(@( pv))a’,
’ PWINZ

0 ¢, _ . 0

@ f) = lm AZ Py (a°) f(2(N, 1, v)) -
N8

For a detailed discussion of this construction, cf. [33]. To summarize, we find

the following formal correspondences (where we use the shorthand j or ¢ for the

index triple Auv, and occasionally drop the time-argument z°):

Classical Mechanics Quantum Mechanics
Phase-space fncts Operators
q15---59k,P1,-- -9k Q17"'7Qkapl7"'7pk
Poisson brackets: Commutators:
{aj:pe} =05 (Qj, Pe] = ihdje
Classical Field Theory Quantum Field Theory
field can. conj. momentum
pa’x) w2’ x)
020, f) = [z f(x)p(a®, ) &(20, f), (2", h): operators in H
f e 5 (R?)
Approximation
>2;4i(@) f(®()a® — [Pz (2’ x)
= Poisson brackets: Commutators:
{o(@% f),m(a® h)} = [ Pz f(x)h(z)|[2(2°, f), (2%, h)] = ik [ dx f(2)h(z)

So far we have introduced field operators @(x°, f) and their canonically con-
jugate momenta I1(z°, h), at fixed inertial frame—coordinate time z°. They are
“smeared” against the spatial argument  with test-functions f and h in Cp(R3?).
Without smearing, the density-like quantities ®(z°, ) and IT(z°, ) cannot be
interpreted as operators on a Hilbert space as a consequence of the canonical
commutation relations — the entry in the lower right corner of the just tabled
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scheme — but only as quadratic forms. This is due to the distributional charac-
ter of the (2, &) and I1(2°, x), whence the equal-time canonical commutation
relations are often written in the form

(20, ), IT(2°, 2')] = ihid(x — ) .

It is quite useful to introduce, for test-functions F € C§°(R*) distributed over
open subsets of Minkowski spacetime, the field operators

P(F) = /d4m F(2°,2)d(2°, x) = /d:ro D(2°, fro), fool(x) = F(2%, ).

These field operators can be rigorously interpreted as unbounded (and for real-
valued F, selfadjoint) operators on a suitable domain of a Hilbert space H which
arises as the bosonic Fock space over the one—particle space of solutions to the
Klein—-Gordon equation with positive energy. This one-particle space carries an
irreducible, unitary representation of ‘I?L which lifts to a unitary representation
of ‘531 on H. Let us denote this representation by U, since it is actually a rep-
resentation of ‘Iﬂ in this case, as for every linear field equation of integer spin.
Then one finds that covariance holds in the form of

U(L)®(F)U(L)* =®(FoL™Y), LePl, FeCPRY);

moreover, one also has

o 0

o (" =— 2 F) = FeCP®R* 2
(7 gm0 + ) F) =0, FeCE@®). )
and there holds also the covariant form of the canonical commutation relations,
[D(F)), d(F)] = ihG(Fy, ), Fi, Fy € C°(RY), (3)

with the “causal Green’s function”

d3p - ~
G(Fy, Fz) = Im Fi(w(p), —p) F2(w(p), —p)
rs W(P)

w(p) = Vp2+m?, F = Fourier-transform of F

which vanishes whenever the supports of F} and F5 are causally separated.

We shall not elaborate on the mathematical details related to the Fock space
operators ¢(F') since this is all well-documented in the literature (see, e.g., [8,49].
Rather we should make the remark at this point that the properties of the
operators @(F'), interpreted as Fock space operators, may serve as a blue-print
of a general concept of a (in this case, scalar) “quantum field”, as soon as they
are abstracted from properties pertaining to the model of the Klein-Gordon field,
i.e., the equation of motion (2). The ensuing conceptual framework for a general
scalar quantum field are represented by the “Wightman axioms”, which we list
now, not paying too much attention to full mathematical rigor (see [8,37,60] for
a more detailed exposition of these matters).



Vacuum Fluctuations in Quantum Information Theory 143

i) 3 a Hilbert space H with a dense domain D C H, so that all ¢(F) are
well-defined operators on D, and ®(F)* = &(F)

ii) F > &(F) is complex linear and suitably continuous

iii) Covariance: There is on H a unitary representation

Bl > L U(L), with U(L)D C D, so that
U(L)B(F)U(L)* =®(FoL™") (&) =P(L(x)) )

iv) Locality, or relativistic causality:
If the supports of the test-function F; and Fy are causally separated, the
corresponding field operators commute:

[@(Fl)a@(Fz)] =0

v) Spectrum condition/positivity of the total energy:
Writing U(1,a) = " it holds (in the sense of expectation values) that

Py =P} =P -P}>0, P,>0

vi) Existence (and uniqueness) of the vacuum:
302 € D, ||| =1, so that U(L)f2 = {2 and this vector is uniquely
determined up to a phase factor.

vii) Cyeclicity of the vacuum:
The domain D is spanned by vectors of the form

Q, B(F)Q, S(F)D(F:)RQ,..., B(Fy) - (F,)02, ...

As indicated above, the just given collection of conditions tries to capture the
essential properties of a “quantum field”. We notice that, compared to the prop-
erties of the Klein-Gordon field, the commutation relations (3) have been gener-
alized to the condition of spacelike commutativity, and the reference to a specific
field equation has been dropped. Spacelike commutativity says that there should
be no uncertainty relations between observables measured at causal separation
from each other, and thus gives expression to the principle that there is no oper-
ational signal propagation faster than the speed of light. It should be remarked
here that there is no difficulty in generalizing the above stated conditions to
fields of general spinor- or tensor-type [8,37,60]. The basic difference is that for
fields of half-integer spin, spacelike commutativity of the field operators must
be replaced by spacelike anti-commutativity in order to ensure consistency with
the other conditions: This is, basically, the content of the spin-statistics theo-
rem. In this sense, a field carrying half-integer spin does not have the character
of an observable — typically, it also transforms non-trivially under gauge trans-
formations. Observable quantities, and related quantum field operators fulfilling
spacelike commutation relations, can be built from half-integer spin quantum
fields by forming suitable bilinear expressions in those fields. Once more, we
must refer to the literature for a fuller discussion of these matters [8].
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Furthermore, it is worth noting that the type of Poincaré covariance iii),
implemented by a unitary representation of ‘BL, makes an explicit appearance
here, completely in the spirit of the Wigner-Bargmann theorem. (For fields of
half-integer spin type, this must be replaced by a unitary representation of ‘3317
in keeping with the circumstance that such fields are not directly observable.)

Some new aspect appears here which we have already alluded to in remark
(2.1) and which made an implicit appearance elsewhere when we referred to
irreducible unitary representations of ‘Iﬂ having positive energy. This is the

aspect that the time-translations which the unitary representation U of ‘331
implements on the Hilbert space H are interpreted also as dynamical evolutions
of the system, and that these dynamical evolutions be stable in the sense that
their corresponding energy is always non-negative and that there should be a
common state of lowest energy, the vacuum state. This state is “void of stable
particles” but, as we shall see later, not void of correlations, and these have
actually a rich structure.

It is the subtle interplay of dynamical stability in the form of the spectrum
condition together with locality (or spacelike anti—commutativity in the case of
quantum fields carrying half-integer spin) which is responsible for this richness.
The condition of cyclicity is mainly made for mathematical convenience; it says
that all state vectors of the theory can be approximated by applying polynomials
of all field operators on the vacuum. In case of the presence of a vacuum vector,
this property could be sharpened to irreducibility, i.e. that already all observables
can be approximated by polynomials in the field operators. This is actually
equivalent to clustering of vacuum expectation values [8,37,60]. However, in a
more general situation where there is no vacuum state for all time-evolutions
(time-shifts), but e.g., a thermal equilibrium state, irreducibility doesn’t hold in
general.

While the Wightman framework captures apparently many essential aspects
of (observable) quantum fields and is so far not in obvious conflict with experi-
ences gained in constructive quantum field theory, there are some points which
lead one to trade this framework for a still more abstract approach. Let me try to
illustrate some of these points. The first is of a more technical nature: In handling
the — in general — unbounded field operators @(F'), subtle domain questions come
into play whose physical significance is often not entirely clear. More seriously,
it might happen that the field operators @¢(F') do not correspond to directly
observable quantities, and then it is doubtful why they should be regarded as
the basic objects of the formal description of a physical theory, at least from an
operational point of view. Somehow related to this shortcoming, the @(F') aren’t
invariants of the experimentally accessible quantities in the following sense: In
general, one can find for a given Wightman field F' — &(F) other Wightman
fields F — &(F), subject to different field equations and commutation relations,
which yield the same S-matrix as the field F' — &(F) ([10], see also [51] for
a more recent instance of this fact). Apart from that, gauge—carrying quantum
fields do not fit completely into the framework. Assuming them to be local fields
in the same sense as described above often leads to difficulties with Hilbert space
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positivity, as e.g. in quantizing free electrodynamics. This difficulty can be cured
symptomatically by allowing H to carry an inner product that is not positive
definite [8]. However, such a complication makes technical issues, such as domain
questions, even much worse.

Hence, there is considerable motivation to base the description of a relativistic
quantum system on observable quantities and to abandon the mainly classically
inspired concept of (a quantized version of) a field. In the case that F' +— @(F) is
an observable quantum field, one can pass to a description of this system which
emphasizes the localization of observables in space and time rather than their
arrangement into “field strengths”: One can form, for each open subset O of
Minkowski spacetime M = R*, a x—algebra of bounded operators

R(O) = {*-algebra generated by all A = f(?(F)),
f:R— R bounded, F = F has support in O} (4)

The properties that one finds for the family of x—algebras R(O), O ranging
over the bounded subsets of R?*, form the conditions of the operator algebraic
approach to general quantum field theories according to Haag and Kastler [28,
29]. These conditions read as follows.

a) Isotony: O; C Oy = R(0;) C R(O2).

b) Covariance: A € R(O) < U(L)AU(L)* € R(L(0)),
or U(L)YR(O)U(L)* = R(L(O)).

c) Locality: If the space—time regions O; and O are causally separated, then
the corresponding operator algebras R(O1) and R(O2) commute elementwise:

A€R(01), BER(O;) = [A,B]=0

d) Spectrum condition and existence of the vacuum: Asbeforein v) and
vi), see page 143.

e) Cyclicity of the vacuum: {A2: A e |J,R(0)} is dense in H.

f) Weak additivity: If | J, O; contains O, then the algebra generated by the
R(0;) contains R(O).

We should emphasize that, adopting this framework as basis for a description
of a special relativistic quantum system, the crucial structural ingredient is the
assignment of not just a single operator algebra to the system but of operator
algebras R(O) to the individual sub-regions O of Minkowski spacetime. Each
R(O) is generated by the observables which can be measured at times and loca-
tions in O, and therefore one refers to the observables in R(O) as those localized
in O, and to the R(O) as local observable algebras. If actually there is a quantum
field F' +— @(F) generating the local observable algebras as in (4), then one may
view it as a “coordinatization” of the family {R(O)}oc s, the latter being the
“invariant” object, in analogy to a manifold built up from coordinate systems.

A set of data ({R(O)}ocm, U, £2) fulfilling the conditions just listed is called
a quantum field theory in vacuum representation. One can consider other rep-
resentations of a quantum field theory, e.g. thermal representations, where the
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spectrum condition imposed on U and the vacuum vector condition imposed on
{2 are replaced by the condition that the state (£2|.]{2) be a thermal equilibrium
state. We will encounter such a situation later.

The reader might wonder at this point how charge carrying quantum fields
fit into this operator algebraic version of quantum field theory where up to
now only observable quantities have been mentioned. The answer is that charge
carrying field operators arise in connection with yet other Hilbert space represen-
tations of the quantum field field theory, i.e., of the family of operator algebras
{R(0)}ocnm. States in these Hilbert space representations cannot be coherently
superposed with any state in the vacuum representation. These charged represen-
tations are therefore called superselection sectors. The analysis of superselection
sectors and the full reconstruction of a compact gauge group and of associated
charge carrying quantum field operators from the structure of superselection
sectors can be regarded as being one of the greatest achievements in axiomatic
quantum field theory so far, but we shall not pause to explore these matters and
refer the reader to [21,28,54] for further information.

It should be pointed out that all quantum fields obeying linear equations of
motion provide examples for the operator algebraic framework, by the relation
(4) [for integer spin fields; for half-integer spin fields, one must instead define
R(O) by first constructing suitable bilinear expressions in the fields]. Moreover,
there are examples of interacting quantum fields in 2 and 3 spacetime dimensions
and these are compatible with the operator algebraic framework via (4).

The interplay between the spectrum condition and locality puts non—trivial
constraints on quantum field theories and leads to interesting general results
about their structure. Prime examples are the PCT theorem, the spin—statistics
relation (cf. [8,28,60]) and geometric modular action. About the latter, perhaps
less familiar, but highly fascinating issue we have more to report in the following
section.

3 The Reeh—Schlieder—Theorem
and Geometric Modular Action

In 1961, Helmut Reeh and Siegfried Schlieder showed that the conditions for
a quantum field theory of Wightman type, given above, lead to a remarkable
consequence [50]. Namely, let O be any non-void open region in Minkowski
spacetime, and denote by P(O) the x—algebra generated by all quantum field
operators @®(F') where the test—functions are supported in O. Then the set of
vectors P(0){2, 2 denoting the vacuum vector, is dense in the Hilbert space H.
In other words, given an arbitrary vector ¢y € H, and € > 0, there is a polynomial

Aol+ Y B(Fiy) - B(Fy, ;) (5)
G kj <N

in the field operators, with A\¢g € C and F ; € C5°(0O), such that

Y=ol + Y B(Fry)-&(Fy, ;)R] <e. (6)
Gk <N
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In the operator algebraic setting of Haag and Kastler, the analogous property
states that the set of vectors R(0)f2 = {Af2 : A € R(O)} is dense in H whenever
O is a non-void open set in M; equivalently, given ©» € H and € > 0, there is
some A € R(O) fulfilling

16— AQ|| <. (7)

This result by Reeh and Schlieder appears entirely counter—intuitive since it
says that every state of the theory can be approximated to arbitrary precision
by acting with operators (operations) localized in any arbitrarily given spacetime
region on the vacuum. To state it in a rather more drastic and provocative way
(which T learned from Reinhard Werner): By acting on the vacuum with suitable
operations in a terrestrial laboratory, an experimenter can create the Taj Mahal
on (or even behind) the Moon!

One might thus be truly concerned that this unusual behavior of relativistic
quantum field theory potentially entails superluminal signaling. However, despite
the fact that such propositions have been made, this is not the case (see [17,32,56]
for some clarifying discussions). We will also turn to aspects of this below in
Sect. 4. A crucial point is that the operator A = A, in (7) depends on ¢ (and
likewise, the polynomial (5) in (6) depends on €), and while [|A.£2|| will be
bounded (in fact, close to 1) for arbitrarily small € (as follows from (7)), it will
in general (in particular, with our drastic Taj Mahal illustration) be the case
that A. doesn’t stay bounded as € — 0, in other words, || A.|| diverges as € tends
to 0.

In keeping with the standard operational interpretation of quantum theory
[41], ||Ael|/||Acf2]] is to be viewed as the ratio of cost vs. effect in the attempt
to create a given state (Taj Mahal on the Moon) by local operations (in a
laboratory on Earth, say) [28]. In other words, upon testing for coincidence
with the “Taj Mahal state ¢)”, it takes on average an ensemble of || A¢||/|| 42|
samples failing in the coincidence test to find a single successful coincidence.
And in our illustration, the ratio ||Ac||/||Acf2|| will be an enormous number. A
rough estimate can be based on the decay of vacuum correlations in quantum
field theory. The order of magnitude of that decay is approximately given by
e~ %X where d denotes the spatial distance of the correlations and \. is the
Compton wave length of the stable particles under consideration; then 1/ e/ e
is a rough measure for [|A¢||/||Acf2|| (when € is very small compared to 1).
Taking for instance electrons as stable particles, and the distance Earth—-Moon
for d, one obtains an order of magnitude of about 10719* for e=¢/A<. This shows
that one can hardly construe a contradiction to special relativity on account of
the Reeh—Schlieder—theorem.

Nevertheless, for distances that are comparable to the Compton wavelength,
the Reeh—Schlieder—theorem does predict a behavior of the correlations in the
vacuum state which is in principle experimentally testable, and is of truly quan-
tum nature in the sense that they entail quantum entanglement over subsystems,
as will be seen later in Sect. 4.

We will complement the previous discussion by a couple of remarks.
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(3.1)

(3.2)

R. Verch

The mathematical cause for the Reeh-Schlieder theorem lies in the spec-
trum condition, which entails that, for each v in the Hilbert space of a
quantum field theory’s vacuum representation, the function

(al, A ,an) — <"Ll), U(al)AlU(ag)Ag s U(an)AnQ>, Aj € R(O), a; € R4 s
(8)
is the continuous boundary value of a function which is analytic in a conical
subregion of C*". Hence, if the expression (8) vanishes when the a; are in
an arbitrarily small open subset of R*, then it vanishes for all aj € R4,
Together with weak additivity one can conclude from this that any vector
¢ which is orthogonal to R(O){2 is actually orthogonal to | J, R(O)§2 and
hence, by cyclicity of the vacuum vector, ¥ must be equal to 0.
There are many other state vectors £ € H besides the vacuum vector for
which the Reeh-Schlieder theorem holds as well, i.e. for which R(O)¢ =
{A¢ : A € R(O)} is a dense subset of H whenever O C M is open and
non-void. In fact, one can show that there is a dense subset X of H so
that every & € X has the property that R(O)¢ is dense in H as soon as
O C M is a non-void open set [20]. Now, every element £ € X (assumed
to be normalized) induces a state (expectation value functional)

we(A) = (6, A¢), AeR(RY),

and owing to the Reeh-Schlieder property of the vectors £ € X, we will
have long-range correlations, meaning that generically

we(AB) # we(A)we(B)

for A € R(Oa) and B € R(Op) even if the spacetime regions O and
Og are separated by an arbitrarily large spacelike distance. However, even
though the set of vectors ¢ inducing such long-range correlations is dense
in the set of all state vectors in H, there are in general also very many un-
correlated states. In fact, under very general conditions it could be shown
that, as soon as a pair of (finitely extended) spacetime regions O and
Ogp separated by a non-zero spacelike distance is given, together with a
pair of vectors {x and {p in ‘H inducing states we, and we, on the local
observable algebras R(Ox) and R(Og), respectively, there is a state vector
1 € H inducing a state w;, on R(R*) with the property

wn(AB) = we, (A)weg (B), A€ R(0Oa), BeR(Os).

That is to say, in restriction to the algebra of observables associated to
the region Oa U Ogp the state w, coincides with the (prescribed) product
state induced by the pair of states we, and we, which has no correlations
between the subsystems R(Oa) and R(Op). We should like to refer the
reader to [16,64] for considerable discussion on this issue.

There are states £ € X for which the Reeh-Schlieder correlations are much
stronger that in the vacuum (2, and in such states the correlations are
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sufficiently strong so that they can be used for quantum teleportation
over macroscopic distances as has been demonstrated experimentally [26].
While this is perhaps intuitively less surprising than for the case of the
vacuum state since the states £ have some “material content” to which
one could ascribe the storage of correlation information, it should be kept
in mind that also here the correlations are non-classical, i.e. they manifestly
exemplify quantum entanglement.

(3.4) In the Haag-Kastler setting, local commutativity and the Reeh-Schlieder
theorem together imply that any local operator A € R(O), O open and
bounded, which annihilates the vacuum: Af2 = 0, must in fact be equal to
the zero operator, A = 0. As a consequence, for the vacuum vector {2 (as
well as for any other £ € X having the Reeh-Schlieder property) it holds
that

(2,A*A) >0

for all A € R(O) with A # 0, O open and bounded. This may be inter-
preted as the generic presence of vacuum fluctuations; every local counting
instrument will give a non—zero expectation value in the vacuum state.
This is, actually, a situation where relativistic quantum field theory de-
viates from quantum mechanics. (Quantum mechanics needs to postulate
the existence of fluctuations as e.g. in the semiclassical theory of radiation
to account for spontaneous emission.)

A related mathematical argument shows that quantities like the energy
density will fail to be pointwise positive in the quantum field setting, in
contrast to their classical behavior. Yet, the spectrum condition puts lim-
itations to the failure of positivity. For this circle of questions, we recom-
mend that the reader consults the review article [24].

Now, in order to turn to the discussion of “geometric modular action”, we need to
introduce some notation. We consider a generic von Neumann algebra R acting
on a Hilbert space H, together with a unit vector {2 € H which is assumed to
be cyclic and separating for R. To explain the terminology, R is a von Neumann
algebra acting on H if R is a weakly closed (in the sense of convergence of
expectation values) #-subalgebra of B(H) containing the unit operator. One can
show that this is equivalent to the property that R coincides with its double
commutant R”, where the commutant C’' of a subset C of B(H) is defined as
C'={B € B(H) : BC = CBV C € C}, and the double commutant is then
defined by C” = (C’)’. One says that 2 € H is cyclic for R if RS2 is dense
in H — in view of our previous discussion, this is the same as saying that the
Reeh-Schlieder property holds for {2, with respect to the algebra R. Moreover,
one says that {2 is separating for R if A € R and A2 = 0 imply A = 0, and this
is equivalent to (2, A*Af2) > 0 for all A € R different from 0. One can in fact
show that 2 is cyclic for R if and only if {2 is separating for R’, and vice versa.
Given a von Neumann algebra R on a Hilbert space H and a cyclic and
separating unit vector, {2 € ‘H, for R, there is a canonical anti-linear operator

S:R2—RN, AN — S(AN) = A*?
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associated with these data. By cyclicity of {2 for R, the set R2 = {A2: A € R}
is a dense linear subspace of H, so the operator is densely defined; furthermore,
to assign the value A*f2 to the vector Af? in the domain of S is a well-defined
procedure in view of the assumption that (2 is separating for R. The anti-
linearity of S is then fairly obvious. What is less obvious is the circumstance
that the operator S is usually unbounded (provided H is infinite-dimensional).
Nevertheless, one can show that S is a closable operator and thus the closure of
S (which we denote here again by S) possesses a polar decomposition, i.e. there
is a unique pair of operators J and A so that S can be written as

S =JAlY?

and where J : H — H is anti-linear and fulfills J?> = 1 while A = S*S is
positive (and selfadjoint on a suitable domain, and usually unbounded). This is
nothing but the usual polar decompositon of a closable operator, with the slight
complication that the operator S is, by definition, anti-linear instead of linear.
See, e.g., [11] for further information.

The operators J and A are called the modular conjugation, and modular op-
erator, respectively, corresponding to the pair R, (2. Often, J and A are also
referred to as the modular objects of R, (2. Their properties have been investi-
gated by the mathematicians Tomita and Takesaki and hence they appear also
under the name Tomita—Takesaki modular objects. The important properties of
J and A which were discovered by Tomita and Takesaki (see, e.g., [9, 11, 65]
for a full survey of the mathematical statements which we make in what fol-
lows) are, first, that the adjoint action of J maps R onto its commutant R':
A€ R & JAJ € R'. This is written in shorter notation as JRJ = R’. One
also has that J{2 = 2. Secondly, since A is an invertible non-negative selfadjoint
operator, In(A) can be defined as a selfadjoint operator by the functional cal-
culus, and hence one can define a one-parametric unitary group A% = e#n(4)
t € R, on H, called the modular group of R and (2. It has the property that
its adjoint action leaves R invariant, i.e. A € R < ATAA™" € R, or simply
APRA™® = R. Moreover, A*f) = (2 holds for all t € R. A third property
relates to the spectral behavior of the unitary group {A%},cg. Namely, the state
wo(A) = (2, A2) on R fulfills the KMS (Kubo-Martin-Schwinger) boundary
condition with respect to the adjoint action of A, ¢t € R, at inverse temperature
=1

Let us explain the terminology used here. If R is a von Neumann algebra
modeling the observables of a quantum system and {o}+cg is a one—parametric
(continuous) group of automorphisms of R modeling the dynamical evolution of
the system, then a density matrix state w,(A4) = trace(pA) on R is said to fulfill
the KMS boundary condition with respect to {0y }rer (shorter: is a KMS state for
{ot}+er) at inverse temperature 5 > 0 provided that the following holds: Given
any pair of elements A, B € R, there exists a function F4p which is analytic on
the complex strip S = {t+in:t € R, 0 < n < §}, and is continuous on the
closure of the strip Sg, with the boundary values

Fap(t) =wy(0:(A)B), Fap(t+if) =w,(Boy(A)), teR.
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For a quantum mechanical system with a Hamilton operator H such that e ##
is a trace—class operator (8 > 0), one can form the density matrices

1
S )
P trace(e=AH)

and one can show that the corresponding Gibbs states w,s are KMS states at in-
verse temperature (3 for the dynamical evolution given by o;(A) = e Ae=#H
Haag, Hugenholtz and Winnink [30] have shown that states of an infinite quan-
tum system — being modeled by R and {o;}+cr — which are suitably approxi-
mated by Gibbs states of finite subsystems, are under very general conditions
also KMS states, and thus the KMS boundary condition is viewed as being
characteristic of thermal equilibrium states.

Therefore, if wp, is a KMS state with respect to the (adjoint action of the)
modular group {A%},;cr of R,2, this signalizes that there is some relation to
physics provided that {A®};cg can be interpreted as dynamical evolution of a
quantum system. This is not always the case, but the converse always holds true:
Suppose that a quantum system dynamical system consisting of R and {o¢}+cr
and a KMS state w, at inverse temperature 3 > 0 is given. Then one can pass
to the GNS (Gelfand-Naimark-Segal) representation associated with R and w,,.
This is a triple (7?, H?, £2°) where H? is a Hilbert space, 7” is a representation of
R by bounded linear operators on H” (which may differ from the “defining” rep-
resentation of R that is pre-given since the elements of R act as bounded linear
operators on a Hilbert space H) and 2” is a unit vector in H? which is cyclic for
7 (R) and with w?(A) = (027, 7°(A)2*). In this GNS representation, {o}tcr
is implemented by the (rescaled) modular group {A*/P},cp corresponding to
7P(R)" and 2°: 7P (0, (A)) = A/ Brr(A)A=/5,

Tomita—Takesaki theory has had a considerable impact on the development
of operator algebra theory. Owing to its relation to thermal equilibrium states,
it has also found applications in quantum statistical mechanics. It took longer,
however, until a connection between Tomita—Takesaki modular objects and the
action of the Poincaré group was revealed in the context of relativistic quantum
field theory. Such a connection was established in the seminal work of Bisog-
nano and Wichmann [7]. To explain their result, let (20,2, 22, 23) denote the
coordinates of points in Minkowski spacetime in some Lorentzian frame. Then
let W = {z = (2%,21,2%,23) € R* : 2! > 0, —a! < 2° < 2!} denote the
“right wedge region” with respect to the chosen coordinates. Moreover, we shall
introduce the following maps of Minkowski spacetime:

j : (mO’xl’x27x3) = (_xO’ _I1a$27$3)

which is a reflection about the spatial 22-23 plane together with a time-reflection,
and
cosh(f) —sinh(#) 0 0
—sinh(#) cosh(d) 00
0 0 10f°
0 0 01

A1(0) = hER,

the Lorentz boosts along the z'-axis, which map W onto itself.
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Now consider a quantum field theory of the Haag—Kastler type (in vacuum
representation), where it is also assumed that the local algebras of observables
R(O) are generated by a Wightman-type quantum field F +— &(F) as in (4). Tt
will also be assumed that the R(O) are actually von Neumann algebras, so that
one has R(O) = R(0)” for open, bounded regions. Then one can also built the
algebra of observables located in the wedge region W,

RW)={AeR(O):0cW}".

We will denote by J the modular conjugation and by {A%®};cg the modular
group, respectively, associated with R(W) and the vacuum vector (2. These are
well-defined since the vacuum vector is, by the Reeh—Schlieder—theorem, cyclic
and separating for R(W). With these assumptions, Bisognano and Wichmann [7]
found the following remarkable result.

Theorem The following relations hold:

At = U(A1(2nt))

JR(0)J = R(j(O)), moreover,
JO(F)J = P(Foj),

JU(L)J =U(joLoj), LeP.

Here, U denotes the unitary representation of the Poincaré group belonging to
the quantum field theory under consideration, and we have written U (A (27t))
for the unitary representation of the Lorentz boost A;(27t).

The remarkable point is that by this theorem, the modular conjugation and
modular group associated with R(W) and {2 acquire a clear—cut geometric mean-
ing. Moreover, since the adjoint action of J involves, in its geometric meaning,
a time and space reflection, it induces a PCT symmetry in the following way:

The rotation D3 3y by m = 180° in the (22, 23) plane is contained in the proper,
orthochronous Poincaré group, and

JoDp3 =Degzoj=Pl:o— —x

is the total inversion.

Then © = JU(D(2,3)) is a PCT operator: © is anti-unitary and fulfills 62 =1,
and

o1 =0

OR(0)6 = R(PT(0))
OD(F)O = &(F o PT)
OU(L)® =U(PToLoPT).

Because of the geometric significance of the modular objects J and { A%}, one
also says that the Bisognano—Wichmann theorem is an instance of “geometric
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modular action” (although this term is actually used also in a wider context).
The concept of “geometric modular action” has been used quite fruitfully in the
analysis of general quantum field theories over the past years and has led to
remarkable progress and insights. We cannot get into this matter in any depth
and instead we refer the reader to the comprehensive review by Borchers [9]; we
will only comment on a few aspects of geometric modular action by way of a
couple of remarks.

(3.5)

(3.7)

Because of A" = U(A;(27t)), the vacuum state functional (£2, . §2) re-
stricted to R(W) is a KMS state, i.e. a thermal equilibrium state. More
precisely, an observer following the trajectory

) = M) |

0

will register the (restriction of the) vacuum state along his or her trajec-
tory as a thermal equilibrium state at absolute temperature

B ha
¢ orke”’

where here we have explicitly inserted A, Boltzmann’s constant k£ and the
velocity of light ¢. This is called the Fulling-Unruh-effect [25,66]. It has
been noted by Sewell [58,61] that a similar form of geometric modular
action for quantum fields on the Schwarzschild-Kruskal spacetime can be
viewed as a variant of the Hawking effect.

The relation of Tomita—Takesaki objects to the action of the Poincaré
group which is displayed by the Bisognano-Wichmann theorem is only
realized if the observable algebras with respect to which the Tomita-
Takesaki objects those belonging to wedge regions — i.e. any Poincaré-
transform of W. For observable algebras R(O) belonging to bounded
regions, the corresponding modular objects have in general no clear geo-
metric meaning. An exception is the case of a conformal quantum field
theory when O is a double cone (see [9] and literature cited there).

If a is a lightlike vector parallel to the future lightlike boundary of W, let

J, = modular conjugation of R(W + a), {2
Then one can show that
U(-2a) = JoJa ,

i.e. the modular conjugations encode the translation group — together
with the spectrum condition. Since the modular group of R(W) induces
the boosts, it appears that the complete unitary action of the Poincaré
group can be retrieved from the modular objects of observable algebras
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belonging to a couple of wedge regions in suitable position to each other,
with a common vacuum vector. And indeed, a careful analysis has shown
that this is possible under general conditions [9,38]. This opens the pos-
sibility to approach the problem of constructing (interacting) quantum
field theories in a completely novel manner, where one starts with a couple
of von Neumann algebras together with a common cyclic and separating
vector, and where the associated modular objects fulfil suitable relations
so that they induce a representation of the Poincaré group. See [14,57]
for perspectives, first steps and results around this circle of ideas.

(3.8) It should also be pointed out that geometric modular action can be un-
derstood in a more general sense than above where the modular objects
associated with the vacuum and algebras of observables located in wedge-
regions induce point-transformations on the manifold — in our present
discussion, always Minkowski spacetime — on which the quantum field
theory under consideration lives. A more general criterion of geometric
modular action would, e.g., be the following: Given a family of observable
(von Neumann) algebras { R(O)}ocar indexed by the open (and bounded)
subsets of a spacetime manifold M, and a vector {2 in the Hilbert space
representation of that family, one can try to find a sub-family {R(O)}4 ik
(where K is a collection of subsets of M, sufficiently large so that a base of
the topology of M can be generated by countable intersections and unions
of members in K, say) with the property that the adjoint action of the
modular conjugation J; of R(O), 2, where O is any element of K, maps
the family {R(O)}ée 7 onto itself. This would be a generalized form of
geometric modular action. In the light of the Bisognano—Wichmann theo-
rem, for the case of Minkowski spacetime one would take the collection of
wedge regions as K and the vacuum vector as 2. But there are instances
where precisely such a generalized form of geometric modular action is
realized when taking for M e.g. Robertson-Walker spacetimes. For more
discussion on this intriguing generalization of geometric modular action,
see [15].

4 Relativistic Quantum Information Theory:
Distillability in Quantum Field Theory

The final section of this contribution is devoted to a subject which seems to
be of growing interest nowadays [4,22,47,52]: The attempt to bring together
the flourishing discipline of quantum information theory with the principles of
special relativity. Since quantum information theory is based on the principles of
quantum mechanics and since quantum field theory is the theory which unifies
quantum mechanics and special relativity, it appears entirely natural to discuss
issues of relativistic quantum information theory in the setting of quantum field
theory.
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There are, of course, several foundational issues one might wish to discuss
when studying a prospective merging of quantum information theory and special
relativity even in the established setting of quantum field theory. One of them
might be the so far omitted discussion on quantum measurement theory within
quantum field theory. In view of the Reeh—Schlieder—theorem, one may suspect
delicate problems at this point — in fact, there are numerous discussions on the
nature of locality /nonlocality in quantum (information) theory, where sometimes
the various authors don’t agree on precisely what sort of locality is attributed
to which object or structure within a particular theoretical framework. Our
approach here is operational, and we refer to works already cited [32, 56] for
some discussion on measurement in quantum field theory.

This said, we limit ourselves here to studying a very particular concept which
has been developed and investigated in non-relativistic quantum information
theory in the context of relativistic quantum field theory: The concept of dis-
tillability of quantum states. Very roughly speaking, one can say that distillable
quantum states contain “useful” entanglement that can be enhanced, at least
theoretically, so that it can be used as a resource for typical telecommunication
tasks such as quantum cryptography or quantum teleportation [5,23,26]. (For a
more detailed exposition of the formal apparatus of quantum information theory
and important references, we recommend the review by M. Keyl [40].) To make
this more precise, we will now have to specify our setting at a more formal level.
Everything what follows is taken from a joint publication with R. Werner [67].

First, we will say that a bipartite system is a pair of mutually commuting
x-subalgebras A, B of B(H) for some Hilbert space H. Usually, we will in fact
assume that both A and B are von Neumann algebras; one could also generalize
the setting by only requiring that A and B are x-subalgebras of a common C*-
algebra.

In the quantum field theoretical context, A will be identified with R(O4) and
B with R(Og) for a pair of (bounded) spacetime regions Op and Op which are
causally separated. Quite generally, A represents the algebra of observables in a
laboratory controlled by a physicist named ‘Alice’ and B represents the algebra
of observables in a laboratory controlled by another physicist called ‘Bob’. The
prototypical example of a bipartite system in (non-relativistic) quantum infor-
mation theory is the situation where H = Ha ® Hp, and where A = B(HA)®1
and where B = 1 ® B(Hg). The situation in relativistic quantum field theory
can be a bit more complicated.

Let A,B C B(H) form a bipartite quantum system, and let w(X) =
trace(pX), for some density matrix p on H, be a state on B(H). We say that the
state w is a product state on the bipartite system if w(AB) = w(A)w(B) holds
for all A € A and all B € B. Moreover, w is called separable on the bipartite
system if it is a limit (in the sense of convergence of expectation values) of con-
vex combinations of product states. Then, w is called entangled on the bipartite
system if it is not separable.

Entanglement of states on bipartite systems is a typical quantum phenom-
enon with no counterpart in classical physics. As is well known, the
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Einstein—Podolsky—Rosen paradoxon really centers about entangled states, as
has been clarified and formalized by John Bell (see the reprint collection [69] for
the relevant references and comments, and the textbook [46] for a more mod-
ern and simpler discussion). As mentioned, nowadays entanglement is viewed
as a resource for tasks of quantum communication, and this circumstance has
motivated several studies on the “degree” or “quality” of entanglement that a
state may have (see, again, the review [40] for discussion and references). One
possible measure of “entanglement strength” is provided by the Bell-CHSH cor-
relation [19,63]. This is a number, §(w), which is assigned to any state w of a
bipartite system A, B C B(H) as
Bw)= suwp  w(A(B +B)+ A'(B - B))
A,A",B,B'

where the supremum is taken over all hermitean A, A’ € A and B, B’ € B whose
operator norm is bounded by 1. Separable states always have f(w) < 2. This
case is referred to by saying that w fulfills the Bell-CHSH inequalities. States w
for which (w) > 2 are said to violate the Bell-CHSH inequalities; such states are
entangled. The maximal number which #(w) can assume is 21/2 [18], and states
for which 8(w) = 2v/2 are said to violate the Bell-CHSH inequalities mazimally.
In a sense, one may view a state w; more strongly entangled than a state ws if
Bwi) > Blw2).

Let us consider a particularly simple system where H = C? @ C2, with A =
B(C*) ® 1 and B = 1 ® B(C?), where B(C?) is a perhaps slightly unusual
way to denote the algebra of complex 2 x 2 matrices. A state violating the
Bell-CHSH inequalities maximally is given by the singlet state wginglet(X) =
<wsinglctv stinglct>7 X € B((C2 ® Cz)a where

1
wsinglct = ﬁ

here, |0) and |1) denote the two orthonormalized eigenvectors of the Pauli-
matrix o,. There are, in fact, experimental situations in quantum optics where
the singlet state can be realized to a high degree of accuracy. In these situations,
one identifies |0) and |1) with the two orthonormal polarization states of photons
which are linearly polarized with respect to chosen coordinates perpendicular
to the direction of propagation. One can prepare a source (state) producing
an ensemble of pairs of polarized photons in the singlet state and send — e.g.
through optical fibers over long distances — one member of each ensemble pair
to the laboratory of Alice (whose observables, regarding the polarization of the
photons, are represented by .A) and the other member of the same pair to the
laboratory of Bob (whose polarization observables are represented by B). In this
way, Alice and Bob have access to a common entangled state wginglet Which they
may use for carrying out tasks of quantum communication. The singlet state (or
rather, any singlet—type state) is, in this sense, the best suited state owing to
its “maximal” entanglement which is reflected by its maximal violation of the
Bell-CHSH inequalities. Some experimental realizations and applications can be
found e.g. in [26].

(10) @ 1) = [1) ©10));
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There are entangled states w which are not as strongly entangled as wsinglet,
but contain still enough entanglement so that a sub-ensemble of photon pairs
can be “distilled” from w which coincides with wgingler to high accuracy and
may then be used for carrying out quantum communication tasks. To make such
a “distillability” an attribute of the given state w, one must ensure that the
distillation process only enhances the entanglement already present in the given
state w, and doesn’t induce previously non—existing entanglement. One tries to
capture this requirement by demanding that the process of distillation involves
only local operations and classical communication (LOCC) [6,40,48].

The idea behind LOCC is best illustrated by a simple example. We assume
that both Alice and Bob operate a two—valued instrument in each of their lab-
oratories. A two—valued instrument (i) takes an incoming state, (ii) puts out
either of two classical values (“readings”), say “+” or “—” and (iii) changes the
state into a new output state depending on the values of the classical readings,
i.e. the values “+” or “—”. Thus, if the source (represented by the state w)
produces a pair of polarized photons, then the pair member running to Alice
passes her instrument while the other pair member travels to Bob and passes his
instrument. The pair members are then subjected to state changes — operations
— taking place individually at the sites of the laboratories of Alice and Bob, re-
spectively, and are thus local (assuming that the operations are active at mutual
spacelike separation); put differently, Alice’s instrument operates only on the
pair member in her laboratory and likewise Bob’s instrument operates only on
the pair member in his laboratory. We further suppose that Alice and Bob agree
to discard all photon pairs except those which on passing their instruments have
yielded in both cases the “4” reading. Since they don’t now beforehand what
the values of these readings will be, they have to inform each other about the
readings’ values of their instruments after both members of each photon pair
have passed through. This requires “two-way classical communication” between
Alice and Bob. Then, after a large number of photon pairs (corresponding, in
idealization, to the original ensemble of the state w) has passed the instruments,
and having discarded all the pairs not giving the “+” reading, Alice and Bob
hold (in each lab, members of) a smaller number (a subensemble) of photon pairs
which have been subjected to local operations mediated by the instruments. This
new subensemble may correspond to a state with stronger entanglement, and if,
in this way, a subensemble can be produced which approximates the singlet
state wsinglet to arbitrary precision, then the original state w is called distillable.
Strictly speaking, we should call the state 1-distillable, the qualifier “1” refer-
ring to only “1 round” of instrument application and classical communication
for each photon pair, since one can envisage more complicated schemes of using
localized (multi-valued) instruments and classical communication between Al-
ice and Bob that are still in compliance with the idea of local operations and
classical communication. But then, any state which is 1-distillable will also be
distillable according to a more general scheme, so that 1-distillability is in this
sense the most stringent criterion.
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Now we need to give a mathematical description of 1-distillability of a state
w. In the present simple case, the mathematical image of a two-valued instrument
in Alice’s laboratory is given by two completely positive maps T4 : A — A with
T.(1) + T-(1) = 1. Likewise, in Bob’s laboratory, his two-valued instrument is
given by a pair of completely positive maps Sy : B — B with S;(1)+5_(1) = 1.
The subensemble that Alice and Bob select from the original state w corresponds
to the positive functional A® B 3 2 @y — w(T4(z)S+(y)), which is turned into
astate, AQ B3 2z ®y+— w(T(2)S4(y))/w(T4(1)S4 (1)), upon normalization.
Let us denote this new state by w’*, identifying T' with Ty and S with S. To
say that w is 1-distillable now amounts to requiring that one can choose S and
T in such a way that whs approximates wsinglet to arbitrary precision.

All this applies as yet to the case that A and B are copies of B(C?). However,
it is not too difficult to generalize everything to the case of a generic bipartite
quantum system. All that needs to be done is to ensure that the input state
w, defined on the algebra generated by A and B, yields an output state w”>®
on B(C? ® C?) which can be compared t0 wsinglet- The formal definition of 1-
distillability is then:

Definition Let w be a state on a general bipartite quantum system A, B C
B(H). The state w is called 1-distillable if one can find completely positive maps
T :B(C?) — Aand S : B(C?) — B so that the state

WISz @y) = w(T(2)S(y)/w(T(1)S(1), z®ye B(C*®C?%),

on B((C2 ® (C2) approximates wsinglet to arbitrary precision. That is to say, given
€ > 0, there are such T'=T, and S = S, so that

| WP (X) = wsinglet (X) | < el| X[, X € B(C?®C?). (9)

This criterion for 1-distillability is now completely general and can, in particular,
be applied in the context of relativistic quantum field theory. This is what we
will do now.

As in Sect. 2, let ({R(O)}ocwm, U, 2) be a quantum field theory in vacuum
representation. We quote following result, taken from [67].

Theorem Let A = R(Op) and B = R(Op) be a bipartite quantum system
formed by algebras of local observables localized in spacetime regions Op and
Op which are separated by a non-zero spacelike distance. Then the vacuum
state w(.) = (£2, .£2) is 1-distillable on this bipartite system. Moreover, there
is a dense set X C H so that the vector states wy(.) = (X, -x), ||x|| = 1, are
1-distillable on the bipartite system. (In fact, X’ can be chosen so that this holds
for all spacelike separated regions O and Og.)
We will add a couple of remarks.

(4.1) The conclusion of the theorem remains valid if one considers the quantum
field theory in a relativistic thermal equilibrium representation instead of a
vacuum representation. Representations of this kind have been introduced
by Bros and Buchholz [13]. The distinction from the vacuum prepresenta-
tion is as follows: The spectrum condition is dropped, and it is assumed
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that w(.) = (2, . £2) fulfills the relativistic KMS condition at some inverse
temperature 3 > 0. Following [13], one says that a state w on R(R*) sat-
isfies the relativistic KMS condition at inverse temperature 8 > 0 (with
respect to the adjoint action of the translation group U(a), a € R?) if
there exists a timelike vector e in V., the open forward light cone, so
that e has unit Minkowskian length, and so that for each pair of operators
A, B € R(R*) there is a function F' = F4p which is analytic in the domain
Tse = {2 € C* : Imz € V, N (Be — V4)}, and continuous at the bound-
ary sets determined by Imz = 0, Imz = fe with the boundary values
F(a) = (2, AU (a)BS2), F(a +ifBe) = (2, BU(—a)Af) for a € R*. Upon
comparison with the non-relativistic KMS—condition of the previous sec-
tion, one may get an idea in which way this is a relativistic generalization
of thermal equilibrium states.

It is the Reeh-Schlieder theorem which is responsible for the distillability
result; we briefly sketch the argument. In fact, one can show that each non-
abelian von Neumann algebra contains an isomorphic copy of B(C?). In the
particular case considered in the situation of Theorem (4.3), one can use
the Reeh-Schlieder theorem to prove that there are algebraic morphisms
7:B(C?) — A and o : B(C?) — B so that 7 : B(C? ® C?) — B(H) given
m(x®y) = 7(x)o(y) is a faithful algebraic embedding. Then there is a unit
vector x in ‘H so that w, (7(X)) = wsinglet(X) for all X € B(C? @ C?).
According to the Reeh-Schlieder theorem, there is for any ¢ > 0 some
A = A, € A with [|A]| = 1 so that ||(||A2|))"'AR — x|| < e. Thus
we choose T(x) = A*r(z)A and S(y) = o(y) to obtain that the state
WIS fulfills the required estimate (9). The Reeh-Schlieder theorem for
relativistic thermal equilibrium states has been proved in [35].

The normalization factor w(7(1)S(1)) equals, in the previous remark, the
quantity (£2, A*7(1)o(1)A£2) which, in turn, is equal to ||A£2||*> up to a
term of at most order e. Since we have taken ||A]| to be equal to 1 (which
made the occurrence of the normalization factor (||Af2||)~! necessary in
the approximation of x), the quantity ||Af2|| here coincides in fact with
[|AL2||/]|A]], i-e. the effect vs. cost ratio which made its appearance in our
discussion of the Reeh-Schlieder theorem. Thus, the factor w(T'(1)S(1))
(compared to 1) is a rough measure for the efficiency of the distillation
process, or put differently, the fraction of members in the subensemble
corresponding to w’"* distilled from the members of the original ensemble
w. As we have seen before, this will be a very small number when ¢ is small
and the spatial distance between the regions O and Ogp is macroscopic
for w the vacuum state.

We should like to mention that there are many related works address-
ing the issue of long-range correlations in quantum field theory. In fact,
Bell-correlations in quantum field theory have been investigated before
quantum information theory was established; see the refs. [42,43, 62, 63],
and they have contributed to understand quantum entanglement in a
mathematically rigorous form applicable to general quantum systems.
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More recent works in this direction prove that in the bipartite situation
A =TR(04), B=R(Op), for a relativistic quantum field theory, there is
dense set of states violating the Bell-CHSH inequalities [31,36,52]. In this
sense, they are quite closely related to the result of the theorem above,
which however gives also information about the distillability of specific
states, such as the vacuum or relativistic thermal equilibrium states, over
arbitrarily spacelike subsystems of a relativistic quantum field theory.

I think that, in the light of the theoretical developments summarized in

this contribution, it is fair to say that the interplay between special relativity
and quantum physics is holding a significant position at the frontier of current
research. Thus I am quite confident that special relativity will live well through

the

next 101 years.
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Abstract. We consider spacetime to be a 4-dimensional differentiable manifold that
can be split locally into time and space. No metric, no linear connection are assumed.
Matter is described by classical fields/fluids. We distinguish electrically charged from
neutral matter. Electric charge and magnetic flur are postulated to be conserved. As
a consequence, the inhomogeneous and the homogeneous Maxwell equations emerge
expressed in terms of the excitation H = (H,D) and the field strength F' = (E, B),
respectively. H and F are assumed to fulfill a local and linear “spacetime relation” with
36 constitutive functions. The propagation of electromagnetic waves is considered under
such circumstances in the geometric optics limit. We forbid birefringence in vacuum and
find the light cone including its Lorentzian signature. Thus the conformally invariant
part of the metric is recovered. If one sets a scale, one finds the pseudo-Riemannian
metric of spacetime.

1 Introduction

The neutrinos, in the standard model of elementary particle physics, are assumed
to be massless. By the discovery of the neutrino oscillations, this assumption
became invalidated. The neutrinos are massive, even though they carry, as com-
pared to the electron, only very small masses. Then the photon is left as the only
known massless and free elementary particle. The gluons do not qualify in this
context since they are confined and cannot exist as free particles under normal
circumstances.

Consequently, the photon is the only particle that is directly related to the
light cone g;;dz’ ® dz7 = 0 and that can be used for an operational definition of
the light cone; here g;; is the metric of spacetime, dz’ a coordinate differential,
and 7,7 = 0,1,2,3. We are back — as the name light cone suggests anyway — to
an electromagnetic view of the light cone. Speaking in the framework of classical
optics, the light ray would then be the elementary object with the help of which
one can span the light cone. We take “light ray” as synonymous for radar signals,
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laser beams, or electromagnetic rays of other wavelengths. It is understood that
classical optics is a limiting case, for short wavelengths, of classical Maxwell—
Lorentz electrodynamics.

In other words, if we assume the framework of Maxwell-Lorentz electrody-
namics, we can derive, in the geometric optics limit, light rays and thus the light
cone, see Perlick [48] and the literature given there. However, the formalism of
Maxwell-Lorentz electrodynamics is interwoven with the Riemannian metric g;;
in a nontrivial way. Accordingly, in the way sketched, one can never hope to find
a real derivation of the light cone.

Therefore, we start from the premetric form of electrodynamics, that is, a
metric of spacetime is not assumed. Nevertheless, we can derive the generally
covariant Maxwell equations, expressed in terms of the excitation H = (H, D)
and the field strength F' = (E, B), from the conservation laws of electric charge
and magnetic flux. We assume a local and linear spacetime relation between
H and F'. Then we can solve the Maxwell equations. In particular, we can study
the propagation of electromagnetic waves, and we can consider the geometrical
optics limit. In this way, we derive the light rays that are spanning the light
cone. In general, we find a quartic wave covector surface (similar as in a crystal)
that only reduces to the pseudo-Riemannian light cone of general relativity if
we forbid birefringence (double refraction) in vacuum. Hence, in the framework
of premetric electrodynamics, the local and linear spacetime relation, together
with a ban on birefringence in vacuum, yields the pseudo-Riemannian light cone
of general relativity. Accordingly, the geometrical structure of a Riemannian
spacetime is derived from purely electromagnetic data. We consider that as our
contribution to the Einstein year 2005, and we hope that going beyond the
geometrical optics limit will yield better insight into the geometry of spacetime.

The axiomatic scheme that we are going to present here is already contained
in our book [20] where also references to earlier work and more details can
be found. In the meantime we learnt from the literature that appeared since
2003 (see, e.g., Delphenich [8,9], Itin [24], Kaiser [26], Kiehn [29], and Lindell
& Sihvola [35,37]) and improved our derivation of the light cone, simplified it,
made it more transparent (see, e.g., [21,23,33,45,46]). The formalism and the
conventions we take from [20].

2 Spacetime

In our approach, we start from a 4-dimensional spacetime manifold that is just
a continuum which can be decomposed locally in (1-dimensional) time and
(3-dimensional) space. It carries no metric and it carries no (linear or affine)
connection. As such it is inhomogeneous. It doesn’t make sense to assume that
a vector field is constant in this continuum. Only the constancy of a scalar field
is uniquely defined. Also a measurement of temporal or spatial intervals is still
not defined since a metric is not yet available.

In technical terms, the spacetime is a 4-dimensional connected, Hausdorff,
paracompact, and oriented differential manifold. On such a manifold, we assume
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Fig. 1. Local spacetime foliation, see [20]

the existence of a foliation: The spacetime can be decomposed locally into three-
dimensional folios labeled consecutively by a monotonically increasing “proto-
time” parameter o, see Fig. 1. A vector field n, transverse to the foliation,
is normalized by n|do = L,0 = 1. Accordingly, we find for the dimensions
[n] = [o]7! =t~!, where t denotes the dimension of time.

We can decompose any exterior form ¥ in “time” and “space” pieces. The
part longitudinal to the vector n reads

Lwi=do W, W =0V, (1)
the part transversal to the vector n
U.=(1—- Y0 =n|(doA¥), n|]¥=0. (2)
Putting these two parts together, we have the space-time decomposition
V="V 4+U=doNV, +V, (3)

with the absolute dimensions [¥, ] = [¢]t~! and [¥] = [¥].

The 3-dimensional exterior derivative is defined by d := n|(do A d). We can
use the notion of the Lie derivative of a p-form ¥ along a vector field &, i.e.,
LeW :=&]dY +d(£]¥), and can introduce the derivative of a transversal field ¥
with respect to prototime as

V=L, (4)

3 Matter — Electrically Charged and Neutral

We assume that spacetime is “populated” with classical matter, either described
by fields and/or by fluids. In between the agglomerations of matter, there may
also exist vacuum.

Matter is divided into electrically charged and neutral matter. Turning to
the physics of the former, we assume that on the spatial folios of the manifold
we can determine an electric charge @ as a 3-dimensional integral over a charge
density and a magnetic flux @ as a 2-dimensional integral over a flux density.
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This is at the bottom of classical electrodynamics: Spacetime is filled with
matter that is characterized by charge @ and by magnetic flux é. For neutral
matter both vanish. The absolute dimension of charge will be denoted by ¢, that
of magnetic flux by ¢ = [action/charge] = h/q, with h as the dimension of action.

4 Electric Charge Conservation

One can catch single electrons and single protons in traps and can count them
individually. Thus, the electric charge conservation is a fundamental law of na-
ture, valid in macro- as well as in micro-physics.? Accordingly, it is justified to
introduce the absolute dimension of charge ¢ as a new and independent concept.

Let us define, in 4-dimensional spacetime, the electrical current 3-form J,
with dimension [J] = ¢. Its integral over an arbitrary 3-dimensional spacetime
domain yields the total charge contained therein: @ = [, 2 J. Accordingly, the
local form of charge conservation (Axiom 1) reads:

dJ=0. (5)

This law is metric-independent since it is based on a counting procedure for
the elementary charges. Using a foliation of spacetime, we can decompose the
current J into the 2-form of the electric current density j and the 3-form p of
the electric charge density:

J=—jAdo+p. (6)
Then (5) can be rewritten as the continuity equation:
p+dj=0. (7)

Both versions of charge conservation, (5) and (7), can also be formulated in an
integral form.

5 Charge Active: Excitation

Electric charge was postulated to be conserved in all regions of spacetime. If
spacetime is topologically sufficiently trivial, we find, as consequence of (5),
that J has to be exact:

J=dH. (8)

This is the inhomogeneous Maxwell equation in its premetric form. The elec-
tromagnetic excitation 2-form H, with [H] = [J] = ¢, is measurable with the

3 Lammerzahl, Macias, and Miiller [34] proposed an extension of Maxwell’s equations
that violates electric charge conservation. Such a model can be used as a test theory
for experiments that check the validity of charge conservation, and it allows to give
a numerical bound.
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help of ideal conductors and superconductors and thus has a direct operational
significance.

By decomposing H into time and space, we obtain the electric excitation 2-
form D (historical name: “dielectric displacement”) and the magnetic excitation
1-form H (“magnetic field”):

H=—-HAdo+D. (9)

Substituting (9) into (8), we recover the pair of the 3-dimensional inhomogeneous
Maxwell equations

dH =] . 4P =0, (10)
—-D+dH =3j.

6 Charge Passive: Field Strength

With the derivation of the inhomogeneous Maxwell equations the information
contained in Axiom 1 is exhausted. As is evident from the Coulomb-Gauss law
dD = p, it is the active character of p that plays a role in this inhomogeneous
Maxwell equation: The charge density p is the source of D (and, analogously,
the current density j that of H).

Since we search for new input, it is near at hand to turn to the passive
character of charge, that is, to wonder what happens when a test charge is put
in an electromagnetic field. In the purely electric case with a test charge e, we
have

F,~eE,, (11)

with F,, and F, as components of the covectors of force and electric field strength,
respectively. The simplest relativistic generalization for defining the electromag-
netic field is then of the type

force density ~ field strength x charge current density . (12)

Accordingly, with the force density covector (or 1-form) f,, we can formulate
Axiom 2 as
fa=(ea| F)NJ. (13)

Here e, is a local frame, with @ = 0,1,2,3. Axiom 2 provides an operational
definition of the electromagnetic field strength 2-form F’, the absolute dimension
of which turns out to be [F] = h/q. Its 1 + 3 decomposition

F=ENMNdo+B, (14)

introduces the electric field strength 1-form E and the magnetic field strength
2-form B, see Fig. 2. If we substitute (14) and (6) into (13), we recover, for
a =1,2,3, the Lorentz force density.
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o

E

Fig. 2. Faraday-Schouten pictograms of the electromagnetic field, see [20]. The electric
excitation D is a twisted 2-form, the magnetic excitation H a twisted 1-form. The
electric field strength E is a 1-form and the magnetic field strength B a 2-form, both
without twist

(1 0 &
2

7 Magnetic Flux Conservation

The field strength F', as a 2-form, can be integrated over a 2-dimensional area
{29 in 4-dimensional spacetime. This yields the total magnetic flux @ piercing
through this area: & = [ o, F-In close analogy to electric charge conservation,
we assume that also the flux is conserved. Then, in local form, magnetic flux
conservation (Axiom 3) reads?

B =
iF—o{. 48=0 (15)
B+dFE =0.

The Faraday induction law and the sourcelessness of B are the two consequences
of dF = 0. In this sense, Axiom 3 has a firm experimental underpinning.

8 Premetric Electrodynamics

..is meant to be the “naked” or “featureless” spacetime manifold, without
metric and without connection, together with the Maxwell equations dH = J,

4 One can give up magnetic flux conservation by introducing magnetic monopoles
according to dF' = Jmagn- In premetric electrodynamics this has been done by Edelen
[11], Kaiser [26], and by us [21]. However, then one has to change Axiom 2, too,
and the Lorentz force density picks up an additional term —(eq|H) A Jmagn. This
destroys Axiom 2 as an operational procedure for defining F. Moreover, magnetic
charges have never been found.
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dF = 0, the Lorentz force formula, and the electromagnetic energy-momentum
current to be discussed below, see (20). We stress that the Poincaré group and
special relativity have nothing to do with the foundations of electrodynamics
as understood here in the sense of the decisive importance of the underlying
generally covariant conservation laws of charge (Axiom 1) and flux (Axiom 3).
Historically, special relativity emerged in the context of an analysis of the elec-
trodynamics of moving bodies [13,39], but within the last 100 years classical
electrodynamics had a development of its own and its structure is now much
better understood than it was 100 years ago. Diffeomorphism invariance was
recognized to be of overwhelming importance. Poincaré invariance turned out to
play a secondary role only.

Of course, premetric electrodynamics so far does not represent a complete
physical theory. The excitation H does not yet communicate with the field
strength F. Only by specifying a “spacetime” relation between H and F (the
constitutive law of the spacetime manifold), only thereby we recover — under
suitable conditions — our normal Riemannian or Minkowskian spacetime which
we seem to live in. In this sense, a realistic spacetime — and thus an appropriate
geometry thereof — emerges only by specifying additionally a suitable spacetime
relation on the featureless spacetime.

As explained, Axiom 1, Axiom 2, Axiom 3, together with Axiom 4 on energy-
momentum, constitute premetric electrodynamics. Let us display the first three
axions here again, but now Axiom 1 and Axiom 3 in in the more general integral
version. For any submanifolds C3 and Cs that are closed, i.e., 9C3 = 0 and
0Cy = 0, the axioms read

7(.}:0, o= (cal FYAJ, %on. (16)
Cg CZ
By de Rham’s theorem we find the corresponding differential versions

dJ =0, fo=(ea F)NJ, dF=0, (17)
J =dH, F=dA. (18)

The physical interpretation of the quantities involved is revealed via their (1+3)-
decompositions (6), (9), (14), and A = —pdo + A, see Fig. 3.

Let us now turn to the energy-momentum question. Using the properties of
the exterior differential, we can rewrite the Lorentz force density (13) as

fo=(ea] F)NT =d*Ty+ X, . (19)

Here the kinematic energy-momentum 3-form of the electromagnetic field, a cen-
tral result in the premetric electrodynamics, reads (Axiom 4)

kg, % [ A (ea H) — H A (ea] F)] - (20)

The remaining force density 4-form turns out to be



170 F.W. Hehl and Y.N. Obukhov

Fig. 3. Different aspects of the electromagnetic field. The four quantities H, D, E, B
constitute the electromagnetic field. The excitations H, D are eztensive quantities (how
much?), the field strengths E, B intensive quantities (how strong?)

1
Xo = =5 (FALe,H = HAL,F) | (21)

The absolute dimension of ¥¥,, and of X,, is h/¢, where £ denotes the dimension
of length. [Provided, additionally, a linear connection is given with the covariant
differential D, then R

fo=D"2, + X,, (22)

with the new supplementary force density
BN 1
Xazi(H/\LeaFfF/\LeaH) , (23)

which contains the covariant Lie derivative. In general relativity theory, X’a
eventually vanishes for the standard Maxwell-Lorentz electrodynamics.]

9 The Excitation is Local and Linear in the Field Strength

The system of the Maxwell equations dH = J, dF = 0 is apparently under-
determined. It gets predictive power only when we supplement it with a space-
time (or constitutive) relation between the excitation and the field strength. As
Axiom 5, we postulate a general local and linear spacetime relation

1
H = k(F), H, = 3 ki i . (24)

Here excitation and field strength decompose according to H = H;j dz* A dx? /2
and F' = Fjjdx* A da? /2, respectively. The constitutive tensor k, as 4th rank
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tensor with 36 independent components, has to be space and time dependent
since constant components would not have a generally covariant meaning on the
naked spacetime manifold we consider.

Let us decompose K',ijkl into irreducible pieces. In the premetric framework
we can only perform a contraction. A first contraction yields

#i® = kg™ (16 independent functions) (25)

a second one

k= k" = k™ (1 pseudo-scalar function) . (26)

Then, introducing the traceless piece
k P :
K" =R — 1 ko7 (15 functions), (27)
we can rewrite the original constitutive tensor as
Hijkl _ (1)Hijkl + (Z)fﬂjkl + (3)Hijkl

1
= Wiyt 42,17 o + 5 o). (28)

The skewon and the azion fields are conventionally defined by

1

_ 1 .

J— _Zgd = — K. 2
Bi 9 £, o 12 K (29)
Substituting (28) into (24) and using (29), we obtain the spacetime relation
explicitly:

1
Hi' = 5(1)1@‘]‘“ Fkl+2 $[iij]k+OéFij. (30)
The principal (or the metric-dilaton) part (1)/<;Z-jkl of the constitutive ten-
sor with 20 independent components will eventually be expressed in terms of
the metric (thereby cutting the 20 components in half). [In standard Maxwell-
Lorentz electrodynamics

(l)ﬁijkl =XV—yg €ijmn gmkgnl ) }gzk =0, a= 0-] (31)

The principal part mmjkl must be non-vanishing in order to allow for electro-
magnetic wave propagation in the geometrical optics limit, see the next section.
The skewon part §,* with its 15 components was proposed by us. We put for-
ward the hypothesis that such a field exists in nature. Finally, the axion part o
had already been introduced in elementary particle physics in a different con-
nection but with the same result for electrodynamics, see, e.g., Wilczek’s axion
electrodynamics [65] and the references given there.

The spacetime relation we are discussing here is the constitutive relation for
spacetime, i.e., for the vacuum. However, one has analogous structures for a
medium described by a local and linear constitutive law. The skewon piece in
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this framework corresponds to chiral properties of the medium inducing optical
activity, see Lindell et al. [38], whereas the concept of an azion piece has been
introduced by Tellegen [57, 58] for a general medium, by Dzyaloshinskii [10]
specifically for CroO3, and by Lindell & Sihvola [37] in the form of the so-called
perfect electromagnetic conductor (PEMC). Recently, Lindell [36] discussed the
properties of a skewon-axion medium.

The following alternative representation of the constitutive tensor is useful
in many derivations and for a comparison with literature, see Post [50],

- 1 ..
ngkl — 5 egmn "{mnklv (32)
with
ijkl _ (1) ijkl igmlk @ U _ _kimli @ ], ijkl
X = X +e Bt — € S+ e a . (33)
— ~——
20, principal 15, skewon 1, axion

It is convenient to consider the excitation H and the field strength F as
6-vectors, each comprising a pair of two 3-vectors. The spacetime relation then

reads .
Ha _ ¢ a %ba 7Eb
(Da> - (lea @ba> ( Bb > . (34)

Accordingly, the constitutive tensors are represented by the 6 x 6 matrices

¢b, B Bap D4’
K __ a ba IK __ ab a
kr = <Q[ba @ba) ) X = ( ¢a, Q[ab) : (35)

The 3 x 3 matrices A, B, ¢, D are defined by

1, ,
lea = XOaOb , Bpa = ~ €acd €he f XCdef ) (36)

4
1 1
¢y = 5 €bed Xcha , gab = 5 €acd XOde ) (37)

or explicitly, recalling the irreducible decomposition (33),

Q[ab _ _Eab o 6abc Sng By = u;bl + €abe }goc7 (38)
€ = " — (B — 0y Bc°) +ady, (39)
Do’ = e + (8"~ dg Bc) +ady. (40)

The constituents of the principal part are the permittivity tensor e = @ the
impermeability tensor M;bl = u;al, and the magnetoelectric cross-term %, with
v¢e = 0 (Fresnel-Fizeau effect). The skewon $,% and the axion « describe electric
and magnetic Faraday effects and (in the last two relations) optical activity. If
we substitute (38), (39), (40) into (34), we find a 3-dimensional explicit form of
our Axiom 5 formulated in (24):

D — (é_ab . 6abc $CO) Eb +( ’)’ab‘i’ $ba o 63 SCC) Bb +04Ba, (41)
Ha = (/J;bl - €abc SOC) Bb + (_’Yba'i' Sab - 62 ﬁcc) Eb -« Ea . (42)
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10 Propagation of Electromagnetic Rays (“Light”)

After the spacetime relation (Axiom 5) has been formulated, we have a complete
set of equations describing the electromagnetic field. We can now study the
propagation of electromagnetic waves a la Hadamard. The sourceless Maxwell
equations read

dH =0, dF=0. (43)

In the geometric optics approximation (equivalently, in the Hadamard approach)
an electromagnetic wave is described by the propagation of a discontinuity of
the electromagnetic field. The surface of discontinuity S is defined locally by
a function @ such that @ = const on S. The jumps [ ] of the electromagnetic
quantities across S and the wave covector ¢ := d® then satisfy the geometric
Hadamard conditions:

[H]
[F]

0, [dH)=gAh=0 = h=qnc, (44)
0, [dFl=qNf=0 = f=qANa. (45)

Here ¢ and a are arbitrary 1-forms.
We use the spacetime relation and find for the jumps of the field derivatives

h=w(f) =k(f) +af, (46)
with % := Dk + P k. Accordingly,’
gANh=qAR(@ANa)=0. (47)

This equation is a 3-form with 4 components. We have to solve it with respect
to a. As a first step, we have to remove the gauge freedom a — a + g ¢ present
in (47). We choose the gauge 90 = ¢. After some heavy algebra, we find (see [20]
for details, a,b,... = 1,2,3)

Wea, =0, with W = 00 (48)

These are 3 equations for three a;’s! Nontrivial solutions exist provided

W= det W = T eabcede Fwedyybeyyel = (49)
We can rewrite the latter equation in a manifestly 4-dimensional covariant form
~ A~ *
(Eabe = €papes €0 = i),

2
0 S mnri

ipsk =~ lqtu
W= 6mnpq €Tstu X ij X ?

2i9;9xq = 0,
with 6 := det(e;). The 4-dimensional tensorial transformation behavior is ob-
vious.

% Compare the corresponding tensor analytical formula 93X*?7°9,As = 0 (see Post
[50], (9.40) for x[®A7°) = ().
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We define 4th-order Tamm—Rubilar (TR) tensor density of weight +1,

iJ 1 2 2 mnr(i . j|ps u
g ]kl(X) = @ 6mnpq Erstu X ( lep ‘k Xl)qt . (50)

It is totally symmetric G¥* (y) = Gk (). Thus, it has 35 independent com-

ponents. Because x"“* = YUk 4 o€k the total antisymmetry of e yields
G(x) = G(X)- An explicit calculation shows that
gijkl(x) — gijkl((l)x) + (1)X7n(i|n\j }grr]: $nl) ) (51)

Summarizing, we find that the wave propagation is governed by the extended
Fresnel equation that is generally covariant in 4 dimensions:

G (X)) qigjana = 0. (52)

The wave covectors ¢ lie on a quartic Fresnel wave surface, not exactly what we
are observing in vacuum at the present epoch of our universe. Some properties
of the TR-tensor, see [53], were discussed recently by Beig [3].

Extended Fresnel Equation Decomposed into Time and Space

Recalling the ‘6-vector’ form of the spacetime relation (34) with the 3x3 constitu-
tive matrices (36) and (37), we can decompose the TR-tensor into time and space
pieceS' gOOOO =M gOOOa . lMa gOOab . lMab gOabc . lMabC gabcd —.

: i M, sgMe, 5 , a1 , :
Mabed Then the Fresnel equation (52) reads

a6 M 445 ga M* +a3 qaqs M +q0 Gaqvqe M + qoaqvqeqa M*** =0,  (53)
~~ —— ——

Mo M, My Ms My
or
Mo gy + My qs + My gs + Mz qo+ My =0, (54)
with
M = det 2 | M = &g (A @+ Aobec D 4 | (55)
M= LA (@) + (D)2 — (€ + D)€+ D)

+H(E + DA g + Dyl 1A) — el A,
_gc(amb)cgdd _ Qld(:@:(acgdb)
T (ehgde — qttog)e) B, (56)

ke — de(el [%df(mab) /Def _ Qeamb)f) n %fd(glab) ¢fe _ Qlf\aebl)
+e, DD + 90 e cfd} : (57)

1
Mabcd — 6ef(c6|gh\d %hf |:2 Qlab) %ge _ eae @gb):| ) (58)
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Fresnel Wave Surfaces

Let us look at some Fresnel wave surfaces in order to get some feeling for the
physics involved. Divide (53) by gi (here qq is the frequency of the wave) and
introduce the dimensionless variables (¢ = velocity of light in special relativity)

Ga
Ty i =C—. 59
“ (59)

Then we have

a Mab Mabc Mabcd

+ Ty 02 + ZaTpTe 03 + ToTpTcZy

M
M+ 2o~ =0. (60)

e
We can draw these quartic surfaces in the dimensionless variables x = 1, y = x2,
z = x3, provided the M’s are given. According to (55)—(58), the M’s can be
expressed in terms of the 3 x 3 matrices A, B, €, ®. These matrices are specified
in (38)—(40) in terms of the permittivity etc.. A comparison with the spacetime
relations in the form of (41), (42) is particularly instructive.

Let us start with a simple example. We assume that the permittivity is
anisotropic but still diagonal, ¢*® = diag(e1, €2, €3), whereas the impermeability
is trivial u;bl =g 'diag(1,1,1). No skewon field is assumed to exist. Whether an
axion field is present or not doesn’t matter since the axion does not influence the
light propagation in the geometrical optics limit. With Mathematica programs
written by Tertychniy [59], we can construct for any values of €1, €2, £3 the Fresnel
wave surface; an example is displayed in Fig. 4.

More complicated cases are trivial permittivity € = ¢¢diag(1,1,1) and
trivial impermeability p;bl = Uy 1diag(l, 1,1), but a nontrivial skewon field. We
can take a skewon field of electric Faraday type $5°, for example, see Fig. 5, or
of magnetoelectric optical activity type 8,2 = 85!, see Fig. 6. In both figures
and in the subsequent one Ao = /eo/po is the admittance of free space. The
characteristic feature of the skewon field is the emergence of specific holes in the
Fresnel surfaces that correspond to the directions in space along which the wave
propagation is damped out completely [45]. This effect is in agreement with our
earlier conclusion on the dissipative nature of the skewon field.

Now we can combine anisotropic permittivity with the presence of a skewon
field. Then we expect to find some kind of Fig. 4 “enriched” with holes induced
by the skewon field. This time we choose a spatially isotropic skewon field with
Bt =52 =533 = —% B0° # 0. The outcome is depicted in Fig. 7. The four
holes confirm our expectation.

11 No Birefringence in Vacuum and the Light Cone

The propagation of light in local and linear premetric vacuum electrodynamics
is characterized by the extended Fresnel equation (52) or (54). We can solve
the Fresnel equation with respect to the frequency qo, keeping the 3-covector g,
fixed. With the help of Mathematica, we found the following four solutions [33]:
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Fig. 4. Fresnel wave surface for anisotropic permittivity £2* = diag(39.7,15.4,2.3) and
trivial impermeability p_,! = pg 'diag(1,1,1). The skewon field vanishes. There are
two branches, the outer part of the surface is cut into half in order to show the inner
branch. We use the dimensionless variables z := ¢q1/qo, ¥y := cq2/qo, 2z := cq3/qo

Fig. 5. Fresnel wave surface for trivial permittivity e*® = ¢ diag(1, 1, 1) and trivial im-
permeability p;bl =g 'diag(1,1,1) with a skewon field of electric Faraday type 8 30 =
3.1 (all other components vanish). The surface has the form of a toroid (depicted with
two cuts). We use the dimensionless variables = := ¢q1/qo, ¥ := ¢q2/qo, 2z := ¢q3/qo
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Fig. 6. Fresnel wave surface for trivial permittivity €?® = &g diag(1,1,1) and trivial
impermeability ,u;bl = pg*diag(1,1,1) with a skewon field of the magneto-electric
optical activity type 512 =652 = 0.8 )Xo (all other components vanish). It has two
intersecting toroidal branches. We use the dimensionless variables = := ¢q1/qo, y :=

cq2/qo, z = cq3/qo

Fig. 7. Fresnel wave surface for anisotropic permittivity £ = diag(2.4,14.8,54) and
trivial impermeability N;bl = pg *diag(1,1,1) with a spatially isotropic skewon field
Lt =627 =65 = =1 5,° = 0.25X0 (all other components vanish). We use the
dimensionless variables x := ¢q1/qo, Yy := ¢q2/qo, z := ¢q3/qo
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qg(i)Z\/&i“ﬁ-&-%—& (61)
Qé(i):_\/aiq/ﬁ_%_6- (62)

We introduced the abbreviations

1 1
o= ( - 1+(b+\ﬁ)é—2Mg>+52, (63)
1 a 1 9
B = - - — (b+Ve)® —4M, | + 267, (64)
1 M,
= —— (20My — M3) — 26° =
Y 4MO ( ) 2 3) o ) 0 4M() ) (65)
with
a = 12MoMy — 3M, M3 + M2, (66)
27 9 27
b= EMOMBZ = 36Mo My My — o My My My + 3M12M4 + M3, (67)
c:=4(v*-d) . (68)

Vanishing Birefringence

Now, let us demand the absence of birefringence (also called double refraction).%

In technical terms this means, see the solutions (61), (62), that 3 = 0 and v = 0.
Then we have the degenerate solution

M,
AM,

g, = Vo - g = —va— (69)
The condition v = 0 yields directly M3 = M; (4M0M2 — Mf) /8M¢E, and, using
this, we find

3ME — 8My M,
= —-—-———, 70
“ 16142 (70)
Thus,
3M? — 8 My M. M
1l i oMs 1
=4 - . 1
L 1602 AN, (71)
Accordingly, the quartic wave surface (54) in this case reduces to
(90 — a)) (g0 — a))* = 0. (72)

5 Similar considerations on vanishing birefringence, for weak gravitational fields, are
due to Ni [44]. He was also the first to understand that the axion field doesn’t
influence light propagation in the geometrical optics limit.
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Fig. 8. Null cones fitted together to form a conformal manifold (see Pirani and
Schild [49])

Multiplication yields

1M 1M, 1 /M\?

2 1 2 1

it —0. 73
2M0q0+2M0 8( ) (73)

qo + A

If we substitute My, M7, My as defined in (53), we have explicitly (¢,5 = 0,1,2,3)

1 Me 1 M MM
- daqp = 0.

- - = 4
5 a7 @9t 5 (47 Ve (74)

97q1qj = a5 +
This equation is quadratic in the 4-dimensional wave covector ¢;. Therefore we
recover the conventional light cone of general relativity at each point of space-
time, see Fig. 8. Thereby the causal structure of spacetime is determined. Thus,
up to a scalar factor, we derived the Riemannian metric of general relativity.
Moreover, as we have shown [20,25], we find the correct Lorentzian signature.
The Lorentzian (also known as Minkowskian) signature can be traced back to
the Lenz rule, which determines the sign of the B term in the induction law.”
And this sign is different from the one in the corresponding D term in the
Oersted-Ampere-Maxwell law. In other words, the Lorentz signature is encoded

" Usually it is argued that the signature should be derived from quantum field theoret-
ical principles; for a corresponding model, see, e.g., Froggatt & Nielsen [15]. Needless
to say that it is our view that classical premetric electrodynamics together with the
Lenz rule and a local and linear spacetime relation is all what is really needed.
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in the decomposition formulas (9) and (14). Neither is the minus sign in (9) a
convention nor the plus sign of the E' A do term in (14). Since the Lenz rule is
related to the positivity of the electromagnetic energy, the same is true for the
Lorentzian signature. This derivation of the signature of the metric of spacetime
from electrodynamics provides new insight into the structures underlying special
as well as general relativity.

12 Dilaton, Metric, Axion

At first the skewon and the axion emerged at the premetric level in our theory
and only subsequently the metric. Consequently, the axion and the skewon should
be regarded as more fundamental fields (if they exist) than the metric. In the
meantime, we phased out the skewon field since we insisted, in Sect. 11, on
vanishing birefringence in vacuum.

As to the metric, we recognize that multiplication of the metric by an arbi-
trary function A\(x) was left open in the derivation of the last section, see (74):

5\(33) g (x) 2q; =0. (75)

Thus, only the conformally invariant part of the metric is determined. In other
words, we have actually constructed the conformal (or the light cone) structure
on the spacetime manifold, see, e.g., Weyl [63,64], Schouten [55], and Pirani &
Schild [49].

It is known from special relativity that the light cone (with Lorentzian
signature) is invariant under the 15-parameter conformal group, see Barut &
Raczka [2] and Blagojevié¢ [4]. The latter, in Minkowskian coordinates z°, is
generated by the following four sets of spacetime transformations:

Translations (4 param.) 't — #' = 2" +d, (76)
Lorentz transf. (6 param.) t— 7= Al (77)
dila(ta)tion (1 param.) i — 7= pat, (78)

, 4 zt + Kb 2?
rop. conf. transf. (4 param.) z* Tt = - —. (79
prop (4p ) - 142k 29 + Kk 22 (79)
Here a',A%j, p, k" are the 15 constant parameters, and z? := g;;xz'z’/. The

Poincaré subgroup (76), (77) (for a modern presentation of it, see Giulini [17])
leaves the spacetime interval ds? = gijdajid:ﬂj invariant, whereas the dilatations
(78) and the proper conformal transformations (79) change the spacetime in-
terval by a scaling factor ds? — p?ds? and ds? — o2ds?, respectively (with
o7l =142k 27 + k;k? 2%). In all cases the light cone ds? = 0 is left invariant.
The Weyl subgroup, which is generated by the transformations (76)—(78), and its
corresponding Noether currents were discussed by, e.g., Kopezyriski et al. [30].
For massless particles, instead of the Poincaré group, the conformal or the
Weyl group come under consideration, since massless particles move on the light
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cone. Even though the light cone stays invariant under all transformations (76)—
(79), two reference frames that are linked to each other by a proper conformal
transformation don’t stay inertial frames since their relative velocity is not con-
stant. If one wants to uphold the inertial character of the reference frames, one
has to turn to the Weyl transformation, that is, one has to specialize to k' = 0.

The conformal group in Minkowski space illustrates the importance of the
light cone structure on a flat manifold. This is suggestive for the light cone on
an arbitrarily curved manifold, even though there is no direct relation between
(76)—(79) and the light cone structure we derived in the last section.

The light cone metric g introduces the Hodge star * operator. We then
can straightforwardly verify that the principal part of the spacetime relation is
determined as H~*F', where the coefficient of proportionality can be an arbitrary
scalar function A(x) of the spacetime coordinates. This function is naturally
identified with the dilaton field, see Brans [6] and Fujii & Maeda [16]. Introducing
the (Levi-Civita) dual of the excitation, HY := 1 ¢! Hy;, we can then finally
rewrite the spacetime relation for vanishing birefringence in vacuum as

9 = [ A(w) V=g¢™ (@) (@) + alz) 7] Fiy, (80)
—~~ ~
dilaton axion

that is, we are left with the constitutive fields dilaton A, metric ¢*/, and axion
. The combination /=g ¢**(z) ¢g" (z) is conformally invariant, in complete
agreement with the above analysis.

13 Setting the Scale

The conformal structure of spacetime is laid down in (74). Hence only 9 of the
10 independent components of the pseudo-Riemannian metric g;; are specified.
We need, in addition to the conformal structure, a volume measure for arriving
at a unique Riemannian metric. This can be achieved by postulating a time or
length standard.

In exterior calculus, (80) reads

H=Mx)"F+ o) F. (81)

The axion has not been found so far, so we can put a = 0. Moreover, under
normal cicumstances, the dilaton seems to be a constant field and thereby sets
a certain scale, i.e., A(z) = Ao, where )\ is the admittance of free space® the
value of which is, in SI-units, 1/(377 2). (The exact implementation of this
assumption will have to be worked out in future.) Accordingly, we are left with
the spacetime relation of conventional Maxwell-Lorentz electrodynamics

o =200 @) 0" ) Fur = oy (6

8 Qur electrodynamical formalism is independent of the chosen system of units, as we
discussed elsewhere [22].



182 F.W. Hehl and Y.N. Obukhov

14 Discussion

Weyl [63,64], in 1921, proved a theorem that the projective and the conformal
structures of a metrical space determine its metric uniquely. As a consequence
Weyl [63] argued that ...the metric of the world can be determined merely by ob-
serving the “natural” motion of material particles and the propagation of action,
i particular that of light; measuring rods and clocks are not required for that.
Here we find the two elementary notions for the determination of the metric:
The paths of a freely falling point particles, yielding the projective structure,
and light rays, yielding the conformal structure of spacetime. Later, in 1966,
Pirani and Schild [49], amongst others, deepened the insight into the conformal
structure and the Weyl tensor.

In 1972, on the basis of Weyl’s two primitive elements, Ehlers, Pirani, and
Schild (EPS) [12] proposed an axiomatic framework in which Weyl’s concepts
of free particles and of light rays were taken as elementary notions that are
linked to each other by plausible axioms. Requiring compatibility between the
emerging projective and conformal structures, they ended up with a Weyl space-
time? (Riemannian metric with an additional Weyl covector). They set a scale
[as we did in the last section, too] and arrived at the pseudo-Riemannian metric
of general relativity. In this sense, EPS were able to reconstruct the metric of
general relativity.

Subsequently, many authors improved and discussed the EPS-axiomatics.
Access to the corresponding literature can be found via the book of Majer and
Schmidt [40] or the work of Perlick [47,48] and Lammerzahl [31], e.g.. For a
general review one should compare Schelb [54] and for a new axiomatic scheme
Schroter [56].

As stated, the point particles and light rays were primary elements that
were assumed to exist and no link to mechanics nor to electrodynamics was
specified. The particle concept within the EPS-axiomatics lost credibility when
during the emergence of gauge theories of gravity (which started in 1956 with
Utiyama [61] even before the EPS-framework had been set up in 1972) the first
quantized wave function ¥ for matter entered the scene as an elementary and
“irreducible” concept in gravity theory. When neutron interference in an external
gravitational field was discovered experimentally in 1975 by Collella, Overhauser,
and Werner (COW) [7], see also [52], Sect. 7, it was clear that the point particle
concept in the EPS-framework became untenable from a physical point of view.
For completeness let us mention some more recent experiments on matter waves
in the gravitational field or in a noninertial frame:

e The Werner, Staudenmann, and Colella experiment [62] in 1979 on the phase
shift of neutron waves induced by the rotation of the Earth (Sagnac-type
effect),

® Time measurement in Weyl spacetime were discussed by Perlick [47] and by
Teyssandier & Tucker [60].



Spacetime Metric from Local and Linear Electrodynamics 183

e the Bonse & Wroblewski experiment [5] in 1984 on neutron interferometry
in a noninertial frame (verifying, together with the COW experiment, the
equivalence principle for neutron waves),

e the Kasevich & Chu interferometric experiment [27] in 1991 with laser-cooled
wave packets of sodium atoms in the gravitational field,

e the Mewes et al. experiment [41] in 1997 with interfering freely falling Bose-
Einstein condensed sodium atoms, see Ketterle [28], Fig. 14 and the corre-
sponding text,

e the Nesvizhevsky et al. experiment [42,43] in 2002 on the quantum states of
neutrons in the Earth’s gravitational field, and

e the Fray, Hansch, et al. [14] experiment in 2004 with a matter wave interfer-
ometer based on the diffraction of atoms from effective absorption gratings
of light. This interferometer was used for two stable isotopes of the rubid-
ium atom in the gravitational field of the Earth. Thereby the equivalence
principle was tested successfully on the atomic level.

Clearly, without the Schrodinger equation in an external gravitational field
or in a noninertial frame all these experiments cannot be described.'® Still, in
most textbooks on gravity, these experiments are not even mentioned!

In the 1980’s, as a reaction to the COW-experiment, Audretsch and Lammer-
zahl, for a review see [1], started to develop an axiomatic scheme for spacetime
in which the point particle was substituted by a matter wave function and the
light ray be a wave equation for electromagnetic disturbances. In this way, they
could also include projective structures with an asymmetric connection (i.e.,
with torsion), which was excluded in the EPS approach a priori.

Turning to the conformal structure, which is in the center of our interest here,
Lammerzahl et al. [32], see also [18,51], reconsidered the Audretsch-Ladmmerzahl
scheme and derived the inhomogeneous Maxwell equation from the following re-
quirements: a well-posed Cauchy problem, the superposition principle, a finite
propagation speed, and the absence of birefringence in vacuum. The homoge-
neous Maxwell equation they got by a suitable definition of the electromagnetic
field strength. With a geometric optics approximation, compare our Sect. 10,
they recover the light ray in lowest order. And this is the message of this type of
axiomatics: Within the axiomatic system of Audretsch and Lammerzahl et al.,
the light ray, which is elementary in the EPS-approach, can be derived from rea-
sonable axioms about the propagation of electromagnetic disturbances. As with
the substitution of the mass point by a matter wave, this inquiry into the phys-
ical nature of the light ray and the corresponding reshaping of the EPS-scheme
seems to lead to a better understanding of the metric of spacetime. And this is
exactly where our framework fits in: We also build up the Maxwell equations in
an axiomatic way and are even led to the signature of the metric, an achievement
that needs still to be evaluated in all details.

10°A systematic procedure of deriving the COW result by applying the equivalence
principle to the Dirac equation can be found in [19].
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15 Summary

Let us then summarize our findings: We outlined our axiomatic approach to
electrodynamics and to the derivation of the light cone. In particular, with the
help of a local and linear spacetime relation,

e we found the skewon field §,7 (15 components) and the axion field a (1 com-

ponent),
we found a quartic Fresnel wave surface for light propagation.
In the case of vanishing birefringence, the Fresnel wave surface degenerates
and we recovered the light cone (determining 9 components of the metric
tensor) and, together with it, the conformal and causal structure of spacetime
and the Hodge star * operator.

e If additionally the dilaton A (1 component) is put to a constant, namely to
the admittance of free space Ao [1/(377 (2) in Sl-units], and the axion «
removed, we recover the conventional Maxwell-Lorentz spacetime relation
H=MX"*F.

Thus, in our framework, the conformal part of the metric emerges from the local
and linear spacetime relation as an electromagnetic construct. In this sense, the
light cone is a derived concept.
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Abstract. The Standard Model Extension (SME) provides the most general observer-
independent field theoretical framework for investigations of Lorentz violation. The
SME lagrangian by definition contains all Lorentz-violating interaction terms that can
be written as observer scalars and that involve particle fields in the Standard Model
and gravitational fields in a generalized theory of gravity. This includes all possible
terms that could arise from a process of spontaneous Lorentz violation in the context
of a more fundamental theory, as well as terms that explicitly break Lorentz symmetry.
An overview of the SME is presented, including its motivations and construction. Some
of the theoretical issues arising in the case of spontaneous Lorentz violation are dis-
cussed, including the question of what happens to the Nambu-Goldstone modes when
Lorentz symmetry is spontaneously violated and whether a Higgs mechanism can oc-
cur. A minimal version of the SME in flat Minkowski spacetime that maintains gauge
invariance and power-counting renormalizability is used to search for leading-order sig-
nals of Lorentz violation. Recent Lorentz tests in QED systems are examined, including
experiments with photons, particle and atomic experiments, proposed experiments in
space, and experiments with a spin-polarized torsion pendulum.

1 Introduction

It has been 100 years since Einstein published his first papers on special relativity
[1]. This theory is based on the principle of Lorentz invariance, that the laws of
physics and the speed of light are the same in all inertial frames. A few years
after Einstein’s initial work, Minkowski showed that a new spacetime geometry
emerges from special relativity. In this context, Lorentz symmetry is an exact
spacetime symmetry that maintains the form of the Minkowski metric in different
Cartesian-coordinate frames.

In the years 1907-1915, Einstein developed the general theory of relativity as
a new theory of gravity. In general relativity, spacetime is described in terms of
a metric that is a solution of Einstein’s equations. The geometry is Riemannian,
and the physics is invariant under general coordinate transformations. Lorentz
symmetry, on the other hand, becomes a local symmetry. At each point on the
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spacetime manifold, local coordinate frames can be found in which the metric
becomes the Minkowski metric. However, the choice of the local frame is not
unique, and local Lorentz transformations provide the link between physically
equivalent local frames.

The Standard Model (SM) of particle physics is a fully relativistic theory.
The SM in Minkowski spacetime is invariant under global Lorentz transforma-
tions, whereas in a Riemannian spacetime the particle interactions must remain
invariant under both general coordinate transformations and local Lorentz trans-
formations. Particle fields are also invariant under gauge transformations. Exact
symmetry under local gauge transformations leads to the existence of massless
gauge fields, such as the photon. However, spontaneous breaking of local gauge
symmetry in the electroweak theory involves the Higgs mechanism, in which the
gauge fields can acquire a mass.

Classical gravitational interactions can be described in a form analogous to
gauge theory by using a vierbein formalism [2]. This also permits a straight-
forward treatment of fermions in curved spacetimes. Covariant derivatives of
tensors in the local Lorentz frame involve introducing the spin connection. In a
Riemann spacetime with zero torsion, the spin connection is not an independen-
dent field, but rather is a prescribed function of the vierbein and its derivatives.
However, a natural generalization is to treat the spin connection components as
independent degrees of freedom. The resulting geometry is a Riemann-Cartan
spacetime, which has nonvanishing torsion [3]. In a Riemann-Cartan spacetime,
the associated field strengths for the vierbein and spin connection are the cur-
vature and torsion tensors. The usual Riemann spacetime of general relativity
is recovered in the zero-torsion limit. Similarly, if the curvature tensor vanishes,
the spacetime reduces to Minkowski spacetime.

The combination of the SM and Einstein’s classical gravitational theory pro-
vides a highly successful description of nature. However, since Einstein’s theory
is not a quantum theory, it is expected that it will ultimately be superseded
by a more fundamental theory that will hold at the quantum level. Candidate
quantum gravity theories include string theory and loop quantum gravity. The
appropriate scale where gravity and quantum physics are expected to meet up
is the Planck scale, mp ~ 10" GeV.

Finding experimental confirmation of a quantum theory of gravity by doing
experiments at the Planck scale, however, is not practical. Instead, an alterna-
tive approach can be adopted in which one looks for small Planck-suppressed
effects of new physics that might be observable in high-precision experiments.
For this idea to hold, any new effect would have to be one that cannot be mim-
icked by known conventional processes in the SM or conventional gravity theory.
One possible signal fulfilling this requirement is to look for Planck-suppressed
signatures of Lorentz violation in high-precision experiments.

Detection of such a violation of relativity theory would clearly be a dramatic
indication of new physics, presumably coming from the Planck scale. This idea
is not merely speculative because it has been shown that mechanisms in both
string theory [4,5] and quantum gravity [6] can lead to violations of Lorentz
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symmetry. However, these theories are not yet sufficiently developed in such a
way that allows testable predictions to be made at a definite (quantifiable) scale
at low energies.

Nonetheless, progress can still be made using effective field theory. To be re-
alistic, an effective field theory would have to contain both the SM and general
relativity together with any higher-order couplings between them. It should also
maintain coordinate (or observer) independence. In full generality, the gravity
sector could include additional fields such as torsion that are not a part of Ein-
stein’s general relativity. This would permit more general geometries, including
a Riemann-Cartan spacetime.

The general effective field theory of this type incorporating arbitrary observer-
independent Lorentz violation is called the Standard-Model Extension (SME)
[7-9]. The SME lagrangian by definition contains all observer-scalar terms con-
sisting of products of SM and general gravitational fields with each other as well
as with additional couplings that introduce violations of Lorentz symmetry. In
principle, there are an infinity of terms in the SME, including nonrenormalizable
terms of arbitrarily high dimension.

To investigate low-energy experiments, where the leading-order signals of
Lorentz violation are of primary interest, it is often advantageous to work with a
subset of the full SME, which includes only a finite number of terms. One subset
in particular, referred to as the minimal SME, restricts the theory to power-
counting renormalizable and gauge-invariant terms. In recent years, the Lorentz-
violating coefficients in the minimal SME have been adopted by experimentalists
as the standard for reporting bounds on Lorentz violation. Since many of the low-
energy experiments involve only electromagnetic interactions between charged
particles and photons, it often suffices to define a minimal QED sector of the
SME.

This paper is intended as an overview in the context of the SME of some
recent theoretical and phenomenological investigations of Lorentz violation. The
motivations for the development of the SME are presented first. An outline of
how the theory is constructed is then given. This is followed by a discussion of
some theoretical issues that come up when Lorentz violation is due to a process of
spontaneous symmetry breaking. In particular, the fate of the Nambu-Goldstone
modes is examined along with the question of whether a Higgs mechanism can
occur [10]. For simplicity, this discussion is carried out in the context of a vector
model known as a bumblebee model [9,11]. The role of the geometry (Minkowski,
Riemann, or Riemann-Cartan) is examined as well. To investigate phenomenol-
ogy, the minimal SME is constructed and used to examine a wide range of
experiments assuming a flat Minkowski background. In this paper, the focus
is on high-precision tests in QED systems. A number of recent experiments in
atomic and particle systems are examined, and the status of their attainable
sensitivities to Lorentz violation is reviewed.

The SME is the result of a large on-going collaboration by a group of theorists
and experimentalists most of whom have in common that they have at some point
collaborated with Alan Kostelecky at Indiana University. An exhaustive review
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covering all of this collective work, which spans topics in field theory, gravity,
astrophysics, cosmology, as well as particle, nuclear, and atomic physics, is not
possible here. Instead, this review focuses mostly on selective recent topics that
are of interest to the author. It is also not possible here to give a complete list of
references on all of the work looking at possible violations or tests of relativity.
For that, other recent reviews and proceedings collections should be consulted
as well. See, for example, [12-14].

2 Motivations

Historically, interest in Lorentz violation increased dramatically after it was dis-
covered by Kostelecky and Samuel in the late 1980s that mechanisms can occur
in string field theory that could cause spontaneous breaking of Lorentz symme-
try [4]. Tt is this idea that ultimately led to the development of the SME, which
in turn has stimulated a variety of experimental searches for relativity violations.

Spontaneous Lorentz violation can occur when a string field theory has a
nonperturbative vacuum that can lead to tensor-valued fields acquiring nonzero
vacuum expectation values (vevs), (T') # 0. As a result of this, the low-energy
effective theory contains an unlimited number of terms of the form

L~ = (T) T (i0)*x (1)

mp

where k is an integer power, A is a coupling constant, and v and x are fermion
fields. In this expression, the tensor vev (T') carries spacetime indices, which are
suppressed in this notation. This vev is effectively a set of functions or constants
that are fixed in a given observer frame. What this means is that interactions
with these coefficients can have preferred directions in spacetime or velocity
(boost) dependence. The vev coefficients therefore induce Lorentz violation.

Note that the higher-dimensional (k > 0) derivative couplings are expected
to be balanced by additional inverse factors of a large mass scale, which is as-
sumed to be the Planck mass mp. In a more complete low-energy effective theory
describing fermions ¥ and x there could also be other terms with additional cou-
plings, including possible Yukawa couplings. A more general interaction term of
the form in (1) at order k could then be written as

L~ t® T pio)*y, (2)

where the coefficient ¢*), which carries spacetime indices, absorbs all of the
couplings, inverse mass factors, and the vev. This effective coefficient acts es-
sentially as a fixed background field that induces Lorentz violation. In addition
to interactions with fermions, additional terms involving gauge-field couplings
and gravitational interactions are possible as well. A generalization would be to
include all possible contractions of known SM and gravitational fields with fixed
background coefficients (%)
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This generalization to include all arbitrary-dimension interaction terms in-
ducing Lorentz violation in effective field theory is the idea behind the SME [7-9].
Note as well that each term is assumed to be an observer scalar, with all space-
time indices contracted. The full SME is then defined as the effective field theory
obtained when all such scalar terms are formed using SM and gravitational fields
contracted with coefficients that induce Lorentz violation. The SME coefficients
(the generalized () factors) are assumed to be heavily suppressed, presumably
by inverse powers of the Planck mass. The extent of the suppression increases
with order k. Without a completely viable string field theory, it is not possible
to assign definite numerical values to these coefficients, and clearly (as in the
SM itself) there are hierarchy issues. However, since no Lorentz violation has
been observed in nature, it must be that the SME coefficients are small. Alter-
natively, one can adopt a phenomenological approach and treat the coefficients
as quantities to be bounded in experiments. Such bounds will also constitute a
measure of the sensitivity to Lorentz violation attained in the experiment.

Interestingly, although the SME was originally motivated from ideas in string
field theory, including the idea of spontaneous Lorentz symmetry breaking, its
relevance and usefulness extend well beyond these ideas. In fact, there is nothing
in the SME that requires that the Lorentz-violation coeflicients emerge due to
a process of spontaneous Lorentz violation. The SME coefficients can also be
viewed as due to explicit Lorentz violation or as arising from some unknown
mechanism. Indeed, once the philosophy of the SME is appreciated — that it is the
most general observer-independent field theory incorporating Lorentz violation —
then no matter what scalar Lagrangian is written down involving known low-
energy fields, the result will be contained in the full SME.

An illustration of this comes from studying noncommutative field theory.
These are theories that have noncommuting coordinates

[x#, 2¥] = i . (3)

It has been shown that this type of geometry can occur naturally in string the-
ory [15], and that it leads to Lorentz violation [16]. Here, however, the mechanism
leading to Lorentz violation is in general different from that of spontaneous sym-
metry breaking. Nonetheless, the form of the effective interactions that arise are
fully contained in the SME. The fixed parameters 6#”, which break the Lorentz
symmetry, act effectively so as to produce SME coefficients. For example, the
effective field theory involving a U(1) gauge field in a noncommutative geometry
includes lagrangian terms of the form

1. -
CNque B Fag 0" Dy, (4)

where F,g is the field strength. Here, as in (1) the interaction takes the form of
a scalar-valued product of known particle fields, derivative operators, and a set
of fixed background functions.

There are a number of other examples of effective field theories with Lorentz
violation that have been put forward in recent years, with a wide variety of
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motivations or ideas for symmetry breaking. Nonetheless, as long as the resulting
theories are described by scalar lagrangians, then they are compatible with the
approach of the SME. For example, a model with spatial rotational invariance
was used in [17] to study high-energy cosmic rays above the GZK cutoff. Another
example with a higher-dimensional lagrangian giving rise to Lorentz-violating
dispersion relations was considered in [18]. An example involving gravitational
fields includes a parameterized set of kinetic terms for a vector field in a theory
with spontaneous Lorentz breaking [19]. In all of these cases, the lagrangian
terms can be found as a subset of the full SME.

Over the years, a number of phenomenological frameworks that involve spe-
cific types of Lorentz violation have been developed and used extensively by
experimentalists. A sampling includes the T'Heu model [20], the Robertson-
Mansouri-Sex! framework [21], the PPN formalism [22], as well as models based
on kinematical breaking of Lorentz symmetry (see [12,14] for reviews). In some
cases, these theories describe parameterized equations of motion or dispersion
relations and do not originate from a scalar lagrangian. However, to the extent
that these models can be described by effective field theory defined by a scalar
lagrangian, they are compatible with the SME and direct links between their
parameterizations and the SME coefficients can be obtained.

It should be noted as well, that in addition to breaking Lorentz symmetry, the
SME also leads to violation of the discrete symmetry CPT [4,5]. This symmetry
is the product of charge conjugation (C), parity (P), and time reversal (T).
According to the CPT theorem [23], a relativistic field theory describing point
particles should exactly obey CPT symmetry. Conversely, a second theorem
states that if CPT is violated in field theory, then Lorentz symmetry must also be
broken [24]. It then follows that any observer-independent effective field theory
describing CPT violation must also be contained within the SME. Since CPT
can be tested to very high precision in experiments with matter and antimatter,
this opens up a whole new avenue for exploring the phenomenology of Lorentz
violation.

In summary, the full SME is defined as the most general observer-independent
theory of Lorentz and CPT violation that contains the SM and gravity. It thus
provides a unifying framework that can be used to investigate possible signals
of Lorentz and CPT violation. Because it contains an infinity of terms, with an
unlimited set of coefficients with spacetime indices, it is not possible to list all
of them. However, the terms can be classified in a general way, and a uniform
notation can be developed. It is also possible to develop subset theories of the full
SME, which contain a finite number of terms. One subset in particular has been
investigated extensively in recent experiments. It is the minimal SME, which is
comprised of the gauge-invariant subset of terms in the full SME with dimension
four or less.

Finally, one other remark about the SME coefficients is worth mentioning. It
is often commented these coefficients, such as for example a nonzero vacuum vev
of a tensor field generated from a process of spontaneous Lorentz violation, are
reminiscent of the old pre-relativistic ether. However, the ether was thought to
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be a medium (with a rest frame) for light, whereas an SME coefficient need not
be thought of in this way. The SME coefficients act effectively as background
vacuum fields. Their interactions typically select out a particular particle species.
In fact, if that particle is not the photon, then the SME coefficient will have no
direct influence on the speed of light. Moreover, the SME coefficients carry tensor
indices and therefore have definite spacetime directions in any observer frame.
In the end, while there are some similarities to the old ether, the physical effects
of the SME coefficients are significantly different.

3 Constructing the SME

One of the defining features of the SME is that the theory is observer indepen-
dent [8]. It is therefore important to make clear the distinction between what are
called observer and particle Lorentz transformations. An observer Lorentz trans-
formation is a change of observer frame. It can be viewed as a rotation or boost
of the basis vectors in the local frame. The philosophy of the SME is that even
with Lorentz violation, physics must remain observer independent. The results
of an experiment should not depend on the chosen perspective of any observer.
In contrast, a particle Lorentz transformation is a rotation or boost performed
on an individual particle field while leaving the coordinate frame fixed. In this
case, if there is Lorentz violation, the physics can change.

In terms of what this means for an experiment, the observer invariance of
the SME says that the results of a measurement cannot depend on the choice
of coordinate frame or observational perspective made by the experimenter. On
the other hand, if Lorentz symmetry is broken, the results of the experiment can
change if the apparatus itself is rotated or boosted in some direction, both of
which are examples of particle Lorentz transformations.

Note that this feature of the SME breaks the relativity principle, which is a
central assumption of (unbroken) relativity theory. This principle is often stated
as the equivalence of passive and active Lorentz transformations when one is
performed as the inverse of the other. In the formulation of the SME, however,
the terms passive and active are deliberately avoided since for one thing their
usage is sometimes confused in the literature. More importantly, though, it is
observer independence that is the physically defining feature of the theory, and
the terminology should reflect this. In addition, observers need not be inactive.
The idea in the SME is that even if an observer actively changes its perspective
or relative motion with respect to the apparatus in an experiment, the results
of measurements should remain unchanged.

A similar distinction between observer and particle transformations can be
made for general coordinate transformations performed in the spacetime man-
ifold of a Riemann or Riemann-Cartan geometry [9,10]. An observer transfor-
mation is simply a change of spacetime coordinates, which leaves the physics
unchanged. On the other hand, a particle transformation is essentially a diffeo-
morphism, which maps one point on the spacetime to another. The change in a
tensor under pullback to the original point is given by the Lie derivative.
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The full SME is defined using a vierbein formalism. This permits a natural
distinction between the spacetime manifold and local Lorentz frames. The vier-
bein e,* provides a link between the components of a tensor field T,,... on
the spacetime manifold (denoted using Greek indices) and the corresponding
components Tgpe... in a local Lorentz frame (denoted using latin indices). The
correspondence is given by

b
T)\;LV... = e)\aeu el/C to Tabc... . (5)

In this notation, the components of the spacetime metric are g,,,,, while in a local
Lorentz frame, the metric takes the Minkowski form 7,5,. A necessary condition
for the vierbein is therefore that g, = eu“eybnab. Covariant derivatives acting on
tensor fields with local indices introduce the spin connection w,ﬂb. For example,

Dye,* =0,e," — I' e + wuabe,,b . (6)

In a Riemann spacetime where Dy g,,, = 0, the spin connection is not an indepen-
dent field, but rather is a prescribed function of the vierbein and its derivatives.
However, in a Riemann-Cartan spacetime the spin connection represents inde-
pendent degrees of freedom associated with there being nonzero torsion.

The observer independence of the SME requires that all of the terms in the
lagrangian be observer scalars under both general coordinate transformations
and local Lorentz transformations. This means that every spacetime index and
every local Lorentz index must be fully contracted in the lagrangian.

However, the SME is not invariant under particle diffeomorphisms and local
Lorentz transformations. Explicitly, a diffeomorphism maps one point on the
spacetime to another. It can be characterized infinitesimally in a coordinate
basis by the transformation

at — gt + g, (7)

The four infinitesimal parameters £ comprise the diffeomorphism degrees of
freedom. On the other hand, under an infinitesimal particle Lorentz transforma-
tion the field components transform through contraction with a matrix of the
form

A% = 0% + €%, (8)

where €., = —€p, are the infinitesimal parameters carrying the six Lorentz de-
grees of freedom and generating the local Lorentz group. Evidently, there are a
total of ten relevant spacetime symmetries.

Violation of these symmetries occurs when an interaction term contains co-
efficients that remain fixed under a particle transformation, such as when as a
particle rotation or boost is performed in a background with a fixed vev.

3.1 Minimal SME

The full SME consists of an unlimited number of observer scalar terms consisting
of contractions of SM fields, gravitational fields, and SME coefficients. To begin
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to explore phenomenology, it makes sense to advance incrementally. Since gauge
symmetry and renormalizability are foundations of our current understanding
in particle physics, a first increment would be to construct a subset theory that
maintains these features. It is referred to as the minimal SME. It will first be
defined in Minkowski spacetime and then generalized to include gravitational
fields in a Riemann-Cartan geometry.

The minimal SME, constructed from dimension four or fewer operators, de-
scribes the leading-order effects of Lorentz violation. This is because the higher-
dimensional terms are expected to be suppressed by additional inverse powers
of the Planck mass compared to those in the minimal SME. Effects involving
couplings to gravitational fields are also expected to be smaller than those in-
volving interactions in the SM, particularly electrodynamic interactions. For this
reason, the Lorentz tests described later on are investigated using primarily a
QED subset of the minimal SME in flat Minkowski spacetime. Nonetheless, it
should be kept in mind that a particular type of Lorentz violation might only
occur at subleading order. For this reason, it is important ultimately to investi-
gate more general tests in the context of the full SME, including gravitational
effects as well as interactions involving higher-dimensional terms. However, that
goes beyond the scope of this overview.

To construct the minimal SME in flat Minkowski spacetime [8], the first
ingredient that must be put in is the minimal SM itself. This consists of quark
and lepton sectors, gauge fields, and a Higgs sector. Denote the left- and right-
handed lepton and quark multiplets by

L= (1) Ra= (. 0

Qa= (Zﬁ)L, Us=(ua)r, Da=(da)r, (10)

where A = 1,2,3 labels the flavor, with {4 = (e, p, 7), ¥4 = (Ve, Y, V7), ua =
(u,c,t),and d4 = (d, s,b). The Higgs doublet is denoted by ¢. The SU(3), SU(2),
and U(1) gauge fields are G, W,,, and B,,, respectively, with corresponding field
strengths: G, Wy, and B,,. The gauge couplings are g3, g, and ¢’, while ¢
denotes the electric charge. The Yukawa couplings are G, Gy, Gp.

The relevant sectors in the SM Lagrangian are:

Licpton = %iEAV“BMLA + %iRAV“EMRA (11)
Laguark = %ZQAW“ENQA + %iUA’YuﬁuUA + %iDA’Y“EHDA (12)
Lyukawa = — [(Gr)aLa¢RE + (Gu)apQa9°Up + (Gp)asQa¢Ds] , (13)
Litges = (Du9) DM+ 12619 — 21 (610)? (1)
Loange = —%Tr(G,“,G’“’) — %Tr(W#VW“V) — %BILVB“”, (15)

where D,, are gauge-covariant derivatives.
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The SME introduces additional Lagrangian terms that are contractions of
these SM fields with the SME coefficients. The SME coefficients are constrained
by the requirement that the Lagrangian be hermitian. For an SME coefficient
with an even number of spacetime indices, the pure trace component is irrelevant
because it maintains Lorentz invariance. Such coeflicients may therefore be taken
as traceless.

In the fermion sector of the minimal SME, four sets of terms can be classified
according to whether they involve leptons or quarks and whether CPT is even
or odd. They are

—even 1. T Sv L. > s
Lot = il(CL)uuABLA’Y#D Lp+ §Z(CR)uvABRA7MD Ry (16)

lepton
Egg{)?dd = —(ar)papLay"Lp — (ar)uapRav"Rp (17)
E(?i’flzeven = %i(cQ)#uABQAVHEVQB + %i(CU)MVABUA'YHEVUB
+%i(0D)MuABDA7“5VDB (18)
Effifﬁdd = —(aQ)uaBQa" Q5 — (av)uaUay"Us
—(ap)uasDav"Dp . (19)

In these expressions, the coefficients a, have dimensions of mass, while c,, are
dimensionless and traceless.

The couplings between fermions and the Higgs field are all CPT even and
are

—even 1 T v 9 v
LOPT—even —3 [(HL)ywaBLago" Rp + (Hy)uwapQa¢ c"" Up
+(HD);LUABQA¢O_HVDB:| ; (20)

where the SME coeflicients H,,, are dimensionless and antisymmetric.
The Higgs sector itself can be CPT even or odd. The terms are

—even 1 4 1 v
LCPT — §(k¢¢)“ (Du¢)TDV¢ — 5(/%3)“ (Z5T(Z5B;w

Higgs
1
—§(k¢W)W¢TW;w¢7 (21)
Litings = (ko)™ Dy (22)

The dimensionless coefficient k4 can have symmetric real and antisymmetric
imaginary parts. The other coefficients have dimensions of mass.
The gauge sector consists of
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1 1
[/CPTfeven _ —i(kG)mWTI"(GMGW) _ 5(k/,vv)K}\lwTI_(VVK)\Vv;w)

gauge
1
=5 (k)oxuw BT B, (23)
2.
Lgﬁg«;(}dd = (k3)KEKA#VTr(G)\GMV + glg3G)\GpGu)

2
+ (k) €M Te(WAW,,,, + gz‘gvm/vﬂwy)
+(k1) €™M ByByy, + (ko) B" . (24)

The coefficients kg w, g are dimensionless, have the symmetries of the Riemann
tensor, and have a vanishing double trace. The coefficients £; 5 3 are real and have
dimensions of mass, while kg is also real and has dimensions of mass cubed. Note
that if any of these CPT-odd terms appear in the theory, they would generate
instabilities associated with negative contributions to the energy. For this reason,
the coeflicients kg 1,23 are assumed to vanish. Interestingly, it appears that no
radiative corrections in the SME appear to generate nonzero values for these
coefficients, at least to one loop.

It is also important to realize that some of the SME terms can be eliminated
by field redefinitions [8,25,26]. For example, some of the terms involving the coef-
ficients ar r,Q,u,p can be eliminated by position-dependent field-phase redefini-
tions. Another example is that certain terms involving the coefficients ¢ r,0,v,p
can be absorbed by the terms involving the coefficients Hy, yy, p through field-
normalization redefinitions. In particular, what this means is that while a field
theory can be written down that ostensibly has explicit Lorentz violation, it
is sometimes the case that there are no physical effects because the theory is
equivalent through field redefinitions to a Lorentz-invariant theory.

Clearly, there are a number of additional theoretical issues that are relevant to
the construction of the SME as a consistent low-energy field theory incorporating
Lorentz violation. These include a more in-depth discussion of the nature of
field theory with Lorentz violation (including quantization of the theory) [8],
issues related to causality [25], the possibility of additional extensions including
for example supersymmetry [27], renormalization [28], electroweak symmetry
breaking [8], radiative corrections [29], spacetime variations of couplings [30],
etc. It is not possible to describe all of these issues here. The interested reader
is referred to the original papers.

3.2 Gravity Sector

The gravity sector of the SME has been discussed in [9], and the minimal theory
(dimension four or fewer terms) has been explicitly constructed. A vierbein for-
malism is used, which gives the theory a close parallel to gauge theory. Lorentz
breaking occurs due to the presence of SME coefficients, which remain fixed
under particle Lorentz transformations in a local frame. In this case, the SME
coefficients carry Latin indices, e.g., b, for a vector, with respect to the local ba-
sis set. The conversion to spacetime coordinates is implemented by the vierbein,
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giving, e.g., b, = €,%b,. The lagrangian can then be written in terms of fields
and SME coefficients defined on the spacetime manifold. A natural (though not
required) assumption is that the SME coefficients are smooth functions over the
manifold. It is not necessary to require that they be covariantly constant. In fact,
defining covariantly constant tensors over a manifold places stringent topologi-
cal constraints on the geometry. One simplifying assumption, which could occur
naturally in the context of spontaneous Lorentz breaking, is to assume that the
SME coefficients are constants in the local frame. However, again, this is not a
requirement in the formulation of the SME theory.

To construct the minimal SME including gravity, the first step is to incor-
porate gravitational fields into the usual SM. This is done by rewriting all of
the terms in (11) through (15) with fields and gamma matrices defined with
respect to the local frame (using Latin indices). The vierbein is then used to
convert these terms over to the spacetime manifold. Factors of the determinant
of the vierbein e are included as well so that integration of the lagrangian density
(giving the action) is covariant. Derivatives are understood as well to be both
spacetime and gauge covariant. With these changes, (11), for example, becomes

1 - < 1 _ -
Liepton = iiee”aLAwaD#LA + iiee”aRAvaD#RA . (25)

The other terms for the quark, Yukawa, Higgs, and gauge sectors follow a similar
pattern.

The Lorentz-violating SME terms constructed from SM fields are obtained in
a similar way. The various particle sectors can again be divided between CPT odd
and even contributions. Each of the terms in (16) to (24) is then written using
local indices and vierbeins, which convert the equations over to the spacetime
manifold. As an example, (16) becomes

CPT—even
‘Clepton

= —%i(cL)WABee“aLAfyaD”LB — %i(cR)WABee“aRAfyaD”RB )
(26)
The remaining equations follow the same pattern.

The pure-gravity sector of the minimal SME consists of a Lorentz-invariant
gravity sector and a Lorentz-violating sector. The Lorentz-invariant lagrangian
consists of terms that are products of the gravitational fields. In the general case,
this includes terms constructed from curvature, torsion, and covariant deriva-
tives. Einstein’s gravity (with or without a cosmological term) would be a special
case in this sector.

The Lorentz-violating Lagrangian terms in the gravity sector of the minimal
SME are constructed by combining the SME coefficients with gravitational field
operators to produce an observer scalar under local Lorentz transformations and
general coordinate transformations. These consist of products of the vierbein,
the spin connection, and their derivatives, but for simplicity they can be written
in terms of the curvature, torsion, and covariant derivatives. The minimal case
(up to dimension four) has the form:
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LY, = e(kr)™ Tau + e(kr)™ ™ R + e(krr) ™M Togy Thpu

+e(kpr)™ Dy Tap - (27)

The SME coefficients in this expression have the symmetries of the associated
Lorentz-violating operators. All except (k7)™, which has dimensions of mass,
are dimensionless.

The Lorentz-violating sector introduces additional gravitational couplings
that can have phenomenological consequences, including effects on cosmology,
black holes, gravitational radiation, and post-Newtonian physics. As a starting
point for a phenomenological investigation of the gravitational consequences of
Lorentz violation, it is useful to write down the Riemannian limit of the minimal
SME gravity sector. It is given as [9]

1
Sewn = o /d4x [e(l —u)R —2eA+es"” R, + et”A“”RMW] . (28)

The SME coefficient (kg)"**¥ has been expanded into coefficients s*¥, t***¥ and
u that distinguish the effects involving the Riemann, Ricci, and scalar curvatures.
The coefficients 8 have the symmetries of the Ricci tensor, while " ¥ has those
of the Riemann tensor. Taking tracelessness conditions into account, there are
19 independent components.

Another useful limit is the QED subset of the SME. This extension in
Minkowski space has been used extensively to investigate high-precision experi-
mental tests of Lorentz symmetry in atomic and particle systems. Generalizing
to include gravity involves introducing additional vierbein-fermion couplings as
well as a pure-gravity sector. These additional terms can then be investigated for
potential signals of Lorentz violation due to gravitational effects in high-precision
experiments.

A full treatment of the gravity sector of the SME should include looking
at the energy momentum tensor, Einstein’s equations, and consistency relations
between these stemming from, for example, the Bianchi identities. These types
of issues are described in depth in [9]. Interestingly, a difference between theories
with explicit versus spontaneous breaking of Lorentz symmetry is found. In a
generic Riemann-Cartan theory with explicit breaking of Lorentz symmetry, the
Bianchi identities are not consistent with the the covariant conservation laws and
equations of motion. On the other hand, if Lorentz symmetry is spontaneously
broken, the problem is evaded.

4 Spontaneous Lorentz Violation

One of the original motivations for developing the SME was that mechanisms
in string theory suggest that local Lorentz symmetry might be spontaneously
broken [4]. While the full SME describes any observer-independent Lorentz vi-
olation at the level of effective field theory, one important special case is when
Lorentz symmetry is spontaneously broken. This provides an elegant mechanism
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in which the symmetry holds dynamically, but is broken (or hidden) by the so-
lutions of the theory. The lagrangian and equations of motion still respect the
symmetry, however; the vacuum values of the fields do not. Tensor-valued fields
acquire nonzero vevs which have definite spacetime directions, thereby breaking
the symmetry under boosts and rotations.

There are certain theoretical issues that arise when the Lorentz violation is
due to spontaneous symmetry breaking. This section examines some of these is-
sues, in particular, what the fate is of the Nambu-Goldstone modes when Lorentz
symmetry is spontaneously broken.

In gauge theory, it is well known that when a continuous global symmetry
is spontaneously broken, massless Nambu-Goldstone (NG) modes appear [31].
If instead the broken symmetry is local, then a Higgs mechanism can occur in
which the gauge bosons become massive [32]. The question naturally arises as
to what the fate of the NG modes is when Lorentz symmetry is spontaneously
broken and whether a Higgs mechanism can occur for the case of local Lorentz
symmetry (as in a theory with gravity).

This question has recently been addressed in detail in [10]. A generic analy-
sis of theories with spontaneous Lorentz breaking was carried out in Riemann-
Cartan spacetime and in the limiting cases of Riemann and Minkowski spacetime.
A number of general features were found.

First, a connection between spontaneous breaking of local Lorentz symmetry
and diffeomorphisms was found to hold. This occurs because when the vierbein
takes a vacuum value, which for simplicity we can take as its value in a Minkowski
background, e,* = 47, then if a local tensor acquires a fixed vev, e.g., b, for
the case of a vector, which breaks local Lorentz symmetry, then the associated
spacetime vector b,, as given by contraction with the vierbein also acquires a fixed
vev. The spacetime vev b,, breaks diffeomorphisms. The converse is also true. If
a nonscalar tensor vev on the spacetime manifold breaks diffeomorphisms, then
the associated local tensor will have a vev that breaks local Lorentz symmetry.
In the case of a scalar, the derivatives of the field will have vevs that break local
Lorentz symmetry.

Next, the question of how many NG modes there are and where they reside
was examined. Since there are six Lorentz symmetries and four diffeomorphisms,
which can all be broken when a tensor with a sufficient number of indices acquires
a fixed vev, this means that in general up to ten NG modes can appear. A general
argument shows that these ten modes can all be absorbed as additional degrees
of freedom in the vierbein. A simple counting argument supports this as well.
The vierbein has 16 components. With Lorentz symmetry, six of these modes
can be gauged away. They are usually chosen as the antisymmetric components.
Similarly, diffeomorphisms can be used to remove four additional degrees of
freedom. This leaves six vierbein modes in the general case. Einstein’s theory
has four of these modes as auxiliary, resulting in only two massless modes for the
graviton. However, in a more general gravitational theory, there can be up to six
propagating modes, which in a vierbein formalism are the six vierbein degrees of
freedom. If Lorentz symmetry and diffeomorphisms are broken, then the ability
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to gauge away some of the vierbein degrees of freedom is lost. In particular,
since up to ten symmetries can be broken, up to ten additional modes (the NG
modes) can appear in the vierbein.

The number of NG modes is also affected by the nature of the vev and by
the fact that the symmetry is a spacetime symmetry. For example, in the case of
a vector vev, which breaks three Lorentz symmetries and one diffeomorphism,
it might be expected that there would be three massless NG Lorentz modes and
one massless NG diffeomorphism mode. However, in the case where the vector
vev is a constant, the diffeomorphism mode is found to be an auxiliary mode. It
is also found that there are only two propagating massless Lorentz modes. The
third Lorentz mode is found to be auxiliary as well. In this case, since the NG
modes carry vector indices, it makes sense that a massless vector would only
have two propagating modes. This clearly provides an example where the usual
counting of NG modes (one massless mode per broken generator) does not hold
for the case of a broken spacetime symmetry [33].

It was also found that the fate of the NG modes depends on the geome-
try. In Riemann or Minkowski spacetime, where the torsion is zero, the NG
modes appear as additional massless or auxiliary modes in the vierbein. How-
ever, in Riemann-Cartan spacetime, which has nonzero torsion and where the
spin connection has degrees of freedom that are independent from the vierbein,
the possibility of a Higgs mechanism occurs. This is because a mass term for the
spin connection can form when local Lorentz symmetry is spontaneously bro-
ken. If the theory permits massless propagating modes for the spin connection,
then these modes can acquire a mass. In principle, the mechanism is straight-
forward. However, finding a ghost-free unbroken model with a propagating spin
connection that is compatible with the mass term is challenging.

A specific vector model with spontaneous Lorentz breaking, called a bum-
blebee model, has been used to illustrate the behavior of the NG modes. For
simplicity, this overview will concentrate entirely on this example for the case of
a constant vev. All of the general features described above will be applicable.

Bumblebee models in a gravitational theory were first looked at by Kostelecky
and Samuel as a simple model for investigating the consequences of spontaneous
Lorentz violation [11]. Their properties have been studied in a variety of contexts
[34]. Much of the attention has focused on models with a timelike vev. It has
been suggested that if a NG diffeomorphism mode propagates in this case, then
it would have an unusual dispersion relation [35].

One especially noteworthy feature of the bumblebee model occurs in Minkowski
and Riemann spacetime. It is found (in the linearized theory) that the massless
NG Lorentz modes behave essentially as the photon in an axial gauge [10]. Con-
nections between Lorentz breaking and gauge fixing have been noted previously,
leading to the suggestion that the photon is comprised of NG modes due to spon-
taneous Lorentz breaking [36,37]. However, the approach of the bumblebee model
is different. It is not a U(1) gauge theory, since it contains a potential V' that
is not U(1) invariant. The Lorentz breaking is therefore not a U(1) gauge fixing
choice. Nonetheless, the NG modes appear to behave at lowest order as photons
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in an axial gauge. Moreover, there are additional tell-tale signs of Lorentz break-
ing [10]. These include additional SME couplings in Riemann and Minkowski
spacetime as well as anomalous gravitational couplings in the case of a Riemann
geometry. This offers the possibility of letting experiments determine whether
massless photons are the result of unbroken gauge symmetry or whether they
might be due to spontaneously broken Lorentz symmetry.

4.1 Bumblebee Models

The definition of a bumblebee model is that it is a vector theory in which the
vector field B* acquires a nonzero vev, which spontaneously breaks Lorentz
symmetry. The lagrangian consists of a kinetic term for B* and a potential V'
that induces spontaneous Lorentz breaking. The potential is not U(1) gauge
invariant. Typically, the potential imposes a vev b, # 0 for the vector in a local
frame. The vierbein relates this back to the spacetime vector as B, = e,,“b,. For
simplicity, we assume a perturbative solution about a Minkowski background.
This permits us to drop the distinction between latin and Greek indices and to
write

1
eur = Nuv + <2hw/ + X;u/) , (29)

where the ten symmetric excitations h,, = h,, are associated with the metric
Juv = Nuw + hyy, while the six antisymmetric components x,,, = —x,, are the
local Lorentz degrees of freedom. In this background, the vacuum solution takes
the form

(B¥) =b", (€ur) = My - (30)

There are a number of choices for the kinetic and potential terms. Vector-
current interactions and additional vector-curvature couplings that are forbidden
in U(1) gauge theory can be included as well [4,9].

Here, as an illustrative example, we examine the model given by the La-
grangian

1 L 174 1 174
Lp = ﬁ(eR—&— £eB"B"R,,) — ZeBWB“

—e\(B,B" £ b*) —eB,J", (31)

where kK = 871G and € is a coupling coefficient between the vector field and the
curvature. The kinetic terms in this example are analogous to those in Einstein-
Maxwell theory. However, in the general case in a Riemann-Cartan spacetime,
the torsion contributes to these terms and the field strength is defined by

Bp,u = D/,LBV - DVB;L ; (32)
where D,, are covariant derivatives. The potential term is

V(B,B" £ 1) = \(B,B" £ 1), (33)



Overview of the Standard Model Extension 207

where A is a Lagrange-multiplier field. It imposes the constraint that the vector
field has a vev b® obeying b,b® = Fb? (with the sign corresponding to whether
the vector is timelike or spacelike). The vector field can then be written in terms
of the vierbein and can be expanded perturbatively to give

1
Bt = el b* =~ b + (—2h’“’ + XW) b, . (34)

The vierbein degrees of freedom include the NG modes.
This model can be studied in a linearized approximation. The symmetric and
antisymmetric components of the vierbein transform as
hm/ - hpwa
Xpv = Xpv — €uv (35)

under infinitesimal Lorentz transformations, while under infinitesimal diffeomor-
phisms

h;w - h;u/ - 6p,£u - au§,u7
1
Xpv = Xpv — i(augu - auf,u) . (36)
In these expressions, quantities of order (eh), (ex), (§h), (§x), etc. are assumed
small and hence negligible in the linearized treatment.

The NG modes can be found as the virtual fluctuations about the vacuum
solution. These can be written as

1
0B* = B¥ — b* = (—Zh“” + XW) by . (37)
It is useful to introduce projections on the transverse and longitudinal com-

ponents of § B along b*. Assuming b # 0, these are given by

Iz b"b, Iz Iz iz
(PH)V:W, (PL)u:(;V*(PH) v (38)

Defining the projected fluctuations as

EF = (P)*,0B", ot = (PH)”,,(SB” ~bp, (39)
where Wh W
_ _Z "HrT

P =~ "gper, (40)

lets us write the field B* as
B¥ ~ (14 p)b* + EF. (41)

In terms of these projections, the NG Lorentz and diffeomorphism modes
can be identified. Under a virtual local particle Lorentz transformation only



208 R. Bluhm

components £# obeying b,E# = 0 are excited. These are the NG Lorentz modes,
which evidently obey a condition similar to an axial-gauge condition in U(1)
gauge theory. If instead a virtual infinitesimal diffeomorphism is performed, only
the longitudinal component p is excited. It can therefore be identified as the NG
diffeomorphism mode. Note that a metric fluctuation about the vacuum solution,

Nuv — Guv = Nuv — aﬂgl/ - avf,u ) (42)

is generated by the diffeomorphism as well.

The dynamics of the NG modes depend on the background geometry. Three
cases corresponding to Minkowski, Riemann, and Riemann-Cartan spacetime
are examined in the following sections.

4.2 Minkowski Spacetime

In Minkowski spacetime, the curvature and torsion equal zero, and the metric
can be written as

Juv = Npv - (43)
The bumblebee Lagrangian in (31) reduces to

1
Lp = _ZBWBW ~ MB.B" £ %) — B,J". (44)

In this case, it is found that the diffeomorpism mode p cancels in B, . It is
therefore an auxiliary mode and does not propagate. The Lorentz modes are
contained in the projection £,. Renaming this as £, = A, and calling the field
strength F),, = 0,4, — 0, A, lets us rewrite the Lagrangian as

1
£B—>£NG%—ZFMUF‘LW—AMJ'u—bMJ'u—Fb‘ual,EMJ”, (45)

where 5, is the longitudinal diffeomorphism mode &,, promoted to an NG field.
It is defined by p = 9,,=*. Note that varying with respoct to this auxiliary mode
yields the current-conservation law, 9,J* = 0.

The Lagrangian Lng is the effective quadratic lagrangian that governs the
propagation of the NG modes in Minkowski space. The field A* has three de-
grees of freedom and automatically obeys an axial-gauge condition b, A* = 0.
It contains the three Lorentz NG modes. Depending on the vev b,, the special
cases of temporal gauge (A° = 0) and pure axial gauge (A% = 0) are possible.

It can be seen that in Minkowski spacetime the NG modes resemble those
of a massless photon in U(1) gauge theory in an axial gauge. Unlike the gauge
theory case, however, where the masslessness of the photon is due to unbroken
gauge symmetry, in this case the masslessness of the photon is a consequence of
spontaneously broken Lorentz symmetry. An important question is whether this
interpretation of the photon has experimentally verifiable consequences. Clearly,
there is one additional interaction that does not hold for the usual photon in
gauge theory. This is the Lorentz-violating term b,J#, where J# is the charge
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current. This term can be identified with the SME term with coefficient af,
that occurs in the QED limit of the SME [8]. This type of SME coefficient if it
is constant is known to be unobservable in experiments restricted to the elec-
tron sector [8,9,25]. However, it can generate signals in the quark and neutrino
sectors. Thus, in experiments with multiple particle sectors, the idea that the
photon results from spontaneous Lorentz violation can potentially be tested in
Minkowski space.

4.3 Riemann Spacetime

In Riemann geometry in a vierbein formalism, the spin connection w,,*® appears
) w
in covariant derivatives. However, the metric requirement,

Dye,* =0, (46)

and the fact that the torsion vanishes permits the spin connection to be com-
pletely determined in terms of the vierbein as

1 1
L(Juab = 561/(1(8“6”17 - al/eub) o 5614)(6#6”& o 8”e“a)

1
—iea“eﬁbeuc(ﬁaegc — Ogeaqc) - (47)

The spin connection has no independent degrees of freedom in Riemann space-
time, and the NG modes are still contained in the vierbein. In this case (with
gravity), up to six of the 16 components of the vierbein can represent dynamical
degrees of freedom associated with the gravitational fields.

We again consider the bumblebee lagrangian and vacuum as given in (31)
and (30), respectively. The projector-operator decomposition of B* reveals that
there are four potential NG modes contained in £# and p, and the axial-gauge
condition b,E* = 0 still holds in Riemann spacetime. The field strength B,,, can
be rewritten as

B, = (0ue," — 0ve,®)ba, (48)

which suggests that the propagation of the vierbein is modified by the bumblebee
kinetic term.

The effective lagrangian for the NG modes can be found by expanding the
bumblebee lagrangian to quadratic order, keeping couplings to matter currents
and curvature. The result in terms of the decomposed fields is

1

L ~
NG 2%

[eR + Eeb"'b R, + Ee AV AV R,
+Eep(p + 2)bHV" Ry, + 28e(p + 1)0H AY R,
1
—ZeFM,,F‘“’ —eA,J" —eb,J" +eb0,5,J", (49)

where again the Lorentz modes are relabeled as A, = £, which obeys b, A" =0,
and the field strength is £, = 0,4, — 0, A,. The gravitational excitations h,,
obey the condition A, 0" = 0.



210 R. Bluhm

The form of this effective lagrangian reveals that only two of the four po-
tential NG modes propagate. These are the transverse Lorentz NG modes. The
longitudinal Lorentz and the diffeomorphism NG modes are auxiliary. In par-
ticular, the curvature terms do not provide kinetic terms for p. This is because,
metric fluctuations in the form of a diffeomorphism excitation produce only a
vanishing contribution to the curvature tensor at linear order.

In Riemann spacetime, the NG Lorentz modes again resemble the photon in
an axial gauge. The interaction with the charged current J, also has the ap-
propriate form. However, possible signals for testing the idea that the photon
is due to Lorentz violation can be found. In particular, there are unconven-
tional couplings of the curvature with A*, p, and b*. The curvature couplings
eA*AYR,,,, are forbidden by gauge invariance in conventional Einstein-Maxwell
electrodynamics, but they can appear here in a theory with Lorentz violation.
The term £eb"b” R, /2K corresponds to an SME coefficient of the s#” type in the
gravity sector of the SME. The remaining terms also represent Lorentz-violating
couplings that are included in the SME. Any of these signals could serve to pro-
vide experimental evidence for the idea that the photon is an NG mode due to
spontaneous Lorentz violation.

4.4 Riemann-Cartan Spacetime

In a Riemann-Cartan spacetime, the vierbein e, * and the spin connection wzb are
independent degrees of freedom. As a result, the effects of spontaneous Lorentz
breaking are very different from the cases of Minkowski and Riemann spacetime.
In particular, it has been found that when the torsion is nonzero it is possible for
a Higgs mechanism to occur [10]. This will be illustrated below in the context
of the bumblebee model in Riemann-Cartan spacetime.

One immediate question concerning the possibility of a Higgs mechanism in
a gravitational theory is whether the graviton acquires a mass or not. Indeed,
even a small mass for the graviton can modify the predictions of general relativity
leading to disagreement with experiment [38]. However, it was shown some time
ago that a conventional Higgs mechanism cannot give rise to a mass for the
graviton since the terms that are generated involve derivatives of the metric [11].

A generic Lagrangian for a theory with spontaneous Lorentz violation in
Riemann-Cartan spacetime can be written as

L=Ly+ LssB - (50)

Here, we assume L, contains only gravitational terms formed from the curvature
and torsion and describes the unbroken theory, while Lgsp induces spontaneous
Lorentz violation. For a Higgs mechanism to occur involving the spin connection,
Lo should describe massless propagating modes for the spin connection prior to
the spontaneous breaking of Lorentz symmetry. The theory should also be free
of ghosts. It turns out that these conditions severely restrict the possibilities for
model building. The number of ghost-free theories with massive and massless
propagating spin connection modes is limited [39,40]. The number of propa-
gating modes in these models depends on the presence of additional accidental
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symmetries. The symmetry-breaking lagrangian Lgsp typically breaks one or
more of the accidental symmetries when the tensor field acquires a vev, which
complicates the analysis of potential models.

In the bumblebee model in (31) the symmetry-breaking part of the lagrangian
is

1
Lssp = —ZeBWB“” —e\N(B,B" £b%). (51)

In a Riemann-Cartan spacetime, the field strength B, is defined in (32). In
terms of the vierbein and spin connection, it becomes

By, = (eubwyab — eybwuab) ba - (52)

Note that this expression reduces back to (48) in the limits of Riemann and
Minkowski spacetimes, where the spin connection is given by (47).

When B,,, is squared, quadratic terms in w,“, appear in the Lagrangian,
which perturbatively have the form

1 1
- ZGB#VBMV ~ *Z(Wupv — Wypp) (WHTY — wW"TH)bP b, . (53)

It is these quadratic terms that suggest that a Higgs mechanism can occur in-
volving the absorption of the NG modes by the spin connection. It should be
noted that this is only possible in Riemann-Cartan spacetime with nonzero tor-
sion, since otherwise (as in Riemann spacetime) the spin connection has no
independent degrees of freedom.

In [10], a number of different models for the kinetic terms £y were considered.
As mentioned, the difficulty in building a viable model with a Higgs mechanism
comes from finding a kinetic term describing propagating modes that are com-
patible with (53) as a mass term. If ghosts are permitted, this is straightforward.
For example, with the choice

1
*CO = ZRA/{HURANMV . (54)

all the fields wy,, with A # 0 propagate as massless modes. When this is com-
bined with Lgsp, we find that among the propagating modes in the linearized
theory there is a massive mode. Other examples can be studied as well and are
aided by decomposing the fields wy,, according to their spin-parity projections
JP in three-dimensional space. This reveals that the mass term consists of a
physical 17 mode and a 1~ gauge mode. Models can be found in which L in-
cludes a massless 17 mode. However, typically the propagating massless modes
involve combinations of J¥ projections, which makes finding compatibility with
Lssp all the more challenging.

In the end, a number of issues remain open for future investigation. Studies
of the large variety of possible Lorentz-invariant lagrangians £y can lead to new
models in which the spin connection acquires a mass due to spontaneous Lorentz
breaking. Different choices for Lggp can also be considered, including ones in
which the spontaneous Lorentz violation involves one or more tensor fields. This
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would certainly affect the dynamics of the NG modes as well. From a broader
theoretical point of view, the incorporation of spontaneous Lorentz violation in
theories with torsion opens up a new arena in the search for ghost-free models
with propagating massive modes.

Certainly, there are implications for phenomenology in the context of Riemann-
Cartan spacetime. The relevant mass scale in the Higgs mechanism is set by b2.
Even if this is on the order of the Planck mass, the existence of fields associ-
ated with Lorentz violation could have effects on cosmology, black holes, and
gravitational radiation. Since all of the relevant terms in any of these models
are included in the SME in Riemann-Cartan spacetime, a systematic approach
would be to investigate possible new signals in that context.

5 Phenomenology

The minimal SME described in Sect. 3.1 has been used extensively in recent years
by experimentalists and theorists to search for leading-order signals of Lorentz
violation. To date, Planck-scale sensitivity has been attained to the dominant
SME coefficients in a number of experiments involving different particle sectors.
These include experiments with photons [29,41-46], electrons [47-53], protons
and neutrons [54-59], mesons [60,61], muons [62—-64], neutrinos [8,17,65-67], and
the Higgs [68]. It should be noted that despite the length of this list of experi-
ments, a substantial portion of the SME coefficient space remains unexplored.

In the remaining sections, an overview of some of the recent tests of Lorentz
and CPT symmetry in a Minkowski background will be given. In particular, since
many of the sharpest test are performed in high-precision atomic and particle
experiments involving photons and charged particles, much of the focus will be
on the QED limit of the minimal SME. However, two other particle sectors are
briefly described as well. These involve testing Lorentz and CPT symmetry with
mesons and neutrinos.

5.1 Mesons

Experiments with mesons have long provided some of the sharpest tests of CPT.
Since CPT and Lorentz symmetry are intertwined in field theory, these exper-
iments also provide additional tests of Lorentz symmetry. Investigations in the
context of the SME have found very high sensitivity to the CPT-odd a,, coefli-
cients in the SME. -

The time evolution of a meson P? and its antimeson P° is governed by a
2 x 2 effective hamiltonian A in a description based on the Schrédinger equation.
Here, P represents one of the neutral mesons K, D, By, Bs. The hamiltonian
can be written as [61,69]

(55)

—1
A:;AA<U+£VW >’

VW U-—¢
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where the parameters U, V, W, and £ are complex. The factor A\/2 ensures
these parameters are dimensionless. Imposing conditions on the trace and de-
terminant gives the relations U = A\/AX and V = /1 — £2. The independent
complex parameters W = w exp(iw) and & = Re[¢]+:Im[€] have four real compo-
nents. One is physically unobservable. The argument w changes under a phase
redefinition of the P® wave function. The three others are physical. The two
real numbers Re[¢], Im[¢] determine the amount of CPT violation, with CPT
preserved if and only if both are zero.

The dominant CPT-violating contributions to the effective hamiltonian A
can be calculated as expectation values of interaction terms in the SME. The
result in terms of ¢ is

&~ B Aay,, (56)
where g* = ~(1, 3) is the four-velocity of the P meson in the laboratory frame
and the coefficients Aa,, are combinations of SME coefficients.

The 4-velocity (and 4-momentum) dependence in (56) shows explicitly that
CPT violation cannot be described with a constant complex parameter in quan-
tum field theory [61]. Nonetheless, most experiments have fit their data to a
constant value of £. Experiments in the kaon system [70], for example, have at-
tained bounds of order 10™* on the real and imaginary parts of £. More recently,
however, analyses have been performed taking into account that in an experi-
ment Aa,, varies with the magnitude and direction of the momentum and with
sidereal time as the Earth rotates. These experiments have attained sensitivities
to Aa, on the order of 1072 GeV in the kaon system and 107!% GeV in the D
system [60]. Additional bounds for the B; and By systems can be obtained as
well in future analyses.

5.2 Neutrinos

A general analysis in the context of the SME has searched for possible signals
of Lorentz violation in neutrino physics [66]. Among other things, it looked at
how free neutrinos with Dirac and Majorana couplings oscillate in the presence
of Lorentz violation. Remarkably, a number of possible models exist in which
Lorentz violation (with or without massive neutrinos) contributes to neutrino
oscillations. One two-parameter model in particular, consisting of massless neu-
trinos, called the bicycle model, reproduces features in observed data (except
for the LSND experiment). Indeed, a statistical analysis performed using data
from Super-Kamiokande on atmospheric neutrinos finds that the fit based on
the bicycle model is essentially as good (within a small marginal error) to the fit
based on small mass differences [65]. Further investigations looking for sidereal
time variations will be able to distinguish oscillations associated with Lorentz
violation from those due to small mass differences.

5.3 QED Sector

Traditionally, many of the sharpest tests of Lorentz and CPT symmetry have
been made with photons or in particle or atomic systems where the predominant



214 R. Bluhm

interactions are described by QED. This would include the original Michelson-
Morley experiments and their modern-day versions [42-44]. The Lorentz tests
known as Hughes-Drever experiments are atomic experiments in which two high-
precision atomic clocks consisting of different atomic species are compared as the
Earth rotates [54]. These provide exceptionally sharp tests of Lorentz symme-
try. Similarly, some of the best CPT tests for leptons and baryons — involving
direct comparisons of particles and antiparticles — are made by atomic physicists
working with Penning traps [47,48,59].

In order to look for the leading order signals of Lorentz and CPT violation
in these types of experiments, it is useful to work with a subset of the minimal
SME lagrangian that is relevant to experiments in QED systems. The QED limit
of the minimal SME can be written as

Lorp = Lo + Lins - (57)

The lagrangian Ly contains the usual Lorentz-invariant terms in QED describ-
ing photons, massive charged fermions, and their conventional couplings, while
Lint contains the Lorentz-violating interactions. Since the minimal SME in flat
spacetime is restricted to the remormalizable and gauge-invariant terms in the
full SME, the QED sector interactions in L, have a finite number of terms. For
the case of photons and a single fermion species 1 the Lorentz-violating terms
are given by [71]

Ling = —a,py" e — bubysy™ + i py' Dy
. e L TV 1 T UV
+Zduuw757l Dy — iHquo-l (

1 1
(kp)auw FFA P + i(kAF)”eMWAAF‘“’ ) (58)

4
Here, iD,, = i0,, — qA,. The terms with coefficients a,,, b, and (kar), are odd
under CPT, while those with H,,,, ¢.v, duw, and (kp)waue preserve CPT. All
seven terms break Lorentz symmetry. In general, superscript labels will be added
to these parameters to denote the particle species.

This Lagrangian emerges naturally from the minimal SME sector for charged
leptons, following the usual assumptions of electroweak symmetry breaking and
mass generation. Lagrangian terms of the same form are expected to describe
protons and neutrons in QED systems as well, but where the SME coefficients
represent composites stemming from quark and gluon interactions. It is certainly
the case that QED and its relativistic quantum-mechanical limits describe pro-
ton and neutron electromagnetic interactions in atoms in excellent agreement
with experiments. Defining terms involving composite SME parameters for pro-
tons and neutrons is therefore a reasonable extension of the theory. The QED
extension of the SME treats protons and neutrons as the basic constituents of
the theory. The lagrangian Li,; then contains the most general set of Lorentz-
violating interactions in this context.

Since the corrections due to Lorentz violation at low energy are known to
be small, it is sufficient in many situations to work in the context of relativistic
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quantum mechanics using perturbation theory. To do so, a Hamiltonian is needed
such that .
i0ox = Hx, (59)

where H = f[o + Flpert. The perturbative hamiltonian I:Ipert associated with
Lorentz violation can be generated using a Foldy-Wouthuysen approach and by
making appropriate field redefinitions [49,57]. The result for a massive fermion
particle is

Hpert = auy " = buys Pyt — coomy® —i(coj + cjo)D?
+i(cooD;j — ¢;rD* )Yy = djomrsy? + i(doj + djo) DI

. co1 y
+i(doo Dy — dji DF)y 577 + §HW700” . (60)

Here, the letters j, k, [, etc. represent the three spatial directions in a laboratory
frame. The j = 3 (or z direction) is usually chosen as the quantization axis. The
corresponding hamiltonian for the antiparticle can be obtained using charge
conjugation.

The SME coefficients are expected to be fixed with respect to a nonrotating
coordinate frame. As a result, the SME coefficients by, b;, etc. would change
as the Earth moves. In order to give measured bounds in a consistent manner,
a nonrotating frame is chosen. Often, this is chosen as a sun-centered frame
using celestial equatorial coordinates. These are denoted using upper-case let-
ters T,X,Y,Z. Typically, experiments sensitive to sidereal time variations are
sensitive to a combination of parameters, which are denoted using tildes. For
example, the b, tilde coefficients with u = j are defined as

. 1
bj = b5 —md5, — igj’”H’il , (61)

These combinations are projected onto the nonrotating frame, where the com-
ponents with respect to the celestial equatorial coordinate frame are b, b§, b%,
etc. The relation between the laboratory and nonrotating components is
~f = 53( cos y cos(£2t) + l~7§/ cos x sin(£2t) — Z;EZ sinx ,
5 = —b% sin(2¢) + b5 cos($2t) ,

bS = b5 sin x cos(£2t) + b5, sin x sin(£2t) + b cos . (62)
The angle x is between the 7 = 3 lab axis and the direction of the Earth’s

rotation axis, which points along Z. The angular frequency {2 ~ 27/(23h 56m)
is that corresponding to a sidereal day.

6 Tests in QED

Before examining individual tests of Lorentz symmetry in QED systems, it is
useful to examine some of the more general results that have emerged from these
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investigations. One general feature is that sensitivity to Lorentz and CPT vi-
olation in these experiments stems primarily from their ability to detect very
small anomalous energy shifts. While many of the experiments were originally
designed to measure specific quantities, such as charge-to-mass ratios of parti-
cles and antiparticles or differences in g factors, it is now recognized that these
experiments are most effective as Lorentz and CPT tests when all of the energy
levels in the system are investigated for possible anomalous shifts. As a result
of this, a number of new signatures of Lorentz and CPT violation have been
discovered in recent years that were overlooked previously.

A second general feature concerns how these atomic experiments are typically
divided into two groups. The first (Lorentz tests) looks for sidereal time varia-
tions in the energy levels of a particle or atom. The second (CPT tests) looks for
a difference in the energy levels between a particle (or atom) and its antiparticle
(or antiatom). What has been found is that the sensitivity to Lorentz and CPT
violation in these two classes of experiments is not distinct. Experiments tradi-
tionally viewed as Lorentz tests are also sensitive to CPT symmetry and vice
versa. Nonetheless, it is important to keep in mind that that there are differences
as well. For example, the CPT experiments comparing matter and antimatter
are directly sensitive to CPT-violating parameters, such as b,,, whereas Lorentz
tests are sensitive to combinations of CPT-preserving and CPT-violating para-
meters, which are denoted using a tilde. Ultimately, both clases of experiments
are important and should be viewed as complementary.

It has become common practice to express sensitivities to Lorentz and CPT
violation in terms of the SME coefficients. This provides a straightforward ap-
proach that allows comparisons across different types of experiments. Since each
different particle sector in the QED extension has an independent set of Lorentz-
violating SME coefficients, these are distinguished using superscript labels. A
thorough investigation of Lorentz and CPT violation necessarily requires look-
ing at as many different particle sectors as possible.

6.1 Photons

The lagrangian describing a freely propagating photon in the presence of Lorentz
violation is given by [45]

1 1 1
L= Ful™ - Z(kF)muuFmFW + i(kAF)“EnAuuAAF””, (63)

where the field strength F),, is defined by F),, = 0,4, — 0, A,.

The coefficient k4, which is odd under CPT, has been investigated exten-
sively both theoretically and experimentally [41,45]. Theoretically, it is found
that this term leads to negative-energy contributions and is a potential source
of instability in the theory. One solution is to set kap to zero, which has been
shown to be consistent with radiative corrections in the SME. However, strin-
gent experimental constraints also exist consistent with ksp ~ 0. These result
from studying the polarization of radiation from distant radio galaxies. In what
follows, we will therefore ignore the effects of the k4p terms.
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The terms with coefficients kp, which is even under CPT, have been inves-
tigated more recently [45]. These terms provide positive-energy contributions.
There are 19 independent components in the kp coefficients. It is useful to
rewrite them in terms of a new set, Keq, Re—, Rot, Ro—, and K. Here, Ret,
Fe—, and R,— are 3 X 3 traceless symmetric matrices (with 5 independent com-
ponents each), while %,4 is a 3 X 3 antisymmetric matrix (with 3 independent
components), and the remaining coefficient Ry, is the only rotationally invariant
component.

The lagrangian can be written in terms of the new set and the usual electric
and magnetic fields E and B as follows:

1
L= [(1+Fk)E?— (1 —Fky)B? + B (Ber + e ) E

DO =

1
_§B'(R/e+_Ref)'B"_E'(FEo«‘r'i_/’%of)'B. (64)

This lagrangian gives rise to modifications of Maxwell’s equations, which
have been explored in recent astrophysical and laboratory experiments. Ten of
the coefficients, K.t and k,_, lead to birefrigence of light. Bounds on these
parameters of order 2 x 10732 have been obtained from spectropolarimetry of
light from distant galaxies [45]. The nine coefficients, K¢y, Ke—, and K4, have
been bounded in a series of recent laboratory photon experiments. Seven of
the eight k._ and K,4 coefficients, have been bounded in experiments using
optical and microwave cavities. Sensitivities on the order of &, < 107! and
Fe— < 10715 have been attained [42]. The trace coefficient has been estimated
to have an upper bound of &, < 107* from Ives-Stilwell experiments [43]. The
remaining %._ coefficient has recently been bounded at the level of 107! using
a rotating apparatus [44].

6.2 Penning Traps

There are primarily two leading-order signals of Lorentz and CPT violation
that can be searched for in experiments in Penning traps [49]. One is a tra-
ditional CPT test, comparing particles and antiparticles, while the other is a
Lorentz test that looks for sidereal time variations. Both types of signals have
been investigated in recent years in experiments with electrons and positrons.
The experiments involve making high-precision measurements of the anomaly
frequency w, and the cyclotron frequency w. of the trapped electrons and/or
positrons.

The first test was a reanalysis was performed by Dehmelt’s group using ex-
isting data for electrons and positrons in a Penning trap [47]. The idea was to
look for an instantaneous difference in the anomaly frequencies of electrons and
positrons, which can be nonzero when CPT and Lorentz symmetry are broken.
Dehmelt’s original measurements of g — 2 did not involve looking for possible
instantaneous variations in w,. Instead, the ratio w,/w. was computed using av-
eraged values. However, Lorentz-violating corrections to the anomaly frequency
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w, can occur even if the ¢ factor remains unchanged. An alternative analy-
sis therefore looks for an instantaneous difference in the electron and positron
anomaly frequencies. The new bound found by Dehmelt’s group can be expressed
in terms of the parameter b3, which is the component of bj, along the quantiza-
tion axis in the laboratory frame. The bound they obtained is |b§] < 3 x 10725
GeV.

The second signal for Lorentz and CPT violation in the electron sector in-
volves measurements of the electron alone [48]. Here, the idea is that the Lorentz
and CPT-violating interactions depend on the orientation of the quantization
axis in the laboratory frame, which changes as the Earth turns on its axis. As a
result, both the cyclotron and anomaly frequencies have small corrections which
cause them to exhibit sidereal time variations. Such a signal can be measured us-
ing just electrons, which eliminates the need for comparison with positrons. The
bounds in this case are given with respect to a nonrotating coordinate system
such as celestial equatorial coordinates. The interactions involve a combination
of laboratory-frame components that couple to the electron spin. The combina-
tion is denoted as b§ = b§ —mdS, — Hf,. The bound can be expressed in terms of
components X, Y, Z in the nonrotating frame. It is given as |I;§\ <5x107%GeV
for J = X,Y.

Although no g — 2 experiments have been made for protons or antiprotons,
there have been recent bounds obtained on Lorentz violation in comparisons of
cyclotron frequencies of antiprotons and H~ ions confined in a Penning trap
[59]. In this case the sensitivity is to the dimensionless parameters cf,,. Future
experiments with protons and antiprotons will be able to provide tests that are
sensitive to bf.

6.3 Clock-Comparison Experiments

The classic Hughes-Drever experiments are atomic clock-comparison tests of
Lorentz invariance [54,57]. There have been a number of different types of these
experiments performed over the years, with steady improvements in their sensi-
tivity. They involve making high-precision comparisons of atomic clock signals
as the Earth rotates. The clock frequencies are typically hyperfine or Zeeman
transitions. Many of the sharpest Lorentz bounds for the proton, neutron, and
electron stem from atomic clock-comparison experiments. For example, Bear et
al. in [54] used a two-species noble-gas maser to test for Lorentz and CPT viola-
tion in the neutron sector. They obtain a bound |l~77}\ <1073 GeV for J = XY,
which is currently the best bound for the neutron sector.

It should also be pointed out that certain assumptions about the nuclear
configurations must be made to obtain bounds in clock-comparison experiments.
For this reason, these bounds should be viewed as good to within about an order
of magnitude. To obtain cleaner bounds it is necessary to consider simpler atoms
or to perform more sophisticated nuclear modeling.

Note as well that these Earth-based laboratory experiments are not sensitive
to Lorentz-violation coefficients along the J = Z direction parallel to Earth’s
rotation axis. They also neglect the velocity effects due to Earth’s motion around
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the sun, which would lead to bounds on the timelike components along J = T.
These limitations can be overcome by performing experiments in space or by
using a rotation platform. The earth’s motion can also be taken into account. A
recent boosted-frame analysis of the dual noble-gas maser experiment has yielded
bounds on the order of 10727 GeV on many boost-dependent SME coefficients
for the neutron that were previously unbounded [56].

6.4 Experiments in Space

Clock-comparison experiments performed in space would have several advantages
over traditional ground-based experiments [58]. For example, a clock-comparison
experiment conducted aboard the International Space Station (ISS) would be
in a laboratory frame that is both rotating and boosted. It would therefore
immediately gain sensitivity to both the Z and timelike directions. This would
more than triple the number of Lorentz-violation parameters that are accessible
in a clock-comparison experiment. Another advantage of an experiment aboard
the ISS is that the time needed to acquire data would be greatly reduced (by
approximately a factor of 16). In addition, new types of signals would emerge
that have no analogue in traditional Earth-based experiments. The combination
of these advantages should result in substantially improved limits on Lorentz
and CPT violation. Unfortunately, the USA has canceled its missions aimed at
testing fundamental physics aboard the ISS. However, there is still a European
mission planned for the ISS which will compare atomic clocks and H masers.
Therefore, the opportunity to perform these new Lorentz and CPT tests is still
a possibility.

6.5 Hydrogen and Antihydrogen

Hydrogen atoms have the simplest nuclear structure, and antihydrogen is the
simplest antiatom. These atoms (or antiatoms) therefore provide opportunities
for conducting especially clean Lorentz and CPT tests involving protons and
electrons.

There are three experiments underway at CERN that can perform high-
precision Lorentz and CPT tests in antihydrogen [12]. Two of the experiments
(ATRAP and ATHENA) intend to make high-precision spectroscopic measure-
ments of the 1S-2S transitions in hydrogen and antihydrogen. These are for-
bidden (two-photon) transitions that have a relative linewidth of approximately
10715, The ultimate goal is to measure the line center of this transition to a part
in 103 yielding a frequency comparison between hydrogen and antihydrogen at
a level of 10718, An analysis of the 1S-2S transition in the context of the SME
shows that the magnetic field plays an important role in the attainable sensi-
tivity to Lorentz and CPT violation [50]. For instance, in free hydrogen in the
absence of a magnetic field, the 1S and 2S levels are shifted by equal amounts at
leading order. As a result, in free H or H there are no leading-order corrections to
the 1S-2S transition frequency. In a magnetic trap, however, there are fields that
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can mix the spin states in the four different hyperfine levels. Since the Lorentz-
violating interactions depend on the spin orientation, there will be leading-order
sensitivity to Lorentz and CPT violation in comparisons of 1S-2S transitions in
trapped hydrogen and antihydrogen. At the same time, however, these transi-
tions are field-dependent, which creates additional experimental challenges that
would need to be overcome.

An alternative to 1S-2S transitions is to consider the sensitivity to Lorentz
violation in ground-state Zeeman hyperfine transitions. It is found that there are
leading-order corrections in these levels in both hydrogen and antihydrogen [50].
The ASACUSA group at CERN is planning to measure the Zeeman hyperfine
transitions in antihydrogen. Such measurements will provide a direct CPT test.

Experiments with hydrogen alone have been performed using a maser [55].
They attain exceptionally sharp sensitivity to Lorentz and CPT violation in
the electron and proton sectors of the SME. These experiments use a double-
resonance technique that does not depend on there being a field-independent
point for the transition. The sensitivity for the proton attained in these ex-
periments is |l~)’}| < 10727 GeV. Due to the simplicity of hydrogen, this is an
extremely clean bound and is currently the most stringent test of Lorentz and
CPT violation for the proton.

6.6 Muon Experiments

Experiments with muons involve second-generation leptons and provide tests of
CPT and Lorentz symmetry that are independent of the tests involving electrons.
There are several different types of experiments with muons that have recently
been conducted, including muonium experiments [62] and g—2 experiments with
muons at Brookhaven [63]. In muonium, experiments measuring the frequencies
of ground-state Zeeman hyperfine transitions in a strong magnetic field have the
greatest sensitivity to Lorentz and CPT violation. A recent analysis has searched
for sidereal time variations in these transitions. A bound at the level of |l~)§| <
2 x 1072 GeV has been obtained [62]. In relativistic g — 2 experiments using
positive muons with “magic” boost parameter 6 = 29.3, bounds on Lorentz-
violation parameters are possible at a level of 1072° GeV. However, the analysis
of these experiments is still underway at Brookhaven.

6.7 Spin Polarized Torsion Pendulum

Experiments using spin polarized torsion pendula have been conducted at the
University of Washington and in Taiwan. These experiments currently provide
the sharpest bounds on Lorentz and CPT symmetry in the electron sector [52].
These experiments are able to achieve very high sensitivity to Lorentz violation
because the torsion pendula have a huge number of aligned electron spins but a
negligible magnetic field.

The pendulum at the University of Washington is built out of a stack of
toroidal magnets, which in one version of the experiment achieved a net electron
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spin S ~ 8 x 10%2. The apparatus is suspended on a rotating turntable and
the time variations of the twisting pendulum are measured. An analysis of this
system shows that in addition to a signal having the period of the rotating
turntable, the effects due to Lorentz and CPT violation also cause additional
time variations with a sidereal period caused by the rotation of the Earth. The
group at the University of Washington has analyzed data taken in 1998 and find
that thay have sensitivity to the electron coeflicients at the levels of \B‘3| <1072
GeV for J = X,Y and |b%]| < 10728 GeV. More recently, a new pendulum
has been built, and it is expected that 20-fold improved sensitivities will be
attained [72].

The Taiwan experiment also uses a rotating torsion pendulum, which is made
of a ferrimagnetic material. This group achieved a net polarization of S ~ 8.95 x
1022 electrons in their pendulum. The bounds they obtain for the electron are at
the levels of [b5] < 3.1 x 1072 GeV for J = X,V and [by| < 7.1 x 10728 GeV.

7 Conclusions

This overview describes the development and use of the SME as the theoreti-
cal framework describing Lorentz violation in the context of field theory. The
philosophy of the SME is that any interactions that are observer invariant and
involve known fields at low energy are included in the theory. As an incremental
first step, the minimal SME (and its QED limit) can be constructed. This the-
ory maintains gauge invariance and power-counting renormalizability. It is the
suitable framework for investigating leading-order signals of Lorentz violation.
In addition to constructing the SME, we have examined the special case
of spontaneous Lorentz breaking. In particular, the question of what the fate of
the Nambu-Goldstone modes is when Lorentz symmetry is spontaneously broken
has been addressed. We have demonstrated that spontaneous particle Lorentz
violation is accompanied by spontaneous particle diffeomorphism violation and
vice versa, and that up to 10 NG modes can appear. These modes can comprise
10 of the 16 modes of the vierbein that in a Lorentz-invariant theory are gauge
degrees of freedom. The fate of the NG modes is found to depend also on the
spacetime geometry and on the behavior of the tensor vev inducing spontaneous
Lorentz violation. These results have been illustrated using a bumblebee model.
In Minkowski and Riemann spacetimes, it is found that the NG modes propagate
like the photon in an axial gauge. In Riemann-Cartan spacetimes, the interesting
possibility exists that the spin connection could absorb the propagating NG
modes in a gravitational version of the Higgs mechanism. This unique feature of
gravity theories with torsion may offer another phenomenologically viable route
for constructing realistic models with spontaneous Lorentz violation.
Phenomenology has been investigated using the minimal SME. Experiments
in QED systems continue to provide many of the sharpest tests of Lorentz and
CPT symmetry. In recent years, a number of new astrophysical and laboratory
tests have been performed that have lead to substantially improved sensitivities
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Table 1. Summary of leading-order bounds for the parameter b;.

Expt Sector | Params (J = X,Y) ‘ Bound (GeV) ‘

Penning Trap electron b 5x 10728

Hg-Cs clock electron b ~107%

comparison proton 53 ~ 1077

neutron b ~ 10730

He-Xe dual maser | neutron 53 ~ 1073
H maser electron b 10727
proton 5’} 10727

Muonium muon b 2x 10723
Spin Pendulum electron b 10720
b 10728

for the photon. Similarly, atomic experimentalists continue to find ways of im-
proving the sensitivity to Lorentz violation in many of the matter sectors of the
SME. For comparison across different atomic experiments a summary of recent
bounds on the by coefficients in the minimal SME is given in Table 1. These
bounds are within the range of sensitivity associated with suppression factors
arising from the Planck scale. A more complete table would list all of the coeffi-
cients in the minimal SME. Note that many SME coefficients have still not been
measured. Future experiments, in particular those performed in boosted frames,
are likely to provide sensitivity to many of these currently unmeasured SME
coefficients. In addition, the overall sensitivity of these experiments is expected
to improve over the coming years.
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At a time when we are all fully aware of the remarkable longevity of Special Rel-
ativity, I review some recent advances in “beyond Special Relativity” research,
attempting to make the case that this field is reaching a fair level of maturity. I
briefly discuss both some recent attempts to set up systematic general searches of
departures from Special Relativity, and some more focused programmes which
find their motivation in certain key aspects of the quantum-gravity problem
and in certain open issues for cosmology. For one of the hypothesis being con-
sidered in the quantum-gravity literature, the one of Planck-scale effects that,
while inducing departures from some Special-relativistic laws, do not give rise
to a loss of equivalence among inertial observers, I give a rather detailed self-
contained introduction. I also stress the fact that beyond-Special-Relativity re-
search is now being developed with a methodology that in some ways resembles
the one adopted in the “beyond the Standard Model” particle-physics research
programme. I argue that the rich tradition of beyond-Standard-Model research
should be followed even more closely, but I also stress that some differences will
inevitably remain, reflecting the differences between setting up test theories for
a “universal” /“frame” theory (Special Relativity) and for a nonuniversal theory
(the Standard Model).

1 Introduction and Summary

Beyond Special Relativity

One might say that Special Relativity is not really a “fundamental” theory:
it only emerges in a particular limit (a specific solution of the equations) of
General Relativity. But Special Relativity, now 100 years old, still is legitimately
viewed as fundamental in a wide class of physical contexts. Even in analyses
involving gravitational phenomena one often gets away describing the spacetime
metric g, in terms of a Minkowski background metric, 7,,, and a “gravity
field” Lorentz tensor h,,, related to g and n by the relation h,, = gu — M-
And special relativity reigns supreme in the vast class of phenomena studied
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in particle physics, where one can safely assume that the processes unfold in
a Minkowski background spacetime, with metric 7,,, and that “gravitational
interactions” among particles are negligible.

Of course as the success of Special Relativity becomes more and more re-
markable scientists become more and more determined to place it under fur-
ther scrutiny. Indeed over these past few years there has been a renewed effort
in setting up formalisms suitable for use in exploring systematically possible
departures from special-relativistic laws. And, besides these necessary “look-
everywhere tests” of Special Relativity, in these past few years there has also
been increased interest in the possibility that departures from certain relevant
special-relativistic laws might lead to the solution of some outstanding open
issues for theoretical physics.

Quantum Gravity (and Cosmology)

In particular, several authors have argued that the transition from (special-)
relativistic quantum field theory to (the still unknown) “quantum gravity” might
force special relativity to relinquish even its present privileged status within
particle physics, as soon as we acquire sensitivity to Planck-scale corrections to
particle-physics processes.

The description of Planck-scale corrections to particle-physics processes will
be a key aspect of the Minkowski limit of quantum gravity. In our current con-
ceptual framework Special Relativity emerges in the Minkowski limit, where one
deals with situations that allow the adoption of a Minkowski metric through-
out, and one might wonder whether the Minkowski limit of quantum gravity
could still be governed by Special Relativity. The issue will be of particular in-
terest if quantum gravity admits a limit in which one can assume throughout
a (expectation value of the) metric of Minkowski type, but some Planck-scale
features of the fundamental description of spacetime (such as spacetime discrete-
ness and/or spacetime noncommutativity) are still not completely negligible. I
will denominate “nontrivial Minkowski limit” this type of Minkowski limit in
which essentially the role of the Planck scale in the description of gravitational
interactions (expressing the gravitational constant G in terms of the Planck
scale) can be ignored, but the possible role of the Planck scale in spacetime
structure/kinematics is still significant. For various approaches to the quantum-
gravity problem evidence as emerged in support of this possibility of a nontriv-
ial Minkowski limit. While there is no fully-developed proposed solution of the
quantum-gravity problem based on a fundamentally noncommutative spacetime
picture, it has been observed that the hypothesis that in general the correct fun-
damental description of spacetime should involve noncommutativity can imply
that in particular the Minkowski limit is described in terms of noncommuting
spacetime coordinates, and this is found [1-8] to naturally lead to a nontrivial
Minkowski limit with departures from classical Poincaré symmetry. In the liter-
ature on the loop-quantum-gravity approach one finds a large number (although
all of preliminary nature) of arguments [9-13] supporting the possibility of a
nontrivial Minkowski limit, primarily characterized by a Planck-scale-modified
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energy-momentum (dispersion) relation. For the string-theory approach, while
there are no studies arguing that the availability of a nontrivial Minkowski limit
is necessary, there is a large literature (see, e.g., [5,6] and references therein) on
a nontrivial Minkowski limit with broken Lorentz symmetry.

The fate of Poincaré symmetry in such nontrivial Minkowski limits is of
course a key issue both phenomenologically and from a conceptual perspective.
In the large number of studies produced between 1997 and 2000 on the possibil-
ity of a nontrivial Minkowski limit for quantum gravity it was always assumed
that Poincaré (and in particular Lorentz) symmetry would be broken: the Galilei
Relativity Principle would not hold with Planck-scale accuracy. On the basis of
an analogy with the century-old process which led from Galilei/Newton Rela-
tivity, through the analysis of Maxwell’s electrodynamics,! to Einstein’s Special
Relativity, T argued in [14] that the Minkowski limit of quantum gravity might
be characterized by a “doubly special relativity” (DSR), a relativistic theory
with two, rather than one, nontrivial relativistic invariants (the Planck scale in
addition to the speed-of-light scale), but still fully compatible with the Galilei
Relativity Principle. Since the idea of a Planck-scale-broken Poincaré symmetry
has a long tradition in the quantum-gravity literature, and should be familiar
to most readers, whereas the hypothesis of a “DSR Minkowski limit” has only
been considered over these past few years, I will provide in these lectures a self-
contained introduction to DSR, but I will only comment briefly on Planck-scale
broken-Poincaré-symmetry scenarios.

I should stress that besides the study of the quantum-gravity problem there
are other research areas in which the possibility of some departures from special-
relativistic laws is being considered as a possible solution to some outstanding
open issues. In particular, it has been observed [15-17] that the hypothesis of
a “time-varying speed-of-light constant”? could address some of the same issues
that in cosmology are usually described in terms of inflation. Just like with infla-
tion one places far-away regions of the Universe in causal contact by introducing
an “accelerated expansion era”, a law for the time-variation of the speed-of-light
constant in which the speed of light has a larger value at earlier times would also
place in causal contact some far-away regions of the Universe. Since inflation-
based cosmology still lacks a genuine “smoking gun” data verification, and there
are some researchers finding some aspects of inflation not fully satisfactory at the
conceptual level, it is not surprising that time-varying speed-of-light cosmology
is attracting some interest. Moreover, there is some tentative evidence [18,19] of
time-varying “constants” (such as «) which may in turn be used [17] to motivate
research on a time-varying speed-of-light constant.

[1PR})

! The role of the speed scale “¢” in Maxwell’s electrodynamics was first viewed as a
manifestation of a ether violating the Relativity Principle, but was ultimately under-
stood as a manifestation of a needed transition in the formulation of the relativistic
theory.

21 follow other authors in speaking of “time-varying constants”...of course if their
values did indeed change in time they would not be constants... but they used to be
considered as constants...
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Concerning the possible encouragement from preliminary data, the situation
for time-varying speed-of-light cosmology is actually rather analogous to the one
of Planck-scale departures from special relativity within quantum gravity: with
presently-available data one could argue that the predicted “GZK cutoff” for
cosmiic rays is not being seen [18,19], and a possible explanation could come [20—
23] from Planck-scale departures from special relativity.

Planck-scale departures from special relativity have actually been advocated
in a recent variant of time-varying speed-of-light cosmology. One of the effects
most discussed in the quantum-gravity literature on Planck-scale departures
from special relativity is a Planck-scale modification of the energy-momentum
(dispersion) relation, with an associated energy-dependence of the speed of mass-
less particles. In some cases this energy dependence is such that the speed can
grow very large at high energies, and since in the early Universe the typical
energies of particles were very high, this scenario would also provide an “effec-
tive time dependence” of the speed of light: there would actually be no genuine
time dependence, but the Planck-scale-induced energy dependence of the speed
of photons would mimic a time dependence, since at different times in the evo-
lution of the Universe particles are expected to have different typical energies.

Just Like “Beyond the Standard Model”

Very few authors, especially in science magazines, appear to notice the similar-
ities between beyond-Special-Relativity research and the “beyond the Standard
Model” particle-physics research programme. Somehow the success of Special
Relativity is often foolishly perceived as an indication that “this theory is right”,?
while the success of the Standard Model particle physics is correctly viewed as
an indication that this theory is somehow very accurate in the regimes presently
accessible to us, but should still eventually break down. Seminars contemplating
possible departures from Special Relativity often start with one form or another
of apology, while no apology is offered at seminars considering grandunification,
supersymmetric gauge theories, technicolor models...

There are of course some reasons for this. First of all it must be acknowledged
that, especially in the “old days”, there have been too many papers that were
claiming to look “beyond Special Relativity”, but actually only reflected poor
understanding of Special Relativity itself. And there have been too many papers
in which the motivation proposed for the analysis did not go much further than
Star Trek. Perhaps more importantly, departures from Special Relativity have
been already “discovered” many times by authors who however did not realize
fully, e.g., the difference between phase velocity and signal velocity. It is then
not surprising that for a portion of the physics community (and an even more
significant portion of the community of outsiders) the motivations for research
beyond the Standard Model of particle physics appear clear and robust, while a
cloud of suspicion surrounds research beyond Special Relativity.

3 1 write this in quotes since this sentence (in spite of being frequently used) has no
meaning.
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Still, as beyond-Special-Relativity research is becoming more mature, it is
legitimate to expect that the perception will also change. After all both beyond-
Special-Relativity and beyond-Standard-Model research are primarily driven by
hints that point us toward additional structures in the laws of Nature at short-
distance/high-energy scales. It is natural to guide the experimental tests in the
direction of some open conceptual issues, such as the “hierarchy problem” on
one side and the short-distance structure of spacetime on the other side. And,
since indeed both the Standard Model and Special Relativity are in excellent
agreement with all presently-available data, the primary motivation for beyond-
Special-Relativity and beyond-Standard-Model research is just to provide guid-
ance for further testing of these remarkably successful theories. So far both have
succeeded: guidance has been provided to those performing experimental tests
(but all the results of the tests have been negative on both sides).

While some similarities between these two research programmes are a natural
consequence of their similar objectives, there are even some other, apparently
fortuitous, similarities. For example, it is amusing to notice that in the men-
tioned “doubly special relativity” part of beyond-Special-Relativity research one
of the most studied candidate formalisms is based on a Hopf-algebra description
of spacetime symmetries, and Hopf algebras may be viewed as a sort of “loop-
hole” of the Coleman-Mandula theorem, just like the idea of supersymmetry,
the most popular beyond-Standard-Model research programme. The Coleman-
Mandula theorem, focusing on symmetry algebras that are fully characterized by
commutators of the generators, basically leads to the conclusion that in particle
physics there cannot be alternatives to (or extensions/generalizations of) the
Poincaré symmetry algebra. In a Hopf-algebra formulation of the description of
spacetime symmetries one contemplates the possibility that the symmetry gen-
erators are also to satisfy nontrivial co-commutator relations (see later), while
supersymmetric particle-physics models are based on symmetry generators which
also satisfy nontrivial anti-commutator relations.*

There are of course also some important differences between these two re-
search programmes, due to the fact Special Relativity is a “universal” (or
“frame”) theory [25], a theory applicable to any kind of physical phenomenon,
whereas the Standard Model of particle physics is a “nonuniversal” theory, which
is intended only for the description of one aspect (some of the interactions among
particles) of the particle-physics arena. Indeed the Standard Model is subject to
Special Relativity, and all successful tests of the Standard Model may also be
viewed as tests of Special Relativity (while the reverse of course is not true).
This also affects the development of test theories: in considering departures
from Special Relativity one often ends up facing the challenge of developing
completely new formalisms that introduce significant changes in the “rules of
the game” | instead particle-physics theories “beyond the Standard Model” typi-
cally still make use of the familiar machinery based on relativistic quantum field
theory, gauge invariance and all that. Perhaps it is for this reason that in looking

4 T have heard this point about the Coleman-Mandula theorem, supersymmetry alge-
bras and Hopf algebras most elegantly stressed in seminars by J. Wess (e.g., [24]).
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beyond Special Relativity one often cannot avoid feeling disoriented, as if one
was looking in the dark, while at least some ways to introduce departures from
the Standard Model of particle physics allow us to work with the reassuring
feeling of a systematic approach within a known scheme.

Plan of These Notes

In the next section I describe briefly some aspects of beyond-Special-Relativity
research, focusing on research programmes that attempt to set up a systematic
investigation of some classes of possible departures from Poincaré symmetry,
on research programmes that are inspired by the study of the quantum-gravity
problem, and on research programmes that are inspired by some open issues in
cosmology.

Then, in Sect. 3, I provide a more detailed description of some quantum-
gravity scenarios which would indeed lead to departures from Poincaré symme-
try. And, in Sect. 4, I give a brief, but self-contained, introduction to “doubly-
special relativity”.

In Sect. 5, I provide some additional comments on the similarities between
beyond-Special-Relativity and beyond-Standard-Model research, while in Sect. 6
I offer some closing remarks.

2 Some Key Aspects
of Beyond-Special-Relativity Research

The primary motivation of research beyond Special Relativity is of course the
one of providing targets for the experimentalists that are testing Special Rela-
tivity. And one is naturally tempted to set up formalism encoding “all possible
departures” from Special Relativity, so that the experimental searches could be
as general as possible and the formalism would provide to experimentalists a
sort of “language” to use in comparing experimental results. While it is indeed
important to be guided by this objective, in practice the concept of a formal-
ism encoding “all possible departures” from Special Relativity is not even well
defined: one may allow a large number of free parameters, but in setting up the
formalism one inevitably ends up making assumptions about the form of the
laws that one is contemplating. It is therefore important to also develop focused
research programmes that look at some open theoretical-physics issues and ex-
plore the possible implications for Special Relativity, since this type of exercise
will sometimes expose some hidden assumptions in other approaches. For ex-
ample, the mentioned idea of a “doubly special relativity” made us realize that
previous test theories for Special Relativity were only testing scenarios in which
not only the second postulate but also the first “Relativity Principle” postulate
would be violated. We now know that this is not the only option: there might be
some departures from the second postulate, while still preserving the validity of
the first postulate (i.e. preserving the equivalence of inertial observers). Another
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relevant example, coming from outside research beyond Special Relativity (but
closely-related research testing another symmetry), is the one of test theories for
CPT symmetry, which usually assume departures from CPT symmetry that are
independent of the momenta of the particles entering the process. Some quantum
pictures of spacetime ended up motivating the presence of some momentum de-
pendence [26] and whereas within the momentum-independent scheme the best
presently-available limits are established using neutral-kaon data (see, e.g., [27]),
the analysis of some momentum-dependent departures from CPT symmetry sug-
gests [26] that neutral-B-meson experiments should be most sensitive.

In summary, while it would be nice to claim that all possible departures from
Special Relativity are being systematically investigated, in practice we combine
some simple general schemes of wide applicability, which provide some overall
guidance to tests of Special Relativity and make “the minimum possible” num-
ber of assumptions, with some programmes looking carefully at open issues in
theoretical physics, looking for hints of specific departures from Special Relativ-
ity, possibly also of types not previously included in the general schemes guiding
the first-level “systematic” explorations.

As open issues in theoretical physics which may provide hints toward physics
beyond Special Relativity I consider here as “good examples” the one of research
on the quantum-gravity problem and research on alternatives to the inflation
mechanism in cosmology. But before going to these topics, let me start by de-
scribing briefly some attempts of “general formalisms for systematic searches of
departures from Special Relativity”.

Some General Formalisms for Systematic Searches

A popular attempt to provide a framework for systematic searches of depar-
tures from Special Relativity is the so-called “Standard Model Extension” (see,
e.g., [28-32]), which allows for a very general parametrization of new effects
within the context of a Lagrangian-based quantum-field-theory setup. Besides
the strict implementation of the field-theory machinery this approach assumes
various other building principles, including classical conservation of energy-
momentum, Hermiticity, microcausality, positivity of energy, gauge invariance,
and power-counting renormalizability.® Moreover it is also assumed that the de-
partures from Special Relativity would be of a type that one could possibly de-
scribe in a spontaneous-symmetry-breaking setup: the Lagrangian is a Lorentz-
transformation scalar and the departures from Special Relativity are only ob-
tained by assuming that some of the vectors and tensors that appear in the La-
grangian are not describing dynamical fields but are rather fixed/nondynamical

°I am calling “Standard Model Extension” the model described with this name
in [28,29] Readers should however notice that in the most recent literature (see,
e.g., [33]) this same model is sometimes referred to as “minimal Standard Model
Extension”, and instead with “Standard Model Extension” one denotes a general-
ization which allows for powercounting-nonrenormalizable terms, while insisting on
the other premises of the original Standard Model Extension.
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tensors® (which may well be the vacuum expectation value of some dynami-
cal field). Essentially, the parameters of the Standard Model Extension are just
additional interactions with constant fields.”

The Standard Model Extension is an excellent example of what one would
naturally do in trying to provide a general framework for systematic searches of
departures from Special Relativity: it introduces a very general parametrization,
able to describe a large variety of new effects, and relies on a well-defined and
rather reasonable set of assumptions about the “rules of the game”. Essentially
the Standard Model Extension assumes that the departures from Special Rela-
tivity could be described by adding new parameters, but no conceptually new
structures, to the presently-adopted formalisms. This is reassuring from a theo-
retical perspective, since the logical consistency of the approach is relatively safe
(it relies on the logical consistency of the original theories), and is advantageous
for experimentalists, since it allows them to interpret their data within the con-
text of a familiar formalism. Still, it may well be that the correct description of
departures from Special Relativity would instead require the introduction of new
structures, a change in the rules of the game. For example, most of the quantum-
gravity intuition (see later) for departures from Special Relativity invites one to
consider effects that are not described by power-counting-renormalizable terms.
And indeed some authors, even when adopting an approach that is primarily
based on quantum field theory, have chosen to look beyond the Standard-Model-
Extension setup, considering Planck-scale-suppressed effects which are in fact not
described by power-counting-renormalizable terms (see, e.g., [36,37]).

Of course, it is also possible to renounce to the assumption of a Lagrangian
generating the dynamical equations, and in fact there is a rich phenomenology
being developed introducing the generalizations directly at the level of the dy-
namical equations [38,39]. This is of course more general than the Lagrangian ap-
proach: for example, the generalized Maxwell equation discussed in [39] predicts
effects that go beyond the Standard Model Extension. And charge conservation,
which automatically comes out from the Lagrangian approach, can be violated
in models generalizing the field equations [39]. However, if one “by hand” gen-
eralizes the dynamical equations it is necessary to proceed cautiously [39,40] in
order to ensure the logical consistency of the approach.

The comparison of the Standard-Model-Extension approach and of the ap-
proach based on generalizations introduced directly at the level of the dynamical
equations illustrates how different “philosophies” lead to different strategies for
setting up a “completely general” systematic investigation of possible depar-
tures from Special Relativity. By removing the assumption of the availability of

5 Of course, I am considering here fixed tensors, which are tensors that take different
(matrix) value in different reference frames. If the vacuum of a field theory is charac-
terized by a fixed (nondynamical) tensor then different observers are not equivalent,
since they can be distinguished from one another using indeed the fact that the
tensor takes different values in different inertial frames.

7 This kind of generalizations in the photonic sector had been introduced and discussed
earlier by Ni [34] and Haugan and Kauffmann [35].
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a Lagrangian the second approach is “more general”. Still no “general approach”
can be absolutely general: in principle one could always consider removing an
extra layer of assumptions.

Some quantum-gravity arguments actually do provide motivation to remove
even more assumptions. A significant portion of the quantum-gravity community
is in general, justifiably, skeptical about the results obtained using low-energy
effective field theory in analyses relevant for the quantum-gravity problem. Af-
ter all the first natural prediction of low-energy effective field theory in the
gravitational realm is a value of the energy density which is some 120 orders of
magnitude greater than allowed by observations.® This observation may be com-
bined with various arguments that suggest the possibility of Planck-scale-induced
departures from quantum mechanics (“quantum-gravity-induced decoherence”),
which also should render us cautious about applying the standard description of
dynamics, through quantum field theory and the dynamical equations of motion,
in the quantum-gravity realm. Moreover, it has emerged (see later) that in some
quantum-gravity scenarios, if one goes ahead anyway applying the effective-field-
theory machinery, one stumbles upon a “IR/UV mixing” (see, e.g., [5,6]) which
basically implies that low-energy effective field theory, when applied in those
quantum-gravity contexts, is void of any predictive power [41]. Basically this
theories do not enjoy Wilson decoupling: whereas our ignorance of the UV sec-
tor of the laws of Nature does not affect the low-energy predictivity of theories
that enjoy Wilson decoupling, in presence of “IR/UV mixing” one can obtain
a reliable description of low-energy physics only when the laws of Nature are
exactly known all the way up to the infinite-energy regime.

While of course we cannot exclude that somehow low-energy-effective-field-
theory techniques be applicable to the quantum-gravity realm, in light of the
information presently available to us it is rather naive to assume that our present
standard description of dynamics should necessarily work in the description of
Planck-scale-induced effects. If the arguments that encourage the use of new
descriptions of dynamics at the Planck scale are correct, then a sort of “or-
der of limits problem” clearly arises. We know that in some limit (a limit that
characterizes our most familiar observations) the field-theoretic description and
Lorentz invariance will hold. So we would need to establish whether experiments
that are sensitive to Planck-scale departures from Lorentz symmetry could also
be sensitive to Planck-scale departures from the field-theoretic description of
dynamics. As an example, one may consider the possibility (not unlikely in a
context which is questioning the fate of Lorentz symmetry) that quantum gravity
would admit a field-theory-type description only in reference frames in which the
process of interest is essentially occurring in its center of mass (no “Planck-large

8 And the outlook of low-energy effective field theory in the gravitational realm does
not improve much through the observation that exact supersymmetry could protect
from the emergence of any energy density. In fact, Nature clearly does not have
supersymmetry at least up to the TeV scale, and this would still lead to a natural
prediction of the cosmological constant which is some 60 orders of magnitude too
high.
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boost” [42] with respect to center-of-mass frame). The field theoretic description
could emerge in a sort of “low-boost limit”, rather than the expected low-energy
limit.”

As a result of these concerns for the description of dynamics, several authors
have adopted an approach to the search of Planck-scale-induced departures from
Special Relativity which focuses on pure kinematics. This of course restricts the
number of experimental contexts from which to obtain experimental limits, since
it is not easy to find situations [43] in which a pure-kinematics analysis is possible
(often even some aspects which at first appear to be relevant only for kinematics
are actually affected indirectly by the description of dynamics), but it eliminates
some potentially unreliable assumptions about the description of dynamics.

Most of the recent work'® within this pure-kinematics approach may be pri-
marily characterized by the following parametrization of the energy-momentum
(dispersion) relation

2

E
mZ ~ E? — p* +9,p> + 1ap’— + (P’ —5 + ... , (1)

E, E2
where E, denotes as usual the Planck energy scale (~ 10?®eV) and the index
“a” leaves room for a possible dependence of the effects on the type of particle
which is being considered.

While in the first studies [9,36] that proposed a phenomenology based on
(1) the key effect under consideration concerned the “signal velocity”, obtained
from the dispersion relation according to'! v = dE/dp, more recently (starting

® The regime of low boosts with respect the center-of-mass frame is often indistin-
guishable with respect to the low-energy limit. For example, from a Planck-scale
perspective, our laboratory experiments (even the ones conducted at, e.g. CERN,
DESY, SLAC...) are both low-boost (with respect to the center of mass frame) and
low-energy. However, the “UHE cosmic-ray paradox”, for which a quantum-gravity
origin has been conjectured [20,23], occurs in a situation where all the energies of
the particles are still tiny with respect to the Planck energy scale, but the boost with
respect to the center-of-mass frame (as measured by the ratio E/mproton between
the proton energy and the proton mass) could be considered to be “large” from a
Planck-scale perspective (E/mproton > Ep/E, with E, denoting the Planck energy
scale).

Although recently most of the activity on the “pure-kinematics front” takes as mo-
tivation the quantum-gravity problem and is set up in such a way to reflect that
intuition, the general idea of pure-kinematics Special-Relativity test theories has a
tradition that extends over several decades and was not originally connected with
quantum-gravity research. In particular, the RMS (Robertson—-Mansouri—-Sexl) test
theory [44,45], which introduces anomalous effects for light propagation, has received
significant consideration by experimentalists.

Even the apparently safe assumption of “v = dE/dp” has been, and understandably,
challenged by some quantum-gravity studies (see, e.g., [46-49]). As stressed in [43,50]
one possible concern here is whether quantum gravity leads to a modified Heisenberg
uncertainty principle, [z,p] =1+ F(p). Assuming a Hamiltonian description is still
available, v = dz/dt ~ [z, H(p)], the relation v = dE/dp essentially follows from

10

11
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with the studies reported in [20-23,51]) the phenomenology has considered also
the possibility of Planck-scale modifications of the kinematical thresholds for
particle reactions, and the analyses also relied on some general parametrization of
possible Planck-scale departures from the law of energy-momentum conservation.

This concludes my list of four possible “completely general” (each not really
completely general) approaches to the search of departures from Special Rela-
tivity: (a) the Standard Model Extension, (b) the Standard Model Extension en-
riched by power-counting-nonrenormalizable terms, whose phenomenology was
first advocated in [9, 36], (c) the approach based on direct modification of dy-
namical equations (without necessarily demanding that the modified equation
be derivable from a Lagrangian), and (d) the pure-kinematics approach. I shall
not dwell on whether or not this is a complete list: my true objective was just to
expose the fact that there are many “completely general” approaches (character-
ized by different assumptions), and therefore none of them is really completely
general.

Intuition from Quantum Gravity

Already in my discussion of “general formalisms for systematic searches” I men-
tioned some elements of intuition that have originated in the quantum-gravity
literature: the possibility of effects whose magnitude is governed by ratios of
the energy of the particles involved in the processes and the Planck energy
scale (which in field-theory language invites one to consider terms which are not
power-counting renormalizable) and the possibility that departures from Special
Relativity might accompanied by departures from our presently-adopted laws of
description of dynamics. But this is only a very small sample of the elements of
intuition being provided by quantum-gravity research. The variety of scenarios
for the fate of Special Relativity at the Planck scale is so large that I am setting
aside for it the next section.

Let me just anticipate here the fact that some quantum-gravity scenarios (or
quantum-spacetime pictures) also invite to consider the possibility of energy-
dependent birefringence: photons may propagate in a way that depends on their
direction of polarization as seen by a certain preferred frame and the magnitude
of this effect may depend on the energy (wavelength) of the photon.

Moreover, as already mentioned in the Introduction, while all non-quantum-
gravity-motivated tests of Special Relativity actually tested the possibility of
“broken Poincaré symmetry” (departures from Special Relativity that are such
that the equivalence of inertial observers is lost), the “doubly-special relativ-
ity” scenario, which emerged recently [14,52-56] in the quantum-gravity litera-
ture, provides motivation for tests of the possibility of “Planck-scale deformed

[z,p] = 1. But if [z,p] # 1 then v = dz/dt ~ [z, H(p)] would not lead to v = dF/dp.
There is much discussion in the quantum-gravity community of the possibility of
modifications of the Heisenberg uncertainty principle at the Planck scale, and this
would invite us once again to remove an additional layer (the “v = dE/dp” layer)
of assumptions inherited from the standard formalism, but I shall not dwell on this
possibility in these notes.
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Poincaré symmetry”. Section 4 is devoted to a self-contained introduction of this
scenario.

Intuition from Cosmology

There is research beyond Special Relativity also in cosmology. There the moti-
vation usually comes from two sources, a theory intuition and some preliminary
data. On the theory side, some authors, in spite of the good level of success of in-
flation models, are still concerned about some conce