


7435–pmp_damour_titelei  4.11.2005  10:10 Uhr  Seite 1



Progress in Mathematical Physics
Volume 47

Editors-in-Chief
Anne Boutet de Monvel, Université Paris VII Denis Diderot, France
Gerald Kaiser, Center for Signals and Waves, Austin, TX, USA

Editorial Board
Sir M. Berry, University of Bristol, UK
C. Berenstein, University of Maryland, College Park, USA
P. Blanchard, University of Bielefeld, Germany
A.S. Fokas, University of Cambridge, UK
D. Sternheimer, Université de Bourgogne, Dijon, France
C. Tracy, University of California, Davis, USA



Einstein, 1905–2005
Poincaré Seminar 2005

Thibault Damour
Olivier Darrigol
Bertrand Duplantier
Vincent Rivasseau
Editors

Birkhäuser Verlag
Basel • Boston • Berlin



Editors:

Thibault Damour
IHÉS
35, Route de Chartres,
91440 Bures-sur-Yvette
France
e-mail: damour@ihes.fr

Olivier Darrigol
Université Denis Diderot (Paris 7)
2, place Jussieu
75251 Paris Cedex 05
France
e-mail: darrigol@paris7.jussieu.fr

2000 Mathematics Subject Classification 83-03, 83A05, 83B05, 83Cxx, 60Hxx

A CIP catalogue record for this book is available from the Library of Congress, Washington D.C.,
USA

Bibliographic information published by Die Deutsche Bibliothek
Die Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliografie;
detailed bibliographic data is available in the Internet at <http://dnb.ddb.de>.

ISBN 3-7643-7435-7 Birkhäuser Verlag, Basel – Boston – Berlin  

This work is subject to copyright. All rights are reserved, whether the whole or part of the material 
is concerned, specifically the rights of translation, reprinting, re-use of illustrations, broadcasting,
reproduction on microfilms or in other ways, and storage in data banks. For any kind of use 
whatsoever, permission from the copyright owner must be obtained.

© 2006 Birkhäuser Verlag, P.O. Box 133, CH-4010 Basel, Switzerland
Part of Springer Science+Business Media
Printed on acid-free paper produced of chlorine-free pulp. TCF ∞
Printed in Germany
ISBN-10: 3-7643-7435-7
ISBN-13: 978-3-7643-7435-8

9 8 7 6 5 4 3 2 1 www.birkhauser.ch

Bertrand Duplantier
Service de Physique Théorique
Orme des Merisiers
CEA - Saclay
91191 Gif-sur-Yvette Cedex
France
e-mail: bertrand.duplantier@cea.fr

Vincent Rivasseau
Laboratoire de Physique Théorique
Université Paris XI
91405 Orsay Cedex
France
e-mail: Vincent.Rivasseau@th.u-psud.fr



Contents

Foreword ix

Olivier Darrigol
The Genesis of the Theory of Relativity 1
1 Maxwell’s theory as it was . . . . . . . . . . . . . . . . . . . . . . . 2
2 Flashback: The optics of moving bodies . . . . . . . . . . . . . . . 4
3 Lorentz’s theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
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Foreword

This book is the fourth in a series of lectures of the Séminaire Poincaré, which is
directed towards a large audience of physicists and of mathematicians.

The goal of this seminar is to provide up-to-date information about general
topics of great interest in physics. Both the theoretical and experimental aspects
are covered, with some historical background. Inspired by the Bourbaki seminar
in mathematics in its organization, hence nicknamed “Bourbaphi”, the Poincaré
Seminar is held twice a year at the Institut Henri Poincaré in Paris, with contri-
butions prepared in advance. Particular care is devoted to the pedagogical nature
of the presentations so as to fulfill the goal of being readable by a large audience
of scientists.

This volume contains the seventh such Seminar, held in 2005. It is devoted
to Einstein’s 1905 papers and their legacy. After a presentation of Einstein’s epis-
temological approach to physics, and the genesis of special relativity, a cente-
nary perspective is offered. The geometry of relativistic spacetime is explained in
detail. Single photon experiments are presented, as a spectacular realization of
Einstein’s light quanta hypothesis. A previously unpublished lecture by Einstein,
which presents an illuminating point of view on statistical physics in 1910, at the
dawn of quantum mechanics, is reproduced. The volume ends with an essay on
the historical, physical and mathematical aspects of Brownian motion.

We hope that the publication of this series will serve the community of physi-
cists and mathematicians at the graduate student or professional level.

We thank the Commissariat à l’Énergie Atomique (Division des Sciences de
la Matière), the Centre National de la Recherche Scientifique (Sciences Physique
et Mathématiques), and the Daniel Iagolnitzer Foundation for sponsoring the
Seminar. Special thanks are due to Chantal Delongeas for the preparation of the
manuscript.
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Bertrand Duplantier
Vincent Rivasseau





Einstein, 1 – 31
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The Genesis of the Theory of Relativity

Olivier Darrigol

The most famous of Albert Einstein’s papers of 1905 is undoubtedly the one
concerning the theory of relativity. Any modern physicist knows that this theory
imposes a strict and general constraint on the laws of nature. Any curious layman
wonders at the daring reform of our ancestral concepts of space and time. As often
happens for great conceptual breakthroughs, the theory of relativity gave rise to
founding myths whose charm the historian must resist.

The first of this myth is that Einstein discovered the theory of relativity
in a single stroke of genius that defies any rational analysis. Some of Einstein’s
reminiscences favor this thesis, for instance his allusion to a conversation with
Michele Besso in which he would have suddenly realized that a reform of the
concept of time solved long standing paradoxes of electrodynamics. One could
also argue that the historical explanation of a deep innovation is by definition
impossible, since a radically new idea cannot be derived from received ideas. In
the case of Einstein’s relativity the rarity of pre-1905 sources further discourages
historical reconstruction, and invites us to leave this momentous discovery in its
shroud of mystery.

This romantic attitude does not appeal to teachers of physics. In order to
convey some sort of logical necessity to relativity theory, they have constructed
another myth following which a few experiments drove the conceptual revolution.
In this empiricist view, the failure of ether-drift experiments led to the relativity
principle; and the Michelson-Morley experiment led to the constancy of the velocity
of light; Einstein only had to combine these two principles to derive relativity
theory.

As a counterpoise to this myth, there is a third, idealist account in which
Einstein is supposed to have reached his theory by a philosophical criticism of
fundamental concepts in the spirit of David Hume and Ernst Mach, without even
knowing about the Michelson-Morley experiment, and without worrying much
about the technicalities of contemporary physics in general.

A conscientious historian cannot trust such myths, even though they may
contain a grain of truth. He must reach his conclusions by reestablishing the con-
texts in which Einstein conducted his reflections, by taking into account his edu-
cation and formation, by introducing the several actors who shared his interests,
by identifying the difficulties they encountered and the steps they took to solve
them. In this process, he must avoid the speculative filling of gaps in documentary
sources. Instead of rigidifying any ill-founded interpretation, he should offer an
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open spectrum of interpretive possibilities. As I hope to show in this paper, this
sober method allows a fair intelligence of the origins of relativity.

A first indication of the primary context of the early theory of relativity
is found in the very title of Einstein’s founding paper: “On the electrodynamics
of moving bodies.” This title choice may seem bizarre to the modern reader, who
defines relativity theory as a theory of space and time. In conformity with the latter
view, the first section of Einstein’s paper deals with a new kinematics meant to
apply to any kind of physical phenomenon. Much of the paper nonetheless deals
with the application of this kinematics to the electrodynamics and optics of moving
bodies. Clearly, Einstein wanted to solve difficulties he had encountered in this
domain of physics. A survey of physics literature in the years 1895-1905 shows
that the electrodynamics of moving bodies then was a widely discussed topic.
Little before the publication of Einstein’s paper, several studies with similar titles
appeared in German journals. Much experimental and theoretical work was being
done in this context. The greatest physicists of the time were involved. They found
contradictions between theory and experience or within theory, offered mutually
incompatible solutions, and sometimes diagnosed a serious crisis in this domain of
physics.

Since Heinrich Hertz’s experiments of 1887-8 on the electric production of
electromagnetic waves, Maxwell’s field theory was the natural frame for discussing
both the electrodynamics and the optics of moving bodies. In order to understand
the evolution of this subject, one must first realize that the theory that Maxwell
offered in his treatise of 1873 widely differed from what is now meant by “Maxwell’s
theory.”

1 Maxwell’s theory as it was

Like most of his contemporaries, Maxwell regarded the existence of the ether as a
fundamental and undeniable fact of physics. He held this medium responsible for
the propagation of electromagnetic actions, which included optical phenomena in
his view. His theory was a phenomenological theory concerned with the macro-
scopic states of a continuous medium, the ether, which could combine with matter
and share its velocity v. These states were defined by four vectors E, D, H, B
that obeyed a few general partial differential equations as well as some relations
depending on the intrinsic properties of the medium. In the most complete and
concise form later given by Oliver Heaviside and Heinrich Hertz, the fundamental
equations read

∇× E = −DB/Dt , ∇× H = j + DD/Dt

∇ · D = ρ ,∇ ·B = 0 , (1)

where j is the conduction current and D/Dt is the convective derivative defined
by

D/Dt = ∂/∂t −∇× (v× ) + v(∇· ). (2)
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In a linear medium, the “forces” E and H were related to the “polarizations” D and
B by the relations D = εE and B = µH, and the energy density (1/2)(εE2+µH2)
of the medium had the form of an elastic energy. For Maxwell and his followers, the
charge density and the conduction current j were not primitive concepts: the former
corresponded to the longitudinal gradient of the polarization or “displacement”
D, and the latter to the dissipative relaxation of this polarization in a conducting
medium. The variation DD/Dt of the displacement constituted another form of
current. Following Michael Faraday, Maxwell and his disciples regarded the electric
fluids of earlier theories as a näıvely substantialist notion.1

The appearance of the convective derivative D/Dt in Maxwell’s theory de-
rives from his understanding of the polarizations D and B as states of a single
medium made of ether and matter and moving with a well-defined velocity v (that
may vary from place to place): the time derivatives in the fundamental equations
must be taken along the trajectory of a given particle of the moving medium. The
resulting law of electromagnetic induction,

∇× E = −DB/Dt = −∂B/∂t + ∇× (v × B) , (3)

contains the (v × B) contribution to the electric field in moving matter. By inte-
gration around a circuit and through the Kelvin-Stokes theorem, it leads to the
expression ∮

E · dl = − d

dt

∫∫
B · dS (4)

of Faraday’s law of induction, wherein the integration surface moves together with
the bordering circuit. When the magnetic field is caused by a magnet, the magnetic
flux only depends on the relative position of the magnet and the circuit so that
the induced current only depends on their relative motion.

In sum, the conceptual basis of Maxwell’s original theory widely differed from
what today’s physicists would expect. Electricity and magnetism were field-derived
concept, whereas modern electromagnetism treats them as separate entities. A
quasi-material ether was assumed. The fundamental equations (1) only correspond
to our “Maxwell equations” in the case of bodies at rest, for which the velocity v is
zero and the convective derivative D/Dt reduces to the partial derivative ∂/∂t. One
thing has not changed, however: the theory’s ability to unify electromagnetism and
optics. In a homogenous insulator at rest, Maxwell’s equations imply the existence
of transverse waves propagating at the velocity c = 1/

√
εµ. Having found this

electromagnetic constant to be very close to the velocity of light, Maxwell identified
these waves with light waves. The resulting theory automatically excludes the
longitudinal vibrations that haunted the earlier, elastic-solid theories of optics.

Within a few years after Maxwell’s death (in 1879), a growing number of
British physicists saluted this achievement and came to regard Maxwell’s theory as

1J.C. Maxwell, A treatise on electricity and magnetism, 2 vols. (Oxford, 1973); H. Hertz,
“Über die Grundgleichungen der Elektrodynamik für bewegte Körper,” Annalen der Physik, 41
(1890), 369-399.
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philosophically and practically superior to earlier theories. The Germans had their
own theories of electricity and magnetism, based on electric and magnetic fluids (or
Amperean currents) directly acting at a distance. They mostly ignored Maxwell’s
theory until in 1888 Heinrich Hertz demonstrated the emission of electromagnetic
waves by a high-frequency electric oscillator. After this spectacular discovery was
confirmed, a growing number of physicists adopted Maxwell’s theory in a more or
less modified form.

Yet this theory was not without difficulties. Maxwell had himself noted that
his phenomenological approach led to wrong predictions when applied to optical
dispersion, to magneto-optics, and to the optics of moving bodies. In these cases
he suspected that the molecular structure of matter had to be taken into account.

2 Flashback: The optics of moving bodies

Maxwell’s idea of a single medium made of ether and matter implied that the
ether was fully dragged by moving matter, even for dilute matter. Whereas this
conception worked very well when applied to moving circuits and magnets, it was
problematic in the realm of optics. The first difficulty concerned the aberration of
stars, discovered by the British astronomer James Bradley in 1728: the direction
of observation of a fixed star appears to vary periodically in the course of a year,
by an amount of the same order as the ratio (10−4) of the orbital velocity of the
earth to the velocity of light.2

The old corpuscular theory of light simply explained this effect by the fact
that the apparent velocity of a light particle is the vector sum of its true velocity
and the velocity of the earth (see Fig. 1). In the early nineteenth century, the
founders of the wave theory of light Thomas Young and Augustin Fresnel saved
this explanation by assuming that the ether was completely undisturbed by the
motion of the earth through it. Indeed, rectilinear propagation at constant velocity
is all that is needed for the proof.3

Fresnel’s assumption implied an ether wind of the order of 30km/s on the
earth’s surface, from which a minute modification of the laws of optical refraction
ought to follow. As Fresnel knew, an earlier experiment of his friend François Arago
had shown that refraction by a prism was in fact unaffected by the earth’s annual
motion. Whether or not Arago had reached the necessary precision of 10−4, Fresnel
took this result seriously and accounted for it by means of a partial dragging of
the ether within matter. His theory can be explained as follows.

According to an extension of Fermat’s principle, the trajectory that light
takes to travel between two fixed points (with respect to the earth) is that for

2J. Bradley, “A new apparent motion discovered in the fixed stars; its cause assigned; the
velocity and equable motion of light deduced,” Royal Society of London, Proceedings, 35 (1728),
308-321.

3A. Fresnel, “Lettre d’Augustin Fresnel à François Arago sur l’influence du mouvement ter-
restre dans quelques phénomènes d’optique,” Annales de chimie et de physique, 9(1818), also in
Oeuvres complètes, Paris (1868), vol. 2, 627-636.
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Figure 1: Stellar aberration. Suppose that the position of a fixed star in the sky
is judged by the orientation of a narrow straight tube through which it can be
seen. If the earth is moving with respect to the fixed stars at the velocity u, the
latter sweeps the distance uτ during the time τ that the light from the star takes
to travel from the beginning to the end of the tube. Therefore, the true light path
makes a small angle with the direction of the tube. When the velocity of the earth
is perpendicular to the tube, this angle is θ ≈ tanθ = u/c. Owing to the annual
motion of the earth, the apparent position of the star varies with a period of one
year.

which the traveling time is a minimum, whether the medium of propagation is
at rest or not. The velocity of light with respect to the ether in a substance of
optical index n is c/n, if c denotes the velocity of light. The absolute velocity of
the ether across this substance is αu, where α is the dragging coefficient and u
is the absolute velocity of the substance (the absolute velocity being that with
respect to the remote, undisturbed parts of the ether). Therefore, the velocity of
light along the element dl of an arbitrary trajectory is c/n + (α− 1)u · dl/ds with
respect to the substance (with ds = ‖dl‖). To first order in u/c, the time taken by
light during this elementary travel is

dt = (n/c)ds + (n2/c2)(1 − α)u · dl . (5)

Note that the index n and the dragging coefficient in general vary along the path,
whereas the velocity u has the same value (the velocity of the earth) for the whole
optical setting. The choice α = 1 (complete drag) leaves the time dt and the
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trajectory of minimum time invariant, as should obviously be the case. Fresnel’s
choice,

α = 1 − 1/n2 (6)

yields
dt = (n/c)ds + (1/c2)u · dl , (7)

so that the time taken by light to travel between two fixed points of the optical
setting differs only by a constant from the time it would take if the earth were
not moving. Therefore, the laws of refraction are unaffected (to first order) under
Fresnel’s assumption.4

In 1846, the Cambridge professor George Gabriel Stokes criticized Fresnel’s
theory for making the fantastic assumption that the huge mass of the earth was
completely transparent to the ether wind. In Stokes’ view, the ether was a jelly-
like substance that behaved as an incompressible fluid under the slow motion of
immersed bodies but had rigidity under the very fast vibrations implied in the
propagation of light. In particular, he identified the motion of the ether around
the earth with that of a perfect liquid. From Lagrange, he knew that the flow
induced by a moving solid (starting from rest) in a perfect liquid is such that a
potential exists for the velocity field. From his recent derivation of the Navier-
Stokes equation, he also knew that this property was equivalent to the absence
of instantaneous rotation of the fluid elements. Consequently, the propagation of
light remains rectilinear in the flowing ether, and the apparent position of stars in
the sky is that given by the usual theory of aberration.5

In order to account for the absence of effects of the earth’s motion on terres-
trial optics, Stokes further assumed that the ether adhered to the earth and had
a negligible relative velocity at reasonable distances from the ground.

To sum up, before the middle of the century, there were two competing the-
ories of the optics of moving bodies that both accounted for stellar aberration
and for the absence of effects of the earth’s motion on terrestrial optics. Fresnel’s
theory assumed the stationary character of the ether everywhere except in moving
refractive media, in which a partial drag occurred. Stokes’ theory assumed com-
plete ether drag around the earth and irrotational flow at higher distances from
the earth.

4Cf. E. Mascart, Traité d’optique, 3 vols. (Paris, 1893), vol. 3, chap. 15. Fresnel justified
the value 1 − 1/n2 of the dragging coefficient by making the density of the ether inversely
proportional to the square of the propagation velocity c/n (as should be in an elastic solid of
constant elasticity) and requiring the flux of the ether to be conserved. As Mascart noted in the
1870s, this justification fails when double refraction and dispersion are taken into account.

5G.G. Stokes, “On the aberration of light,” Philosophical magazine, 27(1845), 9-55; “On
Fresnel’s theory of the aberration of light,” ibid., 28 (1846), 76-81; “On the constitution of the
luminiferous ether, viewed with reference to the phenomenon of the aberration of light,” ibid., 29
(1846), 6-10. This result can be obtained from Fermat’s principle, by noting that to first order the
time taken by light to travel along the element of length dl has the form dt = (1/c)ds−(1/c2)v ·dl
(v denoting the velocity of the ether), so that its integral differs only by a constant (the difference
of the velocity potentials at the end points) from the value it would have in a stationary ether.
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Figure 2: Fizeau’s experiment. After reflection on a semi-reflecting blade, the light
from the source S is divided into two beams. The upper beam travels against the
water stream in A′B′, crosses the lens L′, is reflected on the mirror M, crosses L′

again, travels against the water stream in AB, and returns to the semi-reflecting
blade. The lower beam does the symmetrical trip, which runs twice along the
water stream. The phase difference between the two beams is judged from the
interference pattern in O.

In 1850 Hippolyte Fizeau performed an experiment in which he split a light
beam into two beams, had them travel through water moving in opposite direc-
tions, and measured their phase difference by interference (see fig. 2). The result
confirmed the partial drag of light waves predicted by Fresnel. Maxwell knew about
Fizeau’s result, and, for a while, wrongly believed that it implied an alteration of
the laws of refraction by the earth’s motion through the ether. In 1864, he per-
formed an experiment to test this modification. The negative result confirmed
Arago’s earlier finding with improved precision. As Stokes explained to Maxwell,
this result pleaded for, rather than contradicted the Fresnel drag. Yet Maxwell
remained skeptical about the validity of Fizeau’s experiment. In 1867 he wrote:

This experiment seems rather to verify Fresnel’s theory of the ether; but the whole question of
the state of the luminiferous medium near the earth, and of its connexion with gross matter, is
very far as yet from being settled by experiment.

In this situation, it was too early to worry about an incompatibility between the
electromagnetic theory of light and the optics of moving bodies. In 1878, one year
before his death, Maxwell still judged Stokes’ theory “very probable.”6

6H. Fizeau, “Sur les hypothèses relatives à l’éther lumineux, et sur une expérience qui parâıt
démontrer que le mouvement des corps change la vitesse avec laquelle la lumière se propage
dans leur intérieur,” Académie des Sciences, Comptes-rendus, 33 (1851), 349-355; J.C. Maxwell,
“On an experiment to determine whether the motion of the earth influences the refraction of
light,” unpub. MS, in Maxwell, The scientific letters and papers, ed. Peter Harman, vol. 2 (Cam-
bridge, 1995), 148-153; Maxwell to Huggins, 10 Jun 1867, ibid., 306-311; “Ether,” article for the
Encyclopedia Britannica (1878), reproduced ibid., 763-775.
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In the 1870s a multitude of experiments confirmed the absence of effect of
the earth’s motion on terrestrial optics. In 1874, the author of the best of those,
Eleuthère Mascart, concluded:

The translational motion of the earth has no appreciable influence on optical phenomena pro-
duced by a terrestrial source, or light from the sun, so these phenomena do not provide us with
a means of determining the absolute motion of a body, and relative motions are the only ones
that we are able to determine.

Mascart and other continental experts interpreted this finding by means of Fres-
nel’s theory. British physicists mostly disagreed, as can be judged from a British
Association report of 1885 in which a disciple of Maxwell criticized “Fresnel’s some-
what violent assumptions on the relation between the ether within and without a
transparent body.”7

In 1881 the great American experimenter Albert Michelson conceived a way
to decide between Fresnel’s and Stokes’ competing theories. Through an interfer-
ometer of his own, he compared the time that light took to travel the same length
in orthogonal directions (see fig. 3). If the ether was stationary, he reasoned, the
duration of a round trip of the light in the arm parallel to the earth’s motion was
increased by a factor [l/(c−u)+ l/(c+u)]/(2l/c), which is equal to 1/(1−u2/c2).
The corresponding fringe shift was about twice what his interferometer could de-
tect. From the null result, Michelson concluded that Fresnel’s theory had to be
abandoned.8

A French professor at the Ecole Polytechnique, Alfred Potier, told Michel-
son that he had overlooked the increase of the light trip by 1/

√
1 − u2/c2 in the

perpendicular arm of his interferometer. With this correction, the experiment be-
came inconclusive. Following William Thomson’s and Lord Rayleigh’s advice and
with Edward Morley’s help, Michelson first decided to repeat Fizeau’s experiment
with his powerful interferometric technique. In 1886 he thus confirmed the Fresnel
dragging coefficient with greatly improved precision.9

At this critical stage, the Dutch theorist Hendrik Lorentz entered the discus-
sion. He first blasted Stokes’ theory by noting that the irrotational motion of an in-
compressible fluid around a sphere necessarily involves a finite slip on its surface.10

The theory could still be saved by integrating Fresnel’s partial drag, but only at
the price of making it globally more complicated than Fresnel’s. Lorentz there-
fore favored Fresnel’s theory, and called for a repetition of Michelson’s experiment

7E. Mascart, “Sur les modifications qu’éprouve la lumière par suite du mouvement de la source
et du mouvement de l’observateur,” Annales de l’Ecole Normale, 3 (1874), 363-420, on 420; R.T.
Glazebrook, Report on “optical theories,” British Association for the Advancement of Science,
Report (1885), 157-261.

8A. Michelson, “The relative motion of the earth and the luminiferous ether,” American
journal of science, 22 (1881), 120-129.

9A. Michelson and E. Morley, “Influence of the motion of the medium on the velocity of light”,
American journal of science, 31 (1886), 377-386.

10It seems dubious that Stokes, as an expert on potential theory in fluid mechanics, could
have overlooked this point. More likely, his jelly-like ether permitted temporary departures from
irrotationality.
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Figure 3: The Michelson-Morley experiment. The light from the source S is divided
into two beams by the semi-reflecting blade R. After reflection on the mirrors M1

and M2, the two beams return to R. Their interference pattern is observed through
the telescope T.

of 1881 after noting the error already spotted by Potier. Michelson and Morley
fulfilled this wish in 1887 with an improved interferometer. The result was again
negative, to every expert’s puzzlement: while Fizeau’s experiment confirmed Fres-
nel’s theory, the new experiment contradicted it.11

3 Lorentz’s theory

When in the early 1890s Hertz and Heaviside perfected Maxwell’s electrodynam-
ics of moving bodies, they noted that it was incompatible with Fresnel’s theory of
aberration, but decided to postpone further study of the relation between ether
and matter. Unknown to them, Lorentz had long ago reflected on this relation
and reached conclusions that sharply departed from Maxwell’s original ideas. Un-
like Maxwell’s British disciples, Lorentz learned Maxwell’s theory in a reinter-
pretation by Hermann Helmholtz that accommodated the continental interpreta-
tion of charge, current, and polarization in terms of the accumulation, flow, and

11H.A. Lorentz, “De l’influence du mouvement de la terre sur les phénomènes lumineux,”
Archives néerlandaises (1887), also in Collected papers, 9 vols. (The hague, 1934-1936), vol. 4,
153-214; Michelson and Morley, “On the relative motion of the earth and the luminiferous ether,”
American journal of science, 34 (1887), 333-345.
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displacement of electric particles. In 1878 he gave a molecular theory of optical
dispersion based on the idea of elastically bound charged particles or “ions” that
vibrated under the action of an incoming electromagnetic wave and thus generated
a secondary wave. For the sake of simplicity, he assumed that the ether around
the molecules and ions had exactly the same properties as the ether in a vacuum.
He could thus treat the interactions between ions and electromagnetic radiation
through Maxwell’s equations in a vacuum supplemented with the so-called Lorentz
force.12

Using lower-case letters for the microscopic fields and Hertzian units, these
equations read

∇× e = −c−1∂b/∂t , ∇× b = c−1[ρmv + ∂e/∂t] ,

∇ · e = ρm , ∇ · b = 0 , (8)

f = ρm[e + c−1v × b] ,

where ρm denotes the microscopic charge density (confined to the ions) and f de-
notes the density of the force acting on the ions. Note that there are only two
independent fields e and b since the constants ε and µ are set to their vacuum
value. Although from a formal point of view these equations can be seen as a
particular case of the Maxwell-Hertz equations (1), they were unthinkable to true
Maxwellians who regarded the concepts of electric charge and polarization as emer-
gent macroscopic concepts and believed the molecular level to be directly ruled by
the laws of mechanics.

Using his equations and averaging over a macroscopic volume element,
Lorentz obtained the first electromagnetic theory of dispersion. In 1892, he real-
ized that he could perform similar calculations when the dielectric globally moved
through the ether at the velocity u of the earth. He only had to assume that the
ions and molecules moved through the ether without disturbing it. Superposing
the incoming wave and the secondary waves emitted by the moving ions, he found
that the resulting wave traveled at the velocity predicted by Fresnel’s theory. The
partial ether drag imagined by Fresnel was thus reduced to molecular interference
in a perfectly stationary ether.13

Notwithstanding with their global intricacy, Lorentz’s original calculations
contained an interesting subterfuge. In order to solve equations that involved the
wave operator
∂2/∂x2− c−2(∂/∂t−u∂/∂x)2 in a reference frame bound to the transparent body,
Lorentz introduced the auxiliary variables

x′ = γx , t′ = γ−1t − γux/c2 (9)

12Lorentz, “Over het verband tusschen de voortplantings sneldheit en samestelling der midden
stofen,” Koninklijke Akademie van Wetenschappen, Verslagen (1878), transl. as “Concerning the
relation between the velocity of propagation of light and the density and composition of media”
in Collected papers (ref. 11), vol. 2, 3-119.

13Lorentz, “La théorie électromagnétique de Maxwell et son application aux corps mouvants,”
Archives néerlandaises (1892), also in Collected papers (ref. 11), vol. 2, 164-321.
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that restored the form of the operator in the ether-bound frame for

γ = 1/
√

1 − u2/c2 . (10)

He thus discovered the Lorentz transformation for coordinates (up to the Galilean
transformation x = x̄ − ut, where x̄ is the abscissa in the ether frame).14

A few months later, Lorentz similarly realized that to first order in u/c the
field equations in a reference frame bound to the earth could be brought back to
the form they have in the ether frame through the transformations

t′ = t − ux/c2 , e′ = e + c−1u × b , b′ = b− c−1u × e . (11)

In other words, the combination of these transformations with the Galilean trans-
formation x = x̄−ut leaves the Maxwell-Lorentz equations invariant to first order.
Lorentz used this remarkable property to ease his derivation of the Fizeau co-
efficient and to give a general proof that to first order optical phenomena were
unaffected by the earth’s motion through the ether.15

It is important to understand that for Lorentz the transformed coordinates
and fields were mathematical aids with no direct physical significance. They were
only introduced to facilitate the solution of complicated differential equations. The
“local time” t′ was only called so because it depended on the abscissa. The true
physical quantities were the absolute time t and the fields e and b representing the
states of the ether. In order to prove the first-order invariance of optical phenom-
ena, Lorentz considered two systems of bodies of identical constitution, one at rest
in the ether, the other drifting at the velocity u. He first noted that to a field pat-
tern e0 = F (x, y, z, t), b0 = G(x, y, z, t) for the system at rest corresponded a field
pattern e,b for the drifting system such that e′ = F (x, y, z, t′), b′ = G(x, y, z, t′)
(the abscissa x being measured in a frame bound to the system). He then noted
that e′ and b′ vanished simultaneously if and only if e and b did so. Consequently,
the borders of a ray of light or the dark fringes of an interference pattern have
the same locations in the system at rest and in the drifting system. The change of
the time variable is irrelevant, since the patterns observed in optical experiments
are stationary. We may conclude that Lorentz’s use of the Lorentz invariance was
quite indirect and subtle.

There remained a last challenge for Lorentz: to account for the negative re-
sult of the Michelson-Morley experiment of 1887. As George Francis FitzGerald
had already done, Lorentz noted that the fringe shift expected in a stationary
ether theory disappeared if the longitudinal arm of the interferometer underwent
a contraction by the amount γ−1 =

√
1 − u2/c2 when moving through the ether.

In order to justify this hypothesis, Lorentz first noted that in the case of electro-
statics the field equations in a frame bound to the drifting body could be brought
back to those for a body at rest through the transformation x′ = γx. He further
assumed that the equilibrium length or a rigid rod was determined by the value

14Ibid. : 297
15Lorentz, “On the reflexion of light by moving bodies,” Koninklijke Akademie van Weten-

schappen, Verslagen (1892), also in Collected papers (ref.11), vol. 4, 215-218.



12 O. Darrigol

of intermolecular forces and that these forces all behaved like electrostatic forces
when the rod drifted through the ether. Then the fictitious rod obtained by apply-
ing the dilation x′ = γx to a longitudinally drifting rod must have the length that
this rod would have if it were at rest. Consequently, the moving rod contracts by
the amount γ−1. The Lorentz contraction thus appears to result from a postulated
similarity between molecular forces of cohesion and electrostatic forces.16

Fully explained in the Versuch of 1895, Lorentz’s theory gained broad recog-
nition before the end of the century. Two other physicists, Joseph Larmor of Cam-
bridge and Emil Wiechert of Königsberg, proposed similar theories in the same
period. In the three theories, the basic idea was to hybridize Maxwell’s theory
with the corpuscular concept of electricity and to reduce every optic and elec-
tromagnetic phenomenon to the interactions between electric particles through a
stationary ether. Besides the optics of moving bodies, these theories explained a
variety of magnetic and magneto-optic phenomena, and of course retrieved the
confirmed predictions of Maxwell’s theory. They benefited from the contemporary
rise of an experimental microphysics, including the discoveries of x-rays (1895), ra-
dioactivity (1896), and the electron (1897). In 1896, the Dutch experimenter Pieter
Zeeman revealed the magnetic splitting of spectral lines, which Lorentz immedi-
ately explained through the precession of the orbiting charged particles responsible
for the lines. Being much lighter than hydrogen, these particles were soon iden-
tified to the corpuscle discovered in cathode rays by Emil Wiechert and Joseph
John Thomson. Following Larmor’s terminology, this corpuscle became known as
the electron and replaced the ions in Lorentz’s theory.17

4 Poincaré’s criticism

In France, the mathematician Henri Poincaré had been teaching electrodynam-
ics at the Sorbonne for several years. After reviewing the theories of Maxwell,
Helmholtz, Hertz, Larmor, and Lorentz, he judged that the latter was the one
that best accounted for the whole range of optic and electromagnetic phenom-
ena. Yet he was not entirely satisfied with Lorentz’s theory, because he believed it
contradicted fundamental principles of physics. In general, Poincaré perceived an
evolution of physics from the search of ultimate mechanisms to a “physique des
principes” in which a few general principles served as guides in the formation of
theories. Among these principles were three general principles of mechanics: the

16Lorentz, “De relative beweging van der aarde en den aether,” Koninklijke Akademie van
Wetenschappen, Verslagen (1892), transl. as “The relative motion of the earth and the ether” in
Collected papers (ref. 11), vol. 4, 220-223.

17Lorentz, Versuch einer Theorie der elektrischen un optischen Erscheinungen in bewegten
Körpern (Leiden, 1895), also in Collected papers (ref. 11), vol.5, 1-139; “Optische verschinitjnelsen
die met de lading en de massa der ionen in verband staan,” Koninklijke Akademie van Weten-
schappen, Verslagen (1898), transl. as “Optical phenomena connected with the charge and mass
of ions” in Collected papers (ref. 11) vol. 3, 17-39.
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principle of relativity, the principle of reaction, and the principle of least action.18

For any believer in the mechanical nature of the electromagnetic ether, it
was obvious that these three principles applied to electrodynamics, since ether
and matter were together regarded as a complex mechanical system. In particu-
lar, it was clear that electromagnetic phenomena would be the same if the same
uniform boost was applied to the ether and all material objects. It the boost was
applied to matter only, effects of this boost were expected to occur. For instance,
Maxwell believed that the force between two electric charges moving together uni-
formly on parallel lines had to vanish when their velocity reached the velocity of
light. Poincaré thought differently. In his view, the ether only was a convenient
convention suggested by the analogy between the propagation of sound and the
propagation of light. In the foreword of his lectures of his lecture of 1887/8 on the
mathematical theories of light, he wrote:19

It matters little whether the ether really exists: that is the affair of the metaphysicians. The
essential thing for us is that everything happens as if it existed, and that this hypothesis is
convenient for us for the explanation of the phenomena. After all, have we any other reason to
believe in the existence of material objects? That too, is only a convenient hypothesis; only this
will never cease to do so, whereas, no doubt, some day the ether will be thrown aside as useless.

As we will see, Poincaré actually never abandoned the ether. But he refused
to regard it as an ordinary kind of matter whose motion could affect observed
phenomena. In his view, the principle of reaction and the principle of relativity
had to apply to matter alone. In his lectures of 1899 on Lorentz’s theory, he wrote:
I consider it very probable that optical phenomena depend only on the relative
motion of the material bodies present –light sources and apparatus– and this not
only to first or second order but exactly.

It must be emphasized that at that time no other physicist believed in this
acceptance of the relativity principle. Most physicists conceived the ether as a
physical entity whose wind should have physical effects, even though the precision
needed to test this consequence was not yet available. The few physicists, such
as Paul Drude or Emil Cohn, who questioned the mechanical ether, felt free to
violate principles of mechanics, including the relativity principle.20

Lorentz’s theory satisfied Poincaré’s relativity principle only approximately
and did so through what Poincaré called two “coups de pouce”: the local time and
the Lorentz contraction. Moreover, it violated Poincaré’s reaction principle, since
Lorentz’s equations implied that the net force acting on all the ions or electrons
should be the space integral of ∂(e × b)/c∂t, which does not vanish in general.
In his contribution to Lorentz’s jubilee of 1900, Poincaré iterated this criticism
and further discussed the nature and impact of the violation of the reaction prin-
ciple. In the course of this argument, about which more details will be given in

18H. Poincaré, Electricité et optique. La Lumière et les théories électrodynamiques [Sorbonne
lectures of 1888, 1890 and 1899)], ed. J. Blondin and E. Néculcéa, (Paris, 1901).

19Poincaré, Théorie mathématique de la lumière (Sorbonne lectures, 1887-88), ed. J. Blondin
(Paris, 1889), I.

20Poincaré, ref. 18, 536.
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a moment, he relied on Lorentz’s transformations (11) to compute the energy of
a pulse of electromagnetic radiation from the standpoint of a moving observer.
The transformed fields e′ and b′, he noted, are the fields measured by a moving
observer. Indeed the force acting on a test unit charge moving with the velocity
u is e + c−1u × b = e′ according to the Lorentz force formula. Poincaré went on
noting that the local time t′ = t − ux/c2 was that measured by moving observers
if they synchronized their clocks in the following manner:21

I suppose that observers placed in different points set their watches by means of optical signals;
that they try to correct these signals by the transmission time, but that, ignoring their trans-
lational motion and thus believing that the signals travel at the same speed in both directions,
they content themselves with crossing the observations, by sending one signal from A to B, then
another from B to A.

Poincaré only made this remark en passant, gave no proof, and did as if it
had already been on Lorentz’s mind. The proof goes as follows. When B receives
the signal from A, he sets his watch to zero (for example), and immediately sends
back a signal to A. When A receives the latter signal, he notes the time τ that
has elapsed since he sent his own signal, and sets his watch to the time τ/2. By
doing so he commits an error τ/2 − t−, where t− is the time that light really
takes to travel from B to A. This time, and that of the reciprocal travel are given
by t− = AB/(c + u) and t+ = AB/(c − u), since the velocity of light is c with
respect to the ether (see fig. 4). The time τ is the sum of these two traveling
times. Therefore, to first order in u/c the error committed in setting the watch
A is τ/2 − t− = (t+ − t−)/2 = uAB/c2. At a given instant of the true time, the
times indicated by the two clocks differ by uAB/c2, in conformity with Lorentz’
expression of the local time.

Poincaré transposed this synchronization procedure from an earlier discus-
sion on the measurement of time, published in 1898. There he noted that the
dating of astronomical events was based on the implicit postulate “that light has a
constant velocity, and in particular that its velocity is the same in all directions.”
He also explained the optical synchronization of clocks at rest, and mentioned its
similarity with the telegraphic synchronization that was then being developed for
the purpose of longitude measurement. As a member of the Bureau des Longi-
tudes, Poincaré naturally sought an interpretation of Lorentz’s local time in terms
of cross-signaling. As a believer in the relativity principle, he understood that
moving observers would never know their motion through the ether and therefore
could only do as if these signals propagated isotropically.22

Poincaré thus provided a physical interpretation of the transformed time t′

and the transformed fields e′ and b′, which only referred to a fictitious system
for Lorentz. This interpretation greatly eased the use of this transformation, for
it made the (first-order) invariance of optical phenomena a direct consequence of

21Poincaré, “La théorie de Lorentz et le principe de la réaction.” In Recueil de travaux offerts
par les auteurs à H.A. Lorentz à l’occasion du 25ème anniversaire de son doctorat le 11 décembre
1900, Archives néerlandaises, 5 (1900), 252-278, on 272.

22Poincaré, “La mesure du temps”, Revue de métaphysique et de morale, 6 (1898), 371-384.
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Figure 4: Cross-signaling between two observers moving at the velocity u through
the ether. The points A, A′, A′′, B, B′, B′′ represent the successive positions of
the observers in the ether when the first observer sends a light signal, when the
second observer receives this signal and sends back another signal, and when the
first observer receives the latter signal.

the formal invariance of the Maxwell-Lorentz equations. Yet it would be a mistake
to believe that Poincaré thereby redefined the concepts of space and time. In his
terms, the Lorentz-transformed quantities referred to the apparent states of the
field for a moving observer. The true states remained those defined with respect
to the ether. As we will see, Poincaré never gave up this view.

5 The Lorentz invariance

Strangely, Lorentz overlooked Poincaré’s reinterpretation of his transformations,
and kept reasoning in terms of a fictitious system brought to rest. So did other
experts on the electrodynamics of moving bodies until at least 1904. Nevertheless,
Lorentz took some of Poincaré’s criticism seriously. In 1904, he offered a new
version of his theory in which the invariance of optical phenomena held at every
order in u/c, without the ”coups de pouce” reproached by Poincaré. He knew since
1899 that the homogenous field equations for a system bound to the earth could
be brought to the form they have for a system at rest in the ether through the
transformations

x′ = γεx, y′ = εy, z′ = εz, t′ = ε(γ−1t − γuxc−2)

e′ = ε−2(1, γ)(e + c−1u × b), b′ = ε−2(1, γ)(b − c−1u× e) , (12)

where ε is an undetermined constant (for a given value of u) and the factor (1, γ)
means a multiplication by 1 of the component of the following vector parallel to
u and a multiplication by γ of the component perpendicular to u. In 1904, he
generalized this result to the coupling between electrons and field.23

23Lorentz,“Electromagnetic phenomena in a system moving with any velocity smaller than
light,” Royal Academy of Amsterdam, Proceedings (1904), also in Collected papers (ref. 11), vol.
5, 172-197.



16 O. Darrigol

Specifically, Lorentz realized that for a spherical electron subjected to the
Lorentz contraction and carrying the electromagnetic momentum

p = c−1

∫
(e× b)dτ , (13)

his transformations brought back the equation of motion

dp/dt = e[e + c−1(u + v) × b] (14)

of an electron of charge e to the form it has for a system at rest (u = 0), if and only
if the constant ε had the value 1. On his way to this result, he derived the expression
p = m0γv of the momentum, where m0 = e2/6πRc2 is the electromagnetic mass
of a spherical-shell electron of radius R. Lastly, Lorentz gave expressions of the
transformed source terms of the field equations such that dipolar emission in the
moving system transformed into dipolar emission in the system at rest. Combining
all these results, he could assert that optical phenomena in a moving system were
the same as in a system at rest.

This result only held in the dipolar approximation, because Lorentz’s expres-
sion of the transformed source terms was not the one today regarded to be correct.
Lorentz also neglected the spinning motion of the electrons, and overlooked the
cohesive forces that the stability of his contractile electron required. His derivation
of the invariance of optical phenomena was complex and indirect, for it involved a
double-step transformation, the fictitious system at rest, and comparison between
the states of this system and those of the real system. For other phenomena, there
is no doubt that Lorentz still believed that motion with respect to the ether could
in principle be detected.

Poincaré reacted enthusiastically to Lorentz memoir, because he saw in it an
opportunity to satisfy the relativity principle in a complete and exact manner. He
published the results of the ensuing reflections under the title “Sur la dynamique
de l’électron,” first as a short note of 5 June 1905 in the Comptes rendus, and as
a bulky memoir in the Rendiconti of the Circolo matematico di Palermo for the
following year. He first defined the “relativity postulate” as follows:
It seems that the impossibility of experimentally detecting the absolute motion of the earth is a
general law of nature; we naturally incline to assume this law, which we shall call the Postulate
of Relativity, and to do so without any restriction.

Correcting Lorentz’s expression of the transformed source terms, he then showed
that “the Lorentz transformations”

x′ = γ(x − ut), y′ = y, z′ = z, t′ = γ(t − uxc−2) ,

e′ = (1, γ)(e + c−1u × b), b′ = (1, γ)(b− c−1u× e) , (15)

left the Maxwell-Lorentz equations invariant. These transformations are obtained
by combining the transformations (12), which Lorentz used, with the Galilean
transformation x′ = x − ut. Poincaré showed that they formed a group, and used
this property to determine the global scaling factor ε. He noted that the coordinate
transformations left the quadratic form x2 + y2 + z2 − c2t2 invariant and could
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thus be regarded as rotations in a four-dimensional space with an imaginary fourth
coordinate. He obtained the relativistic law for the “addition” of velocities, for
which the combined velocity always remains inferior to the limit c.24

Next, Poincaré showed that a model of the contractile electron could be con-
ceived in which the cohesive forces (the so-called Poincaré tension) preserved the
Lorentz invariance. He thus retrieved Lorentz’s expression p = m0γv for the mo-
mentum of the electron. Lastly, he argued that in order to be compatible with the
postulate of relativity, gravitational interactions should propagate at the velocity
of light; and he proposed modifications of Newton’s law of gravitation that made
it compatible with Lorentz invariance.

Thus, there is no doubt that Poincaré regarded Lorentz invariance as a general
requirement for the laws of physics, and that he identified this formal condition
with the principle of relativity. On the latter point, his only comment was:

The reason why we can, without modifying any apparent phenomenon, confer to the whole system
a common translation, is that the equations of an electromagnetic medium are not changed under
certain transformations which I shall call the Lorentz transformations; two systems, one at rest,
the other in translation, thus become exact images of one another.

The Palermo memoir, long and thorough as it was, said nothing on the interpre-
tation to be given to the transformed coordinates and fields. Perhaps Poincaré
believed this should not be the main point. Perhaps he had not yet been able to
provide an operational understanding of Lorentz’s local time at any order in u/c.
There is no doubt, however, that he regarded the transformed fields and coordi-
nates as the ones measured by moving observers. At the Saint-Louis conference
of 1904, he repeated (and attributed to Lorentz!) his definition of the local time
by optical cross-signaling. In his Sorbonne lectures of 1906, he proved that this
definition remained valid at any order in u/c, and he characterized the Lorentz
transformations as the ones giving the “apparent space and time coordinates.”25

The same lectures and later talks on the “mécanique nouvelle” show that
Poincaré nonetheless maintained the ether and the ordinary concepts of space and
time. In his view, the clocks bound to the ether frame gave the true time, for it
was only in this frame that the true velocity of light was c. The clocks of a moving
frame only gave the apparent time. For those who would think that the difference
with Einstein’s theory of relativity is merely verbal, it is instructive to look at an
argument Poincaré repeatedly gave to justify optical synchronization.26

24Poincaré, “Sur la dynamique de l’électron,” Académie des Sciences, Comptes-rendus, 140,
(1905), 1504-1508; “Sur la dynamique de l’électron,” Rendiconti del Circolo matematico di
Palermo (1906), also in Poincaré, Oeuvres (Paris, 1954), vol. 9, 494-550, on 495.

25Poincaré, ibid., 495; “L’état actuel et l’avenir de la physique mathématique” (Saint-Louis
lecture), Bulletin des sciences mathématiques, 28 (1904), 302-324, transl. in Poincaré, The foun-
dations of science (New York, 1929); “Les limites de la loi de Newton,” Sorbonne lectures (1906-
1907) ed. by H. Vergne in Bulletin astronomique publié par l’observatoire de Paris, 17 (1953),
121-365, chap. 11.

26Poincaré, ibid., 218-220; “La dynamique de l’électron,” Revue générale des sciences pures et
appliquées (1908), also in Oeuvres (ref. 24), vol. 9, 551-586.
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Figure 5: Poincaré’s light ellipsoid (a = OA, b = OB, f = OF ).

Simultaneity should be transitive, namely: if the clock A is synchronized with
the clock B, and if the clock B is synchronized with the clock C, then the clock A
should be synchronized with clock C for any given choice of the positions of the
three clocks. Indeed, any breakdown of transitivity could be used to detect motion
through the ether and thus to violate the relativity principle. Now consider an
observer moving with the constant velocity u through the ether and emitting a
flash of light at time zero. At the value t of the true time, this light is located
on a sphere of radius ct centered at the emission point. Poincaré next considered
the appearance of this light shell for a moving observer, the rulers of which are
subjected to the Lorentz contraction. The result is an ellipsoid of revolution, the
half-axes of which have the values a = γct and b = ct (see fig. 5). As the ec-
centricity is e =

√
1 − b2/a2 = u/c, the focal distance f = ea = γut is equal to

the apparent distance traveled by the observer during the time t. Therefore, the
Lorentz contraction is the contraction for which the position of the observer at
time t coincides with the focus F of the light ellipsoid he has emitted.

Now consider a second observer traveling with the same velocity u and re-
ceiving the flash of light at the time t+. The position M of this observer belongs
to the ellipsoid t = t+, and the distance FM represents the apparent distance be-
tween the two observers, which is invariable. According to a well-known property
of ellipses, we have

FM + eFP = b2/a , (16)
where P denotes the projection of M on the larger axis. The length FP being equal
to the difference x′ of the apparent abscissas of the two observers, this implies

t+ = γFM/c + γux′/c2 . (17)

Suppose that the two observers synchronize their clocks by cross-signaling. The
traveling time of the reverse signal is

t− = γFM/c − γux′/c2 (18)
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Therefore, two events are judged simultaneous by these observers if and only if
their true times differ by

(t+ − t−)/2 = γux′/c2 . (19)

This condition is obviously transitive.27

For any one familiar with Einstein’s theory of relativity, this reasoning seems
very odd. Indeed, the light ellipsoid corresponds to a fixed value of the time t in
one reference frame and to space measured in another frame. In general, Poincaré’s
theory allows for the use of the “true time” in any reference system, whereas our
relativity theory regards this sort of mixed reference as a mathematical fiction.
This means that the conceptual basis of Poincaré’s theory is not compatible with
Einstein’s, even though both theories are internally consistent and have the same
empirical predictions (for the electrodynamics of moving bodies).28

Another oddity of Poincaré’s theory is his naming the Lorentz contraction ”a
hypothesis.” As we just saw, Poincaré showed that the contraction was necessary to
the transitivity of optical synchronization, which itself derives from the relativity
principle. He nonetheless spoke of a hypothesis, probably because he did not quite
trust the implicit conventions made in this reasoning. In the Palermo memoir, he
clearly indicated his dissatisfaction with the present state of the theory:

We cannot content ourselves with simply juxtaposed formulas that would agree only by some
happy coincidence; the formulas should, so to say, penetrate each other. Our mind will be satisfied
only when we believe that we perceive the reason of this agreement, so that we may fancy that
we have predicted it.

Poincaré meant that the Lorentz covariance of all forces in nature, including grav-
itation, could not be regarded as a mere consequence of the principle of relativity.
He believed this symmetry also implied more arbitrary assumptions, such as the
similarity between electromagnetic and other forces and the universality of the
velocity of light as a propagation velocity.29

As Poincaré reminded his reader, one way to justify these assumptions was
the electromagnetic view of nature, according to which electromagnetism should
be the ultimate basis of all physics. More appealing to him was the following
suggestion:

The common part of all physical phenomena would only be an appearance, something that would
pertain to our methods of measurement. How do we perform our measurements? By superposing
objects that are regarded as rigid bodies, would be one first answer; but this is no longer true in

27Although Poincaré did not do so much, the expression of the local time t′ can simply be
obtained by requiring the apparent velocity of light to be equal to c. This condition implies
FM = ct′, and t = γ(t′ + ux′/c2). Calling x the true abscissa of the second observer at time
t (with respect to the emission point of the flash), we also have x′ = γ(x − ut). Consequently,
t′ = γ(t − ux/c2), in conformity with the Lorentz transformations.

28The empirical equivalence of the two theories simply results from the fact that any valid
reasoning of Einstein’s theory can be translated into a valid reasoning of Poincaré’s theory by
arbitrarily calling the time, space, and fields measured in one given frame the true ones, and
calling all other determinations apparent.

29Poincaré, ref. 24 (1906), 497.
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the present theory, if one assumes the Lorentz contraction. In this theory, two equal lengths are,
by definition, two lengths which light takes equal time to travel through. Perhaps it would be
sufficient to renounce this definition so that Lorentz’s theory would be as completely overturned
[bouleversée] as Ptolemy’s system was through Copernicus’ intervention.

Lorentz’s explanation of the null result of the Michelson-Morley experiment,
Poincaré reasoned, implicitly rested on the convention that two lengths (sharing
the same motion) are equal if and only if light takes the same (true) time to travel
through them. What he meant by dropping this convention is not clear. Some
commentators have speculated that he meant a revision of the concept of time, in
Einstein’s manner. This is not very likely, because the context of Poincaré’s sug-
gestion was length measurement instead of time measurement, and also because he
ignored Einstein’s point of view to the end of his life. More likely he was alluding
to a suggestion he had earlier made at the Saint-Louis conference: “that the ether
is modified when it moves relative to the medium which penetrates it.”30

To sum up, in 1905/6 Poincaré obtained a version of the theory of relativity
based on the principle of relativity and the Lorentz group. He believed this sym-
metry should apply to all forces in nature. He exploited it to derive the dynamics
of the electron on a specific model and to suggest a modification of the law of
gravitation. He nevertheless maintained the ether as the medium in which light
truly propagated at the constant velocity c and clocks indicated the true time.
He regarded the quantities measured in moving frames as only apparent, although
the principle of relativity forbade any observational distinction between a mov-
ing frame and the ether frame. He understood the compatibility of the Lorentz
transformations of coordinates with the optical synchronization of clocks and the
invariance of the apparent velocity of light, but hesitated on the physical signifi-
cance of the Lorentz contraction and never discussed the dilation of time.

6 Einstein’s theory

Albert Einstein had an early interest in electrodynamics, if only because his fam-
ily owned a small electrotechnical company. At age sixteen, he wrote a little essay
on the state of the ether in an electromagnetic field. If we believe a late remi-
niscence, he also wondered about the appearance of a light wave for an observer
traveling along with it. In 1896 he entered the Zürich Polytechnikum, where he
learned electrodynamics in the standard continental style. Two years later he stud-
ied Maxwell’s theory by himself from Drude’s Physik des Aethers. Drude was a
sympathizer of Ernst Mach’s philosophy, and belonged to a tradition of German
physics that favored phenomenological theories over mechanistic assumptions. In
his rendering of Maxwell’s theory, he avoided any picture of ether processes and
propounded to redefine the ether as space endowed with special physical proper-
ties.31

30Poincaré, ref. 24 (1906), 498; ref. 25 (1904), 315 (Foundations).
31A. Einstein, “Über die Untersuchung des Aetherzustandes im magnetischen Felde,” in John

Stachel et al. (eds), The collected papers of Albert Einstein, vol. 1 (Princeton, 1987), 6-9; P.
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In the summer of 1899, Einstein’s reading of Hertz’s Untersuchungen
prompted the following comment, addressed to his lover Mileva Marić:

I am more and more convinced that the electrodynamics of moving bodies, as it is presented
today, does not agree with the truth, and that it should be possible to present it in a simpler
way. The introduction of the name ’ether’ into the electric theories has led to the notion of a
medium of whose motion one could speak of without being able, I believe, to associate a physical
meaning to this statement. I believe that electric forces can be directly defined only for empty
space, [which is] also emphasized by Hertz. Further, electric currents will have to be regarded
not as ’the vanishing of electric polarization in time’ but as motion of true electric masses, whose
physical reality seems to result from the electrochemical equivalents.... Electrodynamics would
then be the science of the motions in empty space of moving electricities and magnetisms.

Einstein’s criticism targeted Hertz’s electrodynamics of moving bodies, which de-
veloped the Maxwellian idea of an ether fully dragged by matter. Einstein was also
aware of the Maxwellian concept of electric current as “the vanishing of electric
polarization in time,” and suggested to replace it with the motion of ions mov-
ing through empty space. What he had in mind probably was a theory similar to
Lorentz’s and Wiechert’s, in which electromagnetic phenomena are brought back
to the interactions of ions through a stationary ether. Einstein added that “the
radiation experiments” would decide between the two conceptions. He presumably
meant to compare the intensities of light emitted from the same source in opposite
directions.32

A month later, Einstein thought of another experiment concerning “the effect
that the relative motion of bodies with respect to the luminiferous ether has on
the velocity of propagation of light in transparent bodies.” The physics professor,
Heinrich Weber, to whom he explained this project and the motivating theory, told
him to read a paper by Wilhelm Wien that contained a short account of Lorentz’s
theory and a description of many experiments on ether motion, including those of
Fizeau and of Michelson-Morley. Einstein presumably welcomed Fizeau’s result,
which confirmed the stationary ether. But he may have doubted the import of the
Michelson-Morley null result, because two years later, in the fall of 1901, he was
still planning a new interferometric method “for the search of the relative motion
of matter with respect to the luminiferous ether.”33

Sometime after 1901, Einstein ceased to look for experimental tests of motion
through the ether and adopted the relativity principle. Although the null-result
of ether-drift experiments probably contributed to this move, Einstein’s autobio-
graphical remarks and the relativity paper of 1905 give an essential role to another
kind of consideration. In the introduction to this paper, Einstein remarks that
magneto-electric induction receives two very different interpretations in Lorentz’s
theory, according as it is the magnet or the electric conductor that is moving with
respect to the ether. In the first case the motion of the magnet implies the exis-

Drude, Physik des Aethers auf electromagnetischer Grundlage (Stuttgart, 1894).
32Einstein to Marić [Aug 1899], ECP 1, 225-227.
33Einstein to Marić, 10 and 28? Sep 1899, ECP 1, 229-230, 233-235; W. Wien, “Über die Fragen,

welche die translatorische Bewegung des Lichtethers betreffen,” appendix to Annalen der Physik,
65 (1898): I-XVIII); Einstein to Grossmann, 6 Sep 1901, in Stachel (ref. 31), 315-316.
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tence of an electric field e within the conductor (such that ∇× e = −∂b/∂t)). In
the second case, there is no electric field within the conductor, and the Lorentz
force (v×b per unit charge) is responsible for the motion of the electrons. Yet the
induced current only depends on the relative motion of the coil and the magnet.34

This fairly obvious remark had already been made by several authors. Most of
these, however, easily accepted the theoretical asymmetry and believed that finer
details of electromagnetic induction or other phenomena would reveal effects of
motion through the ether. Einstein thought differently. Following an epistemologi-
cal trend expressed in Hertz’s, Hume’s, and Mach’s writings, he rejected theoretical
asymmetries that had no empirical counterpart. As Lorentz’s stationary ether led
to many asymmetries of this sort, it had to be rejected.

This way or reasoning explains why Einstein, unlike Poincaré, conflated the
adoption of the relativity principle with the rejection of the ether. He thus found
himself compelled to imagine a theory of electromagnetic propagation that would
respect the relativity principle without disturbing the confirmed predictions of
Lorentz’s theory. The relativity principle implies that the measured velocity of
light should be the same in any inertial frame. For one who has given up the
ether, there is a simple way to satisfy this requirement: to make this velocity
depend on the velocity of the emitter, as was the case in Newton’s old corpuscular
theory of light. According to later reminiscences, this was Einstein’s first idea: he
tried to modify the expression of the retarded interaction between two charged
particles in such a way that it would depend on their relative motion only. Alas,
difficulties soon came up. In particular, Einstein found that the light emitted by
an accelerated source could sometime back up on itself, because the successive
wave planes traveled at different velocities depending on the velocity of the source
during their emission.35

Einstein gave up this theory, and long remained unable to conciliate Lorentz’s
theory with the relativity principle. According to the Kyoto lecture of 1922, he
suddenly realized that a redefinition of the concept of time solved his problem
during a conversation with his friend Michele Besso in the spring of 1905. In
the same lecture, Einstein also indicated that he had earlier tried to assume the
validity of the Maxwell-Lorentz equations in any inertial frame. This assumption
of course implied that the velocity of light should be the same in any inertial frame,
against the Galilean rule for the addition of velocities. The difficulty disappeared
when Einstein realized that there was “an inseparable connection between time
and signal velocity.”36

34A. Einstein, “Zur Elektrodynamik bewegter Körper,” Annalen der Physik, 17 (1905), 891-
921, on 891. Einstein removed this asymmetry in 1905 (ibid. on 909-910) by making the sepa-
ration between electric and magnetic field depend on the reference frame and by defining the
electromotive force in a conductor as the electric field in a frame bound to this conductor.

35Einstein to Ehrenfest, 25 Apr 1912, quoted in John Stachel et al. (eds.) The collected papers
of Albert Einstein, vol. 2 (Princeton, 1989), 263, and further ref. ibid.

36Einstein, “How I created the theory of relativity?” (from notes taken by Jun Ishiwara from
Einstein’s lecture in Kyoto on 14 Dec 1922), Physics today, 35: 8 (1982), 45-47.



The Genesis of the Theory of Relativity 23

This remark and the ensuing developments may have been eased by Einstein’s
readings. We surely know he had read Lorentz’s Versuch of 1895, and was therefore
aware of the local time and the role it served in preserving the form of the Maxwell-
Lorentz equations to first order. He may also have known the exact form of the
Lorentz transformations, for in 1904 several German theorists commented on them
in journals that he regularly read. We also know that he read Poincaré’s La science
et l’hypothèse, which contained an eloquent plead for the relativity principle as well
as a brief criticism of simultaneity:

There is no absolute time. To say two durations are equal is an assertion which has by itself no
meaning and which can acquire one only by convention. Not only have we no direct intuition of
the equality of two durations, but we have not even direct intuition of the simultaneity of two
events occurring in different places: this I have explained in an article entitled La mesure du
temps.

The German version of this book, published in 1904 and perhaps the one read by
Einstein, had a long citation of Poincaré’s article of 1898, including:

The simultaneity of two events or the order of their occurrence, and the equality of two time
intervals must be defined so that the expression of the laws of physics should be the simplest
possible; in other words, all those rules and definitions [conventions for time measurement] only
are the fruits of an unconscious opportunism.

The German editor further mentioned the possibility that a new time coordi-
nate may be a function of the older time and space coordinates. Lastly, Einstein
may have read Poincaré’s memoir of 1900, which contained the interpretation of
Lorentz’s local time in terms of optically synchronized clocks. Or he may have
been aware of Emil Cohn’s remark of 1904 that the local time was the time for
which the propagation of light was isotropic.37

Whether Einstein borrowed this idea or rediscovered it by himself, he became
aware of a relation between local time and optical synchronization. In his under-
standing of the relativity principle, there was no ether and all inertial frames were
entirely equivalent. Therefore, the time and space coordinates defined in these
frames all had the same status. The constancy of the velocity of light no longer
resulted from the existence of the ether, and had to be postulated separately. Ac-
cording to the relativity principle, this property had to hold in any inertial system.
The apparent absurdity of this consequence disappeared if time was defined in con-
formity with the light postulate. This definition turned out to imply the Lorentz
transformations, without any recourse to the Maxwell-Lorentz equations.

Through reasoning of that kind, Einstein arrived at the “new kinematics”
that formed the first part of his celebrated memoir of 1905 “On the electrodynamics
of moving bodies.” The following summary should suffice to exhibit the magnificent
architecture of this memoir.38

37Poincaré, La science et l’hypothèse (Paris, 1902), 111; Wissenschaft und Hypothese (Leipzig,
1904), 286-289.

38Einstein, ref. 34.



24 O. Darrigol

Introduction: Einstein exposes the aforementioned asymmetry of elec-
tromagnetic induction in Lorentz’s theory and uses it to plead for the
strict validity of the relativity principle. He announces that this prin-
ciple, together with the principle of the constancy of the velocity of
light, leads to a new kinematics that solves the contradictions of the
electrodynamics of moving body.

I. Kinematical part

§1. For two distant clocks A and B of identical constitution attached to a given
reference frame, Einstein defines synchronicity by the condition tB − tA =
t′A−tB, where tA is the time of the clock A at which a light signal is sent from
A, tB the time of the clock B at which this signal reaches B and a replying
signal is sent from B, and t′A the time at which the latter signal arrives
at A. This definition is arranged so that the propagation of light should
be isotropic in the given frame. “In conformity with experience,” Einstein
further assumes that the ratio 2AB/(t′A − tA) is the universal constant c.

§2. Einstein states the two principles on which his new kinematics is built: the
“relativity principle” according to which the laws of physics are the same
in any inertial system, and the “principle of the constancy of the velocity
of light” in a given inertial system. He then shows that simultaneity is a
relative notion, because according to the above given criterion two clocks
synchronized in a given reference frame are not in another.

§3. Einstein derives the Lorentz transformations by requiring the velocity of
light to be the same constant in two different frames of reference in the two
following cases: when the light path is parallel to the relative velocity of the
two frames, and when it is normal to this velocity in one of the frames. His
reasoning also relies on the group structure of the transformations in order
to determine the global scaling factor of the transformations.

§4. Einstein gives the “physical consequences” of these transformations for the
behavior of moving rigid bodies and clocks. The extremities of a rigid ruler
moving edgewise at the velocity v in a given frame of reference coincide,
at a given instant of this frame, with points of this frame whose distance
is proportional to

√
1 − v2/c2. Einstein thus introduces the contraction of

lengths as a perspectival effect. Most innovatively, he shows that a clock C
traveling at the uniform speed v from the clock A to the clock B of a given
reference frame appears to be slow compared to these clocks by a factor
1/

√
1 − v2/c2. He predicts the same retardation if the clock C makes a U-

turn at B and returns to A. He extends this result to any loop-wise trip of
the clock C.

§5. Einstein gives the relativistic law for the composition of velocities.
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II. Electrodynamic part

This part is devoted to the application of the new kinematics to electrody-
namics.

§6. Einstein proves the covariance of the homogenous Maxwell-Lorentz equa-
tions, and uses the relevant field transformations to remove the theoretical
asymmetry he condemned in his introduction: the force acting on a moving
unit point charge at a given instant must now be regarded as the electric
field acting on it in an inertial frame that has the same velocity as the charge
does at this instant.

§7. Einstein uses the transformation of a plane monochromatic wave to derive
the Doppler effect and stellar aberration.

§8. Einstein derives the transformation law for the energy of a light pulse, and
uses this law to derive the work done by radiation pressure on a moving
mirror.

§9. Einstein obtains the covariance of the inhomogeneous Maxwell-Lorentz equa-
tions, thus establishing “the conformity of the electrodynamic basis of
Lorentz’s theory. . . with the relativity principle.” This remark implies that
the new theory retrieves every consequence of Lorentz’s theory for the elec-
trodynamics and optics of moving bodies (including the Fresnel drag, for
instance).

§10. Einstein obtains the relativistic equation of motion of an electron in an
electromagnetic field by assuming the approximate validity of Newtonian
mechanics in a quasi-tangent frame (in which the velocity of the electron
remains small within a sufficiently small time interval) and transforming to
the laboratory frame. He calls for experimental testing of the resulting ve-
locity dependence of the mass of the electron. As he knew, the Göttingen
experimenter Walther Kaufmann had performed several experiments of that
kind in order to test the existence of an electromagnetic mass and to decide
between competing models of the electron.

Most of the components of Einstein’s paper appeared in others’ anterior works
on the electrodynamics of moving bodies. Poincaré and Alfred Bucherer had the
relativity principle. Lorentz and Larmor had most of the Lorentz transformations,
Poincaré had them all. Cohn and Bucherer rejected the ether. Poincaré, Cohn,
and Abraham had a physical interpretation of Lorentz’s local time. Larmor and
Cohn alluded to the dilation of time. Lorentz and Poincaré had the relativistic
dynamics of the electron. None of these authors, however, dared to reform the
concepts of space and time. None of them imagined a new kinematics based on
two postulates. None of them derived the Lorentz transformations on this basis.
None of them fully understood the physical implications of these transformations.
It all was Einstein’s unique feat.
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7 The inertia of energy

In the fall of 1905, Einstein wrote to his friend Conrad Habicht:
Another consequence of the electrodynamics paper came to my mind. Together with Maxwell’s
fundamental equations, the relativity principle implies that mass is a measure of the energy
content of bodies. Light transports mass. There should be a sensible diminution of mass in the
case of radium. The line of thought is amusing and fascinating. But is not the dear Lord laughing
about it? Is not he pulling me by the nose? This much I cannot know.

Although Einstein’s extraordinary conclusion was entirely new, the paradoxes that
led to it were not. In order to see that, we need to return to Poincaré’s memoir of
1900 on the reaction principle in Lorentz’s theory.39

Remember that Poincaré denounced the violation of this principle when ap-
plied to matter alone. Lorentz and other theorists were unshaken by this objection.
They believed that the ether, stationary though it was, could well carry the missing
momentum. In the name of the electromagnetic worldview, Max Abraham based
his dynamics of the electron of 1902 on the concept of electromagnetic momentum.
Ironically, he attributed the expression c−1e × b of this momentum to Poincaré,
who had only introduced it as an absurd contribution to the momentum balance.

Poincaré’s abhorrence for this notion was not a mere consequence of his
ghostly concept of the ether. It resulted from his Newtonian insight that any
violation of the principle of reaction led, together with the relativity principle,
to the possibility of perpetual motion. Suppose, with him and Newton, that two
bodies, initially at rest and isolated from other bodies, act on each other in a
non-balanced way by forces that depend only on their configuration. Connect the
two bodies by a rigid bar. The resulting system begins to move. According to the
principle of relativity, the net force acting on the system does not depend on the
acquired velocity. Therefore, the system undergoes a forever accelerated motion.

This reasoning, which assumes direct action from matter to matter, does
not immediately apply to electrodynamics. In this case, Poincaré examined the
implications of Lorentz’s theory for the motion of the center of mass of the matter-
field system. Calling m the mass density of matter, and j the energy density
(e2+b2)/2 of the field, the Maxwell-Lorentz equations imply the global momentum
relation40 ∫

mvdτ +
∫

c−1e × bdτ = constant , (20)

and the local energy relation
∂j

∂t
+ ∇ · (ce× b) = −ρv · e . (21)

In turn, these relations imply the balance
d

dt

∫
c−2jrdτ +

∫
mvdτ +

∫
(c−2ρv · e)rdτ = constant . (22)

39Einstein to Habicht, undated [Jun to Sep 1905], in The collected papers of Albert Einstein,
vol. 3; Poincaré, ref. 21.

40In 1900, Poincaré had no reason to doubt the expression mv of the momentum density of
matter. He assumed that eventual non-electromagnetic forces balanced each other.



The Genesis of the Theory of Relativity 27

When there is no energy transfer between matter and field, the third term vanishes
and the theorem of the uniform motion of the center of mass of the system is saved
by associating to the field the flow of a fictitious fluid of mass density j/c2. In the
general case, Poincaré added the fiction of a latent, ether-bound fluid. He set
the local conversion rate between free and latent fluid to ρv · e/c2, so that the
center of mass of matter, free fluid, and latent fluid moved uniformly. It must be
emphasized that he only introduced these fictitious entities to show more precisely
how Lorentz’s theory violated the theorem of the center of mass.

Poincaré went on to show that this violation, or the concomitant violation of
the reaction principle, led to absurd consequences. For this purpose, he considered a
Hertzian oscillator placed at the focus of a parabolic mirror and emitting radiation
at a constant rate. This system moves with the absolute velocity u in the direction
of emission, and is heavy enough so that the change of this velocity can be neglected
for a given momentum change. For an observer at rest in the ether, the conservation
of energy reads

S = J + (−J/c)u , (23)

where S is the energy spent by the oscillator in a unit time, J the energy of the
emitted wave train, and −J/c the recoil momentum according to Lorentz’s theory.
For an observer moving at the velocity u of the emitter, the recoil force does not
work, and the spent energy S is obviously the same. According to the Lorentz
transformations for time and fields (to first order), this observer should ascribe
the energy J(1 − u/c) to the emitted radiation, and the value (−J/c)(1 − u/c)
to the recoil momentum. Hence the energy principle is satisfied for the moving
observer, but the momentum law is not. Poincaré concluded that the violation of
the principle of reaction in Lorentz’s theory led to a first-order violation of the
relativity principle for electromagnetic forces.41

In his Saint-Louis lecture of 1904, Poincaré acknowledged recent experimental
confirmations of the radiation pressure, as well as Kaufmann’s measurements of the
velocity-dependence of the mass of the electron. The latter results, he now judged,
“rather seemed to confirm. . . the consequences of the theory contrary to Newton’s
principle [of reaction].” In 1906, he explained how this violation could be concil-
iated with the relativity principle at the electronic level: the lack of invariance of
the force acting on an electron under the Lorentz transformations is compensated
by the velocity-dependence of its mass, so that the equations of motion written in
different reference frames are equivalent. More generally, Poincaré argued that if
all forces, including inertial ones, transformed like electromagnetic forces under a
Lorentz transformation, then the balance of forces held in any reference frame.42

As everything worked fine at the microscopic level, Poincaré did not feel
necessary to revisit the macroscopic radiation paradox of 1900. Had he done so, he
would have seen that the discrepancy Ju/c2 between the recoil force in the moving

41In 1898, Alfred Liénard had already pointed to the first-order modification of the Lorentz
force through a Lorentz transformation.

42Poincaré, ref. 25 (1904), 310 (Foundations); ref. 24 (1906), 490, 503.
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frame and in the ether frame could not be explained by any velocity dependence of
the mass of the emitter, since the velocity change of the emitter is then negligible.
With the benefit of hindsight, we may note that a decrease of the mass of the
emitter by J/c2 during the emission process solves the paradox. Indeed, in the
ether frame this mass decrease implies a modification of the momentum variation
of the emitter by (J/c2)u, which exactly compensates the force Ju/c2.

In his Annalen article of September 1905 (published in November), Einstein
considered a radiation process from the point of view of two different observers,
as Poincaré had done in 1900. The only difference is that he considered a symmet-
ric process, which avoids any consideration of recoil momentum. For an observer
bound to the emitter, the same energy J/2 is emitted by the light source in two
opposite directions. For an observer moving at the velocity u with respect to the
source on the emission line, Einstein’s earlier transformation rule for the energy
of light pulses gives γ(1 + u/c)J/2 for the energy emitted in one direction and
γ(1 − u/c)J/2 for the energy emitted in the other. The sum of these energies ex-
ceeds the energy J by J(γ−1). As the kinetic energy of the emitter is the product
of its mass by (γ−1)c2, a variation −J/c2 of this mass during the emission restores
the energy balance. From this remark, Einstein jumped to the general conclusion
that “the mass of a body depends on its energy content.”43

As appears from the letter to Habicht cited above, the inference was so novel
that Einstein was not yet quite sure about it. The following year, he argued that
mass-energy equivalence was the necessary and sufficient condition for an extension
of the theorem of the center of mass to electromagnetic systems. At the beginning of
this memoir, he noted that Poincaré’s memoir of 1900 contained “the simple formal
considerations on which the proof of this assertion is based.” Indeed, Poincaré’s
equation

d

dt

∫
c−2jrdτ +

∫
mvdτ +

∫
(c−2ρv · e)rdτ = constant (22)

results from the equation

d

dt

[∫
c−2jrdτ +

∫
mrdτ

]
= constant (24)

for the uniform motion of the center of mass if the mass density of matter follows
the increase ρv · e of its energy content according to

Dm/Dt ≡ ∂m/∂t + ∇ · (mv) = < ρv · e/c2 > , (25)

wherein the symbols < > indicate an average at the scale at which the mass density
m is defined. As Einstein noted, the reasoning only makes sense if the expression
of mv the momentum density is applicable and if the only relevant energies are
the energy of the electromagnetic field and the internal energy of matter. This can
be the case if the mass density m is defined at a macroscopic scale for which each

43Einstein, “Ist die Trägheit eines Körper von seinem Energieinhalt abhängig ?” Annalen der
Physik, 18 (1905), 639-641.
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volume element includes many molecules and if the macroscopic kinetic energy
remains small.44

More concretely and more in the spirit of Poincaré’s perpetual motion argu-
ment, Einstein considered an emitter and an absorber of radiation that faced each
other and belonged to the same solid. He imagined the following cycle:

• The source emits a radiation pulse with the energy J in the direction of the
absorber, which implies a recoil momentum for the solid.

• When the pulse reaches the absorber, the solid returns to rest.

• A massless carrier then brings the energy J back to the absorber.

At the end of this cycle, the solid has shifted by the amount −(J/Mc)L/c (in a
first approximation), where M is the mass of the solid and L the distance between
emitter and absorber. In order to avoid the resulting sort of perpetual motion,
Einstein assumed that the return of the energy J to the emitter involved a trans-
fer of mass J/c2. During this transfer, the center of mass of the global system
does not move. Therefore, the solid moves by the amount L(J/c2)/M (in a first
approximation), which compensates the shift in the first step of the cycle.

This was neither the last nor the most convincing of Einstein’s derivation of
the inertia of energy. Einstein nonetheless believed in this astonishing consequence
of relativity theory.

Conclusions

The genesis of the theory of relativity was a long process that involved at least three
key players and their critical reflections on the electrodynamics of moving bodies.
Although Maxwell made optics a part of electrodynamics, he could not explain
optical phenomena that depend on the molecular structure of matter. Toward the
end of the nineteenth century, four circumstances favored investigations of this
issue: Hertz’s confirmation of Maxwell’s theory; continental attempts to inject into
this theory the molecular conception of electricity that belonged to the defeated
German theories; the rise of an experimental microphysics of ions, x-rays, and
electrons; and the multiplication of experiments on the optics of moving bodies.
A number of theorists then improved the electrodynamics of moving bodies in
competing approaches.

For the sake of simplicity, we may extract from this thriving physics the main
events that contributed to the formation of relativity theory. A first essential step
was taken by Lorentz, who replaced Maxwell’s hybrid, macroscopic, ether-matter
medium with a stationary ether in which electrons and other atomistic entities
freely circulated. Exploiting the invariance properties of the fundamental equa-
tions for the interaction between electrons and fields, Lorentz accounted for the

44Einstein, “Das Prinzip der Erhaltung der Schwerpunktsbewegung und die Trägheit der En-
ergie,” Annalen der Physik, 20 (1906), 627-633. The reasoning can easily be extended to fast

moving material elements: one only has to replace m with m/
p

1 − v2/c2.
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absence of effects of the motion of the earth through the ether, but only to a
certain approximation. Poincaré made this absence of effects a general postulate.
He gave a physical interpretation of the Lorentz transformations as those giving
the space, time, and fields measured by moving observers. He obtained the exact
form of these transformations. He used them to determine electron dynamics and
to suggest a modification of Newton’s theory of gravitation. Yet he maintained the
ether as a privileged frame in which true time and space were defined. Einstein
adopted the relativity principle, eliminated the ether, and placed the space and
time determinations in any two inertial systems on exactly the same footing. Com-
bining the relativity principle with that of the constancy of the velocity of light, he
obtained the Lorentz transformations, the contraction of lengths, and the dilation
of times. He showed how this symmetry permitted a consistent electrodynamics
of moving bodies and determined the dynamics of the electron. He derived the
inertia of energy.

The construction of the special theory of relativity did not end with Einstein’s
papers of 1905. Some features that today’s physicists judge essential were added
only later. For example, Hermann Minkowski and Arnold Sommerfeld developed
the 4-dimensional notation and the relativistic tensor formulation of electromag-
netism; Max Planck gave the relativistic definition of force and the Lagrangian
formulation of relativistic dynamics; Max von Laue gave the kinematical interpre-
tation of the Fresnel drag as a direct consequence of the relativistic combination
of the velocity of the moving transparent body and the velocity of light within it.

Thus, Einstein was neither the first nor the last contributor to relativity the-
ory. He learned much by reading the best authors of his time, and he partly dupli-
cated results already obtained by Lorentz and Poincaré. Yet there is no doubt that
his papers of 1905 marked a dramatic turn in our understanding of space, time,
mass, and energy. His questioning of received ideas was most radical. His construc-
tion of alternative theories was most elegant, powerful, and durable. By rejecting
the ether and propounding a new chronogeometry, he prepared the ground for fur-
ther intellectual achievements, including general relativity and quantum theory.

Acknowledgments. I thank Thibault Damour and Bertrand Duplantier for useful
suggestions.

Short bibliography

Albert Einstein, The collected papers of Albert Einstein, vols. 1-2. Ed. John Stachel
et al. Princeton, 1987-1989.

Albert Einstein, Oeuvres choisies, ed. Françoise Balibar et al. 6 vols (Paris, 1985-
1993).

Albert Einstein, “Autobiographisches,” in P.A. Schilpp (éd.), Albert Einstein:
Philosopher-scientist (Evanston, 1949), 1-94.



The Genesis of the Theory of Relativity 31

Jed Buchwald, From Maxwell to microphysics: Aspects of electromagnetic theory
in the last quarter of the nineteenth century (Chicago, 1985).
Olivier Darrigol, Electrodynamics from Ampère to Einstein (Oxford, 2000).
Albrecht Fölsing, Albert Einstein: Eine Biographie (Frankfurt, 1993); transl. (New
York, 1993).
Peter Galison, Einstein’s clocks, Poincaré’s maps: Empires of time (New York,
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Special Relativity: A Centenary Perspective

Clifford M. Will

1 Introduction

A hundred years ago, Einstein laid the foundation for a revolution in our concep-
tion of time and space, matter and energy. In his remarkable 1905 paper “On the
Electrodynamics of Moving Bodies” [1], and the follow-up note “Does the Inertia
of a Body Depend upon its Energy-Content?” [2], he established what we now call
special relativity as one of the two pillars on which virtually all of physics of the
20th century would be built (the other pillar being quantum mechanics). The first
new theory to be built on this framework was general relativity [3], and the success-
ful measurement of the predicted deflection of light in 1919 made both Einstein the
person and relativity the theory internationally famous. The next great theory to
incorporate relativity was the Dirac equation of quantum mechanics; later would
come the stunningly successful relativistic theory of quantum electrodynamics.

Strangely, although general relativity had its crucial successes, such as the
bending of starlight and the explanation of the advance of Mercury’s perihelion,
special relativity was not so fortunate. Indeed, many scholars believe that a lack of
direct experimental support for special relativity in the years immediately following
1905 played a role in the decision to award Einstein’s 1921 Nobel Prize, not for
relativity, but for one of his other 1905 “miracle” papers, the photoelectric effect,
which did have direct confirmation in the laboratory.

And although there were experimental tests, such as improved versions of the
Michelson-Morley experiment, the Ives-Stilwell experiment, and others, they did
not seem to have the same impact as the light-deflection experiment. Still, during
the late 1920s and after, special relativity was inexorably accepted by mainstream
physicists (apart from those who participated in the anti-Semitic, anti-relativity
crusades that arose in Germany and elsewhere in the 1920s, coincident with the
rise of Nazism), until it became part of the standard toolkit of every working
physicist. Quite the opposite happened to general relativity, which for a time
receded to the backwaters of physics, largely because of the perceived absence of
further experimental tests or consequences. General relativity would not return to
the mainstream until the 1960s.

On the 100th anniversary of special relativity, we see that the theory has been
so thoroughly integrated into the fabric of modern physics that its validity is rarely
challenged, except by cranks and crackpots. It is ironic then, that during the past
several years, a vigorous theoretical and experimental effort has been launched, on
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an international scale, to find violations of special relativity. The motivation for
this effort is not a desire to repudiate Einstein, but to look for evidence of new
physics “beyond” Einstein, such as apparent violations of Lorentz invariance that
might result from certain models of quantum gravity. So far, special relativity
has passed all these new high-precision tests, but the possibility of detecting a
signature of quantum gravity, stringiness, or extra dimensions will keep this effort
alive for some time to come.

In this paper we endeavor to provide a centenary perspective of special rela-
tivity. In Section 2, we discuss special relativity from a historical and pedagogical
viewpoint, describing the basic postulates and consequences of special relativity,
at a level suitable for non-experts, or for experts who are called upon to teach
special relativity to non-experts. In Section 3, we review some of the classic ex-
periments, and discuss the famous “twin paradox” as an example of a frequently
misunderstood “consistency” test of the theory. Section 4 discusses special rela-
tivity in the broader context of curved spacetime and general relativity, describes
how long-range fields interacting with matter can produce “effective” violations of
Lorentz invariance and discusses experiments to constrain such violations. In Sec-
tion 5 we discuss whether gravity itself satisfies a version of Lorentz invariance, and
describe the current experimental constraints. In Section 6 we briefly review the
most recent extended theoretical frameworks that have been developed to discuss
the possible ways of violating Lorentz invariance, as well as some of the ongoing
and future experiments to look for such violations. Section 7 presents concluding
remarks.

2 Fundamentals of special relativity

2.1 Einstein’s postulates and insights

Special relativity is based on two postulates that are remarkable for their simplicity,
yet whose consequences are far-reaching. They state [1]:

• The laws of physics are the same in any inertial reference frame.

• The speed of light in vacuum is the same as measured by any observer,
regardless of the velocity of the inertial reference frame in which the mea-
surement is made.

The first postulate merely adopts the wisdom, handed down from Galileo and
Newton, that the laws of mechanics are the same in any inertial frame, and extends
it to cover all the laws of physics, notably electrodynamics, but also laws yet to be
discovered. There is nothing radical or unreasonable about this postulate. It is the
second postulate, that the speed of light is the same to all observers, that is usually
regarded as radical, yet it is also strangely conservative. Maxwell’s equations stated
that the speed of light was a fundamental constant, given by c = 1/

√
ε0µ0, where ε0

and µ0 are the dielectric permittivity and magnetic permeability of vacuum, two
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constants that could be measured in the laboratory by performing experiments
that had nothing obvious to do with light. That speed c, now defined to be exactly
299, 792, 458 m/sec, bore no relation to the state of motion of emitter or receiver.
Furthermore, there existed a set of transformations, found by Lorentz, under which
Maxwell’s equations were invariant, with an invariant speed of light.

In addition, Einstein was presumably aware of the Michelson-Morley exper-
iment (although he did not refer to it by name in his 1905 paper) which demon-
strated no effect on the speed of light of our motion relative to the so-called
“aether” [4]. While the great physicists of the day, such as Lorentz, Poincaré and
others were struggling to bring all these facts together by proposing concepts such
as “internal time”, or postulating and then rejecting “aether drift”, Einstein’s at-
titude seems to have been similar to that expressed in the American idiom: “if
it walks like a duck and quacks like a duck, it’s a duck”. If light’s speed seems
to be constant, then perhaps it really is a constant, no matter who measures it.
Throughout his early career, Einstein demonstrated an extraordinary gift for tak-
ing a simple idea at face value and “running” with it; he did this with the speed
of light; he did it with Planck’s quantum hypothesis and the photoelectric effect,
also in 1905.

2.2 Time out of joint

An immediate and deep consequence of the second postulate is that time loses its
absolute character. First, the rate of time depends on the velocity of the clock.
A very simple way to see this is to imagine a thought experiment involving three
identical clocks. Each clock consists of a chamber of length h with a perfect mirror
at each end. A light ray bounces back and forth between the mirrors, recording
one “tick” each time it hits the bottom mirror. In the rest frame of each clock the
speed of light is c (by the second postulate), so the duration of each “tick” is 2h/c
according to observers on each clock. Two of the clocks are at rest in a laboratory,
a distance d apart along the x-axis, arranged so that the light rays move in the
y-direction. The two clocks have been synchronized using a light flash from a lamp
midway between them. The third clock moves with velocity v in the x-direction
(Fig. 1). As it passes each of the laboratory clocks in turn, its own reading and
the reading on the adjacent laboratory clock are taken and later compared. The
time difference between the readings on the two laboratory clocks is clearly d/v
or (d/v)/(2h/c) ticks. But from the point of view of the laboratory, the light ray
on the moving clock moves in a saw-tooth manner as the mirrors move, with the
distance along the hypotenuse of each tooth given by l =

√
h2 + (vt)2 where t is

the time taken as seen from the lab. But at the speed of light, this time is given by
l/c, so the duration of a “tick” on the moving clock from the lab viewpoint is given
by (2h/c)γ, where γ = 1/

√
1 − v2/c2. Thus the number of ticks on the moving

clock between its encounters with the lab clocks is (d/v)/(2h/c) × √
1 − v2/c2. If

we define “proper time” ∆τ as the time elapsed on a single clock between two
events at its own location, and ∆t as the time difference measured by the two
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Figure 1: Time dilation of a clock moving at v = 3/5c between two identical
laboratory clocks a distance 6 m apart. The laboratory clocks each tick 10 times
during the passage, while the moving clock ticks only 8 times because the light
rays travel farther to complete each tick, as seen from the laboratory.

separated laboratory clocks, then

∆τ = ∆t
√

1 − v2/c2 . (1)

This is the time dilation: the time elapsed between two events along the path of
a single moving clock is less than that measured by a pair of synchronized clocks
located at the two events. The asymmetry is critical: A clock can only make time
readings along its own world line, thus two synchronized clocks are required in the
laboratory, in order to make comparisons with readings on the moving clock.

While this time dilation was already recognized at some level by Lorentz
and others as a consequence of the Lorentz transformations, they were unable
or unwilling to recognize its true meaning, because they remained wedded to the
Newtonian view of an absolute time. Einstein, possibly because of his early contact
with the machinery and equipment of his father’s factories, was able to view time
operationally: time is what clocks measure. If one thinks of a clock as any device
that performs some precisely repetitive activity governed fundamentally by the
laws of physics, then it becomes obvious that time in the moving frame really does
tick more slowly than in the lab. And this is not some abstract, internal time, this
is time measured by our mirror clock, by an atomic clock, by a biological clock,
by a human heartbeat, all of which are governed by the laws of physics, which are
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the same in every inertial frame. From any conceivable observable viewpoint this
is time.

In the thought experiment above we remarked that the laboratory clocks
were synchronized. This seemingly obvious and innocuous statement also has deep
consequences, because, as Einstein realized, if the speed of light is the same for all
observers, then synchronization is relative. Consider two observers on the ground
who synchronize their clocks by setting them to read the same when a light flash
from a point midway between them is received. Now consider observers on a train
moving by (who have previously synchronized their own clocks using the same
method on the train). The light flash emitted by the lamp on the ground has speed
c in both directions as seen from the train (second postulate), therefore the forward
moving flash will encounter the forward ground clock (which is moving toward the
lamp as seen from the train) before the backward moving flash encounters the rear
ground clock (which is receding). The events of reception of the light flash by the
two ground clocks are simultaneous in the ground frame, but are not simultaneous
in the train’s frame. Again, this was embodied mathematically in the Lorentz
transformation, but it was Einstein who inferred this truth about time: events
simultaneous in one frame, are not automatically simultaneous in a moving frame.

Much has been written about why Einstein was able to arrive at this new view
of time, while his contemporaries, including great men like Lorentz and Poincaré,
were not. Henri Poincaré is a case in point. By 1904 Poincaré understood almost
everything there was to understand about relativity. In 1904 he journeyed to St.
Louis to speak at the scientific congress associated with the World’s Fair, on the
newly relocated campus of my own institution, Washington University. In reading
Poincaré’s paper “The Principles of Mathematical Physics” [5], one senses that he
is so close to having special relativity that he can almost taste it. Yet he could
not take the final leap to the new understanding of time. This is ironic, because
as Peter Galison has written [6], Poincaré was one of the world’s leaders in the
understanding of clock synchronization, having served on French and international
agencies and committees charged with establishing the world-wide conventions
for time-synchronization and time transfer that were needed for transportation,
navigation and telegraphy. Surely Poincaré would have understood our example of
the moving train, yet it seems that he could not go beyond viewing it as merely
conventional. To Einstein, it reflected what clocks measure, and therefore reflected
the true nature of time.

2.3 Spacetime and Lorentz invariance

If the speed of light is the same to all observers, then time and space can be put
on a similar footing initially by measuring time in units of distance, so that t in
meters stands for ct, and corresponds to the time it takes for light to travel one
meter (3.336 nanoseconds). We will call this time in distance units the coordinate
x0. One can then describe space and time together on a spacetime diagram, with
points representing “events”, “worldlines” representing the trajectories of particles
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Figure 2: Spacetime diagram showing a laboratory frame and a frame moving at
v = c/3.

through space and time and so on.
A train moving with speed v, with the caboose passing the origin at x0 = 0

has the collection of world lines shown in Fig. 2 (one for each car in the train),
each with slope 1/v. The line passing through the origin is called the x0′ axis, just
as in Galilean relativity. By carefully considering how clocks on the train would
be synchronized, either using a master lamp as in the example above, or by using
round-trip signals (often called Einstein synchronization), it is easy to show that
the collection of events on the train that are simultaneous with the origin lie along
the x′-axis shown, with slope v. Later “lines of simultaneity” on the train are also
shown. Figure 2 makes it clear how all observers can agree on the speed of light.
A light ray emanating from the origin of Fig. 2 follows a 45o line, or a line that
bisects the x and x0 axes. But that line also bisects the x′ and x0′ axes, thus
observers on the train will also find speed c for that ray.
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These considerations establish only the slopes of the lines, however. They do
not tell us where, for example, to mark 1 meter on the x′-axis. To resolve this,
we return to our simple moving clock example, and notice that, while the time
difference and spatial difference between the events describing one “tick” of the
moving clock are given by ∆t′ = 2h/c and ∆x′ = 0 in its own frame, and by the
different values ∆t = γ(2h/c) and ∆x = v∆t = vγ(2h/c) in the lab frame, the
quantity ∆s2 ≡ −c2∆t2 + ∆x2 is the same for the tick, whether calculated in the
clock’s frame or in the lab frame. This is the “invariant interval”, given for general
infinitesimal displacements by

ds2 = −c2dt2 + dx2 + dy2 + dz2

= −(dx0)2 + dx2 + dy2 + dz2

= ηµνdxµdxν , (2)

where ηµν = diag(−1, 1, 1, 1) is the Minkowski metric, Greek indices run over four
spacetime values, and we use the Einstein convention of summing over repeated
indices. If one then asks, what linear transformations from one inertial frame to a
moving inertial frame will leave this interval invariant in form, or equivalently will
leave the Minkowski metric invariant, the answer is the Lorentz transformations:
for a boost in the x-direction, they are given by

(x0)′ = γ(x0 − vx) ,

x′ = γ(x − vx0) . (3)

For a general boost with velocity vi, they are given by xα′
= Λα′

β xβ , where

Λ0′
0 = γ , Λ0′

i = Λi′
0 = −γvi , Λi′

j = δi
j + (γ − 1)vivj/v2 . (4)

This is called Lorentz invariance of the interval (or metric). The form of the in-
terval is also invariant under ordinary rotations, and under displacements such as
xα → xα + aα. Collectively this larger 10 parameter invariance is called Poincaré
invariance. The Lorentz transformations then allow one to establish the scale of
the axes of the moving frame, as shown in Fig. 2 for the case v = c/3.

These are the same transformations, of course, as those found to leave
Maxwell’s equations invariant. Einstein’s first postulate, that the laws of physics
should be the same in every inertial frame, therefore places a stringent constraint
on the design of any future fundamental laws, namely that they should be Lorentz
invariant, at least when viewed from an inertial frame. This constraint has guided
the great advances in fundamental theory of the 20th century, such as relativistic
quantum mechanics and the Dirac equations, quantum electrodynamics, quantum
chromodynamics, superstring theory, not to mention general relativity.

2.4 Special relativistic dynamics

By considering the acceleration of a charged particle in an electromagnetic field
and imposing the principle of relativity [1], Einstein concluded that the equations
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of dynamics would have to be modified. Further, in another characteristic example
of his ability to use a simple thought experiment to derive profound consequences,
Einstein established the equivalence between mass and energy [2]. He considered
the simple situation of a particle emitting an equal amount of electromagnetic
radiation in opposite directions. He then considered the same situation from the
viewpoint of a moving inertial frame. By imposing conservation of energy in both
frames, and using the transformation laws for electromagnetic radiation, he con-
cluded, working in the low-velocity limit, that the difference in kinetic energy of
the particle before and after the emission, as seen in the moving frame, had to be
given by 1

2Ev2/c2, where E is the energy of the emitted light. But since kinetic
energy in this limit is given by 1

2mv2, then the mass of the particle must have
changed by E/c2 during the emission of energy E.

What emerged from these considerations was a new relativistic dynamics.
One must replace the Newtonian formulation of F = ma with a relativistically
correct formulation �F = d�p/dτ , where the force �F is now a four-vector, �p is the
four-momentum, given for a particle of rest mass m0 by �p = m0�u, where the four-
velocity �u has components uα = dxα/dτ , and where dτ = ds/c denotes proper
time along the particle’s worldline. If the force is provided by electromagnetic
fields, then F ν = (e/c)uµFµν , where e is the charge of the particle, and Fµν is the
antisymmetric Faraday tensor, whose components in a given inertial frame may be
identified as Fi0 = Ei, Fij = εijkBk, where Ei and Bi are the normal electric and
magnetic fields. This dynamics, along with Maxwell’s equations, can be derived
from the action

I = −
∑

a

m0ac

∫
(−ηµνuµ

auν
a)1/2dτ +

∑
a

ea

c

∫
Aµ(xν

a)dxµ
a

− 1
16π

∫ √−η ηµαηνβFµνFαβd4x , (5)

where uµ
a is the four-velocity of the particle, Aµ(xν) is the electromagnetic four-

vector potential, and Fµν ≡ ∂Aν/∂xµ−∂Aµ/∂xν . In ordinary variables, in a given
inertial frame, the action takes the form

I = −
∑

a

m0ac2

∫
(1 − v2

a/c2)1/2dt +
∑

a

ea

∫
(−Φ + A · va/c)dt

+
1
8π

∫
(E2 − c2B2)d3xdt , (6)

where Φ = −A0, E = −∇Φ − Ȧ/c, and B = ∇× A.

3 Classic tests of special relativity

3.1 The Michelson-Morley experiment

From today’s perspective the null result of the 1887 Michelson-Morley aether-
drift experiment marked the beginning of the end for the Newtonian notions of
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absolute space and time. Yet it took almost 20 years for the new view of spacetime
to be realized. The experiment was beautiful in its simplicity, and should have
been a “slam dunk” for conventional 19th century physics. If the speed of light
is a fundamental constant, then it must take this value in some preferred frame,
presumably that of a luminiferous aether, which would be at rest with respect to
the universe, and which would provide the medium that every one thought was
necessary for the propagation of light. For any observer moving relative to the
aether, the speed of light would be formed by subtracting the velocity vector of
the observer from that of the light ray. In one of the interferometers that Michelson
had pioneered for measuring the speed of light itself, the speed of light up and down
an arm that was parallel to our motion through the aether would be c+v and c−v,
while the speed along an arm perpendicular to our motion would be

√
c2 + v2. For

an equal-arm interferometer of length h, the difference in round trip travel time
along the two arms would then be, to first order in (v/c)2, ∆T = (h/c)(v/c)2.
This would be reflected in a change in the interference pattern of the recombined
beams, that would shift as the apparatus was rotated, thereby interchanging the
roles of the two arms.

But instead of the predicted shift, Michelson and Morley found no effect,
and placed an upper limit on a shift 40 times smaller than the shift predicted [4],
and later experiments only improved the bounds (see [7] for a review up to 1955).
Attempts to explain this by arguing that the aether was “dragged” by the Earth
proved to be untenable. Lorentz wrote to Lord Rayleigh in 1892, “I am totally
at a loss to clear away this contradiction . . . Can there be some point in the the-
ory of Mr. Michelson’s experiment which has been overlooked?”[7]. Lorentz and
FitzGerald attempted to resolve the problem by proposing that the interferome-
ter arms parallel to the motion through the aether were shortened by the factor√

1 − v2/c2, but could not suggest what this meant [8, 9].
Special relativity resolved the Michelson-Morley experiment instantly. In the

rest frame of the experiment, the speed of light is the same, irrespective of the
instrument’s motion relative to the universe, so the experiment should automat-
ically give a null result. Indeed, the aether now becomes completely irrelevant.
Alternatively, from the point of view of a frame at rest relative to the universe,
careful consideration of how length is measured in special relativity showed that
the interferometer arm moving parallel to its length must be shortened by the
precise Lorentz-FitzGerald factor. The null experimental result could be derived
from either frame of reference.

In placing the Michelson-Morley (MM) experiment in a modern context, it
is useful to view it not as an interferometer experiment, but as a clock anisotropy
experiment. Each arm of the interferometer can be thought of as a clock just like
the clocks used in Sec. 2.2 above. The fundamental question then becomes, is the
rate of a clock independent of its orientation relative to its motion through the
universe? Most modern incarnations of the MM experiment are clock anisotropy
experiments. For example, MM experiments using lasers [10, 11] compare two laser
resonant cavities by beating their frequencies against each other as one or both



42 C.M. Will

rotate relative to the universe.
One can invent a way to parametrize the MM experiment so as to quantify

how the null result could be violated, that turns out to be useful in more general
contexts. Suppose that, working in the rest frame of the universe (we may discard
the aether, but the rest-frame of the universe, as reflected by the rest frame of
the cosmic background radiation, has a well defined meaning), the speed of light
is c. But suppose that the Lorentz-FitzGerald contraction of the parallel arm
is given by the factor

√
1 − v2/c2

0, where c0 is a different speed (measured in
the universe rest frame), that is connected with whatever dynamics determines
the structure of the walls of the cavity that forms our clock. Then it is easy to
show that, while the time for one tick of the clock perpendicular to the motion
is given by (2h/c)(1/

√
1 − v2/c2), the time for one tick of the parallel clock is

(2h/c)[
√

1 − v2/c2
0/(1−v2/c2)]. To first order in (v/c)2, the differential clock time

is given by (h/c)(v/c0)2δ, where δ = (c0/c)2 − 1.
If Lorentz invariance holds, then the electrodynamics that governs the solids

that form the cavity must involve the same c as that which governs the propagation
of light, hence c0 = c, δ = 0 and we recover the null prediction for the MM
experiment. Below we will discuss classes of theories that involve curved spacetime
plus certain kinds of long-range fields, in which this no longer holds. Figure 4 shows
selected bounds on δ that were achieved in the original MM experiment, and in
later experiments of the MM type by Joos and a 1979 test using laser technology
by Brillet and Hall [11]. In that Figure, units are chosen so that c0 = 1.

3.2 Invariance of c

Several classic experiments have been performed to verify that the speed of light
is independent of the speed of the emitter. If the speed of light were given by
c+kv, where v is the velocity of the emitter, and k is a parameter to be measured
or bounded, then orbits of binary star systems would appear to have an anoma-
lous eccentricity unexplainable by normal Newtonian gravity. However, at optical
wavelengths, this test is not unambiguous because light is absorbed and reemitted
by the intervening interstellar medium, thus losing the memory of the speed of
the source, a phenomenon known as extinction. But at X-ray wavelengths, the
path length of extinction is tens of kiloparsecs, so nearby X-ray binary sources in
our galaxy may be used to test the velocity dependence of light. Using data on
pulsed 70 keV X-ray binary systems, Her S-1, Cen X-3 and SMC X-1, Brecher [12]
obtained a bound |k| < 2 × 10−9, for typical orbital velocities v/c ∼ 10−3.

At the other extreme, a 1964 experiment at CERN used ultrarelativistic
particles as the source of light. Neutral pions were produced by the collisions of
20 GeV protons on stationary nucleons in the proton synchrotron. With energies
larger than 6 GeV, the pions had v/c ≥ 0.99975. Photons produced by the decay
π0 → γ1 + γ2 were collimated and timed over a 30 meter long flight path. Because
the protons in the synchrotron were pulsed, the speed of the photons could be
measured by measuring the arrival times of their pulses as a function of the varying
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location of the detector along the flight path. The result for the speed was 2.9977±
0.0004× 108 m/sec, in agreement with the laboratory value [13]. This experiment
thus set a bound |k| < 10−4 for v ≈ c.

3.3 Time dilation

The observational evidence for time dilation is overwhelming. Ives and Stilwell [14]
measured the frequency shifts of radiation emitted in the forward and backward
direction by moving ions of H2 and H3 molecules. The first-order Doppler shift
cancels from the sum of the forward and backward shifts, leaving only the second-
order time-dilation effect, which was found to agree with theory. (Ironically, Ives
was a die-hard opponent of special relativity.)

A classic experiment performed by Rossi and Hall [15] showed that the life-
time of µ-mesons was prolonged by the standard factor γ = 1/

√
1 − v2/c2. Muons

are created in the upper atmosphere when cosmic ray protons collide with nuclei
of air, producing pions, which decay to muons. With a rest half-life of 2.2 × 10−6

s, a muon travelling near the speed of light should travel only 2/3 of a kilometer
on average before decaying to a harmless electron or positron and two neutrinos.
Yet muons are the primary component of cosmic radiation detected at sea level.
But with time dilation and a typical speed of v/c ∼ 0.994, their lives as seen
from Earth are prolonged by a factor of nine, easily enough for them to reach sea
level. Rossi and Hall measured the distribution of muons as a function of altitude
and also measured their energies, and confirmed the time dilation formula. In fact,
since collisions between cosmic ray muons and DNA molecules are a non-negligible
source of natural genetic mutations, one could even argue that special relativity
plays a role in evolution!

In an experiment performed in 1966 at CERN, muons produced by collisions
at one of the targets in the accelerator were deflected by magnets so that they
would move on circular paths in a “storage ring”. Their speeds were 99.7 percent
of the velocity of light, and the observed twelve-fold increase in their lifetimes
agreed with the prediction with 2 percent accuracy [16].

3.4 Lorentz invariance and quantum mechanics

The integration of Lorentz invariance into quantum mechanics has provided a
string of successes for special relativity. The first was the discovery of the Dirac
equation, the relativistic generalization of Schrödinger quantum mechanics, with
its prediction of anti-particles and elementary particle spin. Another was the de-
velopment of relativistic quantum field theory. QFT naturally embodies the Pauli
exclusion principle, by requiring that the creation and annihilation operators of
spinor fields satisfy anticommutation relations in order to obey Lorentz invari-
ance. Since the Pauli exclusion principle explains the occupation of atomic en-
ergy levels by electrons, one could argue, with but a hint of chauvinism, that
special relativity explains Chemistry! The modern incarnations of QFT, such as
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Quantum Electrodynamics, Electroweak Theory, Quantum Chromodynamics all
have Lorentz invariance as foundations. However, until recently, the experimental
successes of such theories have not been used to attempt to quantify how well
Lorentz invariance holds. We will return to this subject in Sec. 6.

3.5 Consistency tests of special relativity

Over the years, special relativity has been subjected to a series of tests, not of
its experimental predictions, but of its very logic. Many of its predictions, such as
the slowing of time on moving clocks, were deemed to be so strange, so beyond
normal experience, that there had to be something wrong with the theory. The
idea was to find “paradoxes”, simple situations where the theory could be shown
to be logically inconsistent.

Of course, there are no paradoxes! To be sure, the idea of time dilation may
be hard to understand or to swallow, but there is absolutely nothing paradoxical
about it.

The most popular of these is, of course, the twin paradox. In his 1905 paper,
Einstein himself presents the situation clearly [1]: “If one of two synchronous clocks
at A is moved in a closed curve with constant velocity until it returns to A, the
journey lasting t seconds, then by the clock which has remained at rest the travelled
clock on its arrival at A will be 1

2 tv2/c2 seconds slow.”
The more modern versions of the story go something like this: On New Year’s

Day 3000, an astronaut (A) sets out from Earth at speed 0.6 c and travels to
the nearest interstellar Space Station, Clinton-1, which is 3 light-years away as
measured in the Earth frame of reference (Fig. 3). Having reached Clinton-1, she
immediately turns around and returns to Earth at the same speed, arriving home
on New Year’s Day 3010, by Earth time. The astronaut has a twin brother (B),
who remains on Earth.

From the point of view of Earth’s inertial frame, astronaut A’s clock runs
slow, with her proper time elapsed on the outbound journey being given by Eq. (1),
amounting to 4 years, compared with 5 years on Earth. The times elapsed on the
return journey are the same (the total proper time elapsed during the accelerated
motion needed for the turnaround can be made as small as one likes by applying
large accelerations for a short time). Astronaut A returns having aged 8 years,
compared to the 10 years aging of her twin brother.

The “paradox” is then stated as follows: from the astronaut A’s point of view,
Earth’s clocks run slow, so A should return older than her brother, not younger.
Since this is a logical contradiction, relativity is untenable.

The flaw in the “paradox” is the failure to comprehend what is meant by
“A sees Earth’s clock run slow”. A cannot compare her clock with Earth’s clock
because she is nowhere near Earth except at the start of the journey. Instead, an
inertial frame moving outbound with A’s velocity must be created, with a set of
observers carrying clocks synchronized with hers. The readings on Earth’s clock
can only be read by one of these observers who happens to be passing the Earth
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Figure 3: Twin Paradox as seen from traveller’s viewpoint

at that moment of time. But because of the relativity of simultaneity, the event
in this outbound frame that is simultaneous with A’s turnaround event P is not
the 5-year mark on Earth, but is event X on Fig. 3, which is at Earth year 3003.2.
So observers in A’s outbound frame do agree that Earth’s clock has run slow
compared to hers, 3.2 years compared to 4 years. But while A decelerates and
accelerates for the return journey, that outbound inertial frame continues flying
off at 0.6 c forever, and A must pick up a new inertial frame inbound at 0.6 c.
In that frame, the event that is simultaneous with the turnaround is at event Y,
Earth year 3006.8, 3.2 years before the return. Again, observers in the inbound
inertial frame agree that Earth’s clock runs slow during the return journey, 3.2
years, compared to A’s 4 years. But the analysis using the two inertial frames has
failed to account for the 3.6 years between events X and Y.

This is not a paradox, it’s merely sloppy accounting (perhaps the twin para-
dox should be renamed the Enron of Relativity). With a knowledge of the relativity
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of simultaneity, astronaut A could easily conclude that the gap between the two
lines of simultaneity corresponding to her turnaround is 3.6 years; alternatively
she could consult observers in an infinite sequence of inertial frames corresponding
to all the velocities of her spacecraft from v to −v and add up all the infinitesimal
increments of Earth’s clock as read by these observers, and account for the 3.6
missing years. Either way, she reaches the unambiguous conclusion that she ages
a total of 8 years, while her twin ages 10 years.

It is sometimes claimed that the resolution of the twin paradox must ulti-
mately involve general relativity, because the traveller accelerates, and acceleration
is equivalent to gravitation. As the discussion above shows, acceleration plays no
role in the analysis, other than to provide the asymmetry whereby the traveller
must occupy more than one inertial frame, while the home-bound twin occupies
a single inertial frame throughout. The relativity of simultaneity is the key, not
gravity.

In fact, the relativity of simultaneity is the key to resolving essentially all
of the “paradoxes” that have been devised to test the logical structure of special
relativity, such as the “pole in the barn” paradox (a rapidly moving pole is short
enough to fit inside a barn, at least momentarily, from the barn’s point of view,
but can’t possibly fit from the pole’s point of view), the “space-war paradox”,
“the jumping frog paradox” and others. For discussion of these and many other
paradoxes, see [17].

4 Special relativity and curved spacetime

Special relativity and general relativity are often viewed as being independent. One
reason for this apparent division is that Einstein presented special relativity 100
years ago in 1905, while general relativity was not published in its final form until
1916. Another reason is that the two parts of the theory have very different realms
of applicability: special relativity mainly in the world of microscopic physics, and
general relativity in the world of astrophysics and cosmology.

But in fact, the theory of relativity is a single, all-encompassing theory of
space-time, gravity and mechanics. Special relativity is actually an approximation
to curved space-time that is valid in sufficiently small regions of space-time (called
“local freely falling frames”), much as small regions on the surface of an apple are
approximately flat, even though the overall surface is curved. Special relativity can
therefore be used whenever the scale of the phenomena being studied is small com-
pared with the scale on which the curvature of space-time (i.e. gravity) begins to
be noticed. For most applications in atomic or nuclear physics, this approximation
is so accurate that special relativity can be assumed to be exact.

Historically, however, Einstein’s journey from special to general relativity
was tortuous and difficult. It began in 1907 with what he has called “the happi-
est thought” of his life. According to numerous experiments, all laboratory-sized
bodies fall with the same acceleration, regardless of their mass, composition or
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structure, in a given external gravitational field. Einstein was probably aware of
experiments performed by Eötvös around the turn of the 20th century [18], that
demonstrated this “universality of free fall” to parts in 109. The modern bounds
are at the level of parts in 1013 [19].

From this simple fact, Einstein noticed that if an observer were to ride in an
elevator falling freely in a gravitational field, then all bodies inside the elevator
would move uniformly in straight lines as if gravity had vanished. Conversely, in
an accelerated elevator in free space, where there is no gravity, the bodies would
fall with the same acceleration because of their inertia, just as if there were a
gravitational field.

Einstein’s great insight was to postulate that this “vanishing” of gravity in
free fall or its “presence” in an accelerating frame applied not only to mechani-
cal motion but to all the laws of physics, such as electromagnetism. Thus, in an
accelerating frame, a light ray moving horizontally would be seen to be deflected
downward, and a ray moving upward or downward would have its frequency shifted
[20, 21].

For the next 8 years, Einstein looked for a theory that would embody this
principle of equivalence, be compatible with Lorentz invariance in the absence of
gravity, and reflect his goals of elegance and simplicity, succeeding finally in the
fall of 1915 [3].

4.1 Einstein’s equivalence principle

Our modern viewpoint of the foundations of general relativity is based on an
extension and embellishment of Einstein’s principle of equivalence. Much of this
viewpoint can be traced back to Robert Dicke, who contributed crucial ideas about
the foundations of gravitation theory between 1960 and 1965. These ideas were
summarized in his influential Les Houches lectures of 1964 [22] and resulted in
what has come to be called the Einstein equivalence principle (EEP), which states
that

• test bodies fall with the same acceleration independently of their internal
structure or composition (universality of free fall, also called the weak equiv-
alence principle, or WEP);

• the outcome of any local non-gravitational experiment is independent of the
velocity of the freely-falling reference frame in which it is performed (local
Lorentz invariance, or LLI)

• the outcome of any local non-gravitational experiment is independent of
where and when in the universe it is performed (local position invariance, or
LPI).

The Einstein equivalence principle is the heart of gravitational theory, for
it is possible to argue convincingly that if EEP is valid, then gravitation must
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be described by “metric theories of gravity”, which state that (i) spacetime is
endowed with a symmetric metric, (ii) the trajectories of freely falling bodies are
geodesics of that metric, and (iii) in local freely falling reference frames, the non-
gravitational laws of physics are those written in the language of special relativity.
For further discussion, see [23].

One way to see that spacetime cannot be flat is the following. Consider two
freely-falling frames on opposite sides of the Earth. According to the Einstein
equivalence principle, space-time is Minkowkian in each frame, but because the
frames are accelerating toward each other, the two space-times cannot be extended
and meshed into a single Minkowskian space-time. In the presence of gravity, space-
time is flat locally but curved globally.

4.2 Metric theories of gravity

The simplest way to incorporate the Einstein equivalence principle mathemati-
cally into the special relativistic dynamics of particles and fields is to replace the
Minkowski metric in the action of Eq. (5) with the curved-spacetime metric gµν ,
and to replace ordinary derivatives with covariant derivatives, yielding the action

I = −
∑

a

m0ac

∫
(−gµνuµ

auν
a)1/2dτ +

∑
a

ea

c

∫
Aµ(xν

a)dxµ
a

− 1
16π

∫ √−g gµαgνβFµνFαβd4x , (7)

where dτ = ds/c, with ds2 = gµνdxµdxν . The only way that “gravity” enters is
via the metric gµν . Any theory whose equations for matter can be cast into this
form is called a metric theory.

As a result, the non-gravitational interactions couple only to the spacetime
metric gµν , which locally has the Minkowski form ηµν of special relativity. Because
this local interaction is only with ηµν , local non-gravitational physics is immune
from the influence of distant matter, apart from tidal effects. Local physics is
Lorentz invariant (because ηµν is) and position invariant (because ηµν is constant
in space and time).

General relativity is a metric theory of gravity, but so are many others, includ-
ing the Brans-Dicke theory. In this sense, superstring theory is not metric, because
there is a residual coupling of external, gravitation-like fields, to matter. Theories
in which varying non-gravitational constants are associated with dynamical fields
that couple to matter directly are also not metric theories.

4.3 Effective violations of local Lorentz invariance

How could violations of LLI arise? From the viewpoint of field theory, violations
would generically be caused by other long-range fields in addition to gµν which
also couple to matter, such as scalar, vector and tensor fields. Theories that have
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this property are called non-metric theories. A simple example of such a theory is
one in which the matter action is given by

I = −
∑

a

m0ac

∫
(−gµνuµ

auν
a)1/2dτ +

∑
a

ea

c

∫
Aµ(xν

a)dxµ
a

− 1
16π

∫ √−hhµαhνβFµνFαβd4x , (8)

where hµν is a second, second-rank tensor field. Locally, one can always find coor-
dinates (local freely-falling frame) in which gµν → ηµν , but in general hµν 	→ ηµν ;
instead hµν → (h0)µν , where (h0)µν is a tensor whose values are determined by
the cosmology or nearby mass distribution. In the rest frame of the distant matter
distribution, (h0)µν will have specific values, and there is no reason a priori why
those should correspond to the Minkowski metric (unless hµν were identical to
gµν in the first place, in which case one would have a metric theory). Also, in a
frame moving with respect to the distant sources of hµν , the local values of (h0)µν

will depend on the velocity of the frame, thereby producing effective violations of
Lorentz invariance in electrodynamics.

A number of explicit theoretical frameworks were developed between 1973
and 1990 to treat non-metric theories of this general type. They include the
“THεµ” framework of Lightman and Lee [24], the χ−g framework of Ni [25], the c2

framework of Haugan and coworkers [26, 27], and the extended THεµ framework
of Vucetich and colleagues [28].

In the c2 framework, one assumes a class of non-metric theories in which
the particle and interaction parts of the action Eq. (8) can be put into the local
special relativistic form, using units in which the limiting speed of neutral test
particles is unity, and in which the sole effect of any non-metric field coupling to
electrodynamics is to alter the effective speed of light. The result is the action

I = −
∑

a

m0a

∫
(1 − v2

a)1/2dt +
∑

a

ea

∫
(−Φ + A · va)dt

+
1
8π

∫
(E2 − c2B2)d3xdt . (9)

Because the action is explicitly non-Lorentz invariant if c 	= 1, it must be defined in
a preferred universal rest frame, presumably that of the 3K microwave background.
In this frame, the value of c2 is determined by the cosmological values of the non-
metric field. Even if the non-metric field coupling to electrodynamics is a tensor
field, the homogeneity and isotropy of the background cosmology in the preferred
frame is likely to collapse its effects to that of the single parameter c2. Detailed
calculations of a variety of experimental situations show that those “preferred-
frame” effects depend on the magnitude of the velocity through the preferred
frame (∼ 350 km/sec), and on the parameter δ ≡ c−2 − 1. In any metric theory or
theory with local Lorentz invariance, δ = 0.
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Figure 4: Bounds on violations of local Lorentz invariance

One can then set observable upper bounds on δ using a variety of experiments.
In the Michelson-Morley experiment, by considering the behavior of amorphous
solids in the dynamics above, one can show that the length of the “parallel” clock
is shortened by the factor

√
1 − v2; in our units, the speed c0 of Sec. 3.1 is unity.

Thus the MM experiment sets the bound δ < 10−3.
Better bounds on δ have be set by other “standard” tests of special relativity,

such as descendents of the Michelson-Morley experiment [4, 7, 11], a test of time-
dilation using radionuclides on centrifuges [29], tests of the relativistic Doppler
shift formula using two-photon absorption (TPA) [30], and a test of the isotropy
of the speed of light using one-way propagation of light between hydrogen maser
atomic clocks at the Jet Propulsion Laboratory (JPL) [31].

Very stringent bounds |δ| < 10−21 have been set by “mass isotropy” experi-
ments of a kind pioneered by Hughes and Drever [32, 33]. The idea is simple: in
a frame moving relative to the preferred frame, the non-Lorentz-invariant electro-
magnetic action of Eq. (9) becomes anisotropic, dependent on the direction of the
velocity V. Those anisotropies then are reflected in the energy levels of electromag-
netically bound atoms and nuclei (for nuclei, we consider only the electromagnetic
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contributions). For example, the three sublevels of an l = 1 atomic or nuclear
wavefunction in an otherwise spherically symmetric atom can be split in energy,
because the anisotropic perturbations arising from the electromagnetic action af-
fect the energy of each substate differently. One can study such energy anisotropies
by first splitting the sublevels slightly using a magnetic field, and then monitoring
the resulting Zeeman splitting as the rotation of the Earth causes the laboratory
B-field (and hence the quantization axis) to rotate relative to V, causing the rel-
ative energies of the sublevels to vary among themselves diurnally. Using nuclear
magnetic resonance techniques, the original Hughes-Drever experiments placed a
bound of about 10−16 eV on such variations. This is about 10−22 of the electro-
magnetic energy of the nuclei used. Since the magnitude of the predicted effect
depends on the product V 2δ, and V 2 ≈ 10−6, one obtains the bound |δ| < 10−16.
Energy anisotropy experiments were improved dramatically in the 1980s using
laser-cooled trapped atoms and ions [34, 35, 36]. This technique made it possible
to reduce the broading of resonance lines caused by collisions, leading to improved
bounds on δ shown in Figure 4 (experiments labelled NIST, U. Washington and
Harvard, respectively).

5 Is gravity Lorentz invariant?

The strong equivalence principle (SEP) is a generalization of EEP which states
that in local “freely-falling” frames that are large enough to include gravitating
systems (such as planets, stars, a Cavendish experiment, a binary system, etc.), yet
that are small enough to ignore tidal gravitational effects from surrounding matter,
local gravitational physics should be independent of the velocity of the frame and
of its location in space and time. Also all bodies, including those bound by their
own self-gravity, should fall with the same acceleration. General relativity satisfies
SEP, whereas most other metric theories do not (eg. the Brans-Dicke theory).

It is straightforward to see how a gravitational theory could violate SEP [37].
Most alternative metric theories of gravity introduce auxiliary fields which couple
to the metric (in a metric theory they can’t couple to matter), and the bound-
ary values of these auxiliary fields determined either by cosmology or by distant
matter can act back on the local gravitational dynamics. The effects can include
variations in time and space of the locally measured effective Newtonian gravita-
tional constant G (preferred-location effects), as well as effects resulting from the
motion of the frame relative to a preferred cosmic reference frame (preferred-frame
effects). Theories with auxiliary scalar fields, such as the Brans-Dicke theory and
its generalizations, generically cause temporal and spatial variations in G, but re-
spect the “Lorentz invariance” of gravity, i.e. produce no preferred-frame effects.
The reason is that a scalar field is invariant under boosts. On the other hand,
theories with auxiliary vector or tensor fields can cause preferred-frame effects,
in addition to temporal and spatial variations in local gravitational physics. For
example, a timelike, long-range vector field singles out a preferred universal rest
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frame, one in which the field has no spatial components; if this field is generated
by a cosmic distribution of matter, it is natural to assume that this special frame
is the mean rest frame of that matter. A number of such “vector-tensor” metric
theories of gravity have been devised [37, 38, 39]; see [23] for a review.

General relativity embodies SEP because it contains only one gravitational
field gµν . Far from a local gravitating system, this metric can always be trans-
formed to the Minkowski form ηµν (modulo tidal effects of distant matter and 1/r
contributions from the far field of the local system), a form that is constant and
Lorentz invariant, and thus that does not lead to preferred-frame or preferred-
location effects.

The theoretical framework most convenient for discussing SEP effects is the
parametrized post-Newtonian (PPN) formalism [40, 41, 23], which treats the weak-
field, slow-motion limit of metric theories of gravity. This limit is appropriate for
discussing the dynamics of the solar system and for many stellar systems, except
for those containing compact objects such as neutron stars. If one focuses atten-
tion on theories of gravity whose field equations are derivable from an invariant
action principle (Lagrangian-based theories), the generic post-Newtonian limit is
characterized by the values of five PPN parameters, γ, β, ξ, α1 and α2. Two in
particular, α1 and α2, measure the existence of preferred-frame effects. If SEP is
valid, α1 = α2 = ξ = 4β − γ − 3 = 0, as in general relativity. In scalar-tensor
theories, α1 = α2 = ξ = 0, but 4β − γ − 3 = 1/(2 + ω), where ω is the “coupling
parameter” of the scalar-tensor theory. In Rosen’s bimetric theory, α2 = c0/c1−1,
α1 = ξ = 4β − γ− 3 = 0, where c0 and c1 are the cosmologically induced values of
the temporal and spatial diagonal components of a flat background tensor field,
evaluated in a cosmic rest frame in which the physical metric has the Minkowski
form far from the local system.

Within the PPN formalism the variations in the locally measured Newtonian
gravitational constant Glocal can be calculated explicitly: viewed as the coupling
constant in the gravitational force between two point masses at a given separation,
it is given by

Glocal = 1−(4β−γ−3−3ξ)Uext− 1
2
(α1−α2)V 2− 1

2
α2(V·e)2+ξUext(N·e)2 , (10)

where Uext is the potential of an external mass in the direction N, V is the velocity
of the experiment relative to the preferred frame, e is the orientation of the two
masses and units have been chosen so that Glocal = 1 in the preferred frame far
from local matter sources. Thus Glocal can vary in magnitude with variations in
Uext and V 2, and can also be anisotropic, that is can vary with the orientation of
the two bodies. Other SEP-violating effects include planetary orbital perturbations
and precessions of planetary and solar spin axes. A variety of observations have
placed the bounds

|α1| < 10−4 , |α2| < 4 × 10−7 . (11)

See [23, 42] for further details about tests of preferred-frame effects in gravity.
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6 Tests of local Lorentz invariance at the centenary

6.1 Frameworks for Lorentz symmetry violations

During the past decade there has been a major renewal of interest in developing
new ways to test Lorentz symmetry, using laboratory experiments and astrophys-
ical observations. Part of the motivation for this comes from quantum gravity.
Quantum gravity asserts that there is a fundamental length scale given by the
Planck length, Lp = (h̄G/c3)1/2 = 1.6 × 10−33 cm, but since length is not an in-
variant quantity (Lorentz-FitzGerald contraction), then there could be a violation
of Lorentz invariance at some level in quantum gravity. In brane world scenarios,
while physics may be locally Lorentz invariant in the higher dimensional world, the
confinement of the interactions of normal physics to our four-dimensional “brane”
could induce apparent Lorentz violating effects. And in models such as string
theory, the presence of additional scalar, vector and tensor long-range fields that
couple to matter of the standard model could induce effective violations of Lorentz
symmetry, as we discussed in Sec. 4.3. These and other ideas have motivated a
serious reconsideration of how to test Lorentz invariance with better precision and
in new ways.

Kostalecky and collaborators developed a useful and elegant framework for
discussing violations of Lorentz symmetry in the context of the standard model
of particle physics [43, 44, 45]. Called the Standard Model Extension (SME), it
takes the standard SU(3) × SU(2) × U(1) field theory of particle physics, and
modifies the terms in the action by inserting a variety of tensorial quantities in the
quark, lepton, Higgs, and gauge boson sectors that could explicitly violate LLI.
SME extends the earlier classical frameworks (THεµ, c2, χ − g) to quantum field
theory and particle physics. The modified terms split naturally into those that
are odd under CPT (i.e. that violate CPT) and terms that are even under CPT.
The result is a rich and complex framework, with many parameters to be analysed
and tested by experiment. Such details are beyond the scope of this paper; for a
review of SME and other frameworks, the reader is referred to the recent article
by Mattingly [46].

Here we confine our attention to the electromagnetic sector, in order to link
the SME with the c2 framework discussed above. In the SME, the Lagrangian for
a scalar particle φ with charge e interacting with electrodynamics takes the form

L = [ηµν + (kφ)µν ](Dµφ)†Dνφ − m2φ†φ

−1
4
[ηµαηνβ + (kF )µναβ ]FµνFαβ , (12)

where Dµφ = ∂µφ+ ieAµφ, and where (kφ)µν is a real symmetric trace-free tensor,
and (kF )µναβ is a tensor with the symmetries of the Riemann tensor, and with
vanishing double trace. It has 19 independent components. There could also be
a CPT-odd term in L of the form (kA)µεµναβAνFαβ , but because of a variety of
pre-existing theoretical and experimental constraints, it is generally set to zero.
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The tensor (kF )µανβ can be decomposed into “electric”, “magnetic” and
“odd-parity” components, by defining

(κDE)jk = −2(kF )0j0k ,

(κHB)jk =
1
2
εjpqεkrs(kF )pqrs ,

(κDB)kj = −(kHE)jk = εjpq(kF )0kpq . (13)

In many applications it is useful to use the further decomposition

κ̃tr =
1
3
(κDE)jj ,

(κ̃e+)jk =
1
2
(κDE + κHB)jk ,

(κ̃e−)jk =
1
2
(κDE − κHB)jk − 1

3
δjk(κDE)ii ,

(κ̃o+)jk =
1
2
(κDB + κHE)jk ,

(κ̃o−)jk =
1
2
(κDB − κHE)jk . (14)

The first expression is a single number, the next three are symmetric trace-free
matrices, and the final is an antisymmetric matrix, accounting thereby for the 19
components of the original tensor (kF )µανβ .

In the rest frame of the universe, these tensors have some form that is estab-
lished by the global nature of the solutions of the overarching theory being used.
In a frame that is moving relative to the universe, the tensors will have compo-
nents that depend on the velocity of the frame, and on the orientation of the frame
relative to that velocity.

In the case where the theory is rotationally symmetric in the preferred frame,
the tensors (kφ)µν and (kF )µναβ can be expressed in the form

(kφ)µν = κ̃φ(uµuν +
1
4
ηµν) ,

(kF )µναβ = κ̃tr(4u[µην][αuβ] − ηµ[αηβ]ν) , (15)

where [ ] around indices denote antisymmetrization, and where uµ is the four-
velocity of an observer at rest in the preferred frame. With this assumption, all
the tensorial quantities in Eq. (14) vanish in the preferred frame, and, after suitable
rescalings of coordinates and fields, the action (12) can be put into the form of the
c2 framework, with

c =
(

1 − 3
4 κ̃φ

1 + 1
4 κ̃φ

)1/2 (
1 − κ̃tr

1 + κ̃tr

)1/2

. (16)

Another class of frameworks for considering Lorentz invariance violations
is kinematical. They involve modifying the relationship between energy E and



Special Relativity: A Centenary Perspective 55

momentum p for each particle species. Assuming that rotational symmetry in the
preferred frame is maintained, then one adopts a parametrized dispersion relation
of the form

E2 = m2 + p2 + EPlf
(1)|p| + f (2)p2 +

f (3)

EPl
|p|3 + . . . , (17)

where EPl is the Planck energy. Frameworks like these are useful for discussing
effects that might be relics of quantum gravity, and for discussing particle physics
and high-energy astrophysics experiments.

6.2 Modern searches for Lorentz symmetry violation

A variety of modern “clock isotropy” experiments have been carried out to bound
the electromagnetic parameters of the SME framework. For example, comparing
the frequency of electromagnetic cavity oscillators of various configurations with
atomic clocks as a function of the orientation of the laboratory has placed bounds
on the coefficients of the tensors κ̃e− and κ̃o+ at the levels of 10−15 and 10−11,
respectively [46]. Direct comparisons between atomic clocks based on different
nuclear species place bounds on SME parameters in the neutron and proton sectors,
depending on the nature of the transitions involved. The bounds achieved range
from 10−27 to 10−32 GeV [46].

Astrophysical observations have also been used to bound Lorentz violations.
For example, if photons satisfy the Lorentz violating dispersion relation (17), then
the speed of light vγ = ∂E/∂p would be given by

vγ = 1 +
(n − 1)f (n)

γ En−2

2En−2
Pl

. (18)

By bounding the difference in arrival time of high-energy photons from a burst
source at large distances, one could bound contributions to the dispersion for n > 2.
The best limit, |f (3)| < 128 comes from observations of 1 and 2 TeV gamma rays
from the blazar Markarian 421 [47].

Other testable effects of Lorentz invariance violation include threshold effects
in particle reactions, birefringence in photon propagation through empty space,
gravitational Cerenkov radiation, and neutrino oscillations. Mattingly [46] gives
a thorough and up-to-date review of both the theoretical frameworks and the
experimental results.

7 Concluding remarks

At the centenary of special relativity, I can think of no better tribute to the impact
and influence of Einstein’s relativistic contributions than to cite how they now af-
fect daily life. This unique confluence of abstract theory, high precision technology
and everyday applications involves the Global Positioning System (GPS). This
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navigation system, based on a constellation of 24 satellites carrying atomic clocks,
uses precise time transfer to provide accurate absolute positioning anywhere on
Earth to 15 meters, differential or relative positioning to the level of centimeters,
and time transfer to a precision of 50 nanoseconds. It relies on clocks that are
stable, run at the same or well calibrated rates, and are synchronized. However,
the difference in rate between GPS satellite clocks and ground clocks caused by
the special relativistic time dilation is around -7,000 ns per day, while the differ-
ence caused by the gravitational redshift is around 46,000 ns per day. The net
effect is that the satellite clocks tick faster than ground clocks by around 39,000
ns per day. Consequently, general relativity must be taken into account in order to
achieve the 50 ns time transfer accuracy required for 15 m navigation. In addition,
the satellite clocks must be synchronized with respect to a fictitious clock on the
Earth’s rotation axis, in order to avoid the inevitable inconsistency in synchro-
nizing clocks around a closed path in a rotating frame (called the Sagnac effect).
For a detailed discussion of relativity in GPS, see [48]; for a popular essay on the
subject, see [49]. GPS is a spectacular example of the unexpected and unintended
benefits of basic research. While Einstein often used trains to illustrate principles
and consequences of relativity, one can now find practical, everyday consequences
of relativity in trains, planes and automobiles.
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The Geometry of Relativistic Spacetime

Jacques Bros and Ugo Moschella

This paper aims to be a pedagogical excursion across the land of relativistic
spacetime. By diving into the past, two thousand and three hundred years ago, the
first part traces back to the good old Euclid’s geometry for constructing without
harm the flat Minkowski’s spacetime of special relativity. Then by crossing the
year 1905 on the way back, it does not forget to cheer Albert Einstein’s papers
on the subject! But the future lusts for the wide horizons of curved spacetimes
and larger dimensions, born with general relativity. . . The second part proposes a
sightseeing tour in the most accessible ones. Have fun in the de Sitter and anti-de
Sitter spacetimes !
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From Euclid’s Geometry to Minkowski’s Spacetime

Jacques Bros

“. . . the word relativity-postulate for the requirement of the invariance
under the group Gc seems to me very feeble. Since the postulate comes
to mean that only the four-dimensional world in space and time is given
by phenomena, but that the projection in space and in time may still
be undertaken with a certain degree of freedom, I prefer to call it the
postulate of the absolute world (or briefly the world-postulate).”

H. Minkowski

Cologne Conference, September 1908

Introduction and general survey

From a variety of viewpoints, the theory of relativity appears as one of the major
conceptual events that have ever happened in the adventure of knowledge. It is
therefore highly pertinent that the scientific community celebrates the “century
commemoration” of the revelation of special relativity by two of the four funda-
mental papers that were published by Einstein in the year 1905 [1] [2]. Since then,
the historians of science have been able to accumulate a crop of information about
the complex genesis and the multiple and intricate aspects of that extraordinary
intellectual adventure. However, strangely enough an important pedagogical work
still remains to be done, if one retains from that adventure one of its most striking
aspects, namely the existence of a united geometrical representation of space and
time, called spacetime, and the logical necessity of its introduction on the basis of
the special properties of the velocity of light. In fact, we think it worthwhile and
possible to communicate this geometrical representation not only to learned scien-
tists, but also to any scientifically-curious and/or philosophically-minded student.
Let us explain why we think that it is 1) worthwhile and 2) possible.

1) A wide communication of it is worthwhile, because we have here to deal
with a genuine “jewel of human knowledge”, in which Physics, Mathematics (at
a rather elementary level, see 2) below) and Philosophy are intimately related.
Physics at first: one century after its discovery, one can say that in our present
knowledge of the universe, the validity of this joint representation of space and time
extends from the spacetime scales of microphysics to those of cosmology, which
represents a scaling factor of more than 1040. Then Philosophy and Mathematics:
we have to deal with an overwhelming “ontological fusion” of the categories of
space and time, through a mental representation which belongs to the platonician
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world of geometrical concepts. Here is what can be felt as a real shock for the
human mind ! With respect to our usual separate perceptions of space and time,
the new geometrical conception of spacetime is as much revolutionary as was the
idea of the sphericity of the earth and the computation of its circumference by
Eratosthenes with respect to the primitive conception of a flat earth. In the latter
case, it is only the development of long-distance travels that have made this idea
more and more acceptable for the “common sense” throughout the centuries. In the
former case, only motions whose velocity is substantial compared with the velocity
of light provide an evidence that the new spacetime framework gives a correct
representation of the physical reality. This is indeed attested as well by the motions
of particles which are the ultimate components of matter as by the motions of
astronomical objects observed by telescopes. It is only the fact (basic in our social
existence!) that all of us are “slowly moving travelers with respect to one another”
which comforts us every day in our feeling that the flow of physical time is the
same for all of us and therefore perceived as absolute (our watches run at the same
rhythm!); but this viewpoint, which is encoded in the usual “Galilean kinematics”
is only the low-velocity approximation of the physically relevant representation
of spacetime. The basic character of the physical spacetime is that the lapse of
time measured by an experimentalist between two successive events A and B
depends on the particular motion which has been adopted by this experimentalist
for proceeding from A to B. But this fact becomes conceivable to us if we compare
it with the following one which is familiar to our perception: the distance which
is measured by an experimentalist between two given points A and B of space
depends on the particular path which has been adopted by this experimentalist for
going from A to B. As a matter of fact, what may seem here as purely metaphoric
turns out to be a deep structural analogy in geometrical terms.

2) A wide communication of it is possible, once one has realized that these
purely geometrical aspects of relativity theory can actually be transmitted in the
old Greek spirit of Euclid’s geometry. In fact, let us recall (if forgotten) that this
so-called “elementary geometry”, revived in a second golden age by the European
geometers (from seventeenth to nineteenth centuries), was given to the pupils of
secondary schools of the old Europe as the most secure guide for training the
faculties of logics and rational thought ! Here we would like to make the point
that (at the age of computers. . .) this framework might also be the most secure
one for transmitting to everyone who is interested a simple, but sound idea of what
is the spacetime of relativity theory ! The simplest the argument, the strongest the
impact for the mind !

From the viewpoint of the historian of science, the adventure of relativistic
theory can be seen as the unexpected, although unavoidable issue of the major cri-
sis of nineteenth-century physics, in which the concept of a fixed reference medium
in the universe, called the ether, was in open conflict with the recently discovered
laws of electromagnetism. Among a lot of experimental as well as theoretical re-
sults, crucial experiments had been proposed and performed as soon as 1887: these
were the famous Michelson and Morley experiments about the constancy of the
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velocity of light. Then almost twenty years of maturation were still necessary for
the conceptual elaboration of the theory of special relativity to be performed. Al-
though it was revealed to the scientific community in the year 1905 by Einstein’s
revolutionary paper entitled “On the electrodynamics of moving bodies” [1], the
theory made a basic use of formulae established previously by Lorentz; moreover
its further formulation greatly benefitted from the group-theoretical analysis of
Poincaré also delivered in 1905 [4], while it found its achievement in 1908 through
Minkowski’s illuminating geometrical work [3]. It is indeed the latter which has to
be granted for introducing the appropriate new concept of absolute spacetime, a
concept whose fate was to go far beyond the theory of special relativity, since it
played an essential role in the further discovery and formulation of the theory of
general relativity by Einstein in 1916.

It will be precisely our purpose to focus on the concept of spacetime and at
first on its logical introduction, which may be presented in a spirit that parallels
the axiomatization of Euclid’s geometry, thanks to an appropriate axiom about
the “universality” of the velocity of light. This spacetime, which can be regarded
after Minkowski as an absolute framework for describing the kinematics of special
relativity, is a representation space whose points are interpreted as the “physical
events”. Any motion which is physically possible between two given events A and
B is represented by a certain world-line with end-points A and B. There is an
absolute orientation of such world-line, which can be called its “time-arrow”: its
physical meaning is that one of the end-point events, e.g. B, is in the future of
the other one A. The pair of events (A, B) is also said to be causally separated;
it is not the case for all pairs of events. The limits of causality are determined
by the world-lines of light-rays passing by each event: the Minkowski spacetime is
thus basically equipped with a light-webbed structure. In that geometrical repre-
sentation, one is thus led to distinguish radically the “absolute properties”, also
called “relativistic invariant properties” from the properties which are “relative
to a reference frame” and thereby comparable with the effects of spatial perspec-
tive in the usual Euclidean geometry. The basic absolute property of Minkowski
spacetime is the fact that it is a mathematical space equipped with a pseudo-
distance, which is closely linked with the existence of the light-webbed structure
of the universe: along the world-lines of light-rays, this pseudo-distance vanishes !
The most striking feature of this absolute pseudo-distance is the inverse triangular
inequality, which is responsible for the overwhelming phenomenon of “Langevin
twins”: The “length” of one side (e.g. the aging of the twin at rest) is longer than
the sums of the “lengths” of the other two sides of the triangle (namely the aging
of the traveling twin). As a matter of fact, eventhough the full spacetime is (in
mathematical terms) an abstract four-dimensional manifold, such an overwhelming
property as the aging difference for twins with different motions can be visualized
in terms of planar geometry. It is in fact sufficient to consider two-dimensional
sections of spacetime in which a single dimension of space is involved for having
a fully correct and intuitive geometrical picture of the Minkowskian triangular
inequality. Similarly, one can easily visualize in such a planar section of spacetime
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the phenomenon of relativistic perspective called “the contraction of lengths”. Of
course, the last important step for our understanding of spacetime concerns the
way in which the usual three-dimensional Euclidean geometry is embedded in the
Minkowskian four-dimensional spacetime. The fact that different embeddings hold
for observers in relative uniform motion is implied by the notion of Lorentz frame;
there appears the relevance of the group of Poincaré transformations. All these
aspects of elementary Minkowskian geometry following from an axiomatic Euclid-
type construction will be covered in our second part (Sec.2); a short preliminary
part (Sec.1) is devoted to the use of geometry in mathematical physics, as an
introduction to the concept of spacetime.

At that point, one might have the feeling that nothing more has to be added
about the kinematics of special relativity, but this is not so. In fact, the conceptual
revolution that it represents is so rich that after the basic articles of 1905 and 1908
in which it was delivered, several aspects of it deserved to be deepened and clarified:
this was performed around 1960 in two directions.

a) If the parallel between the Euclidean geometry of our usual three-
dimensional space and the Minkowskian geometry of four-dimensional spacetime
is actually complete in the physical world, this parallel has to be checked not
only for the geometry of straight world-lines, namely for uniform motions, but for
arbitrary (smooth) curved world-lines, namely for accelerated motions. The in-
terpretation of Minkowskian pseudo-length as a proper time measured by a clock
along the world-line of the motion and the geometrical property asserting that such
a pseudo-length is always smaller than that of the corresponding uniform motion
originating and terminating at the same events had to be tested experimentally.
This basic property of Minkowskian geometry, which can be nicely summarized
by saying that “In proper-time distances, the straight-line is the longest distance
between two points (namely two events)”, was already present in Einstein’s article
[1] under the physical terminology of “clock slowing-down phenomenon”. However,
it remained to be checked experimentally that clocks submitted to accelerated mo-
tions were as insensitive to the accelerations as graduated ribbons were insensitive
to curvature for measuring Euclidean curvilinear distances. What was in question
in such investigations had to do with the physical nature of the clocks, considered as
trustful measuring instruments, whose robustness with regard to the accelerations
had to be quantitatively estimated. Thanks to the progress of physics during the
twentieth century, the set of traditional clocks (called “dynamical”) was enriched
by a new class of clocks, based on microphysics phenomena and called “atomic
clocks”, whose precision degree and robustness were far higher. Around 1960 (see
in particular Sherwin’s paper [5]), this property of insensitivity to accelerations
has been established (and confirmed since then with higher and higher precision)
for various types of atomic clocks. These results then exclude radically the last
objections of the opponents to the “twin paradox” (see [5]). In particular, they
allow one to present a completely acceptable version of the twin phenomenon in
uniformly accelerated motions, namely a version which is biologically bearable by
human experimentalists, even though for technical reasons it remains presently a
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“gedanken-experiment”. Moreover, these manifestations of the Minkowskian ge-
ometrical structure in accelerated motions give an opportunity to state clearly
that they must not be confused with possible effects of general relativity. In fact,
the latter occur substantially when the accelerations are caused by the presence
of large masses of matter, which produces an additional curvature effect on the
Minkowskian geometry of spacetime.

b) Since 1959 with the articles of Terrell [6] and of V. Weisskopf [7], problems
of relativistic perspective have been reconsidered. Progresses have been made on
the problem of what should be the real optical appearance of a fast-moving ex-
tended object with respect to an observer linked to a given Lorentz frame. The
understanding of the phenomenon of “contraction of lengths” was thus revisited
and corrected for the case of extended objects. Much more recently, impressive
visualizations of moving objects with relativistic velocities have been given thanks
to the help of computer technique (see [8] and references therein).

An account of the previous developments a) and b) will be given below respec-
tively in Sec.3 and Sec.4. Sec.5 and the companion paper by Ugo Moschella will
illustrate the fundamental role played by the conceptual framework of Minkowski
spacetime in two domains of physics whose orders of magnitude of spacetime dis-
tances differ by 1040; we mean respectively particle physics and cosmology. A short
final part (Sec.6) will serve as a bridge between the two papers.

It is at the scale of particle physics phenomena that the validity of special
relativity and of its expression in the Minkowski spacetime framework appears
with its full strength. In fact, the second revolutionary discovery which can be
found in the second Einstein’s paper [2] on special relativity in 1905, namely the
equivalence relation of mass and energy E = mc2, provides the relevant kinematical
framework for understanding the energy-balance of all the nuclear and electromag-
netic reactions. In geometrical terms, this framework corresponds to supplement
Minkowski’s spacetime with the introduction of another identical Minkowskian
space, interpreted as the space of energy-momentum vectors of material points.
This framework gives a remarkably good description of the kinematics of high-
energy particle physics. In the Minkowskian energy-momentum space, Einstein’s
relation E = mc2 is visualized under the form of the mass hyperboloid, called the
mass shell of the particles: it is the surface which represents the set of all pos-
sible states of a free relativistic particle with mass m. This description includes
the case of photons: for these “massless particles”, the mass shell coincides with
the “light-cone”. In the energy-momentum space, the law of conservation of total
energy-momentum admits a simple geometrical formulation. In that space, the
Minkowskian triangular inequality accounts for the production of any number of
particles in high-energy collisions of two particles (including the massless case of
photons). All that constitutes the basic background for the formulation of the
theory of high-energy particle collisions in the general framework of relativistic
quantum field theory. In particular, the world-line representation of free particles
and of their multiple collisions in Minkowski’s spacetime obeying the rules of rela-
tivistic kinematics plays a basic role in the corresponding quantum field-theoretical
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treatment of particle physics: it explains the so-called Landau singularities of the
multiparticle scattering functions.

At cosmological scales, the concept of spacetime introduced by Minkowski
is still valid, provided one includes as a new revolutionary ingredient the notion
of curvature: here is the geometrical content of general relativity. There are two
reasons for this curvature phenomenon: while the first one is the local density
of matter (or “gravific mass”) which is present near each event in the universe,
the other one is linked with the expansion of the universe; it is encoded in the
so-called cosmological constant in the equations of tentative geometrical models
of the universe, whose simplest one (with zero mass density) is the de Sitter uni-
verse (1917) presented in the companion paper. Under this respect, the role of
Minkowskian geometry for the local description of the universe throughout its evo-
lution parallels the role of planar Euclidean geometry for the local description of
the surface of the earth. In mathematical terms, the latter is a two-dimensional
Euclidean manifold: the straight-line distance of planar geometry is replaced by
the geodesical distance between two points of the surface of the earth, which is
the shortest one with respect to all possible paths joining these two points on the
surface. Similarly, the universe (considered throughout its evolution) appears as
a four-dimensional Minkowskian (one also says “Lorentzian”) manifold: between
two causally-separated events, there is a geodesical time-like distance, which is the
longest one with respect to all possible world-lines joining these two events. For
instance, when one estimates the age of the universe to be of the order of 14 or 15
billions of years, one has in mind the value of such a geodesical time-like distance
between an event that can be called “the big bang” (in the most currently accepted
cosmological models) and the event called “here and now” by the inhabitants of
the earth in the year 2005. However, it is philosophically questioning to remain
conscious of the following: according to the structure of Minkowskian manifold of
the universe, any other world-line that relates those two events is covered in a
shorter time-like distance. According to the motion which is associated with that
world-line, it can be . . . one century, one year, one day, one second . . . or even zero,
if one considers a light-ray trajectory, namely a world-line which is composed of
pieces of light-like geodesics . . ..
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1 On the use of geometry in mathematical physics and the concept
of spacetime

1.1 Geometry of description and geometry of representation

As we all know it, Euclidean geometry (in two or three dimensions) corresponds
to an idealized description of the space which surrounds us, as it is felt by our
visual and tactile perceptions. The etymology of the word “geometer” (and for
instance in France its standard meaning as a profession. . .) is still reminding us of
the fact that, since very ancient times, this branch of mathematics was progres-
sively elaborated from the consideration of practical physical problems, such as
the measurement and sharing of ground pieces; the description of the trajectories
of celestial bodies also provided another powerful motivation for the development
of geometry. It is not a triviality, but a subject of wondering and of philosophical
questioning that the idealized notions of “elementary geometry” (points, lines etc.
. . . ) equipped with logical relations called axioms or postulates, allow us to con-
struct “rigorous proofs” of nontrivial properties of the geometrical pictures. While
their experimental checking in physical space is fully satisfactory, these properties
also appear to us with the strength of evidence as elements of an “absolute reality
of the mind”, namely of a very special “world of Platonician ideas”: the world of
geometrical concepts. One can then say that, as a geometry of description, Eu-
clidean geometry appears as the oldest manifestation of the spirit of mathematical
physics.

Another considerable achievement in the history of mathematics is the funda-
mental correspondence between numbers and geometrical concepts which started
from the length measurement procedure and resulted in the elaboration of Carte-
sian coordinates and of the so-called “analytic geometry”. As it may be already
familiar to pupils at the terminal level of high-school, this implies a relationship
between algebra and geometry whose interest is two-fold. On the one-hand, the
properties of geometrical curves can be equivalently represented by algebraic equa-
tions relating the coordinates of their points. This representation is unique, once
the choice of a system of coordinates has been specified. For example in orthogonal
coordinates, the equation of the unit circle x2 + y2 − 1 = 0 makes use of the stan-
dard Pythagore theorem for characterizing the points M = (x, y) of that curve.
On the other hand, any numerical relation between two quantities x and y (always
representable by an equation of the form f(x, y) = 0) admits a pictorial represen-
tation by a curve in a plane equipped with given coordinate axes; this pictorial
representation is specially interesting when x and y denote physical quantities re-
lated by a physical law. In fact, the curve which one thus constructs represents all
the “states” of the observed phenomenon, each state being characterized by a pair
of values of the quantities x and y which are simultaneously observed and thus
associated with a particular point M = (x, y) of the curve. The geometrical con-
structions which may be associated with the pictorial representation of a physical
phenomenon in a plane or in a three-dimensional space equipped with coordinates
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pertain to what we shall call a geometry of representation. By using such a termi-
nology, we adopt typically a viewpoint of mathematical physicist: while geometry
presents all its mathematical characteristics, in particular the fact that its logical
arguments are immediately perceived by a special type of global visual intuition,
all its elements are here given a physical interpretation in terms of a certain cate-
gory of phenomena; in other words, these phenomena are actually represented in
terms of geometrical concepts.

1.2 The use of geometry in more than three dimensions

From a purely mathematical viewpoint, the correspondence between numbers and
geometrical concepts can be extended to n−dimensional abstract spaces Rn, with
n larger than three. The concept of “point in Rn” is now introduced as a n−tuplet
of coordinates M = (x1, . . . , xn). The concept of “surface of dimension p” with
2 ≤ p ≤ n − 1 (called “curve” for p = 1 and “hypersurface” for p = n − 1)
is then introduced as a subset of points of Rn whose coordinates satisfy n − p
independent equations; correspondingly, these coordinates can also be expressed
by parametric equations involving p independent parameters. If one wishes, one
can equip the space Rn with a Euclidean distance, which is obtained by an obvious
extrapolation from the usual one, two and three-dimensional cases. By definition,
the squared length of a linear segment MN = (a1, a2, . . . , an) (or squared distance
between the two points M and N) is d(M, N)2 = a2

1 + a2
2 + · · · + a2

n, which
implies the usual triangular inequality d(O, N) ≤ d(O, M)+d(M, N). The equation
x2

1+x2
2+· · ·+x2

n = 1 is represented geometrically by the “unit hypersphere”. In any
two-dimensional or three-dimensional section of Rn defined by linear equations in
terms of the coordinates, one recovers respectively a plane or a three-dimensional
space equipped with the usual Euclidean distance. So one can develop a set of
geometrical concepts, relations and constructions which generalize those of the
usual geometry; this can be done at will either in terms of equations or in a purely
geometrical language.

From the viewpoint of mathematical physics, the use of geometry in more
than three dimensions turns out to be necessary, if one wishes to represent phe-
nomena whose description necessitates more than three independent quantities. A
typical example is the six dimensional space R6

x1,x2
= R3

x1
×R3

x2
of the positions

(x1,x2) of pairs of material points (or pointlike particles) in mutual interaction.
Trajectories of such pairs are represented by curves in R6, described in terms of
a time parameter t by equations of the form x1 = x1(t), x2 = x2(t). Another
type of geometrical representation which is also often used in physics with strong
motivations is complex geometry: for example the extension of functions of the real
frequency variable to (analytic) functions of the corresponding complex variable in
a domain of the complex plane C is of current use. It is in fact a basic property of
structural functions describing linear response phenomena, which provides a con-
venient visual representation of resonance phenomena by real or complex poles. In
particle physics a similar use of complex geometry in spaces C × · · · × C = Cn
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of various variables (positions, times, momenta, energies) plays an important con-
ceptual role.

In the following, we shall be concerned with a very special type of geometry
of representation, called spacetime, whose purpose is to provide a visualization of
the motion phenomena throughout their whole history. If we consider motions in
the Euclidean space R3, providing as usual a geometry of description of the world
which surrounds us, we need an additional time-coordinate and therefore an affine
space R4 for representing geometrically all the events of the world. Such a map is
intended to picture in an idealistic way the whole history of the world: the motion
of any material point (or of any observer) will be represented as a curve, called a
world-line, which describes all its history from the remote past to the far future.
The usual notion of trajectory will then appear as the projection of the world-
line onto the Euclidean space R3. The world-line is a geometrical concept which
contains all the information on the motion, which is not the case for the trajectory:
two different world-lines (i.e. motions) may project onto the same trajectory.

1.3 Galilean spacetime as a geometry of representation of motion
phenomena

In its simplest form, which we shall call Galilean spacetime, the concept of space-
time appears as a geometry of representation for the phenomena of motion, as
they are perceived by a privileged observer called O0, submitted to the following
prejudice: the time interval that elapses between two events A and B is an absolute
quantity; its value is the same for observers moving in an arbitrary way between
A and B, provided they are equipped with identical clocks.

Keeping the previous notations, x = x now denotes a point, or equivalently
three coordinates called space coordinates, in the usual Euclidean space R3 in
which we are living, while y ≡ t denotes a time coordinate. A point X = (x, t) in
R4 represents the event which takes place at time t at the point x of Euclidean
space R3. In particular, the origin O represents the event called “here and now”
(at a certain instant. . .) by the observer O0, who stands “at rest” at x = 0; by
definition, this means that the observer’s world-line is the time-axis with equation
x = 0. For O0, the coordinate hyperplane with equation t = 0 represents the set of
all simultaneous events which constitute the “present”. Similarly, for every fixed
value t0 of t, the hyperplane with equation t = t0 is a complete set of simultaneous
events, which we call set of simultaneity and which belongs to the future or to
the past according to whether t is positive or negative. The whole future and the
whole past are represented respectively by the open half-spaces t > 0 and t < 0 of
R4. In such a representation of the events, one says that the time-axis associated
with the Euclidean space R3 of “present events” constitute the reference frame of
the observer O0 (the choice of the “present time” t = 0 is of course a matter of
convention for O0).

Let Ov0 be an observer in uniform motion with vector velocity v0 with respect
to O0 and passing by O: this means that the two observers O0 and Ov0 share the
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same and unique event O that we called “here and now”. The time-axis ∆v0 for
this observer is defined by the corresponding world-line, namely the straight line
with (vector) equation x = v0t (see fig. 1).

Figure 1: The Galilean spacetime

For any such observer, the sets of simultaneity t = t0 are the same as for the
observerO0. More precisely, every event M = (x, t) of spacetime is perceived by the
observer Ov0 as having coordinates (x′, t′) such that x′ = x−v0t and t′ = t. This
change of coordinates from O0 to Ov0 is also called a Galilean transformation; it
implies the basic property of additivity of velocities: a uniform motion with world-
line x = vt is seen by Ov0 as a uniform motion with equation x′ = v′t, with
velocity vector v′ = v − v0. For example, in a train whose velocity is v0 =100
kmh, a passenger walking longitudinally with velocity v′ =5 kmh has a velocity
with respect to the earth which is v =105 kmh or 95 kmh according to whether the
forward or backward direction of the train has been chosen by that passenger. . .

We note that the Galilean changes of coordinates do not preserve the notion
of orthogonality in R4. If for convenience we choose to represent the simultaneity
sets as “horizontal spaces” (the dimension of space being unfortunately reduced
to two in our visual perception. . .) and the time-axis of the observer at rest O0 by
a vertical line, the reference frame for Ov0 will associate the oblique time-axis ∆v0

with the horizontal space. But the observer at rest enjoys no special physical prop-
erties with respect to any other observer in uniform motion (that’s the “Galilean
principle of relativity” which follows from the law of inertia). So the verticality of
the time-axis could have been chosen for representing the world-line of any given
uniform motion: there is nothing deep in that choice. One can also say that the
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Galilean spacetime is defined for O0 up to the arbitrariness in the choice of the
time-axis or in mathematical terms up to a Galilean transformation: it is the equiv-
alence class of all these representations. But the same representation of spacetime
is then also acceptable by any observer Ov0 in uniform motion, which expresses
precisely in geometrical terms the content of the Galilean relativity principle.

Here it is also worthwhile to point out that, in contrast with the “horizontal”
Euclidean subspaces R3, the Galilean spacetime R4 is only an affine space; it is
not equipped with any physically sensible global notion of orthogonality and dis-
tance. But this is consistent with our standard perception: why would space and
time strangely mix each other in some supergeometry? Galilean spacetime is just a
geometry of representation in a very poor sense: it has no global geometrical struc-
ture. But let us now incorporate the strange properties of light velocity and then
discover that such a phantasmic supergeometry holds in the realistic spacetime of
physics, namely in the four-dimensional world called Minkowski’s spacetime !!

2 Postulates and construction of Minkowski’s spacetime

Preliminary Remark. The postulates and the construction which we propose do
not pretend to be the most economical ones from the viewpoint of formal logics. In
particular, we must draw the attention of the reader to the important mathematical
article by E.C. Zeeman entitled “Causality Implies the Lorentz Group” [9]. We
shall briefly indicate at the end of Sec.2-1 how the latter can be interpreted in our
approach, which is much more pedestrian since making use of the basic physical
concept of uniform motion and of the familiar representations of Euclid’s geometry.

We shall introduce five postulates for our construction of the spacetime of
special relativity. The first two postulates introduce a representation of spacetime
conceived by the observers at rest, while the third and fourth postulates express
minimal properties to be shared by all the observers in uniform motion. The con-
tents of the first and third postulates are easily accepted as being already satisfied
in the Galilean spacetime, but the second and fourth postulates introduce the
world-lines of light as playing a fundamental role in spacetime. In fact, these pos-
tulates express in a geometrical way the revolutionary result obtained at first by
the experiments of Michelson and Morley: For all observers, either at rest or in
uniform motion, the velocity of light in the vacuum is a universal constant c; nei-
ther it depends from the motion and from the nature of the light-emitter, nor from
the direction of emission and the various changes of direction of the light beams
considered (e.g. obtained by the interposition of mirrors), nor from the wave-length
of the light. Renewed experiments which make use of a variety of experimental de-
vices and whose range extends to electromagnetic waves outside the spectrum of
visible light (including in particular the propagation of radiowaves) have been re-
peatedly performed throughout the twentieth century. They all have confirmed
the universality property of c, even if its precise value (c = 299, 776 . . .km/sec as
measured in 1940 by Anderson) is now thought to be possibly fluctuating with
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time at astronomical scales and also depending on the type of clocks (atomic or
dynamical) for time measurements. The overwhelming fact about the universality
property of c is that light does not satisfy the usual (Galilean) property of addi-
tivity of velocities: by switching on a lamp on a train, it is impossible to make its
light travel at the velocity c plus the velocity of the train !!

Finally, it is pertinent and (as we shall see) useful for our construction to
add a fifth postulate: the latter requires that, in the limit of very low velocities
(those which we perceive in our life), Galilean spacetime has to be an excellent
approximation of the new spacetime. Here lies the wisdom of all revolutions in the
domain of science: the old theory is not thrown away as completely perverse, it is
honestly recognized as a good first-order approximation of the new theory when
the order of magnitude of certain variables lies within certain limits.

Notation. In all the following, the symbol A
.= B will be used when this equality

serves as a definition either of A in terms of B or of B in terms of A. Examples:
a vector x .= (x1, x2, x3); x2

1 + x2
2 + x2

3
.= x2, the squared norm of x; the norm

|x| .= (x2)
1
2 .

2.1 The postulates and the light-cone structure of spacetime

First postulate: the spacetime representation
All the observers at rest in the Euclidean space R3

x (where x = (x1, x2, x3)) agree
on the existence of a geometrical representation of all “events” of the universe by
points in a space R4

x,t = R3
x×Rt, with the same notions of simultaneity sets t = t0

as in the Galilean spacetime. The time-axis is the world-line of the observer O0;
the time-axis together with the “present hyperplane” t = 0 constitute the reference
frame of observers at rest, its origin O being the “present event” (“here and now”)
of the observer O0.

This postulate calls for three remarks:
i) The events, and thereby their representation by points in R4 are conceived

as “absolute elements of reality”; however, the given system of coordinates (x, t)
privileges the class of observers at rest, whose world-lines are all the parallels
to the time-axis. The basic problem of our construction will be to determine the
corresponding systems of coordinates for any observer in uniform motion. As in the
Galilean spacetime, the world-line of any observer in uniform motion is a straight
line. For example ∆v is the world-line of the observer Ov whose motion is defined
as in the Galilean case.

ii) All the observers at rest are supposed to be equipped with identical devices
for measuring lengths (i.e. graduated rods) and for measuring time-intervals (i.e.
clocks). The fact that all observers at rest agree on their Euclidean representation of
space is trivial for us (after more than 2000 years of cartographical techniques. . . ).
The fact that they agree on the simultaneity of two events requires a procedure of
“synchronization of clocks” through the emission of light-signals, and we shall see
in Sec.2-2 that the full analysis of the notion of simultaneousness relies physically
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on the use of light-signals. For the moment, we only introduce this notion for the
observers at rest.

iii) In all our pictorial representations, the time-axis will be represented as
vertical and upward-oriented; the ascending arrow indicates the future. The Eu-
clidean space R3

x with equation t = 0 is then considered as horizontal. In many ar-
guments, it will be sufficient to consider a single space variable x = x1, namely the
planar section (Ox1, Ot) of spacetime, with the axis Ox horizontal and rightward-
oriented as usual.

Second postulate: the light-cone

All the world-lines of light rays emitted from the event O by any (moving or at
rest) light-emitter are represented in R4

x,t by the linear generatrices of the cone
C+ with equation |x| = ct, t > o, which is called the “future light-cone of O”.
Similarly, all the light rays emitted in the past of O by any (moving or at rest)
light-emitter and which are detected at O have world-lines which are carried by the
generatrices of the cone C− with equation |x| = −ct, t < o, which is called the
“past light-cone of O”. The whole set of light world-lines passing at O is the set of
generatrices of the “light-cone C of O” (see fig. 2), with quadratic equation

c2t2 − (x2
1 + x2

2 + x2
3) = 0.

Similarly, with each event X = (x, t) of R4
x,t, one can associate the “light-cone

C(X) of X”, which is obtained from C by the action of the translation with vector
[OX ] in R4

x,t.

It is worthwhile to emphasize that the absolute localization on the cone C of the
world-lines of light rays passing at O did not hold in the usual Galilean spacetime
representation, since light was treated there as any other motion and therefore
obeyed the principle of additivity of velocities. To be more illustrative, let us
consider light-propagation along a single direction of space Ox represented as
our horizontal axis, but with the two possible orientations of light rays emitted
from O, namely the rightward light ray (towards positive x′s) and the leftward
light ray (towards negative x′s). The world-lines of these two light rays in the
planar section (Ox, Ot) of spacetime are respectively the half-lines CR and CL

with equations x = ct, t > 0 and x = −ct, t > 0 (see fig. 3): they are the
traces of the future light-cone C+ in the planar section (Ox, Ot). If the light rays
emitted from O are emitted from a train with velocity v in the direction Ox, its
propagation is still observed by an observer at rest as having the velocity c and not
c+v or c−v, which would have been the case according to the Galilean viewpoint.
In the planar section (Ox, Ot) of Galilean spacetime, the world-lines of the light
rays emitted from O would have had equations of the form x = (±c + v)t (resp.
x = (±c − v)t), depending on the velocity v (resp. −v) along Ox of the light-
emitter at O. Therefore, the Galilean world-lines of these light rays (considered
for all possible values of v) would cover the whole half-plane of positive t′s, namely
“the absolute Galilean future”. It is thus crucial to understand that in the new
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Figure 2: The light-cone

“relativistic spacetime” that we construct, the half-lines CR and CL and more
generally the cone C+ are new absolute data.

Remark on the choice of units. Instead of using the very large value of c ex-
pressed in km/sec which would make unpracticable the geometrical representation
of spacetime, we can choose time and space units in such a way that c = 1.
For example, we can adopt the choice of year and light-year which is standard in
astronomy. The light-cone C is then well-represented as the cone with equation
t2 − x2 .= t2 − (x2

1 + x2
2 + x2

3) = 0 and the light world-lines CR and CL are then
well-pictured along the diagonals of the axes (Ox, Ot) (fig. 3). Another possible
convention whose advantage is also to keep the same geometrical representation
but without fixing the value of c consists in considering that one plots the variable
ct instead of t. Here it is relevant to notice that the variable ct has the “physical
dimension” of a distance, which prepares us to understand why it can be treated
on the same footing as the space coordinates x in the following.
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Third postulate: isochronousness of all uniform motions
For every observer O in uniform motion, let tO be its time-variable , measured by
a clock which is identical with that of O0. Its world-line is a straight line denoted
by ∆ which carries the time-axis of O. Let then X1, X2, X3 be three events in ∆.
We postulate that it is equivalent that their time-coordinates t1, t2, t3 satisfy the
equality t2 − t1 = t3 − t2, namely that X2 be the middle of the segment X1X3, or
that the corresponding times (tO)1, (tO)2, (tO)3 measured by O satisfy the equality
(tO)2 − (tO)1 = (tO)3 − (tO)2.
This postulate is of course trivially satisfied in the absolute time viewpoint of
Galilean spacetime. Here one only requires that the flow of time measured via a
regular sequence of events by an observer O is also perceived as regular up to a
change in the scale, when the same successive events linked to O are detected (with
an identical clock) by O0, and thereby by any other observer in uniform motion
with respect to O. (Note that from a more realistic viewpoint such a regular
detection is obtained by O0 at the reception of light beams emitted by O, but
this is easily seen to be equivalent to the regularity of the sequence of coordinates
(t1, t2, t3) by the Thales property).
Fourth postulate: “Physical” uniform motions and the universality of c
a) The only uniform motions considered as having a physical meaning are those
whose velocity v is smaller than c. For such motions whose world-line ∆v contains
the event O, ∆v \O is made up of two half-lines ∆+

v and ∆−
v which are respectively

contained in the convex conical volumes V + and V −:
V + is the set of all events (x, t) such that |x| < ct, t > 0, called “the absolute

future of O”;
V − is the set of all events (x, t) such that |x| < −ct, t < 0, called “the

absolute past of O”.
Similarly, for each event X one can introduce the convex conical volumes

V +(X) and V −(X), namely respectively the absolute future and past of X, whose
union contains all the world-lines ∆ of the uniform motions passing at X. The fu-
ture light-cone C+(X) (resp. past light-cone C−(X)) thus appears as the boundary
of the corresponding future cone V +(X) (resp. past cone V −(X)).
b) For every observer Ov with world-line ∆v graduated by the time-variable tv,
there exist coordinates xv of the space perceived at rest by Ov, such that any event
X = (x, t) of the light-cone C is detected by Ov as having coordinates (xv, tv)
satisfying the relation |xv| = c|tv|.
Part a) of the postulate, which requires that the light-velocity is an absolute limit
to the propagation velocity of any physical system to which an observer can be
linked, will appear as deeper than a pure physical requirement. It will in fact be
seen below that the lines of spacetime which could be interpreted as world-lines
of motions with velocity larger than c (or “superluminal motions”) are necessarily
given another interpretation, which is of purely spatial nature. So the requirement
a) is deeply involved in the self-consistency of the relativistic spacetime represen-
tation.
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Part b) again pertains to the basic statement about the constancy of the velocity
of light. It can also be seen as contained in the principle of relativity which claims
that all the physical laws, and therefore in particular the velocity of light, are the
same for all observers in uniform motion: no rest frame is physically privileged as
it was presupposed in the old concept of ether.

Fifth postulate: validity of the Galilean approximation
For every observer O in uniform motion or at rest, there is a Galilean represen-
tation of spacetime which is an excellent approximation of the exact spacetime for
the description of motions whose relative velocity with respect to O is very small
with respect to c.

The precise mathematical formulation of this postulate will appear clearly in the
following.

Remark. In the present approach, the interpretation of the basic result of [9] seems
to be the following. Let us assume that the light-cone structure of the spacetime
R4 holds for the observer at rest O0 as in our first and second postulates. Let
us now consider observers in unspecified motion, for which the spacetime R4 is
also perceived with a lightcone structure (implying the same universal velocity of
light c). Let us assume that for such observers the causality order of events X , Y
(denoted X < Y ) is defined by the fact that Y belongs to the future cone V +(X) of
X , and that this order coincides with the one perceived by the observer at rest. Then
it is proven that such observers are necessarily in uniform motion and that their
scales of time and length are linear functions of those of the observer at rest so that
the whole structure of Minkowski’s spacetime follows. In particular, our postulate
three concerning the “isochronousness property” of uniform motions would then
be redundant. However, as it has been pointed out in [9], the result does not hold in
two-dimensional spacetime; a nontrivial use of the dimension larger than two has
been made in that work. Our approach is rather opposite: in view of its pedagogical
nature, it aims to exhibit already in two-dimensional spacetime (which is much
simpler to describe) how the construction of Minkowski’s spacetime can be worked
out. In fact, this will be made in detail from Sec.2-2 to Sec.2-6. It is only in Sec.2-7
that we shall be ready to tackle the four-dimensional spacetime equipped with the
group of general Lorentz transformations. For the sake of completeness, we have
been led to include in that subsection some technical details which may be skipped
in a first reading: the main geometrical result to be understood (with the help of
fig. 9 and of the remark at the end of Sec.2-7) concerns the pairs “(time-axis, space
hyperplane)” which are associated with every uniform motion.

2.2 Simultaneousness revisited

The notion of absolute simultaneousness, namely the identity of every simultaneity
space t = t0 for all the observers (at rest or in motion) is encoded in the Galilean
spacetime representation. However this viewpoint is purely idealistic, because for
each observer the property of simultaneity of two events is a physical property
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Figure 3: Simultaneous events

which has to be checked via some procedure implying the use of lengths and time
measurements. Now in view of the universality of the velocity of light, the use of
light-signals will be particularly helpful for clarifying the notion of simultaneous-
ness relatively to each observer at rest or in uniform motion.

We shall describe a physical procedure for characterizing simultaneous events
whose geometrical representation in spacetime is quite simple. It only requires
observers and light-signals moving in a single space dimension Ox, which allows
one to represent phenomena in the two-dimensional section (Ox, Ot) of spacetime.
We are led to use the geometrical representation of light world-lines as being all
parallel either to CR or to CL (according to our first and second postulates). For
simplicity, chosen units are years and lightyears so that c = 1.

For the observer at rest O0, the procedure must of course confirm that (for
instance) the events A0

.= (x = 1, t = 1) and B0
.= (x = −1, t = 1) are simulta-

neous. To that purpose, one considers rightward and leftward light rays emitted
from O and reflected (by mirrors) at the respective points x = 1 and x = −1. The
world-lines of these reflected light rays are respectively parallel to CL and CR and
therefore converge at the event X0

.= (x = 0, t = 2) of the world-line of O0, which
allows the latter to conclude that the “mirror events” A0 and B0 are simultaneous:
since the velocity of light is the same in right and left directions, the mirror events
have been simultaneously produced at half of the time of X0 (namely t = 1). As
seen on fig. 3, the geometrical representation of the previous light-signal procedure
exhibits that the quadrilateral (OA0X0B0) is a parallelogram. We also notice that
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this procedure is useful for allowing all the observers at rest to synchronize their
clocks with respect to O0’s clock and therefore to agree on the same representation
of spacetime. For instance the observer situated at x = 1 (i.e. whose world-line has
the equation x = 1) will be warned by O0 that he should assign the time t = 1 to
the event A0, at which he receives the light signal coming from O.

Now we can repeat the same construction for any given observer Ov in uni-
form motion, with |v| < 1. We use again two rightward and leftward light rays
emitted from O and therefore represented along CR and CL, but we now set the
mirrors (at some points xA > 0 and xB < 0) in such a way that the world-lines of
the two reflected light rays intersect at an event X which belongs to the world-line
∆v of Ov. Here again the two mirror events A and B are such that the quadrilat-
eral (OAXB) formed by the four light world-lines is a parallelogram, and it then
follows that, except when v = 0, the linear segment AB is not parallel to the axis
Ox (fig. 3).

Now in view of b) of the fourth postulate, the forward and backward travels
of light corresponding to the world-line segments OA and AX (resp. OB and BX)
are performed during the same time for Ov, since performed at the same universal
velocity. Therefore if tv(X) denotes the time of the event X measured by Ov, the
times of the mirror events A and B measured by Ov will be both equal to tv(X)

2 :
these two events are therefore to be considered as simultaneous by Ov. Moreover
(in view of the same postulate), the events A and B will be produced at spatial
coordinates xv = ± tv(X)

2 . We shall now use our third postulate for proving the
following property.
All the points of the straight line (AB) represent the events which appear to be
simultaneous to A and B for the observer Ov.

We consider at first the event G at the intersection of OX and AB. Since
(in the parallelogram (OAXB)) one has OG = GX , the observer O0 perceives the
event G at the time t(G) = t(X)

2 . Then in view of the third postulate, the event G

is also perceived by the observer Ov at the time tv(G) = tv(X)
2 , which shows that

G is simultaneous to A and B for Ov.
Let now P be any point on the half-line with origin G and containing A, and

let E and F be the intersections of the straight line (OX) respectively with the
parallels to CR and CL by P . Thales property then yields (fig. 4):

GF

GX
=

GP

GA
=

EG

OG
, and therefore EG = GF.

By introducing the point Q, symmetric of P with respect to G one then gets a
parallelogram (EPFQ). Therefore the same argument as above applies to the light
rays emitted at E, reflected at P and Q and converging at F : it shows that P ,Q
and G are simultaneous with respect to Ov. Since the symmetric pair (P, Q) may
vary arbitrarily on the straight line (AB), this line is a line of simultaneity for Ov

(corresponding to the time tv

2 ).
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Figure 4: Conjugate axes

Since the choice of tv was arbitrary in the previous argument, one concludes
that the lines of simultaneity for the observer Ov in the plane (Ox, Ot) are all the
parallels to (AB); in particular the straight line ∆′

v parallel to (AB) and containing
O represents the “present events” (tv = 0) for Ov . As seen on fig. 4, half of the
line ∆′

v (on the right of O for the choice v > 0) contains events at t > 0, which are
therefore perceived as belonging to the future by O0 together with all the observers
at rest, while the other half (on the left of O) contains events at t < 0, perceived
as belonging to the past by the same observers.

The direction ∆′
v, obtained from ∆v by the previously described parallelogram

construction, is said to be conjugate of ∆v with respect to the light world-lines CR

and CL. Points X = (x, t) and X ′ = (x′, t′) of ∆v and ∆′
v satisfy the equations

x = vt, x′ =
1
v
t′, and therefore tt′ − xx′ = 0.

This calls for two comments:

i) conjugacy or pseudo-orthogonality relation
The relation tt′ − xx′ = 0 (or in unit-independent form (ct)(ct′) − xx′ = 0) can
be called a pseudo-orthogonality relation between the vectors [OX ] and [OX ′],
by analogy with the orthogonality relation xx′ + yy′ = 0 in a Euclidean plane.
Such a relation, which expresses the geometrical property of conjugacy of the
pair (∆v, ∆′

v) with respect to the pair (CR, CL), introduces a joint geometrical
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structure of space and time, which will appear still stronger in the analysis of Sec.
2-3.

For the moment, we can simply notice the following properties of conjugate
pairs (∆v, ∆′

v):
a) when v varies, ∆v and ∆′

v are turning in opposite ways (one clockwise and
one anticlockwise) in the plane (Ox, Ot).

b) when v tends to 1 (resp. −1), both lines tend together to CR (resp. CL).
c) there is a single conjugate pair which is orthogonal, namely the supports

of the axes of coordinates Ox, Ot.
Here, however, one must stress that the choice of orthogonal space and time

axes Ox, Ot for the observers at rest is a pure convention, as it was already the case
for the Galilean spacetime representation. A more general, but equivalent choice
which does not ascribe a special role to observers at rest would be the following. One
first gives oneself the pair of light world-lines (CR, CL) and one chooses for (Ox, Ot)
any pair of straight lines which are conjugate with respect to (CR, CL) (defined
intrinsically through the parallelogram construction). The analysis above would
have given the same result, namely that the time and space axes for any observer
Ov are carried by conjugate pairs (∆v, ∆′

v) with respect to (CR, CL). Among them,
the special pair which is orthogonal (namely the bisectors of (CR, CL)) would then
be associated with a certain uniform motion having no special physical properties:
in fact, it was one of the primary ideas of special relativity theory that systems
in uniform motions are physically indistinguishable . So, as in the Galilean case,
we keep the idea that the orthogonality of the rest system is only a convenient
convention, but there is a whole class of equivalent representations of the planar
relativistic spacetime in which the following notions have an absolute meaning: i)
the light lines (CR, CL) and ii) the systems of conjugate pairs (∆v, ∆′

v) for the
coordinate axes of uniform motions, including the rest system.

ii) “superluminal motions”

For O0, the line ∆′
v might be interpreted as the world-line of a superluminal mo-

tion with velocity 1
v (= c2

v ). . . . But this would be very strange, since all the events
of that line are perceived as simultaneous by Ov: for the latter, a hypothetic ob-
server O′

v with world-line ∆′
v would then have the “ubiquity property” (tv = 0, xv

arbitrary)! The interpretation of this motion would become even more paradoxical
for an observer Ow with velocity w such that v < w < c. In fact, one can easily
check geometrically (by using the property a) of conjugate pairs in the previous
remark) that for Ow the line ∆′

v is parametrized by a time-coordinate tw which is
negative decreasing, while t is positive increasing: for Ow, the hypothetic observer
O′

v would be traveling back to the past !
The latter remark strengthens the meaning of part a) of our fourth postulate

and justifies that the cones V + and V − be considered respectively as the absolute
future and past of the event O. It can now be fully understood that all events
represented by points X outside the union of V + and V − (like the points of
any line ∆′

v) are in “acausal” relation with the event O: no physical signal can
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propagate either from O to X or from X to O.

2.3 Space-ships’ flight: the anniversary curve

So far, we have discovered the conjugate directions of the space and time coordinate
axes of all observers in uniform motions, but what remains unknown are the scales
of time and length along these axes. As a matter of fact, we already see that only
the scale of time remains a problem, since once it is known, the scale of length
immediately follows from the knowledge of the velocity of light (universal for all
uniform motions).

To set this problem of time scaling in an illustrative way, we consider a set
of space-ships flying away simultaneously from the same place, let us say at the
event O, along the unique horizontal direction Ox, but with various velocities vi

either rightwards (0 < vi < 1) or leftwards (−1 < vi < 0) (with units such that
c = 1); one of them remains at rest (v0 = 0). All space-ships contain observers
Ovi equipped with identical clocks, and all these observers are invited to celebrate
the anniversary of their common departure by representing these events (each
anniversary event in the corresponding space-ship) by points correctly situated in
spacetime. On what curve H of the plane (Ox, Ot) will all these points be situated?

In the case of Galilean spacetime where time is absolute, the answer to that
question is trivial, namely the straight line with equation t = 1. In the present
framework of spacetime, governed by the five postulates stated in Sec. 2-1, one
determines the curve H by showing that it must satisfy the following property.

Theorem. For each point X of H , there exists a tangent to H at X whose direction
is conjugate of (OX) with respect to the pair (CR, CL).

Proof. This result follows directly from the conjugacy property of space and time
axes established in Sec. 2-2 together with our fifth postulate. In fact, we know that
for a given observer Ov whose world-line ∆v = (OX) contains the anniversary
event X (xv = 0, tv = 1), the straight line of simultaneous events (tv = 1) is
the parallel by X to the conjugate direction of ∆v; in view of the parallelogram
construction, this parallel intersects CR and CL in two points M and N such
that X is the middle of MN . Now the fifth postulate asserts that for observers
O′

v with velocity v′ very close to v (this is what means “with very small relative
velocities with respect to Ov”) the corresponding anniversary event Xv′ should be
represented with an excellent approximation by the Galilean representation of Ov,
namely by the point at the intersection of the world-line ∆v′ and of the straight
line with equation tv = 1, i.e. (MN). This means that, in mathematical language,
the straight line (MN) has to be the tangent to the unknown curve H at the point
X (see fig. 5).

Now it is well-known in elementary geometry that every curve H, whose
tangent at each point X intersects two given (nonparallel) straight lines CR, CL

at two points M , N such that X is the middle of MN is a branch of hyperbola
with asymptotes CR and CL.
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Figure 5: The anniversary curve

Since it must contain the anniversary event at rest X0 = (x = 0, t = 1), the
anniversary curve H is therefore uniquely determined as the branch of hyperbola
whose equation is t2 − x2 = 1, t > 0 (fig. 5). The anniversary point X = Xv of
any observer Ov is thus given by the formulae

t(v) =
1√

(1 − v2)
, x(v) =

v√
(1 − v2)

(where |v| < c = 1).

It is convenient to introduce instead of the velocity v the parameter χ called the
rapidity which is defined by v = tanhχ; χ is a “hyperbolic angle” which takes
all possible values from −∞ to +∞. The previous formulae can then be rewritten
equivalently in the following form, which is similar to the angular parametrisation
of the circle:

t(v) = coshχ, x(v) = sinh χ.

2.4 Minkowskian (pseudo-)distance and the inverse triangular inequality:
the twin “paradox”

From the algebraic viewpoint, the hyperbola with equation t2 − x2 = a2 present
strong similarities with the circles with center O and radius R, whose equations
are x2 + y2 = R2 in orthonormal coordinates. They are “level curves” of a certain
“quadratic form” X → Q(X) (with X = (x, t) or X = (x, y)) specified by a
second-degree homogeneous polynomial (Q(X) = t2 − x2 or Q(X) = x2 + y2)

This mathematical analogy between the hyperbola and the circle admits here
a physical counterpart which is very striking. In fact, after the analysis of Sec. 2-3
we naturally come to the idea that our problem of space-ship travelers and its
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solution are quite comparable to the following very elementary situation in Eu-
clid’s planar geometry. Consider walkers equipped with identical graduated rods
who start from the same point O along various straight lines and cover the same
distance R: they all have reached the circle with center O and radius R. While
the latter statement appears trivial to us because of our visual perception of ge-
ometry, the former result concerning the “anniversary curve” H tells us that indi-
vidual time-measurements made by observers in uniform motion or, as one says,
“proper-time measurements” inform us about the existence of a certain kind of
“time-like distance” in spacetime between events related by physical causality.
For that “time-like distance” which we shall also call “Minkowskian distance”, H
appears as a unit level-curve with starting point O and in the future of O. Of
course all the level-curves of that Minkowskian distance will appear as homoth-
etic hyperbolae centered at O with equations t2 − x2 = a2; they are obtained
from H by either a dilatation or a contraction scale factor and completion by the
“past branches”. In fact, each of these hyperbolae contains two branches which
are distinguished by the sign of t: the branch on which t remains positive (as the
anniversary curve H) is contained in the (absolute) future V + of O, while the
branch on which t remains negative is in the (absolute) past V − of O: this is the
case for the “negative anniversary curve” which is the set of all past events X from
which a one-year travel until O is possible via a uniform motion.

In Euclidean space the notion of distance d(A, B) between two points is char-
acterized by the validity of the triangular inequality: d(A, B) ≤ d(A, C)+d(B, C),
the equality being obtained if and only if the points A, B, C are on the same
straight line. This fact is illustrated geometrically by constructing such triangles
(ABC) with given side-lengths a, b and c: one just has to check the intersection
property of circles with centers A and B, whose sum of radii b and a is larger than
d(A, B) = c (fig. 6).

B A 

O 

X 

I 

J 

Figure 6: d(O, X) ≤ d(O, A) + d(A, X)
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In the spacetime plane (Ox, Ot), which we shall now properly call
the Minkowskian plane, a similar geometrical construction shows that there ex-
ists again a triangular inequality for the Minkowskian distance dM , but with the
inverse sign, namely we have:
Minkowskian triangular inequality: Let three points O, A, X be such that A and
X be in V +, with X in the future of A (X ∈ V +(A)), then the corresponding
Minkowskian distances satisfy the inequality:

dM (O, X) ≥ dM (O, A) + dM (A, X),

the equality being obtained if and only if the points O, A, X belong to the same
straight line.
The fact that dM (O, X) = dM (O, A) + dM (A, X) when O, A and X are aligned
just expresses the additivity of the corresponding proper time intervals measured
by an observer whose world-line is (OAX). Let us now consider the general case
when O, A and X form a (non-flattened) triangle. We then consider two branches
of hyperbola containing the point A: the first one, called H+

O is centered at O and
lies in the future cone of O, while the other one, called H−

X is centered at X and
lies in the past cone of X (see fig. 7).
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Figure 7: dM (O, X) ≥ dM (O, A) + dM (A, X)

H+
O and H−

X intersect each other at A and at another point B (such that the
straight lines (AB) and (OX) have conjugate directions with respect to (CR, CL)).
Now the straight line (OX) intersects H+

O and H−
X respectively in two points I and

J such that the order of increasing times for the events along (OX) is: O, I, J, X .
We therefore have

dM (O, X) = dM (O, I) + dM (I, J) + dM (J, X) ≥ dM (O, I) + dM (J, X).
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But since H+
O and H−

X are level-curves for Minkowskian distances we have:

dM (O, I) = dM (O, A) = dM (O, B) and dM (J, X) = dM (A, X) = dM (B, X),

which implies the Minkowskian triangular inequality.
We notice that what makes the difference between the Euclidean and the

Minkowskian cases is the concavity of the region between one branch of hyperbola
and its asymptotes, to be compared with the convexity of the region inside a circle.

The “twin paradox”

The physical interpretation of this inverse triangular inequality is the famous “twin
paradox” of special relativity, which actually no longer appears as a paradox if one
gets rid of the concept of absolute time, since it expresses in a very illustrative
way the content of the Minkowskian geometrical structure of spacetime.

One compares the aging of two persons between two events such as O and X
at which they meet together. X can be chosen on the time-axis Ot and one of these
persons is supposed to stay on the earth, namely on the world-line (OX). During
that time, the other person (which we can imagine in O as the twin of the former)
is submitted to a one-year travel in uniform motion (with a velocity v which is not
small with respect to c) until the event A is reached; then this traveler comes back
to the earth with the opposite uniform motion, namely with the opposite velocity
−v. So two years have past between O and X for the traveller, while the aging
of the twin at rest was two years plus the time represented by the Minkowskian
distance dM (I, J).

Exercise: Compute dM (I, J) in terms of v
c . In terms of the rapidity χ, one finds

that

dM (I, J) = 2(coshχ − 1).

What should the value of v
c be equal to in order to produce a shift of one year

between the ages of the twins ?

2.5 Spatial equidistance and the “Lorentz contraction” of lengths

In order to complete the coordinatization of spacetime associated with an observer
Ov, we reconsider the anniversary event X = Xv of such an observer, situated at
the intersection of the curve H and of the world-line ∆v. Since the points M and
N of the tangent to H at X belong respectively to the light world-lines CR and CL

and represent events which are simultaneous for Ov with the time tv = 1, they also
define the spatial-distance unit for Ov in view of our fourth postulate (part b)).
One can thus write (with a standard choice of orientation) M = (xv = 1, tv = 1),
N = (xv = −1, tv = 1). This defines the spatial unit vector [OX ′

v] of Ov to be such
that the quadrilateral (OX ′

vMXv) is a parallelogram (fig. 8). OX ′
v is thus the unit

vector of the space-axis ∆′
v of Ov, conjugate to ∆v with respect to (CR, CL).
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Figure 8: Equidistance curve and “contraction of lengths”

The curve of spatial equidistance H ′: It is clear that the point X ′
v is the transform

of Xv by the symmetry SR with axis CR which exchanges the rest-frame coordinate
axes Ox and Ot. This means that if one puts Xv = (x, t) and X ′

v = (x′, t′), then
x′ = t, t′ = x. Therefore X ′

v belongs to the curve H ′ with equation

t′2 − x′2 = −1, x′ > 0,

which is a branch of hyperbola with asymptotes CR and CL, obtained from H by
applying the symmetry SR.

As we shall see in Sec.3-2, the curve H ′ can be physically interpreted as
the world-line of a uniformly accelerated motion. What is remarkable is the fact
that an observer submitted to that motion always remains spatially equidistant
from the fixed event O, since the latter is the center of the hyperbola H ′. It even
remains perpetually contemporaneous of the event O (as this will be fully explained
in Sec.3).

Let us now consider the hyperbola composed of the curve H ′ and of the op-
posite branch (from the side x′ < 0), together with all the homothetic hyperbolae
H ′(a) with equations t2 − x2 = −a2 (taken for all values of a). These are level
curves of the Minkowskian quadratic form Q(X) = t2 − x2 which cover the two
regions of spacetime defined by |t| < |x|, and respectively x > 0 and x < 0. These
two regions in which Q(X) remains negative are called space-like regions. Any
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point X in either one of these regions represents an event which is in “acausal”
relation with respect to O.
The spatial triangular inequality
The previous construction shows that for any spacelike event X ′ in a hyperbola
H ′(a), the usual Euclidean spatial distance d(O, X ′) between O and X (measured
in the system (∆, ∆′) such that ∆′ = (OX)) is given by

d(O, X)2 = −Q(X).

Let now (OA′X ′) be a triangle whose three sides have spacelike directions. Then
the corresponding (spatial) lengths of these sides satisfy the following Minkowskian
triangular inequality

d(O, X ′) ≥ d(O, A′) + d(A′, X ′).

The proof of the latter is immediate by noticing that the symmetric of the triangle
(OA′X ′) with respect to the axis CR (or CL) is a triangle (OAX) whose all sides
have time-like directions; moreover by construction, the spatial lengths of the sides
of the triangle (OA′X ′) are equal to the Minkowskian (proper-time) distances of
the corresponding sides of (OAX). Therefore the triangular inequality for (OAX)
(see Sec.2-4) can be transported for (OA′X ′).
The contraction of lengths
Another surprising property which results from the Minkowskian geometry of
spacetime is the famous apparent contraction of lengths. Here is the argument,
which can easily be understood geometrically with the help of fig. 8. Consider a
one-dimensional rigid body in uniform motion linked with the observer Ov; at the
time tv = 0, it can be represented for example as the linear segment [OX ′

v] (with
unit length for Ov). Then the set of world-lines of all the points of that rigid body
generate a strip (in hatching on fig. 8) which is bordered by ∆v and by the parallel
to ∆v at X ′

v. The latter is the tangent to the curve H ′ at X ′
v, which intersects Ox

at the point A whose abscissa is 1
cosh χ < 1. It is clear that the passage of the rigid

body at time t = o in the rest system occupies the segment [OA]: the apparent
contraction of length of the moving rigid body is therefore equal to

δ(v) = 1 − 1
coshχ

= 1 −
√

1 − v2.

2.6 Lorentz transformations in the Minkowskian plane and
two-dimensional Lorentz frames

To summarize the previous constructions, we can say that the light world-lines CR

and CL separate the Minkowskian (vector) plane with origin O into four angular
regions: the future and past time-like regions V +, V − are characterized by the
positivity of the quadratic form Q(X) .= t2 − x2; the spacelike regions by the
negativity of Q(X). Up to a sign, Q(X) gives the square of the distance between
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O and X , but this distance is either time-like (measured by a clock) or spatial
(measured by a rod). Here is the full meaning of the non-positive-definite character
of the Minkowskian quadratic form Q(X). In contrast with the Euclidean case, the
set defined by the equation Q(X) = 0 does not reduce to O but is the union of the
light world-lines CR and CL: two events separated by the propagation of a light
ray have a mutual Minkowskian distance equal to zero.

We are now going to transfer to the Minkowskian plane some basic notions
of the Euclidean plane: there is a dictionary between the languages of these two
worlds, but also big differences due to the privileged role of the pair of straight lines
(CR, CL) in the Minkowskian case. (Note however that in the Euclidean case, a
similar structure would also be recovered by a complexification of the coordinates:
the pair of “isotropic lines” with equations x = ±iy then plays the same role as
the pair (CR, CL)).

In the Euclidean vector plane, the elementary notion of angle is complemen-
tary to the notion of norm (or distance) in the following sense. The circles centered
at the origin O are invariant under the rotations with center O and arbitrary an-
gle θ. These rotations R(θ) form a commutative group: R(θ′)R(θ) = R(θ + θ′).
Each system of orthonormal axes (∆, ∆′) is transformed by any rotation R(θ)
into another orthonormal system (∆(θ), ∆′

(θ)). The corresponding two coordinati-
zations of the Euclidean plane, denoted respectively by [OX ] = (x, y) and [OX ] =
(x(θ), y(θ))θ, are such that the Euclidean quadratic form Q(X), identified with the
squared norm of the vector [OX ], is invariant:

Q(X) .= [OX ]2 = x2 + y2 = x2
(θ) + y2

(θ).

In the Minkowskian vector plane, it is the notion of “rapidity” or “hyperbolic
angle” χ which plays the role of the angle θ. One can in fact also introduce a
commutative group of transformations L(χ) called “the Lorentz group in the plane”;
in the spirit of this paper, it is also suggestive to call it “the group of hyperbolic
rotations”. It acts in such a way that all the branches of hyperbola centered at
the origin with asymptotes (CR, CL) are invariant under all the transformations
L(χ). Moreover all the previous statements of the Euclidean case remain valid, if
one replaces the pairs of orthonormal axes by pairs of conjugate axes (normalized
by the curves H and H ′ as it has been explained above) and if Q(X) now denotes
the non-positive-definite Minkowskian quadratic form, or “squared (pseudo)norm”
of the vector [OX ].
The Lorentz group in the plane
One can give an elementary presentation of the action of the transformations L(χ).
These transformations of the plane are linear; so it is sufficient to know their action
on two independent vectors OM , ON and convenient to choose the latter lightlike,
namely along the lines CR and CL. We put:

L(χ)[OM ] = eχ[OM ], for M in CR,

L(χ)[ON ] = e−χ[ON ], for N in CL.
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The lines CR and CL (and thereby the set with equation Q(X) = 0) are separately
conserved by these transformations: in fact, they provide two one-dimensional
representations of the multiplicative group (eχeχ′

= eχ+χ′
). Now every vector

[OX ] can be decomposed in the form [OX ] = [OM ] + [ON ], with respect to the
pair (CR, CL), so that we can define by linearity:

[OX(χ)]
.= L(χ)[OX ] = eχ[OM ] + e−χ[ON ].

That means that the coordinates u(χ) = eχ > 0, v(χ) = e−χ > 0 of the point
X(χ) with respect to the (“light”-)basis ([OM ], [ON ]) satisfy the equation

u(χ) × v(χ) = 1,

which represents a branch of hyperbola with asymptotes (CR, CL). It then follows:
Basic geometrical property of the Lorentz transformations
All the level curves of Q(X), either in the time-like or in the spacelike regions
and including also the light-like world-lines (Q(X) = 0), are left invariant by the
action of all the transformations L(χ).

One also checks the commutativity property of this group, namely the validity
of the relation L(χ′)L(χ) = L(χ+χ′) for all χ, χ′, which is built-in in the previous
definition.
Transforms of conjugate axes
Let us now consider the pair of unit vectors [OX0] = (0, 1), [OX ′

0] = (1, 0) of the
coordinate axes at rest. We will show that each transformation L(χ) transports
this pair into the corresponding pair of unit vectors [OXv], [OX ′

v] of conjugate
coordinate axes (∆v, ∆′

v) such that v = tanhχ. To see this, we introduce the
two lightlike vectors [OM0] = (1

2 , 1
2 ) and [ON0] = (− 1

2 , 1
2 ) such that [OX0] =

[OM0] + [ON0] and [OX ′
0] = [OM0]− [ON0]. In view of the previous definition of

the action of L(χ), we thus have

L(χ)[OX0] = eχ[OM0] + e−χ[ON0] = (sinhχ, coshχ) = [OXv],

L(χ)[OX ′
0] = eχ[OM0] − e−χ[ON0] = (coshχ, sinh χ) = [OX ′

v].

One can also compute similarly the action of another transformation L(χ′) on
the pair ([OXv], [OX ′

v]); it gives another conjugate pair ([OXw], [OX ′
w]) where

w = tanh(χ + χ′). In fact one has

L(χ′)[OXv] = (sinh(χ + χ′), cosh(χ + χ′)) = L(χ + χ′)[OX0] = [OXw ],

L(χ′)[OX ′
v] = (cosh(χ + χ′), sinh(χ + χ′)) = L(χ + χ′)[OX ′

0] = [OX ′
w ].

Additivity of rapidities
The previous computation shows that the action of the commutative group of
“hyperbolic rotations” L(χ) on pairs of conjugate axes (∆v, ∆′

v) (normalized by
H and H ′) is similar to the action of the group of rotations R(θ) on pairs of
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orthonormal axes. A physical interpretation of the latter concerns the composition
law of velocities: the Galilean “law of additivity of velocities” is replaced by the
Minkowskian “law of additivity of rapidities”. If a relativistic particle A has the
rapidity χ with respect to the earth and emits in the forward direction a particle
B with rapidity χ′ in its center of mass system, then B has the rapidity χ+χ′ with
respect to the earth. The corresponding composition law for velocities is therefore:

w = tanh(χ + χ′) =
tanhχ + tanhχ′

1 + tanhχ tanhχ′ =
v + v′

c(1 + vv′
c2 )

.

Lorentz frames and Lorentz invariance of Q(X)
Every vector [OX ] = t[OX0]+x[OX ′

0] of the Minkowskian plane can be rewritten
as

[OX ] = tv[OXv] + xv[OX ′
v]

for any choice of conjugate axes (∆v, ∆′
v) with unit vectors ([OXv], [OX ′

v]). We
shall also write in short: [OX ] = (x, t) = (xv, tv)v. Choosing such a coordinatiza-
tion is also called “choosing a Lorentz frame with velocity v (or rapidity χ)” in the
Minkowskian plane.

The last point to be checked for completing the parallel between the Lorentz
group in the Minkowskian plane and the rotation group in the Euclidean plane is
the “invariance property of the Minkowskian quadratic form by changes of Lorentz
frame”, namely the fact that for any Lorentzian coordinatization X = (x, t) =
(xv, tv)v, one has the invariance relation

Q(X) = t2 − x2 = t2v − x2
v.

To show this, we associate with v = tanhχ the Lorentz transformation L(−χ)
(namely the inverse of L(χ)) which pulls the pair [OXv], [OX ′

v] back to the pair
at rest [OX0], [OX ′

0]. With every vector [OX ] = (x, t) = tv[OXv] + xv[OX ′
v] we

can then associate its transform [OX(−v)] .= L(−χ)[OX ] = tv[OX0] + xv[OX ′
0] =

(xv, tv). Then according to the basic geometrical property of Lorentz transforma-
tions, the points X(−v) and X belong to the same level-curve of Q(x), which
proves the invariance relation written above.
Change of Lorentz frame in the light-cone coordinatization
For the rest-frame as well as for the Lorentz frame with rapidity χ, it is convenient
to introduce the corresponding light-cone coordinates of the point X = (x, t) =
(xv, tv)v, namely

(U .= t + x, V
.= t − x), (Uv

.= tv + xv, Vv
.= tv − xv).

Let us treat the case when X belongs to the region V + (i.e. U > 0, V > 0); the
three other regions would be treated similarly. The invariance property of Q now
takes the very simple form

Q(X) = UV = UvVv
.= a2,
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which allows one to parametrize that region in terms of “hyperbolic polar coordi-
nates” (a, Ψ) (resp. (a, Ψv)) with a > 0, namely:

U = aeψ, V = ae−ψ; Uv = aeψv , Vv = ae−ψv .

But we know that ψ = ψv + χ (this is the action of the “hyperbolic rotation with
rapidity” χ that has been presented above). One thus obtains the very simple
relation

Vv

Uv
=

V

U
× e2χ

which defines completely the change of Lorentz frame in this light-cone coordina-
tization.

2.7 The four-dimensional Minkowski’s spacetime; tetrads, Lorentz group
and Poincaré group

Up to now we have concentrated on relativistic motions along a single direction
of space (Ox), which allowed us to construct a two-dimensional section (Ox, Ot)
of Minkowski’s spacetime and to introduce the corresponding group of Lorentz
transformations in this Minkowskian plane.

We shall now show how the geometrical exploitation of the five postulates
(stated in Sec.2-1) can be extended so as to construct the full four-dimensional
Minkowski’s spacetime. This can be performed in four steps:

i) Use of the rotational symmetry for the observer O0

According to our first postulate, the observers at rest can represent each event X
as follows:

X
.= (x1, x2, x3, ct)

.= (x, ct) .= (|x| j, ct),

where j denotes a spatial unit vector (|j| = 1) which may serve to indicate a
direction of motion. In fact, if we consider uniform motions passing at O with
velocity v .= vj oriented in a given spatial direction j, we can reproduce all the
previous considerations (from Sec.2-2 to Sec.2-6) for representing these motions in
a Minkowskian plane generated by the axis with unit vector j and Ot. By analogy
with geographical representations of space, such planes can be called meridian
planes of spacetime with respect to the observers at rest.

So one can say that by rotational symmetry (all the directions j being equiv-
alent), the union of anniversary curves in all meridian planes generate an “an-
niversary hypersurface”, still denoted by H . This is the set of events Xv reached
by all observers Ov starting together from O towards all possible directions j of
space, after one year has elapsed at their own clock. H is a sheet of a two-sheeted
hyperboloid whose equation is

(ct)2 − (x2
1 + x2

2 + x2
3)

.= (ct)2 − x2 = c2; t > 0
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Here we have restored the unit-independent notation including c. We shall gen-
erally keep it also in the next sections in order to always exhibit explicitly the
physical dimensionality of the quantities involved.
This anniversary hypersurface H can be seen as providing by itself a geometrical
characterization of all the uniform motions. In fact, one can say that any pointlike
object in uniform motion is characterized by the Minkowskian vector [OXv] .= cu
whose tip (Xv) belongs to H . Putting u

.= (u1, u2, u3, u0)
.= (u, u0), one then has:

u2 .= u2
0 − u2

1 − u2
2 − u2

3
.= u2

0 − u2 = 1, with u0 > 0.

In the latter u2 denotes what we call the squared Minkowskian pseudonorm of u,
and u is also called a timelike unit vector (Note that the anniversary hypersurface
H is now normalized at c).

Equivalently u can be characterized by the pair (χ, j), where χ is the rapidity
(such that v = c tanhχ) and j specifies the direction of the motion, according to
the following formulae

u0 = coshχ =
1

[1 − v2

c2 ]
1
2
,

u = sinh χ j =
v
c

[1 − v2

c2 ]
1
2

j.

This leads one to call the Minkowskian vector cu = (cu, cu0) the “relativistic
velocity vector” since its space-component admits a small-velocity expansion

cu = v(1 +
v2

2c2
) + · · · ,

which reproduces the velocity vector v in the first-order Galilean (or “non-
relativistic”) approximation. The unit vector u can then be called the “dimen-
sionless” relativistic velocity vector of the uniform motion.

The same considerations of rotational symmetry lead one to introduce the
one-sheeted hyperboloid with equation

(ct)2 − (x2
1 + x2

2 + x2
3)

.= (ct)2 − x2 = −c2,

which is obtained as the union of all branches of hyperbola H ′ in the meridian
planes generated by a space axis with unit vector j and Ot. This hypersurface, still
denoted by H ′ is the set of all points X ′

v such that the pair of axes (∆v, ∆′
v) are

conjugate with respect to the light world-lines inside the corresponding meridian
plane. The (hyper)surfaces H and H ′ are represented on fig. 9.
The Minkowskian quadratic form Q(X)
In view of the fundamental role played by H and H ′, we are led to introduce the
following quadratic form on the four-dimensional Minkowski’s spacetime:

Q(X) .= (ct)2 − x2
1 − x2

2 − x2
3,
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Figure 9: A representation of the four-dimensional Minkowski’s spacetime: Level
surfaces H , H ′ of Q(X) and a conjugate pair (∆v, Πv) are indicated. The upper
part of the light-cone is visible as an elliptic arc between H and H ′.

whose level (hyper)surfaces are described as follows:
a) all the sheets of hyperboloids centered at O which are homothetic to H

and lie either in V + or in V −. They correspond to Q(X) > 0.
b) all the one-sheeted hyperboloids centered at O which are homothetic to

H ′. They correspond to Q(X) < 0.
c) the light-cone C whose equation is Q(X) = 0.
We shall denote by Ĥ anyone of these level hypersurfaces of Q(X).

ii) Conjugacy properties: the space hyperplanes Πv

The analysis of all simultaneous events with respect to any given observer Ov can
be performed along the same line as in Sec.2-2, even if the geometry is a bit more
complicated than in the Minkowskian plane. In fact, the principle is always the
same, being based on the second postulate which settles the light-cone C as the
primary absolute element of spacetime. Being given an observer Ov with world-line
∆v (inside the light-cone C) and a space-direction ∆′ (i.e. by definition outside
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the light-cone C), these two straight lines determine a plane P which intersects C
along a pair of light-lines. Now we can say that ∆′ is a direction of simultaneity
for Ov if, in the plane P , ∆v and ∆′ are conjugate with respect to the light-lines of
P : that means that by performing the parallelogram construction of Sec.2-2 (fig.
3), in the plane P , with ∆v as the given diagonal, one obtains ∆′ as the direction
of the second diagonal. In view of the universality of the light-velocity (fourth pos-
tulate) completed again by “isochronousness” (third postulate), this geometrical
construction remains the universal criterion of simultaneity with respect to Ov.
We shall now show the following:

Linearity property: The set of all directions of simultaneity ∆′ for Ov is a three-
dimensional linear subspace. This hyperplane Πv is physically interpreted as pro-
viding the space-slices at constant time tv for Ov.

Let us show that if ∆′
1 and ∆′

2 are directions of simultaneity for Ov, then any
direction ∆′ in the plane determined by these two directions is also a direction
of simultaneity for Ov. Given the planes P1 and P2 determined respectively by
(∆v, ∆′

1) and (∆v, ∆′
2) and given any point X of ∆v in V + , one can construct

the corresponding parallelograms (OA1XB1) and (OA2XB2) whose all sides are
light-like segments (as in fig. 3 of Sec.2-2) and whose diagonals A1B1 and A2B2

are respectively parallel to ∆′
1 and ∆′

2 and intersect at the middle of OX . Since
the four-points A1, A2, B1, B2 all belong to the future light-cone C+, as well as to
the past light-cone C−(X) with apex X , they belong to their intersection which
is an ellipse E: A1B1 and A2B2 are diameters of this ellipse. If we now consider
any direction ∆′ in the plane determined by ∆′

1 and ∆′
2, which is parallel to the

plane of E, we see that the diameter of E parallel to ∆′ intersects E in two points
A and B such that (OAXB) is a lightlike-sided parallelogram: therefore ∆′ is a
direction of simultaneity for Ov. This proves that the set of directions of simul-
taneity for Ov is a linear subspace of the spacetime. The fact that this subspace
Πv is three-dimensional is easy to see: Assuming that it were two-dimensional,
it would determine with ∆v a three-dimensional subspace S of spacetime outside
which no spacelike direction ∆′ could be a direction of simultaneity for Ov. But
let us then pick up any spacelike direction ∆′ outside S. It determines with ∆v

a plane P ′ which intersects C along two light-lines and therefore allows one to
construct a direction of simultaneity ∆” for Ov inside P ′. Since P ′ can intersect
S only along ∆v (if not, it would be contained in S and ∆′ would be contained in
S), the assumption cannot be true.

To summarize, we have associated with each world-line ∆(u)
.= ∆v with

timelike unit vector u, a corresponding spacelike hyperplane Π(u)
.= Πv which

can be called the conjugate hyperplane to ∆(u). The intersection of Π(u) with
the one-sheeted hyperboloid H ′ is an ellipsoid E(u)

.= Ev which is the set of all
events X in Π(u) such that Q(X) = −c2. This hyperplane and the corresponding
ellipsoid are tentatively illustrated on fig. 9 (as a plane and an ellipse represented
in perspective).

At that point of our study, it remains to show the following essential property.
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All the events in E(u) are interpreted by the observer O(u) with world-line ∆(u),
as all the simultaneous events at zero time which take place at (lightyear) unit
distance from the origin in all possible directions of space. In other words, the
ellipsoid E(u) (as well as all the homothetic ellipsoids having their centers on the
axis ∆(u)) are perceived as spheres centered at the origin by the corresponding
observer O(u). This will be displayed in the next step.

iii) Four-dimensional Lorentz transformations, tetrads and the invariant forms of
Q(X)

We consider the conjugate pair (∆(u), Π(u)) associated with a certain observer
O(u); [OX(u)] is the unit vector of the time-axis ∆(u) of O(u). We are look-
ing for coordinatizations of the Minkowskian spacetime adapted to that observer.
Such coordinatizations can be defined by choosing triplets of unit spatial vectors
[OX ′

(u),1], [OX ′
(u),2], [OX ′

(u),3] in the hyperplane Π(u), and by decomposing any
vector [OX ] of spacetime under the following form

[OX ] = (ct(u))[OX(u)] + x(u),1[OX ′
(u),1] + x(u),2[OX ′

(u),2] + x(u),3[OX ′
(u),3].

However the remaining problem consists in determining all possible triplets
[OX ′

(u),1], [OX ′
(u),2], [OX ′

(u),3] such that the Minkowskian quadratic form Q(X)
still has the same invariant form with respect to these new coordinates, namely:

Q(X) .= (ct)2 − (x2
1 + x2

2 + x2
3) = (ct(u))2 − (x2

(u),1 + x2
(u),2 + x2

(u),3).

In fact, if the latter is valid, it follows that the events X in the ellipsoid E(u) satisfy
the equations

t(u) = 0, x2
(u),1 + x2

(u),2 + x2
(u),3 = c2

and are therefore perceived by the observer O(u) as covering the whole
(lightyear-)unit sphere centered at the origin. In particular, the corresponding
triplet [OX ′

(u),1], [OX ′
(u),2], [OX ′

(u),3] will be interpreted as a spatial orthonormal
system for O(u). The tips of these three vectors themselves belong to the ellipsoid
E(u) and their mutual orthogonality (which corresponds to a certain “conjugacy
property with respect to the ellipsoid E(u)”) will be fully clarified in the last step
iv).

For the moment, we take the previous invariance property of Q as a basic cri-
terion to be satisfied by an orthonormal triplet in Π(u), and we say that the linear
transformation L(u) which transforms the unit vectors of the rest-frame [OX ′

0,1],
[OX ′

0,2], [OX ′
0,3], [OX0], into the “tetrad“ ([OX ′

(u),1], [OX ′
(u),2], [OX ′

(u),3],
[OX(u)]), is a Lorentz transformation of Minkowski’s spacetime. One also says
that this tetrad is affiliated to the conjugate pair (∆(u), Π(u)) and is admissible
for the observer O(u). Each tetrad and the corresponding coordinatization define
a Lorentz frame.

The construction of general Lorentz transformations relies on two basic spe-
cial classes:



The Geometry of Relativistic Spacetime 95

a) The group Lort of orthogonal transformations at rest

We consider the group of transformations which transform the initial rest-frame
into another rest-frame whose spatial axes form a new orthonormal (positively
oriented) system of the space (Ox1, Ox2, Ox3), while the time-axis Ot is preserved.
Since these transformations preserve the value of the spatial Euclidean (squared)
norm

x2
1 + x2

2 + x2
3 = x′

1
2 + x′

2
2 + x′

3
2
,

it is clear that they transform every point X of spacetime into a point X ′ such
that Q(X) = Q(X ′).

b) The group Lhyp of “pure Lorentz transformations”

Let us fix j along Ox1 and the vector ∆(u) with unit vector u
.= u(1) in the

Minkowskian plane (Ox1, Ot). Then it is easily checked that the conjugate hyper-
plane Π(u(1)) is generated by the conjugate axis ∆′

(u(1))
in the plane (Ox1, Ot) (see

fig. 8) together with the spatial plane (Ox2, Ox3). We then consider the linear
transformation which keeps all the vectors in the plane (Ox2, Ox3) fixed, and acts
as a two-dimensional hyperbolic rotation with rapidity χ in the plane (Ox1, Ot).
This transformation is called a pure Lorentz transformation of Minkowski’s space-
time. The corresponding change of coordinates is of the form

[OX ] .= (x1, x2, x3, ct) → [OX ′] .= (x′
1, x

′
2 = x2, x

′
3 = x3, ct

′),

where the passage from (x1, ct) to (x′
1, ct

′) has been given in Sec.2-6. It then follows
from the “basic geometrical property of the Lorentz transformations in the plane”
(see Sec.2-6) that one has:

Q(X) .= c2t2 − x2
1 − x2

2 − x2
3 = c2t′2 − x′

1
2 − x′

2
2 − x′

3
2 = Q(X ′).

It also results from the study of Sec.2-6 that these transformations form a com-
mutative group.

The most general Lorentz transformations

In order to construct the most general Lorentz transformation, we shall compose
special transformations of the previous groups Lort and Lhyp. We also keep in mind
that when such special Lorentz transformations act on any point X of spacetime,
the transform remains on the corresponding level hypersurface ĤX of Q(X) passing
at X : either on a spherical horizontal section of ĤX in the former case, or in a
hyperbolic section of ĤX parallel to the plane (Ox1, Ot) in the latter case.

Now we proceed as follows. Being given any conjugate pair (∆(u), Π(u)),
one can find a transformation L1 in Lort which transforms that pair into a pair
(∆(u(1)), Π(u(1))), with u(1) in the plane (Ox1, Ot). (It must transform the unit vec-
tor j of the horizontal component of u into the unit vector of Ox1). Then there ex-
ists a unique transformation L2 in Lhyp which transforms the pair (∆(u(1)), Π(u(1)))
into the pair at rest (Ot, (Ox1, Ox2, Ox3)).
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Let us now consider an arbitrary transformation L0 in Lort and define the
composition product

L(u)
.= L−1

1 ◦ L−1
2 ◦ L0.

We call ([OX ′
(u),1], [OX ′

(u),2], [OX ′
(u),3], [OX(u)]) the image by L(u) of the or-

thonormal system (or “reference tetrad”) ([OX ′
0,1], [OX ′

0,2], [OX ′
0,3], [OX0]), the

last vector [OX(u)] being (by construction) the time unit vector for the given ob-
server O(u). We then claim that this image is a general admissible tetrad affiliated
with the given pair (∆(u), Π(u)). This can be seen by an argument similar to the
one given at the end of Sec.2-6 for the two-dimensional case. With every vector

[OX ] = (ct(u))[OX(u)] + x(u),1[OX ′
(u),1] + x(u),2[OX ′

(u),2] + x(u),3[OX ′
(u),3],

one associates its “pull-back transform”

[OXpb]
.= L−1

(u)[OX ] = (ct(u))[OX0] + x(u),1[OX ′
0,1] + x(u),2[OX ′

0,2] + x(u),3[OX ′
0,3].

Then since L−1
(u) = L−1

0 ◦L2 ◦L1, one can make use of the fact that the successive
images X1, X2 and finally Xpb of X by the sequence of transformations L1, L2

and L−1
0 remain on the same level hypersurface of Q(X). This entails that

Q(X) = Q(Xpb) = (ct(u))2 − x2
(u),1 − x2

(u),2 − x2
(u),3.

Conversely, one sees by the same argument that any tetrad admissible for O(u)

is transformed by L2 ◦ L1 into a tetrad admissible for O0, which is thereby the
image by some transformation L0 in Lort of the reference tetrad defined by the
coordinate axes.
iv) Pseudoorthogonality and the group property of Lorentz transformations
Being given any pair of events X , X ′ in spacetime, let us define the following
symmetric expression

[OX ].[OX ′] .=
1
2
[Q(X + X ′) − Q(X) − Q(X ′)] = (ct)(ct′) − x1x

′
1 − x2x

′
2 − x3x

′
3,

in which the event X+X ′ denotes the tip of the vector [OX ]+[OX ′]. This algebraic
expression is similar to the one which defines the scalar product of two vectors x,
y in terms of the squared norms of x, y and x+y in Euclidean space. By analogy,
we shall say that the vectors [OX ] and [OX ′] are pseudoorthogonal if

[OX ].[OX ′] .= (ct)(ct′) − x1x
′
1 − x2x

′
2 − x3x

′
3 = 0.

It is easy to check that the vectors of the reference tetrad are mutually pseudo
orthogonal.

We know that the images of any event X by the transformations L in Lort or
in Lhyp remain on the level hypersurfaces of Q(X). Then it follows from the previ-
ous definition that the images of all pseudoorthogonal pairs by all these transfor-
mations are pseudoorthogonal pairs. This is therefore also true for all the Lorentz



The Geometry of Relativistic Spacetime 97

transformation L(u) constructed in the previous paragraph. So by applying this
result to the reference tetrad, we conclude that in every tetrad affiliated with any
possible conjugate pair (∆(u), Π(u)), all the vectors of the tetrad are mutually
pseudoorthogonal: so for the spacelike triplet in the tetrad, pseudoorthogonal-
ity coincides with the Euclidean notion of orthogonality inside Π(u), while the
pseudoorthogonality of this triplet with respect to [OX(u)] is identical with the
property of conjugacy introduced earlier. Taking into account the fact that all
the vectors [OX ] of a tetrad are unit timelike or spacelike vectors (i.e. such that
either Q(X) = c2 or Q(X) = −c2), we can say that all tetrads are systems of
pseudoorthonormal vectors with respect to Q.

In view of this characteristic property of tetrads, we can thereby conclude
that the action of any Lorentz transformation L(u) on any tetrad gives another
tetrad.

It follows that the composition product of two Lorentz transformation L(u1)◦
L(u2) is another Lorentz transformation (since it transforms the reference tetrad
into a tetrad). The definition of inverse transformations being obvious, we conclude
that all the transformations L(u) form a group, called the Lorentz group of the
four-dimensional Minkowski’s spacetime.

By adjunction of the translations of space and time, one obtains the more
general “inhomogeneous Lorentz transformations” which act on any vector [OX ]
as follows:

[OX ] → (L(u), a)[OX ] = L(u)([OX ]) + a;

in the latter, a denotes a given four-vector which specifies a translation Ta of
spacetime. The set of all the inhomogeneous Lorentz transformations form a group
which is called the Poincaré group.

Remark on the rest-frame and on the distorted appearance of the general Lorentz
frames
We note that among all the conjugate pairs (∆v, Πv), one and only one is orthog-
onal in the usual sense. The familiar choice of this orthogonal pair (e.g. vertical-
horizontal) for representing the rest-frame is a manifestation of our biased geo-
metrical perception which privileges orthogonality and sedentarity. But as in the
Galilean case, the observer at rest enjoys no special physical properties with respect
to any other observer in uniform motion (that’s again the “principle of relativity”).
So the verticality of the time-axis and the horizontality of space could have been
chosen for representing the Lorentz frame of any given uniform motion: there is
nothing deep in that choice. One can also say that the Minkowskian representation
of the spacetime of special relativity is defined for O0 (as well as for any observer
Ov) up to the arbitrariness in the choice of the Lorentz frame or in short up to
a Lorentz transformation: it is the equivalence class of all these representations.
But any chosen representation provides an absolute and faithful description of the
events of the universe. Another aspect of all that which deserves to be pointed out
again concerns the unavoidable “distorted visual perception” introduced by the
conjugacy property. We mean the fact that we have an ellipsoidal representation
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of the surfaces which are actually perceived as spheres by observers in uniform
motion. Probably the best way for becoming familiar with that strange aspect
of the Minkowskian representation consists again in using the metaphor of geo-
graphical maps. One can always represent a land on a map equipped with oblique
coordinates and different scales of length on the two coordinate axes. That’s awk-
ward for our perception, but it remains an absolute and faithful description of the
land. In the Minkowskian representation of spacetime, this is the price to pay for
having a global geometrical description of all the “spatial slices“, corresponding
to all possible observers in uniform motion !!

3 Accelerated motions and curved world-lines

The only motions that have been considered for stating the postulates of special
relativity and for constructing Minkowski’s spacetime are uniform motions. Their
world-lines are oriented straight lines whose direction belongs to the cone V + and
one also call them inertial motions by referring to the fact that no force is acting on
a pointlike object whose motion is of that type. Under the name of accelerated (or
noninertial) motions we shall denote the most general type of motion; such a mo-
tion is geometrically represented by a curved world-line in Minkowski’s spacetime.
A curved world-line is smooth if it is an oriented smooth curve admitting at each
point a tangent whose direction belongs to V +. A general world-line can be consid-
ered as an oriented union of smooth curved world-line segments. From the physical
viewpoint, objects endowed with motions of such a general type are submitted to
the action of a time-dependent force and to additional shocks which produce possi-
ble discontinuities in the direction of the tangent to the corresponding world-line.
Here we shall keep outside the treatment of dynamical problems of special rela-
tivity (except for the special case of uniformly accelerated motions considered in
Sec.3-2 and Sec.3-3). In fact, we shall only concentrate on the kinematical aspects
of these motions, which can be presented in terms of the Minkowskian geometry
of curved world-lines by pursuing our analogy with Euclid’s geometry.

3.1 Curvilinear distances and the slowing down of clocks

Recall on Euclidean space
Let γ be any curved path with end-points A and B in Euclidean space R3; we
suppose it to be smooth or composed of a finite succession of smooth paths. Math-
ematically, the length dγ(A, B) of the path γ is defined by the theory of curvilinear
integrals as

dγ(A, B) =
∫

γ

ds,

where ds denotes the Euclidean length element

ds = [dx2
1 + dx2

2 + dx2
3]

1
2 .
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This theory involves the following ideas:
i) conceptually, dγ(A, B) appears as the limit for N tending to infinity of the
length dN of an approximate polygonal path composed of jN successive small
linear paths of equal lengths 1

N , whose end-points Aj all belong to γ, with A1 = A
and d(AjN , B) ≤ 1

N . The points Aj can be constructed recursively by the following
rule: Aj is at the intersection of γ with the sphere of radius 1

N centered at Aj−1

(and such that Aj 	= Aj−2).
ii) physically, the length of the path γ can be measured by using a flexible gradu-
ated ribbon.
iii) numerically, the previous curvilinear integral can be computed by introducing
any parametrization of the form x .= (x1, x2, x3) = x(t) of γ, where t is a parameter
varying between tA and tB, such that x(tA) = A and x(tB) = B. One then has:

dγ(A, B) =
∫ tB

tA

ds

dt
dt.

The Minkowskian length or “proper time” of a curved world-line
The previous Euclidean considerations admit a close parallel for curved world-lines
in Minkowski’s space.

Let γ be any general curved world-line with initial and final events A and
B in Minkowski’s spacetime R4: the event B lies in the future of A (namely in
the future cone V +(A)). Mathematically, the Minkowskian length dγ(A, B) of the
world-line γ is again defined by the theory of curvilinear integrals as

dγ(A, B) =
∫

γ

ds,

but ds now denotes the Minkowskian length element or “proper-time element”

ds = [(c dt)2 − dx2
1 − dx2

2 − dx2
3]

1
2 .

This theory involves the same ideas as in the Euclidean case, but their physical
interpretation in terms of time-measurements must now be kept in mind:
i) conceptually, dγ(A, B) again appears as the limit for N tending to infinity of the
Minkowskian length dN of an approximate polygonal path. This path is composed
of successive small linear paths of equal Minkowskian lengths or time-like distances
1
N , whose end-points Aj all belong to γ, with A1 = A and d(AjN , B) ≤ 1

N . The
points Aj can now be constructed recursively by the following rule: Aj is at the
intersection of γ with the sheet of hyperboloid H+

Aj−1
( 1

N ) centered at Aj−1 and
whose all points lie in the future of Aj−1 and at the time-like distance 1

N from
Aj−1: this sheet of hyperboloid is homothetic to the anniversary surface of Aj−1,
and obtained from the latter by applying to it the scaling ratio 1

N .
ii) physically, the (time-like) length of the path γ can be measured by using a clock
which has to be as much insensitive to accelerations as possible. The fact that
atomic clocks satisfy such requirements with a high degree of robustness against
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strong accelerations has been established experimentally in various works around
1960 (see in particular the article by Sherwin [5]).
iii) numerically, the previous curvilinear integral can again be computed by in-
troducing any relevant parametrization of the path γ, but a specially significant
parametrization results in a very nice formula due to Einstein.
Einstein’s formula for the slowing down of clocks
One assumes that the events A and B occur at the same point xA = xB in the
rest system, so that physically the path γ may represent any motion starting from
xA at time tA and coming back to the same point at time tB .

Let us now choose precisely the time-coordinate t in the rest system as a rel-
evant parameter for the description of γ; the latter is thus given by a parametriza-
tion of the following form:

(x, ct) .= (x1, x2, x3, ct) = (x(t), ct), with tA ≤ t ≤ tB.

One then has:

ds

dt
= c

[
1 −

(
dx1

cdt

)2

−
(

dx2

cdt

)2

−
(

dx3

cdt

)2
] 1

2

= c

[
1 −

(
v(t)

c

)2
] 1

2

,

where dx(t)
dt

.= v(t) represents the instantaneous velocity of the motion in the rest-
frame at the rest-time t. By plugging the latter expression of ds

dt in the curvilinear
integral for dγ(A, B), one thus obtains:

dγ(A, B) = c

∫ tB

tA

[
1 −

(
v(t)

c

)2
] 1

2

dt ≤ c(tB − tA).

This formula thus exhibits the general phenomenon of “slowing down of the clock
attached to the world-line γ” with respect to the clock at rest. It provides a quan-
titative physical formulation of the following geometrical statement (namely the
most general form of the Minkowskian triangular inequality):

“IN MINKOWSKI’S SPACETIME, ANY TIME-LIKE STRAIGHT-LINE SEG-
MENT IS LONGER THAN ANY CURVED SEGMENT WITH THE SAME
END-POINTS.”
Remark. The previous computation provides an expression for the slowing down

σγ
.= (tB − tA) − 1

c
dγ(A, B)

which exhibits a very simple first-order approximation at low velocities (v
c small).

One gets:

σγ =
∫ tB

tA

1
2
v(t)2

c2
dt = (tB − tA)

v2
M

2c2
,
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where v2
M denotes the mean squared velocity of the motion with world-line γ be-

tween the initial and final times. This formula is remarkably interesting for per-
forming experimental checks of the slowing-down phenomenon, since vM may for
example be related to the temperature of atoms in thermal motion (see [5] and
references therein).

3.2 Minkowski’s description of accelerations

The instantaneous relativistic velocity vector for a general motion
We have seen in Sec.2-7 that any pointlike object in uniform motion is intrinsically
characterized by its normalized relativistic velocity vector u, which is a unit vector
in the Minkowskian sense: u2 .= u2

0 − u2 = 1. We can then pursue the parallel be-
tween smooth Euclidean curved lines and Minkowskian world-lines by considering
in both cases the notion of unit tangent vector u(X0) at any point X0 of the line.
If the line is parametrized by the length parameter s via a vector equation of the
form X = X(s), one then defines u(X0) at X0 = X(s0) by the equation:

u(X0) =
d

ds
X(s)|s=s0 .

In both cases the squared norm or pseudonorm of u(X0) is equal to 1, since one
has in view of the definition of ds2:
a) in three-dimensional Euclidean space (as an example)

u(X0)2 =
(

dx1

ds

)2

+
(

dx2

ds

)2

+
(

dx3

ds

)2

= 1.

b) similarly in Minkowskian spacetime:

u(X0)2 =
(

c
dt

ds

)2

−
(

dx1

ds

)2

−
(

dx2

ds

)2

−
(

dx3

ds

)2

= 1 with
dt

ds
> 0.

In the latter case, cu(X0) will be called the instantaneous relativistic (or
Minkowskian) velocity vector of the motion (X = X(s)) at the event X0. u(X0)
can be called the dimensionless instantaneous velocity vector.
The acceleration vector
According to Minkowski, one defines the acceleration vector γ(X0) at X0 as

γ(X0)
.= c2 du(X(s))

ds
|s = s0.

In the latter, the normalization factor c2 ensures the right dimensionality LT−2

of acceleration. Then by taking the derivative with respect to s of the equation
u(X(s))2 = 1, we obtain the pseudoorthogonality relation

γ(X).u(X) .= γ0u0 − γ1u1 − γ2u2 − γ3u3 = 0
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which is valid for all points X = X(s) of the world-line. In other words:
The Minkowskian acceleration γ(X) is always a spacelike vector which is conjugate
to u(X). The physical interpretation of the latter is that at any event X0 of the
world-line, the vector u(X0) indicates the corresponding time-axis ∆(u(X0)) of the
traveler, while the acceleration vector γ(X0) is contained in the conjugate hyper-
plane Π(u(X0)), interpreted by the traveler as the Euclidean space at time zero.
Then the Euclidean norm of this vector defines the intensity of the acceleration
which is felt by the traveler at the event X0. In view of the sign convention for
defining the squared Minkowskian pseudonorm of γ(X0), which is negative, it is
given by

|γ(X0)| = (−γ(X0)2)
1
2 .

Uniformly accelerated motions
We shall now present the Minkowskian treatment of one-dimensional uniformly
accelerated motions. Under this name, we now mean the motions represented by a
world-line in a Minkowskian two-dimensional plane (Ox, Ot), whose acceleration’s
intensity |γ(X)| is a constant γ. That means that the tip of the spacelike vector
γ(X) varies on a branch of hyperbola centered at O and homothetic either to the
curve H ′ or to its opposite in that plane (see Sec.2-5).

We will check that all such branches of hyperbola together with those ob-
tained from the latter by spacetime translations are themselves the world-lines of
uniformly accelerated motions. (For simplicity, we shall skip the proof of the fact
that they represent all the one-dimensional uniformly accelerated motions). We
introduce such hyperbolic world-lines by the following parametrization in which
the parameter τ will be seen to be the proper time of the motion (the notation τ
being thus substituted to the length notation s = cτ of the previous paragraph).

X = X(τ) .= (x(τ), ct(τ)) :

x(τ) = a cosh
cτ

a
+ x0, ct(τ) = a sinh

cτ

a
+ ct0.

We just have to compute successively:

u(X(τ)) =
d

d(cτ)
X(τ) = (u1(τ), u0(τ)) :

u1(τ) = sinh
cτ

a
, u0(τ) = cosh

cτ

a
,

which shows that u(X(τ))2 = 1.

γ(X(τ)) = c2 d

d(cτ)
u(X(τ)) = (γ1(τ), γ0(τ) :

γ1(τ) =
c2

a
cosh

cτ

a
, γ0(τ) =

c2

a
sinh

cτ

a
,
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from which it follows that γ(X(τ))2 = − c4

a2 is constant and yields the value γ = c2

a
for the acceleration. So one can say that the acceleration is proportional to the
“time-curvature” 1

a of the world-line.

Remarks.
a) Non-relativistic (or Galilean) approximation. It is clear that the hyper-

bolic world-line with equation x2 − (ct)2 = a2 or x = [(ct)2 + a2]
1
2 admits as a

second-order approximation near the event x = a, t = 0 the familiar parabola with
equation

x = a +
c2

2a
t2 = a +

1
2
γt2,

b) In Euclidean geometry, the “osculating circle” at a point X of a Euclidean
curve is obtained as the limit of the circle containing three neighbouring points
of the curve, when these three points tend together to X . Minkowski introduced
similarly (in [3]) a notion which can be called the “osculating uniformly acceler-
ated motion” of a general motion at the event X : its world-line is the limit of a
hyperbolic world-line containing three neighbouring events of the general motion,
in the limit when these three events tend to X .

3.3 A comfortable trip for the “Langevin traveler”

The standard presentation of the “twin paradox” (or “Langevin traveler”), which
amounts to a direct trip with return between a point of the earth and some far-
distant space station S, with large uniform velocity v in both directions, is remark-
able by its beautiful pedagogical simplicity. In fact, we have seen in Sec.2-4 that it
exactly illustrates what we called in geometrical terms the Minkowskian triangu-
lar inequality. However, since it appeared in the literature, various objections have
been raised whose point was generally to conclude that this was a school example,
which was probably physically incorrect or at best unrealistic. This type of opinion
has also been often endorsed by vulgarizers of special relativity, as a reassuring
thought with respect to what looks like a scandal for the common sense.

The main objection was about the instantaneous passage from velocity v to
velocity −v when reaching the term of the travel. Such passage had to be produced
by a shock, or even if smoothened by some decelerating device, it seemed to involve
so large accelerations that certainly the biological organisms and maybe the clocks
themselves could not stand such constraints. Now in view of Minkowski’s study of
uniformly accelerated motions (presented above in Sec.3-2), one can actually show
the possibility of organizing a more comfortable trip for the Langevin traveler, in
which the latter would be submitted to a constant acceleration (or deceleration)
We even impose (for making the acceleration biologically normal) that its value
be precisely equal to the value of the gravity acceleration g on the earth. Of
course, we admit that the whole travel will take place in the vacuum, far from any
gravitational source, in such a way that the flat Minkowskian spacetime remains
a reasonably good approximation to the real spacetime.
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After having specified an appropriate class of world-lines for that space-
traveler, the problem, which is purely geometrical, consists in comparing the length
of proper time τ (namely the timelike Minkowskian length) of the traveler’s world-
line with the corresponding time t that will have elapsed on the earth between the
traveler’s departure and return. A table of the corresponding values of τ and t
will be given below. Its result is striking: while the maximal value of τ fits with
a reasonably long life-time for a human being (let us say eighty-six years), the
corresponding value of t reaches about five billions of years, namely the age of the
earth !!

Of course, a second problem (which has a touch of dream as in anticipation
novels. . .) concerns the production of the constant acceleration for the spaceship on
which the traveler is going to live. If the acceleration is produced by either expelling
or disintegrating a mass of matter aboard the spaceship, as in conventional rockets,
one can make a simple computation of the minimal mass consumption based on
the relativistic law of energy-momentum conservation (see Sec.5 below). Assuming
that all the disintegrated mass is transformed into photons (which is the most
favorable process) it is possible to compute the ratio between the remaining mass
M(τ) at proper time τ and the initial mass M0 of the spaceship. The set of values
which are listed in the table indicate that that for τ larger than twenty years, the
procedure becomes radically unrealistic. In fact, the mass to be loaded aboard the
spaceship then becomes a non-negligible fraction of the mass of the earth (which
also means that gravitational effects have to be taken into account; the use of flat
Minkowski’s spacetime is no longer justified). But the limitations of this procedure
do not exclude the consideration of other types of possible propulsions, which could
make use for instance of energies available in the cosmic medium.

Choice of the motion

The trajectory is along a straight line joining the earth, denoted by S0, and the
space station S considered as at rest with respect to the earth. The travel which
is proposed is composed of

i) a uniformly accelerated motion with acceleration g from S0 to the middle
M of S0S;

ii) a uniformly accelerated motion with acceleration −g from M to S (namely
a phase of deceleration);

iii) the acceleration −g is maintained as in ii) and produces the first half of
the returning trip (i.e. from S to M);

iv) the acceleration is shifted from −g to g for producing a uniformly decel-
erated motion from M to S0.

It is clear that the discontinuity of the acceleration (from g to −g) produced
at M is bearable by the physical and biological systems in the spaceship: it is just
felt as a sudden inversion of the direction of the normal gravity g on the earth.

The spacetime representation of this motion is a world-line composed of three
successive arcs of hyperbolae with centers a, d and b (see fig. 10), namely:

i) an arc AC joining the departure event A on S0 to the end of the acceleration
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a 

b 

Figure 10: A comfortable world-line for the Langevin traveler

phase C at the point M ; this arc is parametrized by the proper time τ of the
spaceship according to the following equations:

x =
c2

g
(cosh

g

c
τ − 1), t =

c

g
sinh

g

c
τ.

ii) an arc CDE where D denotes the passage on S (no stop being expected
there) and the end-point E denotes the passage at M on the way back.

iii) an arc EB representing the last deceleration phase whose end-event B
represents the arrival on S0.

As it is visualized on fig. 10, the arcs CD, DE, and EB of the traveler’s
world-line are obtained from the arc AC by obvious symmetries and it is clear
that the total traveler-time length τB of the travel as well as the corresponding
earth-time length tB are respectively equal to four times the traveler-time length
τC and the corresponding earth-time length tC that have elapsed between A and
C. In view of the equations of AC this yields the following relation between tB
and τB :

tB = 4
c

g
sinh

g

c

τB

4
.

It is pleasant to notice that with our choice of units (i.e. years and lightyears) not
only c = 1 but also the earth’s value of g is very close to 1. We thus obtain the
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very simple formula

tB = 4 sinh
τB

4

whose numerical application can be found in the table.
We notice that for small values of the travel’s length of time τB , namely

between zero and four years, the corresponding values of the earth-time length tB
is not very different; this is because τB is the first-order approximation of 4 sinh τB

4
at small τB . But for larger travel’s lengths of time, the exponential character of the
sinh function becomes preponderous, which yields such overwhelming discrepancies
as two-thousand years of earth’s time for twenty-eight years of travel’s time and. . .
geologicallike ages for seventy years of travel’s time !

Mass decrease required for the spaceship’s propulsion

The equation for the rate of mass decrease will be fully justified in Sec.5 on the
basis of the relativistic law of conservation of the total energy-momentum of the
system. This equation is

d

dτ
M(τ) = −g

c
M(τ) = −M(τ),
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which therefore yields the formula

M(τB) = M0e
−τB

illustrated numerically in the table.

4 On the visual appearance of rapidly moving objects:
Lorentz contraction revisited

Although being valid as a two-dimensional geometrical property of Minkowski’s
spacetime in a plane (Ox, Ot) , the property of “contraction of lengths” described
in Sec.2-5 differs from what would actually be seen by an observer (or a camera) at
the passage of a rapidly moving object. As a matter of fact, according to the orig-
inal Terrell’s work [6] (see also [7]) the analysis of the actual physical phenomenon
can be summarized as follows.

i) Even if the moving object S is one-dimensional, namely is an infinitely
thin rod oriented along the motion trajectory Ox (as considered in Sec.2-5), one
must consider the observer at rest O as situated at a certain distance d of Ox.
Therefore the actual visual appearance of the rod for such an observer at a certain
time t = t0 is obtained by determining the set of light world-lines which have been
emitted from all the points of the rod in the past of t0 and which converge at
the corresponding “reception event” O

.= O(d, t0) of the observer O. This deter-
mines the “photograph” of the rod at time t0. When the value of t0 varies, the
geometrical construction of the relevant light world-lines results in modifications
of the direction of observation and of the apparent length of the rod; these mod-
ifications of the visual appearance of the object for the observer O at rest will
thus accompany the motion of the object. In other words, the aspect of the rod
on the photograph will vary with time by combining the relativistic property of
contraction of lengths together with perspective effects; the latter are comparable
to those which occur in ordinary space when changing the direction of observation
in order to catch successive situations of the moving object (in a purely Galilean
treatment with infinite light-velocity).

ii) The previous type of analysis being taken into account, a realistic study
still has to be done for the case of a three-dimensional object. For instance, it is
interesting to consider a cube-shaped or spherical object S whose center moves
along the axis Ox and whose size may be considered as small with respect to the
distance d from the observer to Ox. It turns out that the visual appearance of
such thick objects never exhibits the phenomenon of contraction of lengths in the
direction Ox as it was pictured in Gamov’s famous book (“The adventures of Mr
Tompkins in the land of special relativity”). As a matter of fact, the observed
appearance of an object at successive times exhibits a perspective effect whose
corresponding (“virtual”) direction of observation is shifted with respect to the
real direction of observation, as though the perspective were accompanied by an
“anomalous rotation effect”. This apparent change of direction of observation is a
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typical geometrical effect of Minkowski’s spacetime: it is characterized by an angle
called “the relativistic aberration”. It is interesting to note that for the special case
of a spherical object, the disk-shaped appearance remains for all the directions of
observation which accompany the object’s motion.
The relativistic aberration
Let S and O represent two given events of spacetime corresponding respectively
to the emission of a light beam by a pointwise object and to the reception of
this light beam: O belongs to the future light-cone C+(S) of S. The object is in
uniform motion with respect to the rest-frame of an observer O who will observe
the reception event at O. This uniform motion is characterized by its world-line
∆(u) which we choose to belong to the plane (Sx, St) (the point S is contained
in ∆(u); it now plays the role of the origin of Minkowski’s spacetime, called O in
Sec.2). χ and v = tanhχ will denote the rapidity and velocity of the motion; d
denotes the distance from the observer O to the motion’s line Sx of the object.
At O, the light beam coming from the object is received by the observer O from
a direction which includes the angle θ with the axis Sx in the coordinate-plane
(Sx, Sy) and t0 denotes the corresponding reception time. From these data, we
can express the coordinates of the reception event O

.= O(d, t0) in the rest frame
as follows

(x = ct0 cos θ, y = d = ct0 sin θ, z = 0, t = t0).

(Note that throughout the whole argument the scenario remains in the three-
dimensional space-time (Sx, Sy, St)).

With [6] we now introduce another observer O′ who is at rest in the frame of
the moving object and whose world-line (parallel to ∆(u)) contains the point O: that
means that this moving observer O′ “shares with O” the reception event O of the
light beam emitted by the object at S, although the latter is now seen as “at rest”
by O′. At this event O, O′ receives the light beam from a direction which includes
the angle θ′ with the corresponding space-axis Sx′ of the object’s Lorentz frame:
this axis Sx′ is conjugate of ∆(u) in the plane (Sx, St). The space hyperplane Π(u)

of O′ is in fact generated by the three axes Sx′, Sy, Sz, the coordinates y and z
being unchanged with respect to those of the rest-frame of O. We can now express
the coordinates of the reception event O in the Lorentz frame of O′ as follows

(x′ = ct′0 cos θ′, y = d = ct′0 sin θ′, z = 0, t′ = t′0).

It is the difference α
.= θ′ − θ which is called the relativistic aberration; then the

basic computation which remains to be done is to compute θ′ and thereby α as a
function of θ and of the rapidity χ (or velocity v) of the object.

Comparing the two representations of O leads one to introduce at first the
ratio

M
.=

t0
t′0

=
sin θ′

sin θ
.

We shall now make use of the formula for the change of Lorentz frames in the
light-cone coordinates (see the end of Sec.2-6). Let us introduce the light-cone
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coordinates of the event O (or more properly to its projection onto the plane
(Sx, St)), namely

U = ct + x, V = ct − x, U ′ = ct′ + x′, V ′ = ct′ − x′;

we thus get :
V

U
= tan2 θ

2
,

V ′

U ′ = tan2 θ′

2
.

Then the last formula of Sec.2-6 readily yields:

tan
θ′

2
= tan

θ

2
× eχ.

The latter relation defines a function θ′ = θ′(θ, χ) which enjoys the following
properties:

a) for fixed χ, θ and θ′ tend together either to zero or to infinity;
b) for θ = π

2 (resp. θ′ = π
2 ), one obtains sin θ′ = 1

cosh χ (resp. sin θ = 1
cosh χ),

where 1
cosh χ = (1 − v2

c2 )
1
2 is the Lorentz contraction factor (see Sec.2-5).

The visual appearance of extended objects
Let us now suppose that the moving object is extended instead of being pointwise,
but that its extension is small with respect to the distance d at which the observer
O is standing, and to begin with, that it is “flat for the observer O” (and therefore
also for O′): that means that the set of its world-lines form a small cylinder parallel
to ∆(u) in the subspace (Sx, Sy, St); there is no extension in the third direction
Sz.

We now consider the small angles dθ and dθ′ subtended by the object, as
they are seen from O respectively by the observers O and O′, namely in the planes
respectively parallel to (Sx, Sy) and (Sx′, Sy). It is clear that the relation between
these two angles is obtained by differentiating (at fixed χ) the previous relation
between θ, θ′ and χ. The result is:

dθ′

dθ
=

sin θ′

sin θ
= M

This ratio M of the subtended angles, or of the apparent dimensions of the object
when passing from the observer O to the observer O′, can thus be called the
magnification. What is remarkable in that relation between dθ and dθ′ is that
(eventhough θ′ is a function of θ and χ), it does not depend explicitly of the
rapidity χ.

As a matter of fact, one can even give a still nicer interpretation of it by
introducing the distances r and r′ at which the (small) object is seen respectively
by O and O′. Concerning r′ it is of course a fixed distance, since the object is at
rest for O′ and one has (in the plane parallel to (Sx′, Sy) by O)

d = r′ sin θ′.
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Concerning r, it is the distance from O (in the plane (Sx, Sy)) to the position
occupied by the object at the emission event S and one thus also has

d = r sin θ.

It then immediately follows from these relations that one has:

rdθ = r′dθ′,

which means that the dimensions of the object transversally to the directions of
observation of O and O′ are equal. One can now see very simply that a similar
result is valid for general small objects having also an extension in the direction
Sz. In fact, the component along Sz of the object is the same in the rest frame as
in the Lorentz frame where the object is at rest; it therefore has equal transversal
extensions dz = dz′ along Oz for both observers O and O′, which entails:

rdθdz = r′dθ′dz′

This means that the surface transversal dimensions of the object with respect
to the directions of observation of O and O′ are equal: the perspectival shapes
and dimensions of the object are the same when the object is moving as when
it is fixed, provided one replaces the actual direction of observation of the moving
object, namely the angle θ, by the “virtual” direction θ′ = θ′(θ, χ) corresponding
to its observation as a fixed object.
However, in view of the different distances r and r′ from O and O′ to the object,
this identity of the perspectival shapes and dimensions is modified from the angular
viewpoint by the magnification factor

M =
dθ′

dθ
=

r

r′
,

whose expression as a function of θ and χ is:

M(θ, χ) =
sin θ′(θ, χ)

sin θ
.

The result can then be expressed alternatively as follows. From the angular view-
point, the visual appearance of the object for O can be deduced from the corre-
sponding one for O′ by a “conformal” transformation on the unit sphere , namely
a transformation which dilates small subtended solid angles by the amplification
factor M(θ, χ). (In this description, the direction of motion defines a pole on the
sphere, while θ represents the corresponding azimutal angle of the direction of
observation of O).
Practical Geometrical Construction:

In order to represent how the object with rapidity χ is seen by the observer
O from the direction with angle θ, one determines the direction with angle θ′ =
θ′(θ, χ) from which it is seen by O′ as a fixed object. One then applies to the
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Figure 11: Passage of a “relativistic bus”: The relativistic aberration and the ap-
parent rotation

fixed object (with its true dimensions) a rotation with angle α = θ′ − θ (i.e. the
relativistic aberration) before settling it at the point where O expects to see it from
the direction θ. This is the correct perspective under which O will see the object
from that direction. This procedure has been illustrated on fig. 11 by taking the
example of a “relativistic bus”. It is now clear that if the object is spherical, its
disk-shaped appearance and dimension are preserved for all possible directions of
observation.

What about the “hidden Lorentz contraction” ?

Having obtained the previous general result, let us come back to our very first
case of an infinitely thin rod with length l, oriented along Sx and moving along
Sx with rapidity χ. Assume that one fixes θ = π

2 , which means that the observer
O at rest looks at the rod from the direction Sy where he or she is sitting. By
referring to the geometrical argument of Sec.2-5, one easily checks that in that case
the observer does observe a Lorentz contracted rod with apparent length l

cosh χ .
Now let us look at it from the viewpoint of the general result. This rod is seen by
O′ as a fixed rod from a direction defined by the angle θ′ such that sin θ′ = 1

cosh χ

(see above the property b) of the function θ′(θ, χ)). Then by applying the previous
Practical Geometrical Construction, one sees that the observer O must see the rod
as if it were rotated by the angle α = θ′ − π

2 , so that its perspectival length is

l × sin θ′ =
l

coshχ
,

the corresponding angle subtended by the object being equal to l
d

1
cosh χ .

The rotation has exactly reproduced the Lorentz contraction !!
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Observing the object without perspective effect

In the Galilean treatment (with infinite velocity of light), the object is observed by
O without perspective effect when the direction of observation is perpendicular to
the line of motion, namely when θ = π

2 . In the case of Minkowski’s spacetime, the
corresponding phenomenon is obtained when θ′ = π

2 , namely when the observer
O′ sees the object without perspective effect. Then the identical effect is obtained
by O provided his or her direction of observation includes an angle θ0 with the
motion’s axis. According to property b) of the function θ′(θ, χ), this angle θ0 is
such that

sin θ0 =
1

coshχ
.

For the case of the infinitely thin rod, we see that it appears to the observer O with
its exact length l when looked at in that direction, but from the angular viewpoint
the subtended angle remains (because of the “magnification factor”) l

d
1

cosh χ . . .
i.e. the same as for the Lorentz contracted appearance at θ = π

2 !

In conclusion, the effects of perspective modified by the relativistic aberration,
which acts as a rotation, are clearly defined for describing the visual appearance
of moving objects of general shape. The concept of “Lorentz contraction”, al-
though perfectly clear in two-dimensional spacetime, then becomes hidden as far
as the observation of three-dimensional objects is concerned; it may be restored
in the special case of thin objects, but the term is of subtle use and semantically
confusing. . .

5 The Minkowskian energy-momentum space: E = mc2 and
particle physics

In the Newtonian dynamics, based on the Galilean conception of spacetime, one
introduces for each massive pointlike object with mass m and constant velocity
v its momentum p = mv. For any isolated dynamical system composed of such
objects, their velocities and momenta depend on time, but the total momentum,
namely the vector sum P of all the corresponding momenta, must be conserved at
all times. The other quantities which have to be conserved at all times are a) the
total energy E of the system, and b) the masses of the various objects, since the
latter are supposed to conserve their individualities for all times.

In the framework of special relativity, each massive pointlike object with mass
m in uniform motion is now characterized by its relativistic (or Minkowskian)
velocity vector cu. According to Einstein‘s beautiful idea, one can now associate
with it a relativistic four-momentum vector p = mcu, which can be represented in



The Geometry of Relativistic Spacetime 113

the coordinates of the rest-frame as follows:

p = (p, p0); p = (mc sinh χ) j = mv
[
1 − v2

c2

]− 1
2

,

p0 = mc coshχ = mc

[
1 − v2

c2

]− 1
2

.

The (tip of the) vector p thus belongs to the upper sheet of hyperboloid H+
m with

equation
p2
0 − p2

1 − p2
2 − p2

3 = m2c2, p0 > 0.

The space-component p of p admits a small-velocity expansion of the following
form

p = mv
(

1 +
v2

2c2

)
+ · · · ,

which therefore reproduces the Newtonian momentum mv at the first-order ap-
proximation. As for the time-component p0, its small-velocity expansion gives

p0 = mc

[
1 − v2

c2

]− 1
2

= mc

(
1 +

v2

2c2

)
+ · · · .

Multiplying both sides of the latter by c in order to get the dimensionality of an
energy, i.e. ML2T−2, one then obtains:

p0c = mc2 +
1
2
mv2 + · · · .

While the second term of this expansion is clearly identified as the kinetic energy
of the massive object in the Newtonian formalism, the first term E0 = mc2 is the
“internal energy at rest” of the massive object, identified (up to the dimensionality
factor c2) with its mass m. In fact, when the velocity v vanishes, the four-vector pc
is along the time-axis and reduces to its time-component E0 = mc2. One can then
also say that for an arbitrary uniform motion with velocity v, the time-component
p0c of the four-vector pc is the complete relativistic energy of the moving object,
whose value is

E
.= p0c = mc2

[
1 − v2

c2

]− 1
2

= |p|c
2

v
.

This is why the four-momentum vector pc or p is also called the energy-momentum
vector of the object (the identification being often made, in view of the convenient
choice of units such that c = 1).

Remark. It is very important to note that in units where c = 1, the squared
mass m2 = (mc)2 of the object is equal to the squared pseudonorm of the four-
momentum vector p. In special relativity theory, the concept of “mass” is therefore
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(like the proper time of a motion) a relativistic invariant: its value is independent
of the Lorentz frame which has been chosen for describing the object.

Massive and massless free particles
In microphysics, the theoretical treatment of particles requires a quantum-mechan-
ical framework. However, this framework makes use basically of the Minkowskian
space of four-momenta of point-like massive objects that we have just described.
As a matter of fact, the quantum elementary particles with mass m are de-
scribed as “wave-packets” which are probabilistic superpositions of “classical”
four-momentum configurations p = (p, p0) satisfying the so-called “mass shell”
condition:

p belongs to H+
m, i.e. p2

0 − p2 = (mc)2 with p0 > 0.

Photons are similarly treated as massless particles (m = 0). The latter are thereby
characterized by a four-momentum vector p which belongs to the light-cone C+:

p0 = |p|.

The concepts of massive pointlike object and of relativistic four-momentum
thus keep some meaning for describing the free particles of microphysics, namely
non-interacting particles. However, it becomes meaningless for describing parti-
cles in mutual interaction, in contrast with the case of Newtonian objects, whose
momenta and energies keep their meaning as functions of the time during the
interaction.

The simplest thing that can be done a priori for describing the mutual inter-
actions in particle physics is to describe the relations between the four-momentum
configurations of free particles before the interaction and those which occur after
the interaction; in fact, for the interactions of nuclear type, the latter always take
place in a very short time. Then there is a basic relativistic law, which generalizes
the Newtonian laws of conservation of the total momentum and of the total energy
of the system. This law is

The law of conservation of the total energy-momentum vector for systems of free
particles
This law states that if a set of several (let us say n) free particles with initial four-
momentum vectors p(1), p(2), . . . , p(n) meet together in some region of Minkowski’s
spacetime where they interact, then another set of free particles will emerge in the
future of that region and their number n′ is not necessary equal to n. However, the
four-momentum vectors p′(1), p′(2), . . . , p′(n

′) of these final particles are such that
the following vector equality holds in the Minkowskian four-momentum space:

p(1) + p(2) + · · · + p(n) = p′(1) + p′(2) + · · · + p′(n
′)
.

Of course, this implies that in contrast with the case of Newtonian pointlike ob-
jects, the particles of microphysics do not conserve their individualities throughout
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the interaction. However the vector conservation law which they obey puts some
strong constraints which are consequences of the Minkowskian triangular inequal-
ity.

Let us consider for example the case of a system of two initial particles with
four-momenta p(1), p(2) (which is physically the generic case for the collisions
produced in the accelerators). Let us call m1 and m2 the masses of these particles;
one thus has:

p(1)2 = m2
1, p(2)2 = m2

2.

Then the total four-momentum is

P = p(1) + p(2),

whose squared pseudonorm P 2 .= M2 is interpreted as the squared total mass of the
“composite system” of these two particles. M is of course a relativistic invariant,
independent of the Lorentz frame. In practice one often chooses a frame in which
P is along the time-axis, which one calls the center-of-mass frame. Now , we see
that because of the Minkowskian triangular inequality applied to the following
triplet of vectors

[OQ1] = p(1), [Q1Q2] = p(2), [OQ2] = P,

one has necessarily
M ≥ m1 + m2,

the equality being valid if and only if p(1) and p(2) are collinear; this means that
the two particles are both at rest in the center-of-mass frame. If they are not, the
difference Mc2 − m1c

2 − m2c
2 represents the (relativistic) kinetic energy of the

system.

Unstable and stable particles

Being given such a composite system, one may ask whether there may exist a corre-
sponding “elementary system” (or “elementary particle”) with the same mass M .
One then sees that the existence of the latter would a priori be restricted by the
kinematical possibility of its decomposition into two particles of masses m1 and m2

(according to the equation P = p(1) + p(2)). If this decomposition is not forbidden
by some imperative rule (like for instance the conservation of the electric charge),
one will say that such a particle of mass M exists as an “unstable particle” and
can disintegrate in the pair of stable particles of masses m1 and m2. The fact that
the latter are called “stable” corresponds to assuming the impossibility for each
of them of similar decompositions into pairs of particles of smaller masses obeying
the corresponding Minkowskian inequalities.

Elastic and inelastic collisions

Let us consider for example the case of equal masses m1 = m2
.= m. Then one has

M ≥ 2m. Now, let us ask ourselves what can be the constraints on the number of
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final stable particles emerging from the interaction between two initial stable parti-
cles of mass m. By iterating the previous geometrical argument with Minkowskian
triangles, one gets the following result.

For M < 3m,, two and only two stable final particles can be produced; one
will then speak of an “elastic” collision of two particles. For 3m ≤ M < 4m,
either two or three can be produced; both processes are geometrically possible.
More generally, if (n − 1)m ≤ M < nm, all processes including the production of
any number of final particles smaller than or equal to n − 1 are possible. For the
production of three or more particles, one also speaks of “inelastic” collision of
two particles.

One can of course generalize the previous geometrical argument to the case
of particles of different masses: note that the values of the masses of the existing
particles of microphysics is a discrete set whose determination requires the treat-
ment of quantum relativistic dynamical theories such as Quantum Field Theories
(a very hard program which is by far outside the scope of this paper).

Inclusion of the photons

It is important to note that massless particles such as photons can be included in
the previous geometrical arguments. In particular one can check (by drawing the
corresponding triangles) that

i) From the collision of two photons, one can obtain a total momentum whose
mass M can be arbitrarily large, so that any number of final massive particles can
a priori be produced throughout the interaction of these two photons: “pure light
can create matter”

ii) Together with the elastic collision of two massive (electrically charged)
particles, one can always expect a priori the additional production of any number
of photons, (called “soft photons”) even if the total mass M (> 2m) of the system
is not very much larger than 2m.
An exercise on four-momentum conservation: “the propulsion of the Langevin-
traveler’s spaceship” (see Sec.3-3)

Let us assume that at time τ (in its proper time), the spaceship’s mass is M(τ) and
that, in its restframe, it is submitted to a strength-vector F(τ) which produces
a uniform acceleration equal to g in the fixed direction j. Since the spaceship’s
velocity is equal to zero in that frame, Newton’s fundamental principle of dynamics
applies and gives:

F(τ) = M(τ)g j =
dP
dτ

.

The strength-vector F(τ) is produced by the expulsion of a part of the mass by unit
of time, namely dM(τ)

dτ , whose associated variation of momentum must be equal in
intensity and opposite to F = dP

dτ (in view of the relativistic law of conservation
of momentum).
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From a relativistic viewpoint, the rate of loss of mass must in fact be identified
(up to the factor c2) with a rate of loss of energy

dM(τ)
dτ

=
1
c2

dE

dτ
,

which may be produced under either form of an emission of matter (with relativistic
velocity v < c) or of an emission of light (i.e. photons with velocity c).

In the case of matter, the energy and momentum losses are related to the
velocity v of the emitted matter by the relativistic formula (given at the beginning
of this subsection): ∣∣∣∣dPdτ

∣∣∣∣ =
v

c2

∣∣∣∣dE

dτ

∣∣∣∣ ,

which therefore yields the differential equation

dM

dτ
= −g

v
M(τ).

In the case of photons, one has a similar relation (with v = c):∣∣∣∣dPdτ

∣∣∣∣ =
1
c

∣∣∣∣dE

dτ

∣∣∣∣ ,

which yields
dM

dτ
= −g

c
M(τ).

One concludes that the loss of mass is minimized when v = c, namely if one can
dispose of an engine which transforms matter into pure radiation.

6 Toward simple geometries of curved spacetimes

In spite of its non positive-definite distance, Minkowski’s spacetime still shares
with Euclidean space the property of being “flat”, namely an affine space. But in
the same way as the Euclidean plane must be replaced by a sphere (as a first ap-
proximation) for the observer who wishes to represent the surface of the earth, the
four-dimensional Minkowskian spacetime must be replaced by a curved spacetime
for the observer of the universe who wishes to describe the inclusion of matter sub-
mitted to gravitational attraction and the evolutional properties of the universe at
astronomical scales of lengths and times. What we are mentioning here concerns
the second big revolution of theoretical physics in the twentieth century: accord-
ing to the principles of general relativity introduced by Einstein in 1916 (and also
independently by Hilbert in a more mathematical formulation), local curvature of
spacetime around an event X is caused by the presence of a density of matter at
that point. But there is also another type of global curvature which is linked to
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expansion or contraction properties of spatial sections of spacetime; this type of
curvature is characterized by what is called a “cosmological constant”.

The general mathematical theory of curved spacetimes is outside the scope
of the present pedagogical essay and we shall only indicate here some hint about
the primary concepts involved in that theory. In mathematics, the notion of man-
ifold introduces an additional abstraction to geometry. In the same way as the
two-dimensional surface of the earth is perceived by us as “embedded in the am-
bient three-dimensional spacetime”, a model of curved spacetime can reasonably
be conceived as a “surface of dimension four embedded in a flat space of larger
dimension” (for example five). As a matter of fact, this type of geometrical rep-
resentation in terms of an “ambient space of higher dimension” is not necessary
for defining the relevant mathematical notion of “manifold”, which has been in-
spired by the geographical notion of “atlas”. In a world atlas, one is given a set
of planar representations of various regions of the surface of the earth, in such a
way that: a) each region is represented by precise geometrical rules encoded in a
lattice of level curves representing parallels and meridians which constitute a map
of that region; b) whenever two regions overlap, there are consistent geometrical
rules which exhibit the correspondence between the two corresponding maps in
their representations of the overlapping region; c) the union of all maps cover the
whole surface of the earth. Such a type of collection of local data, which provides
a faithful representation of a curved surface without requiring an embedding in a
higher-dimensional ambient space, is used in the general mathematical definition
of “abstract manifolds”. The concept of atlas is thus often used for representing
various models of curved spacetimes, thereby defined as “abstract Minkowskian
(or Lorentzian) manifolds”. In such an atlas, each map is then specified by what
one calls a system of local coordinates of space and time. The Minkowskian local
structure is specified in each given map, by prescribing in terms of the correspond-
ing local coordinates what are the cones of light world-lines passing at each given
event X : these light world-lines will in general appear as curved lines, constituting
a “light-conoid” CX with apex X, composed of the union of a future conoid C+

X

and of a past conoid C−
X .

From the physical viewpoint, one can say that the conceptual advantage of
this “atlas-representation” of a curved space or spacetime is to make the economy
of an “ambient space”, which has a priori no physical interpretation. As a matter of
fact, the problem of the physical interpretation of additional dimensions introduced
for mathematical reasons currently appears in various up-to-date investigations of
theoretical physics.

However for certain models, a representation making use of an embedding of
spacetime in a five-dimensional flat ambient space can be very illustrative and use-
ful. Here of course, the word “ambient space” is of pure mathematical nature. These
models correspond to “quadratic spacetimes” represented by appropriate quadrics
(i.e. second-degree hypersurfaces) which enjoy the following simple geometrical
property with respect to the ambient space. At each event X of the spacetime, the
light-conoid CX is the cone of all linear generatrices of the quadrics passing at X .
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These models of quadratic spacetimes have in common to be “pure-cosmological-
constant models”, which means that no density of matter is incorporated there.
They enter in two classes with rather different mathematical properties and phys-
ical interest, which are called “de Sitter” and “anti-de Sitter spacetimes”: they are
presented in Ugo Moschella’s paper.
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The de Sitter and anti-de Sitter Sightseeing Tour

Ugo Moschella

Introduction

While celebrating the 100th anniversary of the discovery of special relativity [1],
it may not be inappropriate to open a window on the de Sitter universes, as their
importance in contemporary physics is gradually increasing. Just to mention two
examples, the astronomical evidence for an accelerated expansion of the universe
gives a central place to the de Sitter geometry in cosmology [2] while the so-called
AdS/CFT correspondence [3] supports a major role for the anti-de Sitter geometry
in theoretical physics.

From the geometrical viewpoint, among the cousins of Minkowski spacetime
(the class of Lorentzian manifolds) de Sitter and anti-de Sitter spacetimes are its
closest relatives. Indeed, like the Minkowski spacetime, they are maximally sym-
metric, i.e. they admit kinematical symmetry groups having ten generators1. Max-
imal symmetry also implies that the curvature is constant (zero in the Minkowski
case).

Owing to their symmetry, it is possible to give a description of the de Sitter
universes without using the machinery of general relativity at all. However, it is
worth saying right away that, even if they share important features with Minkowski
spacetime, their physical interpretation is quite different and the technical prob-
lems to be solved in order to merge de Sitter spacetimes with quantum physics are
considerably harder.

The aim of this note is to give a simple and short geometrical introduction to
the de Sitter and anti-de Sitter universes and to briefly comment on their physical
meaning.

1 An analogy: non-Euclidean spaces of constant curvature

One easy way to replace the usual flat geometry of the Euclidean physical space
R3 with some curved geometry consists in moving to a fictitious four-dimensional
flat world and considering there the geometry of convenient three-dimensional
hypersurfaces. The simplest curved model of space is the surface of a hypersphere
embedded in a four-dimensional Euclidean flat space R4:

S
3 = {x ∈ R

4, x2
1 + x2

2 + x2
3 + x2

4 = a2}. (1)

S3 is homogeneous, isotropic and has positive curvature with value 6/a2. The
six-dimensional invariance group of S3 is simply the rotation group SO(4) of the

1A four dimensional Riemannian manifold has an isometry group with at most ten generators.
In the Minkowski case the isometry group is the Poincaré group and the ten independent transfor-
mations have a familiar physical interpretation: one time translation, three spatial translations,
three rotations and three boosts.
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four-dimensional ambient space; it can be interpreted as the group of motions of
the spherical space in the same way as the Euclidean group E(3) (translations and
rotations) is the group of motions of R3. The main difference is that there are no
commutative “translations” on S3.

All the non-Euclidean geometrical properties of the hypersphere come by re-
striction to it of the Euclidean geometry of the fictitious ambient space. In partic-
ular all geodesics, that are the analog in the curved geometry of what are straight
lines in the flat case, can be obtained by intersecting the hypersphere with two-
planes passing through the geometrical center of the sphere (see Figure 1). One
recognizes immediately that in this geometry “straight lines” are maximal circles.
The second possibility is a bit more complicated and produces a space with neg-

Figure 1: A spherical model of space (positive curvature). Geodesics are maximal
circles and are obtained by intersecting the sphere with two-planes passing through
the center of the sphere in the ambient space.

ative curvature. One moves again to a fictitious four-dimensional world, but now
this is a four-dimensional Minkowski spacetime M4 (loosely speaking, a timelike
direction has been added to the Euclidean R3, while in the previous case a spatial
direction was added). Here, a model of space with negative constant curvature is
the upper sheet of the two-sheeted hyperboloid H3:

H
3 = {x ∈ M

4, x2
0 − x2

1 − x2
2 − x2

3 = a2}. (2)

As shown in Figure 2 the lightcone emerging from any point of H3 does not meet
the surface anywhere else. This means that, in the ambient spacetime, the surface
is spacelike and, as such, it is a good model for a space. As before the geometry
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Figure 2: A hyperbolic model of space (negative curvature). H3 (the outer sur-
face) is spacelike in the ambient Minkowski spacetime. Geodesics are branches of
hyperbolae.

of H3 is constructed by restriction of the Lorentzian geometry of the ambient
Minkowski spacetime M4. In particular, the six-dimensional isometry group of H3

is the Lorentz group SO(1, 3) of the ambient spacetime. Geodesics are branches of
hyperbolae, obtained as before by intersecting H3 with two-planes containing the
center.

2 The de Sitter universe

Let us now introduce a five-dimensional Minkowski spacetime M5 by adding a
spacelike direction to M4 (just as we did in the spherical case). In M5 we consider
the hypersurface with equation

dS4 = {x ∈ M
5, x2

0 − x2
1 − x2

2 − x2
3 − x2

4 = −R2}. (3)

This is the de Sitter spacetime [5] (see Figures 3 and 4). It has constant nega-
tive curvature −12/R2 (the sign depends on conventions) and reproduces (after
a renormalization) Minkowski spacetime in the limit of zero curvature (i.e. when
the radius R tends to infinity).

The causal structure of dS4 is induced by restriction of the Lorentzian geom-
etry of the ambient Minkowski spacetime M5 exactly as the geometry of the sphere
was determined by the Euclidean geometry of the ambient R4. In particular, the
de Sitter line element is obtained concretely by restricting the five-dimensional
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Figure 3: The light surface represents the de Sitter universe. The cone is the light-
cone of the five-dimensional ambient spacetime, asymptotic to the de Sitter hyper-
boloid. Timelike geodesics are hyperbolae and are obtained by intersecting the hy-
perboloid with two-planes passing through the origin of the the ambient spacetime.
Any two-plane associated with a timelike geodesic can be identified by specifying
two null vectors ξ and η that can be used also to parametrize the geodesic itself. In
flat spacetime geodesics are labeled by their four-momentum. By analogy, the light-
cone C can be interpreted as de Sitter momentum space. In particular, de Sitter
plane waves are constructed using vectors belonging to the lightcone C [7].

invariant interval to the manifold dS4:

ds2 =
[
(dx0)2 − (dx1)2 − (dx2)2 − (dx3)2 − (dx4)2

]∣∣
dS4

(4)

This line element is the most symmetrical solution of the field equations written
down by Einstein in 1917, where he introduced the famous cosmological constant
Λ [4]. The radius R corresponding to a given value of Λ is

R =

√
3
Λ

.
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Figure 4: The lightcone of the ambient spacetime induces the causal ordering of
the de Sitter manifold. The regions shadowed by the five-dimensional lightcone
emerging from the event O are the past and the future of O. In this figure the
choice of grays shows a contraction era (blueshift) followed by an expansion era
(redshift)

A pivotal role is played by the five-dimensional lightcone of the ambient spacetime:

C = {ξ ∈ M
5, ξ2

0 − ξ2
1 − ξ2

2 − ξ2
3 − ξ2

4 = 0}. (5)

The cone C induces the causal ordering of the events on the de Sitter manifold;
it also plays the role of de Sitter momentum space (see Figure 4). The de Sit-
ter spacetime has a boundary at timelike infinity (while timelike infinity of the
Minkowski manifold is a point). The cone C also provides a description of this
boundary, which may be used instead of a Penrose diagram.

The de Sitter kinematical group coincides with the Lorentz group of the am-
bient spacetime SO(1, 4). As for the sphere, there are no commutative translations
on the de Sitter manifold. This fact is source of considerable technical difficulties
in the study of de Sitter Quantum Field Theory.

The relationship between the de Sitter universe and the geometry of the
sphere is deeper than a mere analogy. Indeed, for imaginary times

x0 → ix0

the (Euclidean) de Sitter manifold (see Figure 5) is a sphere and the Euclidean
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Figure 5: A pictorial representation of the Euclidean de Sitter manifold.

de Sitter group is the rotation group SO(5). A study of the complex de Sitter
manifold with applications to Quantum Field Theory has been described in [7].

The de Sitter geometry finds its most important physical applications in cos-
mology. In cosmology one usually “breaks” the general relativistic covariance and
singles out a special coordinate system: there is a natural choice of “cosmic time”
that makes the universe appear spatially homogeneous and isotropic at large scales.
This property is mathematically encoded in the Friedmann-Robertson-Walker line
element:

ds2 = dt2 − a(t)2dl2. (6)

The spatial distance dl2 describes the geometry of a homogeneous and isotropic
space manifold: either S3, R3 or H3.

In this respect the de Sitter geometry is rather special: due to the maximal
symmetry and the topology of the de Sitter manifold, all three possible FRW
cosmologies can be realized on de Sitter by suitable choices of the cosmic time
coordinate (see Figure 6).

The simplest choice of time is the coordinate x0 (see Figure 7).{
x0 = R sinh

(
t
R

)
xi = R cosh

(
t
R

)
ωi i = 1, 2, 3, 4 (7)

with ω2
1+ω2

2+ω2
3+ω2

4 = 1, so that Equation (3) is easily satisfied. The hypersurfaces
of constant time thus are spheres S3 and the coordinate system covers the whole
universe. With this choice the de Sitter line element describes a closed FRW model:

ds2 = (dx2
0 − dx2

1 − . . . dx2
4)

∣∣
dS4

= dt2 − R2 cosh2

(
t

R

)
dω2. (8)

Another possible choice of time is x0 +x4 (see Figure 8). The time parameter
is introduced by the relation x0 +x4 = Re

t
R ; with this coordinate only one half of
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Figure 6: Various choices of cosmological coordinates. Black curves represent hy-
persurfaces of constant cosmic time. Blue curves are timelike geodesics. The red
manifold represents a closed FRW model with a contraction epoch followed by an
expansion epoch. The light blue manifold is an exponentially expanding flat model.
The yellow represents a hyperbolic open model.

the manifold is covered. Hypersurfaces of constant cosmic time are copies of R3.
In these coordinates the de Sitter line element appears as a flat FRW model with
exponentially growing scale factor:

ds2 = dt2 − exp
(

2t

R

)
dx2. (9)

This form of the de Sitter line element was introduced by Lemâıtre in 1925 [6].
It is interesting to note that the first coordinate system used by de Sitter himself
was a static coordinate system with closed spatial sections. De Sitter was following
Einstein’s cosmological idea of a static closed universe, the idea that led to the
introduction of the cosmological term in Einstein’s equations. A static coordinate
system (i.e. a coordinate system where nothing depends explicitly on time) is not
the most natural to describe an expanding universe, but it has other interesting
properties, mainly in relation to black hole physics (horizons, temperature and
entropy).

Static closed coordinates are represented in Figure 9. The Lemâıtre form of
the de Sitter line element is the most useful in cosmological applications. Recent
observations point towards the existence of a nonzero cosmological constant and
a flat space. For an empty universe (i.e. a universe filled with a pure cosmological
constant) this would correspond precisely to the above description of the de Sitter
universe.

3 Anti-de Sitter

Let us now introduce a flat five-dimensional space E(2,3) by adding a timelike
direction to M

4 (as we did in the hyperbolic case). E
(2,3) has two timelike directions
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Figure 7: Construction of the coordinate system representing the de Sitter geometry
as closed FRW model. Hyperurfaces of equal cosmic time are intersection of the
de Sitter manifold with hyperplanes x0 =const.

Figure 8: Construction of the coordinate system representing the de Sitter geometry
as a flat FRW model. Hyperurfaces of equal cosmic time are intersection of the de
Sitter manifold with hyperplanes x0 + x4 = const. Only one half of the manifold is
covered since it has to be x0 + x4 > 0.



128 J. Bros and U. Moschella

Figure 9: A chart representing static closed coordinates. This is the coordinate
system originally used by W. de Sitter in 1917. Vertical timelike curves are obtained
by intersecting the hyperboloid with parallel two-planes. Only the central hyperbola
is a geodesic because it is the only one lying on a plane that contains the origin
of the ambient spacetime. The other timelike curves are accelerated trajectories.
There is a redshift for light sources moving along these world-lines; this effect was
called the de Sitter effect and was thought to have some bearing on the redshift
results obtained by Slipher.

Figure 10: A visualization of the anti-de Sitter universe. The asymptotic cone
plays a crucial role exactly as in the de Sitter case. The regions of AdS4 that
are in the shadow of the five-dimensional cone emerging from an event O are the
regions that are not causally connected to the event O. The asymptotic cone in
the ambient space can be regarded as a representation of the boundary at spacelike
infinity of the AdS manifold and carries a natural action of the conformal group
that is the group-theoretical foundation for the AdS-CFT correspondence.
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Figure 11: Anti-de Sitter timelike geodesics are ellipses and are obtained by in-
tersecting the hyperboloid with two-planes passing through the center of the the
ambient space. The geodesics passing through a certain event all meet at the an-
tipodal point. The focusing of geodesics remains true also in the covering space.

Figure 12: Euclidean anti-de Sitter world.
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and three spacelike directions and therefore it is not a spacetime in the ordinary
sense (a Lorentzian manifold with one temporal and three spatial dimensions).
However, the hypersurface with equation

AdS4 = {x ∈ E
(2,3), x2

0 − x2
1 − x2

2 − x2
3 + x2

4 = R2}, (10)

is a spacetime: this is the anti-de Sitter universe (see Figure 10). It has constant
positive curvature and reproduces (after a renormalization) the Minkowski space-
time in the limit when the curvature tends to zero.

The causal structure of AdS4 is induced by restriction of the geometry of
the ambient space E(2,3) (the analogy is now with the geometry of H3 that is
determined by the causal structure of the ambient spacetime M4). As before the
null cone of the ambient space

C = {ξ ∈ M
5, ξ2

0 − ξ2
1 − ξ2

2 − ξ2
3 + ξ2

4 = 0} (11)

induces the causal ordering on the anti-de Sitter manifold (see Figure 10).
Owing to the existence of closed timelike curves (see Figure 11) the causal

ordering is only local. One may construct a globally causal manifold by considering
the covering of the anti-de Sitter manifold (recall that the covering of a circle is a
line). However even the covering of the anti-de Sitter remembers the “periodicity in
time” of the original manifold: geodesics issued from an event meet again infinitely
many times in the covering.

The anti-de Sitter line element is constructed by restricting the five-
dimensional invariant “interval” of the ambient space to the manifold AdS4:

ds2 =
[
(dx0)2 − (dx1)2 − (dx2)2 − (dx3)2 + (dx4)2

]∣∣
AdS4

(12)

This line element is the maximally symmetrical solution of the cosmological Ein-
stein equations when the cosmological constant Λ is negative. The anti-de Sitter
kinematical group coincides with the isometry group SO(2, 3) of the ambient space.

The relationship between the anti-de Sitter universe and the geometry of H3

is deeper than a mere analogy. Indeed, for imaginary time

x4 → ix4

the (Euclidean) anti-de Sitter manifold (see Figure 12) is a copy of H4 and the Eu-
clidean de Sitter group is SO(1, 4). A study of the complex anti-de Sitter manifold
with applications to Quantum Field Theory has been described in [8].

AdS is not a globally hyperbolic spacetime. In non-globally hyperbolic man-
ifolds knowledge of equations of motion and of initial data is not enough to deter-
mine the time evolution of physical quantities. In the anti-de Sitter case, the lack
of global hyperbolicity is due to the existence of a boundary at spacelike infinity:
information can flow in from infinity. This fact is source of difficulties in quantizing
fields on the anti-de Sitter manifolds. However this is also an opportunity since
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Figure 13: Construction of the AdS-Poincaré coordinates. The limit v → ∞ de-
scribes the boundary of the AdS manifold.

this boundary at infinity offers the very possibility for formulating the famous
AdS/CFT correspondence [3].

To present an intuitive idea of this topic let us introduce coordinates on a five-
dimensional anti-de Sitter manifold AdS5 (embedded in a six-dimensional space
E(2,4)) obtained by intersecting AdS5 with hyperplanes {X4 + X5 = Rev/R} (see
Figure 13). Each slice Πv of AdS5 is a copy of Minkowski spacetime M4. Points in
each slice Πv can be thus parametrized by Minkowskian coordinates x0, x1, x2, x3

(scaled by ev/R). This explains why the anti-de Sitter coordinates (v, x0, x1, x2, x3)
are also called Poincarè coordinates.

The coordinate system covers only one-half of the anti-de Sitter manifold;
the anti-de Sitter metric takes the following form:

ds2 =
[
(dX0)2 − (dX1)2 − (dX2)2 − (dX3)2 − (dX4)2 + (dX5)2

]∣∣
AdS5

= e
2v
R (dx2

0 − dx2
1 − dx2

2 − dx2
3) − dv2. (13)

The use of this parametrization is crucial in a recent approach to the mass hierarchy
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problem [9] and to multidimensional cosmology. In this context the slices Πv are
called branes. The Minkowskian geometry of the brane is induced by the ambient
anti-de Sitter metric: for instance space-like separation in any slice Πv can be
understood equivalently in the Minkowskian sense of the slice itself or in the sense
of the ambient anti-de Sitter universe.

When we consider the limit v → ∞ we arrive at the anti-de Sitter bound-
ary at spacelike infinity, which therefore may (essentially) be thought as a four-
dimensional Minkowski spacetime. The AdS-CFT correspondence establishes an
equivalence between a theory on the five-dimensional AdS5 and a relativistic theory
on the boundary M4 (this is an instance of another popular idea in contemporary
theoretical physics: the holographic principle). The theory on the boundary is con-
jectured to have a larger symmetry group, namely the conformal group [3, 10, 11].

4 Epilogue

The de Sitter and anti-de Sitter tour now comes to its end. Before concluding let
us summarize the highlights to be retained.

De Sitter’s geometry is the vacuum solution of Einstein’s equations with a
cosmological term and plays in contemporary physical cosmology a very important
double role. First, the unifying aspect of the different inflation models consists
in the fact that the primordial universe has undergone a phase of exponential
expansion, approximately described by de Sitter’s geometry. A possible theoretical
understanding of the structure of the universe which is observable today is based
on de Sitter geometry at the inflation epoch.

The second motivation of interest of de Sitter geometry lies in the obser-
vational data of the recent years, starting from the observations of distant type
Ia supernovae and up to the data on the temperature fluctuations of the cosmic
background radiation.These observations have upturned consolidated ideas, indi-
cating that the gravitational effect of the greatest part of the energy content of
the universe is similar to Einstein’s cosmological constant. This form of energy is
called “dark energy”.

Thus de Sitter geometry seems to assume the role of reference geometry of
the universe. In other words, it seems that it is de Sitter, and not Minkowski,
the geometry of spacetime deprived of its content of matter and radiation (if one
describes dark energy with a cosmological constant).

Once one admits the possible existence of a cosmological constant, it is also
interesting to explore the consequences of a model in which the latter is negative.

In this case spacetime geometry is termed Anti-de Sitter. This geometry has
strange properties which are in confilict with common sense, as the existence of
closed timelike curves and of a boundary at spacelike infinity. Nonetheless, anti-de
Sitter plays a central role in contemporary high energy physics with the formula-
tion of the conjecture on the correspondence AdS/CFT (Anti-de Sitter/Conformal
Field Theory).
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In conclusion, there are still lots of rooms left in de Sitter worlds!
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Experiments with Single Photons

Philippe Grangier

1 Back to the beginning: Einstein’s 1905 and 1909 articles

The birth of the light quanta – “licht quanten” in their original version – is right-
fully associated with the article [1] published by Albert Einstein in 1905, “An
heuristic point of view about the production and transformation of light”. Inter-
estingly, several points expressed in a very collegial style in this article were exposed
again in a more direct, “einsteinian” style, in a conference [2] that Einstein gave
in Salzburg on september 21, 1909. This conference, entitled “The evolution of our
conceptions about the nature and the constitution of radiation” reveals, and to
some extend completes, the way of thinking that lead Einstein to the 1905 papers
on relativity and radiation.

For instance, in 1909 Einstein gives again the list of open problems in the
radiation theory, which briefly alluded to in the 1905 article. These problems were:

1. why does the appearance of a photochemical reaction depends only on the
colour of light, and not on its intensity ?

2. why is short wavelength radiation generally more active chemically than long
wavelength radiation ?

3. why is the kinetic energy of cathode rays (electrons) produced by the pho-
toelectric effect independent on the light intensity ?

4. how to explain the lack of “energy dispersion” observed with X rays: sec-
ondary X-rays, produced from electrons generated by primary X-rays, may
recover almost all the initial energy, while this energy should be “spread out”
in free space.

This last point appears so surprising to Einstein that he writes: “From this point
of view, it seems that Newton’s emission theory contains more truth than the
wave theory, since it says that the energy given to a light particle when it is
emitted is not spread out in infinite space, but remains available for an elementary
absorption process.” It is then clear that Einstein wants to show that all these
effects become understandable, if one admits that “the energy of light is distributed
in a discontinuous way in space, as localized quanta which can move without
division, and which can be absorbed or emitted only as a whole”.
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Another point clearly apparent in 1909 is that Einstein, though he fully ad-
mitted that Planck’s formula can only be true, was really shocked by any attempt
to make Planck’s hypothesis compatible with the classical theory of radiation. He
writes for instance: “One might believe, by looking at this (Planck’s) demonstra-
tion, that Planck’s formula can be considered as a consequence of the present
theory of radiation. However, this is not the case, for the following reason”. Then
he points out on a simple example that the energy quantum hν may be much
larger (6.7 107 times larger in his example) than the mean energy of one oscillator.
It thus appears that the energy should only take the values zero, 6.7 107 times
the mean energy, or a multiple of this quantity. This is clearly in plain – and even
shocking – contradiction with Maxwell’s electromagnetic theory. Einstein’s con-
clusion is thus: “Would it be possible to consider that this formula is true, but to
provide a demonstration that does not rely on an hypothesis which is so monstrous
at first sight ?”.

In order to solve the dilemma, Einstein uses again thermodynamics, one of his
favorite tools, and he concludes that in the domain of validity of Wien’s law (the
“quantum” domain), a monochromatic radiation behaves as if it was composed
of independent energy quanta with a size hν. Interestingly again, he goes even
further in the 1909 conference (as well as in another article [3] published also in
1909), and identifies two basic contributions to the fluctuations of radiation: one is
a “particle-like” contribution, that we would call now shot-noise, and the other one
is a “wave-like” contribution, which is due to random interferences, and that we
would call now speckle-like fluctuations, or the Hanbury-Brown and Twiss effect.
It is also really remarkable that his paper of 1925 about a perfect gas obeying
the Bose-Einstein statistics [4], he recovers the same two terms, with the same
interpretation – except that it applies now to “particles” and not to “radiation”.
In that case, the “particle-like” term appears natural, while the occurrence of a
“wave-like term” is used by Einstein as a basis to a introduce “a very remarkable
publication” by Louis de Broglie, which shows “how to associate a (scalar) wave
field to a material particle” !

To our modern eyes, it is thus clear that through his deep analysis of thermo-
dynamical fluctuations, Einstein was able to capture the essential features of quan-
tum objects, which, whatever they are “classically”, can exhibit both “particle-
like” and “wave-like” fluctuations. At the end of his 1905 article, Einstein moves
finally to his initial motivation, which was to solve the mysteries on the photo-
chemical and photoelectric effects by using the light quantum hypothesis. He can
thus interpret Stokes’ law, and he gives the famous formula for the kinetic energy
of the electrons produced by the photoelectric effect, which will be verified in 1916
by Millikan.

Despite these very convincing arguments, the light quantum hypothesis was
the less successful among the three 1905 papers, in the sense that it was quasi-
unanimously rejected by the scientific community. Apparently, though Einstein
has insisted very much that the contradiction with classical electromagnetism was
already present in Planck’s hypothesis, the blame was put on him for making it too
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“visible”. Also, many physicists were advocating that the light might “trigger” the
photoelectric effect, rather than directly induce it. Nevertheless, the minds slowly
evolved, and the last enemies of the light quantum vanished after the experiments
done by Compton at the beginning of the 20’s, on the energy-momentum conser-
vation in the collision between an electron and a X-ray photon. The Nobel prize
was attributed to Einstein in 1921, “for his services to Theoretical Physics, and
especially for his discovery of the law of the photoelectric effect”. In 1926 Gilbert
Lewis invented the name of “photons”, by which the light quanta have been known
ever since.

One century later, what can we learn from these old debates ? We may
first remember Planck’s famous quotation, “truth never triumphs, but its enemies
eventually die”. First, it is clear that Einstein’s arguments on the fluctuations were
extremely strong, and should have been enough to convince his colleagues. On the
other hand, the situation about the photoelectric effect itself was actually not so
clear. Actually, it has been shown later that photoemission, taken by itself, does
not really “prove” the quantization of the light. This can be realized by calculating
[5] the ionization probability of quantized atoms submitted to a classical (wave-
like) field oscillating at frequency ν: one does find the energy threshold effect, and
even Einstein’s formula. But then hν appears from Fermi’s golden rule, due to
Bohr’s formula ν = (Einitial − Efinal)/h, rather than from the field quantization.
Though the consistency of such a “semi-classical” model can be questioned, a full
proof of the quantization of the field from photocounting events had yet to come.
Of course, isolating a single photon would have put this ambiguity to an end. But
in spite of its early birth, a single photon had never been “seen” for the first eighty
years of its existence, essentially because it had not been possible to control how
individual photons are emitted by a light source.

2 Quantum optics and the photon

Things started to change between the late 1960’s and early 1980’s, with the emer-
gence of quantum optics, a discipline dedicated to the study of the quantum prop-
erties of light and, of course, of photons. It was then realized that quantitative
discrepancies between the fully quantized and semi-classical descriptions of light-
matter interaction can hardly be found by looking at single photodetection events,
but that they appear straightforwardly when looking at correlations between sev-
eral – in practice, at least two – photodetection events.

Since the proof of the photon is the “seeing”, the first question that could
be asked was “if we somehow can isolate a single photon, how can we see that we
actually have one and only one photon?” A clever trick is to send that unknown
state of light onto a beamsplitter (i.e. a half-silvered mirror), so that half the
intensity is reflected and half is transmitted. Since a single photon cannot be split
into two halves, it will either be reflected or transmitted with 50/50 probabilities,
but will never go both ways at once. So, if sensitive photodetectors are set in
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Figure 1: Modern version of an antibunching experiment: A single emitting dipole
(here a colour center in a diamond nanocrystal) is irradiated by a continuous-wave
green laser. The red fluorescence from the center is collected and split towards two
photon-counting detectors (avalanche photodiodes). The number of coincidence
counts vanishes at zero delay (i.e. for simultaneous detections), and increases at
later times: this “antibunching effect” is the signature of the quantum character
of the light emitted by a single dipole.

each of the two outputs of the beamsplitter, the probability of both detectors
producing an electric pulse simultaneously will be at a minimum, in other words
the two pulses will never be bunched. A first experiment [6] along these lines was
realized by John Clauser in 1974, and then the “antibunching” effect [7] itself was
observed in 1976 by Leonard Mandel and coworkers in Rochester (fig. 1). It clearly
appeared as a phenomenon that is truly due to the quantum mechanical nature of
light, since only quantum mechanics could provide a consistent explanation of the
observed results.

Shortly after this experiment, scientists started playing with it to illustrate
and verify all the strange things taught in elementary quantum mechanics courses,
many of which had remained for all these decades as unchecked articles of faith.
Beyond the antibunching effect, an important goal was to generate a “single photon
state”, that is the first excited state of the quantized radiation field, containing
only one quantum of energy. Such states were produced simultaneously in 1986 in
Rochester by Chung Ki Hong and Leonard Mandel [8], and in Orsay by Philippe
Grangier, Gérard Roger and Alain Aspect [9], by using light sources which emit
pairs of photons. The detection of the first photon in the pair “heralds” the second
one, and at that instant the electromagnetic field is prepared in a “single photon
state”. For an ideal single photon state, the probability of joint detection on both
sides of the beamsplitter is strictly zero – the photon does not split (see fig. 2). In
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1 photon 1 photon

Figure 2: Wave-particle duality for a single photon: A one-photon state of the
light is prepared and sent towards a beamsplitter. In the left part of the figure,
the single photon exhibits a particle-like behaviour: it is detected by either one of
the detectors, but there is never a “double click”. One would conclude classically
that the photon “chooses its way” on the beamsplitter. In the right part of the
figure, the output beams are recombined to form a Mach-Zehnder interferometer.
For a single-photon input, the photon output channel can now be controlled by
moving any of the two mirrors (double arrows on the figure): for instance, one
can adjust the mirror’s position so that the photon always goes to the upper
channel (with probability one). This is the single-photon equivalent of having a
totally destructive interference in the lower channel (“real” fringes can also be
reconstructed by sending many individual photons, for various mirrors positions).
Classically, one would conclude that each photon has to go through both ways
like a wave, but this conclusion is contradictory with the previous one. Only the
quantum theory of light is able to give a consistent description of both experiments.

addition, the Orsay team set out to illustrate the wave-particle duality of quantum
mechanics. They reasoned that the photon behaves like a particle because, by
determining which detector got activated, we are actually answering a particle-like
question, namely “which way did the photon go when it hit the beamsplitter ?” But
by putting a second half-silvered mirror to make a Mach-Zehnder interferometer
(fig. 2) they could see the interference of the two paths that the single photon
could take, thus bringing into evidence its wave-like nature. In other words, by not
trying to answer the question of which way the photon went, they allowed it to go
both ways at once and produce an interference pattern, just like any wave would
do.

3 Using single photons: Quantum Key Distribution

In the meantime, scientists started thinking of how to exploit the quantum prop-
erties of the photon to do useful things. Transmitting information by coding it on
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Figure 3: Quantum Key Distribution: Using the quantum channel, Alice sends to
Bob a stream of photons that are individually polarized along any of the four
directions x̂, ŷ, û ,v̂. By agreeing on the measurement basis after Bob has received
the photons, and comparing a subset of the exchanged data through the public
channel, Alice and Bob can extract a fully secure secret key.

a train of single photons is not such a good idea, since transmission losses would
produce random deletions of photons, thus making any predetermined message
unintelligible. However, a random number does not suffer from this disadvantage,
since it remains random (but not the same) after a random decimation of its
digits. And random numbers constitute a valuable resource, because they cannot
be guessed and can therefore be used as cryptographic keys to encode messages
for subsequent secure transmission. In 1984, Charles Bennett and Gilles Brassard
proposed a protocol [10] (known as BB84), for sending a random number using a
train of single photons. This turned out to be a very fruitful idea that gave birth
to a new research field, often called “quantum cryptography”, or more technically
“quantum key distribution” (QKD). Over the years, a large number of groups
explored both the theoretical and experimental sides of these ideas. The secu-
rity proofs of QKD became more and more powerful and general, while hardware
implementations of QKD systems made considerable progress.

The BB84 protocol for sending a random sequence of bits permits the au-
thorized users (often named Alice and Bob) to detect any attack in which an
eavesdropper (usually called Eve) tries to intercept the key, for instance by mea-
suring each photon and then re-emitting it so as not to interrupt the transmission.
The security of the transmission is unconditionally guaranteed by a strategy based
on the quantum theory of measurement and the use of superposition states. For
that purpose, the bits are coded by establishing a non-unique correspondence be-
tween a bit value and the polarization states of the photon. For example, the bit
values 0 or 1 may be coded by emitting a photon polarized along x̂ or along ŷ
respectively (fig. 3).
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Alternatively, the “diagonal” basis may be used to encode 0 and 1 by polar-
izing the photon along û or v̂ respectively. We may remark, however, that since
the two bases are not orthogonal to each other, a definite bit value in one of them
is expressed as a superposition state in the other, for example û = (x̂ + ŷ)/

√
2.

During the transmission the two bases are interchanged randomly, so that a re-
ceiver who does not use the same basis as the emitter will receive a superposition
state and thus get erroneous results half of the time. For example, if a 0 is coded
by emitting a photon polarized along x̂ but the measurement is carried out in the
diagonal basis, the photon will be detected with equal probability to have a û or
v̂ polarization (thus interpreted as a 0 or a 1 with equal probability), producing
an error half of the time. This is not a problem for Alice and Bob, because after
the transmission is complete they can compare the basis sets used in emission and
reception and discard the events in which the basis sets were different. When the
eavesdropper, however, uses the wrong basis set in the course of the transmission
(and this will occur statistically for half of the bits received) she has no way of
comparing it with the basis used in emission, and thus the errors in her reception
mean that she retransmits erroneous data 25% of the time. The legitimate users
can then detect the presence of the eavesdropper simply by comparing a random
sample of the bits received to obtain the error rate of the transmission.

In practice, there are always transmission errors, and merely interrupting the
transmission as soon as the error rate increases (possibly due to Eve, but possibly
not), would not be of great use to Alice and Bob. But a crucial point is that, as
long as the error rate is not too large, the authorized parties are always able to
extract from the exchanged quantum data a secret key that is absolutely secure.
This is obtained by using provably secure classical algorithmic techniques, known
as “privacy amplification”, that rely on suitably designed hashing functions. As
a result, the effect of an increase in the error rate will be to decrease the rate of
transmission of the secret key, but not its security. Obviously, only a finite error
rate is tolerable, and in practice the secret key rate drops to zero when the error
rate goes above a value close to 15%.

Presently, several laboratories have demonstrated the quantum transmission
of a cryptographic key in optical fibers, for distances up to 70 kilometers and
transmission rates on the order of a few kbits/s [11]. Such systems are now com-
mercially available, from companies such as “id Quantique” based in Geneva [12].
These devices may be relevant for specialized economic niches that require absolute
security over concentrated areas, like business or management centers, and that
are not too sensitive to cost and infrastructure complexity. There has also been
proposals to implement global key distribution by using satellite-borne QKD.

Research on quantum key distribution has also stimulated interesting tech-
nological developments, in particular in the field of single photon detectors. Silicon
avalanche photodiodes (APD) are sensitive enough to detect single photons in the
visible and near-infrared range, and have found uses in many fields, for instance in
single-molecule detection for biological applications. In the window of minimal at-
tenuation in optical fibers (1550 nm) which is interesting for long distance telecom
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transmissions, QKD applications have pushed forward the development of InGaAs
APDs, and although their performance does not match yet that of silicon APDs,
complete photon-counting devices are now commercially available. QKD has also
stimulated technological progress in other domains, such as non-linear optics (e.g.
high-efficiency parametric fluorescence in periodically poled waveguides), and soft-
ware (such as the full-size quantum cryptography software “QUCRYPT” designed
by Louis Salvail, and now publicly available [13]).

4 Single photon sources

A research area on which QKD has had a particularly deep impact is the devel-
opment of novel light sources. To date, most of the practical realizations of QKD
have relied on strongly attenuated laser pulses, with an average number of photons
per pulse much smaller than one. But in that case the Poisson photon statistics
of laser light imposes two unwanted consequences: first, a fraction of the pulses
contain two or more photons, and this is an open door to information leakage to-
wards an eavesdropper; second, most of the attenuated laser pulses actually do not
contain any photons at all, thus resulting in penalizingly low transmission rates.
Clearly, an efficient source able to emit one, and only one, photon in each light
pulse would considerably improve the performance of QKD systems, especially
in high-loss situations, such as satellite communications. The need for such light
sources, combined with the more fundamental interests of academic laboratories
– improving our understanding and mastering of quantum optics – have given a
strong impetus to research for sources capable of emitting single photons “on de-
mand”, and a great variety of approaches have been proposed and implemented
in recent years [14].

At the heart of all single photon sources lies a single nanoscopic object, which
is small enough so that a transition between its electronic states corresponds to
light emission from a single Such is the case, for example, of an atom, a molecule
or a semiconductor nano-aggregate. If such an emitting dipole is brought to an
excited state, then from the mere conservation of energy it will emit one only
photon. In general, spontaneous photon emission can occur in any direction, and
thus usually only a very small fraction will go in a direction where it can be useful,
making the emitter very inefficient. To increase efficiency, the nanoscopic emitter
can be embedded in a high finesse optical cavity whose dimensions are of the order
of the optical wavelength, that is a few hundred nanometers. Microscopic optical
cavities are subject to “Cavity Quantum Electrodynamics” effects in which the
structure of the electromagnetic field and the spontaneous emission are modified.
In particular, in the so-called “Purcell effect”, spontaneous emission into the cavity
modes can be greatly enhanced, so that most emitted photons are funneled in
one particular direction and thus generate a highly directional output beam. In
addition, a “user-friendly” single photon source should preferably work at room
temperature, it should have a high quantum efficiency, and it should be able to
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Figure 4: Electron micrograph of a GaAs micro-post cavity. The photons are emit-
ted by an InAs quantum dot (depicted schematically by a triangle) embedded in
the center of the microcavity, and resonant with the fundamental cavity mode.
These photons will be channeled preferentially into that mode, and thus produce
a highly directional beam (image: Izo Abram, LPN Marcoussis).

achieve a high pulse repetition rate without blinking or burning out.
Such single photon sources were achieved first by using single molecules,

such as as terylene embedded in a crystal of para-terphenyl, which was used first
at cryogenic temperatures, and then at room temperature. Other candidates, such
as rhodamines or cyanines, have also been identified, but a significant drawback
of molecules at room temperature is that they irreversibly turn off after some
irradiation time. The exact mechanism responsible for this photobleaching is still
under investigation, and improvements may occur in the future.

Another well-explored system, studied both in the United States and in Eu-
rope, is the single self-assembled semiconductor quantum dot, consisting of an InAs
nano-aggregate embedded in GaAs. The single photon that is emitted when one
electron hole pair is injected in the quantum dot can easily be identified thanks to
its wavelength. In addition, in view of maximizing the collection efficiency of the
single photon that is emitted, the InAs quantum dots can easily be incorporated
in a microcavity (fig. 4) made of semiconductor through the standard processing
technologies used for microelectronics. In such systems, cavity-enhanced sponta-
neous emission (Purcell effect) has been observed experimentally to be faster than
in free space by a factor of up to 20, while factors of several hundred should be
possible according to theory. Presently, quantum dots operation requires liquid
helium temperatures, but this should improve in forthcoming years.

Another avenue is using individual nitrogen-vacancy (NV) color centers in di-
amond. The NV centers have many similarities with molecules but are extremely
photostable, even at room temperature. Another advantage is that they appear
both in bulk diamond or in diamond nanocrystals, and are therefore easy to ma-
nipulate (fig. 1). A stable source emitting single photon pulse trains based on an
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NV center in a diamond nanocrystal excited by a small solid-state laser was re-
cently implemented in Orsay [14]. The overall system is a reasonably compact,
all-solid-state set-up operating at room temperature, that is probably the sim-
plest single-photon source developed so far. Using this compact source delivering
trains of single-photon pulses, Alexios Beveratos and his colleagues were able to
demonstrate a complete quantum key distribution scheme [14, 15], where the rate
of pulses containing two photons is strongly reduced with respect to an attenuated
laser (by a factor 14 for the same rate of one-photon pulses). This makes intercep-
tion by the so-called “two-photon attacks” virtually impossible. The cryptographic
exchange is then more robust with respect to on-line losses, providing a clear ad-
vantage over an attenuated laser source for QKD applications. The performance
of this set-up should improve further in a near future, providing a highly efficient,
easy to use, and reliable single photon source that would constitute a basic piece
of hardware for practical quantum key distribution (see fig. 5).

Another way to avoid two-photon attacks is to use the trick of “heralded” sin-
gle photons, that was used in 1986 to produce single-photon states as said above. In
the context of quantum cryptography, the experiment was realized e.g. in Geneva,
by using pairs of twin photons, generated by a nonlinear optical process called
“parametric downconversion”, so that one member of the pair heralds its twin.
The quantum mechanical “entanglement” that exists between the twins was also
exploited with success. Though these schemes produce photons at irregular inter-
vals, with effective counting rates that are subject to various technical limitations,
they do provide also quite interesting QKD schemes [11].

Finally, schemes based on single trapped atoms or ions in high-finesse cavities
are clearly more complex to implement, but might produce single photons with
interesting spectral properties, as discussed in the section below. State-of-the-art
results were obtained by dropping or trapping cold atoms through a high-finesse
cavity: when going through the cavity each atom emits a burst of single-photon
pulses. Each photon emission is triggered by a sequence of laser pulses, including
excitation, emission in the cavity mode, and repumping to the initial level. Several
recent results along these lines are described in ref. [14].

5 Coalescing photons

Looking further to the future, several recent proposals for all-optical quantum
photonic networks have been advanced recently based on indistinguishable single
photons acting as flying qubits, carrying information from node to node and inter-
acting with each other. These ideas can even be extended towards the realization
of a full-fledged quantum computer, using a scheme that was proposed recently by
Emmanuel Knill, Raymond Laflamme and Gerald Milburn. For such schemes to
work, photons must be indistinguishable, that is they must be in the same “single
mode of the electromagnetic field”. In should be noted that most of the single-
photon sources described above produce photons that are incoherently spread over
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Figure 5: Quantum key exchange with a single photon source, obtained by exciting
diamond nanocrystals by a pulsed laser. The upper left image shows light emis-
sion by the diamond nanocrystals (bright spots on the image). The upper right
photograph shows the experimental set-up, where the photons are sent though a
window to Bob’s detection apparatus, located in another building. The lower part
of the figure shows the various steps of the protocol which is used to extract the
final secret key.
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Figure 6: Coalescing photons on a beamsplitter: When two “single mode” (but
otherwise independent) photons enter a 50-50 beamsplitter (a), they may be trans-
mitted or reflected in various ways, as shown in (b). In particular, both photons
may be transmitted, or both may be reflected, and it happens that the correspond-
ing probability amplitudes cancel out. Then the two photons must go to the same
output beam, as shown in (c): they “coalesce” on the beamsplitter.

many modes of the radiation field and, although they are usable in QKD, they do
not have the appropriate properties for quantum computation.

In order to illustrate what is specific to indistinguishable photons, let us con-
sider fig. 6(a): Two photons are sent onto a beamsplitter, in such a way that when
one photon is transmitted it ends up in exactly the same mode as the other pho-
ton which is reflected. The four possible configurations for the two photons being
transmitted or reflected are depicted in fig. 6(b). As it is usual in quantum me-
chanics, a probability amplitude in attached to each of these configurations, and it
turns out that the amplitudes of the two diagrams in the middle of fig. 6(b) (both
corresponding to one photon in each of the two output ports of the beamsplit-
ter) have opposite signs. Clearly, if the two photons are indistinguishable (having
exactly the same frequency, direction, and polarization) the two diagrams are iden-
tical and, since their amplitudes are of opposite sign, they cancel each other out!
The immediate consequence of the two surviving diagrams is that the two photons
must go to the same output beam: They “coalesce” as they meet on the beam-
splitter to form a “two-photon state”, that is the second excited energy state of
the corresponding mode of the quantized electromagnetic field. This surprising
quantum interference effect was first predicted and observed in 1987, by Leonard
Mandel and coworkers. They used actually pairs of “twin photons”, simultaneously
produced in parametric down-conversion, so it was possible to argue that the two
photons knew about each other before, since they were “twins” emitted in a single
parametric fluorescence event. Would it be possible to get the same effect by us-
ing truly independently emitted (albeit indistinguishable) photons? The quantum
answer to this question is yes, and it is not pure rhetoric, because interference be-
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tween independently emitted photons is actually what is required for applications
in quantum information processing, using the Knill-Laflamme-Milburn scheme.

The coalescence of two indistinguishable but independently generated pho-
tons, from a source consisting of a single quantum dot in a semiconductor mi-
crocavity, was experimentally demonstrated very recently in Stanford [16]. This
experiment can be seen as a first step towards the realization of conditional quan-
tum logic gates that would make photon-based quantum computing possible. But
difficulties should not be underestimated: with present-day setups the error rates
would be by orders of magnitude too large, compared with the range where quan-
tum error-correcting codes can play an efficient role. Also, the number of interfering
photons required to implement a useful computation is huge, and the integration
of the devices would have to be pushed well beyond the present technological
capabilities.

6 “En guise de conclusion”: towards entangled photons on demand

Photon pairs emitted in parametric downconversion have often been mentioned
above, because they have many applications in quantum optics: conditional prepa-
ration of single photon states, quantum key distribution, and last but not least,
they can be prepared in an entangled state. When two photons are entangled,
their states are always correlated no matter how we choose to measure them, as
if the two photons constituted a single quantum object. For instance, a pair of
polarization-entangled photons will exhibit correlations in every possible polar-
ization basis, and performing polarization correlation measurements on the two
photons once they are far apart leads to a violation of Bell’s inequalities. This
means that the correlations that appear between the results of the polarization
measurements on the two remote photons are so strong, that no classical model
based on “local realism” is able to explain them. In quantum information process-
ing, such a quantum entanglement is a “resource”, because it cannot be created
by local actions on two remote photons, and it allows one to perform some spe-
cific tasks, such as quantum teleportation of the (unknown) polarization state of
a third photon. Entangled photon pairs also provide a way towards the so-called
“quantum repeaters”, that would allow one to develop quantum key distribution
schemes over arbitrarily long distances (it is noticeable that “classical repeaters”,
commonly used in optical telecommunication, do not preserve the quantum cryp-
tographic security).

Presently, the main source of entangled photon pairs are parametric fluores-
cence events, but these events are essentially random, so that the pair production
process obeys Poisson statistics. In the same way as deterministic single photon
generation is useful, deterministic pair production would allow new quantum com-
munication protocols to be developed. How can this be achieved? One may simply
try to improve upon the old idea of the radiative cascade, that was used in the
70’s and 80’s for performing experimental tests of Bell’s inequalities. But instead
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of using many-atom sources as it was done at that time, one should use a two-
photon radiative cascade of a single emitter. Several groups have shown that a
quantum dot does display such a cascade, corresponding to the radiative tran-
sitions between the electronic states of the quantum dot containing two, one, or
zero electron-hole pairs. However, the first experiments did not produce the results
hoped for: The photons exhibited correlations only for one polarization basis. In
other words, they were correlated as if they were classical objects, and were not en-
tangled quantum mechanically, because, apparently, decoherence processes in the
quantum dot rapidly destroy the entanglement. Exploitation of the Purcell effect
to reduce the radiative lifetime beyond the decoherence time should, in principle,
permit the production of entangled photon pairs “on demand”.

While the long-term goal of building a quantum computer is far-fetched, a
medium-term goal for these experiments is to develop long-distance quantum com-
munication networks, that would allow for the implementation of QKD systems
over arbitrary large distances. One may think also about more elaborate proto-
cols, able to share a quantum secret between many (rather than two) users. Such
things are presently still far from being implemented, but this is one very fasci-
nating aspects of quantum information: by exploiting the strangest properties of
single photons and single atoms, it allows us to move continuously from science to
science-fiction, and back.
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A. Einstein, Über einen die Erzeugung und Verwandlung des Lichtes betref-
fenden heuristischen Gesichtspunkt, Annalen der Physik 34, 591 (1905).
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Einstein 1905–1955: His Approach to Physics∗

Thibault Damour

Abstract. We review Einstein’s epistemological conceptions, and indicate their philo-
sophical roots. The particular importance of the ideas of Hume, Kant, Mach, and
Poincaré is highlighted. The specific characteristics of Einstein’s approach to physics
are underlined. Lastly, we consider the practical application of Einstein’s method-
ological principles to the two theories of relativity, and to quantum theory. We
emphasize a Kantian approach to quantum theory.

1 On Einstein’s Epistemology

Some analysts of Einstein’s thought, notably the historian Gerald Holton, as well
as the physicist Max Born, suggested that Einstein had radically changed his
epistemological approach from a hard-line Machian positivism in his youth (par-
ticularly in 1905) to a platonizing rationalism in his later years. By contrast, I
think, in agreement with the fine analysis of Michel Paty [1], that Einstein always
had in mind a multi-faceted and subtle view of the theory of knowledge, even if the
discovery of the theory of General Relativity had the effect of partially reorienting
his epistemology towards a more speculative rationalism. The best formulation I
know of the subtlety and complexity of Einstein’s ideas on epistemology is con-
tained in a passage from “Reply to criticisms” which he wrote for the book Albert
Einstein: philosopher scientist [2]. As this formulation is central to this article, let
us cite it extensively :

“The reciprocal relationship of epistemology1 and science is of a noteworthy
kind. They are dependent upon each other. Epistemology without contact with
science becomes an empty scheme. Science without epistemology is – insofar as it
is thinkable at all – primitive and muddled. However, no sooner has the epistemol-
ogist2, who is seeking a clear system, fought his way through to such a system,
than he is inclined to interpret the thought-content of science in the sense of his
system and to reject whatever does not fit into his system. The scientist3, how-
ever, cannot afford to carry his striving for epistemological systematic4 that far.
He accepts gratefully the epistemological conceptual analysis ; but the external

∗Based on translations from the French by Emily Parks (sections 1–6) and Eric Novak (sections
7–14).

1“Erkenntnistheorie”.
2“Erkenntnistheoriker”, literally the theoretician of knowledge.
3“. . . der Scientist”.
4“. . . erkenntnistheorischer Systematik”.
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conditions, which are set for him by the facts of experience, do not permit him
to let himself be too much restricted in the construction of his conceptual world
by the adherence to an epistemological system. He therefore must appear to the
systematic epistemologist as a type of unscrupulous opportunist : he appears as
realist insofar as he seeks to describe a world independent of the acts of percep-
tion ; as idealist insofar as he looks upon the concepts and theories as the free
inventions of the human spirit (not logically derivable from what is empirically
given) ; as positivist insofar as he considers his concepts and theories justified only
to the extent to which they furnish a logical representation of relations among
sensory experiences. He may even appear as Platonist or Pythagorean insofar as
he considers the viewpoint of logical simplicity as an indispensable and effective
tool of his research.”

To complete this citation, let us listen to what Einstein said in his Herbert
Spencer Lecture, given at Oxford on June 10, 1933 [3] :

“If you want to learn something about the methods of theoretical physics
from its practitioners, I suggest you to hold to the following principle : do not
listen to what they say but look at what they do !”

The Moral :

• Whichever work of Einstein is considered, one should not try to interpret it
only from a single epistemological approach. On the contrary, one should try
to highlight his various components: empiricist, realist, idealist, speculative,
. . .; and

• to learn the richness of Einstein’s approach to physics, it is best to consider
specific examples, based on his works or on the texts where he explains
himself in detail.

However, before considering explicit examples where Einstein puts his epis-
temology into action, it is important to have an idea of its sources.

2 Einstein and Philosophy

First, let us note that Einstein had always been very much interested in philosophy
in general, and more particularly in the philosophy of knowledge (what he called
Erkenntnistheorie, the theory of knowledge, that here we will call epistemology).

Sometime during 1902, in Bern, Maurice Solovine, who was then studying
philosophy and physics, came to see Einstein after having seen a small advertise-
ment in a Bern newspaper, where Einstein was offering his services as a private
tutor in physics. On this occasion Einstein confided in him that, “when he was
younger, he had a very lively taste for philosophy, but its vagueness and arbitrari-
ness turned him off, and that now he was only concerning himself with physics.”
However, the physics lessons to Solovine transformed rapidly into discussions on
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the foundations of physics. These epistemological discussions were broadened to a
small group of three friends : Einstein (1879–1955), Maurice Solovine (1875–1958)
and Konrad Habicht (1876–1958). For fun, they gave their small discussion group
the pompous name of the “Olympia Academy”. They embarked on an ambitious
program of reading and discussing works of philosophy, epistemology, criticism
or history, notably: The Analysis of Sensations and The Science of Mechanics: A
Critical and Historical Exposition of its Principles by Ernst Mach, System of Logic
by John Stuart Mill, A Treatise of Human Nature by David Hume, The Grammar
of Science by Karl Pearson, Critique of Pure Experience by Richard Avenarius, Es-
say on the Philosophy of Science by Ampère, Science and Hypothesis by Poincaré,
Riemann’s thesis on The Foundations of Geometry, the essay On the nature of
things-in-themselves by Clifford, What are Numbers and What are they for? by
Dedekind. To this they added a program of philosophical or literary works of gen-
eral culture comprising: some dialogs of Plato, some works of Leibniz, Antigone
from Sophocles, some tragedies of Racine and Don Quixote from Cervantes. Let
us note also that Einstein had read, in his youth or when he was at the Zurich
Polytechnic, other philosophers or scientific texts written about the foundations of
science, namely Kant (read when Einstein was 16 and reread afterwards), Spinoza,
Schopenhauer, Berkeley, Galileo, Boltzmann, Helmholtz and Hertz. Later, he con-
tinued to read philosophers or epistemologists (Russell, Bergson, Emile Meyerson)
and had exchanges and discussions with Russell, with the neo-Kantian Ernst Cas-
sirer, and with epistemologists from the Vienna Circle : Moritz Schlick, Rudolf
Carnap, and Hans Reichenbach.

This long enumeration shows Einstein’s profound interest for philosophy, and
his peculiar attraction for a methodological reflection on the foundations of science.
It is certain that such an epistemological reflection played a crucial role in his
scientific work, by allowing him to bypass psychological blocks that limited the
intellectual horizon of many other scientists at the beginning of the century. This
is, however, a subtle and complex matter of which we will give just a short outline.

3 Hume, Kant, Mach and Poincaré

The thinkers who probably have most influenced the methodological reflection of
Einstein and who, in one way or another, helped him in his scientific works are :
David Hume, Immanuel Kant, Ernst Mach, and Henri Poincaré.

• David Hume (1711–1776) came after Newton, Locke and Berkeley. He asked
the fundamental question : “How do we know?” He examined in a critical
way, the origin and content of general notions, such as space, relation, sub-
stance, and causality. Being a skeptic, he put into doubt the usual idea that
science draws general laws from experiment, by means of inductive logic. For
example, he considered that causality is based not on logical necessity but
on habit.
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• Immanuel Kant (1724–1804) reflected on the ideas of Newton, Leibniz, and
Hume among others. By going deeper into the nature of scientific knowledge,
and the nature of the objects and structures of science (space, time, matter,
force, causality), he introduced a deep conceptual revolution. Before him
one thought that all knowledge, to be true, must adjust itself to the objects.
He turned upside down this traditional view by introducing the idea that
objects must instead adjust themselves to human knowledge. More precisely,
he conceived the objectivity and certainty of knowledge as the result of the
conditions that are imposed by the demands of the knowing subject. For
example, for him space and time are not physical realities that exist before
and besides matter, but rather a priori “forms” of human sensibility that
serve as ideal foundations for conceiving and representing reality.

• Ernst Mach (1838–1916) was a physicist concerned with the historical criti-
cism of the fundamental concepts of physics, and who got interested in the
psychophysiology of sensations. He developed an epistemology which was
empiricist, critical and positivist, which proposed a phenomenalistic reduc-
tion to sensations and the rejection of all “metaphysics”. He brought up an
abrasive criticism of the a priori of Newtonian mechanics (absolute time, ab-
solute space, absolute motion) by insisting on the necessity to confront with
experimental observations. He insisted on the reality of relative motions only.

• Henri Poincaré (1854–1912) thought in depth about the foundations of math-
ematics. He published the fruits of his reflections in articles of philosophical
content and in his popular books, notably Science and Hypothesis (1902),
which for several weeks left Einstein and his friends of the Olympia Academy
breathless. The central element of Poincaré’s scientific philosophy (called
conventionalism) is the free choice that the scientist can make of his funda-
mental principles. Poincaré was struck, like many, by the discovery of the
logical consistency of non-Euclidean geometries, and notably of geometries
admitting (à la Klein) symmetry groups as large as the Euclidean-geometry
one: like hyperbolic geometry (Lobatchevski) or elliptic (spherical) geometry
(Riemann). He concluded that the choice of a particular geometry was an
arbitrary convention, linked to the compensating choice of other conventions
in the representation of physical phenomena.

As for Poincaré’s influence over Einstein let us note that certain authors
have suggested that Einstein: (1) must have read, before 1905, not only Science
and Hypothesis, but also other publications of Poincaré (notably an article written
in 1900 for Lorentz’s Festschrift), (2) would have found in them useful ideas for
his work on Special Relativity, and (3) would have then omitted to cite Poincaré.
Considering that Einstein warmly mentions the influence, on his invention of Gen-
eral Relativity, of the reading of Science and Hypothesis by the “deep and subtle
Poincaré”; considering the difficulty that Einstein had, when he worked in Bern,
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for consulting the scientific literature5; and considering the fact that Einstein’s
only citation of an article by Poincaré (Lorentz-Festschrift, 1900) dates from 1906
and only consists in citing the article’s existence without using any result from
it, it seems psychologically probable to me that Einstein in 1905 had only read
Science and Hypothesis. In addition, it is likely that the reading of Poincaré’s book
was not as exhaustive as one would think. Indeed, Solovine wrote that when the
Olympia Academy became impassioned by a book : “we read one page, half a page,
sometimes only a sentence and the discussion, when the problem was important,
was drawn out over several days” (cited by [1] p. 373). Clearly, in Science and
Hypothesis, it was the discussion on the origin of geometric structures that had
impassioned the members of the Olympia Academy, and it is plausible that they
barely took note of the brief allusions of Poincaré to the problematics of relative
motion or to the absence of “direct intuition of the simultaneity of two events”
(see the citations in [4]).

4 Scientific Philosophy and Einstein’s Conceptual Innovation

One can consider that Einstein’s scientific philosophy was built in large part dur-
ing his youth (say before 1905), as a personal synthesis of the philosophical and
epistemological readings mentioned above. Among these readings, those of Hume,
Kant, Mach and Poincaré played a particular role. In his Remarks on the Theory
of Knowledge by Bertrand Russell [5], Einstein explains what Hume and Kant had
brought to him :

“Hume saw that some concepts, that we deem as essential, such as, for in-
stance, the link between cause and effect, could not be derived from the sensory
data. [ . . . ] Man has an intense desire for assured knowledge. That is why Hume’s
clear message seemed crushing: the sensory raw material, the only source of our
knowledge, through habit may lead us to belief and expectation but not to the
knowledge and still less to the understanding of lawful relations. Then Kant took
the stage with an idea which, though certainly untenable in the form in which
he put it, signified a step towards the solution of Hume’s dilemma: whatever in
knowledge is of empirical origin is never certain (Hume). If, therefore, we have
definitely assured knowledge, it must be grounded in reason itself. This is held
to be the case, for example, in the principles of geometry and in the principle of
causality. These and certain other types of knowledge are, so to speak, a part of

5Let us note in this respect that even though Poincaré had, contrary to Einstein, easy access
to all the scientific literature it seems that he ignored the existence of Einstein’s publications on
Relativity until 1909, in spite of the fact that they were published in one of the most prestigious
physics journals of the era. One should not over-estimate the knowledge of literature that sci-
entists had at the time, especially in regard with articles published only in a Festschrift. There
were no photocopiers at that time and so one could only consult articles in a library. We recall
in passing that Einstein explained in a letter to Stark (September 1907) : “ Unfortunately I am
not able to consult all that has appeared on the subject, because the library is closed during my
free time.”
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the implements of thinking and therefore do not previously have to be gained from
sense data (i.e., they are a priori knowledge). Today everyone knows, of course,
that the mentioned concepts contain nothing of the certainty, of the inherent ne-
cessity, which Kant had attributed to them. The following, however, appears to
me to be correct in Kant’s statement of the problem: in thinking we use, with a
certain ‘right,’ concepts to which there is no access from the materials of sensory
experience, if the situation is viewed from the logical point of view.”

Elsewhere (in Physics and Reality, 1936, see [1]), Einstein recognizes that
Kant’s big achievement is to have affirmed that the intelligibility of the world
was a necessary condition to its scientific representation : “It is one of the biggest
accomplishments of Kant to have shown that it would make no sense to pose the
existence of a real external world without this intelligibility.”

Of course, one must remember that these texts were written by Einstein after
the construction of the two theories of Relativity and after their first experimental
verifications. These theories confirmed at once : (1) the necessity to pose a priori
a logical framework defining the intelligibility of the world, and (2) the possibility
to change this logical framework. However, in light of Einstein’s numerous episte-
mological readings before 1905, it seems clear that his epistemology, as expressed
in the texts above, is not an a posteriori rationalization, but played an important
role in helping Einstein, the physicist, to set new logical frameworks defining a
deepened intelligibility of the world.

More precisely, Einstein understood that :

• Hume’s skepticism demystified the big conceptual absolutes and invited
searching for the “habits” on which they were based on ;

• Kant’s rationalism suggested to look for the origin of the fundamental sci-
entific frameworks in the intelligibility power of the cognitive subject ;

• Mach’s positivism invited the questioning of Newtonian absolutes and the
need to express physics in terms of concepts linked to experimental observa-
tions ;

• Poincaré’s conventionalism insisted on the free choice of the fundamental
scientific concepts, and, at the same time, on the physiological-experimental
origin of geometry.

In this way Einstein “went shopping for” his ideas among the great thinkers
of science, and there found liberating elements for his research in physics. In doing
so he avoided those elements that blocked his predecessors : such as universal
skepticism, a mental block on the a priori character of space and time concepts,
an exaggerated emphasis on the necessity to found each concept on observations,
or an insistence on the arbitrary and conventional character of basic scientific
principles.
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More precisely, one can say that Einstein added to the useful messages of
the epistemologies of Hume, Kant, Mach, and Poincaré summarized above, the
following elements that are characteristic marks of his approach in physics :

(i) Einstein insists on the research of general principles of Nature, and on the
fruitfulness of constraining the laws of Nature by imposing such principles
as starting hypotheses.

(ii) Einstein explains that “the researcher must extract these general principles
of nature by perceiving within a complex ensemble of experimental facts
certain general characters that allow for a precise formulation.”

(iii) He also explains that the choice of these general principles, and more gen-
erally of the fundamental scientific concepts, is a free invention of the mind
that cannot be logically deduced from the bulk of experimental facts, but
that is, however, strongly constrained by it.

Let us also mention how Einstein explained his epistemological view to his
old friend Maurice Solovine. It was summarized in a handmade drawing (see figure
4, taken from [1]), accompanied with the following explanations [6] :

“1. E (experienced facts) are given.

2. A are the axioms from which we draw our deductions. Psychologically, A
is based on E . However there is no logical path from E to A but only an
intuitive (psychological) link of interdependence, always “revocable”.

3. From A one logically deduces individual propositions S, and these deductions
may aspire to exactness.

4. S can be confronted with E (verification by experience). This procedure, at
a closer look, also belongs to the extra-logic (intuitive) domain, because the
links between the concepts in S and the experienced facts in E do not have
a logical character.
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But this relation from S to E is (pragmatically) much less uncertain than
the relation of A to E (for example : the concept of a dog and the corresponding
experienced facts). If one could not draw on such a near-assured correspondence,
the logical machinery would be of no value for the “understanding of reality”
(example : theology).

The quintessence is the eternally problematic interdependent relationship
between thought and actual experience.”

5 Einstein and the Theories of Relativity

Let us briefly comment on the “application” of the methodological principles (i),
(ii), (iii) indicated above to the context of the discovery of the two theories of
relativity by Einstein.

In the case of principle (i) and the theory of Special Relativity, let us recall
that Einstein’s attitude was very different from those of his “competitors” such
as Lorentz or Poincaré. They thought of the existence of “corresponding states”
(Lorentz) or of the “principle of relativity” (Poincaré) as consequences of an under-
lying dynamics to be understood in detail, rather than as a starting axiom, defining
a new kinematics. This is clearly illustrated by the only discussion on Relativity
that occurred between Einstein and Poincaré. This discussion took place in 1911
at the first Solvay Symposium in Brussels. It is reported by Maurice de Broglie
[7] :

“I remember one day in Brussels, as Einstein was explaining his ideas [on the
“new mechanics”, meaning relativistic], Poincaré asked him, ‘What mechanics do
you adopt in your reasoning?’ Einstein replied, ‘No mechanics’, which appeared to
take his listener by surprise.”

As a result, Lorentz (and probably also Poincaré ) considered that Einstein
was “cheating” by “turning the problem upside down”, meaning by assuming (kine-
matically) what, for them, was to be proven (dynamically).

Einstein’s formulation of the methodological principle (ii) above, sheds light
on another aspect of his texts concerning the invention of Special Relativity. In
fact, Einstein insisted on the abstraction of general principles from “complex en-
sembles of experimental facts”. This explains the little importance, in Einstein’s
thinking, of the Michelson-Morley experiment, when considered in isolation. Con-
trary to the Relativity textbooks that emphasize this peculiar experiment because
of its high precision and its sensitivity to v2/c2 order terms, it is clear that Ein-
stein was especially sensitive to the existence of a whole “complex” of facts from
experiment (going from the experiences of ordinary life, on Earth or on a train,
to many electromagnetic or optical experiments) suggesting the impossibility to
detect absolute motion. The Michelson-Morley experiment was probably for him
only a particular example among a large set of experimental facts that made sense
only considered all together.
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Finally, about the methodological principle (iii), it is important to see that
Einstein’s free invention (from a logical point of view) contrast with Poincaré’s ar-
bitrary convention. Indeed, Poincaré concluded from the (logical) freedom of choice
of fundamental scientific concepts that it was wiser not to modify the concepts in-
herited from the science of the past (namely Euclidean geometry, and Newtonian
absolute time). By contrast, Einstein was sensitive to the suggestions (intuitively)
drawn from the bulk of experimental facts and thought that, at each stage of
development in physics, a particular logical framework had preeminence over the
others. We clearly see the difference in methodological attitude between Einstein
and Poincaré in 1912. In May of 1912, two months before his death, in a conference
given in London on “Space and Time”, Poincaré wrote about the conception (or
“convention”) of the space-time, à la Einstein-Minkowski, in the theory of Special
Relativity[4] :

“Today some physicists want to adopt a new convention [...] those who are
not of the same opinion can legitimately keep the old one so as not to trouble their
old habits. I believe, between us, that they will do so for a long time.”

At the same moment, Einstein, who in 1905 had convinced the elite of physi-
cists of the necessity to pose the new kinematic framework of the special-relativistic
space-time, was in the process6 of blowing this framework up and of replacing it
with a profoundly modified one: that of the deformed space-time of General Rel-
ativity.

6 Einstein and the Kantian Quantum

And what about the application of Einstein’s methodological ideas to Quantum
Physics? It is commonly believed that they found their limits right there, and that
Einstein manifested a conceptual block, based on a priori ideas about “reality”,
that prevented him from accepting the “revolutionary” ideas of Heisenberg, Born,
Jordan, Dirac, Schrödinger and Bohr. I think that this view is not correct, and
does not do justice to the subtlety of Einstein’s methodological approach, nor to
his direct or indirect contributions to what constitutes the modern interpretation
(à la Everett) of the quantum formalism. For a detailed discussion of the important
methodological contributions of Einstein to the actual understanding of Quantum
Theory I refer to a recent book [8]. The following and the end of this present text
is made up of excerpts from this book. These excerpts concern several important
moments in the understanding of the formalism of Quantum Theory. These mo-
ments are: (1) a conversation between Heisenberg and Einstein where one sees
that Einstein’s epistemological suggestions played a crucial role in Heisenberg’s
invention of his famous “uncertainty relations”, (2) the important influence of
Einstein’s idea of a “ghost field” or “pilot field” on Born’s interpretation of the

6At the risk of destabilizing his most convinced defendants, notably Planck who publicly
criticized Einstein for daring to touch the principle of relativity (in the sense of special relativity).
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“probability amplitude”, (3) the collaboration with Boris Podolsky and Nathan
Rosen, (4) the mail exchanges between Einstein and Schrödinger that led to the
famous “Schrödinger’s cat”, (5) the influence that Einstein had on Everett, who
was probably stimulated in thinking about the interpretation of quantum theory
by hearing the last seminar of Einstein.

The main theme of these different moments is the idea that Einstein, far from
being blocked by outdated a priori, had a deeper and more demanding vision of
what must be a physical theory than many quantum physicists who were satisfied
with a purely positivist vision of physics. This deeper vision can be called, when it
is applied to quantum theory, “the Kantian Quantum” (“Le Kantique du Quan-
tique”7), because it rests on an idea that goes back to the philosopher Immanuel
Kant (but that Einstein had deduced from his work in General Relativity) : It is
the theory itself that defines “what is real”.

7 A Crucial Conversation

Berlin, Germany, early 1926

The young Werner Heisenberg was awed and impressed on entering the
physics seminar room of the University of Berlin, on this day early in 19268. He
was only twenty-five years old, and had been invited to give a lecture on the “new
quantum mechanics”, which had just been born. While rather feverishly throwing
a final glance at his notes, he saw, taking seats in the front row, the upper crust
of the international physics community: Max Planck, Walther Nernst, Max von
Laue, and others. The faces of these physicists, famous for their fundamental dis-
coveries, held all of the seriousness and rigorous composure of German academic
life. Then, just before the hour set for the beginning of the lecture, the physicist
who impressed him most, he whose work he had admired since adolescence, when
he had discovered the theory of general relativity in a book9 entitled Space, Time,
Matter, he whose letters were read aloud by his professor and thesis adviser in
Munich, Arnold Sommerfeld, to illustrate his course: Albert Einstein entered the
room and sat down in the front row, giving him a friendly smile, partly to excuse
himself for nearly arriving late, and above all to put him at ease.

Thus given confidence, Heisenberg began to relate the physical concepts and
mathematical formalism of the new quantum theory. Indeed, in the last few months
there had developed, with unheard-of speed, a new mathematical formalism which
was hoped to supplant the “old” theory of quanta. The old theory of quanta was

7I thank Malcolm MacCallum for useful suggestions about the various ways of translating
into English this French pun on “the Song of Songs” ( “Le cantique des cantiques”).

8We are here inspired by the memoirs collected, much later, by Werner Heisenberg in his
remarkable book Physics and Beyond, translated by A. J. Pomerans, Allen and Unwin, London,
1971.

9The book Space, Time, Matter by the mathematician Hermann Weyl, was one of the first
books written on the theory of general relativity. The first edition dates from 1918.
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that disparate collection of mutually contradictory ideas developed between 1900
and 1924, which attempted to describe the quantum discontinuities whose ex-
istence had slowly been revealed through the understanding of various physical
phenomena. The discovery which had initiated the theory of quanta (the precise
structure of black-body radiation) had been made here in Berlin itself, through
the extremely precise measurements of Otto Lummer, Ernst Pringsheim, Heinrich
Rubens, and Ferdinand Kurlbaum, and through Max Planck’s theoretical “act of
despair”. But it was above all Einstein’s collective work on quanta, between 1905
and December 1924, which had shown the need for a profound readjustment of
physics. To which were added, starting in 1913, the innovative concepts of Niels
Bohr who had shown how to apply the quantum ideas to atomic physics. The
new quantum formalism which Heisenberg spoke of had come from some of Bohr’s
ideas on atomic structure, and some concepts introduced by Einstein in 1916 con-
cerning the interaction between an atom and electromagnetic radiation. Einstein
had introduced, among other things, some coefficients (denoted A), which mea-
sured the probability (per unit time) with which an atom, initially found in a
certain (quantized) “state”, could experience a “quantum transition” towards an-
other quantized “state” with lower energy by emitting, at a random instant and
in a random direction, a quantum of light10. Heisenberg had been initiated into
the physics of these quantum transitions by his thesis advisor in Munich, Arnold
Sommerfeld, and by Max Born, at Göttingen. After having completed his thesis
at the age of twenty-two, he became Born’s assistant at Göttingen in October of
1923. In 1923 and 1924, Heisenberg worked under Born’s direction, and learned
from him several crucial ideas and techniques, notably the idea to introduce new
coefficients, denoted a, associated like Einstein’s coefficients A to the quantum
transition between two states of an atom. Roughly speaking, the new coefficients
a, called “amplitudes of quantum transition11”, were such that their squares were
equal to Einstein’s coefficients A.

The essential idea at the base of the new quantum theory had come to Heisen-
berg early in the month of June 1925, while he was recovering from a bad bout
of hay fever by spending some time on the island of Heligoland, to the north of
Germany. This idea consisted in replacing the usual notion of a continuous orbit
describing the possible motion of an electron12 around an atom by the collection of

10We recall that the possible energies, in quantum theory, for the “states” of an atom only take
discontinuous values E0, E1, E2, etc. The coefficient which Einstein associated to the quantum
transition between the state of energy Em and the state with (lower) energy En is denoted Anm.
Here m and n are indices which take the values 0, 1, 2, etc. If fnm designates the frequency of
light emitted during the transition between “the state m” and “the state n” (as we shall say for
brevity), the energy of the quantum of light emitted is E = hfnm = Em−En, and its momentum
takes the value p = hfnm/c.

11The amplitude anm associated to the transition between the state m and the state n is
a complex number (anm = xnm + iynm where i =

p
(−1)), of which the squared modulus

(|anm|2 = |xnm|2 + |ynm|2) is proportional to Einstein’s coefficient Anm associated to the same
transition.

12Like Heisenberg in his first article, we here consider for simplicity an atom with only one
electron.
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amplitudes a, associated to the transitions between the atom’s possible quantized
states. Each transition amplitude is defined by supplying two numbers: the num-
ber fixing the initial energy state within the discontinuous list of possible quantum
states of the atom, and the number fixing the final state. The total collection of
amplitudes is thus analogous to a checkerboard or a multiplication table13, of which
each elementary square is fixed by supplying two numbers: one number fixing the
“horizontal” projection of the square in question, the other fixing its “vertical”
projection.

While Heisenberg was explaining the motivations which had led him to re-
place the description of the continuous orbit of an electron in an atom by such
checkerboards of transition amplitudes, he looked with worry out of the corner
of his eye to where Einstein was seated, to see how he was reacting to the in-
troduction of such “witches’ multiplication tables14”. While not convincing him,
Heisenberg succeeded in drawing Einstein’s interest, particularly when, at the end
of his lecture, he indicated that the new “rules of multiplication” of two ampli-
tude tables, introduced by him and developed in recent work done in collaboration
with Max Born and Pascual Jordan, permitted one to demonstrate, through de-
tailed calculation, Einstein’s result which said that the energy fluctuations of the
radiation contained within a sub-volume were the sum of two separate terms: a
term connected to the undulatory character of the radiation and a term connected
to its corpuscular character. This result, concluded Heisenberg, showed that the
new quantum formalism was capable of describing the undulatory and corpuscular
aspects of a continuous field (such as the electromagnetic field) at the same time.

After the colloquium, Einstein came to congratulate Heisenberg on his re-
markable results, and asked Heisenberg to accompany him home in order to discuss
in more detail the new ideas at the base of the formalism which he had presented.
Once arrived at his apartment, Einstein asked him to again explain the physical
motivation leading to the replacement of the notion of a continuous orbit by that
of an infinite table of transition amplitudes.

Let’s listen to a central part of their dialog, such as it was later reconstructed
by Heisenberg himself15:

Heisenberg – . . . Since it is reasonable to allow into a theory only directly
observable quantities, I thought it more natural to restrict myself to these frequen-
cies and amplitudes16, bringing them in, as it were, as representatives of electronic
orbits.

Einstein – But all the same, you do not seriously believe that a physical
theory should only include observable quantities?

13Born quickly realized that the “table” anm of (complex) amplitudes considered by Heisenberg
could be identified with what the mathematicians called a “matrix”, since the calculational rules
introduced by Heisenberg, for physical reasons, were found to be the same as the rules for matrix
calculations. We note however that the table of transition amplitudes anm is infinite, in general.

14To repeat an expression used by Einstein on December 25th 1925, in a letter to Besso.
15See chapter V of the memoirs of Heisenberg cited above.
16These are the table of values fnm = (Em − En)/h and that of the values anm mentioned in

the notes above.
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Heisenberg – I thought that it was you yourself who had made this idea
the foundation of your theory of relativity. You stressed that one could not speak
of an absolute time, since one cannot observe this absolute time. You said that
only the readings of clocks, made in a system of reference either in motion or at
rest, were able to determine the measurement of time.

Einstein – Perhaps I used this sort of philosophy, but it is nonsense never-
theless. Maybe, to express myself more prudently, I will say that from a heuristic
point of view, it could be useful to remember that which one really observes. But,
at the level of principles, it is completely erroneous to want to found a theory
uniquely on observable quantities. For, in reality, things happen in exactly the
opposite way. It is only the theory which decides what can be observed.

We have emphasized the final sentence since it resonated for a long time in
the young Heisenberg’s mind, and played a crucial (and generally unknown) role
in the later development of the quantum theory. Let us only here say that this
“message” (it is the theory which decides what is observable) had been inculcated
into Einstein by the years spent in the erratic construction of general relativity.
For years, the connection (so clear in special relativity) between the coordinates of
space and time and the measures of distance and duration had remained obscure
in general relativity. Einstein had only worked his way free of confusion at the end
of 1915 when he understood, after having constructed the theory, that it was the
very mathematical formalism of general relativity which permitted one to define
a posteriori that which was observable when space-time was deformed by matter.

8 “Waves Over Here, Quanta Over There!”

In the beginning of the year 1926, close to the time when Heisenberg had given
his lecture at the Berlin colloquium, another mathematical formalism had been
proposed, by the Austrian theoretical physicist Erwin Schrödinger, to supplant the
“old” Planck-Einstein-Bohr theory of quanta. This formalism, called “wave me-
chanics”, had, according to Schrödinger himself, taken root in the ideas of Louis
de Broglie, and in the “brief but infinitely clairvoyant” remarks made by Einstein
(within letters, and in the article from the end of 1924 discussed in the preced-
ing chapter). Schrödinger’s wave mechanics seemed completely different from the
Born-Heisenberg-Jordan matrix mechanics. In the one, the state of the system
considered (let’s say electrons orbiting around the nucleus of an atom) was de-
scribed by a wave amplitude A, which was a continuous function17 of time and
of the coordinates of the electrons, while the other only considered the discontin-
uous transitions between the various possible stationary states of the atom, and
described them by an infinite checkerboard of transition amplitudes anm. These
two descriptions seemed to be antipodal to each other. The first gave a perfectly
continuous image (in time, and in the space of configurations of the system), while

17More precisely, A is a complex function (A = A1 + iA2). This wave amplitude is often
denoted, following Schrödinger, by the Greek letter psi, ψ.
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the second was only interested in the discontinuous transitions experienced by the
system. Nevertheless, Schrödinger quickly enough showed that there was a math-
ematical equivalence between the two formalisms. More precisely, he showed that
knowledge of the “wave equation” describing the propagation of the continuous
amplitude A permitted the simultaneous calculation of the possible stationary
states of the system, their quantized energies, and the infinite checkerboard of
transition amplitudes between these stationary states. Roughly speaking, the pos-
sible stationary states are analogous to the series of pure vibrational states of an
elastic object, like those of a piano string which can vibrate in its fundamental
mode, or in the mode corresponding to the first harmonic (one octave higher than
the fundamental mode) or even in the second harmonic (a fifth above the first
harmonic), etc.

In fact, it seemed for a long time that Schrödinger’s wave description was
more complete than the Born-Heisenberg-Jordan discontinuous description. Above
all, Schrödinger’s description seemed to suggest that one could perhaps even get
“rid of” the idea of quantum discontinuity (despite all that it had allowed to be
understood, including Einstein’s theory of atomic transitions), and describe reality
uniquely in terms of a continuous wave phenomenon.

Einstein had initially welcomed, with satisfaction and some relief, Schrö-
dinger’s formalism, which seemed to him closer to his deeply rooted intuition
about reality than the “witches’ multiplication tables” used by Heisenberg and
companions. But he was rather rapidly disenchanted. First, because the wave am-
plitude A was not propagating in the usual three-dimensional space but in a space
of 6 dimensions for a system of two particles, 9 dimensions for a system of 3 par-
ticles, 12 dimensions for four, etc. And second, because wave mechanics had great
difficulty in accounting for all of the experimental facts which had led Einstein
and others, for around twenty years, to introduce the quantum discontinuities. In
the month of August 1926, Einstein summarized his sentiments in a letter to Paul
Ehrenfest:

“Waves over here, quanta over there! The reality of each has the solidity of
rock. But the devil makes them rhyme together (and the rhyme is well and truly
real).”

Einstein’s dissatisfaction, on being confronted with the paradox that nature
exhibits wave-like aspects and particle-like aspects at the same time, lasted until
the end of his life. As we shall see, that which convinced most other scientists did
not carry away Einstein’s approval.

9 Einstein’s “Ghost Field”, Born’s “Probability Amplitude”, and
Heisenberg’s “Uncertainty Relations”

We shall not try to discuss, in even a slightly exhaustive way, the development
of the physical interpretation of the mathematical formalism of quantum theory.
We will only show the essential, though sometimes hidden, role played by some of
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Einstein’s ideas.
The first crucial advance dates from the summer of 1926, and is due to Max

Born. As he explicitly wrote18: “I start from a remark by Einstein on the relation
between [a] wave field and light-quanta. He [Einstein] said approximately that
waves are there only to point out the path to the corpuscular light-quanta, and
spoke in this sense of a ‘ghost field’ which determines the probability for a light-
quantum . . . to take a definite path . . . ” These remarks by Einstein on a “ghost
field”, or a “pilot field”, were communicated verbally by him to several scientists
(Max Born, Eugene Wigner, and others) in the 1920s, but he never published
them. However that may be, it seems that they motivated Max Born to propose
the interpretation of the wave amplitude A(t,q) of a certain physical system as
an “amplitude of probability” to find, at the instant t, the system in the configu-
ration described by the variables q. [As mentioned previously, when we consider a
single particle, q denotes its three coordinates in space; but, when we consider a
system of two particles, q denotes the six coordinates necessary to fix the spatial
position of two particles; etc.] Born further explained (in a footnote added during
proofreading) that the probability of finding a system in a configuration q was
proportional to the square19 of the amplitude A(q). Max Born then summarized
the essence of the interpretation of quantum theory which he was proposing:

“The motion of particles follows probability laws but the probability itself
propagates according to a causal law.”

The second part of Born’s quote alludes to the fact that “Schrödinger’s wave
equation”, written by the latter in early 1926, is a deterministic equation of propa-
gation, which determines in a unique way the temporal evolution of the amplitude
A, once one knows its value at an arbitrary initial instant.

Born’s “probabilistic interpretation” was an important conceptual advance,
but it raised more questions than it answered. In fact, it was a mere hypothe-
sis, while it should have been derived from the mathematical formalism of the
quantum theory. This is what Heisenberg believed during the end of 1926 and the
beginning of 1927. Werner Heisenberg was then working in Niels Bohr’s group in
Copenhagen. He held intense discussions with Bohr, which often lasted well past
midnight, on the physical interpretation which should be given to the mathemat-
ical formalism of the quantum theory. In February 1927 Heisenberg, remaining
alone in Copenhagen while Bohr was skiing in Norway, had a new idea destined to
clarify the compatibility between a wave description and a corpuscular description
for a single quantum particle (such as an electron). As he himself recalled20, the
memory of his conversation with Einstein one year before played a crucial role in
his thought-process:

18For historical references on Einstein’s “ghost field” (Gespensterfeld) and on its influence on
the probabilistic interpretation of the wave amplitude A, see the biographies of Abraham Pais on
Einstein (see Bibliography) and of Bohr (Niels Bohr’s Times, Oxford, Clarendon Press, 1991).

19A being a complex number, A = A1 + iA2, the “square” we speak of here is the squared
modulus of A: |A|2 = (A1)2 + (A2)2.

20See chapter VI of his book: Physics and Beyond, op. cit.
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“That night, it was perhaps around midnight that I suddenly recalled my
discussion with Einstein, and that I remembered his phrase: ‘Only the theory
decides what one can observe.’ I realized immediately that it was within this
remark that one must look for the key to the enigma which had so occupied [Bohr
and me]. I then went for a nocturnal walk through the Fälledpark to reflect on the
import of Einstein’s comment.”

It is in the course of this night-time walk, reflecting on the import of Einstein’s
phrase, that Heisenberg discovered his very famous “uncertainty relations21”, say-
ing that the product of the “uncertainty” in the position of a particle and the
“uncertainty” in its momentum22 must necessarily be greater than “Planck’s con-
stant” h23.

Heisenberg understood that the uncertainty relations permitted a clarification
of the conditions in which one could use the idea that a quantum particle is
simultaneously described by a wave and by a corpuscle. For example, it seemed
that the observation of rectilinear tracks, visible at the macroscopic level, left by
particles in certain detectors implied that a particle must necessarily be described
as a localized corpuscle. The uncertainty relations showed that the finite width
of the tracks was compatible with a wave behavior on distance scales which were
small compared with this width.

When Bohr returned from his vacation in Norway, Heisenberg enthusiastically
explained to him what he had found by following Einstein’s philosophy (“The
theory alone decides what is observable”). In the interval, Bohr had continued
his own reflections and had convinced himself that it was necessary to base the
interpretation of quantum mechanics not on a logical derivation dictated by the
theory itself (as Einstein had suggested) but on a new epistemological concept,
introduced in ad hoc fashion for the interpretation of the quantum theory, called
“complementarity”. As Heisenberg said, in Bohr’s mind “complementarity should
describe a situation where we could grasp a single and identical phenomenon by
two different modes of interpretation [for example, wave and corpuscle]. These two
modes must both mutually exclude and complete each other; and it is only the
juxtaposition of these contradictory modes which allows one to completely exhaust
the visual content of the phenomenon.”

The discussion between the young Heisenberg (who was then twenty-six years
old) and Bohr (whose 1913 work had played a crucial role in the development of
the quantum theory) was rather stormy. Heisenberg admired Bohr as a scientist,
and also venerated him like a father. He had expected that Bohr would appreciate
the innovative conceptual advance represented by the discovery of the uncertainty
relations. In place of this, Bohr expressed some reservations and offered some
detailed technical criticisms. Above all, he only considered his own idea of com-

21Also known as indeterminacy relations or dispersion relations.
22Recall that the (relativistic) momentum of a particle is given by p = mv/

p
(1 − v2/c2),

where m is the particle’s mass (at rest), and v its speed.
23Depending on the precise technical definition of “uncertainty”, the minimum of their product

may differ from h by a numerical factor.



Einstein 1905-1955 : His Approach to Physics 167

plementarity to be general enough to serve as a basis for a coherent interpretation
of the quantum theory. The tension between the two men was great, and led to
permanent damage of their relationship. Confronted with Bohr’s stubbornness,
Heisenberg gave up on convincing him of the soundness of the general epistemo-
logical attitude suggested by Einstein, and reluctantly accepted the necessity of
using an ad hoc interpretive language based on complementarity. Heisenberg pub-
lished his discovery of the uncertainty relations, and their consequences for the
interpretation of quantum reality, by himself, and left Bohr to prepare a detailed
article on the idea of complementarity, which Bohr presented some months later
at the Solvay council in the Autumn of 1927.

10 A Watershed Moment

The fifth Solvay Council, held in Brussels in the Autumn of 1927, was a very im-
portant event. It was a watershed moment, both for the international community
of theoretical physicists24, and for Einstein’s scientific career. It is at this meeting
that Einstein was first confronted with the “interpretation” of the new quantum
theory proposed by Bohr, starting from ideas of Born (the probabilistic interpre-
tation of the amplitude A), and Heisenberg (the uncertainty relations), and from
the concept of complementarity. Each of the theoretical physicists waited with a
passionate interest to see Einstein’s reaction. For everyone, Einstein was not only
the greatest living physicist, but also the one whose revolutionary ideas had been
crucial for the discovery and comprehension of quantum reality. The physicists of
the younger generation (Heisenberg, Jordan, Pauli, etc.) worshiped Einstein, and
considered themselves to be his modest successors. Was the pope of theoretical
physics going to bless, on the baptismal font of complementarity, the new quan-
tum child that everyone considered as his intellectual “grandson”? Well . . . no!
Einstein was not convinced by the interpretation of quantum theory defended by
Bohr.

For many, the disappointment was great. And some (like Paul Ehrenfest) went
so far as to compare Einstein’s attitude vis-à-vis the new quantum mechanics to
those of the opponents of the theory of relativity, who had been disconcerted by
the novelty of Einstein’s ideas and had refused to change “their old habits”. I think
that the traditional image of Einstein as an aging revolutionary, refusing the new
quantum ideas because they went against his prejudices about what reality must,
a priori, be, is inexact. This does not mean that I think the attitude of Bohr,
and of the majority of physicists who followed him by adopting what is called
the “Copenhagen interpretation” of quantum theory, had been an error. Far from
it! From a practical point of view, the consensus which crystallized at the Solvay
council of 1927 around the “Copenhagen interpretation” helped the development

24In the sense that certain physicists followed Einstein in his doubts concerning the defini-
tive and/or complete character of the quantum theory, while the majority rallied around the
“Copenhagen interpretation”.
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of the new quantum ideas, and has permitted their application in an ever-growing
domain of physics. A large part of the physics and technology of the twentieth
century is based on the application of quantum theory (to the physics of solids, to
atomic physics, to high energy physics, etc.). The interpretive scheme proposed by
Bohr at the 1927 Solvay council helped to “put aside” the obscure epistemological
aspects of quantum theory, and enabled the exploration of the new world which
was opened up by its mathematical formalism. However, having said that, I think
that it is time (above all on the occasion of the centenary of the revolutionary
ideas proposed by Einstein in 1905) to give a description of Einstein’s attitude vis-
à-vis the quantum theory that is not a crude caricature, and at the same time to
recognize both the fundamental soundness of his epistemological objections, and
the visionary character of the works he undertook after 1927.

Fundamentally, I think that Einstein was not convinced by Bohr because the
idea of complementarity was only a conceptually obscure and technically ill-defined
cloak. In May 1928, in a letter to Schrödinger (who shared his doubts) Einstein
compared the “Copenhagen interpretation” to a “soft pillow”, on which one could
fall asleep without asking oneself questions about quantum reality:

“The tranquilizing philosophy (or, dare I say, the religion?) of Heisenberg-
Bohr is so delicately put together that, for the moment, it furnishes to the true
believer a soft pillow that he has a hard time leaving.”

Later (in 1939), when Bohr had ossified into his posture as the apostle of
complementarity, now a panacea for all of the problems of interpretation men-
tioned by Einstein, Schrödinger, and others, Einstein described Bohr (in a letter
to Schrödinger) as a “mystic, forbidding any questioning about whatever might
exist independently of the observer . . . ”.

In a more precise fashion, I think that Einstein’s dissatisfaction came from
the fact that the “Copenhagen interpretation” was not in agreement with the idea
which Einstein had expressed to Heisenberg, and which had led the latter to the
discovery of the uncertainty relations: “It is the theory which decides what is ob-
servable.” Bohr was adding an entire interpretive superstructure to the mathemat-
ical formalism of quantum theory, founded on the utilization of a special language,
and having recourse to another scientific theory (“classical” Newtonian physics)
which was supposed to apply to macroscopic objects (like the measurement in-
struments). It is because Einstein had very high standards of conceptual clarity
that he could not be satisfied with the “tranquilizing philosophy (or religion?) of
Heisenberg-Bohr”. The clearest formulation that Einstein gave of his conceptual
dissatisfaction is probably that which he expressed in 1932 in a letter to Wolfgang
Pauli. We quote it such as it is, even if the Latin it uses is awkward:

“Incidentally, I do not say probabilitatem esse delendam, but probabilitatem
esse deducendam, which is not the same thing.”

In other words, Einstein does not say that one must get rid of (delendam)
the probabilities [which appear, according to Max Born, in the quantum theory],
but that one must deduce (deducendam) the appearance of these probabilities
[from the mathematical formalism which defines the quantum theory]. Recall that
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Einstein was indeed an expert in the utilization of probabilities in classical physics
(thermodynamics, Brownian motion), and it is he who introduced probabilities
into quantum physics (in 1916, in his work on the absorption and emission of
light by atoms). During the twenty or so years in which he had been (nearly)
alone in believing in the quanta of light, he had spent countless hours trying
to render the (deterministic) wave-like and (random) corpuscular descriptions of
light compatible. He was not a man to resign himself to an abandonment of the
logical, deductive character of science in favor of what the American physicist
Bryce DeWitt recently called a “fuzzy metaphysics”.

11 Adventurers in Entangled Reality

But we shall here concentrate on another work from the Princeton phase of Ein-
stein’s career, that which he completed in 1935, in collaboration with Boris Podol-
sky and Nathan Rosen. This work illustrates well the visionary profundity of Ein-
stein’s approach towards physics. We have remarked previously on Einstein’s re-
fusal, in 1927, to accept the “soft pillow” of the Copenhagen interpretation of
quantum theory. For several years, Einstein hoped to find a technical fault in this
interpretation, for example in the form of a subtle violation of the uncertainty re-
lations. Rapidly enough he convinced himself of the absence of such faults. He then
made an effort to more finely characterize his dissatisfaction vis-à-vis the Copen-
hagen interpretation, and his feeling that either this interpretation, or the quantum
theory itself, was incomplete. The article by Einstein, Podolsky, and Rosen (EPR
for short) marks a very important stage in the understanding of the deep structure
of quantum theory. Indeed, this article brought to attention a paradoxical aspect
of the formalism of quantum theory: the “entanglement” of two physical systems
which have interacted (quantum mechanically) in the past, before separating.

Let us give an example of such an “EPR situation”. Consider a system of
two particles. For simplicity, we shall suppose that the masses of the particles
are equal to each other. Heisenberg’s uncertainty relations say that one cannot
measure, with infinite precision, both the position and speed of the first particle
at the same time. Likewise, they forbid a precise simultaneous measurement of
the position and speed of the second particle. Nevertheless, it can be shown that
nothing forbids the specification (or measurement), with infinite precision, of both
the position of the midpoint (the center of mass) between the two particles and
their relative speed. Because of this, one may initially prepare the system of two
particles in a quantum state where the midpoint between the two particles is a
well-localized point, that we can take as the origin of coordinates, and where,
moreover, the relative speed is zero. We let this system evolve freely from this
initial state. Then, at a certain moment, we make observations (very far from the
origin of coordinates) on one of the two particles, let’s say the first. Heisenberg’s
relations forbid the simultaneous measurement of the position and speed of the
first particle but nothing, in quantum mechanics, forbids the measurement, with
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infinite precision, of one or the other. Imagine first that we were measuring the
position of the first particle and found it to be equal to a certain value x1. As
we know that the midpoint of the particles is fixed at the origin of coordinates,
we deduce from this measurement that the position of the second particle is well-
determined, and takes the value x2 = −x1. However, imagine that we had decided
to measure not the position of the first particle, but its speed, and that we had
found a certain value v1 for this speed. Since we know that the relative speed
(v1 − v2) between these particles is zero, we deduce from this measurement that
the speed of the second particle is well-determined, and takes the value v2 = v1.

Thus, according to the arbitrary choice that one makes on the fashion in
which one observes the first particle, one can determine, with certainty, the position
or the speed of the second particle without directly observing it and thus without
disturbing it in any way. Einstein, Podolsky, and Rosen assumed that every certain
prediction that one could make for a system, without perturbing it in any way, must
correspond to something “real”. They thus deduced from the thought experiment
which we have just described that both the position and the speed of the second
particle were “real” quantities, since they could both be precisely determined in
indirect fashion, without disturbing the second particle. This conclusion seemed
to be in conflict with the uncertainty relations associated to the position and
speed of the second particle, unless there is something “magical” in quantum
theory, that is to say an intimate “link” between systems separated by very large
distances, causing every observation performed on a system to instantaneously
effect the other system, and thus making it capable of changing its “real state”.
Einstein, Podolsky and Rosen thought that the existence of distant links between
spatially separated systems was not physically acceptable, and deduced from their
reasoning that there was something incomplete in the quantum description of a
system through the probability amplitude A(x1, x2) [which was the basis for their
reasoning].

When it first appeared, the EPR article did not have a great impact on the
community of physicists. Most of them rested their minds on the “soft pillow” of
Copenhagen and took no pains to reflect on the new perspectives opened up by
the EPR article. Only Niels Bohr and Erwin Schrödinger took a lively interest in
this paper. Niels Bohr responded to the “EPR paradox” by publishing an article
which essentially consisted in reaffirming the “dogma” of complementarity25. He
thus justified what Einstein had written about him, just after the publication of
the EPR article and before Bohr’s response, in a letter to Schrödinger:

“As for the Talmudic philosopher, he doesn’t give a hoot for “reality”, that
hobgoblin capable only of scaring naive souls. He explains that the two points of

25We note that there is nothing “incorrect” in Bohr’s response, and that moreover it would not
be “incorrect” to say that recent experiments on the EPR system have “vindicated” Bohr. The
author, however, thinks that Einstein’s approach, translating conceptual questions into thought
experiments (which were subsequently realized) reflected a better sense of physics than that of
an a priori rejection of any need for experimental verification through a quasi-religious belief in
the metaphysically fuzzy concept of complementarity.
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view differ only by their mode of expression”.
Here the expression “Talmudic philosopher” refers to Bohr, thus comparing

him to a commentator on the divine revelation (here understood as complemen-
tarity).

As for Schrödinger, he understood that Einstein had put his finger on an
important structure in the quantum formalism. In the months following the publi-
cation of the EPR article, Einstein and Schrödinger held a discussion through the
mail. In this exchange, Einstein suggested the consideration of an unstable system,
like a gunpowder barrel which has a 50% chance of catching fire within a certain
time. Einstein noted that after this interval of time the quantum theoretical rep-
resentation of the gunpowder barrel by a probability amplitude “then describes a
sort of mixture containing the system which has not yet exploded and the system
which has already exploded.” This suggestion by Einstein (to consider a macro-
scopic system whose state depends crucially on a random process) was soon taken
up and improved by Schrödinger in his famous example of Schrödinger’s cat. This
is a living cat placed into a box with a diabolical mechanism which will either
kill or not kill the cat within one hour, according to whether a single radioactive
atom has decayed or not. At the end of an hour, quantum theory describes the cat
by a “probability amplitude” A which corresponds to a superposition, with equal
weight, of the amplitude for a living cat and the amplitude for a dead cat. How
is this quantum description to be reconciled with the fact that we never observe
such superpositions of half living and half dead cats, but only a living cat or a
dead cat?

The heritage of the EPR argument did not stop there. In 1964, Nearly thirty
years after the publication of the original article by Einstein, Podolsky, and Rosen,
the Irish theoretical physicist John S. Bell took the EPR dilemma seriously, be-
tween a structure of reality called “separable”, where spatially separated systems
do not influence each other at a distance, and a “non-separable” structure where
some spatially separated systems remain linked between themselves, or as is also
said, are entangled, if they have had the opportunity to interact in the past. Bell
understood that these two possibilities could be distinguished by certain types
of measurements performed on quantum systems which have interacted in the
past. More precisely, he showed that the quantum entanglement, à la EPR, of the
“quantities of internal rotation”, also called spins or polarizations, of two parti-
cles issuing from an initial state with zero spin, must lead to correlations between
measurements of the polarizations of the two particles which are strictly greater
in the case of a non-separable, quantum reality than in the case of a separable,
“classical” reality.

Bell’s theoretical discovery invoked great interest in entangled situations à
la Einstein-Podolsky-Rosen and prodded several experimental teams to test the
inequalities that Bell had deduced for the correlations between the polarizations of
separate particles, issued from an initially correlated system. The most convincing
experimental results were realized in 1982, at the University of Orsay, France,
by a group led by Alain Aspect. These results were in full agreement with the
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predictions of quantum theory, that is to say with a non-separable structure of
reality where two systems which have interacted in the past remain entangled in
the future, even if they are spatially separated. The experiments at Orsay verified
the reality of this EPR entanglement for the polarization of photons separated by a
dozen meters. Some more recent experiments, completed near Geneva, Switzerland
by the group of Nicolas Gisin, have verified the reality of EPR entanglement for
the polarization of two photons separated by more than ten kilometers!

Experiments performed on systems of the Einstein-Podolsky-Rosen type have
thus shown that two systems which have interacted in the past continue to be-
have like an inseparable whole in spite of the spatial distance between them. This
shows that “quantum mechanical reality” is very different from “classical reality”.
In addition to leading to progress in our comprehension of quantum theory, the en-
tangled EPR states are presently the object of numerous studies, for it is thought
that they might have very important applications within the domains of quantum
cryptography and quantum computation26.

12 The Mouse and the Universe

Princeton University, United States, April 14th 1954

When the old man entered, silence fell suddenly upon the sixty or so students
assembled in room 307 of the Palmer Physical Laboratory, on that 14th of April,
1954. The students were emotional and excited. Everyone knew that it was an
exceptional event. Without a doubt the only time in their life that they would
see, in flesh and blood, and hear the speech of, the greatest physicist of all time,
the living legend of twentieth century science: Albert Einstein. They were going
to attend the great man’s final lecture.

Some of them had had the privilege, the preceding year, of being invited to
take tea in Einstein’s house, at 112 Mercer Street, and were able to hear the mas-
ter’s direct answers on all the questions they posed: from the nature of electricity
and the foundations of the unified field theory, to the expansion of the universe
and Einstein’s position on quantum theory. Einstein had joined in the game with
grace and good humor, and had responded in detail to all of their questions. He
was not even offended when one student, bolder than the others, dared to ask
him: “Professor Einstein, what will become of this house when you are no longer
living?” A large smile lit up the old man’s face. He replied, without becoming
disconcerted, in good English with a melodious German accent: “This house will
never become a place of pilgrimage where the pilgrims come to look at the bones
of the saint.”

The American theoretical physicist John Archibald Wheeler had begun teach-
ing relativity (special and general) in the physics department of Princeton Univer-
sity starting in the fall of 1952. It had been his idea to invite the students of his

26See chapter 5 of Alain Aspect et al., Demain, la physique, Paris, Éditions Odile Jacob, 2004.
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course on relativity to take tea at Einstein’s house, in May of 1953, to help moti-
vate them to study this theory deeply. It was he as well who convinced Einstein, in
the spring of 1954, to come give a seminar before a select group of students from
the physics department. Of course, the grapevine had done its work, and a fair
share of students from neighboring disciplines, especially mathematics, had come
to hear him. Some professors also slipped in amongst the group of students which
filled the small seminar room.

The central theme of this lecture – which was effectively Einstein’s last sem-
inar, given one year, nearly to the day, before his death – was quantum theory27.
Einstein explained why he thought that this theory was not the last word on the
question. He reviewed the process of an atomic transition to a state of higher en-
ergy under the influence of electromagnetic radiation. By continually lowering the
intensity of radiation, this transition process becomes more and more rare. This
led to the introduction of a probabilistic description of the process of transition.
Thus probability was introduced into quantum theory28. “I am a heretic. If radi-
ation causes jumps [between atomic states], it must have a granular character like
matter,” Einstein exclaimed. Then, he came to his crucial point: what is the real
meaning of the probability amplitude A? Does it give a complete description of
the physical situation? “I knew in constructing special relativity that it was not
complete. So is everything that we do in our time: with one hand we believe; with
the other, we doubt.” Then Einstein gave as an example the quantum description
of a macroscopic object (a sphere of one millimeter diameter moving in a box). The
description of the motion, for fixed energy, of the tiny ball given by the probability
amplitude seems paradoxical for an object which one can see with the naked eye.
The probability amplitude gives a fuzzy description of the ball’s position, while
everyday experience shows that the ball is always seen at a well defined location.

“It is difficult to believe that this description is complete. It seems to make
the world quite nebulous unless somebody, like a mouse, is looking at it . . . When
a person such as a mouse observes the universe, does that change the state of the
universe?”

Many of the attendees were struck by Einstein’s evocative image. Einstein
then mentioned that he believed that logical simplicity could, sometimes, be a good
guide, for it is thus that he had constructed the theory of general relativity. He
explained how he had found this theory, and why he thought it was incomplete: the
description of matter by means of the distribution of energy and stress seemed to
him to be something provisional, “a wooden nose in a snow man”. He regretted that
most physicists took quantum theory and the theory of special relativity as their

27The content of this lecture is known to us through notes taken by John A. Wheeler during
the seminar, and by the memories reported by some of the attendees. See p. 201–211 of the book
edited by Peter C. Aichelburg and Roman U. Sexl, Albert Einstein, His Influence on Physics,
Philosophy, and Politics, Braunschweig/Wiesbaden, Vieweg, 1979.

28Recall that it is Einstein himself who introduced probability into quantum theory in the
1916 article where he described precisely this transition process between atomic levels under the
influence of electromagnetic radiation.
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starting point, while neglecting gravity as being unimportant. On the contrary,
he thought that gravitation, or more generally the structure of space-time, must
be taken into consideration from the beginning. He finished by indicating that:
“There is much reason to be attracted to a theory with no space, no time. But
nobody has any idea how to build it up.”

Among Einstein’s audience, on April 14th 1954, was an emaciated, nervous
young man with an eagle’s profile and an intense gaze: Hugh Everett III29. He was
only twenty-three years old, and had come with his friend Charles Misner, who
was taking Wheeler’s course in Relativity. Hugh Everett would not have missed
this opportunity to hear his idol for anything in the world. At twelve years old, he
had written to Einstein to ask him whether the universe was based on a structure
that was random or unified. And he had had the great surprise of receiving a
friendly reply from Einstein himself. After having studied chemical engineering
for the first two years of university in Washington, he had spent the last six
months (since September 1953) at Princeton University, where he was affiliated
with the mathematics department. However, he was in fact interested primarily
in theoretical physics. Since classes had commenced in September 1953, he had
followed in particular the course on introductory quantum mechanics given by
Robert Dicke.

Hugh Everett was struck by Einstein’s remarks on the apparently incomplete
character of quantum theory, which offered a “nebulous” description of the uni-
verse, and which seemed to need the presence of living beings, even if it only be one
mouse, to trigger what the partisans of the Copenhagen dogma called the “collapse
of the wave-packet”: the passage from a fuzzy world to the sharply defined world
that we see around us. He began to seriously reflect on the physical meaning of
the formalism of quantum theory.

Some months later, during an evening party soaked with sherry, an animated
discussion took place at the Graduate College between Hugh Everett, Charlie
Misner, and Aage Peterson, who was an assistant of Niels Bohr, and who was
passionately interested in the problems posed by the interpretation of quantum
theory. In the heat of conversation, Hugh sketched a new conceptual scheme for
the interpretation of quantum theory in such a way as to avoid both the paradoxes
raised by Einstein (and Schrödinger), and the necessity of assuming a mysterious
random process of wave-packet collapse. This idea of genius, obtained when he
was about twenty-four years old, was the seed of Hugh Everett’s doctoral thesis,
in which he developed a revolutionary interpretation of quantum theory.

Everett went to see John Wheeler (who had been a disciple and collaborator
of Niels Bohr, and who was very interested in the meaning of quantum theory) and
asked him to supervise his doctoral thesis. Wheeler accepted. This created some

29I thank Charles W. Misner for having confirmed to me the presence of Hugh Ev-
erett at this lecture. For a detailed biography of Hugh Everett III, see the text
by Eugene Shikhovtsev (edited by Kenneth Ford) on Max Tegmark’s internet site:
http://space.mit.edu/home/tegmark/everett/index.html. We have pulled the greater part of the
facts concerning Everett cited in the text from this biography.
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problems for Everett. On the one hand, Wheeler was quite open to new ideas, and
he encouraged his students to think for themselves. On the other hand, Wheeler
had unconditional admiration for Bohr and his principle of complementarity. Be-
cause of this, while recognizing the innovative character of Everett’s ideas, Wheeler
presented many objections to the way in which they were expressed. For exam-
ple, in a note to Everett from September 1955, Wheeler wrote that he would be
“frankly bashful about showing it to Bohr in its present form” since it could be
“ subject to mystical misinterpretations by too many unskilled readers”. Finally,
after insistent advice from Wheeler, Everett summarized the long text in which
he developed his ideas in detail into a much shorter text which he defended, as
a doctoral thesis, in 1957, and which was published the same year, accompanied
with an assessment by Wheeler.

Everett’s interpretation of quantum theory is one of the great conceptual
advances of twentieth century physics. The author of this book thinks that it would
have pleased Einstein (who died in April 1955, when Everett had just begun to
develop his idea). Indeed, not only did it supply a new response to the paradox
of the mouse looking at the universe, mentioned by Einstein in his final lecture,
but above all it fits perfectly with Einstein’s scientific philosophy, such as we
have previously outlined it. Let us recall Einstein’s statement to Heisenberg, “The
theory itself defines what is observable,” which put Heisenberg on the path of one
of the first conceptual advances in quantum theory: the “uncertainty relations”.
As we shall see, Everett’s interpretation is the first to take Einstein’s statement
seriously30.

Nevertheless, in spite of – or, perhaps, because of – its novelty, Everett’s in-
terpretation raised no interest. Before it was revived, through the efforts of the
theoretical physicist Bryce DeWitt in the 1970s, it was completely ignored, even by
the recognized experts on the history of quantum mechanics (like Max Jammer).
This rejection is doubtless due in part to the total lack of interest in Everett’s
ideas shown by Niels Bohr himself. Bohr read the long version of Everett’s thesis,
and raised some objections. In the spring of 1959, at Wheeler’s insistence, Everett
visited Copenhagen for six weeks in order to meet Bohr and discuss his interpre-
tation with him. Everett kept a very bad memory of this meeting. Bohr was not
interested, and he gave Everett no opportunity to explain his ideas in detail31.
Today, according to a recent poll conducted by e-mail, the majority of theoretical
physicists interested in understanding cosmology within a quantum framework use
Everett’s interpretation. In fact, they have no choice. As written recently by Bryce
DeWitt, who rescued Everett’s interpretation from obscurity:

“Everett’s interpretation has been adopted by the author [Bryce DeWitt]
out of practical necessity: he knows of no other. At least he knows of no other

30I do not know if Everett had explicitly heard this phrase. He could have heard of its existence
through John Wheeler, who must have known it. This phrase figures prominently in the book
of John Archibald Wheeler and Wojciech Hubert Zurek, Quantum Theory and Measurement,
Princeton, Princeton University Press, 1983.

31See the Everett biography by Eugene Shikhovtsev (edited by Kenneth Ford), op. cit.
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that imposes no artificial limitations or fuzzy metaphysics while remaining able to
serve the varied needs of quantum cosmology, mesoscopic quantum physics, and
the looming discipline of quantum computation32.”

13 The Multiple World

What is the essential idea of Everett’s interpretation? To introduce it, let us recall
the central paradox of quantum theory, such as was highlighted by the arguments
of Einstein’s gunpowder barrel (half-exploded, half-intact) and Schrödinger’s cat
(half-living, half-dead). Quantum theory describes the system consisting of the cat
and its environment (the box enclosing it, the air it breathes, the lethal mechanism
triggered by a radioactive atom, etc.) by a function of the configuration of the sys-
tem. To each configuration q of the system is associated a (complex) number A(q)
that we shall simply call the amplitude of configuration q. What is a configuration
q, considered at a fixed time t, and how is it described? For example, one could
describe each possible instantaneous configuration of the cat and its environment
by specifying the position in space of each of the system’s atoms33 (the atoms
making up the cat, those in the air, those in the lethal mechanism, etc.). The
position of each atom is specified by giving its three coordinates in space (length,
width, and height). Let N be the number of atoms in the system. The number N
is gigantic. Indeed, we recall that a gram of matter contains around six hundred
thousand billion billion (6 × 1023) atoms. A configuration of the total system is
thus specified by giving a (gigantic) list of 3N numbers. The notation q denotes
such a list34.

Dear reader, maybe you take fright at the thought of considering a quantity
A which depends on such a gigantic number of variables. All the more so since,
as we have briefly indicated, the amplitude A is not a regular “real” number (like
2.5 or 3.1416) but a complex number, which is to say essentially an arrow within
a plane, which requires two “real” numbers for its description (for example the
length of the arrow, and the angle that it makes with an arrow pointing east). To
visualize what such an amplitude A means, we can use a representation introduced
by the author in a previous book35. It consists of (mentally) using the techniques
of film-making.

First, each configuration q of the system is represented by a (holographic36)

32Bryce DeWitt, The Global Approach to Quantum Field Theory, Oxford, Clarendon Press,
2003; volume 1, page 144.

33To be more precise, we must consider all of the stable elementary particles of the system (elec-
trons, quarks) and include as well a description of the various interaction fields (electromagnetic,
weak and strong nuclear, and gravitational).

34In other words q = (x1, y1, z1;x2, y2, z2; . . . ;xN , yN , zN ). The amplitude A is a complex
function of the time t (at which the configuration is considered) and of the 3N real variables q.

35Thibault Damour and Jean-Claude Carrière, Entretiens sur la multitude du monde, Paris,
Éditions Odile Jacob, 2002.

36An ordinary photographic image is an imperfect representation since it projects a three-
dimensional configuration onto a flat, two-dimensional film. The reader must imagine that either
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photographic image of the system at the instant considered. To each q, that is, to
each photographic image of the system, we want to associate a certain amplitude
A, determined by an arrow in a plane, having a certain length and pointing in a
certain direction. To each direction of the arrow, one may associate a particular
hue of color on the “color wheel”: for example we associate to the direction east
(on a map) the color orange, then, as one rotates the direction in a clock-wise
direction, one changes the corresponding color by passing successively from orange
(east) to red (south-east) to violet (south) to indigo (south-west) to blue (west)
to blue-green (north-west) to green (north), and finally to yellow (north-east). As
we continue to rotate from north-east to east, the hue evolves continually from
yellow back to orange, in such a way that we land again solidly on our feet, having
spread a full spectrum of hues around the circle. We have already mentioned that
each amplitude A corresponds to a length and a direction. To the length, we can
associate an intensity of light (a weak intensity if the length is short and a strong
one if the length is long), and to the direction a hue of color (for example orange).
Thus we can fix each complex amplitude A by a color, having both a particular
intensity and a particular hue: for example a high-intensity orange, or a medium-
intensity red, or a weak-intensity green, etc.

Let us then combine these two representations: that of the spatial configu-
ration of the system by a photographic image (initially in black and white), and
that of the “amplitude” A associated to this configuration by a color (intensity
and hue). This gives us a photographic image having a certain intensity and a cer-
tain hue. For example, at a given instant, the living cat with his environment is
represented by an intense blue image, and the dead cat with his environment by a
red image of the same intensity. We may now superpose these two images, by the
film-making technique of double exposure. That is to say, we print onto the same
frame the two preceding images. This multiple exposure of images of the system,
colored more or less intensely, gives a fairly faithful representation of the math-
ematical notion of a complex amplitude A depending on a spatial configuration
q. To complete this representation, it suffices to vary the instant t at which we
consider the system. Thus, to each instant t there corresponds a frame, multiply
exposed to several colored images with more or less intensity. By considering all
the successive instants, we thus obtain a (continuous) series of (colored and mul-
tiply exposed) images, that is to say a film, in color and with multiple exposures.
Finally, we must imagine that the hue of each configuration changes extremely
quickly, moving rapidly around the color wheel, as soon as the configuration is
modified, even in an infinitesimal fashion (for example as soon as a single atom
of the configuration moves). Moreover, even for an empty “still frame”, where the
configuration does not move at all, we must imagine that its hue changes very
rapidly in the course of time, rotating at top speed around the color wheel (while
the intensity of the light remains constant)37.

we are speaking of three-dimensional photographs or of two-dimensional holograms containing
all of the spatial information of the configuration.

37More precisely, the frequency f with which the hue of a physical system turns on the color
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Let us now explain Everett’s idea. It consists in taking seriously Einstein’s
statement: “The theory itself defines what is observable.” Let us first take quan-
tum theory seriously and ask it to define “what is real”. Each configuration q
will have “more or less reality” according to the value of the amplitude A(q).
In other words, we interpret A as an existence amplitude, and not (like in the
Born-Heisenberg-Bohr interpretation) as a probability amplitude. Indeed, the no-
tion of probability amplitude for a certain configuration q suggests, from the very
beginning, a random process by which only one configuration, among an ensem-
ble of possible configurations, is realized, passing from the possible to the actual.
By contrast, the notion of existence amplitude suggests the simultaneous existence
(within a multiply-exposed frame) of all possible configurations, each actually “ex-
isting”, but with more or less intensity (with the color encoding the “orientation”
of the amplitude A, which in physics is called its “phase”).

Using the film-making analogy explained above, let us now describe the two
basic elements making up the Everett interpretation. The first consists in saying
that “quantum reality” is a color film with multiple exposures. At each instant,
all of the individual images in the exposure “exist” with an intensity given by
the length of the complex amplitude A. The only configurations q which “do not
exist” are those with a null amplitude A(q) = 0. Having arrived at this stage, the
reader may say to him- or her-self that the film obtained by successively projecting
all these multiply-exposed images will be effectively invisible. It will only offer an
infinite jumble of confused images. We seem to thus recover the “nebulous” or fuzzy
description which Einstein and Schrödinger complained of, while we actually see,
around us, reality “existing” in one well-defined configuration, like in a unique film
with sharp images and no double exposures.

It is here that the second element of Everett’s interpretation comes into play.
To completely explain this second element, we must first have recourse to certain
mathematical characterizations measuring the fact that certain images (or certain
successions of images, that is to say certain films) are so different from each other
that, when we superimpose them, they “don’t interfere” with each other, with
the effect that we can “focus” on one image or the other. We allude here to a
mathematical phenomenon similar to what is known as 38 the “cocktail party
effect”: the possibility for two people to have a conversation between themselves,
in the middle of the brouhaha formed by the intersecting conversations of other
people. Another analogy, helpful for radio owners, would be that of changing the
reception frequency to be able to listen, without “interference” from the other

wheel is given by the Planck-Einstein relation (E = hf). That is, it takes the value f = E/h
where E is the total energy of the system and h is Planck’s constant. This link between the
energy of the system and the frequency of rotation around the circle of the complex amplitude
A essentially constitutes the famous “Schrödinger’s Equation”. Because of the extremely small
numerical value of Planck’s constant h, the frequency f is extremely large for any macroscopic
energy E.

38For the “cocktail party effect” and more generally for a more detailed explanation of the
notion of existence amplitude and of Everett’s interpretation, see T. Damour and J.-C. Carrière,
op. cit.
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channels on the dial, to one particular station.
In other words, to return to our cinematic analogy, Everett tells us that

among the hodge-podge of the total multiply-exposed film, there exist sub-films
with (more or less) sharp images, which evolve in time according to (more or
less) logical scenarios. The important point here is that the characters who evolve
within such a sub-film act, at each instant, under the influence (almost) exclusively
of those things which they have seen or felt in the previous images of the same
sub-film.

Let us give a cinematic example of this idea. In the middle of Frank Capra’s
beautiful film It’s a Wonderful Life, the hero, George Bailey, played by Jimmy
Stewart, wants to commit suicide on Christmas Eve, because he believes himself
to be a useless failure. Clarence the angel then plays out before his (and our) eyes,
from the beginning, the film of what would have happened if George had never
existed. This second film also develops in a coherent manner, and progressively
becomes quite different from the first, which is to say the first half of Capra’s film.
Everett’s idea is essentially that, in the total quantum reality, the two halves of
the film (with or without George Bailey) are superimposed on each other, and
thus play out simultaneously. Nevertheless, within each sub-film each character
only has knowledge of what has happened and is happening in their own layer of
the film, and thus has no “consciousness” of the “existence” of the other sub-film,
playing out on a neighboring layer.

Let us finally note that Everett did not completely establish the necessity
of what he proposed. By making the hypothesis of the existence of sub-films,
which do not interfere with each other, he realized an essential desideratum of
Einstein (“Probabilitatem esse deducendam”), that of justifying the connection
between the existence amplitude A(q) and the probability for an observer to see
the corresponding configuration q39. Later, other physicists justified the (apparent)
existence of sub-films which do not interfere with each other by studying what is
now called the decoherence between two possible sub-films40.

We further note that Everett’s interpretation was called, by he who brought it
back from obscurity, Bryce DeWitt, the “Many-Worlds Interpretation”. This name
refers to the existence of numerous non-interfering sub-films in the midst of the
total, multiply-exposed film. One then says that the world “splits” at every moment
into multiple, slightly different versions which, in their turn, split in the following
instant, etc. This leads to an image of a world which continually “branches out” in
a multiplicity of separate worlds. This image has been used by excellent physicists
who well understood Everett’s interpretation: notably Bryce DeWitt and David

39Later, other physicists, notably Bryce DeWitt, would improve the proof sketched by Everett.
40One of the first physicists to understand the role of decoherence in quantum theory was

Hans Dieter Zeh (1970). The first rigorous result on decoherence, and on its role in justifying
the “quantum theory of measurement”, is due to the Swiss mathematical physicist Klaus Hepp
(1972). Decoherence is presently the object of many experimental studies (notably by the group
led by the French physicist Serge Haroche). It is indeed essential to understand and master
decoherence in order to envisage utilizing all the possibilities offered by quantum theory in
cryptography and computation.



180 T. Damour

Deutsch41. I nevertheless find this image inappropriate, as it suggests a complete
splitting between separate classical worlds, similar to the splitting from one cell
into two, and so on to an irreversible multiplication. I prefer to remain closer to
the formalism of the theory itself and to speak of a multiple world, that is, one
film, multiply-exposed.

We mention finally that by calling reality a multiple world one could (and in
fact one should) understand the word “world” in the sense used by Minkowski,
which is to say a space-time. Classical (in the sense of pre-quantum) relativistic
reality is identified with a unique space-time, that is to say with a four-dimensional
world. In our cinematic analogy, such a world corresponds to one film: a sequence
(or a “stack”) of three-dimensional images. Quantum reality corresponds to a
multiply-exposed film, which is to say a stack of superimposed images. Note that,
starting from this stack, one can distinguish a priori a very large number of sub-
films, many more than the number of layers of exposure within one instantaneous
image. Indeed, if one considers a mini-film of three successive images, each of which
has two layers of exposure, one can assemble 2× 2× 2 = 23 sub-films of three suc-
cessive images, each of which is taken at random from the two possible images at
each of the three instants of the total film. Everett nevertheless tells us that most
of these sub-films only “exist” with an amplitude too weak to be perceived. Only
certain “quasi-classical” sub-films, whose amplitudes are reinforced by a process
of constructive interference, will “exist” with an amplitude strong enough to be
perceived.

14 The Kantian Quantum

The reader may be saying to him- or her-self that Everett, and those who adopt
his point of view, have truly passed outside the boundaries of the “reasonable”,
and that this idea of a multiple, phantasmagorical world is too “absurd” to be
taken seriously. It is indeed because of the revolutionarily “absurd” character of
Everett’s idea that it was ignored (particularly by Bohr), rejected or considered
taboo for nearly thirty years. Even today, some experts in the interpretation of
quantum mechanics reject, with an incredulous and disapproving sneer, Everett’s
interpretation by arguing that it shamefully violates the principle of logical econ-
omy proposed by William of Ockham: “One should not increase, without necessity,
the number of entities required to explain something.”

On the contrary, we would like to point out that Everett’s interpretation is
characterized by its logical economy. It is the only interpretation of quantum theory
which does not add foreign (physical or metaphysical) elements to the theory. As
for us, we consider that it is the only possible interpretation (see also the above
quote by Bryce DeWitt) and that it finds its justification in the most rigorous and
most rational epistemology, notably that of the German philosopher Immanuel

41See the stimulating book by David Deutsch, The Fabric of Reality: The Science of Parallel
Universes and Its Implications, New York, Penguin Books, 1997.
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Kant.
One of Kant’s goals was to clarify the “nature” of the objects (space, time,

force, and matter) which science speaks of, and to understand to what extent
science makes “true” assertions about these objects. For example, is the absolute
“space” evoked by Newton something “real”, which “exists” by itself independently
of things? Is the Euclidean geometry that is attributed to space “true” in an a
priori fashion, before making measurements to verify it? This is not the place to
discuss in any detail the responses Kant gave to these questions42. Let us simply
say that while Kant of course recognizes the essential role of experimentation in
the progress of physics, he strongly insists on the fact that experimentation is only
truly fruitful if reason “takes the forefront” by posing a logical and mathematical
framework permitting the interpretation of experimental results, and giving them
meaning. This concept upends the very notion of “reality”, that is to say the
meaning of what is “an object” or “a thing” for the rational investigator. As Kant
wrote:

“Hitherto it has been assumed that all our knowledge must conform to ob-
jects.[. . . ] Let us try to see whether we may not have more success in the tasks of
metaphysics, by assuming that objects must conform to our knowledge.”

Let’s apply this philosophy to the interpretation of quantum theory. This will
lead us to what I like to call “the Kantian Quantum43”, where the word Kantian
makes reference to a perfectly rational approach. The Kantian Quantum is thus an
approach in which we must adjust our understanding of “objects”, that is to say
the very notion of reality (the word “reality” derives from the Latin res = thing),
to “our knowledge”, or, more specifically, to the quantum theory itself.

Indeed, quantum theory has been verified by a huge number of experiments
which have, in particular, confirmed the validity of its most “bizarre” consequences,
like the entanglement predicted by Einstein-Podolsky-Rosen between separated
systems, and the superposition of different macroscopic states, of the type of Ein-
stein’s gun-powder barrel or Schrödinger’s cat44. One can, and in fact should until
getting contrary information, consider quantum theory as firmly established knowl-
edge. Then, starting from this knowledge, that is, from the mathematical formalism
of quantum theory, if we ask this formalism to define the nature of “quantum ob-
jects”, or “quantum reality”, one necessarily falls back on Everett’s point of view,
since it is the only “interpretation” which is founded uniquely on the formalism of
the theory, adding neither “fuzzy metaphysics”, nor verbal incantations, nor new,
non-verified hypotheses.

I have stated several times that Einstein himself had asserted his adhesion to

42See Immanuel Kant, Critique of Pure Reason, New York, Palgrave Macmillan (2003). See
also the previously cited book of Martin Heidegger, What Is a Thing?.

43In French, “Le Kantique du Quantique”, which is a (non-translatable) play on the French
“Le Cantique des Cantiques”, which refers to the “Song of Songs” in the Bible.

44Some recent experiments, due notably to the group of the physicist Serge Haroche, have
permitted detailed observation of situations of the “Schrödinger’s Cat” type for mesoscopic
systems (intermediate between the microscopic level and the macroscopic level).
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a point of view close to Kant’s (“Only the theory decides what is observable”). It
is of interest to note that he expressed himself in a letter to Schrödinger (written
just after the appearance of the EPR article) in a manner very close to Kantian
views, and this precisely in regard to the mysterious character of quantum reality:

“The true difficulty lies in the fact that physics is a sort of metaphysics:
physics describes ‘reality’. However, we do not know what ‘reality’ is, we only
know it through the description given by physics!”
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All natural science is based upon the hypothesis of the complete causal con-
nection of all events. Let us suppose that Galileo, during his research on the pen-
dulum, had found that the latter oscillates in such a way that the duration of one
oscillation varies in an irregular way. Let us moreover suppose that this variation
could not be put in relation with the variation of any other observable circum-
stances. It would have been then impossible for Galileo to reunify his observations
under one law. Had all phenomena accessible to us a character as irregular as we
have just imagined in this fictitious case, it would certainly never have befallen
mankind to pursue the natural sciences.

Where do we stand now with our present-day knowledge of the complete
causal connection of events? One should not answer the question before having
made it more precise. We shall do this right now by making use of an example.
Here sits a copper cube of a given size. By external influence we set in the cube

1We are especially grateful to Norbert Straumann for having mentioned the existence of
this unpublished manuscript by Einstein, and for having kindly transmitted a copy of it and its
transcription.

2We thank Simone Warzel (Princeton University) for kindly helping with the resulting trans-
lation and checking its faithfulness to Einstein’s beautiful but complex style in German, and
Thomas C. Halsey (ExxonMobil R&E, Annandale) for a final reading of the manuscript.
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a well-defined temperature distribution and we leave it, after having embedded it
inside a thermal-insulating wrap at a given time, by itself. We know that by the
process of heat conduction a temperature equilibrium is then reached in the course
of time. The flow of temperature at any point of the cube will appear as “entirely
determined” by the initial state only; by the expression “entirely determined” we
mean that we will always observe the same diffusion of temperature each time
we repeat the experiment, i.e., each time we set the temperature distribution at
the beginning and then leave the cube by itself. Such an undeniable certainty of
evolution, such a complete causal connection of events, do they actually exist? To
answer a readily apparent, although uninteresting, objection, we prefer to put the
question in the following way : do we observe a complete causal chain of events
always with a precision which is the greater the more exactly we realize the initial
state and the more exactly we pursue the measure of the course of time?

The physicist’s point of view on this question has considerably changed dur-
ing the last century. If for a moment we put aside Brownian motion, radioactive
fluctuations, and a small number of other phenomena on which scientific inter-
est has focused in recent years only, we then firmly and definitively arrive at the
judgement that a complete causal connection (with the meaning explained above)
exists by experience. However the physicists, and quite especially the kinetic the-
orists, came to deny the existence of a complete causal connection of events, more
precisely events insofar as the latter can be subjected to observation. Let us turn
our attention for a fleeting moment to this development ! From the simple rep-
resentation of gases as made up of material points (molecules), that essentially
act mechanically upon each other just by contact (collision), Clausius was able to
deduce a relation between the specific heats and the constant of the state equa-
tion for monoatomic gases, as well as a relation between heat conduction, internal
friction and diffusion in gases, for which the magnitude and the phenomena, re-
spectively, stayed without any nexus in the absence of Clausius’s theory. This great
success led physicists to impute thermal phenomena to the irregular movement of
molecules. But this kinetic theory of heat conveyed the idea that the laws of heat
conduction, etc., had to be considered as approximately valid laws only; from this
theory, there cannot generally exist an exactly valid law of heat conduction, except
as a law valid for mean values. That the deviations from such mean value laws are
usually very small is, in principle, irrelevant.

The kinetic theory of heat, experimentally verified in such an overwhelm-
ing way, is not only incompatible with the hypothesis that observable events are
connected to one another in a completely causal way. The investigations led by
Maxwell, Boltzmann, and Gibbs also show that deviations from these mean value
laws, of any magnitude and accessible to observation, must appear, even if that
occurs according to the theory so rarely in most systems that we would not be
able to actually ascertain those deviations.

The following well-known consideration most strikingly shows that heat con-
duction laws, as well as all other laws concerning non-reversible processes, cannot



On Boltzmann’s Principle and Some Immediate Consequences Thereof 185

be exact. According to the kinetic theory of heat, the temporal inversion of each
molecular motion is an equally possible motion; there is therefore in general no
thermal process that could not run backwards. So one should consider as possi-
ble, from the point of view of the molecular theory of heat, that by simple heat
conduction, some heat flows over from a colder to a warmer body. Why do we
not observe that? Does not this consideration show that the kinetic theory of heat
should be abandoned?

This question was answered by Boltzmann and, to be more precise, in the
following way : Consider any isolated physical system the energy of which has a
fixed given value. We label by Z1, Z2 · · ·Zl all the observable states of the system
with the same given energy value. In the example of the copper cube, each Zν

would represent a determined temperature distribution, where a total of l different
temperature distributions are possible. But let us suppose now that these states Z
have rather distinct probabilities, such that among all states close to a given state
Za, one (Zb) is much more likely than all the others, at least in the case where
Za differs considerably from the so-called thermodynamic equilibrium state. When
the system is brought into the state Za and next left by itself, it evolves much more
probably into the state Zb than into any of the other neighbouring states of Za.
The probability for this to happen can be as close to unity as one wishes (i.e., to
certainty); whereas it remains ruled out in principle that this transformation is
absolutely certain. This means that when we prepare many times the system in
the state Za, the state Zb will follow from state Za in the large majority of cases,
but by no means always; a transformation into any of the other neighbouring states
of Za will occur occasionally, although extremely rarely. What was said about the
transformation of the state Za into the neighbouring state Zb, applies again to the
evolution of the system from the state Zb at the following instant. One reaches
thus a conception of the (apparently) irreversible processes.

Such a sketch of Boltzmann’s conception is incomplete. One still needs to
answer the following questions : “What is to be understood by the probability
of individual states Z1, Z2 · · · ” and “Why is the transformation of the state Za

into the most probable neighbouring state, more probable than a transformation
towards the remaining neighbouring states?”

Regarding the first question we make the following remark. According to the
kinetic theory of heat, there cannot be a temperature equilibrium in a strict sense.
The state we call of thermal equilibrium is the one most frequently occupied by
a system left alone for an extremely long time. But a consequence of the kinetic
theory is that in the course of long periods of time the system takes on by itself
all possible states, and the further away a state is from thermodynamic equilib-
rium, the more rarely the system takes it on. The copper cube left on its own for
an infinite time changes its temperature distribution endlessly, while extremely
rarely taking temperature distributions that differ significantly from the thermal
equilibrium temperature distribution. If we imagine a system to be observed for
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an enormously long time T , then there will be for most of the states Zν a very
small part, τ , of this time duration T during which the system takes on exactly
the state Zν . The proportion τ

T we call the probability W of the state concerned.
If one lays down this definition of the probability of a state, then one can see

generally that from a state Za a system changes on average so that this state is
followed by the neighbouring state Zb of largest probability. I can only mention
this, without entering into its justification.

It is essential that one can define the probability of a state independently
of its kinetic picture; the probability W is a quantity in principle accessible to
observation, even if its direct observation is excluded in most cases because of the
shortness of time at our disposal.

If we leave alone a system in a state considerably far from thermodynamic
equilibrium, it takes on successive states with growing W . This property is common
to the probability W of a state and the entropy S of the system, and it was
Boltzmann who found that between W and S exists the relation

S = k lnW,

where k is a universal constant, i.e., independent of the choice of the system.

This equation of Boltzmann can be applied in two different ways. First, a
more or less complete picture of molecular theory can be present, on which one
can ground a calculation of the probability W . Boltzmann’s equation then yields
the entropy S. So was Boltzmann’s equation applied most of the time until now.

Example. In a volume V0 let N molecules of a certain kind be present, i.e., one
gram-molecule. Let the volume be sufficiently large with respect to the proper vol-
ume of the N molecules, and —if present—let matter other than the N molecules
be uniformly distributed in V0, so that the different points of V0 are equivalent for
each of the N molecules. This is a partial expression of the picture we make for
ourselves of an ideal gas or of a diluted solution. What is the probability W for
all N molecules to be in the sub-volume V of volume V0, at a randomly chosen
instant?

A simple consideration gives

W =
(

V

V0

)N
.

By using Boltzmann’s equation we deduce

S = kN ln
(

V

V0

)
= kN lnV + const.,

where the constant “const.” can well depend on the temperature, but not on the
volume. We immediately deduce the force that N molecules exert on a surface
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constraining them to stay in the volume V . In fact the energy of the system is
independent of V , and by calling dG the work received in a reversible way during
an infinitely small expansion of the volume V , one obtains

p dV = +dG = +T dS = +kN T
dV

V
,

so
p V = kN T.

We have therefore obtained the equation of perfect gases and of the osmotic pres-
sure. At the same time, it turns out that the universal constant kN of this equation
is equal to the constant R of the equation for perfect gases.

In my opinion, the main meaning of Boltzmann’s equation does not however
lie in the fact that, given a known molecular picture, we can calculate with its help
the entropy. The most important way to use it consists much more in that, from
the empirically determined entropy function, we can with the help of Boltzmann’s
equation in the opposite sense determine the statistical probability of the individ-
ual states. We thus obtain the possibility of judging how much the behaviour of
the system differs from the behaviour required by thermodynamics.

Example. A particle suspended in a fluid, and which is somewhat heavier than the
displaced fluid.
Such a particle should, according to thermodynamics, sink to the bottom of the
container and stay there. According to Boltzmann’s equation, however, each height
z above the bottom will get a probability W ; the particle changes its height con-
stantly and in an irregular way. We want to estimate S and from it W . Let µ
be the mass of the particle, and µ0 be that of the fluid displaced by the latter;
one thus must perform the work A = (µ − µ0)g z to lift the particle to a height
z from the bottom. For the system’s energy to remain meanwhile constant, one
must extract from the system the quantity of heat G = A, thereby the entropy
decreases by G

T = A
T . There is then

S = const − 1
T

(µ − µ0)g z.

From Boltzmann’s equation it follows, when one substitutes k with the value R
N ,

that
W = const e−

N
R T (µ−µ0)g z.

If many identical particles are present in the fluid instead of a single one, then the
right side of the equation gives the density of the particles as a function of the
depth. This relation was tested and confirmed by Perrin.

From this relation the law of Brownian motion can be very easily deduced.
It follows indeed immediately from it firstly that the average height z̄ of a particle
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above the bottom of the container is equal to∫
z e−

N
R T (µ−µ0)g zdz∫

e−
N

R T (µ−µ0)g zdz
=

R T

N
1

g(µ − µ0)
.

But now, because of its larger density, the particle falls according to Stokes’ law
by D = g(µ−µ0)

6πηP τ in a time τ , where η represents the viscosity coefficient of the
fluid and P is the radius of the (spherically shaped) particle. But there will be
besides, in the same time τ , because of the irregularity of heat phenomena, an up
or down displacement by a distance ∆, where positive and negative values of ∆
occur equally frequently, and therefore ∆̄ = 0.

A particle that at the beginning of time τ is at height z, will be at the end
of time τ at height z −D + ∆ = z′. For the distribution law of any particle not to
depend on time, the average value of z2 must be equal to that of z′2, therefore

(z − D + ∆)2 = z2,

or, for τ small enough to neglect D2, and z∆ = D∆ = 0

∆2 = 2 z D =
R T

N
1

3πηP
τ. (1)

This is the known law of Brownian motion, which was also confirmed by experi-
ments.3—

3Note by the translator: This peculiar, and quite elegant derivation by Einstein of the law
of Brownian motion for a suspended particle does not seem to have appeared elsewhere than in
the context of this lecture. Notice the particular roles played in the above derivation, on the one
hand by gravity, and on the second by the second moment of position z. One can thus think of
generalizing Einstein’s demonstration to the case of any potential, and to any moment of the
position; see the Commentary after Einstein’s text.

The demonstration by Einstein for a suspended Brownian particle is actually related to similar
works of his in the same period, in the different context of thermal radiation.

In a previous publication in 1909 [“Zum gegenwärtigen Stand des Strahlungsproblem”,
Physikalische Zeitschrift 10, 185-193 (1909)], Einstein studied the Brownian motion of a mir-
ror immersed in a thermal radiation bath. He made use of the statistical approach introduced in
his original article on Brownian motion; relativity theory and Lorentz transformations were also
involved in the description of the radiative damping (“Brehmstrahlung”) of the mirror. Einstein
calculated exactly in this way the momentum fluctuations of the mirror.

In a later article from 1910, written a little before the present Zürich lecture of November 1910,
Einstein and his student and collaborator Ludwig Hopf then addressed the similar question of
the momentum fluctuations of a charged particle (“resonator”), in the presence of an electro-
magnetic radiation field. [A. Einstein and L. Hopf, “Statistische Untersuchung der Bewegung
eines Resonators in einem Strahlungsfeld”, Ann. d. Physik 33, 1105-1115 (1910). See also “Sta-
tistical investigation of a resonator’s motion in a radiation field,” The Collected papers of Albert
Einstein, J. Stachel ed., Vol. 3, Princeton University Press (1993)].

They use an astute method very similar to the one described in the present text, namely the
stationarity of the second moment of the momentum of the charged particle :

(mv)2t=0 = (mv)2t=τ = (mvt=0 + ∆ − Pvτ)2.
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The example just considered of the particle suspended in a fluid gives a
perfect illustration of Boltzmann’s point of view on irreversible phenomena. Let
us indeed consider a particle in suspension, which is in a container of a certain
height, and which is so much heavier than the displaced fluid that the expression
for the probability W to be at a minute height z above the bottom of the container

Here v is the speed of the particle, ∆ the magnitude of the fluctuating electromagnetic impulse on
the particle, and −Pvτ the reduction of particle’s momentum due to the viscous electromagnetic
drag by a damping force K = −Pv during time τ . This equation is of course very similar to the
one used by Einstein in the lecture presented above, for the second moment of the position of a
suspended particle.

By arguments of stochastic independence of the various terms, similar to the ones given there
for arriving at result (1) , one arrives immediately at

∆2 = 2mv2Pτ.

Equipartition of kinetic energy for the particle, mv2 = RT
N , coming from the by then well-

established kinetic theory of gases, then implied :

∆2 = 2
RT

N Pτ, (2)

a result entirely analogue to the famous Sutherland-Einstein relation (1) for standard Brownian
motion.

Einstein and Hopf then follow with a detailed calculation of the friction force K = −Pv (the
analogue of Stokes’ force), using Relativity theory, and of the electomagnetic fluctuations of

impulse, ∆2. The results are expressed in terms of the density of thermal radiation u(ν) at the
characteristic frequency ν of the resonator.

By substituting into (2), Einstein and Hopf obtain a differential equation for the thermal
radiation density u(ν) per frequency interval dν, which has for solution :

u(ν) =
8π

c3
RT

N ν2.

Therefore only Rayleigh-Jeans black-body law, and not Planck’s one, can be recovered from the
thermal equilibrium of the radiation field with a classical charged resonator.

The classical oscillator obeys indeed the classical law of equipartition of energy, 〈E〉cl = RT
N =

kT for its mean total energy, whence the factor kT in the aforementioned law. Planck’s black-
body quantum radiation law,

uqu(ν) =
8πh

c3
ν3

ehν/kT − 1
,

does reduce to the Rayleigh-Jeans law for high temperature T or low frequency ν, while in the
complementary domain of minute overall radiation intensity (i.e., low T ), or high frequency ν, it

recovers Wien’s law : u(ν) = 8πν2

c3
hνe−hν/kT .

One notes that the substitution of the mean energy of the quantum oscillator,

〈E〉qu =
hν

ehν/kT − 1
,

to the classical equipartition value kT into the Rayleigh-Jeans law, actually allows the exact
recovery of Planck’s formula. This is of course in complete agreement with Planck’s original
result, derived from Maxwell theory, that the black-body spectral density u(ν) and the (temporal)
average energy U of the resonator interacting with it, are related by the necessary identity

u(ν) =
8πν2

c3
U.
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is already very small compared to the value W0 for z = 0, such that the particle will
very rarely rise notably above the bottom, once it will have touched the bottom
(thermodynamic equilibrium). If we lift the particle up to a noticeable height z,
then obviously with the largest probability it will sink back (non-reversible process)
down to the bottom, next dancing up and down as before within the neighbourhood
of the latter. If this sinking back did not take place in an overwhelming number
of cases, a probability distribution with the assumed character could just not be
valid.

Before arriving at other applications of Boltzmann’s equation, I will derive a
universal consequence of the latter, concerning the mean fluctuations of the system
parameters around the ideal values at thermodynamic equilibrium. Let λ1 · · ·λn

be the parameters that determine the state of a system. Let the zero values of λ’s
be chosen such that at thermodynamic equilibrium one has λ1 = λ2 · · · = 0. Let
A be the work one should perform, according to thermodynamics, to bring the
system from the thermodynamic equilibrium state towards a state very close to it,
characterized by the values λ1 · · ·λn :

A =
∑

Aν =
n∑
1

aν

2
λ2

ν .

Once this state is established, for the energy of the system to be the same as
before, a quantity of heat G = A must be extracted, which means a decrease of
the entropy of the system by G

T = A
T . Therefore if the system has reached by itself

the state considered, its entropy is

S = const − 1
T

n∑
1

aν

2
λ2

ν .

When substituting this into Boltzmann’s equation, one then obtains

W = const exp

(
− N

RT

n∑
1

aν

2
λ2

ν

)
.

In this case therefore Gauss’ error law applies to the fluctuations of the single
parameters around their thermodynamic equilibrium values. For the average value
Aν of the work that one should perform according to thermodynamics, to bring
by a reversible process the parameter λν from an equilibrium value to the time

average
√

λ2
ν , one obtains the value

Aν =
R T

2N .

One can express this result as follows. In the case where close to thermo-
dynamic equilibrium A lends itself to be represented in the way given above,
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deviations from the state of ideal thermodynamic equilibrium arise spontaneously;
for each parameter, the size of these deviations is on average such that the work
necessary for the arbitrary production of the deviation is equal to one third of
the average kinetic energy of the ballistic motion of a gas molecule at the same
temperature. Perceptible deviations from the ideal thermodynamic equilibrium
appear therefore everywhere a perceptible effect can be attained by performing
just as small an amount of work. The measurement of each deviation of this type
brings us to a determination of the energy of a monoatomic gas molecule, therefore
also a determination of the absolute size of atoms.

A very interesting application of this general result was given by Smolu-
chowski. According to classic thermodynamics, at thermodynamic equilibrium the
independent components of a phase are uniformly distributed throughout phase
volume. On the contrary, according to what was said above, irregularities must
appear in the spatial distribution of matter, that are the larger, the smaller the
forces that oppose any change of the uniform distribution of the matter, or of
the single independent components, respectively. The phase is therefore in reality
inhomogenous, which manifests itself by optical turbidity (opalescence). Such an
opalescence is particularly strong near critical points (in homogeneous substances
and in solutions), because here only minute forces oppose a change of density,
or concentration, respectively. I recently showed that, on the ground of the con-
ception sketched by Smoluchowski, an exact calculation of the light diffused by
opalescence is possible.

I would not like to leave unmentioned that with the help of Boltzmann’s
equation the statistical properties of thermal radiation can be deduced in a simple
way from the law of thermal radiation, and certainly without the help of electro-
magnetism and of the theory of heat. The problem is the following. In a cavity,
which is surrounded by opaque bodies at temperature T , there is a radiation whose
properties are determined uniquely by the temperature. Across a surface σ, that
is thought of as situated anywhere in the cavity, a determined radiation energy E
passes during the time τ , whose direction is given within the elementary cone dΩ
and whose frequency domain is dν.

If one were to measure this energy repeatedly, and truly very precisely, one
will not always find the same value E , but a value E = E0 +ε somewhat fluctuating
around a mean value E0. One asks about the quadratic mean value ε2 of the
variable ε. This problem has a crucial interest for the very reason that its solution
contains an expression of the structure of thermal radiation.4

4Note by the translator: A. Einstein alludes very likely here to the results of his articles “Zum
gegenwärtigen Stand des Strahlungsproblem”, Physikalische Zeitschrift 10, 185-193 (1909), cited
above, and “Über die Entwicklung unserer Anschauungen über das Wesen und die Konstitution
der Strahlung”, Physikalische Zeitschrift 10, 817-825 (1909). In a work of 1904, Einstein had
derived the famous relation between the fluctuations of the energy E of a system about its mean,
E, and its specific heat, namely

(E − E)2 = kT 2 dE

dT
.
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I will only outline the way this problem can be solved. When any body K
is in thermal contact with a similar one of a relatively infinite thermal capacity,
K will then, according to thermodynamics, reach the temperature of this second
body and keep it permanently. But from Boltzmann’s principle, the temperature
of K will unceasingly change, although it moves only rarely in a noticeable manner
away from the thermal equilibrium temperature; Boltzmann’s equation gives the
mean value of such temperature fluctuations. The temperature fluctuations thus
experienced are absolutely independent of the way the thermal exchange occurs
between K and the body of relatively infinite size; the temperature fluctuation
is therefore then also of the size calculated when such a thermal exchange occurs
exclusively through radiation. There remains therefore then only to examine the
question : What the statistical properties of radiation must be, so that the cal-
culated temperature fluctuations actually happen? When pursuing the outlined
study, one then obtains the result that the temporal fluctuations of thermal radia-
tion are much larger, for minute radiation intensity and large frequency, than was
expected from our present-day theory.5 —

Applying this to the elementary energy E of a radiation field of frequency range ν within dν,
distributed according to Planck’s law, he finds

(E − E)2

E2
=

„
8πν2

c3
Vdν

«−1

+
E
hν

!−1

.

This is exactly the law of large numbers, but with two (complementary) terms. The first fluc-

tuation term is the inverse of the elementary number of electromagnetic modes, 8πν2

c3
Vdν, in

frequency domain ν within dν, and in volume V . The second is, in modern language, the inverse

of the mean number of photons, E
hν

, present in the electromagnetic field.
In the setting described by Einstein in this lecture, the volume delimited by the surface area

σ, the elementary cone angle dΩ, and light rays covering a distance cτ in time τ , is simply
V = σcτdΩ. The corresponding fluctuation formula alluded to by Einstein should therefore be

ε2

E2
0

=

„
8πν2

c2
στdΩdν

«−1

+

„ E0

hν

«−1

, (3)

where, still in Einstein’s notations, the elementary energy E = E0 + ε fluctuates about its mean
value E = E0.

5The difficulty alluded to by Einstein : “. . . the temporal fluctuations of thermal radiation
are much larger, for minute radiation intensity and large frequency, than was expected from our
present-day theory”, corresponds in Eq. (3) to the fact that at low temperature, or equivalently,
high frequency, the second fluctuation term dominates the first. This term, which manifests
the corpuscular character of radiation, could not be understood at that time from Maxwell
theory. The latter can explain only the first fluctuation term, as resulting from the constructive
interference of electromagnetic waves which leads to a definite number of stationary modes.

This difficulty in reconciling both points of views is best illustrated in the Nobel lecture by
Wilhelm Wien in 1910. He writes very interestingly :

Einstein investigated the fluctuations to which radiation is continuously subjected even in the
state of equilibrium as a result of the irregularities of the thermal processes. If we imagine a small
plate in a cavity filled with radiation, this plate will be subjected to a radiation pressure which is
the same on average on both sides of the plate. Since the radiation must contain irregularities,
the pressure will alternately be greater on one or the other side so that the plate will execute
small irregular movements, similar to the Brownian movement of a dust particle suspended



On Boltzmann’s Principle and Some Immediate Consequences Thereof 193

If to conclude we ask once more the question : “Are the observable physical
facts correlated one to another in an entirely causal way?”, we must surely answer
this question in the negative. The positions of a particle engaged in a Brownian
motion at two instants separated by one second must always appear, even to
the most consciencious observer, as independent of each other, and the greatest
mathematician would never succeed in any determined case to compute in advance,
even approximately, the path covered in a second by such a particle. According
to the theory, to be able to do so one should know the position and speed of
each molecule exactly, which appears in principle excluded. However, the laws of
mean values, which proved themselves everywhere, as well as the statistical laws of
fluctuations, valid in these domains of finest effects, lead us to the conviction that
in theory we must firmly hold onto the hypothesis of a complete causal connection
of events, even if we should not hope to ever obtain by improved observations of
Nature the direct confirmation of such a concept.

in a liquid. These fluctuations can be derived from probability calculations. According to the
Boltzmann theorem there is a simple relationship between entropy and probability. The entropy
of radiation is known from the radiation law, so that the probability of a state is also known,
from which the fluctuations can be calculated. The mathematical expression for these fluctuations
consists, in a peculiar manner, of two members. The first is readily understandable : it is due
to irregularities which arise as a result of the mutual interference of the many independent
beams which meet in one point. Where the density of radiation energy is high, this term alone
predominates; it corresponds to the radiation range that obeys Rayleigh’s law.

The other term, which cannot be directly explained by the undulation theory, predominates
at low density of radiation energy, where the radiation obeys the law formulated by me [Wien’s
law]. It would be understandable if the radiation consisted of the Planck energy elements which
would be localized even in an empty space. We cannot shake the undulation theory of light, which
is one of the most firmly established constructions in the whole of physics. Moreover, the term
to be explained by localized energy elements, is not present by itself, and it is a priori impossible
to introduce a dualistic approach into optics, e.g., to assume simultaneously Huyghens’ wave
theory and Newton’s emanation theory. All we can do is to relinquish the Boltzmann method of
applying probability calculations to this type of fluctuations, or to assume that a new irregularity
is introduced into radiation with the process of reflection.

In view of the magnitude of the difficulties it is natural that opinions about the path to be
pursued should differ greatly. Some are of the opinion that the fundamental principles of elec-
trodynamics must be changed. And yet, previous theory embraces a vast range of facts, it accounts
for events even in the most rapid movements of the X-rays, it has proved itself in the most pre-
cise optical measurements. In my view, all the signs suggest that the deviations from current
theory are due to events within the atom. None of the processes in which the interior of the
atom participates are amenable to current theory.

Indeed Quantum Mechanics was still to be born. Nevertheless, Einstein’s calculations were
entirely correct, and already announced fully the dual nature of light. The complete quantization
of radiation was achieved in 1925 by Pascual Jordan and 1926 by Paul Dirac, thereby giving
a formal confirmation of the existence of the light quanta, introduced by Einstein twenty years
before in his 1905 article “Über einen die Erzeugung und Vervandlung des Lichtes betreffenden
heuristischen Gesichtspunkt” [Annalen der Physik 17, 132-148 (1905)]. It was indeed a truly
revolutionary point of view, as he wrote to his friend Conrad Habicht in the Spring 1905 ! As is
well-known, Einstein received in 1922 the Nobel prize in Physics for this work.
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Commentary

Bertrand Duplantier

Abstract. The argument given above by Einstein for deriving the Brownian diffusion
constant of a suspended particle is generalized to arbitrary potentials. We also check
its consistency by considering moments of the particle’s position of any order n.

The demonstration made here by Einstein concerns Boltzmann’s distribution
in a uniform gravitational field of strength g, and the second moment, z2, of the
position z of a particle in suspension. The Sutherland-Einstein result6 about the
mean quadratic fluctuations of position in time τ ,

∆2 =
R T

N
1

3πηP
τ, (4)

does not depend on the field g, and should apply in all generality. It is then natural
to verify the generality of this demonstration in the case of a generic force field. In
a second section, we are also considering the case of nth-order moments, zn, of the
fluctuating position z of the suspended particle. The consistency of the approach
by Einstein requires that their stationarity in the course of time leads to the same
result (4) for the mean quadratic fluctuations.

General potential

Let us thus consider a potential energy V (z), where z is (for simplicity) a one-
dimensional coordinate, which is a generalization of the height coordinate. The
associated force is :

F = −∂V

∂z
.

The contribution of the potential energy to the entropy is then

S = const. − 1
T

V (z).

6It seems to be unsufficiently known that William Sutherland from Melbourne, Australia,
arrived at formula (4) before Einstein. He announced it in a conference in Dunedin (New-Zealand)
in January 1904 [The measurement of large molecular masses, Report of the 1Oth Meeting of the
Australasian Association for the Advancement of Science, Dunedin, 1904), 117-121 (1904)], and
published it also in 1905 [A dynamical theory of diffusion for non-electrolytes and the molecular
mass of albumin, Phil. Mag., S.6, 9, 781-785 (1905)]. For a more detailed history, see, e.g.,
A. Pais, “Subtle is the Lord. . . ”, The Science and Life of Albert Einstein, Oxford University
Press (1982); B. Duplantier, Brownian Motion, “Diverse and Undulating”, Poincaré Seminar,
Birkhäuser Verlag, Basel, 2005.
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According to Boltzmann’s equation, there exists a probability W for a particle to
be at a height z above the bottom

W = const. e−
N

R T V (z).

In the force field F and according to Stokes’ law, the particle follows the law of
displacement during a time τ

D =
F

6πηP
τ = − τ

6πηP

∂V

∂z
, (5)

where η is the coefficient of fluid viscosity and P is the radius of the particle,
following Einstein’s notations. For the sake of notational simplicity, we set in the
following :

a ≡ τ

6πηP
.

By still calling ∆ the irregular displacement caused by heat, such that ∆̄ = 0,
we state with Einstein that a particle being at height z at the origin of time interval
τ , will be at height z + D + ∆ = z′ at the end of this time interval, where now
the displacement D (5) is counted algebraically. Because of the time-invariance of
the distribution law for a particle, the average value of z2 must be equal to that
of z′2, i.e.,

(z + D + ∆)2 = z2.

For τ small enough to be able to neglect D2, and by using z∆ = D∆ = 0

∆2 = −2 z D,

where this time we compute the average by taking into account the non-uniformity
of the force field F , and therefore of the displacement D. This is in contradistinc-
tion to Einstein’s case of a uniform gravitational field, for which the mean-square
displacement (1) factorized as ∆2 = −2 z D.

What is left to evaluate is the average of z D. By definition this can be written
as :

z D = −a

∫
z ∂V

∂z e−
N

R T V (z)dz∫
e−

N
R T V (z)dz

= − a

Z
∫

z
∂V

∂z
e−βV (z)dz, (6)

where we have introduced the partition function

Z =
∫

e−βV (z)dz, (7)

and we used the well-known notation β = N
R T = 1

kB T , where kB is Boltzmann’s
constant.

One must notice here that the boundaries have not been specified yet, and
that they can be imagined to be taken at infinity, as follows. The potential V (z)
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is infinite (positive) for z smaller than some value z0 marking the bottom of the
box, and again infinite (positive) at infinity, or for z above some value z1(z1 > z0)
marking the top of the box (and possibly pushed to infinity). We thus take at
infinity in both directions

V (z = ±∞) = +∞. (8)

The probability density W (z), which is proportional to e−βV (z), vanishes outside
the box interval [z0, z1] and therefore at infinity too.

Integrating by parts in the expression (6) of z D, one finds7

∫
z

∂V

∂z
e−βV (z)dz = −

∫
z

1
β

∂

∂z
e−βV (z)dz

= −z
1
β

e−βV (z)|+∞
−∞ +

1
β

∫
e−βV (z)dz =

1
β
Z. (9)

The partition function Z thus cancels out from (6), and we get therefore a result
which is independent of the potential :

z D = − a

β
,

from which

∆2 = −2 z D =
2a

β
=

kB T

3πηP
τ (10)

follows, which is of course the result of Sutherland-Einstein.

This argument for calculating Brownian diffusion, given by Einstein at the
Zürich lecture in 1910, appears to be remarkably simple even when generalized. It is
enough to compare the quadratic averages z2 and z′2 by applying the hypothesis of
stationarity at thermal equilibrium. It is rather remarkable that the consideration
of quadratic averages plays such an important role. Nevertheless, the miracle (à
la Einstein) : we obtain the correct result, in all generality !

Let us pursue the analysis a little further : why not simply apply the same
hypothesis of stationarity to the average linear displacements z and z′ themselves?
And what about the comparison of moments of higher order, zn and z′n?

7In the case considered by Einstein of the linear gravitational potential, the potential was
infinite positive neither at the bottom, nor at −∞. Nevertheless, it happened that the height
variable z was bounded below by 0, which insured implicitly the vanishing at z = 0 of the term
integrated by parts (owing to the presence of the z factor in the integrand of (9)). In fact, the
simplest physical way is to consider, as done here, a box limited by potential walls, i.e., to confine
the system.



On Boltzmann’s Principle and Some Immediate Consequences Thereof 197

Moments of any order

We consider then the generic moment

z′n = (z + D + ∆)n.

First, according to Leibniz’ formula we write :

(z + D + ∆)n =
∑

n1≥0, n2≥0, n3≥0; n1+n2+n3=n

n!
n1! n2! n3!

zn1Dn2∆n3 .

We then should evaluate

(z + D + ∆)n =
∑

n1≥0, n2≥0, n3≥0; n1+n2+n3=n

n!
n1! n2! n3!

zn1Dn2∆n3 . (11)

Here the average has a double significance, being at the same time an average
over the space coordinates z and a local average over the stochastic variable ∆.
We can assume a hypothesis, which will be useful in the following, that these two
averages are independent. This independence corresponds to the fact that the local
fluctuations of ∆ are created by thermal agitation, independently from the value
of (the gradient of) the local potential V (z). We have then

zn1Dn2∆n3 = zn1Dn2 × ∆n3 . (12)

Another related hypothesis is that of the local symmetry of thermal fluctuations,
and therefore of Brownian motion, ∆ ↔ −∆, already used by Einstein. We deduce
from it, for odd values n3 = 2n′

3 + 1,

zn1Dn2∆2n′
3+1 = zn1Dn2 × ∆2n′

3+1 = 0.

This identity generalizes those used by Einstein at first order : z∆ = D∆ = 0.
Let us recall now that

D = −a
∂V

∂z
, a =

τ

6πηP
,

and that we are working in the limit of an infinitesimal time τ → 0, in which O(a) =
O(τ). Within this limit, we have the orders of magnitude O(D) = O(∆2) = O(τ),
as can be anticipated from the result of Sutherland-Einstein ∆2 = 2a/β, while of
course O(z) = 1. We find then

O (
zn1Dn2∆n3

)
= O

(
τn2+ 1

2 n3

)
.

Moreover, as n3 must be even so that the average moment does not vanish identi-
cally, we find that the two dominant moments, with the constraint n1+n2+n3 = n,
are obtained for

(n1, n2, n3) = (n − 1, 1, 0) or (n − 2, 0, 2),
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for which n2 + 1
2n3 = 1, giving

O
(
zn−1D

)
= O

(
zn−2∆2

)
= O(τ).

From equation (11) finally follows that

z′n = (z + D + ∆)n = zn + n zn−1D +
n(n − 1)

2
zn−2∆2 + O(τ2).

From the hypothesis of stationarity z′n = zn, and owing to (12), we then deduce
at first order in τ the identity

zn−1D +
(n − 1)

2
zn−2 ∆2 = 0. (13)

Let us then express the two associated moments. We have by definition

zn−1D = − a

Z
∫

zn−1 ∂V

∂z
e−βV (z)dz,

zn−2∆2 = zn−2 × ∆2 =
1
Z

∫
zn−2 e−βV (z)dz × ∆2.

By integrating by parts, the first moment is written as

zn−1D =
a

β

1
Z

[
zn−1e−βV (z)|+∞

−∞ − (n − 1)
∫

zn−2 e−βV (z)dz

]

= −(n − 1)
a

β
zn−2,

where we used the boundary conditions (8) for the confining potential.
The identity (13) is therefore satisfied for all n, n > 1, when

∆2 = 2
a

β
=

2
β

τ

6πηP
,

which indeed coincides with the result (10) obtained by Einstein in the n = 2 case.
Finally we notice that the n = 1 case corresponds to the condition

z + D + ∆ = z,

which is identically satisfied, because we have separately

D = − a

Z
∫

∂V

∂z
e−βV (z)dz =

a

β

1
Z e−βV (z)|+∞

−∞ = 0, ∆ = 0,

where we again used (8), as well as the symmetry of Brownian fluctuations.
The simple method used by Einstein to obtain the equation of Brownian

diffusion, starting from the dynamics of the quadratic moment of the position of
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a particle in suspension in a gravitational field, can thus be generalized to any
potential and moments of any order, as it should. The result, the Sutherland-
Einstein relation (4), is universal.

Bertrand Duplantier
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CEA/Saclay
F-91191 Gif-sur-Yvette Cedex
France
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c© Birkhäuser Verlag, Basel, 2005 Poincaré Seminar 2005

Brownian Motion, “Diverse and Undulating”

Bertrand Duplantier

Translation by Emily Parks from the original French text

Abstract. Truly man is a marvelously vain, diverse, and undulating object. It is hard
to found any constant and uniform judgment on him. Michel de Montaigne, Les
Essais, Book I, Chapter 1: “By diverse means we arrive at the same end”; in The
Complete Essays of Montaigne, Donald M. Frame transl., Stanford University Press
(1958).

Pour distinguer les choses les plus simples de celles qui sont compliquées et pour
les chercher avec ordre, il faut, dans chaque série de choses où nous avons déduit
directement quelques vérités d’autres vérités, voir quelle est la chose la plus simple,
et comment toutes les autres en sont plus, ou moins, ou également éloignées. René
Descartes, Règles pour la direction de l’esprit, Règle VI.

In order to distinguish what is most simple from what is complex, and to deal
with things in an orderly way, what we must do, whenever we have a series in which
we have directly deduced a number of truths one from another, is to observe which
one is most simple, and how far all the others are removed from this – whether
more, or less, or equally. René Descartes, Rules for the Direction of the Mind,
Rule VI.

Car, supposons, par exemple que quelqu’un fasse quantité de points sur le papier
à tout hasard, comme font ceux qui exercent l’art ridicule de la géomance. Je dis
qu’il est possible de trouver une ligne géométrique dont la notion soit constante
et uniforme suivant une certaine règle, en sorte que cette ligne passe par tous ces
points, et dans le même ordre que la main les avaient marqués.

. . .Mais quand une règle est fort composée, ce qui luy est conforme, passe pour
irrégulier.

G. W. Leibniz, Discours de métaphysique, H. Lestienne ed., Félix Alcan, Paris
(1907).

Thus, let us assume, for example, that someone jots down a number of points
at random on a piece of paper, as do those who practice the ridiculous art of
geomancy.1 I maintain that it is possible to find a geometric line whose notion is
constant and uniform, following a certain rule, such that this line passes through
all the points in the same order in which the hand jotted them down.

. . . But, when the rule is extremely complex, what is in conformity with it passes
for irregular.

G. W. Leibniz, Discourse on Metaphysics.

Mens agitat molem. Virgil, AEneid. lib. VI.

Un coup de dés jamais n’abolira le hasard. Stéphane Mallarmé, Cosmopolis,
1897.

A throw of the dice never will abolish chance.

1Note: From géomance, a way to foretell the future; a form of divination.
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L’antimodernisme, c’est la liberté des modernes. Antoine Compagnon, about
his book “Les antimodernes: de Joseph de Maistre à Roland Barthes”, Bibliothèque
des Idées, Gallimard, March 2005.

Antimodernism is the liberty of modern men.

Here we briefly describe the history of Brownian motion, as well as the contribu-
tions of Einstein, Sutherland, Smoluchowski, Bachelier, Perrin and Langevin to its
theory. The always topical importance in physics of the theory of Brownian motion
is illustrated by recent biophysical experiments, where it serves, for instance, for
the measurement of the pulling force on a single DNA molecule.

In the second part, we stress the mathematical importance of the theory of Brow-
nian motion, illustrated by two chosen examples. The by-now classic representation
of the Newtonian potential by Brownian motion is explained in an elementary way.
We conclude with the description of recent progress seen in the geometry of the
planar Brownian curve. At its heart lie the concepts of conformal invariance and
multifractality, associated with the potential theory of the Brownian curve itself.

1 A brief history of Brownian motion

Several great classic works give a historical view of Brownian motion. Amongst
them, we cite those of Brush,2 Nelson,3 Nye,4 Pais5, Stachel6 and Wax.7 We also
cite a number of essays in mathematics,8 physics,9 especially those which have
appeared very recently for the centenary of Einstein’s 1905 articles,10 and in biol-
ogy.11

2Stephen G. Brush, The Kind of Motion We Call Heat, Book 2, p. 688, North Holland (1976).
3E. Nelson, Dynamical Theories of Brownian motion, Princeton University Press (1967),

second ed., August 2001, http://www.math.princeton.edu/∼nelson/books.html/.
4Mary Jo Nye, Molecular Reality: A Perspective on the Scientific Work of Jean Perrin, New

York: American Elsevier (1972).
5Abraham Pais, “Subtle is the Lord...”, The Science and Life of Albert Einstein, Oxford

University Press (1982).
6John Stachel, Einstein’s Miraculous Year (Princeton University Press, Princeton, New Jersey,

1998); Einstein from ‘B’ to ‘Z’, Birkhäuser, Boston, Basel, Berlin (2002).
7N. Wax, Selected Papers on Noise and Stochastic Processes, New York, Dover (1954). It

contains articles by Chandrasekhar, Uhlenbeck and Ornstein, Wang and Uhlenbeck, Rice, Kac,
Doob.

8J.-P. Kahane, Le mouvement brownien : un essai sur les origines de la théorie mathématique,
in Matériaux pour l’histoire des mathématiques au XXème siècle, Actes du colloque à la mémoire
de Jean Dieudonné (Nice, 1996), volume 3 of Séminaires et congrès, pages 123–155, French
Mathematical Society (1998).

9M. D. Haw, J. Phys. C 14, 7769–7779 (2002).
10B. Derrida and É. Brunet in Einstein aujourd’hui, edited by M. Leduc and M. Le Bellac,

Savoirs actuels, EDP Sciences/CNRS Editions (2005); P. Hänggi et al., New J. Phys. 7 (2005); J.
Renn, Einstein’s invention of Brownian motion, Ann. Phys. (Leipzig) 14, Supplement, pp. 23–37
(2005); D. Giulini & N. Straumann, Einstein’s Impact on the Physics of the Twentieth Century,
arXiv:physics/0507107; N. Straumann, On Einstein’s Doctoral Thesis, arXiv:physics/0504201.

11E. Frey and K. Krey, arXiv:cond-mat/0502602.
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Figure 1: Brownian motion described by the center of gravity of a pollen particle
in suspension.

1.1 Robert Brown and his precursors

In an article published in the Edinburgh Journal of Science in 1828, and repub-
lished multiple times elsewhere,12 entitled “A Brief Account of Microscopical Ob-
servations Made in the Months of June, July and August, 1827, on the Parti-
cles Contained in the Pollen of Plants; and on the General Existence of Active
Molecules in Organic and Inorganic Bodies”, the botanist Robert Brown reported
on the random movement of different particles that are small enough to be in sus-
pension in water. It is an extremely erratic motion, apparently without end (see
figure 1)13.

Brown may not have been the first, however, to observe Brownian motion.
The universal and irregular motion of small grains suspended in a fluid may have
been observed soon after the discovery of the microscope.14 Brown made his ob-
servations just after the introduction of the first achromatic objectives for micro-
scopes. In fact, it is nowadays sufficient to look in a microscope to see these small
objects dancing.

The story begins with Anthony van Leeuwenhoek (1632–1723), a famous
constructor of microscopes in Delft, who in 1676 was also designated executor of
the estate of the no-less-famous painter Johannes Vermeer, who was apparently a

12R. Brown, Edinburgh New Phil. J. 5, 358 (1828); Ann. Sci. Naturelles, (Paris) 14, pp. 341–371
(1828); Phil. Mag. 4, 161 (1828); Ann. d. Phys. u. Chem. 14, 294 (1828).

13One can find examples of real Brownian motion at the web site:
www.lpthe.jussieu.fr/poincare/.

14S. Gray, Phil. Trans. 19, 280 (1696).
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personal friend.15 Leeuwenhoek built several hundred simple “microscopes”, with
which he went as far as to observe living bacteria.

Next, one meets Buffon and Spallanzani, the two 18th-century protagonists
of the debate on spontaneous generation,16 and lastly Bywater, cited by Brown
in his second article, who published in 1819 the conclusion that “not only organic
tissues, but also inorganic substances, consist of animated or irritable particles”,
and therefore are subject to Brownian motion. In fact, in 1827 similar observations
to those of Brown were alluded to in France by Adolphe Brongniart,17 one year
before the publication by Brown.

Robert Brown (1773–1858) was one of the greatest botanists of his time in
England. He is known for his discovery of the nucleus of plants, and for the classifi-
cation of several exotic plants he brought back to England from a trip to Australia
in 1801–1805. Indeed, he was the botanist on the Investigator during Flinder’s cir-
cumnavigation of Australia.18 His first publication on the erratic motion of pollen
garnered much attention, but the use of the ambiguous terms “active molecules”
by Brown brought him criticisms based on some misunderstanding. Indeed, un-
der the influence of Buffon, the similar expression “organic molecules” represented
hypothetical entities, elementary bricks all living beings would be made of. This
type of theory was still around at the beginning of the 19th century, so much that
one thinks that Brown’s opinion was that the particles themselves were animated.
Faraday himself had to defend him during a Friday night lesson he gave at the
Royal Society on February 21, 1829, about Brownian motion!19

Brown’s merit was rather in emancipating himself from this misconception
and in making a systematic study of the movement named after him, with grains
of pollen, dust and soot, pulverized rock, and even a fragment from the Great
Sphinx. This served to eliminate as well the “vital force” hypothesis, where the
movement was reserved to organic particles. As for the nature of Brownian motion,
even if he could not explain it, he eliminated easy explanations, like those linked

15Although no document exists testifying a relationship between Vermeer and van Leeuwen-
hoek, it seems impossible that they did not know one another. The two men were born in Delft
the same year, their respective families were involved in the textile business and they were both
fascinated by science and optics. A commonly accepted and probable hypothesis is that Anthony
van Leeuwenhoek was in fact a model for Vermeer, and perhaps also the source of his scientific
information, for the two famous scientific portraits, The Astronomer, 1668, (Louvre Museum,
Paris), and The Geographer, 1668–69, (Städelsches Kunstinstitut am Main, Frankfurt). (See Jo-
hannes Vermeer, B. Broos et al., National Gallery of Art, Washington, Mauritshuis, The Hague,
Waanders Publishers, Zwolle (1995).)

16Jean Perrin, in his book Les Atomes (Atoms, translated by D. Ll. Hammick, Ox Bow Press,
Woodbridge (1990)), writes: “Buffon and Spallanzani knew of the phenomenon but, possibly
owing to the lack of good microscopes, they did not grasp its nature and regarded the “dancing
particles” as rudimentary animalculae (Ramsey: Bristol Naturalists’ Society, 1881)”.

17A. Brongniart, Ann. Sci. Naturelles (Paris) 12, pp. 44–46 and p. 48 (1827).
18A rivulet south of Hobart is named after him (as mentioned by Bruce H. J. McKellar, in

Einstein, Sutherland, Atoms, and Brownian Motion, Einstein International Year of Physics 2005,
Melbourne AAPPS Conference, July 2005, http://www.ph.unimelb.edu.au/.

19S. G. Brush, The Kind of Motion We Call Heat, Book 2, p. 688, North Holland (1976).
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to convection currents or to evaporation, by showing that the Brownian motion
of a simple particle stayed “tireless” even in a isolated drop of water in oil! On
the same occasion he eliminated as well the hypothesis of movements created
by interactions between Brownian particles, a hypothesis that would nevertheless
reappear later. The theoretical picture made perhaps by Brown, which he however
always carefully avoided presenting as the conclusion of his studies, could be that
the particles of matter were animated into a rapid and irregular movement whose
source was in the particles themselves and not in the surrounding fluid. Before
leaving Robert Brown, one cannot refrain from citing Charles Darwin’s recollection
from the 1830s:

“I saw a good deal of Robert Brown, “facile Princeps Botanicorum”, as he was called
by Humboldt. He seemed to me to be chiefly remarkable by the minuteness of his observations
and their perfect accuracy. His knowledge was extraordinarily great, and much died with him,
owing to his excessive fear of ever making a mistake. He poured out his knowledge to me in the
most unreserved manner, yet was strangely jealous on some points. I called on him two or three
times before the voyage of the Beagle [1831], and on one occasion he asked me to look through
a microscope and describe what I saw. This I did, and believe now that it was the marvelous
currents of protoplasm in some vegetable cell. I then asked him what I had seen; but he answered
me, “That is my little secret.”20

1.2 The period before Einstein

Between 1831 and 1857 it seems that one can no longer find references to Brown’s
observations, but from the 1860s forward his work began to draw large interest.
It was noticed soon thereafter in literary circles, if we are to judge by a passage
of “Middlemarch” published by George Eliot in 1872, where the surgeon Lydgate
offered to Rev. M. Farebrother, in exchange for marine specimens, “the latest of
Robert Brown’s discoveries, Microscopic Observations on the Pollen of Plants, if
you don’t already have it.”

Jean Perrin wrote in his famous 1909 memoir Brownian Motion and Molec-
ular Reality:21

“The singular phenomenon discovered by Brown did not attract much attention. It re-
mained, moreover, for a long time ignored by the majority of physicists, and it may be supposed
that those who had heard of it thought it analogous to the movement of the dust particles, which
can be seen dancing in a ray of sunlight, under the influence of feeble currents of air which set up
small differences of pressure or temperature. When we reflect that this apparent explanation was
able to satisfy even thoughtful minds, we ought the more to admire the acuteness of those physi-
cists, who have recognised in this, supposed insignificant, phenomenon a fundamental property
of matter.”

20Charles Darwin: His Life told in an autobiographical Chapter, and in a selected series of his
published letters, ed. by his son, Francis Darwin, London (1892); New York: Schuman (1950), p.
46; quoted by S. G. Brush in The Kind of Motion We Call Heat, op. cit.

21J. Perrin, Mouvement brownien et réalité moléculaire, Ann. de Chim. et de Phys. 18, pp.
1–114 (1909). Translated by Frederick Soddy in Brownian Motion and Molecular Reality, Taylor
and Francis, London (1910); facsimile reprint in David M. Knight, ed., Classical scientific papers:
chemistry, American Elsevier, New York (1968).
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1.2.1 Brownian motion and the kinetic theory of gases

It became clear from experiments made in various laboratories that Brownian
motion increases when the size of the suspended particles decreases (one essentially
ceases to observe it when the radius is above several microns), when the viscosity
of the fluid decreases, or when the temperature increases. In the 1860’s, the idea
emerged that the cause of the Brownian motion has to be found in the internal
motion of the fluid, namely that the zigzag motion of suspended particles is due
to collisions with the molecules of the fluid.

The first name worth citing in this regard is probably that of Christian
Wiener, holder of the Chair of Descriptive Geometry at Karlsruhe, who in 1863
reaffirmed in the conclusions to his observations that the motion could be due
neither to the interactions between particles, nor to differences in temperature,
nor to evaporation or convection currents, but that the cause must be found in
the liquid itself.22 That being so, his theory on atomic motion anticipated those of
Clausius and Maxwell, implicating not only the motion of molecules but also the
motion of “ether atoms”. The Brownian motion was thus bound to the vibrations
of the ether, to the wavelength corresponding to that of red light and to the size of
the smallest group of molecules moving together in the liquid. Such an explanation
was criticized by R. Mead Bache, who showed that the motion was insensitive to
the color of light, whether it was violet or red.23 Christian Wiener is neverthe-
less credited by some authors as the first to discover that molecular motion could
explain the phenomenon.24

At least three other people proposed the same idea: Giovanni Cantoni of
Pavia, and two Belgian Jesuits, Joseph Delsaulx and Ignace Carbonelle. The Ital-
ian physicist attributed Brownian movement to thermal motions in the liquid, and
considered that this phenomenon provides a “beautiful and direct demonstration of
the fundamental principles of the mechanical theory of heat”.25 The Belgian physi-
cists published in the Royal Microscopical Society and in the Revue des Questions
scientifiques, from 1877 to 1880, various Notes on the Thermodynamical Origin
of the Brownian Movement. In a Note by Father Delsaulx, for example, one may
read:26

“The agitation of small corpuscles in suspension in liquids truly constitutes a general

phenomenon”, that it is “henceforth natural to ascribe a phenomenon having this universality to

some property of matter”, and that “in this train of ideas the internal movements of translation

22Chr. Wiener, Erklärung des atomischen Wessens des flüssigen Körperzustandes und
Bestätigung desselben durch die sogennanten Molekularbewegungen, Ann. d. Physik 118, 79
(1863).

23R. Mead Bache, Proc. Am. Phil. Soc. 33, 163 (1894).
24J. Perrin, Mouvement brownien et réalité moléculaire, op. cit.
25See the reprint with notes by J. Thirion in Revue des Questions Scientifiques 15, 251 (1909).
26“See for this bibliography an article which appeared in the Revue des Questions Scientifiques,

January 1909, [op. cit.], where M. Thirion very properly calls attention to the ideas of these
savants, with whom he collaborated.” [original citation and note by J. Perrin in Brownian Motion
and Molecular Reality, op. cit.]
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which constitute the calorific state of gases, vapours and liquids, can very well account for the

facts established by experiment”.

Such a point of view, parallel to that of the kinetic theory of gases, faced
strong opposition. One opponent, cytologist Karl von Nägeli of Switzerland, fa-
miliar with the kinetic theory of gases and the orders of magnitude involved,
likewise the British chemist William Ramsey (the future Nobel laureate in Chem-
istry), commented that the particles in suspension have a mass several hundreds
of millions of times larger than that of the molecules in the fluid. Each random
collision with a molecule of the surrounding fluid produces therefore an effect far
too small to displace the suspended particle. Nägeli wrote for example about a
supposedly similar motion of micro-organisms in the air:

“The motion which a sun-mote, and on the whole any particle found in the air, can acquire
by the collisions of an individual gas molecule or a multitude of such molecules is therefore so
extraordinarily small, and the number of simultaneous collisions against the particle from all
sides so extraordinarily large, that the particle behaves as if it were completely at rest.”

He believed instead that the cause of the motion was not the thermal molec-
ular motion but some attractive or repulsive forces.

Nevertheless, the second part of his proposition about the frequency of such
collisions held the principle of the solution. Because it is a collective statistical
effect, as described in perspicacious manner by Father Carbonelle:

“In the case of a surface having a certain area, the molecular collisions of the liquid, which
cause the pressure, would not produce any perturbation of the suspended particles, because
these, as a whole, urge the particles equally in all directions. But if the surface is of area less
than necessary to insure the compensation of irregularities, there is no longer any ground for
considering the mean pressure; the inequal pressure, continually varying from place to place, must
be recognised, as the law of large numbers no longer leads to uniformity; and the resultant will
not now be zero but will change continually in intensity and direction. Further, the inequalities
will become more and more apparent the smaller the body is supposed to be, and in consequence
the oscillations will at the same time become more and more brisk. . . ”

Perrin mentions these authors to conclude:
“These remarkable reflections unfortunately remained as little known as those of Wiener.

Besides it does not appear that they were accompanied by an experimental trial sufficient to
dispel the superficial explanation indicated a moment ago; in consequence, the proposed theory
did not impress itself on those who had become acquainted with it.”

He continues:
“On the contrary, it was established by the work of M. Gouy (1888), not only that the

hypothesis of molecular agitation gave an admissible explanation of the Brownian movement,
but that no other cause of the movement could be imagined, which especially increased the
significance of the hypothesis.27 This work immediately evoked a considerable response, and it
is only from this time that the Brownian movement took a place among the important problems
of general physics.”

Indeed in 1888 the French physicist Louis-Georges Gouy made the best ob-
servations on Brownian motion, from which he drew the following conclusions:

27L.-G. Gouy, J. de Physique 7, 561 (1888); C. R. Acad. Sc. Paris, 109, 102 (1889); Revue
générale des Sciences, 1 (1895).
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– The motion is extremely irregular, and the trajectory seems not to have a
tangent.

– Two Brownian particles, even close, have independent motion from one an-
other.

– The smaller the particles, the livelier their motion.

– The nature and the density of the particles have no influence.

– The motion is most active in less viscous liquids.

– The motion is most active at higher temperatures.

– The motion never stops.

Gouy seemed, however, to claim again that one cannot explain Brownian
motion by disordered molecular motion, but only by the partially organized move-
ments over the order of a micron within the liquid.

But somehow he became known as the “discoverer” of the cause of Brownian
motion, as Jean Perrin wrote about his experimental conclusions:

“Thus comes into evidence, in what is termed a fluid in equilibrium, a property eternal
and profound. This equilibrium only exists as an average and for large masses; it is a statistical
equilibrium. In reality the whole fluid is agitated indefinitely and spontaneously by motions
the more violent and rapid the smaller the portion taken into account; the statical notion of
equilibrium is completely illusory.”28

1.2.2 Brownian motion and Carnot’s principle

Brownian agitation continues indefinitely. It does not contradict the principle of
energy conservation, because any increase in the velocity of a grain, for instance,
is accompanied by a local cooling of the surrounding fluid, and the thermal equi-
librium is statistical.

Gouy was the first to note the apparent contradiction between Brownian
motion and Carnot’s principle. The latter states that one cannot extract work
from a simple source of heat. However, it really seems that some work is made, in
a fluctuating manner, by the thermal motion of the molecules of the fluid. Gouy
mentioned the theoretical possibility to extract work by a mechanism attached
to a Brownian particle, and he concluded that Carnot’s principle perhaps was no
longer valid for dimensions of the size of a micron, in that echoing Helmholtz’s
reservations about the validity of such principle for living tissues.

These questions sparked the interest of Poincaré, who announced at the fol-
lowing lecture of the Congress of Arts and Sciences in St. Louis in 1904, about the
“Present Crisis of Mathematical Physics”29:

28J. Perrin, Mouvement brownien et réalité moléculaire, op. cit.
29Henri Poincaré, La valeur de la science, Bibliothèque de philosophie scientifique, Flammar-

ion, Paris (1905); in Congress of Arts and Sciences, Universal Exposition, St. Louis, 1904,
Houghton, Mifflin and Co., Boston and New York (1905).
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“But here the stage changes. Long ago the biologist, armed with his microscope, noticed
in his specimens disorganized movements of small particles in suspension; that is the Brownian
motion. He believed at first that it is a vital phenomenon, but soon he saw that inanimate bodies
did not dance with less fervor than the others, so he handed it over to physicists. Unfortunately,
physicists have been uninterested for a long while in this question; one concentrates light to
enlighten the microscopic specimens, they thought; light does not go without heat, from which
inhomogeneities of temperature, and then internal currents in the liquid that produce the motion
we are speaking about.

M. Gouy had the idea to look closer and he saw, or believed he saw that this explanation
is unsustainable, that the motion becomes more lively the smaller the particles, but that they
are not influenced by light. So, if the motion never stops, or more exactly is continually reborn
without end, without an external source of energy, what are we to believe? We must not, without
any doubt, renounce the conservation of energy because of this, but we see before our own eyes
both motion transform into heat by friction, and inversely heat transform into motion; and all
that while nothing is lost, as the motion lasts forever. This is the opposite of Carnot’s principle.
If this is the case, to see the world develop in reverse, we no longer have need of the infinitely
subtle eye of Maxwell’s demon, a microscope will suffice. The largest of bodies, those that have
for example, a tenth of a millimeter, collide with atoms in motion from all sides, but they do
not move at all as the shocks are so numerous that the law of chance says they compensate one
another; however the smallest particles do not receive enough shocks for the compensation to be
exact and they are unendingly tossed around. And voilà, one of our principles already in danger.”

It is rather subtle to prove that the Brownian phenomenon does not infringe
on the impossibility of creating perpetual motion (called of the second kind),
where work is extracted in a coherent manner by the observer (recalling Maxwell’s
famous demon). One had to wait for Leo Szilard, who hinted in 1929 that, because
of the amount of information required by such an attempt, the total produced
entropy would compensate the apparent entropy reduction due to the coherent
use of fluctuations. We shall briefly return to this question later, after having
described Smoluchowski’s contributions.

1.2.3 The kinetic molecular “hypothesis”

Nowadays it seems evident to us that the world is made up of particles, of atoms
and of molecules. However, it was not always the case, and the hypothesis of
a continuous structure of matter was relentlessly defended until the end of the
nineteenth century by famous names such as Duhem, Ostwald, and Mach.

The intuition or the idea that gases are composed of individual molecules
was already present in the eighteenth century, and in 1738 David Bernoulli was
probably the first to affirm that the pressure of a gas on its container is due to
collisions of molecules with the walls. Avogadro made the radical affirmation in
1811 that two gases at the same pressure and same temperature contain the same
number of molecules. When such conditions are of one atmosphere and of 25o

Celsius, the number contained in a volume of one liter is noted as N , and called
Avogadro’s number.

To understand the stakes surrounding the determination of Avogadro’s num-
ber, one must recall that the constant R in the perfect gas law has been exper-
imentally accessible since the eighteenth century, thanks to the work of Boyle,
Mariotte, Charles, and later Gay-Lussac. It is in fact associated to the number
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of moles, N/N , which is an experimental macroscopic parameter, contrary to the
total number of particles N , and Avogadro’s number N , that are microscopic
quantities.

The study of Brownian motion played an essential role in establishing the
“molecular hypothesis” definitively. As Jean Perrin observed, the “hypothesis”
that bodies, despite their homogeneous appearance, are made up of distinct mole-
cules, in unending agitation which increases with temperature, is logically sug-
gested by the phenomenon of Brownian motion alone, even before providing an
explanation.

In fact, according to Perrin, what is really strange and new in Brownian
motion, is, precisely, that it never stops, contrary to our every-day experience
with friction phenomena. If, for example, we pour a bucket of water into a tub, the
initial coherent motion possessed by the liquid mass disappears, de-coordinated by
the multiple rebounds on the boundaries of the tub, until an apparent equilibrium
settles within the fluid at rest. Does such a de-coordination of the motion of the
particles proceed indefinitely, as it would in an ideal continuous medium? The
answer by Perrin is exceptionnally convincing:30

“To have information on this point and to follow this de-coordination as far as possible
after having ceased to observe it with the naked eye, a microscope will be of assistance, and
microscopic powders will be taken as indicators of the movement. Now these are precisely the
conditions under which the Brownian motion is perceived: we are therefore assured that the de-
coordination of motion, so evident on the ordinary scale of our observations, does not proceed
indefinitely, and on the scale of microscopic observation, we establish an equilibrium between
coordination and de-coordination. If, that is to say, at each instant, certain of the indicating
granules stop, there are some in other regions at the same instant, the movement of which is
re-coordinated automatically by their being given the speed of granules which have come to rest.
So that it does not seem possible to escape the following conclusion:

Since the distribution of motion in a fluid does not progress indefinitely, and is limited by
a spontaneous re-coordination, it follows that the fluids are themselves composed of granules or
molecules, which can assume all possible motions relative to one another, but in the interior of
which dissemination of motion is impossible. If such molecules had no existence it is not apparent
how there would be any limit to the de-coordination of motion [...] In brief, the examination of
Brownian movement alone suffices to suggest that every fluid is formed of elastic molecules,
animated by perpetual motion.”

In 1905 Albert Einstein was the first, actually along with (but independently
from) William Sutherland from Melbourne, to propose a quantitative theory of
Brownian motion. This theory will allow Perrin to determine the precise value
of Avogadro’s number N , in his famous experiments of 1908–1909. Sutherland
and Einstein succeeded where many others failed, because they used an ingenious
and global reasoning of statistical mechanics, that we will explain here. Marian
von Smoluchowski made at the same time an analysis according to a different
“Gedankenweg”, more probabilistic, which led him to similar conclusions. We will
came back to this point later in the paper.

30Translation by Frederick Soddy, op. cit.
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1.3 William Sutherland, 1904–05

In his famous biography of Einstein, Subtle is the Lord... (1982), Abraham Pais
noted, while describing Einstein’s route to his well-known diffusion relation, that
the same relation had been discovered “at practically the same time” by the Mel-
bourne theoretical physicist William Sutherland, following similar reasoning to
Einstein’s, and had been submitted for publication to the Philosophical Magazine
in March 1905, shortly before Einstein completed the doctoral thesis in which he
first announced the relation. Pais, therefore, proposed that the relation be called
the “Sutherland–Einstein relation”.

We follow here the introduction of the essay, Speculating about Atoms in
Early 20th-century Melbourne: William Sutherland and the ‘Sutherland–Einstein’
Diffusion Relation, written recently by the Australian historian of science Rod
W. Home.31 In this section we shall briefly discuss Sutherland’s work, and the
factors that may have led to his work being over-shadowed by Einstein’s, and soon
forgotten. When the Einstein International Year of Physics commemorates the
hundredth anniversary of the Annus Mirabilis papers’ release, focusing also on W.
Sutherland’s achievements seems to be just fair!

1.3.1 Sutherland’s papers

Sutherland’s paper to which Pais refers was actually published in June 1905,32

after Einstein completed his thesis, but shortly before he submitted it for examina-
tion. We seem to be looking here at a perfect example of effectively simultaneous
discovery. However, as Rod Home notes, the story is still a little more compli-
cated, for Sutherland had already reported his derivation over a year earlier, at
the congress of the Australasian Association for the Advancement of Science held
in Dunedin, New Zealand, in January 1904, and his paper had been published in
the congress proceedings in early 1905!33 Unfortunately, there was a misprint in
the crucial equation giving the diffusion coefficient of a large molecular mass in
terms of physical parameters: Avogadro’s constant was missing!34

The correct and extended equation, finally published in the Philosophical
Magazine, is

D =
RT

N
1

6πη a

1 + 3η/βa

1 + 2η/βa
, (1)

31Most of the material presented in this section originates from the 2005 essay by R. W.
Home, Speculating about Atoms in Early 20th-century Melbourne: William Sutherland and the
‘Sutherland–Einstein’ Diffusion Relation, Sutherland Lecture, 16th National Congress, Aus-
tralian Institute of Physics, Canberra, January 2005. See also the interesting note by Bruce
H. J. McKellar, The Sutherland–Einstein Equation, AAPPS Bulletin, February 2005, 35.

32W. Sutherland, A Dynamical Theory for Non-Electrolytes and the Molecular Mass of Albu-
min, Phil. Mag. S.6, 9, pp. 781–785 (1905).

33W. Sutherland, The Measurement of Large Molecular Masses, Report of the 10th Meeting
of the Australasian Association for the Advancement of Science, Dunedin, pp. 117–121 (1904).

34As R. W. Home remarks, it is clear that one is looking at a genuine misprint in the proceed-
ings, since the preceding line was given correctly.
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where R is the perfect gas constant, T the absolute temperature, N Avogadro’s
number, η the fluid viscosity, a the radius of the (spherical) diffusing molecule, and
β the coefficient of sliding friction if there is slip between the diffusing molecule and
the solution.35 To deal with the available empirical data, Sutherland had indeed
to allow for a varying coefficient of sliding friction between the diffusing molecule
and the solution. By taking β to infinity, so there is no slip at the boundary, one
recovers the usual form of the equation:

D =
RT

N
1

6πη a
. (2)

Since in a fluid the molecules are close packed the molecular radius a should be
proportional to the cube root of the molar volume B, the volume occupied by
Avogadro’s number of particles. Hence, from the constancy of the product aD
in relation (2), should follow that of B1/3D. After having estimated this constant
from experimental data on the diffusion of various dissolved substances, Sutherland
could obtain the molar volume of albumin, and got an estimate of its atomic mass36

as 32814 Da.37

1.3.2 Sutherland, Einstein and Besso

In 1903, Einstein and his friend Michele Besso discussed a theory of dissociation
that required the assumption of molecular aggregates in combination with water,
the “hypothesis of ionic aggregates”, as Besso called it. This assumption opens the
way to a simple calculation of the sizes of ions in solution, based on hydrodynamical
considerations. In 1902, Sutherland had considered in Ionization, Ionic Velocities,
and Atomic Sizes38 a calculation of the sizes of ions on the basis of Stokes’ law, but
criticized it as in disagreement with experimental data.39 The very same idea of
determining sizes of ions by means of classical hydrodynamics occurred to Einstein
in his letter of 17 March 1903 to Besso,40 where he proposed what appears to be
just the calculation that Sutherland had performed:

35Sutherland uses the version of Stokes’ law, F = 6πη a
1+2η/βa
1+3η/βa

V , relating the viscous friction

force F to the velocity of the particle. This relation is generalized here to the case where slip
occurs at the boundary between the fluid and the moving sphere. For a derivation, see H. Lamb,
Hydrodynamics, Cambridge University Press (1932).

36The dalton (Da) is the atomic mass unit; it honors the English chemist John Dalton (1766–
1844), who revived the atomic theory of matter in 1803.

37The present-day value is 43 kDa for ovalbumin.
38W. Sutherland, Ionization, Ionic Velocities, and Atomic Sizes, Phil. Mag. S.6, 4, pp. 625–645

(1902).
39He wrote: “Now this simple theory must have been written down by many a physicist and

found to be wanting, for it makes the ionic velocities of the different atoms at infinite dilution
stand to one another inversely as their radii, a result which a brief study of data as to ionic
velocities and relative atomic sizes shows to be not verified”. Sutherland did not use the assump-
tion of ionic hydrates, which can avoid such disagreement by permitting ionic sizes to vary with
temperature and concentration.

40Albert Einstein, Michele Besso, Correspondance 1903–1955, translation, notes and introduc-
tion by Pierre Speziali, Herrmann, Paris (1979).
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“Have you already calculated the absolute magnitude of ions on the assumption that they
are spheres and so large that the hydrodynamical equations for viscous fluids are applicable?
With our knowledge of the absolute magnitude of the electron [charge] this would be a simple
matter indeed. I would have done it myself but lack the reference material and time; you could
also bring in diffusion in order to obtain information about neutral salt molecules in solution.”

As the editors of Einstein’s Collected Papers remark, “This passage is re-
markable, because both key elements of Einstein’s method for the determination
of molecular dimensions, the theories of hydrodynamics and diffusion, are already
mentioned, although the reference to hydrodynamics probably covers only Stokes’
law”.41

It is also striking that a former letter of 11–17 February 1903, this time from
Besso to Einstein, clearly indicates that they had been discussing Sutherland’s
work together. This letter contains two parts. The first deals with experimental
data in connection to the dissociation of bi-ionic molecules. The second discusses
what Besso calls “Sutherland’s hypothesis”, in connection to dissociation or dis-
solution. He states that the theory of “ionic hydrates”, as he calls it, rescues
temporarily this hypothesis with regard to Ostwald’s dilution law. Since Besso
also discusses the role of imperfect semi-permeable membranes as a possible ex-
perimental test of Sutherland’s hypothesis, P. Speziali, in the French edition of
the Einstein–Besso correspondence, has indicated that Besso would have been dis-
cussing in this letter another of Sutherland’s papers, entitled “Causes of osmotic
pressure and of the simplicity of the laws of dilute solutions”.42

However, upon reading these letters of 1903, one cannot refrain from won-
dering whether Besso and Einstein were not also acquainted with and discussing
Sutherland’s 1902 paper on ionic sizes. In that case, Sutherland suggestion to use
hydrodynamic Stokes’ law to determine the size of molecules would have been
a direct inspiration to Einstein’s dissertation and subsequent work on Brownian
motion!

1.3.3 Sutherland’s legacy

That Sutherland, in spite of his isolation in Melbourne, was well-known in physics
circles is also evidenced by the fact that he was invited to contribute to the Boltz-
mann Festschrift in 1904 – the only other non-European contributor being J.
Willard Gibbs! – If so, why did Einstein and not Sutherland become famous?

Sutherland had assumed the existence of atoms, and attacked a practical
question, the measurement of large molecular masses. He was interested in these
masses because of their role in the chemical analysis of organic substances. While
that is what everyone now uses the Sutherland–Einstein equation for, it was per-
haps not of so widespread interest at the time. However, we have just seen from the

41The Collected Papers of Albert Einstein, volume 2, The Swiss Years: Writings, 1900–
1909, John Stachel ed., pp. 170–182, Princeton University Press (1989).

42Causes of Osmotic Pressure and of the Simplicity of the Laws of Dilute Solutions, Phil.
Mag., S.5, 44, pp. 52–55 (1897).
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Einstein–Besso correspondence how extremely important Sutherland’s idea was of
determining the sizes of ions or molecules by means of classical hydrodynamics.

On the other hand, as stressed by the editors of The Collected Papers:

“In developing in his dissertation a new method for the determination of molecular di-
mensions, Einstein was concerned with several problems on different levels of generality. An
outstanding current problem of the theory of solutions was whether molecules of the solvent are
attached to the molecules or ions of the solute. Einstein’s dissertation contributed to the solution
of this problem. He recalled in 1909:

“At the time I used the viscosity of the solution to determine the volume of sugar dissolved
in water because in this way I hoped to take into account the volume of any attached water
molecule.”

The results obtained in his dissertation indicate that such an attachment does occur.
Einstein’s concerns extended beyond this particular question to more general problems of the
foundations of the theory of radiation and the existence of atoms. He later emphasized:

“A precise determination of the size of the molecules seems to me of the highest importance
because Planck’s radiation formula can be tested more precisely through such a determination
than through measurements on radiation.”

The dissertation also marked the first major success in Einstein’s effort to find further
evidence for the atomic hypothesis, an effort that culminated in his explanation of Brownian
motion.”

To conclude, it is probably most appropriate to cite R. W. Home:

“Of course, the diffusion-viscosity relation is generally known as the Einstein relation, not
the Sutherland–Einstein relation. Why? In part, I think, this happened because in the early 20th
century, theoretical physics was a largely German affair. In so far as the relation was taken up,
and initially it was not taken up much at all, it was taken up by Continental researchers who
had read Einstein’s work but failed to notice that the relation was also buried in a paper in
the Philosophical Magazine entitled “A dynamical theory for non-electrolytes and the molecular
mass of albumin”. In the English-speaking world, where the Philosophical Magazine was one
of the leading journals in the field, there were very few people pursuing theoretical physics in
the German style. There is plenty of testimony that experimentally orientated British physicists
were at something of a loss as how to assess Sutherland’s work. His obituary in Nature makes
the point very clearly:43

“His papers are well known to the scientific world. They are distinguished by great width
of reading in the latest phases of the subjects he treated, combined with very bold speculation
always brought into ample comparison with experimental knowledge. His generalisations were,
indeed, so numerous that it was often a difficult task to try to estimate their value.”

So in Britain, Surtherland didn’t have a readership likely to be alert to the significance
of his announcement of a relationship between diffusion and viscosity, in the way some Conti-
nental readers of Einstein’s work were. And, finally, Sutherland’s own presentation surely would
not have helped, with the relation itself being almost submerged by his lengthy computations
relating to the molecular mass of albumin. He would have done much better to highlight the
relation, alone, in a paper to itself. But that was not his style! His mind was firmly fixed on the
problem of determining molecular masses of large molecules, and he clearly saw the diffusion-
viscosity relation as an incidental result arrived at on the way to achieving that larger goal, not
as something of particular value in its own right.”

In this year 2005, it is definitely time, I think, for the physics community
to finally recognize Sutherland’s achievements, and following Pais’ suggestion, to
re-baptize the famous relation (2) with a double name!

43“Nature, 23 November 1911, p. 116. The obituary is signed “J. L.” [Joseph Larmor?].”[original
note]
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1.4 Albert Einstein, 1905

Mens agitat molem

1.4.1 Einstein’s Dissertation

One finds nowadays in the literature excellent descriptions of Einstein’s disserta-
tion. An outstanding presentation is given in the Editorial Notes of the Collected
Papers of Albert Einstein.44 Their presentation is closely followed in this section,
which incorporates some material of the editorial notes of the chapter entitled
“Einstein’s dissertation on the determination of molecular dimensions”.45 The in-
terested reader can also find a detailed scientific study of Einstein’s doctoral thesis
in a recent article by Norbert Straumann.46

Einstein completed his dissertation on “A New Determination of Molecular
Dimensions” on 30 April 1905, and submitted it to the University of Zürich on 20
July.47 Shortly after being accepted there, the manuscript was sent for publication
to the Annalen der Physik, where it would be published in 1906.48 On 11 May
1905, eleven days after finishing his thesis, Einstein had also sent the manuscript
of his first paper on Brownian motion to the Annalen, which would publish it on
18 July 1905.

Einstein’s central assumption is the validity of using classical hydrodynamics
to calculate the effect of solute molecules, treated as rigid spheres, on the viscosity
of the solvent in a dilute solution. His method is well suited to determine the size
of solute molecules that are large compared to those of the solvent, and he applied
it to solute sugar molecules. As we have seen above, Sutherland published in 1905
a method for determining the masses of large molecules, with which Einstein’s
method shares many important elements. Both methods make use of the molecular
theory of diffusion that Nernst49 developed on the basis of van ’t Hoff’s analogy
between solutions and gases, and of Stokes’ law of hydrodynamic friction.

The first of the results in the dissertation is a relation between the coeffi-
cients of viscosity of a liquid with and without suspended molecules (η∗ and η,
respectively),

η∗ = η (1 + ϕ) , (3)

44Editorial notes of the chapter “Einstein’s dissertation on the determination of molecular
dimensions”, in The Collected Papers of Albert Einstein, volume 2, op. cit., pp. 170–182; see
also John Stachel, Einstein’s Miraculous Year, op. cit., pp. 31–43.

45With kind permission of John Stachel, Editor.
46Norbert Straumann, On Einstein’s Doctoral Thesis, arXiv:physics/0504201.
47Einstein had already submitted a dissertation in 1901, on “a topic in the kinematic theory of

gases”. By February 1902, he had withdrawn the dissertation, possibly at his advisor’s suggestion
to avoid a controversy with Boltzmann. (For a detailed analysis, see the Editorial Notes of The
Collected Papers of Albert Einstein, volume 2, op. cit., pp. 174–175). Nevertheless, there is no
doubt that Einstein was a great admirer of Boltzmann. (For a biography of the latter, see C.
Cercignani, Ludwig Boltzmann, The Man Who Trusted Atoms, Oxford University Press (1998).)

48Eine neue Bestimmung der Moleküldimensionen, Ann. d. Phys. 19, pp. 289–306 (1906).
49W. Nernst, Z. Phys. Chem. Stöchiometrie Verwandschaftslehre, 2, pp. 613–639 (1888).
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where ϕ is the fraction of the volume occupied by the solute molecules.
The second result is the famous expression (2) for the coefficient of diffusion

D of the solute molecules. Like Loschmidt’s method based on the kinetic theory of
gases, the expressions obtained by Einstein give two equations for two unknowns,
Avogadro’s number N , and the molecular radius a of the suspended particles,
hence providing a possible determination of molecular dimensions!

The derivation of eq. (3) represents the technically difficult part of Einstein’s
dissertation. It rests on the assumption that the motion of the fluid can be de-
scribed by the hydrodynamical equations for stationary flow of an incompressible
homogeneous fluid, even in the presence of solute molecules; that the inertia of
these molecules can be neglected; that they do not interact; and that they can
be treated as rigid spheres moving in the liquid without slipping, under the sole
influence of hydrodynamical stress.

Eq. (2) follows from the conditions of dynamical and thermodynamical equi-
librium in the fluid. Its derivation, as does Sutherland’s paper, requires the identi-
fication of the force on a single large molecule, which appears in Stokes’ law, with
the apparent force due to the osmotic pressure. We shall return to this derivation
in detail in the next section, when describing the content of Einstein’s first paper
on Brownian motion. In the dissertation, Einstein’s derivation of eq. (2) does not
involve yet the theoretical tools he developed in his work on the statistical founda-
tions of thermodynamics in the preceding years. Here he simply states the osmotic
pressure law, while in his first paper on Brownian motion, he will instead derive
from first principles the validity of van ’t Hoff’s law for large suspended particles.

In 1909, Einstein drew Perrin’s attention to his method for determining the
size of solute molecules, which allows one to take into account the volume of
any water molecule attached to the latter, and he suggested its application to the
suspensions studied by Perrin in relation to Brownian motion. In the following year,
an experimental study of formula (3) for the viscosity coefficient was performed
by a pupil of Perrin, Jacques Bancelin. Using the same aqueous emulsions of gum-
resin (“gamboge”), he confirmed that the increase in viscosity does not depend on
the size of the solute molecules, but only on their volume fraction. However, the
coefficient of ϕ in eq. (3) was found to be close to 3.9, instead of the predicted
value 1. That prompted Einstein, after an unsuccessful attempt to find an error,
to ask his student and collaborator Ludwig Hopf to check his calculations and
arguments:

“I have checked my previous calculations and arguments and found no error in them. You
would be doing a great service in this matter if you would carefully recheck my investigation.
Either there is an error in the work, or the volume of Perrin’s substance in the suspended state
is greater than Perrin believes.”50

Hopf did find an error in the dissertation, namely in the derivatives of some
velocity components, and obtained for ϕ a corrected coefficient 2.5. The remaining

50The Collected Papers of Albert Einstein, volume 2, op. cit., pp. 180–181.
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discrepancy between this corrected theoretical factor and the experimental one led
Einstein to suspect that there might be also an experimental error.51

In early 1911 Einstein submitted his correction for publication, and recalcu-
lated Avogadro’s number. He obtained a value of 6.56 × 1023 per mole, a value
that is close to those derived from kinetic theory and Planck’s black-body radiation
theory.

The paper published in 1911 by Bancelin in the Comptes rendus de l’Acadé-
mie des Sciences gave an experimental value of 2.9 as the coefficient of ϕ in eq.
(3). Extrapolating his results to sugar solutions, Bancelin recalculated Avogadro’s
number, and found a value of 7.0 × 1023 per mole.

Einstein’s dissertation was at first overshadowed by his more spectacular work
on Brownian motion, and it required an initiative by Einstein to bring it to the
attention of the scientists of his time. The paper on Brownian motion, the first of
several on this subject that Einstein published over the course of the next couple
of years, actually included his first published statement of the famous relationship
linking diffusion with viscosity, that he had derived in his thesis.

As Abraham Pais points out in Subtle is the Lord..., this equation has found
widespread applications, as a result of which Einstein’s January 1906 paper in
the Annalen der Physik, the published version of his dissertation, later became
his most frequently cited paper!52 As stressed by R. H. Home in his essay on
Sutherland, Pais also goes on to argue that the thesis was also one of Einstein’s
“most fundamental papers”, of comparable intrinsic significance to the other papers
Einstein wrote in that year of 1905. “In my opinion”, Pais writes, “the thesis is
on a par with [Einstein’s] Brownian motion article”: indeed, “in some if not all
respects, his results are by-products of his thesis work”.

It is now time to turn to this famous 1905 Brownian motion article.

1.4.2 The 1905 article on Brownian motion

The 1905 article is entitled: “On the Motion of Small Particles Suspended in Liq-
uids at Rest, Required by the Molecular-Kinetic Theory of Heat.”53 There, Einstein
tried to establish the existence and the size of molecules, and to determine a theo-
retical method for computing Avogadro’s number precisely, by using the molecular
kinetic theory of heat. In fact, he concluded:

51He asked Perrin: “Wouldn’t it be possible that your mastic particles, like colloids, are in a
swollen state? The influence of such a swelling 3.9/2.5 would be of rather slight influence on
Brownian motion, so that it might possibly have escaped you.”, Einstein to Perrin, 12 January
1911, in The Collected Papers of Albert Einstein, volume 2, op. cit., p. 181.

52According to R. W. Home, op. cit., it became the paper most widely cited in the period
1961–75, the period surveyed for the citation analysis of any scientific article published by any
author before 1912. According to B. H. J. McKellar, op. cit., the 1905 citation count is as follows
(from World of Science, Dec. 2004): Ann. d. Phys. 17, 132 (1905): 325 (photoelectric effect);
Ann. d. Phys. 17, 549 (1905): 1368 (Brownian motion); Ann. d. Phys. 17, 891 (1905): 664 (special
relativity); Ann. d. Phys. 18, 639 (1905): 91 (E = mc2); Ann. d. Phys. 19, 289 (1906): 1447
(molecular dimensions, Einstein’s thesis).

53A. Einstein, Ann. d. Physik 17, pp. 549–560 (1905).
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“Möge es bald einem Forscher gelingen, die hier aufgeworfene, für die Theorie
der Wärme wichtige Frage zu entscheiden !”54

Astonishingly enough, he was not yet certain that one could apply it to Brow-
nian motion. In fact, his introduction opens with: “In this paper it will be shown
that, according to the molecular-kinetic theory of heat, bodies of a microscopically
visible size suspended in liquids must, as a result of thermal molecular motions,
perform motions of such magnitude that they can be easily observed with a micro-
scope. It is possible that the motions to be discussed here are identical with so-called
Brownian molecular motion; however the data available to me on the latter are so
imprecise that I could not form a judgement on the question.”

Einstein relied on the results of his thesis, that he completed eleven days
before submitting his famous article on the suspensions of particles. Only later
would his predictions be progressively confirmed by refined experimental data on
Brownian motion.55

1.4.3 The Einstein–Sutherland derivation

The demonstration is based on two distinct elements from apparently contradicting
domains.

It seemed initially natural to use a hydrodynamic representation for parti-
cles in suspensions with size much greater than that of the liquid’s molecules. A
substantial amount of knowledge on the subject was available, in particular the
famous “Stokes’ formula”, which gives the force of friction opposing to a sphere
moving in the liquid.

But at the same time it was necessary for Einstein to exploit the kinetic
theory of heat, pulling it away from the original context of the theory of gases
and bringing it closer to the context of liquids, where the state of the theory was
much less advanced. It was the crucial notion of osmotic pressure, developed by
van ’t Hoff, that made the passage possible. It is based on the concept of kinetic
molecular disorder, where solute molecules, with a size comparable to that of the
liquid’s molecules, participate to the general motion like in a dilute gas.

Einstein was in possession of two theories about particles in a fluid. The first:
Stokes’ hydrodynamic theory, based on the hypothesis that a liquid is a continuous
medium which adheres to a large solid surface moving through it, without any
turbulence, and where the molecular agitation does not seem to play any role.
The other: van ’t Hoff’s osmotic theory, based on the hypothesis that a particle
in solution is similar to any other fluid molecule, and therefore is subjected to the
same laws of molecular agitation.

One needed Einstein’s perspicacity and his profound knowledge of statistical

54“Let us hope that a researcher will soon succeed in solving the problem presented here, which
is so important for the theory of heat!”

55This led J. Renn, op. cit., to speak of “Einstein’s invention of Brownian motion”.
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mechanics to understand and to prove that the two points of view were simulta-
neously valid for particles as big as Brownian particles.

Einstein first studied the osmotic pressure created in the solution by solute
molecules. This notion was developed by J. H. van ’t Hoff56 who, for dilute solu-
tions, showed the identity between the pressure exerted on semi-permeable walls
by molecules in solution and the partial pressure exerted by a gas. For sufficiently
dilute solutions, this additional pressure p due to the molecules in solution satisfies
the law of perfect gases

p =
n

N R T, (4)

where R is the ideal gas constant, T is the absolute temperature, and n is the
number of solute particles per unit volume, or particle density.

In his thesis, Einstein considered the effect of the density of such molecules
on the viscosity, such as in the case of sugar in water. This time the particles in
suspension are much larger so as to be observable under a microscope. Einstein
right away affirms that the difference between solute molecules and particles in
suspension is only a matter of size, and that van ’t Hoff’s law must be applied
as well to particles in suspension. Next, he proves this fact and formula (4), by
determining the free energy of an ensemble of such particles in suspension. In fact,
he calculates the associated partition function by the phase space method.

Einstein then imagines that the numerous particles of the suspension are
subjected to an external force F , which may depend on their positions but not
on time.57 This force, acting along the x axis for instance, moves each particle
of the solute, and generates a gradient of concentration. Let n(x, y, z; t) be the
number of particles in suspension per unit volume around the point x, y, z at the
instant t. From (4), a non-uniform osmotic pressure corresponds to a gradient
of concentration of particles in suspension. By considering the resultant of all
pressure forces on an elementary interval dx, one also obtains the force of the
osmotic pressure per unit volume:

Π = − ∂p

∂x
= −gradp = − R

N T gradn(x, y, z; t), (5)

where here the gradient is the spatial derivative in the direction x of the force.
In addition, the quantity ΠF = n F represents the total external force per unit

volume acting on the Brownian particles in suspension. From both a hydrostatic
and thermodynamic point of view, one imagines a priori that the equilibrium of a
unit of volume of the suspension is established when the force ΠF is balanced by
the osmotic pressure force Π. In fact, by using arguments of equilibrium invariance

56J. H. van ’t Hoff, Kongliga Svenska Vetenskaps-Academiens Handlingar, Stockholm, 21, 1
(1884).

57This force can be, for example gravitational, as in the sedimentation experiments by Jean
Perrin, but the beauty of the argument is that the result does not depend on the nature of
the force, that can even be virtual, as in the notion of “virtual work” of the eighteenth century
Mechanics.
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of the free energy with respect to virtual displacements, Einstein demonstrates that
actually the sum of the external and osmotic forces per unit volume cancels:

ΠF + Π = 0, (6)

n F =
R

N T gradn. (7)

One notices that he directly obtained the explicit formula (7) from the free energy
of the particles in suspension, without relying on the result (4), which shows the
two results come from the same approach.

The second part of this argument focuses on the dynamics of the flux equilib-
rium. Equilibrium in the fluid is actually just an apparent effect: while the force
F moves the particles in suspension, these are also subjected to Brownian motion
which reflects the kinetic nature of heat.

By moving in the liquid under the force F , each particle in suspension ex-
periences an opposing force of viscous friction. This brings the particle to a limit
velocity V = F/µ, where µ is the coefficient of viscous friction for each particle
in suspension. The result is a flux of particles

ΦF = n V = n F/µ, (8)

that is the number of particles crossing a unit surface perpendicular to the direction
x of the force.

The particle density n(x, y, z; t) satisfies the local diffusion equation

∂n

∂t
= D∆n, (9)

where ∆ is the Laplacian ∆ = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 , and where D is a coefficient,
called the coefficient of diffusion, measured in square meters per second units.
To this equation is naturally associated a diffusion flux ΦD, which is the number
of particles diffusing across a unit surface per unit of time. This flux is directly
connected to the concentration gradient by58

ΦD = −D gradn. (10)

At equilibrium, here both local and dynamic, the force-driven flux ΦF (8)
and the flux of diffusion ΦD (10), cancel:

ΦF + ΦD = 0, (11)
n F/µ = D gradn. (12)

58Einstein, like Sutherland, writes this equation directly, without passing through the diffusion
equation he will prove farther along. This is indeed the celebrated Fick’s law (A. Fick, Über Diffu-
sion, Ann. Phys. Chem. 4, 59–86 (1855)). For mathematically inclined readers, let us recall that
the Laplacian is also ∆ = div(grad), where the divergence is the operator of derivation of a vector
	A: div 	A = 	∇. 	A = ∂Ax

∂x
+

∂Ay

∂y
+ ∂Az

∂z
, and where the gradient is the vector operator of derivation

grad =
“

∂
∂x

, ∂
∂y

, ∂
∂z

”
. From the diffusion equation, ∂n

∂t
= D∆n, by counting the number of

particles crossing an arbitrary closed surface and by applying the Green–Ostrogradski theorem,
one immediately finds the existence across the surface of a diffusion flux ΦD = −D grad n.
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By comparing the static equation (7) and the dynamic equation (12), one
sees that they have identical structures for the dependence on n and its gradient,
from which we obtain the required identity between the coefficients:

D =
1
µ

RT

N . (13)

By supposing that the particles in suspension are all spheres of radius a, Einstein
uses at last Stokes’ relation which gives the coefficient of friction µ of a sphere
immersed in a (continuous) fluid with viscosity η:

µ = 6πη a, (14)

from which he finally deduced:

D =
RT

N
1

6πη a
. (15)

This is Einstein’s famous relation, which is already in his thesis. In fact, as men-
tioned above, the same relation was discovered earlier in Australia and, by a re-
markable coincidence, published at practically the same moment as Einstein was
working on his thesis. William Sutherland published his Philosphical Magazine
article in March of 1905. One should therefore definitely call this relation the
Sutherland–Einstein relation.

In the 1905 article, Einstein completes these results by means of mathemat-
ical and probabilistic considerations. Let P (x, y, z; t) be the probability density of
finding a Brownian particle at a point x, y, z at the time t. This density satisfies
the diffusion equation:

∂P

∂t
= D ∆P. (16)

Let us follow Einstein in his demonstration.
He starts by introducing a time interval τ , small compared to the duration

of the observation, but large enough for the motions made by a particle during
two consecutive intervals of time τ to be considered as independent events. Let us
suppose then that in a liquid suspension there is a total number of particles N .
During the time interval τ , the coordinates of each particle along the x axis will
change by an amount ∆, where ∆ takes a different value (positive or negative) for
each particle. A probability distribution governs ∆: the number dN of particles
with a displacement between ∆ and ∆ + d∆ is:

dN = Nϕτ (∆)d∆,

where ∫ +∞

−∞
ϕτ (∆)d∆ = 1, (17)
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and where, for small τ , ϕτ (∆) differs from zero only for very small values of ∆.
This function also satisfies the symmetry condition

ϕτ (∆) = ϕτ (−∆). (18)

Einstein tries then to determine how the coefficient of diffusion depends on ϕ,
once again by considering only the unidimensional case where the particle density
n depends only on x and t. We can thus write n = f(x, t) (the number of particles
per unity volume) and we calculate the particle distribution at the time t+τ given
the distribution at the time t. From the definition of the function ϕτ (∆), we obtain
the number of particles between two planes in x and x + dx at the time t + τ :

f(x, t + τ)dx = dx

∫ +∞

−∞
f(x + ∆, t)ϕτ (∆)d∆. (19)

Since τ is very small, we can assume that

f(x, t + τ) = f(x, t) + τ
∂f

∂t
. (20)

Moreover, expand f(x + ∆, t) in powers of ∆:

f(x + ∆, t) = f(x, t) + ∆
∂f(x, t)

∂x
+

∆2

2
∂2f(x, t)

∂x2
+ · · ·

We can then substitute such an expansion inside the integral in (19) as only very
small values of ∆ contribute to the latter. We obtain:

f+τ
∂f

∂t
= f

∫ +∞

−∞
ϕτ (∆)d∆+

∂f

∂x

∫ +∞

−∞
∆ϕτ (∆)d∆+

∂2f

∂x2

∫ +∞

−∞

∆2

2
ϕτ (∆)d∆+· · ·

On the right side, the second term, fourth term, etc., cancel out because of the
parity property (18), while each of the other terms is very small in relation to the
preceding one. From this equation, taking into account the conservation property
(17), defining

1
τ

∫ +∞

−∞

∆2

2
ϕτ (∆)d∆ = D (21)

and keeping only the first and the third terms on the right hand side, we obtain

∂f

∂t
= D

∂2f

∂x2
. (22)

This is the famous diffusion equation, where the diffusion coefficient D is given by
(21).

We comment now on the method of Einstein. The definition (21) of the
diffusion coefficient D can be rewritten as

〈∆2〉τ ≡
∫ +∞

−∞
∆2ϕτ (∆)d∆ = 2Dτ, (23)
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which is the average quadratic variation produced by the thermal agitation during
the time τ . Formally identical to formula (28) (see below) which gives the law of
the average quadratic displacement as a function of time, it somehow contains the
latter tautologically. Moreover, as τ is assumed to be small, this definition implies
the existence of the limit (21) for τ → 0, if one requires D to be independent of τ .

Einstein continues by noting that until then all particles have been considered
with respect to a common origin on the x axis, but that their independence also
allows us to consider each particle with respect to the position it occupied at the
time t = 0. Therefore f(x, t) dx is also the number of particles (per unit area)
whose abscissa x has changed by an amount comprised between x and x+dx, over
the time interval from 0 to t. The function f then obeys the diffusion equation
(22). Einstein also says that evidently one must have, for t = 0,

f(x, t = 0) = 0, ∀x 	= 0 ; and
∫ +∞

−∞
f(x, t)dx = N.

The problem thus coincides with that of diffusion from a given point (neglect-
ing the interactions between diffusing particles), and is now entirely determined
mathematically; its solution is:

f(x; t) =
N

(4πDt)1/2
exp

(
− x2

4Dt

)
. (24)

The probability density P (x, t) = f(x, t)/N for a Brownian particle to be
within dx of x, assuming it was at x = 0 at the instant t = 0, is thus the normalized
Gaussian distribution

P (x; t) =
1

(4πDt)1/2
exp

(
− x2

4Dt

)
. (25)

In three dimensions, if the Brownian particle is at �0 at the instant t = 0 then
the solution of equation (16) is still Gaussian and written as:

P (x, y, z; t) =
1

(4πDt)3/2
exp

(
−x2 + y2 + z2

4Dt

)
. (26)

One clearly finds the previous density P (x, t) by integrating over the variables y
and z.

From these results one can evaluate the integral of the average quadratic
displacement along, say, the x axis. One finds

〈x2〉t =
∫ +∞

−∞
x2P (x; t) dx =

1
(4πDt)1/2

∫ +∞

−∞
x2 exp

(
− x2

4Dt

)
dx

= 2Dt. (27)
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As already pointed out above, this result for 〈x2〉t is absolutely identical to the
result (23) for 〈∆2〉τ , which is just a reflection of the scale invariance of Brownian
motion, a notion perhaps not yet completely mastered in 1905!

From the Sutherland–Einstein relation (15), one finally obtains the average
Brownian displacement as a function of time

〈x2〉t = 2Dt =
RT

N
1

3πη a
t. (28)

This is the first appearance of a fluctuation-dissipation relation, linking position
fluctuations and a property of dissipation (the viscosity). In this fundamental
equation for Brownian motion, 〈x2〉, t, a and η are measurable quantities and
thus Avogadro’s number can be determined. This is an astonishing result: first
prepare a suspension of small spheres, but large however with respect to molecular
dimensions, then take a chronometer and a microscope, and finally measure N !
Einstein gave this example: for water at 17oC,59 a ≈ 0.001 mm = 1 µm, N ≈
6 × 1023, one finds a displacement of 〈x2〉 ≈ 6 µm for t = 1 mn.

One can ask to what extent does the Sutherland–Einstein formula (13) or
(15) prove the existence of molecules. In other words, what would be the limit
of the diffusion coefficient D = RT

µN if nature were continuous, i.e., if Avogadro’s
number was infinite? Then D would cancel out, and the displacement of Brownian
diffusion (28) would simply disappear in this limit, but one should verify, for the
sake of rigour, the simultaneous existence of a finite continuous limit of the friction
coefficient µ or of the viscosity η when N → ∞. We will come back to this point
in section (1.7.4) where the study of a microscopic model allows for an explicit
calculation of µ, and for concluding that Brownian motion is surely a manifestation
of the existence of molecules!

1.4.4 Einstein, 1906, general theory of Brownian motion

In another article written in December 1905 and received on the 19th of the same
month by Annalen der Physik,60 this time entitled: “On the Theory of Brownian
Motion”, Einstein mentions that “Soon after the appearance of my paper on the
movements of particles suspended in liquids required by the molecular theory of
heat, Siedentopf (from Jena) informed me that he and other physicists – firstly,
Prof. Gouy (of Lyons) – had been convinced by direct observation that the so-called
Brownian motion is caused by the irregular thermal movements of the molecules
of the liquid.

59According to John Stachel in Einstein’s Miraculous Year (Princeton University Press, New
Jersey, 1998), the data Einstein uses on the viscosity of water is taken from his thesis, and in
fact corresponds to the temperature 9.5oC.

60A. Einstein, Ann. d. Physik 19, pp. 371–381 (1906); translated in A. Einstein, Investiga-
tions on the Theory of the Brownian Movement, R. Fürth Ed., A. D. Cowper Transl., Dover
Publications, pp. 19–35 (1956).
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Not only the qualitative properties of Brownian motion, but also the order of
magnitude of the paths described by the particles correspond completely with the
results of the theory.”

This time Einstein is convinced that Brownian motion is the phenomenon he
just described. He then gives another, more general, theoretical approach. It can be
applied not only to the translational, but also rotational diffusion motion of par-
ticles in suspension, or to charge fluctuations in an electric resistance. We briefly
describe such a general and, from our standpoint, very enlightening approach. It
shows the central role of the Boltzmann’s distribution at thermodynamic equilib-
rium, and shows that its stationarity in time requires the existence of Brownian
motion and its link to the molecular nature of heat.

Einstein considers a quantity α, which has a Boltzmann distribution

dn = Ae−
N

RT Φ(α)dα = F (α)dα, (29)

where A is a normalization coefficient and Φ(α) is the potential energy associated
to the parameter α. Here dn is proportional to the probability density of α and
gives the number of systems (à la Gibbs) identical to the present system taken in
the same state.

Einstein uses that relation for determining the irregular changes of the pa-
rameter α produced by thermal phenomena. He states that the function F (α) does
not change during a time interval t under the combined effect of the force corre-
sponding to the potential Φ and the irregular thermal phenomena; t is so small
that all changes of the variable α can be considered as infinitesimally small in the
arguments of the function F (α).

We consider the real line representing all α values and take an arbitrary point
α0 on it. During the time interval t, the same number of systems must pass through
the point α0 in one direction as in the other. The force −∂Φ

∂α corresponding to the
potential Φ induces a change of the parameter α per unit of time:

dα

dt
= −B

∂Φ

∂α
, (30)

where B is, according to Einstein’s words, the “mobility of the system with respect
to α”. This is an equation of viscous-friction type, like equation (8) with B = 1/µ.
According to (29), the variation of the number of systems passing through the
point α0 during the time interval t is:

n1 = −B

(
∂Φ

∂α

)
α=α0

× tF (α0), (31)

where the number of systems is counted algebraically (positive or negative) ac-
cording to the side of α0 they are moving from, i.e., according to the sign of the
velocity (30).

Let us suppose that the probability that the parameter α changes of an
amount between ∆ and ∆ + d∆, during the time t and under the effect of the
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irregular thermal processes, is equal to ψt(∆)d∆, where ψt(∆) = ψt(−∆) is inde-
pendent of α. This last assumption reflects the intrinsic nature of thermal agita-
tion. The number of systems passing through the point α0 during the time t in
the positive direction is given by

n2 =
∫ +∞

0

F (α0 − ∆)χt(∆)d∆, (32)

where χt(∆) is the cumulative probability that the system makes a jump to the
right of size at least ∆ during the time t:

χt(∆) =
∫ +∞

∆

ψt(∆′)d∆′. (33)

Analogously, the number of systems that, under the effect of thermal fluctuations,
pass through the value α0 in the negative direction during the same time is (taking
into account the algebraic sign),

n3 = −
∫ +∞

0

F (α0 + ∆)χt(∆)d∆, (34)

where we have used the symmetry property

χt(∆) =
∫ +∞

∆

ψt(−∆′)d∆′. (35)

The equation which mathematically states the invariance of the equilibrium
distribution F (α) is thus the law of algebraic conservation of the number of en-
sembles

n1 + n2 + n3 = 0. (36)

By substituting the expressions for n1, n2, and n3, by remembering that t is
infinitesimally small, as well as the values of ∆ for which ψt(∆) is different from
0, and by performing a first order expansion, one finds the essential equation61:

B

(
∂Φ

∂α

)
α=α0

× tF (α0) +
1
2
F ′(α0)〈∆2〉t = 0. (37)

61In fact, we find that for the part concerning the thermal fluctuations

n2 + n3 =

Z +∞

0
d∆ [F (α0 − ∆) − F (α0 + ∆)] χt(∆) = −2F ′(α0)

Z +∞

0
d∆∆ χt(∆),

where the integral is explicitly written

2

Z +∞

0
∆ d∆

Z +∞

∆
ψt(∆

′)d∆′ =

Z +∞

0
(∆′)2ψt(∆

′)d∆′ =
1

2
〈∆2〉t,

after having exchanged the order of integrations or again integrated by parts.
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Here

〈∆2〉t =
∫ +∞

−∞
∆2ψt(∆)d∆

represents the average quadratic variation of the quantity α due to thermal agita-
tion during time t.

Then, by using Boltzmann’s distribution F (α) ∝ exp
[− N

RT Φ(α)
]

which au-
tomatically satisfies equation (37) for any potential, Einstein obtains the average
quadratic fluctuation

〈∆2〉t = 2B
RT

N t. (38)

Here, as before, R is the perfect gas constant, N is Avogadro’s number, B is the
system mobility with respect to the parameter α, T is the absolute temperature,
and t is the time interval during which α changes due to thermal agitation.

Einstein’s study shows that Boltzmann’s equilibrium distribution, dynam-
ically interpreted as in the conservation equation (36), implies the existence of
Brownian diffusion for any physical quantity α for which the system possesses a
mobility.

This idea is so rich that one can reverse the point of view and consider the
equilibrium equation (37) as an equation for F (α), where 〈∆2〉t is independent of α
and where t is arbitrary. It is then remarkable that the solution of (37) necessarily
has the exponential form of Boltzmann’s distribution (29), where RT

N appears as
a parameter connected with Brownian diffusion, according to the identity (38). In
other words, Einstein’s study of the general dynamics of Brownian motion implies
equally well the particular form of the Boltzmann–Gibbs equilibrium distribu-
tion62.

Einstein applies the result (38) to translational and rotational Brownian mo-
tions. For translational motions, the parameter α is any spatial coordinate x, and
one needs to insert the corresponding value of the mobility B. For a sphere of
radius a in suspension in a liquid of viscosity η, Stokes’ formula, for which he cites
Kirchhoff’s course63, gives

B =
1
µ

=
1

6πηa
,

62This strongly suggests introducing, in courses on Statistical Physics, Einstein’s demonstration
of Brownian motion, in order to clarify the statistical and dynamical nature of thermodynamic
equilibrium. In fact, in the usual approach, Brownian motion is not taught at first, and even
when it is, it appears more as a curiosity. The approach that one usually takes consists of
introducing Boltzmann’s distribution, either via the microcanonical ensemble and the associated
Boltzmann entropy, and by evaluating the latter for a small system in contact with a thermostat,
or via Shannon statistical entropy and the canonical ensemble. In these formal approaches, the
emphasis is put on the probabilities and one does not see the necessity of the thermal agitation
process for keeping the equilibrium distribution dynamically. After all, molecules or particles in
suspension, even when initially distributed according to Boltzmann’s statistics, will always fall
to the bottom of the container under the effect of gravity in the absence of thermal agitation!

63G. Kirchhoff, Vorlesungen über Mechanik, 26. Vorl., S 4 (1897).
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and we find the famous formula (28) again:

〈x2〉t =
RT

N
1

3πη a
t. (39)

Next, Einstein considers for the first time the Brownian motion of the rotation
of a sphere suspended in a liquid, and he considers the squared fluctuations 〈ϑ2〉
of any rotation angle ϑ resulting from the thermal agitation.

If one then defines Γ = −∂Φ
∂ϑ the moment of the forces acting on a sphere

suspended in a liquid with viscosity η, then the associated angular limit velocity
is (again from Kirchhoff):

dϑ

dt
=

Γ

8πηa3
, (40)

and in this case, one has:

B =
1

8πηa3
.

One deduces

〈ϑ2〉t =
RT

N
1

4πη a3
t. (41)

The angular motion produced by the molecular thermal agitation decreases with
the radius of the sphere much faster than the translational motion does.

For a = 0.5 mm, and with water at 17o C, the formula gives, for t = 1 s, an
angular shift of roughly 11 seconds of an arc, while for a = 0.5 µm it gives for the
same time duration roughly 100o of arc.

Finally Einstein mentions that the same formula (38) for 〈∆2〉t can be ap-
plied to other situations. For example, if B is chosen as the inverse of the electric
resistance ρ of a closed circuit, the formula indicates the average squared total
charge

〈e2〉t = 2
RT

N
1
ρ
t

which moves through any section of the circuit during time t.

Einstein concludes his article by assessing the limits of applicability of his
formula at very short time scales, for which memory effects can occur. He ar-
rives thereby at the estimate that the formula is valid for t large compared to a
characteristic time τ ′ = m′B, where m′ is the mass of the fluid displaced by the
sphere.

1.4.5 The problem of measuring the velocity

In subsequent articles, published in 1907 and 1908 in the Zeitschrift für Elektro-
chemie, Einstein tries to draw experimenters’ attention to his results and to explain
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them in a simpler manner. He comes back to the average velocity of a particle in
suspension, which must follow the equipartition law

1
2
m〈v2〉 =

3
2

RT

N .

For Svedberg’s colloid solutions of platinum, of mass m ≈ 2.5 × 10−15 g,
it gives an average velocity of 8.6 cm/s. However Einstein says that there is no
possibility to observe such a velocity because of the effectiveness of viscous friction,
which reduces the velocity to 1/16 of its initial value in 3.3×10−7 s. He continues:64

“But, at the same time, we must assume that the particle gets new impulses to movement
during this time by some process that is the inverse of viscosity, so that it retains a velocity
which on average is equal to

p
〈v2〉. But since we must imagine that direction and magnitude of

these impulses are (approximately) independent of the original direction of motion and velocity
of the particle, we must conclude that the velocity and direction of motion of the particle will
be already very greatly altered in the extraordinarily short time θ [= 3.3 × 10−7 s] and, indeed,
in a totally irregular manner.

It is therefore impossible – at least for ultra-microscopic particles – to ascertain
p〈v2〉 by

observation.”

According to Einstein’s result (28), the apparent velocity in a time interval
τ is inversely proportional to

√
τ and therefore grows without limit when this

time interval becomes shorter. Any attempt to measure the instantaneous velocity
of a particle brings one to erratic results. This explains experimenters’ repeated
failures to obtain well defined conclusions for the velocity of particles in suspension.
They simply were not measuring the correct quantity, and they had to wait for
Einstein to show that only the ratio of the quadratic displacement over time has
a theoretical limit for the experiments to connect to the theory.

As Brush remarked,65 it was not the first time that the particular nature
of a motion governed by a diffusion equation pointed out something right under
one’s nose. In 1854, William Thomson (who would go on to become Lord Kelvin)
applied the diffusion equation (i.e., Fourier’s equation for heat conduction) in his
study of motion of electricity in telegraph lines. After having carried out almost
exactly the same mathematical analysis that Einstein would do fifty years later,
Thomson wrote:

“We may infer that the signal delays are proportional to the squares of the distances,
and not to the distances simply; and hence different observers, believing they have found a
“velocity of electric propagation,” may well have obtained widely discrepant results; and the
apparent velocity would, caetaris paribus, be the less, the greater the length of wire used in the
observation.”

A better estimate of the very short time behavior of particles in suspension
follows from subsequent work made by many physicists,66 among which those of

64A. Einstein, Zeit. f. Elektrochemie, 13, pp. 41–42 (1907); translated in A. Einstein, Investi-
gations on the Theory of the Brownian Movement, op. cit., pp. 682–683.

65S. G. Brush, opus cit.
66P. Langevin, C. R. Ac. Sci. Paris 146, 530 (1908); L. S. Ornstein, Proc. Amst. 21, 96 (1918);

L. de Haas–Lorentz, “The Brownian Mouvement and some Related Phenomena”, Sammlung
Wissenschaft, B. 52, Vieweg (1913); R. Fürth, Zeit. f. Physik 2, 244 (1920).
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Langevin, through his stochastic equation that we will see later, and that culmi-
nated with the Ornstein–Uhlenbeck process.67

A more complete formula is actually

〈∆2〉t = 2D
[
t − mB

(
1 − e−

t
mB

)]
, (42)

where D = B RT
N is the diffusion coefficient, and m this time is the mass of the

particle. Therefore we clearly get the formula (38) for t large compared to the
microscopic time

τ = mB =
m

µ
, (43)

of the same order of magnitude as the time τ ′ estimated by Einstein.
For t smaller than τ , we find a ballistic regime

〈∆2〉t = D
t2

mB
=

RT

N
1
m

t2, τ � t, (44)

independent of the viscosity of the medium, and which remarkably can be in-
terpreted as corresponding to the energy equipartition theorem, this time in the
form:

1
2
m
〈∆2〉t

t2
=

1
2

RT

N τ � t.

1.4.6 Einstein’s third derivation of Brownian motion

A third approach to Brownian motion was incidentally offered by Einstein in
a lecture given in front of the Zürich Physical Society, on 2 November 1910,
which was entitled: “On Boltzmann’s Principle and Some Immediate Consequences
Thereof”.68 This text seems not to have appeared in print before, so an English
translation, followed by a commentary, is included in this volume.

In this fascinating lecture, Einstein describes his point of view on Statistical
Physics at that time. He illustrates it by stressing the role of fluctuations, in rela-
tion to Boltzmann’s formula for the entropy. This text is of particular importance,
since Einstein asks more generally whether a complete causal connection can al-
ways be found between physical events; this epistemological interrogation takes
place at the dawn of Quantum Mechanics.

Among other examples, Einstein considers the case of a suspended particle
in a gravitational field, and performs a calculation of the mean square position of
the particle. From the simple assumption of the stationarity of that average, he
rederives the famous Sutherland–Einstein formula (15). This is perhaps the most
direct and illuminating derivation of the Brownian diffusion formula!

67G. E. Uhlenbeck and L. S. Ornstein, On the Theory of Brownian Motion, Phys. Rev. 36, pp.
823–841 (1930).

68Über das Boltzmann’sche Prinzip und einige unmittelbar aus demselben fliessende Folgerun-
gen, Vorlesungen für die Physikalische Gesellschaft Zürich, 2 November 1910, Zangger Nachlaß,
Zentral Bibliothek Zürich.
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1.5 Marian von Smoluchowski

“A throw of the dice never will abolish chance.” (Stéphane Mallarmé, 1897)

1.5.1 Probabilities and stochasticity

Smoluchowski’s name is closely attached to Brownian motion and the theory of
diffusion, as we will find out here. However, as Marc Kac wrote about Smolu-
chowski69, the latter showed through a true intellectual tour de force, that the
notion of a game of chance lies at the heart of our comprehension of physical
phenomena. We are indebted to him for his original and bold introduction to the
calculus of probability in statistical physics, and he deserves a place beside the
great names of Maxwell, Boltzmann, and Gibbs.

Marian von Smoluchowski was born in 1872, the same year as Paul Langevin,
the year Boltzmann published the great memoir containing the equation that bears
his name, as well as the famous “H theorem”. There, Boltzmann derives the ir-
reversible increase of entropy linked to the second principle of thermodynamic, in
the area of classic Newtonian mechanics, with the help of a hypothesis of molec-
ular chaos that Smoluchowski thought should have been instead a consequence in
this framework. This brought about serious paradoxes (Loschmidt, Zermelo), be-
cause the equations of classical mechanics are reversible and have recurring cycles,
called Poincaré recurrence cycles. So this forbade a priori the monotone growth of
a function of positions and the momenta, as seen for Boltzmann’s H function which
is directly connected to entropy. On the defensive, Boltzmann had to introduce
probabilistic and statistical arguments to justify his results, often by completely
changing his point of view about the true nature of the probabilities involved.
The situation became so confused that Paul and Tatiana Ehrenfest, for example,
tried to clarify Boltzmann’s ideas by banishing the term (but not the concept)
“probability” from their famous 1912 Encyclopedia memoir!

As S. G. Brush noted70, the research line of the kinetic theory of gases
that Smoluchowski pursued was a continuation of that of Clausius, Maxwell, O.E.
Meyer, Tait and Jeans, according to which one describes the effects of collisions on
the trajectory of a molecule, and therefore on the properties of the gas. Einstein,
on the contrary, followed the path opened by Boltzmann, Maxwell (in his subse-
quent articles) and Gibbs, where the objective was to obtain more general laws
starting from statistical distributions postulated for molecular ensembles, without
making any assumption about intramolecular forces and collision mechanisms. It
is then extremely interesting to see these two “Gedankenwege”, kinetic theory and
statistical mechanics, meet up in relation to Brownian motion, terra incognita for
both theories.

69Marian Smoluchowski, His Life and Scientific Work, S. Chandrasekhar, M. Kac, R. Smolu-
chowski, Polish Scientific Publishers, PNW (2000).

70S. G. Brush, locus cit.
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In this context, by working in the same pragmatic spirit as Maxwell, Smolu-
chowski courageously showed how to use the theory of probability in physics as
an efficient instrument, during an era when mathematicians looked down on it,
and when physicists mostly ignored it. Without knowing it, Smoluchowski opened
a new chapter of statistical physics, that nowadays bears the name Stochastic
Processes71.

1.5.2 Brownian motion and random walks

This probabilistic point of view is clearly present in Smoluchowski’s first article
on Brownian motion, “Essay on the theory of Brownian motion and disordered
media”72 published in 1906 (very likely under the pressure of Einstein’s publication
of his first two articles), as well as in another article, about the mean free path
of molecules in a gas.73 In these remarkable articles he was seemingly the first to
establish the relation between random walks and Brownian diffusion, even though
in 1900 Louis Bachelier had already introduced the model of a random walker in
his thesis The Theory of Speculation. We shall return to this later.

Smoluchowski begins by citing Einstein’s work from 1905 and writes that
the latter’s results “completely agree with those I obtained a few years ago by an
entirely different path of reasoning, and that since then I have considered an im-
portant argument in favor of the kinetic nature of these phenomena.” However, he
adds further along that his own method “seems more direct, simpler, and perhaps
more convincing than that of Einstein.”

While Einstein (as Sutherland) avoids all treatment of collisions in favor of
a general thermodynamic approach, Smoluchowski has a clear kinetic vision and
treats the Brownian motion as a random walk or a game of heads or tails (see
figure 2).

The newness and the originality of Smoluchowski’s approach is the replace-
ment of an incredibly difficult problem (a Brownian particle which collides within
a gas or liquid) by a relatively simple stochastic process. Each dynamic event like
a collision is considered as a random event similar to a game of heads or tails, or
to the throw of a dice, where the elementary probabilities are (to a certain extent)
determined by underlying mechanical laws. This way of reasoning plays a funda-
mental role in mechanics and statistical physics today and, as Marc Kac noticed,
it is difficult for us today to imagine the degree of Smoluchowski’s intellectual
boldness for starting this subject during the early years of the last century.

71From the Greek word stokhastikos, “to aim well”, “capable of making conjectures”, already
used by Jacques Bernoulli in 1713 in Ars Conjectandi.

72M. R. von Smolan Smoluchowski, Rozprawy Kraków 46A, pp. 257–281 (1906); French trans-
lation: “Essai d’une théorie du mouvement brownien et de milieux troubles”, Bull. International
de l’Académie des Sciences de Cracovie, pp. 577–602 (1906); German translation: Ann. d. Physik
21, pp. 755–780 (1906).

73M. R. von Smolan Smoluchowski, Sur le chemin moyen parcouru par les molécules d’un
gaz et sur son rapport avec la théorie de la diffusion, Bulletin International de l’Académie des
Sciences de Cracovie, pp. 202–213 (1906).
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Figure 2: Random walk on a square lattice with elementary lattice step a. We
choose each step at random. In two dimensions, two equivalent methods exist. In
the first one, we draw heads or tails (with a probability of 1/2) for a direction,
vertical or horizontal, and next the orientation along the chosen direction. In the
second method, we draw with the same probability (with probability of 1/4) one of
the four possible directions. In the continuous limit where the lattice step goes to
0, a very long random walk will take the appearance of the Brownian motion of
figure 1.

1.5.3 Smoluchowski’s contributions

Smoluchowski74 knew about the most recent studies on Brownian motion and in
particular the work of Felix Exner. He sent Smoluchowski diagrams made from
memory, called “Krix-Krax” because of the several inter-crossing “jumps” appar-
ently made by a Brownian particle observed under a microscope over a set of
discrete instants of time.

Smoluchowski began by criticizing Nägeli’s arguments who affirmed that a
collision of a molecule of water with a sphere 0.001 mm in diameter would give a
velocity of 3×10−6 cm/s, which would be impossible to observe under a microscope,
and that the collision effects would cancel out on average. He compared this way of
thinking to that of a player who believed to never be able to lose more than a single
bet, despite repeated draws! By continuing the analogy further, he calculated for
the heads or tails game how the positive (or negative) cumulated gains grow with
the number n of draws (“time”).

Let pn,m be the probability to have met m favorable outcomes in the total
of n draws, with a net gain of m − (n − m) = 2m − n. This probability can be
written as

pn,m =
1
2n

n!
m!(n − m)!

=
1
2n

( n

m

)
, (45)

where the number of combinations
(

n
m

)
is the number of ways of choosing m out

of n objects.
74In this section we follow Brush’s presentation of Smoluchowski’s work.
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The positive or negative mean deviation from zero, δn, i.e., the average of
the absolute value of a gain or of a loss after n turns, can be calculated as

δn = 〈|2m − n|〉 = 2
n∑

m=n/2

(2m − n)pn,m = 2
n∑

m=n/2

(2m − n)
1
2n

( n

m

)
=

n

2n

(
n
n
2

)
,

where n is supposed an even number, to simplify the notation. For large n, we
then use Stirling’s formula n! � nne−n

√
2π, to evaluate δn:

δn �
√

2n

π
, n � 1.

The (arithmetical) average of successive gains (or losses) with respect to 0 increases
then as

√
n, even when the total (algebraic) average is zero. The analogous number

n of molecular collisions per second on a sphere, was estimated by Smoluchowski as
1016 in a gas and 1020 for a liquid. If the gain in velocity is of the order 10−6 cm/s
at each collision, one obtains a mean cumulated velocity from 102 to 104 cm/s per
second. However Smoluchowski immediately reduces this conclusion, remarking
that each individual gain of velocity will fluctuate, and that a high velocity value
decreases the probability of one more positive gain.

He shows next that a “true” velocity of displacement could be obtained from
the equipartition of kinetic energy, and would give a velocity of 0.4 cm/s, again
much too large in relation to experimental observations! In fact, Exner’s diagrams
in “Krix-Krax” gave a velocity of about 3 × 10−4 cm/s, an apparently irreconcil-
able disagreement. As Smoluchowski says, “this contradiction, already seen by F.
Exner, seems at first to be a decisive objection to kinetic theory. Nevertheless the
explanation is very simple.”

He presents the following simple and clear explanation: such a velocity is too
large to be observed with a microscope magnifying 500 times. What one observes is
the average position of a particle having this velocity, but hit 1020 times per second,
each time in a different direction, such that one cannot observe the instantaneous
velocity. Each zig-zag displacement is incomparably smaller than the particle’s size,
and it is only when the geometric sum of these elements reaches a certain value
that one can observe a displacement, which appears to us to be slower. It is clearly
the substance of Einstein’s argument, here supported by the concrete image of
kinetic theory: the average displacement is the observable physical quantity, while
velocity is not.

After such qualitative, but illuminating, considerations, Smoluchowski de-
velops his model of random collisions. Let m and v (m′ and v′ respectively) be
the mass and the velocity of a particle in suspension (of molecules in the liquid,
respectively). From the equipartition of energy, one has on average:

v

v′
=

√
m′

m
. (46)
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He affirms that from “the laws of collision of elastic spheres”, the change of velocity
of the sphere in suspension is, at a collision, on average given by a small transverse
component α m′v′/m, where α = 3/4. The result is a random change of the velocity
direction of a small angle ε = α m′v′/mv. (According to (46), one also has ε =
αv/v′ on average.) He assumes also that the molecular impacts occur at equal
intervals of time, which makes of the particle trajectory a chain made of constant-
length segments.

In other words, Smoluchowski adapts the idea of mean free path of a molecule
in a gas, even though here the persistence of motion is shortened by the presence
of numerous molecules of the surrounding fluid.

The problem of Brownian motion is thus mathematically mapped onto the
one of finding the end-to-end average distance ∆2

n, of a chain of n segments, all of
length �, each randomly turned by a small angle ε with respect to the preceding
one. He then obtains the general solution by a complicated recurrence relation,
containing multiple angular integrals of trigonometric functions, of the form:

∆2
n = �2

{
2n

δ
+ 1 − n − 2

(1 − δ)2 − (1 − δ)n+2

δ2

}
, (47)

where δ = 1 − cos ε � ε2/2.
In the limit where nδ is small, one finds

∆n = n�

(
1 − nδ

6

)
, (48)

which represents a quasi-ballistic trajectory.
In the opposite case of a large number of collisions per unit of time nδ � 1 ,

the first term of (47) dominates and one finds the expected result:

∆2
n = �2 2n

δ
= �2 4n

ε2
. (49)

If we call n̄ the number of collisions per unit of time, such that there are
n = n̄ t collisions over the time t, we have for a free path � = v/n̄, and by using
ε = αv/v′, we find an average quadratic displacement at time t,

∆2
n ≡ ∆2

t =
4
α2

v′ 2

n̄
t. (50)

The momentum mv of the particle in suspension changes on average by a quantity
α′m′v per collision, where, from Smoluchowski, α′ = 2/3, which means the friction
force F = −n̄α′m′v, and thus the friction coefficient µ = n̄α′m′. Substituting
µ in n̄ one obtains: ∆2

t = 4α′
α2

m′v′ 2
µ t. From the equipartition of kinetic energy

of the molecules in the surrounding fluid: 〈m′v′ 2〉 = 3RT/N , and the result of
Smoluchowski finally becomes:

∆2
t =

2α′

α2
6
RT

µN t. (51)
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One finds again the Sutherland–Einstein result (15), (28), this time in three dimen-
sions, with a supplementary numerical factor of kinetic origin 2α′/α2 = (4/3)3 =
64/27. Because of the various physical and geometrical approximations involved,
this factor should perhaps not come as a surprise! The experiments of Svedberg
in 1907 seemed to support this result, but Langevin mentioned later in 1908, in
his article to the Compte Rendus, that once these approximations were corrected,
Smoluchowski’s stochastic method gave the same formula (28) of Einstein. Smolu-
chowski himself adopted this formula in his subsequent articles.

Afterwards he gave the complete theory of density fluctuations within an
ensemble of Brownian particles, as well as that of their sedimentation in a grav-
itational field and of the coagulation of colloids.75 Smoluchowski’s name is thus
traditionally attached to the generalization of the diffusion equation (16) in a force
field F :

∂P

∂t
= D∆P − 1

µ
div(FP ), (52)

where µ is the same as in (14). This equation applies directly to the case of a
uniform gravitational field. In one dimension it is simply written in the so-called
Fokker–Planck76 77 form

∂P (x, t)
∂t

= D
∂2

∂x2
P (x, t) +

1
µ

∂

∂x

(
∂V (x)

∂x
P (x, t)

)
, (53)

for a force field F (x) derived from a potential V (x).
We also mention that we owe to him (and to Einstein) the theory of critical

opalescence as well.

1.5.4 Brownian motion and the second principle

Another aspect of Smoluchowski’s work concerns the correct statistical formulation
of the second principle of thermodynamics. With Theodor Svedberg’s recent data
on Brownian motion, Smoluchowski had experimental results which permitted
him, armed with his own theory of fluctuations near-to-equilibrium, to estimate
the recurrence and persistence time of a system slightly out of equilibrium, and to
check the agreement with experiments. He used neither phase space, nor Liouville’s
theorem as in classical statistical mechanics à la Boltzmann. He introduced simply
the calculus of probability.

By incorporating the theory of fluctuations he gave a correct formulation of
the second principle of thermodynamics, where this principle appeared valid only
in a statistical sense, and susceptible to multiple twists at the microscopic level.78

75M. von Smoluchowski, Drei Vorträge über Diffusion, Brownsche Molekular Bewegung und
Koagulation von Kolloidteilchen, Physikalische Zeitschrift, Jg. 17, pp. 557–571, 585–599 (1916).

76A. D. Fokker, Thesis, Leiden (1913); Ann. d. Physik 43, 810 (1914).
77M. Planck, Sitzungsber. Preuss. Akad. Wissens. p. 324 (1917); in Physikalische Abhandlun-

gen und Vorträge II, p. 435, Vieweg, Braunschweig (1958).
78M. von Smoluchowski, Phys. Z. 13, pp. 1069–1080 (1912); Göttinger Vorträge über die

kinetische Theorie der Materie u. Elektrizität, Leipzig S. 89–121 (1914).
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A modern discussion of Smoluchowski’s ideas was given by Richard Feynman
in his famous lectures79. He compared Maxwell’s demon with a ratchet and pawl
and an electric rectifier, neither of which can systematically transform internal
energy from a single reservoir to work. He wrote:

“If we assume that the specific heat of the demon is not infinite, it must heat
up. It has but a finite number of internal gears and wheels, so it cannot get rid of
the extra heat that it gets from observing the molecules. Soon it is shaking from
Brownian motion so much that it cannot tell whether it is coming or going, much
less whether the molecules are coming or going, so it does not work.”

Modern day computer simulations strikingly reveal the fluctuation phenom-
ena envisaged by Smoluchowski and Feynman.80

Smoluchowski’s observation suggested that Maxwell’s demon ought to be
buried and forgotten. But that did not happen, apparently because Smoluchowski’s
approach left open the possibility that somehow, a perpetual motion machine
operated by an “intelligent” being might be achievable. It was the fascinating idea
of using intelligence that captured Leo Szilard’s interest, in his classic 1929 paper,
“On the decrease of entropy in a thermodynamic system by the intervention of
intelligent beings”.81

The feature associated with intelligence that is needed by a demon is mem-
ory: it must remember what it measures, even so only briefly. Notably, Szilard
discovered with his heat engine with a one-molecule working fluid, the idea of a
“bit” of information with entropy kB ln 2, now central in computer science, and
established the connection between entropy and information.

At this stage, rather than fully opening the Pandora box which contains
the Protean Maxwell’s demons, we prefer to suggest reading the survey, Maxwell’s
Demon 2, by H. S. Leff and A. F. Rex and in particular the thoughtful introduction
of the second edition.82 Let us only mention a few historical landmarks that are
described in their presentation.

After a hiatus of 20 years, Léon Brillouin, assuming the use of (quantum)
light signals in the demon’s attempts to defeat the second law, concluded that
information acquisition, like measurement, is dissipative. It led him to break new
ground by developing an extensive mathematical theory connecting measurement
and information. The impact of Brillouin’s and Szilard’s work was far reaching
and the result was a proclaimed, but temporary, “exorcism” of the demon.

A new life began for the demon when Rolf Landauer made the important
discovery that memory erasure in computers feeds entropy to the environment.83

79R. P. Feynman, R. B. Leighton and M. Sands, The Feynman Lectures on Physics I, Chap.
46, Addison-Wesley, Reading MA (1963).

80See, e.g., P. A. Skordos and W. H. Zurek, Am. J. Phys. 60, 876 (1992).
81L. Szilard, Z. Phys. 53, pp. 840–856 (1929); transl. reprinted in The Collected Works of Leo

Szilard, Scientific Papers, B. T. Feld and G. Weiss Szilard, eds., The MIT Press, Cambridge,
Mass. (1972).

82H. S. Leff and A. F. Rex, Maxwell’s Demon 2, Adam Hilger, Bristol (2003).
83R. Landauer, IBM J. Res. Dev. 5, pp. 183–191 (1961).
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This is now called “Landauer’s principle”. It states that the erasure of one bit of
information stored in a memory device requires sending an amount of entropy of
at least kB ln 2 to the environment, i. e., a minimal heat generation of kBT ln 2.

Charles Bennett, after his important demonstration in 1973 that reversible
computation, which avoids the erasure of information, is possible in principle,
argued in 1982 that erasure of a demon’s memory is the fundamental act that
saves the second law because of Landauer’s principle.84 This was a turning point
in the history of Maxwell’s demon.

In his 1970 book Foundations of Statistical Mechanics, Oliver Penrose in-
dependently recognized the importance of “resetting” operations that bring all
members of a statistical ensemble in the same observational state. Applied to
Szilard’s heat engine, this is nothing else than memory erasure, which sends an
amount of entropy of at least kB ln 2 to the environment.

Among recent proofs of Landauer’s principle we cite here, somehow arbitrar-
ily, the one by K. Shizume, who uses a solvable model of memory based on a
Brownian particle in a time-dependent potential well;85 the one by M. Magnasco
through a detailed analysis of Szilard’s heat engine;86 and the one by B. Piechocin-
ska, who assumes the decoherence of the states of the thermal reservoir87.

Let us finally mention that, despite several attempts to argue against its
validity, the Landauer–Penrose–Bennett framework seems to be generally accepted
as providing the solution to the Maxwell’s demon-second principle puzzle, at least
in classical mechanics, and in a thermodynamical limit of some sort.88

However, there are now indications that Landauer’s, as well as the second
principle, might not hold in the (strong) quantum regime. The source of the viola-
tion is quantum entanglement between the system and the constant-temperature
reservoir, which then act as a single entity.89

In close relation to Brownian motion and the second principle, the topic
of Brownian motors has recently received considerable attention.90 C. Van den
Broeck et al.91 were able to find a solvable model for a thermal Brownian motor.
They show that immersed in two different thermal baths, two rigidly coupled
Brownian particles with a geometrical asymmetry, can function as a microscopic

84C. H. Bennett, Int. J. Theor. Phys. 21, pp. 905–940 (1982).
85K. Shizume, Phys. Rev. E 52, pp. 3495–3499 (1995).
86M. O. Magnasco, Europhys. Lett. 33, pp. 583–588 (1996).
87B. Piechocinska, Phys. Rev. A 61, 062314 (2000).
88For possible violations of Thompson’s formulation of the second principle for a mesoscopic

work source, see A. Allahverdyan, R. Balian and T. M. Nieuwenhuizen, Entropy 6, pp. 30–37
(2004); see also Europhys. Lett. 67, pp. 565–571 (2004).

89A. Allahverdyan and T. M. Nieuwenhuizen, Phys. Rev. Lett. 85, pp. 1799–1802 (2000); Phys.
Rev. E 64, 056117 (2001); T. M. Nieuwenhuizen and A. Allahverdyan, Phys. Rev. E 66, 036102
(2002); T. D. Kien, Phys. Rev. Lett. 93, 140403 (2004).

90P. Reimann, Phys. Rep. 361, 57 (2002); R. D. Astumian and P. Hänggi, Phys. Today 55, 33
(2002); H. Linke (ed.), Ratchets, Experiments and Applications, Appl. Phys. A 75 (2002).

91C. Van den Broeck, R. Kawai and P. Meurs, Phys. Rev. Lett. 93, 090601 (2004); C. Van
den Broeck, P. Meurs and R. Kawai, From Maxwell Demon to Brownian Motor, New Journal
of Physics 7, 10 (2005).
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engine able to rectify Brownian fluctuations. As expected, when the temperatures
of the two baths are equal, the drift motion ceases, and one is left only with a
standard Brownian displacement, which obeys Gauss’ distribution law. The drift
speed can be computed exactly for convex bodies, in the limit of dilute gases.
Extemely precise molecular dynamics simulations with hard disks are possible,
which confirm the theory. In effect, it is a microscopic and soluble Feynman’s
ratchet. In a work in progress, Van den Broeck and Kawai propose now a cooling
mechanism, based on such a Brownian motor submitted to an external force. A
heat flow is generated between the two components of the motor.

Such a marvelously simple microscopic model would have certainly greatly
pleased Einstein, Smoluchowski and Sutherland!

It is necessary to note here that these discussions are current research topics
of intense interest. In fact today there exist new theoretical results, known as the
Gallavotti–Cohen fluctuation theorem,92 Jarzynski’s equality,93 or Crooks’ fluc-
tuation theorem.94 They quantify the spontaneous average work provided by a
source of heat, during irreversible phenomena. The manipulations of single biolog-
ical molecules like DNA and RNA, that are mesoscopic objects, allow to test these
relations experimentally. The interpretations of these results and experiments are
actually the topic of a lively debate,95 just as at the dawn of Brownian motion!96

1.5.5 Brownian motion and the mathematical aspects of irreversibility

Let us open here a brief mathematical parenthesis.97 Einstein’s and Smoluchows-
ki’s theories, based upon a Newtonian dynamics of the particles, in fact postulated
the emergence of Brownian motion fom a classical non-dissipative reversible dy-
namics, a point of view which was far from being physically obvious or, a fortiori,
mathematically rigorous. This precisely led to the heated controversy about the
second principle. The key difficulty is similar to the justification of Boltzmann’s
molecular chaos assumption (“Stosszahlansatz”) standing behind the derivation
of the Boltzmann equation. Mathematically, the dissipative character can only

92D. J. Evans and D. J. Searles, Phys. Rev. E 50, 1645–1648 (1994); G. Gallavotti and E. G.
D. Cohen, Phys. Rev. Lett. 74, 2694–2697 (1995); J. Stat. Phys. 80, 931–970 (1995); see also D.
J. Evans, E. G. D. Cohen and G. P. Morris, Phys. Rev. Lett. 71, 2401–2404 (1993); G. M. Wang,
E. M. Sewick, E. Mittag, D. J. Searles and D. J. Evans, Phys. Rev. Lett. 89, 050601 (2002).

93C. Jarzynski, Phys. Rev. Lett. 78, pp. 2690–2693 (1997).
94G. E. Crooks, Phys. Rev. E 60, pp. 2721–2726 (1999).
95See, e.g, E. G. D. Cohen and D. Mauzerall, J. Stat. Mech. P07006 (2004), and the reply by

C. Jarzynski, arXiv:cond-mat/0407340.
96The interested reader can consult the texts by Ch. Maes and F. Ritort in the Poincaré Sem-

inar on Entropy (2003), available on the website www.lpthe.jussieu.fr/poincare, and published
in: J. Dalibard, B. Duplantier & V. Rivasseau Eds., Poincaré Seminar 2003, Progress in Math-
ematical Physics, vol. 38, Birkhäuser, Basel (2004). See also C. Bustamante, J. Liphard and F.
Ritort in Physics Today, July 2005, pp. 43–48.

97The material of this section is borrowed from the introduction of the recent paper by L. Erdös,
M. Salmhofer and H.-T. Yau, Towards the quantum Brownian motion, arXiv:math-ph/0503001
(2005).
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emerge in a scaling limit, as the number of degrees of freedom goes to infinity.
As we shall see below, the first mathematical definition of Brownian motion

was given only in 1923 by Wiener. But the derivation of Brownian motion from
Hamiltonian dynamics was not seriously investigated until the end of the seven-
ties. Kesten and Papanicolaou98 proved that the velocity distribution of a particle
moving in a random scatterer environment (so-called Lorenz gas with random scat-
terers) converges to Brownian motion in dimension d ≥ 3. The same result was
obtained in d = 2 dimensions by Dürr, Goldstein and Lebowitz.99 A very recent
work establishes the convergence to Brownian motion in position space as well.100

Bunimovich and Sinai proved the convergence to Brownian motion of the
periodic Lorenz gas with a hard-core interaction.101 The only source of randomness
there is the distribution of the initial conditions. Finally, Dürr, Goldstein and
Lebowitz102 established that the velocity process of a heavy particle in an ideal
gas converges to the Ornstein–Uhlenbeck process, that is a version of Brownian
motion.

Brownian motion was discovered and theorized in the context of classical
mechanics, and it postulates a microscopic reversible Newtonian world for atoms
and molecules. Nowadays, it is thus natural to replace Newtonian dynamics with
Schrödinger dynamics and investigate if Brownian motion still correctly describes
the motion of a quantum particle in a random environment. For a very recent
discussion of this fundamental and difficult question, we refer the reader to a
recent work by Erdös, Salmhofer and H.-T. Yau103 and to the references therein.

1.5.6 Smoluchowski’s legacy

With Einstein, Smoluchowski shares the credit of having shown the importance
of microscopic fluctuations in statistical physics, at the same time promoting the
probabilistic approach. In this sense he appears as a great master inheritor in
physics of the Doctrine of Chance from Abraham de Moivre.

Marian von Smoluchowski died prematurely in 1917, at the age of forty five,
in Kraków.

1.6 Louis Bachelier

1.6.1 Bachelier and mathematical finance

Louis Bachelier is nowadays considered as having laid the foundation for mathe-
matical finance, and is further credited with the first mathematical study of the

98H. Kesten, G. Papanicolaou, Comm. Math. Phys. 78, pp. 19–63 (1980/81).
99D. Dürr, S. Goldstein, J. Lebowitz, Commun. Math. Phys. 113, pp. 209–230 (1987).

100T. Komorowski, L. Ryzhik, Diffusion in a weakly random Hamiltonian flow, arXiv:math-
phys/0505082 (2005); The stochastic acceleration problem in two dimensions, arXiv:math-
phys/0505083 (2005).
101L. Bunimovich, Y. Sinai, Commun. Math. Phys. 78, pp. 479–497 (1980/81).
102D. Dürr, S. Goldstein, J. Lebowitz, Commun. Math. Phys. 78, pp. 507–530 (1980/81).
103L. Erdös, M. Salmhofer and H.-T. Yau, op. cit.; see also arXiv:math-ph/0502025 (2005).
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continuous Brownian process, including a random walk approach to the latter. A
detailed and very interesting presentation of Bachelier’s life and scientific achieve-
ments was given in 2000 in an essay, entitled Louis Bachelier on the Centenary
of Théorie de la Spéculation, for the centenary of the publication of his thesis.104

This section is essentially based on their presentation and a significant part of it
incorporates material of the cited article.

The importance of Bachelier’s work was not properly recognized during his
time. As Benôıt Mandelbrot writes nicely in The Fractal Geometry of Nature,105 it
was Kolmogorov in 1931 who re-discovered his name in an article in Mathematische
Annalen.106

Bachelier was interested in the theory of speculation at the Paris stock mar-
ket. He successfully defended his thesis, entitled Théorie de la spéculation, on 29
March 1900 at the Sorbonne, in front of a jury composed of Paul Appell, Joseph
Boussinesq and Henri Poincaré, his thesis advisor. As a work of exceptional merit,
stongly supported by Poincaré, his thesis was published in the Annales Scien-
tifiques de l’École Normale Supérieure.107

1.6.2 The Thesis

Bachelier begins with the mathematical modeling of stock price movements, and
formulates the principle that “the expectation of the speculator is zero”, by which
he means that the conditional expectation given the past information is zero. In
other words, he assumes that the market evaluate assets according to a martingale
measure. The further hypothesis is that the price evolves as a continuous Markov
process (with no memory), homogeneous in time and space. Bachelier then shows
that the density of one-dimensional distributions of this process satisfies an integral
relation, now known as the Chapman–Kolmogorov equation. Bachelier, without
addressing the question of uniqueness, shows the Gaussian density, with a linearly
increasing variance, to solve the equation.

He also considers a discrete version of the problem, where the price process
is the continuum limit of random walks, and where the binomial formula (45)
appears. He then proceeds to show that the distribution functions of the process
satisfy Fourier’s heat equation, as in the similar eq. (22) in Einstein’s article.
Bachelier then introduces a novel expression: “the radiation of the probability”.

One finds indeed many of the well-known results for Brownian motion: On
p. 37 of his memoir, one reads that: “On voit que la probabilité est régie par la loi
de Gauss déjà célèbre dans le Calcul des probabilités”; on p. 38, that “L’espérance

104J.-M. Courtault, Y. Kabanov, B. Bru, P. Crépel, I. Lebon and A. Le Marchand, Louis
Bachelier on the Centenary of Théorie de la Spéculation, Mathematical Finance, Vol. 10, No. 3,
pp. 341–353 (2000).
105B. B. Mandelbrot, The Fractal Geometry of Nature, Freeman, New York (1982).
106A. N. Kolmogorov, Über die analitischen Methoden in der Warscheinlichkeitsrechnung,

Math. Annalen 104(3), pp. 415–458 (1931).
107L. Bachelier, Ann. Sci. École Normale Supérieure 17, pp. 21–86 (1900).
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est proportionnelle à la racine carrée du temps.” Bachelier also calculates the
probability that the Brownian motion does not exceed a fixed level and finds the
distribution of the supremum of that motion.

He therefore developed in his first thesis a theory of continuous stochastic pro-
cesses close to the modern mathematical theory of Brownian motion. As stressed
by the authors of the essay Louis Bachelier on the Centenary of Théorie de la
Spéculation, “more than one hundred years after the publication of the thesis, it
is quite easy to appreciate the importance of Bachelier’s ideas. The thesis can be
viewed as the origin of mathematical finance, and of several branches of stochas-
tic calculus such as the theory of Brownian motion, Markov processes, diffusion
processes, and even weak convergence in functional spaces.”

It is also quite interesting to read Poincaré’s original report, translated in
the essay cited above. Poincaré’s report shows that Bachelier’s thesis was highly
appreciated by the outstanding mathematician. In contrast to the legend that the
evaluation note “honorable” means somehow that the examinors were dissatisfied
with the thesis, it can perhaps be argued that it might have been the highest grade
possible for a thesis which was addressing a problem not in the realm of standard
mathematics, and that in addition had a number of non-rigorous arguments.

The official report of the Thesis Committee states:

In the presentation of his First Thesis, M. Bachelier showed mathematical
intelligence and insight. He has added some interesting results to those already
contained in the printed version of the thesis, in particular an application of the
image method.

As for the Second Thesis, he proved to possess a complete knowledge of
Boussinesq’s work on the motion of a sphere in an indefinite fluid.

The Faculty gave him the degree of Doctor with honors.

Paul Appell, President

It is indeed very intriguing that the Proposal given by the Faculty, subject of
his Second Thesis, was entitled: Resistance of an indefinite liquid mass with inter-
nal frictions, described by the formulae of Navier, to small translational motions
of a solid sphere, submerged inside the fluid and adhering it.

But there is of course no mention in his first thesis, published in 1900, about
any link between the speculation problem and the motion of a sphere in a vis-
cous fluid! However, we saw above Poincaré’s early interest in Brownian motion
in relation to Carnot’s principle. We also saw that Einstein’s (as well as Suther-
land’s) application of hydrodynamical laws to the motion of a sphere suspended in
a fluid, was key to the solution of Brownian motion. We now observe the amazing
coincidence that the thesis subject proposed by the Faculty, if joined with the
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subject of the first thesis, could just have led Poincaré and Bachelier to estab-
lish the quantitative theory of Brownian motion, before any Einstein, Sutherland
or Smoluchowski! All necessary mathematical equations were indeed present for
that, if only a little spark of physical intuition could have struck these eminent
mathematicians!

1.6.3 Further Studies

Louis Bachelier continued to develop the mathematical theory of diffusion pro-
cesses in a series of memoirs and books. In his 1906 memoir on the Théorie des
probabilités continues,108 he defined new classes of stochastic processes, which are
now called processes with independent increments and Markov processes, and he
derived the distribution of the Ornstein–Uhlenbeck process.

He was aware of the importance of his contributions. He wrote in his 1924
“Notice de Travaux” that “this theory has no relation to the geometrical theory of
probability, the range of application of which is quite limited. We are concerned here
with a science of a different order of generality, compared to classical probability
calculus. Among the new concepts, one can cite the assimilation to an energy of
the probability which is an abstraction. That original concept was quite noticed by
Henri Poincaré, and it made many progresses possible.” One also reads about his
1912 book Calcul des probabilités,109 that “it is the first that surpassed the great
treatise by Laplace.”

We shall not describe in detail here the very unfortunate misunderstanding
with Paul Lévy, which in 1926 prevented Bachelier to become a full professor at
the University of Dijon. We refer the interested reader to the essay mentioned
above for a thorough and well-documented analysis of this dramatic event.

Later, Lévy, under the influence of Kolmogorov’s fundamental paper (1931)
on diffusion processes, which referred to Bachelier’s work, realized that a number
of properties of Brownian motion had been discovered by Bachelier several decades
earlier. He revised his opinion, and wrote him a letter with apologies.

Bachelier’s ideas seem to receive nowadays a widespread recognition. Famous
probability treatises, like the ones by W. Feller, An Introduction to Probability The-
ory and its Applications (1957), or by K. Itô and H. McKean, Diffusion Processes
and their Sample paths (1965), refer to Bachelier’s seminal work.

In the literature written by economists, one finds reference to him in Keynes
(1921), and more recently in the work of other famous economists, like the 1997
Nobel laureates in Economic Sciences, Robert Merton and Myron Scholes. It is
perhaps appropriate here to reproduce Merton’s tribute to Bachelier:

“The origin of much of the mathematics in modern finance can be traced
to Louis Bachelier’s 1900 dissertation on the theory of speculation, framed as an

108Théorie des probabilités continues, J. Math. Pures et Appl., pp. 259–327 (1906).
109L. Bachelier, Calcul des probabilités, Gauthier Villars, Paris (1912).
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option-pricing problem. This work marks the twin births of both the continuous-
time mathematics of stochastic processes and the continuous-time economics of
derivative-security pricing.”

No doubt that today Bachelier would have been awarded a Nobel Prize in
Economic Sciences for his work of 1900!

1.7 Paul Langevin

Knowing the great interest in the theory of Brownian motion, signalled by the
works of Gouy, Einstein, and Smoluchowski, Langevin took the next steps in 1908.
He first said that the factor of 64/27 of Smoluchowski’s results, due to the approxi-
mations made, was erroneous and that the result coincided with Einstein’s formula
(28) after his correction. Next, he provided another demonstration of this fact, in
which was contained the first mathematical example of a stochastic equation.

1.7.1 Langevin’s equation

Langevin’s argument is enlightening and we follow his demonstration faithfully.110

The starting point is the Maxwell equipartition theorem of kinetic energy. It states
that the energy of a particle in suspension inside a fluid in thermal equilibrium
has, for instance in the x direction, an average kinetic energy 1

2
RT
N , equal to that

of any gas molecule, in a given direction, at the same temperature. This is directly
related to van ’t Hoff’s law seen above, which affirms the identity between diluted
solutions and perfect gases. If v = dx

dt is the particle velocity in a chosen direction
at a given moment, then the average over a large number of identical particles
with mass m is

1
2
m〈v2〉 =

1
2

RT

N . (54)

A particle which is large compared to the molecules of a liquid, and is moving at
speed v with respect to this liquid, experiences a viscous resistance force equal
to −6πηav, according to Stokes’ formula. In reality this is only an average value,
and because of the irregular shocks of the surrounding molecules, the action of the
fluid on the particle fluctuates around the average value. The equation of motion
along the direction x, given by Newtonian dynamics, is

m
dv

dt
= m

d2x

dt2
= −6πηav + X. (55)

The complementary force X , introduced by Langevin, is random, and also called
stochastic. In reality we know little about it, apart from that it is indifferently
positive or negative, and that its magnitude is such that it maintains the parti-
cle’s agitation which, without it, would end by stopping because of the viscous
resistance.
110P. Langevin, C. R. Ac. Sci. Paris 146, 530 (1908).
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By multiplying by x equation (55), one has111

mx
dv

dt
=

1
2
m

d2x2

dt2
− mv2

= −µ xv + xX = −µ
1
2

dx2

dt
+ xX, (56)

where the friction coefficient µ represents µ = 6πηa as before. If we consider a
large number of identical particles and take the average of equations (56) written
for each of them, then the average value of the term xX is “evidently” zero because
of the irregularity of the random forces X , and one finds112

1
2
m

d2〈x2〉
dt2

− m〈v2〉 = −µ
1
2

d〈x2〉
dt

. (57)

One puts u = 1
2

d〈x2〉
dt , and uses the equipartition theorem of kinetic energy

(54) to get a simple differential equation of first order:

m
du

dt
− RT

N = −µu. (58)

The general solution is

u =
RT

µN + C exp
(
− µ

m
t
)

, (59)

where C is an arbitrary constant.113 The exponentially decreasing term rapidly
fades away, and the result goes to the constant value of the first term, in a limiting
regime after a time τ of order m

µ or 10−8 seconds, for all Brownian particles.
Thus, we have

u =
1
2

d〈x2〉
dt

=
RT

µN , (60)

111Since v = dx
dt

, we use the identities between derivatives xv = x dx
dt

= 1
2

dx2

dt
, and x dv

dt
=

x d2x
dt2

= 1
2

d2x2

dt2
− v2.

112One should note that the force X disappears from the calculation thanks to that observation.
The only under-lying role of X is therefore to ensure the physical possibility of a kinetic average
〈v2〉 �= 0. On the other hand, the equality 〈xX〉 = 0 does not appear as evident, because there
could have existed a subtle correlation between the position x and the stochastic force X, as it
exists between velocity and stochastic force. The existence of two types of stochastic calculations,
à la Itô and à la Stratonovitch, illustrates this difficulty. (See for example N. G. van Kampen,
Stochastic Processes in Physics and Chemistry, Elsevier, Amsterdam (1992).) Einstein made the
same hypothesis in his third demonstration of Brownian motion; see in this volume the translation
of his lecture on November 2, 1910 for the Zürich Physical Society.
113Here, there seems to be a contradiction between the existence of an exponential term and the

hypothesis of the equipartition of energy, m〈v2〉 = RT
N , made for every t by Langevin, because

it is only at large t that memory effects are exponentially suppressed. This hypothesis, as well as
a solution of the form (59), can however be correct for all t, provided that one imposes the same
condition for the initial velocity, which in fact fixes the value of the constant C to be equal to
C = −RT

µN
. We will come back to this point further along in a more detailed study of the solution

of Langevin’s equation.
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from which, for the time interval t,

〈x2〉 =
2RT

µN t =
RT

N
1

3πηa
t, (61)

if one supposes that the particle was observed at the origin x = 0 at time t = 0.
Langevin’s method indeed reproduces Einstein’s result (28). In this paper (pub-
lished in 1908 in the Comptes Rendus of the Academie de Sciences) Langevin
introduced, without knowing it, the first element (the random force X) of what
was to become stochastic calculus.114

1.7.2 Boltzmann’s constant

Boltzmann’s constant kB is obtained by dividing the molar constant R of a perfect
gas by Avogadro’s number N , such that one obtains a quantity which refers to a
single molecule:

kB =
R

N = 1.381× 10−23 J K−1. (62)

The energy kBT gives the average thermal energy at the standard temperature:
kBT = 4 × 10−21 J. The constant kB was not introduced by Boltzmann but by
Planck in his famous presentation on December 14, 1900, on black body radiation,
at the same time he presented Planck’s constant h!

1.7.3 An analysis of the solution of Langevin’s equation.

The method presented in section (1.7.1) is the one that Langevin gave in his
original paper. A more modern formulation proceeds from the time-correlation
functions of the stochastic force X in canonical form,

〈X〉 = 0, 〈X(t)X(t′)〉 = Aδ(t − t′), (63)

where A is a coefficient to be determined and δ(t − t′) is the Dirac distribution.
The generalization to d dimensions is

〈 �X〉 = �0,

〈Xi(t)Xj(t′)〉 = Aδijδ(t − t′), (64)

where δij is the Kronecker symbol and i, j = 1, · · ·d.
We can easily integrate the linear equation for the velocity

m
d�v

dt
= −µ�v + �X. (65)

114J. L. Doob, The Brownian Motion and Stochastic Equations, Ann. of Math., 43, pp. 351–369
(1942), reprinted in [Wax 1954, pp. 319–337], op. cit.
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The solution is

�v(t) = �v(0) e−
µ
m t +

1
m

∫ t

0

dt′ �X(t′) e−
µ
m (t−t′). (66)

Therefore by taking the square of the velocity and by using formula (64), we find
the average value of kinetic energy at time t

1
2
m〈�v 2(t)〉 =

Ad

4µ

(
1 − e−2 µ

m t
)

+
1
2
m�v 2(0)e−2 µ

m t. (67)

We then see that this energy relaxes towards a constant value at large time, i.e.,
at equilibrium. From the theorem of equipartition of kinetic energy,

1
2
m〈�v 2(t)〉t→∞ =

d

2
kBT, (68)

we deduce the important identity

A = 2µkBT. (69)

We then have

〈�v 2(t)〉 =
dkBT

m
+

(
�v 2(0) − dkBT

m

)
e−2 µ

m t. (70)

A second stage consists of integrating equation (66) to obtain the displace-
ment �r(t)− �r(0). Then taking the square, and the stochastic average by means of
formulae (64), we obtain after some calculation,

〈[�r(t) − �r(0)]2〉 = 2dD

[
t − m

µ

(
1 − e−

µ
m t

)]

+
(

�v 2(0) − dkBT

m

) (
m

µ

)2 (
1 − e−

µ
m t

)2

, (71)

where D = kBT/µ, as before. The derivative u considered by Langevin is then
given by

u =
1
2

d
dt

〈[�r(t) − �r(0)]2〉

= d
kBT

µ
− �v 2(0)

m

µ
e−

µ
m t +

(
�v 2(0) − dkBT

m

)
m

µ
e−2 µ

m t. (72)

Notice first that these results at large t, or t � τ = m/µ, go asymptoti-
cally to those of thermal equilibrium and to the associated motion of diffusion,
as expected. One remarks then the role played by the initial velocity in memory
effects and in the approach to equilibrium. A very special value of �v 2(0) is that of
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equipartition dkBT
m . For this value only, the average quadratic velocity in (70) be-

comes invariant in time, 〈�v 2(t)〉 = dkBT
m , ∀t. The average quadratic displacement

(71) then takes Ornstein’s simple form (42), and the quantity u (72) takes the form
predicted by Langevin in (59), with a determined value for C. One consistently
obtains the same result by using for �v 2(0) its most probable value, meaning its
thermal average at equipartition. One can then understand (but only a posteri-
ori) the consistency of Langevin’s approach when he inserted the identity (54) in
the middle of the derivation. That amounted to chosing the peculiar boundary
condition �v 2(0) = dkBT

m , which enforces stationary equipartition!
On the other hand, if one gives to the initial quadratic velocity �v 2(0) a value

which is different from that of equilibrium, the relaxation will occur in a bit more
complex way, as we showed in the above results.

The regime at short times, m
µ � t, also naturally depends on the initial

conditions. In fact, by developing in series (71) one finds the expected ballistic
regime

〈[�r(t) − �r(0)]2〉 = �v 2(0) t2 + O(t3),

that naturally cross-checks with (44) if one takes once again the value at equipar-
tition.

1.7.4 Microscopic model

The force proposed by Langevin, −µv + X , can only be an approximation to the
underlying molecular reality, made up of innumerable collisions where multiple
correlations, due to interactions between molecules, exist at very short time scales.
The stochastic term X in (63,64) is a white noise without memory, i.e., it neglects
temporal correlations.

As well, the hydrodynamic form of the friction term, −µv, is a description
that pertains to the continuous limit, which requires extremely frequent collisions
on a particle in suspension. The mass m of the particle must then be large enough
so that the characteristic time τ = m/µ is large compared to the inverse frequency
of collisions.

To give an idea of the origin of Langevin’s equation (55) and of its parameters
µ and A (69), it is natural to consider the simplest model, where the collisions of
a particle in suspension occur with a surrounding perfect gas, and thus without
interaction.115

One can therefore consider a perfect gas of identical particles with mass m′, a
particle density n′, at the temperature T , and colliding the particle of large mass
m in suspension. To simplify, we consider the gas in one dimension, where the
equations for the particle-gas elastic collisions are particularly simple. One then

115D. Durr, S. Goldstein, J. L. Lebowitz, A Mechanical Model of Brownian Motion, Commun.
Math. Phys. 78, pp. 507–530 (1981).
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finds that the equation for the momentum variation of the test particle is similar
to Langevin’s equation, with the explicit coefficients116

µ = 4n′
√

2m′kBT

π
, A = 8n′kBT

√
2m′kBT

π
; (73)

µ and A thus verify (69).
It is then particularly interesting to rewrite these terms as a function of molar

sizes that characterize the perfect gas. One introduces as well the gas pressure117

p′, which responds to the equations of perfect gases p′ = n′kBT , which gives

µ = 4p′
√

2M
πRT

, A =
2RT

N 4p′
√

2M
πRT

, (74)

where M = Nm′ is the molar mass of the gas.

1.7.5 Discontinuity in Nature and the existence of Brownian motion

The explicit results above, in their last form (74), rigorously state that the Suther-
land–Einstein equation (13), D = RT

µN , reflects the existence of molecules.
In fact, the friction coefficient µ can be expressed independently from Avo-

gadro’s number N , and depends only on the ideal gas constant R and the macro-
scopic parameters of the surrounding gas, like the pressure p′, temperature T , and
molar mass M. On the other hand, the variance A of the Langevin stochastic force,
which controls diffusion, continues to depend on N and vanishes when Avogadro’s
number goes to infinity.

In the same way, the limit of the diffusion coefficient D = RT
µN , when Avo-

gadro’s number goes to infinity, N → ∞, is of course zero, i.e., the Brownian
motion would cease immediately if Nature was continuous! An entire branch of
mathematics might perhaps never have seen the light of day.

1.8 Jean Perrin’s experiments

1.8.1 The triumph of the “Molecular Hypothesis”

Jean Perrin is often cited as the one who established the Einstein–Smoluchowski–
Sutherland theory by his beautiful experiments. He was also an outstanding pro-
motor of atomistic ideas. His book, Atoms,118 which contains a detailed description
of his experiments on Brownian motion, is highly recommended. It begins:
116One calculates, in the process of discrete collision, the average momentum variation 〈dp

dt
〉 =

−µ〈v〉 as well as the fluctuations 〈dp(t)
dt

dp(t′)
dt′ 〉 − 〈dp(t)

dt
〉〈dp(t′)

dt′ 〉 = Aδ(t − t′) + · · · , and finds
by comparison the values (73) of parameters µ and A for Langevin’s equation. See the article

from B. Derrida and É. Brunet in Einstein aujourd’hui, éds. M. Leduc and M. Le Bellac, Savoirs
actuels, EDP Sciences/CNRS Éditions (2005).
117In one dimension, the pressure p′ is equivalent to a force, because the boundaries of the

“box” containing the gas are simple points.
118J. Perrin, Les Atomes, Félix Alcan, Paris (1913); réédition Champs Flammarion (1991);

English translation: Atoms, transl. by D. Ll. Hammick, Ox Bow Press, Woodbridge (1990).
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“Molecules: Some twenty-five centuries ago, before the close of the lyric period in Greek
history, certain philosophers on the shores of the Mediterranean were already teaching that
changeful matter is made up of indestructible particles in constant motion; atoms which chance
or destiny has grouped in the course of ages into the forms or substances with which we are
familiar. But we know next to nothing of these early theories, of the works of Moschus of Sidon,
of Democritus of Abdera, or of his friend Leucippus. No fragments remain that might enable us
to judge of what in their work was of scientific value. And in the beautiful poem, of a much later
date, wherein Lucretius expounds the teachings of Epicurus, we find nothing that enables us to
grasp what facts or what theories guided Greek thought.”

He expounded in addition on the idea that non-differentiable continuous func-
tions, such as the trajectory of Brownian motion, were as completely natural as
differentiable functions, objects of all prior studies. In the preface of Atoms, by
considering the very irregular surface of a colloid and by making the analogy with
the shape of Brittany’s coast, he announced with a dazzling geometric intuition the
ideas of Lewis Fry Richardson on Hausdorff anomalous dimensions, which would
later be developed by Benôıt Mandelbrot.119

Regarding Brownian motion, we find as well:
“We are still in the realm of experimental reality when, under the microscope, we observe

the Brownian movement agitating each small particle suspended in a fluid. In order to be able to
fix a tangent to the trajectory of such a particle, we should expect to be able to establish, within
at least approximate limits, the direction of the straight line joining the positions occupied by a
particle at two very close successive instants. Now, no matter how many experiments are made,
that direction is found to vary absolutely irregularly as the time between the two instants is
decreased. An unprejudiced observer would therefore come to the conclusion that he was dealing
with a function without derivative, instead of a curve to which a tangent could be drawn.”

Further along we read:
“It is impossible to fix a tangent, even approximately, to any point on a trajectory, and

we are thus reminded of those continuous functions120 without derivative that mathematicians
had imagined. It would be incorrect to regard such functions as mere mathematical curiosities,
whereas Nature suggests them as much as differentiable functions.”

These remarks would stimulate the research of the young mathematician
Norbert Wiener.121

119B. Mandelbrot, Fractal Objects, (3ème éd.), followed by A Survey of Fractal Language,
Flammarion, Nouvelle Bibliothèque scientifique (1989).
120“Continuous because it is not possible to regard the grains as passing from one position to

another without cutting any given plane having one of those positions on each side of it.”[original
note]
121N. Wiener, I am a Mathematician, Doubleday, Garden City, NY (1956). He writes: “The

Brownian motion was nothing new as an object of study by physicists. There were fundamental
papers by Einstein and Smoluchowski that covered it, but whereas these papers concerned what
was happening to any given particle at a specific time, or the long-time statistics of many particles,
they did not concern themselves with the mathematical properties of the curve followed by a
single particle.

Here the literature was very scant, but it did include a telling comment by the French physicist
Perrin in his book Les Atomes, where he said in effect that the very irregular curves followed by
particles in the Brownian motion led one to think of the supposed continuous non-differentiable
curves of the mathematicians. He called the motion continuous because the particles never jump
over a gap and non-differentiable because at no time do they seem to have a well-defined direction
of movement.”
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The beautiful experiments of 1908–1909 by Perrin and his students, on emul-
sions of gum-resin (“gamboge”) or of mastic, are described in detail in his review
article Brownian Motion and Molecular Reality, which appeared in Annales de
Chimie et Physique in 1909,122 and the results are published in several Notes aux
Comptes Rendus. The same material is also summarized in his book Atoms.

Perrin began by verifying the exponential distribution of the density of n
particles in a suspension, as a function of the height h in a gravitational field g, a
formula that generalizes the barometric formula for the atmosphere. Perrin writes
it in the form

2
3
W ln

n0

n
= φ(ρ − ρ0)gh, (75)

where φ is the volume of each grain, ρ and ρ0 are the mass per unit volume of the
grains and of the inter-granular liquid, respectively, and last but not least, W is
the average kinetic energy per particle (with W = 3

2
RT
N = 3

2kBT ).

He writes:

“I indicated this equation at the time of my first experiments (Comptes Rendus, May
1908). I have since learned that Einstein and Smoluchowski, independently, at the time of their
beautiful theoretical researches of which I shall speak later, had already seen that the exponential
repartition is a necessary consequence of the equipartition of energy. Beyond this it does not seem
to have occurred that in this sense, an experimentum crucis could be obtained, deciding for or
against the molecular theory of the Brownian movement.”

He continues:

“If it is possible to measure the magnitudes other than W which enter into this equation,
one can see whether it is verified and whether the value it indicates for W is the same as that
which has been approximately assigned to the molecular energy. In the event of an affirmative
answer, the origin of the Brownian movement will be established, and the laws of gases, already
extended by van ’t Hoff to solutions, can be regarded as still valid even for emulsions with visible
grains.”

He built as well an apparatus for fractioned centrifugation to produce emul-
sions of uniform size, a key element of his success. Using three independent pro-
cesses to measure the radius of particles, one of which went via Stokes’ law, he
could verify the validity of the latter for particles in suspension. It was in fact
one of the weak points of the theoretical proofs, because the continuity conditions
required by hydrodynamics were far from being clearly fulfilled in the case of small
spheres in very active Brownian motion.

Finally, by ingenious and patient observations, he could verify the law of
rarefaction of density (75).123 Thanks to the value of W (independent of all exper-
imental conditions except the temperature), he verified the famous law of equiparti-
tion of energy, and obtained a first estimate of Avogadro’s number, N = 7.05×1023,
compared with the present accepted value N = 6.02 × 1023.

122J. Perrin, Ann. Chim. Phys. 18, pp. 1–114 (1909); available online at http://gallica.bnf.fr/.
123J. Perrin, C. R. Acad. Sci. Paris 146, 967 (1908); 147, 475 (1908).
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1.8.2 Einstein’s formulae

Perrin turned next to Einstein’s formulae for Brownian diffusion:

“. . . another approach was possible and was proposed by Einstein, in conclusion to his
beautiful theoretical works, of which I must now speak.”

Further on, he adds:

“It’s fair to recall that, almost at the same time as Einstein and by another route, Smolu-
chowski arrived at a formula a bit different in his remarkable work on A kinetic theory of Brow-
nian motion [Bulletin de l’Acad. des Sc. de Cracovie, July 1906, p. 577] where one finds, besides
very interesting observations, an excellent history of work before 1905.”

In Atoms he stresses that:124

Einstein and Smoluchovski have defined the activity of the Brownian movement in the
same way. Previously, we had been obliged to determine the “mean velocity of agitation” by
following as nearly as possible the path of a grain. Values so obtained were always a few microns
per second for grains of the order of a micron.125

But such evaluations of the activity are absolutely wrong. The trajectories are confused and
complicated so often and so rapidly that it is impossible to follow them; the trajectory actually
measured is very much simpler and shorter than the real one. Similarly, the apparent mean speed
of a grain during a given time varies in the wildest way in magnitude and direction, and does
not tend to a limit as the time taken for an observation decreases [. . . ].

Neglecting, therefore, the true velocity, which cannot be measured, and disregarding the
extremely intricate path followed by a grain during a given time, Einstein and Smoluchowski
chose, as the magnitude characteristic of the agitation, the rectilinear segment joining the strart-
ing and end points; in the mean, this line will clearly be longer the more active the agitation.
The segment will be the displacement of the grain in the time considered.

He begins his review by recalling the early work of Exner, anterior to the pub-
lication of Sutherland–Einstein–Smoluchowski formula for the average quadratic
displacement (28), and in which one can see “at least one presumption of partial
verification for the formula in question.”

Soon after the publication of this formula, verification was quickly tried by
Theodor Svedberg, who thought he achieved it.126 Perrin made a sharp criticism
of these results, and declared him “a victim of an illusion,” regarding his descrip-
tion of Brownian trajectories “as regularly modulated in amplitude and with well
defined wavelength!”127

Victor Henri’s results, published in Comptes Rendus in 1908, were obtained
from a better founded cinematographic study of Brownian motion of natural la-
tex grains. The average displacement varied as the square root of time, but the
coefficient was three times too large.128

124Atoms, op. cit., chapter IV.
125“Incidentally this gives the grains a kinetic energy 105 times too small.” [original note]
126Th. Svedberg, Studien zur Lehre von den kolloidalen Lösungen, Nova Acta Reg. Soc. Sc.

Upsaliensis, 2, 1907.
127One must add that Svedberg won the Nobel Prize for Chemistry in 1926 for his invention of

the ultracentrifuge.
128Perrin then noted almost mischievously: “As far as I could judge from the conversation, a

current of opinion was produced among the French physicists community that closely followed
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Having prepared grains with known diameter, Perrin asked his student
Chaudesaigues to verify the law of Brownian displacement by direct observation,
sequenced every thirty seconds, with gamboge grains of radius 0.212 µm.129 This
was completed by similar measurements by M. Dabrowski130 on mastic grains, and
gave the famous diagrams of random positions that one can find in Jean Perrin’s
book. (See figure 3.)

Figure 3: Brownian motion. Bottom left: Strong magnification, showing the dis-
cretized aspect of sequential recordings of the position of a particle in suspension,
observed by Jean Perrin and his collaborators. Bottom right: Magnification show-
ing the self-similarity of the continuous Brownian curve.

The conclusion was “the rigorous exactness of the formula proposed by Ein-
stein”, and “that some unknown complication or unknown cause of systematic
error oddly affected the results of Victor Henri.” They then deduced a new aver-
age value of Avogadro’s number, N = 7.15 × 1023. A wonderful verification was
at last made of “Maxwell’s irregularity law”, that is, of the Gaussian distribution

these questions, and which really shocked me, proving to me how much the credit that we give
to theories is limited, and at what point we see them as instruments of discovery rather than as
true demonstrations. Without hesitating, they admitted that Einstein’s theory was incomplete
or inexact. On the other hand, there was no reason to renounce placing the origin of Brownian
motion in molecular agitation, because I just showed by an experiment that a diluted emulsion
behaves as a very dense perfect gas in which the molecules had a weight equal to the grains of the
emulsion. They limited themselves to assuming that a few unjustified complementary hypotheses
slipped into Einstein’s reasoning.”
129M. Chaudesaigues, C. R. Acad. Sci. Paris, 147, 1044 (1908); Diplôme d’Études, Paris (1909).
130J. Perrin and Dabrowski, C. R. Acad. Sci. Paris, 149, 477 (1909).
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(26) of the Brownian particle’s position in a plane orthogonal to gravity.
Jean Perrin did not stop there, but turned to rotational Brownian motion.

Einstein himself did not really think that his predictions (41) were experimentally
verifiable, because the speed of rotation seemed to be too large to be observable. In
fact, for grains of 1 µm in diameter, the rotation is about 1 degree per hundredth
of second. Perrin could then prepare spheres with larger diameter, from 10–15
µm up to 50 µm, and he succeeded in preparing them in suspension in a 27%
solution of urea. In this case the angular speed falls to a few degrees per minute.
The spheres carried inclusions of different refractive indices, which made their
rotation observable under a microscope! The result was a spectacular verification
of Einstein’s second formula (41), this time for grains 100 000 times heavier than
the small grains of gamboge first studied.131 On 11 November 1909, Einstein wrote
to Perrin: “I would not have considered a measurement of rotations as feasible. In
my eyes it was only a pretty triffle”.132

Perrin received the Nobel Prize in 1926 for his work on Brownian motion.
His book, Atoms, one of the most finely written physics books of the 20th century,
contains a postmortem, in the great classic style, about the fight for establishing
the reality of molecules:

“La théorie atomique a triomphé. Encore nombreux naguère, ses adversaires enfin conquis
renoncent l’un après l’autre aux défiances qui, longtemps, furent légitimes et sans doute utiles.
C’est au sujet d’autres idées que se poursuivra désormais le conflit des instincts de prudence et
d’audace dont l’équilibre est nécessaire au lent progrès de la science humaine.”

“The atomic theory has triumphed. Its opponents, who until recently were numerous, have
been convinced and have abandoned one after the other the sceptical position that was for a
long time legitimate and likely useful. Equilibrium between the instincts towards caution and
towards boldness is necessary to the slow progress of human science; the conflict between them
will henceforth be waged in other realms of thought.”

To conclude this section, let us return for a last time to Einstein. One reads
in his autobiographical notes:133

“The agreement of these considerations with experience together with Planck’s determi-
nation of the true molecular size from the law of radiation (for high temperatures) convinced
the sceptics, who were quite numerous at that time (Ostwald, Mach) of the reality of atoms.
The antipathy of these scholars towards atomic theory can undubitably be traced back to their
positivistic philosophical attitude. This is an interesting example of the fact that even scholars of
audacious spirit and fine instinct can be obstructed in the interpretation of facts by philosophical
prejudices. The prejudice – which has by no means died out in the meantime – consists in the
faith that facts by themselves can and should yield scientific knowledge without free conceptual
construction. Such a misconception is possible only because one does not easily become aware
of the free choice of such concepts, which, through verification and long usage, appear to be
immediateley connected with the empirical material.”

Let us finally mention Ostwald’s magnanimous concession: In 1908 he refers
to the Brownian motion results and says they “entitle even the cautious scientist
131J. Perrin, C. R. Acad. Sci. Paris, 149, 549 (1909).
132Quoted in J. Stachel, Einstein’s Miraculous Year (Princeton University Press, Princeton,

New Jersey, 1998).
133Albert Einstein: Philosopher-Scientist, The Library of Living Philosophers, Vol. VII,

Paul Arthur Schilpp Ed., Open Court, La Salle, Illinois, 3rd Edition (2000).
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to speak of the experimental proof for the atomistic constitution of space-filled
matter”. In 1910, he is the first person to nominate Einstein for the Nobel Prize
(for special relativity).

2 Measurements by Brownian fluctuations

Jumping ahead a century, we observe how the theory of Brownian fluctuations,
whose construction we just described, today finds spectacular applications in
physics applied to biology. We will give an example from the physics of DNA.

2.1 Micromanipulation of DNA molecules

2.1.1 The interest of DNA for physicists

Physicists are interested today in DNA for several reasons. First of all, it is a re-
markable polymer for its length, reaching several centimeters, and for its monodis-
persity (the DNA of the virus bacteriophage-λ, for example, has always 48502 base
pairs with identical sequence). DNA is an important subject in polymer physics
because it can be easily shaped by bio-molecular tools and it can be directly ob-
served and manipulated. A fluorescent intercalation placed between base pairs
(such as ethidium bromide) permits the observation, under a microscope and by
fluorescence, of single DNA molecules in solution.

2.1.2 Experimental realization of a micro-manipulation

One can also micro-manipulate molecules individually. The techniques of micro-
manipulation of isolated bio-molecules have developed considerably during the
past few years, thanks to an ever-growing number of tools: optical or magnetic
“tweezers”, atomic force microscopes, glass micro-fibers, and also hydrodynamic
flow observations.

A recent example consists of pulling a single DNA molecule to measure its
extension as a function of the force, which allows one to measure various important
mechanical parameters of the DNA chain.

In “magnetic tweezers” (figure 4), a magnetic bead is placed in the field of
a magnet; the bead is attracted towards regions with a high gradient field, and
one can move the magnets or rotate them. This allows to pull the DNA or to
twist it, creating as well torsions, or super-coilings, that are a part of topological
configurations for biological functions.

We give a brief overview of forces playing a role in biology, and of the specific
problems related to their smallness.

2.1.3 Biological interaction forces and thermal agitation forces

The interaction forces in biological systems are typically generated by hydrogen
or ionic bonds, as well as by van der Waals interactions that shape nucleic acids
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Figure 4: Micro-manipulation of a DNA molecule by “magnetic tweezers”.

and proteins. Their order of magnitude is typically obtained by dividing kBT , the
order of magnitude of the “quantum of energy” provided by the hydrolyzation of
the ATP in ADP134 (10 kBT ), by the characteristic size of biological objects, of
the order of a nanometer (nm). We then find the picoNewton:

kBT

1nm
= 4 pN

‖
10−12 N

.

Such a force is the one typically needed to stretch a DNA molecule. As it is
extremely small, it is not easy to detect with standard measuring devices.

The smallest measurable forces are in principle limited by the thermal ag-
itation of the measuring device (see figure 5). This thermal agitation generates
Langevin’s stochastic force seen above, whose value depends on the coefficient of
viscous friction of the object, and also on the temporal window of observation. We
have:

〈X2
Langevin〉 = 2kBT 6πη a δf,

where η is the medium’s viscosity, a the radius of a spherical bead taken as an
example, and δf the observed frequency range. For example, for a = 1.5 µm, in
water (viscosity η = 10−3 Poise), the average force over a period of a second is

134ATP: adenosine triphosphate, universal biological “fuel”, made of one sugar, ribose, and of
one base, adenine, and of three phosphate groups; ADP: adenosine diphosphate, is the degraded
version after losing a group of phosphates under enzymatic action and release of energy.

k  Tl

l
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Figure 5: The track of the random displacement, in a liquid, of the tip of the can-
tilever in an atomic force microscope. It executes a one-dimensional Brownian
motion. (Kindly provided by Pascal Silberzan and Olivia du Roure, Curie Insti-
tute.)

XLangevin ∼ 15 fN
‖

(10−15 N)

, i.e., 15 femtoNewtons.

Astonishingly, Brownian fluctuations can be used directly to measure forces
of biological origin!

2.2 Measurement of force by Brownian fluctuations

This technique of measuring a force is largely inspired by the method proposed by
Einstein135 for measuring the elastic constant of a spring by means of Brownian
fluctuations. When we apply a force upon a small magnetic bead in a gradient
field, the stretched molecule and the bead form a minuscule pendulum of length �
(figure 4). The bead is animated by Brownian motion, connected to the thermal
agitation of surrounding water molecules. The small magnetic pendulum is thus
perturbed from its equilibrium position by Langevin’s random force. It is then
brought back towards equilibrium by the pulling force exerted by the DNA (figure
6).

As we will show in detail further along, the pendulum possesses a transverse
elastic constant k⊥ that is directly related to the pulling force F by k⊥ = F/�. If
we call x the position of the bead with respect to its equilibrium position in the

135A. Einstein, Investigations on the Theory of the Brownian Movement, R. Fürth Ed., A. D.
Cowper Transl., Dover Publications, p. 24 (1956).
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Figure 6: Brownian cloud of a bead’s fluctuating position in the vertical plane
(Ox, Oz), for different applied forces. The larger the force, the more a molecule is
stretched, and the more the Brownian fluctuations are constrained. (Figure kindly
provided by Vincent Croquette, Statistical Physics Laboratory, ENS, Paris.)

direction perpendicular to the force �F , the theory states

F = kBT�/〈x2〉,
where 〈x2〉 is the average quadratic fluctuation of x. To measure the pulling force
on a DNA molecule, one simply measures the length � and the average quadratic
fluctuation 〈x2〉! This is reminiscent of Einstein’s formula (28), as well as of the
surprise of being able to deduce Avogadro’s number from it.

To measure such fluctuations, one must follow the movements of the bead
during a given amount of time, just as in Jean Perrin’s experiments of 1908 on
Brownian motion. Today, a computer program analyzes in real time the images
on a video of the bead observed via a microscope, and determines its positions in
a three-dimensional space with a precision of 10 nm (figure 6). Such precision is
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Figure 7: Axis of a DNA chain fluctuating around the vertical position; the ex-
tremity M moves from the equilibrium position (0, 0, �) in presence of F towards
the random position (x, y, � + z).

obtained through a technique of image correlation.
This sort of Brownian measurement has several advantages:

– One gauges the force by absolute measurement of position fluctuations.

– There is no contact with the bead, therefore it is non-invasive.

– The range of values of x is between µm to nm, the force goes from a dozen
femtoNewtons to hundreds of picoNewtons.

The drawback is its slowness: to accumulate sufficient fluctuations and to have
reliable statistics, a minute of recording is needed for a force of 1pN, and more
than an hour for 10fN.

We shall now describe the theory of measurement by Brownian fluctuations.

2.3 Theory

2.3.1 Equilibrium and fluctuations

One considers a DNA chain of length �0 with one extremity fixed at the origin
0, while the other extremity M is determined by

−−→
OM = �r (see figure 7). A force

�F acts on the extremity M along the direction of the Oz axis. At equilibrium,
the chain is parallel to the Oz axis and is elastically stretched up to a length �
dependent on F . The Brownian fluctuations, originating from the shocks between
the bead that is attached to the DNA chain and the molecules of the solution,
induce small displacements (x, y, z) that one can consider as perturbations of the
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macroscopic equilibrium position (0,0,�). The extremity M is thus shifted from its
equilibrium position (0, 0, �) (in the presence of F ) to a random position (x, y, �+z).
Let r = |−−→OM | be the radial distance between the extremities of the chain. Because
of elasticity, the chain develops a restoring radial force Fr(r). At equilibrium, one
has Fr(�) = F , where F is the external force given experimentally.

In the presence of fluctuations, the radial distance is written

r = [(� + z)2 + x2 + y2))]1/2, (76)

and the restoring force

�Fr = −�r

r
Fr(r) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Frx = −x

r
Fr(r)

Fry = −y

r
Fr(r)

Frz = − � + z

r
Fr(r).

(77)

2.3.2 Series expansions

One writes the series expansion of the distance r for x, y, z small compared to �:

r = [(� + z)2 + x2 + y2]1/2 = � + z + · · · (78)

An expansion to the first linear order in x, y, z will be sufficient, and from now on
we will denote by + · · · all second order terms (of O(x2, y2, z2)) in the expansions.

The radial force Fr(r) of the DNA on the bead, depends only on the radial
distance r; therefore, from (78), it has the series expansion:

Fr(r) = Fr [� + z + · · · ] = Fr(�) + z
dFr

d r
(�) + · · · . (79)

One can now easily determine the components (77) of the radial force by using
(78) and (79):

Frx = −x

r
Fr(r) = −x

�
Fr(�) + · · · ,

Fry = −y

r
Fr(r) = −y

�
Fr(�) + · · · ,

Frz = − � + z

r
Fr(r) = −Fr(�) − z

dFr

d r
(�) + · · · .

We finally note that at the equilibrium point the external force, �F = F�uz,
exactly cancels the term −Fr(�)�uz of the vertical component Frz�uz. Leaving aside
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terms of second order, our analysis leads us to a fluctuating resultant force on the
DNA:

�f = F�uz + �Fr =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−x

�
Fr(�)

−y

�
Fr(�)

−z
dFr

d�
(�)

= −∇�r U. (80)

2.3.3 Elastic energy

The beauty of this approach is that one can determine the elastic energy of the
Brownian fluctuations of the DNA chain without even knowing the analytic form of
the elastic force. In these expressions, it must be understood that the equilibrium
length � is determined by the external force, while the fluctuating force (80) is
linear in x, y, z, as expected from an expansion to first order. A quadratic potential
energy U is associated to the force by �f = −∇�r U , given by the simple expression:

U =
1
2

(
x2 + y2

) 1
�
Fr(�) +

1
2
z2 dFr

d �
(�). (81)

2.3.4 Elastic constants

One can write the energy U (81) as that of a three-dimensional anisotropic har-
monic oscillator with two elastic constants, k⊥ and k‖, corresponding to the per-
pendicular and parallel directions, respectively, with respect to the force:

U =
1
2
k⊥

(
x2 + y2

)
+

1
2
k‖ z2, (82)

with ⎧⎪⎪⎨
⎪⎪⎩

k⊥ =
Fr(�)

�
,

k‖ =
dFr

d �
(�).

(83)

As one can intuitively imagine, the transverse elastic constant, which opposes
lateral movements of the DNA molecule, is weaker than the longitudinal elastic
constant, which opposes mechanical stretching of the DNA.

2.3.5 Energy equipartition

In classical statistical mechanics, we have seen the historically important result
about the equipartition of energy. The theory simply states that each quadratic
degree of freedom has average energy 1

2kBT exactly, where kB is Boltzmann’s
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constant and T is the absolute temperature. In the case of the harmonic energy
(82), the theorem immediately gives us:

1
2
k⊥〈x2〉 =

1
2
k⊥〈y2〉 =

1
2
k‖ 〈z2〉 =

1
2
kBT . (84)

Therefore we find, with the help of (83)⎧⎪⎪⎪⎨
⎪⎪⎪⎩

k⊥ =
Fr(�)

�
=

kBT

〈x2〉 ,

k‖ =
dFr

d �
(�) =

kBT

〈z2〉 .

(85)

Because of the difference between the elastic constants, k⊥ < k‖, transverse
fluctuations dominate over longitudinal ones: 〈x2〉 = 〈y2〉 > 〈z2〉, as one can see in
figure 6. One sees, for instance, that the fluctuations

√〈x2〉 and
√〈z2〉 are of the

order of 2 µm and of less than 1 µm, respectively, for the second Brownian cloud
from the bottom. Such Brownian fluctuations can be directly measured optically,
as can the length �, and equation (85) allows a truly ingenious direct measurement
of the elastic force Fr(�) and its derivative F

′
r(�)! One can then compare the

experimental results to the predictions of theoretical models for the statistical
description of the DNA configurations (see figure 8).

Figure 8: Dimensionless ratio �kz

F = k‖
k⊥

= 〈x2〉
〈z2〉 = �

Fr(�)
d Fr

d � (�), plotted as a function
of the length � of the DNA chain (in units of maximum length �0). The points cor-
respond to the ratio of experimental measurements of transverse (〈x2〉) and vertical
(〈z2〉) quadratic Brownian fluctuations. The curve is theoretically predicted from
the knowledge of Fr(�), in a model of a semi-flexible DNA chain, also known as the
Worm-like Chain Model. We stress the remarkable agreement between experiment
and theory. (Figure kindly provided by Vincent Croquette.)
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3 Potential theory and Brownian motion

Et ignem regunt numeri136

3.1 Introduction

3.1.1 Laplace’s equation

Potential theory concerns the equilibrium properties of continuous bodies, like the
distribution of electrostatic charges on conductors, the distribution of the Newto-
nian potential in the classic theory of gravitation, the distribution of temperature
in Fourier’s theory of heat conduction, or in addition the distribution of positions
of a stretched elastic membrane.137

A deep relation exists between potential theory and the theory of diffusion,
and therefore also with Brownian motion.138 We will first give an intuitive illus-
tration within the framework of Fourier’s theory of heat conduction.

The temperature of a body, u(x, y, z; t) at the point x, y, z and at the instant
t, follows the equation of heat

∂u

∂t
= D∆u, (86)

where, as in the case of Brownian motion, D is the diffusion coefficient, and ∆ is
the Laplacian in three-dimensions ∆ = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 . In general, the Laplacian
in d dimensions is:

∆ =
d∑

i=1

∂2

∂x2
i

, (87)

where xi are d-dimensional Cartesian coordinates. When the temperature reaches
equilibrium, the time dependence cancels, and the temperature field is described
by Laplace’s equation:

∆u = 0. (88)

Any function with zero Laplacian is called harmonic.
Such a function, the potential, therefore can be seen as the equilibrium solu-

tion of a diffusion process (at infinite time), which is the first elementary relation
we meet between potential theory and Brownian diffusion. To specify in our ex-
ample the value of the temperature everywhere, we must fix the initial conditions
in case one starts from an out-of-equilibrium situation.

In the case we will consider here, we want to directly study equilibrium
and the associated harmonic functions, or more generally the potential. For that

136Joseph Fourier’s major work, La théorie analytique de la chaleur, was published in 1822,
with Et ignem regunt numeri as its motto (Numbers rule fire).
137One can cite O. D. Kellogg’s classic work Foundations of Potential Theory, Springer-Verlag

(1929); Dover Books on Advanced Mathematics (1969).
138See the article Brownian Motion and Potential Theory, by R. Hersch and R. J. Griego,

Scientific American, 220, March 1969; translated into French in Le mouvement brownien et la
théorie du potentiel, appearing in 1977 within the first out-of-series of Pour la Science.
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Figure 9: Newtonian potential in three dimensions.

purpose one must know either the position of the sources of the potential, or the
boundary conditions on it, in a way that will be made more precise in the following.

Giving the position of the sources is natural in the well-known theory of the
Newtonian or Coulomb potential, where the sources of the potential are masses
or electrostatic charges. Imposing boundary conditions on the potential is also
possible, as is natural in the case of heat conduction and temperature distribution,
where one gives the temperature distribution on the surface of a body to determine
the internal temperature distribution.

Such representations are mathematically equivalent. Let us first recall ele-
mentary properties of the Newtonian or Coulomb potential, that will be useful
for obtaining the finer properties of harmonic functions. To fix the ideas, we will
adopt the familiar language of a Newton or Coulomb potential created by masses
or electrostatic charges, but the mathematical results of course will not depend on
this choice.

3.2 Newtonian potential

3.2.1 The potential created by a point source

In order to consider the potential in a universal way, as for gravitation or elec-
trostatics, the physical constants like the universal gravitational constant G, or
the electric permeability of the vacuum, ε0, are not indicated. In general, we will
adopt the electrostatic language.

The potential at a point P in three dimensions created by a unit charge or
mass placed at the origin O is

u3(r) =
1

4πr
, r = |−−→OP |, (89)

where r is the distance between O and P (figure 9).
The associated electric (or gravitational) field is

�E3(�r) = −∇�r u3(r) =
1
4π

�r

r3
, (90)
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where �r is the relative position vector �r =
−−→
OP .

In d dimensions, the potential and field generalize to

ud(r) =
1

(d − 2)Sd

1
rd−2

, (91)

and
�Ed(�r) = −∇�r ud(r) =

1
Sd

�r

rd
, (92)

where Sd = 2πd/2/Γ(d/2) is the surface of the unit sphere in Rd.
The two-dimensional case is more complicated, and leads to a logarithmic

potential,

u2(r) =
1
2π

log
1
r
, (93)

�E2(�r) = −∇�r u2(r) =
1
2π

�r

r2
. (94)

3.2.2 Laplace’s equation and the Dirac distribution

The Laplacian of the above potential ud(r) vanishes identically everywhere in
space, except at the origin: ∆ud(r) = 0, r 	= 0. At �r = �0 it is divergent, and its
value is given by a distribution, namely

∆ud(r) =
1

(d − 2)Sd
∆

1
rd−2

= −δd(�r), (95)

where δd(�r) is the Dirac distribution in d dimensions, zero everywhere except at
the origin �r = �0, where it is singular (infinite). This divergence is such that the
integral ∫

Rd

f(�r)δd(�r) ddr = f(�0) (96)

yields the value at the origin of any test function f(�r).
Equation (95) is Poisson’s equation, where the second term represents the

mass or charge density, i.e., the source of the potential. In the case of a potential
(89), (91) or (93), such a source is a point, at which a singular density appears.

In the elementary approach that follows, we shall not use this formalism.
Rather, we will follow the elementary path that uses Gauss’ theorem.139

3.2.3 Gauss’ theorem

Gauss’ theorem says that the flux of an electric (or gravitational) field across any
closed surface Σ is equal to the total charge Q(Σ) (or mass) enclosed by the surface:∫

Σ

�E · d�S = Q(Σ). (97)

139O.D. Kellogg, op.cit.
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This theorem can be proved in two stages. By linearity, since the case of a dis-
tribution of charges can be treated by adding the fields, one can reduce it to the
case of a point charge. Actually, if each one of these fields satisfies Gauss’ theorem,
their sum will as well.

Next, for a point charge enclosed by the surface, we notice that the flux of �E
is invariant when we deform the surface Σ without crossing the charge.140 We can
thus restrict attention to a sphere around the charge, for which Gauss’ theorem is
trivial. Actually, because of the form (90) of the 1/r2 field with spherical symmetry,
the integral (97) on a sphere of a radius r is equal to the charge.

Gauss’ theorem immediately generalizes to any number of dimensions.

3.2.4 Potential generated by a sphere

Let us consider the sphere S(a) of radius a centered at the origin O. Imagine that
it carries a charge Q uniformly distributed over its surface.

The associated field �E(r) is radial and with spherical symmetry. It satisfies
Gauss’ theorem (97). If one chooses the surface Σ as a sphere S(r) centered at
O, of radius r > a, i.e., exterior to S(a), we have Q(Σ) = Q, and the flux of
�E(r) across Σ is simply, by spherical symmetry, E(r)4πr2 = Q. We then deduce
that E(r) = Q

4πr2 is the same field that would be created by a charge as if it was
concentrated at the center of sphere. If the surface Σ is chosen like a sphere S(r)
of radius r < a, i.e., inside S(a), then Q(Σ) = 0 and the flux (97) is then zero. By
symmetry, we then deduce that the field �E is zero everywhere inside the sphere.

Let uS(P ) now be the potential created at a point P by the same sphere
S(a) of radius a with total charge Q, uniformly distributed on the surface. This
potential has a spherical symmetry, as does its associated field. Outside the sphere,
the field is the same as that of a point charge Q placed at the center, while inside
the sphere the field is zero. The potential outside the sphere is therefore the one,
(89), created by a point charge placed at the center of the sphere, while inside the
sphere it is constant, and by continuity equal to its value on the boundary. One
thus has

uS(P ) =
1
4π

1
r
ϑ(r − a) +

1
4π

1
a
ϑ(a − r), r = |−−→OP |, (98)

where ϑ is the Heaviside distribution ϑ(x < 0) = 0, ϑ(0) = 1/2, ϑ(x > 0) = 1.

3.3 Harmonic functions and the Theorem of the Mean

3.3.1 Gauss’ theorem of the Arithmetic Mean

The property that two bodies or two charges attract one another with equal and
opposite forces, reflects itself in the potential. Actually the potential is symmetric
140We have, from the Green–Ostrogradski theorem, that

R
Σ

	E · d	S−R
Σ′ 	E · d	S =

R
D div 	E d3v =

− R
D ∆u d3v = 0, where D is the domain between the two surfaces Σ and Σ′, and u is the

potential. Indeed, we have the identities 	E = −	∇u and div(	∇u) = ∆u = 0, because u is
harmonic in the domain D without charges.
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with respect to the coordinates of the two points, in such a way that the potential
at P of a charge Q at S is the same as the potential at S of a charge Q at P . From
such a simple fact follow theorems with important applications. We derive two of
them, called Gauss’ theorems of the Arithmetic Mean.141

r

a

ρ

(S)
O

P

S

Figure 10: Newtonian potential (99) created by a uniformly charged sphere of radius
a.

The potential

uS(P ) =
Q

4πa2

∫
S

d2S

4πρ
, ρ = |−→SP | (99)

is the one at point P , created by all points S on the surface of a sphere S of radius
a, and with uniform charge density Q

4πa2 (see figure 10). In (98) we just saw that
outside the sphere the potential is equal to Q

4πr , where r is the distance r = |−−→OP |,
while inside the sphere it is constant and equal to Q

4πa .
But because of the exchange symmetry which we just mentioned, the poten-

tial can also be interpreted as the arithmetic mean on the surface of a sphere of
the potential created by the same charge Q, this time placed in P .

The equations (98) (99) therefore have the following interpretation:

a) The average on the surface of a sphere of the potential created by a charge
situated outside the sphere, and at a distance r from its center, is equal to
the value (varying as 1/r) of the potential at the center of the sphere.

b) The average on the surface of a sphere of the potential created by a charge
in any position inside the sphere, is equal to the value (varying as 1/a) of the
potential on the sphere, after concentrating the whole charge at the center
of the sphere.

Now let us suppose that we have a group of charges placed either entirely on the
outside of the sphere, or entirely on the inside. By adding up the above results for
each elementary charge, we find the following two generalizations:
141O. D. Kellogg, op. cit.
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a) Gauss’ Theorem of the Arithmetic Mean. The average on a surface of a
sphere of the potential created by charges situated entirely outside the sphere
is equal to the value of the potential at the center.

b) The Second Theorem of the Mean. The average of the potential on a surface
of a sphere, created by charges situated entirely inside the sphere, is inde-
pendent of their distribution inside the sphere, and it is equal to the total
charge divided by the radius of the sphere.142

3.3.2 Harmonic functions

Finally let us come back to harmonic functions, and consider a function u such
that ∆u = 0 in some domain D. Such a harmonic function can be represented as a
potential created inside the domain D by a distribution of charges outside D. We
can then apply the first of Gauss’ theorems, and obtain the mean-value theorem for
harmonic functions: The average of a harmonic function u on a sphere S centered
at a point P is equal to the value of u at P . For instance, in three dimensions:

u(P ) =
∫
S

u(S)
d2S

4πa2
, (100)

where a is the radius of the sphere; the theorem can be generalized to any number
of dimensions.

The reciprocal is also true: any function that fulfills the Theorem of the
Mean on every sphere inside a given domain, is harmonic inside that domain. This
theorem is going to be the key relation between potential theory and Brownian
motion.143

142One can find the first theorem in Gauss’ complete works, Allgemeine Lehrsätze, vol. V, p.
222. The second theorem, less known, can be found there too.
143A proof of the Theorem of the Mean can be obtained by vectorial analysis. We write the

average 〈u〉S of u on the surface of the (d − 1)-sphere S of radius a in Rd, as the flux of the
vector u(	r)	r/rd on the surface of the sphere:

〈u〉S =
1

Sd ad−1

Z
S

u(S) dd−1S =
1

Sd

Z
S

u(	r)
	r

rd
. 	n dd−1S = −

Z
S

u(	r)	∇ud(r). 	n dd−1S, (101)

where Sd is the area of the unit sphere, 	n is the unit vector normal to the surface of the sphere
(and directed towards the exterior), and where we used (92). We therefore use Green’s theorem
in the volume D inside the sphere:Z

D
[ud(r)∆u(	r) − u(	r)∆ud(r)] ddr =

Z
S

h
ud(r) 	∇u(	r) − u(	r)	∇ud(r)

i
. 	n dd−1S. (102)

We have ∆u(	r) = 0, because u is harmonic, and from (95) we have ∆ud(r) = −δd(	r). From the
definition (96) of Dirac distribution and by substituting (101) in (102), we have:

u(0) = 〈u〉S +

Z
S

h
ud(r) 	∇u(	r)

i
. 	n dd−1S. (103)
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3.4 The Dirichlet problem

A classic problem of potential theory is the one of Dirichlet. One considers a
domain D of the Euclidean space Rd and its boundary ∂D. The potential u is
given on the boundary by means of a given continuous function f :

∆u = 0 inside D, (106)
u = f on ∂D. (107)

For instance, the Dirichlet problem in the case of heat conduction is to de-
termine the equilibrium temperature inside a conducting body D, once the distri-
bution f of the temperature along the boundary ∂D is given.

It is here that Brownian motion comes into play, to provide an entirely prob-
abilistic representation of the solution.

3.5 Relation between potential theory and Brownian motion

3.5.1 Newtonian potential and probability density

The first relation, which contains the kernel of all the others, is obtained sim-
ply by considering the Gaussian probability density (26),144 which represents the
probability density of finding a Brownian particle at a point �r at time t, knowing
that the particle was at the origin at time t = 0. In d dimensions, formula (26)
generalizes to

P (�r; t) =
1

(4πDt)d/2
exp

(
− r2

4Dt

)
, (108)

where r is the distance from the origin.
By integrating P (�r; t) over the time variable t one obtains

D

∫ +∞

0

P (�r; t) dt =
1

(d − 2)Sd

1
rd−2

= ud(r). (109)

For a unit diffusion coefficient D = 1, the total Brownian probability density of
arriving at �r at any time is then exactly equal to the Newtonian potential created
at �r by a unit charge or mass.

Let us look now at the Dirichlet problem from a more general point of view.

As the Newtonian potential is constant on the sphere, ud(r) = ud(a) = 1
(d−2)Sdad−2 , the last

flux integral is transformed into a volume integral and it yields

ud(a)

Z
S

	∇u(	r). 	n dd−1S = ud(a)

Z
D

∆u(	r) ddr = 0, (104)

because u is a harmonic function by hypothesis. We have then obtained the Theorem of the
Mean as expected:

〈u〉S = u(0). (105)

144For this subject one can consult the book of K. L. Chung, Green, Brown, and Probability &
Brownian Motion on the Line, World Scientific, Singapore (2002).
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3.5.2 Discrete random walks and the Dirichlet problem

This problem was considered in 1920s with the work of Phillips and Wiener145, and
of Courant, Friedrichs and Lewy.146 They obtained a probabilistic representation
of the solution of the Dirichlet problem (106, 107), in the form of an approximate
sequence of random walks on a d-dimensional cubic lattice εZ

d, of lattice spacing
ε.

More precisely, one considers random walkers w = {wn, n ∈ N} on the lattice
εZd, at discrete times n = 0, 1, 2, · · · , all starting from the initial point w0 = P in
domain D and diffusing away. When the walkers ultimately reach the boundary,
one measures the value of the function f at that point on the boundary. One
repeats the process and then takes the average of the values of the function f over
all first contact points on the boundary reached by random walkers that started
from P .

We can formally write the averaging operation as

uε(P ) =
∑

{w: P 
→∂D}
f(wτD ), (110)

where the sum is over all random walks w = {wn, n ∈ N} on the lattice εZ
d,

at discrete times n = 0, 1, 2, · · · , leaving the initial point w0 = P and diffusing
towards the boundary. In (110), τD is the first instant at which the boundary ∂D
is reached by the random walker, and wτD its position on the boundary at this
instant. The sum must be normalized in a way to be a probability measure on the
set of discrete random walkers.

To extend the result in the continuum, one next takes the limit of the lattice
spacing ε to 0. The result limε→0 uε(P ) = u(P ) is then the value of u at point P ,
which is the solution of the Dirichlet problem in R

d.
In the language of heat theory for instance, the temperature at point P is

the average of the temperature at the boundary, evaluated after random walking
towards it!

In mathematics, a standard notation of the average (110) is

uε(P ) =
∫

f(wτD )Πε
P (dw), (111)

where Πε
P is the probability measure on discrete random walks in εZd started at

P .

3.5.3 Norbert Wiener

A first attempt to define integral calculus over a function space was made by
Daniell (circa 1920).147 A few years later, Norbert Wiener introduced a measure
145H. B. Phillips and N. Wiener, J. Math. Phys., 2, pp. 105–124 (1923).
146R. Courant, K. Friedrichs and K. Lewy, Math. Ann., 100, pp. 37–74 (1928).
147P.J. Daniell, Ann. Math. 21, 203 (1920).
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in function space which is rigorous from a mathematical point of view (it is a bona
fide Borel measure), and which made it possible to define and calculate an integral
over a space of functions.

Wiener had indeed known Einstein’s theory since his visit to Cambridge in
1913. At 19, he came to study logic with Bertrand Russell, who suggested that he
go listen to Hardy, the mathematician, and read Einstein!

So, motivated also by his reading of Perrin, Wiener constructed, in his funda-
mental article of 1923, “Differential Space”,148 a probability measure for Brownian
paths in R (then in Rd). The basic idea was to directly construct on the space of
continuous functions w(t) of a single real variable (representing the position as a
function of time), a probability measure such that the changes of the positions
w(ti) = xi, i = 0, . . . , n, over disjoint time intervals, [ti−1, ti], i = 1, . . . , n, have a
joint Gaussian probability distribution,

P ({xi}; {ti}) =
n∏

i=1

1
[4πD(ti − ti−1)]1/2

exp
[
− (xi − xi−1)2

4D(ti − ti−1)

]
. (112)

This is a direct generalization of the Brownian displacement distribution (25).
Wiener obtained his measure by using an explicit mapping of the space C

of continuous functions into the interval (0,1) (minus a set of Lebesgue measure
zero). This mapping allows to pull-back the ordinary Lebesgue measure on the
space C. In this language, the Brownian motion has the following probabilistic
interpretation: a Brownian path corresponds to the random choice of an element
of the measured set C (i.e., a continuous function), endowed with the “Wiener
measure”.

Nowadays, this measure is indeed universally called Wiener measure in math-
ematical circles, while physicists prefer to speak of functional integrals, even
though, like Monsieur Jourdain, they really calculate with the Wiener measure
when they perform their formal calculations!149

The integral over such a measure is called Wiener average. It is noted W(dw)
here and more precisely WP (dw) for a Brownian motion w started at P . It corre-
sponds to the continuous limit for ε → 0 of the measure Πε(dw) on random walks
on the discrete lattice εZd, introduced in the preceding section.

Once that construction was made, Wiener verified that the measure of the
subset of differentiable functions vanishes, in agreement with Perrin’s intuition,
and that the support of the measure is given by Hölder functions (of order at
least 1/2 − ε, ε > 0). Along the years, he kept developing further the very broad
ramifications of his theory.150

148N. Wiener, J. Math. Phys., 2, pp. 131–174 (1923).
149This is true in perturbation theory. See, e.g., in the case of polymer theory, B. Duplantier,

Renormalization and Conformal Invariance for Polymers, in Proceedings of the Seventh Interna-
tional Summer School on Fundamental Problems in Statistical Mechanics, Altenberg, Germany,
June 18–30, 1989, H. van Beijeren Editor, North-Holland, Amsterdam (1990).
150N. Wiener, Acta. Math. 55, 117 (1930); ; R. E. A. C. Paley and N. Wiener, Fourier Transforms
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In a study written in 1964 on Wiener and functional integration, Mark Kac
highlighted the profound originality of Wiener during his time, and in counterpoint,
the difficulty for mathematicians to understand his approach:151

“Only Paul Lévy, in France, who had himself been thinking along similar
lines, fully appreciated their significance.”

The next steps were indeed made by Paul Lévy, in his great work on Brown-
ian motion, Processus stochastiques et mouvement brownien (1948).152 Since then,
the blooming of the subject in mathematics was such that one can only make an
extremely partial citation list. We refer the interested reader to the introductory
article of J.-F. Le Gall for a first journey into the Brownian world of mathemat-
ics,153 and to D. Revuz and M. Yor’s book for a more thorough visit.154

The connection between the Wiener path measure for Brownian motion and
path integrals is perhaps best intuitively understood by considering the multiple
distribution (112) for a set of successive equal time intervals, ti = i

n t, i ∈ {1, n}.
One conditions the path, normalized to start at the origin x = 0 at time t = 0, to
be at times ti = i

n t, i ∈ {1, n} within intervals dxi of the set of points xi in R, and
one then takes the formal limit n → ∞:

W(dw) = lim
n→∞

n∏
i=1

dxiP ({xi}; {ti}))

= lim
n→∞

n∏
i=1

dxi

n∏
i=1

1
(4πD t/n)1/2

exp
[
− (xi − xi−1)2

4D t/n

]

= Dw exp

(
− 1

4D

∫ t

0

(
dw(t′)

dt′

)2

dt′
)

, (113)

whith now a continuum “Lebesgue” measure on paths,

Dw = lim
n→∞

n∏
i=1

dxi

(4πD t/n)1/2
.

This notation is marvellously appealing to physicists, since one recognizes in the
exponential in (113) the Boltzmann–Gibbs weight associated with the classical
kinetic energy of the particle. As Marc Kac noted155,

in the Complex Domain, Amer. Math. Soc. Colloq. Publ., 19, New York (1934); N. Wiener,
Generalized Harmonic Analysis and Tauberian Theorems, MIT Press, Cambridge, Mass. (1964).
151M. Kac, Bull. Amer. Math. Soc., 72, pp. 52–68 (1964).
152Paul Lévy, Processus stochastiques et mouvement brownien, Gauthier-Villars, Paris (1965).
153J.-F. Le Gall, Introduction au mouvement brownien, Journées annuelles de la Société

Mathématique de France, 28 janvier 1989, three exposés on Brownian motion (J.-F. Le Gall:
supra, G. Ben Arous: Grandes déviations et noyau de la chaleur, B. Duplantier: Le mouvement
brownien en physique, les polymères et leur relation avec les phénomènes critiques).
154D. Revuz and M. Yor, Continuous Martingales and Brownian Motion, Berlin-Heidelberg:

Springer (1991); second edition, 1994.
155M. Kac, Probability and related Topics in the Physical Sciences, Interscience, New York

(1959).
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“The disadvantages of such an approach from the purely mathematical point
of view are obvious, although it is appealing on formal grounds”.

In d dimensions, the formal equivalence between Wiener’s measure and func-
tional integrals is simply obtained by using the d-dimensional Gauss distribution,
so that

W(dw) = Dw exp

(
− 1

4D

∫ t

0

(
d�w(t′)

dt′

)2

dt′
)

, (114)

Dw = lim
n→∞

n∏
i=1

ddxi

(4πD t/n)d/2
.

The rigorous connection between the Wiener path integral and Brownian mo-
tion is further illuminated by the Feyman–Kac formula that allows one to write ex-
plicit path integral representations for the solutions of parabolic differential equa-
tions, corresponding to Brownian motion in presence of a general potential,156 the
case pioneered by Smoluchowski.

When formally continued to imaginary time, the Feyman–Kac formula pro-
vides an expression for the Green function of the Schrödinger equation, thus leading
to the celebrated path integral representation of Quantum Mechanics invented by
Feynman in 1948.157

3.5.4 S. Kakutani

The existence of the Wiener measure and Wiener integral allowed for some very
important progress by S. Kakutani in 1944–1945.158 He showed that by substitut-
ing an integral with the Wiener measure W in the formula (111) with the discrete
measure Πε indeed solved the Dirichlet problem in continuous space R

d. Thus we
have Kakutani’s formula

u(P ) =
∫

f(wτD )WP (dw). (115)

That means that the potential at any point P is given by the average of the potential
chosen at random on the boundary by a Brownian motion started at P (figure 11).

In the following section we give an elementary demonstration of this result.

156M. Kac, Probability and related Topics in the Physical Sciences, op. cit.; L. S. Schulman,
Techniques and Applications of Path Integration, John Wiley and Sons, New York (1981); F. W.
Wiegel, Introduction to Path Integral Methods in Physics and Polymer Science, World Scientific,
Singapore (1986); J. Zinn-Justin, Quantum Field Theory and Critical Phenomena, 4th Edition,
Oxford University Press (2002).
157R. P. Feynman, Rev. Mod. Phys. 20, 367 (1948); R. P. Feynman and A. R. Hibbs, Quantum

Mechanics and Path Integrals, McGraw-Hill, New York (1965).
158S. Kakutani, Proc. Imp. Acad. Japan, 20, pp. 706–714 (1944).
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Figure 11: The Dirichlet problem in a domain D, and its Brownian representation.
The point w = wτD is the point of first contact of a Brownian motion that started
at P with the boundary ∂D, at the instant τD of first exit from the domain D. The
point S is the point of first passage across the surface of the sphere S.

3.5.5 Demonstration

In probability theory, the quantity u(P ) defined by equation (115) is called the
expectation value associated to the point P , because it represents the expectation
for a random sampling of the value f on the boundary, by a process of Brownian
diffusion from P .

We want to verify that this expectation value fulfills the two conditions (106)
and (107).

The second condition is easy to verify: if the point P is on the boundary ∂D,
any Brownian motion w coming from P is immediately stopped on the boundary
at wτD = P , therefore u(P ) = f(P ) for P on ∂D, as expected.

Moreover, if the Brownian motion leaves from an internal point P , close to a
point P0 of the boundary, it is (almost) certain (in a probabilistic sense) that the
motion will meet the boundary in a neighborhood of P0, and that the expectation
value u(P ) will be close to the value f(P0) of f in P0. Kakutani’s solution has
the right properties of regularity near the boundary, under the condition that the
latter has a sufficiently regular geometry and that the “temperature” f on the
boundary is a continuous function.

The continuity of the expectation value u, with respect to point P , is equally
clear: a small displacement of P will only slightly modify the Brownian trajectories
diffusing from P , as well as their subsequent exploration of the boundary.

We will now establish the first property, (106), i.e., that the expectation
value u(P ) (115) is a harmonic function, by showing that it satisfies the equivalent
property (100) on all spheres centered in P .

We draw a sphere S of radius a centered at P and contained inside the
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domain D (figure 11). The aim is to show that the Brownian expectation value
u(P ) obtained by leaving from any point P is equal to the average of Brownian
expectation values u(S) obtained from any point S on the surface of the sphere S.

In order to move beyond the boundary ∂D of the domain, a Brownian motion
must cross the sphere S at least once. Calling S the first crossing point of the sphere
(figure 11), and u(P/S) the expectation value obtained for all Brownian motions
coming from P and first crossing S at the point S.

As there is no preferential direction for Brownian motion, each point of S can
be met first with equal probability. One distinguishes the average for Brownian
motions starting at P in two steps: the choice of the point of first passage S, and
diffusion across S, with the expectation value u(P/S). By averaging the averages,
one has the result that u(P ) must be equal to the average of u(P/S) on the sphere,
i.e., in mathematical terms:

u(P ) =
∫
S

u(P/S)
d2S

4πa2
. (116)

The last thing to show is that the expectation value u(P/S), obtained by
leaving from P and passing through S, is the same as the expectation value u(S),
obtained by simply starting from S on the sphere. It is here that a very important
property of Brownian motion comes into play: the motion at an instant t only
depends on the position at that instant and not on previous motions. Somehow,
there is an absolute loss of memory, where only the present instant and position
are important: Brownian motion is Markovian. In probability theory, one speaks
generally as well of a Markov process when the future dynamic of a process is
not influenced by its previous states. The future behavior of a Brownian particle
leaving from S, or passing through S knowing that it began at P , does not differ.
It follows that u(P/S) = u(S), which ends the proof of the Theorem of the Mean
(100).

3.6 Recurrence properties of Brownian motion

We give an illustration of a non-trivial probabilistic property of Brownian motion,
which is deduced from potential theory, that is its recurrence properties.

3.6.1 Brownian motion in one dimension

Let us consider now the one-dimensional real line R and points x of a domain
D, here the line segment D = [0, R], where R is a positive number. Let us
search for the harmonic function u(x) that satisfies the simple Dirichlet problem:
u(0) = 0, u(R) = 1. In one dimension, the Laplacian (87) is simply the second
derivative, so the harmonic equation (106) becomes d2u(x)/dx2 = 0. The solution
is simply linear in x: u(x) = x/R; it evidently satisfies the required conditions at
the boundaries.
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Let us consider Kakutani’s solution for the Dirichlet problem by Brownian
mathematical expectation. The boundary ∂D of the segment D = [0, R] is made up
of two points: ∂D = {0, R}. The function f with Dirichlet conditions (107), takes
the values on the boundary: f(0) = 0, f(R) = 1. According to Kakutani’s result,
the value u(x) = x/R of the harmonic function u is the average of the function f
obtained from random sampling by means of a Brownian motion starting at x. The
case of the first Brownian exit from the segment D = [0, R] at point x = 0 gives
a value f = 0, and at point x = R the value f = 1. The Brownian expectation
of f is thus exactly the probability for the Brownian motion to first exit from the
segment [0, R] at the endpoint R rather than at 0, or else the probability, starting
from x, to attain R before 0. The complementary probability to attain 0 before R
is thus pR(x) = 1 − u(x) = 1 − x/R.

Let us now keep the point x fixed while taking the limit R → ∞, so that the
segment D extends to the positive real axis R

+. We see that pR→∞(x) → 1, and
this is for all x. The probability p∞(x), for a Brownian motion started at x, to
reach the origin 0 before leaving to infinity is therefore identically equal to one.

The Brownian motion, wherever it leaves from, passes by the origin (quasi-)
certainly159. Since spatial and temporal origins were arbitrary in our demonstra-
tion, the following property was established: a Brownian motion in one dimension
passes through all points on the real axis, infinitely many times. One says it is
recurrent in one dimension.

This property did not appear as evident a priori from the probability theory
side. Thanks to the relation to potential theory, it has been obtained by sim-
ply resolving a second order differential equation! Einstein would surely not have
thought of this in 1905, although who knows?

Now we will generalize the above study to two and then to d dimensions.

3.6.2 The two-dimensional case

This time, we consider the planar annular domain D, which is that between two
concentric circles C1 and C2 centered at the origin O, of respective radii ρ1 and
ρ2, with ρ1 < ρ2. The boundary of the domain D is then made of two circles,
∂D = C1 ∪ C2. We pose the Dirichlet problem in the annular domain D:

∆u = 0 inside D, (117)
u = 0 on C1, u = 1 on C2. (118)

By using the two-dimensional Newtonian potential u2(r) (93), it is easy to see that
the solution to the Dirichlet problem is spherically symmetric and at a distance r

159In continuous probability theory, an event with probability 1 is only said to be “quasi-
certain” or “almost surely true”, contrary to the common language. The reason is that in the
case of events forming a continuum, it can always exist a non-empty set of irreducible events
where the prediction is not realized, which is still of zero measure in the sense of measure theory,
and therefore of zero probability. One cannot forgo the consideration of zero-measure sets, hence
go beyond the “almost surely” (a.s.) probabilistic description.
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from the center evaluates to:

u2(r; ρ1, ρ2) =
u2(r) − u2(ρ1)
u2(ρ2) − u2(ρ1)

=
log r − log ρ1

log ρ2 − log ρ1
, ρ1 ≤ r ≤ ρ2. (119)

Actually, this function obviously satisfies (118) and is harmonic in the annular
domain D, because the potential u2(r) (93) is harmonic too (except at the origin,
which indeed does not belong to D).

Let us come now to Kakutani’s representation of the solution to the Dirich-
let problem. In a manner similar to the one-dimensional case in the preceding
paragraph, u2(r; ρ1, ρ2) (119) represents the probability that a Brownian motion,
started at a distance r from the center, hits the outer circle C2 before hitting the
inner circle C1.

As in the preceding paragraph, let us fix the distance r and the internal circle
C1, and push the boundary of the outer circle C2 to infinity. By taking ρ2 → ∞
in formula (119), we see that by continuity the probability that the Brownian
motion goes to infinity is u2(r; ρ1,∞) = 0, for all r and ρ1 finite. It means that
the Brownian motion reaches the disk of radius ρ1 with probability 1, whatever its
point of departure outside of the disk. Since the initial departure time is arbitrary
too, likewise the origin in the plane, one then concludes that a two-dimensional
Brownian motion passes through neighboring points of any point infinitely often.
It is then recurrent in two dimensions, just as it is in one dimension.

It is equally interesting to fix r and ρ2 in (119), and to take the limit of an
infinitesimal circle around the origin, i.e., ρ1 → 0. We then find that by continuity
u2(r; ρ1 = 0, ρ2) = 1. The probability that a Brownian motion starting at a dis-
tance r 	= 0 from the origin, moves away from the origin up to a distance ρ2 > r
without having visited the origin at ρ1 = 0, is then equal to 1. In other words,
a Brownian motion that does not leave from the origin O avoids the origin with
probability 1, without ever being able to pass through it.

We deduce an apparently paradoxical result: in two dimensions, any Brown-
ian motion passes through a given point with zero probability, but it passes through
immediate neighboring points infinitely often with probability 1!

Such a double result is due to the presence in the expectation (119) of one
function, the logarithm, that diverges both at short distance for ρ1 → 0, and
at long distance for ρ2 → ∞. This is peculiar to two dimensions and announces
exceptional properties known as conformal invariance in two dimensions, which
will be described in the following section.

In d > 2 dimensions, a simple power law controls the Newtonian potential
ud(r) (91), and only a divergence at short distance appears. We will see the con-
sequences of such a divergence on the recurrence properties of Brownian motion.

Let us mention however that these properties only constitute the “tip of the
iceberg”: the singular character of the potential at short distances is the source of
divergences in quantum field theories, which led to the creation of renormalization
theory, whose consequences have been quite fruitful in the physics of elementary
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particles and in statistical mechanics.160 Actually, the intersection of Brownian
motions161 provides the random geometric mechanism that underlies any interact-
ing field theory.162 This equivalence is fundamental in the theory of polymers163

and also in the rigorous theory of second order phase transitions.164 But “Revenons
à nos moutons.”165

3.6.3 The d-dimensional case

We are now well enough equipped to pass to the d-dimensional case, for d > 2.
Let us consider two concentric hyperspheres, S1 and S2, centered at origin O, and
of respective radii ρ1 and ρ2, with ρ1 < ρ2. The boundary of the domain D is then
made of the two spheres ∂D = S1 ∪ S2. Let us state the Dirichlet problem (107)

∆u = 0 inside D, (120)
u = 0 on S1, u = 1 on S2. (121)

Here again, in using this time the d-dimensional Newtonian potential ud(r) (91),
it is easy to see that the spherically symmetric solution of the Dirichlet problem
at a distance r from the center, is:

ud(r; ρ1, ρ2) =
ud(r) − ud(ρ1)
ud(ρ2) − ud(ρ1)

=
r2−d − ρ2−d

1

ρ2−d
2 − ρ2−d

1

, ρ1 ≤ r ≤ ρ2. (122)

This function satisfies (121); it is harmonic in the annular d-dimensional domain
D, because the potential ud(r) (91) is harmonic too (except at the origin, which
does not belong to D).

Finally let us apply the probabilistic result: ud(r; ρ1, ρ2) (122) is the proba-
bility that a Brownian motion, starting from a given point at a distance r from
the center, meets the outer sphere before the internal sphere.

First, let us take in (122) the limit ρ2 → ∞, at r and ρ1 fixed. As the
dimension d is here superior to 2, one has ρ2−d

2 → 0. The probability for the
Brownian motion to escape to infinity, ud(r; ρ1, ρ2 → ∞), is by continuity the
limit ud(r; ρ1,∞) = 1 − (ρ1/r)d−2, which is finite.
160For this subject, one can consult the text Renormalization from Séminaire Poincaré 2002, in

B. Duplantier & V. Rivasseau Eds., Poincaré Seminar 2002, Progress in Mathematical Physics,
vol. 30, Birkhäuser, Bâle (2003); see also the monograph by J. Zinn-Justin, Quantum Field
Theory and Critical Phenomena, 4th Edition, Oxford University Press (2002).
161G. F. Lawler, Intersection of Random Walks (Birkhäuser, Boston, 1991).
162K. Symanzyk, in Local Quantum Theory, edited by R. Jost (Academic Press, London, New

York (1969)).
163P.-G. de Gennes, Phys. Lett. A38, 339–340 (1972); J. des Cloizeaux, J. de Physique 36,

281–291 (1975).
164M. Aizenman, Phys. Rev. Lett. 47, 1–4, 886 (1981); Commun. Math. Phys. 86, 1–48 (1982);

D. C. Brydges, J. Fröhlich, and T. Spencer, Commun. Math. Phys. 83, 123–150 (1982); G. F.
Lawler, Commun. Math. Phys. 86, 539–554 (1982).
165From La farce de Maistre Pierre Pathelin (c. 1460), meaning “Let’s get back to our main

subject”.
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This result shows that in all spaces with at least three dimensions Brownian
motion is not recurrent, because the space is larger than that in one or two di-
mensions. We say that it is transient. Such a result, very important in probability
theory, was obtained in an elegant and simple manner via potential theory.

The complementary probability at a distance ρ1 ≤ r, pd(r; ρ1,∞) = 1 −
ud(r; ρ1,∞), that is, of visiting a neighborhood of the origin, is then equal to
(ρ1/r)d−2. In the usual physical case, d = 3, one finds p3(r; ρ1,∞) = ρ1/r, for
ρ1 ≤ r.

One can generalize the definition of pd(r; ρ1,∞) to the whole space, by giving
it the value 1 inside the sphere of radius ρ1, that is for r ≤ ρ1. Such a generalized
function is called potential capacity of the sphere of radius ρ1. The potential ca-
pacity of an ensemble B is an important concept in classic potential theory; it is
a harmonic function outside B, equal to 1 inside B, and zero at infinity. It is then
the probability that a single particle, animated by Brownian motion and leaving
from a given point, will reach B.

Research in this domain allowed the discovery of important generalizations,
both for the theory of Brownian motion and potential theory. We have seen that
the equivalence between them rests on the Markovian property of Brownian mo-
tion. Similarly, a generalized potential theory can be associated to any “standard”
Markov process.

We see therefore the profound relation that exists between the mathematical
theory of potential, invented in the 17th century by Newton, then developed by
Laplace, Poisson and Green, and Brownian motion, observed during the same
era, but understood only in the 20th century, thanks to Sutherland, Einstein,
Smoluchowski, Perrin and Langevin in physics, Bachelier, Wiener, Lévy, Kakutani
and many others in mathematics.

4 The fine geometry of the planar Brownian curve

4.1 The Brownian boundary

In this last part, we are interested in the geometry of the Brownian curve in the
plane. By Brownian curve, or Brownian path, we mean the random curve traced
by a Brownian motion on the plane. We can see a typical representative in figure 1.
In particular, we will consider the boundary of such a curve. It is the outer envelope
of the Brownian curve. We observe that it is an extremely irregular curve, fractal
in Mandelbrot’s sense (figure 12).166

From a series of accurate numerical simulations, Mandelbrot made the con-
jecture in 1982 that such a boundary is the continuous limit of a particular random
walk, the self-avoiding walk (SAW) (figure 13). That is a process where the random

166See the classic works of Benôıt Mandelbrot, Les objets fractals: forme, hasard et dimension,
survol du langage fractal, Champs, Flammarion (1999), and The Fractal Geometry of Nature,
Freeman, New York (1982).
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Figure 12: Boundary or outer envelope curve of a planar Brownian path.

walker cannot visit any point of his own path twice. To define it, one considers
a priori the ensemble of all possible random paths of a given length (with and
without self-intersections) on, say, a square lattice, and select among them the
small subset of all the paths that do not self-intersect. Those are then weighted
with a uniform measure.167

The resulting conjecture is that the fractal dimension or Hausdorff dimension
of the Brownian boundary is equal to DH = 4/3, like that which was calculated
by the Dutch theoretical physicist Bernard Nienhuis in 1982 for a two-dimensional
self-avoiding random walk.168 The fractal dimension DH is here defined in an non-
rigorous way, as follows. We cover the fractal object of size R by small disjoint
disks of radius ε, and we count the number n of these disks. In general, this number
grows with a power law in R and ε, n ∝ (R/ε)DH . We then see that DH generalizes
the notion of Euclidean dimension of regular sets to the case of very irregular sets.

Nienhuis used a representation of statistical mechanics, known as the Cou-
lomb gas, a precursor to the methods of conformal invariance or of conformal
field theories that in 1984 would break into the theory of two-dimensional critical
phenomena, thanks to the work of Belavin, Polyakov, and Zamolodchikov.169

167See the monographs: P.-G. de Gennes, Scaling Concepts in Polymer Physics, Cornell Uni-
versity Press (1979); J. des Cloizeaux and G. Jannink, Polymers in Solution, their Modeling and
Structure (Clarendon, Oxford University Press, 1989).
168B. Nienhuis, Phys. Rev. Lett. 49, pp. 1062–1065 (1982); J. Stat. Phys. 34, pp. 731–761 (1984);

Phase Transitions and Critical Phenomena, edited by C. Domb et J. L. Lebowitz, (Academic
Press, London, 1987), Vol. 11; see also M. den Nijs, J. Phys. A 12, pp. 1857–1868 (1979); Phys.
Rev. B 27, pp. 1674–1679 (1983).
169A. A. Belavin, A. M. Polyakov and A. B. Zamolodchikov, Nucl. Phys. B241, 333–380 (1984).

One can find an introduction in the book by C. Itzykson and J.-M. Drouffe, Théorie statistique
des champs, tome 2, EDP Sciences/CNRS Éditions (2000); English version: Statistical Field
Theory, Vol. 2, Cambridge University Press, Cambridge (1989). For further reading, see J. L.
Cardy, in Phase Transitions and Critical Phenomena, edited by C. Domb and J. L. Lebowitz,
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SAW in plane - 1,000,000 steps

Figure 13: A self-avoiding walk in the plane, made of 1 million steps! (Kindly
provided by T. G. Kennedy, University of Arizona.)

A heuristic demonstration of Mandelbrot’s conjecture, inspired by some prob-
abilistic results of conformal invariance by Lawler and Werner,170 was given by the
author in 1998 in the area of theoretical physics, by means of the formalism of “2D
quantum gravity” in conformal field theory.171

Mandelbrot’s conjecture was at last rigorously proved in the framework of
probability theory in 2000 by Greg Lawler, Oded Schramm and Wendelin Wer-
ner,172 by means of a conformally invariant stochastic process invented by
Schramm, the SLE (“Stochastic Loewner Evolution”), which is itself based on
Brownian motion.173

(Academic Press, London, 1987), Vol. 11; J. L. Cardy, Conformal Invariance and Statistical
Mechanics, in “Fields, Strings, and Critical Phenomena”, Les Houches Summer School 1988,
edited by É. Brézin and J. Zinn-Justin, North-Holland, Amsterdam (1990); Ph. Di Francesco, P.
Mathieu and D. Sénéchal, Conformal Field Theory, Springer-Verlag, New York (1997).
170G. F. Lawler and W. Werner, Ann. Probab. 27, pp. 1601–1642 (1999).
171B. Duplantier, Phys. Rev. Lett. 81, pp. 5489–5492 (1998); ibid. 82, pp. 880–883 (1999),

arXiv:cond-mat/9812439.
172G. F. Lawler, O. Schramm, and W. Werner, Acta Math. 187, (I) pp. 237–273, (II) pp.

275–308 (2001), arXiv:math.PR/9911084, arXiv:math.PR/0003156; Ann. Inst. Henri Poincaré
PR 38, pp. 109–123 (2002), arXiv:math.PR/0005294; Acta Math. 189, pp. 179–201 (2002),
arXiv:math.PR/0005295; Math. Res. Lett. 8, pp. 401–411 (2001), math.PR/0010165.
173O. Schramm, Israel Jour. Math. 118, pp. 221–288 (2000). The SLEκ process, and its path,

are generated by the Loewner equation, describing the evolution of the Riemann’s conformal
map which maps the unit disc, slit by the random path, onto itself. This map erases the path
and maps its two sides onto the boundary of the unit disc, under the form of a Brownian motion
characterized by a diffusion coefficient κ. This is the case of the so-called radial SLE. Another
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u=1

0u

u=0

Figure 14: Dirichlet problem associated to a planar Brownian path. The latter
serves as an electrode where the potential vanishes.

We are not going to describe this work in detail here174, but we will look in-
stead at the generalization of the results on the geometry of Brownian motion, and
at the multifractal nature of its boundary. The latter actually reveals a structure

case is that of the chordal SLE, where the conformal map acts on the slit complex half-plane. See
the recent book by G. F. Lawler, Conformally Invariant Processes in the Plane, Mathematical
Surveys and Monographs, AMS, Vol. 114 (2005).
174For further details, see the article for the general public by Wendelin Werner, Les chemins

aléatoires, published in Pour La Science in August 2001.
For the SLE process, consult: the notes from W. Werner’s courses, Random Planar Curves
and Schramm–Loewner Evolutions, Lectures Notes from the 2002 Saint-Flour Summer School,
Springer L. N. Math. 1840, 107–195, (2004), arXiv:math.PR/0303354; the book by G. F. Lawler,
Conformally Invariant Processes in the Plane, op. cit., as well as the article of W. Kager and
B. Nienhuis, A Guide to Stochastic Loewner Evolution and its Applications, J. Stat. Phys. 115,
1149–1229 (2004), arXiv:math-phys/0312056.

For the link of SLE with quantum gravity, see: B. Duplantier, Conformal Fractal Geometry
and Boundary Quantum Gravity, in Fractal Geometry and Applications, A Jubilee of Benôıt
Mandelbrot, Proceedings of Symposia in Pure Mathematics, AMS, Vol. 72, Part 2, edited by M.
L. Lapidus and F. van Frankenhuijsen, 365–482 (2004); arXiv:math-phys/0303034.

For the link of SLE with conformal field theories, see in mathematics: R. Friedrich and W.
Werner, C. R. Acad. Sci. Paris Sér. I Math. 335, 947–952 (2002), arXiv:math.PR/0209382;
Commun. Math. Phys., 243, 105–122 (2003), arXiv:math-ph/0301018; W. Werner, Conformal
restriction and related questions, Proceedings of the conference Conformal Invariance and Ran-
dom Spatial Processes, Edinburgh, July 2003, arXiv:math.PR/0307353; W. Werner and G. F.
Lawler, Probab. Th. Rel. Fields 128, pp. 565–588 (2004), arXiv:math.PR/0304419; W. Werner, C.
R. Ac. Sci. Paris Sér. I Math. 337, 481–486 (2003), arXiv:math.PR/0308164; see also J. Dubédat,
arXiv:math.PR/0411299; arXiv:math.PR/0507276; in physics: M. Bauer and D. Bernard, Phys.
Lett. B543, 135–138 (2002), arXiv:math-ph/0206028; Commun. Math. Phys. 239, 493–521 (2003),
arXiv:hep-th/0210015; Phys. Lett. B557, 309–316 (2003), arXiv:hep-th/0301064; Ann. Henri
Poincaré 5, 289–326 (2004), arXiv:math-ph/0305061; Proceedings of the conference Conformal
Invariance and Random Spatial Processes, Edinburgh, July 2003, arXiv:math-ph/0401019; M.
Bauer, D. Bernard and J. Houdayer, J. Stat. Mech. P03001 (2005), arXiv:math-ph/0411038; M.
Bauer and D. Bernard, arXiv:cond-mat/0412372; M. Bauer, D. Bernard and K. Kytölä, J. Stat.
Phys. (to appear), arXiv:math-ph/0503024; K. Kytölä, arXiv:math-ph/0504057.
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made of a continuum of fractal subsets that we will describe.
In continuity with the previous part, we will focus on the potential theory

associated with the neighborhood of a planar Brownian path. We will show how the
fine geometry of the Brownian boundary appears as an essential component of the
solution to the Dirichlet associated electrostatic problem.

4.2 Potential theory in the neighborhood of a Brownian curve

4.2.1 Brownian Dirichlet problem

Let us then consider a planar Brownian path B enclosed by a large circle, and
the associated Dirichlet problem where the potential u has the value u = 0 on
the boundary ∂B of the Brownian curve, and u = 1 on the circle (figure 14). The
Brownian path serves as an electrode creating the potential, and by electrostatic
induction, its boundary will charge itself. This a priori appears as a rather complex
problem, since the Brownian curve is completely random!

Far from the Brownian curve, the potential will depend on the global geome-
try of the system, and in particular on the presence of the outer circle that acts as
an external electrode. Let us imagine for a moment that this circle is pushed to-
wards infinity. Seen from intermediate regions located very far from the Brownian
curve (and from the outer circle), the Brownian electrode would then appear to
be confined to a point. Its potential will then coincide with that of a point charge
equal to the total charge carried by the boundary of the Brownian curve, i.e., the
logarithmic Newtonian potential u2(r) (93).

On the other hand, close to the Brownian curve, the geometry of the boundary
is crucial. The potential vanishes exactly on the boundary ∂B, and the natural
question here is its analytic behavior in the neighborhood of ∂B, i.e., the way in
which it goes to 0. As the geometry of the boundary is particularly wild, the way
the potential vanishes is as well.

However, the random Brownian curve hides at its heart a fundamental struc-
tural regularity connected to its conformal invariance, and one can in fact describe
the potential close to the Brownian path in a way which is probabilistic, but uni-
versal.

4.2.2 Conformal invariance

A conformal map Φ of the plane is a bijection of the plane into itself that preserves
angles between curve intersections. To any analytic function Φ(z) in the complex
plane can be associated one such conformal map. Locally, i.e., infinitesimally close
to the image Φ(z) of any point z in complex coordinates, a conformal map is the
composition of a local dilation (by a factor of |Φ′(z)|), and of a rotation around
Φ(z) (by an angle arg Φ′(z)). This is why angles are locally conserved.

Let us come back for a moment to the Brownian representation of the gen-
eral Dirichlet problem in a domain D (figure 11). An auxiliary Brownian motion
issued from an arbitrary point P , stops upon touching the boundary ∂D, and
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its Wiener integral represents the potential u(P ). Let us imagine the domain D
to be transformed by a conformal map Φ into a domain D′ = Φ(D), while the
Brownian trajectory B is transformed into a curve Φ(B), which is thus stopped
upon touching the boundary ∂D′ = Φ(∂D). Paul Lévy showed that Φ(B) is still
the trajectory of a Brownian motion, after a time reparameterization: this is the
property of conformal invariance of planar Brownian motion.175

Let us then consider the new potential u′(P ′) at a transformed point P ′ =
Φ(P ), i.e., the solution to the Dirichlet problem in the transformed domain D′.
Since all geometric objects that represent the potential were transformed by Φ,
and since the transformed auxiliary Brownian path is still Brownian, the result
is that its Wiener integral, u′(P ′), does not change. The potential u′(P ′) is then
equal to the potential u(P ), that is the solution to the Dirichlet problem in the
original domain D, and thus there is an invariance of potential under a conformal
map.

In the case we are considering closely here, that is of the Dirichlet problem of
a potential u(P ) in the neighborhood of a planar Brownian curve (figure 14), the
Brownian representation of the potential introduces a second auxiliary Brownian
motion that diffuses from the point P , while avoiding the original Brownian curve
(figure 15). As we just saw, the two Brownian paths are statistically conformal
invariant and this probabilistic geometric problem is invariant under any conformal
map in the plane.

4.2.3 The role of angles

Conformal maps preserve angles in the plane, and this is why the latter will play
an essential role in the description of the potential close to the Brownian boundary.

Let us first consider the simple problem of a potential existing in an angular
sector of the plane. More precisely, let us consider an open angle θ centered at
a point w (figure 16). One easily shows, by using the singular conformal map of
the complex plane that opens the angle θ into a flat angle, Φ(z) = zπ/θ, that the
potential u(z) varies at any point z close to w like

u(z) ≈ rπ/θ, (123)

where r is the distance from w, r = |z − w|. For a flat angle, θ = π, and we again
find a linear behavior as a function of the distance, corresponding to a constant
electric field close to a straight line.

4.3 Multifractality

4.3.1 Distribution of potential

Let us come back finally to the initial question of the distribution of the potential
in the region close to a Brownian curve B (figures 14 and 15). Its boundary ∂B
175Paul Lévy, Processus stochastiques et mouvement brownien, Gauthier-Villars, Paris (1965).
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is a fractal curve without a microscopic scale, and the irregularities of this curve
go down to the infinitesimally small. Among all these irregularities, it is natural,
from the point of view of potential theory and of conformal invariance, to look
for those that are locally like “angles”. Actually, such a distribution of angles and
the distribution of the associated potential are invariant under a conformal map.
They are then stable in the class of all Brownian curves which are obtained by
conformal maps of a single realization of a Brownian curve.

P

u=0

u=1

Figure 15: The Dirichlet potential u created at point P by a Brownian curve (cen-
ter), and vanishing on the boundary of the latter, is represented by a second auxil-
iary Brownian motion, that diffuses from P towards the exterior, while completely
avoiding the first motion.

θ
w

r

Figure 16: Angular sector with apex w and angle θ.

We can then classify the points w of the boundary ∂B according to the prop-
erties of variation of the potential u(z) when a point P with complex coordinate
z approaches w on the boundary. We say that a point w is of type α if

u (z → w) ≈ rα, (124)

in the limit where the distance r = |z − w| → 0. (Figure 17.)
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w
u~ r α

Figure 17: Singular behavior in rα of the potential close to a point w of type α.

By comparing the property (124) to the form (123) of the potential of an
angle, we see that an exponent α corresponds, from the point of view of the
potential, to an equivalent electrostatic angle θ such that

α =
π

θ
. (125)

The behavior is as if an angle θ = π/α existed locally on the boundary.176

The angular domain being such that 0 ≤ θ ≤ 2π, the domain of the exponents α
is 1/2 ≤ α < ∞, which is rigorously supported by a theorem of A. Beurling. The
domain where α is close to 1/2 corresponds to θ close to 2π, which is a completely
open angular sector, and thus to the presence of an extremely thin needle on the
boundary. The domain where α is very large corresponds to θ close to 0, thus to
a very narrow angular sector, and one then speaks of a fjord.

Now, let ∂Bα be the set of points of type α on the boundary. To measure the
probability of finding such points of type α, we introduce the Hausdorff dimension
of the set ∂Bα,

f (α) = dim (∂Bα) . (126)

This defines the multifractal spectrum f (α) of the potential distribution. Such
a spectrum is conformally invariant in two dimensions, because in any conformal
map the local exponents α = π/θ of the potential are themselves invariant.177

176The presence of a local singularity exponent α does not necessarily mean that θ = π/α is a
geometric angle, because the surroundings of a point w on a random fractal object will in general
screen the potential, and reduce the equivalent electrostatic angle with respect to a possible
geometric angle.
177The local definitions of the exponent α and of f(α) as given in (124) and (126) are only

heuristic, since the way of taking limits was not explained. For any given point w on the boundary
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From a historical point of view, the concept of multifractality was introduced
by B. Mandelbrot in 1974,178 about the phenomenon of turbulence in hydrody-
namics, then by H. Hentschel, I. Procaccia, U. Frisch and G. Parisi.179 It was then
further developed at the University of Chicago by T .C. Halsey et al.180 It cor-
responds to the existence of a continuous set of fractal dimensions f(α), that are
functions of a continuum of exponents α.

4.3.2 The Brownian multifractal spectrum

One of the first properties is that the global Hausdorff dimension of a multifractal
object is always the maximum of its multifractal spectrum. Thus, for the boundary
of a Brownian curve,

DH = sup
α

f(α) =
4
3
, (127)

because of Mandelbrot’s conjecture, which we mentioned above.
The complete spectrum f(α) for the Brownian curve was calculated in 1998

by a method called “quantum gravity”.181 One uses a representation of the same
problem on a random surface where the metric fluctuates, instead of the normal
Euclidean plane. The geometric and probabilistic laws are largely simplified by the
“quantum” fluctuations of the metric, and the singular behavior of the Brownian
Dirichlet problem is directly accessible!

Next, one can obtain the multifractal spectrum in the plane R
2, thanks to a

fundamental relationship between critical exponents in the plane and on a random
surface, a formula known by the initials “KPZ”, discovered originally in 1988 by

of a random fractal object, in general no stable local exponents α exist, such that they are
obtained by a “simple limit” to the point. One then proceeds in another way. Define the harmonic
measure ω(w, r) as the probability that the Brownian motion leaving from any point on the outer
circle (therefore from infinity), touches the frontier ∂B for the first time inside a ball centered
at w and of radius r. (This harmonic measure is similar to the Brownian representation of the
potential u(P ), which is just the harmonic measure of the outer boundary of D seen from a point
P ). Next, we define the set ∂Bα,η of points on the boundary ∂B, w = wα,η, for which there exists

a decreasing series of radii rj , j ∈ N tending towards 0, such that rα+η
j ≤ ω(w, rj) ≤ rα−η

j . The

multifractal spectrum f(α) is then globally defined as the limit η → 0 of the Hausdorff dimension
of the set ∂Bα,η, i.e.,

f(α) = lim
η→0

dim
n

w : ∃ {rj → 0, j ∈ N} : rα+η
j ≤ ω(w, rj) ≤ rα−η

j

o
.

178B. B. Mandelbrot, J. Fluid. Mech. 62, pp. 331–358 (1974).
179H. G. E. Hentschel and I. Procaccia, Physica D 8, pp. 435–444 (1983); U. Frisch and G.

Parisi, Proceedings of the International School of Physics “Enrico Fermi”, course LXXXVIII,
edited by M. Ghil (North-Holland, New York, 1985) p. 84.
180T. C. Halsey, M. H. Jensen, L. P. Kadanoff, I. Procaccia and B. I. Shraiman, Phys. Rev. A

33, pp. 1141–1151 (1986); ibid. 34, 1601 (1986).
181B. Duplantier, Phys. Rev. Lett. 82, 880–883 (1999), arXiv:cond-mat/9812439.
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Figure 18: Multifractal function f(α) of the Brownian frontier.

three Russian physicists, V. G. Knizhnik, A. M. Polyakov, and A. B. Zamolod-
chikov.182We do not have space here to further develop this method.183

We find the formula

f(α) = α + b − bα2

2α − 1
, b =

25
12

. (128)

This curve is drawn in figure 18. The definition domain is the half-line
(1/2, +∞). One verifies that the maximum of f is at 4/3, in agreement with Man-
delbrot’s conjecture (127) for the fractal dimension of the boundary. It corresponds
to a value of α = 3, or to a typical electrostatic angle of π/3.

Moreover, one can calculate by the same method the multifractal spectrum
of the potential close to a self-avoiding random walk,184 and one finds a spectrum
which is identical to that of a Brownian curve, fully confirming the identity of the
Brownian frontier to a self-avoiding walk in the scaling limit.

One also predicts by this heuristic method that the spectra of a Brownian
curve and of a critical percolating cluster are identical185. It then follows that
182V. G. Knizhnik, A. M. Polyakov and A. B. Zamolodchikov, Mod. Phys. Lett. A 3, pp. 819–826

(1988).
183B. Duplantier, Conformal Fractal Geometry and Boundary Quantum Gravity, in Fractal

Geometry and Applications, A Jubilee of Benôıt Mandelbrot, Proceedings of Symposia in Pure
Mathematics, AMS, Vol. 72, Part 2, edited by M. L. Lapidus and F. van Frankenhuijsen, pp.
365–482 (2004); arXiv:math-phys/0303034; see also V. Fateev, A. Zamolodchikov, Al. Zamolod-
chikov, Boundary Liouville Field Theory I. Boundary State and Boundary Two-point Function,
arXiv:hep-th/0001012; I. K. Kostov, B. Ponsot and D. Serban, Nucl. Phys. B683, 309–362 (2004),
arXiv:hep-th/0307189; I. K. Kostov, Nucl. Phys. B689 3–36 (2004), arXiv:hep-th/0312301; Pro-
ceedings of the Conference “Lie theory and its applications in physics – 5”, Varna, Bulgaria
(2003), arXiv:hep-th/0402098, and references therein.
184B. Duplantier, Phys. Rev. Lett. 82, 880–883 (1999), arXiv:cond-mat/9812439.
185B. Duplantier, Phys. Rev. Lett. 82, pp. 3940–3943 (1999), arXiv:cond-mat/9901008; M.
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both the Brownian frontier and the external perimeter of a critical percolation
cluster coincide with the scaling limit of a self-avoiding walk, which further extends
Mandelbrot’s conjecture.

Let us mention that the works of Lawler, Schramm, and Werner contain also
in principle the necessary information to calculate the spectrum of a Brownian
potential. In a rigorous approach using SLE, these authors identify the boundary
with that of the SLE6 process, conjectured also to be an SLE8/3 and the scaling
limit of a self-avoiding polymer.

This curve f(α), also called the harmonic measure spectrum, then solves the
problem of the potential distribution close to a Brownian path in a probabilistic
sense, since it gives the fractal dimension of the set of points where the potential
varies in a specific way, namely as rα.

Other values of b in (128) (b = 25−c
12 ≥ 2, where c ≤ 1 is the “central

charge” of the associated conformal theory) generate the multifractal spectra of
the potential or harmonic measure of conformally invariant random curves in the
plane.186 These are the SLEs describing the boundaries of critical clusters in two-
dimensional statistical models, such as Ising or Potts models. For an SLEκ, with
0 ≤ κ < ∞, one simply sets in (128)

c =
1
4
(6 − κ)

(
6 − 16

κ

)
, b = 1 +

1
8

(
κ +

16
κ

)
. (129)

4.4 Generalized multifractality

4.4.1 Logarithmic spirals

Until now we have considered variations of the potential only. We can also study
the form of the equipotential lines. As the potential follows the properties of con-
formal invariance of the Brownian curve, it is now necessary first to determine the
geometric forms that are conserved by such invariance.

These are the logarithmic spirals that play a particular role in potential the-
ory in two dimensions. One such spiral centered at the origin is defined by the
logarithmic variation of the polar angle ϕ as a function of the distance r from the
origin:

ϕ = λ ln r ,

where λ is a real positive or negative parameter.
When we apply a conformal map Φ, around the center it is equivalent to

a dilation r → |Φ′(0)| r, composed with a rotation. The dilation transforms the
angle ϕ = λ ln r into λ ln r + λ|Φ′(0)|, which thus amounts to a local rotation of
the spiral, whose geometrical shape is thereby locally conserved.

Aizenman, B. Duplantier et A. Aharony, Phys. Rev. Lett. 83, pp. 1359–1362 (1999), arXiv:cond-
mat/9901018.
186B. Duplantier, Phys. Rev. Lett. 84, pp. 1363–1367 (2000), arXiv:cond-mat/9908314; J. Stat.

Phys. 110, pp. 691–738 (2003), arXiv:cond-mat/0207743.
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Figure 19: Double logarithmic spiral.

In the potential theory considered here, the Brownian frontier is equipoten-
tial by construction. There exists a multitude of points where such equipotential
boundary will locally roll onto itself in a double logarithmic spiral, as shown in
figure 19.

4.4.2 Mixed multifractal spectrum

We come then to Ilia Binder’s idea from his thesis187 in 1997 defining a generalized
multifractality. One looks for a set ∂Bα,λ of points w of the boundary ∂B, where
the potential varies like rα, and the boundary spirals at a given rate λ. These
conditions can be heuristically written for a point z close to w:

u (z → w ∈ ∂Bα,λ) ≈ rα,

ϕ (z → w ∈ ∂Bα,λ) ≈ λ ln r , (130)

in the limit r = |z − w| → 0. The Hausdorff dimension f (α, λ) = dim (∂Bα,λ)
then defines the mixed multifractal spectrum, which is conformal invariant because
under a conformal map both α and λ are locally invariant.

With Ilia Binder, we computed such a mixed spectrum for a Brownian motion,
by the quantum gravity method.188 It satisfies an exact scaling law

f(α, λ) = (1 + λ2)f
(

α

1 + λ2

)
− bλ2 , (131)

which gives from (128)

f(α, λ) = α + b − bα2

2α − 1 − λ2
, b =

25
12

. (132)

187I. A. Binder, Harmonic Measure and Rotation of Simply Connected Planar Domains, PhD
Thesis, Caltech (1997).
188B. Duplantier and I. A. Binder, Phys. Rev. Lett. 89, 264101 (2002); arXiv:cond-mat/0208045.
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Its domain of definition is α ≥ 1
2 (1 + λ2), according to a theorem of Beurling.

Different spectra are represented in figure 20.
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Figure 20: Universal multifractal spectrum f(α, λ) of a Brownian path for different
values of spiral rate λ. The maximum f(3, 0) = 4/3 is the Hausdorff dimension of
the Brownian frontier.

Since this function does not depend on the sign of λ, spiral rotations in
positive and negative directions are equiprobable, as expected. One recovers the
harmonic spectrum f(α) as the maximum

f(α) = f(α, λ = 0) = supαf(α, λ).

By symmetry, the most probable situation for a point on the boundary is the
absence of spiral rotation, i.e., λ = 0.

One can then also consider only the fractal dimension DH(λ) of the points
on the boundary, which are the tips of logarithmic spirals of type λ. For this, we
take the maximum of the mixed spectrum with respect to the other variable, α:

DH(λ) = supαf(α, λ) =
4
3
− 3

4
λ2.

This fractal dimension has then the form of a parabola as a function of λ,
whose maximum is still the global Hausdorff dimension of the boundary, DH = 4/3
(figure 21).

Let us add a few final remarks.
The quantum gravity calculations can be generalized to the whole class of

conformally invariant curves on the plane, and to Schramm’s SLE process. The
spectra are given by the same formulae (128) and (132) for different values of the
parameter b. For the SLEκ process, one substitutes:

b = 1 +
1
8

(
κ +

16
κ

)
=

1
2κ

(
2 +

κ

2

)2

, κ ∈ R
+.
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Figure 21: Fractal dimension DH(λ) of spirals of type λ along the Brownian bound-
ary.

Lastly, these multifractal results, originally found heuristically in theoretical
physics, can in principle be rigorously proved in the general probabilistic framework
of SLEκ.189 The application of this general result to the case of the Brownian and
percolation cluster frontiers is then obtained by identifying those boundaries to
that of the SLE6 process (thanks to works by Lawler, Schramm, and Werner and
also by S. Smirnov190, and V. Beffara191), while, from a rigorous point of view,
the similar identification of the scaling limit of a self-avoiding walk to a SLE8/3

process, although certainly true, remains to be proven!192

Here we pause in 2005 at the end of the path started in 1827 by Robert
Brown with his observations at the microscope, and by Einstein in 1905 with
his theory of Brownian fluctuations. The new paradigm of stochastic paths could
be today the SLE, or Stochastic Loewner Evolution, generated itself by Brownian
motion on the boundary of a planar domain, and its rather extraordinary conformal
invariance properties in the Euclidean plane. This process brought us to the shores
of two-dimensional quantum gravity, where the SLE stochasticity seems to call for
fluctuations of the metric, hence “quantum gravity”. In some sense, we are brought
back to the work of Einstein, whose 1916 general relativity theory explained how

189I. A. Binder and B. Duplantier, in preparation; see also D. Beliaev, Harmonic Measure on
Random Fractals, PhD thesis, KTH, Stockholm, Sweden, 2005.
190S. Smirnov, C. R. Acad. Sci. Paris Sér. I Math. 333, pp. 239–244 (2001).
191V. Beffara, arXiv:math.PR/0204208, Ann. Prob. 32, (3) pp. 2606–2629 (2004);

arXiv:math.PR/0211322.
192G. F. Lawler, O. Schramm and W. Werner, On the Scaling Limit of Planar Self-Avoiding

Walk, in Fractal Geometry and Applications, A Jubilee of Benôıt Mandelbrot, Proceedings of
Symposia in Pure and Applied Mathematics, AMS, Vol. 72, Part 2, edited by M. L. Lapidus et
F. van Frankenhuijsen, pp. 339–384 (2004), arXiv:math.PR/0204277.



Brownian Motion 293

gravitation is equivalent to a change of metric. Now it is Statistical Mechanics that
stands in the breach, let us wish for fruitful developments!
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