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Preface

The eclectic choice of topics in the book reflects the author’s research interests over
forty four years, before which he was War Memorial Open Scholar in Mathematics
at Balliol College Oxford (1960–1963). Accordingly Chapter 1 covers some good
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and molecular physics in the gaseous phase (single collisions at low pressures) and
to Chapter 5 concerning condensed-matter physics in the liquid and solid phases
(dielectrics and ferromagnetics). The five chapters are based on a set of five special
lectures given to postgraduate PhD students in the Centre for Atomic, Molecular
and Optical Physics, in the School of Mathematics and Physics, Queen’s University
Belfast, in May and June 2003. The author was appointed to a Personal Chair in
Theoretical Physics at Queen’s University Belfast (1985), and elected as Member
of the Royal Irish Academy (1991), Fellowship of the American Physical Society
(1994), Honorary Professor of Physics at St Petersburg State University (2003) and
Honorary Fellow of Trinity College Dublin (2006).

A good introduction to Chapters 3 and 4 is given by Chapter 52 (Continuum
Distorted Waves and Wannier Methods by D.S.F. Crothers et al) of the Springer
Handbook of Atomic, Molecular and Optical Physics (ed G.W.F. Drake), 2006.
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1

Mathematics for the Semiclassicist

1.1 Single-Valued Analytic Functions

x =
1
2

z +
1
2

z∗ , y =
1
2i

(z − z∗) (1.1)

Consider a function f of z = x+ iy and z∗ = x− iy. Clearly if x and y are independent,
then so in general are z and z∗. Then we have, with ∗ as complex conjugate,

∂ f
∂z

=
∂x
∂z
∂ f
∂x

+
∂y
∂z
∂ f
∂y

=
1
2
∂ f
∂x

+
1
2i
∂ f
∂y

(1.2)

and
∂ f
∂z∗

=
∂x
∂z∗

∂ f
∂x

+
∂y
∂z∗

∂ f
∂y

=
1
2
∂ f
∂x
− 1

2i
∂ f
∂y

(1.3)

However, if and only if ∂ f /∂z∗ = 0, then

i
∂ f
∂x

=
∂ f
∂y

⇒ (1.4)

∂ f
∂z
≡ d f

dz
=
∂ f
∂x

= −i
∂ f
∂y

(1.5)

and setting
f (z) = u(z) + iv(z) (1.6)

(where u and v are real functions of a complex variable z), we have

∂u
∂x

+ i
∂v
∂x

= −i
∂u
∂y

+
∂v
∂y

(1.7)

⇒ ∂u
∂x

=
∂v
∂y

and
∂v
∂x

= −∂u
∂y

(1.8)

(the Cauchy–Riemann equations)
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⇒ ∂2u
∂x2

=
∂2v
∂x∂y

=
∂2v
∂y∂x

= −∂
2u
∂y2

(1.9)

since x and y are independent variables. Thus

∂2u
∂x2

+
∂2u
∂y2

= 0 (1.10a)

and, similarly,
∂2v
∂x2

+
∂2v
∂y2

= 0 (1.10b)

that is, we have the two-dimensional Laplace equations for the real and imaginary
parts u and v. If f is a multivalued function such as ln z, then a branch cut must be
inserted on [−∞, 0] with arg z assigned to 0 on (0,+∞] to define, say, the principal
branch of ln z, which is then an analytic function of z for z � [−∞, 0], that is, a
real single-valued function of a complex variable z, differentiable at each point of its
domain.

To summarise, a function f (z) is analytic if it is indeed a function of z and only of
z, and it is single-valued and differentiable in its domain of definitiion. By contrast,
the following are not analytic:

|z|2 = zz∗ (∀z � 0) (1.11a)

arg z = − i
2

ln
z
z∗

(∀z) (1.11b)

za = exp(a ln z) (z ∈ [−∞, 0] and a noninteger) (1.11c)

1.2 Method of Steepest Descent and Asymptotic Methods

I(s) ≡
∫ (0+)

−∞
g(z)es f (z)dz (1.12)

Real s (s >� 1), complex z, f , g (g′ <� 1), and arg z are assigned to +π on the upper
lip of the branch cut along the negative real axis and to −π on the lower lip. Then we
have

I(s) ≈ g(z0)es f (z0)
∫ (0+)

−∞
e−

s
2 (z−z0)2 f ′′(z0) dz (1.13)

where
f ′(z0) = 0 (1.14)

On
arg(z − z0) = α (1.15)

set

t2 = e−iπs(z − z0)2 f ′′(z0) (1.16)

= s|z − z0|2
∣∣∣ f ′′(z0)

∣∣∣ (1.17)
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if we choose

α =
π

2
− 1

2
arg f ′′(z0) (1.18)

and let C+ be the straight line through z0 in the direction arg(z − z0) = α, then

IC+(s) 
 eiα

√
s | f ′′(z0)|1/2

∫ ∞

0
e−t2/2 dt (1.19)

Similarly for
arg(z − z0) = α + π (1.20)

so that

IC−(s) 
 eiα

√
s | f ′′(z0)|1/2

∫ 0

−∞
e−t2/2 dt (1.21)

⇒ I(s) � g(z0)es f (z0)+iα
√

2π
√

s | f ′′(z0)|1/2
(1.22)

using polar coordinates,

[∫ ∞

0
e−t2/2 dt

]2

=

∫ π/2

0
dθ

∫ ∞

0
r dr e−r2/2 (1.23)

We may assume α ∈ [−π/2,+π/2], i.e., that C may be taken as going from left to
right and that arg f ′′(z0) ∈ [0, 2π]; otherwise ambiguity is only resolved by appeal to
global geometry.

1.2.1 Stationary-Phase Version

Suppose f = iF with F real,

∫ b

a
g(x)esiF(x) dx � g(x0)esiF(x0)±iπ/4

√
2π

√
s
√
|F′′(x0)|

(1.24)

according to
F′′(x0) ≷ 0 (1.25)

[with F′(x0) = 0 and x0 ∈ [a, b) ; b > a]; for example

Γ(s + 1) � ss+1/2e−s
√

2π (1.26)

e.g., quantal interference between elastic phase shifts if the potential difference
passes through a turning point.
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1.3 Generalized Variation and Perturbation Theories

Referring to [8] let us consider the functional

J[u] =

�
D

f (x, y, u, ux, uy, uxx, uxy, uyy) dx dy (1.27)

and set the first-order variation of J, δJ according to

δJ = 0 (1.28)

Thus we have, by integration by parts,

fu −
∂

∂x
fux −

∂

∂y
fuy +

∂2

∂x2
fuxx +

∂2

∂x∂y
fuxy +

∂2

∂y2
fuyy = 0 (1.29)

In the preceding, subscripts refer to the variables with respect to which the partial
derivative is taken. Then we may deduce Sil’s time dependent variational princi-
ple [560]

L = ψ∗
(
H − i

d
dt

)
ψ (1.30)

δ

∫ ∞

−∞
dt

∫
drL = 0 (1.31)

H = − �
2

2m
∇2

r + V(r) (1.32)

implies that (
H − i

d
dt

)
ψ = 0 (1.33)

where H is the Hamiltonian, L is the Lagrangian density, r is the electron coordinate
with respect to an infinite nucleus, and t is the time.

Similarly we may deduce Kohn’s time-independent (stationary) variational prin-
ciple where R is now the internuclear coordinate and rT and rP are the coordinates
of the electron relative to the target and projectile nucleus.

L = Ψ ∗ (H − E)Ψ (1.34)

δ

∫
dR

∫
drL = 0 (1.35)

H = − 1
2M
∇2

R −
1
2
∇2

r + VT (rT ) + VP(rP) + W(R) (1.36)

(H − E)Ψ = 0 (1.37)

In the preceding V , VT , VP, and W are all potential energies of their respective vari-
ables. Notice that in applying (1.27) to (1.30) and (1.34) only second-order nonmixed
derivatives arise, apart from first-order derivatives with respect to ψ, ψ∗, and t. This
is not the case in the electromagnetic problem.
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Regarding stationary perturbation theory any quantum mechanics course cov-
ers Rayleigh-Schrödinger perturbation theory. So we shall be content to outline the
energy-shell continuum distorted-wave (CDW) generalized perturbation theory of
Crothers [187] in terms of the CDW Neumann–Born series. We adopt the Dirac
bra(c)ket notation impling integration over the electronic and internuclear collision
coordinates. With E the total energy and ξ(+)

i and ξ(−)
f the initial outgoing and final

ingoing CDW functions ((4.264) and (4.265) with m = 0) we consider the transition
amplitude given by

A+
f i = 〈ξ(−)

f | (H − E)† |Ψ+
i 〉 (1.38)

where
Ψ+

i =
[
1 + G+ (H − E)

]
ξ(+)

i (1.39)

G+ = [E − H + iε]−1 (1.40)

= G+
CDW + G+

CDW (H − HCDW ) G+ (1.41)

= G+
CDW

∞∑
n=0

{
(H − HCDW ) G+

CDW
}n (1.42)

where
G+

CDW = [E − HCDW + iε]−1 (1.43)

because
B−1 ≡ C−1 + C−1 (C − B) B−1 (1.44)

The CDW Neumann-Born series is given by

A+
f i =〈ξ(−)

f | (H − E)† |ξ(+)
i 〉 + 〈ξ

(−)
f | (H − E)†G+

CDW (H − E) |ξ(+)
i 〉

+ 〈ξ(−)
f | (H − E)†G+

CDW (H − E) G+
CDW (H − E) |ξ(+)

i 〉 + · · ·
(1.45)

Note that H−HCDW ≡ H−E ≡ −∇rP∇rT , which is the nonorthogonal kinetic energy
of Ch 4.

Interchanging B and C in (1.44) we have

B−1 = C−1 + B−1 (C − B) C−1 (1.46)

so that

G+ = G+
CDW + G+ (H − HCDW ) C+

CDW (1.47)

= G+
CDW + G+ (H − E) G+

CDW (1.48)

Thus we have
A+

f i = 〈ξ(−)
f |T |ξ

(+)
i 〉 (1.49)

T ≡ (H − E)† + (H − E)†G+ (H − E) (1.50)

(H − E)†G+ = TG+
CDW (1.51)
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T = (H − E)† + (H − E)†G+
CDW (H − E)

+ (H − E)†G+ (H − HCDW ) G+
CDW (H − E) (1.52)

= (H − E)†
[
1 + G+

CDW (H − E)
]

+ TG+
CDW (H − HCDW ) G+

CDW (H − E) (1.53)

The integral equation for the transition operator [227] is thus given by iteration by

T = (H − E)†
∞∑

n=0

{
G+

CDW (H − E)
}n (1.54)

Notice that we have a connected kernel in that ∇rP connects e− + P and ∇rT connects
e− + T . The nonorthogonal kinetic energy −∇rP · ∇rT connects all three particles.
This convergent expansion is especially transparent due to the use of generalized
nonorthogonal coordinates (see (1.30)) and the avoidance of spurious nonlocal po-
tentials and operators.

1.4 Hypergeometric Series

We define

pFq

(
a1 − ap; b1 − bq; z

)
≡
∞∑

n=0

∏p
i=1(ai)n∏q
j=1(b j)n

zn

n!
(1.55)

where the Pochhammer symbol or rising factorial is

(α)n =

⎧⎪⎪⎨⎪⎪⎩
α(α + 1) · · · (α + n − 1) (n ≥ 1)

1 (n = 0)
(1.56)

Note the very useful compendium of relations between products of Pochhammer
symbols ([563] appendix I, pp.239–240).

We note that

1F0(b; ; z) = (1 − z)−b ≡
∞∑

n=0

(b)nzn

n!
≡ 2F1(a, b; a; z) (1.57)

is the binomial series and
(1 − z)−1 = 1F0(1; ; z) (1.58)

is the geometric progression. Other well-known hypergeometric series are: the expo-
nential

0F0(; ; z) = ez =

∞∑
n=0

zn

n!
≡ 1F1(a; a; z) (1.59)

the modified Bessel function

Iν(z) =
(z/2)ν

Γ(1 + ν) 0F1

(
; ν + 1; +

1
4

z2

)
(1.60)



1.4 Hypergeometric Series 7

and the Bessel function

Jν(z) =
(z/2)ν

Γ(1 + ν) 0F1

(
; ν + 1;−1

4
z2

)
(1.61)

1F1(a; c; z) ≡ M(a, c, z) =

∞∑
n=0

(a)nzn

(c)n n!
(1.62)

is the regular Kummer or confluent hypergeometric function. It satisfies the ordi-
nary differential equation (ODE) with a regular singularity at z = 0 and an essential
singularity at z = ∞, given by

zw
′′

+ (c − z)w
′ − aw = 0 (1.63)

The Gauss hypergeometric function given by

2F1(a, b; c; z) ≡
∞∑

n=0

(a)n(b)n

(c)n

zn

n!
(1.64)

satisfies the ODE given by

z(1 − z)w
′′

+ [c − (a + b + 1)z] w
′ − abw = 0 (1.65)

It has three regular singularities at z = 0, 1, ∞. 1F1 converges for all finite z and 2F1

converges absolutely for all |z| < 1. When z = 1 c � 0,−1,−2, · · · ; Re(c− a− b) > 0
implies conditional convergence so that

2F1(a, b; c; 1) =
Γ(c)Γ(c − a − b)
Γ(c − a)Γ(c − b)

(1.66)

Otherwise (e.g.|z| > 1) one needs the full suite of analytic continuations [1] (5.3:3–
14) for both real and complex z. This is the advantage of 2F1 over many other func-
tions whose continuations are often unknown.

R.C. Forrey, ITAMP, Harvard University has a suite for complex z now rewritten
in FORTRAN 90: see chyp.f on cfa – www.harvard.edu/ref/ .

Analytic continuations include:

2F1(a, b; c; z) = (1 − z)−a
2F1 (a, c − b; c; z/(1 − z)) (1.67)

for | arg(1 − z)| < π. Equation (1.66) follows from (1.120) and the Beta function ([1]
6.2.1)

2F1(a, b; c; 1) =
Γ(c)

Γ(c − b)Γ(b)

∫ 1

0
dt tb−1(1 − t)c−a−b−1

=
Γ(c)Γ(c − a − b)
Γ(c − a)Γ(c − b)

(1.68)

and analytic continuation of (1.64) to |1 − z| < 1 may be derived as follows. Let
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y1 = 2F1(a, b; c; z) (|z| < 1) (1.69)

y2 = z1−c
2F1(1 + a − c, 1 + b − c; 2 − c; z) (|z| < 1) (1.70)

be two independent solutions. Set

z = 1 − Z (1.71)

in the ordinary differential equation for the Gauss 2F1:

Z(1 − Z)
d2y
dZ2
− {c − (a + b + 1)(1 − Z)} dy

dZ
− aby = 0 (1.72)

∴ y5 = 2F1(a, b; 1 + a + b − c; 1 − z) (|1 − z| < 1) (1.73)

∴ ∃A, B so that
y5 = Ay1 + By2 (1.74)

Map z→ 1 − z and c→ 1 + a + b − c ⇒

2F1(a, b; c; z) =A2F1(a, b; 1 + a + b − c; 1 − z)

+ B(1 − z)c−a−b
2F1(c − b, c − a, 1 + c − a − b; 1 − z)

(1.75)

Set z = 1 and assume Re (c − a − b) > 0. Equation (1.68) implies

A =
Γ(c)Γ(c − a − b)
Γ(c − a)Γ(c − b)

(1.76)

Setting z = 0 we verify

B =
Γ(a + b − c)Γ(b)

Γ(a)Γ(b)
(1.77)

using the gamma function reflection formula ([1] chapter 6). The analytic continua-
tion is completed.

Other useful hypergeometric representations include the normalized harmonic
oscillator

un(x) =

[
α

√
π2nn!

]1/2

Hn(αx)e−α
2 x2/2

(
α =

√
mω
�

)
(1.78)

where n is the principal quantum number, m is the mass, ω is the frequency, and � is
Planck’s reduced constant.

H2m(x) = (−1)m (2m)!
m! 1F1

(
−m,

1
2
, x2

)
(1.79a)

H2m+1(x) = (−1)m (2m + 1)!
m!

2x1F1

(
−m,

3
2
, x2

)
(1.79b)

More generally we have the parabolic cylinder function given by

Dp(z) = 2p/2e−z2/4

⎡⎢⎢⎢⎢⎣
√
π

Γ((1 − p)/2) 1F1

(
− p

2
;

1
2

;
z2

2

)
− z

√
2π

Γ(−p/2) 1F1

(
1 − p

2
;

3
2

;
z2

2

)⎤⎥⎥⎥⎥⎦
(1.80)
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Others are

ln(1 − z) = z2F1(1, 1; 2; z) (1.81)

tan−1(z) = z2F1(
1
2
, 1;

3
2

;−z2) (1.82)

cos(2az) = 2F1(−a, a;
1
2

; sin2 z) (1.83)

Tn(x) = 2F1(−n, n;
1
2

;
1 − x

2
) (1.84)

where the Tn are Chebyshev polynomials of type 1.
Spherical harmonics are

Ym
l (θ, φ) =

[
(2l + 1)

2
(l − |m|)!
(l + |m|)!

]1/2

P|m|l (cos θ)
eimφ

√
2π

(l ≥ |m|) (1.85)

where

P|m|l (cos θ) =
(l + |m|)!
(l − |m|)!

sin|m| θ
|m|! 2|m| 2

F1

(
|m| − l, l + |m| + 1; 1 + |m|; sin2(θ/2)

)
(1.86)

and
Pl(cos θ) = 2F1

(
−l, l + 1; 1; sin2(θ/2)

)
(1.87)

Normalized eigenenergy functions for the H-like atom/ion are

unlm(r, θ, φ) = Rnl(r)Ym
l (θ, φ) (1.88)

where
Rnl(r) = Nnlρ

lL2l+1
n+l (ρ)e−ρ/2 (1.89)

ρ =
2Zr
na0

where

a0 : Bohr radius

Z = charge

n = principal integer quantum number

l = azimuthal integer quantum number

m = magnetic integer quantum number

and

Nnl = −
⎡⎢⎢⎢⎢⎢⎣
(

2Z
na0

)3 (n − l − 1)!
2n{(n + l)!}3

⎤⎥⎥⎥⎥⎥⎦
1/2

(1.90)

Our associated Laguerre polynomials are
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L2l+1
n+l (ρ) ≡ {(n + l)!}2

(n − l − 1)!(2l + 1)! 1F1(l + 1 − n; 2l + 2; ρ) (n > l) (1.91)

which disagrees with the choice of definition of Morse and Feshbach [440].
One should note that intelligent application of the convergence ratio test is re-

quired and the invoking of a finite probability density |unlm(r, θ, φ)|2 is insufficient to
prefer rl to r−l−1 when l = 0. However, it merely requires the observation that

∇2
r
1
r

= −4πδ(r) (1.92)

so that for the l = 0 case, the irregular solution does not satisfy the Schrödinger
equation at r = 0, where the right-hand side of (1.92) is infinite.

The normalization of Legendre polynomials required

∫ +1

−1
dx

[
2F1

(
−l, l + 1; 1;

1 − x
2

)]2

=
2

2l + 1
(1.93)

Suffice it to say that this required Saalschutz’ theorem that

3F2 (−N, a, b; c, 1 + a + b − c − N; 1) =
(c − a)N(c − b)N

(c)N(c − a − b)N
(1.94)

which in turn depends on Euler’s relation

2F1 (a, b; c; z) = (1 − z)c−a−b
2F1 (c − a, c − b; c; z) (1.95)

Note that Saalschutz’ theorem generalizes to

3F2 (a, b,−m; e, f ; 1) =
( f − b)m

( f )m
3F2 (e − a, b,−m; e, 1 − f + b − m; 1) (1.96)

For completeness we note that the following well-known quantities are, in fact,
hypergeometric series: Rotation matrices ([517] p.53)

d j
m1m2

(β) =

[
( j − m1)!( j + m2)!
( j + m1)!( j − m2)!

]1/2 (cos(β/2))2 j+m1−m2 (sin(β/2))m1−m2

(m1 − m2)!

× 2F1

(
m2 − j,−m1 − j; m2 − m1 + 1;− tan2(β/2)

)
(m2 ≥ m1)

(1.97)

where the 2F1 is a Jacobi polynomial; Clebsch–Gordan coefficients

C ( j1 j2 j m1 m2 m) =

(−1) j2+m2

[
( j + j1 − j2)!( j1 + j2 − j)!( j − m)!( j1 − m1)!(2 j + 1)

( j − j1 + j2)!( j1 + j2 + j + 1)!( j + m)!( j1 + m1)!( j2 − m2)!( j2 + m2)!

]1/2

× ( j + j2 + m1)!
( j1 − j2 − m)!

3F2 (− j + j1 − j2, j1 − m1 + 1,− j − m; j1 − j2 − m + 1,− j − j2 − m1; 1)
(1.98)
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Of course, pure recurrence relations à la Sister Celine’s technique would be cumber-
some so better to refer to more specialized texts on angular momentum and group
theory.

Racah coefficients ([517] p.110 (6.7))

W(abcd; e f ) = ΔR(abe)ΔR(cde)ΔR(ac f )ΔR(bd f )(−1)a+b+c+d

×∑
ψ

(−1)ψ(ψ+1)!
(ψ−a−b−e)!(ψ−c−d−e)!(ψ−a−c− f )!(ψ−b−d− f )!

× 1
(a+b+c+d−ψ)!(a+d+e+ f−ψ)!(b+c+e+ f−ψ)! (1.99)

where

ΔR(abc) =

[
(a + b − c)!(a − b + c)!(b + c − a)!

(a + b + c + 1)!

]1/2

(1.100)

Assume for the sake of argument that

a + b + e ≥ {c + d + e, a + c + f , b + d + f } (1.101)

Set
ψ = a + b + e + r (1.102)

Then we have

W ∝ 4F3 (a + b + e + 2, e − c − d, b − d − f , a − c − f ;

1 + a + b − c − d, 1 + b + e − c − f , 1 + a + e − d − f ; 1) (1.103)

using

(α − ψ)! =
(−1)ψα!
(−α)ψ

(1.104)

and where r is the dummy summation index.

1.5 Contour Integral Transforms

Both complex contour and real integral transforms are useful, particularly regarding
asymptotic expansions and the Stokes phenomenon (see Chapter 2). The Hankel
integral transform:

1
2πi

∫ (0+)

−∞
evv−xdv =

1
Γ(x)

(
arg v = 0 on positive real axis

)
(1.105)

where Γ is the gamma function. This is a valuable result both here and in Section
5.3. Setting t = 1/s and applying Cauchy’s residue theorem, we have (b noninteger)

1
2πi

∮ (0+,1+) ( t
t − 1

)b
tn−1dt =

(b)n

n!(
arg t = 0 = arg(t − 1) on positive real axis

)
(1.106)

It follows that



12 1 Mathematics for the Semiclassicist

1F1(b; 1; z) =
1

2πi

∫ (0+,1+) ( t
t − 1

)b
ezt dt

t
(1.107)

=
1

2πi

[∫ (0+)

+

∫ (z+)] (
1 − z

v

)−b
ev dv

v
(v = zt) (1.108)

�
|z|�1

(−z)−b

Γ(1 − b) 2F0 (b, b; ;−1/z) +
ezzb−1

Γ(b) 2F0 (1 − b, 1 − b; ; 1/z)

(
arg±z ∈ (−π,+π)

)
(1.109)

where we have used (1.105) and for the second integral in (1.108), u = v− z. The two
2F0s in (1.109) diverge for all finite z. This is an important observation and leads to
the Stokes phenomenon. The Stokes/anti-Stokes lines are the positive and negative
real/imaginary axes in the complex z-plane, respectively.

At arg z = 0, the second-term series in (1.109) is dominant and the subdomi-
nant first-term series is ambiguous by the factor exp(2πbi). As z crosses this Stokes
line in the positive (anticlockwise) sense, (−z) changes from zeπi to ze−πi so that the
coefficient of the subdominant term changes by a factor of e2πbi.

On arg(−z) = 0, i.e., arg z = ±π, the first-term/ series is dominant and as z crosses
the π Stokes line in the positive sense, the subdominant second-term/ series suffers
an abrupt discontinuous change, namely by a factor of e−2πbi.

On the anti-Stokes lines, arg z = ±π/2, neither term/ series is exponentially dom-
inant and no discontinuity arises. This is an illustration of the Stokes phenomenon,
which repeats itself ad nauseam, upon circling the origin (at a distance), in either
direction. This generalizes to

1F1(a; c; z) �
|z|�1

Γ(c)(−z)−a

Γ(c − a) 2F0(a, 1 + a − c; ;−1/z) +
ezza−c

Γ(a) 2F0(c − a, 1 − a; ; 1/z)

(1.110)
with principal branches understood as before. As for 1F1, so for 2F1, we have

2F1(a, b; 1; z) =
1

2πi

∮ (0+,1+) ( t
t − 1

)b
(1 − tz)−a dt

t
(1.111)

where b is noninteger and 1/z lies outside the contour.
Nordsieck integrals [461, 157] may be evaluated using (1.107):

∫
dr

eiq·r−λr

r 1F1 (−ia1; 1; ip1r + ip1 · r) 1F1 (ia2; 1, ip2r + ip2 · r)

=
4π

q2 + λ2

[
q2 + λ2

q2 + λ2 + 2p2 · q − 2iλp2

]ia2 [
q2 + λ2

q2 + λ2 + 2p1 · q − 2iλp1

]−ia1

× 2F1

(
−ia1, ia2; 1; z =

βγ − αδ
γ(α + β)

)

(1.112)
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One should note a sign error in Nordsieck’s pair-production integral where

α = 1
2

(
q2 + λ2

)
γ = p1 · q − λp1 + α

β = p2 · q − iλp2 δ = p1 · p2 − p1 p2 + β
(1.113)

The normalization of continuum wave functions in the Coulomb case requires
∫

eik·r
1F1

(
−

iZpZT

v
; 1; ikr − ikz

)
e−ik′·r

1F1

(
iZpZT

v′
; 1;−ik′r + ik′z

)
(1.114)

Use −∂/∂λ on Nordsieck and let λ→ 0+. Set

q = k − k′ , a1 =
ZpZT

v , a2 =
ZpZT

v′

p1 = k p1 = −k , p2 = −k′ , p2 = k′
(1.115)

In limit, q � 0⇒ 0 but for q = 0 we have, using (15.1.20) in [1]

8πλ(
λ2 + q2

)2
eπa1

2F1 (−ia1, ia1; 1; 1) =
(2π)3δ(q)eπZpZT /v

Γ
(
1 + (iZpZT )/v

)
Γ

(
1 − (iZpZT )/v

) (1.116)

Note that

γ

α + β
=
λ2 − 2iλk
λ2 + 2iλk

=
λ − 2ik
λ + 2ik

=
−4k2 − 4iλk

4k2 + λ2

cos−ve , sin−ve (λ→ 0+)⇒ arg
γ

α + β
= −π

(1.117)

Real integral representations may be used, for instance,

1F1 (A; C; iDη) =
Γ(C)

Γ(A)Γ(C − A)

∫ 1

0
eiDηvvA−1(1 − v)C−A−1 dv (1.118)

where v is now clearly a real dummy variable and Re C > Re A > 0. A useful result
is

∫ ∞

0
du e−BuuC−1

1F1(A,C, iDu)1F1(A′,C, iD′u) =
Γ(C)BA+A′−C

(B − iD)A(B − iD′)A′

×2F1

(
A, A′; C;

−DD′

(B − iD)(B − iD′)

)
(1.119)

this can lead the complex formulation (see (1.117)). This can lead to ambiguities in
the limit as Re B→ 0 and in any case for Re (c − b) > 0, Re b > 0, |z| < 1 we have

2F1(a, b; c; z) =
1

2πi
Γ(c)Γ(1 − b)
Γ(c − b)

∮ (0+)

1

( t
t − 1

)b
(1 − t)c−1(1 − tz)−a dt

t
(1.120)

for which the conditions may subsequently be relaxed by analytic continuation. Set-
ting z → z/a and letting a → +∞ yields a similar formula for 1F1s upon realising
that
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lim
a→+∞

(
1 − tz

a

)−a
= ezt (1.121)

For some purposes the Barnes complex-contour integral representation is simpler to
use than the preceeding Euler integrals. For irregular Kummer functions complex
representations are more flexible [468]. Other useful results are

∫ 2π

0
eimφ+ik cos φ dφ = 2πimJm(k) (1.122)

and ∫ ∞

0
dt Jμ(at)e−γ

2t2
tμ+1 dt =

aμ

(2γ2)μ+1
e−a2/(4γ2) (1.123)

where J is the regular Bessel function.

1.6 Combinatorics

The principle of inclusion and exclusion gives

Λn =

n∑
k=0

(−1)kvnk (1.124)

λn =

n∑
k=0

(−1)kunk (1.125)

where λn is the number of ways of avoiding a couple in problème des ménages
(cyclic) and Λn is the number of ways of avoiding a snap in cards (linear); vnk is
the number of ways of selecting k couples, the remaining (n − k) being arbitrary; unk

is the number of ways of selecting k snaps, the remaining (n − k) being arbitrary:

vnk = (n − k)!2n−kCk (1.126)

unk = (n − k)!
[
2n−k−1Ck−1 + 2n−kCk

]
(1.127)

λn = 2(−1)n
3F1

(
−n, n, 1;

1
2

;
1
4

)
(1.128)

Λn = (−1)n
3F1

(
−n, n + 1, 1;

1
2

;
1
4

)
(1.129)

In the preceeding, NCR is the number of ways of choosing R objects from a collection
of N distinct objects, without regard to order.

Probability of snap occurring is given by

pn =
1
n!

n∑
k=1

vnk (1.130)

= 1 − the first (n + 1) terms of 1F1

(
1
2
− n;−2n;−4

)
(1.131)

p∞ = 1 − 0F0 (; ;−2) = 1 − e−2 (1.132)
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The pure recurrence relations of Lucas are

λn = Λn − Λn−1 = nΘn + 2(−1)n (1.133)

Θn+1 = nΘn + Θn−1 + 2(−1)n (1.134)

Θ4 = 0 Θ5 = 3 (1.135)

1.6.1 Proof via Sister Celine’s Technique

Consider

gn(x) =

∞∑
k=0

(−1)kk!(n − k − 1)!
(2k)!(n − k)!

xk ≡
∞∑

k=0

ε(k, n, x) (1.136)

so that
(−1)nλn

2n
= gn(1) (1.137)

gn−1(x) =

∞∑
k=0

(n − k)
(n + k − 1)

ε(k, n, x) (1.138)

xgn−1(x) =

∞∑
k=0

(−1)kk!(n + k − 2)!
(2k)!(n − k − 1)!

xk+1 (1.139)

=

∞∑
k=1

(−1)k−1(k − 1)!(n + k − 3)!
(2k − 2)!(n − k)!

xk (1.140)

hn(x) = xgn−1(x) +
2

n(n − 1)(n − 2)

=

∞∑
k=0

−2(2k − 1)
(n + k − 1)(n + k − 2)

ε(k, n, x) (1.141)

gn−2(x) =

∞∑
k=0

(n − k)(n − 1 − k)
(n + k − 1)(n + k − 2)

ε(k, n, x) (1.142)

gn(x) + Ahn(x) + Bgn−1(x) + Cgn−2(x) = 0 (1.143)

∴ 1 +
B(n − k)
n + k − 1

− A2(2k − 1)
(n + k − 1)(n + k − 2)

+
C(n − k)(n − k − 1)

(n + k − 1)(n + k − 2)
≡k 0 (1.144)

The numerator is quadratic in k; solving gives

A = n − 1 B = 0 C = −1 (1.145)

Setting x = 1 gives

gn + (n − 1)

[
gn−1 +

2
n(n − 1)(n − 2)

]
− gn−2 = 0 (1.146)

(n − 1)λn+1 − (n2 − 1)λn − (n + 1)λn−1 − 4(−1)n = 0 (1.147)

λn = nΘn + 2(−1)n ⇒ (1.148)

Θn+1 = nΘn + Θn−1 + 2(−1)n (1.149)
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1.7 Generalized Hypergeometric Functions

These include Appell functions given by

F1(a; b1, b2; c; x, y) =

∞∑
m=0

∞∑
n=0

(a)m+n(b1)m(b2)nxmyn

(c)m+nm!n!
(1.150)

F2(a; b1, b2; c1, c2; x, y) =

∞∑
m=0

∞∑
n=0

(a)m+n(b1)m(b2)nxmyn

(c1)m(c2)nm!n!
(1.151)

F3(a1, a2; b1, b2; c; x, y) =

∞∑
m=0

∞∑
n=0

(a1)m(a2)n(b1)m(b2)nxmyn

(c)m+nm!n!
(1.152)

F4(a; b; c1, c2; x, y) =

∞∑
m=0

∞∑
n=0

(a)m+n(b)m+nxmyn

(c1)m(c2)nm!n!
(1.153)

and Lauricella functions given by

F(n)
A (a, b1 − bn, c1 − cn, x1 − xn) =

∞∑
m1=0

∞∑
m2=0

· · ·
∞∑

mn=0

(a)m1+m2+···+mn

×
(b1)m1 (b2)m2 · · · (bn)mn

(c1)m1 (c2)m2 · · · (cn)mn

xm1
1 xm2

2 · · · x
mn
n

m1!m2! · · ·mn!

(1.154)

which generalizes F(n)
2 and three similar generalizations F(n)

B , F(n)
C , F(n)

D of F3, F4, and
F1, respectively, in the sense of generalizing from 2 to n arguments and Pochhammer
symbols in the numerator and denominator.

As a simple example of F2 we give [159]

Bαβjk (h) = (1.155)
jk j!k!

h Im
∫ ∞

0
r exp{−(α + β − ih)r}1F1(1 − j; 2; 2αr)1F1(1 − k; 2; 2βr)dr (1.156)

=
jk j!k!

h Im
{

Γ(2)
(α+β−ih)2 F2

(
2, 1 − j, 1 − k, 2, 2, 2α

α+β−ih ,
2β

α+β−ih

)}
(1.157)

=
jk j!k!

h 2F1

(
1 − j, 1 − k; 2; −4αβ

(α−β)2+h2

)
Im (α−β−ih)k−1(β−α−ih)j−1

(α+β−ih)j+k . (1.158)

Since j and k are positive integers, F2 and 2F1 are both polynomials. L’Hôspital’s
rule yields:

Bαβjk (0) = (−1) j2(kβ − jα) jk j!k! (α−β) j+k−3

(α+β) j+k+1

×2F1

(
1 − j, 1 − k; 2; −4αβ

(α−β)2

)
(α � β) (1.159)

= 0 (α = β, |k − j| ≥ 2) (1.160)

=
j2( j!)2

4α3 (α = β, j = k) (1.161)

=
− j(k!)2

8α3 (α = β, k = j + 1) (1.162)

=
−k( j!)2

8α3 (α = β, j = k + 1) (1.163)
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As a simple example of F(4)
A we give [179]

1
m!

∫ ∞

0
dX e−XXm{1F1(−n2; m + 1; X))}2

∣∣∣∣∣∣1F1

(
i/v; 1;

iX
y1

)∣∣∣∣∣∣
2

(1.164)

= F(4)
A (m + 1;−n2,−n2, i/v,−i/v; m + 1,m + 1, 1, 1; 1, 1, i/y1,−i/y1) (1.165)

Define

Jμ =

∫ ∞

0
e−kzzμ−1 [

1F1(−n; γ; kz)
]2 dz (1.166)

=
Γ(μ)
kμ

F2(μ;−n,−n; γ, γ; 1, 1) (1.167)

which implies that

Jγ+p =
Γ(γ + p)

kγ+p
F2(γ + p;−n,−n; γ, γ; 1, 1) (1.168)

=
Γ(γ + p)

kγ+p

(−p)n

(γ)n
3F2(−n, γ + p, 1 + p; γ, 1 + p − n; 1) (1.169)

=
Γ(γ + p)

kγ+p

n!
(γ)n

3F2(−p, 1 + p,−n; γ, 1; 1) (1.170)

Thus we have [377]

Jγ+p = Jγ−1−p
Γ(γ + p)

Γ(γ − 1 − p)k2p+1

= Jγ−1−p
(γ − 1 − p) · · · (γ + p − 1)

k2p+1
(1.171)

This result comes from

F2(a;−m,−n; c, d; 1, 1) =
(d − a)n

(d)n
3F2(−m, a, 1 + a − d; c, 1 + a − d − n; 1) (1.172)

where we have used Van der Monde’s theorem,

(a)p+q = (a)p(a + p)q (1.173)

and [563]

(d − a − p)n =
(1 + a − d)p(d − a)n

(1 + a − d − n)p
(1.174)

We may now define the normalization of the Laguerre polynomials: in Dirac notation
we have

〈nl|nl〉 = 1 = N2
nlJγ+1 (1.175)

which implies, setting γ = 2l + 2 and k = 2Z/n, that
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N2
nl =

kγ+1(γ)n−l−1

Γ(γ + 1)(n − l − 1)! 3F2(−1, 2, l + 1 − n; γ, 1; 1)
(1.176)

=

(
2Z
n

)2l+3
(n + l)!(2l + 2)

(2l + 2)!(n − l − 1)!(2l + 1)! 2n
(1.177)

Nnl =

(
2Z
n

)3/2+l

(2l + 1)!

[
(n + l)!

2n (n − l − 1)!

]1/2

(1.178)

as in [76].
Consider now the more general matrix element (k � 1) and include r2 from the

radial part of the volume element r2 dr

〈nl| rk−1 |nl〉 = N2
nl

∫ ∞

0
dr e−2yrrk−1+2l+2 [

1F1(1 + l − n; 2l + 2; 2yr)
]2 (1.179)

≡ N2
nlJγ+p (1.180)

with

p = k

k = 2y = 2Z/n (1.181)

From (1.171) we have

〈nl| rk−1 |nl〉 = 〈nl| r−k−2 |nl〉 (2l + 1 − k) · · · (2l + 1 + k)(
2Z
n

)2k+1
(1.182)

=

( n
2Z

)2k+1 (2l + k + 1)!
(2l − k)!

〈nl| r−k−2 |nl〉 (1.183)

as given by Ojha and Crothers [464]. This generalizes to [576]
〈
nl′

∣∣∣ r−k−2 |nl〉 = (−1)l−l′ (2/an)2k+1(l + l′ − k)!k!2

× 〈nl′| rk−1 |nl〉
(l + l′ + 1 + k)!(k + l − l′)!(k + l′ − l)!

(1.184)

for |l − l′| ≤ k ≤ l + l′.
Other generalizations of the hypergeometric functions are the Kampé de Fériet

functions [258]. For instance the type of integral that occurs in the condensed-matter
physics of Chapter 5 includes

∫ 1

0
dz e3αz4−2αz2

I0

(
α(1 − z2)2

)
(1.185)

= e−α
∞∑

r=0

∞∑
s=0

(2α)r

r!
(2α)s

s!

(
1
4

)
r

(
3
4

)
r

(
1
2

)
s

(
1
2

)
s(

3
4

)
r+s

(
5
4

)
r+s

(1.186)

= e−αF0:2;2
2:0;0

(
−− : 1

4 ,
3
4 ; 1

2 ,
1
2 ;

3
4 ,

5
4 : −− ;−−;

2α, 2α

)
(1.187)
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which converges for all finite α, where I0 is the modified Bessel function of the first
kind and zero order. Another example is

∫ +1

−1
dx eσx2+ξxP2n(x)dx =

22n+1(2n)!ξn

(3n + 1)!

× F0:0;4
2:0;3

(
−− : −− ; n

2 + 1
2 ,

n
2 + 1, n + 1

2 , n + 1 ;
n
2 + 1

2 ,
n
2 + 1 : −− ; 1

2 ,
3n
2 + 1, 3n

2 + 3
2 ;

σξ2

4
,
ξ2

4

)
(1.188)

The integral ∫ +1

−1
dx (1 − x2)PM−4

l (x)PM
L (x) (1.189)

may be written as a terminating Kampé de Fériet function. Alternative notations
include Fox functions [499].

1.8 Fourier and Laplace Transforms

1.8.1 Critical Fourier Transform Relation

f̄ (p) =
1
√

2π

∫ +∞

−∞
dy f (y)e−ipy (1.190)

⇒ f (x) =
1
√

2π

∫ +∞

−∞
dp f̄ (p)eipx (1.191)

Proof. Substitute (1.190) into (1.191):

f (x) =
1

2π

∫ +∞

−∞
dp eipx

∫ +∞

−∞
dy f (y)e−ipy

= lim
ε→0+

1
2π

∫ +∞

−∞
dp eipx−ε|p|

∫ +∞

−∞
dy f (y)e−ipy

= lim
ε→0+

1
2π

∫ +∞

−∞
dy f (y)G(y) (1.192)

where

G(y) =

∫ +∞

−∞
dp e−ε|p|+ip(x−y)

= 2Re
∫ ∞

0
dp e−εp+ip(x−y)

=
2ε

ε2 + (y − x)2
(1.193)
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f (x) = lim
ε→0+

[
−1
π

∫ +∞

−∞
dy f ′(y) tan−1

{y − x
ε

}]

= −1
π

[∫ x

−∞
dy f ′(y)

(
−π

2

)
+

∫ ∞

x
dy f ′(y)

(
π

2

)]
(1.194)

=
1
2

∫ x

−∞
dy f ′(y) − 1

2

∫ +∞

x
dy f ′(y)

=
1
2

[
f (y)

]x
y=−∞ −

1
2

[
f (y)

]+∞
y=x

=
1
2

[
f (x)

]
+

1
2

[
f (x)

]
= f (x) (1.195)

Note that

δ(x − y) = lim
ε→0+

ε/π

ε2 + (y − x)2

is one of the representations of the Dirac delta function.

1.8.2 Critical Laplace Transform Relation

f̄ (p) =

∫ +∞

0
e−px f (x) dy (1.196)

⇒ f (x) =
1

2πi

∫ γ+i∞

γ−i∞
dp epx f̄ (p) (1.197)

All singularities of f̄ (p) lie to the left of Re p = γ. Substituting (1.196) into (1.197)
⇒

f (x) =
1

2πi

∫ γ+i∞

γ−i∞
dp epx

∫ +∞

0
e−pζ f (ζ) dζ

=
1

2πi

∫ γ+i∞

γ−i∞
i dy e(γ+iy)x

∫ ∞

0
e−ζ(γ+iy) f (ζ) dζ

=
1

2π

∫ ∞

0
dζ f (ζ)e(x−ζ)γ

∫ +∞

−∞
dy eiy(x−ζ)

=
1

2π

∫ ∞

0
dζ f (ζ)e(x−ζ)γ 2πδ(x − ζ) (1.198)

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
f (x) if x > 0

0 if x < 0
1
2 f (0) if x = 0

(1.199)
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Semiclassical Phase Integrals

2.1 Approximation

2.1.1 JWKB Approximation

The semiclassical approximation is also known as the JWKB (or WKB) approxi-
mation because it was first developed in quantum mechanics by H. Jeffreys [342],
G. Wentzel [595], H.A. Kramers [366], and L. Brillouin [87]. Prior to the advent
of quantum mechanics, it was also known as the Green–Liouville method [324].
This approximation corresponds to an expansion in powers of �. Consider the one-
dimensional time-independent Schrödinger equation (TISE)

− �
2

2μ
d2u
dx2

+ V(x)u = Eu (2.1)

⇒ d2u
dx2

+ k2(x)u = 0 (2.2)

where

k(x) ≡ 1
�

[
2μ (E − V(x))

]1/2 (V(x) < E) (2.3)

or
d2u
dx2
− k2

1(x)u = 0 (2.4)

where

k1(x) ≡ 1
�

[
2μ (V(x) − E)

]1/2 (V(x) > E) (2.5)

With S as action and A as amplitude we put

u(x) = AeiS (x)/� (2.6)

Then
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d2u
dx2

= A
d
dx

[
i
�

S ′eiS (x)/�

]

=
iA
�

{
S ′′ +

i
�

(S ′)2

}
eiS (x)/� (2.7)

Substituting into (2.1)⇒

i�
d2S
dx2
−

(
dS
dx

)2

+ 2μ[E − V(x)] = 0 (2.8)

Expand S in powers of �:

S = S 0 + �S 1 + · · · (Maclaurin expansion in � but note 1/� in exponential)
(2.9)

The terms independent of � give

−
(

dS 0

dx

)2

+ 2μ[E − V(x)] = 0 (2.10)

while the terms of first order in � give

i
d2S 0

dx2
− 2

dS 0

dx
· dS 1

dx
= 0 (2.11)

Integrating (2.10) gives

S 0(x) = ±
∫ x

x0

{2μ(E − V(s))}1/2 ds

≡ ±�
∫ x

x0

k(s)ds (2.12)

and integrating (2.11)⇒

S 1(x) =
1
2

i ln

(
dS 0

dx

)

=
1
2

i ln k(x) (2.13)

including the arbitrary constant of integration in A of (2.6). Neglecting higher-order
terms, it follows from (2.6), (2.9) that

u(x) ≈ Aei/�(S 0(x)+�S 1(x))

= Ae
±i

∫ x

x0
k(s)ds− 1

2 ln k(x)

= A[k(x)]−
1
2 e
±i

∫ x

x0
k(s)ds

(V(x) < E) (2.14)

Similarly

u(x) = B[k1(x)]−
1
2 e
±

∫ x

x0
k1(s)ds

(V(x) > E) (2.15)
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where k2(x0) = 0 = k2
1(x0) ⇒ x0 is a turning point. We expect these equations to be

valid if �S 1/S 0 is small. Equation (2.13)⇒

�S 1(x) =
i�
2

ln k(x) =

∫ x

c

i�
2

dk(s)
ds

k(s)
ds (2.16)

where k(c) = 1.
Equations (2.12) and (2.16)⇒

1
�
|S 0| � |S 1|

if ∣∣∣∣∣dk(x)/dx
2k2(x)

∣∣∣∣∣ � 1 (2.17)

The local de Broglie wavelength λ is 2π/k; thus we may write this condition as

λ

4π
1
k

∣∣∣∣∣dk
dx

∣∣∣∣∣ � 1 (2.18)

Hence the fractional change in k over the distance λ/4π should be small. This is a
small-wavelength or high-frequency approximation. In reality this is the inverse of
perturbation theory, that is, the basic quantity is large rather than small.

At the turning point(s) of the classical motion where

V(x0) = E (2.19)

we see that k (and k1) vanishes and so condition (2.18) is violated, to the extent that
the left-hand side = +∞ (k′(x0) � 0). Thus the approximation is valid only several
wave-lengths away from the turning point and so is termed an asymptotic approxi-
mation. Because this approximation is based on the assumption that the higher-order
terms in � are negligible, it is a semiclassical approximation (� → 0 in classical
limit).

We now consider the solution near a linear turning point as indicated in Figure
2.1.

With V(x0) = E,

V(x) < E (x > 0)

V(x) > E (x < 0)

V(x) = E − Fx (F > 0)

Define

ξ1(x) =

∫ 0

x
k1(s) ds , ξ(x) =

∫ x

0
k(s) ds (2.20)

(x < 0)⇒ ds > 0 (x > 0)⇒ ds > 0

Region 1 Region 2
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x

Region 1 Region 2

Classically
  forbidden   allowed

  E

Classically

V(x)

Fig. 2.1. Classical turning point

Both ξ1(x) and ξ(x) increase as we move away from the turning point. The time
independent Schrödinger equations (2.2) and (2.4) can then be solved in each of the
two regions, namely

u±(x) = A±ξ
1/2(x)k−1/2(x)J±1/3(ξ) (x > 0) (2.21)

u±1 (x) = B±ξ
1/2
1 (x)k−1/2

1 (x)I±1/3(ξ1) (x < 0) (2.22)

where Jn(z) is a regular Bessel function ([1], Chapter 11) (of the first kind), satisfying

d2y
dz2

+
1
z

dy
dz

+

(
1 − n2

z2

)
y = 0 (2.23)

and In(z) is a modified Bessel function, given by

In(z) = i−nJn(iz) (2.24)

2.1.2 Gans–Jeffreys Asymptotic Connection Formula

By using the known behaviour of J±1/3(x) and I±1/3(x) as |x| → 0 and as |x| → ∞ ([1],
Chapter 10) we may obtain the following connection formulae as follows: consistent
with Figure 2.1, with γ =

√
2μF we have

d2u
dx2

+ γ2xu = 0 (−∞ < x < +∞) (2.25)

Using a Fourier transform, we deduce that
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u(+∞) = (2π)−1γ−2/3
∫ +∞

−∞
dp exp

[
i

(
p3

3γ2
− px

)]
(2.26)

≡ Ai(−γ2/3x) (2.27)

=

⎧⎪⎪⎨⎪⎪⎩
1
3γ

1/3x1/2
[
J1/3

(
2
3γx3/2

)
+ J−1/3

(
2
3γx3/2

)]
(x ≥ 0)

1
3γ

1/3(−x)1/2
[
I−1/3

(
2
3γ(−x)3/2

)
− I+1/3

(
2
3γ(−x)3/2

)]
(x ≤ 0)

(2.28)

�
⎧⎪⎪⎨⎪⎪⎩
π−1/2γ−1/6x−1/4 sin

(
2
3γx3/2 + π

4

)
(x � 1)

1
2π
−1/2γ−1/6(−x)−1/4 exp

(
− 2γ

3 (−x)3/2
)

(x � −1)
(2.29)

1
2 k−1/2

1 e−ξ1

(x < 0)
−→ k−1/2 sin

(
ξ + π

4

)
(x > 0)

(2.30)

and similarly
k−1/2

1 eξ1

(x < 0)
←− k−1/2 sin

(
ξ − π

4

)
(x > 0)

(2.31)

We note in (2.30) that the arrow must point from x < 0 to x > 0 and not from x > 0
to x < 0, since a small error in the phase of the sine will introduce an eξ1 component
in the solution for x < 0, which “blows up,” i.e., tends to infinity as x → −∞. In
a similar way in (2.31) the arrow must point in the other direction since a small
unobservable component of e−ξ1 , as x→ −∞, will modify the phase of the sine by a
significant amount.

One problem with the derivation of (2.26) is that as x → +∞, u(x) suffers an
infinite oscillatory divergence, which is assumed to average out at zero. Also by our
choice of Figure 2.1, the quantally allowed region lies to the right and the classically
forbidden region to the left. In [324] for instance, the reverse is true. Our choice is
more natural because, for the radial coordinate r ∈ [0,+∞], the classically forbidden
region will always lie to the left for continuum states where two aggregate particles
will separate infinitely (r is the positive distance between two particles, by definition
of spherical polar coordinates).

A more convincing1 treatment, tracing the solutions around the complex x-plane,
across Stokes lines and avoiding the turning point, is given later. The critical aspect
of the Stokes phenomenon is that the coefficient of the exponentially subdominant
solution suffers an abrupt change in crossing a Stokes line, that is, in the presence of
a nonzero exponentially dominant solution.

2.2 Phase Integrals

2.2.1 Stokes Phenomenon: One Transition Point

From (2.14) and (2.15), we have

1 After all, it appears, perhaps incorrectly, that the Gans–Jeffreys derivation relates only to
the linear potential of Figure 2.1. In fact, as we shall see, the only necessary condition is
the existence of a simple transition/turning point.
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0 x0

+ dom

− dom

− sub
+ dom

− sub

+ sub

 arg k (x)   = 0
1/2arg k   (x) = 0

5

6

7
8

9

x

arg (x−x )  = 00

arg (x−x  ) = 9   / 80 π

Fig. 2.2. Complex x-plane for the one-transition-point problem

u(x) �
x � x0

k−1/2(x)
[
Ae

i
∫ x

x0
k(s) ds

+ Be
−i

∫ x

x0
k(s) ds

]
(2.32)

Similarly

u(x) �
x � x0

k−1/2
1 (x)

[
Ce

∫ x0
x

k1(s) ds + De−
∫ x0

x
k1(s) ds

]
(2.33)

These asymptotic formulae have branch-point singularities at x0 at which u becomes
infinite. Of course x = ∞ is an essential singularity in all collision problems (E > 0).

Expressions on the right-hand side of (2.32) and (2.33) may be termed phase
integrals because they are of the form exp(iθ) where θ is expressed as an integral and
‘phase’ is another word for “angle in radians”.

Heavy lines are Stokes lines on which phase integrals are exponentially dominant
or subdominant. They emanate from a simple zero at π/3, π, −π/3 (= 5π/3). The
Stokes phenomenon may be described as follows. As a Stokes line is crossed, the
coefficient of the subdominant solution suffers an abrupt change in order to emerge
on the next anti-Stokes line with the appropriate coefficient, required for the next
domain in which it is again dominant. The abrupt change is parameterized by the
Stokes constant times the coefficient of the dominant term. Thus, we have, with b the
unique (by symmetry) positive-direction Stokes constant: in Figure 2.2
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Region 5 : u � k−1/2

[
A exp(i

∫ x

x0

k ds) + B exp(−i
∫ x

x0

k ds)

]
(2.34)

Region 6 : u � k−1/2

[
(A + bB) exp(i

∫ x

x0

k ds) + B exp(−i
∫ x

x0

k ds)

]
(2.35)

Region 7 : u � k−1/2

[
(A + bB) exp(i

∫ x

x0

k ds) + {b(A + bB) + B} exp(−i
∫ x

x0

k ds)

]
(2.36)

Region 8 : u � −ik−1/2

[
{b(A + bB) + B} exp(i

∫ x

x0

k ds)

+ (A + bB) exp(−i
∫ x

x0

k ds)

]
(2.37)

Region 9 : u � −ik−1/2

[
{bA + (1 + b2)B} exp(i

∫ x

x0

k ds)

+ {A + bB + b{bA + (1 + b2)B}} exp(−i
∫ x

x0

k ds)

]
(2.38)

Analyticity (which follows from ascending Frobenius series solutions to equation
(2.2) in powers of (x − x0)), (2.34) and (2.38) imply

b = i (2.39)

A purely subdominant solution on the π Stokes line requires

A + bB = 0 (2.40)

Setting

A =
c
2

exp

(
−πi

4

)
, B =

c
2

exp

(
πi
4

)
(2.41)

gives the Jeffreys’ connection formula

c
2
|ν|−1/2 exp

(
−

∫ x0

x
|ν| ds

)
−→ cν−1/2 sin

[∫ x

x0

ν ds +
π

4

]
(2.42)

where we have avoided the no-go area around/near x0. The ubiquitous π/4 is thus
half the phase of b, the positive Stokes constant.

As stated in [160], it appeared to Budden [100], [101] that Furry [287] was the
first author to have treated the idea of the Stokes phenomenon seriously and to have
derived the Stokes constants and hence the Jeffreys’ connection formula for the one-
transition-point problem, by analyticity arguments. However, Stueckelberg [574] not
only preceded Furry in this respect by fifteen years but also made an outstanding
contribution to the solution of what is essentially a four-transition-point problem. It
may be noted that, in particular, Furry’s treatment is blurred because he does not
specify the location of the branch cut for k1/2(x).
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Bohr–Sommerfeld Quantization Rule

Two turning points are given by

V(x1) = E = V(x2) (2.43)

⇒ V(x) > E (x < x1 and x > x2) (2.44)

V(x) < E (x1 < x < x2) (2.45)

Concerning the x1 turning point

x > x1 ⇒ ( see (2.35)) u(x) = Ak−1/2 sin

(∫ x

x1

k(s) ds +
π

4

)
(2.46)

where

k(s) ≡ 1
�

[
2μ(E − V(s))

]1/2 (2.47)

Concerning the x2 turning point

x < x2 ⇒ u(x) = A′k−1/2 sin

(∫ x2

x
k(s) ds +

π

4

)
(2.48)

such that as x decreases, the integral term increases. It follows from (2.46), (2.48)
that the wave function has the following form:

u(x) = −A′k−1/2 sin

[∫ x

x2

k(s) ds − π
4

]

= −A′k−1/2 sin

[∫ x

x1

k(s) ds − π
4
− η

]
(2.49)

where

η ≡
∫ x2

x1

k(x) dx (2.50)

The solutions given by (2.46), (2.49) connect smoothly if A′ = (−1)n+1A and η =

nπ + π/2 where n = 0, 1, 2, . . . Thus we obtain
∫ x2

x1

k(x) dx = (n +
1
2

)π (2.51)

which can be written as (p = �k)
∫ x2

x1

[
2μ(E − V(x))

]1/2 dx = (n +
1
2

)�π (2.52)

(� = h/2π = 1 in atomic units), and determines the energy eigenvalue En. Since the
linear momentum is given by



2.2 Phase Integrals 29

x

x1 x2  2arg x = 0 = arg (x−x )

Fig. 2.3. Path of phase integral of (2.54) in complex x-plane

p =
[
2μ(E − V(x))

]1/2 (2.53)

a classical expression, (2.52) can be written as

1
2

∮ (x1+,x2+)

p dx =
1
2

[∫ x2

x1

p dx +

∫ x1

x2

eiπp dx

]

=

∫ x2

x1

p dx = (n +
1
2

)�π (n = 0, 1, 2, . . .) (2.54)

where the left-hand side is an integral over the complete cycle x1 → x2 → x1.
Equation (2.54) is known as the Bohr–Sommerfeld quantization rule. Wide-ranging
discussions of one-dimensional semiclassical elastic scattering are given by Mott and
Massey [443], Brink [88], and Flannery [271].

The cases that arise when (2.41) is not fulfilled are considered by Nakamura
[447] and by Coveney et al. [152].

2.2.2 Application of JWKB to Coupled Wave Equations

Introduction

The semiclassical treatment of atom-atom collisions involving electronic transitions
is discussed in [40]. As is well known, difficulties occur if the classical trajectories
associated with the various states of importance in a collision process differ signif-
icantly. A method designed to overcome these is described. It will be referred to as
the forced-common-turning-point method. The four coupled first-order differential
equations that describe the new version of the semiclassical two-state treatment for
an atom-atom collision may be reduced to a pair of generalized impact parameter
equations.

The first Born approximation to the cross section obtained from the straightfor-
ward semiclassical treatment differs from the corresponding cross section obtained
from the full quantal treatment mainly in that it contains an anomalous multiplying
factor equal to the ratio of the initial to the final velocity of relative motion. This
anomaly does not come up with the forced-common-turning-point method.

A model collision process that provides a very searching test is considered. Only
two states are included. The initial interaction is zero, the final interaction is Coulom-
bic, and the transition matrix element is exponential. Curve-crossing may occur. The
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distorted-wave approximation to the excitation cross section may be found exactly
and may also be computed using the forced-common-turning-point method. There is
remarkable accord between the results. Thus, in a case where the reduced mass of
the colliding systems is 2 on the chemical scale, where the excitation energy is 3.4
eV, and where the incident kinetic energy of relative motion is only 0.85 eV above
this, the excitation cross sections obtained differ by as little as 0.01%; moreover, the
patterns of the contributions to the cross sections from the separate partial waves are
similar.

As was first pointed out by Mott [442] the theory of collisions between atomic
systems is greatly simplified by the assumption that the nuclei move like classical
particles. This assumption leads immediately to the impact parameter treatment. It
was made by Landau [376] and by Zener [611] in their research on the effect of
pseudo-crossings of potential energy surfaces. Stueckelberg [574] carried through a
much more elaborate analysis in which he described the motion of the nuclei by an
expansion in powers of Planck’s constant, that is semiclassically (cf. [443] p.351).
The semiclassical treatment based on the JWKB or eikonal approximation has re-
ceived much attention [42], [307], [156], [601], [111]. It is more powerful than the
closely related impact parameter treatment.

There remains a general collision problem that has not yet been satisfactorily
solved by either treatment: the problem of how to carry out calculations if the classi-
cal trajectories in the initial and final states differ markedly.

A possible approach in the distorted-wave approximation is to use semiclassical
wave functions in the transition matrix element occurring in the formula for the cross
section ([43] [443] p. 354). The behaviour near the classical turning points in the ini-
tial and final states, at r0 and r1 respectively, causes difficulty. Since the amplitude of
a wave function diminishes rapidly as the penetration into the classically forbidden
region is increased, it has been suggested that the region within rm, the greater of
r0 and r1, contributes little to the transition matrix element and may be neglected.
Because of the highly oscillatory nature of the integrand, such neglect is in fact un-
justified and, as we have verified by detailed computations, may give rise to serious
error. A less crude procedure is needed. Preferably it should not be limited to the
distorted-wave approximation but should be widely applicabile.

With this in mind we consider the equations arising in the quantal partial-wave
cross section analysis. In order to avoid irrelevant complications, we shall take ex-
plicit account of only the initial and final states. Allowance may readily be made for
other states, provided the associated classical trajectories are effectively the same as
either the initial- or final-state classical trajectories. The restriction is of little prac-
tical importance since the classical trajectories do not differ significantly except at
very low velocities of relative motion, unless the Coulomb parts of the interaction
between the colliding systems for the states concerned differ.

We proceed by modifying the pair of coupled equations so that the classical turn-
ing points coincide. Using the one-dimensional JWKB approximation, as Bates and
Holt [42] used the three-dimensional JWKB approximation we solve the modified
equations accurately both by an elementary method and with the aid of the Green
function. As a check we consider a problem that is exactly solvable in the distorted-
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wave approximation and demonstrate that in this case the artifice of forcing a com-
mon turning point is remarkably successful.

Two-State Approximation in Wave Treatment

For reference purposes we briefly recall the wave treatment (cf. [443] p. 347).
Denoting the reduced mass of the colliding systems by M and the interaction

between them by V , write
U ≡ 2MV/�2 (2.55)

and represent the matrix elements of this with respect to the electronic wave functions
by the same symbol with subscripts affixed to indicate the states. On the two-state
approximation the lth partial cross section Q01

l for transitions from the initial state 0
to the final state 1 is determined by the proper solution to the coupled equations

(
d2

dr2 + K2
0l(r) + 1

4r2

)
G0l = U01G1l (2.56)

and
(

d2

dr2 + K2
1l(r) + 1

4r2

)
G1l = U10G0l (2.57)

where k(r) of Section 2.1 is generalized to Kjl(r) ( j = 0, 1) given by

K2
jl(r) = k2

j (∞) − U j j(r) −
(l + 1

2 )2

r2
≡ k2

j (r) −
(l + 1

2 )2

r2
( j ≡ 0, 1) (2.58)

in which
k j(r) = Mvj(r)/� (2.59)

v j(r) being the magnitude of the classical speed of relative motion at separation r in
state j. The boundary conditions to be satisfied are

G0l(0) = G1l(0) = 0

G0l(r) �
r→∞

il sin{k0(∞)r − 1
2 lπ} + αl exp{ik0(∞)r}

G1l(r) �
r→∞

βl exp{ik1(∞)r}

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(2.60)

where αl and βl are constants. The partial elastic and inelastic cross sections are
related to the values of these constants: in particular

Q01
l =

4πk1(∞)(2l + 1)|βl|2

k3
0(∞)

(2.61)

Semiclassical Treatment

Following Langer [378] we replace l(l + 1) in (2.56) and (2.57) by (l + 1/2)2 to get
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(
d2

dr2
+ K2

0l(r)

)
G0l = U0lG0l (2.62)

(
d2

dr2
+ K2

1l(r)

)
G1l = U10G0l (2.63)

To force a common turning point we take

K2
jl(r) = k2

j (r)

⎧⎪⎪⎨⎪⎪⎩1 −
(l + 1

2 )2

r2k0(r)k1(r)

⎫⎪⎪⎬⎪⎪⎭ (2.64)

except that where the difference, K2
0l(r) − K2

1l(r), occurs we use the exact value, the
results being very sensitive to the magnitude of this difference.

We seek solutions to (2.62) and (2.63) in the form

G jl = α+
jlS

+
jl + α−jlS

−
jl ( j = 0, 1) (2.65)

where α±jl are slowly varying functions of r and where

S ±jl ≡ K
− 1

2
jl exp±i

{
1
4
π +

∫ r

R
Kjl(s) ds

}
(2.66)

are JWKB approximations to the solutions of the equations
(

d2

dr2
+ K2

jl(r)

)
F jl = 0 (2.67)

which describe the motion in the absence of transitions. The separation R at the
turning point is, of course, the greatest positive root of

x2k0(x)k1(x) = (l +
1
2

)2 (2.68)

Substituting (2.65) into (2.62) and (2.63) and ignoring the small terms α± ′′jl S ±jl in
which the primes indicate differentiation with respect to r, we obtain

2{α+ ′
0l S +′

0l + α− ′0l S −′0l } = U01{α+
1lS

+
1l + α−1lS

−
1l} (2.69)

and 2{α+ ′
1l S +′

1l + α− ′1l S −′1l } = U10{α+
0lS

+
0l + α−0lS

−
0l} (2.70)

Solutions to these that meet the requirement of being slowly varying functions of r
may be derived from

2α± ′0l S ±′0l = U01α
+
1lS

+
1l + α±1lS

±
1l (2.71)

and 2α± ′1l S ±′1l = U10α
+
0lS

+
0l + α±0lS

±
0l (2.72)

Taking
S ±′jl S ∓jl � ±i (2.73)

we reduce (2.71) and (2.72) to



2.2 Phase Integrals 33

±2iK
1
2

0lK
1
2

1lα
± ′
0l = U01α

±
1l exp{∓iμl} (2.74)

and ±2iK
1
2

0lK
1
2

1lα
± ′
1l = U10α

±
0l exp{±iμl} (2.75)

where

μl =

∫ r

R
(K0l(s) − K1l(s)) ds (2.76)

The boundary conditions are

α−0l(∞) =
1
2

k
1
2
0 (∞) , α−1l(∞) = 0 (2.77)

and from the JWKB connection formula

α+
jl(R) + α−jl(R) = 0 ( j = 0, 1) (2.78)

Referring to equation (2.61) we see that the partial cross sections are

Q01
l =

4π(2l + 1)

k3
0(∞)

|α+
1l(∞)|2 (2.79)

The total excitation cross section is

Q01 =

∞∑
l=0

Q01
l (2.80)

Great simplification may be effected in (2.74) and (2.75) without further approxima-
tion. Changing the independent and dummy variables from r and s to

|z| =
∫ r

R

⎧⎪⎪⎨⎪⎪⎩1 −
(l + 1

2 )2

t2k0(t)k1(t)

⎫⎪⎪⎬⎪⎪⎭
− 1

2

dt , |ζ | =
∫ s

R

⎧⎪⎪⎨⎪⎪⎩1 −
(l + 1

2 )2

t2k0(t)k1(t)

⎫⎪⎪⎬⎪⎪⎭
− 1

2

dt (2.81)

we obtain

± 2ik
1
2
0 (r)k

1
2
1 (r)

dα±0l

d|z| = U01α
±
1l exp{∓iμl} (2.82)

±2ik
1
2
0 (r)k

1
2
1 (r)

dα±1l

d|z| = U10α
±
0l exp{±iμl} (2.83)

μl =

∫ |z|

0
{k0(s) − k1(s)} d|ζ | (2.84)

Introducing coefficients c jl(z) and functions νl(z) that are defined over the complete
range of z by

c jl(z) ≡ α+
jl(|z|) , νl(z) ≡ μl(|z|), (z ≥ 0)

≡ −α−jl(|z|) , ≡ −μl(|z|), (z ≤ 0)

}
(2.85)
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we reduce the four equations of (2.82) and (2.83) to the two impact-parameter-type
equations

i dc0l

dz =
U01(r)

2k
1
2
0 (r)k

1
2
1 (r)

c1l exp(−iνl(z)) (2.86)

and i dc1l

dz =
U10(r)

2k
1
2
0 (r)k

1
2
1 (r)

c0l exp(iνl(z)) (2.87)

If we take the boundary conditions to be

c0l(−∞) = 1 , c1l(−∞) = 0 (2.88)

we see that formula (2.79) for the partial cross section is replaced by

Q01
l =

(2l + 1)π

k2
0(∞)

|c1l(+∞)|2 (2.89)

It may be noted in parentheses that the variable z has a simple interpretation in
the special case where

k2
0(∞) = k2

1(∞) and U00(r) = U11(r) (2.90)

so that the initial and final classical trajectories are identical. Omitting the subscripts
as unnecessary and introducing the impact parameter

ρ = (l +
1
2

)/k(∞) (2.91)

we see from (2.81) that

dz = dr

/(
1 − ρ

2k2(∞)
r2k2(r)

) 1
2

(2.92)

which is just an element of length along the common trajectory. The difference be-
tween equations (2.86) and (2.87) and the corresponding pair of equations for the
case of a common rectilinear trajectory (cf. Bates [35]) is therefore as would be ex-
pected physically.

Semiclassical Treatment by Green Function Formalism

In general, if

U j j(r) �
r→∞

− 2λ jM/r (2.93)

then the boundary conditions on the radial wave functions must be generalized to
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G0l(r) �
r→∞

il sin

[
k0(∞)r − lπ

2
+ argΓ

(
l + 1 − iλ0

v0(∞)

)

+
λ0

v0(∞)
ln(2k0(∞)r)

]
ei argΓ(l+1−iλ0/v0(∞))

+αl exp

[
ik0(∞)r + 2i argΓ

(
l + 1 − iλ0

v0(∞)

)

+
iλ0

v0(∞)
ln(2k0(∞)r)

]
(2.94)

G1l(r) �
r→∞

βl exp

[
ik0(∞)r + i argΓ

(
l + 1 − iλ1

v1(∞)

)

+ i argΓ

(
l + 1 − iλ0

v1(∞)

)
+

iλ1

v1(∞)
ln(2k1(∞)r)

]
(2.95)

We introduce outgoing Green functions G jl defined by

G jl(r, r
′) ≡ 1

2
iS +

jl(r>)[S +
jl(r<) − S −jl(r<)] (2.96)

where (
d2

dr2
+ K2

jl(r) +
1

4r2

)
S ±jl(r) = 0 (2.97)

S ±jl(r) �
r→∞

k
− 1

2
j (∞) exp

[
±i

{
k j(∞)r + η jl −

1
2

lπ + argΓ

(
l + 1 −

iλ j

v j(∞)

)

+
λ j

v j(∞)
ln(2k j(∞)r)

}]
(2.98)

and

r≶ =
min
max (r, r′)

It is easy to show that

sin η jl =

∫ ∞

0

[
U j j(r) +

2λ j

r
M

]
(S +

jl − S −jl)i exp(−ik j(∞)r

×
(2k j(∞)r)l+1)

k
1
2
j (∞)(2l + 1)!

Γ

(
l + 1 +

iλ j

v j(∞)

)
exp

(
πλ j

2v j(∞)

)

×1F1

(
l + 1 +

iλ j

v j(∞)
; 2l + 2; 2ik j(∞)r

)
dr (2.99)

However, it is not normally necessary to calculate η jl explicitly. It follows that
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(
d2

dr2
+ K2

jl(r) +
1

4r2

)
G jl(r, r

′) = δ(r − r′) (2.100)

where δ is the Dirac delta function. Integration by parts of (2.56), (2.57), and (2.100)
suitably premultiplied yields the coupled integral equations:

G0l(r) =
ilk

1
2
0 (∞) exp(iη0l)

2i
(S +

0l(r)−S −0l(r))+

∫ ∞

0
U01(r′)G1l(r

′)G0l(r, r
′)dr′ (2.101)

G1l(r) = +

∫ ∞

0
U10(r′)G0l(r

′)G1l(r, r
′)dr′ (2.102)

Substitution of (2.96) into (2.101) and (2.102), together with definition (2.65), leads
without loss of generality to the four coupled integral equations:

α+
0l(r) =

1
2

il−1k
1
2
0 (∞) exp(iη0l) +

1
2

i
∫ ∞

0
U01(r′)G1l(r

′)S +
0l(r
′) dr′

− 1
2

i
∫ r

0
U01(r′)G1l(r

′)S −0l(r
′) dr′ (2.103)

−α−0l(r) =
1
2

il−1k
1
2
0 (∞) exp(iη0l) +

1
2

i
∫ ∞

r
U01(r′)G1l(r

′)S +
0l(r
′) dr′ (2.104)

α+
1l(r) =

1
2

i
∫ ∞

0
U10(r′)G0l(r

′)S +
1l(r
′) dr′ − 1

2
i
∫ r

0
U10(r′)G0l(r

′)S −1l(r
′) dr′ (2.105)

−α−1l(r) =
1
2

i
∫ ∞

r
U10(r′)G0l(r

′)S +
1l(r
′) dr′ (2.106)

Differentiation with respect to r gives four exact first-order coupled differential equa-
tions:

α+ ′
0l = −1

2
iU01S −0l(α

+
1lS

+
1l + α−1lS

−
1l) (2.107)

α− ′0l =
1
2

iU01S +
0l(α

+
1lS

+
1l + α−1lS

−
1l) (2.108)

α+ ′
1l = −1

2
iU10S −1l(α

+
0lS

+
0l + α−0lS

−
0l) (2.109)

α− ′1l =
1
2

iU10S +
1l(α

+
0lS

+
0l + α−0lS

−
0l) (2.110)

with

α−0l(∞) =
1
2

k
1
2
0 , α−1l(∞) = 0, α+

jl(0) + α−jl(0) = 0 ( j = 0, 1) (2.111)

Thus far no approximation has been made and we have reduced two coupled second-
order differential equations to four coupled first-order equations by a method that
is essentially equivalent to the well-known variation-of-parameters method. We now
assume that α±jl are slowly varying functions compared with S ±jl and neglect such
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terms as S −jlS
−
kl and S +

jlS
+
kl in comparison with S +

jlS
−
kl on the grounds that oscillatory

integrands lead to negligible integrals. This condition will be relaxed in Section 4.5.
We thus obtain

α± ′0l = ∓1
2

iU01S ∓0lS
±
1lα
±
1l (2.112)

α± ′1l = ∓1
2

iU01S ∓1lS
±
0lα
±
0l (2.113)

where S ±jl are still the exact functions defined by (2.97) and (2.98). If, however, we
now make the semiclassical approximations to S ±jl given in (2.66) and maintain the

exact difference K2
0l(r)−K2

1l(r) as in Section 2.2.2, then we obtain precisely equations
(2.74) to (2.78).

Distorted-Wave and Born Approximations

Assuming that the coupling between the initial and final states is weak we may take
c0l(z) on the right of (2.87) to be unity. This corresponds to the distorted-wave ap-
proximation and leads to

ic1l(+∞) =

∫ +∞

−∞

U01(r)

2k
1
2
0 (r)k

1
2
1 (r)

exp{iνl(z)}dz (2.114)

=
2

�v
1
2
0 (∞)v

1
2
1 (∞)

∫ ∞

0
f (r)V10(r) cos{νl(z)}dz (2.115)

where

f (r) =

[
k0(∞)k1(∞)
k0(r)k1(r)

] 1
2

(2.116)

In the Born approximation f (r) is unity. If ρ0 and ρ1 are the impact parameters
in the initial and final states then

l +
1
2

= ρ0k0(∞) = ρ1k1(∞) (2.117)

It is convenient to put
ρ0ρ1 = ρ2 (2.118)

so that

z =

∫ r

ρ

(
1 − ρ

2

t2

)− 1
2

dt = (r2 − ρ2)
1
2 (2.119)

Formula (2.115) becomes

ic1l(+∞) =
2

�v
1
2
0 (∞)v

1
2
1 (∞)

∫ ∞

0
V10(r) cos

[
2ε01z

�(v0(∞) + v1(∞))

]
dz (2.120)
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where ε01 is the excitation energy. Using (2.89) and replacing the summation over l
in (2.80) by an integration we find

Q01 =
8π

�2v2
0(∞)

∫ ∞

0
ρ

{∫ ∞

0
V10(r) cos

[
2ε01z

�(v0(∞) + v1(∞))

]
dz

}2

dρ (2.121)

This may be rearranged to give

Q01 =
1

2π�2v2
0(∞)

∫ ∞

|k0(∞)−k1(∞)|
|g(q)|2q dq (2.122)

where the modulus on the lower limit includes the possibility of deexcitation and
where

g(q) =

∫
exp(−iq · r)V10(r)d3r (2.123)

a summation or average over states differing only in magnetic quantum number being
assumed [158]. The corresponding formula obtained from the straightforward semi-
classical treatment [42] differs from (2.122) by the factor v0(∞)/v1(∞), while that
obtained from the full quantal treatment differs from (2.122) only in that the upper
limit to the integration is k0(∞) + k1(∞) instead of being infinite. The effect of the
latter difference is minute unless extremely close to the threshold. This represents a
remarkable success for the forced-common-turning-point version of the semiclassi-
cal treatment. Indeed it leads to the possibility that the treatment is useful even for
electron–atom collisions [47].

An Exact Distorted-Wave Calculation

It is essential to test the efficacy of (2.86) and (2.87) as a general approximation to
equations (2.56) and (2.57) when U00 and U11 are unequal. From a practical point of
view this is most easily achieved by investigating the weak-coupling limit, since its
application to (2.86) and (2.87) does not obviate the basic underlying assumption of
a forced common turning point. In this same limit, equations (2.56) and (2.57) yield
the exact distorted-wave formula:

|βl|2 =
k0(∞)
k1(∞)

∣∣∣∣∣12
∫ ∞

0
U10(S +

0l − S −0l)(S
+
1l − S −1l) dr

∣∣∣∣∣
2

(2.124)

which is most easily obtained by substituting the first term of (2.101) into (2.102).
To be specific we take

U00(r) ≡ 0 (2.125)

and
U11(r) ≡ −2λM/r (2.126)

where all quantities are now in atomic units. Except where otherwise specified we
shall use these units throughout the remainder of the section.

We have that η0l and η1l are zero,
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S +
0l − S −0l = F0(0) ≡ 2ik

1
2
0 (∞)r jl(k0(∞)r) (2.127)

and S +
1l − S −1l = F1(λ) (2.128)

where

F j(μ) ≡
i exp{−ik j(∞)r}(2k j(∞)r)l+1

k
1
2
j (∞)(2l + 1)!

∣∣∣∣∣∣Γ
(
l + 1 +

iμ
v j(∞)

)∣∣∣∣∣∣ exp

{
πμ

2v j(∞)

}

×1F1

(
l + 1 +

iμ
v j(∞)

; 2l + 2; 2ik j(∞)r

)
(2.129)

In order to obtain an analytical result in closed form, we must first consider the case

U10(r) ≡ (2M/r)e−αr (2.130)

so that

βl =
2(4k0(∞)k1(∞))l+1l!

∣∣∣∣Γ (
l + 1 + iλ

v1(∞)

)∣∣∣∣ exp
{

πλ
2v1(∞)

}
v1(∞)[2(2l + 1)!]2

×
∫ ∞

0
exp {−(α + ik0(∞) + ik1(∞))r} r2l+1

1F1(l + 1; 2l + 2; 2ik0(∞)r)

×1F1

(
l + 1 +

iλ
v1(∞)

; 2l + 2; 2ik1(∞)r

)
dr (2.131)

=
2(4k0(∞)k1(∞))l+1l!

∣∣∣∣Γ (
l + 1 + iλ

v1(∞)

)∣∣∣∣ exp
{

πλ
2v1(∞)

}
(2l + 1)!

v1(∞)[2(2l + 1)!]2[α2 + (k0(∞) − k1(∞))2]l+1

×
[
α + ik0(∞) + ik1(∞)
α + ik0(∞) − ik1(∞)

]iλ/v1(∞)

×2F1

[
l + 1, l + 1 +

iλ
v1(∞)

; 2l + 2;
−4k0(∞)k1(∞)

α2 + (k0(∞) − k1(∞))2

]
(2.132)

=
l! exp{θ( 1

2π − φ)} |Γ(l + 1 + iθ)|
2v1(∞)(2l + 1)!(−ν)l+1

{
x + 1
x − 1

}± 1
2 iθ

×2F1

(
l + 1, l + 1 ± iθ; 2l + 1;

1
ν

)
(2.133)

=
l! exp{θ( 1

2π − φ)}
v1(∞) |Γ(l + 1 + iθ)|

{
x + 1
x − 1

} 1
2 iθ

Q(−iθ,+iθ)
l (x) (2.134)

where

ν =
α2 + (k0(∞) − k1(∞))2

−4k0(∞)k1(∞)
(2.135)

θ = λ/v1(∞) (2.136)

x =
α2 + k2

0(∞) + k2
1(∞)

2k0(∞)k1(∞)
(2.137)
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φ =

⎧⎪⎪⎨⎪⎪⎩
tan−1

(
2αk1(∞)
α2+2Mε01

)
if α2 + 2Mε01 ≥ 0

π − tan−1
(

2αk1(∞)
−α2−2Mε01

)
if α2 + 2Mε01 ≤ 0

⎫⎪⎪⎬⎪⎪⎭ (2.138)

and where Q(α,β)
l is a Jacobi function of the second kind. Recurrence relations for the

latter function [32] lead to

(l2 + θ2)
1
2 βl−1 = (2l + 1)xβl − {(l + 1)2 + θ2} 1

2 βl+1 (2.139)

Since x is greater than unity, upward recurrence would rapidly involve numerical
instability. Thus downward recurrence is necessary. The method, essentially due to J.
C. P. Miller (cf. [14, 429]), requires setting βL+1 = 0 and βL = 1 for some sufficiently
large L.

However, it is numerically more convenient to consider the case:

U10(r) ≡ 2Me−αr (2.140)

The computer program is then amenable to testing in the limit as λ→ 0, correspond-
ing to the exact first Born case. Use of (2.130) in this limit involves a Cauchy prin-
cipal value and a transition probability that behaves like (ln ρ)2 as ρ tends to zero,
a circumstance to be expected within the weak-coupling limit. Equations (2.122),
(2.123), and (2.140) yield the first Born approximation:

Q01 =
16πα2

3v2
0(∞)

{α2 + (k0(∞) − k1(∞))2}−3 (2.141)

This provides a simple check on calculations in the zero-distortion limit. The adop-
tion of (2.140) requires that βl be replaced by

β̃l ≡
∂βl

∂α
= −θ ∂φ

∂α
βl +

α
(
lxβl −

√
(l2 + θ2)βl−1

)
k0(∞)k1(∞)(x2 − 1)

(2.142)

In obtaining this, we have used

l(x2 − 1)
∂

∂x
Q(−iθ,+iθ)

l (x) = l(lx + iθ)Q(−iθ,+iθ)
l (x) − (l2 + θ2)Q(−iθ,+iθ)

l−1 (x) (2.143)

Substituting from (2.139) and replacing l by l − 1 gives β̃l−1 in terms of βl and βl−1:

β̃l−1 = −θ ∂φ
∂α
βl−1 +

α
( √

(l2 + θ2)βl − lxβl−1

)
ko(∞)k1(∞)(x2 − 1)

(2.144)

where, of course,
∂φ

∂α
=

2k1(∞)(2Mε01 − α2)

(α2 + 2Mε01)2 + 4α2k2
1(∞)

(2.145)

The βl were calculated from (2.139) and then the β̃l were calculated from (2.144).
The sequence {β̃l} was normalized by setting
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β̃0 =
exp(−θφ)

v1(∞)

[
2πθ

1−exp(−2πθ)

]1/2

×
[

2k1(∞)(2Mε10−α2) sin z
(α2+2Mε01)2+4k2

1(∞)α2 + α cos z
k0(∞)k1(∞)(x2−1)

]
(2.146)

where

z =
1
2
θ ln

(
x + 1
x − 1

)
(2.147)

The total cross section was calculated from

Q01 =

∞∑
l=0

4πk1(∞)(2l + 1)

k3
0(∞)

∣∣∣β̃l

∣∣∣2 (2.148)

Comparison of Results of Exact and Approximate Distorted-Wave Calculations

For potentials (2.125), (2.126), and (2.140) equations (2.89) and (2.115) yield the
approximate distorted-wave cross section:

Q01 = π

∞∑
l=0

32(l + 1
2 )

k0(∞)k1(∞)v2
0(∞)

{∫ ∞

0
gl(x) cos θl(x) dx

}2

(2.149)

with

gl(x) =
r{r2k1(r) + ρ2k1(∞)} 1

2 exp(−αr)

k
1
2
1 (∞){r3 + (ρ4/R3)(r2 + rR + R2)} 1

2

(2.150)

and

θl(x) = 2
∫ x

0

{k1(s) − k0(∞)}
k1(∞)

{
s2k1(s)[s2k1(s) + ρ2k1(∞)]
s3 + (ρ4/R3)(s2 + sR + R2))

} 1
2

dy (2.151)

in which R(ρ) is the greatest positive root of

t4 +
2λM

k2
1(∞)

t3 − ρ4 = 0 (2.152)

and in which

r = x2 + R (2.153)

s = y2 + R (2.154)

k2
1(r) = k2

1(∞) + 2λM/r (2.155)

At low energies, where distortion becomes important, the summation over l in
(2.149) is easier to carry out numerically than an integration over ρ, which is in
turn much easier to use at higher energies, where in fact a check was made that
(2.149) tends to (2.141). For each l, interpolation in the cosine argument was found
to be expedient, except for the higher values of α, which required such fine grids
that direct integration for each value of x was probably equally efficient. Newton’s
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method was used to obtain R(ρ), while the integrations over x and y were effected by
splitting the interval and applying a 7-point Curtis–Clenshaw quadrature, checked by
a double 5-point Lobatto quadrature. The latter method is due to O’Hara and Smith
(private communication) and is closely related to the methods reported in their paper
[463]. However, since rapid oscillations in the sign of the r-integrand occur, a local
relative error accuracy was employed. One advantage of the particular choice of in-
tegration variables in (2.149) and (2.151), namely x and y, is that the integrands are
well behaved at ρ = 0.

Of major interest are transitions involving one pseudo-crossing point rc given by
the only real positive root of

k2
0(s) = k2

1(s) (2.156)

On the assumption that v0(∞) is very much less than unity, k0(s)− k1(s) is very large
and the method of steepest descent (or stationary phase) may be tentatively applied
to (2.115). Integration over ρ, with averaging over the rapidly varying phase, yields

Q01 =
8π2r2

c V2
10(rc)

v2
0(∞)

∣∣∣k′0(rc) − k′1(rc)
∣∣∣ (2.157)

which is just the weak-coupling limit of the Landau-Zener formula and which for the
test case reduces to

Q01 =
8π2r4

c exp{−2αrc}
|λ|v0(∞)

(2.158)

where rc = λ/ε01 is the crossing point, assuming λε01 > 0. In particular, we consider
results for λ = +1 and ε01 = 0.125 atomic units (a.u.), which correspond to an at-
tractive Coulomb potential in the final state and to excitation, respectively. We take
M = 2 × 1837 a.u. and k2

0(∞) = Mε01 p a.u. with p = 2.5, corresponding to an initial
relative velocity of 9.223×10−3 a.u. and an incident relative kinetic energy of 4.25 eV
which is only 0.85 eV above threshold. We confirmed that for α = 1/2, the exact for-
mula (2.148) and the forced-common-turning-point formula (2.149) agreed, giving
3747.4(πa2

0), while the steepest-descent formula (2.157) gave 3744(πa2
0). To obtain

a more sensitive test we therefore proceeded to higher values of α, until (2.148) and
(2.157) substantially differed, that is, until the individual transition probabilities de-
pended on significant contributions from other than the crossing point. Of course,
the evaluation of (2.149) becomes more difficult as α increases. For α = 2, we ob-
tained 1635.3, 1635.3, and 1414 (all in units of 10−10πa2

0) for (2.148), (2.149), and
(2.157) respectively, thus showing that the common-turning-point method predicts
the wave distortion very accurately for all internuclear separations. Moreover, al-
lowance for deviation from a straight-line trajectory is clearly successful, because
although an impact-parameter-type formula, with λ = 0 except in k0(∞) − k1(s),
gives 1677(10−10πa2

0), the maximum value of l for which Q01
l contributes to Q01 is

200, whereas for (2.148) and (2.149) it is 285. Of course, even the exact Q01
l and the

forced-common-turning-point Q01
l , contributing to (2.148) and (2.149) respectively,

are somewhat out of phase for all l, but this is not too surprising in view of the very
rapid oscillations of Q01

l as a function of l (cf. Table 2.1).
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Table 2.1. Oscillation of Q01
l with respect to l

Exact Q01
l Approximate Q01

l Exact Q01
l Approximate Q01

l
l (πa2

0) (πa2
0) l (πa2

0) (πa2
0)

100 2.8−10 4.4−11 108 1.2−10 5.2−10

101 4.5−10 4.5−10 109 1.2−10 3.2−10

102 2.8−11 3.4−10 110 5.5−10 7.0−14

103 2.5−10 1.1−12 111 2.3−10 3.4−10

104 4.9−10 3.0−10 112 4.3−11 5.4−10

105 6.0−11 5.0−10 113 5.1−10 1.2−10

106 2.0−10 9.7−11 114 3.7−10 8.3−11

107 5.3−10 1.1−10 115 2.6−13 5.3−10

Note: The exact Q01
l and the approximate (forced-common-turning-point) Q01

l were calculated
from (2.148) and (2.149) respectively; the indices give the power of 10 by which the entries
must be multiplied.

The evaluation of (2.149) for a low relative velocity is a difficult task due to the
severity of the cancellation occurring within each complete cosine wave if α is small
or between the different cosine waves if α is large. Some auxiliary computations
were carried out to illustrate this cancellation and to demonstrate the extent to which
the contribution from the region well away from the crossing is important.

Let the crossing occur at xc (which of course depends on l and exists only if
l + 1/2 < rck0(∞)) and put

θl(xc) ≡ 2nπ + δ (2.159)

in which n is a positive integer and

0 ≤ δ < 2π (2.160)

Consider

ql(m) ≡
32π(l + 1

2 )

k0(∞)k1(∞)v2
0(∞)

{∫ x+
m

x−m

gl(x) cos θl(x) dx

}2

(2.161)

where m is another positive integer and the sequences x±m are such that

θl(x±m) = 2(n − m)π (2.162)

and
0 ≤ x−m ≤ xc, x+

m ≥ xc (2.163)

It may be seen that in going from m to m + 1 two extra complete cosine waves,
one on either side of the crossing, are included in the integral in (2.161); and it may
readily be verified that the difference between ql(n) and the partial cross section Q01

l
is insignificant.

The parameters involved in the model were assigned the values used earlier.
Computations were carried out for a number of different l’s, but it is sufficient to
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Table 2.2. Approach of q33(m) to Q01
33

q33(m) q33(m) q33(m) q33(m)
m (πa2

0) m (πa2
0) m (πa2

0) m (πa2
0)

0 8.4−9 7 4.2−6 14 1.5−5 21 1.7−6

1 1.1−8 8 6.4−6 15 1.4−5 22 8.6−7

2 6.1−8 9 8.9−6 16 1.2−5 23 3.9−7

3 2.2−7 10 1.1−5 17 9.2−6 24 1.6−7

4 5.9−7 11 1.3−5 18 6.8−6 25 5.1−8

5 1.3−6 12 1.5−5 19 4.6−6 26 1.1−8

6 2.5−6 13 1.5−5 20 2.9−6 27 5.2−11

Note: n = 27, Q01
33 = 5.2 × 10−11πa2

0; the indices give the power of 10 by which the entries
must be multiplied.

give results for the 33rd partial wave as they are quite representative. The values of
ρ and n in this case are 1.48 a.u. and 27 respectively. If α = 0.5 then

q33(0) = 1.3 × 101 , q33(m) = 2.2 × 101 , m = 1→ 27

(in units of πa2
0). The asymptotic value here is reached very close to the crossing

because of the cancellation within each complete cosine wave. However, if α = 2
the values of q33(m) are as in Table 2.2, from which it is apparent that there is se-
vere cancellation between the different complete cosine waves and that an important
contribution to the integral comes even from the complete cosine wave next to the x
origin. This emphasizes the severity of the test on the forced-common-turning-point
model.

This semiclassical approach has been applied to cold atomic collisions by Bi-
choutskaia et al. [77] (see Section 4.5).

2.3 Two and Four Transition Points: Crossing and Noncrossing

2.3.1 Introduction

Concerning low-energy heavy-particle collisions embracing excitation and/or charge
transfer, much work has been done in the last forty years, not least on the com-
posite Nikitin [453] and generalized Demkov [221] models using both the com-
parison equation and strong-coupling asymptotics method [167, 193, 467] and the
phase-integral method [28]. In principle, a simpler model would appear to be the
parabolic model (which has no pole) developed by Crothers [160], using both the
phase-integral and comparison equation method, with special reference to strong-
coupling asymptotic expansions [161, 476] of parabolic cylinder functions, for both
crossing and noncrossing and in the context of the Stokes phenomenon. The asymp-
totic parameter is the inverse impact velocity (see (2.258)).
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We have traced the two solutions of the parabolic differential equation
(

d2

dz2
+ p +

1
2
− z2

4

)
Dp(z) = 0 (2.164)

for the noncrossing case, around the T0 plane, namely AD−iγ

(
2eπi/4T0

√
γ
)

and

BD−1+iγ

(
2e−πi/4T0

√
γ
)

in the lower T0 half-plane clockwise [161] where A and B
are arbitrary constants and γ is a reasonably large, positive parameter. The Stokes
lines emanate from two transition points ±i; those in the upper T0 plane have initial
directions π/6, −7π/6 and −π/2. The Stokes lines in the lower T0 plane are the mir-
ror images of those in the upper plane, reflected in the real T0-axis, so that we have a
double Stokes line running from i to −i along the imaginary T0-axis, and our branch
cuts are chosen such that they run from ±i to ±i∞ respectively; since our Dp(z)’s,
appropriate to collisions, are analytic functions of the positive Stueckelberg variable
T0, we avoid Stueckelberg’s choice of nonphysical branch cuts [160, 574]. Thus,
there is no simple correspondence between our results and the results of Fröman et
al. [284] or Nakamura [447], both of whom use weak-coupling expansions.

We obtain the four parabolic-model Stokes constants (which we name a, b, α, and
β), using analyticity and the fact that solutions must connect along the real T0-axis,

a = β = −1 + e−2πγ (2.165)

b = α = −1 − e−2πγ (2.166)

Equations (2.165) and (2.166) agree with Crothers [160], [161] regarding both phase
(mod π) and magnitude.

Moreover, in a procedure similar to the one in which Berry [71] shows that the
abrupt change in the subdominant solution is continuous across a Stokes line for
the one-transition-point problem, we succeed in a similar procedure for our two-
transition-point problem using Stirling numbers of the first kind to parameterize our
original strong-coupling expansions. We will also consider the crossing case [163],
[165] by tracing D−1−iγ

(
2e−3πi/4T0

√
γ
)

anticlockwise in the lower T0 half-plane.

2.3.2 Exact Resumming of Asymptotic Relations for Parabolic Cylinder
Functions of Large Order and Argument

The Weak-Coupling Case

We may take as our definition for the parabolic cylinder function:

Dp(z) ≡ Γ(1 + p)
2πi

e−
z2

4

∫ (0+)

(−∞)
ezs− s2

2 s−1−p ds (2.167)

where p is not an integer. The principal branch of s−p is assumed.
Putting t = eπizs and assuming arg(z) ∈ (−π/2,+π/2) we may rewrite (2.167) as

Dp(z) =
−Γ(1 + p)

2πi
e−

z2

4 zp
∫ (0+)

∞ exp(i arg z)
e−t− t2

2z2
(
te−iπ

)−1−p
dt (2.168)
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Fig. 2.4. Contour and branch cut for (2.168)

Fig. 2.5. Contour and branch cut for (2.170)

where the contour and branch of t−p are indicated in Figure 2.4. Expanding
e(−t−t2/2z2) we obtain the usual asymptotic expansion

Dp(z) � e−
z2

2 zp
2F0

(
− p

2
,

1 − p
2

; ;− 2
z2

)
(2.169)

the first term of which is a good approximation if |z| � max(1, |p|).
The Dp(z) in equation 2.169 is only useful in the weak-coupling case (cf. [506]

section 3.2); when |z| is not very much greater than |p|, then the expression is poorly
determined. Instead we put ν = z−1s with arg(z) ∈ (−π,+π) so that

Dp(z) ≡ Γ(1 + p)
2πi

e−
z2

2 z
∫ (0+)

∞ exp{i(π−arg z)}
exp

(
z2

(
ν − ν

2

2

)
− (1 + p) ln(zν)

)
dν (2.170)

where the contour and the branch of ln(ν) are indicated in Figure 2.5 [161], [476].
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The Strong-Coupling Case

We assume that |z|2 and |p| are both large so that the method of steepest descent may
be applied. This involves expanding the exponential in the integral about its saddle
points. They are calculated by finding the zeros of the differential of the argument of
the exponential in question. So, in this case, our argument f (ν) is

f (ν) = z2

(
ν − ν

2

2

)
− (1 + p) ln(zν)

and from f ′(ν j) = 0, the two distinct saddle points are given by

2zν
0
1

= z ±
√

z2 − 4(1 + p) (2.171)

provided that z2 � 4(1 + p) and the square root branch is chosen so that arg(zν j) ∈
(−π,+π).

Finally we expand about the saddle points (looking only at the integral)

I =

∫
exp

⎛⎜⎜⎜⎜⎜⎝ f (ν j) +
1
2

f ′′(ν j)(ν − ν j)
2 +

∞∑
n=3

f n(ν j)

n!
(ν − ν j)

n

⎞⎟⎟⎟⎟⎟⎠ dν (2.172)

This expression is simplified by making the substitution

t2 = e−iπ
(
ν − ν j

)2
f ′′(ν j)

which allows us to rewrite I as

I =
e(iα j+ f (ν j))√
| f ′′(ν j)|

∫ ∞

−∞
dt exp

⎛⎜⎜⎜⎜⎜⎝− t2

2
+

∞∑
n=3

(−1)neinα j tn(1 + p)
nνn

j | f ′′(ν j)|n/2

⎞⎟⎟⎟⎟⎟⎠ (2.173)

and by using the properties of partition functions the result is that

Dp(z) �
Γ(1 + p)

i
√

2π
e−

z2

4 z
1∑

j=0

eiα j+ f (ν j)√
| f ′′(ν j)|

×

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝1 +

∞∑
l=2

(2l − 1)!!e2ilα j

ν2l
j | f ′′(ν j)|l

∑
{λn}

2l∏
n=3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
(

1+p
n

)λn

λn!

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ (2.174)

where

f (ν) ≡ z2

(
ν − ν

2

2

)
− (1 + p) ln(zν) (2.175)

α j =
π

2
− 1

2
arg

(
f ′′(ν j)

)
(2.176)

and where the innermost sum is over all distinct partitions of 2l given by the non-
negative integer solutions {λn} such that
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2l∑
n=3

nλn = 2l (2.177)

The phases α0 and α1 that give the directions of the lines of steepest descent are
formally ambiguous by an additive factor of π and must be determined absolutely by
reference to the prevailing global geometry.

Resumming the Divergent Tail

We again use the method of steepest descent, i.e., we expand the argument of the
exponential (in the integral), but we rewrite as follows:

I =

∫ +∞

−∞
exp

⎛⎜⎜⎜⎜⎜⎝− t2

2
+

∞∑
k=1

xktk

k
− x1t − x2t2

2

⎞⎟⎟⎟⎟⎟⎠ dt (2.178)

where

xk ≡
⎛⎜⎜⎜⎜⎜⎝− eiα j

ν j
√
| f ′′(ν j)|

⎞⎟⎟⎟⎟⎟⎠
k

(1 + p) ≡ (β j)
k(1 + p) (2.179)

By using a Maclaurin expansion for the power series in the exponential we have

I =

∫ +∞

−∞
dt exp

(
−x1t − t2

2
(1 + x2)

) ∞∑
m=0

(∑∞
k=1

xktk

k

)m

m!
(2.180)

Considering the sum only, we see that the innermost sum is the generating function
for the multinomial coefficients [1] such that the sum is now

1 +

∞∑
m=1

∞∑
n=m

tn

n!

∑
(n; λ1, λ2, . . . , λn)∗ xλ1

1 xλ2
2 . . . x

λn
n (2.181)

where the innermost sum is over {λ1, λ2, . . . , λn} subject to λ1 + 2λ2 + . . . + nλn = n
and λ1 + λ2 + . . . + λn = m. Now,

xλ1
1 xλ2

2 . . . x
λn
n = (1 + p)mβn

j

and ∑
(n; λ1, λ2, . . . , λn)∗ = (−1)n−mS (m)

n

where the S (m)
n are the Stirling numbers of the first kind ([1], 24.1.3, page 824).

So, after reversing the order of the summation and replacing xk by βk
j(1 + p) we

have

I =
∫ +∞
−∞ dt e−β j(1+p)t− t2

2 (1+β2
j (1+p))

×∑∞
n=0

(−tβ j)n

n!

∑n
m=0(−1 − p)mS (m)

n (2.182)

which simplifies to

I =
∫ +∞
−∞ dt e−β j(1+p)t− t2

2 (1+β2
j (1+p))

×∑∞
n=0

(tβ j)n

n! (1 + p)n (2.183)
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Changing the Variable

If we make the substitution

T = t +
β j(1 + p)

1 + β2
j (1 + p)

(which completes the square in the exponential) and use the following integral result

∫ +∞

−∞
dT e−μT 2

T j =
Γ

(
j+1
2

)
μ( j+1)/2

we get

I =
√

2π exp

⎡⎢⎢⎢⎢⎢⎣
β2

j (1 + p)2

2(1 + β2
j (1 + p))

⎤⎥⎥⎥⎥⎥⎦
∑
j even

2 j/2
(

1
2

)
j/2

j!
(
1 + β2

j (1 + p)
)( j+1)/2

×
⎛⎜⎜⎜⎜⎜⎝

1 + β2
j (1 + p)

−β j(1 + p)

⎞⎟⎟⎟⎟⎟⎠
j ∞∑

n= j

(
−β2

j (1+p)

1+β2
j (1+p)

)n

(n − j)!
(1 + p)n (2.184)

after reversing the order of summation.
Now using the substitution n = N + j allows us to write the innermost sum as

∞∑
N=0

(
−β2

j (1+p)

1+β2
j (1+p)

)N

N!
(1 + p + j)N

that is the hypergeometric function

1F0

⎛⎜⎜⎜⎜⎜⎝1 + p + j; ;−
β2

j (1 + p)

1 + β2
j (1 + p)

⎞⎟⎟⎟⎟⎟⎠
which in turn can be written as

⎡⎢⎢⎢⎢⎢⎣1 +
β2

j (1 + p)

1 + β2
j (1 + p)

⎤⎥⎥⎥⎥⎥⎦
−1−p− j

which means that I can now be written as

I =
√

2π

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
(
1 + β2

j (1 + p)
)( 1

2 +p)

(
1 + 2β2

j (1 + p)
)(1+p)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ exp

⎡⎢⎢⎢⎢⎢⎣
β2

j (1 + p)2

2(1 + β2
j (1 + p))

⎤⎥⎥⎥⎥⎥⎦

×2F0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 + p

2
, 1 +

p
2

; ;
2β2

j

(
1 + β2

j (1 + p)
)

(
1 + 2β2

j (1 + p)
)2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ (2.185)
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But the 2F0 can be written [562] in terms of Kummer’s confluent hypergeometric
function thus ([1], 13.1.10, page 504)

2F0

(
a, 1 + a − b; ;−1

z

)
= zaU(a, b, z)

and through this relation ([1], 13.6.36, page 510)

U

(
ã
2

+
1
4
,

1
2
,

z2

2

)
= 2

ã
2 + 1

4 e
z2

4 D−ã−1/2(z)

can be connected to the parabolic cylinder function, where ã = 2a − 1
2 .

After simplification and summing over both branches of the square root we have

Dp(z) =
Γ(1 + p)
√

2π
exp

(
− z2

4
− (1 + p)

2

)
z

1∑
j=0

exp
(
iα j + f (ν j)

)
√∣∣∣ f ′′(ν j)

∣∣∣

×

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
(
1 + β2

j (1 + p)
)p/2

β
1+p
j

exp

⎛⎜⎜⎜⎜⎜⎜⎝ iπp
2
− 1

4β2
j

− 1 + p

4
(
1 + β2

j (1 + p)
)
⎞⎟⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

× D−(1+p)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
i
(
1 + 2β2

j (1 + p)
)

β j

√
1 + β2

j (1 + p)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (2.186)

where

β j ≡ −
eiα j

ν j

√∣∣∣ f ′′(ν j)
∣∣∣

so that we have

Dp(z) =
Γ(1 + p)
√

2π

[
eiπp/2D−1−p(iz) + e−iπp/2D−1−p(−iz)

]
(2.187)

which agrees with the exact recurrence relation of Magnus and Oberhettinger [399].
Notice that, from Figure 2.5, strictly arg z ∈ (−π/2,+π/2). However this condition
may be relaxed by analytic continuation. Notice also that we have completely re-
summed the JWKB asymptotic divergent expansions about the saddle points, not
just the tails as in Berry [71]. Thus, not surprisingly, the connection formula between
(16), (18), and (13)* of Crothers [161] is exact.

The Noncrossing Parabolic Model

Of course, in retrospect, the perhaps surprising result of the previous section should
not be too much so, for the following reasons. A solution of the second-order ordi-
nary differential equation
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(
d2

dz2
+ p +

1
2
− z2

4

)
u = 0 (2.188)

is given by the parabolic-cylinder function

u = Dp(z)

where the parabolic potential is given by

V(z) = p +
1
2
− z2

4
(2.189)

and the d2/dz2 operator is the scaled (by −2) kinetic energy operator. The complete
operator in (2.188) is even in z and invariant under the mappings p → −1 − p and
z→ iz, so that we have four solutions:

I(16) Dp(z) (2.190)

I(17∗) Dp(−z) (2.191)

I(18) D−1−p(iz) (2.192)

I(13∗) D−1−p(−iz) (2.193)

where ∗ means conjugate (of argument and order, since Dp(z) is a real function of
complex variables p and z) and where the left-hand labels refer to Crothers [161], to
be referred to hereafter as I. Thus, from ordinary-differential-equation theory, there
must be a linear (with respect to z) relationship between any three of the four solu-
tions. These are given by Magnus and Oberhettinger [399] as:

I(16) =
Γ(1 + p)
√

2π

[
e

ipπ
2 I(18) + e−

ipπ
2 I(13∗)

]
(2.194)

= e−pπiI(17∗) +

√
2π

Γ(−p)
e−i(p+1) π2 I(18) (2.195)

= epπiI(17∗) +

√
2π

Γ(−p)
ei(p+1) π2 I(13∗) (2.196)

By symmetry and rearrangement, any one can be given in terms of any two of the
other three. We now set:

p = −iγ (2.197)

z = 2 exp

(
πi
4

)
T0
√
γ (2.198)

so that, corresponding to (2.190) to (2.193), we have

I(16) D−iγ

(
2eπi/4T0

√
γ
)

I(17∗) D−iγ

(
2e−3πi/4T0

√
γ
)

I(18) D−1+iγ

(
2e3πi/4T0

√
γ
)

I(13∗) D−1+iγ

(
2e−πi/4T0

√
γ
)
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We have from I(14) and I(15):

θ̃ =
γ

2
− γ

2
ln γ + γ ln

(
T0 +

√
1 + T 2

0

)
+ γT0

√
1 + T 2

0 (2.199)

=
γ

2
− γ

2
ln γ − i

πγ

2
− 2γ

∫ −i

T0

(
1 + T 2

) 1
2 dT (2.200)

where the tilde on the theta is to distinguish it from the parameter θ in the T − τ
model of Nikitin, the phase integral is outgoing (flip the limits),

g = tan−1
{√

1 + T 2
0 − T0

}
(2.201)

and we assume for noncrossing (otherwise known as perturbed symmetric resonance
[160], [162]) that T0 > 0 and of order unity, and γ � 1. Using the method of the
second paragraph of Section 2.3.2, we may write the leading asymptotic expansions
as

I(16) D−iγ

(
2e

πi
4 T0
√
γ
)
� e

πγ
4 +iγ−iγ ln γ−iθ̃ cos g + e−

3πγ
4 +iθ̃ sin g (2.202)

I(17∗) D−iγ

(
2e

−3πi
4 T0

√
γ
)
� e

πγ
4 +iθ̃ sin g + e−

3πγ
4 −iθ̃+iγ−iγ ln γ cos g (2.203)

I(18) D−1+iγ

(
2e

3πi
4 T0
√
γ
)
� e

πγ
4 −iθ̃+ πi

4
cos g
√
γ
− e−

3πγ
4 +iθ̃−iγ+iγ ln γ+ πi

4
sin g
√
γ

(2.204)

I(13∗) D−1+iγ

(
2e

−πi
4 T0
√
γ
)
� e

πγ
4 −iγ+iγ ln γ+ πi

4 +iθ̃ sin g
√
γ
− e

−3πγ
4 + πi

4 −iθ̃ cos g
√
γ

(2.205)

Letting T0 in (2.202) be a variable t, we can rewrite (2.188) as
[

d2

dt2
+ 4γ2(1 + t2) + 2iγ

]
D−iγ

(
2
√
γe

πi
4 t

)
= 0 (2.206)

We may identify t as the Stueckelberg variable [574], [160]. For large γ, using per-
turbation theory, the transition points are given by t = ±i, and the JWKB solutions,
valid a suitable distance from t = ±i, are given by

exp
(
±2iγ

∫ t

±i

(
1 + T 2

) 1
2 dT

)
(
1 + T 2

) 1
4

(2.207)

The upper Stokes lines are given by

0 = Re
∫ t

i
(T − i)1/2(T + i)1/2 dT (2.208)

≈ Re
∫ t

i
(T − i)1/2(2i)1/2 dT (2.209)

= Re
2
3

(t − i)3/2(2i)1/2 = Re
2
√

2
3

e
πi
4 +

3φi
2 (2.210)
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Fig. 2.6. Stokes lines for the two-transition-point problem (with transition points +i and −i)

where
arg(t − i) = φ (2.211)

so that

cos

(
3φ
2

+
π

4

)
= 0 (2.212)

Then we have that

φ =
π

6
,−π

2
,−7π

6
(2.213)

give the initial directions of the Stokes lines [160]. The real part of the out/in-going
wave is given by

∓ sin

(
3φ
2

+
π

4

)
(2.214)

so that out/in-going waves are subdominant/dominant respectively on both φ = π/6
and φ = −7π/6 and vice versa on φ = −π/2. The reverse is true concerning arg(t+i) =

φ. These facts are summarised in Figure 2.6.
The Stokes constants crossing I, II, III, and IV, namely arg(t − i) = π/6,−7π/6

and arg(t + i) = 7π/6,−π/6, respectively, are α, β, a, and b. We note that e±iθ̃ are
out/in-going respectively and behave as e∓

πγ
2 (subdominant/dominant) near t = i and

as e±
πγ
2 (dominant/subdominant) near t = −i, that is, as viewed on the (positive) γ-

axis. It follows that only I(16) and I(18) are truly dominant as functions of both t
and γ in the upper half of the t-plane while only I(17∗) and I(13∗) are truly dominant
as functions of both t and γ, in the lower half of the t-plane. This explains why we
examine the Stokes phenomenon as applied to I(13∗) in the lower-half t-plane and
I(16) in the upper-half t-plane. This is consistent with the approach and ideas of
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Olver [477] and Dingle [226] who invoke error analysis. Numerically in the upper
t-plane and for large γ, I((17∗) and I(13∗) are negligible; in the lower t-plane and for
large γ, I(16) and I(18) are negligible.

Compared to Crothers [160] we map g → π/2 − g. An important point con-
cerns reversing the direction of application of the Stokes constant as the following
argument shows. Suppose we cross the Stokes line and map

Audom + Bvsub → Audom + (B + βA)vsub (2.215)

Going back across the same Stokes line

Audom + (B + βA)vsub → Audom + (B + βA + λA)vsub (2.216)

It follows that
λ = −β (2.217)

not β∗ as might be wrongly extrapolated from the one-transition-point problem (β =

i).
For noncrossing we have, from (2.200),

± iθ̃ = ± iγ
2
∓ iγ

2
ln γ ± γπ

2
∓ 2iγ

∫ −i

T0

(
1 + T 2

)1/2
dT (2.218)

Then tracing clockwise, with B an arbitrary constant,

BI(13∗) = BD−1+iγ

(
2e

−πi
4 T0
√
γ
)

� Be
πγ
4 −iγ+iγ ln γ+ πi

4 +iθ̃ sin g√
γ
− Be−

3πγ
4 + πi

4 −iθ̃ cos g√
γ

(2.219)

= Be
3πγ

4 −
iγ
2 +

iγ
2 ln γ+ πi

4 −2iγ
∫ −i

T0
(1+T 2)1/2

dT sin g√
γ

− Be
− 5πγ

4 −
iγ
2 +

iγ
2 ln γ+ πi

4 +2iγ
∫ −i

T0
(1+T 2)1/2

dT cos g√
γ

(2.220)

in sector 2 of Figure 2.6. Crossing Stokes line IV and recalling (2.217), we connect
with

Be
3πγ

4 −
iγ
2 +

iγ
2 ln γ+ πi

4 −2iγ
∫ −i

T0
(1+T 2)1/2

dT sin g√
γ

−B
(
e−

5πγ
4 + be

3πγ
4

)
e
− iγ

2 +
iγ
2 ln γ+ πi

4 +2iγ
∫ −i

T0
(1+T 2)1/2

dT cos g√
γ

(2.221)

in sector 1 of Figure 2.6. Crossing the branch cut to sector 6, we obtain

Be
3πγ

4 −
iγ
2 +

iγ
2 ln γ+ πi

4 +2iγ
∫ −i

T0
(1+T 2)1/2

dT cos g√
γ

−B
(
e−

5πγ
4 + be

3πγ
4

)
e
− iγ

2 +
iγ
2 ln γ+ πi

4 −2iγ
∫ −i

T0
(1+T 2)1/2

dT sin g√
γ

(2.222)

Finally, crossing Stokes line III we connect to
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− B
cos g
√
γ

[
e

3πγ
4 − a

(
e
−5πγ

4 + be
3πγ

4

)]
e
− iγ

2 +
iγ
2 ln γ+ πi

4 +2iγ
∫ −i

T0
(1+T 2)1/2

dT

− B
(
e
−5πγ

4 + be
3πγ

4

)
e
− iγ

2 +
iγ
2 ln γ+ πi

4 −2iγ
∫ −i

T0
(1+T 2)1/2

dT sin g
√
γ

(2.223)

in sector 5 of Figure 2.6. Matching (2.223) and (2.219) on the real t-axis (T0-axis)
and given that BI(13∗) dominates AI(16), for B and A of the same order in γ, we have

− e−
5πγ

4 − be
3πγ

4 = e
3πγ

4 (2.224)

and
+ e−

5πγ
4 = e

3πγ
4 − a

(
e−

5πγ
4 + be

3πγ
4

)
(2.225)

Solving equations (2.224) and (2.225) gives

a = −1 + exp(−2πγ) (2.226)

b = −1 − exp(−2πγ) (2.227)

which implies
arg a = π = arg b (2.228)

Now, also for noncrossing we have

± iθ̃ = ± iγ
2
∓ iγ

2
ln γ ∓ πγ

2
∓ 2iγ

∫ i

T0

(
1 + T 2

)1/2
dT (2.229)

so that tracing anticlockwise, with A and B arbitrary constants, in sector 2 of Figure
2.6 we have

AI(16) + BI(13∗) = AD−iγ

(
2e

πi
4 T0
√
γ
)

+ BD−1+iγ

(
2e

−πi
4 T0
√
γ
)

(2.230)

= A(equation (2.202)) + B(equation (2.205)) (2.231)

= Ae
iγ
2 −

iγ
2 ln γ

[
e

3πγ
4 +2iγ

∫ i

T0
(1+T 2)1/2

dT
cos g

+ e
− 5πγ

4 −2iγ
∫ i

T0
(1+T 2)1/2

dT
sin g

]

+
B
√
γ

e
−πγ

4 −
iγ
2 +

iγ
2 ln γ+ πi

4

[
e
−2iγ

∫ i

T0
(1+T 2)1/2

dT
sin g

− e
2iγ

∫ i

T0
(1+T 2)1/2

dT
cos g

]
(2.232)

Crossing Stokes line I from sector 2 to sector 3, we have

Ae
iγ
2 −

iγ
2 ln γ

[
e

3πγ
4 +2iγ

∫ i

T0
(1+T 2)1/2

dT
cos g +

(
αe

3πγ
4 + e

−5πγ
4

)
e
−2iγ

∫ i

T0
(1+T 2)1/2

dT
sin g

]

+
B
√
γ

e
−πγ

4 −
iγ
2 +

iγ
2 ln γ+ πi

4

[
−e

2iγ
∫ i

T0
(1+T 2)1/2

dT
cos g + (1 − α)e

−2iγ
∫ i

T0
(1+T 2)1/2

dT
sin g

]
(2.233)
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Crossing the upper branch cut from sector 3 to sector 4, we connect to

Ae
iγ
2 −

iγ
2 ln γ

[
e

3πγ
4 −2iγ

∫ i

T0
(1+T 2)1/2

dT
sin g −

(
αe

3πγ
4 + e

−5πγ
4

)
e

2iγ
∫ i

T0
(1+T 2)1/2

dT
cos g

]

+
B
√
γ

e
−πγ

4 −
iγ
2 +

iγ
2 ln γ+ πi

4

[
−e
−2iγ

∫ i

T0
(1+T 2)1/2

dT
sin g − (1 − α)e

2iγ
∫ i

T0
(1+T 2)1/2

dT
cos g

]
(2.234)

Crossing Stokes line II from sector 4 to sector 5, we obtain

Ae
iγ
2 −

iγ
2 ln γ

[(
αe

3πγ
4 + e

−5πγ
4

)
e

2iγ
∫ i

T0
(1+T 2)1/2

dT
cos g +

{
−β

(
αe

3πγ
4 + e

−5πγ
4

)
+ e

+3πγ
4

}

× e
−2iγ

∫ i

T0
(1+T 2)1/2

dT
sin g

]
+

B
√
γ

e
−πγ

4 −
iγ
2 +

iγ
2 ln γ+ πi

4

[
−(1 − α)e

2iγ
∫ i

T0
(1+T 2)1/2

dT
cos g

− {β(1 − α) + 1} e−2iγ
∫ i

T0
(1+T 2)1/2

dT
sin g

]
(2.235)

Equating (2.232) and (2.235) along the real t(= T0) axis, we have with B = 0,

− e
3πγ

4 = αe
3πγ

4 + e
−5πγ

4 (2.236)

and
− e

−5πγ
4 = β

(
αe

3πγ
4 + e

−5πγ
4

)
− e

3πγ
4 (2.237)

Solving equations (2.236) and (2.237) gives

α = −1 − e−2πγ (2.238)

β = −1 + e−2πγ (2.239)

which implies
argα = π = arg β (2.240)

Setting A = 0 gives
α = 0 , β = −2 (2.241)

which contradicts equations (2.238) and (2.239) and should be discarded, in view of
our remarks between equations (2.214) and (2.215).

We have thus derived equations (2.226), (2.227), (2.238), and (2.239) which
are expressions for the four Stokes constants, which underscore eqns (34)–(40) of
Crothers [164], namely:



2.3 Two and Four Transition Points: Crossing and Noncrossing 57

(34) αl −
i
2

= (−1)lQ

(
2

γk0(∞)

) 1
2

ei(η0l−θ̃+ π
4 )+

πγ
4 (2.242)

(35) βl = −(−i)lP

(
2

k1(∞)

) 1
2

ei(η1l+θ̃)+
πγ
4 (2.243)

(36) −PγD−1−iγ(x0) + QDiγ(−ix0) − iΩD−iγ(x0) = 0 (2.244)

(37) PD−iγ(x0) + QD−1+iγ(−ix0) + ΩD−1−iγ(x0) = 0 (2.245)

(38) x0 = 2e
πi
4
√
γT0) (2.246)

(39) P =
−2Ωe

πi
4 Re

[
e−

πi
4 D−1−iγ(x0)

{
D−iγ(x0)

}∗]

γ
∣∣∣D−1−iγ(x0)

∣∣∣2 +
∣∣∣D−iγ(x0)

∣∣∣2 (2.247)

(40) Q = −Ω

[
γ
{
D−1−iγ(x0)

}2
− i

{
D−iγ(x0)

}2
]

γ
∣∣∣D−1−iγ(x0)

∣∣∣2 +
∣∣∣D−iγ(x0)

∣∣∣2 (2.248)

These are parameterized by I (13):

D−1−iγ

(
2e

πi
4 T0
√
γ
)

=

(
e−

7πγ
4 + be

πγ
4

)
eiγ−iγ ln γ− πi

4 −iθ̃ sin g
√
γ

−
[
e

5πγ
4 − ae−

3πγ
4 − abe

5πγ
4

]
eiθ̃− πi

4
cos g
√
γ

(2.249)

and I (16)

D−iγ

(
2e

πi
4 T0
√
γ
)

=

(
αe

πγ
4 + e−

7πγ
4

)
e−iθ̃+iγ−iγ ln γ cos g

+

(
e

5πγ
4 − βe−

3πγ
4 − αβe

5πγ
4

)
eiθ̃ sin g (2.250)

Notice that the dependence of (2.249) and (2.250) on the Stokes constants is nonlin-
ear, via ab and αβ, respectively. The resulting S−matrix has the following properties:

|S 01|2 = sin2 T sech 2πγ (2.251)

|S 00|2 = 1 − |S 01|2 = |S 11|2 (2.252)

and
S 00S ∗01 + S 01S ∗11 = 0 (2.253)

Formula (2.251) is exact for perturbed symmetric resonance [162], [519]. The sin-
gle transition probability p01 (see Chapter 4, (4.12)) corresponding to (2.251) is[
1 + exp(2πγ)

]−1, which is the basis of Miller [427] (2.50). The Massey parameter
πγ is often written as y or δ. The effective frequency (vT /2π) is given by
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T = 2θ̃ − γ + γ ln γ (2.254)

= 2γT0

√
1 + T 2

0 + 2γ ln
(√

1 + T 2
0 + T0

)
(2.255)

= 4γ
∫ T0

0

√
1 + T 2 dT (2.256)

= +2
∫ 2γT0

0

√
1 + T 2 dτ (2.257)

=
1
v

∫ Z0

0

√
4H2

12 + (H22 − H11)2 dZ (2.258)

where Z = vt̃, v is the impact velocity, Z0 = vt̃0 and

T = ∓ τ
2γ

+ T0 (τ ≶ 0) (2.259)

so that

T (τ = 0) = T0 > 0 (2.260)

dT = −dτ
2γ

(t̃ < 0) (2.261)

τ =

∫ t̃

0
H12(t̃) dt̃ (2.262)

The Stueckelberg variable T is related to the two-state Hamiltonian matrix elements
by

T =
H22 − H11

2H12
(2.263)

In summary we have used the JWKB /phase-integral analysis, supplemented by the
comparison-equation method, to parameterize the two-state noncrossing parabolic
model. However, on this occasion, we have explicitly derived simple algebraic ex-
pressions for the four Stokes constants: magnitudes and phases. The sign change in
(2.259) at τ = t = 0 (τ, t > 0 ⇒ T = τ/2γ + T0) is an important consideration be-
cause it is associated with a classical turning point, that is, a simple transition point
viewed from the fully quantal radial coordinate, from which the impact-parameter
time-dependent problem is deduced.

2.3.3 The Crossing Parabolic Model

Let us now consider the curve-crossing parabolic model. The difference with the
noncrossing model is that now T0 is negative. However, for ease of calculation we
map T0 → −T0, with the new T0 positive, and we absorb the minus sign into the
arguments of the parabolic cylinder functions and map g → π/2 − g. According to
[163] the S -matrix is given by

S 00 = exp

[
2iη0 − 2iθ̃ +

πi
2

] ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
γ
(
D−1−iγ(x0)

)2
− i

(
D−iγ(x0)

)2

γ|D−1−iγ(x0)|2 + |D−iγ(x0)|2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ (2.264)
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S 01 = S 10 = −2i
√
γ exp

[
i(η0 + η1)

]
⎛⎜⎜⎜⎜⎜⎜⎜⎝

Re[exp(− πi
4 )D−1−iγ(x0)

(
D−iγ(x0)

)∗
]

γ|D−1−iγ(x0)|2 + |D−iγ(x0)|2

⎞⎟⎟⎟⎟⎟⎟⎟⎠ (2.265)

S 11 = exp

[
2iη1 + 2iθ̃ − πi

2

] ⎛⎜⎜⎜⎜⎜⎜⎜⎝
γ
(
D−1−iγ(x0)

)∗ 2 + i
(
D−iγ(x0)

)∗ 2

γ|D−1−iγ(x0)|2 + |D−iγ(x0)|2

⎞⎟⎟⎟⎟⎟⎟⎟⎠ (2.266)

where

x0 = 2 exp

(
−3πi

4

)
T0
√
γ (T0 > 0) (2.267)

and

(4∗) D−iγ(x0) � exp
(
− 3πγ

4 + iγ − iγ ln(γ) − iθ̃
)

cos g

+

√
2πγ

Γ(1+iγ) exp
(
− πγ4 − iγ + iγ ln(γ) + πi

4 + iθ̃
)

sin g (I17∗) (2.268)

(5∗)
√
γD−1−iγ(x0) � − exp

(
− 3πγ

4 + iγ − iγ ln(γ) − πi
4 − iθ̃

)
sin g

+

√
2πγ

Γ(1+iγ) exp
(
− πγ4 − iγ + iγ ln(γ) + iθ̃

)
cos g (I18∗) (2.269)

where the last two asymptotic expansions correspond to (4∗) and (5∗) of Crothers
[163] and

± iθ̃ = ± iγ
2
∓ iγ

2
ln(γ) ± πγ

2
∓ 2iγ

∫ −i

T0

√
1 + T 2dT (2.270)

Suffice it to say that (2.269) is derived by rearranging and conjugating (2.194) and
expressing I(18)* in exact terms of I(13) and I(16)*. Notice that we make the coef-
ficient of the dominant term more accurate by not expanding the Γ(1 + iγ) for large
γ (this is also done by Fröman et al. [284] in their weak-coupling case; see 2.3.6). It
follows that

√
γD−1−iγ(x0) � − sin g exp

(
−5πγ

4
+

iγ
2
− iγ

2
ln(γ) − πi

4
+ 2iγ

∫ −i

T0

√
1 + T 2dT

)

+

√
2πγ

Γ(1 + iγ)
cos g exp

(
πγ

4
− iγ

2
+

iγ
2

ln(γ)

− 2iγ
∫ −i

T0

√
1 + T 2dT

)
(2.271)

Having mapped g → π/2 − g, we see that setting C+ = 1 and D+ = 0 in equation
(150) of Crothers [160] leads us to consider, in sector 5 of Figure 2.6:

exp

(
−2iγ

∫ −i

T0

√
1 + T 2dT

)
cos g (2.272)

Tracing anticlockwise and crossing Stokes line III, this connects in sector 6 of Figure
2.6 to
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exp

(
−2iγ

∫ −i

T0

√
1 + T 2dT

)
cos g + ã exp

(
+2iγ

∫ −i

T0

√
1 + T 2dT

)
sin g (2.273)

where the tilde distinguishes the “crossing” Stokes constant from the “noncrossing”
Stokes constant of Section 2.3.2. Crossing the lower branch cut in Figure 2.6 we
connect in sector 1 of Figure 2.6 to

− exp

(
+2iγ

∫ −i

T0

√
1 + T 2dT

)
sin g + ã exp

(
−2iγ

∫ −i

T0

√
1 + T 2dT

)
cos g (2.274)

Finally, crossing Stokes line IV we connect in sector 2 of Figure 2.6 with

−
(
1 + ãb̃

)
exp

(
2iγ

∫ −i

T0

√
1 + T 2dT

)
sin g + ã exp

(
−2iγ

∫ −i

T0

√
1 + T 2dT

)
cos g

(2.275)
Using

Γ(1 + iγ) = |Γ(1 + iγ)| exp
(
i argΓ(1 + iγ)

)

=

√
2πγ

1 − exp(−2πγ)
exp

(
−πγ

2
+ i argΓ(1 + iγ)

)
(2.276)

we may rewrite (2.271) as

exp

(
−3πγ

4
− iγ

2
+

iγ
2

ln(γ) +
πi
4

)
√
γD−1−iγ

(
2 exp(−3πi

4
)T0
√
γ

)

� − exp

(
−2πγ + 2iγ

∫ −i

T0

√
1 + T 2dT

)
sin g +

√
1 − exp(−2πγ)

× exp

(
πi
4
− iγ + iγ ln(γ) − i argΓ(1 + iγ) − 2iγ

∫ −i

T0

√
1 + T 2dT

)
cos g (2.277)

Connecting along the real t(T0) axis, and from (2.275) and (2.277), we have

1 + ãb̃ = +e−2πγ (2.278)

ã =
√

1 − e−2πγ exp
[
i
(
π

4
− γ + γ ln γ − argΓ(1 + iγ)

)]
(2.279)

so that
ãb̃ = −(1 − e−2πγ) (2.280)

b̃ = −
√

1 − e−2πγ exp
[
−i

(
π

4
− γ + γ ln γ − argΓ(1 + iγ)

)]
(2.281)

Equations (2.279), (2.280), and (2.281) are in accord with equations (175), (83),
and (176), respectively, of Crothers [160]. In retrospect we see that the choice of
(2.272) is tantamount to taking ã = 1 = −b̃ in the γ � 1 limit in the dominant
term, near Stokes lines III and IV. Then tracing anticlockwise in the lower half-
plane makes for greater accuracy. Also tracing from sector 5 to sector 2, (2.272)
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is subdominant crossing the double Stokes line and is therefore continuous (in the
absence of a dominant solution). Nor must we forget that the rules for sin g and cos g
in Figure 2.6 in crossing the branch cuts are subject to the mapping g→ π/2 − g, so
that (2.274) is correct.

In summary we have used the JWKB/phase-integral analysis, supplemented by
the comparison-equation method, to parameterize the two-state diabatic curve cross-
ing (avoided adiabatic/pseudo-crossing) parabolic model. However, on this occasion,
we have explicitly derived algebraic expansions for the magnitudes and phases of the
two Stokes constants associated with the lower half t-plane. Similar considerations
apply to the upper half t-plane (see equations (175) and (176) of Crothers [160]).

2.3.4 Connection to Bárány-Crothers Phase-Integral Nikitin-Model Analysis

Let us refer to Bárány and Crothers [28] as II (see 2.4). In the limit as θ → π/2
we have Rosen-Zener-Demkov [519], [221] noncrossing, and equation II (61) gives,
using BC as a subscript on the Stokes constants of II:

arg aBC +
π

2
= arg cBC −

π

2
= arg a − π = 0 (2.282)

where the latter is (2.228). We have the Nikitin [453] T − τ model:

T =
λ

2(τ + τ∞)
− cot θ =

λ

2τ∞
(
1 + τ

τ∞

) (2.283)

�
−λτ
2τ2
∞

+
λ

2τ∞
(τ∞ � 1) (2.284)

≡ − τ
2γ

+ T0 (2.285)

As usual, T is the Stueckelberg variable and τ is the reduced time.
Equation II (20) should be corrected to agree with (2.285) for τ < 0. Further

connection with the parabolic model requires

γ =
τ2
∞
λ
>� 1 (2.286)

T0 =
λ

2τ∞
=
τ∞
2γ

> 0 (2.287)

where λ, γ, and τ∞ are all large but T0 is of order unity.
Similarly, we have a Landau-Zener-Stueckelberg crossing in the limit as λ →

+∞, θ → 0 so that λ(1 − cos θ) remains finite and again

arg aBC +
π

2
= γ̃

(
λ

2
(1 − cos θ)

)
= arg ã (2.288)

=
π

4
− γ + γ ln(γ) − argΓ(1 + iγ) (2.289)

where
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γ =
λ

2
(1 − cos θ) (2.290)

in agreement with II (61) and (2.279) and, of course, with (189) of Crothers [160].
By the same token we have

|aBC| =
√

1 − exp(−2πγ) = |ã| (2.291)

in agreement with (175) and (176) of Crothers [160]. The case of λ → +∞ and
θ → π so that λ(1 + cos θ) remains finite and is noncrossing is given by equation
(66) of Crothers [167]. As discussed there, this does not fall within the parabolic
model, and unsurprisingly the transition probability is nugatory, because H12 → 0
and H22 − H11 is much greater than in (2.288)-(2.291). Analytic continuation of the
Nikitin exponential model to nonzero impact parameters is discussed in detail by
Nesbitt et al. [450].

2.3.5 Connections to Nakamura and Zhu Phase-Integral Analysis

Using expressions (2.249) and (2.250), we may, for noncrossing, write

S 01 =
−2i

(
be

πγ
4 + e−

7πγ
4

) (
e

5πγ
4 (1 − ab) − ae−

3πγ
4

)
sin T

(
be

πγ
4 + e−

7πγ
4

)2
+

(
e

5πγ
4 (1 − ab) − ae−

3πγ
4

)2
(2.292)

which, in terms of the Stokes constants a and b, represents a cubic divided by a
quartic. Notice that arg a = π (2.228) so that S 01 is analytic in a and b.

Similarly, expression (2.269) and a similar expression, namely,

D−iγ

(
e−

3πi
4 2T0

√
γ
)
� (1 + ãb̃) cos g e

5πγ
4 +iγ−iγ ln γ−iθ̃ + ã sin g e

πγ
4 +iθ̃ (2.293)

may be used, for crossing, to write

S 01 =
−2i exp( 3πγ

2 )(1 + ãb̃)|ã| sin
(
T + arg ã

)
(1 + ãb̃)2 exp( 5πγ

2 ) + |ã|2 exp( πγ2 )
(2.294)

which, in terms of the Stokes constants ã and b̃, yet again represents a cubic divided
by a quartic.

Notice that S 01 here is a nonanalytic function of ã and b̃ because

(π − arg ã) = + arg b̃∗ (2.295)

are nonzero (see (2.280) and (2.281)). It follows that the function f (λ) given by

f (λ) =

∫ ∞

0
dT e−λT S 01 = −e−πγ

[
ã
λ − i

− ã∗

λ + i

]
(2.296)

is not a real function of λ and that
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arg ã =
−i
2

ln

⎡⎢⎢⎢⎢⎢⎢⎢⎣
∫ (i−)

dλ
∫ ∞

0
dT e−λT S 01∫ (−i+)

dλ
∫ ∞

0
dT e−λT S 01

⎤⎥⎥⎥⎥⎥⎥⎥⎦ (2.297)

essentially because, to repeat, S 01 is not an analytic function.
We may compare equations (5.15)–(5.18) of Nakamura [447] in the crossing

case. Adapting his notation to ours, Nakamura obtains for his four-point cluster of
transition points,

S 01 = −U2 (2.298)

where

U2 =
2iIm U1

1 + |U1|2
(2.299)

The single transition probability is given by

p01 =
1

1 + |U1|2
(2.300)

For crossing, our corresponding p01 is given by

p01 = e−2πγ (2.301)

which tends to zero as γ → +∞. This in turn implies that |U1| tends to +∞ as
γ → +∞, that U2 tends to zero, and that the S−matrix becomes the unit matrix. It
may be noted that our crossing Stokes constants ã → 1 and b̃ → −1 are finite as
γ → +∞. On the other hand, an infinite change in the coefficient of the subdominant
solution when crossing a Stokes line with Stokes constant U1 would appear to be
nonphysical, perhaps because it is associated with the momentum plane [447].

Another difference is that equation (4.38) of Nakamura [447] and the last equa-
tion of Section A.4 of [324] for the Stokes constant U for the Weber equation are
based on weak-coupling asymptotics, that is, in terms of our notation in Section
2.3.2 and (2.188), |z2| >� (1, |p|) rather than our |z|2 ∼ |p| >� 1. To tie up the three
notations (our γ, Heading’s a, and Nakamura’s β), we have

p = −iγ = −1
2
− 1

2
ia2 = −1

2
− iβ (2.302)

A symptom of the difference between their weak-coupling and our strong-coupling
derivations is the occurrence of ln 2 in their expressions. As observed by Crothers
([161], [175], and Crothers and O’Rourke [193], strong- and weak-coupling asymp-
totic expansions have different algebraic forms [324]; the advantage of our (2.271)
treatment of crossing is that by making the coefficient of the dominant term more
accurate, we are able to obtain an expression for the argument/phase of the Stokes
constants ã, b̃, which interpolates uniformly between γ → +0 and γ → +∞. Re non-
crossing, Nakamura [447] does not appear to have applied (2.295)–(2.297). However,
if we do, then

p01 =
1

1 + e2πγ
(2.303)
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so that

U1 = eπγ+i(T +arg a) (2.304)

S 01 = −i sin T sech πγ (2.305)

in accord with (2.252). However, once again this implies that |U1| → +∞ as γ → +∞
whereas a → 1 and b → 1 as γ → +∞, with similar implications, as in the crossing
case.

2.3.6 Connections to the Frömans-Lundborg Phase-Integral Analysis

For the crossing problem, let us consider, for the two-transition point problem,
Fröman et al. [284] and their equation (5.6.4d) for the Stokes constant corresponding
to our Stokes line III (of Figure 2.6), namely,

b2 =
i
√

2π

Γ( 1
2 −

iK
λ

)
exp

⎧⎪⎨⎪⎩− iK
λ

ln

⎛⎜⎜⎜⎜⎝K0

λ

⎞⎟⎟⎟⎟⎠ − πK
2λ

+
iφ(1)

λ

⎫⎪⎬⎪⎭ (2.306)

Identifying their equation (5.3.8) with our (2.188), with

iγ → − iK
λ
− 1

2
(2.307)

and

2T0
√
γ → φ

√
γ

(2.308)

we may set, identifying O(γ) with O
(

1
λ

)
,

K
λ

= −γ +
i
2

(2.309)

K0

λ
= −γ =

φ(1)

λ
(2.310)

whereupon we get agreement with our ã of (2.279), apart, that is, from the factor
of i in (2.306). This is due to the Stueckelberg [574] choice of branch cut [284]. As
shown by Crothers [160] the i disappears upon making the choice of branch cut of
our Figure 2.6 or Figure 7 of [160]. After all, the Dp(z) are continuous in the finite
plane. In any case the definition of the effective Stokes constants depends on one’s
point of view. We rewrite (2.275) as

(i sin g)
i

(1 + ÃB̃) exp

(
2iγ

∫ −i

T0

√
1 + T 2dT

)

+ Ã exp

(
−2iγ

∫ −i

T0

√
1 + T 2dT

)
cos g

i
(2.311)
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Here the i in the denominator comes from the change in the particular part of sin g
and cos g, namely (1 + T 2)−1/4, when crossing the branch cut. The (−i sin g)/cos g
may be regarded as part of the in-/out-going fundamental solution, respectively, just
as (− sin g) and (cos g) were in (2.275). It follows that

Ã = i
√

1 − e−2πγ exp

(
πi
4
− iγ + iγ ln γ − i argΓ(1 + iγ)

)
(2.312)

B̃ = i
√

1 − e−2πγ exp

(
−πi

4
+ iγ − iγ ln γ + i argΓ(1 + iγ)

)
(2.313)

now in complete agreement with b2 and a1, of Fröman et al. [284]. There is also
latitude in the choice of branch cuts in (1+T 2)−1/4: T = ±i,∞ are three branch points.
Each branch point must be connected to another branch point with connecting branch
cut. We choose to connect +i to +i∞ and −i to −i∞. Fröman et al. choose to connect
−i to +i and to −i∞. These considerations apply equally well to the noncrossing case
of Section 2.3.2. However, close examination of their equations (5.5.1a,b) shows
that like Nakamura they (see Section 2.3.5) have used weak-coupling asymptotic
expansions [1]. In their equation (5.5.1b), nevertheless they have made the coefficient
of their dominant term more accurate using the exact recurrence relation, just as we
did in the strong-coupling case in (2.271) and in Crothers [160], [161], [163], [167];
they have, however, continued the expansion of the argument of the exponential in
b2 in inverse powers of γ, which is particularly appropriate to our strong-coupling
treatment (γ >� 1).

2.3.7 Conclusions

We effect a JWKB phase-integral analysis for the crossing and noncrossing parabolic-
model nonadiabatic transitions using strong-coupling asymptotics based on the We-
ber comparison (second-order ordinary-differential) equation for parabolic-cylinder
functions. We have shown how to calculate the Stokes constants for noncrossing and
have given the simple algebraic expressions ((2.226)–(2.228) and (2.239)–(2.241))
and similarly for crossing ((2.279)–(2.281)). In Sections 2.3.3–2.3.6, we have com-
pared, where possible, with our previous phase-integral analysis [28] of the Nikitin
model [459] and with the phase-integral analysis of Nakamura and Zhu [447] and
Fröman et al. [284].

There are many intricacies of calculation in applying these models, not least con-
cerning the bending of the double Stokes line as the impact parameter (or azimuthal
quantum number) increases [27], [29]; for, of course, it is not difficult to generalize
one-dimensional problems to nonzero impact parameters, by analytic continuation.
There are many other physical problems, for example, predissociation and resonant
scattering [152]. We have not discussed the Kummer model [468], [472] nor gener-
alizations to the complex Nikitin model [467].

Moreover, we recall that it was said at the time [160], following Stueckelberg
[574], that the pure phase-integral method for the two-transition-point problem could
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only predict three of the four Stokes constants, having invoked unitarity and analyt-
icity. However [198], the comparison-equation method and the parabolic model in
particular, resolve the otherwise indeterminate fourth Stokes constant.

We also recall writing [160] “A non-adiabatic transition is thus the physical man-
ifestation of the Stokes phenomenon,” which was echoed by Eu [256], and we note
the conclusions of Nakamura [447]. We have developed a unified uniform theory of
crossing and noncrossing.

2.3.8 Curve Crossing Reflection Probabilities in One Dimension

Let us summarize the improved Stueckelberg treatment of [160], hereafter referred
to as I, as aplied to curve crossings in I (Section 3.2). Electron translation factors and
centrifugal potentials are suppressed and we set

r = exp(x) (2.314)

so that (0,∞) maps to (−∞,+∞), where r is the internuclear radial coordinate. Ne-
glecting radial coupling between the stationary-state molecular wave functions, the
total wave function Φ is given by

rΦ = uPS S
0 (r)χ0(r) + uPS S

1 (r)χ1(r) (2.315)

where (
d2

dr2
+ ν2

j (r)

)
uPS S

j (r) = 0 (� = 1) (2.316)

ν2
j (r)

2m
= E − ε j(r), ( j = 0, 1) (2.317)

Here m is the reduced mass, E is the total energy, and the ε j(r) are the molecular
eigenenergies. Making the JWKB approximation we have

uPS S
j (r) = α+

j S +
j (r) + α−j S −j (r) ( j = 0, 1) (2.318)

where α±j are arbitrary constants. The JWKB functions are given by

S ±j (r) = ν
− 1

2
j (r) exp

⎡⎢⎢⎢⎢⎣±i

⎛⎜⎜⎜⎜⎝
∫ r

r j

ν j(s) ds +
π

4

⎞⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎦ (2.319)

where the superscript +(−) indicates out-going (in-going), r j is the classical turn-
ing/transition point at which ν2

j (r) has a zero and the ubiquitous π/4 is half the phase
of the Stokes constant for the one-transition-point problem. We make the linear-
combinations-of-atomic-orbitals approximation:

χ0 = φ0 sin g − φ1 cos g

χ1 = φ0 cos g − φ1 sin g (2.320)

where the φ j are r-invariant and
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√
2

{
sin
cos

}
g = exp

[
±1

2

∫ t

0

dt̃

(1 + t̃2)1/2
− 1

2

∫ t

0

t̃ dt̃
1 + t̃2

]
(2.321)

where t is the Stueckelberg variable given in the LCAO approximation by

1 + t2 =
m2(ν2

0 − ν
2
1)2

H2
12

(2.322)

and on the real t− and r− axes

√
2

{
sin
cos

}
g =

√
1 ± t
√

1 + t2
(2.323)

Assuming that t = ±i and r = rc, r∗c are complex conjugate transition points, we
note that as usual α±j suffer discontinuities on crossing the appropriate Stokes lines
in accordance with the Stokes phenomenon, the physical manifestation of which is a
nonadiabatic transition.

Defining

δ + iT = i
∫ r∗c

r0

ν0 dr − i
∫ r∗c

r1

ν1 dr (2.324)

where r∗c is in the lower half-plane, I gives the following connection formulae, where

u0 = uPS S
0 sin g + uPS S

1 cos g (2.325)

u1 = −uPS S
0 cos g + uPS S

1 sin g (2.326)

namely:

u0

√
2 = (α+

0 S +
0 + α−0 S −0 ) sin g + (α+

1 S +
1 + α−1 S −1 ) cos g (2.327)

u1

√
2 = −(α+

0 S +
0 + α−0 S −0 ) cos g + (α+

1 S +
1 + α−1 S −1 ) sin g (2.328)

where r0,1 < r < rX = Re rc, and

u0

√
2 = (β+

0 S +
0 + β−0 S −0 ) sin g + (β+

1 S +
1 + β−1 S −1 ) cos g (2.329)

u1

√
2 = −(β+

0 S +
0 + β−0 S −0 ) cos g + (β+

1 S +
1 + β−1 S −1 ) sin g (2.330)

where r > rX and

β+
0 = aα+

0 + exp(−δ − iT )α+
1 (2.331)

β−0 = a∗α−0 + exp(−δ + iT )α−1 (2.332)

β+
1 = a∗α+

1 − exp(−δ + iT )α+
0 (2.333)

β−1 = aα−1 − exp(−δ − iT )α−0 (2.334)

while the Stokes constant a is given by
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|a| =
√

1 − e−2δ (2.335)

arg a =
π

4
+ γ ln γ − γ − argΓ(1 + iγ) (2.336)

γ =
δ

π
(2.337)

The statement by Jakushina and Linnaeus [340] that I considered only “the model
problem with linear potentials and constant coupling.” is erroneus, although we will
consider such a model problem. In fact, their notation, t of (2.322) is given by

t =
[Φ1(r) −Φ2(r)]

2α(r)
(2.338)

Case A: Similar Slopes

Let us now apply the preceding formulation to the model problem of Child [116],
Zhu [612], and Nakamura [447]:

[
1

2m
d2

dx2
+ E − H00(x)

]
u0 = H01u1 (2.339)

[
1

2m
d2

dx2
+ E − H11(x)

]
u1 = H01u0 (2.340)

and in our notation, where the diabatic potentials are (Figure 2.7)

Hj j(x) = −F jx ( j = 0, 1) (2.341)

H01 = A (2.342)

and for similar slopes, we have

F0 > F1 > 0 (2.343)

The Stueckelberg variable t is given by:

t =
(F0 − F1)x

2A
(2.344)

By translation of axes, the curve-crossing and the energy-reference level are located
at the origin, without loss of generality. The adiabatic turning points are given by

2F0F1x 0
1

= −E(F0 + F1) ∓
√

4A2F0F1 + E2(F0 − F1)2 (2.345)

and the adiabatic energies by

ν2
j (x)

2m
= E − ε j(x) (2.346)

where
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H   (x)

x

E

10H   (x) = H   (x)  01 

11

00H   (x)

Fig. 2.7. Linear curve crossing: same sign of slopes

ε 0
1

(x) = −(F0 + F1)
x
2
∓ A
√

1 + t2 (2.347)

We assume that E > 0
From (2.331)–(2.334) and setting (Jeffreys’ connection)

α+
0 = −α−0 = −c (2.348)

α+
1 = −α−1 = −d (2.349)

then [324], we have reflection amplitudes (g = π/2) given by

R0 = − β
+
0
β−0

= −

(
−ac + e−δ−iT d

)
(
a∗c − e−δ+iT d

) (2.350)

R1 = − β
+
1
β−0

= −

(
−a∗d + e−δ+iT c

)
(
a∗c − e−δ+iT d

) (2.351)

where c/d is given (no in-going incident wave in channel 1)

β−1 = 0 (2.352)

so that

R0 =
[
e−2δ−2iT + e2i arg a(1 − e−2δ)

]
(2.353)

R1 = −2i sin(T + arg a)e−δ
√

1 − e−2δ (2.354)

It follows that unitarity is fulfilled

|R0|2 + |R1|2 = 1 (2.355)

where
|R1|2 = 4e−2δ(1 − e−2δ) sin2(T + arg a) (2.356)

Averaging the Stueckelberg oscillations gives

P01 = 2P(1 − P) (2.357)
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the familiar Landau-Zener formula where

P = e−2δ (2.358)

and δ is the familiar Massey parameter. Even in this one-dimensional reflection prob-
lem, the pseudo-curve-crossing arises on the way in and on the way out:

P(1 − P) + (1 − P)P = 2P(1 − P) (2.359)

that is, either transition going in and none going out or vice versa. It may be noted that
in this derivation, it was not necessary to use the momentum representation that in
effect is the impact parameter formulation, unfortunately sometimes also confusingly
called the semiclassical treatment.

Case B: Dissimilar Slopes

In Case B we have
F0 > 0 > F1 (2.360)

in contrast with (2.343) in Case A. Further we refer to Figure 2.8 and make the
concrete assumption that

E > Eb (2.361)

Because uPS S
1 of (2.318) is now associated with the upper potential-energy curve, the

Bohr–Sommerfeld connection requires

α+
1 + α−1 = 0 (2.362)

but
β+

1 ei( π2−T ) + β−1 ei(T − π2 ) = 0 (2.363)

Fig. 2.8. Nonadiabatic tunneling-type curve crossing
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where

T = −
∫ x1

x0

ν1(x) dx (2.364)

There are no incident waves in channel 0 from negative x so that

α+
0 = 0 (2.365)

noting that in the x-representation, for negative x, in-going and out-going reverse
their meanings and therefore their superscripts. Solving (2.331)–(2.334) gives the
reflection amplitude in channel 0 and the transition amplitude in channel 1, respec-
tively, by

R0 =
−ie−2δ−2iT +iT

2e−i arg a(1 − e−2δ) cos(T + arg a) + e−2δ+iT
(2.366)

T1 =
2i cos(T + arg a)

√
1 − e−2δ

2e−i arg a(1 − e−2δ) cos(T + arg a) + e−2δ+iT
(2.367)

As for Case A we have unitarity, but now given by

|R0|2 + |T1|2 = 1 (2.368)

where

|T1|2 =
4(1 − e−2δ) cos2(T + arg a)

4(1 − e−2δ) cos2(T + arg a) + e−4δ
(2.369)

The transition amplitude is zero, when

T + arg a = nπ +
π

2
(2.370)

However because T is negative and arg a ∈ (π/4, π/2), including weak and strong
coupling, we envisage negative integers n, in which case we have perfect reflection,
as remarked by Nakamura [447] and when (2.370) is not satisfied, nonadiabatic tun-
nelling obtains.

The cases that arise when (2.361) is not fulfilled are considered by Nakamura
and by Coveney et al. [152].

2.4 Addition of a Simple Pole

2.4.1 Introduction

A simple but versatile atomic collision model for treating nonadiabatic phenomena
associated with curvecrossings and noncrossings is the exponential model of Nikitin.
This two-state model leads, within a semiclassical framework, to a collision S -matrix
made up of classical trajectory transition probabilities and semiclassical phases. It
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can be used to discuss physical processes such as excitation and charge transfer.
In applying the model expressions to real situations, phase-integral expressions for
the S -matrix elements are needed. Such expressions have been obtained earlier by
Crothers through a process of interpretation and abstraction. To shed new light on
this interpretation we give a phase-integral derivation of the two-state semiclassical
collision S -matrix within a general exponential model [28].

Representing the S−matrix as a product of two halfway house matrices and as-
suming only one principal transition zone in each half, we may parameterize the ele-
ments of S in a semiclassically consistent way. The parameters are computed in terms
of certain Stokes constants and complex Coulomb phases arising from the classical
trajectory equations describing the evolution of the diabatic linear combination of
atomic orbitals electronic states. The Stokes constants and complex Coulomb phases
associated with the canonical (pure exponential model) one-pole, two-transition-
point problem are parameterized via the comparison equation method, supplemented
by strong-coupling asymptotics. The corresponding quantities for a perturbed canon-
ical form (general exponential model) are suitably abstracted in terms of simple
known functions and physically significant phase integrals. In this way the complete
semiclassical collision S−matrix is derived. A short discussion of its applicability is
given.

Many physical processes can be discussed successfully within the framework
of simple mathematical models. These models usually select and put forward some
special mechanism as being primarily responsible for the observed behaviour of the
physical system. Through the simplification of the problem offered by the model, one
can get a better understanding of the workings of the mechanism. This can be done
by analytical or numerical studies of the model equations, but although numerical
investigations may be more straightforward to perform, analytical results are often
more useful when it comes to understanding the models and their application to real
situations. In this work we present an analytical investigation of a simple but versatile
atomic collision model: the exponential model.

In treating low-energy inelastic atomic collision processes (such as excitation,
charge transfer, or transfer ionization), one is faced with a complicated quantum me-
chanical many-body system. Through a series of approximations one may, in many
cases, reduce the problem to a manageable semiclassical form, namely, a set of equa-
tions describing the quantum mechanical evolution of the electronic states as the
nuclei follow classical trajectories (see for example [220]. Using these classical tra-
jectory equations, together with semiclassical phase shifts for the nuclear motion,
many collision processes may be explained. Prime examples are the nonadiabatic
phenomena, such as curve-crossing transitions and interferences observed as distinct
structures in the total and differential collision cross sections [457].

Essential for the understanding of the nonadiabatic collision processes have been
two simple two-state models formulated in the semiclassical framework described
earlier. One is the Landau–Zener curve-crossing model [376], [611] and the other
is the Rosen–Zener noncrossing model [519]. These models represent two extreme
situations in which the coupling between adiabatic states is due solely to variation of
the diabatic energy difference (Landau–Zener) or to variation of the nondiabatic cou-
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pling element (Rosen–Zener). As a generalization of these two extreme situations,
the two-state exponential semiclassical model for atomic collisions was introduced
by Nikitin [453], [454] and independently by Ellison and Borowitz [242]. In this
model both the diabatic energy difference and the nondiabatic coupling element may
vary, and through the choice of a certain mixing parameter θ both crossing and non-
crossing situations are covered.

To understand the properties of these types of model and to be able to apply them
to real situations, general phase-integral expressions for the transition probabilities
and phases entering the semiclassical scattering matrix are needed (cf. [175]). The
original inventors of the exponential model used confluent hypergeometric functions
and weak-coupling asymptotic expansions [161], [167] to derive expressions for the
nonadiabatic transition probability and its behaviour under various limiting condi-
tions. A first step towards a more general derivation was taken by Dubrovskiy [232]
in tackling the general two-state problem of nonadiabatic transitions. He used both
phase-integral [574] and comparison-equation [428] techniques and derived closed-
form expressions for the transition probability in the case of an avoided crossing
between adiabatic energy levels. His final expressions have been criticized by one
of us [160] on the grounds that they vanish for certain types of interaction poten-
tials. Also an attempt by Child [115] to generalize Dubrovskiy’s results has been
criticized [163]. We will discuss the application of their results to the exponential
model in Section 2.4.6. A general discussion on the calculation of transition prob-
abilities was given by Nikitin [455], who stressed the importance of the complex
analytic structure of the adiabatic energy difference. An excellent review of the sta-
tus of the exponential model at the end of the 1960s was written by Nikitin [456].
During the 1970s some major steps towards the understanding of the applicability of
the exponential model were taken. First, the validity of the semiclassical treatment
(classical trajectories, phase-integral expressions) were investigated in depth. (For
classical trajectories, see, for example, [40], [217], [220]. For phase integrals, see
the introduction to Bárány and Crothers [27], the review by Crothers [175], and, in
a more general context, the review by Berry and Mount [72].) Secondly, the phases
of the exponential model were derived [52], [167], [458], [169]. Thirdly, and per-
haps most importantly, there were serious applications of the model to real physical
collision processes [169], [174], [319].

The applications made by Crothers and Todd [169], [174] rely on a Zwaan–
Stueckelberg phase-integral interpretation (abstraction) of the exponential model.
Although the results in general were encouraging, there were some difficulties in
applying the model to the charge transfer reaction Mg2+ + H→ Mg+ + H+, because
of the existence of two distinct transition regions (of which only one was found to
be effective). To pinpoint possible defects of the phase-integral interpretation, it was
felt that a phase-integral derivation was needed. That such a derivation might lead to
new insights had been shown for the linear model [24], [25], [26].
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2.4.2 The Semiclassical Scattering Matrix

The information that is needed for the calculation of differential and total cross sec-
tions is conveniently summarized in the partial-wave-scattering matrix. This quan-
tum mechanical scattering matrix can be defined in terms of the solutions to a set
of coupled Schrödinger differential equations. Here we shall only consider the semi-
classical scattering matrix that can be derived by using semiclassical elastic phase
shifts and classical trajectory equations (see, for example, [160]. Even though some
of our expressions formally hold true for an arbitrary number of states, we shall
immediately specialize to two states only.

The two-state impact-parameter-dependent scattering matrix S = S(E, ρ) is uni-
tary and symmetric. This implies that it can be represented as

S = S̃hSh , (2.371)

where Sh is unitary and S̃h signifies the transposed matrix. In general this representa-
tion is purely formal, but for heavy-particle scattering (where semiclassical concepts
apply) it is possible to interpret Sh as a halfway house scattering matrix. The semi-
classical structure of Sh depends on the number of localized transition zones, but for
the simplest case of just one zone it is given [52] by

Sh = O exp(iΔ)Th exp[i(η − Δ)] (2.372)

Here Δ is a diagonal matrix containing the phases that develop between the turning
points and the transition zone, η is the diagonal semiclassical phase-shift matrix and
Th is a unitary transition matrix characteristic of the transition zone. This transition
matrix is determined by a set of classical trajectory equations and has determinant
equal to unity. It is possible to parameterize it as

Th =

[
(1 − z2)1/2 exp(iφ) −z exp(−iχ)

z exp(iχ) (1 − z2)1/2 exp(−iφ)

]
(2.373)

where 0 ≤ z ≤ 1 and φ and χ are real phases.
The matrix O is a (real orthogonal) rotation matrix that takes into account the

fact that the two states forming a basis at infinity may be mixed close to the turn-
ing point. It has been found, both analytically and numerically, that for low-energy
heavy-particle collisions the matrix O may be put equal to the unit matrix if the
representation is taken to be the adiabatic one, i.e., if Δ and η are adiabatic phases
[160], [344], [215]. Then the parameters z, φ, and χ are well-behaved functions of E
and ρ. This follows from the fact that a correct semiclassical treatment necessarily
introduces adiabatic phases, a point already stressed by one of us [160], [164], [167].

Consider then the classical trajectory equations in adiabatic (l.c.a.o.) formulation
[216]

i
d
dτ

a1,2 = a2,1 exp

[
∓2i

∫ τ

0
T (τ′ dτ′

]
(2.374)

The independent variable τ is defined as
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τ =

∫ t

0
H12 dt′ (2.375)

with the supposition that

τ∞ =

∫ +∞

0
H12 dt′ < +∞ (2.376)

and the Stueckelberg variable T by

T = (H22 − H11)/2H12 (2.377)

where H22 − H11 ≥ 0 at infinity. The classical trajectory R = R(t) is assumed to be
symmetric, R(−t) = R(t), so that T is an even function of τ and the vector a(τ∞) is
related to a(−τ∞) by

a(τ∞) = G̃dGda(−τ∞) (2.378)

Here the matrix Gd propagates a from τ = −τ∞ to the origin τ = 0. Reverting to the
adiabatic representation then gives [218]

Ga = R̃Gd exp(−i
1
2
ζ) (2.379)

where the matrix ζ is diagonal with elements ±ζ, given by

ζ = 2
∫ 0

−τ∞
[(1 + T 2)1/2 − T ]dτ′ (2.380)

The matrix R is a (real orthogonal) rotation matrix transforming from the adiabatic
to the diabatic representation. From the correspondence

Ga exp(iη) = Sh (2.381)

we find, using the explicit expression for Sh with O = 1

Ga = exp(iΔ)Th exp(−iΔ) (2.382)

2.4.3 Phase-Integral Treatment

We now set out to determine (within the l.c.a.o. approximation) the matrix Ga, using
phase-integral methods. Because of symmetry we need only consider the elements
of the first column, Ga

11 and Ga
21. Then we have

Ga
22 = (Ga

11)∗ , Ga
12 = −(Ga

21)∗ (2.383)

Introducing first a new set of dependent variables, c1, c2 through

c1,2 = a1,2 exp

[
±i

∫ τ

0
T (τ′) dτ′

]
(2.384)
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we find that
i dc1,2/dτ = ∓Tc1,2 + c2,1 (2.385)

Differentiation and elimination show that c1 and c2 satisfy the second-order equations

d2c1,2/dτ
2 + Q2

1,2(τ)c1,2 = 0 (2.386)

where
Q2

1,2 = 1 ∓ i dT/dτ + T 2 (2.387)

We now introduce the following model assumptions: with positive parameters λ
and θ subject to 0 < θ < π and fulfilling the general inequalities

1 � λ � 2τ∞/ sin θ (2.388)

the function T is given for Re τ ≤ 0 by

T (τ) = λ/2(τ + τ∞) − cot θ + F(τ) (2.389)

This contrasts [164] with
T (τ) = − τ

2γ
+ T0 (2.390)

which when substituted into (2.386) yields the so-called parabolic models [163],
[164]. In the model relation (2.389) F(τ) acts as a perturbation in a wide region sur-
rounding the origin (τ = 0) and the pole (τ = −τ∞). For F = 0 we retrieve the pure
exponential model (with impact parameter zero, rectilinear trajectory, and constant
velocity). The canonical form is then a pole plus a constant. The more general case
treated here includes generalizations to nonzero impact parameters, curved trajecto-
ries, and varying velocity. It also includes certain other potential models, e.g., the
Demkov-Kunicke [222] model.

To find out the relation between λ, θ, and the physical potentials, we suppose that

limR→+∞(H22 − H11) = Δε > 0
limR→+∞ H12 ∝ exp(−αR)

}
(2.391)

Calculating the residue of T (τ) then gives

λ = Δε/αv (2.392)

where v = Ṙ(+∞). Again, provided

λ � 2τ∞ cot θ (2.393)

we have
− cot θ ≈ T (0) = [(H22 − H11)/2H12]|R(0) (2.394)

This relation shows, among other things, that, broadly speaking, the potentials H11

and H22 cross for acute θ, while they are noncrossing for obtuse θ. The angle θ =
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1/2π corresponds to perturbed symmetric resonance [160], i.e., to potentials that run
approximately parallel [221].

We now introduce the Langer-corrected functions

q2
1,2(τ) = Q2

1,2(τ) − 1
4(τ + τ∞)2

= 1 + cot2 θ − λ cot θ/(τ + τ∞) + (λ ± i)/4(τ + τ∞)2 + . . . (2.395)

Writing
q1,2(τ) = [(τ − τ1,2)(τ − τ∗2,1)]1/2/(τ + τ∞) sin θ (2.396)

we define the argument of the square root to be zero on the real axis as τ → +∞.
The branch cuts are inserted from the zeros τ1,2 (upper half-plane) and τ∗1,2 (lower
half-plane) according to Figure 2.9. Note that τ1 and τ∗2 belong to q2

1(τ), while τ2 and
τ∗1 belong to q2

2(τ).
Concentrating now on the function c2(τ), we consider the pattern of Stokes lines

emanating from the zeros τ∗1 and τ2 of q2
2. These are lines on which

Re

⎛⎜⎜⎜⎜⎝
∫ τ

τ∗1,τ2

q2 dτ′
⎞⎟⎟⎟⎟⎠

is constant, so that

exp

⎛⎜⎜⎜⎜⎝i
∫ τ

τ∗1,τ2

q2 dτ′
⎞⎟⎟⎟⎟⎠

has nonoscillating behaviour. In Figures 2.10a, b, and c these patterns are shown for
different values of θ.

We note that two Stokes lines spiral into the pole. An investigation shows that
these are logarithmic spirals revolving an infinite number of times around thepole.
The choice of branch cuts in Figure 2.9 is, of course, to some extent arbitrary, so that
we could, for instance, without loss of generality draw theupper branch cut in Figure
2.10a and the lower branch cut in Figure 2.10c so that they do not cross a Stokes line
in the finite plane.

To satisfy the boundary conditions at the pole (a1(t = −∞) = 1, a2(t = −∞) = 0)
we write

c1,2(τ) = B1,2q−1/2
1,2 exp

(
i
∫ τ

0
q1,2 dτ′

)
(2.397)

and let τ tend to −τ∞. In order that the integrals be well defined we insert a branch
cut from −τ∞ along the negative real axis in the direction of −∞. Actual oomputa-
tions (with use of the first-order equations to connect c1 and c2) then give (to within
semiclassical accuracy)

B1 = − 1
2B∗2

(2.398)

B2 = − 1
√

2
[(1 + T 2

0 )1/2 − T0]1/2 exp(−v + iΘ +
1
2

iζ) (2.399)
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Fig. 2.9. Complex τ-plane showing zeros of q2
1,2 and branch cuts (wiggly lines). τ1 and τ∗2

concern c1 and τ∗1 and τ2 concern c2

Fig. 2.10. Complex τ-plane showing qualitative behaviour of Stokes lines for c2 for (a) 0 <
θ < 1/2π, (b) θ = 1/2π, (c) 1/2π < θ < π. Arrows show direction of increasing |exp[i

∫
q2dτ]|

where T0 = T (τ = 0) and

− v + iΘ = i
∫ 0

−τ∞

[
q2 − (1 + T 2)1/2 − i dT/dτ

2(1 + T 2)1/2

]
dτ′ (2.400)

An alternative expression for B2 is (again to within semiclassical accuracy)

B2 = − 1
√

2
[(1 + T 2

0 )1/2 + T0]1/2 exp(−u + iΘ +
1
2

iζ) exp(y2) (2.401)

where y2 is defined through

− 1
2

x1,2 +
1
2

iy1,2 =

∫ τ1,2

0
q1,2 dτ′ (2.402)

and

u =
1
2

(y1 + y2) + Im
∫ τ∗1

−τ∞

[
q2 −

idT/dτ
2(1 + T2)1/2

]
dτ′ − Im

∫ 0

τ2

[
q2 −

idT/dτ
2(1 + T2)1/2

]
dτ′

(2.403)
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Using B1 and B2 as determined earlier we have approximate solutions c1(τ) and
c2(τ) that satisfy the boundary conditions at the pole. The solution c2 may (for acute
θ) be traced out into the complex plane on a path leading above the transition region
around τ2. When crossing the Stokes line (see Figure 2.10a) emanating from τ2 at
an angle of 1/3π, the approximate solution experiences the Stokes phenomenon and
picks up a multiple of the subdominant solution. On the real axis, close to the origin,
the approximate solution becomes

c2(τ) = iB2q−1/2
2 (τ)

[
exp

(
−y2 − ix2 − i

∫ τ

0
q2 dτ′

)
+ aBC exp

(
i
∫ τ

0
q2 dτ′

)]
(2.404)

Here aBC is the Stokes constant belonging to the Stokes line considered. Applying the
first-order equations to find c1 close to the origin and then the fact that the Wronskian
of c∗1 and c2 has the same value at the pole as at the origin, we obtain (for 0 < θ <
1/2π)

|aBC |2 = [1 − exp(−2u)]/ exp(−2v) (2.405)

For obtuse θ we may trace c2 from the pole to the origin along the real axis. This
means that a Stokes line emanating from τ2 has to be crossed (see Figure 2.10c).
Introducing a Stokes constant cBC gives for c2 close to the origin

c2(τ) = B2q−1/2
2

[
exp

(
i
∫ τ

0
q2 dτ′

)
+ cBC exp

(
−y2 − ix2 − i

∫ τ

0
q2 dτ′

)]
(2.406)

Use of the first-order equations to find c1 and the Wronskian of c∗1 and c2 to connect
between the pole and the origin gives (for 1/2π < θ < π)

|cBC |2 = [1 − exp(−2v)]/ exp(−2u) (2.407)

Considering now the approximate solutions c1 and c2 at the origin and introduc-
ing the notations

cos g0 =

⎡⎢⎢⎢⎢⎣ (1 + T 2
0 )1/2 − T0

2(1 + T 2
0 )1/2

⎤⎥⎥⎥⎥⎦
1/2

, sin g0 =

⎡⎢⎢⎢⎢⎣ (1 + T 2
0 )1/2 + T0

2(1 + T 2
0 )1/2

⎤⎥⎥⎥⎥⎦
1/2

(2.408)

we find (using a1,2(0) = c1,2(0)) that

a(0) = R
[
Ga

11
Ga

21

]
exp(

1
2

iζ) (2.409)

with

R =

[
sin g0 cos g0

− cos g0 sin g0

]
(2.410)

The adiabatic propagated elements are given by

Ga
11 =

{
i[1 − exp(−2u)]1/2 exp[i(Θ + arg aBC)] (0 < θ < 1

2π)
exp(−v) exp(iΘ) ( 1

2π < θ < π)
(2.411)

Ga
21 =

{
−i exp(−u) exp[i(Θ − x2)] (0 < θ < 1

2π)
−[1 − exp(−2v)]1/2 exp[i(Θ − x2 + arg cBC)] ( 1

2π < θ < π)
(2.412)
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Because the phase-integral derivation is bound to break down when the complex
transition points are close to the pole (see Figure 2.10b), we cannot expect the two
different expressions given to join up for θ = 1/2π unless there is strong coupling
between the states (y1, y2 � 1), in which case we find that provided

arg aBC → −
1
2
π , arg cBC → +

1
2
π (2.413)

we do indeed get consistent results. This is because

u ≈ 1
2

(y1 + y2) = y , v ≈ 1
2

(y1 − y2) ≈ 0 (2.414)

and

[1 − exp(−2u)]1/2 ≈ [1 − exp(−2y)]1/2 ≈ 1

exp(−v) ≈ 1 (2.415)

Invoking now the parameterization of Th we find

(1 − z2)1/2 exp(iφ) = Ga
11

z exp(iχ) exp[i(Δ2 − Δ1)] = Ga
21 (2.416)

Then we have

z2 =

{
exp(−2u) (0 < θ < 1

2π)
1 − exp(−2v) ( 1

2π < θ < π),
(2.417)

while

φ =

{
Θ + arg aBC + 1

2π (0 < θ < 1
2π)

Θ ( 1
2π < θ < π)

(2.418)

and

χ =

{
Θ (0 < θ < 1

2π)
Θ + arg cBC − 1

2π ( 1
2π < θ < π)

(2.419)

We have used the abstraction

Δ1 − Δ2 = x2 +
1
2
π (2.420)

to connect between the true adiabatic phases and the model quantity x2. The factor
1/2π enters because x2 + 1/2π ≈ x1 − 1/2π. Note that the phases of the Stokes
constants aBC and cBC are undetermined, as is usual in these matters. In the next
section we use the comparison-equation technique to derive expressions for arg aBC

and arg cBC .

2.4.4 Comparison Equation

We start by considering the case when the Stueckelberg variable T reduces to the
canonical exponential model form (we use a hat to designate canonical quantities)



2.4 Addition of a Simple Pole 81

T̂ (τ) = λ/2(τ + τ∞) − cot θ (2.421)

so that

T0 ≡ T̂ (0) = λ
2τ∞
− cot θ

≡ λ
γ sin θ − cot θ ≡ [ ΔεA −cos θ]

sin θ (2.422)

where γ = A/(vα) and A is defined by (2.442) or (2.443). This is the case of the
exponential model of Nikitin [453], [454], but other models may also reduce to this
form when suitable variables are used. It can be shown, by using appropriate recur-
rence relations, namely equations (2.4.9) and (2.5.1) of [562] that the exact solution
is given by

ĉ1(τ) = exp[− 1
4πλ + 1

2 i(γ cos θ − λ ln γ)][Mκ,−μ(β)]∗

ĉ2(τ) = − 1
2

sin θ
1+iλ exp[ 1

4πλ + 1
2 i(γ cos θ − λ ln γ)]Mκ,μ(β)

}
(2.423)

where

κ =
1
2

iλ cos θ , μ =
1
2

(1 + iλ) , β = (2i/ sin θ)(τ + τ∞) (2.424)

and the functions Mκ,±μ are Whittaker functions (cf. [562]).
Using strong-coupling asymptotic expansions [161], [167] one finds (after some

heavy algebra) that

â(0) = R̂
[
Ĝa

11
Ĝa

21

]
exp(

1
2

iζ̂) (2.425)

where R̂ and ζ̂ are defined as in the general case, but with the model variable T̂ and

Ĝa
11 =

(
1 − cos θ

2

) 1
2

∣∣∣∣∣∣∣
Γ(1 + iλ)

Γ(1 + 1
2 iλ(1 − cos θ))

∣∣∣∣∣∣∣
exp[

1
4
πλ(1 + cos θ)] exp[i{γ̃[

1
2
λ(1 − cos θ)] − γ̃(λ)}] (2.426)

Ĝa
21 =

(
1 + cos θ

2

) 1
2

∣∣∣∣∣∣∣
Γ(1 + iλ)

Γ(1 + 1
2 iλ(1 + cos θ))

∣∣∣∣∣∣∣
exp[−1

4
πλ(1 − cos θ)] exp[−ix̂ + i{γ̃[

1
2
λ(1 + cos θ)] − γ̃(λ)}] (2.427)

Here

x̂ = x̂1 −
1
2
π = x̂2 +

1
2
π = −2Re

∫ τc

0
(1 + T̂2)1/2 dτ′ (2.428)

where τc is the zero of 1 + T̂ 2 in the second quadrant and

γ̃(α) =
1
4
π + α lnα − α − argΓ(1 + iα) (2.429)
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Introducing the parameterization of the semiclassical scattering matrix and ab-
stracting Δ1 − Δ2 as in Section 2.4.3, we find

ẑ2 = {sinh[ 1
2πλ(1 + cos θ)]/ sinh(πλ)} exp[− 1

2πλ(1 − cos θ)]
φ̂ = γ̂( 1

2λ(1 − cos θ)) − γ̂(λ)
χ̂ = γ̃( 1

2λ(1 + cos θ)) − γ̃(λ)

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (2.430)

The parameters λ(1 ± cos θ) may be abstracted as integrals through

ŷ =
1
2
λ(1 − cos θ) =

1
2

(ŷ1 + ŷ2) =
1
π

Im
∫ τ̂2

τ̂∗1

q̂2 dτ′

μ̂ =
1
2
λ(1 + cos θ) = λ − 1

2
(ŷ1 + ŷ2) = −1

π
Im
� τ̂2

τ̂1

q̂2 dτ′

(2.431)

where the bar on the integral for μ̂, signifies that it should be evaluated on a contour
to the left of the pole at −τ∞.

We now compare the expressions just derived with those of equations (2.416)–
(2.419) of the last section. First, we find expressions for the phases of the Stokes
constants, namely

arg aBC = γ̃(y) − γ̃(μ) − 1
2π (0 < θ <

1
2
π)

arg cBC = γ̃(μ) − γ̃(y) + 1
2π (

1
2
π < θ < π) (2.432)

Then the phase-integral expressions become, for 0 < θ < 1/2π,

z2 = exp(−2u)

φ = Θ + γ̃(y) − γ̃(μ)

χ = Θ (2.433)

For 1/2π < θ < π,

z2 = 1 − exp(−2v)

φ = Θ

χ = Θ + γ̃(μ) − γ̃(y) (2.434)

We note that

y =
1
2

(y1 + y2) (2.435)

while μ is more complicated and in fact contains contributions from secondary com-
plex transition points in the R-plane [174].

It is of course also possible to take over more of the comparison equation. Thus
for 0 < θ < π, we realize that in the canonical exponential case (F ≡ 0 in expression
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(2.389)) the imaginary part Θ̂ of the complex Coulomb phase (cf. [283]) of (2.400)
is a semiclassical approximation to

γ̃(
1
2
λ(1 + | cos θ|)) − γ̃(λ) (2.436)

which is interesting in that it has a discontinuous first derivative (with respect to θ)
at θ = 1/2π.

2.4.5 General Phase-Integral Abstraction

We now propose to parameterize the transition matrix Th of (2.373) for F(τ) � 0
by calibration with the exact Coulomb case of Section 2.4.4. Thus we propose the
following phase-integral abstraction for 0 < θ < π:

φ ≈ Re
∫ 0

−τ∞
[q2 − q̂2 + (1 + T̂2)1/2 − (1 + T2)1/2] dτ + γ̃(y) − γ̃(λ) (2.437)

χ ≈ Re
∫ 0

−τ∞
[q2 − q̂2 + (1 + T̂2)1/2 − (1 + T2)1/2] dτ + γ̃(μ) − γ̃(λ) (2.438)

while for 0 < θ < 1/2π we propose

z2 ≈ exp(−2y)[1−exp(−2μ)]
1−exp[−2(y+μ)] exp

[
−2Im

∫ τ∗1
−τ∞

(p2 − p̂2) dτ
]

× exp
[
−2Im

∫ τ2

τ∗1
(q2 − q̂2) dτ + 2Im

∫ 0

τ2
(p2 − p̂2) dτ

]
(2.439)

where

p2 ≡ q2 −
i
2

d
dτ

ln[T + (1 + T 2)1/2] (2.440)

and for 1/2π < θ < π we propose

z2 ≈ 1 − [1 − exp(−2y)]
1 − exp[−2(y + μ)]

exp

[
−2Im

∫ 0

−τ∞
(p2 − p̂2) dτ

]
(2.441)

the different topologies of Figures 2.10a and c being clearly reflected in (2.439) and
(2.441).

2.4.6 Discussion

Some interesting mathematical points arising from the preceding treatment appear to
be worthy of discussion.

First, the choice of Mκ,−μ(β) to express ĉ∗1(τ) in (2.423) is not quite as straightfor-
ward [453], [454] as it might appear at first sight, since both Wκ,μ(β) and W−κ,μ(β) are
worthy alternative candidates to satisfy the boundary conditions on ĉ∗1 at τ = −τ∞.
Although physical intuition is suggestive, the correct choice is only dictated by ap-
plication of the exact first-order coupled equations.

Secondly, there arises the natural question: is −τ∞ a transition point, in so far as
Stokes lines emanating from the complex transition points pass through −τ∞? The
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answer is no, except in some technical semantic sense, because, reductio ad absur-
dum, no Stokes phenomenon occurs as we trace the solutions around −τ∞ while ex-
cluding the other (transition) points. To put it another way, the Stokes constants take
zero value. Another indicator is that both arrows in Figures 2.10a–c are outward on
the Stokes lines emanating from −τ∞. Finally, we note that in the limit as λ→ i, for
acute θ the lower transition point τ∗1 coalesces with the double pole to yield a simple
pole that is a transition point [282]. No contradiction arises. (For obtuse θ, the upper
transition point τ2 coalesces with −τ∞.) It will also be observed in Figures 2.10a–c
that we have adopted “physical” branch cuts [160]. This choice is essential for the
comparison-equation method of Section 2.4.4, if we are to avoid discontinuities in
both amplitude and wave function [163].

Next, in deriving expressions (2.404) and (2.406) for θ acute and obtuse respec-
tively, we have of course assumed that there exists a “good path” in the sense of
Fröman and Fröman [282]. This is not unreasonable bearing in mind that ĉ2 is nec-
essarily subdominant near −τ∞. Perhaps on less firm ground, one may for instance
trace ĉ∗1, from −τ∞ to 0, circumventing τ∗1, in the lower half-plane of Figure 2.10a
(acute θ). To the right of the branch cut there are two Stokes lines to be crossed, each
with its own Stokes constant. There is thus in effect a double Stokes phenomenon
[167], and it may be shown that the effective compound Stokes constant is related to
cBC , the Stokes constant occurring in equation (2.406).

Perhaps we should say a few words about other related work. One of the principal
advantages of the JWKB or Liouville–Green approximation, which we have adopted
here, is that it is a uniform approximation as emphasized by Olver [478]. However, it
should be noted that the latter is primarily concerned with isolated transition points,
thus excluding the case of a uniform pair of transition points considered here. As
mentioned in the Introduction, an earlier JWKB attempt to describe uniformly two
transition points and a pole [232], later applied by Child [115], was not satisfactory
in that a transformation of the dependent variable (the amplitude a2 in our notation),
involving the square root of the interaction potential, resulted in a second-order dif-
ferential equation rather more complicated than our equation (2.386). Indeed, one
of the advantages of our choice of dependent and independent variables is that the
model represents a holomorphic mapping in that just as [167]

H22 − H11 ≡ Δε − A cos θ exp(−αR)

H12 ≡ 1
2 A sin θ exp(−αR) (2.442)

yield the pure exponential model, so do

H22 − H11 ≡ Δε(1 + tanh(αR)) − A cos θ sech2(αR)

H12 ≡ 1
2 A sin θ sech2(αR) (2.443)

Notice that neither H22 − H11 nor H12 is constant (cf. [340]). Another defect in the
treatment of Dubrovskiy [232] is his use of weak-coupling asymptotics [163] in the
resolution of his comparison equations. This results in an erroneous factor in his
transition probability and arises from an incorrect handling of R̂ in equation (2.425).
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2.5 Other Generalizations

2.5.1 Four Close Curve-Crossing Transition Points

A discussion of the semiclassical two-channel close curve-crossing S−matrix is
given, with special reference to Stueckelberg phases as calculated within the non-
adiabatic parabolic model [166]. It is shown that the phase Γ1, normally associated
with elastic adiabatic evolution through the curve crossing, is considerably in er-
ror when calculated within the Landau–Zener approximation - but shows favourable
agreement with earlier numerical evaluations from coupled equations, provided the
full Zwaan–Stueckelberg phase-integral interpretation is effected.

Previously we reviewed the status of Stueckelberg curve-crossing phases within
the parabolic model [163], and in Crothers [165], we refined the nonadiabatic the-
ory of the semiclassical two-channel S−matrix by fully developing the two-state ex-
ponential model to describe both crossing and noncrossing. Happily the Zwaan–
Stueckelberg phase-integral method [160] provides a consistent interpretation of both
models, and it is our purpose to report that such an interpretation effectively applies
to the close-curve-crossing problem, in which the impact parameter increases until
the classical turning point approaches and eventually reaches the diabatic crossing
point.

The close curve-crossing problem was originally formulated by Bykovskii et al.
[105] and later analysed by Delos and Thorson [216], [217], and by Child [116]. In
summary, with reference to [216], the diabatic two-state impact-parameter equations
for the state amplitudes c1 and c2 may be reduced to

i
dc1

ds
= c2 exp

(
−2i

∫ s

0
T (s′) ds′

)
(2.444)

i
dc2

ds
= c1 exp

(
+2i

∫ s

0
T (s′) ds′

)
(2.445)

where the Stueckelberg variable T is given in terms of the diabatic interaction matrix
V by

T = (V22 − V11)/(2V12) (2.446)

where

s(t̃) =

∫ t̃

0
V12 dt′ (2.447)

in which the time is given by t̃. The essence of the close curve-crossing model is to
assume that T may be expanded thus

T (s) = −ε + 4s2/β2 (2.448)

in which β and ε are two independent constant parameters. Equations (2.444) and
(2.445) are solved subject to

c1(s(−∞)) = 1 (2.449)

c2(s(−∞)) = 0 (2.450)
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in which case the S matrix is given by

S 21 = S 12 = c2(s(+∞)) = −2iz(1 − z2)1/2 sin(Γ1 + Γ2) (2.451)

S ∗22 = S 11 = e−iζc1(s(+∞)) = (1 − z2)e2iΓ1 + z2e−2iΓ2 (2.452)

The extra adiabatic phase ζ is fully explained in [167] and need not be elaborated
here. Delos and Thorson [217] calculated z, Γ1, and Γ1 + Γ2 − π in particular for
large β, as recorded in their figures 8, 10, and 9, respectively. Although Stueckelberg
estimates of z and Γ2 − π were given, none was given for Γ1. Numerical values of z
have also been compared with Stueckelberg estimates by Child [116] for β = 5. It
is therefore of interest to obtain a Stueckelberg estimate of Γ1. Within the Zwaan–
Stueckelberg interpretation of the parabolic model [160], [167], the parameters of
the S−matrix are given by

Γ1 =
π

4
+

y
π

ln
( y
π

)
− y
π
− argΓ

(
1 + i

y
π

)
(2.453)

Γ2 = x (2.454)

z = exp(−y) (2.455)

where

x + iy = 2
∫ 1

2 β(i+ε)1/2

0
(1 + T 2)1/2ds =

β

2

∫ i

−ε

(
1 + T 2

ε + T

)1/2

dT (2.456)

We note that these formulae differ in two respects from those of Delos and Thor-
son [219] and therefore of Delos [215]. Firstly, there is a formal difference of π in
the definition of Γ2. This is due to our adoption of an external minus in expression
(2.451), in accordance with a positive potential V12 [167]. Secondly, and of some
fundamental importance, the y in (2.453) is given by (2.456) and not by πT0/2, the
Landau–Zener value adopted by Delos (cf. also expression (72) of [160]) in which
T0 is the value of the Stueckelberg variable T at the diabatic curve crossing.

Expression (2.456) may be evaluated as follows. Setting

2s/β = (T + ε)1/2 = sin θ(i + ε)1/2 (2.457)

we obtain

x + iy = β exp

(
1
4
πi

)
(1 − iε)(1 + iε)1/2

×
∫ π/2

0
dθ cos2 θ

(
1 +

(1 − iε)
(1 + iε)

sin2 θ

)1/2

(2.458)

= β exp

(
1
4
πi

)
(1 − iε)(1 + iε)1/2 1

4
π 2F1

(
−1

2
,

1
2

; 2;− (1 − iε)
(1 + iε)

)
(2.459)

=
β exp

(
1
4πi

)
(1 + ε2)π3/2

4
√

2

⎡⎢⎢⎢⎢⎢⎣
⎛⎜⎜⎜⎜⎜⎝ 2F1( 1

4 ,
5
4 ; 1

2 ;−ε2)

Γ( 3
4 )Γ( 7

4 )

⎞⎟⎟⎟⎟⎟⎠

−2iε

⎛⎜⎜⎜⎜⎜⎝ 2F1( 3
4 ,

7
4 ; 3

2 ;−ε2)

Γ( 5
4 )Γ( 1

4 )

⎞⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎦ (2.460)
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Fig. 2.11. The phase Γ1(β, ε) as given by (2.453). This work: –·– β = 1; – – – β = 2; –··– β = 5;
–– β = 10. [217] square β = 1; circle β = 2; triangle β = 5; cross β = 10

where we have applied the binomial series in (2.458) and used identities (5.4.14)
and (8.1.4) of [1] to obtain (2.460) from (2.459). Expression (2.460) may of course
be continued analytically for larger values of ε2. For ε = 0, the curve-crossing point
coincides with the point of closest approach, that is, the classical turning point, so
that T0 is zero and the Γ1 of [219] is 1/4π, whereas (2.460) gives

x + iy =
β exp

(
1
4πi

)
π3/2

4
√

2Γ( 3
4 )Γ( 7

4 )
≈ 0.618(1 + i)β (2.461)

For larger positive values of ε, it was found more expedient to put T = iτ to evaluate
y as

y =
1
2
β

∫ 1

0
(1 − τ2)1/2(ε2 + τ2)−1/4 cos[

1
2

tan−1(τ/ε)]dτ (2.462)

To evaluate expression (2.453) for Γ1 we used

argΓ(1 + iy) = −γc +

∞∑
n=0

[
γ

n + 1
− tan−1

(
γ

n + 1

)]
(2.463)

= γ ln γ − γ +
1
4
π −

∞∑
n=1

(−1)n−1B2n

(2n − 1)(2n)γ2n−1
(γ � 1) (2.464)

where c is Euler’s constant and B2n is a Bernoulli number. The results for Γ1 are
presented in Figure 2.11. As β increases, the accuracy of our Γ1 improves rapidly
over an ever-increasing range of ε. Even for the worst case shown, namely β = 1 and
ε = 0, which corresponds to a very close crossing at high speed, the antithesis of
nonadiabatic conditions, the error is only of the order of 15◦. We therefore conclude
that for the Stokes constant Γ1 the Stueckelberg strong-coupling limit, namely zero,
is a better approximation than the Landau–Zener weak-coupling limit, namely 1/4π
at (ε = 0), the more so the higher is β.
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We have not attempted comparison between the ΦA of figure 9 of [217] and our
Γ1 + Γ2 since we note considerable difference between their adiabatic-perturbation
estimate and our x − π at ε = 0, particularly for β = 10. However, we do note
that addition of our Γ1 to their adiabatic-perturbation estimates improves agreement
with their coupled-equation values, at the higher ε−values and lower β−values of their
figure 9.

In conclusion, we observe that the acceleration effects at the close crossing, rep-
resented by the occurrence of T in the denominator of (2.456), may largely be simu-
lated by the correct Zwaan–Stueckelberg interpretation of the parabolic model. Semi-
classical deflection fuctions [25] and semiclassical probabilities [26] are presented
for close curve-crossing.

2.5.2 Circuit-Dependent Adiabatic Phase Factors from Phase Integral Theory

We show that circuit-dependent adiabatic phase factors occur naturally in the phase-
integral theory of atomic collisions, being a physical manifestation of the Stokes
phenomenon familiar in asymptotic analysis. This implies a generalisation of Berry’s
work on geometric phase factors for situations involving adiabatic parallel transport
around closed circuits in the complex plane [153].

There has been considerable interest in “geometric” phase factors arising from
adiabatic transitions [69] in many areas of physics, including optics [114], [582],
[70], and quantum theory [561], [374], [375], [397], [4], [80], [540]. When a system
is adiabatically transported around a closed circuit, the system returns to its original
state apart from a phase factor. This factor contains, in addition to the usual dynami-
cal phase e−iEt, a circuit-dependent component [69].

These latter adiabatic phases arise naturally in the phase-integral theory [324],
[477] of heavy-atom collision processes, due originally to Zwaan [614] and Stueck-
elberg [574]. The nature of the adiabatic phase then depends on particular properties
of the adiabatic potentials governing the motion, which must be analytically contin-
ued into the complex plane.

Indeed, such phases occur generally in the theory of differential equations,
whether associated with classical or quantal phenomena [324]; their origin is rooted
within the Liouville–Green (more commonly known as the JWKB) phase-integral
method of solution. The Zwaan–Stueckelberg technique is based on continuing an-
alytically the asymptotic JWKB phase integrals into the complex R-plane (R being,
for example, the internuclear distance in typical atomic problems) at sufficient dis-
tance from any points where such solutions break down (turning points, etc.) [160].
An alternative yet related method based on convergent series expansions, but still in-
volving analytical continuation, is that due to Fröman and Fröman [282]. The point
we wish to draw attention to here is the key role played by the Stokes phenomenon
in obtaining the correct phase-integral solutions [160], [28], [152].

For the description of nonadiabatic transitions accompanying atomic collisions,
a consistent phase-integral analysis can only be made within the adiabatic represen-
tation [160], [152]. The adiabatic phase that arises may then be due to a branch point
of the quantal wave function at a regular singular point, where a JWKB solution is
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uniformly valid. Equally, it may result from the presence of a (complex) adiabatic de-
generacy, which is an isolated transition point at which JWKB solutions break down
[175], [28], [152].

For integral transition points in the context of coupled channels, the adiabatic
phase is typically an elastic Stueckelberg phase, which in turn is related to the phase
of a Stokes constant associated with a particular Stokes line [160], [28], [152].

More generally, when both types of point occur [28], the adiabatic phase derives
from a Stokes constant and/or a complex Coulomb phase. For the purposes of illus-
tration, consider a time-dependent treatment in which the wave function is written

Ψ = c1(t̃)ψ1(R, r) + c2(t̃)ψ2(R, r) (2.465)

with t̃ being the time, R the internuclear separation of two heavy nuclei, and r de-
noting the internal electronic degrees of freedom; ψ1 and ψ2 are assumed to be or-
thogonal and to have adiabatic eigenenergies E1 and E2. Then in the one-pole, two-
transition-point theory [28], the time-dependent coefficients c1 and c2 are given by

−∞ ≤ t̃ � −tx :

c1(t̃) = exp
(
−i

∫ t̃

−∞ E1 dt′
)

c2(t̃) = 0

−tx � t̃ � tx :

c1(t̃) = (1 − P)1/2 exp
(
iφ − i

∫ t̃

−∞ E1 dt′
)

c2(t̃) = P1/2 exp
(
iχ − i

∫ −tx

−∞ E1 dt′ − i
∫ t̃

−tx
E2 dt′

)

tx � t̃ ≤ +∞ :

c1(t̃) = (1 − P) exp
(
2iφ − i

∫ t̃

−∞ E1 dt′
)

+P exp
(
2iχ − i

∫ −tx

−∞ E1 dt′ − i
∫ tx

−tx
E2 dt′ − i

∫ t̃

tx
E1 dt′

)

c2(t̃) = −P1/2(1 − P)1/2 exp
(
iφ − iχ − i

∫ tx

−∞ E1 dt′ − i
∫ t̃

tx
E2 dt′

)

+P1/2(1 − P)1/2 exp
(
iχ − iφ − i

∫ −tx

−∞ E1 dt′ − i
∫ t̃

−tx
E2 dt′

)

from which the independent elements of the scattering matrix are obtained as

S 11 = [P exp(−2iσ + 2iχ) + (1 − P) exp(2iφ)] exp(2iη1) (2.466a)

S 12 = −2iP1/2(1 − P)1/2 sin(σ + φ − χ) exp[i(η1 + η2)] (2.466b)

In these equations, P is the single transition probability

P = exp(−δ) sinh μ/ sinh(μ + δ)

the elastic scattering phase shifts are

η j = −1
2

∫ +∞

−∞
E j dt′ j = 1, 2
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and the real nonadiabatic parameters σ and δ are defined in terms of the phase inte-
gral

σ + iδ =

∫ tc

0
(E2 − E1) dt′

In the last equation, tc is a zero of the integrand (point of complex adiabatic degener-
acy); tx is the point at which the double Stokes line connecting tc, with t∗c intersects
the real axis. The important additional phases φ and χ can be expressed as

φ = Δ(δ) − Δ(λ)

χ = Δ(μ) − Δ(λ)

where μ and λ are defined phase integrals [28], and

Δ(x) =
1
2
π + x ln x − x − argΓ(1 + ix)

where Γ is the gamma function.
Now the adiabatic limit corresponds to that in which both λ and μ tend to +∞:

P, φ, and χ then all tend to zero. However, P tends to zero much faster than Δ and
therefore χ and φ (see, e.g., [459]); indeed φmust remain finite for any collision pro-
cess. It follows that the additional adiabatic phase γ, which is the difference between
twice the dynamical adiabatic phase η1 and the phase of the exact S 11 matrix element
in (2.466a), is given by

γ(t̃) = φ[H(t̃ + tx) + H(t̃ − tx)]

where H(x) is the Heaviside step function. Hence

γ̇(t̃) = φ[δ(t̃ + tx) + δ(t̃ − tx)]

with δ(x) the one-dimensional Dirac delta function. γ is thus a discontinuous constant
that arises from the fact that JWKB phase integrals must be traced away from the
points tx, tc, and t∗c .

Defining the vector of coefficients
[
c1(t) c2(t)

]T
from (2.465), then what we have

done amounts to adiabatic parallel transport of
[
c1 c2

]T
around the perimeter of an

infinite semicircle in the complex plane whose base is the real t−axis, as a result of
which an adiabatic phase factor exp(iγ) is acquired.

Other two-transition-point (parabolic) problems are all special limits of this case
[28]. Moreover, the phase integral analysis can easily be adapted to handle fractional
transition points [426], [183].

An example of the application of phase-integral methods to experimental atomic
collision phenomena concerns the two-electron capture process:

C4+ + He→ C2+ + He2+

at energies from 300 eV to 1.5 keV. Oscillations in the experimental energy gain, and
differential cross sections for this reaction are interpreted as being due to Stueckel-
berg interferences arising from a phase-integral analysis; agreement between theory
and experiment is very good [29].
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We conclude that, from the standpoint of phase-integral theory, both nonadia-
batic transitions [160] and the adiabatic phase γ are physical manifestations of the
Stokes phenomenon. There is a certain similarity between γ and Berry’s geometric
phase: both are associated with cyclic evolution in the adiabatic limit of a gauge-
invariant theory [4]. However, whereas the latter arises as a real-surface anholo-
nomic phase, in our situation the closed circuit lies in the complex plane and the
resulting phase is associated with a different geometric structure. Simon [561] points
out that Berry’s phase can only arise in connection with phenomena involving mag-
netic fields or some other condition producing a nonreal Hamiltonian. By contrast,
the phase-integral approach deals with real Hamiltonians, which are continued an-
alytically into the complex plane in order to derive consistent solutions on the real
axis.



3

Semiclassical Method for Hyperspherical Coordinate
Systems

3.1 Wannier’s Classical Treatment of Electron Correlation

In Chapter 2 we considered the one-dimensional semiclassical JWKB approxima-
tion, the price paid being that the wave function was singular at the transition/turning
point in the first-order quantal correction to the classical zero-order wave function.
As in so many branches of mathematics and physics, in order to generalize to re-
ality we must generalize to higher dimensions. This requirement was reinforced by
the renaissance in classical mechanics, following Thomas [580] and Wannier [593]
and continued by Gryziński [314] and Bates [38], given the computational intensity
required to solve fully quantal coupled partial differential equations.

In particular, Wannier considered negative hydrogen-ion-like continua com-
prising one nucleus and two highly correlated electrons. Generalized hyperspher-
ical coordinates are well suited to describing such continua. Once again the two-
dimensional singularity, a caustic, results in complete breakdown of the wave func-
tion just where the two electrons emerge diametrically opposed. Unsurprisingly clas-
sical (Wannier [593]) and raw semiclassical (Peterkop [486], Rau [505]) mechanics
were only able to reveal relative threshold scaling laws of the type Eα where E is
the excess-of-threshold energy and α is an irrational constant. The absolute scale
of such cross section laws remained indeterminate until the uniform treatment of
Crothers [186]: see section 52.2 of [200]. Here we present a simplified derivation of
Wannier’s law.

In hyperspherical coordinates the Schrödinger wave equation for the two-electron
wave function pertinent to ionization:

e− + A(Z−1)+(1s)→ 2e− + AZ+ (3.1)

where A is an atomic ion of nuclear charge Z, may be written as[
1
ρ5

∂

∂ρ

(
ρ5 ∂

∂ρ

)
+

1

ρ2 sin2 α cos2 α

∂

∂α

(
sin2 α cos2 α

∂

∂α

)

+
4

ρ2 sin2 2α

1
sin θ12

∂

∂θ12
sin θ12

∂

∂θ12
+

1
�2

(
2E +

2Z
ρ
ζ(α, θ12)

)]
Ψ−∗f = 0 (3.2)
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where E is the excess-of-threshold energy,Ψ−∗f is the conjugated incoming final-state
wave function, and the hyperspherical coordinates are (ρ, α, θ12) where

r1 = ρ cosα, r2 = ρ sinα, θ12 = cos−1 (r̂1 · r̂2) (3.3)

We assume L = 0 and 0 ≤ α ≤ π/2, 0 ≤ ρ ≤ +∞1, and 0 ≤ θ12 ≤ π. We assume
an infinite stationary nucleus AZ+ relative to which electrons 1 and 2 have position
coordinates r1 and r2, respectively. In the preceding,

ζ(α, θ12) = secα + cscα − 1
Z(1 − sin 2α cos θ12)1/2

(3.4)

It should be stressed that (3.2) is nonseparable. Setting

Ψ−∗f =
Θ

ρ5/2 sinα cosα
(3.5)

and employing the Langer correction (ρ = ex), we obtain

(
∂2

∂ρ2
+

1
ρ2

∂2

∂α2
+

4

ρ2 sin2 2α sin θ12

∂

∂θ12
sin θ12

∂

∂θ12
+

1
�2

(
2E +

2Zζ
ρ

))
Θ = 0

(3.6)
Setting

Θ = P1/2e
i
�

S (3.7)

we have to order 1/�2

(
∂S
∂ρ

)2

+
1
ρ2

(
∂S
∂α

)2

+
4

ρ2 sin2 2α

(
∂S
∂θ12

)2

= 2E +
2Zζ
ρ

(3.8)

and to order 1/�

D0

(
P
∂S
∂ρ

)
+

1
ρ2

{
D1

(
P
∂S
∂α

)
+ D2

(
P
∂S
∂θ12

)}
= 0 (3.9)

where

D0(·) =
1
ρ5

∂

∂ρ

(
ρ5(·)

)

D1(·) =
1

sin2 2α

∂

∂α

(
(·) sin2 2α

)

D2(·) =
4

sin2 2α sin θ12

∂

∂θ12
((·) sin θ12) (3.10)

Setting

1 The hyperspherical radius should not be confused with ρ, the impact parameter of Chapters
2 and 4.
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S ≈ S 0(ρ) +
1
2

S 1(ρ)(Δα)2 +
1
8

S 2(ρ)(Δθ12)2 (3.11)

dS 0

dρ
= w ≡

√
2E +

2Z0

ρ
(3.12)

and

w
dS i

dρ
+

S 2
i

ρ2
=

Zi

ρ
(i = 1, 2) (3.13)

which is a Ricatti nonlinear equation [492] in view of the S 2
i -term. We write

S i = ρ2w
d

dρ
ln ui (3.14)

Then we have, setting 2E = X2,

(
ρ2X2 + 2Z0ρ

) d2ui

dρ2
+

(
2ρX2 + 3Z0

) dui

dρ
− Ziui

ρ
= 0 (3.15)

ζ is stationary at α = π/4, θ12 = π, and we have

Zζ ≈ Z0 +
1
2

Z1(Δα)2 +
1
8

Z2(Δθ12)2 (3.16)

where

Z0 =
(4Z−1)√

2
, Z1 =

(12Z − 1)
√

2
, Z2 =

−1
√

2
Δα = α − π

4 , Δθ12 = π − θ12 . (3.17)

Setting

μi = ρmi F

(
−Eρ

Zi

)
(3.18)

and
2Z0m2

i + Z0mi − Zi = 0 (3.19)

u1 = ρm12
2F1

(
m12, 1 + m12; 2m12 +

3
2

;−−Eρ
Z0

)
(3.20)

u2 = ρm21
2F1

(
m21, 1 + m21; 2m21 +

3
2

;−−Eρ
Z0

)
(3.21)

where the Gauss hypergeometrics may be expressed as Legendre functions [593]. In
particular we may write

u1 = ρ−1/4P
−2m12− 1

2
1
2

⎛⎜⎜⎜⎜⎝
√

1 +
Eρ
Z0

⎞⎟⎟⎟⎟⎠ (3.22)
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u2 = ρ−1/4P
−2m21− 1

2
1
2

⎛⎜⎜⎜⎜⎝
√

1 +
Eρ
Z0

⎞⎟⎟⎟⎟⎠ (3.23)

Because of the logarithmic derivative, the ui may be scaled arbitrarily by a nonzero
constant. Consistent with Peterkop [486], we have

m 12
11

= 1
4

[
±

√
100Z−9

4Z−1 − 1
]

(3.24)

m 21
22

= − 1
4

[
±i

√
9−4Z
4Z−1 + 1

]
(3.25)

provided (9/100 <) 1/4 < Z < 9/4 and where upper or lower indices and signs are
taken. In our choice of u1 and u2 we reject m22 (outgoing waves) and m11 (singular at
ρ = 0). The case of Z = 1/4 is considered in Section 3.4.3. For Z = 1, m12 ≈ 1.127,
and for Z = 2, m12 ≈ 1.056.

The classical limit of this section is now obtained by letting �→ 0, in which case
[533] we have

∂W
∂t

+ H = 0 , pi = ∇iW (3.26)

where H is the Hamiltonian, pi the momentum of electron i, and W the principal
function given by

W = S − Et (3.27)

where S is the action of (3.7).
It follows that

dα
dt

=
1
ρ2

∂S
∂α

= − 1
ρ2

S 1(ρ)(Δα) (3.28)

Thus

d
dt

(Δα) = wΔα
d

dρ
ln u1 �

ρ→ ∞
XΔα

d
dρ

ln u1 (3.29)

But
dP
dt

=
∂S
∂ρ
� X ⇒ (3.30)

d(Δα)
Δα

� du1

u1
⇒ Δα = c1u1 (3.31)

Similarly we have
Δθ12 = c2u2 (3.32)

where c1 and c2 are arbitrary constants.
Following Peterkop [486] equation (45), we solve (3.9) to zero order to obtain

the probability of ionization occurring as

P0 ∝
1

ρ5wΔαΔθ2
12

=
1

ρ5wu1u2
2

(3.33)
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However, u1 is given asymptotically, for large ρ, by

(Z0

E

)m12 Γ(2m12 + 3
2 )

Γ(m12 + 3
2 )m12!

(3.34)

and

|u2| � E−1/4 while
1
w
� E−1/2 (3.35)

It follows that the total cross section (sum of all such events) is given by

∫ E

0

∣∣∣P0(Ẽ)
∣∣∣ dẼ ∝ Em12 (3.36)

which is the highly original result of Wannier [593], but using a judicious contri-
bution of classical, semiclassical, and semiquantal mechanics. However, we iterate
that the constant of proportionality is unobtainable because the wave function is sin-
gular just where the two detectors would be placed to record the two electrons in
coincidence.

Since, classically, we have
E = E1 + E2 (3.37)

it is clear that Wannier’s criterion of ergodicity is fulfilled, that is, all couples (c1, c2)
and (E1, E2) are equiprobable.

In conclusion we note that we have avoided the rather tedious classical mechan-
ics of Wannier, namely his equations (8–12, 16–18) upon identifying his (r, ψ, γ, β, ε)
with our (ρ, 2α, θ12, ζ, E). In verifying his equations (17–18), the following are re-
quired: [

d
dq

(ln ρ)

]2

= 1 (3.38)

(
θ′12

∂

∂θ′12

+ α′
∂

∂α

)
ln ζ = 0 (3.39)

where ′ means d/dq (q = ln(ρ/b)) and, conservative force,

H = T + V = E (3.40)

where T is the sum of kinetic energies.
The fact is that (3.31) and (3.34) show that only in the limit as E → 0+, is it true

that α = π/4. For E � 0 there is necessarily a fuzziness or spread about α = π/4 and
about θ12 = π, consistent with (3.11) and (3.16).

Finally we note that in the limit of Z → +∞ (in reality Z � 3), (3.24) and (3.36)
give the E1 law of Wigner [600], noting (Z � 9/4) that (m21,m22) ≡ (0,−1/2) are
not physically appropriate.
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3.2 Differential and Integrated Wannier Cross Sections

The phrase Wannier cross sections on Google achieves more than 2300 hits. Thus
we need to be selective. We shall present our a priori ab initio calculated absolute
(e, 2e), (γ, 2e), and (e+, e+e−) differential cross sections in comparison with experi-
ment, where possible. Of course, other authors prefer to curve fit, for instance, semi-
empirical total (e, 2e) cross sections (cf. Rost and Pattard [524], Pattard and Rost
[482]), from threshold to high-impact nonrelativistic energies.

A more accurate variant [202] of the semiclassical quantum-mechanical treat-
ment of [186] is used to reinvestigate the ionization cross sections of He by electron
impact at an excess energy of 2 eV above the threshold. All partial wave contribu-
tions for singlets and triplets are accounted for up to L = 6. It is found that within
the coplanar geometry, both the symmetric and asymmetric triple differential cross
sections, peaking at and near theWannier ridge, are greatly improved when compared
to the measurements of Rösel et al. [518]. Far away from the Wannier ridge the triple
differential cross sections tend to show qualitative differences from their measure-
ments. The essential features in the observed TDCS show a certain variance with the
existing theoretical calculations. The semiclassical quantal treatment of [186] was
the first attempt to calculate the TDCS for He in its singlet states of s, p, d, and
f waves at an excess energy of 1 and 2 eV. The final state wave function for the
two outgoing electrons was derived with uniform asymptotic behaviour. The results,
however, were obtained after introducing some approximations such as (i) taking the
limit Eρ → 0 (here E is the excess energy over the threshold and ρ the hyperspher-
ical radial coordinate) and (ii) treating the classical action variables S 0, S 1, and S 2

approximately. Even so, the qualitative features of the TDCS were confirmed by the
subsequent experiments of Rösel et al. [518] and Selles et al. [541] for most an-
gles. In this section we refine our method to calculate the TDCS for electron-impact
ionization of He at an excess energy of 2 eV(26.6 eV incident electron energy) for
equal energy sharing of the two outgoing electrons. The nature of the improved ac-
curacy incorporated is as follows: (a) both the singlet and the triplet states of the He
atom are considered, (b) all partial-wave contributions up to L = 6 are taken into
account for better convergence, (c) the limit Eρ → 0 in the calculation of [186] is
removed, and (d) all the classical action variables in the final state wave function
are treated without any approximation. To assess the overall improvement over the
earlier results, we have, however, used the same ground state wave function of the
He atom as used by Crothers [186]. Some correlation effects in this wave function
are accounted for by an effective nuclear charge. A more accurate correlated wave
function due to Pluvinage [493] was used by Copeland and Crothers [148] but no
significant improvements were noticed, which indicates that the precise correlation
effects in the ground state He wave function may not be of such crucial importance.
However in their 1995 paper [149] they did find significant improvement when the
preceding improvement (c) was adopted.

Our uniform semiclassical wave function was analytically continued below the
threshold for the doubly excited states of He−, and impressive resonance energy
positions were obtained (see 3.3). Here we extend our investigation for the above
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threshold ionization of He by retaining the term 2L(L + 1)/ρ2 (point (b)) in the hy-
perspherical equation

[
1
ρ5

∂

∂ρ
ρ5 ∂

∂ρ
+

1

ρ2 sin2 2α

∂

∂α
sin2 2α

∂

∂α
+

4
ρ2 sin θ12

∂

∂θ12
sin θ12

∂

∂θ12

+ 2E +
2ζ(α, θ12)

ρ
− 2L(L + 1)

ρ2

]
Ψ = 0

(3.41)

Following the procedure of section 2 in [186], one obtains

Ψ−∗f =
c1/2Em12/2u1/2

1

ω̃1/2ρ5/2 sinα cosα
δ(k̂1 − r̂1)δ(k̂2 − r̂2) exp

(
4i

(8Z0ρ)1/2
(Δθ12)−1/2

)

× exp

[
−i

(
S 0 +

1
2

S 1(Δα)2 +
1
8

S 2(Δθ12)2 +
π

4

)
− conjugate

] (3.42)

Notice that here in (3.42) the ubiquitous π/4 is half of the phase of the Stokes con-
stant (cf. Chapter 2). Here the classical action variables are given by

S 0 =

∫ ρ

0
dρ̃ω̃ (3.43)

S i = ρ2ω(lnui)
′ , i = 1, 2 (3.44)

with

ω̃ = (ω2 − ω{ln u2 − i ln u1}′)1/2 (3.45)

ω2 = 2E + 2Z0/ρ − 2L(L + 1)/ρ2 (3.46)

The primes in (3.44) and (3.45) denote derivatives with respect to ρ and ρ̃ respec-
tively. The inclusion of this angular-momentum term moves the classical turning
point from the origin to ρ+ where

ρ+ =
−Z0 +

√
Z2

0 + 4EL(L + 1)

2E
(3.47)

As a result, the lower limit of ρ integration will be replaced by ρ+. In Section 3.1 we
assumed L = 0. Using the final state wave function in (3.42) we calculate first the
direct ionization amplitude. The exchange ionization amplitudes for the two indis-
tinguishable atomic electrons were then obtained by interchanging the angles θ1 and
θ2 in the direct amplitude.

Here we present results of TDCS for some symmetric and asymmetric cases in
the coplanar geometry at an excess energy of 2 eV to make a direct comparison with
the absolute measurement of Rösel et al. [518]. In the coplanar symmetric geometry
(φ2 = 180◦; θ1 = θ2) there is only singlet scattering. In Figure 3.1 we present our
results for this case along with the measurement and theory [186]. Significant im-
provement over the earlier results is noticed around the cross-section peak. Several
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Fig. 3.1. Triple differential cross sections (TDCS) for the coplanar symmetric geometry (θ1 =

θ2) at E = 2 eV over the threshold. Filled diamonds, measurement of Rösel et al. [518]; dashed
curve, Crothers [186]; solid curve, Deb and Crothers [202]

factors contribute to this improvement, mostly due to the exact treatment of the clas-
sical action and partly due to the inclusion of three more partial waves (L = 4 − 6)
compared to the earlier calculation where contributions up to only L = 3 were in-
cluded. The last three partial-wave contributions, although small compared to those
of the first four, turn out to be significant in the present investigation. We also check
the contributions beyond L = 6; convergence is obtained. It is interesting to note
that for θ2 below 60◦ and above 120◦ the present results came out to be slightly
smaller than those of the calculation of [186]. The breaking of symmetry around 90◦

discussed by Rösel et al. [518], although noticeable in both calculations, is not as
prominent as in the measurement.

We now consider coplanar asymmetric geometry (φ1 = 0◦, φ2 = 180◦; θ1 fixed
and θ2 varying). In Figure 3.2 we compare present results for θ1 = 90◦ with the same
measurement and the earlier calculation. The present results show excellent agree-
ment, especially for θ2 ≥ 50◦. In this case there is a general increase of scattering
throughout the entire angular range compared to the results of [186]. Interestingly,
the increase in cross section around the peak is maximal just where the triplet con-
tribution tends to zero. This demonstrates that the three improvements (b), (c), and
(d) described in the first paragraph are contributing significantly. From our numer-
ical values, we see that away from the cross-section peak the triplet contribution is
small but not insignificant. The peak position is still at 90◦ in contrast with 100◦

for the measurement. Theoretically, the peak is expected to be at the Wannier ridge
(θ1 = 90◦ = θ2) near threshold, but as the energy increases, the TDCS are expected
to be strongly peaked in the forward direction rather than in the backward direction,
in conformity with the high-energy results. In the present case we are, however, only
at 2 eV above threshold.
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Fig. 3.2. TDCS for the coplanar asymmetric geometry for θ1 = 90◦ (θ2 varying) at 2 eV over
the threshold. Filled diamonds, measurement of Rösel et al. [518]; dashed curve, Crothers
[186]; solid curve, Deb and Crothers [202]
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Fig. 3.3. As for Figure 3.2 but for θ1 = 60◦ and dotted curve; Jones et al. [345]

Next we present TDCS at the same energy for θ1 = 60◦ (Figure 3.3) and
θ1 = 120◦ (Figure 3.4). In Figure 3.3 the present result is strongly peaked around
θ2 = 95◦. The height of this peak has been increased dramatically compared to the
earlier calculation but still lies within the experimental error bar. The contributions
from the triplets are largely responsible for this dramatic increase around θ2 = 95◦.
The peak position in Figure 3.4 appears to be at a slightly larger angle compared to
the measurement and the previous calculation. The second peak around θ2 = 160◦

has also increased significantly due to the triplet contributions. The measurement
shows a much stronger peak at this angle. Rösel et al. [518] also report the results
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Fig. 3.4. As for Figure 3.2 but for θ1 = 120◦ and dotted curve as in Figure 3.3

of Jones et al. [345]. This model is an improvement over their distorted-wave Born
approximation (DWBA) calculation in that they include exchange distortion of con-
tinuum and target electrons. While the importance of exchange distortion was also
confirmed by Pan and Starace [480], the predicted results (dashed curves in Figures
3.3 and 3.4) in the [345] model were not very good either in peak position or in
peak height. For all the angles, the position of the primary peak in the [345] model
is shifted to either the forward or the backward direction relative to the measurement
and our calculation. However, the position of the secondary peak for θ1 = 60◦ (Fig-
ure 3.3) and θ1 = 120◦ (Figure 3.4) seems to agree with the measurement and the
present calculation. From Figure 3.4 we note that the height of the primary peak in
the present calculation agrees very well with that of the measurement but the peak
position is shifted by a few degrees to the left.

In conclusion, the semiclassical–quantal treatment of [186] has been applied in
a more precise manner to calculate the TDCS for electron-impact ionization of He.
Good results are obtained at and around the Wannier ridge in the coplanar symmetric
and asymmetric geometry. However, away from the Wannier ridge only qualitative
agreement was found. Further theoretical calculations and accurate measurements
are needed for this near-threshold region. In Figures 3.5 (θ1 = 90◦) and 3.6 (θ1 =

60◦) we present our singlet and triplet contributions to the full TDCS along with the
measurements [518] and earlier singlet TDCS of Crothers [186]. As expected, the
singlet contributions dominate the TDCS at both angles. The triplet contributions in
general enhance the TDCS by a few percent away from the primary peak at θ1 =

θ2 = 90◦ in Figure 3.5. For the case of θ1 = 60◦ (Figure 3.6) our full (singlet +

triplet) TDCS show the primary peak around θ2 = 100◦ and another peak far away
(around 165◦), which we refer to as the secondary peak. Theoretically, the triplet
contributions are coming from 0.75| f − g|2 and will be zero at equal angles, which
can be seen from Figures 3.5 and 3.6. However, the triplets contribute to the peaks
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Fig. 3.5. TDCS in the coplanar asymmetric geometry for θ1 = 90◦ at E = 2 eV above thresh-
old. Filled diamond; measurement [518]; dashed-dotted line; Crothers [186]; dotted line;
present triplet; dashed line; present singlet; and solid line; present full (singlet plus triplet)
calculation

Fig. 3.6. Same as Figure 3.5 but for θ1 = 60◦

of the full TDCS significantly at unequal angles. This property was also noted in the
theoretical calculation reported by Rösel et al. [518]. A careful observation of Figure
3.6 suggests that the triplet contribution not only enhanced the primary peak but also
moved this peak position slightly to higher angles.

It is puzzling that for θ1 = 90◦ (Figure 3.5) the TDCS peak occurs theoretically
at θ2 = 90◦ but experimentally [518] at θ2 = 100◦, whereas for θ1 = 60◦ (Fig-
ure 3.6) the situation is exactly reversed, i.e., the theoretical primary peak occurs at
θ2 = 100◦ when the experimental primary peak seems to occur at θ2 = 90◦. In the
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Fig. 3.7. Polar plots of the TDCS for (a) θ1 = 90◦, (b) θ1 = 60◦, and (c) θ1 = 140◦ at E = 1 eV
above threshold. Square; measurement [541] and solid line; present full (singlet plus triplet)
calculation. The radius of the circle represents the maximum TDCS at θ1 = θ2 = 90◦, which
is 1.24 × 10−19 cm2 sr−2 eV−1

coplanar asymmetric geometry, the present TDCS maximum for the electron-impact
ionization of He has occurred at θ1 = 90◦ = θ2 where the two outgoing electrons are
on opposite sides and on the Wannier saddle. The relative measurement of Selles et
al. [541] at E = 1 eV also supports (Figure 3.7(a)) this behaviour. Here it is note-
worthy that for θ1 = 120◦ we found [203] that the theoretical primary peak position
shifted by about 10◦ towards the smaller angle compared to the corresponding ex-
perimental peak. It therefore appears that for θ1 ≥ 90◦ the present theoretical TDCS
primary peaks are shifted by about 10◦ towards the smaller angles compared to the
measurement whereas for θ1 < 90◦ it moves by the same angular domain towards
higher angles. To resolve these discrepancies of the peak positions, more accurate
measurements and calculations need to be encouraged.

In Figure 3.7 we present the polar plots of the TDCS at an excess energy of 1
eV above the threshold. In this figure we compare our results with the relative mea-
surements of Selles et al. [541] at several angles. The radius of all the circles are
normalized to unity, which corresponds to 1.23 × 10−19 cm2 sr−2 eV−1, the present
maximum TDCS value at θ1 = θ2 = 90◦. The corresponding singlet result recorded
earlier [186] was 0.89 × 10−19 cm2 sr−2 eV−1. Considering the fact that at this angle
(θ1 = θ2 = 90◦) the triplet contribution is exactly zero, there is about 38% enhance-
ment in the absolute value of the singlet TDCS. We observe that this enhancement
is mostly a result of treating the classical action variables exactly and partly due
to the inclusion of a few more partial waves in the present calculation. Going back
to Figure 3.5 we note that the corresponding enhancement at 2 eV is about 20%.
Therefore, as the excess energy E → 0 the classical action variable is becoming in-
creasingly important. Since the absolute experimental value [541] at E = 1 eV is not
known it is difficult to assess the accuracy of the present results. Nevertheless, Figure
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Fig. 3.8. TDCS at coplanar constant geometry for θ12 = 180◦ at E = 2 eV. Diamond; mea-
surement [518]; and solid line; present full (singlet plus triplet) calculation

3.7(a) shows good qualitative agreement between the present results and those of the
relative measurement of Selles et al. [541]. Figures 3.7(b) and 3.7(c) show similar
comparison of the present calculation and the measurement [541] for θ1 = 120◦ and
θ1 = 140◦ respectively. These two figures show that the present TDCS maxima at
these angles are shifted towards the smaller θ2 compared to the measurement – a
behaviour already noted for the θ1 = 120◦ case at 2 eV excess energy [203]. Un-
like the case where E = 2 eV, here (E = 1 eV) both the measurement [541] and
the present calculation show a single peak structure for θ1 = 120◦ (Figure 3.7(b))
although the intensity of the theoretical peak is slightly higher than that of the mea-
surement. Figure 3.7(c) (θ1 = 140◦), however, shows a double-peak structure in both
the measurement and the present calculation. In this case the intensity of the primary
peak shows agreement between the two sets of results but large discrepancies are
noted for the secondary peak intensity.

In the coplanar constant geometry (i.e., θ12 = constant, θ1 and hence θ2 both
varying) we have also calculated the TDCS at E = 2 eV and compared our results
with those of Rösel et al. [518] in Figure 3.8. Here we have considered the case
θ12 = 180◦. Although the general behaviour of the TDCS peak around the Wannier
ridge (θ1 = θ2 = 90◦) agrees well with the measurement, the cross sections differ con-
siderably for θ1 < 40◦ or θ1 > 140◦. The measurements tend to show very large cross
sections at extreme forward or backward angles at an energy close to the threshold. It
is to be noted here that in the present case Δθ12 is exactly zero and the improvement
made in the present investigation through the classical action variable S 2 is no longer
accountable. In addition the present numerical technique being based on the method
of steepest descent may not provide a good description of the dynamical behaviour
of the ionization process far away from the ridge.
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Fig. 3.9. Contributions of various partial waves (up to and including the respective L-values)
to the TDCS for θ1 = 90◦ at E = 1 eV above threshold

Fig. 3.10. Contributions of various partial waves (up to and including the respective L-values)
to the TDCS for coplanar symmetric geometry for θ1 = θ2 at E = 2 eV above threshold

To check the convergence of our calculations as a function of partial-wave con-
tributions we present in Figure 3.9 the coplanar symmetric TDCS at E = 1 eV up
to three different partial waves (L = 0, 2, and 4). We found that the 1S e contribu-
tion is about 54% of the full TDCS maximum (0.669 × 10−19 cm2 sr−2 eV−1 out
of 1.23 × 10−19 cm2 sr−2 eV−1). In our formulation it is very difficult to isolate the
contributions of individual nonzero partial waves to the full TDCS. However, with
a closer look at the TDCS after adding each nonzero partial wave we surmise that
the next important contributions came from the 1,3De, and 3Fo levels. Nonnegligi-
ble contributions totalling up to a few percent are coming from 1,3Po, 1Fo and 1,3Ge
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Fig. 3.11. TDCS for θ1 = 90◦ at E = 1, 2, 3, and 4 eV

levels. No other partial waves at this energy are necessary to achieve a four-figure
accuracy maintained in the present calculation. Similar results are found at 2 eV
in the same geometry with an exception that 1S e this time contributes about 44%
(0.357 × 10−19 cm2 sr−2 eV−1 out of 0.810 × 10−19 cm2 sr−2 eV−1). This implies that
the relative importance of the 1,3De and 3Fo increases with the excess energy. At this
energy, however, we needed L = 6 to achieve the similar accuracy with 1,3Ho giving
almost zero contributions. The importance of L = 3 contributions, especially from
3Fo levels, agrees with the finding of the JM calculation [345] reported by Rösel et
al. [518]. We next considered the TDCS at 2 eV in the coplanar symmetric geometry
where the triplets are exactly zero and the results are shown in Figure 3.10. Here we
have noticed that the contributions up to L = 4 are about 1% smaller than the corre-
sponding values up to L = 6. We decided, therefore, to keep values up to L = 6. The
contributions from L = 0, 2, and 3 again turn out to be very important. It is interest-
ing to note that the higher L contributions not only increased the height of the TDCS
peaks but also improved the flat low-L peaks to sharper peaks. We also found that
the contributions from odd L > 3 are practically zero. Even values of higher partial
waves (L > 6) are contributing only within a small angular range close to the beam
direction i.e θ1, θ2 → 0◦, or 180◦. Finally, in Figure 3.11 we present the behaviour
of our TDCS as a function of the excess energy over the threshold, at the Wannier
ridge (θ1 = θ2 = 90◦). As expected the TDCS peaks become sharper with excess
energy E → 0. Here we have also noted that as E increases more partial waves are
needed to achieve convergent results. As an example, L = 4 was sufficient for E = 1
eV whereas L = 8 was needed for the case of E = 4 eV. Various theoretical models
predicted various energy ranges as the valid threshold region. Selles et al. [541] pre-
dicted this range of validity to be 2 eV above the threshold. In the present calculation
we are able to go without any difficulty up to 4 eV above the threshold.
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We have presented a systematic study of the near-threshold ionization of He by
using a more accurate version of the quantal-semiclassical treatment of Crothers
[186]. Various aspects of the triple differential cross sections are studied, such as
contributions from singlets and triplets, effects of the higher partial waves in vari-
ous coplanar geometries, and energy dependence. It is found that the improvements
made in the present investigation, by including the classical action variables exactly,
produce better overall agreement with the available measurements, especially around
the Wannier ridge. However, far away from the ridge only qualitative agreement is
achieved. More rigorous theory and accurate measurements in this area are needed to
resolve the existing discrepancies. Singlet contributions are dominating at all angles,
and triplet contributions are responsible for the enhancement of the secondary peaks
by a few percent, mostly at unequal scattering angles. In terms of partial waves,
L = 0, 2, and 3 contribute most (at all angles) whereas the higher partial waves give
small contributions at angles close to the beam direction.

The uniform semiclassical approximation is employed to calculate absolute Wan-
nier cross sections for two-electron photo detachment from He− (1s2s2p 4Po

5/2) near
threshold. This is the first absolute theory in which the initial state involved nonzero
total angular momentum: 3Po

1 in the initial state and 3Pe
1 in the final state. It also

permits the first absolute comparison between theoretical and experimental cross
sections. Our theory predicts a cross section of 1.89× 10−20 cm2 at an excess photon
energy of E = 0.41 eV. This compares favourably with the experimental estimate
2 × 10−20 cm2 of Bae et al. [17]. Our cross section, as a function of excess energy E
in a.u., is given by 2.14 E1.127 × 10−18 cm2.

The theory of Crothers [186] was adapted to calculate the first absolute Wan-
nier threshold cross section for single-photon two-electron detachment (McCann and
Crothers [410], hereafter referred to as II). This original application was to H−, an
ion of zero total angular momentum. The theory predicted a cross section parameter-
ized by E, the excess energy above the double ionisation threshold in eV, and given
by

σ(γ, 2e) = (3.14 × 10−20)E1.127 cm2 (3.48)

which clearly demonstrates the law of Wannier [593]. Unfortunately we were un-
aware of any experimental measurement of such a cross section. To remedy this
deficiency we subsequently [107] used the continuum distorted-wave function of
Dulieu and Le Sech [233] to extend our theory to K− for which we found σ(γ, 2e) =

(66.7 × 10−20)Em12 cm2 a factor of four larger than the experiment of Bae and Peter-
son [18] who found σ(γ, 2e) = (17.7 × 10−20)Em12 cm2. We also applied [190] our
uniform semiclassical approximation to calculate absolute Wannier threshold cross
sections for single-photon two-electron detachment from He− (1s2s2p 4Po

5/2), for
which cross sections have been measured by Bae et al. [17]. A direct comparison of
absolute cross sections between theory and experiment thus became possible for the
first time, despite the obvious caveat that the experimental cross sections were sub-
ject to nontrivial error bars, mainly due to competing second-order processes such
as two-photon two-step ionization. On the other hand this He− ion provided a good
test of the theory. First it is genuinely metastable, autoionisation being prohibited
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by selection rules [330], and second it involves a (1s2s) 3S core and a total angular
momentum of one atomic unit.

In the past, Roth [525] had considered a ψ100 final-state wave function that, in
the notation of Morse and Feshbach [440], is given by

ψ100 = sinΨ sinΘ f100 (3.49)

where the first subscript on ψ gives the value of total angular momentum, the second
its z component, and the last its symmetry properties. In (3.49) Θ may be interpreted
as θ1, the polar angle for electron 1, while Ψ is defined as the angle between the
(r1, r2)-plane and the (r1, z)-plane. In fact ψ100 is an even-parity state with L = 1
and ML = 0 and in principle is accessible from a He− po odd-parity state through
the odd-parity dipole operator. However, as remarked by Roth “the amplitude of the
wave function will be small in the far zone due to the node along the Wannier line”.
In short, application of our variation perturbation principle (see II) leads precisely to
zero transition amplitude, because the following integral is zero:

∫ 2π

0
dΨ (sinΨ sin θ1)

[
cos θ1(1 − cos γ) + sin θ1 sin γ cosΨ

]

× [
cos θ1(1 + cos γ) − sin θ1 sin γ cosΨ

] (3.50)

where γ is given by
γ = π − cos−1(r̂1 · r̂2) (3.51)

The three brackets of expression (3.50) represent the angular behaviour of, in order,
a final-state 3Pe

0, the 1Po
0 dipole interaction, and the 3Po

0 initial state. We have thus
established the selection rule for 3P0 states, namely

ML = 0 (3.52)

leads to a nugatory Wannier cross section. On the other hand we do find that the 3P±1

states are accessible with nonzero cross sections. These states correspond to the ψ1,10

and ψ1,−10 = ψ∗1,10 of Morse and Feshbach. Their angular behaviour is given by

(e±iΦ sin θ/
√

2)(cosΨ ∓ i cosΘ sinΨ ) ≡ (e±iφ2 sin θ2 cos θ1 − e±iφ1 sin θ1 cos θ2)

γ
√

2
(3.53)

where Φ is ϕ1 and that corresponds to the (y/γ)1Po state in the H− problem. Of
course, magnetic selection rules require the p electron to occupy a P±1 state. The ini-
tial wave function must therefore correspond, in the notation of Morse and Feshbach,
to φ−11a or φ−1,−1a, whose unnormalised angular behaviour is given by

(e±iφ1 sin θ1 − e±iφ2 sin θ2)
√

2

=
e±iΦ

√
2

[
sinΘ(1 + cos γ) ∓ i sin γ sinΨ + sin γ cosΘ cosΨ

]
(3.54)
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Taking the upper signs in (3.53) and (3.54), that is, taking ML = +1, the crucial
angular integration in the transition amplitude is

1
2

∫ 2π

0
dΨ

∫ 2π

0
dϕ1

∫ ∞
0
γ dγ

∫ π
0

sin θ1 dθ1 (cosΨ + i cos θ1 sinΨ )e−η
2
f γ

2

×(cos θ1(1 − cos γ) + sin θ1 sin γ cosΨ )

×(sin θ1(1 + cos γ) + cos θ1 sin γ cosΨ − i sin γ sinΨ ) (3.55)

� π5/2

4η5
f

+ 2π5/2

3η3
f

(3.56)

where the brackets are final-state 3Pe
1, dipole 1Po

0 and initial-state 3Po
1, and where

η2
f = −1

8

√
2z0ρ Im m21 (3.57)

in the standard notation of II. As it happens, expression (3.56) also agrees in value
with the corresponding angular integral of II, namely

∫
y
γ

(cos θ1 + cos θ2)e−η
2
f γ

2

dr̂1 dr̂2 (3.58)

It follows that the cross section is given by

σ(γ, 2e) =
2
3

3
8π

(2π)5

9
E0αa2

0|t̃|
2 (3.59)

where the transition amplitude t̃ is given by

t̃ =
Z3/2M

z0m1/2
12 (Im m12)

∫ ∞

0
dρ ρ3+m12/2 sin

(√
8z0ρ −

2π
√

3
+
π

2

)
φ(r1, r2) (3.60)

where we have averaged over the initial states and summed over the final states, that
is, assuming circular polarisation of the photon beam, so that the cross section is 2/3
of that for ML = +1 or −1. In (3.59) E0 = 4.845/27.21 is the double ionization
threshold energy in a.u., α is the fine structure constant in au and a0 is the Bohr
radius. In (3.60) the parameters M, z0, m12, m21, and ρ are exactly as in II. The extra
phase of 2π/

√
3 in (3.60) comes from Roth’s analysis of the 3P state. The factor of

3/8π in (3.59) is just the normalisation of the eiϕ sin θ initial angular state. Clearly
the distance of the electron n(= 1, 2) from the nucleus is given by rn = ρ/

√
2 while

r12 = ρ
√

2, since we are on the Wannier ridge. For the radial part of the He− bound-
state wave function represented by φ(r1, r2) in (3.60), we take that of Bunge and
Bunge [102]. We assume that the inner 1s electron is essentially a spectator that we
may ignore and employ their first term in a Slater orbital expansion, namely

φ(r1, r2) ≡ 1
√

4π

√
3

8π
(2α)5/2

√
24

r1 e−αr1
(2β)5/2

√
24

r2 e−βr2 (3.61)

where
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α =0.72

β =0.53
(3.62)

and where electron 1 is the 2s electron and electron 2 is the 2p electron. A simple
numerical calculation gives

σ(γ, 2e) = 1.89 × 10−20 cm2 (3.63)

for E = 0.41 eV. This compares very favourably with the cross section of Bae et al.
[17], which can probably be given as (2 ± 0.4) × 10−20 cm2, the large error bars be-
ing due to the already mentioned competing two-stage processes. Our more general
result can be written as a function of E as

σ(γ, 2e) = (2.14 × 10−18)E1.127 cm2 (3.64)

where E is in au. We also used a more cumbersome and older four-term wave func-
tion of Holøien and Midtdal [330] not as good a physical representation as that of
Bunge and Bunge [102], in contrast with the assertion of Haritos et al. [323]. It gave
a cross section of 1.1×10−20 cm2 for E = 0.41 eV and definitely lies outside the error
bars of Bae et al. [17]. We conclude that the more recent and physically more plau-
sible wave function gives very good consistency with the experimental estimates.
In turn, we may state that the current theory (in contrast with the K− case) affords
the first successful absolute test of the Wannier threshold law in photo-double de-
tachment and that the test has proved reasonably successful. Undoubtedly further
theoretical and experimental determinations are desirable.

Finally, in this section we turn to an accurate, absolute theoretical calculation of
positron impact ionization of He for energies 0.5−10 eV above threshold [205]. Our
quantal-semiclassical calculation shows excellent agreement for the total ionization
cross section with the absolute measurement of Ashley et al. [16] who measured total
cross sections Q+

i in the range (0.0 − 0.6) × 10−21 m2, for the impact energy range
24.58 − 34.00 eV, that is, an excess energy E′ (= E − Ei) above threshold Ei in the
range 0.0-9.42 eV. Extending the classical treatment of Wannier [593] from e− to e+

impact, Klar [357] determined Q+
i ∝ (E′)2.651 while Rost and Heller [523] semiclas-

sically determined (E′)2.67. However, Ashley et al. [16] obtained Q+
i ∝ (E′)1.99±0.19

over 1 < E′ < 3 eV and (E′)2.27±0.08 over 3 < E′ < 9 eV. As stated by Ashley et
al. [16], the process of positron impact near-threshold ionization of helium is also
interesting because of the absence of an exchange interaction and the possibility of
the formation of an electron–positron bound state, positronium (Ps), with a threshold
energy 6.8 eV below the threshold Ei for direct ionization. They also reported that
by measuring e+–ion coincidences, ions resulting from Ps formation (the dominant
ionization process near Ei) were largely undetected. However, random coincidences
between ions and uncorrelated positrons result in a background that can be measured
by preventing the positrons that have produced an ion (and have hence lost Ei which
is 24.58 eV for He) from reaching the detector.

It is well known [593], [357], [486], [487], [505] that purely classical mechanics
cannot obtain the absolute constant of proportionality in the Q±i /E

′ power relations
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for positron/electron impact. To rephrase, the constant of proportionality, however
restricted the E′ domain, is a purely quantal effect. In 1986 Crothers [186] published
the first account of absolute electron-impact single, double and triple differential and
total integrated cross sections, using quantum mechanics and a semiclassical asymp-
totically correct final-state wave function Ψ−f . Good agreement with experimental
absolute and relative cross sections was obtained. Over concentration on the imme-
diate threshold region had led to a perturbative expansion of the zero-order complex
action in Ψ−f and the omission of triplets which were known to be small experimen-
tally.

In 1997–8 Loughan and Crothers [386], [387] analytically continued the Ψ−f of
Crothers [186] below threshold (E′ < 0), and immediately realized that a perturba-
tion expansion of the zero-order complex action would be incorrect and that both
transition points (real or complex, depending on the value of L, the total angular
momentum azimuthal quantum number) had to be determined exactly to be able
to invoke a complex Bohr–Sommerfeld quantization rule. Excellent results for the
doubly highly excited states of He− (L = 0 [386] and L = 1, 2 [387]) and of He
[195] were obtained for resonance positions, lifetimes, intensities, and scaling rules,
in comparison with experiment. In the case of L = 1, an irrational quantum number
was derived and attosecond lifetimes were obtained (see Section 3.3). This persuaded
us to analytically continue back above threshold, retaining the complex zero-order
action in Ψ−f without perturbative expansion, retaining triplets, and extending Lmax

[202], [203], [204]. Here we apply, without approximation, our full quantal matrix
element with semiclassical Ψ−f , to determine Q+

i for absolute comparison with Ash-
ley et al. [16].

We now give a brief résumé of our mathematical expressions, taking the position
vectors of e+ and e− relative to the He+ core (Z = 1) as r1 and r2, respectively, with
r12 = |r1 − r2|. The interaction potential is given by

1
r1
− 1

r2
− 1

r12
=
ζ(α, θ12)
ρ

(3.65)

where the effective charge ρ is given by

ζ(α, θ12) = secα − cscα − (1 − cos θ12 sin 2α)−1/2 (3.66)

with ρ, α, and θ12 the usual hyperspherical coordinates associated with r1 and r2

[186], respectively, hyperspherical radius and angle and mutual polar angle. The
Wannier saddle is given by making ζ stationary as a function of α and θ12, namely
θ12 = 0 and α = α0 ≈ 24.9060◦. This implies that r1/r2 = 2.15372 and that the
negatively charged electron nestles roughly halfway between the positively charged
He+ and e+. Near the saddle, we have

ζ ≈ Z0 + Z1(α − α0)2 + Z2θ
2
12 (3.67)

where
Z0 ≈ 3.33019
Z1 ≈ 55.6414
Z2 ≈ −13.3207

(3.68)
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and the Wannier–Peterkop indices are given by

m12 =

[(
1 + 8Z1

Z0

)1/2
− 1

]
/4 ≈ 2.65

m21 =

[
−i

(
−1 − 8Z2

Z0

)1/2
− 1

]
/4

(3.69)

The scattering amplitude is f , given by

f (k̂1, k̂2) ≈ 2i
π[2(1 + S )]1/2

∫
dr1 dr2 dr3 Ψ

−∗
f (r1, r2)ϕ(r3, 2)eik0·r1

×
[(

z0

r1
− 1

r12

)
ϕ(r2, z0)ϕ(r3, β) +

(
z0

r1
− 1

r13

)
ϕ(r3, z0)ϕ(r2, β)

] (3.70)

where k0 is the momentum of the incident positron and we allow for exchange be-
tween the two bound-state electrons r2, r3 using an open-shell independent-electron
model in which the outer electron sees a charge z0 and the inner electron sees a
charge β (ϕ, S , z0, and β are defined in equations (69)–(73) in [186]). Notice that the
ground-state helium wave function contains electron correlation implicitly through
the parameter z0 in ϕ(r, z0) and goes beyond the Hartree–Fock description. An ex-
plicitly correlated wave function was used by Copeland and Crothers [148] for the
electron impact ionization of helium resulting in very little change in the cross sec-
tions. By the same token, it makes little difference to the present wave function and
calculations. Moreover this initial-state description in no way contradicts the Wan-
nier description of the final state in which both the incident positron and the ejected
electron are far away from the residual He+ core that is l1, l2 � 1 so that the total
angular momentum quantum number L ∈ [|l1 − l2|, l1 + l2] and ∈ [0, Lmax]. The final
state is given by

Ψ−∗f =
c1/2(E′)m12/2u1/2

1

ω̃1/2ρ5/2 sinα cosα
δ(k̂1 − r̂1)δ(k̂2 − r̂1) exp

(
4i

(8Z0ρ)1/2
θ−2

12

)

×
{

exp

[
−i

(
S 0 +

1
2

S 1(Δα)2 +
1
8

S 2θ
2
12 +

π

4

)]
− conjugate

} (3.71)

where c is given by equation (42) of [186], k1 and k2 are the momenta of the positron
and ejected electron, respectively, and Δα = α − α0. The actions are given by

S 0 =

∫ ρ

ρ+

dρ̃ ω̃(ρ̃) (3.72)

S j = ρ2ω
d

dρ
(ln u j) ( j = 1, 2) (3.73)

ω2(ρ) = 2E′ +
2Z0

ρ
− L(L + 1) sec2 α0

ρ2
(3.74)

ω̃2(ρ) = ω2 − ω d
dρ

(ln u2 − i ln u1) (3.75)

u(m) = ρm
2F1

(
m,m + 1; 2m + 3/2;

−E′ρ
Z0

)
(3.76)

u1 = u(m12), u2 = u(m21) (3.77)
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and where 2F1 is the Gauss hypergeometric function and ρ+ is given by

ρ+ =

[
Z2

0 + 2E′L(L + 1) sec2 α0

]1/2
− Z0

2E′
(3.78)

We note that the effective azimuthal quantum number L (where L = {[1 + 4L(L +

1) sec2 α0]1/2 − 1}/2) is now irrational for all positive L, in contrast (e.g., L = 2) to
the electron case [387].

It is no accident that ω̃ is a complex effective wave number (both i and u2):
this represents loss of flux to other channels. The integration over r3 is trivial and
analytical, that over α is effected using the method of stationary phase and the rest
are effected numerically with some changes of dummy variables to avoid removable
singularities. Given that E′ > 0, the nonnegative ρ+ is the outer classical turning
point, while the other root ρ− (of (3.74)) is always classically inaccessible, so that
the Jeffreys connection formula in (3.71) guarantees rapid exponential decay for 0 ≤
ρ ≤ ρ+. Expanding the plane wave and the first two-dimensional Dirac delta function
as a sum over L simplifies the calculation.

Fig. 3.12. Total cross sections in units of 10−22 m2 plotted against the incident positron energy
E (in eV). Full circles; measurement [16]; full curve; present theory with LMAX = 11; broken
curve; present result fitted to a pure Wannier threshold law

In Figure 3.12 we compare our results with the experimental results [16], tak-
ing Lmax = 11. With the possible exception of the experimental results at 28.5 and
32 eV, agreement is very encouraging. Given that both scales are linear and both
sets of results are absolute, this is a remarkable vindication of both the experiment
and our new extended semiclassical, quantal Wannier theory, notably in the range
E ∈ [26, 34] eV. Our success is undoubtedly due to our nonperturbative, exact treat-
ment of S 0 (3.72), to our treatment of the centrifugal potential (3.74), and to our



3.2 Differential and Integrated Wannier Cross Sections 115

sum over L ∈ [0, 11]. The complex action variables ((3.72) and (3.73)) imply that
continuum coupling with the Ps formation channel is included in the present calcu-
lation. The importance of the contributions to the integrated cross sections from L >
0 partial waves has already been demonstrated for the electron impact case [203]. In
the present positron impact case we observe a similar trend in the need for higher
partial waves as the excess energy increases. For example Lmax = 5 for E′ = 2 eV
and Lmax = 7 for E = 4 eV were sufficient for convergence.

The experimental results [16] contradict previous tentative experimental conclu-
sions [361], [575] that the electron and positron impact ionization cross sections may
exhibit a similar energy dependence close to the threshold and yet qualitatively agree
with Wannier-type theories that, as we see from our introduction, predict a larger ex-
ponent for the case of e+. The non-Wannier-type theory such as the Coulomb dipole
approximation of Temkin applied to both electron [578] and positron [579] impact
ionization predicted a modulated threshold law proportional to E/(ln E)2, which
could be described as “quasilinear”. Ihra et al. [336] applied hidden-crossing the-
ory to the calculation of Q+

i . They included anharmonic corrections (roughly equiva-
lent to extending our Taylor expansion in (3.67)). As their log–log figure 1 illustrates,
they concluded that experiment [16] and their theory [336] indicated a “less extended
energy range in which the Wannier law is valid”, that is, in contrasting the positron
case with the electron case. This is in direct contradiction with our conclusion, based
on the theory presented earlier. In a semiclassical Feynman path integral formalism
Rost [520] obtained a similar extended energy range for the validity of the Wannier
law but for positron impact ionization of hydrogen. In any case, as did Rost and
Heller [523] before them, Ihra et al. [336] took Lmax to be Lmin = 0.

Finally if we try to fit our results to a threshold law of the form

Q+
i = C(E − Ei)

m12 (3.79)

with m12 = 2.65 from (3.69) we find C ≈ 0.02 in units of 10−22 m2/(eV)m12 and
the resulting fit produces the broken curve in Figure 3.12. This shows that our results
might give a threshold law for the excess energy E′ < 5 eV with the exponent similar
to those already predicted [357], [523]. However, this fit deviates significantly from
our actual results and the experiment [16], above 5 eV excess energy.

In conclusion, we have applied a significantly revised, more sophisticated semi-
classical quantal theory, in contrast with our original paper [186], to describe single-
ionization positron-impact collisions on helium in the 0.5-10 eV excess of threshold
energy. Our results show excellent agreement with Ashley et al. [16]. The curve-fit
(3.79), a pure Wannier threshold law, is in agreement with both our theory and ex-
periment [16] for excess of threshold energy up to 5 eV, but not in the domain 5− 10
eV.

3.2.1 Conclusions

Semiclassical theory is quantitative in a wide range of quantum physics problems
(1/� � 1). S 0, S 1, and S 2 actions are necessary as is the Stokes phenomenon. Our
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treatment is three-dimensional with 1/|Δα|, 1/|Δθ12| � 1, which implies anomalous
Wannier threshold phenomena in (e±/γ) behaviour. We have obtained the first abso-
lute ab initio Wannier cross sections due to the 1986 semiclassical treatment and its
extensions, not just to electron impact single ionization (cf. Sadeghpour et al. [527])
but also to photo-double-detachment and to doubly excited states (3.3).

Our semiclassical/quantal description of Wannier highly correlated states is ro-
bust, providing absolute parameters (cross sections above and resonances below
threshold) that agree well with experiment.

3.3 Doubly Excited States and Their Lifetimes

The analytic continuation of Crothers’ uniform semiclassical wave function to below
threshold is extended to include resonant states for L = 1 and L = 2, where L is the
total angular momentum azimuthal quantum number of the two excited electrons.
Using the Bohr–Sommerfeld complex quantisation rule with two complex transi-
tion points the complex eigenvalues for doubly excited states of He− are calculated.
The resonance energy positions, which are parameterized in terms of an irrational
azimuthal quantum number L for L = 1

(
L =

(√
17 − 1

)
/2

)
and an integer L for

L = 2 (L = 3), are in good agreement with the experimental results of Buckman et
al. [98].

The structure and dynamics of doubly excited states, where one approaches the
limit of two electron break-up, are dominated by the correlated motion of the two
excited electrons. The subject of electron correlations in general is of considerable
interest and has resulted in an intensive theoretical and experimental investigation
into the spectroscopy of He− and the mechanisms responsible for the formation of
negative-ion states.

In a high-resolution experiment Buckman et al. [98] measured the electron im-
pact excitation for metastable (23S and 21S ) helium atoms and revealed a Rydberg-
like series of resonances converging on the He+ threshold. They argued that some of
these features, particularly the lowest member of each multiple, involved the excita-
tion of two electrons in a highly correlated state. Following the suggestion of Fano
[263], that the form of the two electron potential ridge might give rise to a series
of quasi-standing waves with reflection at the classical turning points of the system,
they concluded that for doubly excited states of helium the highly correlated two
electron excitations manifest themselves as “Wannier ridge” resonances. The most
notable effect of electron correlated motion is the E1.127 Wannier threshold law [593],
which has been confirmed semiclassically [486] and quantum mechanically [505].
The absolute magnitude of the scattering amplitude remained unknown until 1986
when Crothers [186] published the first absolute theoretical singlet triple-differential
and integrated cross sections for the threshold electron impact single ionisation of
helium using a uniform semiclassical approximation to evaluate the final-state wave
function.

Both above and below the double-continuum threshold semiclassical theory
holds but unlike the free 2 − e− states, where classical dynamics applies in many
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situations, as in Wannier [593], semiclassical analysis of the negative energy states
remains indispensable [313]. For instance, the above threshold semiclassical treat-
ment of [186] for the unstable motion of a pair of electrons along the potential ridge
has been extended to the near-threshold capture excitation process

e− + He→ (He−)∗

([386] and [194]). This involved the analytic continuation of the semiclassical wave
function of [186] to below the energy threshold in order to calculate the complex
eigenvalues EN of doubly excited states of He− where

EN = EN
R −

i
2
ΓN (3.80)

These inaugural investigations were restricted to L = 0 states only (see Tables 3.1,
3.2, and 3.3). The resonance energy positions, given by EN

R were found to be in
good agreement with the experimental results of Buckman and Newman [99] for the
(ns)2 2S intrashell series and Buckman [98] for the s 2S (that is, (ns, (n + 1) s) 2S )
intershell series for values of n up to n = 9 and n = 7, respectively. Hereafter, we
adopt the notation of Buckman et al. [98], where n is the lower of the two principal
quantum numbers n1, n2 of the two excited electrons.

We extend this work to include resonance states for L � 0, in particular for L = 1
and L = 2 since Buckman et al. [98] have published experimentally determined
values of the resonance energies for these quantum numbers.

Table 3.1. Resonance position energies for (He−)∗ for L = 0, n1 = n, n2 = n1 ⇒ N =

n1 + n2 − 1 = 2n − 1 and L = 0′, n1 = n, n2 = n1 + 1 ⇒ N = n1 + n2 − 1 = 2n since
N = n1 + n2 − |l1 − l2| − 1 where L=|l1 − l2|. The experimental values are from (a) Buckman et
al. [98] and (b) Buckman and Newman [99]. The number in brackets indicates the error in the
second and third decimal places

Present Results b a
Resonance Position Energies (eV)

n N L = 0 N L = 0′ L = 0 L = 0′

2 3 19.492 19.367(5)
3 5 22.330 6 22.963 22.451(10) 22.881(05)
4 7 23.368 8 23.641 23.435(10) 23.667(05)
5 9 23.833 10 23.973 23.850(10) 23.983(10)
6 11 24.077 12 24.158 24.080(10) 24.176(10)
7 13 24.220 14 24.271 24.217(10) 24.288(10)
8 15 24.311 24.307(15)
9 17 24.372 24.387(15)

As outlined in [186], a uniform semiclassical approximation is adopted to eval-
uate a final-state wave function for the electron impact single ionisation of helium
near threshold.
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Table 3.2. Resonance position energies for (He−)∗ for L = 0. The experimental values (the
number in brackets indicates the error in the second and third decimal places) are from Buck-
man et al. [98] and Buckman and Newman [99]; theory: z current results; (a) Rau [505]; (b)
Lin and Watanabe [382]; (c) Komninos et al. [364]; (d) Rost and Briggs [521]; (e) Fon et al.
[272]

Theory
n N Experiment z a b c d e

3 5 22.451(10) 22.330 – – 22.432 22.774 22.439
4 7 23.435(10) 23.368 – – 23.408 23.578 23.434
5 9 23.850(10) 23.833 23.857 23.865 23.843 23.879 –
6 11 24.080(10) 24.077 24.087 24.095 24.077 24.090 –
7 13 24.217(10) 24.220 24.223 24.230 24.213 24.219 –
8 15 24.307(15) 24.311 24.310 24.316 24.301 24.304 –
9 17 24.387(15) 24.372 24.369 24.361 24.362 –

Table 3.3. Relative intensity values for L = 0 resonances in(He−)∗. The experimental values
(the number in brackets indicates the error in the last and second to last decimal places) are
from Buckman and Newman [99]

Relative Intensity
N Experiment [99] 1/2ΓN ∗ |EN

R − i/2ΓN | Ratio

5 0.53(1) 0.0050 0.0094
7 0.048(1) 0.00099 0.021
9 0.0105(2) 0.00029 0.028

11 0.0021(3) 0.00011 0.052
13 0.0011(1) 0.000049 0.045
15 0.00054(12) 0.000024 0.044
17 0.00030(12) 0.000013 0.043

In hyperspherical coordinates, the Schrödinger equation can be written as
[

1
ρ5

∂

∂ρ

(
ρ5 ∂

∂ρ

)
+

1

ρ2 sin2 α cos2 α

∂

∂α

(
sin2 α cos2 α

∂

∂α

)
(3.81)

− L2 (r̂1)
ρ2 cos2 α

− L2 (r̂2)

ρ2 sin2 α
+ X2 +

2Z (α, θ12)
ρ

]
Ψ = 0 (3.82)

where, as usual,

ρ2 = r2
1 + r2

2 0 ≤ ρ ≤ +∞ (3.83)

α = tan−1

(
r2

r1

)
0 ≤ α ≤ π/2 (3.84)

θ12 = cos−1(r̂1.r̂2) 0 ≤ θ12 ≤ π (3.85)

and where r1 and r2 are the position vectors of the two electrons with respect to
an infinitely massive proton. The total wave number X is given by X = (2E)1/2 =
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(
k2

1 + k2
2

)1/2
, where E is the excess of threshold energy and k1, k2 are the momenta

of the final-state electrons 1 and 2, while the charge Z is given by

Z (α, θ12) =
1

cosα
+

1
sinα

− 1

(1 − cos θ12 sin 2α)1/2
(3.86)

Relative to a space-fixed frame of reference with incident wave vector k0 as polar
axis and the collision plane as the azimuthal plane, ri has spherical polar angles
(θi, φi), with r̂1. · r̂2 = cos θ12, and ki has spherical polar angles (Θi, Φi) with k̂1 · k̂2 =

cosΘ12.
Considering the simplest case of motion when L = 0, equation (3.82) can be

written
[

1
ρ5

∂

∂ρ

(
ρ5 ∂

∂ρ

)
+

1

ρ2 sin2 α cos2 α

∂

∂α

(
sin2 α cos2 α

∂

∂α

)

+
1

ρ2 sin2 α cos2 α

1
sin θ12

∂

∂θ12
sin θ12

∂

∂θ12
+ X2 +

2Z(α, θ12)
ρ

]
Ψ = 0 (3.87)

On adopting a transformation of the dependent variable

Ψ =
x| sin (α − π/4) |1/2

ρ5/2 sinα cosα (sin θ12)1/2
(3.88)

two pseudo-potentials appear that are large near the saddle point of the potential,
making it appropriate to apply the Jeffreys, Wentzel, Kramers, Brillouin (JWKB)
ansatz

x = P
1
2 exp

(
− iS
�

)
(3.89)

where S is given by the Hamilton–Jacobi equation, (22) of [186], and P is given by
the continuity equation, (23) of [186]. On setting Δα = α−π/4 and Δθ12 = π−θ12 and
assuming they are small, we may expand P and S about the most important region
for the threshold escape of two electrons, i.e., at α = π/4, θ12 = π, corresponding to
the Wannier line r1 = −r2. In [186] the charge Z is expanded correct to second order

Z (α, θ12) ≈ Z0 +
1
2

Z1 (Δα)2 +
1
8

Z2 (Δθ12)2 (3.90)

and the expansion of S is generalised to

S = so ln |Δα| + s1 ln (Δθ12) + S 0(ρ) +
1
2

S 1 (ρ) (Δα)2 +
1
8

S 2 (ρ) (Δθ12)2 (3.91)

Equations (3.90) and (3.91) are substituted into the Hamilton-Jacobi equation and
powers of Δα and Δθ12 are equated. The resulting equations are solved perturbatively
so that with so = −i/2 and s1 = 1/2, S 0 is given exactly by

S 0 =

∫ ρ

0
dρ̃w (ρ̃) (3.92)
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where with w2 = 2E + 2Z0/ρ

w2 � w2 − w
d

dρ
(ln u2) + iw

d
dρ

(ln u1) (3.93)

(∼ indicates dummy variable of integration). The subsequent Ricatti equation

w
dS i

dρ
+

S 2
i

ρ2
=

Zi

ρ
(i = 1, 2) (3.94)

is solved in direct analogy with Peterkop [486] such that

S i = ρ2w
1
ui

dui

dρ
(i = 1, 2) (3.95)

The Wannier–Peterkop functions u1 and u2 are, as usual, given by

u1 = ρm12
2F1

(
m12,m12 + 1; 2m12 + 3/2;

−Eρ
Z0

)
(3.96a)

u2 = ρm22
2F1

(
m22,m22 + 1; 2m22 + 3/2;

−Eρ
Z0

)
(3.96b)

noting that m22 = m21∗. These Wannier functions are related to the radial and angular
correlated motion of the two electrons. This can be seen by considering the set of
orbits described by S , which yields u1(ρ) = Δα and u2 (ρ) = Δθ12.

The final-state JWKB ingoing wave function takes the form

Ψ f
−∗ =

C1/2 exp
{
− 1

2 i lnΔθ12 − i
[
S 0 + 1

2 S 1 (Δα)2 + 1
8 S 2 (Δθ12)2

]}
w1/2ρ5/2 sinα cosα

(3.97)

In [186], a factor
δ
(
k̂1 − r̂1

)
δ
(
k̂2 − r̂2

)
(3.98)

is included in Ψ f
−∗ to represent the fact that the two electrons have specific asymp-

totic directions and to project out the required outgoing scattering amplitude. Since
each delta function may be expanded as

1
4π

∞∑
li=0

+li∑
mi=−li

Ymi

li
(r̂i) Ymi

li

(
k̂i

)
(i = 1, 2) (3.99)

then the inclusion of these factors means, in effect, including arbitrary angular mo-
mentum states for each of the two electrons. In [186] it is assumed that for low L
values, the approximation, given by the product of expressions (3.97) and (3.98), is
valid.

We now consider the analytic continuation of this above threshold theory to be-
low threshold for L = 1 and L = 2 states. We consider the electron capture by
helium, for energies below the first ionisation potential of helium but above the first
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ionisation potential of He−. The (He−)∗∗ is perceived as consisting of a positively
charged core (Z = 1) with two excited electrons in a high Rydberg state where the
core electron has position r3 while the doubly excited electrons have positions r1 and
r2. In addition we avoid for L � 0, the approximation given by expressions (3.97)
and (3.98).

The Schrödinger equation in hyperspherical coordinates is given by (3.82), where
[440]

L2 (r̂i) = −
⎡⎢⎢⎢⎢⎣ 1
sin θi

∂

∂θi

(
sin θi

∂

∂θi

)
+

1

sin2 θi

∂2

∂φ2
i

⎤⎥⎥⎥⎥⎦ (3.100)

For states with L � 0 and M = 0 we proceed with the following ansatz [541]

Ψ = f (ρ, α, θ12) PL (cos θ1) (3.101)

where PL is the Legendre polynomial. Strictly this should be symmetrised so that

Ψ = f (ρ, α, θ12) PL (cos θ1) ± f̃ (ρ, α, θ12) PL (cos θ2) (3.102)

where the interchanged function f̃ (r1, r2) = f (r2, r1) and where particle exchange
implies Δθ12 → Δθ12 and Δα→ −Δα. Applying the Hamiltonian of (3.82) and using
(3.100) the following equation for f is obtained

[
1
ρ5

∂

∂ρ
ρ5 ∂

∂ρ
+

1

ρ2 sin2 2α

∂

∂α
sin2 2α

∂

∂α
+

4
ρ2 sin θ12

∂

∂θ12
sin θ12

∂

∂θ12

+2E +
2Z
ρ
− 2L (L + 1)

ρ2

]
f = 0 (3.103)

We have neglected the cross term

4 sin θ1(− sin θ1 cos θ2 + cos θ1 sin θ2 cos(φ1 − φ2))
ρ2 sin θ12

P′L (cos θ1)

PL (cos θ1)
∂ f
∂θ12

(3.104)

(where ′ indicates d/d(cos θ1)) which involves Euler angles and can be shown, in
common with the equivalent term in (3) of Roth [525], trivially to vanish on the
Wannier line (α = π/4, θ12 = π). The apparent singularity due to sin θ12 in the denom-
inator requires the use of L’Hospital’s rule with the numerator expressed in terms of
the following identity

cos θ12 = cos θ1 cos θ2 + sin θ1 sin θ2 cos (φ1 − φ2) (3.105)

It follows that f = f̃ .
We now proceed as in [186], except that the w-term becomes L-dependent

w2 = 2EN +
2Z0

ρ
− 2L (L + 1)

ρ2
(3.106)

noting that the factor of 2 in the last term comes from sec2 α evaluated at α =

π/4 which is the fundamental cause of the irrational azimuthal quantum number
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(L � 0, 2). Thus the Ricatti equation given in (3.94), which is reduced to a linear
second-order equation by removing the nonlinear S 2

i term with the substitution given
by (3.95), becomes

ρ2w2 d2ui

dρ2
+

(
2ρw2 − Z0 +

2L (L + 1)
ρ

)
dui

dρ
=

Ziui

ρ
(i = 1, 2) (3.107)

Following [186] we set

ui = ρmi Fi (ρ) (i = 1, 2) (3.108)

so that with mi = −1/4 ± 1/4 (1 + 8Zi/Z0)1/2 the equation for F becomes[
2ENρ

2 + 2Z0ρ − 2L (L + 1)
]

F′′i

+
[
4 (mi + 1) ENρ + (4mi + 3) Z0 − 2(2mi+1)L(L+1)

ρ

]
F′i

+

[
2mi (mi + 1) EN −

2m2
i L(L+1)
ρ2

]
Fi = 0 (3.109)

This is clearly a linear differential equation of the Heun type [509], which has four
regular singular points at ρ = 0,∞, and ρ± which are the solutions of w2 = 0 where

ρ± =
−Z0 ±

√
Z2

0 + 4EN L (L + 1)

2EN
(3.110)

However, detailed knowledge of the Heun equations is limited. Since we may as-
sume that ρ is of the order of 1/|EN |, then all the nonazimuthal terms in the coef-
ficients of equation (3.109) are of the order of 1/|EN |. Therefore neglecting the L
terms, by setting L = 0, is a good approximation. For L = 0 with F = F (−Eρ/Z0)
a three-regular-singular-point differential equation obtains and takes the form of the
Gauss-hypergeometric differential equation resulting in the Wannier–Peterkop func-
tions given in equations (3.96a) and (3.96b) [593]. The solution of (3.107) then has
the general form

ui = Aρm12 F (m12) + Bρm22 F (m22) (3.111)

where F is given by (3.96a) and (3.96b). Using equations (3.97), (3.93), and (3.99)
the asymptotic form of the final-state wave function that corresponds to the electron
capture by helium, for energies below the first ionisation potential of He but above
the first ionisation potential of He−, is given by

Ψ−∗f =
C1/2

N YLM (r̂1, r̂2) 2
3
2 exp

(
−2r3 − i

2 lnΔθ12

)
/
√
π

ρ5/2 sinα cosα

×
sin

[∫ ρ
ρ+

dρ̃
(
w2 − w {ln u2 − i ln u1}′

) 1
2

+
ρ2

2 ω (ln u1)′ (Δα)2 +
ρ2

8 ω (ln u2)′ (Δθ12)2 + π
4

]
[
ω2 − ω {ln u2 − i ln u1}′

] 1
4

(3.112)
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where ′ indicates d/dρ̃ or d/dρ and where in the JWKB treatment the Gans–Jeffreys
[289], [342] connection formula (2.1) has been applied with ρ = ρ+ as the classical
turning point. This is a product of the analytic continuation of the final-state wave
function of [186] to negative energy, including both ingoing and outgoing waves,
representing the two excited electrons, and the wave function of the core electron
given by the ground-state He+ wave function.

The −1/4ρ2 Langer modification term [378] has also been considered where it
has been found to be cancelled by two terms, namely −15/4ρ2 and 4/ρ2, resulting
from the substitution of (3.88) into (3.87). In the region beyond the two turning points
the solution is required to be the decreasing JWKB solution, in order to satisfy the
boundary conditions at 0 and∞. The two JWKB solutions must join smoothly in the
region between the two transition points ρ±, which are both complex. This requires
that ∫ ρ−

ρ+

dρ

√
w2 − w

(
d

dρ
ln u2 − i

d
dρ

ln u1

)
= Nπ +

π

2
(3.113)

where w is given by (3.106), which is clearly of the form of a complex Bohr–
Sommerfeld quantisation rule. Therefore the wave function has N nodes between the
two transition points where N is a hyperspherical radial quantum number of the two
excited electrons. Equation (3.112) must be amended by symmetrising the spherical
harmonic, for 3P0 and for 1De. On changing the dummy variable according to

ρ =
− (Z0 + Zx)

2EN
(3.114)

where Z =

√
Z2

0 − 2c2L (L + 1) and c =
√
−2EN (3.113) becomes

Z
∫ 1

−1
dx

√
�2 − c

Z
�

⎛⎜⎜⎜⎜⎝ d
dx

ln
u2

ui
1

⎞⎟⎟⎟⎟⎠ = c

(
N +

1
2

)
π (3.115)

where

�2
= −1 +

2Z0

Z0 + Zx
− 2c2L (L + 1)

(Z0 + Zx)2
(3.116)

Equation (3.115) has been solved, numerically, for c by the complex Newton–
Raphson method. Note that neither |EN | nor |EN |2 is analytic (see Chapter 1)

3.3.1 Results

The results obtained from this calculation for the L = 1 and L = 2 resonant energy
positions are given in Tables 3.4 and 3.5, respectively. They have been compared
with the experimental results of Buckman et al. [98], who measured the yield of
metastable atoms resulting from electron impact excitation of helium in the energy
region just below threshold. Most relevant to this work are the 2P and 2D resonances,
which were traced from n = 3 to n = 5 and n = 3 to n = 7, respectively. These states
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have been classified as intrashell states [10], [449], [96], i.e., n1 = n2 giving n = n1.
This equal sharing of energy, where the electrons are approximately equidistant from
the nucleus, minimising their mutual screening, produces the most stable configura-
tion. Any partitioning of the total energy is possible, resulting in strong mixing of
such configurations.

As such, we seek the central (narrowest) resonance peak, since it gives the highest
peak corresponding to the complex eigenenergy EN closest to the real axis. It has
been found that the calculated eigenvalues for both L = 1 and L = 2 resonant states
correspond to those of experiment for

N = 2n − L − 1 (3.117)

where for L = 1,L =
(
−1 +

√
17

)
/2 and for L = 2, L = 3 and where 2n =

n1 + n2 in line with the intrashell classification. Thus for L = 0 and L = 2 we have
an integer hyperspherical azimuthal quantum number, but for L = 1 the mapping
of 2L (L + 1) to L (L + 1) in the Bohr–Sommerfeld quantisation rule results in an
irrational hyperspherical azimuthal or total angular momentum quantum number.

Agreement with experiment is increasingly good for higher values of N. In par-
ticular, for L = 1 and n = 4 or 5 and for L = 2 and n = 6 or 7, experiment and theory
agree within the experimental error. This is to be expected due to the semiclassi-
cal nature of the calculation and our perturbative solution of the Heun differential
equation.

Table 3.4. Resonance position energies for (He−)∗ (1s 2S (n1 sn2 p 3Po)) 2P, L = 1, M = 0,
n1 = n, n2 = n1 ⇒ N = 2n − L − 1 where L is the irrational azimuthal quantum number and
has the value (

√
17−1)/2. The experimental values are from Buckman et al. [98]. The number

in brackets indicates the error in the second and third decimal places

Resonance Energies (eV)

n Present Results Experiment
3 22.639 22.600(10)
4 23.518 23.518(10)
5 23.915 23.907(10)

Table 3.5. Resonance position energies for doubly excited (He−)∗
(
1s2S

(
n1 sn2d 1De

))
2D,

L = 2, M = 0, n1 = n , n2 = n1 → N = 2n − 4. The experimental values are from Buckman et
al. [98]. The number in brackets indicates the error in the second and third decimal places

Resonance Energies (eV)

n Present Results Experiment
3 22.715 22.660(10)
4 23.544 23.579(10)
5 23.927 23.952(10)
6 24.133 24.144(15)
7 24.256 24.261(15)
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Table 3.6. Average widths and associated energy positions for
(
1s2S

(
n1 sn2d 1De

))
2D, L = 2,

M = 0, n1 = n, n2 = n1 ⇒ N = 2n − 4. Units are eV

n Γa (au) EΓa (eV) Experiment (eV) Half-life time τa (attosec)

4 0.3401 23.578 23.579 35.56
5 0.2313 23.952 23.952 52.29
6 0.1252 24.144 24.144 96.60
7 0.0680 24.261 24.261 177.84

Heretofore we have neglected the issue of the width and intensity of these res-
onances allowing ΓN to tend to zero in order to determine the EN

R closest to the
real axis. In doing so a convergence limit was reached, yielding the energy posi-
tions tabulated in Tables 3.4 and 3.5. The problem with these closely spaced P and
D resonances is that they overlap so that the width for a given EN

R is smeared by
the neighbouring resonance (Andrick [10]). As such we have taken a sum over the
unobserved final states (Feagin and Macek [264]) in order to obtain an average half-
width half-maximum Γa. Our intensity is taken as being proportional to 1/2ΓN |EN |
(Loughan and Crothers [386]), therefore

Γa =

1
n

∑n
i=1Γ

i
N |Ei

N |
1
n

∑n
i=1|Ei

N |
(3.118)

In Table 3.6 we present the Γa-values for the 2D case. The lower limit of the sum
is determined by the convergence limit for a given n while the upper limit is de-
termined by the position of the neighbouring observed resonance. Admittedly the
choice of the upper limit is somewhat arbitrary in that the extent of the overlapping
is not definite. Nevertheless with an appropriate choice of upper limit the energy po-
sitions EΓa corresponding to width Γa show excellent agreement with experiment.
Convergence difficulties have restricted the application of (3.118) to higher n-values
of the 2D case only. Moreover the half-life times τa presented in Table 3.6 suggest
attotechnology (where atto is nano-squared).

3.3.2 Doubly Excited States of He

Now we apply the below-threshold theory for L = 0 developed earlier to the doubly
excited states of atomic helium. In direct analogy with the He− case we consider the
electron capture by the “parent” He+(1s) to form the DES of atomic He with the
grandparent core He++. The energy of the incident electron lies below the first ion-
isation potential of He but above the first ionisation potential of He+. For He∗∗ the
Coulomb potential experienced by the excited electrons is such that it can support an
infinite Rydberg series with electron correlations dominating the motion close to the
resonance region. We consider the two excited electrons in terms of our semiclassi-
cal Wannier wave function. The continuum between the first and second ionization
thresholds of the helium atom has been investigated theoretically in a number of
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diverse studies [285], [313], [327], [328], [445], [479], [521]. This work was ini-
tiated by Madden and Codling [396] who, in a photo-absorption experiment, were
the first to observe doubly excited autoionising states of atomic helium. Subsequent
photo absorption experiments (Domke et al. [228], Zubek et al. [613]) have yielded
further information about states of 1P symmetry with electron impact experiments
(Brotton et al. [92], Hicks et al. [325]), revealing the full spectrum of the S , P, D,
F, and G states. An infinite number of Rydberg series of auto-ionising states exist
within the continuum. However, these studies have predominantly concentrated on
the lower Rydberg series, which converge to the He+ n=2-6 thresholds with the dia-
batic molecular approach of Rost and Briggs [522] producing intrashell S resonance
positions for n ≤ 15. Here we present intrashell and intershell S resonance energy
positions for the higher quantum numbers 5 ≤ n ≤ 15, with the semiclassical limita-
tions of our theory producing poor results for lower n-values. Clearly the core charge
in this case is Z = 2, which reflects the increasing Coulomb attraction of the He++

core over the Z = 1 He+ core. This gives the three-body charge as

ζ(α, θ12) =
2

cosα
+

2
sinα

− 1

(1 − cos θ12 sin 2α)
1
2

(3.119)

which is expanded according to (3.67) where

Z0 =
7
√

2
, Z1 =

23
√

2
, Z2 = − 1

√
2

(3.120)

Retaining Z in the semiclassical analysis gives the Wannier indices

mi1 = −1
4
− 1

2
μi mi2 = −1

4
+

1
2
μi (3.121)

where

μ1 =
1
2

√
100Z − 9

4Z − 1
μ2 =

1
2

√
4Z − 9
4Z − 1

(3.122)

The method used to determine the complex eigenenergies EN is completely analo-
gous to the procedure followed in Section 3.2 with the Wannier indices and charges
calculated for Z = 2.

The results from the present calculation, given in Tables 3.7 and 3.8, show poor
agreement with the available experimental and theoretical results for values of n up to
n = 7, for both the intrashell (n1 = n2) and intershell (n1 � n2) states. Other theories,
such as the complex-coordinate rotation theory [327], [328], close-coupling method
[479], and hyperspherical approach [285], have produced accurate energy positions
for lower n but require greater numerical effort for higher values of principal quan-
tum number. Rost and Briggs [521] have produced intrashell energy positions for
n ≤ 15 using an adiabatic molecular potential. For n ≤ 7 these results are in excel-
lent agreement with the highly accurate results of Ho [327], [328]. We have com-
pared our resonance energy positions for He∗∗ 1S e intrashell states for 7 ≤ n ≤ 15
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with those of Rost and Briggs [521]. We find the results for 7 ≤ n ≤ 10 to be in
agreement within 10% and for n ≥ 11 within 4%. Thus, as might be expected for a
semiclassical method, agreement with other theory is seen to improve for increasing
n. Rost and Briggs have employed a simple hydrogenic wave function, of the form
e−α(r1+r2), which is clearly symmetric in r1 and r2. Thus their approach does not allow
for the determination of resonance positions where the energy of the two electrons
is not evenly distributed, i.e., only energy positions for intrashell states could be cal-
culated. In summary, we have analytically continued the above-threshold Wannier
quantal ionisation theory of [186] to below threshold for Wannier quantal doubly
excited states. We have presented results for 2S and s 2S doubly excited states of
He−, where for the principal series, n1 = n2 = n and N = 2n − 1, L = 0, while for
the subsidiary series, n2 = n1 + 1 = n + 1 and N = 2n, L = 0′, in the notation of
Buckman et al. [98]. We have extended this theory to L = 1 and L = 2 2Po and 2D
states where, with the inclusion of angular momentum terms evaluated on the Wan-
nier ridge, an irrational principal quantum number was obtained for L = 1, namely
N = 2n − (171/2 − 1/2) − 1 while for L = 2 N = 2n − 4. The calculated resonance
positions were found to be in good agreement with experiment, the agreement in-
creasing for higher n. This is to be expected due to the semiclassical nature of the
calculation, and certainly much can be done to improve our description of the initial
state. The width and intensity of these states were also considered using the imagi-
nary parts of the calculated complex eigenenergies, which give directly the lifetime
of these Wannier doubly excited Rydberg states. This is unique in that other theories
address the problem of resonance position only. We also applied the below-threshold
analysis for L = 0 to the DES of He, where a simple change in the magnitude of
the core charge produced reasonable results for the high values of n. As far as we
know, the intershell energies are the first to be presented for these higher quantum
numbers; other theories are restricted by computational demands at the higher end
of the spectrum.

Table 3.7. Resonance position energies (RPEs) for He L = 0,n1 = n, n2 = n1 ⇒ N = 2n − 1;
other theory (a); Rost & Briggs [521], [522]

RPEs (au)
ns2 (K,T)A N Present results a

7s2 (6,0)+ 13 0.073667 0.066716
8s2 (7,0)+ 15 0.055528 0.051207
9s2 (8,0)+ 17 0.043310 0.040538

10s2 (9,0)+ 19 0.034702 0.032887
11s2 (10,0)+ 21 0.028415 0.027365
12s2 (11,0)+ 23 0.023688 0.023205
13s2 (12,0)+ 25 0.020044 0.01964
14s2 (13,0)+ 27 0.017179 0.01695
15s2 (14,0)+ 29 0.014885 0.01478
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Table 3.8. Resonance position energies (RPEs) for He L = 0,n1 = n, n2 = n1 + 1 ⇒ N = 2n;
other theory (a); Fukuda et al. [285] (b) Ho [327]

RPEs (au)
n1 sn2 s (K,T)A N Present results Other theories

5s6s (4,0)+ 10 0.122978 0.10964b

6s7s (5,0)+ 12 0.086212 0.07865a

7s8s (6,0)+ 14 0.063650 0.0599a

8s9s (7,0)+ 16 0.048856
9s10s (8,0)+ 18 0.038652
10s11s (9,0)+ 20 0.031325
11s12s (10,0)+ 22 0.025891
12s13s (11,0)+ 24 0.021753
13s14s (12,0)+ 26 0.018529
14s15s (13,0)+ 28 0.015970
15s16s (14,0)+ 30 0.013906

There is no doubt that this below-threshold theory is an exciting development
in the Wannier description of DES and reinforces the above-threshold theory as a
fully fledged quantal treatment of ionisation. Most significant for future work is the
advances made for L � 0 states. Throughout the years the difficulties encountered
manifested themselves as triplet triple differential cross sections for threshold ionisa-
tion, which were much too large, but recent progress has produced improved results
[186], [108]. We are now confident that the additional angular momentum term in ω,
namely 2L(L+1)/ρ2, is the required amendment to our above-threshold theory where
preliminary investigations are more than promising [387]. It is worth noting that the
cross term (see (3.104)) should not be completely dismissed due to its disappearance
on the Wannier ridge. Closer inspection, with symmeterisation for P and D states,
shows that it vanishes specifically for 3P and 1D states. There is, of course, room for
many further improvements such as the inclusion of exchange to improve results for
the lower quantum numbers.

3.4 Divergent Exponents

We consider [146] a nonstandard application of Wannier’s theory [593]. A physical
example is the single ionization of a hydrogenic beryllium ion with a fully stripped
beryllium ion, where the ratio of the charge of the third particle to the charges of
the escaping particles is 1/4; we investigate the single ionization by an electron of
an atom comprising an electron and a nucleus of charge 1/4 [337], [225], [117]. An
infinite exponent is obtained, suggesting that this process is not tractable within the
Wannier model.

A modified version of Crothers’ uniform semiclassical wave function [186] for
the outgoing particles has been adopted, since the Wannier exponents m12 and m21

are infinite. As Z0 = 0 we are able to use Bessel functions to describe u1 and u2



3.4 Divergent Exponents 129

and to derive a new turning point ρ+. As u1 is well-behaved at infinity, there ex-
ists only the singularity in u2 at infinity; thus we employ a one- (rather than two-)
dimensional change of dependent variable, ensuring a uniform solution is obtained
that avoids semiclassical breakdown on the Wannier ridge. The regularised final-state
asymptotic wave function is employed, along with a continuum-distorted-wave ap-
proximation for the initial-state wave function to obtain total cross sections on an
absolute scale.

The applicability of Wannier’s theory is somewhat limited in the range over
which a value of the exponent can be calculated. In this section we examine a non-
standard application of this theory, namely the single ionization by an electron of an
atom comprising an electron and a nucleus of charge 1/4. Clearly the ratio of the
charge of the third particle to the charges of the escaping particles is 1/4. As an infi-
nite exponent is obtained, this process appears not to be tractable within the Wannier
model, although, as will become evident, the relation between quantum and classical
mechanics is simply a little more subtle than previously encountered.

Some theoretical analysis of a similar process, in which Z = 1/4 also, i.e., a
collision of a hydrogenic beryllium ion with a fully stripped beryllium ion

Be4+ + Be3+ → Be4+ + e− + Be4+ (3.123)

has been carried out by Ihra et al. [337], [117] and Dimitrijevic et al. [225]. Ihra
et al. [337], found that the threshold behaviour changed from a power law to an
exponential law

σ ∝ E−1/6 exp
(
− κ

E1/6

)
(3.124)

where E is the excess of threshold energy in atomic units. In contrast to the original
Wannier model, the classical and quantum results obtained were different, although
their work did show that Wannier’s picture of propagation on the ridge remained
valid. The same authors in 1998 [117] when using semiclassical methods, found that
the power law deduced by Wannier was replaced by an exponential law of the form

σ ∝ exp

(
− λ
√

E

)
(3.125)

showing exponential suppression of the ionization probability at threshold. Dimitri-
jevic et al. [225] used a classical trajectory method to derive an exponential law of
the form 3.125, although their value for the proportionality constant was somewhat
larger than that in [117]. All of these results were valid only over a limited energy
range and none produced cross sections on an absolute scale.

In Section 3.4.1 a brief summary of the Wannier theory is outlined, followed by a
description of the semiclassical JWKB approximation in Section 3.4.2, which forms
the basis of Section 3.4. In Section 3.4.3 we extend the theory to the case where the
exponent diverges, and the results obtained are outlined in Section 3.4.4.

3.4.1 Wannier’s Theory

Wannier’s original paper [593] treated the subject of the double escape of an electron
pair at asymptotically large distances from an ionic core, in the framework of a purely
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classical analysis of the three-body Hamiltonian. The reactants were found to be
close together and interacting strongly within the “reaction zone”, in which the finer
details of the reaction occur.

For simplicity, Wannier restricted his discussion to the case of zero total angular
momentum (L) and spin (S ) of the escaping electrons in the three-body continuum
final state. Wannier also assumed that the residual ion was infinitely heavy in com-
parison with the interacting electrons, effectively allowing him to describe the ion
as being at rest and situated at the origin of a laboratory fixed frame of reference,
Oxyz. Hyperspherical coordinates, which effectively describe the correlated electron
motion, were used

ρ =

√
r2

1 + r2
2, α = tan−1

(
r2

r1

)
, θ12 = cos−1(r̂1 · r̂2) (3.126)

where r1 and r2 are the electron position vectors relative to the stationary nucleus.
The potential of the two escaping electrons is −ζ/ρ, where the effective charge ζ is
given by

ζ(α, θ12) =
Z

cosα
+

Z
sinα

− 1
√

1 − cos θ12 sin 2α
(3.127)

and double escape ensues for those orbits that approach the “point”

α =
π

4
, θ12 = π (3.128)

Asymptotically this “point” is referred to as the “Wannier ridge”. Wannier’s thresh-
old law [Z = 1] , which describes the functional behaviour of the cross section for
the single ionization by electron impact of a neutral atom, was described by

σ ∝ Em12 m12 ≈ 1.127 (3.129)

3.4.2 The Semiclassical JWKB Approximation

The semiclassical approach lies at the intersection of quantum and classical me-
chanics; the method was first adopted by Peterkop [486] and then later extended by
Crothers [186]. Unlike Peterkop, Crothers identified a uniform semiclassical wave
function that for the first time allowed absolute total, partial, and differential cross
sections to be calculated, through the avoidance of a singular wave function, classical
differential cross sections, and matching procedures.

In solving the Schrödinger equation, Crothers introduced a change of dependent
variable

Ψ−∗f =
x | sin(α − π/4) |1/2

ρ5/2 sinα cosα(sin θ12)1/2
(3.130)

to avoid semiclassical breakdown on the Wannier ridge. A JWKB ansatz was em-
ployed

x = P1/2 exp

(
iS
�

)
(3.131)

where the action S and the density P are solved by series expansion about the Wan-
nier point. Crothers [186] then
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• normalised the wave function,
• included the angular symmetry of the final state,
• used Jeffreys’ 1-dimensional ρ-connection formula [342], and
• applied the Kohn 6-dimensional variational principle [363].

The resultant total singlet cross section was then calculated, including the dom-
inant angular momentum states, and confirmed the absolute Wannier law according
to

σ = 2.37Em12 a2
0 (3.132)

where the Wannier exponents are defined as

m12 =
1
4

⎡⎢⎢⎢⎢⎢⎣
√

100Z − 9
4Z − 1

− 1

⎤⎥⎥⎥⎥⎥⎦ (3.133)

m21 = −1
4

⎡⎢⎢⎢⎢⎢⎣i
√

9 − 4Z
4Z − 1

+ 1

⎤⎥⎥⎥⎥⎥⎦ (3.134)

Expressions (3.133) and (3.134) take the approximate values 1.127 and −0.25 −
i0.323, for Z = 1. Evidently, process (3.123) is not tractable, in this model, when
the exponent becomes infinite as

E∞ = ∞ for E > 1

E∞ = 1 for E = 1

E∞ = 0 for E < 1 (3.135)

3.4.3 Semiclassical Theory when the Exponent Diverges

The wave function must remain valid for the physical limits most pertinent to thresh-
old ionization, ensuring that a uniform solution is obtained that avoids semiclassical
breakdown on the Wannier ridge. As the Wannier exponents (3.133) and (3.134) are
infinite at Z = 1/4, it becomes clear that a change of dependent variable must be
applied, namely

Ψ−∗f =
x

ρ5/2 sinα cosα(sin θ12)1/2
(3.136)

where x differs from that in (3.130) and now satisfies the equation

[
∂2

∂ρ2
+

1
ρ2 sin | Δα |

∂

∂α

(
sin | Δα | ∂

∂α

)
+

1

ρ2 sin2 α cos2 α

∂2

∂θ2
12

+ X2 +
2ζ
ρ

+

1
4 + csc2(Δθ12)/4

ρ2 sin2 α cos2 α

⎤⎥⎥⎥⎥⎦ x = 0 (3.137)

and where Δθ12 = π − θ12 and Δα = α − π/4. A regular JWKB solution of the
final state is obtained because, after and only after, the change of dependent variable
(Ψ−∗f → x), is the effective potential large on and near the Wannier ridge (Δθ12 = 0).
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In contrast with (3.130), in (3.136) the factor | sinΔα |1/2 is omitted, accordingly
only the θ12 centripetal pseudopotential arises in (3.137), and near the saddle point
this pseudopotential is large. This is possible because u1(+∞) = 1 (3.167). Notice
that no centrifugal/centripetal pseudopotential arises in (3.130) of [186]. In direct
analogy with Peterkop and Crothers a JWKB ansatz is employed

x = P1/2 exp

(
iS
�

)
(3.138)

allowing the Hamilton–Jacobi equation for the phase function S to be given as

(
∂S
∂ρ

)2

+
1
ρ2

(
∂S
∂α

)2

+
4

ρ2 sin2 2α

(
∂S
∂θ12

)2

=

2E +
2ζ(α, θ12)

ρ
+

csc2 θ12

4ρ2 sin2 α cos2 α
(3.139)

and the continuity equation for the amplitude P as

D0

[
P
∂S
∂ρ

]
+

1
ρ2

[
D1(P

∂S
∂α

) + D2(P
∂S
∂θ12

)

]
= 0 (3.140)

where we define

D0 =
∂

∂ρ

D1 =
1

sin(Δα)
∂

∂α
sin(Δα) (3.141)

D2 =
4

sin2 2α

∂

∂θ12

In this case the perturbative expression for the action S must now be generalized to

S = s1 ln(Δθ12) + S 0(ρ) +
1
2

S 1(ρ)(Δα)2 +
1
8

S 2(ρ)(Δθ12)2 (3.142)

thus identifying the direction of motion of the particles and where the logarithmic
term takes into account the long-range nature of the centripetal potential. The cen-
trifugal potential does not arise as u1 is well behaved even at infinity.

Rewriting the Hamilton–Jacobi equation

[
S ′0 +

1
2

S ′1(Δα)2 +
1
8

S ′2(Δθ12)2

]2

+
1
ρ2

S 1(Δα)2 +
4
ρ2

(
s1

Δθ12
+

1
4

S 2(Δθ12)

)2

= ω2(ρ) +
Z1

ρ
(Δα)2 +

Z2

4ρ
(Δθ12)2 +

1
ρ2(Δθ12)2

(3.143)

and equating coefficients of powers of Δα and Δθ12, we obtain
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ω2(ρ) = (S ′0)2 +
2s1S 2

ρ2
− 2L(L + 1)

ρ2
(3.144)

Zi

ρ
= S ′0S ′i +

S 2
i

ρ2
(3.145)

s2
1 =

1
4

(3.146)

We are able to rewrite (3.145) in the form of a Ricatti equation and obtain a linear
second-order equation by the removal of the nonlinear S 2

i -term, with the substitution

S i = ρ2ω
1
ui

dui

dρ
i = 1, 2 (3.147)

If we now define

ω2 = X2 +
2Z0

ρ
(3.148)

where X2 = 2E, then the equation transforms to

ρ2ω2 d2ui

dρ2
+

(
2ρω2 − Z0 +

2L(L + 1)
ρ2

)
dui

dρ
=

Ziui

ρ
i = 1, 2 (3.149)

Upon consideration of the two-dimensional Maclaurin expansion of ζ(α, θ12), i.e.,

ζ(α, θ12) = Z0 +
1
2

Z1(Δα)2 +
1
8

Z2(Δθ12)2 + · · · (3.150)

we can now define for this singular process

Z0 = 0, Z1 =
√

2, Z2 = − 1
√

2
(3.151)

allowing for the reduction of (3.149) to

ρ2 d2ui

dρ2
+ 2ρ

dui

dρ
− Ziui

X2ρ
= 0 (3.152)

after making the L = 0 approximation [385].
A comparison of this equation with that of (9.1.53) of Abramowitz and Stegun

[1] allows for Bessel functions to be introduced as the method of solving for ui. After
some slight manipulation (3.152) is solved as

ui =
1
√
ρ

C±1

(
2i
X

√
Zi√
ρ

)
, i = 1, 2 (3.153)

where C is the general cylinder function, and which after applying the boundary con-
ditions, at ρ = 0 and +∞, and with arbitrary normalization of logarithmic derivatives
yields the values
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u1 =
23/4

√
Eρ

K1

(
23/4

√
Eρ

)
u2 =

23/4
√

E
√
ρ

J1

(
21/4

√
Eρ

)
, (3.154)

thus describing the radial and angular correlated motion of the two electrons (see
(3.142) and (3.147)).

After careful consideration of the form of the wave function, paying particular
attention to its outgoing property, we select s1 = 1/2 in (24), allowing for (3.144) to
be rewritten as

(S ′0)2 = ω̃2 = X2 +
2Z0

ρ
− S 2

ρ2
+

2L(L + 1)
ρ2

(3.155)

with (3.145) left unchanged. By adopting the same method as used by Crothers [186],
we set S 2 = 0 and L = 0 in (22) in order to obtain S 0, after which we solve (3.145)
for i = 1, 2. These solutions are then iterated back into (3.148) to give

ω̃2 = ω2 − ω d
dρ

(ln u2) +
2L(L + 1)

ρ2
(3.156)

It is now possible to define the terms contained in (3.142) as

S 0 =

∫ ρ

ρ+

dρ̃ ω̃(ρ̃) (3.157)

with ρ+ describing the classical turning point, and similar to Peterkop’s method we
have from (3.147)

S i = ρ2ω
d

dρ
ln ui (3.158)

Now, with ω2 as defined by (3.148) and (3.151), the substitution of (3.156) into
(3.157) allows us to rewrite (3.157) as

S 0(ρ̃) =

∫ ρ

ρ+(L)
dρ̃

(
2E +

J0(y)
21/4ρ̃3/2J1(y)

+
2L(L + 1)

ρ̃2

)1/2

(3.159)

where we define the term y = 21/4/
√

Eρ̃.
Careful attention must be given to the turning point ρ+. In [186] this was assumed

to be zero, for L = 0. Subsequent work, in which these restrictions were not pertinent,
most notably Loughan’s [387], in which L = 1, 2 doubly excited He− states were
considered, a zero value did not suffice and a new relation was derived,

ρ+ =
−Z0 +

√
Z2

0 + 4EL(L + 1)

2E
(3.160)

In the problem under investigation we initially restricted the angular momentum to
L = 0, and having already ascertained that Z0 = 0, we once more obtained ρ+ = 0
from (3.160). This is not a feasible value, as the integrand (3.159) at this point equals
infinity, thus a new turning point must be derived. If we take the numerator of the
square of the integrand in (3.159):
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T (ρ) = 2Eρ3/2J1(y) + 2−1/4J0(y) + 2L(L + 1)ρ−1/2J1(y) (3.161)

then differentiating we obtain

T ′(ρ) =

[
4Eρ3/2 +

1
2E1/2ρ3/2

− L(L + 1)
ρ3/2

− 23/4E1/2(L + 1/2)2

]
J1(y)

+

[
2L(L + 1)
ρ1/2

− 21/4E1/2

]
J0(y) (3.162)

It is now possible to obtain the value of the new turning point, through the employ-
ment of the Newton–Raphson method. We record specimen values of ρ+(E) in Table
3.9.

After substitution and some slight manipulation we are also able to obtain

S 1(ρ) =
21/4ρ1/2K0(y

√
2)

K1(y
√

2)
, S 2(ρ) = −ρ

1/2J0(y)
21/4J1(y)

(3.163)

so that all the values in the action S (ρ) are now defined in terms of Bessel functions.
We now turn our attention to the density function; the continuity equation is

solved using the method adopted by Peterkop, where the generalised action described
by (3.140) gives the density to leading order as

P1/2
0 =

C1/2u1/2
2

ω̃1/2u1
(3.164)

Normalization of the wave function (not to be confused with ui) is necessary. Similar
to [186], the current probability density (CPD) is matched to

lim
ρ→∞

∫
C exp(2ImS)

u2
1ω̃

∂

∂ρ
(ReS)dα dr̂1 dr̂2 = 4π2 (3.165)

Now, since
u1 ∼ρ→∞ 1 (3.166)

we are able to deduce nontrivially,

Table 3.9. Specimen values for ρ+(E), E, and ρ+ in atomic units

Energy (E) ρ+(E)[L = 0] ρ+(E)[L = 4]

0.10 1.7266 13.0913
0.30 0.6328 7.6618
0.50 0.3947 5.9189
0.80 0.2547 4.6035
1.00 0.2067 3.7128
1.30 0.1615 2.9468
1.50 0.1411 2.4217
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lim
ρ→∞

∫
C dα dr̂1 dr̂2 = 4π2 (3.167)

allowing for the constant of normalization to be given as C = 1. Subsequently the
unsymmetrised final-state asymptotic two-electron wave function is defined as

Ψ−∗f =
1

X1/2ρ5/2 sinα cosα u1/2
1

δ(k̂1 − r̂1)δ(k̂2 − r̂2)

exp

(
−iS 0(ρ) − i

2
S 1(ρ)(Δα)2 − i

8
S 2(ρ)(Δθ12)2

)
(3.168)

where δ(k̂1 − r̂1)δ(k̂2 − r̂2) is included to specify the asymptotic directions of the
electrons, and to project out the required scattering amplitude, though in practice
this reduces to PL cos(θ1).

We must now turn our attention to the initial-state wave function; we employ a
continuum-distorted-wave approximation, the necessity for which becomes apparent
when attempting the integration with respect to Δθ12 using the method adopted in
[186]. A singularity occurred and a new approach was necessary, subsequently using
the method of Crothers and Dubé [192], the revised initial-state wave function can
be written as

Ψ+
i = ψi(r2) exp(ik0 · r2)Γ

(
1 − i

4k0

)
exp

(
π

8k0

)
M

(
i

4k0
, 1, ik0r2 + ik0 · r2

)

Γ

(
1 +

i
2k0

)
exp

(
− π

4k0

)
M

(
− i

2k0
, 1, ik0r12 + ik0 · r12

)
(3.169)

where we have 2E = X2 = k2
0 = v2, with v = k0 defined as the impact velocity, M

defined as the regular Kummer function, and the target function defined as

ψi(r2) =
(1/4)3/2

√
π

exp
(
−ρ cosα

4

)
(3.170)

With the Hamiltonian for this system being defined as

H = −1
2
∇2

r1
− 1

2
∇2

r2
− ∇2

r12
− ∇r1 · ∇r12 + ∇r2 · ∇r12

+
1

r12
− 1

4r1
− 1

4r2
(3.171)

and with both the final- and initial-state wave functions now fully defined, we pro-
ceed, as [186], by replacing the 2-electron Schrödinger equation by the Kohn varia-
tional principle, i.e.,

f (k̂1, k̂2) ≈ −
∫ ∫

Ψ−∗f (H − E)Ψ+
i dr1 dr2

= −
∫ ∫

Ψ−∗f (∇r1 · ∇r12 − ∇r2 · ∇r12 )Ψ+
i dr1 dr2 (3.172)
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which is the prior-interaction formulation. If we now use the substitution

dr1 dr2 = ρ2 dρ sin2 α cos2 α dαdr̂1dr̂2 (3.173)

and apply the method of steepest descent to integrate over α, where the saddle point
α = π/4 is consistently taken as the point of stationary phase, then the scattering
amplitude is given as

f ≈ Ni
π1/2

LMAX∑
L=0

∫ ∞

ρ+

dρ
ρ5/2Γ

(
1 − i

4k0

)
Γ

(
1 + i

2k0

)
ω̃1/2u1/2

1 S 1/2
1

PL(cosΘ1)

exp
(
− λρ

21/2

)
exp

(
− π

8k0

)
exp

(
−i

(
S 0 +

1
8

S 2(ΔΘ12)2

)
− πi

4

)

[
λ

2
(1 − cosΘ12 − 21/2 cosΘ1) exp

(
i

21/2
k0ρ cosΘ2

)

M

(
1 − i

2k0
, 2,

ik0ρ

21/2
(21/2 − cosΘ1 + cosΘ2)

)
M

(
1

4k0
, 1,

ik0ρ

21/2
(1 + cosΘ12)

)

+ B(cosΘ12 − cosΘ1 + (21/2 − 1) cosΘ2) exp

(
i

21/2
k0ρ cosΘ12

)

M

(
2 +

i
2k0

, 2,
ik0ρ

21/2
(21/2 − cosΘ1 + cosΘ2)

)
M

(
1 +

1
4k0

, 1,
ik0ρ

21/2
(1 + cosΘ2)

)]

(3.174)

where we define N = 1/8π1/2, λ = 1/4, B = (ik0 − 1/2)/4, and where the delta
functions as written in (3.168) has resulted in the angles θ1, θ2, and θ12, corresponding
to r̂i, being converted to Θ1, Θ2, and Θ12, corresponding to k̂i, respectively.

The total cross section can now be derived using spin averaging

σ =

∫
dk̂1 dk̂2

(
1
4
| f + g |2 +

3
4
| f − g |2

)
(3.175)

where
∫

dk̂1 dk̂2 = 2π
∫ 2π

0
dΦ

∫ π

0
dΘ2 sinΘ2

∫ π

0
dΘ1 sinΘ1 (3.176)

and where g is defined as the exchange amplitude and is obtained by interchanging
Θ1 and Θ2 in (3.174). This four-fold integral now allows for total cross sections to
be calculated on an absolute scale.

3.4.4 Results, Discussion, and Conclusions

We are now able to present the first theoretical estimate for absolute cross sections,
for the case when Z = 1/4. This has been made possible due to our derived initial-
and final-state wave functions which are both regular and nonsingular.
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Fig. 3.13. Total ionization cross section for Z = 1/4 as a function of impact energy

As is clearly evident from Figure 3.13, it is the L = 0 contribution that is most
dominant when calculating the cross section. The total cross section does converge
when the value for LMAX increases, with an increase from LMAX = 3 to LMAX =

4,resulting only in an increase of the cross section in the fourth significant figure. As
we would expect, the cross section increases almost exponentially, as found in [337],
[225], [117], before reaching a peak and then decreasing. The shape of the graph is
quite similar to that produced in [117], although a comparison of the magnitude of
the cross section is not possible as the results in [117] are not absolute; we can see
that the magnitude of the energy that gives the highest cross section has increased
dramatically. If we look again at (3.174), it is the ρ5/2 exp(−λρ/

√
2) factor that has

the greatest effect on the magnitude of the cross section, in particular the λ = 1/4
term in the exponential that arises due to the weak nuclear charge.

In figure 2 of [146] we see graphs relating to the cross sections derived in [337],
[225], [117], the equations (3.124) and (3.125) are used with our numerically derived
cross sections and plotted in logarithmic graphs. The lower energy range is to the left
of the first two graphs and to the right of the final graph. As is clearly evident, linear
dependence is limited to a comparatively narrow low-energy domain, so that laws
(3.124) and (3.125) have limited relevance.

It should be noted that the process we have studied is probably not accessible
experimentally, and the only theoretical results that have been published related to
an interaction similar to ours [337], [225], [117] do not provide cross sections on
an absolute scale and are confined to a limited energy range. However, we can now
model process (3.123) with confidence.



4

Ion–Atom Collisions

4.1 The Semiclassical Impact Parameter Treatment

A third meaning of semiclassical (cf. Chapters 2 and 3) concerns an ion–atom col-
lision in which the relative motion of the two nuclei is treated classically while the
motion of one or more electrons is treated fully quantally [442]. In fact the impact
parameter ρ was already encountered in Section 2.2.2 (2.91) and (2.92). Physically it
corresponds to the distance of closest approach, assuming that the classical relative
motion of the nuclei follows a straight-line trajectory. This is justified formally if it is
assumed that on an atomic electron scale, the nuclear masses are taken to be infinite:
an excellent assumption. We have that the electron has position rT , rP relative to the

target T and projectile P, and the internuclear vector
−−→
T P is given by

R = ρ + vt (4.1)

where v is the laboratory impact velocity and

R = rP − rT (4.2)

r =
1
2

(rP + rT ) (4.3)

where the electron is r from the midpoint of P and T (an arbitrary centre of mass,
since MP = MT ≡ +∞). It follows that

dR
dt

= v , ρ · v = 0 (4.4)

and |Z| = v|t| is the distance of P from the point of closest approach and t ∈ [−∞ ,+∞]
along the classical straight-line trajectory with the time origin at the instant of near-
est approach. For one-electron processes, there are four types of collision: perfectly
elastic, excitation, ionization, and charge transfer. For multi-electron processes, ad-
ditional channels are transfer-excitation, transfer-ionization, double capture, double
excitation, double ionization (Section 4.3.6), etc. For clarity we follow the trickier
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case of one-electron charge transfer, and in anticipation of Section 4.3, we follow the
notation of Crothers and Dubé [192]. The Lagrangian is given by

H − i
d

dtr
= T + V − i

∂

∂tr

= −1
2
∇2

r + VT (rT ) + VP(rP) + VPT (R) − i
∂

∂tr
(4.5)

where H is the Hamiltonian, the potentials are given by

VC(rC) = −ZCe
rC

(C = P, T )

VPT = +
ZPZT e2

R
(4.6)

and it is assumed that the independent variables are (r, t) and that a subscript indicates
which variable is kept constant. Following [423] the total wave function Ψ+

i satisfies
the time-dependent Schrödinger equation

(
H − i

∂

∂tr

)
Ψ+

i = 0 (4.7)

subject to the initial and final boundary conditions:

lim
t→−∞

Ψ+
i = ξ+

i

and lim
t→∞

Ψ+
i = ξ+

i + A+
f iξ
−
f (4.8)

Similarly the total wave function Ψ−f satisfies the equation

(
H − i

d
dt

)
Ψ−f = 0 (4.9)

subject to

lim
t→+∞

Ψ−f = ξ−f

lim
t→−∞

Ψ−f = ξ−f + A−f iξ
+
i (4.10)

The total cross section is given by

σ±(i| f ) =

∫
dρ

∣∣∣A±f i( f )
∣∣∣2 (4.11)

Now, wrongly as it will turn out in 4.3, we assume that VP may be neglected in the
initial channel so that

ξ+
i = φT

i (rT ) e−
i
8 v2t−iεT

i t− 1
2 iv·r (4.12)

and VT may be neglected in the final channel so that
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ξ−f = φP
f (rP) e−

i
8 v2t−iεP

f t+ 1
2 iv·r (4.13)

This is the basis of traveling atomic orbitals (Section 4.2); the electron translation
factors (ETFs), originally obtained by Bates and McCarroll [44] using Fourier trans-
forms arise typically as follows from the chain rule:

∂

∂tr
=
∂R
∂tr
· (∇R)rT

+
∂rT

∂tr
· (∇rT

)
R =

(
∂

∂t

)
rT

+
1
2

v · ∇rT (4.14)

since

rT = r +
1
2

R (4.15)

and since we are changing from independent variables (r, t) to (rT , t). The preced-
ing notation involves the initial target bound state φT

i with eigenvalue εT
i and the final

projectile bound state φP
f with eigenvalue εP

f . The impressed electron kinetic energies

1/2 (v/2)2 arise automatically. For the time being the superscripts ± on ξ are redun-
dant due to our neglect of the other Coulomb potential. The amplitudes are given
by

A+
f i = −i

∫ +∞

−∞
dt

〈
ξ−f

∣∣∣∣∣∣∣
(
H − i

d
dt

)†∣∣∣∣∣∣∣Ψ
+
i

〉
(4.16)

≈ −i
∫ +∞

−∞
dt

〈
ξ−f

∣∣∣∣∣∣∣
(
H − i

d
dt

)†∣∣∣∣∣∣∣ ξ
+
i

〉
(4.17)

and by

A−f i = −i
∫ +∞

−∞
dt

〈
Ψ−f

∣∣∣∣∣H − i
d
dt

∣∣∣∣∣ ξ+
i

〉
(4.18)

≈ −i
∫ +∞

−∞
dt

〈
ξ−f

∣∣∣∣∣H − i
d
dt

∣∣∣∣∣ ξ+
i

〉
(4.19)

where (4.17) and (4.19) are the impact parameter versions of the Oppenheimer–
Brinkman–Kramers (OBK) approximation [89], [466] and where we use the Dirac
bracket notation to indicate integration over r for fixed t. Galilean invariance is guar-
anteed due to the ETFs [44]. However, gauge invariance is not: the cross sections
depend on whether or not VPT is included, and indeed there is a post-prior discrep-
ancy, that is, (4.17) and (4.19) give different results.

Some of these defects may be removed in a two or more traveling atomic-orbital
expansion:

Ψ = ci(t)ξ
+
i + c f (t)ξ

−
f (4.20)

with the second-order Jacobi variational principle

δL = δ

∫ +∞

−∞
dt 〈Ψ |H − i

d
dt
|Ψ〉 = 0 (4.21)
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giving

i
(
1 −

∣∣∣N+−
i f

∣∣∣2) ċi =
(
H++

ii − N+−
i f H−+

f i

)
ci

+
(
H+−

i f − N+−
i f H−−f f

)
c f (4.22)

i
(
1 −

∣∣∣N−+
i f

∣∣∣2) ċ f =
(
H−+

f i − N−+
f i H++

ii

)
ci

+
(
H−−f f − N−+

f i H+−
i f

)
c f (4.23)

where

N+−
i f =

〈
ξ+

i |ξ−f
〉

(4.24)

H+−
i f =

〈
ξ+

i

∣∣∣∣∣H − i
d
dt

∣∣∣∣∣ ξ−f
〉

(4.25)

Notice N−+
f i , H++

ii , and H−−f f are included in these definitions. Setting

ci = Ci exp

[
−i

∫ t

−∞
xi(t
′)dt′

]
(4.26)

b f = Bf exp

[
−i

∫ t

−∞
y f (t

′)dt′
]

(4.27)

where

xi =
H++

ii − N+−
i f H−+

f i

1 −
∣∣∣∣N+−

i f

∣∣∣∣2
(4.28)

y f =
H−−f f − N−+

f i H+−
i f

1 −
∣∣∣∣N−+

i f

∣∣∣∣2
(4.29)

we use the integrating-factor method to obtain two coupled first-order equations

iȦi = Bf

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
H+−

i f − N+−
i f H−−f f

1 −
∣∣∣∣N+−

i f

∣∣∣∣2
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ eiγi f (4.30)

iḂ f = Ai

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
H−+

f i − N−+
f i H++

ii

1 −
∣∣∣∣N+−

i f

∣∣∣∣2
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ e−iγi f (4.31)

where

γi f =

∫ t

−∞

(
xi(t
′) − y f (t

′)
)

dt′ (4.32)

Ai(−∞) = 1 , Bf (−∞) = 0 (4.33)
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The advantage of what Bates [34] called the refined orthogonal treatment with
γi f the distortion is that (4.30) and (4.31) are gauge-invariant. They do not depend
on VPT , which appears physically sensible since MP and MT are infinite masses, by
assumption, immovable in their relative trajectory. Of course (4.20) is generalized in
Section 4.2 by including many more states. Moreover, unitarity and detailed balance
are also guaranteed. Notice that the perturbative solution of (4.30) and (4.31), subject
to (4.33), is also gauge-invariant:

Bf (+∞) ≈ −i
∫ +∞

−∞
dt

(
H−+

f i − N−+
f i H++

ii

)

1 −
∣∣∣∣N+−

i f

∣∣∣∣2
e−iγi f (t) (4.34)

The Born distortion approximation cross sections for both excitation and ionization
in the impact parameter treatment may be deduced from (4.34) making the N-matrix
into the unit matrix.

Ignoring distortion (γi f = 0), the total cross section is given by

σ(i/ f ) =

∫
dρ

∣∣∣∣∣∣
∫ +∞

−∞
dt Hf i(t)

∣∣∣∣∣∣
2

( f � i) (4.35)

which, using two-dimensional transforms, may be written in the equivalent wave
treatment [45], [85] as

σ(i/ f ) =
1

2πv2

∫ ∞

(ε f−εi)/v
qdq

∣∣∣∣∣
∫

eiq·RHf i(R)dR
∣∣∣∣∣
2

(4.36)

provided we sum over the final-state and average over the initial-state degenera-
cies [158]. In (4.36) R remains the internuclear vector, given by (4.2) but not by
(4.1).

We shall return to this theme in Section 4.5, since the proper Born wave treatment
gives (4.36) but with upper limit ki + k f and lower limit |ki − k f | where k j is the wave
number associated with the relative momentum of the heavy particles in state j. In
quantal treatments of heavy-particle collisions

eiq·R = eiki·R · e−ik f ·R (4.37)

being the product of the initial-state plane wave and the conjugated final-state plane
wave. Moreover the semiclassical interpretation of a plane wave at the point of clos-
est approach, even at large impact parameter, requires some subtlety in considering
generalized-function contributions asymptotically [444].

Given our treatment of degeneracies, we may assume that the t-integral in (4.35)
is independent of the azimuthal angle of ρ so that the total differential cross section
is given, to a very good approximation, by:

dσ
|d(cosΘ)| = 2πk2

i

∣∣∣∣∣∣
∫ ∞

0
ρdρ J0

(
2kiρ sin

Θ

2

) ∫ +∞

−∞
dt Hf i(t)

∣∣∣∣∣∣
2

(4.38)
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which to a very good small-angle approximation, reduces to

dσ
|d(cosΘ)| = 2πk2

i

∣∣∣∣∣∣
∫ ∞

0
ρdρ J0 (kiρΘ)

∫ +∞

−∞
dt Hf i(t)

∣∣∣∣∣∣
2

(4.39)

In (4.38), (4.39) the dependence of Hf i on ρ is suppressed in the notation.
We have used

q2 = k2
i + k2

f − 2kik f cosΘ

= K2
⊥ +

(
ki − k f

)2
(4.40)

so that
qdq = K⊥ dK⊥ = k2

i sinΘ dΘ (4.41)

since k f ≈ ki apart from
(
ki − k f

)
and where K⊥ is the transverse component of the

change in relative linear momentum of the heavy particles [192]. Often K⊥ is written
as η (cf. Crothers and McCann [182]).

The remarkable aspect of (4.38) and (4.39) is that we have expressions for the
differential cross sections (functions of Θ) even though the straight-line impact pa-
rameter semiclassical method assumes à priori that Θ = 0 [415]. As remarked by
McCarroll in five special lectures in Queen’s University Belfast in May 1991 this
impact parameter semiclassical approach to differential cross sections is often called
theeikonal method. Perhaps as he remarked on that occasion this may account for
the sparse account of the impact parameter treatment, by Mott and Massey [443].
Equally it can be said that when Bates returned to Queen’s University Belfast in
1951, Massey and he had agreed that UCL would concentrate on electron-atom col-
lisions and Queen’s University Belfast on heavy-particle collisions. Notice also that
the impact parameter is not an experimental observable since a given Θ angle of
scattering, or deflection, often corresponds to two or more impact parameters.

One last word in this section on the impact parameter treatment: of course it
lends itself to perturbation theory, for instance, the second-order iterative treatment
of (4.30) and (4.31), when v is large (fast collision): see Bates [35]. On the other hand,
as will be seen in Section 4.3, the first-order wave treatment permits the separation
of a six-fold integral into the product of two three-fold dipole integrals. Nevertheless
the generalizations of (4.20) into large atomic-and/or molecular-orbital expansions
will be discussed and illustrated in Section 4.2, albeit using the semiclassical impact
parameter treatment of this section, on the assumption that the impact energy exceeds
c 1 eVu−1 [40] or at any rate, 100 eVu−1 (see Figure 4.2).

Of course, another meaning of semiclassical concerns highly excited atoms in
Rydberg states. For a discussion of classical and quantal chaos in low-dimensional
systems including scarring and random fluctuations see [214].

4.2 Traveling Atomic and Molecular Orbitals

As we have already seen in Section 4.1 (4.12) and (4.13), in ion–atom collisions we
must attach electron translation factors (ETFs) to ion and atom wave functions to
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represent the physical fact that the electrons, attached to the projectile, are traveling
at +1/2 v, and those to the target at −1/2 v, relative to the heavy particle centre of
mass (equivalently the midpoint of T P, since each nucleus has infinite mass, relative
to the electrons).

In electron–atom collisions, the standard R-matrix method [103] permits, for
each partial wave l, a large linear expansion in L2, that is, finitely normalizable, wave
functions inside a large sphere, possibly with pseudostates, followed by logarithmic-
derivative matching on its surface with appropriate JWKB asymptotic functions. No
ETFs arise. Moreover, because 1/2 v2, the kinetic energy of the electron, must exceed
the ionization potential of the target, v is bounded below; in heavy-particle collisions,
the large reduced mass μ permits v to be very much less than 1, so that 1/v may be a
comparatively large parameter. Further, since we have

ρk = l +
1
2

(4.42)

where ρ is the impact parameter, l the partial wavenumber, and k the wavenumber
given by

k = μv (4.43)

then for every N partial waves in electron–atom collisions, there are μN in ion–atom
collisions.

Thus, although the R-matrix method has been applied to ion–atom collisions
at impact thermal energies, it generally becomes impracticable for higher energies.
Fortunately we may consider ρ to be a continuous variable, and instead of summing
over l, we make the semiclassical approximation and integrate over ρ.

Nevertheless there arises the question of how to generalize (4.20). As reviewed
by Bransden [86] and Fritsch and Lin [279], the provisional answer is to generalize
(4.20) by including many traveling atomic orbitals (AO) on both centres, T and P,
including pseudostates (AO+) to simulate the continuum of either T or P. Of course
there immediately arises the problem of double counting since the two continua over-
lap. Also there is the problem that apparent convergence to a probability or a cross
section may be a false convergence due to the limited representation of the contin-
uum. The possible solutions are traveling molecular orbitals (MO) [37] expansions,
or the triple-centre method [610], or the unified treatment [352] in which AO and
MO expansions are matched at a strategic internuclear separation.

Since exact stationary molecular orbitals are available for H+
2 [497], we start with

a discussion of H+ +H(1s) collisions at low-impact energies, concerning capture and
excitation.

4.2.1 Traveling Molecular H+

2
Orbitals

The method of Löwdin is adopted to orthogonalize optimized traveling molecular
orbitals symmetrically. Second-order terms in velocity are consistently retained, and
it is shown that these terms have a significant influence on H(2p) and H(2s) charge
exchange and direct cross sections in the 1–10 keV proton impact energy range.
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The original choice of ETF by Bates and McCarroll [44] is adequate for some
purposes and certainly avoids long-range spurious couplings. However, this ETF
causes problems in the united-atoms limit where the incomplete nature of the ba-
sis set [251] results in nonphysical phases in large-angle capture probabilities [168],
[177]. Recent trends in the approach to translation factors may be discerned and
reviewed in terms of either parameterized switching functions ( f j) or common
translation factors [251], [252], [394], [395], which by their very name are state-
independent and lead to simplicity in the algebra and analysis. By comparison, the
switching functions are more complicated and are usually state-dependent. Three
trends are apparent here. First, there is the ad hoc variety (cf. Shimakura et al. [552]
and references therein) based on some intuitively appealing criteria. Second, there
is the strategy of Thorson [581], [353], [354], [355], based on the physically sound
proposition of pragmatically minimizing coupling between discrete states and the
continuum. Third, there is the Euler–Lagrange variational choice which has been
pursued independently by both Green et al. [511], [305], [306], [308], [309], [557]
and Crothers et al. [168], [171], [172], [173], [176], [177]. There are, of course,
other differences in the trends. For instance, Thorson, in common with most authors,
chooses the switching function to vary with the electronic coordinate and curve-fits
to intelligently chosen analytic formulae. By contrast, Green and Crothers choose
the switching function to vary only with the internuclear coordinate, thus averaging
over the electronic coordinate, and are content to work with purely numerical val-
ues. Minor variations in their treatments concerning ρ dependence and direction of
electronic momentum appear to be in general of comparatively little importance.

Of the various approaches that are not ad hoc, only Crothers and Hughes
(CH) [173] and Kimura and Thorson (KT) [353] have been applied to the basic
proton–hydrogen problem.

It has been asserted [353] that the non-Hermitian character of the coupling ma-
trices should not be destroyed by taking Hermitian averages and that a defect in the
calculations of CH is their neglect of the non-Hermitian character in the couplings
between ETF corrected molecular basis sets.

While it is true that non-Hermitian equations are sufficient (cf. Green [304],
Pfeifer and Garcia [489]), it is also the case that Hermitian equations are sufficient,
though of course not necessary. Actually the two are equivalent if, in the matrix
elements, the functional dependence on velocity is retained exactly to all orders.
However, if one wishes to retain a precise order of terms, then it is essential to
have Hermitian equations for such a perturbation theory. The difficulty with non-
Hermitian equations has been well illustrated by Riera and Salin [510] and Burns
and Crothers [104].

The exact equivalence, assuming that matrix elements are calculated exactly to
all orders, is shown by enforcing symmetric orthogonalization in the manner of
Löwdin [388], [389] (see also [335], [569], [534]), namely by defining “real” or-
thonormal traveling orbitals by

φ = χ
(
χ+χ

)−1/2 (4.44)
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where χ is a row matrix of the linearly independent nonorthogonal traveling molec-
ular orbital kets given by

χ = (|χ1〉|χ2〉 · · · |χn〉) (4.45)

Thus the standard Gram–Schmidt system of orthonormalization is sufficient but not
necessary and not symmetrical. Care is required in selecting the correct matrix square
root to avoid coupling at infinity and the equivalence of the non-Hermitian χ equa-
tions (see (4.46)) and the Hermitian φ equations are simply demonstrated using the
Sil variational principle and the adjoint of (4.44). Thus, writing

|Ψ〉 = φc̃

= χ
(
χ+χ

)−1/2 c̃

= χd̃ (4.46)

where c̃ and d̃ are column vectors, the Sil variational principle gives

〈χm

∣∣∣∣∣H − i
d
dt

∣∣∣∣∣Ψ〉 = 0 m ∈ [i, n] (4.47a)

〈φm

∣∣∣∣∣H − i
d
dt

∣∣∣∣∣Ψ〉 = 0 m ∈ [i, n] (4.47b)

The adjoint of (4.44), namely,

φ+ =
(
χ+χ

)−1/2 χ+ (4.48)

ensures that (4.47a) imply (4.47b), while the inverse of (4.48)

χ+ =
(
χ+χ

)1/2 φ+ (4.49)

ensures that (4.47b) imply (4.47a). We have of course assumed that χ reduces to a
row matrix of orthonormal traveling atomic orbitals at infinity.

In effect, the independent approach of Crothers et al. [168], [171], [172], [173],
[176], [177], [170] to the question of symmetric orthogonality is just a perturbative
variant of Löwdin’s equation (4.44). To be precise, Crothers and Todd [176] expand
their time-dependent (t), impact-parameter-dependent wave function as a linear com-
bination of traveling molecular orbitals thus

Ψ (r, t) =
∑

j

c j(t)Φ j(r, t) (4.50)

where r is the electronic position coordinate and

Φ j(r, t) = χ j(r,R)T j(R, r)E j(t) (4.51)

T j(R, r) = exp
{
i f j(R)v · r

}
(4.52)

E j(t) = exp

{
−i

∫ t

0
〈χ jT j

∣∣∣∣∣He − i
d
dt̃

∣∣∣∣∣χ jT j〉dt̃

}
(4.53)
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in which R is the internuclear coordinate and the χ j are the stationary molecular
orbitals of the electronic Hamiltonian He with corresponding eigenvalue ε j(R), and v
is the impact velocity. It may be noted that

∫
χ∗f (r,R)

1
v
∂

∂tr
ψk(r,R)dr

=
vt
R

∫
χ∗j

d
dRr

χkdr +
ρi
R2

∫
χ∗jLyχkdr (4.54)

comprising, respectively, the radial and rotational coupling (at v = 0) where Ly is
the component of the electronic orbital angular momentum perpendicular to the col-
lision plane. Although the χ j form an orthonormal set, the Φ j do not because of the
traveling state-dependent factor T j. However, they found that correct to second order
in v, the following traveling molecular orbitals do form an orthonormal set, namely
φ j where

φ j = Φ j −
1
2

∑
l� j

ΦlS l j +
3
8

∑
l� j

∑
k�l

ΦkS klS l j (4.55)

where the overlap matrix is defined by

S l j =

∫
Φ∗lΦ jdr (4.56)

The coefficients −1/2 and 3/8 in (4.54) agree with the corresponding coefficients of
Löwdin [389]. It should be noted that Löwdin would refer to the φ j given by (4.55)
as representing the “real” orbitals as against the Φ j. Also it may be noted that the
third term in (4.55) was not required by CH due to the special gerade and ungerade
partitioning in the symmetric case. It is, of course, necessary to use the well-known
relation

i
d
dt

(
χk

∣∣∣χ j

)
=

(
χ j

∣∣∣∣∣H − i
d
dt

∣∣∣∣∣χk

)∗
−

(
χk

∣∣∣∣∣H − i
d
dt

∣∣∣∣∣ χ j

)
(4.57)

in order to complete the justification of Hermitian averaging using the perturbative
variant of Löwdin’s symmetric orthonormalization scheme.

Of course it is possible to avoid the non-Hermitian problem ab initio by adopt-
ing a common translation factor [251], [252], [394], [395], [413]. Such an approach
may well have an important role to play in calculating, say, total inelastic cross sec-
tions. However, since switching functions depend critically on strong coupling be-
tween state j and any energetically close-lying state at any given internuclear sep-
aration [176], and since the phase of large-angle capture probabilities in turn de-
pends critically on f j [168], [177], it seems likely that an accurate description of
differential cross sections requires the more detailed approach provided by state-
dependent switching functions. In general, such an approach is potentially rather
time-consuming. Nevertheless, provided the velocity is not too high, great simplifi-
cation ensues if terms of order v2 are retained, thus optimizing between the require-
ment of accuracy and the requirement to minimize computer time. Terms of order
v2 can only be retained consistently if the non-Hermitian problem is resolved in the
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manner of Löwdin, as described earlier. Accordingly we continue to disagree with
KT and therefore with Fritch and Lin [279]; moreover we disagree with Thorson et
al. [581] regarding their imputation that CH “criticize the idea of a switching function
as somehow implying a violation of the uncertainty principle.” CH merely invoked
the uncertainty principle to justify averaging the switching function over the electron
coordinate, a strategy also adopted by Green [511], [305], [306], [308], [309], [557].

Total cross sections for the four reactions

H+ + H(1s) → H(2s, 2p) + H+

H+ + H(1s) → H+ + H(2s, 2p)

}
(4.58)

have been the subject of considerable experimental and theoretical investigation. For
a detailed historical account up to 1978, the reader is referred to CH. In order to
resolve the discrepancies between KT and CH, we repeated the calculations of CH
on a powerful computer.

In Table 4.1 we present results for direct and exchange 2s cross sections using
10 states (1sσg, 2pσu, 3dπg, 2pπu, 2sσg, 3pσu, 3dσg, 4 fσu, 4dπg, 3pπu) (Bates
and Reid [46]). Turning points still appear but are less pronounced when terms of
order v2 are retained. Thus there is a minimum in the 2s exchange cross section at
2.25 keV and a maximum and a minimum in the 2s direct cross section at 1.5 and 3
keV, respectively. It is apparent from Table 4.1 that the major source of discrepancy
between KT and CH is the consistent retention by CH, unlike KT, of all terms of
order v2. This is not surprising in that the v2 terms have a significant influence on the
diagonal matrix elements and therefore the phases, which are in turn crucial when
combining typically four transition amplitudes. Thus the disagreement between CH
and KT is primarily not due to either the different choice of ETFs nor to inaccuracies
in the numerical calculations as has been suggested [274], [276], [279] but rather to
the neglect of some second-order terms by KT.

Table 4.1. Ten state calculations: Cross sections QC(2s) and QD(2s) in 10−17 cm2 as a function
of proton impact energy E (keV) and using the ten-state approximation, respectively, for H+ +

H(1s)→ H(2s) + H+, H+ + H(1s)→ H+ + H(2s). Boxes indicate turning points

Order v Order v2 Order v2 Order v

QC(2s) QC(2s) E QD(2s) QD(2s)

0.085 0.118 1 0.117 0.088

0.133 0.162 1.5 0.191 max 0.151
0.199 0.182 2 0.186 0.207

0.236 0.179 min 2.55 0.179 0.232
0.274 0.187 2.5 0.179 0.254

0.342 0.197 3 0.176 min 0.301
0.577 0.228 4 0.229 0.380
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Table 4.2. Eight state calculations (as for Table 4.1, but using the eight-state approximation
and including the polarization Π and the cross sections QC(2p) and QD(2p), respectively, for
H+ + H(1s)→ H(2p) + H+, H+ + H(1s)→ H+ + H(2p))

Order v2

E QD(2p) QC(2p) QD(2s) QC(2s) Π
1.0 2.784 2.844 0.055 0.056 -0.258
2.0 3.021 2.904 0.162 0.159 -0.243
3.0 3.029 2.998 0.283 0.258 -0.225
4.0 2.967 2.949 0.406 0.309 -0.204
5.0 3.012 2.906 0.523 0.341 -0.186
7.0 3.246 3.352 0.689 0.554 -0.166
10.0 4.094 5.743 1.086 1.606 -0.139

Order v

E QD(2p) QC(2p) QD(2s) QC(2s) Π
1.0 2.959 2.608 0.068 0.069 -0.255
2.0 3.592 3.549 0.264 0.248 -0.234
3.0 4.339 4.254 0.509 0.444 -0.213
4.0 5.048 5.097 0.747 0.640 -0.199
5.0 5.773 6.084 0.952 0.897 -0.191
7.0 7.330 7.932 1.313 1.555 -0.183
10.0 9.496 10.082 1.691 2.787 -0.183

Nevertheless the critical evaluation by KT, of the effect of the switching function
f0 of CH on the 4 fσu populations at the higher energies, is valid. This may be gauged
implicitly in two ways. First the switching function f0 of CH was only optimized
for the comparatively compact 1sσg and 2pσu orbitals, since they were primarily
motivated by the proton–hydrogen large-angle capture probability problem [168].
Since then, of course, it has become widely recognized [176], [177], [305], [306]
that state-by-state optimization is required, that is, different switching functions for
different molecular states. Thus it is clear that in physical terms for a diffuse orbital
like 4 fσu, the switching function should on average be much closer to the united
atoms value of zero than to the CH f0 choice. Second, and related to this latter point,
it may be noted that the 2pσu–4 fσu dipole matrix element, which multiples f0 in the
zero-order radial-coupling matrix element, is particularly large.

To gauge the explicit effect, we present in Table 4.2 and Figures1 4.1 and 4.2
both direct (D) and capture (C) 2s and 2p cross sections using eight states (1sσg,
2pσu, 3dπg, 2pπu, 2sσg, 3pσu, 4dπg, 3pπu). Table 4.2 also includes the polarization.
Although the turning points in the direct 2s cross section QD(2s) have disappeared,
the capture 2s cross section QC(2s) still exhibits a point of inflexion. Moreover, the
inclusion of terms of order v2 in the eight-state calculation clearly improves agree-
ment with the experimental results of Morgan et al. [435] for QC(2p) and QD(2p)
and with Morgan et al. [436] for QD(2s). So far as QC(2s) is concerned, the effect of

1 In our original paper [181] these two figures were published incorrectly.
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Fig. 4.1. Exchange: Cross sections QC(2s, 2p) in square centimeters as a function of proton
impact energy E (keV) for the processes H+ + H(1s)→ H(2s, 2p) + H+. Theories – · – Kimura
and Thorson [353]; – – this work, to order v using eight states; —- this work, to order v2

using eight states. Experiment: �Bayfield [50]; 	 Hill et al. [326]; ◦Morgan et al. [435], [436]
QC(2p), QC(2s), respectively

Fig. 4.2. Excitation: Cross sections for QD(2s, 2p) in square centimeters as a function of pro-
ton impact energy E (keV) for the processes H+ + H(1s) → H+ + H(2s, 2p). Theories and
experiments as for Figure 4.1, but C → D
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including terms of O(v2) in the KT calculation can only be surmised. However, it is
notable that in Figure 4.1 our QC(2s), omitting such terms, lies typically 30% to 40%
above the analogous KT values, which is precisely the experience of KT. Between
2 and 3 keV our second-order QC(2s) favors the experimental values of Morgan et
al. [436], but between 5 and 6 keV it continues to favor the experimental values of
Bayfield [50] rather than either Morgan et al. or Hill et al. [326]. We have not plot-
ted the apparently only other experimental values of QC(2s) given by Chong and
Fite [118] since at their lowest energy of measurement 6 keV , their value lies above
even our first-order results. Above 6 keV there is a reasonable consensus between
the 1977 [118], 1979 [326], and 1980 [436] experiments. So far as other theoreti-
cal results for QC(2s) are concerned, we note that the independent calculations of
Lüdde and Dreizler [390], [391], [392] based on molecular pseudostate two-centre
spheroidal wave functions of the Hylleraas type, show excellent accord with the dif-
ferential cross sections of CH. The agreement between Lüdde and Dreizler [392],
CH, and KT on differential cross sections and capture probabilities is not surpris-
ing, since all three use essentially molecular approaches and large-angle scattering
is dominated by the united-atom value of the switching function, namely zero [168].
Interestingly enough, on total cross sections there is also quite good agreement be-
tween Lüdde and Dreizler [391] and our eight-state second-order results at 2 and 4
keV. Thus they obtain 0.13 and 0.34 (10−17 cm2) while we obtain (Table 4.2) 0.16
and 0.31, respectively. However, since ETF effects increase at 6 and 8 keV (compare
the relative divergence between our first- and second-order results), it is not surpris-
ing that their results lie somewhat higher than ours at these higher energies since of
course they make no explicit provision for ETFs. The pseudomolecular calculations
of Winter and Lin [610] use a 28–36 three-centre expansion comprising orbitals cen-
tered on the target and the projectile, each with a classical Bates–McCarroll choice
of ETF ( f0 = 1) and the midpoint ( f0 = 0). Naturally we would not consider this lat-
ter choice of ETF to be optimal; nevertheless their result at 2 keV agrees with Lüdde
and Dreizler and our present result. At 3 and 6 keV they are much closer to KT and
indeed find weak points of inflexion.

Returning to QC(2p) in Figure 4.1, we have already noted good agreement be-
tween the plotted experimental values of Morgan et al. [435] and our second-order
results. Not plotted are the experimental values of Kondow et al. [365], which, above
2 keV, lie somewhat below these other two sets of values. However, below 2 keV
we note that our rather flat second-order curve at about 3 × 10−17 cm2 is in excel-
lent accord with Kondow et al. unlike the curve of KT, which dips rather rapidly to
2 × 10−17 cm2. We also note a nuance of a dip between 4 and 6 keV, a feature more
definitely present in the theoretical result of Lüdde and Dreizler [391] and Winter
and Lin [610] described earlier.

On the question of direct excitation (Figure 4.2), the good agreement between our
second-order QD(2p) and Morgan et al. [435] and between our second-order QD(2s)
and Morgan et al. [436] must be tempered by the knowledge that both Lüdde and
Dreizler [391] and Winter and Lin [610] find rather deep minima in both QD(2p)
and QD(2s) in the region of 8 to 10 keV. Unfortunately, this range is just beyond the
reach of our second-order theory, and we must keep an open mind until a calculation
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with matrix elements correct to all orders in velocity has been carried out. Never-
theless regarding the polarization Π of Lyman-α emission, associated with direct
excitation, our eight state values listed in Table 4.2, with and without second-order
contributions, are in fair accord with the first-order values of KT, namely −0.247,
−0.212, −0.166, and −0.140 at 1, 3, 5, and 7 keV, respectively. As implied by KT,
the discrepancy between our eight state values and the ten state values of CH at the
higher energies is entirely due to the latter’s inclusion of the diffuse 4 fσu orbital
with a nonoptimal nondiffuse switching function, as explained earlier. Clearly Π is
relatively insensitive to the inclusion of second-order terms.

For completeness, we include as Table 4.3, Table 1 of Crothers and Hughes [168]
which gives the turning points in the capture probability at 3◦ scattering in H++H(1s)
collisions in the range 0.7 to 20 keV impact energy. Their results (column 2) agree
remarkably well with experiment (Lockwood and Everhart [384]). We also include
Figure 3 (Crothers and Hughes [172]) which gives the H(2p) excitation probability
in the same H+ + H(1s) collisions but in the range 125 to 500 eV and plotted as
a function of impact parameter. Curve A based on a Coulomb trajectory shows a
double-peak structure at 500 eV , in common with Knudson and Thorson [362] and
reflecting rotational coupling and symmetric resonance.

We conclude that the calculation of proton–hydrogen excitation and capture cross
sections in the low-energy range requires, in the perturbed stationary state (PSS)
method, the use of traveling molecular orbitals whose effect must be carried through

Table 4.3. Values of the energy ET /keV at the turning points of PC(E) at 3◦ scattering angle
in H+ + H(1s) collisions

Expt Theoretical Type of
turning point

(1) (2) (3) (4) (5) (6)
0.78 0.81 0.77 0.81 - 0.80 max
1.11 1.11 1.05 1.09 - 1.10 min
1.57 1.59 1.45 1.55 1.51 1.55 max
2.39 2.40 2.40 2.32 1.96 2.30 min
3.92 3.92 3.15 3.71 2.70 3.70 max
7.69 7.40 5.10 6.65 4.06 - min
20.1 19.8 9.0 15.0 6.95 - max

(1) Experiment of Lockwood and Everhart [384]
(2) This work: three-state calculation with momentum translation factors;
f (Z) given by (35) of [168]
(3) As in (2) but with f (Z) equal to unity
(4) As in (2) but neglecting momentum translation factors
(5) Ferguson [265]: two-state calculation with the momentum translation factors of
Bates and McCarroll [44] using approximate wave functions (π phase change inserted)
(6) Bates and Williams [39]: three-state calculation neglecting momentum
translation effects
Note this table may be compared with table 1 of Bransden [86]
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Fig. 4.3. H(2p) excitation probability PD(ρ) plotted against impact parameter ρ at (a) E = 125
eV, (b) E = 375 eV, and (c) E = 500 eV. Full curve: this work (A, Coulomb trajectory; B,
straight line trajectory). Broken curve: Knudson and Thorson [362]

consistently to at least second order in the velocity. We also conclude that Löwdin’s
method of symmetric orthonormalization of the traveling molecular orbitals is indis-
pensable in this regard. Nevertheless, given the power of modern computers, the ideal
algorithm comprises optimization of the switching function for each state and the re-
tention [308], [309], [557] of all functional dependence on v, the velocity, in which
case the distinction between Hermitian and non-Hermitian equations becomes aca-
demic. We note that unlike pseudostate methods including the AO+ and three-centre
atomic orbital (AO) models [274], [275] [276], [610], [381], [277], our approach to
low-energy collisions is variational at all steps: the choice of molecular orbitals, the
choice of ETF, and the derivation of coupled equations; the only limitation is the
inevitable variation–perturbation selection of ETF, which nevertheless is justified by
the Löwdin method. We also note that Winter and Lin [610] in their three-centre AO
model find the QC(2p) results in Figure 4.1 agree more closely (within about 18%)
with theirs than to KT and the QD(2p) results in Figure 4.1 agree very closely (within
9%) with theirs, except at about 8 keV where our result is 40% higher. Their expan-
sion set included up to 36 hydrogen–like states: on projectile, target, and midpoint
1s–3l|m| orbitals plus 4p|m| and 4 f|m| on the midpoint.

Capture in H+, He++ collisions with excited H(2s, 2p) is described by Esry et
al. [255], with particular reference to formation of capture states H(nl) (n = 2, 3) and
He+(nl) (n = 3, 4).

Traveling AO are applied by Fritsch [280] to the more complicated symmetric
process: He2+ + He collisions that involve two electrons. Traveling MO are applied
by McCarroll and Piacentini [414] to He+ + He collisions involving three electrons.
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4.2.2 Traveling Molecular HeH2+ Orbitals

Introduction

A traveling molecular orbital approach is applied to the He2+ + H → He+ + H+

charge transfer process, where translation factors are determined variationally, and
where all orders of impact velocity v are preserved. Comparison with experiment and
other theories for this low-energy regime are included for total capture and capture
into the He+(2s) excited state.

Since the pioneering work of Bates et al. [43] and Ferguson and McCarroll [266],
molecular orbital (MO) expansions have been employed in close-coupling pro-
cesses, when the impact velocity v is regarded as small relative to the orbital velocity
of the active electron, ve, but great enough for the semiclassical time-dependent for-
mulation to be valid. These MO wave functions are the exact solutions of the Hamil-
tonian, when the motion of the nuclei is neglected. Hence, this relative motion of
the nuclei is the perturbation causing the transition between adiabatic (or stationary)
states.

Massey and Smith [405] were the first to use the wave version of perturbed sta-
tionary states (PSS), for exact resonance, while Mott (1931) [442] developed a semi-
classical impact parameter version, in which he chose as basis functions

ξ j(r, R) exp{−iε j(R)t} (4.59)

where ξ j(r,R) is the adiabatic wave function corresponding to the eigenenergy ε j(R)
and R is the internuclear vector, t is the time, and r is the electronic coordinate re-
ferred to, say, the internuclear midpoint O. Each such adiabatic (or stationary) state
will, in principle, have a separated-atom limit, centred on either the projectile nu-
cleus B or the target nucleus A, corresponding to a Stark-effected linear combination
of atomic states:

lim
R→∞

ξ j = φA
j (rA) limR→∞ ε j = εA

j (∞)

or (4.60)

lim
R→∞

ξ j = φB
j (rB) limR→∞ ε j = εB

j (∞)

where rA and rB are the position vectors of the electron relative to the target nu-
cleus and projectile nucleus, respectively. Both excitation and charge transfer may
be considered as resulting from transitions between adiabatic states.

Bates et al. [43] later reviewed this formulation, and certain theoretical and phys-
ical defects were discovered. First, they realized that the eigenenergy should be inte-
grated with respect to time, not merely multiplied.

ε j(R)t −→
∫ t

0
ε j(R̃) dt̃ (4.61)

Second, they discovered that charge transfer transition probabilities depended on the
origin of r, violating Galilean invariance. In Mott’s theory, the choice of origin for
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r, as A, B, or O leads to three different results. In particular, it was possible to have
states still coupled at infinity, a situation not only impracticable but also unphysical.
To ensure that such couplings are avoided, Bates [34] showed that it was necessary
to expand the total wave function as

Ψ (r, t) =
∑

j

a j(t)Ψ j(r, t) (4.62)

where

lim
R→∞

Φ j = ΨA,B
j exp{∓1

2
iv · r − iεA,B

j (∞)t − 1
8

iv2t} (4.63)

according to whether the dissociation limit was A or B (− for A, + for B) and where
Ψ j is an atomic-state function. For concreteness, the origin was chosen to be at the
midpoint of the internuclear axis.

In order that these boundary conditions are matched trivially, Bates and McCar-
roll [44], [45] chose as their basis functions

Ψ j = χA,B
j exp

(
∓i

1
2

v · r
)

exp

{
i
∫ t

0

(
ε j +

1
8

v2

)
dt̃

}
(4.64)

However, this makes the basis functions nonorthogonal, and while (4.63) is accept-
able at large internuclear separations, where the electron is well localized around one
or another centre, its motion has more of a molecular nature at short internuclear sep-
arations. Of course, at large distances, the choice (4.64) is perfectly reasonable, as
the stationary (adiabatic) states can be approximated by an appropriate linear com-
bination of atomic states. To overcome this general criticism, the following basis
functions may be chosen [536]:

Φ j = χ j exp

(
1
2

i f (r,R)v · r
)

exp

{
−i

∫ t

0

[
ε j +

1
8

∫
|χ j|2(∇rv · r f )2d3r

]
dt̃

}
(4.65)

where the function f is known as the switching function and obeys the following
conditions:

lim
R→∞

f (r,R) = ±1 as r→ ±1
2

R (4.66)

as well as
lim

R→∞
f (r,R) = o (4.67)

Vaaben and Taulbjerg [589], in studying the He2+H charge-transfer process, em-
ployed a switching function of the form

f (r,R) =
1
2

r3
AZA − r3

BZB

r3
AZA + r3

BZB
+

1
2

ZA − ZB

ZA + ZB
(4.68)

where the origin is chosen at the centre of charge. This choice of translation factor
reduced discrete–discrete couplings. Their work also highlighted the crucial impor-
tance of the choice of the electron translation factor (ETF) at small internuclear sepa-
rations, since spurious short-range couplings may exist whenever the radial coupling
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element is nonvanishing in this limit, i.e., the adiabatic condition is violated. They
also concluded that since ETFs form an inherent part of the basis states for the MO
expansion, used in seeking a solution to the collision problem, they cannot be solely
determined from a unique set of objective criteria, and hence that the ad hoc choice
of common translation factors is, accordingly, likely to remain a matter of dispute.

Winter [602] also studied He2+ − H collisions, where a coupled-state approach
was taken using large triple-centre bases centred on the two nuclei and a third centre
was chosen to be the equiforce point (saddle point of the potential) between the
nuclei. The following linear combination of traveling atomic orbitals on three centres
was used:

Ψ (r, t) =
∑
k,α

akα(ρ, t)ψkα(rα(r, t)) exp(−iEkαt + iqαv · r − 1
2

iq2
αv2t2) (4.69)

where α denotes the centre A (= H+), B (= He2+) or C and the translation factor qα
is given by

qα

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
− 1

2 , α = A

+ 1
2 , α = B

p − 1
2 , α = C

(4.70)

where

p =

√
ZA√

ZA +
√

ZB
(4.71)

Errea and co-workers in a series of papers [245], [246], [253] used common
translation factors (CTF) and the second of these applied the so-called norm method
to He2+ −H collisions. The method is based on the minimization of a measure of all
dynamical couplings between the states included in, and omitted from, the molecular
expansion. Using the Euclidean norm:

N2[Un] =

ℵ∑
m=1

∥∥∥∥∥∥Q

[
i
∂

∂t

∣∣∣∣∣
r
− Hel

]
Pφm exp

[
i

(
Um −

∫ t

0
Em dt̃

)]∥∥∥∥∥∥
2

(4.72)

where P is the projector operator over the manifold spanned by the set of functions
φneiUn ; n = 1, . . . ,ℵ; and Q = 1−P and where overlap effects are taken into account.
Thus, N[Un] is minimized for each nuclear trajectory, within a trial space for Un

and for a group manifold φn; 1, . . . ,ℵ. The translation factors are thus viewed as
providing the smallest set of couplings from P to Q space.

In their application to He2+ + H(1s) collisions, they chose a common translation
factor with two adjustable parameters:

f (r,R) =
R

R2 + β2

[
r · R̂ + (p − p0)R

]
− (p − p0) (4.73)

where the origin of electronic coordinates is situated a distance pR from the helium
nucleus. The trial space for the CTF is defined by two parameters β and p0, which
have the physical interpretation that β defines the extent of a cutoff factor in f , and
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(p − p0) R is the distance between the arbitrary origin of electronic coordinates in
their system and a fixed point on the internuclear axis, situated a distance p0R from
the helium nucleus.

Haansen et al. [317] employed a common translation factor in calculating electron-
capture cross sections in ion collisions, C4+, N5+, O6+ with atomic hydrogen. For
a tour de force on CTFs, see Elizaga et al. [241]. While results compared with
experiment were favourable at low impact velocities (v0 ≤ 1 au), the calculated
cross sections fail to show the steep decline indicated by the experimental data.
Newby [452] reinforced this conclusion by showing that the calculated cross sec-
tions for the He2+ + H → He+(n = 2) + H+ reaction also failed to fall off rapidly,
and at higher velocities the differences between results became very sensitive to the
choice of translation factor. It is clear that if a uniform model capable of producing
accurate cross sections is required at both low and high impact velocities, more elab-
orate translation factors must be employed. This is reinforced by the work of Errea et
al. [250], [248], [249], [254], [247], of Harel et al. [321], [320], and of McCarroll and
Crothers [413]. Our work is not intended to compete, at energies above that at which
the maximum total cross section occurs, with the continuum-distorted-wave method,
which in itself is a dynamic molecular model. Moreover, at chemical, thermal, and
very low energies, Eckart, reaction, or hyperspherical coordinates are useful alterna-
tives (McCarroll and Crothers [413]. For a discussion of ion–molecule reactions, see
Lindinger et al. [383].

Theory

The first to consider a fully variational approach were Riley and Green [511]. They
considered a number of alternative proposals, each of which resulted in impracticable
complexity, where the switching functions in principle were to be obtained simul-
taneously with the transition amplitudes, satisfying a system of coupled nonlinear
equations. This scheme was not implemented for a semiclassical impact parameter
treatment.

We consider
He2+ + H(1s) −→ He+ + H+ (4.74)

not only because it is a benchmark process for differing theoretical approaches to
atomic collisions, but also because it is important in the study of thermonuclear
fusion and in astrophysical processes. It has been studied experimentally by Fite
et al. [270], Keever and Everhart [350], Bayfield and Khayrallah [51], Shah and
Gilbody [544], and Nutt et al. [462]. It had been studied theoretically, using PSS
formulations, by Piacentini and Salin [490], [491], Hatton et al. [322], Winter and
Lane [609], Vaaben and Taulbjerg [589], Winter and Hatton [608], Newby [452],
Errea et al. [246], and Winter [602].

In considering the process (4.74) switching functions are derived by averaging
over the electronic coordinate, endorsing the argument put forward by Crothers and
Hughes [168], [173], [172], [171], that the purpose of the translation factor is to
represent the translation of the electron, due purely to motion of the nuclei. The
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electron’s orbital motion will be described, as in the standard PSS and Bates and
McCarroll formulation, by the adiabatic or molecular wave functions.

Considering the general collision system, within the semiclassical impact param-
eter treatment, the total wave function may be expressed as a linear combination of
basis functions

Ψ (r, t) =
∑

j

c j(t)Φ j(r, t) (4.75)

where the basis functions are given by

Φ j(r, t) = χ j(r,R)T j(R, r)E j(t) (4.76)

where χ j(r,R) is the exact adiabatic wave function satisfying

(
−1

2
∇2

r −
ZA

rA
− ZB

rB

)
χ j = ε jχ j (4.77)

where E j(t) is an energy phase factor, and where T j(R, r) is an electronic translation
factor given by

T j = exp(i f jv · r) (4.78)

where f j is the switching function for each independent state j. Crothers and Todd
[176] noted, on the grounds that any two states normally only couple at specific non-
adiabatic separations (unlike the symmetric resonance case, where the electron res-
onates to and fro continually between the two principal states), each state should have
its own associated switching function, similar to the work of Riley and Green [511]
and Ponce [495]. Crothers and Todd allowed for a greater flexibility by allowing the
switching function to be a function of the internuclear vector R and not the inter-
nuclear distance R. Nevertheless, in this argument, f jv continues to represent the
effective velocity of the electron for any particular orientation R̂ of the molecule, the
orbital velocity implicitly being described by the adiabatic wave function χ j.

Derivation of Coupled Equations and VTFs

We can now apply the variational principle to obtain, first, the coupled equations and
second, the switching functions. With the wave function defined by (4.76), satisfying
the Schrödinger equation, we have (see Section 1.3)

δI = 0 (4.79)

where

I =

∫ ∞

−∞
dt

〈
Φ

∣∣∣∣∣He − i
d
dt

∣∣∣∣∣Φ
〉

= 0 (4.80)

By considering arbitrary variations in c∗j , we have the condition, consistent with
(4.80), that 〈

∂Φ

∂c j

∣∣∣∣∣Hel − i
d

dtr

∣∣∣∣∣Φ
〉

= 0 (4.81)
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By varying c j, we obtain the standard coupled equations in matrix form

iSċ = Hc (4.82)

where
S l j =

〈
Φl|Φ j

〉
(4.83)

and

Hl j =

〈
Φl

∣∣∣∣∣Hel − i
d

dtr

∣∣∣∣∣Φ j

〉
(4.84)

We note that S j j = 1 and that if Hj j = 0, then the c j will be well behaved.
Now we wish to include all orders of velocity and to derive an expression for

the matrix elements used in the coupled equations. We use expression (4.76) for the
basis functions, where

E j(t) = exp

(
−i

∫ t

0

(
ε j +

1
2

v2 f 2
j + v2 d f j

dZr
〈χ j|z|χ j〉

)
dt̃

)
(4.85)

is the energy phase factor and

T j(r,R) = exp(i f j(R)v · r) (4.86)

is the electron translation factor, and χ j(r,R) satisfies (4.77). Substituting (4.77) into
(4.84), we have

Hl j = 〈χl(r,R)Tl(r,R)El(t)|Hel − i
d

dtr
|χ j(r,R)T j(r,R)E j(t)〉 (4.87)

If we consider (4.87), the second term simplifies to

−i
d

dtr
|χ j(r,R)T j(r,R)E j(t)〉 = −

(
ε j +

1
2

v2 f 2
j (R) + v2 d f j

dZr
〈χ j|z|χ j〉

)
(4.88)

×E jT jχ j − ivE jT j

[
dχ j

dZr
+ ivzχ j

d f j

dZr

]
(4.89)

Similarly, the first term of (4.87) can be simplified to

E j(t)T j(r,R)

[
ε jχ j(r,R) − i f j(R)v

∂χ j

∂z
+

1
2

f 2
j (R)v2χ j(r,R)

]
(4.90)

Therefore, using equations (4.89) and (4.90), we have
(
Hel − i

d
dtr

)
|Φ j〉 = E j(t)T j(r,R)

[
−iv

dχ j

dZr
+ v2zχ j(r,R) − i f j(R)v

∂χ j

∂z
(4.91)

−v2 d f j

dZr
〈χ j|z|χ j〉χ j

]
. (4.92)

Now using equation (4.92), we have
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Hl j = 〈Φl|Hel − i
d

dtr
|Φ j〉 = −iv〈χl(r,R)|Tl j

(
d

dZr
+ f j

∂

∂z

)
|χ j(r,R)〉E jE

∗
l

+v2〈χl(r,R)|Tl j(z − 〈χ j|z|χ j〉)
d f j

dZr
|χ j(r,R)〉E jE

∗
l (4.93)

where
Tl j = T ∗l T j = exp(i fl j(R)v · r) (4.94)

and
fl j = fl − f j (4.95)

Note that if we approximate to order v, we obtain

Hl j = −iv〈χl(r,R)| ∂
∂Zr

+ f j
∂

∂z
|χ j(r,R)〉E jE

∗
l (4.96)

in agreement with Crothers and Todd [176].
If, in the separated-atom limit, the electron is attached to the same nucleus for

both states l and j, then
fl − f j ∼ 0 (t → ±∞) (4.97)

otherwise
fl − f j ∼ ±1 (t → ±∞) (4.98)

positive if l is on the target and j is the projectile, and negative if vice versa.

Derivation of Switching Functions

We employ the same derivation and argument as Crothers and Todd [176], where
each state has its own independent switching function f j regarded as a function of
the internuclear vector R. By employing the standard Euler–Lagrange variational
technique for arbitrary variations δ f j, the following expression for f j is obtained:

f j =
〈χ j|z d

dZr
|χ j〉 −

∑
k〈χ j|z|χk〉〈χk | d

dZr
|χ j〉

−〈χ j|z d
dz |χ j〉 −

∑
k〈χ j|z|χk〉〈χk | ddz |χ j〉

+ O(v) (4.99)

Expression (4.99) is in terms of stationary-frame matrix elements, and these can be
transformed into terms involving the moving molecular-frame matrix elements. In
particular,

f j(Z, ρ) =
Z2R1 + ρ2T1

Z2R2 + ρ2T2
(4.100)

where
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R1 = 〈χ j|z′
∂

∂Rr
|χ j〉 −

∑
k

〈χ j|z′|χk〉〈χk |
∂

∂Rr
|χ j〉 (4.101)

R2 = −〈χ j|z′
∂

∂z′
|χ j〉 +

∑
k

〈χ j|z′|χk〉〈χk |
∂

∂z′
|χ j〉 (4.102)

T1 = 〈χ j|x′
(
− i

R
Ly′

)
|χ j〉 −

∑
k′
〈χ j|x′|χk′ 〉〈χk′ | −

i
R

Ly′ |χ j〉 (4.103)

T2 = −〈χ j|x′
∂

∂x′
|χ j〉 +

∑
k′
〈χ j|x′|χk′ 〉〈χk′ |

∂

∂x′
|χ j〉 (4.104)

Here r′ is referred to the rotating frame of reference (y = y′) so that all matrix ele-
ments involved in equations (4.101)–(4.104) may be evaluated as triple integrals over
the prolate spheroidal coordinates, λ, μ and φ, that is, (rA ± rB)/R and the azimuthal
angle relative to the collision plane.

In practice, since we wish only to perform a five-state close-coupling calculation,
j ∈ {2sσ, 2pσ, 2pπ, 3dσ, 3dπ}, the dummy indices k′ and k are allowed to run over
all appropriate states in the first four united-atom principal shells. In practice, the φ
integrals can be evaluated analytically, and they provide selection rules that mean
k′ and k differ for any given j, and in general states that couple radially, do not
couple rotationally, and vice versa. The partitioning of the coupled states facilitates
the investigation of two intermediary functions, namely,

Rj =
R1

R2
= f j(R, 0) (4.105)

which is obtained by setting ρ = 0 in equation (4.100); setting Z = 0 in (4.100), we
obtain the second intermediary function

T j =
T1

T2
= f j(0,R) (4.106)

Calculation Details

The first step is to calculate the normalized wave functions and their derivatives. The
wave function can be expanded in terms of prolate spheroidal coordinates, and, by
making use of a program by Power [497], the wave functions may be calculated. Full
details of the expansions and calculation can be found in the thesis of McCaig [407].
Having calculated the normalized wave functions, we may then proceed to calculate
the switching functions, given by (4.101)–(4.104). These expressions are given in
terms of the coordinates of the moving molecular frame. They must be transformed
into expressions involving prolate spheroidal coordinates, λ, μ, and φ, so that we can
easily calculate expressions (4.101)–(4.106). We can simplify some of the expres-
sions by noting that the first terms of equations (4.102) and (4.104) consist of the
matrix elements

〈χ j|z′
∂

∂z′
|χ j〉 = −1

2
(4.107)
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Table 4.4. Radially coupled states

States j Coupled states k

2sσ 1sσ, 2pσ, 3sσ, 3pσ, 3dσ, 4sσ, 4pσ, 4dσ, 4 fσ
2pσ 1sσ, 2sσ, 3sσ, 3pσ, 3dσ, 4sσ, 4pσ, 4dσ, 4 fσ
2pπ 3pπ, 3dπ, 4pπ, 4dπ, 4 fπ
3dσ 1sσ, 2sσ, 2pσ, 3sσ, 3pσ, 4sσ, 4pσ, 4dσ, 4 fσ
3dπ 2pπ, 3pπ, 4pπ, 4dπ, 4 fπ

Table 4.5. Rotationally coupled states

States j Coupled states k′

2sσ 2pπ, 3pπ, 3dπ, 4pπ, 4dπ, 4 fπ
2pσ 2pπ, 3pπ, 3dπ
2pπ 2sσ, 2pσ, 3sσ, 3pσ, 3dσ
3dσ 2pπ, 3pπ, 3dπ, 4pπ, 4dπ, 4 fπ
3dπ 3dδ, 4dδ, 4 f δ

and

〈χ j|x′
∂

∂x′
|χ j〉 = −1

2
(4.108)

Also, the matrix element

〈χk |
∂

∂Rr
|χ j〉 (4.109)

may be simplified by using the commutator relationships of Ponomarev and Puzyn-
ina [496]. However, the awkward numerical differentiation involved in the first term
of (4.101) must be performed, as detailed in the previous section. By using the
transformations of appendix B of McCaig [407], the matrix elements of equations
(4.104)–(4.108) may be performed as triple integrals over λ, μ, and φ. The φ integra-
tion in practice is performed analytically and provides “selection rules.” This reduces
the computation required in the summations, as k and k′ differ from j, and the expres-
sions for R1 and R2 effectively only allow σ→ σ and π→ π radial couplings, while
expressions for T1 and T2 only allow for σ → π and π → δ rotational couplings.
This may be summed up in Tables 4.4 and 4.5, which show which states are coupled
to each of our five principal states in the calculation.

With the expressions for R1, R2, T1, and T2 we may calculate the intermediary
functions given by (4.105) and (4.106). Figure 1 of [408] shows Rj as a function of
internuclear distance R, while figure 2 of [408] similarly shows T j.

The first observation is that the boundary conditions inherent in the derivation
are satisfied, namely

lim
R→∞

Rj = ±1
2

(4.110)

lim
R→∞

T j = ±1
2

(4.111)
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and so

lim
|R|→∞

f j(R) = ±1
2

(4.112)

The second observation is that all the switching functions have the same united-atom
limit, namely

lim
R→0

Rj = −1
6

∀ j (4.113)

lim
R→0

T j = −1
6

∀ j (4.114)

which imply that

lim
R→0

f j(R) = −1
6

∀ j (4.115)

The limit expressed in (4.115) is in accordance with our interpretation of the purpose
of translation factors, as in the united-atom limit the electron classically orbits the
centre of charge and so will have an effective translation equivalent to that of the
centre of charge relative to the origin. This argument gives a value of −1/6, when the
origin is situated at the internuclear midpoint.

We can also see from figures 1 and 2 of [408] that as the principal quantum
number of the united atom increases the further out will the switching functions
represent the behaviour of the centre of charge. We note that classically, for 3dπ, the
molecule is formed for R < 21.728 (au) so it is perhaps surprising that the behaviour
of 3dπ as close in as 12 au shows that the effective translation of the electron is still
associated with the He2+ nucleus.

The seemingly unphysical behaviour of the 2sσ, 2pσ, and 2pπ switching func-
tions at zero impact parameter can be seen to quickly disappear when the impact
parameter increases (figures 3–5 of [408]). By using the more general form given
in equation (4.100), we may calculate the switching functions for various values of
impact parameter. Figures 3–7 of [408] show the switching functions for our five
principal states, for a variety of impact parameters. These are included for complete-
ness, to show precisely the exact variation with respect to internuclear R of each of
our five state-dependent switching functions f j, used in the calculation of S l j and Hl j

matrix elements.
It is worth noting that for 2pσ and 3dσ (figures 4 and 6 of [408]), it was par-

ticularly important to include 1sσ and 4 fσ, respectively, as these exhibit the special
non-crossings of one-electron molecules.

Calculation of S l j and Hl j Matrix Elements

The interaction matrix elements Hl j are given by the expression

Hl j = 〈Φl|Hel − i
d

dtr
|Φ j〉 (4.116)

To evaluate these matrix elements, we must transform them into expressions in pro-
late spheroidal coordinates. First we obtain the first term of Hl j to be
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Hl j = −iv〈χl| exp(−i fl jvB)

{
Z
R

∂

∂Rλ,μ
+ P

∂

∂λ
+ Q

∂

∂μ
+ R

∂

∂φ

}
|χ j〉E∗l E j (4.117)

where the coefficients P, Q, and R are given by

P =
Z
R2

(λ2 − 1)
λ2 − μ2

{−λ + 2μ f j} +
ρ

R2

√
(λ2 − 1)(1 − μ2)

λ2 − μ2
cos φ{−μ + 2λ f j} (4.118)

Q =
Z
R2

(1 − μ2)
λ2 − μ2

{−μ + 2λ f j} +
ρ

R2

√
(λ2 − 1)(1 − μ2)

λ2 − μ2
cos φ{λ − 2μ f j} (4.119)

R =
ρ

R2

sin φ√
(λ2 − 1)(1 − μ2)

{λμ − 2 f j} (4.120)

and where B is given by

B =
Z
2
λμ +

ρ

2

√
(λ2 − 1)(1 − μ2) cos φ (4.121)

Now we look at the second term of (4.116). Using the appropriate transformations,
we find that this term can be written as

v2〈χl| exp(−i fl jvB){B − 〈χ j|B|χ j〉}
(

Z
R

∂ f j

∂Rr
+
ρ

R2
(−iLy′) f j

)
|χ j〉E∗l E j (4.122)

where B is given by (4.121). Now, since we also have

∂ f j

∂λ
=
∂ f j

∂μ
=
∂ f j

∂φ
= 0 (4.123)

(4.122) simplifies to

v2〈χl| exp(−i fl jvB){B − 〈χ j|B|χ j〉}
Z
R

d f j

dR
|χ j〉E∗l E j (4.124)

Adding (4.117) and (4.124) gives the complete expression for evaluating the interac-
tion matrix elements in terms of prolate spheroidal coordinates. We write the matrix
elements in the following form:

Hl j = H̃l jE
∗
l E j (4.125)

where H̃l j become the integrals from equations (4.117) and (4.124). To evaluate these
integrals, we take one term at a time. The terms of equation (4.117) involving ∂/∂λ
give

−iv
∫ ∞

1

∫ 1

−1

∫ 2π

0
ΛlMlΦl exp(−i fl jvB)

{ZR
8

(λ2 − 1)(−λ + 2μ f j)

+
ρR
8

√
(λ2 − 1)(1 − μ2) cos φ[−μ + 2λ f j]

}
dΛ j

dλ
MjΦ jdλdμdφ (4.126)
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The terms involving ∂/∂μ give

−iv
∫ ∞

1

∫ 1

−1

∫ 2π

0
ΛlMlΦl exp(−i fl jvB)

{ZR
8

(1 − μ2)(−μ + 2λ f j)

+
ρR
8

√
(λ2 − 1)(1 − μ2) cos φ[λ + 2μ f j]

}
Λ j

dMj

dμ
Φ jdλdμdφ (4.127)

The terms involving ∂/∂φ give

−iv
ρ

8

∫ ∞

1

∫ 1

−1

∫ 2π

0
ΛlMlΦl exp(−i fl jvB)

⎧⎪⎪⎨⎪⎪⎩
(λ2 − μ2)(λμ − 2 f j)√

(λ2 − 1)(1 − μ2)
sin φ

⎫⎪⎪⎬⎪⎪⎭
×ΛlMl

dΦ j

dφ
dλdμdφ (4.128)

The terms involving ∂/∂Rλμ give

−iv
ZR2

8

∫ ∞

1

∫ 1

−1

∫ 2π

0
ΛlMlΦl exp(−i fl jvB)[λ2 − μ2]Φ j

×
{

Mj
∂Λ j

∂Rλμ
+ Λ j

∂Mj

∂Rλμ

}
dλdμdφ (4.129)

The integral involved in equation (4.124) is written as

v2 ZR2

8

∫ ∞

1

∫ 1

−1

∫ 2π

0
ΛlMlΦl exp(−i fl jvB){B − 〈χ j|B|χ j〉}

×(λ2 − μ2)
d f j

dR
Λ jMjΦ jdλdμdφ (4.130)

Equations (4.126)–(4.130) give the integrals involved in calculating the interaction
matrix elements. Since we differ from low-order velocity approximations by essen-
tially retaining all orders of velocity inherent in the exp(−i fl jv · r) term, we can see
the increased computational difficulty in expressions (4.126)–(4.130). The integrals
were performed by using a nested-loop Legendre quadrature technique, where the
range of the integrals must be transformed to {−1, 1}. By using an appropriate num-
ber of subinterval divisions for each variable in the integrand, an accuracy of at least
1.0 × 10−4 was maintained.

Now consider the overlap matrix elements given by

S l j = 〈Φl|Φ j〉 (4.131)

By using the expression for Φ j given by (4.76), we find that if l = j so that fl = f j

we have that
S j j = 〈χ j|χ j〉E∗j E j = 1 (4.132)

as before. The overlap matrix elements can be written in prolate spheroidal coordi-
nates as
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S l j = 〈χ j| exp(−i fl jvB)|χ j〉E∗l E j (4.133)

where B and fl j are given as before, and by writing

S l j = S̃ l jE
∗
l E j (4.134)

we may evaluate S l j by calculating the integral

S̃ l j =
R3

8

∫ ∞

1

∫ 1

−1

∫ 2π

0
ΛlMlΦl exp{−i fl jvB}(λ2 − μ2)Λ jMjΦ jdλdμdφ (4.135)

Application, Results, and Conclusions

Having shown how to calculate the wave function, state-dependent switching func-
tions, and the interaction and overlap matrix elements, we solve the coupled equa-
tions

iSċ = Hc (4.136)

By retaining the exp(i f j(R)v · r) term in the wave function, we have a nonorthogonal
basis set and a non-Hermitian H matrix. Effectively we cannot analytically rearrange
the coupled equations. We can integrate the coupled equations numerically using
a computer program developed by Shampine and Gordon [551], which can solve
problems of the type

ċ = Ac (4.137)

Therefore we may write
A = −iS−1H (4.138)

It must be stressed that in practice the S-matrix is inverted at every time step in
the integration. The coupled equations can be integrated with the following initial
conditions:

c1(−∞) = 1

c j(−∞) = 0 ∀ j(�= 1) (4.139)

where

j = 1 ≡ H(1s)

j = 2 ≡ He+(2p1)

j = 3 ≡ He+(2s)

j = 4 ≡ He+(3p1, 3d1)

j = 5 ≡ He+(2p0) (4.140)

For the actual numerical procedure of solving the coupled equations (4.137), it is
necessary to choose Zc (+ve) such that d|c j|2/dZ is negligible for Z > Zc. We can
then integrate from Z = −Zc to Z = Zc (usually in the range 50-100 au).
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The H-matrix depends on both v and ρ, which gives us transition amplitudes also
dependent on v and ρ. The matrix elements were calculated at a mesh of 0.25 a.u., in
the velocity range 3-31 keV and for impact parameters in the range 0-10 a.u. (with
a finer mesh for small impact parameters, which are important at lower energies).
Obviously the boundary conditions become

c1(−Zc) = 1

c j(−Zc) = 0 ∀ j (4.141)

We calculate cross sections by evaluating

Q = 2π
∫ ρmax

0
Pj(ρ)ρdρ (4.142)

where
Pj(ρ) = |c j(Zc)|2 (4.143)

is the probability for a transition to a state on nucleus A or B to which j tends in the
separated-atom limit for a given impact parameter ρ (these limits are shown in figure
8 of [408]) and where ρmax was chosen to be 10 a.u. and was in practice sufficient;
because the matrix elements were relatively difficult to calculate, it was impractical
to allow ρ to vary too arbitrarily, and so ρ-values were chosen at certain intervals in
the range 0 ≤ ρ ≤ ρmax. Hence the integration was performed using Simpson’s rule.

Total Capture

The total capture cross-section results of this five-state calculation, retaining all or-
ders of velocity, are shown in figure 9 of [408]. The experimental data are the results
of Bayfield and Khayrallah [51] and Shah and Gilbody [544]. The energy range of
the calculation shown is 3−31 keV. We can see that there is excellent agreement with
the experimental data of Shah and Gilbody [544] (which have been normalized for
4He2+ energy), even in a range beyond the typical domain of low-energy collisions.

Table 4.6. Total capture cross section data. Winter and Hatton [608] – ten-molecular-state
calculation with plane-wave translation factor. Winter [602] – 15-state triple-centre basis set.
Kimura and Thorson [353] – ten-state close-coupling calculation with Bates–McCarroll trans-
lation factors. Errea et al. [246] – four-state calculation with common translation factor, using
simplified norm method. Shah and Gilbody [544] – experimental data (3He2+ renormalized for
4He2+ energy). 20 keV has been interpolated from given data

Total Capture

Energy Winter Winter KT Errea This Shah and Gilbody
(keV) (1980) (1988) (1981) (1987) calculation (1978)

3 1.49 1.43 1.51
8 6.01 5.9 6.15 6.09 6.0
20 10.8 11.1 11.23 11.48 11.01 11.09
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Table 4.7. He+(2s) production cross section data. Winter and Hatton [608] – ten-molecular-
state calculation with plane-wave translation factor. Winter [602] – 15-state triple-centre basis
set. Kimura and Thorson [353] – ten-state close-coupling calculation with Bates–McCarroll
translation factors. Errea et al. [246] – four-state calculation with common translation factor,
using simplified norm method. Shah and Gilbody [544] – experimental data (3He2+ renormal-
ized for 4He2+ energy). 20 keV has been interpolated from given data

He+(2s) Production

Energy Winter Winter KT Errea This Shah and Gilbody
(keV) (1980) (1988) (1981) (1987) calculation (1978)

3 0.397 0.51
8 1.27 1.32 1.21 1.29 0.96
20 2.37 2.17 2.18 2.51 2.05 1.44

At these higher energies we should expect terms of order v2 and above to have more
of an effect. Table 4.6 shows some comparison with other theories for some common
low energies.

At 3 keV we can see that there is general agreement among the three values
shown, while at 8 keV there is close agreement with Winter and Hatton [608] and
Kimura and Thorson [353], while the absolute difference between experiment and
the result of Winter [602] is also comparable with differences between experiment
and other theories. Using a 24-state basis, Winter obtains a value of 6.33×10−16 cm2,
which appears to have a greater error than the 15-state basis set.

At the common energy of 20 keV, there are a number of theoretical predic-
tions with which to make comparisons. We see that there is excellent agreement
between this work and the calculations of Winter [602] and the experimental results
of Shah and Gilbody [544], while the Bates–McCarroll translation factor formula-
tion of Kimura and Thorson [353] differs by only a few percent. If we look at the
results of Kimura and Thorson [353] and Errea et al. [246], we see that translation
factors become more important and that a variational approach, while hardly sacro-
sanct, provides a better framework than more common types of translation factor.
However, we may note close agreement with the 66-state CTF results of Harel et
al. [320].

He+(2s) Production

In Figure 4.4b results for He+(2s) are shown, and we can see that agreement with
the experimental data points is not so good. In fact, like the theories of Winter and
Hatton [608], Kimura and Thorson [353], Errea et al. [246], Winter [602], and Harel
et al. [320], results lie well above experiment. In Table 4.7 our five-molecular-state
He+(2s) production cross sections and other theories are presented at the impact
energies of 3.8 and 20 keV. At 3 keV there is some discrepancy between the current
result and that of Winter and Hatton, but at 8 keV agreement in the results of Winter
and Hatton [608], Kimura and Thorson [353], Winter [602], and the present results is
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very good. However, there is still some discrepancy (around 26%) with experiment.
At 20 keV there is a discrepancy of almost 30%, though our results, while in general
agreement with Winter [602] and Kimura and Thorson [353] (around 6%), do not
overestimate as much as other theories. Winter and Hatton [608] have suggested that
it is more difficult to extract this excited-state cross section if plane wave factors are
neglected. It is therefore possible that variational translation factors may result in a
better estimation, and perhaps for energies above 15 keV, and as we approach 25
keV (1 au), that terms in v of order higher than two are required. Also it may be
that the use of an atomic basis set is inappropriate in this energy range, since both
total capture and He+(2s) production are overestimated. Since there is long-range
coupling among the three states 2s, 2p0,1, this requires that the coupled equations are
integrated to a large chosen value of Zc, where, of course, Z = vt.

Fig. 4.4a. Total capture cross sections for the He2+ + H collision energy; this calculation(––),
Bayfield and Khayrallah [51] (◦), Shah and Gilbody [544] (	), Harel et al. [320](– – –)

Conclusions

We have applied variational translation factors to full order in v, to the He2+-H
charge transfer process. Agreement in the total capture was excellent, and the five-
state molecular approach is comparable to the ten-state Bates–McCarroll plane wave
translation factor formulation of Winter and Hatton [608], the triple-centre 15-state
atomic basis approach of Winter [602] and the 66-state CTF treatment of Harel et
al. [320]. Also this seems to provide a much more favourable approach than the four-
molecular-state approach using the simplified norm method with common translation
factor of Errea et al. [246]. Moreover, the employment of traveling MOs seems to
provide better agreement for He+(2s) production than other atomic orbital formula-
tions. This is not to say that further experimentation would be redundant. The varia-
tional switching functions provide a better alternative than other ad hoc approaches,
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Fig. 4.4b. Cross section for He2+ production, for 4He2+ collision energy: this calculation (––),
Bayfield and Khayrallah [51] (◦), Shah and Gilbody [544] (	), Harel et al. [320](– – –)

while retaining matrix elements to full order in v yields better agreement with ex-
periment than theories that have “averaged” to order v [589] or v2 [176], [177], at
energies beyond 15 keV where terms of order higher than v2 are expected to become
more important.

However, calculation of the variational switching functions and the accompany-
ing matrix elements becomes somewhat unwieldy and requires much greater compu-
tational effort than simply “averaging” over order v or v2. The nature of this computa-
tion could make application to much higher energies and to other ion–atom collision
systems such as (C6+-H) problematic. For order v calculations on capture in O6+-He
collisions, see Shimakura et al. [553], where the two-electron system requires use of
the pseudopotential method.

4.2.3 Traveling Atomic Orbitals

As we have seen in our discussion, molecular H+
2 and He H2+ orbitals are well suited

to low-collisional-impact energies. Excellent reviews of the measurement of slow
- and fast (nonrelativistic) energy ion–atom collisions are given by Gilbody [295],
[296], [446]; capture and ionization in slow H+, He2++He collisions [550], excitation
in He2+ + H collisions at intermediate energies [332], and charge transfer and single
and double ionization in fast He2+ + He collisions are all measured.

For intermediate to high-energy (nonrelativistic) collisions we can expect the
interactions to be comparatively fleeting and so accordingly we can expect traveling-
atomic-orbital semiclassical impact-parameter treatments to be valid, with the use of
close coupling and pseudostates.

This is a vast subject so we shall be content to mention the review of McGuire
[419] and the work of the influential groups of Bransden, of Lin and of Winter, in par-
ticular Slim et al. [564], [565], [566], Shingal and Lin [555], [556], Jain and Winter
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[339] and Winter [603], [604], [605], [606], [607]. Proceses include single and dou-
ble capture, excitation, ionization, transfer excitation, and ionization and excitation-
ionization depending on whether we have one or two active electrons. Cross sections
and (Shingal and Lin [556]) density matrices are calculated. Fritsch and Lin [279]
report that Winter uses Sturmian pseudostates.

4.3 Continuum Distorted Waves and Their Generalizations

4.3.1 Introduction

In Section 4.1 we considered traveling molecular orbitals that reduce at large times,
impact velocities, and impact parameters, to traveling atomic orbitals. However,
another dynamic molecular theory is the continuum-distorted-wave (CDW) the-
ory [112], [62], [63], [192], which describes a three-body collision involving charge
transfer, excitation, and/or ionization. It is molecular because all three Coulomb in-
teractions are treated nonperturbatively, in either the wave or the semiclassical im-
pact parameter treatment. Of course the three-body problem cannot in general be
solved exactly. The perturbation is the nonorthogonal kinetic energy comprising a
negative dipole-dipole differential operator. Thus each dipole includes radial and ro-
tational coupling in its own frame. Accordingly no singularities arise and there is
no elastic divergence [191] since the dipole-dipole operator connects all three parti-
cles ensuring a connected kernel in the integral equations. Both short- and long-range
boundary conditions are satisfied and, with the inclusion of ETFs, Galilean and gauge
invariance are guaranteed. This generalizes to Lorentz invariance, in Section 4.4. The
CDW wave functions themselves are on-(energy) shell [192]. The CDW Neumann–
Born series encapsulates [187] all of this, where it is understood that the initial and
final states in the wave treatment include the appropriate plane waves for the relative
internuclear motion.

By using generalized nonorthogonal coordinates the use of logarithmic poten-
tials is transparently avoided. One of the advantageous aspects of the early use of
CDWs in the wave treatment was that the core six-dimensional integral separated
into two three-dimensional integrals. Early doubts about CDW were dispelled when
Crothers [184], [185] showed that second-order CDW fully describes Thomas reso-
nance double scattering. However, it had also been shown [178] that the fundamen-
tal defect of bare CDW theory was that, apart from the final state in ionization, the
CDW functions were unnormalized. However even this defect it transpired could
be circumvented by a full semiclassical variational Jacobi–Sil treatment leading to
coupled equations with detailed balance, unitarity (flux conservation) and lack of
post-prior discrepancy while avoiding spurious nonlocal potentials [93], [94]. Other
advantages of CDW are that strong and intermediate-continuum coupling is automat-
ically included, and in the case of the final ionized state, the description is uniformly
two-centred while much of so-called post-collision interaction is included [179],
[110]. This is of particular importance to saddle electrons and to electron capture to
the continuum (of the projectile). Generalizations of CDW to include electron cor-
relation are: the use of Hartree–Fock–Roothan–Roeti independent electron orbitals
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[260], [471], the independent-event model [189], generalized CDW [197], complete
four-body formulation [484], and the CDW formulation (sometimes referred to as
BBK) of light-particle collisions [178]. A good introduction to CDW methods is
given in [84].

4.3.2 Charge Transfer

Simple electron capture processes are studied using an orthonormal two-state continuum-
distorted-wave (CDW) basis. The suitability of the basis set is tested by comparing
predictions for total and differential cross sections with available experimental data.
Overall good agreement is obtained, and it is concluded that a relatively small CDW
basis set may be suitable to model a wide variety of low-energy collisions if the
members of this extended set are astutely chosen.

Charge-transfer processes are of fundamental interest to physicists studying a
wide range of phenomena in astrophysics, where the displacement of electrons ef-
fects the behavior of all interstellar gases [154], and to plasma physics where edge
effects, in part due to electron transfer, have detrimental consequences on the process
of thermonuclear fusion [398]. Concurrent improvement in the accuracy of detection
methods, like photon emission spectroscopy (PES) and translational energy spec-
troscopy (TES), has allowed charge transfer to be studied at the lowest impact ener-
gies leading to a wealth of experimental data being available. Unfortunately the de-
velopment of theoretical models has not advanced at the same pace, and while mod-
els exist that can produce reliable cross sections for charge transfer at moderate and
high energies there is little consensus at impact energies below 1 keV amu−1 [586].

The purpose of this discussion is to assess the suitability of a continuum-
distorted-wave based model to study charge transfer. As already discussed, the ad-
vantages of this treatment are many-fold. A fully orthogonal and normalized CDW
basis set is used when deriving the appropriate coupled equations. This feature en-
sures that probability is conserved throughout the collision and that estimates for
cross sections remain sensible regardless of the impact velocity.

First we consider resonant collisions where the entrance and exit channels of the
active electron are both 1s states and the transfer of the electron leaves the binding
energy of the electron unchanged. This transfer process should be dominant during
the collision, and the coupling between the entrance and exit channels will be much
stronger than in any other reaction path. Hence a two-state approximation should be
valid and any error in the results can be attributed to the use of a CDW basis set
rather than to the truncation of the total wave function to two terms.

In the semiclassical straight-line impact parameter representation the initial-(i)
and final-( f ) state wave functions:
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ψi(r, t) = N(νP)ϕi(rT) exp(−iεit −
iv · r

2
− iv2t

8
)

×1F1(iνP; 1; i(vrP + v · rP))(vR − v2t)
iZT ZP

v (4.144)

ψ f (r, t) = N∗(νT )ϕ f (rP) exp(−iε f t +
iv · r

2
− iv2t

8
)

×1F1(−iνT ; 1;−i(vrT + v · rT))(vR + v2t)
−iZT ZP

v (4.145)

are used to construct a fully orthogonal basis set to describe the collision:

PZP+ + T (ZT−1)+(1s)→ P(ZP−1)+(nl) + T ZT + (4.146)

where ϕi and ϕ f are representations of the motion of the single electron present
in the appropriate undisturbed state and the remaining variables are defined in
Crothers [178]. In a two-state approximation the total wave function for this col-
lision can be written as:

Ψ (r, t) = ci(ρ, t)ψ̂i + c f (ρ, t)ψ̂ f (4.147)

where:

ψ̂i =
ψi√
〈ψi|ψi〉

(4.148)

ψ̂ f = a(ρ, t)ψi + b(ρ, t)ψ f (4.149)

a(ρ, t) =
−si f

√
sii

√
sii s f f − si f s f i

(4.150)

b(ρ, t) =

√
sii

sii s f f − si f s f i

(4.151)

s jk(ρ, t) = 〈ψ j|ψk〉 (4.152)

sk j(ρ, t) = s jk(ρ, t)∗ (4.153)

〈ψ̂ j|ψ̂k〉 = δ jk (4.154)

Defining

H = −1
2
∇2

r −
ZT

rT
− ZP

rP
+

ZPZT

R
, (4.155)

and applying the variational principle of Sil [560],

δ

+∞∫

−∞

dt〈Ψ (r, t)|H − i
d
dt
|Ψ (r, t)〉 = 0 (4.156)

to the coefficients ci(ρ, t) and c f (ρ, t), it can be deduced that the coupled equations
governing the system are:
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i
d
dt

ci(ρ, t) = ci(ρ, t)
〈
ψ̂i

∣∣∣(H − i
d
dt

)
∣∣∣ψ̂i

〉

+ c f (ρ, t)
〈
ψ̂i

∣∣∣(H − i
d
dt

)
∣∣∣ψ̂ f

〉
(4.157)

i
d
dt

c f (ρ, t) = ci(ρ, t)
〈
ψ̂ f

∣∣∣(H − i
d
dt

)
∣∣∣ψ̂i

〉

+ c f (ρ, t)
〈
ψ̂ f

∣∣∣(H − i
d
dt

)
∣∣∣ψ̂ f

〉
(4.158)

which is a result identical to one obtained by a second-order Euler–Lagrange method.
In order to solve the coupled equations it is necessary to evaluate the matrix

elements:

s jk(ρ, t) = 〈ψ j|ψk〉 (4.159)

and

h jk(ρ, t) = 〈ψ j|(H − i
d
dt

)|ψk〉 (4.160)

This is done by treating rP, rT, and t as generalized nonorthogonal coordinates in a
manner similar to the method used in Crothers [178]. As the entrance and exit chan-
nels in this discussion are both 1s states, the matrix element h1s−1s

f i (ρ, t) is evaluated

here explicitly with the evaluation of the elements S 1s−1s
i f (ρ, t) and h1s−1s

i f (ρ, t) be-
ing achieved using the standard Nordsieck integral [461]. If q is expressed in terms
of cylindrical polar coordinates the angular dependence is contained entirely in the
exponential term and thus one integration can be performed analytically and the re-
sulting function is independent of the orientation of the vector ρ. Unfortunately the
matrix elements s1s−1s

j j (ρ, t) and h1s−1s
kk (ρ, t) do not lend themselves to calculation via a

Fourier transform and are most efficiently evaluated as they stand, using a parabolic
coordinate system with the origin chosen so that the number of evaluations of the
Kummer function is minimized. These integrals could be reduced to a lower dimen-
sion but the method is tedious and does not give any significant advantage numeri-
cally. The remaining quantities required can be deduced using Hermiticity.

The probability amplitude associated with electron capture to the state ψ f at im-
pact parameter ρ is defined as c f (ρ, t = +∞). The capture probability |c f (ρ, t = +∞)|2
will be independent of the orientation of the collision plane with respect to any fixed
plane including the incident polar axis and the cross section σ, for capture to this
state is simply defined as:

σ = 2π

∞∫

0

ρ|c f (ρ, t = +∞)|2dρ (4.161)

It should be noted that the total cross section for capture is independent of the term
ZPZT/R, which could have been removed from equation (4.155) by means of a simple
transformation. Consequently the phase factors (vR−v2t)iZT ZP/v and (vR+v2t)−iZT ZP/v

could have been omitted from ψir, t) and ψ f (r, t).
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In ion–atom collisions many important quantities need to be measured in or-
der to accurately compare experimental data and theoretical predictions. The more
quantities that can be measured the more stringent a test may be placed upon the the-
oretical predictions and thus assess their suitability at describing a particular physical
situation. Otherwise the unmeasured quantities must be integrated over all possible
values and possibly mask important insights and hinder understanding of the asso-
ciated problem. For this reason, predictions of differential cross sections are much
more useful than that of total cross sections. The differential cross section dσ/dΩ
in the straight-line impact parameter formulation is calculated from McCarroll and
Salin [415] and is defined by (4.38).

The preceding theory, now called CDW2S, is applied to two of the most basic
resonant charge-transfer processes: first to electron capture between atomic hydrogen
and a proton and second to a collision between a singly charged helium ion and a
helium atom. In the first collision the total cross section, σT , has been estimated
using the n−3 scaling law [466]:

σT ≈ 1.202σ1s→1s (4.162)

The second collision, involving the helium nuclei, presents the dilemma of how to
model the motion of the electrons present. As CDW2S is not yet sufficiently ver-
satile to account for the motion of two electrons simultaneously the helium atom
(ion) is approximated using a hydrogen-like atom (ion) with an appropriately chosen
charge. This charge is chosen using a variational principle so that the energy levels
of the electron in the replacement system and that in the helium atom coincide. In
both cases a multiplying factor is used to account for the fact that two electrons are
available for capture.

The differential cross sections as a function of laboratory scattering angle are
shown in Figures 4.5a and 4.5b at impact energies of 25 and 60 keV, respectively,
along with the appropriate estimates of Martin et al. [402].

Generally, accord with experimental values for σT is good with the CDW2S the-
ory differing by no more than 10% over the energy range considered, and it is noted
that the use of an orthonormal basis set has resulted in the estimates remaining real-
istic regardless of impact energy in contrast to previous CDW-based models where
lack of unitarity results in severely excessive cross sections as the impact velocity
decreases.

A more rigorous test of the theory is provided by comparing estimates for differ-
ential cross sections with experimental values. In this respect agreement is excellent
at energies of 25 and 60 keV, especially at the smaller scattering angles, and though
the level of accuracy does decrease as θ increases, the CDW2S estimates do fall off

at a rate comparable to experiment. Thus in relation to this collision it is concluded
that most of the physics of the problem has been included in the theory.

The CDW2S method described here is a definite improvement over many of the
other existing models for studying charge transfer [585] at lower collision energies
where results are in excellent agreement with experiment. The implementation of
the model is relatively easy, providing reliable cross sections in relation to experi-
ment over a wide range of collision energies. As the original CDW states become
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Fig. 4.5a. Differential cross sections dσT /dΩ measured in the center of mass frame, at an
impact energy of 25keV for electron capture by H+ from H(1s). Theory; solid line: CDW2S
(this work). Experiment: circles: Martin et al. [402]
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Fig. 4.5b. Total differential cross sections dσ/dΩ measured in the center of mass frame, at an
impact energy of 60keV for electron capture by H+ from H(1s). Theory; solid line: CDW2S
(this work). Experiment; circles: Martin et al. [402]
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orthonormal as v → ∞ the quantity ṡi f becomes negligible at high impact ener-
gies. Unsurprisingly then the CDW2S approximation concurs with the unnormalized
CDW theory of Cheshire [112] and the previously proven symmetrized variational
CDW theory of Brown and Crothers [93] at collision energies above 70 keV. At very
low energies there is good accord with the Firsov approximation [268], [150].

Overall, the following inferences are drawn from the study. First a CDW-based
model will provide accurate cross sections only if all the dominant exit channels are
explicitly included in the calculation. Thus to successfully model electron transfer
between multiply charged ions it may be necessary to extend the basis set to include
all the states whose energy levels lie in close proximity to that of the entrance chan-
nel. Without this refinement the model will fail regardless of the type of basis set
used. The most notable feature of the model presented is that it adheres to the law
of probability conservation at all times. Previous CDW-based models have ignored
the fact that in general the appropriate CDW functions are neither orthogonal nor
normalized. While it may be valid to disregard this fact at moderate- to high-impact
energies the effect of this assumption becomes more pronounced as the energy de-
creases. This may lead to excessively large cross sections, like those in Crothers and
Dunseath [188], and to unexpected features in the differential cross sections [64].
Thus the use of a fully orthonormal basis set is an essential component in any low-
energy CDW approximation.

In conclusion, CDW2S [82] represents a sound platform on which to base future
research. CDW (2S) is a dynamic molecular theory [346], [347] in which the equiv-
alent of PSS radial and rotational coupling is the proverbial dipole–dipole coupling.

However, for the system

H+ + H(1s)→ H(1s,2s,2p) + H+ (4.163)

a basis set (CDW4S) of dimension 4, consisting of the ground states of both heavy
particles as well as the 2s and 2p states of the projectile, is used [83]. An adaptive
Runge–Kutta fifth order method is employed to solve the appropriate coupled equa-
tions with the stability of the method tested by comparing results when the relevant
tolerances are increased by one order of magnitude. To illustrate the fact that the
n = 2 capture channels have relatively little influence on the overall capture cross
section the capture profiles for this calculation and from an identical method using
only the ground states of both charge centres, at 16keV, is shown in Figure (4.6a).
Clearly the introduction of the extra states has had little effect, and this demonstrates
the fact that the coupling between the two ground states is the dominant process
throughout this collision.

Figure (4.6b) shows the total capture cross section predicted by this theory for
the collision given by equation (4.163) compared with the experimental values from
Janev and Smith [341] and the theoretical results from a unitarized traveling atomic
orbital (UTAO) expansion due to McCarroll [412]. Unsurprisingly the accord is ex-
cellent with this theory and experiment, differing by no more than 15% over the
energy range considered. Although not shown, the resonant capture cross sections
from this theory trivially converge to other CDW, possibly unnormalized, models
e.g., Belkić [61] at impact energies above 100 keV amu−1, due to the fact that the
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Fig. 4.6a. Weighted probability of electron capture, ρP(ρ), against impact parameter, ρ at 16
keV for resonant electron capture during p − H collisions. Dot-dashed line: CDW4S approxi-
mation (this work); dashed line: 2-state CDW approximation
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Fig. 4.6b. Total cross section for electron capture from the ground state of the target during
p − H collisions. solid line: CDW4S approximation (this work); diamonds: UTAO expansion
from McCarroll [412]; dashed line: experiment (Janev and Smith [341])

wave descriptions are inherently orthogonal as v → ∞, a region in which the quan-
tity d/dt 〈ψ j

∣∣∣ψk
〉

becomes negligible. At high energies the agreement of this and other
CDW models with experimental total cross sections is not found in most of the AO
expansions (e.g., [412]). These methods consistently overestimate total capture cross
sections as the velocity of the projectile increases, due to charge transfer essentially
only occurring at small impact parameters and the single-centre nature of the basis
set used.
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Fig. 4.7a. Cross section for electron capture to the 2s state of the projectile from the ground
state of the target during p−H collisions. Solid line: CDW4S approximation (this work); dot-
dashed line: SVCDW of Brown and Crothers [94]; dashed line: experiment (Janev and Smith
[341])

In Figures (4.7a) and (4.7b) the partial cross sections for electron capture to the
2s and 2p states respectively are shown. Reliable prediction of these quantities is a
much more intricate task due to the fact that these processes are overshadowed by
the resonant 1sT ↔ 1sP transition channel. However, the approximation performs
adequately at the lower energies, while falling off in accordance with the experimen-
tal values of Janev and Smith [341] as the impact energy becomes large. At first
glance it can be seen that the results of Brown and Crothers [94] do not compare as
favourably to the experimental results of Janev and Smith [341] at impact energies
above 50 keV amu−1 as those from the CDW4S ansatz presented here, even though
Brown and Crothers [94] have included twice as many channels in their calculation.
Had this approximation been able to utilize a similarly sized basis set it would have
been expected that the corresponding results would move closer to experiment, es-
pecially at lower impact energies. It is surprising that agreement between the two
CDW capture theories is not better at intermediate- and high-impact energies when
considering nonresonant electron capture, but this may be how the discontinuity in
the wave functions at the point of closest approach manifests itself in the SVCDW
calculation. Unfortunately these n = 2 cross sections are generally too large, espe-
cially at lower impact velocities. This cannot be attributed to the use of a straight-line
path for the trajectory of the incoming projectile as previous experiments by Hill et
al. [326] have shown that the use of equivelocity hydrogen isotopes has little effect
on capture cross sections at the energies considered. A more plausible explanation
may be the fact that the possibility of electron excitation from the ground state of
the target has been excluded. The electron is confined to the n = 1 state of the tar-
get, increasing the possibility of charge transfer when in physical reality excitation
may be a distinct possibility. This is reinforced by the fact that a detailed study of
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Fig. 4.7b. Cross section for electron capture to the 2p state of the projectile from the ground
state of the target during p−H collisions. Solid line: CDW4S approximation (this work); dot-
dashed line: SVCDW of Brown and Crothers [94]; dashed line: experiment (Janev and Smith
[341])

the collision at an individual impact parameter suggests that the electron does not
arrive at the n = 2 states of the projectile directly but that the nonresonant states are
populated predominantly by excitation from the ground state of the projectile. The
architecture of the basis set has allowed the electron freedom to move between all
bound states included and indeed certain virtual ionized states. In agreement with
Brown and Crothers [94] it is observed that, at the velocities considered, the n = 2
states contribute more than 12% of the total cross section for the capture process. To
highlight how the basis set has affected the calculation it is noted that the intrinsic
orthonormality has resulted in the quantity

∑
states
|ci(ρ, t)|2 deviating by no more than

1 × 10−4 from unity at all times and impact parameters. Hence the difficulties as-
sociated with the fact that certain matrix elements, e.g., s1s1s(ρ, t), may diverge as
t → +∞ and v→ 0 are overcome.

In conclusion, before highlighting the reasons for the present theory’s success
it is prudent to point out the aspects of the approximation that the authors find un-
satisfactory. The most obvious deficiency is the lack of target-centred excited states
used in the basis set. The homonuclear collision studied is highly symmetric, and it
would have been advantageous to use a trial wave function that reflected this fact.
Second the degeneracy associated with incoming and outgoing distorted waves was
largely ignored in this calculation. In both cases the result has been a basis set that
is not as complete as might have been desired. Unfortunately both assumptions were
necessary to enable a calculation to be performed in a reasonable time and with the
available resources.

On the positive side the theory has successfully modeled the underlying features
of a quantum mechanical system accurately without having to numerically integrate
large-scale coupled equations. Rather than including a large number of atomic or-
bitals and pseudostates, this approximation has used CDWs to construct a basis set
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that includes the desirable features of orthonormality, gauge invariance, and Galilean
invariance. Furthermore the set is not biased toward either of the Coulomb potentials
generated by the heavy bodies present, but rather treats both in unison. Hence the ba-
sis set is connected and the associated perturbation on the system, namely −∇rT .∇rP ,
simultaneously depends on the position of the electron with respect to both the target
and projectile.

Thus while the basis still has its deficiencies, the dynamic nature of its elements
has ensured a trial wave function sufficiently versatile to model the atomic behaviour
of the collision at high energies and to adapt to the ever–increasing molecular char-
acter of the process as the impact velocity decreases. As a result, the theory could
be viewed as a hybrid of atomic and molecular theories incorporating the advantages
of both formulations into a more complete quantum approximation and the authors
surmise that the essential criterion for a basis set should be the ability of the elements
to adapt in a manner so that at any particular instance the coupled equations reflect
the environment in which the electron is predominantly situated. This is contrary to
the underlying principle of other expansions where the suitability of a basis set is as-
sessed according to its ability to span the model space of the electron; the manner in
which our basis has been constructed has much in common with the basis generator
method suggested previously by Kroneisen et al. [370]. Furthermore our theory does,
to a certain extent, include the effect of ionization as the distorted waves describe an
electron bound to one nucleus while also moving in the continuum of the other one.
To conclude, the multistate approximation considered is still a work in progress but
it has demonstrated the fact that it may be possible to model a variety of ion–atom
collisions accurately with a relatively small CDW basis set. The theory could be
extended in a variety of directions; a simple adaptation would allow electron exci-
tation to be studied. However, future work is mainly concerned with its application
to charge transfer during heteronuclear collisions and may offer advantages over the
methods of Section 4.2.

4.3.3 Ionization

Total cross sections are calculated for the ionization of a hydrogen atom by multi-
charged fully stripped ions in the 20-1000 keV amu−1 impact-energy range. Distor-
tion is accounted for in the entrance channel (via the eikonal approximation) and in
the exit channel (via the continuum-distorted-wave approximation). The transition
amplitude is calculated in the post form so that the electronic nonorthogonal kinetic
energy is treated as the perturbation. It is concluded that of the currently available
models this theory is the most successful and versatile over a considerable range of
energies and charges. Specifically for ionization of a hydrogen atom by 50 keV pro-
tons we present doubly differential cross sections for electrons ejected in the forward
direction and singly differential cross sections as a function of emission energy. The
question of cusps and peaks in the differential cross sections is considered, as is the
question of charge scaling of the total cross section.

Over the years there has been intensive study, both experimental and theoretical,
of the processes resulting from the impact of multicharged ions with hydrogenic
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target atoms, a primary motivation being the wide-ranging applications within the
fusion energy program. It is important to assess which reactions are significant and
to calculate their effects upon the plasma. Of particular interest is the problem of
ionization of neutral hydrogen atoms by highly charged ions, namely

BZ+ + H(1s)→ BZ+ + H+ + e− (4.164)

Such reactions occur in the supplementary heating of the plasma when the highly
stripped impurities present interact with the injected neutral beam of hydrogen. The
relevant energy range of these collisions is 10-200 keV amu−1. To predict the cross
section accurately in this energy regime we must improve upon the simple first-order
weak-perturbation theories. For an adequate description we must include second-
order effects. The need for such a refinement is evidenced in recent reviews of theory
[417], [526] and experiment [547].

The evidence indicates that although there is a consensus at high energies, where
all the results conform to the first Born (B1) approximation [41], there is marked
disagreement below 200 keV u−1. Of the various theories presented, the most consis-
tently successful over a wide range of values, for both impact energy and ion charge,
has been the Glauber approximation [302], [303] and to a lesser extent the classical
trajectory Monte Carlo (CTMC) method [474]. We propose a theoretical model of
the process

BZ3+ + A(Z1−1)+ → BZ3+ + AZ1+ + e− (4.165)

which includes second-order refinements, and we describe its relation to the other
theories. In this respect the model can be viewed as a hybrid of the eikonal approxi-
mation and the continuum-distorted-wave approximation.

In previous work [62] the CDW theory has been derived using the distorted-
wave formalism [227], [292] and the equivalent impact-parameter model [112]. In
this presentation we adopt the semiclassical impact parameter (ρ) time(t)-dependent
treatment and develop the theory using the formalism of Crothers [178].

We make the two-state approximation and assume that direct coupling to ex-
citation and transfer channels is negligible along with all explicit bound-state and
continuum intermediate coupling. The initial and final states Ψi, f are asymptotically
(t → ±∞) correct distorted-wave solutions of the Schrödinger equation:

(
He − i

∂

∂tr

)
Ψ = 0 (4.166)

Numbering the particles, target (1), electron (2), and projectile (3) we define

x = r2 − r1 s = r2 − r3

R = r3 − r1 = ρ − vt r =
1
2

(x + s) (4.167)

Then the electronic Hamiltonian is given by

He = −1
2
∇2

r −
Z3

s
− Z1

x
+

Z1Z3

R
(4.168)
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Furthermore if we neglect back-coupling, nonorthogonality, and distortion of the
distorted waves [179], the transition amplitude in the post form is

ai f (ρ) = −i
∫ +∞

−∞
dt 〈Ψ (+)

i

∣∣∣∣∣He − i
∂

∂tr

∣∣∣∣∣Ψ (−)
f 〉 (4.169)

In the B1 and Glauber approximations the chosen final state [404] is not an asymp-
totically correct solution of (4.166) but is given by

B1Ψ (−)
f =(2π)−3/2 exp

(
iK · x − 1

2
iv · r − 1

8
iv2t − iEKt

)
(4.170)

× N∗(Z1/K)11F1(−iZ1/K;−iKx − iK · x) (4.171)

where

EK =
1
2

K2 N(η) = exp(
1
2
πη)Γ(1 − iη) (4.172)

This represents, asymptotically, a Coulomb distorted plane wave with wave vec-
tor K, plus a distorted ingoing spherical wave. In this approximation the scattered
projectile is regarded as a perturbing influence as may be seen from the relation

(
He − i

∂

∂tr

)
B1Ψ (−)

f =

(
−Z3

s

)
B1Ψ (−)

f (4.173)

The treatment of Z3/s as a perturbation is clearly unacceptable if either s is small or
Z3 is large or both. Therefore B1 is not a satisfactory physical representation when
the charge of the projectile is large and/or the ejected electron is scattered in the
forward direction close to the projectile, i.e., K � v. Consequently B1 theory fails
to predict accurate differential cross sections. This region of the electron spectrum
gives important contributions to the total cross section at intermediate energies. At-
tempts to correct this fault by centering the continuum states on the projectile are
self-defeating and inevitably fail to reproduce the correct high-energy B1 total cross
section [526].

Our chosen final state, unlike the B1 choice, satisfies the correct boundary con-
dition

Ψ (−)
f
∼

t→+∞
x→∞
s→∞

(2π)−3/2 exp

(
iK · x − 1

2
iv · r − 1

8
iv2t − iEKt

)

× exp

(
iZ1

K
ln(Kx + K · x) +

iZ3

p
ln(ps + p · s) − iZ1Z3

v
ln(vR + v · R)

) (4.174)

where ρ = K − v is the momentum of the electron relative to the projectile. We
introduce the distorted wave function

Ψ (−)
f = B1Ψ (−)

f F f (4.175)
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and transform the operator of equation (4.166) using the generalized nonorthogonal
coordinate system (x, s, t) [178] to obtain

He − i
∂

∂tr
= −1

2
∇2

x −∇x ·∇s −
1
2
∇2

s −
Z1

x
− Z3

s
+

Z1Z3

R
− i

(
∂

∂t

)
x,s
− 1

2
iv ·∇x +

1
2

iv ·∇s

(4.176)
Since we have (

−1
2
∇2

x −
Z1

x
− i

∂

∂tx
− 1

2
iv · ∇x

)
B1Ψ (−)

f = 0 (4.177)

it follows that

B1Ψ (−)
f

(
−1

2
∇2

s −
Z3

s
+

Z1Z3

R
− i

∂

∂ts
− ip · ∇s

)
F f

= B1Ψ (−)
f

[
∇x ln 1F1(−iZ1/K; 1;−iKx − iK · x)∇sF f

]
(4.178)

Neglecting the nonorthogonal kinetic energy on the right-hand side we get an ap-
proximation to F f , denoted by χ f , which satisfies

(
−1

2
∇2

s −
Z3

s
+

Z1Z3

R
− i

∂

∂ts
− ip · ∇s

)
χ f = 0 (4.179)

and has the solution, consistent with the restriction (4.174),

χ f = exp
(
−i

Z1Z3

v
ln(vR + v · R)

)
N∗

(
Z3

p

)
1F1

(
−i

Z3

p
; 1;−ips − ip · s

)
(4.180)

It follows that since the CDW theory treats the nonorthogonal kinetic energy as
the perturbation, the CDW final state is given [62] by

CDWΨ (−)
f = B1Ψ (−)

f χ f (4.181)

with the property
(
He − i

∂

∂tr

)
CDWΨ (−)

f = −∇s ln 1F1(−iζ; 1;−ips − ip · s)

·∇x ln 1F1(−iξ; 1;−iKx − iK · x)CDWΨ (−)
f (4.182)

where we define
ζ = Z3/p ξ = Z1/K (4.183)

Furthermore we have that

iK · x − 1
2

iv · r − 1
2

iK2t − 1
8

iv2t = ip · s +
1
2

iv · r − 1
2

ip2t − 1
8

iv2t + iρ ·K (4.184)

The final term on the right hand side contributes a ρ-dependent phase to the state
function, which does not affect the cross-section differential with respect to the elec-
tron parameters and thus may be ignored. On inspection of the form of CDWΨ (−)

f , it
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is apparent that the chosen final state does not discriminate between the nuclei, A
and B, nor between which contributes the “pure continuum wave” and which the
“distorted wave.” Thus the centres A and B are treated on an equal footing in this
theory. Furthermore it completely accounts for the “capture to continuum states” and
“direct ionization” processes and establishes that there are not in reality two distinct
processes and that they should not be treated as such.

The initial state has beeen represented in several different ways, the plane-wave
Born approximation [41], the distorted-wave Born approximation [526], the Glauber
approximation [301], and the continuum-distorted-wave approximation [112], [62].
Of these models, the best convergence with experimental data had up to then been
obtained using the Glauber approximation. In view of the excellent physical pic-
ture given by CDW for the final state, it is perhaps surprising that previous CDW
calculations [62] give results that are in worse agreement with experiment than the
simple B1 theory. The reason for this failure is simply that the original CDW initial-
state ansatz is not properly normalized [178]. Calculations assessing the effect of the
renormalization in the intermediate energy range have been made [179] in connec-
tion with charge-transfer studies. The corrections substantially improve the agree-
ment with experimental work. For the B1 approximation we have

B1Ψ (+)
i = ϕi(x) exp

(
−1

2
iv · r − 1

8
iv2t − iεit

)
(4.185)

as a solution to the equation
(
−1

2
∇2

r −
Z1

x
− i

∂

∂tr

)
B1Ψ (+)

i = 0 (4.186)

where ϕi(x) is the normalised initial bound-state wave function with eigenenergy

εi = −1
2

Z2
1 (4.187)

The inclusion of a distortion factor Fi(s, t) gives, from (4.176) and (4.186),

B1Ψ (+)
i

(
−1

2
∇2

s −
Z3

s
+

Z1Z3

R
− i

∂

∂ts
+ iv · ∇s

)
Fi = B1Ψ (+)

i (∇x lnϕi(x) · ∇sFi)

(4.188)
Imposing the correct Coulombic boundary condition

Ψi ∼
t→−∞

B1Ψ (+)
i exp

(
i
Z1Z3

v
ln(vR − v · R) − i

Z3

v
ln(vs + v · s)

)
(4.189)

and neglecting the right hand side of (4.188), we obtain a zero-order solution to Fi,
namely

Fi � χi ≡ exp
(
i
Z1Z3

v
ln(vR − v · R)

)
N(ν)1F1(iν; 1; ivs + iv · s) (4.190)
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where we have
ν = Z3/v (4.191)

This is the CDW approximation [112]. Then the appropriate initial state [178] is

CDWNΨ (+)
i =

(
S ++

ii
)−1/2 CDWΨ (+)

i (4.192)

where we have
CDWΨ (+)

i = B1Ψ (+)
i χi (4.193)

and
S ++

ii = 〈CDWΨ (+)
i

∣∣∣CDWΨ (+)
i 〉 (4.194)

This ideal ansatz includes contributions from projectile-electron continuum in-
termediate states. Unfortunately calculations that retain the dependence of S ++

ii on
ρ and t are computationally expensive. However, a comparatively simple approxi-
mation to the initial state results from the adoption of the asymptotic development
of CDWNΨ (+)

i , namely (4.189), which is valid for |vs + v · s| � 1. This approxi-
mates (4.192) for sufficiently large v and ρ. The associated initial state is equivalent
to that obtained by means of the eikonal approximation used in previous calcula-
tions [417]. It follows directly from (4.188) if, in addition to the right hand side, the
term −1/2∇2

sFi is neglected, which is reasonable under certain restrictions. Firstly
the translational kinetic energy of the electron (1/2 v2) must greatly exceed the in-
teraction (Z1Z3/R − Z3/s). Second the diffractive components of the term must be
negligible within the transition region. In particular we note that the equation ob-
tained, (

Z1Z3

R
− Z3

s
− i

∂

∂ts
+ iv · ∇s

)
Eχi = 0 (4.195)

integrates exactly to give

Eχi = exp
(
i
Z1Z3

v
ln(vR − v · R) − i

Z3

v
ln(vs + v · s)

)
(4.196)

We have thus obtained the eikonal initial-state (EIS) approximation

EISΨ (+)
i = B1Ψ (+)

i
Eχi (4.197)

where the component factors are given by (4.185) and (4.196).
A loose validity criterion, for target hydrogen atoms (Z1 = 1), may be derived

as v2 � Z3. At high energies this reduces to the usual B1 condition. In the cal-
culation of transition probabilities using (4.169), if B1Ψ (+)

i is chosen as the initial
state and CDWΨ (−)

f as the final state then we arrive at the “distorted-wave Born”
(DWB) approximation of Belkić [62]. This is also termed the modified Vainshtein–
Presnyakov–Sobelman (MVPS) approximation [291] and may be considered as an
extension of the continuum intermediate states (CIS) model of charge exchange [61].
An alternative choice of states, namely EISΨ (+)

i and B1Ψ (−)
f , gives the eikonal (unre-

stricted Glauber) approximation. In the following calculation we have selected the
states EISΨ (+)

i and CDWΨ (−)
f so that distortion is accounted for in both entrance and
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exit channels. Moreover, the initial state EISΨ (+)
i is normalized at all times and all

impact parameters, and although we do not explicitly include any continuum inter-
mediate states we do include multiple scattering terms. On the other hand CDWΨ (−)

f
is only approximately normalized at finite ρ and t, and indeed the CDW states of
different K are only quasiorthogonal because they are not exact eigenfunctions of
the total electronic Hamiltonian. Nevertheless as a good approximation we assume
that the final states are orthonormal and uncoupled, an exact approximation at infi-
nite internuclear separation. Actually a continuum state such as CDWΨ (−)

f can only
be normalized when both x and s tend to +∞. Nonorthogonality of the initial and
final states is in principle more troublesome [179] but in fact is less of a problem for
ionization than for charge transfer.

Denoting the total ionization cross section by Q, the triply differential cross sec-
tion, σ(K), is given by integration over all projectile impact parameters as

dQ
dτK

= σ(K) =

∫
dρ

∣∣∣ai f (ρ)
∣∣∣2 (4.198)

Defining
ai f (ρ) = i(ρv)2iZ1Z3/vãi f (ρ) (4.199)

and introducing the two-dimensional Fourier transform

R(η) =
1

2π

∫
dη exp(iη · ρ)ãi f (ρ) (4.200)

where
η · v̂ = 0 (4.201)

then we have, by Parseval’s theorem,

σ(K) =

∫
dη|R(η)|2 (4.202)

From equations (4.169), (4.182), and (4.197), it follows that

ã∗i f (ρ) =
N(ζ)N(ξ)
(2π)3/2

∫ +∞

−∞
dt

∫
dr exp ((iΔε)t − iK · x)ϕi(x)

×∇x 1F1(iξ; 1; iKx + iK · x)

× exp(−iν ln(vs + v · s)) · ∇s 1F1(iζ; 1; ips + ip · s) (4.203)

where we have

Δε =
1
2

(K2 + Z2
1) (4.204)

So, from equations (4.200) and (4.202), we get

σ(K) = a2
0 |N(ζ)N(ν)|2

∫ ∞

Δε/v
2πq dq A |2F1(iν, iζ; 1; z) − iνΩ

× 2F1(iν + 1, iζ + 1; 2; z)|2
∣∣∣B1R(η)

∣∣∣2 (4.205)
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The symbols are defined as follows

q = −η − Δε
v

v̂ (4.206)

A = exp(−2πν) (4.207)

α =
1
2

q2 β = −Δε (4.208)

γ =
1
2

[
Z2

1 + (q + K)2
]

δ = p · v − pv − Δε (4.209)

z = 1 − (αδ/βγ) (4.210)

B = q · [q + K(1 + iξ)
]

(4.211)

C = (v/p)
[
K · q + K2(1 + iξ)

]
+(1 + v/p)

[
Δε − v ·K(1 + iξ)

]
(4.212)

Ω = α(Bδ + γC)/(γβB) (4.213)

and

∣∣∣B1R(η)
∣∣∣2 =

⎛⎜⎜⎜⎜⎝27Z5
1Z2

3

π2v2q4

⎞⎟⎟⎟⎟⎠ |N(ξ)|2 exp

⎡⎢⎢⎢⎢⎣−2ξ tan−1

⎛⎜⎜⎜⎜⎝ 2Z1K

q2 + Z2
1 − K2

⎞⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎦

×

[
(q2 + q ·K)2 + (q ·K)2ξ2

]
[
Z2

1 + (q + K)2
] [

Z2
1 + (q − K)2

] [
Z2

1 + (q + K)2
]4

(4.214)

As in the pure CDW theory of Belkić [62], a2
0

∣∣∣B1R(η)
∣∣∣2 dη denotes the result of the

B1 approximation, the remaining factors being the effect of distortion. As v → ∞
their influence is negligible and the asymptotic high energy limit of the theory is the
B1 approximation. Ionization is a predominantly single-scattering process at high
energy in contrast to charge transfer for which the double-scattering term is more
effective [231].

We take the opportunity to correct some misprints in published expressions for C

and
∣∣∣B1R(η)

∣∣∣2 but note that other quantities such as A and z take a different algebraic
form in the CDW-EIS theory as against the pure CDW theory. Calculations were per-
formed for total cross sections and for singly and doubly differential cross sections.
Specifically, for the prototypical reaction,

H+ + H(1s)→ H+ + H+ + e− (4.215)

some differential cross sections are displayed as an illustration of the model predic-
tions. Results for B1, DWB, and CDW were calculated in addition to the CDW-EIS
values. Finally we compare the various theoretical and experimental results for total
hydrogen atom ionization cross sections for H+, He2+, Li3+, Be4+, and C6+ projec-
tiles.

The doubly differential cross section (DDCS) is given by the formula

d2Q
dEKd(cos θ)

= K
∫ 2π

0
dφσ(K) (4.216)
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where θ and φ are, respectively, the polar and azimuthal angles of the wave vector K
with respect to the polar axis v̂ and the collision plane. From the DDCS we can get a
clear physical picture of the process in terms of the angular and energy distributions
of the ejected electrons. The linear scaling procedure

σH(K) =
1
2
σH2 (K) (4.217)

is seriously in doubt, so comparison with experiment is given later. Details of such
work have been published by various authors (Belkić [62], Rødbro and Ander-
sen [514], Ryufuku [526]). The forward-scattering (θ = 0) cross section is presented
in Figure 4.8a for 50 keV proton impact. The now familiar cusp occurring at K = v
features prominently and results from the singular behaviour of the factor |N(ζ)|2. To
be precise, for vanishingly small p, the hypergeometric functions of the integrand
tend to the confluent form and so the curve is singular like p−1, in agreement with
the DWB and second Born (B2) results [223]. However, the curve is not symmetri-
cal about the singularity, showing a much steeper decay for K > v than for K < v.
The asymmetry arises in the fourth argument of the hypergeometrics and is super-
imposed on the B1 background contribution. Such features of the DDCS have been
confirmed by experiment, and measurements of the width and asymmetry of the cusp
have been made [514]. The DWB shows a similar behaviour to the CDW-EIS but pre-
dicts much larger values. The cusp is of course absent from the B1 curve since the
projectile–electron interaction in the exit channel is ignored. Also shown is our pure
CDW calculation, the result of which differs from that of Belkić [62]. For example
we do not get the peak he observed at EK = 6.2 eV. It is not clear what the source of
disagreement is, but presumably it arises from the treatment of the analytical contin-
uations of the hypergeometric functions.

The singly differential cross section (SDCS), differential with respect to the elec-
tron emission energy, is by definition

dQ
dEK

=

∫ +1

−1
d(cos θ) K

∫ 2π

0
dφσ(K) (4.218)

Similarly the SDCS, differential with respect to the polar angle of emission, is de-
fined by

dQ
d(cos θ)

=

∫ ∞

0
dEK K

∫ 2π

0
dφσ(K) (4.219)

The chosen observation energy for dQ/dEK is 50 keV as before. Thus we may
readily compare Figure 4.8b with the CDW results given by Belkić [62]. Again we
note the absence of the low-energy peak in our calculations for the CDW approxima-
tion, otherwise the curves agree closely at higher emission energies. Furthermore the
CDW-EIS results lie well below the CDW and B1 values for smaller emission ener-
gies. It is clear that it is the low-energy range of the spectrum that contributes most
to the total cross section. Thus we expect total cross sections much smaller than both
CDW and B1. In comparison with the Glauber theory [481], it is evident that there is
a significant enhancement of the SDCS in the region EK � 1/2 v2. This is due to the
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Fig. 4.8a. Doubly differential cross sections for H+ +H→ H+ +H+ +e−, with electrons ejected
in the forward direction (θ = 0) and for a collision energy of 50 keV. − · − · −, B1; · · ··, DWB
[62]; - - - - -, CDW [180]; –––, CDW-EIS [180]

Fig. 4.8b. Singly differential cross sections with respect to electron emission energy for 50
keV incident protons upon H(1s). − · − · −, B1; - - - - -, CDW [180]; –––, CDW-EIS [180]

effect of the final channel distortion and gives cross sections somewhat larger than
the Glauber theory, which takes no account of this effect. McGuire [417] (cf. Park
et al. [481]) correctly attributes the defect of the Glauber theory to the omission of
this distortion. At higher incident proton energies this region of the electronic spec-
trum is shifted to correspondingly higher energies and thus contributes little to the
integral cross section. So it is indeed a valid approximation to neglect such contribu-
tions for fast collisions. However, this is not so when working in the intermediate-
and/or low-energy regimes. Experimental work coinciding with the parameters of
Figure 4.8b has been carried out by Park et al. [481] using energy-loss spectroscopy.
The results obtained confirm the role of distortion in guiding electrons ejected with
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velocity close to that of the projectile. The phenomenon is most clearly seen when
the results of Figure 4.8b are converted to a Platzmann plot [481]. Both our CDW
and CDW-EIS show the same qualitative behaviour as the experiment although the
absolute values apparently fit the CDW curve more closely. These measurements
seem to have overestimated the SDCS as indicated by the derived total cross section.
However, on renormalization of these results by reference to the work of Shah and
Gilbody [545], we obtain excellent quantitative agreement with the CDW-EIS curve.

Finally, integrating over the ejected-electron energy spectrum we obtain the total
cross section Q. The series of multiple integrations outlined earlier presents some
technical difficulties and is computationally expensive compared with the Born or
Glauber approximations. Even so, we were able to evaluate the cross sections to
one percent accuracy. Our CDW-EIS results are shown in Figure 4.9 in a format
introduced by Shah and Gilbody [547] and adopted by McGuire [417] who give a
comprehensive theoretical review. Of the many theories available for comparison,
three have been chosen: first the B1 theory (which is valid at high energies), sec-
ond the CTMC method (which roughly accords with experiment in the intermediate
energy range), and third the Glauber approximation. The experimental data are nor-
malized by reference to the B1 theoretical curve for H+ impact in the energy range
1000-1500 keV amu−1. The values for He2+ and Li3+ impact are then determined by

Fig. 4.9. Total ionization cross sections for a hydrogen-atom target in collision with fully
stripped ions. Theory: − − −−, B1 [41]; · · · · ·, Glauber approximation [417]; –––, CDW-EIS
[180]; 
, half-filled triangle, CTMC [474]; �, CTMC [23]. Experiment ◦, half-filled circle, •,
[545], [547]
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Fig. 4.10. (a) and (b) Total ionization cross sections as a function of projectile charge. •,
Glauber approximation [417]; �, CTMC [474]; × CDW-EIS [180]; ◦, experiment [545], [546],
[547]

reference to this standard [545]. The accuracy of these measurements is remarkably
good, typically better than 10% (this includes the uncertainties associated with the
normalization procedure). The quantum mechanical theories all tend at high energy
to the B1, which decays in the well-known manner E−1 ln E, whereas the theories
based on classical mechanics fall off as E−1. The pure CDW results, without the
renormalization correction, lie above the B1 curve at all energies. The pure CDW in
its present form must therefore be considered unreliable for the reasons previously
stated and so results are not presented. Incidentally these unnormalized calculations
are only slightly below those of Belkić [62] since the peak he obtained in the SDCS
contributes comparatively little. As noted previously [417] in its region of validity,
the Glauber approximation is rather successful in predicting the experimental re-
sults. The new CDW-EIS calculations show equal success at the high energies but
also interpret experiment rather well at intermediate energies. Further calculations
on more highly charged projectiles, namely C6+, show excellent agreement with ex-
periment. For example, at 400 keV amu−1, Q = 10.4 × 10−16 cm2 (CDW-EIS) com-
pares favourably with (10.7 ± 0.6) × 10−16 cm2 [548], as does Q = 9.1 × 10−16cm2

for Glauber [417], whereas B1 gives Q = 15.6 × 10−16cm2. However, controversy
between experiment and theory continues; near 50 keV, Sidky and Lin [559] find
a maximal cross section, 22% higher than that of Shah and Gilbody [542], using a
two-center momentum-space discretization method.

The discrepancies that occur between CDW-EIS and experiment at lower energy
show the important contributions to the ionization cross section, of transitions via
intermediate bound states of the target and projectile. The importance of coupling
to these discrete states is graphically depicted by the experimental results for cap-
ture [546]. It is particularly significant for highly charged ions, Z3 � 1, as indicated
by the Z3

3 scaling law for total capture cross sections [174]. However, taking into
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account the limitations of this CDW-EIS model, even at these comparatively low en-
ergies the agreement is still satisfactory, especially in light of the extension of p-H
measurements down to 9.4 keV [542] and the He++–H measurements down to 18.6
keV [543]. Sahoo et al. [528] improve agreement with the p-H measurements, below
25 keV by including 1s capture as an important intermediate step before ionization.
Above 100 keV their strategy breaks down. This is understandable since ionization
dominates capture at the higher energies and vice versa at lower energies.

In a more general investigation of the problem it is natural to look for a scaling
law from which it may be possible to predict cross sections for ions of arbitrary
charge and energy. This question is particularly relevant to fusion research where a
wide variety of ionic species exist in the plasma. For a fully stripped projectile of
charge Z, traveling with incident velocity v relative to a hydrogen atom target, it is
an exact law in the B1 approximation that

B1Q(Z, v) = Z2 B1Q(1, v) (4.220)

Several authors have addressed themselves to the validity of a more general rule
[526], [297], [298], [67], [68], for example, a simple scaling law of the type

Q(Z, v) = ZαQ(1, v) (4.221)

where α is velocity-dependent and tends to the value 2 at asymptotically high ener-
gies. Two energies were chosen to test for such a rule, 100 keV u−1 and 200 keV u−1,
and charge states 1+-4+. There is no experimental data available for Be4+; however
we include for the sake of completeness measurements obtained for C4+ ions [546].
From Figure 4.10a it is clear that there is little consensus between theory and ex-
periment, although the trends are similar. If the C4+ point is omitted we get an ex-
perimental scaling law, αex � 1.7. At 200 keV u−1 (Figure 4.10b) the agreement is
much better, particularly between CDW-EIS and experiment. The value αex � 1.83
illustrates the tendency towards the Z2 scaling law. At still higher energies there is
only a small deviation from this law. Indeed most estimates of α [68] have been car-
ried out at much higher energies, e.g., 1100 keV u−1, albeit with large charges, (11+

– 22+). Satisfactory agreement was obtained with CTMC calculations (αex = 1.43).
The significance of this value for α is doubtful since this data were subsequently well
fitted by a value of 1.82 for α [526]. A more elaborate scaling law has been proposed
within the context of the Bethe–Born approximation [297], [298], which apparently
fits the data fairly well.

On the evidence presented we may claim that the CDW-EIS model appears to
be the most successful and versatile theory devised within a two-state perturbation
theory. Of course the CDW-EIS perturbation is the nonorthogonal kinetic energy of
the electron, which arises from the fact that its kinetic energy is not simply associated
exclusively with one or other of the nuclei. In contrast, other quantum mechanical
theories adopt one or more of the Coulomb interactions as perturbations. A more
rigorous test of theory is the measurement of the differential cross sections for an
atomic hydrogen target. The failing of the EIS approximation is that the distortion
correction to the bound state breaks down for small impact-parameter collisions. This
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is not a severe drawback, however, in view of the important contributions from a wide
range of impact parameters at intermediate and high energies and the CDWN theory
would, in principle, improve this aspect of the initial state. Preliminary calculations
using CDWN are promising. However it appears that a more important correction
would be the inclusion of intermediate projectile and target-bound states.

Equation (4.216) for DDCS and (4.218) and (4.219) for various SDCS concern
important diagnostic tools.

Here we consider the process of electron emission as a result of electron capture
to the continuum (ECC) and in the origin of saddle point electrons. Saddle point
electrons are those electrons that find themselves on the moving saddle point of the
Coulomb potential between the projectile ion and the target; feeling no force they are
promoted into the continuum. This occurs at k ∼ v/2. ECC electrons are emitted at
angles ∼ 0 degrees with respect to the projectile direction and have velocities close
to the incident projectile, i.e., k ∼ v.

These are good examples of two-centre effects. The emission of these electrons
at zero degrees have been studied for H+ collisions with He and H2 at the incident
energies of 40 and 100 keV. Experiments were carried out by McGrath and Shah.
The DDCS of (4.216) are illustrated by, for instance, figure 2 (40 keV), figure 10
(80 keV) of Nesbitt et al. [451], and figure 11 (100 keV) of McGrath et al. [416] for
collisions of protons and these impact energies with H2 molecules. The 40 and 100
keV results are for forward scattering of the electron. The 80 keV results comprise
surface plots that clearly show the k = v ECC and the k = v/2 saddle electrons.
Figure 19 of McSherry et al. [420] presents DDCS for 1.5 MeV protons on Ar for
various angles (15-125◦) of the electron emission.

We also consider longitudinal momentum distributions. From momentum and
conservation laws it is required that

pR‖ = pP‖ − pe‖ =
EK − εi

v
− k cos θk (4.222)

where pR‖ is the longitudinal recoil–ion momentum, pP‖ is the longitudinal momen-
tum transfer, and pe‖ is the longitudinal momentum of the ejected electron. EK is the
electron energy in the final continuum state, and k is the momentum of the ejected
electron with respect to a reference frame fixed on the target nucleus. v is the impact
velocity, and εi is the binding energy of the neutral target atom. This equation is valid
if

• the mass of the projectile ion is much heavier than the electron,
• the initial collision energy is much larger than EK − εi, and
• the projectile scattering angle is small.

The longitudinal electron momentum distribution may be found from

dQ
dpe‖

=

∫ ∞

p2
e‖/2

1
k

d2Q
dEKdΩK

dEK (4.223)

where Q is the total cross section and d2Q/dEkdΩk is the standard DDCS (equation
(4.216)/2π). Similarly for the longitudinal recoil momentum distribution,
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dQ
dpR‖

=

∫ E+
K

E−K

1
k

d2Q
dEKdΩk

dEk (4.224)

where the integration limits are E±K = 1/2(k±)2 with

k± = v cos θ ±
√

v2 cos2 θk + 2(pR‖v − |εi|) (4.225)

Finally the longitudinal momentum projectile transfer is obtained from

dQ
dpP‖

= v
dQ
dEk

(4.226)

Equations (4.223) and (4.224) are illustrated for CDWEIS by figures 2 and 3 of
O’Rourke and Crothers [469] for 3.6 MeV u−1 Ni24+ ions on He. Equation (4.224) is
illustrated likewise, but for Se28+ in figures 5 and 6 of O’Rourke et al. [470] (without
and with experimental convolution).

We also consider further the double differential cross sections as a function of the
longitudinal electron velocity ve‖ for various transverse velocity ve⊥ cuts. This can be
derived remembering

Ek =
1
2

k2 =
1
2

(
p2

e‖ + p2
e⊥

)
(4.227)

where pe⊥ is the transverse momentum of the ejected electron. Hence

1
2πve⊥

d2Q
dve‖dve⊥

=
1

2π

∫ 2π

0
σ(k)dφk (4.228)

Equation (4.228) is illustrated for 3.6 MeV u−1 Au53+ on He by figure 1 of Schmitt
et al. [535]. Developments in efficient electron spectrometers combined with recoil-
ion momentum spectroscopy (RIMS) allow for targets heavier than helium to be
considered.

In binary projectile-electron scattering the singly differential cross section as a
function of ΩP may be derived from the transverse projectile momentum transfer
given by

dQ
dpP⊥

= 2πpP⊥

∫ ∣∣∣Ri f (η)
∣∣∣2 dk (4.229)

provided θP is small so that the relation

η ≡ pP⊥ = μvθP (4.230)

is a good approximation, where pP⊥ is the transverse component of the change in
relative momentum of the heavy particles. Typical results are given in figure 2 of
Schulz et al. [537] by the full open circles (classical trajectory Monte Carlo) and by
the full closed circles [369] (experiment).



4.3 Continuum Distorted Waves and Their Generalizations 197

4.3.4 Fully differential cross sections for ionization

Experimental data for fully differential cross sections have been compared to var-
ious continuum-distorted-wave eikonal-initial-state models without much success,
despite good agreement with double-differential cross sections. A four-body model
is formulated here, and results are presented both when the internuclear potential is
omitted and when it is included. They are compared with recent experimental data for
fully differential cross sections for 3.6 MeV u−1 AuZP++He collisions, ZP = 24, 53.

The subject of single ionization of neutral target atoms by charged particle impact
has been the focus of intense interest for decades by both theoretical and experimen-
tal physicists due to its practical applications in various fields such as fusion research
and astrophysics. In recent years advances in experimental techniques have made it
possible to make measurements of a large variety of processes, in different energy
regimes, for different targets and projectile charge states. For example, ejected elec-
tron spectroscopy has been very successful at reproducing measurements of double-
differential cross sections as a function of ionized electron energy and angle [573].
More recently the advent of reaction microscopy enables measurements to be made
simultaneously of the momenta of the emitted electrons and the recoiling residual
target ion, which gives direct evidence of the momentum transferred in the collision.
For fast heavy ions Moshammer et al. [441] measured the momentum vectors of the
ejected electron and recoil-ion and obtained the scattered projectile momentum from
the momentum conservation law. However, in the analysis of this and subsequent
experiments Schmitt et al., [535] focused on differential and recoil-ion momentum
distributions. More recently, Schulz et al. and Fischer et al. [538], [269] have used
reaction microscopy to examine triply and fully differential cross sections, respec-
tively, for fast ion–atom collisions at large perturbations.

From a theoretical standpoint, the main difficulty is that it is not possible to solve
the Schrödinger equation in closed analytical form, even for three mutually inter-
acting particles. A comprehensive formulation of the complete collision involving
interaction between the projectile, electron, and residual ion thus necessitates a nu-
merical approach.

A number of different computer simulations have been used to model ion–atom
collisions: classical trajectory Monte Carlo [2], [3], first Born approximation [41],
coupled-state [583], [371], [607], and continuum-distorted-wave eikonal-initial-state
[62], [180] calculations to name a few. In particular, the single ionization of helium
has been widely studied [538], [269], [119], [267], [475], [356], [516].

The simplest model for the ionization process involves a three-particle system
interacting through long-range Coulomb potentials. From a theoretical perspective
the main problem is the representation of the final electronic state, where the ionized
electron travels under the influence of the Coulomb potentials due to both the pro-
jectile and target nuclei. Due to the long-range behaviour of the Coulomb interaction
this cannot be represented by a plane wave. Although an exact analytical solution
of the three-body problem is not possible, its asymptotic form may be found [180],
[260], [316], [471], [470]. One useful perturbative method that accounts for long-
range Coulomb potentials at intermediate and high energies is continuum-distorted-
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wave theory. It was originally introduced by Cheshire [112] to model the process of
charge transfer during the collision of an atom or ion with an ion and later applied to
single ionization for ion–atom collisions by Belkić [62]. However, one major defect
of the CDW ionization theory developed by Belkić [62], was that it led to unphysical
results due to the fact that the initial state was not normalized at low impact energies
[178]. This flaw was corrected by the continuum-distorted-wave theory first intro-
duced by Crothers and McCann [180]. The original model itself was developed to
accommodate multielectron targets [471], [469], [470], [262], [421]. CDW-EIS takes
into account most of the post-collision interaction (PCI) that occurs [179], due to the
final-state CDW two-centre wave function being projectile and target based. The
model approximates the ionized electron-residual target interaction by a Coulombic
potential with the ejected electron ionized from an orbital of Roothan-Hartree-Fock
(RHF) type and moves in the residual potential. Continuum states are described by
hydrogenic wave functions with an effective charge chosen from the energy of the
initial bound state.

Theoretical results presented for fully differential cross sections in [269], [538],
[273] have shown that, at large perturbations, Zp/vp, where Zp and vp are the charge
and velocity of the projectile, respectively, the discrepancy between CDW-EIS and
experimental results is very apparent. In particular, what was initially thought to be
the recoil peak, see [269], [273], which occurs in the forward-scattering direction,
is not reproduced. One of the advantages of CDW-EIS is that most of the PCI is
included [179]. It was initially thought [538] that this discrepancy was due to the
lack of orthogonality between the EIS- and the CDW-state wave functions. How-
ever, Bubelev and Madison [97] reported that orthogonality was not required as the
interaction potential was already included in the wave functions. Therefore, it was
concluded that the missing projectile-target internuclear potential might account for
the lack of the recoil peak.

We will discuss the formulation and results of a new four-body model to study the
fully differential cross section (FDCS) for the single ionization of a neutral helium
target by 3.6 MeV amu−1 AuZP+, ZP = 24, 53, where the ion is treated as if it were
fully stripped since the electrons are so tightly bound.

The case of ionization of the projectile may be neglected due to its large charge,
which as we have indicated means that the electrons will be tightly bound and there-
fore very unlikely to be ionized.

Atomic units are used throughout and will be explicitly stated later.
The FDCS is given by

d5Q
dEkdΩkdΩ f

=
μ2k
4π2

∣∣∣∣Ti f

∣∣∣∣2 (4.231)

where Ti f , the transition matrix in the wave treatment, is given by

T+(kT ; η) = 〈χ−f |W
+
f |χ

+
i 〉 (4.232)

μ is the reduced mass of the heavy particles, and Ωk and Ω f are the solid angles
about the direction of the ejected electron momentum k and final wave vector k f ,
respectively.
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Fig. 4.11. The four-body diagram

It is important to note that in some work what is referred to here as the quintu-
ple differential cross section is also called the triple differential cross section [273],
[269]. This is because the dΩmay be counted as a single or double differential, where
in the latter it is recognised that differentiation of the θ and φ variables is required.

In this new formulation the neutral helium target is considered in detail and its
two electrons are treated as indistinguishable and explicitly correlated. This system
with the projectile traveling with impact velocity v is shown in Figure 4.11. Ri is
the position vector of the projectile with respect to the centre of mass of the target
system and Ki is the relative momentum of the projectile with respect to the target
system. Also

r12 = rT1 − rT2

= rP1 − rP2 (4.233)

and the momentum of the ejected electron relative to the projectile nucleus is p =

k − v.
The initial-state wave function (with eigenvalue εpluv) is taken from Pluvinage

[493], [494], [189], where the electron-translation factors have been included for
completeness [192], even though they cancel at a later stage. The initial-state wave
function is taken to be

χ+
i = N(k′)

23

π
exp(−2(rT1 + rT2 ) − ik′r12 + iμvi.Ri)

exp

(
− i

2
v.rT1 −

i
2

v.rT2

)
M

(
1 +

1
2ik′

; 2; 2ik′r12

)

exp

(
−iZP

v
ln[(vrP1 + v.rP1 )(vrP2 + v.rP2 )]

)
. (4.234)

The regular Kummer function, M(a, b, z), represents correlation between the two
electrons bound to the target. It may be thought of as representing a continuum-
distorted-wave treatment of bound-state electrons, each of which lies in the con-
tinuum of the other. The last exponential relates to the two electrons being in the



200 4 Ion–Atom Collisions

continuum of the projectile. It is clear in the initial wave function that if the two
target electrons are swapped, there is no difference to the initial-state wave function.

The final-state wave function is a continuum-distorted-wave final state, given by

χ−f =
1
√

2
[1 + P12](2π)−3/2

√
23

π
2k exp

(−π
4k

+
π

k

)

√
sinh

(
π

2k

)√
sinh

(
2π
k

)
exp

(
− i

2
v.rT1 −

i
2

v.rT2

)

exp
(
−2rT1 + ik.rT2 + iμv f .Ri − ikr12

)

M

(
1 +

1
2ik

; 2; 2ikr12

)
M

(
−2i
k

; 1;−ikrT2 − ik.rT2

)

D−P(p, rP2 ) exp

(
−iZP

v
ln(vrP1 + v.rP1 )

)
(4.235)

given that P12 is the permutation operator, which interchanges electrons 1 and 2, and

k′ = 0.41 N(k′) = 1.5365 εpluv = −2.878 (4.236)

and

D−P(p, rP2 ) = N−
(

ZP

p

)
M

(
−i

ZP

p
1,−iprP2 − ip.rP2

)
, (4.237)

as in [192].
Notice that in (4.235) the electron-translation factors have again been included

to give the full final-state wave function.
The final-state is very similar to a CDW approximation except that we have in-

cluded a new Kummer function, M (1 + (1/2ik); 2; 2ikr12), and an extra term in the
exponential involving r12. It was chosen by analogy with the initial-state continuum
correlation. Electron 1 is in the projectile continuum and bound to the target; electron
2 is ionized.

The analysis of this new model was carried out in generalized nonorthogonal co-
ordinates (rT1 , rT2 , rP1 , rP2 , r12, R) and from consideration of the Schrödinger equa-
tion, 12 nonorthogonal kinetic energy terms were found. These were

−∇rT1
.∇rT2

− ∇rT1
.∇r12 + ∇rT2

.∇r12

−∇rP1
.∇r12 + ∇rP2

.∇r12 − ∇rP1
.∇rP2

−∇rT2
.∇rP1

− 1
M
∇rT1

.∇R +
1
M
∇rP1

.∇R

− 1
M
∇rT2

.∇R −
1
M
∇rP2

.∇R − ∇rT2
.∇rP2

The final term for the nonorthogonal kinetic energies is taken to be the perturbation,
as in standard perturbation methods. It was found that all other terms canceled when
operating on the final state, therefore the residual interaction, in post form, is:
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Wfχ
−
f =

1
√

2
[1 + P12](2π)−3/2

√
23

π
2k exp

(−π
4k

+
π

k

)

√
sinh

(
π

2k

)√
sinh

(
2π
k

)
exp

(
− i

2
v.(rT1 + rT2 )

)

exp
(
−2rT1 + ik.rT2 + iMv f .Ri − ikr12

)

∇rT2

(
M

(
1 +

1
2ik

; 2; 2ikr12

)

M

(
−2i
k

; 1;−ikrT2 − ik.rT2

))

.∇rP2

(
D−P(p, rP2 )

)
exp

(
−iZP

v
ln(vrP1 + v.rP1 )

)

(4.238)

In (4.238) the very last eikonal factor represents the interaction of the projectile with
the bound electron. When the coordinates of the electrons are interchanged, so that
electron 2 becomes the bound electron, using the permutation operator, the transi-
tion amplitude is identical to that when electron 1 is the bound electron. Hence, the
permutation operator gives:

1
√

2
[1 + P12] =

√
2 (4.239)

The position vector of the projectile with respect to the centre of mass of the target
system, Ri, may be rewritten in terms of rT2 and rP2 as

Ri = R − m
MT + 2m

(
rT1 + rT2

)

= rT2 − rP2 −
m

MT + 2m
(
rT1 + rT2

)

≈ rT2 − rP2 + O
(

1
MT

)

and the fact that r12 can be written as r12 = |rP1 − rP2 |, which implies that r12 can
be regarded as independent of rT2 , such that the Kummer function involving r12 may
be taken outside the influence of the ∇rT2

, simplifies the calculation of the transition
amplitude.

The transition amplitude can then be found from (4.232). After manipulation
of the terms involving r12 and rT1 by Fourier and inverse Fourier transforms the
transition amplitude may be separated into a three-fold integral.
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T+(kT ; η) = N(k′)
23

π
(2π)−3/2 × 16(2πi)−12k

√
24

π

× exp
(−π

4k
+
π

k

) √
sinh

(
π

2k

)√
sinh

(
2π
k

)

×
∫

dP
P

(F(−P) − F(P))
1

(16 + P2)2

×
∫

drT2 exp(−iP.rT2 − 2rT2 + iq.rT2 − ik.rT2 )∇rT2

×
[
M

(
2i
k

; 1; ikrT2 + ik.rT2

)]

×
∫

drP2 exp

(
−iq.rP2 −

iZP

v
ln[(vrP2 + v.rP2 )]

)

×∇rP2
(D−∗P (kP, rP2 )) (4.240)

Each of the two integrations involving r is solvable (see Section 1.4) by using the
Nordsieck integral [461], or a generalized form of the Nordsieck integral [157] to
give the final form of the FDCS to be

d5Q
dEk dΩk dΩ f

=
μ2k
4π2

∣∣∣∣Ti f

∣∣∣∣2

=
μ2k
4π2
|C|2

∣∣∣∣∣∣
∫

dP
P

( F(−P) − F(P))
1

(16 + P2)2

1
α2(α2 + β2)

×
(

α2

α2 + β2

)iε [
(q − P − k) − 2i k̂

] 1
α1γ1

(
α1

β1

)iν (
α1

γ1

)iζ

[
− q 2F1(iν, iζ; 1; z) − i

(
α1

γ1β1

)
ν (γ1( p̂v − v) − δ1q))

×2F1(1 + iν, 1 + iζ; 2; z)
]∣∣∣∣∣∣

2

(4.241)

The terms in (4.241) are defined as follows:
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F(P) =
(Λ − iP)

i
2k−

i
2k′

(Λ − iP + 2ik)1+ i
2k (Λ − iP − 2ik′)1− i

2k′

2F1

(
1 − i

2k′
, 1 +

i
2k

; 2;
4kk′

(Λ − iP + 2ik)(Λ − iP − 2ik′)

)

(4.242)

α1 =
1
2

q2 (4.243)

β1 = −v.q (4.244)

δ1 = p.v − pv + β1 (4.245)

γ1 = −p.q + α1 (4.246)

z =
β1γ1 − α1δ1

β1γ1
(4.247)

α2 =
1
2

((q − P − k)2 + 4) (4.248)

β2 = k.(q − P − k) − 2ik (4.249)

ε =
2.0
k

(4.250)

ν =
ZP

v
(4.251)

ζ =
ZP

p
(4.252)

Λ = ik′ − ik (4.253)

C = N(k′)N∗(ζ)N(ν) k ZP i 221/2π−2 exp

(
3π
4k

)
∗

√
sinh

(
π

2k

)√
sinh

(
2π
k

)
(4.254)

The results of this theory are presented later. They are compared to the absolute
experimental data of [538], as in [269], and all the theoretical results are absolute.

The results are [483], [484] of FDCSs for 3.6MeV amu−1 AuZP++He collisions,
ZP = 24, 53, and they all have a period of 2π. The units are given in atomic units.
Therefore, the calculations for the FDCS in (4.231) have units of

a2
0u−2ster−2/

(
e2

a0

)
= a3

0u−2ster−2e−2 (4.255)

These units may be deduced by looking at the left-hand side of (4.231).
Figures 4.12a and b show the FDCS for 3.6 MeV amu−1 Au24++He collisions

for momentum transfers of q = 0.45 a.u. and 0.65 a.u., respectively, and ejected
electron energy of 4 eV. The results for the new formulation are the solid line, while
the experimental data (dots) are from Fischer et al. [269].

By examining Figures 4.12a and b it is seen that the theoretical results predict a
structure or a “bulge” in the forward direction; it may not be to a similar extent as
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Fig. 4.12a. FDCS for electrons emitted into the scattering plane for a fixed electron energy,
Ek = 4 eV , and fixed magnitude of the momentum transfer q = 0.45 a.u., as a function of the
polar electron emission angle for 3.6 MeV amu−1 Au24++ He collisions. • experimental data
[269] — theoretical results
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Fig. 4.12b. As in Figure 4.12a except with q = 0.65 a.u.

the experimental results, but it is present for these particular values of momentum
transfer and ejected electron energy, unlike previous CDW-EIS results [269], [538],
[273]. This may be attributed to the fact that the current model is a four-body model
whereas the previous models are only three-body models. A peak in the direction of
q is not present in the experimental data but it is present in some existing CDW-EIS
calculations, [269, 538, 273]; the current results agree with the experimental data in
that they do not exhibit a peak in the direction of q. In Figures 4.12a and b the peak
referred to as the binary peak in Foster et al. [273] is observed in about the same
position as the experimental binary peak.

The agreement, in terms of magnitude, between experiment and the theoretical
calculations is mixed. In Figure 4.12a the theoretical calculation for q = 0.45 a.u.
is in much better agreement with experiment than the CDW-EIS results from [273],
figure 2, top graph. The new theoretical calculation is slightly larger than experiment
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Fig. 4.13a. As in Figure 4.12a except for FDCS for Au53++ and with q = 0.65 a.u.

and by comparison with the top graph of figure 2 from [273] it is seen that the three-
distorted-wave eikonal-initial-state, (3DW-EIS) results from Foster et al. are closer,
in magnitude to the absolute experimental results for the region 3.7 radians to 4.7
radians. In Figure 4.12b the theoretical calculation is much larger than the theoretical
3DW-EIS and CDW-EIS results from [273], figure 2, bottom graph.
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Fig. 4.13b. As in Figure 4.13a except with q = 1.0 a.u.

Figures 4.13a and b show the FDCS for 3.6 MeV amu−1 Au53++He collisions for
momentum transfers of q = 0.65 a.u. and 1.0 a.u., respectively, and ejected electron
energy of 4 eV. The results for the new formulation are the solid line, while the
experimental data (dots) are from Fischer et al. [269].

By examination of Figures 4.13a and b one can see that once again, this current
formulation produces a forward-scattering structure. However, in Figure 4.13b the
magnitude of the forward structure is larger than experiment, but in 4.13a the for-
ward structure predicted by theoretical results is just below the experimental data.
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In Figure 4.13a the experimental data show that there is one large peak at about
30◦ = 0.5 radians. The theoretical results, despite predicting only one peak, at about
1.0 radian, are in good agreement with the absolute experimental results.

In Figure 4.13b theoretical calculations reproduce the forward structure, but it is
dominated by a binary peak, which is not prominent in the experimental data. There
is a peak about 1.4 radians in the experimental data but it is not very large, certainly
not to the extent of the theoretical data. Also, the angle of the binary peak for the
theoretical data appears too early, about 1.0 radian. In both Figures 4.13a and b the
magnitude of these current results is in much better agreement than 3DW-EIS and
CDW-EIS [273], as their theoretical results have been scaled up by a factor of 20.

In this new four-body model we have shown that there is mixed agreement with
experimental data. The shape agrees well but the agreement of the magnitude is var-
ied. However, there is one piece of information missing from this model. It is the
internuclear potential. Previously [269], the inclusion of it made a significant differ-
ence to results, so its inclusion in this current model is imperative. The internuclear
potential is included by the following equation:

Ti f (η) =

∫ ∞

0
dρJ0(ηρ)(ρ)1+

2iZT ZP
v

∫ ∞

0
T ′i f (η

′)J0(η′ρ)η′dη′ (4.256)

using two semiclassical transformations. The phase involving only the velocity has
been omitted as when the square of the modulus of the transition amplitude is taken
it contributes a factor of 1.

Including (4.256) into the analysis means that two extra integrations have to be
added to the computer program. This itself is of no consequence but the integration
over ρ contains the term ρ1+(2iZT ZP/v, which is oscillatory, and when integrating it adds
considerable computing time. To overcome this, the order of integration is changed.
This means that:

Ti f (η) =

∫ ∞

0
η′dη′T ′i f (η

′)F(η, η′) (4.257)

where

F(η, η′) =

∫ ∞

0
(ρ)1+

2iZT ZP
v J0(η′ρ)J0(ηρ)dρ (4.258)

This is the same as [515] but with m = 0. The difference in the following work
from [515] is the way (4.258) is solved. The inner integral from (4.257), F(η, η′), is
of Weber-Schafheitlin type and may be solved using equations 11.4.33 and 11.4.34
from [1]. They have the basic solution:

∫ ∞

0
J0(at)J0(bt)t−λdt =

Γ

(
1 − λ

2

)

2λb1−λΓ

(
1 + λ

2

)

2F1

(
1 − λ

2
,

1 − λ
2

; 1;
a2

b2

)
(4.259)
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One condition on (4.259) is 0 < a < b. If 0 < b < a, then a and b are simply
interchanged in (4.259).

Letting a be the minimum of (η, η′) while b is the maximum of (η, η′) and

λ = −1 − 2iZT ZP

v

(4.258) is solved. We assume that�(λ) = −1 + ε (ε > 0). After simplification of the
gamma functions and the hypergeometric function, it is seen that (4.258) gives

F(η, η′) =
2ZT ZP

v
b−2

(
1+

iZT ZP
v

)
J0

(
2ZT ZPa

vb

)
(4.260)

When (4.260) is substituted back into (4.257) the internuclear potential is found
through one extra numerical integration;

I(η) =
2ZT ZP

v

∫ ∞

0
η′dη′T ′i f (η

′)b−2
(
1+

iZT ZP
v

)

J0

(
2ZT ZPa

vb

)
(4.261)

This equation is much easier to calculate given, that it is not as oscillatory as (4.256)
and the fact that only one extra numerical integration is required compared to the
previous two.

In (4.261) it is assumed that b is the maximum of (η, η′); this means that b
changes during the integration in (4.261). To overcome this difficulty the integra-
tion in (4.261) is split into two: one where η is the larger and the other where η′ is
the larger. This gives:

I(η) =
2ZT ZP

v

[∫ η

0
η′dη′T ′i f (η

′)η−2
(
1+

iZT ZP
v

)
J0

(
2ZT ZPη

′

vη

)

+

∫ ∞

η

η′dη′T ′i f (η
′)η′−2

(
1+

iZT ZP
v

)
J0

(
2ZT ZPη

vη′

)]
(4.262)

Figures 4.14a to b show the FDCS for 3.6 MeV amu−1 Au24++He collisions
for momentum transfers of q = 0.45 a.u. and 0.65 a.u. and ejected electron energy
of 4 eV, while Figures 4.15a to b show the FDCS for 3.6MeV amu−1 Au53++He
collisions for momentum transfers of q = 0.65 a.u. and 1.0 a.u., respectively, and
ejected electron energy of 4 eV.

Each figure includes the absolute experimental data from [269], dots (·); the the-
oretical results from section III, solid line (—, without nn); and the theoretical results
including the internuclear potential, dot dash line ( ··—, with nn). The factor of any
required scaling is displayed on the individual graphs.

In Figures 4.14a and b it is clear to see that the predicted position of the binary
peak has shifted to the left upon inclusion of the internuclear potential. This means
that the theoretical structure changes slightly, but for Figure 4.14a it is in better agree-
ment with the first half of the experimental data. In comparison, the inclusion of the
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Fig. 4.14a. FDCS for electrons emitted into the scattering plane for a fixed electron energy,
Ek = 4 eV, and fixed magnitude of the momentum transfer q = 0.45 a.u., as a function of the
polar electron emission angle for 3.6 MeV amu−1 Au24++ He collisions. • experimental data
[269] — theoretical results, − · ·− theoretical results including internuclear potential [484]
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Fig. 4.14b. FDCS for 3.6 MeV amu−1 Au24++ He collisions. Ek = 4 eV and q = 0.65 a.u.
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Fig. 4.15a. FDCS for 3.6 MeV amu−1 Au53++ He collisions. Ek = 4 eV and q = 0.65 a.u.
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Fig. 4.15b. FDCS for 3.6 MeV amu−1 Au53++ He collisions. Ek = 4 eV and q = 1.0 a.u.

internuclear potential in Figures 4.15a and b has very little effect on the structure of
the theoretical results and only seems to effect the magnitude. The inclusion of the
internuclear potential has increased the magnitude of the theoretical results, which in
Figures 4.14a–4.15b leaves the theoretical results without the internuclear potential,
in better agreement with experimental data. However, it is important to note that in
Figures 4.15a and b the internuclear potential results have been scaled down by fac-
tors of 4 and 5.5 and are therefore still closer to the experimental data than the results
in [273], which have been scaled up by a factor of 20; see figure 4 of [273].

It is hard to compare the theoretical results obtained in this paper for the colli-
sions mentioned due to the lack of absolute experimental and theoretical data. An-
other problem when comparing with other theoretical results is the units; these are
not always consistent and quite often the FDCS in one paper have different units
from those in another.

Despite these problems, what has been presented here is a four-body formulation
that in some cases is in good agreement with experiment. When a higher momentum
transfer is considered for 3.6 MeV amu−1 Au24++He collisions, as in Figures 4.12b
and 4.14b, the theoretical calculations overestimate the experimental data and for a
higher momentum transfer of 1.0 a.u. for 3.6 MeV amu−1 Au53++He collisions, this
formulation also overestimates the experimental data.

We have presented new theoretical results from a four-body treatment for FDCSs
of 3.6 MeV amu−1 AuZP++He collisions, ZP = 24, 53, with ejected electron energy
of 4 eV. It gives theoretical results for the inclusion and omission of the internuclear
potential. Results are an improvement on current CDW-EIS calculations for these
collisions, especially in the Au53+ case. The experimental forward-scattering peak is
visible in the form of a “bulge” in the theoretical results.

The inclusion of the internuclear potential has shifted all the Au24+ results to the
left, resulting in improved agreement in Figure 4.14a with the shape of the experi-
mental data.

In the case of Au53+ it is seen that the inclusion of the internuclear potential has
had very little effect on the shape of the theoretical data. However, due to lack of
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other absolute theoretical data it is difficult to compare these results. Nevertheless,
the shapes of all sets of data are in good accord.

The discrepancies between theory and experiment might be resolved if and when
the magnetic quantum numbers are taken into consideration using generalized CDW-
EIS (GCDW-EIS) [197]. Figure 5 in [197] shows very good agreement with experi-
mental results.

4.3.5 Generalized Continuum Distorted Waves

A new derivation of continuum-distorted-wave theory is presented. It is general-
ized to magnetically quantized continuum-distorted waves. The context is analytic
continuation of hydrogenic-state wave functions from below to above threshold, us-
ing parabolic coordinates and quantum numbers including m the magnetic quantum
number. This continuation applies to excitation, charge transfer, ionization, and dou-
ble and hybrid events for both light- and heavy-particle collisions. It is applied to
the calculation of double-differential cross sections for the single ionization of the
hydrogen atom and for a hydrogen molecule by a proton for electrons ejected in the
forward direction at a collision impact energy of 50 and 100 keV, respectively.

A continuum-distorted-wave [113] theory for charge transfer in ion–atom colli-
sions was first presented by Cheshire [112]. It proved to be a remarkably success-
ful, flexible, and pragmatic theory [63]. Many improvements have since been made.
Crothers [178] showed that CDW bound states are in general unnormalized (and pro-
posed CDW for light-particle collisions). The use of a gauge transformation in the
impact parameter (ρ) time-dependent treatment leads to a ρ-dependent phase factor
[415] with the internuclear potential eliminated. A necessarily on-shell derivation of
CDW is more physically understandable and avoids artificial logarithmic potentials
and spurious nonlocal operators [192]. The net perturbation is the nonorthogonal ki-
netic energy −∂rT .∂rP , where the electron has position vectors rP, rT with respect
to the projectile (P) and target (T) nucleus. Elastic divergence-free CDW Neumann-
Born series may be derived [187] with connected kernel.

Thomas double scattering is a second-order event leading to electron capture
[184], [185]. Fortunately CDW2 resolves the matter, with only one Thomas reso-
nance, and including all strong and intermediate coupling. Moreover consideration of
CDW3 [471] shows that the Thomas CDW series has converged. In the case of cap-
ture/excitation, variational coupled equations may be formulated and applied [94],
[95].

For ionization, following the CDW final state of Belkic̆ [62], Crothers and Mc-
Cann [180] introduced CDW-EIS. Some of the major advantages are that both the
initial and final states are normalized, all long-range Coulomb boundary conditions
are satisfied, and the full two-centre final state is a product of two CDWs, one T- and
one P-based, so that most of the post-collision interaction is included. A dynamic
molecular theory CDW-EIS has been generalized to electron impact [346], [347]
and to R (relativistic) CDW-EIS [196].

O’Rourke et al. [473] have described the application of CDW-EIS to doubly dif-
ferential cross sections (DDCS) including complete longitudinal momentum distri-
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butions (electron, recoil, and projectile ion). They also considered DDCS 2D plots
against k/v at forward scattering and 3D plots against k/v and θk (where v is the im-
pact velocity, k is the ejected electron velocity, and θk is the polar angle of the ejected
electron).

However, no evidence was found, by our experimental and theoretical group
[451], for saddle points for collisions of 40 keV protons with either He or H2. More-
over, for 100 keV proton collisions with H2, CDW-EIS calculations predict saddle
points in contradiction with our experimental group [416]. This was puzzling, since
saddle point electrons are normally associated with lower impact energies. We were
therefore moved to reconsider the very basis of CDW-EIS. Accordingly a new deriva-
tion of continuum-distorted-wave theory is presented. It is generalized to magneti-
cally quantized continuum distorted waves. The context is an analytic continuation
of hydrogenic-state wave functions from below to above threshold, using parabolic
coordinates and quantum numbers, including m the magnetic quantum number.

In the time-independent distorted-wave formalism, the exact transition amplitude
is given in the post-interaction formulation [424] by

T f i = 〈ψ−f |(H − E)†|Ψ+
i 〉 + 〈ψ−f |H − H†|ψ+

i 〉 (4.263)

Here Ψ+
i is the exact total scattering wave function satisfying (H−E)Ψ+

i = 0 and
outgoing-wave boundary conditions. The total Hamiltonian is H, the total energy
is E, and dagger means complex conjugate and operating to the left. The distorted
initial- and final-state CDW wave functions are ψ+

i and ψ−f , given by

ψ+
i = φi(rT) exp(−1

2
iv · r + iKi · R)

mi D+
−v(rP,ZP) exp(

iZPZT

v
ln(vR − v · R)) (4.264)

ψ−f = (2π)−
3
2 exp(−1

2
iv · r + iKf · R + ik · rT)

mT D−k (rT,ZT ) mP D−k−v(rP,ZP)

exp(− iZPZT

v
ln(vR + v · R)) (4.265)

having included the internuclear eikonal phases [415]. The plane waves of the nu-
clear motion are parameterized by the initial (Ki) and final (Kf) relative momentum
of the nuclei, with R the position vector of P with respect to T. The electron transla-
tion factor is exp(−1/2 iv · r), where r is the electron position vector relative to the
midpoint of the nuclei. ZT and ZP are the target and projectile charges and φi(rT) the
initial stationary bound state. mT , mP, and mi are the magnetic quantum numbers of
the target, projectile, and initial state, respectively, and without any loss of generality
we can set mi = 0.

Here we define the CDW given by
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mD+
v (r; Z) = exp(imφ +

πν

2
)

× (vr − v · r)
|m|
2 (vr + v · r)

|m|
2

×
Γ(1 + 1

2 |m| − iν)Γ(1 + 1
2 |m|)

Γ2(1 + |m|)

× M(iν +
1
2
|m|, 1 + |m|, ivr − iv · r)

× M(
1
2
|m|, 1 + |m|,−ivr − iv · r)

�
r→∞

exp(imφ)(vr − v · r)−iν (4.266)

where ν = Z/v = μZ/k, μ is the reduced mass, M is the regular Kummer function,
and

mD−v (r; Z) = [mD+
−v(r; Z)]∗ (4.267)

where distorted waves satisfy the correct asymptotic boundary conditions. The re-
sults (4.266), (4.267) indicate that the three two-body phases accumulating asymp-
totically in equation (4.265) are correct [508]. The exact Ψ+

i is approximated by ψ+
i

with the CDW taken in its eikonal form (equation (4.266)): hence G/CDW-EIS.
We note p is the momentum of the ejected electron relative to the projectile. φT is

the angle between the planes (rT,k) and (v,k) and φP is the angle between the planes
(rP,p) and (v,p). We note also that, although p = k − v, p and k are skew vectors.

Equations (4.264) to (4.267) represent a generalization of previous CDWs [192],
[179], following the introduction of three magnetic quantum numbers. They afford
the inclusion of a rapidly convergent complete set of CDWs, which permits (es-
pecially target) continuum rotational coupling, an important physical mechanism.
We shall present details elsewhere, while only mentioning here that, in Schiff [533]
(equations 16.36, 16.37) we interchange η and ξ for convenience and set

λ1 =
1
2
− iν and n1 = −1

2
|m| − iν (ν =

Z
v

)

λ2 =
1
2

and n2 = −1
2
|m| (4.268)

where λ1 and λ2 are separation constants and n1 and n2 are the standard parabolic
quantum numbers.

The uniform two-centre nature of ψ−f may be confirmed by noting that

exp(ik · rT)Ek,− 1
2 v(r, t) = exp(ip · rP + iρ · k)Ep, 1

2 v(r, t) (4.269)

where in the semiclassical impact parameter treatment

Ek,u(r, t) = exp(iu · r − i
u2t
2
− i

k2t
2

) (4.270)
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Fig. 4.16. The DDCS for the collision of 50keV proton with a hydrogen atom at an electron
emission angle of 0 degrees. Dashed line - GCDW-EIS with mP = mT = 0 (= CDW-EIS);
solid line - GCDW-EIS with double summation over mP and mT from -1 to +1

It may also be noted that in mD+
v (r; Z), the first M function is outgoing, whereas the

second is ingoing and vice versa for mD−v (r; Z).
Since H†ψ−∗f and Hψ+

i both contain the nonorthogonal kinetic energy −∂rT · ∂rP,
the second term in equation (4.263) may be neglected, and the generalized (G)CDW
in equation (4.264) may assume its asymptotic eikonal form, for all but the smallest
partial-wave azimuthal angular momentum quantum numbers. Thus we have derived
GCDW-EIS.

In Figure 4.16 we present DDCS for proton hydrogen-atom 50 keV collisions for
forward scattering. We plot
D2σ/dΩkdEk versus Ek, the ejected electron energy, where Ωk is the solid angle
sin θkdθkdφk. The dashed line corresponds to mP = 0 = mT [179]. The solid line
corresponds to the inclusion of mP = −1, 0, +1 and mT = −1, 0, +1, making nine
contributions, in our new G (generalized) CDW-EIS theory for DDCS. There is a
shallow minimum implying a saddle point. In Figure 4.17, we show that for mT = 0,
mP = 0 dominates mP = ±1, which dominates mP = ±2.

In Figure 4.18, we show that for mP = 0, mT = ±1 dominates mT = ±2, except
very close to the cusp. However, to the left down to 10 eV, mT = ±1 dominates
mT = 0. Results not shown for mP = ±2, with mT = 0, ±1, ±2, for mP = ±3, with
mT = 0, ±1, ±2, ±3 and for mP = ±4, with mT = 0, ±1, ±2, ±3, ±4, all show DDCS
orders of magnitude less and with strong anticusps.

In Figures 4.19 and 4.20, we illustrate proton hydrogen-molecule 100 keV
forward-scattering DDCS, namely kd2σ/dEkd cos θk plotted against k/v. In Figure
4.19, we include only mP = 0 = mT in the lower curve [179], whereas in the up-
per curve we sum the DDCS over mP and mT , each from minus 2 through 0 to +2.
The minimum at k/v = 0.5 is so shallow as to be almost indistinguishable from a
horizontal point of inflexion. This implies a shelf rather than a saddle.

In Figure 4.20, the DDCS of the upper curve in Figure 4.19 (summed over mP

and mT each from minus 2 to +2) are plotted against our relative experimental re-
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Fig. 4.17. The DDCS for the collision of 50 keV proton with a hydrogen atom at an electron
emission angle of 0 degrees. Solid line - GCDW-EIS with mP = mT = 0 (= CDW-EIS);
dashed line - GCDW-EIS with mT = 0 and mP = ±1; dotted line - GCDW-EIS with mT = 0
and mP = ±2
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Fig. 4.18. The DDCS for the collision of 50 keV proton with a hydrogen atom at an electron
emission angle of 0 degrees. Solid line - GCDW-EIS with mP = mT = 0 (= CDW-EIS);
dashed line - GCDW-EIS with mP = 0 and mT = ±1; dotted line - GCDW-EIS with mP = 0
and mT = ±2

sults [416] suitably scaled. The agreement is much improved compared to our basic
mP = 0 = mT theory [416]. From Figure 4.19, we note that for k < v, the DDCS
are increased and the cusp is broadened, compared to the original mP = 0 = mT

theory. This makes physical sense because slower electrons will have more time to
experience rotational coupling out of their azimuthal plane. For k > v, the cusp is
not broadened per se but for the highest values of k, the DDCS are increased. In
conclusion [197], CDW, CDW-EIS, and GCDW-EIS theories have been shown to be
remarkably robust in rising to the experimental challenges, both theory and experi-
ment being generated within our own group.
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Fig. 4.19. The DDCS for the collision of 100 keV proton with H2 at an electron emission
angle of 0 degrees. Solid line - CDW-EIS; squares - GCDW-EIS with mP = mT = 0 showing it
reduces down to original CDW-EIS theory; dashed line - GCDW-EIS with double summation
over mP and mT from −2 to +2

0 1
k/v

0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0

10.0

D
D

C
S 

x1
0−

20
  (

m
2  e

V
−

1/
2  s

r−
1 )

Fig. 4.20. The DDCS for the collision of 100keV proton with H2 at an electron emission angle
of 0 degrees. Solid line - GCDW-EIS with double summation over mP and mT from -2 to +2.
Circles - experimental results of [20]

4.3.6 Double Ionization

As an example of a two-electron process we present cross sections for double ioniza-
tion of helium by alpha-particle impact within the independent-event model [201].
Within this model the probability of ionizing the first electron (P1) from neutral he-
lium is calculated in the continuum-distorted-wave approximation using an explicitly
correlated wave function of Pluvinage, whereas the probability of ionizing the sec-
ond electron (P2) from the He+ ion is calculated in the CDW approximation with an
eikonal initial state. The total probability for double ionization is then P1P2 rather
than P2

1, which is usually assumed in the independent-electron model. The calculated
cross sections in the present model show excellent agreement with the measurement
of Shah and Gilbody [549], at all energies above 200 keV u−1. Two-electron transfer
from a helium atom by fully stripped ions has received much attention, one of the
motivations being to understand the role of electron–electron correlation in a variety
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of collision processes. Double ionization is one of these processes where electron–
electron correlation may be expected to contribute to the total cross section in the
lower and intermediate energy regions. Indeed, Fritsch and Lin [278] found that
electron–electron correlation also plays an important role in other processes, such as
double excitation, for projectiles of smaller charges. Because of the complexity of a
correlated two-electron wave function, most of the previous theoretical investigations
are based on the independent-electron model. In this model the target wave function
is described either by a one-electron hydrogenic wave function or by an uncorrelated
Hartree–Fock type of wave function. Having calculated the single ionization proba-
bility by using these wave functions, one then squares this probablity, weights it by
the impact parameter (ρ), and finally integrates it over the impact parameter to get the
double-ionization cross sections. In other words, and in particular if an uncorrelated
Hartree–Fock type of two-electron wave function is considered for the target atom,
the independent-electron model does not account for correlation, as it squares the
single-ionization probability to get the corresponding double-ionization probability.
Shingal and Lin [555] reported a coupled-channel calculation with a large number
of basis sets on each centre for one- and two-electron transfer processes within the
independent-electron model. For very fast projectiles the effect of electron–electron
correlation may not be significant. In this case the independent-electron model might
be a reasonable description for double ionization (cf. Salin [529]).

After the first ionization event occurs, the Hamiltonian, energy, and target charge
all change. The interacting system is now He++ on He+ with the other electron re-
moved to the continuum. This is a purely Coulombic system and may be handled by
an appropriately simple theoretical model. Besides, the probability of ionizing the
second electron (P2) from He+ by an alpha particle is expected to be smaller (cf.
Basbas et al. [31]) than the probability of ionizing the first electron (P2) from neutral
helium. It is therefore advisable to calculate the two probabilities separately using
suitable theoretical models and multiply them to get the double-ionization proba-
bility, especially when one does not account for the continuum electron–electron
correlation explicitly through the wave function. Here we address these points in the
independent-event model originally proposed by Crothers and McCarroll [189]. In
our interpretation and extension of this model the two probabilities are calculated by
applying two variants of the continuum-distorted-wave approximation. To calculate
P1 we use the conventional CDW theory, where we represent the target helium atom
by the explicitly correlated two-electron Pluvinage [493] wave function given by

ΨPluv(r1, r2, r12) = c(k)(Z3
T /π) exp(−ZT r1 − ZT r2 − ikr12)1F1

(
1 +

1
2ik

; 2; 2ikr12

)

(4.271)
where r12 = |r1−r2|, c(k) is the normalization constant, and the variational parameter
k is determined by the usual energy minimization process. In (4.271) electron j has
position coordinate r j relative to the nucleus of the target with charge ZT .

It is important to note that the Pluvinage wave function is in various ways a bet-
ter approximation to the exactly correlated helium wave function than the Hartree–
Fock or any other independent-electron model wave function. First, it accounts for
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the static angular correlation [418]. Second, it gives a more accurate estimation of
the ground-state energy than the Hartree–Fock wave function. Third, it accounts for
nearly 50% of the total correlation energy. The second ionization probability P2 has
been calculated by using the hybrid form of CDW and eikonal approximations in-
troduced by Crothers and McCann [180]. Total double-ionization cross sections are
then calculated in the semiclassical impact parameter method by

σDI = 2πa2
0

∫ ∞

0
ρP1(ρ)P2(ρ) dρ (4.272)

where

Pj(ρ) =

∫
dκT |aj(ρ, κT )|2 j = 1, 2 (4.273)

and

aj(ρ, κT ) =
1

2πv

∫ ∞

0
ηJ0(ηρ)T j(η, κT ) dη (4.274)

where κT is the momentum of the ionized electron and η is the transverse component
of the change in momentum of the relative motion of the heavy particles. The com-
binatorics inherent in (4.272) demonstrates the power of the semiclassical method.

The transition amplitude for the first ionization event is given by

T1(η, κT ) = 〈χ(−)
f |W

†
f |χ

(+)
i 〉 (4.275)

where

χ(+)
i =

1
2

(1 + P12)ΨPluv(rT1, rT2, rT12) exp(iKi · Ri)D
(+)
P (κP, rP1) (4.276)

Wfχ
(−)
f = − 1

√
2

(1 + P12)(2π)−3/2φ(rT2) exp(iκT · rT1 + iKT f · Ri)

×∇rT1 D(−)
T (κT , rT1) · ∇rP1 D(−)

P (κP, rP1) (4.277)

D(±)
i (κi, ri) = N(±)(Zi/κi)1F1(±iZi/κi;±iκiri − iκi · ri) (4.278)

N(±)(ν) = exp(πν/2)Γ(1 ∓ iν) (4.279)

Here the subscript i refers to the corresponding quantities associated with either the
target (T ) or the projectile (P) nucleus. Accordingly, rT1, rP1 . . . are the position vec-
tors of the electron 1 with respect to the target and projectile nucleus, respectively,
and rT12 = |rT1−rT2|. Ki is the initial relative momentum and KT f is the final relative
momentum of the aggregate heavy particles and κP = κT − v, where v is the impact
velocity. The permutation operator P12 in (4.276) and (4.277) stands for interchang-
ing coordinates of two indistinguishable electrons 1 and 2.

From (4.277) note that in the final channel we considered a ground-state hydro-
genic orbital φ(rT2) for the second electron remaining bound to the target nucleus,
and we describe the ionized electron 1 by a hydrogenic target continuum orbital
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Fig. 4.21. Total cross sections for double ionization of He by He++ impact as a function of
incident energy E (keV/amu). Full circles: measurement of Shah and Gilbody [549]; open
circles: present calculation; open triangles: Shingal and Lin [555]. Full and dotted curves are
drawn through the theoretical results to guide the eye

simultaneously distorted by the projectile in the usual CDW manner [409]. How-
ever, we do not account for the so-called scattering correlation [418], i.e., the ex-
plicit correlation of these two electrons through the Coulomb repulsion (1/r12) in
the scattering operator. The integrals in (4.275) are then separable into one-centre
integrals: a three-dimensional integral with respect to the projectile nucleus and a
six-dimensional integral with respect to the target nucleus. The first one is evaluated
analytically while, following closely the appendix of Crothers and McCarroll [189],
the second integral has been reduced to a two-dimensional integral [234], [235].
Ionization of the second electron from the residual He+ ion by an alpha particle is
considered to be an isolated second event with the first electron removed to the con-
tinuum and the transition amplitude for this system is calculated using the CDW-EIS
model of Crothers and McCann [180]. This, after all, follows the prescription of the
first event, in the absence of electron 1, but with a normalized eikonal initial state.
This approximation has had considerable success in describing single ionization in a
one-active-electron situation [409], [259], [260], [261]. Measurements of Andersen
et al. [9] also provided strong evidence of the suitability of the CDW-EIS approxi-
mation for single ionization.

In Figure 4.21 we present total cross sections for double ionization of He by
alpha-particle impact together with the measurements of Shah and Gilbody [549]
and the multistate coupled-channel calculation of Shingal and Lin [555]. The im-
pact energy is denoted by E (keV u−1). Above 200 keV u−1 our results give excellent
agreement with the measurement at all the energies at which the measurements are
reported. However, below 200 keV u−1 our results start to overestimate the data and
fail to peak at lower energies. This is due in part to the usual CDW normalization
problem at the lower energies. It is interesting to note that the coupled-channel cal-
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culation of Shingal and Lin [555] involves as many as 79 atomic states (pure and
pseudo) based on each of the alpha particle nuclei. Their results, however, do not ap-
pear to be as accurate. Further modifications have been made [554] to this coupled-
channel calculation, by employing a two-step mechanism to account to some extent
for correlation; the preliminary results show some improvement over the results of
Shingal and Lin [555]. The excellent agreement of our results with the measurements
indicates the importance of the role of correlation in two-electron processes like dou-
ble ionization. The essence of the present calculation is not only that we account for
correlation through the initial target wave function, but also that we include dynamic
correlation by our very formulation of the independent-event model in which first
one electron is ionized and then the second one; that is, we invoke the concept of
correlation of events, as against particles. For completeness we also present our nu-
merical cross sections for double ionization in Table 4.8 together with measurements
of Shah and Gilbody at several energies.

Ionization of highly excited Rydberg states would appear to be best described
classically [400].

4.4 Relativistic CDW

A good introduction is in Crothers et al., Section 5.1 [200]. The Dirac equation (for
fermions) is:

[
−icα · ∇rT + γ4c2 + VT (rT ) + S 2VP′ (rP′ ) − i

∂

∂trT

]
Ψ (rT , t) = 0 (4.280)

Then making the Darwin approximation, correct to (αZT ), (αZP), we have (α =

1/137) the relativistic continuum-distorted-wave (RCDW) approximation, to de-
scribe ionization. The initial semirelativistic wave function:

Ψi = Ψ0i + Ψ1i (4.281)

Ψ0i = Z3/2
T π−1/2e−ZT rT−ic2t−iEsit (4.282)

Ψ1i = Z3/2
T π−1/2

[
− i

2c
α · ∇rT eZT rT

]
e−ic2t−iEsitωi (4.283)

Table 4.8. Total double ionization cross sections in units of 10−19 cm2 for alpha particle impact
on helium atoms. DC: present calculation; SG: measurement of Shah and Gilbody [549]

E keV u−1 DC (10−19 cm2) SG (10−19 cm2)

400.0 28.83 31.1 ± 1.1
500.0 19.52 21.9 ± 0.7
640.0 13.03 14.8 ± 0.5
800.0 9.15 10.53 ± 0.47

1000.0 6.29 7.07 ± 0.5
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where α is a 4 × 4 × 1 tensor:

(
α
)

=

(
0 σ
σ 0

) (
γ4

)
=

(
1 0
0 −1

)
(4.284)

where γ4 is sometimes written as β and the Cartesian coordinates of α are the 2 × 2
Pauli matrices:

σ1 =

(
0 1
1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0
0 −1

)
(4.285)

and the following are 4 × 1 column vectors

ωi =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ω f =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ spin up (4.286a)

or ω f =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
1
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ spin down (4.286b)

The RCDW initial distortion is

scalar: L′0i = N(νP)M(iνP, 1, iγ(vr′P + v · r′P))I (4.287)

vector: L′1i = N(νP)S−1
[
− i

2γcα · ∇r′P M(ivP, 1, iγ(vr′P + v · r′P))
]

S (4.288)

where the Sommerfeld parameter is νP = ZP/ve and N(νP) = Γ(1 − iνP)eπvP/2. Here
c is the speed of light and γ = 1/

√
1 − β2 where β = v/c. Equations (4.1) and (4.2)

generalize to
r′P = rT − b + (γ − 1)(rT · v̂)v̂ − γvt (4.289)

where the impact parameter is now written as b rather than ρ. A Lorentz boost from
the T to the P frame is given by

S =

(
1 + γ

2

)1/2 (
I − βγ

γ + 1
α · v̂

)
(4.290)

The initial- and final-state wave functions are

ψi = L′0iΨ0i + L′1iΨ0i + L′0iΨ1i (4.291)

ψ f = L′0 fΨ0 f + L′1 fΨ0 f + L′0 fΨ1 f (4.292)

The RCDW wave function is given by

Ψ f = Ψ0 f + Ψ1 f (4.293)

The component wave functions are
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Ψ0 f = (2π)−3/2N∗(ωT )M(−iωT , 1,−iγe(vert + ve · rT ))

e−iγec2t+iγeve·rT S−1
ve
ω f (4.294)

which is scalar and

Ψ1 f = (2π)−3/2N∗(ωT )
[
− i

2γecα · ∇rT M(−iωT , 1,−iγe(verT + ve · rT ))
]

e−iγec2t+iγeve·rT S−1
ve
ω f (4.295)

which is a Furry vector function. Here we have

Sve ⇒ v→ ve in S (4.296)

and the Sommerfeld parameter

ωT =
ZT

ve
ω′P =

ZP

v′e
(4.297)

L′0 f = N∗(ω′P)M(−iω′P, 1,−iγ′e(v′er′P + v′e · r′P))I (4.298)

L′1 f = N∗(ω′P)S−1

[
− i

2γec
α · ∇rP′ M(−iωP′ , 1,−iγe(v′er′P + v′e · rP′ ))

]
S (4.299)

ve is the velocity of e− relative to T , in frame T , and v′e is the velocity of e− relative
to P, in frame P, so that

v′e =

(
1 − vve

c2
cos θ

)−1
γ−1 (ve sin θ, 0, ve cos θ − v) (4.300)

noting that as c→ ∞, γ → 1, which implies

v′e = ve − v (4.301)

as in classical relativity. The transition amplitude is given by

A(b) = −i
∫ +∞

−∞
dt 〈χ f |

(
H − i

∂

∂t

)†
|χi〉 (4.302)

= −i
∫ +∞

−∞
dt 〈W fχ f |χi〉 (4.303)

= − i
(2π)2γv

∫
d2ηT (η)eiη·b (4.304)

The TDCS are given by

σ(ve) =

∫
d2b |A(b)|2 (4.305)

=
1

(2πγv)2

∫
d2η |T (η)|2 (4.306)
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where the two-dimensional Fourier transform is

T (η) = γv
∫

d2b e−iη·bA(b) (4.307)

The residual interaction W fχ f is derived as follows

W fχ f =

(
−icα · ∇rT + γ4c2 + S2V ′P(r′P) + VT (rT ) − i

∂

∂t

)

(
L′0 fφ0 f + L′1 fφ0 f + L′0 fφ1 f

)
e−ic2te S−1

ve
ω f

(4.308)

where te is the time referred to the electron’s rest frame, and it is understood that
φ f is just the final-state wave function defined earlier with the te-dependent factor
removed. This perturbation can be rearranged in the following manner:

=

[(
−icα · ∇ − i

∂

∂t
+ S2V ′P

)
L′0 f

]
(φ0 f + φ1 f )e

−ic2te S−1
ve
ω f (4.309a)

+L′0 f

(
−icα · ∇ − i

∂

∂t
+ γ4c2 + VT

) [
(φ0 f + φ1 f )e

−ic2te
]

S−1
ve
ω f (4.309b)

+

(
−icα · ∇ − i

∂

∂t
+ γ4c2 + S2V ′P

) [
(L′0 f + L′1 f )e

−ic2te
]
φ0 f S−1

ve
ω f (4.309c)

+
[
(−icα · ∇ + VT ) φ0 f

]
(L′0 f + L′1 f )e

−ic2te S−1
ve
ω f (4.309d)

−
[(
−icα · ∇ − i

∂

∂t
+ S2V ′P

)
L′0 f

]
φ0 f e

−ic2te S−1
ve
ω f (4.309e)

−L′0 fφ0 f

[(
−icα · ∇ − i

∂

∂t
+ γ4c2

)
e−ic2te

]
S−1

ve
ω f (4.309f)

−
[
(−icα · ∇ + VT ) φ0 f

]
L′0 f e

−ic2te S−1
ve
ω f (4.309g)

It is clear that (4.309f) is equal to zero because when it is transformed to the elec-
tron’s rest frame it becomes

− L′0 fφ0 f

[(
−i
∂

∂te
+ γ4c2

)
e−ic2te

]
ω f = −L′0 fφ0 f (γ4 − 1)c2e−ic2teω f (4.310)

and noting that γ4ω f = ω f the result is apparent.
Combining terms (4.309a) and (4.309e) yields

[
S(−icα · ∇′L′0 f )S + S2V ′PL′0 f

]
φ1 f e

−ic2te S−1
ve
ω f (4.311)

while (4.309d) and (4.309g) together give
[
(−icα · ∇φ0 f ) + VTφ0 f

]
L′1 f e

−ic2te S−1
ve
ω f (4.312)

Parts (4.309b) and (4.309c) reduce to give

L′0 f VTφ1 f e
−ic2te S−1

ve
ω f (4.313)
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Fig. 4.22. Differential cross section, as a function of laboratory angle θL, for nonflip RSE and
peaked DWIA approximations for Xe54+ incident on Be at 197 MeV u−1. Theory: solid line,
Darwin DWIA; dashed line, Dirac DWIA; dotted line, Darwin RSE. Experiment data (filled
circle) is from Anholt et al. [11]

and
S2V ′PL′1 fφ0 f e

−ic2te S−1
ve
ω f (4.314)

respectively. These are the Darwin correction terms, which arise as a direct conse-
quence of using approximate wave functions. The residual interaction can therefore
be written as

W fχ f =
[(
−icα · ∇φo f

)
L′1 f + S(−icα · ∇′L′0 f )Sφ1 f

+ (VT + S2V ′P)(L′0 fφ1 f + L′1 fφ0 f )
]

e−ic2te S−1
ve
ω f

(4.315)

We have seen in the analysis for the prior interaction codes that the time-dependent
exponents are accounted for in the Fourier transform method and so should be omit-
ted from the following analysis.

Figure 4.22 shows the singly differential cross section for the peaked distorted-
wave impulse approximation (RCDW) for nonflip. We find excellent agreement with
experiment [11] for the RCDW model in which Darwin final states were used; the
Dirac model overestimated the cross section by 20–30%.

The good agreement of RCDW with experiment (Figure 4.23a) for small and
medium Z-values is indicative of the importance of including the strong multiple
scattering intermediate states, which are approximated by the Coulomb distortions.
Second-order relativistic Oppenheimer-Brinkman-Kramers (ROBK2) using a plane
wave propagator only includes explicitly the two-step process. There is consider-
able uncertainty in the literature on the effectiveness of this model. Early work
[333], [334], which relied on various peaking approximations, specifically designed
for small charges and large velocities, only managed a small improvement on the
ROBK1 results. These had been shown to be at least one order of magnitude big-
ger than experiment [430]. Later an “averaging approximation” was introduced that
brought ROBK2 into good agreement with experiment [432], [433]. More recently,
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however, Decker [207] has shown that an exact numerical calculation of the ROBK2
amplitude leads to corrections to ROBK2 that actually worsen the accord with ex-
periment. This has led to a stimulating debate on how best to treat simultaneous ex-
pansions in the fine structure constant and the Born series itself [434], [208]. It is our
opinion that although ROBK2 is an excellent guide in collisions involving very low
charges, it is inherently a poor perturbative series for capture in the highly charged
systems that have been studied experimentally to date. In Figure 4.23b, the scalar and
spinor theories are compared with the experimental data presented by Anholt [12].
Although relativistic capture is dominated by inner-shell transitions [237], capture
to and from the L-shell sometimes has a significant contribution at these energies.
Our calculations include only results for capture from and to the K-shell. These re-
sults can be scaled (multiplied by a factor 1.202) to take account of the contributions
arising from capture to excited projectile states. The inclusion of capture from the
target L-shell required a more detailed calculation. However, these contributions are
quite significant for highly charged targets and low collision energies [12]. The re-
sults for scalar TCDW are very similar (at most ∼ 10% larger) to those of the spinor
TCDW for these collisions; the curve has been omitted for the sake of clarity. In our
calculation, we have used experimental binding energies and K-shell Slater screen-
ing for the target charges. These experimental data are not particularly well suited
to emphasizing the differences between spinor and scalar theories due to the dom-
inance of nonflip capture. However, the tendency for spinor TEIK to be markedly
lower than scalar TEIK is clear, especially for high-projectile energies. As TCDW
nonflip is reasonably insensitive to the high-momentum part of the distortion, both
versions give similar results. As mentioned earlier, the rather large discrepancies be-
tween theory and experiment are mainly due to capture from the target L-shell [12].
Conversely, theories based on projectile distortion and using ZT as a small parameter
can be used. These models, which can be termed PEIK and PCDW, give results for
these collisions that lie well above experiment for large target charges. For lower ZP

Fig. 4.23a. Total cross sections Q for electron capture as a function of target charge ZT for bare
carbon, neon, and argon nuclei impact. Projectile energies indicated in figures are in MeV u−1.
RCDW theoretical results: solid line; experimental data: filled circles, Crawford [155]
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Fig. 4.23b. Total cross sections Q for electron capture as a function of target charge ZT for bare
carbon, neon, and argon nuclei impact. Projectile energies indicated in figures are in MeV u−1.
Theoretical results (capture from K-shell to K-shell): solid line, spinor TCDW; dashed line,
spinor TEIK; dotted line, scalar TEIK. Experimental data (including capture from all states):
filled circles, [155]

and ZT , the results converge slowly towards the corresponding target distortion the-
ories. Neither PCDW nor TCDW can be considered very satisfactory whenever ZP

and ZT are comparable, both in practical terms and on theoretical grounds.
Results are presented for simulations of electron-positron pair production in rel-

ativistic heavy-ion collisions leading to electron capture and positron ejection. We
apply a two-centre relativistic continuum-distorted-wave model to represent the elec-
tron/positron dynamics during the collision process. The results are compared with
experimental cross-section data for La57+ and Au79+ impact on gold, silver, and cop-
per targets. The theory is in good agreement with experiment for La57+ impact, ver-
ifying the result that the process increases in importance with both collision energy
and target atomic number and improves upon previous simulations of this process.

Early theoretical work on the production of an e−–e+ pair through heavy-ion
collisions considered only the creation of the electron and positron in the contin-
uum. However capture by pair production (CPP), in which the electron is formed
in a bound state of one or another ion, becomes a significant process at highly rel-
ativistic energies. Remarkably, this process was sufficiently important to enable the
synthesis of atomic antihydrogen using the low-energy antiproton ring at CERN. A
beam of fast antiprotons impacting on a xenon gas target [49] led to pair production
with positron capture. Theory predicted [73], [19] that cross sections for CPP would
increase with energy, and indeed this has been verified experimentally [56], [57],
[368]. In fact, this process eventually becomes the dominant mechanism for charge
exchange in highly relativistic atomic collisions [368], [196]. As well as being an
interesting area of study in its own right, this process has important applications in
the physics of heavy-ion colliders, such as the large-hadron collider (LHC) and the
relativistic heavy-ion collider (RHIC) [60]. The process of CPP will lead to deple-
tion of the charge state of the beam and hence a loss in luminosity of the collider.
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For typical operating conditions of such facilities, these losses might amount to 50%
[60] or more.

Although the process is strongly coupled at high energy, simulations based on
relativistic coupled-channel calculations [20], [21] have indicated that leading-order
perturbation theory is adequate for total cross-section estimates for energies (E) up
to 150 GeV/u [368]. Nonetheless in the energy range E ∼ 1 GeV/u, where reliable
experimental data exist, theory and experiment have been in least agreement. It is
this region we address here.

It is now some 20 years since Becker and co-workers [54], [55], [13] obtained
the first estimates of cross sections for pair creation with simultaneous capture of the
electron into the K-shell of one of the colliding ions. However, with the exception
of Deco and Rivarola, who gave a two-centre description of the continuum positron
[210], two somewhat artificial modes of reaction have been distinguished and treated
separately when modeling this process: excitation from the negative energy contin-
uum of an ion to one of its bound states [73], [55], [209] or transfer to a bound state of
the other ion [238], [338]. Such approaches, while suited to circumstances in which
one ion is much more highly charged than the other, lack symmetry and make a dis-
tinction between two separate modes of CPP. They lead to different formulae within
first-order perturbation theory [238] and hence different projectile charge (ZP), target
charge (ZT ), and E dependencies. As a result, theoretical estimates of the asymptotic
(E → ∞) energy dependence of the total cross sections are not in agreement with
estimates of [73], [19] σCPP ∼ ln(E), and later [238] σCPP ∼ E2. The former is based
on the positron-electron pair being created around the same ion, the latter assuming
that the pair is divided between the two ions. Of course both pathways will interfere
and contribute to the process, thus pointing to the necessity of a two-centre treatment
for the positron and electron. Moreover it has been shown [210] that the two-centre
description is essential in obtaining the correct positron emission spectrum and ac-
curate total cross section for CPP. However, leading-order perturbation theory (the
first Born approximation) does give reasonably good estimates for the cross section
in the high-energy region (E ∼ 150 GeV/u) [368] for collisions of heavy ions and
has been a reliable model for fast collisions of light ions with low Z targets in the
process of antihydrogen formation involving CPP by antiprotons [49], [74].

Experimental results for highly relativistic heavy ions on a variety of targets [60]
support the simple scaling law derived from the virtual-photon method (Born ap-
proximation) which included multiple scattering from the projectile ion [73] alone,
σCPP ∼ Z2

T , for a given energy. At lower energies, this is not the case [57], [58],
[59]; the ZT dependence is more complex, showing an enhancement in excess of the
Z2

T -scaling. Here we propose a refinement of the Born approximation to take into
account higher-order scattering processes. In particular, we tackle the question of
the two-centre nature of the continuum positron and the polarization of the captured
electron. We find both these effects are vital and lead to theoretical results that are in
accord with experiment. We discuss the physical explanation for scaled cross-section
enhancement and provide numerical estimates that agree well with experiment in
qualitative and quantitative terms.
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Through crossing symmetries, the leading-order matrix element for the pair-
production process, in which the electron is captured by the projectile P,

P + T → (P, e−) + T + e+ (4.316)

is the same as that for the related reaction, e− + P + T → (P, e−) + T , which is
mathematically equivalent to the time-reversed ionization process

(P, e−) + T → e− + P + T (4.317)

In each crossing symmetry the equivalence relies on the electron-positron interaction
being much weaker than their interactions with the highly charged ions, a reasonable
assumption. Let rP, t, and r′T , t

′ be the space and time coordinates of the electron in
the projectile and target frames, respectively. The nuclei follow straight-line paths
with relative velocity v. The Hamiltonian, in the projectile frame of reference and in
atomic units, is given by:

H = −icα · ∇rP + βc2 + VP(rP) + S 2V ′T (r′T ) (4.318)

where α and β are Dirac matrices and S is the operator that transforms the wave
function from the projectile frame to the target frame, namely

S = ( 1
2 + 1

2γ)
1
2 (1 − xα · v̂) (4.319)

where x = vγc−1(γ+ 1)−1, γ = (1− v2/c2)−1/2, and 1 represents the unit matrix. For a
given impact parameter b, the transition amplitude can be written in the form [180]

A(b) = −i
∫ ∞

−∞
dt

∫
drP χ†f (H − i∂t)χi (4.320)

where χi and χ f are the initial and final states.
The undistorted bound state is approximated by a semirelativistic (ZT � c) wave

function :
Φi = Φ0i +Φ1i (4.321)

where
Φ0i = Z

3
2
Pπ
− 1

2 e−ZPrP−ic2t−iEsitωi (4.322)

and
Φ1i = (2ic)−1α.∇rPΦ0i (4.323)

with Esi the nonrelativistic eigenenergy, and the electron spin along the beam axis
defined as “up” by ωT

i = (1 0 0 0) and “down” by ωT
i = (0 1 0 0).

The continuum function is given by

Φ f = Φ0 f +Φ1 f (4.324)

where
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Φ0 f = (2π)−
3
2 N∗(ωP)1F1(−iωP; 1;−iγe(verP + ve · rP))

× e−iγec2t+iγeve·rP S −1
ve
ω f (4.325)

The spinor correction term is given by

Φ1 f = (2π)−
3
2 (2iγec)−1N∗(ωP)

×α.∇rP1F1(−iωP; 1;−iγe(verP + ve · rP))

× e−iγec2t+iγeve·rP S −1
ve
ω f (4.326)

with ωP = ZP/ve, where ve is the electron velocity. N(ζ) = exp (πζ/2)Γ(1 − iζ) and

S ve = ( 1
2 + 1

2γe)
1
2 (1 − xeα.̂ve) (4.327)

where xe = veγec−1(γe+1)−1 and γe = (1−v2
e/c

2)−1/2. These functions are appropriate
when ZP,T � c.

The initial distortion factor L′i is a matrix given by:

L′i = L′0i + L′1i (4.328)

where the asymptotic 1F1, or eikonal, initial state is

L′0i = exp(−iνT ln[γvr′T + γv · r′T ])1 (4.329)

and
L′1i = S −1(2iγc)−1α · ∇r′T

L0iS (4.330)

with νT = ZT /v.
Similarly the distortion factor on the final state [210] is given by:

L′f = L′0 f + L′1 f (4.331)

where
L′0 f = N∗(ω′T )1F1(−iω′T ; 1;−iγ′e(v′er′T + v′e · r′T ))1 (4.332)

and
L′1 f = S −1(2iγ′ec)−1α · ∇r′T

L′0 f S (4.333)

Retaining terms of first order in Z/c, we have relativistic continuum-distorted-
wave eikonal-initial-state wave functions [180], [209]:

χi = L′0iΦ0i + L′1iΦ0i + L′0iΦ1i (4.334)

χ f = L′0 fΦ0 f + L′1 fΦ0 f + L′0 fΦ1 f (4.335)

We first compare our results for the relativistic distorted wave Born (RDWB)
approximation [210], where the two-centre positron wave function is used but the
initial-state distortion is omitted, and the relativistic first Born (R1B), projectile cen-
tred, approximation, in which the initial- and final-state distortions are neglected.
The Born approximation, which assumes that the positron is in the continuum of
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only one of the ions, is ambiguous. The Born approximation of Bertulani and Baur
[73] takes the positron wave function as projectile centered, while the Born approxi-
mation of Eichler [238] takes the scattering center at the target nucleus. As the Born
approximation of Eichler is analagous to the OBK theory of electron capture, we
henceforth refer to it as OBK. These two models (R1B and OBK) can be viewed as
approximations to the wavefunction (4.335) in which ω′T = 0 and ωP = 0, respec-
tively. By retaining both scattering centre contributions, the interference effects are
taken into account. In comparing RDWB and R1B, it is known that these two-centre
interference effects reduce the cross section for CPP in the relativistic domain [210].
This suppression of CPP is the converse of the two-centre enhancement (capture to
the continuum) that arises in ion–atom ionization [180] and is analogous to the effect
of the Fermi function for β± decay [243].

The triply differential cross section, with respect to the electron momentum (pe),
is defined as

σ(pe) = (dσCPP/dpe) =

∫
db |A(b)|2 (4.336)

Using the Fourier transform method [180], we define

T (η) = γv
∫

db exp(−iη · b)A(b) (4.337)

where T (η) is a product of single-centre integrals. The total cross section is obtained
from the integral over the ejectile momentum (or velocity) and takes the form

σCPP =
∑
spins

1
2π(γv)2

∫ c

0
dve γ

5
ev2

e

∫ π

0
dθ sin θ

∫
dη|T (η)|2 (4.338)

where we sum over all the spin states of the electron and positron pair.
In order to compute CPP cross sections (4.316), we note that a positron with

energy ε+ and momentum p+ traveling forward in time in the final state is equivalent
to an electron with energy −ε+ and momentum −p+ in the initial state. Thus we must
take

ve → −v+ v′e → −v′+
ε f → −ε+ ε′f → −ε

′
+ (4.339)

The experiments of Belkacem et al. [57], [58], [59] were for fully stripped lan-
thanum ions (La57+) striking thin foils of copper (ZT = 29), silver (ZT = 47), and
gold (ZT = 79). The collision energies were E = 0.405, 0.956, and 1.300 GeV/u.
The two graphs presented compare the scaled total cross sections (σCPP/Z2

T ) given by
theory and experiment. Consider figure 1 of [380], which compares R1B and RDWB
with the measured values. Of course, the scaled R1B curve is independent of ZT ,
and it clearly shows the increase in importance of CPP with increasing collision en-
ergy. Considering the RDWB model, however, we see a progressive reduction in the
scaled cross section as ZT increases. This is in agreement with the findings of Deco
and Rivarola [210], who reported a decrease in the size of the singly differential cross
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sections by an order of magnitude. Their model is similar to our RDWB approxima-
tion, but using only the scalar part of the final-state distortion factor (4.332). While
this model shows ZT dependence for the scaled cross section, the trends and abso-
lute values are incorrect. It predicts a suppression of the scaled cross section rather
than an enhancement as ZT increases. Thus the RDWB theory data for gold gives
the lowest scaled cross section, while experiment shows that it should be the high-
est. This same incorrect trend is obtained in the target-centred Born approximation
(OBK) [238], as can be seen in figure 2 of [380]. These results were also calculated
using the semirelativistic wave functions (4.321) and (4.324).

In Figure 4.24 the equivalent results for RCDWEIS show the observed enhance-
ment with increasing ZT . However, the theoretical data lie below the experiment for
the more energetic collisions. In comparing with experiment we have only presented
simulations for the dominant channel, that is, capture to the 1s ground state. At very
high energies capture to excited states is thought to contribute ∼ 30% to the total cap-
ture cross section [368], [22]. This would partly explain the differences between our
results and the experimental data. Nonetheless, given the approximate nature of the
semirelativistic wave functions used, the theoretical results are very encouraging in
that, for the first time, the correct ordering of the total cross sections with respect to
nuclear charge, is obtained. It is expected that the implementation of full Coulomb-
Dirac wave functions within the overall context of this model will lead to a similar
increase in total cross sections as that observed by Ionescu and Eichler [338] in their
fuller calculations using Dirac wave functions within the OBK approximation. Thus
the present underestimation of the cross sections at higher energy and charge [55],
[238] may well be revised in a treatment employing fully relativistic wave functions
(see Figure 4.24).

Other experimental results are available for the impact of faster and more highly
charged beams: 10.8 GeV/u Au79+ [60] and 0.956 GeV/u U92+ [56] for the same
targets. The gold beam results (Table 4.9) indicate that the Z2

T dependence is es-

Fig. 4.24. Scaled cross sections, σCPP/Z2
T in microbarns, for pair production with electron

capture by fully stripped lanthanum ions (La57+) striking thin foils of copper (ZT = 29), silver
(ZT = 47), and gold (ZT = 79). Comparison with RCDWEIS theory for capture to the 1s-state
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tablished at the higher energies, as predicted by the simple projectile-centred Born
approximation [54]. Even at this higher energy our theoretical results (Table 4.9)
show an enhancement in excess of Z2

T . The experiment is in much better accord with
the flat scaled cross-section data given by the Born approximation [54]. For U92+ the
high value of Z/c means that the semirelativistic approximations used for the wave
functions are not valid.

Table 4.9. Total cross sections, σCPP in barns, for electron capture from pair production for
10.8 GeV/nucleon Au79+ impact on gold, silver, and copper foils.

ZT Experiment [60] CDWEIS theory Becker et al. [54]
79 8.8 ± 1.5 15.85 10.1
47 4.4 ± 0.73 3.44 3.6
29 1.77 ± 0.31 0.74 1.36

The validity of the semirelativistic continuum-distorted wave approach has been
questioned [584] on the grounds that the approximate wave functions might pro-
duce unphysical transitions [211]. However, Glass et al. [299], [300] considered
symmetric-eikonal wave functions with the prior interaction and showed that the spu-
rious spin-flip contribution to the amplitude vanishes when full cognisance is taken
of the two-centre spinor nature of the noncommuting operators. This is the procedure
used here, which thus avoids unphysical effects.

In summary, we have proposed and tested a new distorted-wave model that im-
proves on approximations used previously to describe CPP. We confirm that, as has
previously been shown [210], the inclusion of distortions from both ions on the
positron continuum state leads to a reduction in the cross sections. However, includ-
ing distortion of the bound electron leads to an increase in the total cross sections
and a more accurate fit to the experimental data for fully stripped relativistic lan-
thanum ions. This demonstrates once more the necessity of a two-centre treatment
for an accurate theoretical description of this reaction. However, our cross-section
predictions for faster and more highly charged gold ions do not accord with the ex-
perimental data, which show a Z2

T dependence. While the refinements introduced in
our model are significant theoretical improvements, clearly there still exist several
unresolved important differences between theory and experiment.

4.4.1 Antihydrogen Production

Many aspects of relativistic atomic-scattering theory are still at an early stage of
development (indeed even the asymptotic form of the nonradiative capture cross sec-
tion is still under active consideration [208], [411], [431]). The production of nine
antihydrogen atoms in an experiment at CERN (PS210) ten years ago created much
excitement inside and outside the scientific world [49]. In the CERN experiment a
fast antiproton made a close encounter with a highly charged nucleus in the form of
a xenon (Z = 54) gas target:
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Xe + p→ Xe + H
0

+ e− (4.340)

The antiproton was energetic enough to create an electron-positron pair. The
positron was then captured by the antiproton, and an atom of antihydrogen was cre-
ated. Viewed from Dirac sea theory, the antiproton had a filled set of negative energy
bound and continuum states. Given enough energy, the 1s2 states could escape to the
positive continuum leaving a hole (positron) behind and an electron emerged. Present
theoretical calculations to describe this reaction are at the level of the relativistic first
Born approximation. Agreement with experiment is satisfactory, but large errors re-
main.

So for the theoretician this is a rich field of study. In particular, many of the
physical processes peculiar to the relativistic domain are amenable to the application
of RCDW theory which, by virtue of being able to describe two-centred effects, is
well suited to those problems [311].

Further results were expected from the CERN antiproton decelerator [15], [310]
and its large hadron collider [257].

Since the production of antihydrogen at both CERN and Fermilab at relativis-
tic speeds, there has been considerable interest in cooling the antihydrogen to study
its properties in low-energy collisions, both experimentally [109] and theoretically
[15], [310]. The advantage of AD is that violations of the CPT theorem may be
tested [236]. The advantage of RCDW over traveling molecular orbitals, other than
for super-heavy atoms, is that the prior interaction forms a suitable perturbation,
whereas there are extra problems with traveling molecular orbitals concerning the
electron translational motion. In RCDW, the electron translation factors are auto-
matically included and the RCDW description of the post interaction automatically
allows for strong coupling between the charged particles, the perturbation being the
non-orthogonal kinetic energy.

In the CERN PS210 experiment, the impact kinetic energy is 1.217 GeV/u so
the Lorentz factor is not much greater than 2. Our models should therefore describe
the process adequately. Baur [48] predicted, with good accuracy, the cross section
for this process using the virtual photon method. He suggested that the cross section
would be around 2×Z2 pb where Z is the nuclear charge of the gaseous target. Thus,

during the 15-hour run of the CERN experiment they reckoned that 30H
0

atoms
would be produced. Since their detector efficiency was determined to be 0.3, they
expected to observe nine antihydrogens, which is within the error of the reported
experimental results. Baur et al. [49] noted that the model of Eichler [238] produced a
negligible cross section for the process as did the other model of Baur [48], based on
a bound-free pair production of Bremsstrahlung. In Figure 4.25 we show the doubly
differential cross section in the forward direction for the given mechanism and see
that the inclusion of the distortions results in a huge increase over the undistorted
R1B model. Thus, we would expect to get a much improved total cross section.

Baur’s formula suggests that the cross section should be around 6 nb while the
R1B approximation gives a value of 0.095 nb. The RCDWEIS approximation is an
improvement on this but at 0.39 nb it is still an order of magnitude too low. Further
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Fig. 4.25. Comparison of the R1B and RCDWEIS doubly differential cross-section profiles
(lower and upper lines respectively) for the antihydrogen production process where the elec-
tron is ejected in the forward direction. The solid lines represent opposite spins while the
dashed lines denote aligned spins of the lepton pair

work on the integration techniques may be called for, as Figure 4.25 suggests that
the increase of more than a factor of 4 over R1B is to be expected.

For future development it will be necessary, as for ionization, to reformulate
the expressions using the continuity relation if highly relativistic energies are to be
considered. It also seems essential that the contribution of the neglected term be in-
vestigated fully. Initially it could be included to observe the effect on the double dif-
ferential cross sections as this would not require a dramatic increase in computation.
If it must be included then the computational approach must be altered if total cross
sections are to be obtained. It may be possible to efficiently calculate the problem-
atic 2F1 on a multidimensional grid and then to use the stored data to approximate
the values at the quadrature points using extrapolation. In this way the total cross
sections would be attainable using reasonable computational resources.

To describe this process better, two-centred wave functions, which can describe
the distortion of the Dirac sea before and after the collision, are required. The RCDW
wave functions have the necessary properties, and their application to this process
will prove illuminating. New experiments are planned over the next few years at
Fermilab to further investigate antihydrogen production, and the availability of an
improved theoretical model is timely. Indeed the experiment (E862) [81] at Fermilab
has produced 57 antihydrogen atoms by passing an antiproton beam in the 3.5 to 8.9
GeV/c range through a hydrogen gas jet as in the CERN experiment. The method
of production comprises pair-production capture of a positron by an anti-proton, in
collision with a proton that survives, together with the ejected-partner electron. The
measured cross section [81] is, within error bars, close to the plane wave Born cal-
culation of Bertulani and Baur [74] and Meier et al. [422].

Blanford et al. [81] claim that the result of Bertulani and Baur [74] is, however,
not consistent with the CERN experimental result of Baur et al. [49] since their signal
of 11 events, with an estimated background of two, corresponds to a cross section
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of at least 6000 pb, in contrast to 671 pb for reaction (4.340) with 1.94 GeV/c p
momentum, according to Bertulani and Baur. Perhaps a future RCDW calculation
will clarify these discrepancies.

4.5 Semiclassical Acausality

4.5.1 Introduction

Coupled second-order quantal wave equations are considered for a noncrossing
atomic collision [78]. They are reduced to exactly equivalent first-order equations.
The semiclassical approximation transforms these equations into generalized projectile–
target time-dependent interaction impact-parameter equations. We show that in the
suggested approach acausal, cybernetic effects are observed when terms propagate in
the acausal (negative to positive time) direction. We summarize the results obtained
and illustrate these effects in the quantal first Born approximation.

In the quantum mechanics of atomic collisions, the time-dependent Schrödinger
equation (TDSE) is causal with respect to the time behaviour. This includes the
impact-parameter treatment of ion–atom collisions. This latter treatment assumes
that the relative motion of the nuclei is described a priori by a classical trajectory, for
instance, a straight line or a Coulomb curved line. Nevertheless, the behaviour of the
electrons is described by quantum mechanics.

However, there is a major difference, depending on whether we consider the gen-
eral causal TDSE or the impact-parameter treatment. In the fully quantal TDSE de-
scribing three particles (an electron colliding with a one-electron atom, or a proton
or other heavy-particle colliding with a similar atom), the time dependence may be
removed immediately by a gauge transformation: factoring out exp (−iEt/�), where
E is the total energy. This is because we may assume that, in these three-body col-
lisions, all three two-body interactions are time-independent and may be described
using the time-independent (or stationary) Schrödinger equation. Note that we are ex-
cluding time-dependent external fields in these statements. To continue with the ma-
jor difference, consider further the impact-parameter treatment. The classical treat-
ment of the relative motion of the collidants means that a gauge transformation
exp

(
−i/�

∫ t

0
(zPzT )/(R′)dt′

)
removes the internuclear interaction (here the charge of

the bare projectile is zP and of the target nucleus is zT , and the internuclear distance
is R, which may be taken as

√
ρ2 + v2t2 in the straight-line case, with impact param-

eter ρ, time t, and impact velocity v). However, the price one pays is that the TDSE
must be used since the two other two-body interactions are time-dependent. Never-
theless, a major advantage is that the variational principle (second-order in space,
first-order in time Jacobi–Euler–Lagrange–Sil) leads to coupled first-order ordinary
differential equations in the impact-parameter treatment [560]. In contrast, in the
time-independent Schrödinger equation quantal wave treatment the variational prin-
ciple (second-order in space Jacobi-Euler-Lagrange-Kohn) leads to coupled second-
order ordinary differential equations, by separating the variables and following a
partial-wave analysis [443].
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Equally well, it is known that these wave- and impact-parameter treatments of
an ion–atom collision are effectively equivalent in the first Born perturbation ap-
proximation, under rather minimal assumptions, notably a large reduced mass of
the projectile and the nuclear target [158]. Thus it should come as no surprise that
the so-called time-independent treatment actually does involve an underlying time
dependence that is equivalent to the impact-parameter time. As we shall demon-
strate in what follows, this underlying time involves acausal effects, as viewed from
the impact-parameter treatment. This will be interpreted as a generalized impact-
parameter treatment.

When we use the word semiclassical we shall be referring to the Jeffreys–
Wentzel–Kramers–Brillouin approximation, rather than the impact-parameter method
for which the relative motion of the heavy particles is described classically and the
electrons quantally. In some countries, the impact-parameter method is described as
semiclassical!

In Bichoutskaia et al. [77] we introduce in the notation of Mott and Massey
([443] chapter XIII, equations (10), (11)) the atomic-collision problem in the two-
state approximation described in terms of two coupled radial Schrödinger equations:

d2G0l

dr2
+

(
k2

0 −
l(l + 1)

r2
− U00(r)

)
G0l = U01G1l

d2G1l

dr2
+

(
k2

1 −
l(l + 1)

r2
− U11(r)

)
G1l = U10G0l (4.341)

for each value of the total angular-momentum quantum number l. These may be
derived from a two-state ansatz using second-order Euler–Lagrange variational the-
ory (for the latest development in variational principles for second-order differential
equations; see Grifone and Muzsnay [312]). In (4.341), U10 = U01 ≡ 2MV01/�

2 is
the coupling matrix element, where V01 is the off-diagonal interaction matrix element
for the colliding systems and the wavenumbers k j = k j(∞), j = 0, 1, are related to
the relative velocity v j(∞) of separated atoms in the state j as

k j =
Mvj(∞)

�
(4.342)

where M is the reduced mass; r is the projectile–target separation. The distortion of
state i (0 or 1) due to interaction with the state j ( j � i) is given by the diagonal
matrix element Uii(r). The channel wave functions G jl are regular at the origin,

G0l(0) = G1l(0) = 0 (4.343)

and satisfy, as r → ∞, the boundary conditions

G0l(r → ∞) = il sin(k0(∞)r − lπ/2) + αl exp(ik0(∞)r)

G1l(r → ∞) = βl exp(ik1(∞)r) (4.344)

if the colliding entities are prepared in the state 0, where αl and βl are constants
(independent of r ). The constant βl is the inelastic amplitude related to the S -matrix
element S l

01 by
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S l
01 = 2i

√
k1(∞)
k0(∞)

βl

and the (partial) transition probability Pl is given traditionally by

Pl =
4k2

1(∞)

k2
0(∞)

|βl|2 =
k1(∞)
k0(∞)

|S l
01|

2 (4.345)

4.5.2 Generalized Impact-Parameter Treatment

The two coupled channel equations (4.341) can be transformed into four first-order
ones ([40], to be referred to as (I)) by introducing the uncoupled channel wave func-
tions S ±jl (solutions of (4.341) without the right-hand side) containing at r → ∞ only
the outgoing and incoming waves, respectively:

S ±jl(r) � k−1/2
j exp

(
±i

(
k jr −

lπ
2

))
(4.346)

Expanding the solutions G jl(r) in the form

G jl(r) = α+
jl(r)S +

jl(r) + α−jl(r)S −jl(r) (4.347)

leads (I) to the following exact equations for the coefficient functions α±jl:

α+′

0l = −1
2

iU01S −0l

(
α+

1lS
+
1l + α−1lS

−
1l

)

α−
′

0l = +
1
2

iU01S +
0l

(
α+

1lS
+
1l + α−1lS

−
1l

)

α+′

1l = −1
2

iU10S −1l

(
α+

0lS
+
0l + α−0lS

−
0l

)

α−
′

1l = +
1
2

iU10S +
1l

(
α+

0lS
+
0l + α−0lS

−
0l

)

(4.348)

In terms of α±jl, the boundary conditions (4.343) and (4.344) may now be written as

α−0l(∞) =
1
2

k1/2
0 (∞) , α−1l(∞) = 0

α+
jl(0) + α−jl(0) = 0 ( j = 0, 1)

(4.349)

The advantage of representation (4.348) is that the properties of the uncoupled sys-
tem enter the equations through S ±jl(r). This makes (4.348) a convenient basis for
semiclassical treatment, as one only needs to replace the S ±jl(r) by their semiclassical
asymptotes.

Thus far no approximation has been made and we have reduced two coupled
second-order differential equations to four coupled first-order equations by a method
that is essentially equivalent to the well-known variation-of-parameters method.
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For simplicity we consider the noncrossing model in which 0 and 1 are the
separated-atom eigenenergies:

U00 = U11 = 0 (4.350)

and define

W(r) ≡ V01(r)
v

(4.351)

In the noncrossing case k2
0 − U00(r) � k2

1 − U11(r) for all r, whereas for pseudo
or avoided crossings there exists at least one r for which the inequality becomes an
equality. Following (I) we introduce the diabatic JWKB semiclassical approximation
(with Langer correction)

S ±jl(r) = k−1/2
j exp

(
±i

(
π

4
+ k j

(
r − π

2
ρ j

)))
(4.352)

which holds asymptotically and which includes an extra ±iπ/4, compared to (4.346)
(and with an eye on the connection formula at the classical turning point), and where
we have impact parameters given by

ρ0k0 = l +
1
2

= ρ1k1 (4.353)

and
ρ2 = ρ0ρ1 (4.354)

In contrast to the adiabatic model of slowly varying behaviour for which we could
diagonalize the matrix V (V01 = 0), in the diabatic treatment we neglect W (i.e., V01,
U01, U10) and solve the remaining homogeneous equations (4.341) to obtain S ±jl(r)
of (4.352). We define, with c0(−∞) = 1 and c1(−∞) = 0, and suppressing l

c j(z) =

⎧⎪⎪⎨⎪⎪⎩
+α+

jl(|z|) (z ≥ 0)

−α−jl(|z|) (z ≤ 0)
(4.355)

where the path length z satisfies

|z| = v|t| =
√

r2 − ρ2 (4.356)

The remnant distortion [35] is given by

μ
γ

}
=

[
k0|z| −

(
l +

1
2

)
π

2
+
π

4

]
∓

[
k1|z| −

(
l +

1
2

)
π

2
+
π

4

]
(4.357)

(upper sign for μ being +− or −+ distortion, lower sign for γ being ++ or −− distor-
tion), so that

μ = (k0 − k1)|z| (4.358)

γ = (k0 + k1)|z| − lπ (4.359)
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Treating W as slowly varying and invoking the Gans–Jeffreys connection formula
based on (4.349), and by the substitution of (4.352) and (4.355), (4.348) may now
be rewritten in the classically allowed region (cf. “forbidden” region in Coveney et
al. [152]) as the generalized impact-parameter equations

idc0(z)
dz

= W[c1(z)e∓iμ − c1(−z)e∓iγ] (4.360)

idc1(z)
dz

= W[c0(z)e±iμ − c0(−z)e∓iγ] (4.361)

upper or lower sign according to z > 0 or z < 0. The second terms in the right-habd
side square brackets in (4.360) and (4.361) may be regarded as acausal because for
negative z they have not yet been reached by the classical trajectory. These acausal
terms come from the S −0lS

−
1l and S +

0lS
+
1l terms in (4.348). The difference between

(4.360) and (4.361) and the standard impact-parameter treatment [35] lies entirely in
the c j(−z) terms. The normal argument in ion–atom collisions is that e±iγ averages
out at zero for large γ. Mathematically, we have c j(−z) as against c j(z) and the terms
that run backwards in time do occur. We call them acausal terms in contrast with
causal processes of movement forward in time. It follows that the exact relations
hold, namely

dc0(−z)
dz

= exp (±i(μ + γ))
dc0(z)

dz
(4.362)

dc1(−z)
dz

= exp (±i(γ − μ))
dc1(z)

dz
(4.363)

By inspection, these relations embrace cybernetic (or feedback) effects. To wit, if
z > 0, then earlier amplitudes (or rather, their rates of change) are given in terms
of the later amplitudes. Viewed from the impact-parameter trajectory, the absence of
acausal terms in (4.360) and (4.361) would negate relations (4.362) and (4.363).

4.5.3 Perturbation Theory

We now apply double-perturbation theory (Born approximation), which invokes
W � 1, which implies c1(+∞) � 0 and neglecting the oscillatory acausal term
in (4.361), we obtain

idc1(z)
dz

� We±iμ (4.364)

⇒ ic1(+∞) � 2
∫ ∞

0
dz W cos μ (4.365)

and

idc1(−z)
dz

� We±iγ (4.366)

⇒ ic1(−∞) � 2
∫ ∞

0
dz W cos γ (4.367)
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This implies that the net inelastic transition probability is

P01 =

∣∣∣∣∣2
∫ ∞

0
dz W cos μ

∣∣∣∣∣
2

−
∣∣∣∣∣2

∫ ∞

0
dz W cos γ

∣∣∣∣∣
2

(4.368)

Using Fourier transforms and the Faltung theorem [158], it follows that the total
cross section is

Q01/a
2
0 = 2π

∫ ∞

0
ρ dρ P01(ρ) (4.369)

Q01/a
2
0 =

1
(2πv)2

∫ k0+k1

|k0−k1 |
q dq

∫ 2π

0
dφ

∣∣∣dr eiqrV01(r)
∣∣∣2 ≥ 0 (4.370)

where the change in relative momentum of the atomic particles is

q = k0 − k1 (4.371)

so that
q2 = k2

0 + k2
1 − 2k0k1 cos θ (4.372)

where
cos θ = k̂0 · k̂1 (4.373)

Despite inequality (4.370), P01(ρ) of (4.368) could, in principle, lie outside the phys-
ical range [0, 1] [36], in which case, strictly speaking, the perturbation treatment is
invalid for the particular ρ-domain. To rephrase, the step leading to (4.364) becomes
invalid. Nevertheless, since k0 + k1 > |k0 − k1|, the second integral in (4.368) has the
higher frequency leading to greater cancellation. This is illustrated as follows: for
V01(r) ≡ exp(−αr), P01 of (4.368) is given by

P01 =
4α2ρ2

v2

[
K2

1

(
ρ
√
α2 + (k0 − k1)2

)
− K2

1

(
ρ
√
α2 + (k0 + k1)2

)]
(4.374)

However, we have

K1(ζ) �
ζ�1

√
π

2ζ
exp(−ζ) (4.375)

and

K1(ζ) �
ζ∼0

1
ζ

(4.376)

Thus, if we take, say, α = 1, k0 = 2, and k1 = 1 (in atomic units), which are light-
particle parameters, we see that the causal term is very much larger than the acausal
term, so that the double-perturbation treatment is justified and consistent; moreover,
the link with the first Born wave treatment (4.370) is justified.
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4.5.4 Discussion and Conclusions

The quantity Q01 (equation (4.370)) is the quantal first Born cross section in which
the lower limit corresponds to θ = 0 and is causal, whereas the upper limit corre-
sponds to θ = π and is acausal. The classical purely impact-parameter first Born
approximation comprises k0 − k1 → (ε1 − ε0)/v and k0 + k1 → +∞. We may in-
terpret (4.360) and (4.361) as generalized impact-parameter equations with the first
terms on the right-hand side causal and the second terms acausal, at least as viewed
from the derived time-dependent treatment that arises when the acausal terms are ne-
glected. Thus not only does semiclassical mechanics here interpolate between quan-
tal and classical mechanics, but it explicitly demonstrates cybernetic effects by which
the propagation of waves −∞ to +∞ in time simultaneously invokes propagation of
waves +∞ to−∞ in time in a consistently dovetailed unitary manner, the essence of
quantum mechanics (here we are not referring to perturbation theory). Clearly our
technique, based on the Green function method of (I), generalizes to U00 � 0 and
U11 � 0. Moreover, although the semiclassical treatment of Stueckelberg [574], con-
sidered in paragraph 3 of chapter XIII of Mott and Massey [443], concerns ion–atom
collisions, our treatment given here need not be so limited. Our treatment clearly
generalizes to any number of coupled states [42]. A simple consideration of the
leading terms in both versions (with and without the cybernetic acausal terms) of
the first Born approximation shows that the impact-parameter treatment erroneously
produces a finite cross section at threshold [158], whereas the wave treatment (in
the form of generalized impact-parameter equations (sic)) at least gives a zero cross
section [600].

As presented here, the semiclassical treatment of the four exact first-order equa-
tions (4.348) leads to generalized projectile-target time-dependent interaction impact-
parameter equations (4.360), (4.361). These equations contain acausal behaviour
embedded entirely in the c j(−z)-terms, which are absent in the standard impact-
parameter treatment (see, for example, equation (2.13) of Bichoutskaia et al. [77]).
The relevance of the approach described, to ultracold collisions, lies in the consid-
eration of equations (4.360) and (4.361) in the closely coupled perturbed symmetric
resonance model [162] in which both k0 and k1 are sufficiently small, that neither
causal nor acausal terms can be ignored, relative to each other, ε1 − ε0 is small and
k0−k1 � (ε1−ε0)/v. The consequence is that a typical very low-energy fine-structure
ion–atom collision [224] will yield to a generalized impact-parameter treatment de-
scription of its experimental realization.

In conclusion, in the standard impact-parameter treatment, we may have a
straight-line trajectory at impact parameter ρ or, indeed, a curved trajectory (e.g.,
Coulomb), each of which has a point of closest approach, dividing the trajectory into
two. On the inward half, this corresponds to radially incoming waves; on the outward
half, to radially outgoing waves.

In standard one-dimensional scattering, there are ingoing waves (incident beam)
and outgoing waves (transmitted and reflected beams); there are no ingoing waves in
the negative direction by assumption.
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However, in a three-dimensional spherical interior, a priori they may simultane-
ously be both radially ingoing and outgoing waves in all directions. A counterexam-
ple is given by the well-known plane-wave asymptotic expansion

eik·r �
kr�1

2π
ikr

[
eikrδ(k̂ − r̂) − e−ikrδ(k̂ + r̂)

]
(4.377)

with ingoing waves e−ikr (direction r̂ = −k̂, momentum ∼ −�kr̂) and outgoing
waves eikr (direction r̂ = k̂, momentum ∼ +�kr̂). Here, the delta functions are two-
dimensional, and admittedly there is a problem at k̂ · r̂ = 0 [444]. The picture here is
of a wave lying in a plane that sweeps through the spherical interior in the k direction,
in, say, the φ = 0 plane, φ being the cylindrical polar azimuthal angle. The compli-
cation, compared to one-dimensional scattering, is that the coordinate r ∈ [0,+∞],
because the distance between two objects must always be nonnegative. The plane
wave can represent, in principle, an electron, a photon, an ion, etc, impinging on
some fixed centre that does not perturb the projectile.

Nevertheless, as semiclassical analysis shows, this comprises a rather classical
picture in which the impact parameter is given by (l+1/2)/k where l is the azimuthal
quantum number of the partial wave (see also (4.353)).

When an interaction occurs, however, (4.360)–(4.363) show that, in quantum
mechanics, there are ingoing waves, simultaneously in both halves of the spherical
interior, and outgoing waves also in both halves of the interior, in this case φ = 0
and z ∈ [−∞,+∞]. From the stationary Schrödinger equation point of view, this
is all prescribed instantaneously. From the generalized impact-parameter-treatment
point of view, this comprises acausal cybernetic effects. Of course, this would appear
to be implausible at impact energies that are in any way appreciable, but then the
generalized treatment does yield the impact-parameter treatment in such a limit.
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Diffusion in Liquids and Solids

5.1 Single-Domain Ferromagnetic Particles

Chapters 3 and 4 concerned atomic and molecular physics of particles in the gaseous
phase under single-collision conditions. Here in Chapter 5 we are concerned with the
condensed-matter physics in the liquid and solid phases. In Section 5.3 we will dis-
cuss dielectric relaxation but first we discuss single-domain ferromagnetic particles.

There are at least three types of magnetism: (a) diamagnetism–the phenomenon
exhibited by substances that have a relative permeability less than unity and a neg-
ative susceptibility. It is caused by the orbital motion of electrons in the atoms of
the material and is unaffected by temperature; (b) paramagnetism–the phenomenon
exhibited by substances that have a relative permeability slightly greater than unity
and a positive susceptibility (the effect is due to alignment of unpaired spins of elec-
trons in atoms of the material); and (c) ferromagnetism, the topic of this section–the
phenomenon exhibited by substances, such as iron, that have relative permeabili-
ties much greater than unity and magnetization increasing with applied magnetizing
field. Certain of these substances retain their magnetization in the absence of the ap-
plied field: permanent after effect. The effect is caused by the alignment of electron
spin in regions called domains. A key role for (c) is found in electric generators,
transformers, and relays, in data storage and processing, in the recording industry,
in miniaturization, and in energy conservation. More generally, magnetic fields have
the important role of confining hot, dense plasma to the inside of a tokamak. Other
phenomena include giant magnetoresistance and magnetic circular dichroism. Ferro-
magnetism is caused by atoms with incomplete electron shells, behaving like tiny bar
magnets, that is, like magnetic dipoles. The strength of an atomic dipole comprises
two components; magnetic spin and magnetic orbital angular momentum, which are
coupled by spin-orbit interaction. Occasionally the magnetic moments of the indi-
vidual atoms also couple together, in which case they all point in the same direction.
This occurs due to the quantum mechanics of exchange interaction. Materials of this
type are ferromagnets (first observed in iron, the Latin for which is ferrum.) The
vector sum of the atomic magnetic moments gives rise to the magnetization.
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Note that on an atomic scale, it is the orbital angular momentum and the deliber-
ately perturbed material structure that are responsible for hard magnetic properties.
All the better permanent magnets are made of compounds of the ferromagnetic ele-
ments Fe or Co with the lighter rare earths, such as Nd, Pr, or Sm, which have a very
high magnetic orbital angular momentum that is about 60 times greater than that of
iron. By incorporating lighter elements we can make the structure more anisotropic
and thus magnetically harder, that is, reversing the magnetization of the domains
requires a large amount of energy or a stronger external field.

In a crystal or other condensed matter the magnetic moment orients to minimise
the electron energy. In soft iron, the spins can easily align with an external field. In
hard magnetic material, as in a bar magnet, the magnetization can only be influenced
by strong external magnetic fields.

Ferromagnetism is associated with magnetic domains of dimension 10−6−10−3

mm and 1023 electrons. For this reason, classical statistical mechanics is appropriate,
rather than quantum mechanics.

Accordingly we now apply the semiclassical theory of Brownian motion to the
asymptotic dependence of the relaxation time of the magnetization of a ferromag-
netic particle on its anisotropy, semiclassical in the sense that the anisotropy energy,
divided by both the absolute temperature and Boltzmann’s constant, is reasonably
greater than unity and is the barrier height parameter. This is consistent with the as-
sumption that the lowest eigenvalue is small, the temperature is small, the volume of
the single ferromagnetic domain is large, and Boltzmann’s constant is small. Appro-
priately we now consider the stated problem in detail.

It is known that the direction of the magnetization vector of very fine single-
domain ferromagnetic particles fluctuates under the influence of thermal agitation.
Perturbation theory is applied rigorously to a singular integral equation to derive
an asymptotic formula for the relaxation time of the magnetization, for the case of
uniaxial anisotropy and an applied magnetic field. The result agrees with that of
Brown [91] as described succinctly by Aharoni [6]. It should be emphasised that
both Gilbert’s equation and the earlier Landau–Lifshitz equation are merely phe-
nomenological equations, which are used to explain the time decay of the average
magnetization. Brown suggested that the Gilbert equation should be augmented by a
white noise driving term in order to explain the effect of thermal fluctuations of the
surroundings on the magnetization.

We consider a single-domain ferromagnetic particle with uniaxial anisotropy [53].
The internal magnetic potential of such a particle has two stable stationary points πc

apart with a potential barrier between. If the particle is sufficiently small and un-
der the influence of thermal agitation, the direction of magnetization may undergo
a Brownian-type rotation, overcoming the barrier as first pointed out by Néel [448].
Here we find an expression for the relaxation time of M, the magnetization vector.

We assume that there is a magnetic field H applied parallel to the easy axis of the
anisotropy. The potential energy of the particle may then be written

V = −HMs cos θ − K cos2 θ (5.1)
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where H and Ms are the magnitudes of H and M, respectively, K is the anisotropy
energy per unit volume, and θ is the angle between M and the easy axis of the
anisotropy.

Brown [91] used Brownian-motion theory to write a Fokker–Planck-type equa-
tion to describe the motion of M. For the case when V is a function of the polar angle
θ only, this is

2τD sin θ
∂W
∂t

=
∂

∂θ

[
sin θ

[
v

kT
dV
dθ

W +
∂W
∂θ

]]
(5.2)

where W(θ, t) the probability distribution function is the probability that M has ori-
entation θ at time t, v is the volume of the particle, k is Boltzmann’s constant, and T
is the absolute temperature. The characteristic time τD is defined as

τD =
v

kT

[
(1/γ2) + η2M2

s

2η

]

where γ is the gyromagnetic ratio and η is the damping constant from Gilbert’s equa-
tion [294]

dM
dt

= γM ×
[
H − ηdM

dt

]

on which Brown’s equation is based.
It should be emphasized that both Gilbert’s equation and the earlier Landau–

Lifshitz equation are merely phenomenological equations used to explain the time
decay of the average magnetization. Brown [91] suggested that the Gilbert equation
should be augmented by a white noise driving term to explain the effect of thermal
fluctuations of the surroundings on the magnetization.

If we let
x = cos θ (5.3)

then using the separation ansatz proposed by Risken [507] and following Brown [91]
we write

W(x, t) =

∞∑
n=0

an(t)Fn(x)

with
an(t) = an(0)e−pnt

where the pn are the eigenvalues and Fn the corresponding eigenfunctions of the
Fokker–Planck operator, determined by the boundary conditions that F must be finite
at x = ±1. Equation (5.2) then becomes

d
dx

[
(1 − x2)e−βV d

dx

[
eβV Fn(x)

]]
+ λnFn(x) = 0 (5.4)

where
λn = 2τD pn

and
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β = v/kT

By writing
ϕn(x) = eβV Fn(x)

equation (5.4) becomes

d
dx

[
(1 − x2)e−βV dϕ

dx

]
+ λe−βVϕ = 0 (5.5)

subject to ϕ(±1) being finite. By writing

h =
HMs

2K

and
α = βK

also sometimes called σ, in accordance with Aharoni [6], (5.5) is

d
dx

[
(1 − x2)eα(x2+2hx) dϕ

dx

]
+ λeα(x2+2hx)ϕ = 0 (5.6)

where 0 ≤ h < 1. The value h = 0 corresponds to zero applied field [5], and at h = 1
the two-minima structure of V disappears. Multiplying across by eαh2

to complete
the square and integrating once, we have

(1 − x2)eα(x+h)2 dϕ
dx

= −λ
∫ x

±1
eα(t+h)2

ϕ(t)dt (5.7)

from which it follows immediately that

∫ 1

−1
eα(t+h)2

ϕ(t)dt = 0 (5.8)

which is Brown’s [91] equation (4.15). Integrating (5.7) , we have the singular inte-
gral equations

ϕ(x) − ϕ(d) = −λ
∫ x

d

dy
(1 − y2)

e−α(y+h)2
∫ y

c
eα(t+h)2

ϕ(t)dt (5.9)

where c and d are both +1 or −1. For c = d = −1, assuming real transition points θ1

and θ2, where, following Brown [91], 0 < θ1 < θ2 < π, we may assume that

ϕ(x) = ϕ(−1)e−α(x+1)2
(5.10)

The t integral in (5.9) has no point of stationary phase and may be integrated to give
the semiclassical result (α � 1)

ϕ(−1)
2α(h − 1)

(
eα[(y+h)2−(y+1)2] − eα(h−1)2)
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Substitution of this into (5.9) gives convergence at y = −1. Application of the method
of steepest descents at the saddle point y = −h gives the semiclassical result (α � 1)

ϕ(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ϕ(−1) +
λϕ(−1)

2α(h − 1)

√
π
√
α

eα(h−1)2

1 − h2
for x > −h (5.11a)

ϕ(−1) +
λϕ(−1)

2α(h − 1)

√
π

2
√
α

eα(h−1)2

1 − h2
for x = −h (5.11b)

where in (5.11b) the extra factor of 2 arises, since the saddle point is then an end-
point in the domain of integration.

We may repeat the process taking c = d = +1. We assume that

ϕ(x) = ϕ(1)e−α(x−1)2
(5.12)

and we obtain

ϕ(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ϕ(1) − λϕ(1)
2α(h + 1)

√
π
√
α

eα(1+h)2

1 − h2
for x < −h (5.13a)

ϕ(1) − λϕ(1)
2α(h − 1)

√
π

2
√
α

eα(1+h)2

1 − h2
for x = −h (5.13b)

Matching ϕ(−h) via (5.11b) and (5.13b) gives

ϕ(1)

⎛⎜⎜⎜⎜⎝1 − λeα(1+h)2 √
π

4α3/2(h + 1)(1 − h2)

⎞⎟⎟⎟⎟⎠ = ϕ(−1)

⎛⎜⎜⎜⎜⎝1 − λeα(1−h)2 √
π

4α3/2(1 − h)(1 − h2)

⎞⎟⎟⎟⎟⎠ (5.14)

Using (5.8), (5.10), and (5.12), we may show that

0 =

∫ 1

cos θ1

dxϕ(1)eα(x+h)2−α(x−1)2

+

∫ cos θ1

cos θ2

dxϕ(−h)

(
1 +

λ

2α(1 − h2)

(
eα(x+h)2 − 1

))

+

∫ cos θ2

−1
dxϕ(−1)eα(x+h)2−α(x+1)2

(5.15)

≈ ϕ(1)eα(h+1)2

2α(h + 1)
− ϕ(−1)eα(h−1)2

2α(h − 1)
, α � 1 (5.16)

In (5.15) we have integrated the first and third integrals by parts to order 1/α and
have neglected the middle integral as being of higher order, anticipating that λ is
exponentially decreasing with α and where we obtained its integrand by taking c =

d = −h in (5.9) and correctly assuming ϕ (−h) = 0. Equations (5.14) and (5.16) give
the result

λ ≈ 2α3/2(1 − h2)π−1/2
[
(1 + h)e−α(1+h)2

+ (1 − h)e−α(1−h)2]
for α � 1 (5.17)
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which for h = 0 is
λ ≈ 4α3/2π−1/2e−α for α � 1 (5.18)

These formulae agree with the formulae given by Aharoni [6] and Brown [91], re-
spectively. Equation (5.18) holds well down to α = 1.5. For values of α less than ap-
proximately 1.5, the formula based on Dawson’s integral implied by (29) of Raĭkher
and Shliomis [500] is an exceedingly good approximation to the exact numerical
result [120].

We now note that the relaxation time τ is equal [90] to 1/p, that is,

τ = 2τD/λ ≈
τD

α3/2(1 − h2)π−1/2
[
(1 + h)e−α(1+h)2

+ (1 − h)e−α(1−h)2
] (5.19)

Rearranging the denominator and letting

ξ = 2αh (5.20)

we obtain the result

τ =
1
2
τDπ

1/2α−3/2eα
⎡⎢⎢⎢⎢⎣ eξ

2/4α

(1 − ξ2/4α2)[cosh ξ − (ξ/2α) sinh ξ]

⎤⎥⎥⎥⎥⎦ (5.21)

We have obtained the results of Brown [91] and Aharoni [6] by applying perturbation
theory to solve the singular integral equation, thus avoiding some of the approxima-
tions previously made and presenting a more rigorous treatment of the problem. We
have adopted the notation of Aharoni in preference to Brown’s, since it lends itself to
a higher degree of transparency. The method appears to be promising for application
to a wider range of potentials and dimensions.

We now generalise Scully et al. [539] to consider integral representation of exact
solutions for the correlation times of rotators in periodic potentials and the derivation
of asymptotic expansions.

The derivation of asymptotic expansions from the exact solution of the three-term
recurrence relations arising in the study of the Brownian movement in a periodic po-
tential is discussed. The discussion is illustrated by showing how the exact formulae
for the longitudinal and transverse correlation times of a single-axis rotator with two
equivalent sites, which have been previously given as a series of products of modified
Bessel functions, may be rendered in integral form using Watson’s integral formula
for the product of two modified Bessel functions. The method of steepest descents
is applied to these solutions to obtain rigorous semiclassical asymptotic formulae
for the correlation times in the high potential barrier limit. The analogous results for
rotation in three dimensions in the Maier–Saupe potential are treated also.

The study of the Brownian motion of a rotator in a potential containing a single
periodic term invariably reduces to the problem of solving a three-term matrix recur-
rence relation in the frequency domain. Further, if the inertia of the rotator is ignored
the recurrence relation becomes a scalar one, the exact solution of which may be
expressed as a series of products of infinite continued fractions [128]. This technique
has recently been applied to a number of problems, including dielectric relaxation
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of polar molecules [128], Néel [91] relaxation of single-domain ferromagnetic parti-
cles, quantum noise in ring laser gyroscopes [127], etc.

The quantity of greatest interest in dielectric and Néel relaxation is generally the
correlation time of the electric or magnetic polarisation. This characterises the time
of reversal of the polarisation in the presence of a potential barrier arising from the
crystalline anisotropy. Up to the present, this has usually been calculated [91] only
in the high potential barrier limit by making use of approximate methods based on
the Kramer transition-state theory.

It has recently been demonstrated, by proceeding to the zero frequency limit
of the exact solution of the appropriate three-term recurrence relation, how exact
expressions for the dielectric and magnetic correlation times may be written in
series form. In particular, the longitudinal T‖ and transverse T⊥ correlation times
for rotation in two dimensions for the simplest uniaxial potential of the crystalline
anisotropy may be written as an infinite series of products of modified Bessel func-
tions of integer and half-integer order. Furthermore, T‖ for rotation in three dimen-
sions may [125] be written as a series of products of confluent hypergeometric func-
tions. In all cases the terms longitudinal and transverse pertain to the directions paral-
lel and perpendicular to the axis of symmetry of the potential. Similar considerations
apply to the Brownian motion in a single-well cosine potential. This problem arises
when we study the effect of a DC bias field on the Debye relaxation process.

An important question that arises in the course of this discussion is whether it is
possible to rigorously derive asymptotic expansions from the series form of the exact
solution.

It is the purpose of this section to demonstrate how the series solution may also
yield an exact expression for the correlation time in integral form, allowing one to
rigorously construct an asymptotic expansion in the high potential barrier limit. We
shall illustrate our method by referring to the most elementary problem for which ex-
act solutions for T‖ and T⊥ exist, namely the Brownian motion of a two-dimensional
rotator in the simplest uniaxial potential of the crystalline anisotropy [379].

The derivation of asymptotic expansions for large barrier heights from these ex-
act solutions [128] is not a straightforward procedure as the exact solution depends
on two variables–the barrier height, which is the argument of the modified Bessel
functions, and their order, giving rise to nonuniform convergence. Thus the order-
dependence must first be eliminated. This is accomplished by replacing the order
dependent sum in the exact solution by an integral using Watson’s [594] integral
representation of a product of Bessel functions. This renders the exact solution in in-
tegral form. The method of steepest descents is then used to calculate the asymptotic
values of these integrals in the high barrier limit. The leading term in the asymptotic
formula for T‖ so derived is in agreement with the result of the Kramers barrier-
crossing theory as discussed in [128]. Furthermore, the effective eigenvalue method
provides a good description for T⊥.

We consider the Smoluchowski equation for a single-axis rotator with two equiv-
alent sites separated by a potential barrier of height U. We have seen that this has
recently been solved [128] to yield exact expressions for the longitudinal and trans-
verse electric polarisabilities and the corresponding relaxation times. In this problem,



250 5 Diffusion in Liquids and Solids

a typical dipole of the assembly is constrained to rotate about a fixed axis under the
influence of a potential

V = U sin2 φ (5.22)

determined by the crystalline field. φ is the angle describing the orientation of the
dipole about its axis of rotation. The initial line φ = 0 is taken for convenience as
the direction that an applied DC field E had, that field having been switched off at an
initial time t = 0.

The procedure carried out in [128] to obtain an exact solution for the complex
polarisabilities, and thus the relaxation times, is to expand the solution of the Smolu-
chowski equation

∂W
∂t

=
∂

∂φ

(
W
ζ

∂V
∂φ

)
+

1
τ

∂2W
∂φ2

(5.23)

as a Fourier series in the angle φ. W(φ, t) is the probability density of orientations
of a dipole on the unit circle. ζ is the viscous drag coefficient of a dipole, k is the
Boltzmann constant, and T is the absolute temperature:

τ =
ζ

kT
(5.24)

the Debye [206] relaxation time. The dipole rotates about the z−axis before the field has
been switched off under the influence of the potential

V(φ) = U sin2 φ − μĖ (5.25)

where μ is the dipole moment of the rotator. In order to study the relaxation, it is
supposed that E is switched off at time t = 0 and that

ξ =
μE
kT
� 1 (5.26)

so that we confine ourselves to the linear response to the applied field:

σ =
U

2kT
(5.27)

so that 2σ is the barrier height parameter. Let us now suppose that

W(φ, t) =

∞∑
p=−∞

ap(t)eipφ (5.28)

Whence [128]

〈cos(2p + 1)φ〉 = f2p+1(t) =
a2p+1(t) + a−(2p+1)(t)

2a0
(5.29)

satisfies the set of differential-difference equations

ḟ2p+1(t) +
(2p + 1)2

τ
f2p+1(t) =

σ(2p + 1)
τ

[
f2p−1(t) − f2p+3(t)

]
(5.30)
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with
f−p(t) = fp(t) , f0(t) = 1 , t > 0 (5.31)

and [128] is, in the linear approximation in ξ,

f2p+1(0) =
ξ

2

(
Ip+1(σ) + Ip(σ)

I0(σ)

)
(5.32)

The Ip(σ) are the modified Bessel functions of the first kind of order p. By taking the
Laplace transform of (5.30) and using the methods described in [128] we have for
the Laplace transform f̃1(s) of the decay function f1(t) of the dielectric polarisation

f̃1(s) =
τ

sτ + (1 − σ) + σS̃ 3(s)

⎛⎜⎜⎜⎜⎜⎜⎝ f1(0) +

∞∑
p=1

(−1)p

2p + 1
f2p+1(0)

p∏
k=1

S̃ 2k+1(s)

⎞⎟⎟⎟⎟⎟⎟⎠ (5.33)

where
S̃ p(s) =

σp

sτ + p2 + σpS̃ p+2(s)
(5.34)

which is an infinite continued fraction. On noting that

T‖ = lim
s→0

∞∫

0

C‖1(t)e−stdt = lim
s→0

C̃‖1(s) = C̃‖1(0) (5.35)

and that for the linear response the autocorrelation function is

C‖1(t) =
f1(t)
f1(0)

(5.36)

We have, with the aid of (5.35) and (5.36),

T‖ =
f̃1(0)
f1(0)

=
τ

(1 − σ) + σS̃ 3(0)

⎛⎜⎜⎜⎜⎜⎜⎝1 +

∞∑
p=1

(−1)p

2p + 1

f2p+1(0)

f1(0)

p∏
k=1

S̃ 2k+1(0)

⎞⎟⎟⎟⎟⎟⎟⎠ (5.37)

By inspection of (5.34) at s = 0

S̃ 2k+1(0) =
Ik+1/2(σ)

Ik−1/2(σ)
(5.38)

and so (5.37) becomes

T‖
τ

=
1

1 − σ + σ
[
I3/2(σ)/I1/2(σ)

]
⎛⎜⎜⎜⎜⎜⎜⎝1 +

∞∑
p=1

(−1)p

2p + 1

[
Ip(σ) + Ip+1(σ)

]
Ip+1/2(σ)

[I0(σ) + I1(σ)] I1/2(σ)

⎞⎟⎟⎟⎟⎟⎟⎠
(5.39)
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The functions Ip+1/2(σ) may be represented in terms of elementary functions as de-
scribed in [128], so that the prefactor

1
1 − σ + σ

[
I3/2(σ)/I1/2(σ)

] =
1

σ(cothσ − 1)
=

e2σ − 1
2σ

(5.40)

Equation (5.39) is the exact solution for T‖ rendered in series form.
The difficulty in constructing an asymptotic series from the exact solution when it

is in the form of (5.39) is that it is, in effect, a function of two variables–the order p of
the Bessel functions and their argument σ. It is therefore necessary, when proceeding
to the high σ limit, to have some means of eliminating the p-dependence; otherwise
we would have to treat nonuniform asymptotic expansions [1]. This difficulty may
be removed by first writing the exact solution in integral form using the integral
formula for the product of two modified Bessel functions of the first kind given by
Watson [594] (page 441, 13.72, eq. (2)),

Iμ(z)Iν(z) =
2
π

π/2∫

0

Iμ+ν(2z cos θ) cos
[
(μ − ν)θ] dθ (5.41)

Thus we have, applying this to the products in (5.39),

Ip+1/2(σ)Ip(σ) = Ip+1/2(σ)I−p(σ)

=
2
π

π/2∫

0

I1/2(2σ cos θ) cos

[
(2p +

1
2

)θ

]
dθ (5.42)

and

Ip+1/2(σ)Ip+1(σ) = Ip+1/2(σ)I−1−p(σ)

=
2
π

π/2∫

0

I−1/2(2σ cos θ) cos

[
(2p +

3
2

)θ

]
dθ (5.43)

where we have used the fact that

Ip(z) = I−p(z) (5.44)

for integer p. Thus, using (5.42) and (5.43), (5.39) becomes

T‖
τ

=
1

1 − σ + σ
[
I3/2(σ)/I1/2(σ)

]
⎡⎢⎢⎢⎢⎢⎢⎣1 +

∞∑
p=1

(−1)p

2p + 1
2
π

1
[I0(σ) + I1(σ)] I1/2(σ)

×

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
π/2∫

0

I1/2(2σ cos θ) cos

[
(2p +

1
2

)θ

]
dθ

+

π/2∫

0

I−1/2(2σ cos θ) cos

[
(2p +

3
2

)θ

]
dθ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ (5.45)
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Only the cosine part of the integral in (5.45) is now p-dependent. This dependence
may in turn be eliminated as follows. On reversing the order of summation and inte-
gration in that equation, we have

∞∑
p=1

(−1)p

2p + 1
cos

[
(2p +

1
2

)θ

]
= Re

⎛⎜⎜⎜⎜⎜⎜⎝eiθ/2
∞∑

p=1

( 1
2 )p(ieiθ)2p

p + 1
2

⎞⎟⎟⎟⎟⎟⎟⎠ (5.46)

= Re

⎛⎜⎜⎜⎜⎜⎜⎜⎝eiθ/2
∞∑

p=1

( 1
2 )pp!

[
(ieiθ)2

]p

( 3
2 )pp!

⎞⎟⎟⎟⎟⎟⎟⎟⎠ (5.47)

Such a series may be expressed in terms of a Gauss hypergeometric function [1] as

Re

{
eiθ/2

[
2F1(1,

1
2

;
3
2

; (ieiθ)2) − 1

]}
(5.48)

This in turn may be expressed in terms of the elementary functions, using (15.1.4)
of [1], as

Re

{
eiθ/2

[
1

2ieiθ
ln

(
1 + ieiθ

1 − ieiθ

)
− 1

]}
(5.49)

Or, on simplification,
(

1
4
π − 1

)
cos

1
2
θ − 1

2
sin

1
2
θ ln tan

(
1
4
π − 1

2
θ

)
(5.50)

which has a weak singularity at θ = 1/2π. Likewise, for the second integrand in
(5.45) we have

∞∑
p=1

(−1)p

2p + 1
cos

[
(2p +

3
2

)θ

]
=

1
4
π cos

1
2
θ − cos

3
2
θ

+
1
2

sin
1
2
θ ln tan

(
1
4
π − 1

2
θ

)
(5.51)

This also has a weak singularity at θ = 1/2π. The foregoing steps are the crucial
ones that allow us to remove the p-dependent summation in (5.45). The next step
in the simplification of (5.45) is to recall that the Bessel functions of half-integer
order, that is, the spherical Bessel functions, may always be expressed in terms of
the elementary functions [594]. In particular,

I1/2(z) =

√
2
πz

sinh z (5.52)

I−1/2(z) =

√
2
πz

cosh z (5.53)

Thus, on using this definition in conjunction with (5.50) and (5.51) in (5.45), we have
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T‖
τ

=

(
e2σ − 1

2σ

) ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝1 +

√
2

π [I0(σ) + I1(σ)] sinσ

π/2∫

0

dθ
√

cos θ

×
[
1
4
πe2σ cos θ cos

1
2
θ +

1
2

e−2σ cos θ sin
1
2
θ ln tan

(
1
4
π − 1

2
θ

)

− cos
1
2
θ sinh (2σ cos θ) − cos

3
2
θ cosh (2σ cos θ)

])
(5.54)

This is the exact formula, (5.39), for the longitudinal correlation time rendered in
integral form. The integrand of (5.54) has a weak singularity at θ = π/2. This may
be removed by integration by parts, having divided the range of integration into the
intervals 0 < θ < π/4 and π/4 < θ < π/2. The same procedure may be used to write
the transverse correlation time in integral form. The transverse correlation time is
(for the details see [128])

T⊥
τ

=
1 − e−2σ

2σ

⎛⎜⎜⎜⎜⎜⎜⎝1 +

∞∑
p=1

(−1)p

2p + 1

[
Ip(σ) − Ip+1(σ)

]
Ip+1/2(σ)

[I0(σ) − I1(σ)] I1/2(σ)

⎞⎟⎟⎟⎟⎟⎟⎠ (5.55)

On applying (5.41) to this equation we find that, on reversing the order of integration
and summation as before, and proceeding as in (5.46) to (5.50)

T⊥
τ

=
1 − e−2σ

2σ

(
1 +

√
2
π

1
[I0(σ) − I1(σ)] sinhσ

π/2∫

0

dθ
√

cos θ

×
{

sinh(2σ cos θ)

[(
1
4
π − 1

)
cos

1
2
θ

− 1
2

sin
1
2
θ ln tan

(
1
4
π − 1

2
θ

)]
− cosh(2σ cos θ)

[
1
4
π cos

1
2
θ

− cos
3
2
θ +

1
2

sin
1
2
θ ln tan

(
1
4
π − 1

2
θ

)] })
(5.56)

This is the exact formula (5.55) for the transverse correlation time rendered in in-
tegral form. It also has a removable weak singularity at θ = π/2. The method of
steepest descents [343],[401] may now be used to find the asymptotic value of (5.54)
and (5.56), as we shall describe. In order to derive an asymptotic formula for T‖
in the high σ approximation, we recall that (5.54) is computable as a simple finite
quadrature, provided we take out the removable weak singularity arising from the

ln tan

(
1
4
π − 1

2
θ

)
(5.57)

term. The method of steepest descents [343], [401] may then be applied. In order to
accomplish this we first note that, for large σ [568],
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Ip(σ) � eσ
√

2πσ

∞∑
k=0

(−1)k

(2σ)k

Γ(p + k + 1/2)
k!Γ(p − k + 1/2)

+
e−σ±[((p+1/2))iπ]
√

2πσ

∞∑
k=0

(−1)k

(2σ)k

Γ(p + k + 1/2)
k!Γ(p − k + 1/2)

(5.58)

For large σ, only the first term is of significance. On noting that

Ip(σ) � eσ
√

2πσ

(
1 − 4p2 − 1

(8σ)
+

(4p2 − 1)(4p2 − 9)
2!(8σ)2

− (4p2 − 1)(4p2 − 9)(4p2 − 25)
3!(8σ)3

+ · · ·
) (5.59)

we have

I0(σ) � eσ
√

2πσ

(
1 +

1
8σ

+ · · ·
)

(5.60)

and

I1(σ) � eσ
√

2πσ

(
1 − 3

8σ
− · · ·

)
(5.61)

On utilising the asymptotic formulae (5.60) and (5.61) in (5.54) and discarding the
terms prefixed by exp [−2σ cos θ], we have

T‖
τ
� e2σ

2σ

⎛⎜⎜⎜⎜⎜⎜⎜⎝1 +

√
2
∫ π/2

0
G(θ)e2σ cos θdθ

1
2πeσ(eσ/2πσ)(2 + 1/8σ − 3/8σ)

⎞⎟⎟⎟⎟⎟⎟⎟⎠ , σ � 1 (5.62)

where

G(θ) =

1
4π cos 1

2θ −
1
2 cos 1

2θ −
1
2 cos 3

2θ√
cosθ

(5.63)

Consider
π/2∫

0

eF(θ)G(θ) ≡ J (5.64)

where
F(θ) = 2σ cos θ (5.65)

This integral has a saddle point at θ = 0, which is an endpoint in the domain of
integration as in [539]. We now apply the method of steepest descents [343] so that

J =

π/2∫

0

dθ

[
G(0) + θG′(0) +

1
2
θ2G′′(0) + · · ·

]

× exp

[
F(0) + θF′(0) +

1
2
θ2F′′(0) +

1
6
θ3F′′′(0) +

1
24
θ4FIV(0) + · · ·

] (5.66)

where



256 5 Diffusion in Liquids and Solids

F(0) = 2σ , F′(0) = 0 , F′′(0) = −2σ , F′′′(0) = 0 , FIV(0) = 2σ (5.67)

G(0) =
1
4
π − 1 , G′(0) = 0 , G′′(0) =

1
16
π +

3
4

(5.68)

Thus in accordance with the method of steepest descents,

J �
e2σ

[
1
4π − 1

] √
π

2
√
σ

⎛⎜⎜⎜⎜⎜⎝1 +
1

16σ
+

( 1
16π + 3

4 )

4σ( 1
4π − 1)

⎞⎟⎟⎟⎟⎟⎠ (5.69)

so that (5.62) becomes

T‖
τ
� e2σ

2σ

⎡⎢⎢⎢⎢⎢⎣1 + (
1
4
π − 1)

⎛⎜⎜⎜⎜⎜⎝1 +
1

16σ
+

( 1
16π + 3

4 )

4σ( 1
4π − 1)

⎞⎟⎟⎟⎟⎟⎠
(
1 +

1
8σ

)⎤⎥⎥⎥⎥⎥⎦ (5.70)

=

(
π

8σ
e2σ

) (
1 +

1
4σ

)
(5.71)

The leading term in (5.71) may be written, as in [128], by substituting the high σ
limit of the modified Bessel functions directly into the series representation of the
exact solution, (5.39), and then summing the resulting series using the properties of
the Riemann-Zeta function [1]. However, such a method is open to criticism since
the next-to-leading term 1/4σ in (5.71) may not be obtained by such a method. To be
precise, the coefficient of the 1/σ term is found to include a divergent series, namely,

∞∑
p=1

(−1)p(2p + 1) (5.72)

Higher-order terms are even more divergent. The reason is that in trying to use (5.39)
one is faced with two competing limits, p → +∞ and σ → +∞ associated with
which there is a lack of uniform convergence. This is why summing over the infinite
series in p so as to obtain (5.54), which is a finite integral representation of the
exact solution, is so important. It avoids the problem of the competing infinite limits
and permits precise evaluation of higher-order asymptotic correction terms via the
method of steepest descents. The inclusion of such terms is important because it is
obvious that (5.71) provides a closer approximation to the exact solution for large σ
than the leading term

T‖
τ

=

(
π

8σ
e2σ

)
(5.73)

on its own, as shown in Figure 5.1. In Figure 5.1, the bold line is (5.39), the small
dashing step is (5.71), and the large dashing is (5.73). To obtain convergence for
values up to σ = 60, the first 20 terms of the infinite sum in (5.39) were used. It
is apparent from Figure 5.1 that (5.71) provides a very close approximation to the
exact solution for σ ≥ 1.5 (U ≥ 3kT ). This is particularly important in the case
of magnetic relaxation [91]. We remark that (5.71) is similar in form to an equation
originally derived by Visscher [591], his (14), which calculated the rate of escape of a
Brownian particle from a one-dimensional potential well using an improved version
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Fig. 5.1. Plot of T‖ as a function of σ

of the barrier crossing theory of Kramers [318]. In applying Visscher’s method to the
present problem, the modifications for a periodic potential to the escape rate from
a single-well potential, described in [498] and [151], must be incorporated in his
result. The transverse relaxation time (5.56) may be treated in a similar manner. For
large σ,

T⊥
τ

=
1

2σ

[
1 +

2
π

1

(eσ/
√
πσ [(1 + 1/8σ) − (1 − 3/8σ)] sinhσ

π/2∫

0

dθ
√

cos θ

×
{

sinh(2σ cos θ)

[
(
1
4
π − 1) cos

1
2
θ − 1

2
sin

1
2
θ ln tan(

1
4
π − 1

2
θ)

]

− cosh((2σ cos θ)

[
1
4
π cos

1
2
θ − cos

3
2
θ +

1
2

sin
1
2
θ ln tan(

1
4
π − 1

2
θ)

]} ]

(5.74)

so that

T⊥
τ
� 1

2σ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝1 +
2
√
π

1

(e2σ/
√
σ)(1/2σ)

π/2∫

0

e2σ cos θ

√
cos θ

×
[
− cos

1
2
θ + cos

3
2
θ − sin

1
2
θ ln tan

(
1
4
π − 1

2
θ

)]
dθ

) (5.75)

In order to apply the method of steepest descents we again write

J ≡
π/2∫

0

eF(θ)H(θ)dθ (5.76)

where
F(θ) = 2σ cos θ (5.77)

as before. This time
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H(θ) =
cos 3

2θ − cos 1
2θ − sin 1

2θ ln tan( 1
4π −

1
2θ)√

cos θ
(5.78)

and so

J = eF(0)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
H′′(0)

2

π/2∫

0

dθ θ2e−σθ
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ (5.79)

In accordance with the method of steepest descents,

J =
e2σ(− 1

2 )
√
π

4σ3/2
(5.80)

equation (5.75) becomes
T‖
τ

=
1

4σ
(5.81)

Thus, the transverse relaxation does not proceed by means of a barrier crossing pro-
cess.

We remark that in order to obtain (5.81) it is necessary to proceed from the inte-
gral representation of the exact solution. If one attempts the naive procedure of sim-
ply substituting the leading term in the asymptotic values of the Ip(σ) and Ip+1/2(σ)
in the series representation of the exact solution (5.55) one is led to an alternating
series for T⊥. This is once again a direct consequence of the lack of uniform conver-
gence that results if one adopts such a limiting procedure. We also remark that (5.81)
may be obtained in a very simple manner using the effective eigenvalue technique
described in [530] and [129]. This procedure is carried out in [128].

If the method of steepest descents is carried a stage further, to include terms of
order 1/σ2, and further terms are included in the expansion of I0(σ) and I1(σ), (5.81)
becomes

T‖
τ

=
1

4σ

(
1 +

1
2σ

)
(5.82)

In order to obtain (5.82) we proceed as follows. We first note that in (5.56) we must
retain the third term in the asymptotic expansion of I0(σ) − I1(σ) so that

I0(σ) − I1(σ) � eσ/
√

2πσ

[(
1 +

1
8σ

+
9

128σ2

)
−

(
1 − 3

8σ
− 15

128σ2

)]
(5.83)

which simplifies to (
eσ/
√

2πσ
) 1

2σ

(
1 +

3
8σ

)
(5.84)

Thus, (5.75) becomes

T⊥
τ
� 1

2σ

(
1 +

2
√
π

1

(e2σ/
√
σ)(1/2σ)(1 + 3/8σ)

J
)

(5.85)

In addition, we must proceed as far as terms in HIV(0) in applying the method of
steepest descents. Thus J becomes
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Fig. 5.2. Plot of T⊥ as a function of σ. The bold line is the exact solution, (5.55), the large
dashed line is the asymptotic formula (5.82), and the small dashed line is the asymptotic
formula (5.81), which ignores terms O(σ−2)

J =

π/2∫

0

dθ

[
−1

2
θ2 +

1
24

HIV(0)θ4

]
e2σ−σθ22+σθ4/12 (5.86)

� e2σ

π/2∫

0

dθ

[
−1

2
θ2 +

1
24

HIV(0)θ4

]
e−2σθ2

(
1 +

1
12
σθ4

)
(5.87)

Thus, by parametric differentiation,

J = −1
2

[
e2σ

√
π

4σ3/2

(
1 − 1

8σ

)]
(5.88)

We have
T⊥
τ

=
1

4σ

(
1 +

1
2σ

)
(5.89)

The values for T⊥ yielded by this approximate formula and the exact formula (5.55)
are compared in Figure 5.2. It is apparent that the asymptotic formula (5.82) provides
an acceptable description of the transverse relaxation for σ ≥ 2 that is U ≥ 4kT . It
is again apparent that the 1/2σ correction term provides a more accurate description
of the asymptotic behaviour. We note that the correction 1/2σ is also yielded by the
effective eigenvalue method. The effective relaxation time from this method [530],
[129] is

τ⊥ef = τ
I0(σ) − I1(σ)
I0(σ) + I1(σ)

(5.90)

which, on insertion of the asymptotic expansions of the Ip(σ), yields

τ⊥ef = τ
1

4σ

(
1 +

1
2σ

)
(5.91)

in agreement with (5.82). This simple procedure is very useful in the case of T⊥ as it
avoids the steepest-descent calculations. However, it is not useful for the calculation
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of the longitudinal relaxation time as the effective eigenvalue method, by definition,
cannot furnish an accurate description of the relaxation behaviour when an activation
process is involved. The merit of (5.90) in the present context is that it provides a
simple formula for T⊥, which is valid for all σ-values; see Table 4 of [128].

The original problem considered by Brown [91] is rotation in three dimensions
in the context of Néel relaxation of single-domain ferromagnetic particles. The ap-
propriate Fokker–Planck equation is, where τ denotes the Néel relaxation time,

2τ sinϑ
∂W
∂t

=
∂

∂ϑ

[
sinϑ

(
∂

∂ϑ
+

v
kT

∂

∂ϑ
W

)]
(5.92)

where
vV
kT

= σ sin2 ϑ − ξ cosϑ (5.93)

and this time the barrier height parameter σ = Kv/kT . W(ϑ, t) is the probability
density of orientations of the magnetisation vector M on a sphere of radius Ms and
the orientation of M is specified by the spherical polar coordinates ϑ and ϕ. v is
the volume of the particle, Ms is the saturation magnetisation, K is the anisotropy
constant, and ξ = MsvH/kT . A similar model was discussed by Martin et al. [403] in
the context of dielectric relaxation. We assume that the after-effect solution of (5.92)
is of the form

W(ϑ, t) =

∞∑
n=0

an(t)Pn(cosϑ)

with 〈Pn(cosϑ)〉 =
1

2n + 1
an(t)
a0

= fn(t) (5.94)

where Pn is the Legendre polynomial of order n, which on using the orthogonality
properties of the Pn leads to (having switched off a steady magnetic field H at time
t = 0)

ḟ2n+1(t) =
(2n + 1)(n + 1)

τ

(
2σ

(4n + 1)(4n + 5)
− 1

)
f2n+1(t)

+
4σn(2n + 1)(n + 1)
(4n + 3)τ(4n + 1)

f2n−1(t)

− 2σ(2n + 1)(2n + 3)(n + 1)
(4n + 3)(4n + 5)τ

f2n+3(t) (5.95)

with f0(t) = 1 where the initial conditions are

f2n+1(0) = ξ

∫ +1

−1
eσx2

xP2n+1(x)dx∫ +1

−1
eσx2 dx

(5.96)

Thus

f̃1(s) =
τ

τs + 1 − 2
5σ + 2

5σS̃ 3(s)

×
⎛⎜⎜⎜⎜⎜⎝ f1(0) +

4
3

∞∑
n=1

(−1)n f2n+1(0)
f1(0)

(n + 3
4 )( 1

2 )n

Γ(n + 2)

n∏
k=1

S̃ 2k+1(s)

⎞⎟⎟⎟⎟⎟⎠
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where (
1
2

)
n

=
Γ(n + 1

2 )

Γ( 1
2 )

(5.97)

and the continued fraction

S̃ n(s) =

2σ(n−1)
4n2−1

1 + 2τs
n(n+1) −

2σ
(2n−1)(2n+3) +

2σ(n+2)
(2n+1)(2n+3) S̃ n+2(s)

(5.98)

Γ denotes the gamma function and the initial conditions satisfy on expanding x2r+1

as a series of the P2n+1(x),

f2n+1(0) =
ξσnΓ(n + 3

2 )M(n + 3
2 , 2n + 5

2 , σ)

2Γ(2n + 5
2 )M( 1

2 ,
3
2 , σ)

(5.99)

where M(a, b, z) is Kummer’s function (the confluent hypergeometric function) [1].
The exact formula (5.97) allows one to calculate the longitudinal susceptibility
since [531] (s = iω)

χ‖(ω)

χ′‖(0)
= 1 − iω

∞∫

0

e−iωtC1(t)dt = 1 − iω
f̃1(iω)
f1(0)

(5.100)

Thus

χ‖(ω)

χ′‖(0)
=

1

iωτ + 1 − 2
5σ + 2

5σS̃ 3(iω)(
1 − 2

5
σ +

2
5
σS̃ 3(iω) − iωτ

×4
3

∞∑
n=1

(−1)n f2n+1(0)
f1(0)

(n + 3
4 )( 1

2 )n

Γ(n + 2)

n∏
k=1

S̃ 2k+1(iω)

⎞⎟⎟⎟⎟⎟⎠ (5.101)

Equation (5.97) with s = 0 yields

T‖ =
f̃1(0)
f1(0)

=
τ

1 − 2
5σ + 2

5σS̃ 3(0)

⎛⎜⎜⎜⎜⎜⎝1 +
4
3

∞∑
n=1

(−1)n f2n+1(0)
f1(0)

×
(n + 3

4 )( 1
2 )n

Γ(n + 2)

n∏
k=1

S̃ 2k+1(0)

⎞⎟⎟⎟⎟⎟⎠ (5.102)

Equation (5.102) is an exact analytical formula that allows T‖ to be calculated to any
desired degree of accuracy by computing successive convergents of the continued
fraction S̃ 2k+1(0). The S̃ 2k+1(0) are in terms of Kummer’s functions
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S̃ 2k+1(0) =
4kσ

(4k + 1)(4k + 3)

M(k + 1, 2k + 5
2 , σ)

M(k, 2k + 1
2 , σ)

(5.103)

so that (5.102) with (5.103) becomes (for a detailed treatment see [130])

T‖
τ

= M(1,
5
2
, σ) +

3
2

M( 3
2 ,

5
2 , σ)

∞∑
n=1

(−σ2)n(n + 3
4 )Γ(n + 3

2 )Γ(n + 1
2 )

(n + 1)
[
Γ(2n + 5

2 )
]2

×M(n +
3
2
, 2n +

5
2
, σ)M(n + 1, 2n +

5
2
, σ) (5.104)

where we note that M(1, 5/2, σ) has a representation in terms of the error function
as [499]

3
2σ

(
1
2

√
π

σ
eσer f (

√
σ) − 1

)
(5.105)

Equation (5.102) is the exact solution in terms of known functions for the longitudi-
nal relaxation time for the Kv sin2 ϑ potential. In order to write our series solution for
T‖/τ (5.104) in integral form we note the formula from Bateman [33] (vol 1: 6.15.3,
eq. (18)),

M(a, b, z)M(a, b,−z) =
[Γ(b)]2z1−b

Γ(a)Γ(b−a)

∞∫
−∞

sech t Ib−1(z sech t)e(b−2a)tdt

Re{a} > 0 , Re{b − a} > 0 (5.106)

where Ib−1 is the modified Bessel function of the first kind of order b − 1. Thus the
product of two Kummer functions may be expressed as an integral. In order to apply
the formula to (5.104) we note the Kummer transformation (eq. (13.1.27) of [1]])

M(a, b, z) = ezM(b − a, b,−z) (5.107)

so that (5.104), taking

a = n +
3
2
, b = 2n +

5
2

(5.108)

becomes

M(n +
3
2
, 2n +

5
2
, σ)M(n + 1, 2n +

5
2
, σ)

= eσM(n +
3
2
, 2n +

5
2
, σ)M(n +

3
2
, 2n +

5
2
,−σ)

(5.109)

so casting (5.104) into a form suitable for conversion to an integral. Thus that equa-
tion becomes
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T‖
τ

= M(1,
5
2
, σ) +

3/2

M( 3
2 ,

5
2 , σ)

∞∑
n=1

(−σ2)n(n + 3
4 )Γ(n + 3

2 )Γ(n + 1
2 )

(n + 1)[Γ(2n + 5
2 )]2

×
eσσ−3/2−2n[Γ(2n + 5

2 )]2

Γ(n + 1)Γ(n + 3
2 )

∞∫

−∞

e−t/2sech t I2n+3/2(σsech t)dt

= M(1,
5
2
, σ) +

3/2

M( 3
2 ,

5
2 , σ)

eσσ−3/2
∞∑

n=1

(−1)n(n + 3
4 )Γ(n + 1

2 )

Γ(n + 2)
.2

×
∞∫

0

I2n+3/2(σsech t)
cosh( 1

2 t)

cosh t
dt (5.110)

which, using the change of variable

sech t = sin θ (5.111)

so that

sech 2

(
1
2

t

)
=

2 sin θ
1 + sin θ

(5.112)

and choosing the positive square root reduces to

T‖
τ

= M

(
1,

5
2
, σ

)
+

3

M( 3
2 ,

5
2 , σ)

eσσ−3/2
∞∑

n=1

(−1)n(n + 3
4 )Γ(n + 1

2 )

Γ(n + 2)

×
π/2∫

0

dθ I2n+3/2(σ sin θ)

√
1 + sin θ
2 sin θ

= M(1,
5
2
, σ) +

3eσσ−3/2

M( 3
2 ,

5
2 , σ)

π/2∫

0

dθ

√
1 + sin θ
2 sin θ

F(θ) (5.113)

where

F(θ) =

∞∑
n=1

(−1)n(n + 3
4 )Γ(n + 1

2 )

Γ(n + 2)
I2n+3/2(σ sin θ) (5.114)

It may be shown [130] that the series (5.114) may be expressed in the integral form

F(θ) = −1
2

Γ( 3
2 )

Γ(2)
√
σ sin θ

∫ σ sin θ

0
t1/2I5/2(t) dt (5.115)

Thus

T‖
τ

= M(1,
5
2
, σ) − 3eσσ−3/2 √π

4M( 3
2 ,

5
2 , σ)

√
2σ

∫ π/2

0
dθ

√
1 + sin θ
sin θ

∫ σ sin θ

0
t1/2I5/2(t) dt

(5.116)
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so removing the order dependence n from (5.104). Equation (5.116) may be further
simplified by noting the representation of the I5/2(t) in terms of the elementary func-
tions so that ∫ x

0
t1/2I5/2(t) dt =

√
2/π

(
cosh x − 3

sinh x
x

+ 2

)
(5.117)

Thus (5.116) may be rendered by the single integral

T‖
τ

=M(1,
5
2
, σ) − 3eσσ−2

4M( 3
2 ,

5
2 , σ)

×
∫ π/2

0
dθ

√
1 + sin θ
sin θ

(
cosh(σ sin θ) − 3 sinh(σ sin θ)

σ sin θ
+ 2

) (5.118)

which for the purpose of applying the method of steepest descents may be expressed
as

T‖
τ

=M(1,
5
2
, σ) − 3eσσ−2

4M( 3
2 ,

5
2 , σ)

∫ π/2

0
dθ

√
1 + sin θ
sin θ

×
[
1
2

(eσ sin θ + e−σ sin θ) − 3
2

(
eσ sin θ − e−σ sin θ

σ sin θ

)
+ 2

] (5.119)

which is the exact solution in integral form. In order to apply the method of steepest
descents to obtain the asymptotic expansion of the exact solution we note that the
exact solution (5.119) has no singularity at θ = 0 and has a saddle point at θ = 1/2π.
Since the saddle point is at θ = 1/2π it will be convenient to replace θ by 1/2π− θ in
(5.119) so that θ = 0 is now the saddle. Thus

T‖
τ

=M(1,
5
2
, σ) − 3eσσ−2

4M( 3
2 ,

5
2 , σ)

∫ π/2

0
dθ

√
1 + cos θ
cos θ

×
[
1
2

(eσ cos θ + e−σ cos θ) − 3
2

(
eσ cos θ − e−σ cos θ

σ cos θ

)
+ 2

] (5.120)

Let us now write ∫ π/2

0
eσ cos θG(θ)dθ ≡ J (5.121)

where

G(θ) =

√
1 + cos θ
2 cos θ

(
1 − 3

σ cos θ

)
(5.122)

This, in accordance with the method of steepest descents, is

∫ π/2

0
dθ

[
G(0) + θG′(0) +

1
2
θ2G′′(0) + · · ·

]

× exp

[
F(0) + θF′(0) +

1
2
θ2F′′(0) +

1
6
θ3F′′′(0) +

1
24
θ4FIV (0) + · · ·

] (5.123)
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Fig. 5.3. Plot of T‖ as a function of σ

Thus, proceeding exactly as in the two-dimensional case, on noting the asymptotic
form of M(a, b, z) as |z| ← ∞, namely [1]

M(a, b, z) =
Γ(b)
Γ(a)

ezza−b
[
1 + O(|z|−1)

]
, Re(z) > 0 (5.124)

we have with (5.120)
T‖
τ
� 1

2

√
πeσσ−3/2

(
1 +

1
σ

)
(5.125)

in agreement with Storonkin [572], [571] when his result is truncated at the term of
order 1/σ in the parentheses. Equation (5.125) is compared with the exact solution
and Brown’s asymptotic formula

T‖
τ
� 1

2

√
πeσσ−3/2 (5.126)

In Figure 5.3, the bold line is (5.104), the large dashing is (5.126), and the small
dashing is (5.125). It is apparent that (5.125) reproduces the asymptote far more
accurately than Brown’s asymptotic formula for σ ≥ 2.5. Brown’s formula gives a
closer approximation to the exact solution for σ in the range 1.5−2.5. If the 1/σ2

term is included in the asymptotic expansion, using the method of steepest descents
one finds, after a tedious calculation, that

T‖
τ
� 1

2

√
πeσσ−3/2

(
1 +

1
σ

+
7

4σ2

)
(5.127)

Equation (5.127) provides an even closer approximation to the asymptotic behaviour
for large σ. Its first term agrees with Brown [91], Aharoni [6], and Scully et al. [539].
The other terms require summation over p and the method of steepest descent to
fourth order in the slow part and to sixth order in the fast part.

We have shown how Watson’s integral formula for the product of two Bessel
functions may be used to render the exact solutions for the correlation times T‖ and
T⊥ for the two-dimensional rotator in integral form. This facilitates the use of the
method of steepest descents in order to obtain semiclassical asymptotic formulae
for T‖ and T⊥ in the high σ approximation. The asymptotic results for T‖ are in
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agreement with those obtained by the method proposed by Visscher [591] when due
account is taken of the periodic nature of the potential. In the case of T⊥, the effec-
tive eigenvalue method yields asymptotic behaviour that is identical to that yielded
by the exact solution cf (5.82) and (5.89). Similar considerations hold for T‖ for ro-
tation in three dimensions, the only essential difference being that Watson’s integral
formula for the product of two modified Bessel functions is replaced by the formula
for the product of two Kummer functions given by Bateman [33] (vol: 6.15.3), which
amounts to a generalisation of Watson’s integral formula (5.41). We remark that if
an electric field is applied to a nematic liquid crystal in the transverse direction then
one may also write the exact solution T⊥ for the extended Debye theory of dielec-
tric relaxation in a form similar to (5.102) [132]. This is trickier than it seems. The
principal reason for this is the loss of axial symmetry arising from the transverse
application of the field. Fortunately, the effective eigenvalue also provides an accu-
rate description in this instance showing the characteristic 1/σ dependence of T⊥ for
large σ. The difficulty mentioned earlier does not arise for rotation in two dimen-
sions as the underlying continued fraction S̃ p(s) is the same for both orientations of
the applied field.

We remark that we have been able to obtain exact solutions of the problems
described by virtue of the fact that the Laplace transform of the solution of the
differential-difference equations underlying the Smoluchowski equation takes the
form of a three-term recurrence relation. This in turn allows one to convert the series
form of the solution to an integral using what are essentially properties of hypergeo-
metric functions.

We further remark that a number of investigators have obtained approximate in-
tegral solutions for correlation times using adaptations of the mean first passage time
method [485], [439]. The procedure is discussed in some detail by Hänggi et al. [318]
and by Risken [507], who describes how the technique may be used to calculate an
approximate expression for the inverse of the lowest eigenvalue for a metastable po-
tential.

We believe that an attractive feature of the present method is its ability to demon-
strate clearly the connection between the continued fraction and integral forms of
the exact solution. The integral form has the merit that it allows one to rigorously
derive asymptotic expansions from the exact solution in the high barrier limit with
no approximations other than those inherent in the method of steepest descents.

These considerations are of particular importance in view of the comments of
Klik and Gunther [358] concerning the T−1/2 behaviour of the relaxation rate prefac-
tor σ3/2τ−1 in Brown’s equation (5.126). They argue that this behaviour arises from
the lack of a saddle point in the Hamiltonian for the Kν sin2 ϑ potential. This argu-
ment is refuted by Bessais et al. [75] in heuristic fashion. They conjecture that the
T−1/2 behaviour arises from the asymptotic behaviour of the solution of (5.104). Our
analysis reinforces this argument, as it clearly demonstrates that the T−1/2 behaviour
arises from the asymptotic behaviour of the hypergeometric function M(1, 5/2, σ),
which is the dominant term in the exact solution for large σ.
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5.2 The Fokker–Planck and Langevin Equations

The Fokker–Planck equation [126] is an equation for the evolution of the distribution
function (which is defined on the phase space for the problem) of fluctuating macro-
scopic variables [286]. It is essentially a specialised form of the Boltzmann integral
equation [592], [512] with the stosszahlansatz of Brownian motion. The diffusion
equation [142](1.4.11) for the distribution function of an assembly of free Brownian
particles is a simple example of such an equation. The main use of the Fokker–Planck
equation is as an approximate description for any Markov process ξ(t) in whick the
individual jumps are small [590]. We shall derive the Fokker–Planck equation fol-
lowing the exposition of Coffey et al. [126], [142].

Consider a stochastic process ξ(t) in which we take a set of instants t1 < t2 < t3
where for the present we assume that y1 and t1 are fixed. We define the condi-
tional probability P2(y2, t2|y1, t1)dy2 as the probability that ξ(t2) lies in the interval
(y2, y2 + dy2) given that ξ(t1) had a value y1 at time t1 and P3(y3, t3|y2, t2; y1, t1)dy3

the probability that ξ(t3) lies in the interval (y3, y3 + dy3) given that ξ(t2) had a value
y2 at time t2 and ξ(t1) had a value y1 at time t1. If we multiply P2 by P3 and integrate
with respect to y2, the resulting probability density function will only depend on y1

and t1, i.e.,

P3(y3, t3|y1, t1)dy3 =

∫ ∞

−∞
P2(y2, t2|y1, t1)P3(y3, t3|y2, t2; y1, t1) dy2 dy3 (5.128)

or

P3(y3, t3|y1, t1) =

∫ ∞

−∞
P2(y2, t2|y1, t1)P3(y3, t3|y2, t2; y1, t1) dy2 (5.129)

which is called the Chapman-Kolmogorov equation. If we restrict ourselves to a
Markov process, we will then have

P3(y3, t3|y2, t2; y1, t1) = P2(y3, t3|y2, t2) (5.130)

or

P2(y3, t3|y1, t1) =

∫ ∞

−∞
P2(y2, t2|y1, t1)P2(y3, t3|y2, t2)dy2 (5.131)

which is the Chapman-Kolmogorov equation for a Markov process also known as
the Smoluchowski integral equation, essentially due to Einstein [240]. In (5.131) let
us write

P2 = W , y3 = y , y2 = z , y1 = x , t2 = t , t3 = t + Δt

and suppress the t1 dependence so that (compare [142] (1.4.1))

W(y, t + Δt|x) =

∫ ∞

−∞
W(y, t + Δt|z, t)W(z, t|x) dz (5.132)

In (5.132), we write for economy of notation

W(y, t + Δt|z, t) = W(y, Δt|z) (5.133)
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so that

W(y, Δt|x) =

∫ ∞

−∞
W(z, t|x)W(y, Δt|z) dz (5.134)

We wish to derive a partial differential equation for the transition probability W(y, t|x)
from this integral equation under certain limiting conditions. We have to consider

∫ ∞

−∞
R(y)

∂W(y, t|x)
∂t

dy (5.135)

where R(y) is an arbitrary function satisfying

lim
y→±∞

R(y) = 0 , and R(n)(y) exists at y = ±∞ (5.136)

In (5.136), R(n)(y) is the nth derivative of R(y) with respect to y. Using the definition
of the partial derivative, we have

∫ ∞

−∞
R(y)

∂W
∂t

dy =

∫ ∞

−∞
R(y) lim

Δt→0

[
W(y, t + Δt|x) −W(y, t|x)

Δt

]
dy (5.137)

If we assume that we can interchange the order of the limit and integration, then
(5.137) reads

∫ ∞

−∞
R(y)

∂W
∂t

dy = lim
Δt→0

∫ ∞

−∞
R(y)

[
W(y, t + Δt|x) −W(y, t|x)

Δt

]
dy (5.138)

We now substitute for W(y, t + Δt|x) in (5.138) using
∫ ∞

−∞
R(y)W(y, t|x) dy =

∫ ∞

−∞
R(z)W(z, t|x) dz (5.139)

to obtain
∫ ∞

−∞
R(y)

∂W
∂t

dy = lim
Δt→0

1
Δt

[∫ ∞

−∞
W(z, t|x)

∫ ∞

−∞
R(y)W(y, Δt|z)dydz

−
∫ ∞

−∞
R(z)W(z, t|x)dz

] (5.140)

Let us expand R(y) in a Taylor series about the point y = z so that

R(y) = R(z) + (y − z)R′(z) +
(y − z)2

2!
R′′(z) + · · · (5.141)

Therefore
∫ ∞

−∞
R(y)

∂W
∂t

dy = lim
Δt→0

1
Δt

[∫ ∞

−∞
W(z, t|x)

∫ ∞

−∞
{R(z) + (y − z)R′(z)

+
(y − z)2

2!
R′′(z) + · · · }W(y, Δt|z)dydz −

∫ ∞

−∞
R(z)W(z, t|x)dz

]

(5.142)
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In (5.142) we have ∫ ∞

−∞
W(y, Δt|z) dy = 1 (5.143)

since W(y, Δt|z) is a probability density function. Therefore
∫ ∞

−∞
R(y)

∂W
∂t

dy = lim
Δt→0

1
Δt

[∫ ∞

−∞
W(z, t|x)

∫ ∞

−∞
{(y − z)R′(z)

+
(y − z)2

2!
R′′(z) + · · · }W(y, Δt|z)dydz

] (5.144)

Let us write

an(z, Δt) =

∫ ∞

−∞
(y − z)nW(y, Δt|z)dy (5.145)

Then ∫ ∞

−∞
R(y)

∂W
∂t

dy = lim
Δt→0

1
Δt

∫ ∞

−∞
W(z, t|x)

×
{

a1(z, Δt)R′(z) +
a2(z, Δt)

2!
R′′(z) + · · ·

}
dz

(5.146)

Interchanging limits with integration again, (5.146) reads
∫ ∞

−∞
R(y)

∂W
∂t

dy =

∫ ∞

−∞
W(z, t|x)

[
lim
Δt→0

a1(z, Δt)
Δt

R′(z)

+ lim
Δt→0

a2(z, Δt)
2!Δt

R′′(z) + · · ·
]

dz

(5.147)

We now suppose that [cf. (5.162) and (5.163)]

lim
Δt→0

an(z, Δt)
Δt

= 0 , for n > 2 (5.148)

Thus∫ ∞

−∞
R(y)

∂W
∂t

dy =

∫ ∞

−∞
W(z, t|x)

[
D(1)(z, t)R′(z) + D(2)(z, t)R′′(z)

]
dz (5.149)

where

D(1)(z, t) = lim
Δt→0

a1(z, Δt)
Δt

(5.150)

D(2)(z, t) = lim
Δt→0

a2(z, Δt)
2Δt

(5.151)

We need to factor R(z) out of the right-hand side of (5.149). To do this, we use
integration by parts. Thus, we have

∫ ∞

−∞
W(z, t|x)D(1)(z, t)R′(z)dz =

∫ ∞

−∞
udv = uv

∣∣∣∣∣
∞

−∞
−

∫ ∞

−∞
vdu (5.152)
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where
u = W(z, t|x)D(1)(z, t) and dv = R′(z)dz (5.153)

so that

du =
∂

∂z

[
W(z, t|x)D(1)(z, t)

]
dz and v = R(z) (5.154)

Hence
∫ ∞

−∞
W(z, t|x)D(1)(z, t)R′(z) dz = −

∫ ∞

−∞
R(z)

∂

∂z

[
D(1)(z, t)W(z, t|x)

]
dz (5.155)

by (5.136). Similarly applying integration by parts twice to the last term of (5.149),
we have

∫ ∞

−∞
W(z, t|x)D(2)(z, t)R′′(z)dz =

∫ ∞

−∞
R(z)

∂2

∂z2

[
D(2)(z, t)W(z, t|x)

]
dz (5.156)

Substituting (5.155) and (5.156) into (5.149), we have

∫ ∞

−∞
R(y)

(
∂W
∂t

+
∂

∂y

[
D(1)W

]
− ∂2

∂y2

[
D(2)W

])
dy = 0 (5.157)

(since z is a dummy variable). Thus suppressing the initial value x,

∂W(y, t)
∂t

= − ∂
∂y

[
D(1)(y, t)W(y, t)

]
+
∂2

∂y2

[
D(2)(y, t)W(y, t)

]
(5.158)

Equation (5.158) is the Fokker–Planck equation for W(y, t) the probability distri-
bution function of a particle leaving “position” y at time t for a one-dimensional
Markov process governed by the random variable ξ(t). D(1) is called the drift coef-
ficient (sometimes “vector”) and D(2) the diffusion coefficient (sometimes “tensor”)
which are to be calculated from the Langevin equation. The condition that the Taylor
series may be truncated at n = 2 will be justified if the driving stimulus is white
noise in the underlying stochastic differential equation (Langevin equation). This is
apparent from the properties of white noise, i.e.,

F(t1)F(t2) = 2Dδ(t1 − t2) (5.159)

and Isserlis’ theorem, namely

F(t1)F(t2) . . . F(t2n) =
∑∏

ir>is

F(ir)F(is) , F(t1)F(t2) . . . F(t2n+1) = 0 (5.160)

For n = 2, for example,

F(t1)F(t2)F(t3)F(t4) =4D2 {δ(t1 − t2)δ(t3 − t4)

+ δ(t1 − t3)δ(t2 − t4) + δ(t1 − t4)δ(t2 − t3)}
(5.161)

which gives rise to a4 of order (Δt)2 in (5.148).
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From (5.161) we see that a3, a5, . . . , a2n+1 are all zero and from (5.159) and
(5.160)

a2n ∼ (Δt)n (5.162)

Hence

lim
Δt→0

1
Δt

a2n = 0 , n > 1 (5.163)

However, if the driving stimulus is not white noise, higher-order terms must be in-
cluded in the Kramers-Moyal expansion, (5.147), and one no longer has the Fokker–
Planck equation.

We again emphasise with Wang and Uhlenbeck [592] in relation to (5.158) that
(5.148)–(5.151) and (5.159)–(5.160) are necessarily only approximations. The basic
equation is always Boltzmann’s integral equation [123], [147]. These equations hold
when in each collision the velocity (y, for example) of the particle can change very
little so that the Boltzmann equation may be approximated by the diffusion (Fokker–
Planck) equation (5.158).

Since in general we will be dealing with the multivariable form of the Fokker–
Planck equation, it is necessary to quote the form of that equation for many dimen-
sions characterised by a set of random variables {ξ} = {ξ1, . . . , ξn}. The multivariable
form of the Fokker–Planck equation [512] is with W = W({y}, t|{x}), {y} denoting a
set of realisations of the random variables {ξ}:

∂W(y, t)
∂t

= −
n∑

i=1

∂

∂yi

[
D(1)

i (y, t)W(y, t)
]

+
1
2

n∑
k=1

n∑
l=1

∂2

∂yk∂yl

[
D(2)

k,l (y, t)W(y, t)
]

(5.164)
For simplicity, let us suppose that the process is characterised by a state vector y
having only two components (y1, y2) (these, for example, could be the realisations of
the position and velocity of a Brownian particle), and so the two variable Fokker–
Planck equation written in full is

∂W
∂t

= −
2∑

i=1

∂

∂yi

[
D(1)

i W
]

+
1
2

2∑
k=1

2∑
l=1

∂2

∂yk∂yl

[
D(2)

k,l W
]

(5.165)

or

∂W
∂t

= − ∂

∂y1

[
D(1)

1 W
]
− ∂

∂y2

[
D(1)

2 W
]

+
1
2
∂2

∂y2
1

[
D(2)

1,1W
]

+
1
2

∂2

∂y1∂y2

[
D(2)

1,2W
]

+
1
2

∂2

∂y2∂y1

[
D(2)

2,1W
]

+
1
2
∂2

∂y2
2

[
D(2)

2,2W
] (5.166)

In general, D(2)
1,2 = D(2)

2,1 so that

∂W
∂t

= − ∂

∂y1

[
D(1)

1 W
]
− ∂

∂y2

[
D(1)

2 W
]

+
1
2
∂2

∂y2
1

[
D(2)

1,1W
]

+
1
2
∂2

∂y2
2

[
D(2)

2,2W
]

+
∂2

∂y1∂y2

[
D(2)

1,2W
] (5.167)
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where the various drift and diffusion coefficients are

D(l)
i = lim

Δt→0

Δyi

Δt
, D(2)

i, j = lim
Δt→0

ΔyiΔy j

Δt
, (i, j = 1, 2) (5.168)

We reiterate that we have assumed in writing our Fokker–Planck equation [refer-
ring to (5.158) for convenience] that

D(1)(y, t) = lim
Δt→0

a1(y, Δt)
Δt

, D(2)(y, t) = lim
Δt→0

a2(y, Δt)
Δt

(5.169)

and

D(n)(y, t) = lim
Δt→0

an(y, Δt)
Δt

= 0 (5.170)

for n > 2. This allows us to truncate the Kramers-Moyal expansion (5.147). In the
Fokker–Planck equation, these quantities (which express the fact that in small times
Δt in the process under consideration, the only alteration in the random variable
ξ is that due to the rapidly fluctuating Brownian force F(t), which is the central
idea underlying the theory of the Brownian motion) are to be calculated from the
Langevin equation. The procedure emphasises again that the equation is the basic
equation of the theory of the Brownian movement. We remark that the time Δt is of
such short duration that (taking as an example y as the position and momentum of
a particle) the momentum does not significantly alter during the time Δt and neither
does any external conservative force. Nevertheless, Δt is supposed to be sufficiently
long that the chance that the rapidly fluctuating stochastic force F(t) takes on a given
value at time t +Δt is independent of the value that force possessed at time t. In other
words, the Brownian force has no memory.

We shall now explicitly calculate the drift and diffusion coefficients in the
Fokker–Planck equation for the simplest one-dimensional model, which is as fol-
lows. The Langevin equation for the process characterised by the one-dimensional
random variable ξ(t) (Figure 5.4), which describes, for example, the velocity of a
particle of mass m undergoing one-dimensional Brownian motion, is

ξ̇(t) + βξ(t) = F(t)/m (5.171)

where
F(t) = 0 , F(t)F(t + τ) = 2βmkTδ(τ)

If we integrate this equation over a short time Δt, we have the integral equation with
ξ(t + Δt) being the solution of (5.171), which at time t has the sharp value y, so that

ξ(t + Δt) − y = −
∫ t+Δt

t
βξ(t′)dt′ +

1
m

∫ t+Δt

t
F(t′)dt′ (5.172)

Thus, taking the statistical average of the realisations of ξ in a small time Δt, we can
readily calculate the drift coefficient D(1)(y, t):

D(1)(y, t) = lim
Δt→0

[ξ(t + Δt) − y(t)]
Δt

= −βy (5.173)
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To calculate the diffusion coefficient D(2)(y, t), we square ξ(t + Δt) − y to obtain
the integral equation

[
ξ(t + Δt) − y

]2
=β2y2(Δt)2 − 2Δtβy

1
m

∫ t+Δt

t
F(t′)dt′

+
1

m2

∫ t+Δt

t

∫ t+Δt

t
F(t′)F(t′′)dt′dt′′

(5.174)

The first term on the right-hand side is of order (Δt)2. The middle term vanishes
because F and the sharp initial value y are statistically independent. The last term is
on averaging (2βkT/m)Δt. Hence

D(2)(y, t) = lim
Δt→0

[
ξ(t + Δt) − y

]2

Δt
= 2βkT/m (5.175)

The third Kramers-Moyal coefficient D(3)(y, t) is calculated as follows. We form

[
ξ(t + Δt) − y

]3
= − β2y3(Δt)3 + 3y2β2(Δt)2 1

m

∫ t+Δt

t
F(t′)dt′

− 3yβΔt

(
1
m

∫ t+Δt

t
F(t′)dt′

)2

+

(
1
m

∫ t+Δt

t
F(t′)dt′

)3 (5.176)

The only term ∼ Δt, which will contribute to the average in this equation, is the one
involving the triple integral. However, this will vanish for a white noise driving force
because by Isserlis’ theorem, all odd values are zero. Thus, D(3)(y, t) = 0. Likewise
we can prove that all the D(n)(y, t) = 0 for all n ≥ 3.

Thus, the transition probability W satisfies the Fokker–Planck equation

∂W
∂t

= β
∂

∂y
(yW) +

βkT
m
∂2W
∂y2

(5.177)

corresponding to the Langevin equation (5.171). W must also satisfy, since it is a
transition probability,

lim
t→0

W(y, t|x) = δ(y − x) , lim
t→∞

W(y, t|x) = W(y) (5.178)

where W(y) denotes the stationary solution.
We shall now discuss how drift and diffusion coefficients may be evaluated in the

most general case.

5.2.1 Drift and Diffusion Coefficients

The quantities D(1) and D(2) for the nonlinear Langevin equation may be calculated
in the following way [512]. The most general Langevin equation in one stochastic
variable ξ has the form [512]
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ξ̇(t) = h (ξ(t), t) + g (ξ(t), t) F(t) (5.179)

If g is constant, (5.179) is called a Langevin equation with an additive noise term,
while if g depends on ξ, (5.179) is called a Langevin equation with a multiplicative
noise term. We shall consider only the multiplicative noise case since it is more
general. We wish to evaluate [512]

D(1)(y, t) = lim
Δt→0

ξ(t + Δt) − y
Δt

|ξ(t)=y (5.180)

and

D(2)(y, t) =
1
2

lim
Δt→0

[
ξ(t + Δt) − y

]2

Δt
|ξ(t)=y (5.181)

where ξ(t + Δt) is a solution of (5.179), which at time t has a sharp value y such that

ξ(t) = y (5.182)

Following [512] we write the Langevin equation (5.179) in the integral form

ξ(t + Δt) − y =

∫ t+Δt

t

[
h
(
ξ(t′), t′

)
+ g

(
ξ(t′), t′

)
F(t′)

]
dt′ (5.183)

We now expand h and g as Taylor series about the sharp point ξ = y so that on
recalling that the increment during the interval (t, t′) is ξ(t′) − y we obtain

h
(
ξ(t′), t′

)
= h(y, t′) +

[
ξ(t′) − y

] ∂h(y, t′)
∂y

+ . . . (5.184)

g
(
ξ(t′), t′

)
= g(y, t′) +

[
ξ(t′) − y

] ∂g(y, t′)
∂y

+ . . . (5.185)

where

∂

∂ξ(t′)
h
(
ξ(t′), t′

) |ξ(t)=y =
∂h(y, t′)
∂y

and
∂

∂ξ(t′)
g
(
ξ(t′), t′

) |ξ(t)=y =
∂g(y, t′)
∂y

Using these expansions in the integral equation (5.183), we have

Fig. 5.4. Three typical realisations of a random variable ξ(t) starting from a sharp initial point
ξ(t1) = y
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ξ(t + Δt) − y =

∫ t+Δt

t
h(y, t′)dt′ +

∫ t+Δt

t

[
ξ(t′) − y

] ∂h(y, t′)
∂y

dt′ + · · ·

+

∫ t+Δt

t
g(y, t′)F(t′)dt′ +

∫ t+Δt

t

[
ξ(t′) − y

] ∂g(y, t′)
∂y

F(t′)dt′ + · · ·

(5.186)

We may now iterate for ξ(t′) − y in the integrand using (5.183) to get

ξ(t + Δt) − y =

∫ t+Δt

t
h(y, t′)dt′ +

∫ t+Δt

t

∂h(y, t′)
∂y

∫ t′

t
h(y, t′′)dt′dt′′

+

∫ t+Δt

t

∂h(y, t′)
∂y

∫ t′

t
g(y, t′′)F(t′′)dt′dt′′ +

∫ t+Δt

t
g(y, t′)F(t′)dt′

+

∫ t+Δt

t

∂g(y, t′)
∂y

∫ t′

t
h(y, t′′)F(t′)dt′′dt′

+

∫ t+Δt

t

∂g(y, t′)
∂y

∫ t′

t
g(y, t′′)F(t′′)F(t′)dt′′dt′ + O(Δt)

(5.187)

so that the last term involves a product of noises. Now we recall that

F(t) = 0 , F(t′)F(t′′) = 2Dδ(t′ − t′′) (5.188)

(D = ζkT ) and the property of the Dirac delta function [512]
∫ a

0
f (t)δ(t − a)dt =

1
2

f (a) (5.189)

Thus, we have from (5.187)

ξ(t + Δt) − y =

∫ t+Δt

t
h(y, t′)dt′ + 2D

∫ t+Δt

t

∂g(y, t′)
∂y

∫ t′

t
g(y, t′′)δ(t′ − t′′)dt′′dt′ + . . .

=h(y, t + Θ1Δt)Δt + Dg(y, t + Θ2Δt)
∂g(y, t + Θ2Δt)

∂y
Δt + O(Δt)

(5.190)

(0 ≤ Θi ≤ 1). Here, we have taken into account (5.189), i.e.,

2D
∫ t′

t
g(y, t′′)δ(t′ − t′′)dt′′ = Dg(y, t′) (5.191)

Thus, we obtain

D(1)(y, t) = lim
Δt→0

ξ(t + Δt) − y
Δt

= h(y, t) + D
∂g(y, t)
∂y

g(y, t) (5.192)

Equation (5.192) may also be considered as an evolution equation for the sharp value
y. This is the basis for the approach to the subject portrayed in this book; the sharp
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initial condition corresponding to the delta function initial distribution in the Fokker–
Planck picture so that in effect we are calculating the time dependence of the compo-
nents of the transition probability when we impose the sharp initial condition on the
Langevin equation. We emphasise that ξ(t) in (5.179) and y in (5.192) have different
meanings. ξ(t) is a stochastic variable while y = ξ(t) is a sharp (definite) value at time
t. We have distinguished the sharp values from the stochastic variables by deleting
the time argument. The last term in (5.192) is known as the noise-induced drift.

The other integrals in (5.187) have been ignored because [512], [587] they will
either give a contribution of the form (Δt)n for n = 2 if there are 2n F’s and by
(5.163) they will vanish, or if there are (2n + 1) F’s they will vanish by Isserlis’
theorem (5.160).

Similarly for D(2)(y, t), we have

[
ξ(t + Δt) − y

]2
=

∫ t+Δt

t

∫ t+Δt

t
h(ξ, t′)h(ξ, t′′)dt′dt′′

+ 2
∫ t+Δt

t
h(ξ, t′)dt′

∫ t+Δt

t
g(ξ, t′)F(t′)dt′

+

∫ t+Δt

t

∫ t+Δt

t
g(ξ, t′)g(ξ, t′′)F(t′)F(t′′)dt′dt′′

(5.193)

The first two terms of (5.193) will give contributions of the order (Δt)2 and they
vanish. Thus

[
ξ(t + Δt) − y

]2
= 2D

∫ t+Δt

t

∫ t+Δt

t
g(ξ, t′)g(ξ, t′′)2δ(t′ − t′′) dt′ dt′′ (5.194)

Therefore

D(2)(y, t) =
1
2

lim
Δt→0

[
ξ(t + Δt) − y

]2

Δt
= Dg2(y, t) (5.195)

Having illustrated the one-dimensional problem, we will now illustrate how
the procedure is applied to obtain the drift and diffusion coefficients for the two-
dimensional Fokker–Planck equation in phase space for a free Brownian particle.
This equation is, as we have seen, often called the Kramers equation or Klein-
Kramers equation [512]. In general, the Fokker–Planck equation in the context of
a dynamical system, the motion of which in the absence of a heat bath is governed
by Hamilton’s equations with a separable and additive Hamiltonian comprising the
sum of the kinetic and potential energies, is known as the Klein-Kramers equation.

We have seen that the Langevin equation for a free Brownian particle may be
represented as the system

ẋ = v , v̇ = −βv + F(t)/m (5.196)

with
F(t) = 0 , F(t1)F(t2) = 2mβkTδ(t1 − t2)

The corresponding Fokker–Planck equation for the transition probability density W
in phase space with x = y1, v = y2 in (5.167) is
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∂W
∂t

= − ∂

∂x

[
D(1)

1 (x, v)W
]
− ∂

∂v

[
D(1)

2 (x, v)W
]

+
1
2
∂2

∂x2

[
D(2)

1,1(x, v)W
]

+
1
2
∂2

∂v2

[
D(2)

2,2(x, v)W
]

+
∂2

∂x∂v

[
D(2)

1,2(x, v)W
] (5.197)

Since x = y1, Δx = Δy1 and proceeding as in (5.169)

D(1)
1 = lim

Δt→0

Δy1

Δt
= lim
Δt→0

Δx
Δt

= v (5.198)

Now, the change in velocity in a small time Δt is

Δv ≈ −βvΔt +
1
m

∫ t+Δt

t
F(t′) dt′

Thus the drift coefficient D(1)
2 is

D(1)
2 = lim

Δt→0

Δv
Δt

= −βv (5.199)

Likewise, the diffusion coefficients D(2)
1,1(x, v) and D(2)

1,2(x, v) are

D(2)
1,1(x, v) = lim

Δt→0

(Δx)2

Δt
= lim
Δt→0

v2(Δt)2

Δt
= 0 (5.200)

D(2)
1,2(x, v) = lim

Δt→0

ΔxΔv
Δt

= lim
Δt→0

vΔtΔv
Δt

= lim
Δt→0
−βv2Δt + v

∫ t+Δt

t

F(t′)
m

dt′ = 0

(5.201)

because F(t) = 0. In order to evaluate

D(2)
2,2(x, v) = lim

Δt→0

(Δv)2

Δt
(5.202)

consider

(Δv)2 = β2v2(Δt)2 − 2βvΔt
m

∫ t+Δt

t
F(t′)dt′ +

1
m2

∫ t+Δt

t

∫ t+Δt

t
F(t′)F(t′′)dt′dt′′

(5.203)
The first term on the right-hand side of (5.203) is of order (Δt)2, the second term
vanishes on averaging, and

∫ t+Δt

t

∫ t+Δt

t
F(t′)F(t′′)dt′dt′′ = 2D

∫ t+Δt

t

∫ t+Δt

t
δ(t′ − t′′)dt′dt′′ = 2DΔt

(D = βkTm), whence the diffusion coefficient is
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D(2)
2,2(x, v) = 2kTβ/m (5.204)

Thus, we obtain
∂W
∂t

+ v
∂W
∂x

= β

[
∂(vW)
∂v

+
kT
m
∂2W
∂v2

]
(5.205)

which is the desired Fokker–Planck equation. The Langevin and Fokker–Planck
equations are often termed as arising out of a continuous diffusion and a jump-
diffusion model, respectively.

We already considered a concrete example of the Fokker–Planck equation, for
rotators, in Section 5.1. We now consider the thermally activated relaxation time of a
single-domain ferromagnetic particle subjected to a uniform field at an oblique angle
to the easy axis including comparison with experimental observations [137].

New asymptotes of the relaxation time of the magnetic moment of a single do-
main particle with a uniform magnetic field applied at an oblique angle to the easy
axis (in excellent agreement with exact numerical results from the Fokker–Planck
equation for the Néel–Brown model) are used to model the experimental angular
variation of the switching field for individual Co and BaFeCoTiO particles. Good
agreement is obtained, justifying the Néel–Brown (in effect, the Kramers) concep-
tion of the super-paramagnetic relaxation process and allowing one to deduce the
value of the damping constant.

An accurate analytical expression for the prefactor of the greatest relaxation time
τ due to thermal agitation of the magnetic moment m of single-domain nanoparticles
subjected to a uniform external field H is necessary for modeling experiments and
deducing other experimental parameters [230]. This problem is important in long-
term stability [142], [597] of stored information and in [598] macroscopic quantum
tunneling (MQT) of m (a mechanism of magnetization reversal suggested in [53]),
as a knowledge of τ allows the separation of the different relaxation mechanisms. In
all common particle assemblies, the easy directions n of the particles are random-
ized so that asymptotic τ for H at an arbitrary angle to n is required; this differs from
the Brown [7] asymptote for axial symmetry; i.e., H ‖ n because breaking the axial
symmetry couples the transverse and longitudinal relaxation modes. Here we com-
pare experimental and calculated τ as (i) the theory permits direct comparison with
experiment (hitherto impossible), and (ii) accurate experiments on individual small
particles are now available. Concerning the theory [133], [136] we have already pre-
sented exact numerical solutions and asymptotes of τ for a particle with uniaxial
anisotropy with H in the x−z plane at an angle ψ to the easy direction z so that

νV(ϑ) = νK sin2 ϑ − νMsH (cosϑ cosψ + sinϑ cosϕ sinψ) (5.206)

ϑ and ϕ are the polar angles of m, K is the anisotropy constant, and Ms denotes the
magnetization of a nonrelaxing particle of volume ν.

Equation (5.206) is a particular nonaxially symmetric potential. In references
[293], [136], we have shown that, for a general asymmetric bistable potential of free
energy density V = V(r) (r = M/Ms), with minima at n1 and n2 separated by a
potential barrier containing a saddle point at n0 (with the ni coplanar) that
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τ ≈ 2τN

λ1
(5.207)

where

λ1 ≈β
(√

c(1)
1 c(1)

2 e−β(V0−V1) +

√
c(2)

1 c(2)
2 e−β(V0−V2)

)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
−c(0)

1 − c(0)
2 +

√(
c(0)

2 − c(0)
1

)2
− 4α−2c(0)

1 c(0)
2

4π
√
−c(0)

1 c(0)
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(5.208)

verifying Brown’s later calculation [293], [135]

τN =
βMs(1 + α2)

2γα
≡ β

2b
(5.209)

γ is the gyromagnetic ratio, β = ν/kT :

α = ηγMs (5.210)

is the dimensionless damping factor (η is the friction in Gilbert’s equation [293]).
Equation (5.208) is [136]

τ−1 ≈ λ1

2τN
≈ Ω0

2πω0
{ω1 exp[−β(V0 − V1)] + ω2 exp[−β(V0 − V2)]} (5.211)

ω1 and ω2 are the well angular frequencies; ω0 andΩ0 are the saddle and the damped
saddle angular frequencies (V at the minima is denoted by i = 1, 2, respectively,
and at the saddle point by 0). Equation (5.208) is the leading term in the asymptotic
expansion of the smallest nonvanishing eigenvalue λ1 of the Fokker–Planck equation
(FPE);

∂W
∂t

=
1
β
∇2W + b∇2V

+ b

(
∂V
∂θ

∂W
∂θ

+
1

sin2 θ

∂V
∂φ

∂W
∂φ

)

+
b

α sin θ

(
∂V
∂θ

∂W
∂φ
− ∂V
∂φ

∂W
∂θ

)
(5.212)

where W is the distribution of orientations of the magnetization M on the unit spher-
ical surface (θ, φ). c(i)

1 , c
(i)
2 , i = 0, 1, 2 in (5.208) are the coefficients in the truncated

Taylor series [293], [134] of the potential at the well and saddle points. The α-values
for which (5.208) is valid are discussed in [135], [358], where (5.208) is compared
with the exact λ1. Equation (5.208) approximates λ1 if [135], [136]

αβ(V0 − Vi) > 1 , β(V0 − Vi) � 1 (5.213)

and is called the intermediate- to high-damping (IHD) formula. Conversely, if α sat-
isfies
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αβ(V0 − Vi) � 1 , β(V0 − Vi) � 1 (5.214)

so that the energy dissipated in one cycle of the motion is very small (� kT ),
then [136], [358]

τ−1 ≈ α

2π
{ω1β(V0−V1) exp[−β(V0−V1)]+ω2β(V0−V2) exp[−β(V0−V2)]} (5.215)

This is the low damping (LD) limit in contrast to the intermediate- to high-damping
(IHD) limit. The evaluation of Ω0, ωi (i = 0, 1, 2) for (5.206) (involving numerical
solution of a quartic equation) is described in [293], [134]. Experimentally, relax-
ation is observed only if τ is of the order of the measuring time of the experiment
implying that β(V0 − V2) � 1 always (taking V2 as the shallow minimum). Because
of (5.213) and (5.214), we remark that little information about α for small particles
is available so that α between 0.05 and 1 [229] is usually postulated; other values
cannot be ruled out, however, meaning that in practice αβ(V0 − V2) can be � 1,
� 1, or ≈ 1; thus the distinction between (5.211) and (5.215) becomes important.
Here, τ as a function of the field angle ψ is required. Such measurements can be
made either on oriented particle assemblies where the easy axes are parallel or on
an individual particle. We understand that data have not hitherto been available on
an individual particle; however, accurate individual particle measurements are now
available [597], [598], facilitating the comparison of theory and experiment.

In verifying (5.211) and (5.215) for the IHD and LD limits, we selected metallic
Co particles synthesized by arc discharge [315] and insulating BaFe10.4Co0.8Ti0.8O19

particles (note that these are ferrimagnetic but the noncompensated magnetic mo-
ment is so large that they can be considered as ferromagnetic [598]) fabricated by
a glass crystallization method [372]; each possesses strong uniaxial magnetocrys-
talline anisotropy. We used the results for a 20-nm sized Co particle [597] and a
10-nm sized BaFeO particle [598] gained by using planar Nb micro-SQUIDS al-
lowing the study of the magnetization reversal of individual nanoparticles by wait-
ing time and switching field experiments. The waiting-time measurements yield the
switching probability. At a given temperature, the magnetic field H is increased to
a waiting field near the switching field. Then the time elapsed until the magnetiza-
tion switch is measured. This process is repeated several hundred times, yielding a
waiting-time histogram. The integral of this histogram yields the switching prob-
ability. Regarding the switching field measurements, H is ramped at a given rate
and the value stored when the sample magnetization switches. Next, the field ramp
is reversed and the process repeated. After several hundred cycles, switching field
histograms are established, yielding the mean switching fields 〈HS W〉 and the width
σS W (rms deviation). Both measurements can be studied as a function of ψ (the H
direction). The number of decades for τ-values is limited for waiting-time experi-
ments; short-time (milliseconds) experiments are limited by the inductance of the
field coils and long-time (minutes) studies by the stability of the experimental setup.
Furthermore, the total acquisition time is about a week; thus the more convenient
switching field measurement is usually employed. Switching field measurements are
equivalent to waiting-time measurements as the time scale for the sweeping rates
is more than eight orders of magnitude greater than the time scale of the prefactor.
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We shall demonstrate that the experimental results are in good agreement with the
asymptotes, (5.211) and (5.215) [written as (5.222)]; moreover, one may determine
α. Thus 〈HS W〉 may be expressed [290] as

〈HS W〉 = Hc

⎧⎪⎪⎨⎪⎪⎩1 −
[
A−1 ln

(
HcB

a(dH/dt)A1+b/e

)]1/e
⎫⎪⎪⎬⎪⎪⎭ (5.216)

and
τ−1 = Bεa+b−1e−Aεa

(5.217)

with

ε = 1 − H
Hc

(5.218)

where H = |H| and dH/dt is the rate of field ramping. For uniaxial anisotropy [133],
[293],

Hc =
2K
Ms

hc =
2K
Ms

(
sin2/3 ψ + cos2/3 ψ

)3/2

hc =
MsHc

2K
(5.219)

where K is the total anisotropy constant, and hc is the reduced critical field where
the bistable V structure vanishes. The particles have a large volume leading to high
anisotropy barriers at low temperatures; thus, to observe relaxation, β(V0 − V2) must
be about 25. The large volume implies small ε leading to β(V0 − V1) � β(V0 − V2).
Thus we neglect exp[−β(V0 − V1)] in τ−1 and approximate (V0 − V2) for ε � 1
by [596]

V0 − V2

K
= 4

(
2
3
ε

)3/2 | cotψ|1/3

1 + | cotψ|2/3
(5.220)

[We checked (5.220) numerically against the exact solution [596], [351]; it is an ex-
cellent approximation for 5◦ < ψ < 85◦ and ε < 0.05.] To determine the parameters
in (5.216) and (5.217), let

τ−1 =
Kγ
Ms

P exp[−β(V0 − V2)] (5.221)

where in IHD

P = PIHD =
Ms

Kγ
Ω0

2π
ω2

ω0
=

α

4π(1 + α2)
×

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
c(2)

1 c(2)
2

−c(0)
1 c(0)

2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
×

[
−c(0)

1 + c(0)
2 +

√
(c(0)

1 − c(0)
2 )2 − 4α−2c(0)

1 c(0)
2

] (5.222)

while in LD

P = PLD =
Ms

Kγ
α

2π
ω2β(V0 − V2) =

α

2π

√
c(2)

1 c(2)
2 β(V0 − V2) (5.223)
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These can be fitted to
PIHD = fIHD(ψ, α)εδIHD (5.224)

and

PLD = α fLD(ψ)β(V0 − V2)εδLD−3/2

= α fLD(ψ) ×
⎡⎢⎢⎢⎢⎢⎣4βK

(
2
3

)3/2 | cotψ|1/3

1 + | cotψ|2/3

⎤⎥⎥⎥⎥⎥⎦ εδLD
(5.225)

with ε given by (5.218). Equations (5.220)–(5.225) yield

a = 3
2 b = δ − 1

2 , B =
Kγ
Ms

P
εδ

A = 4βK
(

2
3

)3/2 | cotψ|1/3
1+| cotψ|2/3 (5.226)

In adjusting the theory to switching field measurements of individual nanoparticles,
several conditions must be fulfilled: (i) the angular dependence of the switching field
must obey the model of magnetization reversal by uniform rotation [570] (5.219),
and (ii) the switching probability determined by waiting-time measurements must be
an exponential function of the time (≈ exp[−t/τ]). These are satisfied by the metallic
Co particle of [597] and the insulating BaFeCoTiO particle of [598].

Our comparison was accomplished as follows: (i) we chose IHD and guessed α;
(ii) we adjusted the theory to the switching field measurements [597] at various ψ,
knowing ν from scanning electron microscopy, γ and Ms from [315], [372], and K
from Hc at ψ = 90 deg and (5.219); (iii) we compared the observed ψ of fIHD(ψ, α),
with the IHD formula (5.224); (iv) we altered the assumed α and repeated the ad-
justment of step (iii) until optimum agreement between theory and experiment is
achieved; and (v) finally, where (5.213) is violated, we repeated the process using
LD, i.e., we compared the results to fLD(ψ) of (5.225). Results for Co and BaFeCo-
TiO are presented in Figure 5.5. fIHD(ψ, α), of the Co particle provides a good fit to
IHD using α = 0.5 ± 0.2; likewise, fLD(ψ) of the BaFeCoTiO particle to LD with
α = 0.035 ± 0.005. Both α fits are reasonable because (i) the damping in metal-
lic particles is expected to be higher than in insulating particles in agreement with
our experimental results and (ii) the values are close to the results of [230], [229].
Nevertheless, more detailed measurements should be carried out to substantiate these
preliminary measurements. We emphasize that α is the sole fitting parameter causing
us to reiterate that little information is available on α for fine particles; for γFe2O3

particles in a polymer, α ranges between 0.05 and 1 depending on the interparticle in-
teraction strength [229]; again for interacting Fe particles in an alumina matrix [230]
α ≈ 1 while, for bulk Fe, α ≈ 0.01. Furthermore, very low α-values are observed
for particular compounds such as yttrium garnet. Also, in fine particles, α is a phe-
nomenological constant in the Gilbert equation for the entire particle including all
defects, in particular, the surface defects; thus one expects that the smaller the parti-
cle, the more pronounced will be the increase of α over its bulk value. The damping
problem also plays an important role in the MQT of m. In general, dissipation due
to, for example, conduction electrons strongly reduces quantum effects. This agrees
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Fig. 5.5. Comparison of the (a) IHD and (b) LD formulae with measurements obtained on
(a) a metallic Co particle [597] and (b) an insulating BaFeCoTiO particle [598]; Kγ/Ms =

5x1010 s−1 and Kγ/Ms = 6.9x1010 s−1, respectively, were used

with our measurements in that, for metallic Co particles, no quantum effects were
found at low temperatures [597] whereas, for insulating BaFeCoTiO particles [598],
strong deviations from the classical model exist below 0.4 K, which are quantita-
tively in agreement with the predictions of the MQT theory in the low dissipation
regime [598].

We conclude that new asymptotes of τ of m of a nanoparticle with H at angle ψ
with respect to n (in numerical agreement with the FPE [134], [136], [351]) repro-
duce the angular variation of the switching field of individual particles to a reason-
able degree of accuracy, justifying the Néel–Brown (in effect, the Kramers) concep-
tion of the thermal relaxation process. Equations (5.211) and (5.215) are also valid
for any nonaxially symmetric bistable potential with coplanar minima and saddle
points allowing extension to other potentials, i.e., taking into account higher terms of
the magnetocrystalline anisotropy. These asymptotes also pertain to the memoryless
(white noise) limit (Ohmic damping). Nevertheless, as conjectured in [359] in the
presence of long-time memory, they should hold with a reduced effective dissipa-
tion constant which influences, in particular [360], the LD prefactor. It is of course
now standard practice [106] to generalize the classical Fokker–Planck equation to
the quantum master equation
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∂W
∂t

=

[
− p

M
∂

∂x
+

dV
dx

∂

∂p
+
∂

∂p

(
γp + Dpp

∂

∂p

)

+ Dxp
∂2

∂x∂p
+

∞∑
s=1

(i�/2)2s

(2s + 1)!
V (2s+1) ∂

2s+1

∂p2s+1

⎤⎥⎥⎥⎥⎥⎦ W
(5.227)

The first three terms on the right-hand side, identfying Dpp = γMkBT , give the classi-
cal Klein–Kramers Fokker–Planck equation. The mixed diffusion term Dx,p∂

2/∂x∂pW
is heuristically related to the colour of the quantum noise [145]. The s-series gives
the quantum contribution to the unitary evolution of the closed system. Other gener-
alizations are possible.

Other examples of the classical Fokker–Planck equation are given in Section 5.3
(albeit in fractal form) and Section 5.4.

5.3 Dieletric Relaxation, Anomalous Diffusion, Fractals, and
After Effects

The inertia-corrected Debye model of rotational Brownian motion of polar molecules
was generalized by Coffey et al. [138], [139], [140], [349], [141] to describe frac-
tional dynamics and anomalous rotational diffusion. The linear-response theory of
the normalized complex susceptibility was given in terms of a Laplace transform
and as a function of frequency. The angular-velocity correlation function was pa-
rameterized via fractal Mittag–Leffler functions. Here we apply the latter method
and complex-contour integral-representation methods to determine the original time-
dependent amplitude as an inverse Laplace transform using both analytical and nu-
merical approaches, as appropriate [199].

The fractional Klein–Kramers equation for anomalous rotational diffusion is

dW
dτ

=
∂W
∂τ

+ φ̇
∂W
∂φ

−μE sin φ
I

∂W

∂φ̇
= 0D1−α

t LFPW (5.228)

Here, W(φ, φ̇, t) is the probability density function (pdf). The fractional Fokker–
Planck (FP) operator has the property

0D1−α
t LFPW = 0D1−α

t
τ1−αζ

I
×

[
∂

∂φ̇
(φ̇W) +

kBT
I
∂2W

∂φ̇2

]
(5.229)

where kB is Boltzmann’s constant, T is the temperature, ζ is the viscous damping co-
efficient of a dipole, I is the moment of inertia of the rigid dipole μ, φ is the azimuthal
angle of the rigid rotator, t is the time, τ is the intertrapping time-scale, identifiable
with the Debye relaxation time (ζ/(kBT ) ∼ 10−11 s), and α is the anomalous exponent
characterizing the fractal-time process. A weak uniform electric field E is suddenly
switched off at time t = 0, when anomalous diffusion ensues. The fractal operator
0D1−α

t is given by

0D1−α
t ≡ ∂

∂t 0D−αt
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where we have, suppressing φ̇-dependence,

0D−αt W(φ, t) =
1
Γ(α)

∫ t

0

W(φ, t′)dt′

(t − t′)1−α (5.230)

Here Γ is the gamma function. We may seek a solution of (5.228) as for normal
diffusion, as

W(φ, φ̇, t) = exp
(
−η2φ̇2

) +∞∑
p=−∞

∞∑
n=0

cp,n(t)eipφHn(ηφ̇) (5.231)

where we define
η = [I/(2kBT )]1/2

so that

W(φ, φ̇, 0) ≈ 1
2π3/2

ηe−η
2φ̇2

[
1 + μE cos φ

kBT

]
(5.232)

Linear-response (p = 1) theory requires the solution of the differential-recurrence
relation:

d
dt

c1,n(t) +
i

2η
[
2(n + 1)c1,n+1(t) + c1,n−1(t)

]
= −0D1−α

t τ1−α nζ
I

c1,n(t) (5.233)

The usual Laplace operator L, given by

L{{ f (t)} ≡ f̃ (s) =

∫ ∞

0
e−st f (t)dt

yields

L{0Dt1−α f (t)} =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

s1−α f̃ (s) − D−αt f (t)|t=0

⎛⎜⎜⎜⎜⎜⎝0 < α < 1

1 < σ < 2

⎞⎟⎟⎟⎟⎟⎠
s1−α f̃ (s)

⎛⎜⎜⎜⎜⎜⎝1 ≤ α < 2

0 < σ ≤ 1

⎞⎟⎟⎟⎟⎟⎠
where we have introduced, for subsequent convenience, σ given by σ = 2 − α.
Transforming (5.233), we obtain

[
2τs + n(γ′)2(τs)1−α

]
c̃1,n(s) + iγ′

[
2(n + 1)c̃1,n+1(s) + c̃1,n−1(s)

]
= c1,n(0) (5.234)

where we have

γ′ =
τ

η
= ζ

√
2

(IkBT )
≡

√
b
2

As shown by [138], (5.234) can be solved in terms of continued fractions to yield the
normalized complex susceptibility, given by linear-response theory, namely

ψ̂(ω) = 1 − iω
c̃1,0(iω)
c1,0(0)

(5.235)
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where ω is the angular frequency. In detail,

ψ̂(ω) = 1 − B(iωτ)σ

B(iωτ)σ + B
1+B(iωτ)σ+ 2B

2+B(iωτ)σ+ 3B
3+···

(5.236)

and by comparison with

M(a, b, z)
(b − 1)M(a − 1, b − 1, z)

=
1

b − 1 − z + az
b−z+ az

b−z+ (a+1)z
b+1−z+···

(5.237)

based on the exact recurrence relation for the regular confluent hypergeometric func-
tion M(A, B,C), namely

b(1− b + z)M(a, b, z)− azM(a + 1, b + 1, z) + b(b− 1)M(a− 1, b− 1, z) = 0 (5.238)

we obtain

ψ̂(ω) = 1 − 1
(1 + (iτω)−σ)

M(1, 1 + BC, B) (5.239)

where

B = b(iωτ)2−2σ (5.240)

C = 1 + (iωτ)σ (5.241)

where
M(1, 1 + BC, B) = (BC)B−BC exp(B)γ(BC, B) (5.242)

with the incomplete gamma function given by

γ(b, z) ≡
∫ z

0
e−ttb−1dt (5.243)

However, the question is: what is the time evolution of c1,0(t) or F(t, σ) given by

F(t, σ)h(t) ≡
c1,0(t)h(t)

c1,0(0)
=

1
2πi

∫ γ+i∞

γ−i∞
du eutc̃1,0(u) (5.244)

Here, naturally enough, we have h(t) the Heaviside step function and the Laplace
transform

c̃1,0(u) =

∫ ∞

0
e−utc1,0(t)dt (5.245)

Cancelling h(t), it follows that

c̃1,0(u = iω)
c1,0(0)

=

∫ ∞

0
e−iωtF(t, σ)dt (5.246)

where we have

F(t, σ) =
c1,0(t)
c1,0(0)

=
1

2πi

∫ γ+i∞

γ−i∞

du
u

eut

1 + (ut)−σ
M(1, 1 + BC, B) (5.247)

with B and C given by (5.240) and (5.241) with iωmapped to u. Can we now evaluate
F(t, σ)?
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Analytical Check

iωc̃1,0(iω) = iω
∫ ∞

0
e−iωtF(t, σ)dt (5.248)

where

F(t, σ) =
1

2πi

∫ γ+i∞

γ−i∞
du eut

∫ ∞

0
e−uT F(T, τ)dT (5.249)

and setting u = y + iv,

=
1

2π

∫ +∞

−∞
dv e(γ+iv)t

∫ ∞

0
e−(γ+iv)T F(T, σ)dT (5.250)

=
1

2π

∫ ∞

0
dT F(T, σ)

∫ +∞

−∞
dve(γ+iv)(t−T ) (5.251)

=

∫ ∞

0
dT F(T, σ)eγ(t−T )δ(t − T ) (5.252)

= F(t, σ)h(t) (5.253)

= F(t, σ) (t > 0 ⇒ h(t) = 1) (5.254)

This completes our first check: consistency. Notice we may take ω to be Reω − iε to
speed up the convergence of the Fourier Integral. In effect, ε is γ.

Known Result for σ = 1

Equation (5.247) gives

F(t, 1) =
1

2πi

∫ γ+i∞

γ−i∞

ds est(
s + 1

τ

)
⎡⎢⎢⎢⎢⎢⎣1 +

∞∑
n=1

bn

(1 + b + bsτ)n

⎤⎥⎥⎥⎥⎥⎦ (5.255)

where (.)n is the Pochhammer symbol. Thus we have, using partial fractions,

F(t, 1) =
1

2πi

∫ γ+i∞

γ−i∞

ds est(
s + 1

τ

) ×
⎡⎢⎢⎢⎢⎢⎢⎢⎣1 +

∞∑
n=1

bn
n∑

r=1

(∏n
q=1,q�r

1
q−r

)
r + b + bsτ

⎤⎥⎥⎥⎥⎥⎥⎥⎦ (5.256)

Using gamma functions, their reflection formula, the Cauchy residue theorem and
L’Hôspital’s rule, we may show that

n∏
q=1,q�r

1
q − r

=
(−1)r−1

(r − 1)!(n − r)!
(5.257)

Since there are simple poles on the negative real-s-axis at s = −1/τ and at

s =
−(r + b)

bτ
< −1

τ
(1 ≤ r ≤ n) (5.258)
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it follows that

F(t, 1) = e−t/τM(1, 1, b)

+

∞∑
n=1

bn
n∑

r=1

(−1)r−1

(r−1)!(r−n)! e
−t(r+b)/bτ

bτ
(
− r

bτ −
1
τ

+ 1
τ

) (5.259)

= eb−t/τ + e−t/τ
∞∑

n=1

bn

n!

n∑
r=1

ncr

(
−e−

t
bτ

)r
(5.260)

= eb−t/τ + e−t/τ
∞∑

n=1

bn

n!

[(
1 − e−

t
bτ

)n
− 1

]
(5.261)

= eb− t
τ−b exp(−t/bτ) (5.262)

= E1,1

[
− t
τ

+ b − bE1,1

(
− t

bτ

)]
(5.263)

in agreement with [121] and where we define the Mittag–Leffler function by

Eα,β(z) ≡
∞∑

k=0

zk

Γ(β + αk)
(5.264)

([33], chapter 18, (19)), with the understanding that

Eα(z) ≡ Eα,1(z) (5.265)

A complex-contour integral representation is given by

Eα,β(z) =
1

2πi

∫ (0+)

−∞

Tα−β exp(T )
(Tα − z)

dT (5.266)

which may be derived by using the Hankel transform for the reciprocal of the gamma
function. In Appendix B.0.1, we show that an exact but normally divergent asymp-
totic series, valid for |z| � 1, is given by

Eα,β(z) � −1
z

E−α,β−α

(
1
z

)
(5.267)

The normal usage in asymptotic expansions, such as (5.267), is that one sums up to
the smallest term, even if this is just the first term:

Eα,β(z) �
|z| → ∞

− 1
z

1
Γ(β − α)

(5.268)

This is an indication of the long-lasting fractal tail of such a function.
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5.3.1 Numerical Calculation and Physical Understanding

For 0 ≤ t ≤ 2τ, we take

F(t, σ � 1) ≡ f5(t) =
1
π

[∫ γ

−∞
dx Im eut C − 1

C
M(1, 1 + BC,B)

+

∫ y0

0
dy Re eut C − 1

C
M(1, 1 + BC,B)

] (5.269)

where u is given, respectively, by u = x − iy0 and u = γ + iy. This embraces an
infinite rectangular contour with, typically, γ ∼ 0.1 and y0 ∼ 6.0, so as to include
any poles and the branch cut along the negative real-u-axis, with arg u assigned to
zero on the positive real axis. Of course if σ = 3/2 then there are two poles at
u = exp (±πi/σ). We use numerical quadratures for the two integrals in (5.269),
based on five-point Lobatto and internal subdivision to reach the required tolerance
and accuracy. Typically σ = 2 − α = 1/2, τ = 1.123, and Reω = 0.1237.

For t ≥ 2τ, we expand the M in (5.247) as an infinite sum over index n:

M(1, 1 + BC, B) =

∞∑
n=0

Bn

(1 + BC)n
(5.270)

Then we set
F(t, σ) = f1 + f2 + f33 + f4 (5.271)

Taking the term n = 0, we have ([33])

f1 =
1

2πi

∫ (0+)

−∞

du
u

eut(uτ)σ

1 + (uτ)σ

=
1

2πi

∫ (0+)

−∞

dT
T

eT Tσ

Tσ +
(

t
τ

)σ (ut = T )

= Eσ
(
−

( t
τ

)σ)
(5.272)

�
t � τ

1
√
π

(
τ

t

)σ
(5.273)

The sum over 1 ≤ n ≤ ∞, using partial fractions twice may be written as

∞∑
n=1

1
2πi

∫ γ+i∞

γ−i∞

du
u

eut

1 + (uτ)−σ
bn(uτ)(2−2σ)n

n∑
r=1

(−1)r−1

(r−1)!(n−r)!

r + b(uτ)2−2σ + b(uτ)2−σ (5.274)

and we have

1
(1 + (uτ)−σ)(r + b(uτ)2−2σ + b(uτ)2−σ)

=
1/r

1 + (uτ)−σ
−

b
r (uτ)2−σ

{r + b(uτ)2−σ + b(uτ)2−2σ}
(5.275)
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The second term in (5.275) gives rise to f33 and f4 of (5.271) while the first term
creates

f2 =

∞∑
n=1

bn

n!

n∑
r=1

ncr(−1)r−1 1
2πi

∫ γ+i∞

γ−i∞

du
u

eut (uτ)(2−2σ)n

1 + (uτ)−σ
(5.276)

=

∞∑
n=1

bn

n!

( t
τ

)−2(1−σ)n
Eσ,1−2(1−σ)n)

(
−

( t
τ

)σ)
(5.277)

For 0 < σ < 1, we see immediately why this is divergent for small t. Also, using the
representation of the Eα,β(z) given by (5.264), with dummy summation index k, then
for σ = 1/2 and for even k, the gamma function in the denominator has poles for
k > 2n − 2. It follows that some care must be exercised in calling the NAG routine
s14aa f (x, ifail). Regarding the second term in (5.275), we have

f33 + f4 = b
∞∑

n=1

bn

n!

n∑
r=1

(−n)r

r!
1

2πi

∫ γ+i∞

γ−i∞

du
u

eut(uτ)(2−2σ)n+2−σ

{r + b(uτ)2−2σ + b(uτ)2−σ}
(5.278)

For a given r, f4 is obtained from the contributions of the conjugate pair of poles,
which lie in the second and third quadrants of the u-plane. For σ = 1/2, say, a
third pole lies on the next sheet (arg(uτ) = ±2πi) and is inaccessible. Collapsing the
contour in (5.278) onto the upper and lower lips of the branch cut along the negative
real-u-axis, we have, since for 0 < σ < 1, there are no poles on this line (unlike the
σ = 1 case; see Section 5.3),

f33 = b
∞∑

n=1

bn

n!

n∑
r=1

(−n)r

r!
1

2πi

∫ (0+)

−∞

du
u

eut(uτ)(2−2σ)n+2−σ

{r + b(uτ)2−2σ + b(uτ)2−σ}
(5.279)

=
bτ2−σ

π

∫ ∞

0
dve−vtv1−σ

∞∑
n=1

bn

n!
τ2(1−σ)nv2n(1−σ)

×
n∑

r=1

(−n)r

r!
Im

e−(2n+1)σπi

[r + b(ντ)2−σe−iπσ + b(ντ)2−2σe−2iπσ]
(5.280)

where we have set u = veiπ on the upper lip and u = ve−iπ on the lower. Once
again the v-quadrature is performed using five-point Lobatto plus interval subdivi-
sion. Equation (5.279) could be expressed in terms of generalizations of the Mittag–
Leffler functions, namely Wright functions ([33], section 18.1, p. 211, eq. (27)).
However, this would not be numerically useful since the use of the binomial series
on expansion of the denominator leads to divergence.

The conjugate pair of simple poles of the integrand in (5.278) is given by z∞(r)
and z∗∞(r). Either is obtained iteratively using complex Newton–Raphson:

zn+1 = zn −
f (zn)
f ′(zn)

(5.281)

where
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f (z) ≡ r
b

+ z2−2σ + z2−σ (5.282)

It was observed that |Imz∞(r)| < 6 so that f5 is consistent (for 0 ≤ t ≤ 2τ) and we
have

f4 = 2τ
∞∑

n=1

bn

n!

n∑
r=1

(−n)r

r!
Re

e
t
τ z∞(r){z∞(r)}2(1−σ)n+σ

[(2 − σ){z∞(r)}σ + 2(1 − σ)]
(5.283)

Clearly z∞(r) and z∗∞(r) are interchangeable in (5.283). In Figure 5.6, we present
sample zeros of f (z) in the second quadrant of the z-plane, where z = uτ. Clearly
they lie on a curve, which is very nearly a straight line.

Returning to (5.247) and (5.248), we calculate

result 1 =
M(1, 1 + BC, B)

1 + (iτω)−σ
(5.284)

where B and C are given by (5.240) and (5.241) and

result 2 = iω
∫ ∞

0
e−iωtF(t, σ)dt (5.285)

In Table 5.1, we present results 1 and 2 for σ = 1/2, τ = 1.123, and Reω = 0.1237.
The Imω is given by ε. Clearly the results agree correct to three significant figures
except for ε = −0.0. For 0 ≤ t ≤ 2τ, we use F(t, σ) = f (5) and for 2τ ≤ t,
F(t, σ) = f1 + f2 + f33 + f4. Because of the aymptotic property of the Mittag–Leffler
functions, f1 and f2 fall off very slowly. Pragmatically, we took tmax ≈ 500, 000
(ε = 0.0) and took the first term of the asymptotic expansion (5.267) for f1 for t > 30
and for f2 for t > 15. Meanwhile both f33 and f4 die off fairly quickly. For 0 ≤ t ≤ 2τ,
we used f5, since f2 diverges.

Fig. 5.6. We plot the complex zeros z of f (z) as a function of Re z∞ and Im z∞ and of r, where
f (z), as a function of the integer r, is defined by (5.282). The values of b, s, and τ are inset
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Table 5.1. For specimen numerical values of ε = Imω, σ = 1/2, and r = 1.123, we tabulate
results 1 and 2, corresponding to (5.284) and (5.285)

ε Result 1 Result 2

(a) -0.1 (0.3278, 0.1581) (0.3278, 0.1585)
(b) -0.2 (0.4284, 0.1198) (0.4285, 0.1193)
(c) -0.3 (0.5102, 0.0945) (0.5100, 0.0940)
(d) -0.4 (0.2158, 0.2186) (0.2156, 0.2143)

In conclusion, we find that our analysis is robust and reliable, but the theory of
Mittag–Leffler functions requires numerical reinforcement, including the location of
poles of the integrand.

In the case of σ = 1/2, our main consideration in this book, we have

ut + b(uτ)2−2σ = u(t + bτ) (5.286)

so that

f1 + f2 = f12 ≡ E 1
2 ,1

⎛⎜⎜⎜⎜⎜⎝−
(

t + bτ
τ

)1/2⎞⎟⎟⎟⎟⎟⎠ ≡
(
τ

t + bτ

)1/2
E− 1

2 ,
1
2

(
−

(
τ

t + bτ

)1/2
)

(5.287)

which provides an independent check on the work.

5.4 Nonlinear Response of Permanent Dipoles and After Effects

It is shown [144] how the existing theory of the dynamic Kerr effect and nonlinear
dielectric relaxation based on the noninertial Brownian rotation of noninteracting
rigid dipolar particles may be generalized to take into account interparticle interac-
tions using the Maier–Saupe mean-field potential. The results available in simple
closed form suggest that the frequency dependent nonlinear response provides a new
method of measuring the Kramers escape rate (or the longest relaxation time). Sim-
ilar considerations apply to the analogous problem of magnetic relaxation of fine
single-domain ferromagnetic particles and their super-paramagnetic relaxation time.

The dielectric relaxation of assemblies of polar molecules with each constituent
dipole having permanent electric moment μ is usually studied by means of two ap-
parently distinct models of the process. The first model is due to Debye [206], where
the molecules are subject only to an external time-dependent applied field E(t) and
thermal interactions with the surrounding heat bath. Here the molecules are very
tightly bound to the bath (corresponding to large dissipative coupling meaning in-
ter alia that the inertia of the molecule is ignored) so that orientation can only take
place via the small-angle jumps characteristic of the Brownian motion. The underly-
ing theory based on the Fokker–Planck equation is Einstein’s treatment [239], [142]
of the noninertial translational Brownian motion of a free particle as adapted to the
orientational random walk of the tip of a typical dipole vector on the surface of the
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unit sphere. The Fokker–Planck equation in this instance where inertial effects are
ignored is known is the Smoluchowski equation. The same result may also be ob-
tained from the Langevin equation for the time evolution of the dipole moment by
averaging that equation over its realisations as shown in [142]. Such a model in the
linear response approximation in the parameter ξ [which is the ratio of the applied
field energy (Zeeman energy) to the thermal energy] always leads to a phase lag of
the dipole moment in relation to the phase of the applied field leading to anomalous
dispersion and absorption at microwave frequencies [206].

Similar considerations apply to a ferrofluid composed of a colloidal suspension
of single-domain ferromagnetic particles [502], where the solid-state-like or Néel
mechanism of orientation over the magnetocrystalline anisotropy barrier inside the
particle is blocked. Thus the only possible mechanism of orientation is physical rota-
tion of the single-domain ferrofluid particle. The sizes (in a real fluid there is always
a distribution of sizes) of the particles, however, are now such that the magnetic sus-
ceptibility exhibits dissipative behavior in the low radio-frequency band. The Debye
theory is expected to provide a better description of this magnetic dipole orientation
process rather than electric dipole orientation due to the large average size of the
ferrofluid particles so that they are true Brownian particles. In both cases the orienta-
tional behavior of the dipoles is described by the average of the dipole moment over
its realisations.

The second model of dipolar orientation described by Debye [206] and much ex-
panded upon by Fröhlich [142], [281], [139] is where a (rare) energetic dipole of the
population in a potential well in a solid may relax by crossing, due to the shuttling
action of the Brownian motion, the internal potential barriers in the solid. The model
was also suggested by Néel [448] as an explanation of the magnetic (Néel) relaxation
of unblocked single-domain ferromagnetic particles over their internal magnetocrys-
talline anisotropy barrier. In this magnetic mechanism the inertia of the particle of
course plays no role.

The original approach of Debye followed a rate equation treatment combined
with a discrete orientation approximation for a typical barrier crossing dipole whereby
the dipole is either in a 0- or 180-degree orientation. Moreover, the Arrhenius law
corresponding to transition-state theory as initiated by Eyring and later investigators
was assumed for the rate of crossing over the potential barrier [79], [318]. Thus the
time to cross the potential barrier is exponentially long. The model was later treated
in the context of Néel relaxation by Brown [91] using the Einstein theory as modified
for rotation to include a magnetocrystalline anisotropy potential and an external field
potential. He took the underlying Langevin equation as the Larmor equation aug-
mented by stochastic terms comprising a frictional retarding torque superimposed
on which is a rapidly fluctuating (white noise) driving torque. This equation without
the rapidly fluctuating noise term is usually known as the Landau–Lifshitz equation,
yet another form of it is known as Gilbert’s equation [142]. Thus Brown was able to
write the exact Fokker–Planck equation for the density of magnetic moment orien-
tations as in Einstein’s theory. Brown’s treatment, because it is based on a rotational
diffusion equation, is no longer confined to the discrete-orientation approximation.
Thus it has the merit that both orientation inside the wells of the potential and over-
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barrier reorientation may be treated simultaneously. Moreover, the overbarrier relax-
ation process could be set firmly in the context of the theory of stochastic processes
as formulated by Einstein, Smoluchowski, Langevin, Kramers, etc. [406] based on
kinetic and stochastic differential equations. In particular, the Kramers [142], [318],
[367] treatment of escape of particles over potential barriers as adapted to rotation
could be used to obtain an asymptotic expression for the greatest relaxation time or
time for a dipole to escape its potential well. Essentially the same model was used by
Martin et al. [403] to study the orientational behavior of nematic liquid crystals in the
high dissipative coupling limit where the inertia of the molecules can be ignored. In-
deed, in most respects the theory of orientational behavior of nematics is a replica of
the theory of magnetic relaxation over the magnetocrystalline anisotropy barrier of
single-domain ferromagnetic particles. However, one should recall [142] that in Néel
relaxation the Fokker–Planck equation for the density of magnetic moment orienta-
tions is exact, while in dielectric and ferrofluid relaxation, which involves physical
rotation of the particles, the inertia is ignored leading to the approximate Smolu-
chowski equation. It is the purpose of this section to indicate how simple analytical
formulae for the linear dielectric response and the dynamic Kerr effect response may
be obtained for relaxation in a mean-field potential thus extending the existing Debye
theory of dielectric and Kerr effect relaxation to relaxation in the presence of a mean
field. In order to accomplish this we briefly describe the two principal models of di-
electric relaxation, namely an assembly of noninteracting dipoles and an assembly
of dipoles that may relax by crossing over a potential barrier.

5.4.1 Complex Susceptibility for the Debye and Debye-Fröhlich
Models of Relaxation

The most important result of the original Debye model is that the mean electric dipole
moment of a spherical assembly of N noninteracting dipoles with ϑ the polar (colat-
itude) angle of a typical dipole subjected to a field E(t) = Re

(
Emeiωt

)
is given (in

linear response) by

Nμ〈cosϑ〉E(t) =
Nμ2

3kT
Re

[
Emeiωt

1 + iωτD

]
(5.288)

Here τD = ζ/(2kT ) is the Debye relaxation (free rotational Brownian diffusion) time,
and ζ is the viscous drag coefficient of a rotating dipole. The subscript E indicates
that the average is taken in the presence of E(t). In terms of the complex dielectric
susceptibility χ(ω) = χ′(ω) − iχ′′(ω), (5.288) may be written as

χ(ω) =
χ′(0)

1 + iωτD
(5.289)

where χ′(0) = Nμ2/(3kT ) is the static susceptibility.
We may illustrate the second Debye model (or Debye–Fröhlich model for a

continuous distribution of orientations) by considering dielectric relaxation in a
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bistable potential representing the simplest uniaxial potential of the crystalline
anisotropy [142], [403], viz.

V(ϑ) = K sin2 ϑ (5.290)

where K is the anisotropy constant. Here the complex dielectric susceptibility is
given by [142], [403]

χ(ω)
χ′(0)

=

∞∑
k=1

Δk

1 + iω/λk
(5.291)

where the static susceptibility χ′(0) is defined as

χ′(0) =
Nμ2

3kT
(2〈P2〉0 + 1)

〈P2〉0 denotes the equilibrium average of the Legendre polynomial of order 2 in the
absence of the applied field so that

〈P2〉0 = Z−1
∫ 1

−1
eσx2

P2(x)dx (5.292)

Z =
∫ 1

−1
eσx2

dx is the partition function, and σ = K/(kT ) is the dimensionless
anisotropy constant. Here λk are the eigenvalues of the governing Fokker–Planck
operator LFP. The smallest nonvanishing eigenvalue λ1 is associated with the slow-
est (overbarrier) relaxation mode. In the high barrier limit λ1 may be approximated
by the very high damping Kramers escape rate [142]. (We remark that in the appli-
cation of the present model to single-domain ferromagnetic particles the anisotropy
constant must be written in terms of the magnetic volume vm of the particle [558], the
magnetic moment is defined as m = M(t)vm, where M is the magnetization, so that
K must be redefined as the anisotropy constant per unit volume, that is K → K/vm.)
Thus both solid-state-like and liquid-like relaxation models essentially have the same
behaviour. However, for high barriers the longest relaxation times τ = 1/λ1 and the
Debye relaxation time τD for isotropic diffusion diverge exponentially from each
other.

Now, as demonstrated in [142], the spectra of χ(ω) in (5.291) can be accurately
described at all frequencies by a sum of two Lorentzians only, viz. [142], [348]

χ(ω)
χ′(0)

=
Δ1

1 + iω/λ1
+

1 − Δ1

1 + iωτ(1)
W

(5.293)

The two decay modes with relaxation times λ−1
1 and τ(1)

W pertain respectively to the
slow overbarrier (interwell) mode and a single (intrawell) mode representing the con-
tribution of the infinity of the near degenerate decay modes inside the wells to the
overall decay process. The first term in (5.293) is the overbarrier decay mode and
λ1 is the smallest nonvanishing eigenvalue of the Smoluchowski (Fokker–Planck)
equation associated with the process. The intrawell relaxation time τ(1)

W and the di-
mensionless parameter Δ1 are determined [142], [143], [348] (see Appendix C) using
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general (Tauberian) properties of the Fourier integral [599] from the asymptotic be-
haviour of the complex susceptibility at low and high frequencies.

In the high barrier limit, σ � 1, the most important case, the behavior of τ(1)
W

and Δ1 is as follows [143] (see Appendix C): Δ1 ≈ 1 − σ−2 and τ(1)
W ≈ τD/(2σ).

Furthermore, from the Kramers theory of escape of particles over potential barriers,
due to the shuttling action of the Brownian motion (as adapted to rotation [142], [91])

λ−1
1 � τ � τD

√
π

2
σ−3/2eσ , σ � 1 (5.294)

At low frequencies, ω/λ1 ≤ 1, where the contribution of the second term is negligi-
ble, (5.293) can be further simplified to yield

χ(ω)
χ′(0)

=
Δ1

1 + iω/λ1
+ 1 − Δ1 (5.295)

Note that in dielectric relaxation this result, as is consistent with the Smoluchowski
equation, holds only in the limit of very high dissipative coupling to the bath. In Néel
relaxation on the other hand, (5.294) is valid for all values of the dissipative coupling.
Here the underlying one-dimensional Fokker–Planck equation in the coordinate ϑ,
arises from the symmetry of the problem as the gyromagnetic term drops out and
not from the neglect of inertia and is exact, unlike the approximate Smoluchowski
equation of the dielectric case. We remark that (5.293) may be obtained using the
linear response theory equation [142]

χ(ω)/χ′(0) = −
∫ ∞

0
Φ̇1,1(t)dt = 1 − iω

∫ ∞

0
Φ1,1(t)e−iωtdt (5.296)

by supposing that the equilibrium correlation function

Φ1,1(t) = 〈cosϑ(0) cosϑ(t)〉0/〈cos2 ϑ(0)〉0

(the subscript zero again denoting equilibrium averages) of the dipole moment as ren-
dered by the after-effect solution (comprising an infinity of decaying exponentials)
of the rotational Smoluchowski equation may be approximated by two exponentials
only.

Finally for the purpose of practical calculations, if one is interested in all values
of σ, λ1 may be written as the simple empirical equation ([142], eq. (7.4.2.38)])

λ1 �
σ

τD (eσ − 1)

(
2−σ +

2σ3/2

√
π(1 + σ)

)
(5.297)

The foregoing results apart from λ−1
1 all apply to 〈P1 cosϑ〉E(t), namely the dipole

moment in the linear approximation. Thus the relaxation in a symmetric mean-field
potential is essentially similar to the relaxation in the absence of the potential; how-
ever, the corresponding relaxation times and static susceptibilities are altered.
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5.4.2 Linear Dielectric Response

Referring to dielectric relaxation the cornerstone of all these calculations is the rota-
tional diffusion or Smoluchowski (Fokker–Planck) equation for the density W(μ, t)
of orientations of dipoles μ on the surface of the unit sphere:

∂W
∂t

= [LFP + Lext(t)] W (5.298)

where

LFPW =
1

2τD

[
∇2W + β∇ · (W∇V)

]
and LextW =

1
2τD

β∇ · · · (W∇Vext)

are the unperturbed Fokker–Planck operator and the external field operator, respec-
tively. β = (kT )−1, Vext = −μE(t) cosϑ, and V is given by (5.290). In our problem,
the differential operator ∇ (the gradient on the surface of the unit sphere) contains
only the polar angle ϑ due to the axially symmetric form of the potential.

Expansion of W in the basis of the Legendre polynomials {Pn} and making use
of their recurrence and orthogonality properties leads to the representation of the
relaxation problem as the solution of the set of differential recurrence relations [142],
[212] for the observables fn(t)

τD ḟn(t) + cn fn−2(t) + dn fn(t) + gn fn(t) = ξ(t)an
[
fn−1(t) − fn+1(t)

]
(5.299)

where ξ(t) = βμE(t), fn = 〈Pn cosϑ〉(t) = 0 for n < 0 and

an =
n(n + 1)

2(2n + 1)
, cn =

σ(n − 1)n(n + 1)
(2n − 1)(2n + 1)

dn =
n(n + 1)

2

(
1 − 2σ

(2n − 1)(2n + 3)

)
, gn = −σn(n + 1)(n + 2)

(2n + 1)(2n + 3)

Equation (5.299) governs the exact solution of the problem. The exact solution of
(5.299) can be obtained numerically using matrix continued fractions [212]. How-
ever, such a method precludes analytic formulae for the response. In order to obtain
analytic formulae, one must reduce the five-term recurrence (5.299) to a driven three-
term one. This is accomplished by treating the external field as a perturbation. As a
first step we are only interested in solutions (the linear response) to first order in ξ.
Hence in the general perturbation theory approximation viz.,

fn(t) = f (0)
n + f (1)

n (t) + f (2)
n (t) + f (3)

n (t) + · · · (5.300)

with the superscripts denoting the relevant order in E(t) we have for the observables
in the mth order of perturbation theory

τD
d
dt

f (m)
n (t) + cn f (m)

n−2(t) + dn f (m)
n (t) + gn f (m)

n+2(t) = ξ(t)an

[
f (m−1)
n−1 (t) − f m−1

n+1 (t)
]

(5.301)

Equation (5.301) for m = 1 can be written in the matrix form (Heisenberg-like rep-
resentation)
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d
dt

f(1)(t) = LFPf(1)(t) + B0f(0)ξ(t) (5.302)

where matrices LFP, B0, and the vectors f(1)(t), f(0) are defined as follows:

LFP = − 1
τD

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d1 0 g1 0 0 · · ·
0 d2 0 g2 0 · · ·
c3 0 g3 0 g3 · · ·
...
...
...
...
...
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(5.303)

B0 =
1
τD

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1 0 −a1 0 0 0 · · ·
0 a2 0 −a2 0 0 · · ·
0 0 a3 0 −a3 0 · · ·
0 0 0 a4 0 −a4 · · ·
...
...

...
...

...
...
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(5.304)

f(1)(t) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
f (1
1 (t)

f2(1)(t)
...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , f(0) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f (0)
0

f1(0)
f (0)
2
...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(5.305)

The matrix elements of the column vector f(0) obtained from the stationary so-
lution in the absence of the probing field are the equilibrium ensemble averages
of the Legendre polynomials. They may be calculated either from the equilibrium
Maxwell–Boltzmann distribution in the absence of the ac field or by solving the
time-independent version of (5.299) by continued fractions again in the absence of
the driving field [142]. We remark that in the linear response only the Legendre poly-
nomial averages of odd order occur in the response column vector f(1)(t). On the other
hand only the Legendre polynomial averages of even order contribute to the initial-
value vector f(0) in the driving-force term as only these differ from zero in the absence
of an external field. These facts account for our definition of the driving-force matrix
B0. A stationary solution of (5.302) is given by

f(1)(t) =

∫ t

−∞
exp

[
LFP(t − t′)

]
B0f(0)ξ(t′)dt′ (5.306)

in the time domain. (For the steady-state ac response we assume stationary condi-
tions, i.e., the ac field had been applied in the infinite past, hence all transient effects
due to the sudden imposition of the ac field are ignored). This solution for a sinu-
soidal normalized driving field ξ(t) = ξmeiωt yields

f(1)(t) = ξmRe
[
χ(ω)B0f(0)eiωt

]
(5.307)

where
χ(ω) = [iωI − LFP]−1 (5.308)

is the one-sided Fourier transform of the transition matrix exp LFPt, which is the
Green function of the unperturbed Fokker–Planck equation [(5.298) with Lext = 0]
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as originally suggested by Morita [438]; I is the unit matrix. Note that for σ = 0, LFP

is a pure diagonal matrix implying that the transition matrix is also purely diagonal,
thus in the first Debye model all the matrix elements of f(1)(t) decouple from each
other. Extraction of the matrix element f (1)

1 (t), or in practice its Fourier transform,
yields the exact linear electric dipole orientation response [142]. This may also be
accomplished using continued fraction methods [143] (see Appendix A and C).

5.4.3 Dynamic Kerr Effect

The quantities of interest in the present investigation are the dynamic Kerr effect
and the nonlinear dielectric effect. These are, respectively, the response of the sec-
ond Legendre polynomial (which always depends on the first approximation on the
square of the applied field and so is inherently a nonlinear effect). The nonlinear di-
electric effect is the cubic correction in the applied field to 〈P1 cosϑ〉E(t). The most
important part to note about these two responses is that they are nonlinear thus no
unique response function exists like (5.296) and the response will always depend on
the form of the stimulus. The exact quadratic stationary solution for an arbitrary sta-
tionary stimulus is obtained as follows. Setting m = 2 in (5.301) and discarding all
higher-order f (m) yields the stationary solution

f(2)(t) =

∫ t

−∞
exp

[
LFP(t − t′)

]
Bf(1)(t′)ξ(t′)dt′ (5.309)

where the driving force matrix B is now given by

B =
1
τD

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −a1 0 0 · · ·
a2 0 −a2 0 · · ·
0 a3 0 −a3 · · ·
...

...
...

...
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(5.310)

We remark that B differs from B0, (5.304), because B0 must operate on a vector
containing f (0)

0 . Note that for higher-order responses f(m)(t) one will always have B
as the driving-force matrix. Substitution of the linear response solution f(1)(t) from
(5.306) into (5.309) yields

f(2)(t) =

∫ t

−∞
dt′

∫ t′

−∞
dt′′ exp

[
LFP(t − t′)

]
B exp

[
LFP(t′ − t′′)

]

× B0f(0)(t′)ξ(t′)ξ(t′′)

(5.311)

The foregoing expression is the exact quadratic stationary Kerr effect response solu-
tion for a driving force, which may be expanded in a time Fourier series so that the
two-sided Fourier transform exists. It is a generalization of the corresponding scalar
result of Coffey and Paranjape [122] for noninteracting dipoles.

We remark that unlike the linear response, the odd and even time-dependent dif-
ferential recurrence relations for the Legendre polynomial averages now entangle
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as is predicted by the general nonperturbative solution, (5.299), which constitutes a
five-term differential recurrence relation reducible to a matrix three-term recurrence
relation. Equation (5.311) for arbitrary ξ(t) has frequency domain representation as
the convolution denoted by

F(2)(ω) = χ(ω)
{
B

[
χ(ω)B0f(0)ξω

]
∗ ξω

}
(5.312)

For a driving field ξ(t) = ξm cosω0t, we again have the time response in terms of the
transition matrix (complex susceptibility matrix)

f(2)(t) =
ξ2

m

2
Re

[(
χ(0) + χ(2ω0)e2iω0t

)
Bχ(ω0)B0f(0)

]
(5.313)

The second-order solution for a single sinusoid demonstrates that the quadratic re-
sponse vector consists of a frequency-dependent dc term superimposed on which
is the second harmonic of the applied field. Thus the response is characteristically
nonlinear as the form of the input stimulus is not reproduced (the response depends
on the precise form of the stimulus). Such behavior, although illustrated for a single
sinusoidal driving field, also carries over to any Fourier coefficient of an arbitrary
periodic driving field, which may be expanded in a Fourier series. In this case, how-
ever, due to the square law characteristic of the response, cross terms involving sum
and difference frequencies will also appear due to the nonlinear nature of the re-
sponse. The frequency components present in the response for given ξ may always
be inferred from the general square law characteristic bξ2. We further remark that
each term of the linear response drives the Kerr effect response so that in general
in order to calculate the Kerr effect response one requires all the matrix elements of
the linear susceptibility column vector f (1)

n (t) with the exception of the first Debye
model where all the matrix elements decouple from each other. The calculation of
the second-order response may also be accomplished [143], [329] using continued
fraction methods (see Appendix A and C).

5.4.4 Nonlinear Dielectric Relaxation

Just as in (5.311), we have for the third-order nonlinear dielectric effect

f3(t) =

∫ t

−∞

∫ t′

−∞

∫ t′′

−∞
exp

[
LFP(t − t′)

]
B exp

[
LFP(t′ − t′′)

]

× B exp
[
LFP(t′′ − t′′′)

]
B0f(0)(t′)ξ(t′)ξ(t′′)ξ(t′′′)dt′dt′′dt′′′

(5.314)

Clearly, the mth order response can be written as an (m − 1)-fold convolution. We
remark that the nonlinear responses of odd order, namely f(3)(t), f(5)(t), etc., are also
important in relaxation of the magnetic moment inside a single-domain ferromag-
netic particle (Néel relaxation) because the Zeeman energy parameter is large enough
in single-domain ferromagnetic particles to render the nonlinear susceptibilities sig-
nificant [504]. For a cosinusoidal driving field ξ(t) = ξm cosω0t, (5.314) yields
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f(3)(t) =
ξ3

4
Re

{[
(2χ(ω0)Bχ(0)Bχ∗(ω0) + χ(ω0)Bχ(2ω0)

×Bχ(ω0)) e−iω0t + χ(3ω0)Bχ(2ω0)Bχ(ω0)e−3iω0t
]

B0f(0)
} (5.315)

Thus the third-order response to a pure sinusoid consists of a term at the fundamen-
tal frequency and the third harmonic term. The term at the fundamental frequency,
which is more complicated than in the linear response, represents a cubic correction
to the response at the fundamental frequency. Clearly the nonlinear dielectric relax-
ation acts as an odd harmonic generator just as the Kerr effect response acts as an
even harmonic generator. Again sum and difference terms at the fundamental and
third harmonic frequencies will appear in the response if a complex wave is applied.
The behaviour of the dipole moment including linear response is in accordance with
the response characteristic b1ξ + b3ξ

3. Equation (5.313) and (5.315) are purely for-
mal sui generis; they cannot yield closed-form solutions for the response except in
the particularly simple case of zero mean field potential and so are virtually useless
for the purpose of comparison with experiment.

5.4.5 Approximate Analytical Formula for the Dynamic Kerr Effect for a
Pure Cosinusoid

We have illustrated for the linear response [143] (see Appendix C) how the analyti-
cal equations (5.293) and (5.295) provide a good approximate to the exact solution.
We now illustrate how a similar simple approximate closed-form solution may be
obtained for the Kerr effect response.

The results of the investigation of the dynamic Kerr effect may be summarized
as follows. For noninteracting dipoles, where all the system matrices are diagonal,
Peterlin and Stuart [488], Benoit [65], [66], and Coffey and Paranjape [122] using
the scalar version of (5.311) have shown that the exact quadratic response of the Leg-
endre polynomial of order 2 for a driving field of the form Em cosωt = Re

(
Emeiωt

)
is given by

〈P2(cosϑ)〉E(t) =
ξ2

m

30

⎡⎢⎢⎢⎢⎣ 1

1 + ω2τ2
D

+
cos(2ωt − ϕ2)

(1 + ω2τ2
D)1/2(1 + 4ω2τ2

D/9)1/2

⎤⎥⎥⎥⎥⎦ (5.316)

where ϕ2=tan−1
[
5ωτD(3−2ω2τ2

D)−1
]
. Equation (5.316) describes the exact quadratic

dynamic Kerr effect for a pure cosinusoid for noninteracting dipoles and is the gen-
eralization of Debye’s first model to the response of the Legendre polynomial of
order 2. We remark that, as indicated by (5.316), the approximate solution [in ac-
cordance with the general solution (A.4)] consists of a frequency-dependent dc term
superimposed on which is the second harmonic of the applied field. The behaviour is
reminiscent of a rectifier or detector. We emphasise that the appearance of both these
terms is indicative of the nonlinear nature of the Kerr effect response for permanent
dipoles. The frequency-dependent dc term appears to have first been noted by Ro-
card [513] in his pioneering investigations of the role of inertial effect in dielectric
relaxation.
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In the present investigation, as far as relaxation in the mean-field potential of
(5.290) is concerned, it may be shown [143] (see Appendix C) that the second-order
response to an ac field of the form of (5.316) may be accurately represented by the
simple analytic formula

〈P2(cosϑ)〉E(t) =
χ2ξ

2
m

2
Re

⎡⎢⎢⎢⎢⎢⎣
⎛⎜⎜⎜⎜⎝1 +

e2iωt

1 + 2iωτeff
2

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎝ Δ2

1 + iω/λ1
+

1 − Δ2

1 + iωτ(2)
W

⎞⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎦ (5.317)

where λ1 is the smallest nonvanishing eigenvalue of the Fokker–Planck operator [for
all values of σ, λ1 can be approximated by (5.297)], τ(2)

W is the intrawell relaxation
time, which can be evaluated numerically, and

τ
e f f
2

τD
=

〈P2
2〉0 − 〈P2〉20

1 + 〈P2〉0 − 2〈P2
2〉0

, χ2 =
(
〈P2

2〉0 − 〈P2〉20
)
/3

The low (σ ≤ 1) and high (σ � 1) barrier behaviors of the parameters Δ2, τe f f
2 , and

τ(2)
W in (5.317) are given in [143] (see Appendix C). For the high barrier limit, σ � 1,

the most important case, one has

Δ2 ≈ 1+
1

2σ
+

3
4σ2

+· · ·
τ

e f f
2

τD
≈ 1

2σ

(
1 +

5
2σ

+
33

4σ2
· · ·

)
,

T (2)
W

τD
≈ − 1

2σ
− 1

4σ2
+· · ·

For σ � 1, we are again justified in neglecting the frequency dependence of the
second term in round braces of (5.317) (representing the effect of the near degenerate
intrawell modes) so that

〈P2(cosϑ)〉E(t) =
χ2ξ

2
m

2
Re

⎡⎢⎢⎢⎢⎣
⎛⎜⎜⎜⎜⎝1 +

e2iωt

1 + 2iωτeff
2

⎞⎟⎟⎟⎟⎠
(

Δ2

1 + iωτ
+ 1 − Δ2

)⎤⎥⎥⎥⎥⎦ (5.318)

with τ = 1/λ1. Equation (5.318) is obviously of the same form as the zero mean-field
result (5.316), the essential difference being in the relaxation times. For free diffusion
(σ = 0), χ2 = 1/15, τe f f

2 = τD/3, λ + 1 = 1/τD, and Δ2 = 1 so that (5.317) reduces
to the zero mean field Peterlin and Stuart [488] (5.316).

We reiterate that as before the frequency-dependent dc component of the perma-
nent dipole dynamic Kerr effect for a pure sinusoid in (5.318), viz.,

〈P2(cosϑ)〉dc =
χ2ξ

2
m

2

(
Δ2

1 + (ωτ)2
+ 1 − Δ2

)
(5.319)

has the same frequency dependence as the real part of the linear complex susceptibil-
ity, (5.295). Thus it is apparent that the correspondence that exists between the zero
mean field, i.e., first Debye model, and the overbarrier relaxation or Debye–Fröhlich
model for the dipole moment, that is, the Legendre polynomial of order one also
effectively exists for quantities such as the dynamic Kerr effect for a pure sinusoid
governed by the Legendre polynomial of order 2. Hence by measuring the spectrum
of 〈P2(cosϑ)〉dc it is possible in principle to estimate the overbarrier relaxation time
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τ = 1/λ1 (the Kramers escape rate) or in the terminology of liquid crystals, the re-
tardation factor g(σ) = τ/τD as a function of temperature (σ ∼ T−1). This simple
theoretical result suggests the development of new experimental techniques for the
measurement of the physical parameters of the system (g(T ), σ, τD) involving the
dynamic Kerr effect just as in traditional dielectric spectroscopy (see, e.g., [588]).

We remark that the dependence of the dc component of the dynamic Kerr effect
on τ = 1/λ1 is peculiar to permanent dipoles; no such behavior exists in the in-
duced dipole dynamic Kerr effect. Here only the { f2n(t)} are involved in the response.
The set { f2n(t)}, which are now decoupled from the { f2n+1(t)}, do not possess an ex-
ponentially small nonvanishing eigenvalue λ. Therefore the longest relaxation time
τ = 1/λ1 is not involved in the induced dipole Kerr effect response truncated at terms
quadratic in the field. It follows that none of the relaxation times associated with the
induced dipole Kerr effect response have exponential behaviour.

We finally remark that our results based on rotational diffusion (that is, the diffu-
sion limit of a random walk in which the rotator moves the mean square arc length
in a fixed time) may also be extended to the fractional diffusion, i.e., the diffusion
limit of a continuous time random walk [142], [425]. Here no mean waiting time
exists, i.e., the random walk of the dipole can be interrupted by the dipole remaining
trapped in a given orientation for an arbitrarily long period before making a jump.
Such behaviour is typical of Cole–Cole [142], [348] dielectric relaxation, which has
complex susceptibility at low frequencies of the form

χ(ω)
χ′(0)

=
Δ1

1 + (iωτD)α/(τDλ1)
+ 1 − Δ1 (0 < α ≤ 1) (5.320)

All one has to do to generalize our time-ordered exponential solution to the frac-
tional diffusion relaxation mechanism is to replace the transition matrix exp LFPt by
the corresponding Mittag–Leffler function Eα(LFPtα) [349], [244]. Thus it is again
possible to derive simple analytical approximations for the complex susceptibility,
the dynamic Kerr effect response, etc. [142], [213].



A

Continued Fraction Solutions of Eq. (5.301)

Upon defining the Fourier transforms F(1)
n (ω) =

∫ ∞
−∞ f (1)

n (t)eiωtdt, we have an exact
solution of (5.301) (details in [143], [329])

F(1)
1 (ω) =

ξω (1 − 〈P2〉0) /3
iωτD + 1 − 2σ[1 − S 3(ω)]/5

×
⎡⎢⎢⎢⎢⎢⎣1 +

2
√
π

∞∑
n=1

(−1)nΓ(n + 3/2)( f (0)
2n − f (0)

2n+2)

Γ(n + 1)(1 − 〈P2〉0)

n∏
k=1

S 2k+1(ω)

⎤⎥⎥⎥⎥⎥⎦
(A.1)

where the infinite continued fractions S n(ω) are defined by the recurrence relation

S n(ω) = cn[iωτD − dn − gnS n+2(ω)]−1 (A.2)

f (0)
2n = 〈P2n〉0 =

σnΓ(n + 1/2)
2Γ(2n + 3/2)

M(n + 1/2, 2n + 3/2, σ)
M(1/2, 3/2/σ)

M(a, b, z) =
Γ(b)
Γ(a)

∞∑
n=0

Γ(a + n)zn

Γ(b + n)n!

is the confluent hypergeometric (Kummer) function [1]. Equation (A.1) with ξω omit-
ted is, in fact, the complex susceptibility χ1(ω) associated with the matrix element
f (1)
1 (t), that is, the mean dipole moment. Equation (A.1) may be rewrittten as

F(1)(0) =
ξω
6 M(1, 5/2, σ)

[
M(1/2,5/2,σ)
M(1/2,3/2,σ)

+
∑∞

n=1
(−1)n(2n+1)(n+1)Γ(n+1/2)

Γ(n+2)Γ(1/2)

× σnΓ(n+1/2)
Γ(2n+3/2)

M(n+1/2,2n+5/2,σ)
2M(1/2,3/2,σ)

× n!σn

22n(5/4)n(7/4)n

M(n+1,2n+5/2,σ)
M(1,5/2,σ)

]
(A.3)

Equation (A.3) can be further simplified by absorbing the first term within the square
brackets into the infinite sum. On doing this we obtain using the properties of the
Pochhammer symbol specifically



306 A Continued Fraction Solutions of Eq. (5.301)

22n(5/4)n(7/4)n = (5/2)2n

(3/2)n

(3/2)2n
=
Γ(n + 3/2)
Γ(2n + 3/2)

we get

F(1)(0) =
ξω
6

1
M(1/2, 3/2, σ)

∞∑
n=0

(−1)n(1/2)n(3/2)nσ
2n

(3/2)2n(5/2)2n

×M(n + 1/2, 2n + 5/2, σ)M(n + 1, 2n + 5/2, σ)

(A.4)

Equation (A.4) is still of reasonably complicated mathematical form as it involves
infinite summations of products of infinite summations. This difficulty may be over-
come by noting that from [499] vol. 3 (6.6.2) part 9:

∞∑
k=0

(−1)k (a)k(a′)k(b − 1)k

k!(b − 1)2k(b)2k
xkyk M(a + k, b + 2k, x)M(a′ + k, b + 2k, y)

= Φ2(a, a′; b; x, y)

(A.5)

This is proven from first principles by changing the order of summations. Thus on
making the substitutions

k = n , x = y = σ , a = 1/2 , a′ = 1 , b = 5/2 (A.6)

∞∑
n=0

(−1)n (1/2)n(1)n(3/2)nσ
2n

n!(3/2)2n(5/2)2n
M

(
1
2

+ n,
5
2

+ 2n, σ

)

× M

(
1 + n,

5
2

+ 2n, σ

)
= Φ2

(
1
2
, 1;

5
2

;σ,σ

)

so that the summation disappears and we have the simple relation

F(1)
1 (0) =

ξω
6M(1/2, 3/2, σ0)

Φ2

(
1,

1
2

;
5
2

;σ,σ

)
(A.7)

where Φ2 is the degenerate Appell function given by

Φ2(b, b′; c; w, z) =
Γ(c)

Γ(b)Γ(b′)Γ(c − b − b′)�
ub−1vb′−1(1 − u − v)c−b−b′−1euw+vzdudv

(A.8)

where the double integral is performed subject to u, v ≥ 0 and u + v ≤ 1. Here it is
assumed ([499], vol 3 p 451 (49)) that Re{b, b′, c − b − b′} > 0. Accordingly the Φ2

in (A.7) may be evaluated as a repeated integral given by
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3
4

∫ 1

0
dv v−1/2 exp(σv)

∫ 1−v

0
du exp(σu) (A.9)

=
3

4σ0

∫ 1

0
dv v−1/2[exp(σ) − exp(σv)] (A.10)

=
3

2σ0

∫ 1

0
dx[exp(σ) − exp(σx2)] , (v = x2) (A.11)

=
3

2σ0
[exp(σ) − M(1/2, 3/2, σ)] (A.12)

=
3

2σ

[
eσ −

√
π

2
√
σ

er f i(
√
σ)

]
(A.13)

= M(3/2, 5/2, σ) (A.14)

where we have used (11) and (29) on pages 580–1 of Prudnikov et al., vol. 3 [499].
Thus (A.4) is reduced to the ratio of two hypergeometric functions

F(1)
1 (0) =

ξωM(3/2, 5/2, σ)
6M(1/2, 3/2, σ)

(A.15)

and [130] the static susceptibility is given by

χ(0) = 2μF(1)
1 (0) =

μξω
3σ

[
2
√
σ

π
eσ{er f i(

√
σ)}−1 − 1

]
(A.16)

This agrees, as it should, with the equation after equation (33) of [130], which is the
static susceptibility as rendered by the equilibrium distribution, upon identifying the
constants

μξω =
m2N
kT

(A.17)

We remark, by linear response theory, that the matrix elements f (1)
2n−1(t) may also be

expressed [558] in terms of the equilibrium correlation functions

Φ1,2n−1(t) = 〈cosϑ(0)P2n−1[cosϑ(t)]〉0/〈cosϑ(0)P2n−1[cosϑ(0)]〉0

as

f (1)
2n−1(t) = −χ2n−1

∫ t

−∞
Φ̇1,2n−1(t − t′)ξ(t′)dt′ (A.18)

where χ2n−1 = 〈cosϑ(0)P2n−1[cosϑ(0)]〉0. This is a useful representation of the so-
lution as, in general, it is much easier to calculate Φ1,2n−1(t), the after-effect solution
rather than the ac response directly. The corresponding hierarchy of linear complex
susceptibilities is

χ2n−1(ω) = χ2n−1

[
1 − iω

∫ ∞

0
Φ1,2n−1(t)e−iωtdt

]

so that in (5.293) χ(ω) corresponds to χ1(ω).
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It may also be shown by continued-fraction methods suitably adopted, how the
matrix element f (2)

2 (t) for a pure ω sinusoid ξ(t) = ξm cosω0t may be given (details
in [143], [329], Appendix C)

f 2)
2 (t) = Re

{
F(2)

0 (ω0) + F(2)
2 (2ω0)e2iω0t

}
(A.19)

where
(

F(2)
0 (ω0)

F(2)
2 (2ω0)

)
=

3
√
πξ2

m

8σ

∞∑
n=1

(−1)n+1Γ(n + 1)
Γ(n + 1/2)

n∏
k=1

(
S 2k(0)

S 2k(2ω0)

)
×[χ2n−1(ω0) − χ2n+1(ω0)

]
(A.20)

and the continued fractions S n are again defined by (A.2).
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Mittag–Leffler Functions

B.0.1 Properties of Mittag–Leffler Functions

Eα,β(z) =
1

2πi

∫ (0+)

−∞

tα−βet

tα − z
dt (B.1)

=
1

2πi

∫ (0+)

−∞
dt t−βet

∞∑
n=0

znt−αn (B.2)

=

∞∑
n=0

zn

Γ(β + αn)
(Hankel) (small |z|) (B.3)

Also, we have

Eα,β(z) =

(
−1

z

)
1

2πi

∫ (0+)

−∞
dt et

∞∑
n=0

tα−β+αn

zn
(B.4)

= −1
z

∞∑
n=0

z−n

Γ(β − α − αn)
(Hankel) (B.5)

= −1
z

E−α,β−α(1/z) (large |z|) (B.6)

By the ratio test, in general (B.3) converges and (B.6) diverges (0 < α < 1).

B.0.2 Asymptotics of Mittag–Leffler functions
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Eα(z) =

∞∑
n=0

zn

Γ(1 + αn)
(B.7)

=

∞∑
n=0

zn

αnΓ(αn)
(B.8)

=

∞∑
n=0

zn

αn

∞∑
l=1

cl(αn)l ([1] (6.1.34))(NB c = 1) (B.9)

= 1 +

∞∑
L=0

cL+1α
L
∞∑

n=0

znnL (l = L + 1) (B.10)

= 1 +

∞∑
L=0

cL+1α
L
∞∑

n=0

zn+1(n + 1)L (n→ n + 1) (B.11)

= 1 +
zc1

1 − z
+ z

∞∑
L=1

cL+1α
L
∞∑

n=0

zn(n + 1)L (B.12)

where

∞∑
n=0

zn+1(n + 1)L =
1
z

∞∑
n=0

(n + 1)Lzn+1 (B.13)

=
1
z

∞∑
n=0

(
z

d
dz

)L

zn+1 (B.14)

=
1
z

(
z

d
dz

)L ( z
1 − z

)
(B.15)

= −1
z

(
z

d
dz

)L 1
z − 1

(L ≥ 1) (B.16)

= −1
z

dL

dtL
f (g(t)) (B.17)

where we have
z = et , ln z = t , g(t) = et − 1 (B.18)

and

f (g(t)) =
1

g(t)
= −1

z

L∑
m=0

f (m)(g(t))
∑

(L; a1 − aL)′
L∏

j=1

{g( j)(t)}a j (B.19)

using Faá di Bruno’s formula ([1], p. 823) and summing over (see also [465])

a1 + 2a2 + · · · + LaL = L (B.20)

a1 + a2 + · · · + aL = m (B.21)

and where
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∑

(L; a1 − aL)′ ≡ S (m)
L (B.22)

namely a Stirling number of the second kind.
However,

g( j)(t) = et = z (1 ≤ j ≤ L) (B.23)

→
L∏

j=1

{g( j)(t)}a j = et(a1+a2+···+aL) = emt = zm (B.24)

∴
∞∑

n=0

zn(n + 1)L = −
L∑

m=0

(−1)mm!
(z − 1)m+1

S (m)
L zm (B.25)

since

f (m)(g(t)) =
(−1)mm!
{g(t)}m+1

(B.26)

∴ Eα(z) = 1 +
zc1

1 − z
+

1
z

∞∑
L=1

cL+1α
L

L∑
m=0

m!
( z
1 − z

)m+1
S (m)

L (B.27)

However

L∑
m=0

(−1)L−mm!S (m)
L = 1 ([1] p.825 IIB) (B.28)

∴ Eα(z) �
z→∞

1 +
z

1 − z
−1
z

∞∑
L=1

cL+1(−α)L (B.29)

= 1 +
z

1 − z
+

1
z

+
1
αz

∞∑
l=1

cl(−α)ll (L = l − 1) (B.30)

=
1

1 − z
+

1
z

+
1
αz

1
Γ(−α)

(B.31)

� − 1
z2
− 1

zΓ(1 − α)
�

−1
zΓ(1 − α)

(B.32)

Similarly, we have

Eα,β(z)
�

z→ ∞ − 1
zΓ(β − α)

(B.33)

B.1 Check on Norm of x2(τ)

Check on equation (3.12) of [30], with

z = −γtα (B.34)
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〈x2(τ)〉 =
2kT
m

∫ τ

0
dt(τ − t)Eα(z) (B.35)

=
2kT
m

∫ τ

0
dt(τ − t)

∞∑
n=0

(−γtα)n

Γ(1 + αn)
(B.36)

=
2kT
m

∞∑
n=0

1
Γ(1 + αn)

×
[
τ

(−γ)ntαn+1

1 + αn
− (−γ)ntαn+2

2 + αn

]τ
t=0

(B.37)

=
2kT
m

∞∑
n=0

1
Γ(1 + αn)

×
[
ταn+2(−γ)n

1 + αn
− τ

αn+2(−γ)n

2 + αn

]
(B.38)

=
2kT
m

∞∑
n=0

[
τ2(−γτα)n

Γ(2 + αn)
− τ

2(−γτα)n(1 + αn)
Γ(3 + αn)

]
(B.39)

=
2kT
m

∞∑
n=0

τ2 (−γτα)n[2 + α/n − 1 − α/n]
Γ(3 + αn)

(B.40)

=
2kT
m
τ2Eα,3(−γτα) (B.41)



C

Nonlinear Response to Alternating Fields

A system in thermal equilibrium at temperature T disturbed by an external stimulus
evolves to a new equilibrium (stationary) state. Moreover, if the energy stimulus is
much lower than the thermal energy kBT , linear in the stimulus) deviations of the ex-
pectation value of the relevant dynamical variable in the stationary state are sufficient
to evaluate the generalized susceptibility (linear ac response) using appropriate equi-
librium (stationary) correlation functions. The calculation of the nonlinear stationary
(ac) response even for systems of noninteracting particles with a single coordinate
is, however, much more difficult because no connection between the transient and
the ac responses exists. If interactions are included the difficulties are compounded.
Nonlinear dielectric relaxation and the dynamic Kerr effect of permanent dipoles in
a mean field potential are naturally occurring examples.

In this context we remark that the orientational electric polarization of noninter-
acting permanent dipoles in an ac field E(t) treated by Debye [206] depends in the
linear approximation in E(t) on the average over orientations of the Legendre poly-
nomial 〈P1(cosϑ)〉(t), ϑ being the polar angle of the electric dipole moment vector
μ. Similar remarks apply to the magnetization of blocked noninteracting ferrofluid
particles with magnetic dipole moment μ in ac magnetic fields H(t) [504]. Subse-
quently [142]–[504] Debye’s calculation was generalized to nonlinear responses.
We mention 〈P2〉(t) governing the Kerr effect response (KER) [212]–[122] and the
nonlinear dielectric effect (NLDE) [142], [567] amending 〈P1〉(t) to O(E3). The con-
clusions are [to O(E2)] for the KER for a pure sinusoid that the square law non-
linearity rectifies E(t), yielding a frequency-dependent dc response superimposed
on which is the dephased second harmonic [65]. In the NLDE, additional terms
in the fundamental and in the third harmonic appear in 〈P1〉(t). Experimental con-
firmation has been reported [567], [288]. The Debye theory may not be used for
dense anisotropic dipolar systems, where intermolecular interactions occur, such as
nematic liquid crystals. Here dielectric relaxation is usually interpreted using as a
model the noninertial rotational Brownian motion of a rodlike particle in an external
potential V (e.g., [142],[403], [460], [572]). This model was used in [132], where the
exact linear ac response is calculated in terms of continued fractions (using linear
response theory [373]) for the Maier–Saupe uniaxial anisotropy potential:
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V = −K cos2 ϑ (C.1)

where K is the anisotropy constant. Exact solutions for the nonlinear ac response in
a uniaxial potential can also be obtained by matrix continued fractions without using
perturbation theory [212], [142]. However, that approach cannot yield simple formu-
lae for experimental comparison, and it cannot provide an exact evolution equation
for the ac responses for perturbation purposes. Preliminary steps towards this were
made in [504], [142], [501], [503], [91] for dielectric relaxation of dipolar systems
and for magnetic relaxation (super-paramagnetism) of fine single-domain ferromag-
netic particles (in most respects a replica of dielectric relaxation of nematics). Here
we demonstrate how by calculating from perturbation theory the linear ac response
in the presence of E(t) one may generate the KER and all higher-order nonlinear
responses. The linear response comprising an infinity of relaxation modes may be
accurately represented by two modes, that of low frequency arising from the slow
barrier crossing of dipoles and that of high frequency representing the infinity of fast
near-degenerate “intrawell” modes approximated as a single high-frequency mode.
The analytical responses are obtained, utilizing the two-mode approximation for lin-
ear response combined with Morita’s treatment [438] of nonlinear response, showing
how the distribution function induced by a strong perturbing field may be calculated
from the Green functions in the absence of the perturbation, with linear response
theory as a special case.

The cornerstone of our calculation is the Smoluchowski (Fokker–Planck) equa-
tion for the density W(μ, t) of orientations of dipoles μ on the surface of the unit
sphere [206], [437], [142]

Ẇ = [LFP + Lext(t)]W (C.2)

where LFPW = (2τD)−1[ΔW + β∇ · (W∇V)] is the unperturbed Fokker—Planck op-
erator while LextW = (2τD)−1β∇ · (W∇Vext) is the Zeeman energy VextW = −(E · μ)
contribution, and ∇ and Δ are the gradient and Laplacian on the surface of the unit
sphere. Here β = (kBT )−1, τD = βζ/2 is the Debye relaxation time for free diffusion,
and ζ is the viscous drag coefficient. Expanding W in the {Pn} yields [437], [142]

τD ḟn(t) + cn fn−2(t) + dn fn(t) + gn fn+2(t) = ξ(t)an[ fn−1(t) − fn+1(t)] (C.3)

where fn(t) = 〈Pn(cosϑ)〉(t) and ξ(t) = βμE(t), and all the coefficients are given, e.g.,
in [437], [142]. One may write

fn(t) = f (0)
n + f (1)

n (t) + f (2)
n (t) + f (3)

n (t) + · · ·

[with the superscripts denoting the relevant order in E(t)] so that

τD ḟ (m)
n (t) + cn f (m)

n−2(t) + dn f (m)
n (t) + gn f (m)

n+2(t)

=ξ(t)an[ f (m−1)
n−1 (t) − f (m−1)

n+1 (t)]
(C.4)

Thus to calculate the matrix element f (2)
2 (t), i.e., the lowest-order approximation to

the KER, we first determine { f (1)
2n−1(t)} satisfying (C.4) with m = 1. The exact so-

lutions of (C.4) for f (1)
2n−1(t) for the stationary response to ξ(t) = ξeiωt are given by
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continued fractions [212]. However, in order to obtain analytical approximations, we
use another method. Suppose that a small probing field ξ1 = βμE1 � 1 applied along
the polar axis at t = −∞ is removed at t = 0. The step off [ξ(t) = 0 for t > 0] solution
of (C.4) for m = 1 f (1)

2n−1,o f f (t), is

f (1)
2n−1,o f f (t) = ξ1χ2n−1Φ1,2n−1(t) (C.5)

where Φ1,2n−1(t) are the normalized equilibrium correlation functions defined as

Φk,m(t) =
〈Pk[cosϑ(0)]Pm[cosϑ(t)〉0 − 〈Pk〉0〈Pm〉0

〈PkPm〉0 − 〈Pk〉0〈Pm〉0
(C.6)

〈Pn〉0 = 〈Pn[cosϑ(0)]〉0, and χ2n−1 = 〈P1P2n−1〉0 are the static susceptibilities, which
can be expressed as hypergeometric functions [132]. The Green functions G2n−1(t)
of the unperturbed [ξ(t) = 0] (C.4) with m = 1 is G2n−1(t) = −Φ̇1,2n−1(t) [373]. Thus

f (1)
2n−1(t) = −χ2n−1

∫ t

−∞
Φ̇1,2n−1(t − t′)ξ(t′)dt′ (C.7)

If ξ(t) = ξeiωt, (C.7) yields f (1)
2n−1(t) = χ2n−1(ω)ξeiωt, where χ2n−1(ω) are the general-

ized complex susceptibilities

χ2n−1(ω)
χ2n−1

= 1 − iω
∫ ∞

0
Φ1,2n−1(t)e−iωtdt (C.8)

The time domain behavior of Φ1,2n−1(t) is characterized by the integral and effective
relaxation times

τ2n−1 =

∫ ∞

0
Φ1,2n−1(t)dt , τ

e f f
2n−1 = −1/Φ̇1,2n−1(0) (C.9)

Here τe f f
2n−1 is evaluated from (C.4) with ξ(t) = 0 using equilibrium averages as

τ
e f f
2n−1

τD
= −

f (1)
2n−1,o f f (0)

τD ḟ (1)
2n−1,o f f (0)

=

{
d2n−1 + c2n−1

〈P1P2n−3〉0
〈P1P2n−1〉0

+ g2n−1
〈P1P2n+1〉0
〈P1P2n−1〉0

}−1

and τ2n−1 is given by the mean first passage time approach of Szabo [577], which for
the present problem yields

τ2n−1 =
2τD

Z〈P1P2n−1〉0

∫ 1

−1
dz

e−σz2

1 − z2

∫ z

−1
xeσx2

dx

×
∫ z

−1
P2n−1(y)eσy2

dy

where Z =
∫ 1

−1
eσz2

dz is the partition function and σ = βK is the barrier height
parameter. Φ1,2n−1(t) may also be written as an eigensolution using the eigenvalues
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{ξk} of LFP, viz., Φ1,2n−1(t) =
∑

k cn
ke−tλk , where

∑
k cn

k = 1 and λ1 (essentially the
Kramers escape rate) is associated with the slowest relaxation mode and so with the
long-time behavior of Φ1,2n−1(t); the other λk characterize high-frequency intrawell
modes. By (C.9) τ2n−1 =

∑
k cn

k/λk and τe f f
2n−1 = 1/

∑
k cn

kλk. The behavior of λ1, τ2n−1,

and τe f f
2n−1 is given, for σ ≤ 1, by

λ1τD = 1 − 2
5
σ + · · ·

τ2n−1

τD
=

n! − (1/2)n

n(1/2)n
+ σ

2 + 8n!/(3/2)n−2

3n(4n + 1)
+ · · ·

τ
e f f
2n−1

τD
=

1
n

+
2σ

4n2 + n
+ · · ·

[(a)n is the Pochhammer symbol] and, for σ � 1, by

λ1τD ∼
2σ3/2e−σ
√
π

(
1 − 1

σ
− 3

4σ2
+ · · ·

)

τ2n−1

τD
∼
√
πeσ

2σ3/2

(
1 +

1
σ
− 7 + n − 2n2

4σ2
+ · · ·

)

τ
e f f
2n−1

τD
∼ 2σ

2n2 − n

(
1 − 3

2σ
+ · · ·

)

The spectra of χ2n−1(ω) can be accurately described at all frequencies (see Fig. C.1)
by a sum of two Lorentzians, viz.,

χ2n−1(ω)
χ2n−1

=
Δ2n−1

1 + iω/λ1
+

1 − Δ2n−1

1 + iωτ2n−1
W

(C.10)

where Δ2n−1 and τW
2n−1 are determineds to ensure the correct low- and high-

frequency behavior of χ2n−1(ω), viz., χ2n−1(ω)/χ2n−1 ≈ 1 − iωτ2n−1 as ω → 0 and
χ2n−1/χ2n−1(ω) ∼ iωτe f f

2n−1 as ω→ ∞, and are given by

Fig. C.1. −Im [χ2n−1(ω)] vs ωτD (solid lines, (C.4) and (C.8) for n = 1, 3, 5); χ2n−1ωτ2n−1

(dotted lines); χ2n−1(ωτe f f
2n−1)−1 (dashed lines); symbols (C.10)
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Δm =
τm/τ

e f f
m − 1

λ1τm − 2 + 1/(λ1τ
e f f
m )

, τm
W =

λ1τm − 1

λ1 − 1/τe f f
m

(C.11)

In the time domain, the two-mode approximation (C.10) is equivalent to assuming
that the relaxation function Φ1,2n−1(t) (which in general comprises an infinite num-
ber of exponentials) may be approximated by two exponentials only. An interested
reader can find a detailed description and various applications of this two-mode ap-
proximation in [142].

The second order response { f (2)
2n (t)} satisfies (C.4) with m = 2. The exact solution

for the element f (2)
2 (t) governing the KER, with ξ(t) = ξ cosωt, is

f (2)
2 (t) = ξ2Re[F(2)

0 (ω) + F(2)
2 (ω)e2iωt] (C.12)

where the frequency-dependent dc F(2)
0 (ω) and the second harmonic F(2)

2 (ω) terms
are

(
F(2)

0 (ω)
F(2)

2 (ω)

)
=

3
√
π

4σ

∞∑
n=1

(−1)n+1n!
Γ(n + 1/2)

n∏
k=1

(
S 2k(0)

S 2k(2iω)

)
× [χ2n−1(ω) − χ2n+1(ω)] (C.13)

and the continued fractions S n(iω) are defined as S n(iω) = cn[iωτD−dn−gnS n+2(iω)]−1

[cf. [132], eq. (26)]. In order to obtain a simple analytic approximation for the
KER, we notice that the normalized step-off solution of (C.4) with m = 2 is
f (2)
2,o f f (t) = ξ2χ2Φ2,2(t), where Φ2,2(t) is the normalized second-rank equilibrium cor-

relation function defined by (C.6) and χ2 = (〈P2
2〉0 − 〈P2〉20)/3. As the overbarrier

relaxation mode is not involved in the propagator of f (2)
2 (t), one may use a single-

mode approximation for Φ2,2(t), viz.,

Φ2,2(t) ≈ e−t/τe f f
2 (C.14)

with the effective relaxation time τe f f
2 given by

τ
e f f
2

τD
= −

f (2)
2,o f f (0)

τD ḟ (2)
2,o f f (0)

=
〈P2

2〉0 − 〈P2〉20
1 + 〈P2〉0 − 2〈P2

2〉0

The qualitative behavior of τe f f
2 is τe f f

2 /τD = 1/3 + 2σ/189 + · · · for σ ≤ 1 and

τ
e f f
2 /τD = σ−1/2 +σ−25/4 + · · · for σ � 1. Moreover, using the effective relaxation

time means that (C.4) for m = 2 can be represented as

τ
e f f
2 ḟ (2)

2 (t) + f (2)
2 (t) = −χ2ξ(t)

∫ t

−∞
Φ̇(1)(t − t′)ξ(t′)dt′

with solution

f (2)
2 (t) = − χ2

τ
e f f
2

∫ t

−∞
ξ(t′)e−(t−t′)/τe f f

2

∫ t′

−∞
Φ̇(1)(t′ − t′′)ξ(t′′)dt′′dt′ (C.15)
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Here Φ(1)(t) is the normalized [Φ(1)(0) = 1] effective relaxation function, accounting
for the driving functions { f (1)

2n−1(t)}. As before, Φ(1)(t) is characterized by the integral,
τ, and effective, τe f f , relaxation times, which can be estimated from the low- and
high-frequency asymptotes of the dc KER τ = − limω→0 2 Im [F(2)

0 (ω)]/(ωχ2) and
τe f f = − limω→∞ χ2{2ω Im [F(2)

0 (ω)]}−1. The one-sided Fourier transform of −Φ̇(1)(t)
may be represented in a two-mode approximation as

1 − iωΦ̃(1) =
Δ2

1 + iω/λ1
+

1 − Δ2

1 + iωτ2
W

(C.16)

Here Δ2 and τ2
W may be evaluated from (C.11) using λ1, τm = τ, and τe f f

m = τe f f

(see Table C.1). For σ < 1 and σ � 1, their behavior is Δ2 = 1 + σ/35 + · · · ,
τ2

W/τD = σ/70 + · · · , and Δ2 = 1 + σ−1 + · · · , τ2
W/τD ∼ −1/2σ + · · · , respectively.

Thus, setting ξ(t) = ξ cosωt, (C.15) yields

f (2)
2 (t) =

χ2ξ
2

2
Re

⎡⎢⎢⎢⎢⎣
⎛⎜⎜⎜⎜⎝1 +

e2iωt

1 + 2iωτeff
2

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝ Δ2

1 + iω/λ1
+

1 − Δ2

1 + iωτ2
W

⎞⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎦ (C.17)

Fig. C.2. Exact Re [F(2)
0 (ω)]/ξ2 (C.13, solid lines) and approximate ((C.17), symbols) solutions

Apparently, the KER calculated from the approximate equation (C.17) is in ex-
cellent agreement with the exact equation (C.13); see Figures C.2 and C.3. The re-
sults suggest a method of measuring the overbarrier relaxation time 1/λ1, i.e., the
inverse Kramers escape rate, using the dc component of the Kerr response. For free

Table C.1. Numerical values of (λ1τD)−1, τe f f /τD, and τ/τD

σ 0 1 2 3 4 5 6 8 10

(λ1τD)−1 1.0 1.531 2.476 4.243 7.702 14.77 29.75 135.8 693.9
τe f f /τD -1.0 -2.169 83.37 2.411 1.352 1.021 0.881 0.805 0.826
τ/τD 1.0 1.582 2.655 4.713 8.788 17.09 34.43 153.2 757.9
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Fig. C.3. Exact Re [F(2)
2 (ω)]/ξ2 (C.13, solid lines) and approximate ((C.17), symbols) symbols

diffusion (σ = 0), χ2 = 1/15, τe f f
2 = τD/3, λ1 = 1/τD, and Δ2 = 1 so that (C.17)

reduces to the known results [122], [124].
Finally as in [122], [124], f (1)

1 (t), and f (2)
2 (t) yield the NLDE f (3)

1 (t). We have

f (3)
1 (t) = −1

6

(
〈P4

1〉0 − 3〈P2
1〉

2
0

) ∫ t

−∞
ξ(t′)Φ̇(3)(t − t′)

×
∫ t′

−∞
ξ(t′′)Φ̇2,2(t′ − t′′)

×
∫ t′′

−∞
Φ̇(1)(t′′ − t′′′)ξ(t′′′)dt′′′dt′′dt′ (C.18)

representing the generalization of (21) of [122] or (14.21) of [124] to a mean field.
Φ(3)(t) contains the contribution of the matrix elements of the KER to f (3)

1 (t) and
is represented by a two-mode approximation as the propagator involves overbarrier
relaxation.

We have described exact and approximate calculations of the nonlinear orienta-
tional ac response of permanent dipoles in the presence of a uniaxial potential (C.1).
The approximate calculation accurately represents the relevant matrix elements of
the exact time-ordered matrix exponential solution generated by perturbation theory
using Picard’s method [122], [124], [331]. Thus the approximate solution effectively
generalizes the existing analytic results for noninteracting dipoles in ac driving fields
to a mean field potential and has a similar mathematical form (C.17) (but with param-
eters given in terms of the barrier height parameter σ), so explaining the successful
application of the known frequency-dependence of the KER for free diffusion to the
analysis of experimental spectra of electric birefringence of nematics which was pre-
viously done without any theoretical justification (see, e.g., [532]). The results apply
to both nonlinear dielectric relaxation and KER of nematics, and magnetic birefrin-
gence relaxation of ferrofluids. The solution of the problem citing, for example, the
matrix element f (2)

2 (t), clearly demonstrates that the dc component of a second-order
nonlinear response contains information about the linear response function. This fact
suggests possible methods of measurement of the overbarrier relaxation time (in-
verse Kramers rate) via the dc electric or magnetic birefringence. We have illustrated
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the calculation for the simplest mean field potential and have ignored induced mo-
ments. The calculation may, however, be very easily extended to (a) nonstationary
response, (b) induced moments, and (c) other mean field potentials such as biax-
ial anisotropy. Finally, the method may be extended to fractional Brownian motion
resulting in anomalous relaxation as described in [142].



References

1. M. Abramowitz, I.A. Stegun: Handbook of Mathematical Functions (Dover, New York
1970)

2. R. Abrines R, I.C. Percival: Proc. R. Soc. A 88, 861 (1966)
3. R. Abrines, I.C. Percival: Proc. Phys. Soc. London 88, 873 (1966)
4. Y. Aharonov, J. Anandan: Phys. Rev. Lett. 58, 1593 (1987)
5. A. Aharoni: Phys. Rev. 135, 793 (1964)
6. A. Aharoni: Phys. Rev. 177, 793 (1969)
7. A. Aharoni: An Introduction to the Theory of Ferromagnetism (Oxford University, Lon-

don 1996)
8. N.I. Akhiezer: Calculus of Variations (Blaisdell, New York 1962)
9. L.H. Andersen, P. Hvelplund, H. Knudsen, S.P. Møller, J.O.P. Pedersen, S. Tang-

Petersen, K. Elsener, E. Morenzoni: Phys. Rev. A 41, 6536 (1990)
10. D. Andrick: J. Phys. B: At. Mol. Phys. 12, L175 (1979)
11. R. Anholt et al: Phys. Rev. Lett. 53, 234 (1984)
12. R. Anholt: Phys. Rev. A 31, 3579 (1985)
13. R. Anholt, U. Becker: Phys. Rev. A 36, 4628-4636 (1987)
14. H.A. Antosiewicz: Handbook of mathematical functions ch. 10 (Dover, New York 1965)
15. E.A.G. Armour, J.M. Carr: Nucl. Instrum. Meth. Phys. Res. B 143, 218 (1998)
16. P. Ashley, J. Moxom, G. Laricchia: Phys. Rev. Lett. 77, 1250 (1996)
17. Y.K. Bae, M.J. Coggiola, J.R. Peterson: Phys. Rev. A 28, 3378 (1983)
18. Y.K. Bae, J.R. Peterson: Phys. Rev. A 37, 3254 (1988)
19. A.J. Baltz, M.J. Rhoades-Brown, J. Wesener: Phys. Rev. A 44, 5569 (1991)
20. A.J. Baltz, M.J. Rhoades-Brown, J. Wesener: Phys. Rev. A 48, 2002 (1993)
21. A.J. Baltz, M.J. Rhoades-Brown, J. Wesener: Phys. Rev. A 50, 4842 (1994)
22. A.J. Baltz, M.J. Rhoades-Brown, J. Wesener: Phys. Rev. E 54, 4233 (1996)
23. D. Banks, K.S. Barnes, J.McB. Wilson: J. Phys. B 9, L141-4 (1976)
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27. A. Bárány, D.S.F. Crothers: Physica Scripta 23, 1096 (1981)
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314. M. Gryziński: Phys. Rev. 138, A336 (1965)
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391. H.J. Lüdde, R.M. Dreizler: J. Phys. B 15, 2703-2711 (1982)
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501. Y.L. Raĭkher et al: J. Colloid Interface Sci. 144, 308 (1991)
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